
Robust Visual Feedforward and Feedback
Signal Processing in the Mouse Thalamus

yannik t. bauer

D O C T O R A L
D I S S E RTAT I O N

Graduate School of Systemic Neurosciences
Ludwig-Maximilians-Universität München

February 2022



Robust Visual Feedforward and Feedback Signal Processing
in the Mouse Thalamus

Doctoral dissertation
by Yannik T. Bauer
Graduate School of Systemic Neurosciences
Ludwig-Maximilians-Universität München
February 2022

Except where otherwise noted, this work is licensed under a
Creative Commons Attribution 4.0 International License (CC
BY 4.0).

supervisors:
Prof. Dr. Laura Busse
Division of Neurobiology
Faculty of Biology
Ludwig-Maximilians-Universität München
Germany

Prof. Dr. Philipp Berens
Werner Reichardt Centre for Integrative Neuroscience (CIN)
Institute for Ophthalmic Research
Eberhard Karls University of Tübingen
Germany

first reviewer: Prof. Dr. Laura Busse
second reviewer: Prof. Dr. Philipp Berens
external reviewer: Prof. Dr. Stefan Treue

date of submission: 28.02.2022

date of defense: 24.06.2022

http://creativecommons.org/licenses/by/4.0/


To my mother.



A C K N O W L E D G E M E N T S

It is always good to be reminded of those I am grateful to, especially
when the going gets tough. My thanks go to Laura Busse and Philipp
Berens, for giving me the opportunity to pursue this project and for
their continued support throughout. Also to Thomas Euler, with whom
it all started, to Katrin Franke, Timm Schubert, Tom Baden, Gordon
Eske and Valeska Botzenhardt, who helped me with the practical as-
pects of visual research, and to Miroslav Román Rosón, from whom I
inherited this project. Lisa Schmors: Without you, this work would be
nowhere near where it is now and I will miss our regular meetings. I am
also thankful for the company of the other past and present members
of the Euler and Berens labs that I spent time with, especially Theresa
Stadler, David Klindt, Camille Chapot, Yanli Ran, Zhijian Zho, Yongrong
Qiu, Luke Rogerson, Michael Power, Inmaculada Soldado, Klaudia Sza-
tko, Marili Korympidou, André Chagas, Sophie Laturnus, Jan Lause,
Ziwei Huang, Cornelius Schröder, Marie Bellet, Christian Behrens, Lara
Hoefling, Dmitry Kobak, Murat Seckin Ayan, Sacha Sokoloski and Yves
Bernaerts. There are many people that I met during my time at the Grad-
uate Training Center Tübingen that fully deserve my gratitude for pro-
viding the context in which all this was possible and who should con-
sider themselves tacitly included here.

In the Busse lab, I would also like to address thanks to the following
alumni, who helped me get started: Matilde Fiorini, Agne Klein, Sinem
Erisken, Ovidio Jurjut, and Alexandra Wal. Thanks also to the present
members, including Martin Spacek, for being a reassuring helping con-
stant. Ann Kotkat: I count myself lucky that you were my first Master’s
student to supervise and I know the project is in good hands with you.
Felix Schneider: thanks for the lively debates about everything and any-
thing – this will continue. And all the other Busse Lab members, namely
Lukas Meyerolbersleben, Gregory Born, Simon Renner, Davide Crombie,
Magdalena Kautzky, Shreya Khanal, Steffen Katzner, and Melanie Sto-
gia. I would also like to thank the people in the Neurobiology Division
and the people of the GSN, for adopting us into their circles, especially
Benedikt Grothe, Michael Pecka, and Hilde Wohlfrom. Then I am fondly
reminded of the people of the Python summer school, especially Tiziano
Zito, who gave me food for the soul.

Thanks to my friends and family, who have kept me grounded through-
out these years.

Johanna, words cannot express my gratitude for you, so I hope that
my actions in everyday life speak louder than words. Here, I will keep
it simple: thank you for being there.

And lastly, I would like to recognize all the mice, whose lives have
been created and sacrificed to make this work possible.

iv



A B S T R A C T

Robust vision starts in the retina and is finally accomplished in the cor-
tex – but what role does the dorsolateral geniculate nucleus of the thala-
mus (dLGN) play at the intermediate stage of the early visual processing
pathway?

In this thesis, I investigated how the dLGN in the awake mouse com-
putes visual representations and how dLGN activity is shaped by retinal
feedforward signals, cortico-thalamic feedback and behavioural state. A
guiding hypothesis was that the dLGN is not a passive relay of retinal
inputs, but an active signal transformer that may improve the reliability,
efficiency, and robustness of the neural population code.

In the first study included in this work, we investigated which func-
tional retinal ganglion cell (RGC) types project to the dLGN and how
multiple RGC types converge onto single dLGN relay cells. The second
study explored the impact of global suppression of V1 cortico-thalamic
feedback on dLGN responses to naturalistic stimuli, and compared the
effects of feedback versus locomotion and natural versus artificial stim-
uli. Lastly, in the third study, we modelled dLGN activity to more com-
plex movie stimuli and used a more selective optogenetic feedback sup-
pression method and assessed if and how the model benefits from ad-
ditional information about feedback, as well as locomotion and pupil
size.

To summarize our results, we first found that the majority of func-
tional RGCs project to the dLGN, which displays a large response di-
versity, and that an average of five types converge onto a given relay
cell, two of which exert the strongest functional impact. Secondly, global
feedback suppression reduced dLGN firing rates and increased burst-
ing, with stronger effects observed for naturalistic stimuli than artificial
ones, and similar but independent effects of feedback versus locomo-
tion. Lastly, the third study confirmed that dLGN mean firing rates are
decreased by direct feedback suppression, and increased during periods
of running and large pupil sizes. These observations are reflected in the
model, whose predictions benefit mostly from additional feedback but
not behavioural state information, but which nevertheless manages to ex-
tract dLGN spatio-temporal receptive fields (STRFs) for complex movies
as well as artificial stimuli.

In conclusion, in vivo mouse dLGN activity is shaped mostly by the
influences of sparse functional retino-thalamic convergence, and is mod-
ulated to a lesser degree by cortico-thalamic feedback and behavioural
state. This suggests that the dLGN is not a passive relay but instead ac-
tively transforms visual signals by combining its visual and extra-visual
inputs, in agreement with the consensus view on the subject.
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1I N T R O D U C T I O N

Vision allows us to see and navigate the world around us, and the fact
that it works so reliably is at the same time one of its most remarkable
and least noticeable features. Most remarkable, because it works in vi-
sual environments that are highly complex, diverse and variable, with
noisy and limited visual information. Least noticeable, because most of
its workings happen effortlessly and subconsciously.

Visual perception is more than mere sensation of light, more than a
simple, passive and direct translation of the retinal image (Gibson, 1972)
— it is an active process of transformation and interpretation of visual
information (Ullman, 1980), necessary to create a meaningful representa-
tion in the mind’s eye. While the term interpretation may evoke conscious
control, perception is largely the product of, as Hermann von Helmholtz
put it, unconscious inference (von Helmholtz, 1867).

Visual processing is physically implemented in the visual system (Marr
& Poggio, 1976), a complex neuro-computational machinery that extracts
information at every single stage. All biological vision begins in the eye,
the sensory organ that transduces light energy in the visible spectrum
of electromagnetic radiation into the neural code. When patterns of pho-
tons stimulate the retina, they trigger a cascade of signals through a
massively interconnected hierarchical neural network of converging and
diverging feedforward pathways (Felleman & Van Essen, 1991; Siegle
et al., 2021) and recurrent feedback connections (Riesenhuber & Poggio,
1999). Whereas the visual feedforward hierarchy is generally thought to
underlie the increase of neural receptive field (RF) size and feature com- receptive field:

region of sensory space in
which the presence of a stim-
ulus can alter the neuron’s
response.

plexity at successive levels (Hubel & Wiesel, 1962; Lamme & Roelfsema,
2000; Riesenhuber & Poggio, 1999), feedback is hypothesized to serve
diverse concepts involving top-down, contextual and predictive process-
ing (Gilbert & Sigman, 2007; Rao & Ballard, 1999), as well as attention,
working memory and prior experience (Gazzaley & Nobre, 2012). Inso-
far as feedforward and feedback processes provide pattern recognition,
they can be regarded as active inference and interpretation mechanisms
for perception in the above sense.

Yet, our understanding of the computations in the visual system is
incomplete (Carandini et al., 2005), as evidenced, for instance, by recent
efforts in computer vision to algorithmically emulate the visual object
recognition abilities of biological systems (Yamins et al., 2014). Despite
the recent breakthroughs the field experienced owing to the develop-
ment of deep neural network (DNN) (LeCun et al., 2015), the robustness
and efficiency of those networks still falls short of human performance robustness:

ability of a system to toler-
ate perturbations without
changing its properties, e.g.
neural response reliability or
invariance despite changing
conditions.

levels by a large margin (Dodge & Karam, 2016; Szegedy et al., 2013).
Already at the early precortical stages of the image-forming visual

pathway connecting the retina, the thalamic dLGN, and the primary vi-
sual cortex (V1) (Seabrook et al., 2017), little is known about if and how
visual representations change between the retina and the dLGN (Us-
rey & Alitto, 2015). The dLGN occupies the first station after the retina

1



2 introduction

and provides the most direct route for visual information to V1 (Berson,
2008). Since all sensory info (except olfaction) is first processed in the re-
spective first-order nuclei of the thalamus, including the dLGN, before
reaching the cortex, the thalamus has also been dubbed the gateway to
cortex (Usrey & Alitto, 2015). However, this gateway has classically been
viewed as a simple passive relay (Sherman, 2007; Usrey & Alitto, 2015),
implying that it essentially passes on or blocks signals from the sensory
periphery unchanged, and also implying that no information would be
lost if this relay station were skipped (Ghodrati et al., 2017). This stands
in contrast to the view of the dLGN as an active signal transformer that
changes incoming information before passing it on.

In this thesis, I investigated how the mouse dLGN processes the com-
bined signals from its various visual and extra-visual input sources (Sher-
man & Guillery, 2002). A central hypothesis that we will revisit through-
out this work is that the dLGN is not a mere passive relay but an active
signal transformer that improves the efficiency and robustness of the
visual population code (e.g. Andolina et al., 2013; Barlow, 1961; Briggs
& Usrey, 2011; Dong & Atick, 1995; Ghodrati et al., 2017; Sillito et al.,
2006; Usrey & Alitto, 2015). By now, this view reflects the established
consensus of the recent literature on the mouse model system, to the
point that it may come off as a cliché to say that the dLGN acts as
more than a mere passive relay (Babadi et al., 2010). Making this con-
trast nevertheless provides a useful research framework that continues
to be supported by an emerging body of evidence uncovering a hitherto
unexpected diversity of mouse dLGN feature selectivity (Cruz-Martín et
al., 2014; Marshel et al., 2012; Piscopo et al., 2013). This diversity may be
based on, firstly, massive retino-thalamic feedforward (FF) convergence
(Ellis et al., 2016; Hammer et al., 2015; Morgan et al., 2016) of the many
different retinal ganglion cell (RGC) types (Baden et al., 2016), allowing
the dLGN to recombine incoming information into diverse novel fea-
tures. Secondly, signal transformations may be further aided by ubiqui-
tous cortico-thalamic (CT) feedback (FB) connections (Sillito et al., 2006),
adjusting response gain and the spatio-temporal structure of retinal ac-
tivity patterns (Cudeiro & Sillito, 1996; Usrey & Alitto, 2015).

However, the functional roles of feedforward convergence and feed-
back are poorly understood, with conflicting evidence arguing either
for (Alitto & Usrey, 2008) or against (Sillito et al., 2006) a significant
influence. Furthermore, the difficulty of interpreting results in either di-
rection is exacerbated by methodological differences including choice of
species, behavioural state of the animal, data type, CT FB manipulation
technique, stimuli, and analysis focus, to name but a few. In particular,
the interpretation of most of the studies is hampered by the fact that
they have probed CT FB effects by manipulating CT FB non-specifically
while showing artificial stimuli to anaesthetized cats, which could lead
to a substantial underestimation of feedback effects (Durand et al., 2016).

In this regard, the primary contribution of this work is to provide
in vivo studies of dLGN diversity in the awake, behaving mouse in re-
sponse to various stimuli, including modelling of responses to naturalis-
tic stimuli and behaviour with or without direct L6 CT FB suppression.
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1.1 overview

In the following introductory sections, I shall first examine the litera-
ture on the topics of the retino-geniculate feedforward pathway (Sec-
tion 1.2) and the cortico-geniculate feedback pathway (Section 1.3), and
then move on to discussing the use of behavioural state information, in-
hibitory optogenetics, naturalistic movie stimuli and modelling in the
service of neural systems identification of the dLGN (Section 1.4).

The subsequent three chapters contain the studies conducted to ad-
dress these topics in more depth. Chapter 2 includes the first study,
Román Rosón et al., 2019, in which we focussed on the question of
retino-geniculate convergence as the basis of the functional diversity of
the dLGN. Chapters 3 and 4 contain the study published as Spacek et al.,
2022 and the manuscript Bauer et al., 2022 (in preparation), in which we
investigated the functional impact of CT FB via different optogenetic CT
FB inhibition techniques and further assessed the influence of different
naturalistic movie stimuli and behavioural state. Lastly, in the discussion
chapter (Chapter 5), I will summarize our findings, discuss their inter-
pretation and provide an outlook for future directions for this work.

1.2 thalamic feedforward inputs – from retina to dlgn

1.2.1 Retinal outputs

The dorsolateral geniculate nucleus of the thalamus (dLGN) receives its
main feedforward (FF) input drive from the retina, a thin sheet of light-
sensitive tissue at the back of the eye that converts light into the neu-
ral code at the basis of vision (Dhande et al., 2015). Every aspect of
visual processing is built on the spiking activity of RGCs, the output
layer of the retina (Dhande & Huberman, 2014). Retinal inputs to the
dLGN are of a feedforward nature insofar as the retina precedes the
dLGN in the image-forming visual path linking retina→dLGN→V1 (the
retino-geniculo-cortical path). Retino-thalamic RGCs also provide the
only driver synapses input onto dLGN cells, all other inputs synapses
to the dLGN being modulatory (Sherman & Guillery, 2002).

It may be tempting to liken the retina to the light-detection functions
of a camera sensor, but that analogy grossly ignores the enormous sig-
nal processing capabilities of the retinal machinery (Gollisch & Meister,
2010). These include single-photon detection (Baylor et al., 1979; Tren-
holm & Krishnaswamy, 2020), edge detection and decorrelation (Franke
et al., 2017) via center-surround RFs (Barlow, 1953), adaptation / gain
control (Fairhall et al., 2001; Wark et al., 2007), image compression, ex-
traction of parallel feature channels (Baden et al., 2016; Lettvin et al.,
1959; Roska & Meister, 2014), to name but some general processes. In
vertebrates, retinal processing is a signal cascade through multiple suc-
cessive neuronal layers. Visual information flows through the vertical
pathway starting with photoreceptor cells, via bilopar cells, and ending
with RGCs. On this route, the signals are extensively shaped by the activ-
ity of interneurons, namely horizontal cells and amacrine cells (Masland,
2012). The RGC layer is thus the final output layer of the retina.
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The RGC layer comprises many different RGC types (based on func-
tion, morphology, genetics, intra-retinal connectivity, retinal mosaic and
immunohistochemical profile (Baden et al., 2016)). In the mouse retina,
information gets distributed across 40+ functional RGC types (Baden et
al., 2016; Laboissonniere et al., 2019; Peng et al., 2019; Sanes & Masland,
2015; Sümbül et al., 2014) extracting distinct features from the visual in-
put in parallel and evenly tiling the retina. A few fundamental response
features include ON-, OFF-, and ON-OFF responses, transient vs. sus-
tained responses, (opponent) colour-coding, orientation selectivity (OS),
direction selectivity (DS), suppressed-by-contrast (SbC) responses, loom-
ing responses, and more (Baden et al., 2016; Dhande et al., 2013), which
may also get combined with each other to give rise to a continuum of fea-
ture filters. For approximately half of the RGC types the precise function
has yet to be determined (Sanes & Masland, 2015), but there are results
promising to continue towards a consensus on a unified classification
catalogue of RGC types (Goetz et al., 2021).

It is yet unclear precisely what retinal information is sent to the dLGN
and how it is processed there. The mouse retina projects RGC output ax-
ons to approximately 50+ retino-recipient areas (Martersteck et al., 2017),
including the SC and dLGN as the main targets, as well the ventral LGN
(vLGN), the hypothalamus, the suprachiasmatic nucleus, and pretectal
nuclei of the midbrain, to name but a few. In fact, in the mouse, ca.
90 % of all RGCs project to the SC (Ellis et al., 2016; Seabrook et al.,
2017), compared to ca. 30-40 % projecting to dLGN (Martin, 1986). Of
the dLGN-projecting RGCs, 80 % also innervate the SC (Ellis et al., 2016;
Huberman et al., 2008).1 Nevertheless, to determine the functional con-
sequences of retinal projection patterns on dLGN visual processing, we
also need to assess both the types of features sent to dLGN, as well as
the patterns of retino-geniculate convergence.

1.2.2 Retino-geniculate convergence & the functional diversity of dLGN cells

The issue of retino-geniculate convergence is relevant to the questions of
thalamic functional diversity and signal transformation insofar as con-
vergence can enable recombination of visual feature channels to gener-
ate new features - a result that would run counter to the notion of the
dLGN as a passive relay. It is a matter of current debate which func-
tional RGC types project to the dLGN, what their convergence patterns
are, and how much this contributes to thalamic signal transformations,
if at all (Usrey & Alitto, 2015). The answer mainly seems to depend on
the species and on whether we are considering functional or anatomical
evidence.

On the one hand, classical research in cats and primates has sug-
gested little convergence (reviewed in Sherman & Guillery, 2002). Ev-
idence of parallel retinogeniculate feature channels has typically been
confined to few channels, the X-, Y-, and W-pathways for cats, or the anal-

1 This contrasts with the distribution in primates, where the pattern reverses with ca.
10 % of RGCs projecting to the SC vs. 90 % to dLGN (Kremkow & Alonso, 2018;
Perry & Cowey, 1984), indicating a potential species-specific difference in the relative
importance of the pathways.
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ogous parvo-, magno-, and konio-cellular pathways in monkeys. Since
the dLGN exhibits the textbook layered structure in those species, which
map on to the termination patterns of these three feature channels, this
might lead to the assumption that the dLGN was just passively relaying
this information en route to V1, without much recombination (reviewed
in Sherman & Guillery, 2002; Usrey & Alitto, 2015).

However, given the recent discoveries of RGC feature diversity in the
mouse (e.g. Baden et al., 2016), it seems implausible that RGC types
in cats and primates, who rely on vision as their primary sense and
who have better vision than mice (Huberman & Niell, 2011), should
be limited to only three types. Indeed, a retrograde tracing study in
macaques has revealed at least 13 different retino-geniculate RGC types
(Dacey et al., 2003), which conversely also suggests that the dLGN is
receiving more diverse information than previously assumed.

As regards thalamic signal transformations, earlier evidence also has
largely argued against a substantial dLGN contribution. This view is
based on observations that feature selectivity in the cat and macaque
dLGN closely resembles that of retinal afferents (Hubel & Wiesel, 1961;
Kaplan et al., 1987; Sincich et al., 2007), based on so called S-potentials,
extracellular post-synaptic potential (EPSP) signatures of incoming RGC
spike input into dLGN cells.

On the other hand, dLGN cells have also been shown to have a stronger
inhibitory surround RF, lower firing rates and transmitting only a small
fraction of incoming RGC spikes to cortex (Hubel & Wiesel, 1961), point-
ing towards a role of a signal transformer sharpening RFs, and increas-
ing the sparseness and efficiency of the visual code (Usrey & Alitto,
2015). Overall then, cat and primate studies are not unequivocal but
seem to point more towards a view of the dLGN as a passive relay.

For the mouse dLGN, there is a parallel debate about the degree of
functional diversity, signal transformations and convergence, yet with a
clear time trend towards more diversity and transformations (Chen et
al., 2016). First quantitative characterizations of dLGN feature diversity
in mice (Grubb & Thompson, 2003) have concluded that, barring ON-
vs. OFF-center differences, there was overall little evidence for parallel
processing. However, the authors also pointed out that not all recorded
cells could be mapped quantitatively using their stimulus set, which
opens up the distinct possibility that other stimuli, e.g. naturalistic ones,
might elicit different type responses. Furthermore, while the authors did
find a potential distinction of transient vs. sustained responses, they did
not call this a type distinction because it did not hold up in other spa-
tial and temporal domains. This requirement may arguably be overly
strict, which points to a deeper issue about the criteria for cell type
classification. The idea of little dLGN signal transformations sits well
with anatomical evidence of little retino-thalamic convergence. Chen and
Regehr, 2000 found convergence of as few as 1-3 RGC types onto dLGN
cells, favouring the idea of a passive inheritance of dLGN RF properties
such as spatial configuration and size from input RGCs.

On the other hand, we now do have evidence in favour of mouse
dLGN feature diversity, signal transformation and convergence. Clearly
starting to go beyond the classical three dLGN types, like in the retina
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(Baden et al., 2016), more recent studies have revealed more complex
and diverse representations in dLGN cells displaying OS, DS and SbC
properties, varying transient vs. sustained response latencies, and ON-
and OFF- sign-preferences (Cruz-Martín et al., 2014; Marshel et al., 2012;
Piscopo et al., 2013; Zhao et al., 2013). This shows that dLGN receives
input from a rich diversity of RGC types. Different RGC types also seem
to terminate in different regions of the mouse dLGN, which does not
have a layered structure but is still subdivided into a medial core and
a lateral shell region (Sherman, 2001). Whereas ON-OFF DS RGCs and
ON DS RGCs terminate preferentially in the dLGN shell (Dhande et al.,
2013; Osterhout et al., 2015), transient-OFF alpha RGCs (Huberman et
al., 2008; Huberman et al., 2009) and ON alpha RGCs (Ecker et al., 2010;
Osterhout et al., 2014) selectively terminate in the dLGN core.

Still, this diversity could simply be inherited from the retina, with little
need for thalamic signal transformations. Here however, recent anatomi-
cal evidence of massive retino-geniculate convergence favours the idea of
novel dLGN feature generation. Mono-transsynaptic rabies virus tracing
revealed that 40-50 % of single dLGN neurons could receive input from
> 90 RGCs, sometimes from both eyes, and composed of up to 9 differ-
ent types (Rompani et al., 2017). This finding corroborates connectomics,
tracing and chronic imaging studies that uncovered a surprisingly large
degree of anatomical retino-geniculate convergence and divergence pat-
terns (Ellis et al., 2016; Hammer et al., 2015; Liang et al., 2018; Marter-
steck et al., 2017; Morgan et al., 2016), which also seem to hold for dLGN
inhibitory interneurons (Morgan & Lichtman, 2020).

Nevertheless, this anatomical evidence needs to be brought in line
with evidence about the functional impact of those synapses on dLGN
responses. Indeed, functional studies have usually promoted a much
lower number of functionally relevant RGCs, with recent optogenetic
studies estimating that, while dLGN relay cells may receive inputs from
multiple RGCs, their activity is dominated by the minority (Bauer et al.,
2021; Litvina & Chen, 2017). If functional diversity and novel feature gen-
eration match the anatomical data, then this would speak in favour of a
role of the dLGN as an active signal transformer. If, on the other hand,
it turns out that the impact of massive convergence on functional diver-
sity and signal transformation is insignificant, this would again speak
in favour of a role of the dLGN as a passive relay, but would also raise
questions about the purpose of such massive convergence. Perhaps then,
we will be able to reconcile the two types of evidence by considering
the synaptic connection strength, consistent with idea that dLGN cells
may receive massively converging retinal inputs, with just a few domi-
nant ones determining the dLGN cell response and the other weak ones
fine-tuning the response and allowing adult synaptic plasticity. What-
ever the debate on retino-geniculate convergence may settle on, there is
still another candidate mechanism that may shape dLGN signals: cortico-
thalamic feedback.
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1.3 thalamic feedback inputs – the cortico-thalamic loop

In general, feedback (FB) occurs when systems or their parts have re-
current connections, i.e. they are connected to themselves or each other
in such a way as to form a loop, such that outputs also become inputs
in a cyclic cause-and-effect chain of processes. The mammalian visual
system includes numerous brain areas that are profusely interconnected.
Since most of the lateral and top-down connections eventually result
in recurrent feedback connections that far outnumber feedforward (FF)
connections, this has fuelled speculations that feedback plays a critical
role in visual processing (Macknik & Martinez-Conde, 2009).

Hypotheses about the functional role of feedback circuits abound, in-
cluding top-down attention, working memory, expectation, prediction,
(Bayesian) priors, context, and consciousness (Angelucci & Sainsbury,
2006; Bar, 2004; Bastos et al., 2012; Gazzaley & Nobre, 2012; Knill &
Pouget, 2004; Kok et al., 2012; Kreiman & Serre, 2020; Lamme & Roelf-
sema, 2000; Rao & Ballard, 1999; Roelfsema & de Lange, 2016; Summer-
field & Egner, 2009; van Bergen & Kriegeskorte, 2020). Compared to
theories of FF processing, however, there is little consensus on the spe-
cific function of FB connections (Gilbert & Li, 2013; Heeger, 2017). In
other words, there is unequivocal evidence for recurrent computation in
the brain, but it is less obvious why and how the brain uses recurrent
algorithms (van Bergen & Kriegeskorte, 2020).

1.3.1 Anatomy of the cortico-thalamic feedback circuit

In the mammalian visual pathway linking retina→dLGN→V1 (the retino-
geniculo-cortical path), direct feedback from cortex to dLGN arises ex-
clusively from primary visual cortex (V1) cortical layer 6 (L6) cortico-
thalamic (CT) pyramidal cells (Briggs, 2010; Sherman & Guillery, 2002;
Sillito & Jones, 2002). These close the cortico-thalamo-cortical (CTC) loop
(Shepherd & Yamawaki, 2021) (henceforth referred to as CT FB loop/cir-
cuit) in multiple ways, including direct excitatory synapses onto dLGN
relay cells, as well as onto dLGN inhibitory interneurons and TRN in-
hibitory neurons, both of which thus provide disynaptic inhibition to
dLGN relay cells, as illustrated in Figure 1.2 In mice, L6 CT cells selec-
tively express the neurotensin receptor 1 (Ntsr1) promoter (Bortone et
al., 2014; Gong et al., 2007) and can be targeted genetically via the Cre-
Lox system (Josh Huang et al., 2013; Madisen et al., 2010; Nagy, 2000)
in order to investigate their structure and function (Olsen et al., 2012;
Velez-Fort et al., 2014). Using Ntsr1-Cre mouse lines, it has been shown
that Ntsr1-positive L6 CT pyramidal cells constitute approximately 65 %
of the L6 pyramidal cell population, and are distinct from L6 cortico-
cortical (CC) pyramidal neurons (35 %) whose axons remain within cor-
tex to communicate intra-cortical information transfer (Olsen et al., 2012;
Velez-Fort et al., 2014). As can be seen in the circuit diagram, L6 CT cells
are in a good anatomical position to exert strong control over what infor-

2 This is not the first instance of feedback on the visual pathway, which already occurs
as early as the first visual synapse of the outer retina, between photoreceptor cells and
horizontal cells (Drinnenberg et al., 2018).
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mation reaches the cortex (Sillito et al., 2006): Not only do they provide
extensive feedback connections both to dLGN relay cells and dLGN in-
hibitory cells (Briggs, 2010), as well as GABAergic neurons in the TRN
(in cats known as the perigeniculate nucleus (of the thalamus) (PGN), the
visual part of the TRN) (Murphy & Sillito, 1996). But also within cortex,
L6 CT cells (in contrast to L6 CC cells) extend their dendrites to the lay-
ers L5a (Kim et al., 2014), L4, and beyond (Augustinaite & Kuhn, 2020;
Niell, 2015; Velez-Fort et al., 2014).

Nevertheless, it should be pointed out that L6 CT typification may not
be as clear-cut due to the possible heterogeneity of L6 CT cells (Briggs,
2010). Thus, morphological, transciptomic and electrophysiological data
suggests a possible subdivision into 2-4 subtypes (Frandolig et al., 2019;
Gouwens et al., 2019; Tasic et al., 2016). While it is currently unknown
whether L6 CT subtypes mediate separate functional aspects of FB, it
may be possible to disentangle their role through genetic targeting in
the future (Graybuck et al., 2020).

Feedback synapses far outnumber feedforward synapses, and this seems
true for most brains of across most mammal species (Macknik & Martinez-
Conde, 2009). In the cat dLGN, L6 CT FB synapses constitute 30 % vs.
5-10 % retinal afferents (Erişir et al., 1997)3. The general agreement is that
the cortical-to-retinal input ratio is between 1:2 and 1:6 in both cats and
primates (Erişir et al., 1997; Macknik & Martinez-Conde, 2009; Sherman
& Guillery, 2002). Interestingly, this preponderance of FB over FF connec-
tions also extends to cortex. Peters et al., 1994 showed that only 1–8 %
of the synaptic inputs into primate V1 layer 4C neurons originate in the
LGN, while Ahmed et al., 1994 puts the estimate of cat dLGN afferents
to V1 L4 to only 6-9 %, in contrast to 45 % from L6 CT cells. Lastly, Dana
Ballard, 2015 made a cross-species estimate of a cortico-cortical FB:FF
ratio of 1:10.

At the same time, it would be a potential mistake to assume that a
numerically larger number of inputs means that those inputs are func-
tionally most important (Macknik & Martinez-Conde, 2009; Sherman
& Guillery, 2002). Indeed, the functional impact of a synapse depends
more on its position on the dendrite, as well as its receptor types and
density. Since CT FB inputs contact the distal dendrites of dLGN cells
(Erişir et al., 1997) via synapses containing mGluR1 metabotropic re-
ceptors (Godwin et al., 1996) and lacking NMDA-receptors (Thompson
et al., 2016), this implies rather small, slow and long-lasting effects on
dLGN processing (Sherman & Guillery, 2002). By contrast, RGC inputs
contact proximal dLGN cell dendrites and exert a strong and fast in-
fluence via ionotropic receptors (Sherman & Guillery, 2002). Thus, the
general consensus is that the effects of L6 CT FB synapses are rather
modulatory, compared to RGCs, which provide the only driving input to
the dLGN (Sherman & Guillery, 2002). Moreover, as shown in the cir-
cuit diagram, L6 CT FB contacts onto dLGN relay cells are both directly
excitatory, as well as indirectly inhibitory, both via dLGN inhibitory in-

3 The remaining proportions of input synapses are divided between 30 % inputs from
GABAergic inhibitory interneurons and TRN, and 30 % inputs from the brainstem (SC

and PBR).
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terneurons (Sillito & Jones, 2002; Usrey & Sherman, 2019), and via the
TRN, so the effects of CT FB are expected to be complex.

Nevertheless, the emerging picture of the visual system seems to in-
clude a general pattern of massive and ubiquitous FB connections that
modulate ascending inputs at every stage of visual processing (Sillito
et al., 2006).

1.3.2 The functional role(s) of cortico-thalamic feedback

In contrast to the anatomy of cortico-thalamic (CT) feedback (FB), there is
much less consensus on its potential functional role(s) as most research
has uncovered diverse and sometimes inconsistent findings (Briggs &
Usrey, 2011). This is in no small part because of the aforementioned fact
that the modulatory CT FB effects are rather subtle, compared to the
retinal drive, whereby a small percentage of driving RGC inputs seems
to be sufficient to largely determine the STRF properties of dLGN cells
(Weyand, 2016).

A second factor is that L6 CT cells themselves, despite having been
identified as the source of CT FB, still play an elusive role in V1 and
dLGN processing. On the one hand, their aforementioned anatomical po-
sition, taken together with physiological evidence, has been interpreted
to point to a special role of L6 CT cells as ‘gain controllers’ (Bortone
et al., 2014; Olsen et al., 2012) or ‘gatekeepers’ (Sillito et al., 2006). On
the other, the potential heterogeneity of the L6 CT population (see Sec-
tion 1.3.1), together with their deep location in cortex and their extremely
sparse firing rates (Velez-Fort et al., 2014), have made it difficult to target
them via imaging (Andermann et al., 2013; Augustinaite & Kuhn, 2020),
electrophysiology (Briggs, 2010), or optogenetics (Denman & Contreras,
2015).

Thirdly, the diversity of findings may partly be explained by the diver-
sity of methods employed. This diversity arises from the unique combi-
nation of methods in each study, including species (e.g. cat, macaque,
marmoset, ferret, mouse); behavioural state (e.g. anaesthetized, awake,
head-fixed, freely moving); feedback manipulation technique differing in
spatial and temporal scale, specificity, reversibility, (in-)directness, sign
(e.g. V1 aspiration, V1 ablation, V1 cooling, V1 muscimol, TMS, GABA
or CGP iontophoresis, optogenetic enhancement (ChR2) of PV-neurons,
or suppression (archaerhodopsin (Arch), halorhodopsin (Halo/NpHR)) of
L6 CT cells); recording type (e.g. patch-clamp or multi-electrode array
electrophysiology, functional imaging); stimulus type (e.g. static vs. dy-
namic, artificial vs. naturalistic); and functional readout (e.g. mean firing
rates, spatial and temporal processing, RF surround suppression, cross-
correlation, precision, reliability, orientation and direction selectivity, fir-
ing mode etc.). Understandably, this makes it hard to infer general func-
tional properties of CT FB.

In general, studies on cats, primates and ferrets using pharmacological
or cooling techniques for cortex-wide FB suppression, have found that
CT FB modulates both dLGN spatial integration (Andolina et al., 2013;
Cudeiro & Sillito, 1996; Hasse & Briggs, 2017; Jones et al., 2012; Murphy
& Sillito, 1987; Nolt et al., 2007; Rivadulla et al., 2002; Sillito & Jones,
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2002; Wang et al., 2018; Webb et al., 2002), temporal processing (An-
dolina et al., 2007; Hasse & Briggs, 2017; Sillito & Jones, 2002), response
gain (Przybyszewski et al., 2000; Rivadulla et al., 2002; Wörgötter et al.,
2002) and transitions between thalamic tonic and burst firing modes (De
Labra et al., 2007; Sherman, 2001; Wang et al., 2006). In these studies,
CT FB removal has been associated with decreased STRF precision, less
extra-classical RF surround-suppression, and increased bursting.

In mice, comparatively fewer studies exist, though arguably with higher
CT FB manipulation specificity and precision. While Olsen et al., 2012 re-
ported increased dLGN firing rates during optogenetic CT FB silencing,
Denman and Contreras, 2015, using optogenetic suppression of L6 CT
cells via the light-driven proton pump Archaerhosopsin-3 (Arch) (Chow
et al., 2010) in Ntsr1-Cre mice, found a mix of inhibitory and excitatory
effects without any clear net effect. Other researchers also failed to find
any effects of CT FB on the above dLGN properties (Hasse & Briggs,
2017; King et al., 2016; Li et al., 2013; Lien & Scanziani, 2013), or argued
that some reported effects were implausible (Alitto & Usrey, 2008).

But the difficulty of getting a unified framework of CT FB function
is not simply a matter of correctly generalizing from the diversity of
methods. The interpretation of most of the studies is hampered by the
fact that they have probed CT FB effects by manipulating CT FB non-
specifically while showing artificial stimuli to anaesthetized animals,
which could lead to a substantial underestimation of feedback effects
(Durand et al., 2016). Firstly, anaesthesia may significantly affect the re-
sponsiveness of L6 CT FB neurons (Briggs & Usrey, 2011; Keller et al.,
2020). And secondly, CT FB might be most relevant not for processing
simple stimuli, but instead for processing complex (Gulyás et al., 1990),
dynamic (Sillito & Jones, 2002), naturalistic stimuli seen during wake-
fulness, consistent with the notion of FB providing context based on
an internal model built from the statistics of the natural visual world
(Cudeiro & Sillito, 1996; Rao & Ballard, 1999). Therefore, a paradigm
that probes dLGN activity in the awake, behaving mouse in response to
naturalistic movie stimuli during direct L6 CT cell suppression, would
appear well-suited to address these points.

A last note of caution: given the heterogeneity of previously discov-
ered effects, it might not make sense to expect to find a single functional
role of CT FB, but instead acknowledge the potential existence of a cor-
responding multitude of roles.

1.4 modelling dlgn activity to movies , feedback & behaviour

1.4.1 Behavioural state influences on dLGN activity

While the brain is classified into sensory areas and motor areas, it has
long been evident that the activity of sensory brain areas is also influ-
enced by behavioural state (Busse, 2018; McCormick, 1992; Sherman &
Guillery, 1996; Swadlow & Weyand, 1987). The term ‘behavioural states’
can refer to a range of phenomena, including sleeping, waking, anaes-
thesia, attention etc., and here, the focus will be on locomotion and pupil
size during wakefulness, which are often also used as proxies to binarize
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behavioural states into periods of arousal vs. quiescence4. Their effects
on neural activity have been reported across sensory domains, including
visual (Niell & Stryker, 2010), auditory (Pluta et al., 2015) and somatosen-
sory (Schneider et al., 2014) cortices.

In the mouse visual system, behavioural state effects extend through-
out, apparent not only in V1 (Niell & Stryker, 2010), but also further
upstream in dLGN (Aydın et al., 2018; Erisken et al., 2014), and even
as early as in the retina (Schröder et al., 2020). Interestingly, these be-
havioural state effects in the visual system are not limited to stimulus
periods but also extend into periods of spontaneous behaviour in the
absence of visual stimulation (Stringer et al., 2019). In V1, locomotion in-
creases the neural response gain of orientation contrast and size tuning
(Erisken et al., 2014; Niell & Stryker, 2010) and shifts spatial (Mineault
et al., 2016) and temporal (Andermann et al., 2011) frequency tuning
towards higher resolutions. In the dLGN, locomotion enhances neural
firing rates, shifts thalamic firing mode from burst to tonic mode and
also increases spatial integration (Erisken et al., 2014).

Similar to locomotion, pupil size has also been studied as a proxy
of arousal. Indeed, a common observation is that periods of increased
locomotion are accompanied by increases in pupil size, and periods of
sitting with decreased pupil size (Erisken et al., 2014). However, it has
been shown that, even in the absence of locomotion, increased pupil size
coincides with sharpened sensory coding (under constant illumination
to rule out the pupil light reflex) (Reimer et al., 2014; Vinck et al., 2015)
in V1, and are correlated with dLGN relay cell activity (Molnár et al.,
2021).

The underlying neural circuits mediating locomotion-related activity
effects in dLGN seem to be located in the brain stem McCormick, 1992;
Nestvogel and McCormick, 2021; Sherman and Guillery, 1996, specifi-
cally cholinergic pathways originating in the mesencephalic locomotor
region (MLR), a brain stem structure encompassed by the parabrachial
region (midbrain) (PBR) (Lee et al., 2014). The MLR projects cholinergic
axons both directly to dLGN, and indirectly to V1, via the basal fore-
brain (Lee et al., 2014). Stimulation of MLR axons in the basal forebrain
or direct stimulation of the basal forebrain have both been shown to in-
duce effects in V1 similar to those of locomotion (Lee et al., 2014; Pinto
et al., 2013), and activity of cholinergic axons in V1 is correlated with
locomotion (Reimer et al., 2016).

In conclusion, thalamic activity is influenced not only by retinal feed-
forward and cortico-thalamic feedback signals, but also by behavioural
state. What is less clear is what the individual contributions of these
factors to dLGN activity are when they all act in concert.

1.4.2 Feedback suppression via inhibitory optogenetics

Optogenetics refers to the integration of optics and genetics in order to
excite or inhibit specific neurons with light via the genetic introduction
of microbial opsins (light-sensitive membrane proteins) into the neural

4 Although these motor readouts can also be independent from the more abstract state
of arousal or alertness (Vinck et al., 2015).
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system (Boyden et al., 2005; Deisseroth, 2011; Dugué et al., 2012; Fenno
et al., 2011; Yizhar et al., 2011)5. This selective and reversible control
of targeted neurons enables researchers to investigate their causal role
within the complex, dynamic neural system with unprecedented spatio-
temporal resolution. Thus, optogenetics offers clear advantages to alter-
native manipulation techniques mentioned in the previous section (e.g.
cooling, ablation) that are neither as spatio-temporally precise nor re-
versible.

Since excitatory optogenetics alone only establish the causal sufficiency
of the manipulated neural population for a given neural readout mea-
sure, inhibitory optogenetics are required to supplement their causal
necessity (Yizhar et al., 2011). Yet, in contrast to opto-excitation (typi-
cally done via cation-conducting channelrhodopsins (ChRs) (Nagel et al.,
2002)), optogenetic suppression has long been more challenging in a
number of ways (Wiegert et al., 2017).

One technique has been to inhibit the target neurons indirectly by acti-
vating inhibitory neurons via the channelrhodopsin ChR2, which bene-
fits from the sensitivity and efficiency of ion channels (e.g. Atallah et al.,
2012; Vaiceliunaite et al., 2013). However, the indirect nature of this ma-
nipulation may result in diffuse circuit effects, so care must be taken to
compare the observed effects to more direct manipulation methods.

Alternatively, direct inhibition may be achieved via hyperpolarizing
ion pumps such as the outward-proton pump archaerhodopsin (Arch)
(Mattis et al., 2011) or the inward-Chloride pump halorhodopsin (Halo/NpHR)
(Matsuno-Yagi & Mukohata, 1980). However, issues arise from limited
light-sensitivity and efficiency (Wiegert & Oertner, 2016), which are par-
ticularly severe for deep targets such as L6 CT cells, because light inten-
sities are highly variable in light-scattering brain tissue (Berndt et al.,
2014). The need for continuous, high-intensity light may pose problems
by denaturing brain tissue, creating non-physiological tissue tempera-
tures, or creating photo-electric artefacts. Moreover, since ion pumps can
work against the electrochemical gradient, they are at risk of producing
physiologically abnormal ion concentrations. This may result in ‘para-
doxical’ depolarizing currents caused by NpHR-induced reversed chlo-
ride (Cl-) resting potentials that trigger Cl- efflux upon GABAA receptor
opening. Similarly, archaerhodopsin-induced alkalization of presynaptic
boutons might trigger opening of pH-sensitive Ca2+-channels, leading
to undesired vesicle fusion into the synaptic cleft and thus unintentional
synaptic signalling (Mahn et al., 2016; Wiegert & Oertner, 2016).

Recent developments and discoveries of anion-conducting channel-
rhodopsins promise to address these issues, enabling direct photosup-
pression with higher sensitivity and efficiency (Berndt et al., 2014; Berndt
et al., 2015; Govorunova et al., 2015; Wietek et al., 2017). The high effi-
ciency arises from the channel-opening acting like a shunting inhibition,
which additionally avoids creating abnormal concentration gradients
seen in ion pumps (Berndt et al., 2014). In particular, the soma-targeting

5 I will refer synonymously to the terms of excitation, depolarization, activation, and
gain-of-function on the one hand, and inhibition, hyperpolarization, inactivation, loss-
of-function, and suppression, on the other, although it should be pointed out that
optogenetic manipulation may not completely activate or inactivate a neuron so that
gain-of-function and loss-of-function would most accurately describe the effects.
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Guillardia Theta anion channelrhodopsin 2 (stGtACR2) (Mahn et al., 2018)
exhibits high light sensitivity and improved photocurrents. Importantly,
stGtACR2 also offers the additional benefit of being expression-restricted
to the region around the soma and the axon-initial segment (AIS), which
is achieved via the insertion of a soma-targeting motif of the soma-
localized voltage-gated potassium channel Kv2.1 (Baker et al., 2016).
This is especially relevant to photosuppression in the light of reports
of reversed chloride membrane potentials in the axons of some neurons
under normal, physiological conditions, where axonal Cl- currents may
inadvertently trigger action potentials (Mahn et al., 2018).

Taken together, stGtACR2 thus seems to be a good candidate for di-
rect silencing of L6 CT cells. Yet, it is not perfect, and remaining issues
regarding this optogenetic suppression tool will be considered in the
Discussion (Chapter 5).

1.4.3 Naturalistic stimuli

The purpose of a biological organism’s visual system is to process visual
information about its natural environment, and so it has been shaped by
natural visual statistics through the forces of evolution and experience-
dependent development (Felsen & Dan, 2005).

Yet historically, the fundamental insights of visual neuroscience into
the computations of the visual system (such as basic STRF structure
and feature selectivity) have mostly been informed by artificial stimuli
(Felsen & Dan, 2005). This is in large part because artificial stimuli offer
the advantage of experimental control: being simple and easily parame-
terized into the component of interest (Felsen & Dan, 2005; Mante et al.,
2008; Rust & Movshon, 2005).

Over the recent years, the debate over the ecological validity of visual
neuroscience experiments (Sonkusare et al., 2019) has also taken hold
in the emerging view that artificial stimuli may not be sufficient for vi-
sual systems identification and that naturalistic stimuli may be needed
as a complement (Felsen & Dan, 2005). Indeed, with regards to feed-
back processing, naturalistic stimuli may shed light into the previously
discussed inconsistent findings about the functions of feedback in the
cortico-thalamic feedback circuit. Specifically, if the role of feedback was
to provide context based on an internal model built from the statistics
of the world (Lee & Mumford, 2003; Rao & Ballard, 1999), natural stim-
uli would be expected to best comply with this model, and likely drive
these feedback mechanisms in a more robust way.

However, naturalistic stimuli present their own challenges, so much
so that they have stirred a controversy over their usefulness (Rust &
Movshon, 2005). Conceptually, natural or naturalistic stimuli are not
yet well-defined and often imbued with an anthropocentric perspective,
ranging from static images to movies of man-made objects and environ-
ments and nature scenes. Commercial movies may have rather unnatural
characteristics such as multiple camera angles, zooms, pans, scene-cuts,
the inclusion of music and exaggerated sound effects, the ability to skip
time, etc. (Vanderwal et al., 2019).
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Nevertheless, they may be united by the key elements of being com-
plex, dynamic and rich (Hasson et al., 2009), and individual movie frames
share certain statistical properties with natural still images, most no-
tably a distinctly (non-Gaussian) 1/f-like spatio-temporal power spec-
trum (adapted from Felsen & Dan, 2005).1/f-like power spectrum:

"’1/f-like noise’ refers to a
stochastic phenomenon whose

spectral energy S decreases
in proportion to frequency, f.
That is, the spectral density
has the form S(f) ∼ 1/fa,
for some positive constant a.

In the case where a= 1, the
energy scales inversely with
frequency and is called ‘pink

noise’. 1/f-like fluctuations
are widely found in nature,

such as the power spectrum of
natural scene intensities."

(Felsen & Dan, 2005).

A key challenge of naturalistic movies lies in the analysis of their ef-
fects on neural responses, as naturalistic stimuli do not offer the same
experimental control as artificial stimuli. Here, various modelling ap-
proaches may prove increasingly necessary (Ghodrati et al., 2017). These
modelling approaches will also help us in evaluating various empirical
questions regarding naturalistic stimuli themselves, such as what key
features naturalistic movies must have to mimic the natural world and
evoke naturalistic patterns of neural activity, and what differences, if any,
exist between naturalistic movies and artificial stimuli that matter to the
visual system. On the one hand, non-linear coding mechanisms in the
visual system, such as adaptation, contrast gain control, and burst mode
may operate differently for different classes of stimuli at different pro-
cessing stages on the visual path (Felsen & Dan, 2005; Lesica et al., 2007;
Lesica & Stanley, 2004; Olshausen & Field, 2005). On the other, compar-
isons of model responses to artificial and naturalistic movies of different
types have indicated that stimulus class may not be so important in
predicting neural activity in dLGN accurately (Mante et al., 2008), but
have cautioned that this might not be true for fast adaptation, bursting
and stimulus coding downstream in V1 (Mante et al., 2008; Olshausen &
Field, 2005). Further studies in this direction will allow us to standardize
naturalistic movie stimuli and understand their key properties from the
perspective of the different processing stages of the visual system.

1.4.4 Modelling dLGN cell activity

The dLGN has been extensively modelled at a variety of levels, from
the biophysical properties of its neurons to feedback network models
dealing with issues in high-level vision (reviewed in Ghodrati et al.,
2017). Modelling approaches abound in various model types (descrip-
tive, mechanistic, prescriptive) and architectures (broadly, spiking or fir-
ing rate models), in order to explore various dLGN activity phenomena
such as its basic STRF structure (e.g. using a difference of Gaussians (DOG)
model to describe the centre-surround RF (Irvin et al., 1993)), tempo-
ral dynamics (Keat et al., 2001), non-linear phenomena like bursting
(Lesica et al., 2007; Lesica & Stanley, 2004), contrast gain control (Bonin
et al., 2006) and adaptation (Mante et al., 2005); or general visual system
phenomena such as decorrelation and coding efficiency (Dong & Atick,
1995), synchronous oscillations (Robinson, 2006), reliability (Wang et al.,
2010) and predictive coding (Jehee & Ballard, 2009).

Focusing on descriptive models of dLGN activity in anaesthetized
cats viewing naturalistic stimuli, a surprising fact is that pure feedfor-
ward (FF) models perform quite well even without the inclusion of feed-
back (FB) mechanisms (Ghodrati et al., 2017). Estimating dLGN STRFs by
training linear convolution models (Wang et al., 2007), leaky integrate-
and-fire (LIF) models (Lesica et al., 2007; Lesica & Stanley, 2004), or RC
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(resistor-capacitor) circuit models (Mante et al., 2008) on different stim-
uli, it was possible to explain a large fraction of variance of dLGN ac-
tivity based on retinal inputs or the stimulus input itself, and elucidate
the contribution of adaptation and contrast gain (Mante et al., 2008) or
bursting (Lesica et al., 2007; Lesica & Stanley, 2004). In addition, these
studies have also been informative with regards to the debate about the
usefulness of natural stimuli in dLGN systems identification (see previ-
ous subsection). But the good performance of purely FF models raises
questions about the importance of FB mechanisms in dLGN processing.

Despite the apparent irrelevance of FB, we should bear in mind that FB
mechanisms might still have been incorporated tacitly into the models
(Ghodrati et al., 2017), in a similar manner that retinal computations may
sometimes be approximated in a single step of dLGN STRF construction
(e.g. Mante et al., 2008), rather than being used as explicit input into
dLGN (e.g. Wang et al., 2007). On the other hand, there are models that
do integrate FB, albeit implicitly via modified FF transfer characteristics
(e.g. Einevoll & Plesser, 2012), and accurately predict its effects on dLGN
spatial integration in line with experimental findings (Cudeiro & Sillito,
1996; Sillito & Jones, 2002), but this model type does not include an
explicit FB loop and is solely based on responses to artificial stimuli.

Another major caveat is that most of the studies mentioned are based
on recordings in anaesthetized cats, and since FB is strongly affected by
anaesthesia (Briggs & Usrey, 2011; Keller et al., 2020), there might not be
any FB effect to account for in the first place.

Furthermore, dLGN activity has also been shown to be modulated
by locomotion (Erisken et al., 2014) and arousal (as indicated by pupil
diameter) (Molnár et al., 2021), raising questions about the potential con-
tribution of behavioural state variables in model performance.

Therefore, in order to disentangle the combined influences of reti-
nal inputs, cortico-thalamic feedback and behavioural state on dLGN
response properties to arbitrary visual stimuli, what is required is an
approach that combines the following elements: recordings of dLGN ac-
tivity, locomotion and pupil size in awake, behaving animals; direct and
reversible L6 CT FB suppression; modelling of each of these elements
to yield quantitative, interpretable results on their respective influence.
Here, generalized linear models (GLMs) provide a powerful descriptive
framework that has already been used to great effect in numerous stud-
ies to predict responses in the early visual system (Pillow et al., 2008;
Schwartz et al., 2006), including the dLGN (Babadi et al., 2010). While
GLMs have been employed to show the independent influences of reti-
nal and extra-retinal inputs as well as and spike-history (Babadi et al.,
2010; Butts et al., 2011), to our knowledge, they have not yet been used to
show their combined influence in the way proposed above, and so this
approach holds much promise in disentangling the combined influences
of retinal inputs, cortico-thalamic feedback and behavioural state on in
vivo mouse dLGN response properties to naturalistic stimuli.



16 introduction

Figure 1 | The cortico-thalamic feedback circuit. Visual signals are trans-
duced in the retina, from whence RGC project output to the thalamic dLGN
relay cells (black) via strong driver synapses (Sherman & Guillery, 2002).
These relay cells project driver synapses to V1 L4 excitatory cells (black),
the main subcortico-cortical input layer, which contact the dendrites of V1

cortical layer 6 (L6) CT pyramidal cells (blue). L6 CT cells in turn send
direct excitatory modulatory synapses to dLGN relay cells, thus closing
the feedback loop (Sillito et al., 2006). In addition, at every stage, there
are numerous axon collaterals to other areas, making the feedback cir-
cuit effect on dLGN cells more complex. To begin with, RGC axons also
project dLGN inhibitory neurons (red), as well as superior colliculus (mid-
brain) (SC) (greyed out) (Ellis et al., 2016), the main retino-recipient area
in the mouse (other 50+ targets (Martersteck et al., 2017) not shown here),
which feeds back onto dLGN shell relay cells (Bickford et al., 2015). DLGN
core relay cells (core-shell distinction (Seabrook et al., 2017) not shown
here) also contact GABAergic thalamic reticular nucleus (TRN) cells (red),
in turn inhibiting dLGN relay cells. They also project to V1 L6, to V1 L5

(grey), which feeds back onto the dLGN shell region, and to V1 L4 in-
hibitory interneurons (red) contacting L4 excitatory cells. DLGN shell relay
cells further project (grey dotted line) to V1 layers 1, 2, and 3 (not shown).
L6 CT cells also project subcortically to dLGN inhibitory interneurons, as
well as TRN inhibitory neurons (Montero, 1991), thus also providing indi-
rect, disynaptic, inhibitory feedback to dLGN relay cells; intracortically to
V1 L5 (Kim et al., 2014) and L4 excitatory neurons (Sillito et al., 2006); and
to L6 translaminar inhibitory neurons projecting to layers 6 - 2/3 (Bortone
et al., 2014). Lastly, dLGN inhibitory cells receive modulatory inhibitory
inputs from the parabrachial region (midbrain) (PBR) (grey), which encom-
passes the mesencephalic locomotor region (MLR) (Sherman & Guillery,
2002).
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2.1 román rosón & bauer et al . (2019)

summary : In the mouse, the parallel output of more than 30 func-
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SUMMARY

Mouse vision is based on the parallel output of more
than 30 functional types of retinal ganglion cells
(RGCs). Little is known about how representations
of visual information change between retina and
dorsolateral geniculate nucleus (dLGN) of the thal-
amus, the main relay between retina and cortex.
Here, we functionally characterized responses of
retrogradely labeled dLGN-projecting RGCs and
dLGN neurons to the same set of visual stimuli. We
found that many of the previously identified func-
tional RGC types innervate dLGN, which maintained
a high degree of functional diversity. Using a linear
model to assess functional connectivity between
RGC types and dLGN neurons, we found that re-
sponses of dLGN neurons could be predicted as
linear combination of inputs from on average five
RGC types, but only two of those had the strongest
functional impact. Thus, mouse dLGN receives func-
tional input from a diverse population of RGC types
with limited convergence.

INTRODUCTION

In the mammalian retina, the photoreceptor signal is decom-

posed into multiple parallel channels (Euler et al., 2014; Masland,

2012), carried to the brain by more than 30 types of retinal gan-

glion cells (RGCs) (Baden et al., 2016; Sanes and Masland,

2015). Each type of RGC extracts specific features of the visual

environment, which are projected via the optic nerve to more

than 50 retino-recipient areas in the brain (Martersteck et al.,

2017; Morin and Studholme, 2014). Among those, a key center

transmitting information to the primary visual cortex (V1) is the

dorsolateral geniculate nucleus (dLGN) of the thalamus.

Retino-geniculate information transmission has been studied

extensively in cats and monkeys, where the majority of dLGN

neurons seems to be driven by only few (1–3) dominant RGCs

(Cleland et al., 1971; Usrey et al., 1999). This dominant input

can evoke such strong excitatory postsynaptic potentials

(EPSPs)—so-called ‘‘S-potentials’’—that they can be picked

up by extracellular recordings. Consistent with a low degree of

convergence, the S-potentials of a dLGN neuron and its spiking

output have closely matching receptive fields (RFs) in terms of

location, center-surround organization, and size (Hubel andWie-

sel, 1961; Kaplan et al., 1987; Sincich et al., 2007). Besides these

dominant inputs, individual cat dLGN cells receive additional

weaker inputs, as shown by in vivo electrophysiology (Cleland

et al., 1971; Mastronarde, 1987, 1992; Usrey et al., 1999) and

inferred from ultrastructural assessment of synaptic bouton

placement and number (Hamos et al., 1987). Given the strict

spatial layering of the dLGN, in particular in primates, it has

generally been assumed that, in these species, the inputs into in-

dividual dLGN neurons arise from RGCs of similar functional

type, although at least 13 anatomical types of dLGN-projecting

RGCs have been identified in monkeys (Dacey et al., 2003).

In the mouse, recent anatomical studies have started to

explore retino-geniculate connectivity and revealed amore com-

plex picture. Mono-transsynaptic rabies virus tracing of inputs to

individual dLGN neurons demonstrated that mouse dLGN neu-

rons can be divided into two groups based on the pattern of their

retinal inputs (Rompani et al., 2017): although some dLGN neu-

rons received inputs from mostly a single RGC type (‘‘relay

mode’’), others showed a high degree of convergence, with in-

puts being composed of up to several dozen RGCs of different
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types (‘‘combination mode’’). A high degree of retino-geniculate

convergence is further supported by recent ultrastructural

studies of retinal afferents and their thalamic relay cell targets

(Hammer et al., 2015; Morgan et al., 2016).

Given the functional diversity of mouse RGCs (Baden et al.,

2016; Farrow and Masland, 2011; Sanes and Masland, 2015),

whose properties might vary with retinal region (Bleckert et al.,

2014; Joesch andMeister, 2016; Nath and Schwartz, 2016;War-

wick et al., 2018), and complex input of RGCs to dLGN neurons

(Ellis et al., 2016; Hammer et al., 2015; Liang et al., 2018; Morgan

et al., 2016; Rompani et al., 2017), one would expect an at least

similarly rich functional representation in mouse dLGN. In

contrast, the majority of mouse dLGN neurons has been re-

ported to have circularly symmetric RFs (Piscopo et al., 2013)

and is believed to perform linear spatial summation (Denman

and Contreras, 2016; Grubb and Thompson, 2003), similar to pri-

mates (Grubb and Thompson, 2003). However, mouse dLGN

also contains neurons with more complex and diverse response

properties: orientation-selective (OS) and direction-selective

(DS) cells (Cruz-Martı́n et al., 2014; Marshel et al., 2012; Piscopo

et al., 2013; Zhao et al., 2013), ‘‘suppressed-by-contrast’’ neu-

rons, potentially signaling uniformity of the visual field (Piscopo

et al., 2013), as well as a heterogeneous population of cells

with long latencies and responses to both light on- and offset

(Piscopo et al., 2013). It is currently unknown to which degree

these response properties are inherited from the innervating

retinal afferents (Cruz-Martı́n et al., 2014; Liang et al., 2018) or

emerge de novo in dLGN by a combination of converging retinal

inputs and dLGN-intrinsic computations (Liang et al., 2018;

Marshel et al., 2012).

Here, we sought to determine how the visual representation

in mouse dLGN arises from retinal inputs. We show that many

previously identified functional RGC types (Baden et al., 2016)

innervate the dLGN, where, in accordance with this richness

of input, the population response consists of diverse funda-

mental components. The dLGN responses in response to our

simple, full-field stimuli, and at the temporal resolution of cal-

cium signals, can be modeled by a linear combination of on

average five RGC types, among which two have the strongest

functional impact. We conclude that mouse dLGN neurons

receive functional input from multiple RGC types and relay

these diverse retinal representations to the cortex with limited

convergence.

RESULTS

Retrograde Viral Tracing to Functionally Characterize
dLGN-Projecting RGCs
To identify dLGN-projecting (dLGN-p) RGCs, we injected a

Cre-encoding retrograde herpes simplex virus 1 (LT HSV-

hEF1a-cre; Neve, 2012) into the dLGN of a transgenic reporter

mouse line with a floxed genetically encoded Ca2+ indicator

(GCaMP6f; Chen et al., 2013; Madisen et al., 2015). After trans-

ducing the axon terminals (Antinone and Smith, 2010; McGavern

and Kang, 2011) in the dLGN, the virus was retrogradely trans-

ported to the soma, where it triggered the expression of Cre-

recombinase and, subsequently, the Cre-dependent expression

of GCaMP6f. Because the virus does not spread trans-synapti-

cally, it only labeled cells with afferents in the dLGN. This enabled

us to identify only the subset of dLGN-p RGCs in the retina

(Figure 1A).

We histologically confirmed the target location of the virus in-

jection, as well as its limited diffusion (Figures 1B, top, and S1).

Given our dorsal approach, the HSV virus was injected into

both shell and core regions of dLGN, but due to the sheer volume

difference between these regions, it is likely that more terminals

were transduced in the dLGN core. In line with earlier studies,

we found retrogradely labeled neurons in additional dLGN-

projecting structures, including the superior colliculus (Figure 1B,

center), the thalamic reticular nucleus, and the deep layers of

primary visual cortex (Figure 1B, bottom; Guillery and Sherman,

2002; Harting et al., 1991).

We then used two-photon Ca2+ imaging to measure the light-

evoked responses of the dLGN-p RGCs (Figures 1C–1F). We

probed their response properties across the whole retina with

a stimulus set used in a previous RGC classification study

(Baden et al., 2016). As the labeledRGCswere sparse (Figure 1C,

top), we analyzed their Ca2+ responses usingmanually drawn re-

gions of interest (ROIs) (Figure 1C, bottom). In total, we identified

581 virus-labeled RGCs from 4 mice (contralateral eye only) as

ROIs, with a range of 1–25 ROIs per field (median = 6). As ex-

pected from earlier work, we found ON- and OFF-RGCs (without

any direction or orientation preference; Huberman et al., 2008) as

well as direction-selective RGCs (Cruz-Martı́n et al., 2014; Ellis

et al., 2016; Rivlin-Etzion et al., 2011). In addition, we found

dLGN-p RGCs that, for example, responded differently to local

and full-field stimuli, showed preference to higher or lower

frequency stimulation, or were suppressed by frequency and

contrast (Figures 1D–1F).

The Majority of Functional RGC Types Project to dLGN
We next asked which of the previously characterized func-

tional mouse RGC types (Baden et al., 2016) project to the

dLGN. We used the functional RGC clusters obtained previ-

ously (henceforth ‘‘RGC-all clusters’’) and identified, for each

retrogradely labeled dLGN-p RGC, the RGC-all cluster with

the best matching response properties (Figure S2). To ac-

count for the differences in Ca2+ indicators between the two

studies, we first de-convolved the Ca2+ signals of the

GCaMP6f dataset and the published OGB-1 dataset (Baden

et al., 2016), using each indicator’s Ca2+ kernels, calculated

as average thresholded Ca2+ peak events to the white noise

stimulus of multiple ROIs (Figure S3; see STAR Methods).

For both the ‘‘chirp’’ stimulus and the moving bar stimulus,

we correlated the trial-averaged responses of each dLGN-p

RGC to the mean response of each RGC-all cluster. The cor-

relation coefficients were then weighted by a quality index

(Qi), which is a measure of signal-to-noise ratio and reproduc-

ibility of the responses, and averaged. This weighted mean

correlation (‘‘match index’’ [Mi]) was then used to assign

each dLGN-p RGC to the best-matching RGC-all cluster,

i.e., the cluster with the highest Mi (for statistics of Mi, see Fig-

ure S4). For both individual example cells (Figure 2A), and

across the population of dLGN-p RGCs, the assignment

worked well (median Mi = 0.62). Accordingly, population

mean responses of dLGN-p RGCs assigned to the same
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Figure 1. Functional Characterization of dLGN-Projecting RGCs

(A) Schematic of the experimental approach.

(B) Injection of a Cre-encoding retrograde herpes simplex virus 1 (LT HSV-hEF1a-cre; Neve, 2012) into dLGN (green, GCaMP6f; gray, DAPI). Injection site (top)

and areas with retrogradely labeled cell bodies (below) and outlines of the dorsolateral geniculate complex (dLGN), superior colliculus (SC), reticular nucleus of

the thalamus (TRN), and primary visual cortex (V1) are shown. Scale bars, 200 mm.

(C) Whole-mounted mouse retina of a floxed GCaMP6f mouse transduced with LT HSV-hEF1a-cre and recorded with a two-photon microscope in the ganglion

cell layer. (Top) Scan field (110 3 110 mm) is shown. (Bottom) Regions of interest (ROIs) on GCaMP6f-expressing RGCs are shown.

(D) Ca2+ responses (DF/F) from 9 exemplary ROIs color coded in (C) to full-field chirp, bright bars moving in eight directions, and full-field alternating green-UV

stimuli. Single trials are in gray and averages of n = 5 (chirp), 7 (green-UV), or 24 (moving bars) trials are in black. Traces are scaled to the maximal DF/F for each

stimulus separately over all ROIs.

(E and F) Spatial RFs (E) and polar plots indicating direction and orientation selectivity (F; vector sum in red) for the same 9 cells as in (D).

HPF, hippocampus; vLGN, ventral lateral geniculate complex; VPM, ventral posteromedial nucleus of the thalamus. See also Figure S1.
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Figure 2. Cluster Assignments

(A) Responses of selected RGC-all clusters (colored line, mean; shaded area, ±1 SD) with mean responses of assigned example dLGN-p RGCs (black) to chirp

(left) and bar stimulus (right). Numbers indicate correlation coefficients.

(B) Same, for all assigned dLGN-p RGCs in the corresponding clusters (gray, responses of single dLGN-p RGCs; black, mean).

(C) Distribution of cells per RGC-all group from Baden et al. (2016) versus cells per dLGN-p group.

(D) Comparison of cell-per-group percentages as log2 ratio (%dLGN-p RGCs/%RGC-all). Significant differences in cell proportions (p < 0.01; binomial test) are

marked as colored bars and with asterisks.

See also Figures S3, S4, and S5.
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cluster agreed well with the population mean responses of

their RGC-all cluster (Figure 2B).

We then determinedwhich RGC typeswere over- or underrep-

resented in the dLGN-p RGC population compared to the com-

plete RGCpopulation. Following Baden et al. (2016), we grouped

the 49 RGC-all clusters into 32 groups, where each group repre-

sents an RGC type based on domain knowledge not only about

functional features but also about soma size, RF size, and direc-

tion and orientation selectivity (Figure 2C; see STAR Methods;

see Figure S5 for same analysis without grouping). This analysis

revealed that 75% of RGC-all groups were assigned dLGN-p

RGCs (24/32 groups with at least two cells), suggesting that

the majority of functional RGC types projects to the dLGN.

Several RGC types were systematically over- or underrepre-

sented in the dLGN-p population (Figures 2C and 2D; binomial

test, p < 0.01): overrepresented were ‘‘OFF-suppressed 2’’ cells

(Figures 2C and 2D: group [G] 32) and all classical alpha cells

(Figures 2C and 2D), including OFF alpha sustained (G5), OFF

alpha transient (G8), and ON alpha (G24), as well an ON transient

RGC (G18). Underrepresented, in turn, were the ON-OFF local-

edge ‘‘W3’’ (G10) and several orientation- and direction-selective

RGCs (i.e., ON-OFF DS 2 [G13], [ON-]OFF local OS [G14], ON DS

sust. 3 [G20], and ON local sustained OS [G30]). Other groups

contributed roughly the same percentage to the dLGN-p cells

as to the total RGC population (see Discussion). These results

indicate that dLGN receives diverse, parallel input from many

functional RGC groups, with a striking overrepresentation of

alpha and of one group of suppressed-by-contrast (SbC) RGCs.

The dLGN Population Response Can Be Factorized into
Many Components
Having established thatmany functional RGC types provide input

to mouse dLGN, we next asked how this diversity is reflected in

the dLGN population. We performed extracellular single-unit

recordings with linear silicon probes of geniculate neurons in

head-fixedmice, using the same dorsal approach as for the virus

injections (Figures 3A and 3B). We verified the recording sites by

histological reconstruction of the electrode tract (Figure 3B) and

the characteristic progression of retinotopy along the electrode

channels (Figures 3C and S6; see also Piscopo et al., 2013).

Given our dorsal approach to dLGN, the recorded neurons likely

come from both the core and shell region of dLGN, although vol-

ume differences likely bias our results toward properties of the

dLGN core. RF centers of the recorded neurons were approxi-

mately between �20� and +50� elevation and �10� and +100�

azimuth (Figure S6). We presented the same full-field chirp stim-

ulus as in the retinal experiments. To assess the stability of the

dLGN recordings and the consistency of our spike sorting, we

flanked the chirp by presentations of drifting gratingswith varying

orientation and temporal and spatial frequency (Figure S7).

Chirp responses of dLGN neurons were surprisingly diverse:

the cells not only displayed the ‘‘standard’’ transient and sus-

tained ON-OFF responses or were suppressed by contrast but

also differed in their temporal frequency or contrast preferences

as well as their response kinetics (Figure 3D). Some of the cells

even displayed slow ramping responses (Figures 3D4 and

3D5). To ensure that this response diversity did not result from

poor unit isolation during spike sorting, we considered only units

with firing rates >1 spike/s, which were stable across time, had

a clean refractory period, and a distinct extracellular spike

waveform (Figures 3E and 3F). This diversity is likely not related

to influences of locomotion (Figure S8).

To quantitatively assess the degree of diversity present in the

dLGN neuron population, we decomposed the single-unit re-

sponses to the chirp stimulus into ‘‘response components’’ using

non-negative matrix factorization (NNMF) (Lee and Seung,

1999). Individual neuron responses can then be reconstructed

as a weighted sum of these elementary response components

(Figures 4A and S2). Interestingly, these components can be

well correlated to the responses of our dLGN-p RGCs, support-

ing the NNMF approach for analyzing the diversity of geniculate

representations. For example, decomposing our dLGN popula-

tion response into only two fundamental components (ranks)

revealed components resembling responses with ON and OFF

features; increasing the rank number to four added temporal di-

versity with transient and sustained features, and increasing rank

number further led to additional contrast-suppressed features

(Figure 4B). To determine the mathematically optimal number

of components, we used cross-validation (Williams et al., 2018;

Figure 4C), where we repeatedly performed the factorization

on different training sets for an increasing number of ranks (Fig-

ure 4C) and evaluated the mean squared errors (MSEs) of the

NNMF model on validation sets not used for factorization

(STAR Methods). For a conservative estimate, we chose the

model with 5% more error than the minimal error, resulting in

29 components (Figures 4D and 4E). This is indicative of a large

diversity in the dLGN population response.

Besides this rich representation of luminance steps, temporal

frequencies, and changes in contrast in the overall dLGN popu-

lation, 82/443 (18.5%) dLGN neurons only displayed weakly

modulated responses to the chirp stimulus, despite having

robust and consistent responses to the drifting gratings pre-

sented before and afterward (Figure S7). This response behavior

is consistent with these dLGN neurons preferring local variations

in luminance instead of uniform full-field stimuli, as is the case

for �30% of RGCs (Baden et al., 2016; their Figure 2b and

extended data Figure 10), suggesting that the overall diversity

of dLGN responses may be larger than reported here. Together,

we conclude that the response diversity observed at the level of

dLGN-p RGCs is also present in dLGN.

Modeling dLGN Responses as Linear Combinations of
RGC Inputs
Next, we combined the dLGN-p RGC dataset (Figure 2) and the

dLGN dataset (Figure 3) to study how the dLGN responses are

computed from the retinal output. We first accounted for the dif-

ferences in recording methods by convolving the dLGN spiking

responses with the OGB-1 Ca2+ indicator kernel (Figures S3

andS9).We then used a parsimonious, linearmodel, constrained

to have non-negative weights, to predict dLGN responses—on

the temporal scale of Ca2+ signals—as a sum of weighted RGC

inputs (Figures 5A and S2). For prediction, we used the RGC-all

cluster means (Baden et al., 2016) that were assigned at least

two dLGN-p cells. Each dLGN recording consisted of multiple

trials (stimulus repetitions; n = 10–30), which were divided into

training and test sets (50%/50%). The model was evaluated
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using repeated random sub-sampling cross-validation with

1,000 repetitions (STAR Methods). The reported weights repre-

sent mean values across the repeats.

With notable exception of the transient response changes

(Figure S9), this simple excitation-only linear feedforward model

successfully reconstructed responses of most dLGN neurons,
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Figure 3. Functional Characterization of dLGN Neurons

(A) Schematic of experimental setup for extracellular dLGN recordings.

(B) Reconstruction of the electrode track in dLGN (coronal section; dLGN outlined in white; blue: DAPI; red: DiD coating the electrode).

(C) Schematic of recording site with RFs mapped for several electrode channels (dorsal to ventral), showing the retinotopic progression in elevation typical of

mouse dLGN.

(D–F) Spike raster plots (top) and spike density function (bottom) of 7 exemplary dLGN neurons in response to the chirp stimulus (D), their autocorrelograms (E),

and spike waveforms in 5 selected channels of the 32-channel probe (F).

MGC, medial geniculate complex. See also Figures S6, S7, and S8.
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including transient ON, sustained ON and OFF, and SbC cells

(Figure 5B). Typically, the responses of dLGN neurons could

be predicted using only a few non-zero weights (weight >

0.001; Figure 5B1–3); some cells were predicted by a combina-

tion of one dominant and few weaker RGC inputs (Figure 5B2),

and even others were best modeled with responses from many

RGC clusters (Figure 5B4). Across dLGN neurons, prediction

quality was high (average correlation: 0.64; average RMSE:

0.17; Figure 5C).

Using this model, we next asked how many RGC types pro-

vided input to mouse dLGN neurons and found that the answer

directly depends on the threshold used for considering inputs

as functionally relevant (Figure 5D). Choosing a low weight

threshold, the responses of dLGN neurons (n = 814) could be

predicted by the combined input of on average 5 RGC groups

(Figure 5D, left inset; mean = 5.33; median = 5.19; range =

2–11; middle 90% range = 3–8). Choosing a more conservative

threshold for functionally relevant inputs, in turn, identified on

average 2 most dominant RGC groups (Figure 5D, right inset;

mean = 2.01). Together, these results indicate that the responses

of many dLGN neurons, at least on the temporal scale of Ca2+

transients and for the presented set of visual stimuli, can be

explained to a large extent by excitatory feedforward processing

with limited convergence.

We also tested other, more flexible models, allowing also

negative weights and an exponential non-linearity. Although

these yielded small improvements in terms of prediction quality

(�15%), they predicted convergence of dozens of RGC types,

all with very low relative weights. Equalized input from many

types without a dominant one is incompatible with results from

in vivo recordings correlating spiking activity of RGC-dLGN

neuron pairs (Carandini et al., 2007; Cleland et al., 1971; Hubel

and Wiesel, 1961; Mastronarde, 1992; Rathbun et al., 2016;

Usrey et al., 1999) and in vitro slice recordings (Chen andRegehr,

2000; Litvina and Chen, 2017), according to which some RGC

inputs are clearly more dominant than others (reviewed in Alonso

et al., 2006).

Finally, we explored which of the previously identified dLGN-p

RGC groups were used for prediction in the model (Figure 5E).

For the liberal weight threshold of 0.001, we found that the ma-

jority (24/32) of these groups were used by the model (Figure 5E,

top), with some of them contributingmore frequently than others.

Interestingly, some of the groups contributing most strongly

belonged to those RGC groups that were significantly overrepre-

sented among the dLGN-pRGCs (Figure S10), although informa-

tion about the relative frequency of the projections was not used

for inference. As expected, imposing amore conservative weight

threshold resulted in an even more pronounced pattern of

often-used RGC groups (Figure 5E, bottom), although their

relative weights tended to equalize. Together, our modeling

approach suggests that these RGC types have a significant

functional role in the processing of visual information along the

retinogeniculate pathway.

DISCUSSION

We functionally characterized the population of dLGN-projecting

RGCs as well as dLGN neurons and provide a quantitative ac-

count of the functional connectivity between RGC types and

dLGN neurons, for simple, full-field stimuli, and at the temporal

resolution of Ca2+ signals. We present three main findings. First,

combining a retrograde viral transduction approach and two-

photon Ca2+ imaging of RGC responses, we show that the

majority of previously functionally identified RGC types project

to dLGN. Second, decomposing dLGN responses into their

elementary response components revealed a rich diversity of

geniculate visual representations, similar to that of RGCs. Third,

we demonstrate that the responses of individual dLGN cells can

be modeled as a linear combination of responses of on average

5 RGC types, among them 2 with the most dominant functional

impact.

Retrograde Labeling of dLGN-Projecting RGCs
Retrograde viral tracing with HSV-cre combined with two-

photon Ca2+ imaging of RGCs proved to be a suitable tool to

determine functional properties of the dLGN-p RGCs. HSV is

known to have a strictly synaptic uptake mechanism (Antinone

and Smith, 2010; McGavern and Kang, 2011), which prevents

infection of axons passing nearby and not synapsing within the

dLGN. This is an issue with commonly used retrograde tracers,

such as DiO/DiI, horseradish peroxidase, fluorophore-conju-

gated latex microspheres, or cholera toxin (Ellis et al., 2016). In

addition, our observation that GCaMP6f expression in the retina

was limited to spatially confined regions is consistent with the

interpretation that HSV-infected neurons were restricted to the

retinotopically corresponding region in dLGN instead of labeling

passing RGC axons, which would likely have resulted in a larger

spread of RGC locations.

To date, there are no data available supporting or arguing

against an RGC type bias in HSV uptake. We think, however,

Figure 4. Decomposition of the dLGN Population Response
(A) Schematic of the non-negative matrix factorization (NNMF), used to extract a set of time-varying response components, from which neuronal responses can

be reconstructed as a weighted sum.

(B) Example NNMF models with k = 2, 4, and 6 components. Top: a model with two components clearly factorizes the data into an ON and OFF component.

Middle: allowing four components introduces ON-transient and OFF-transient features in addition to sustained ON and OFF features. Bottom: with six com-

ponents, components reflect ON-OFF transient as well as contrast suppressed features.

(C) Mean squared errors (MSEs) as a function of model components k both for training (blue) and test (red) sets in NNMF model cross-validation (nrepeats = 200;

lines, mean; shaded areas, CI95). NNMF cross-validation was used to determine a conservative estimate of the optimal number of components as the location of

the minimum mean MSEtest + 5% (k = 29). Inset: MSE ratio (MSEtest/MSEtrain) per rank is shown (line: mean; shaded area: CI95).

(D) dLGN response components as computed by NNMF (middle), organized according to a hierarchical cluster tree with an optimized leaf order (left), and

percentage of neurons with weight of respective component > 0 (right).

(E) Top: examples of dLGN cell responses (black) and their NNMF reconstruction (blue). Bottom: weights used for reconstruction for each component (left), sorted

in descending order (right).
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that viral tropism is likely not a major confound. First, we could

retrogradely transfect the majority of functional RGC types,

which is inconsistent with strong viral tropism. Second, even if

there were biases, the amplification step of utilizing Cre to unlock

transgene expression likely reduces potential differences,

because only few viral particles retrogradely transported to the

RGC soma suffice for robust cre-mediated GCaMP6f expres-

sion. Third, where direct comparisons with anatomical or genetic

cell types are possible (see below and Table S1), our retrograde

tracing experiments provide congruent results. Fourth, our re-

sults are overall in agreement with a previous retrograde labeling

study (Ellis et al., 2016) using G-deleted rabies virus, indicating

that the particular retrograde virus employed in our study does

not grossly influence results about over- and underrepresenta-

tion of certain RGC types.

Functional Classification of dLGN-Projecting RGCs
The functional classification of dLGN-projecting RGCs, which

was based on the functional classification obtained for the entire

RGC population (Baden et al., 2016), revealed that around 75%

of all functional RGC types innervate the dLGN. This high number

of types is in line with a previous retrograde labeling study, which

reported that, of the 88% of all RGCs projecting to the superior

colliculus (SC),�80% also send an axon collateral to dLGN (Ellis

et al., 2016). Moreover, ON alpha RGCs and OFF transient alpha

RGCs (Krieger et al., 2017; van Wyk et al., 2009) could be found

more frequently among the dLGN-p cells than in the general

RGC population. In agreement with this, ON-sustained alpha

RGCs were shown to target the core region of the dLGN (Brown

et al., 2010; Ecker et al., 2010; Hattar et al., 2006) and also OFF

transient alpha RGCs project to dLGN (for a comparison to the

literature, see Table S1). SbC RGCs were also overrepresented

in our dLGN-p dataset. They typically exhibit a high baseline

firing rate that is suppressed by light stimulation (Jacoby and

Schwartz, 2018)—a type of response that has been recorded

all along the mouse retino-geniculo-cortical pathway (Niell and

Stryker, 2010; Piscopo et al., 2013; Tien et al., 2015), suggesting

a dedicated early visual pathway signaling uniformity of the

visual field (Levick, 1967; Masland and Martin, 2007; Sivyer

et al., 2010) and/or controlling contrast gain (Troy et al., 1989).

Certain RGC types, like W3 RGCs or sustained ON DS RGCs,

were underrepresented among dLGN-p cells, in agreement with

the literature (Dhande et al., 2013; Kim et al., 2010; Yonehara

et al., 2008, 2009; Zhang et al., 2012). In particular, the absence

of dLGN-p cells among the W3 RGCs resonates well with find-

ings by Ellis et al. (2016) that ON RGCs with transient responses

to small-diameter stimuli were more frequent among SC- than

dLGN-projecting RGCs. In two cases, our data seem at odds

with the previous literature: none of the dLGN-p RGCs in our

study were classified as JAM-B cells (Kim et al., 2008), which

are known to project to dLGN. This is likely because JAM-B cells

barely respond to our stimuli set, and is consistent with Baden

et al. (2016), where some RGC types, including JAM-Bs, did

neither respond strongly to full-field chirps nor moving bards,

and therefore, our clustering method had assigned these to a

‘‘mixed’’ RGC group. Also, OFF-sustained alpha RGCs were

overrepresented among dLGN-p cells, although RGCs marked

in the transgenic W7-line thought to correspond to OFF-sus-

tained alpha RGCs have been shown not to project to dLGN

(Kim et al., 2010). Interestingly, there was a cluster in the OFF-

sustained group that was not assigned any dLGN-p cells,

possibly indicating that this subgroup corresponds to W7A.

Alternatively, W7A RGCs are a different RGC type—in this

case, according to our data, all four alpha RGC types (ON-sus-

tained, OFF-sustained, ON-transient, OFF-transient; Krieger

et al., 2017) would project to dLGN, splitting the visual signal

on the way to dLGN into four channels arranged symmetrically

with respect to polarity and kinetics (Krieger et al., 2017; Pang

et al., 2003; van Wyk et al., 2009).

Components of the dLGN Population Response
Consistent with our result of most functional RGC types projec-

ting to dLGN and previous studies demonstrating rich retinal

input to dLGN (Ellis et al., 2016; Liang et al., 2018), we found

that the dLGN population responses can be factored into �29

components. The specific number certainly depends on exactly

which method is used for determining the optimal rank of the

NNMF. We tested several of these methods (Akaike information

criterion [AIC], Bayesian information criterion [BIC], randomiza-

tion, and cross-validation) and found none of them to suggest

numbers as low as the classical notion of 3 parallel pathways

(reviewed in Kerschensteiner and Guido, 2017). Instead, the

high number of NNMF components is—at least in mice—consis-

tent with a larger diversity of dLGN inputs than commonly

appreciated. These diverse inputs, in turn, will likely mediate or

contribute to diverse visual features being represented in

dLGN. This interpretation is supported by recent studies report-

ing ‘‘non-classical’’ responses in rodent dLGN (Cruz-Martı́n

et al., 2014; Howarth et al., 2014; Marshel et al., 2012; Piscopo

et al., 2013; Scholl et al., 2013; Zhao et al., 2013), rabbit dLGN

Figure 5. Functional Modeling of Retinogeniculate Convergence
(A) Illustration of the linear model, predicting responses of a dLGN neuron, convolved with a Ca2+ indicator kernel, as a linear combination of weighted dLGN-p

RGC cluster inputs.

(B) Example responses of dLGN neurons (black) and predictions by the linear model (blue), along with the relative weights > 0.001 of RGC clusters used for

modeling of dLGN responses.

(C) Prediction quality. Top: correlation between actual response and predicted response for all dLGN neurons is shown (n = 814). Bottom: distribution of root

mean squared errors is shown.

(D) Distribution of the number of RGC groups used for reconstruction of dLGN neuron responses, shown as a function of weight threshold to consider when an

input is functionally relevant. (Insets) Histograms of the percentage of dLGN cells as a function of number of RGC groups used for modeling are shown,

considering only weights >0.001 (left) or >0.2 (right) as functionally relevant.

(E) Distribution of RGC groups from Baden et al. (2016) used for reconstructing the population of dLGN cell responses, shown as mean weight and percentage of

dLGN cells (top: weight threshold = 0.001; bottom: weight threshold = 0.2). RGC types not projecting to dLGN are greyed out.

See also Figures S9 and S10.
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(Hei et al., 2014), and the koniocellular layers of primate dLGN

(Cheong et al., 2013; White et al., 2001; Zeater et al., 2015),

such as direction and orientation selectivity and binocularity.

Recombination of RGC Channels in dLGN
In previous work, the question of retinogeniculate connectivity

has been addressed from two different angles. Most studies

focused on the absolute number and strength of RGC inputs to

single dLGN neurons, whereas fewer studies also assessed

convergence of retinogeniculate inputs in terms of RGC types.

Estimates of the absolute number of individual RGCs

providing input to a single dLGN relay cell differ widely between

studies (1 to �90), with the discrepancy likely arising from differ-

ences in species, age, andmethod. Both in vitro and in vivo phys-

iology studies concluded that dLGN neurons typically receive

input from 1–3 dominant RGCs, with the possibility of additional,

weaker inputs in cats and rodents (Chen and Regehr, 2000; Cle-

land et al., 1971; Jaubert-Miazza et al., 2005; Litvina and Chen,

2017; Mastronarde, 1992; Reid and Usrey, 2004; Usrey et al.,

1999; Weyand, 2016; Ziburkus and Guido, 2006). For example,

in parasagittal dLGN slices of adult mice, Litvina and Chen

(2017) reported three dominantly driving inputs, with an average

total number of 10 RGC inputs per dLGN relay cell. Recent

anatomical studies using electron microscopy (EM) reconstruc-

tions (Hammer et al., 2015; Morgan et al., 2016) and mono-

transsynaptic rabies virus tracing (Rompani et al., 2017) in

mice indicated that a rather large number (%91) of RGCs can

converge onto single dLGN neurons. These numbers appear

high compared to previous estimates but are not necessarily in

conflict with functional findings, in particular if many of the struc-

turally identified synapses had low weights (Chen et al., 2016), or

were subject to later functional refinement, including synapse

elimination and axon retraction, which occurs in mice between

the ages of P9 and P60 (Chen and Regehr, 2000; Hong et al.,

2014; Litvina and Chen, 2017). Convergence and divergence in

dLGN has been hypothesized to underlie several functions,

such as promotion of synchrony (Alonso et al., 1996; Usrey

et al., 1998), enhancement of resolution (Alonso et al., 2006;Mar-

tinez et al., 2014), and robustness of feature detectors (Liang

et al., 2018). These roles of convergence in retino-geniculate

circuits seem different compared to those of convergence in

thalamocortical circuits, where in mice, �80 dLGN relay cells

have been estimated to converge on V1 L4 simple cells with

highly precise spatiotemporal offset to provide an origin for

cortical direction selectivity (Lien and Scanziani, 2013, 2018).

Similarly, the estimated number of RGC types projecting to a

single dLGN relay cell varies across studies and will likely differ

depending on species (reviewed in Chen et al., 2016). In cats,

where dLGN is organized into layers, paired recordings of

RGCs (Usrey et al., 1999) or S potentials (Cleland et al., 1971)

and dLGN relay cells have generally found an increase in

connection probability with increasing similarity of RF properties.

In particular, monosynaptic connections between RGCs and

dLGN relay cells of opposite polarity seem rare (Cleland et al.,

1971; Mastronarde, 1987, 1992; Usrey et al., 1999), indicating

that, at least in cats, convergence of RGC types is low. The

most direct estimates of convergence among RGC types to

date has been obtained in mice, where single dLGN relay cell-

initiated mono-transsynaptic rabies virus tracing combined

with morphological analysis of labeled RGCs revealed that

some dLGN relay cells received input from RGCs of mostly

one anatomical RGC type (relay mode), and others received

input from up to nine different anatomical types (combination

mode; Rompani et al., 2017). The presence of both relay- and

combination-type retinogeniculate convergence in mouse thal-

amus seems consistent with recent ultrastructural (Morgan

et al., 2016) and functional analyses (Liang et al., 2018) of

thalamic RGC boutons, demonstrating both specificity and mix-

ing: EM reconstructions of several thalamocortical dLGN cells

and their retinal afferents revealed that two morphologically

distinct RGC axon types made connections to different sets of

target geniculate relay cells, as expected if these represented

separate information channels. At the same time, these RGC

types also converged onto an additional set of mixed-input tha-

lamocortical neurons, consistent with convergence of types

(Morgan et al., 2016). Similarly, a recent two-photon Ca2+ imag-

ing study of RGC boutons in the shell region of dLGN has found

that, at the scale of 2–6 mm, boutons from different RGCs often

exhibited similar response preferences for one or several stim-

ulus features, such as orientation, spatial frequency, and ON-

OFF polarity (Liang et al., 2018). Critically, on this scale, RGC

boutons have up to 50% probability of converging onto the

same dLGNneuron (Liang et al., 2018). Hence, functional similar-

ity of bouton clusters for multiple stimulus features might indi-

cate convergence from single RGC types, and similarity in only

one feature in the presence of mismatches in other feature pref-

erences might indicate convergence from multiple RGC types

(Liang et al., 2018). In line with these previous studies, our model

of functional retinogeniculate convergence provides evidence

for both specificity and mixing of RGC input types. At least for

those dLGN neurons responding well to our stimulus set, it pre-

dicts that synaptic strength would be high for 1 or 2 types of

functional RGC inputs and moderate for the remaining ones.

Our modeling results thus agree with the presence of both

relay- and combination-mode functional convergence but

critically extend the recent results to spatial scales larger than

dendritic domains and to dLGN core. In addition, our results

highlight the importance of considering connection weight in

determining how many and which inputs are functionally rele-

vant: with a liberal weight threshold, response prototypes from

3–8 RGC types are required to account for single-cell dLGN re-

sponses, compatible with the recent anatomical estimates from

EM reconstructions and mono-transsynaptic rabies virus tracing

(Morgan et al., 2016; Rompani et al., 2017). Raising the threshold

to weights that likely have functionally relevant impact reduces

the estimated number of RGC types providing inputs to mouse

dLGN neurons to two, consistent with the large body of literature

on functional convergence in the retino-geniculate pathway. It

would be interesting to test these predictions on the identified

connections in the published EM dataset from the Lichtman

lab (Morgan et al., 2016), where ultrastructural features of the

active zones, such as the volume of the postsynaptic densities

and size of vesicle pools, may be assessed as indicators of syn-

aptic strength.

Geniculate shell and core regions (Grubb and Thompson, 2004)

differ in type and diversity of retinal projections (Huberman et al.,
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2009; Kay et al., 2011; Kim et al., 2010; Rivlin-Etzion et al., 2011),

as well as functional responses (Cruz-Martı́n et al., 2014; Piscopo

et al., 2013). Although our dorsal approach for virus injection and

electrophysiology traversesboth shell andcore, the volumediffer-

encebetween the regionssuggests that our results aredominated

by the dLGN core. Among our recorded population of dLGN neu-

rons, we see a trend for higher DS in neurons recorded more

dorsally (putative shell) versus ventrally (putative core region)

within dLGN (Figure S6). We also observe a relative absence of

DS for dLGN neurons with RFs covering the frontal space, further

pointing to regional functional differences in dLGN representa-

tions. Interestingly, clusters of RGC terminals seem larger and

more widespread in dLGN shell than core (Hammer et al., 2015),

consistent with the possibility of more functional convergence in

the shell. At the same time, retrograde transsynaptic tracing sug-

gests a labeled-line communication for retinal direction selectivity

running via the dLGN shell region to the upper layers of V1 (Cruz-

Martı́n et al., 2014). Future studies will be required to explicitly

compare and contrast the rules of retino-geniculate convergence

between dLGN shell and core regions.

Considering its simplicity, our feedforward model of dLGN re-

sponses performed well. This is surprising, because the model

does not consider known components of geniculate circuits,

such as local inhibitory interneurons (Martinez et al., 2014),

cortico-geniculate feedback (Sillito et al., 2006), and neuromo-

dulatory influences (Antal et al., 2010; Fitzpatrick et al., 1989),

and ignores transformations arising at the retino-geniculate syn-

apse, such as postsynaptic summation (Carandini et al., 2007;

Casti et al., 2008; Rathbun et al., 2010) and increases in contrast

gain control (Alitto et al., 2018; Kaplan et al., 1987; Rathbun et al.,

2016; Scholl et al., 2013). Potential explanations for the model’s

success—despite disregarding these essential circuits—include

the spatial simplicity of our stimuli and the low-pass nature of our

retinal signals. Indeed, local inhibition is known to increase push-

pull mechanisms in dLGN, thereby enhancing temporal and

spatial contrast (Hirsch et al., 2015; Martinez et al., 2014). These

mechanisms will likely play a larger role in the processing of local

or more complex stimuli, such as natural scenes (Lesica et al.,

2006), than in the full-field stimulus used here. Similarly, perform-

ing the model predictions at the temporal resolution of Ca2+ sig-

nals smoothens over fine-grained differences in geniculate firing

patterns, such as precise responses to high-frequency stimula-

tion or bursting (Hirsch et al., 2015). In the future, it will be essen-

tial to extend our model by incorporating more of the geniculate

circuit elements and to challenge the model predictions with

more complex visual stimulation and signals of higher temporal

resolution.
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Python 3.4 https://www.python.org/ https://www.python.org; RRID: SCR_008394

MATLAB R2017a MathWorks https://www.mathworks.com/products/matlab/;

RRID: SCR_001622

IgorPro 6.3.7.2 Wavemetrics https://www.wavemetrics.com/products/

igorpro/igorpro.htm; RRID: SCR_000325

SARFIA toolbox for IGOR Pro Dorostkar et al., 2010 https://www.wavemetrics.com/project/SARFIA

Fiji/ImageJ NIH https://imagej.nih.gov/ij/; RRID: SCR_003070

Datajoint Yatsenko et al., 2015 https://datajoint.github.io/; RRID: SCR_014543

EXPO visual display software developed by Dr. Peter Lennie and

maintained by Rob Dotson for the

Center for Neural Science at

New York University

https://sites.google.com/a/nyu.edu/expo/home

NDManager software suite Hazan et al., 2006 http://neurosuite.sourceforge.net/

KlustaKwik Kenneth D. Harris http://klustakwik.sourceforge.net/

Klusters Hazan et al., 2006 http://neurosuite.sourceforge.net/

NNMF cross-validation Alex H. Williams; Williams et al., 2018 https://gist.github.com/ahwillia/65d8f87fcd4

bded3676d67b55c1a3954

Other

Aladdin syringe pump WPI Germany, Berlin, DE AL-1000

Hamilton syringe Hamilton Robotics, Reno, USA Gastight (10 ml); Model#1701;

Stereotactic frame Neurostar, T€ubingen, DE Robot Stereotaxic

Closed loop temperature control system

for small rodents

HD, Hugo Sachs Elektronik-Harvard

Apparatus GmbH,

March-Hugstetten, DE

Cat#50-7221-F

Dental drill motor NSK Volvere Vmax NE120 Model#VMAX35RV

Sharp micropipette Science Products, Hofheim, DE GB150F-8P

Ceramic filters GE Healthcare, Buckinghamshire, UK Anodisc #13, 0.2 mm pore size

Vibratome Thermo Fisher Scientific, Waltham,

Massachusetts, USA

Microm HM 650 V

DAPI-containing mounting medium Vector Laboratories Ltd,

Peterborough, UK

Vectashield DAPI

Epi-fluorescent microscope Zeiss, Oberkochen, DE Zeiss Imager.Z1m

MOM-type two-photon microscope designed by W. Denk, MPI,

Martinsried; purchased from

Sutter Instruments / Science

Products, Hofheim, Germany;

Euler et al., 2009

N/A

Mode-locked Ti:Sapphire laser Newport Spectra-Physics,

Darmstadt, Germany

MaiTai-HP DeepSee

(Continued on next page)
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CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to, and will be fulfilled by, the Lead Contact, Laura

Busse (busse@bio.lmu.de).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

All procedures complied with the European Communities Council Directive 2010/63/EC and the German Law for Protection of

Animals, and were approved by local authorities, following appropriate ethics review.

Functional characterization of dLGN-p RGCs
We used five mice of either sex aged 8 to 12 weeks of the Ai95D reporter line (B6; 129S-Gt(ROSA)26Sortm95.1(CAG-GCaMP6f)Hze/J; JAX

024105; RRID:IMSR_JAX:024 105). Ai95D features a floxed-STOP cassette preventing transcription of the genetically-encoded

Ca2+ indicator GCaMP6f (Chen et al., 2013). Stereotactic injection of a Cre-encoding Herpes-Simplex-Virus 1 (hEFIa-cre, MIT Vector

Core, Cambridge, USA) into the dLGN resulted in retrograde Cre-recombinase expression in dLGN-projecting (dLGN-p) RGCs,

where Cre-recombinase, in turn, removed the LoxP sites and activated GCaMP6f expression.

Functional characterization of dLGN responses
We used 8- to 12-week-old wild-type mice (C57BL/6J; RRID: IMSR_JAX:000 664) of either sex.

METHOD DETAILS

Functional characterization of dLGN-p RGCs
Virus injection

After induction of anesthesia using isoflurane (4% in oxygen), mice received isoflurane maintenance anesthesia (typically 1.2% in

oxygen, adjusted to maintain a surgical plane of anesthesia as assessed by the absence of the pedal reflex), and were fixed in a

stereotactic frame (Neurostar, T€ubingen, DE). At the beginning of the surgical procedure, atropine (Atropine sulfate, 0.3 mg/kg,

sc, Braun, Melsungen, DE) and analgesics (Buprenorphine, 0.1 mg/kg, sc, Bayer, Leverkusen, DE) were administered, and the

eyes were protected with an eye ointment (Bepanthen, Bayer, Leverkusen, DE). The animal’s temperature was kept constant at

37�C via a closed loop temperature control system for small rodents (HD, Hugo Sachs Elektronik-Harvard Apparatus GmbH,

March-Hugstetten, DE).

After a midline scalp incision, a small hole was made with a dental drill (Sinco, Jengen, DE) over the dLGN located in the left

hemisphere, 2.5 mm posterior to the bregma and 2.3 mm lateral from the midline. The virus was loaded in a sharp micropipette

Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Fluorescence detection channel for GCaMP6f AHF/Chroma T€ubingen, Germany HQ 510/84

Fluorescence detection channel for SR101 AHF/Chroma T€ubingen, Germany HQ 630/60, AHF

Water immersion objective Zeiss, Oberkochen, Germany W Plan-Apochromat 20x/1.0 DIC M27

DLP projector Acer K11

Band-pass-filtered light-emitting diodes ‘green’ AHF/Chroma T€ubingen, Germany 578 BP 10

Band-pass-filtered light-emitting diodes ‘blue’ AHF/Chroma T€ubingen, Germany HC 405 BP 10

OptiBond FL primer and adhesive Kerr dental, Rastatt, DE Cat#35369

Dental cement Ivoclar Vivadent, Ellwangen, DE Tetric EvoFlow

Ground and reference screws Bilaney 00-96 X 1/16 stainless steel screws

Kwik-Cast WPI Germany, Berlin, DE https://www.wpi-europe.com/products/

laboratory-supplies/adhesives/kwik-cast.aspx

Gamma-corrected LCD screen Samsung Samsung SyncMaster 2233

32-channel edge silicon probes Neuronexus, Ann Arbor, USA A1x32Edge-5mm-20-177-A32

Arduino-type microcontroller Arduino http://www.arduino.cc/

Infrared light illumination Allied Vision, Exton, USA Guppy AVT camera

Red-shifted fluorescent lipophilic tracer Thermo Fisher Scientific,

Waltham, Massachusetts, USA

DiD

Blackrock microsystems amplifier Blackrock Microsystems

Europe GmbH, Hannover DE

128-Channel Neural signal processor
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(GB150F-8P, Science Products, inner tip diameter 20-25 mm, Hofheim, DE) connected through a 10 ml Hamilton syringe (Hamilton

Robotics, Reno, USA) to an Aladdin syringe pump (AL-1000, WPI Germany, Berlin, DE). A volume of 20-40 nL of virus was injected

at a depth of 2.7 mm. The pipette was left in place for an additional 5 min to allow for viral diffusion. Antibiotics (Baytril, 5 mg/kg, sc,

Bayer, Leverkusen, DE) and a longer lasting analgesic (Carprofen, 5 mg/kg, sc, Rimadyl, Zoetis, Berlin, DE) were administered

continuously for 3 days post-surgery. Two-photon Ca2+ imaging was carried out 3 weeks after viral injection.

Perfusion and retinal tissue preparation

Animals were housed under a standard 12 h day/night rhythm. Before perfusion and two-photon imaging, animals were dark-

adapted for R 1 h, and then deeply anaesthetized with a lethal dose of sodium pentobarbital (Narcoren, 400 mg/kg, injected intra-

peritoneally, Böhringer Ingelheim, Ingelheim, DE). When the animal reached the asphyxia stage and complete paralysis, the eyes

were enucleated, and the mouse was transcardially perfused with 0.2 M sodium phosphate buffered saline (PBS), followed by

4% paraformaldehyde (PFA) solution in PBS. The brains were postfixed in PFA for 24 h at 4� and then stored in PBS.

The eyes were dissected in carboxygenated (95% O2, 5% CO2) extracellular solution containing (in mM): 125 NaCl, 2.5 KCl,

2 CaCl2, 1 MgCl2, 1.25 NaH2PO4, 26 NaHCO3, 20 glucose, and 0.5 L-glutamine (pH 7.4). The retina was extracted from the eyecup

and flat-mounted onto a ceramic filter (Anodisc #13, 0.2 mm pore size, GE Healthcare, Buckinghamshire, UK) with the ganglion cell

layer (GCL) facing up and transferred to the recording chamber of the microscope, where it was continuously perfused with

carboxygenated solution at �36�C. In all experiments, �0.1 mM Sulforhodamine-101 (SR101, Sigma, Steinheim, DE) was added

to the extracellular solution to reveal blood vessels and any damaged cells in the red fluorescence channel of the microscope (Euler

et al., 2009). All procedures were carried out under dim red (> 650 nm) illumination.

Histological reconstruction of injection sites

To verify the injection site within the dLGN,we used histological reconstructions. Brainswere sliced for coronal sections (50 mm) using

a vibratome (Microm HM 650 V, Thermo Fisher Scientific, Waltham, Massachusetts, USA) and mounted on glass slides with

DAPI-containing mounting medium (Vectashield DAPI, Vector Laboratories Ltd, Peterborough, UK), which labels the cell nuclei,

and coverslipped. Brain slices were inspected using a Zeiss Imager.Z1m epi-fluorescent microscope (Zeiss, Oberkochen, DE) for

the expression of the retrogradely transported HSV-1, visualized by the expression of the GCaMP6f protein containing the enhanced

green fluorescent protein (eGFP). The stereotactic slice coordinates were estimated based on Paxinos and Franklin (2008). We

excluded one mouse from analysis of functional Ca2+ data because viral expression was spread beyond dLGN boundaries.

Two-photon Ca2+ imaging and light stimulation

We used aMOM-type two-photonmicroscope (designed byW. Denk, MPI, Martinsried; purchased from Sutter Instruments/Science

Products, Hofheim, Germany). Design and procedures were described previously (Baden et al., 2016; Euler et al., 2009). In brief, the

system was equipped with a mode-locked Ti:Sapphire laser (MaiTai-HP DeepSee, Newport Spectra-Physics, Darmstadt, Germany)

tuned to 927 nm, two fluorescence detection channels for GCaMP6f (HQ 510/84, AHF/Chroma T€ubingen, Germany) and SR101 (HQ

630/60, AHF), and a water immersion objective (W Plan-Apochromat 20x/1.0 DIC M27, Zeiss, Oberkochen, Germany). For image

acquisition, we used custom-made software (ScanM, by M. M€uller, MPI, Martinsried, and T. Euler) running under IGOR Pro 6.37

for Windows (Wavemetrics, Lake Oswego, OR, USA; RRID: SCR_000325), taking 64 3 64 pixel image sequences (7.8 frames/s)

for activity scans or 512 3 512 pixel images for high-resolution morphology scans.

For light stimulation, we focused a DLP projector (K11, Acer) through the objective, fitted with band-pass-filtered light-emitting

diodes (LEDs) (‘‘green’’, 578 BP 10; and ‘‘UV’’, HC 405 BP 10, AHF/Chroma) to match the spectral sensitivity of mouse

M- and S-opsins. LEDs were synchronized with the microscope’s scan retrace. Stimulator intensity (as photoisomerization

rate, 103 P*/s/cone) was calibrated as described previously (Euler et al., 2009) to range from 0.6 and 0.7 (black image) to 18.8

and 20.3 for M- and S-opsins, respectively. An additional, steady illumination component of �104 P*/s/cone was present during

the recordings because of two-photon excitation of photopigments (for detailed discussion, see Baden et al., 2013; Euler et al.,

2009). For all experiments, the tissue was kept at a constant mean stimulator intensity level for at least 15 s after the laser scanning

started and before light stimuli were presented.

Four types of light stimuli were used (Figure 1D, top; Baden et al., 2016): (i) Full-field (8003 600 mm) ‘‘chirp’’ stimuli consisting of a

bright step and two sinusoidal intensity modulations, one with increasing frequency (0.5-8 Hz) and one with increasing contrast;

(ii) 0.3 3 1 mm bright bar moving at 1 mm s�1 in eight directions; (iii) alternating UV and green 3 s flashes; and (iv) binary dense

noise (20 3 15 matrix with 40 mm pixel-side length; each pixel displayed an independent, balanced random sequence at 5 Hz for

5 min) for space-time receptive field mapping. All stimuli, except (iii), were achromatic, with matched photo-isomerization rates

for mouse M- and S-opsins. Visual stimuli were presented using custom software (QDSpy, https://github.com/eulerlab/QDSpy).

Functional characterization of dLGN responses
Surgical procedures

After induction of anesthesia using isoflurane (4% in oxygen), mice received isoflurane maintenance anesthesia (typically 1.2% in

oxygen, adjusted to maintain a surgical plane of anesthesia as assessed by the absence of the pedal reflex). At the beginning

of the surgical procedure, atropine (Atropine sulfate, 0.3 mg/kg, sc, Braun, Melsungen, DE) and analgesics (Buprenorphine,

0.1 mg/kg, sc, Bayer, Leverkusen, DE) were administered, and the eyes were protected with an eye ointment (Bepanthen, Bayer,

Leverkusen, DE). The animal’s temperature was kept constant at 37�C via a closed loop temperature control system for small rodents

(HD, Hugo Sachs Elektronik-Harvard Apparatus GmbH, March-Hugstetten, DE).
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After a midline scalp incision and skin removal, a drop of H2O2 (3%) was applied on the surface of the skull for the removal of tissue

residues. A custom lightweight aluminum head post was placed on the posterior skull using OptiBond FL primer and adhesive

(Kerr dental, Rastatt, DE) and Tetric EvoFlow dental cement (Ivoclar Vivadent, Ellwangen, DE). Miniature ground and reference

screws (00-96 X 1/16 stainless steel screws, Bilaney) soldered to custom-made connector pins were placed bilaterally over the

cerebellum. A well of dental cement was formed to hold the silicone elastomer sealant Kwik-Cast (WPI Germany, Berlin, DE) covering

the skull. Antibiotics (Baytril, 5 mg/kg, sc, Bayer, Leverkusen, DE) and a longer lasting analgesic (Carprofen, 5 mg/kg, sc, Rimadyl,

Zoetis, Berlin, DE) continued to be administered for 3 days post-surgery.

After recovery, animals were familiarized with a simulation of the experimental procedures in multiple training sessions until they

were deemed comfortable with the conditions. Before experiments, a craniotomy (ca. 1 mm2) was performed over dLGN (2.3 mm

lateral to the midline and 2.5 mm posterior to bregma), which was re-sealed with Kwik-Cast (WPI Germany, Berlin, DE). Experiments

started one day after craniotomy and were continued on consecutive days as long as electrophysiological signals remained of high

quality.

In-vivo multisite extracellular recordings

Our experimental configuration for in-vivo recordings is described in detail in Erisken et al. (2014). The mouse was head-fixed and

could run freely on an air-suspended styrofoam ball while stimuli were presented on a gamma-corrected LCD screen (Samsung

SyncMaster 2233). Extracellular neural signals were recorded 2.5mmposterior from bregma and 2.3mm lateral frommidline through

a small craniotomywindow over dLGNwith 32-channel edge silicon probes (Neuronexus, A1x32Edge-5mm-20-177- A32, Ann Arbor,

USA). Neurons were verified as belonging to the dLGN based on the characteristic RF progression from top to bottom along the

electrode shank (Figure 3C), the preference for high temporal frequencies, and a high prevalence of F1 responses to drifting gratings

(Grubb and Thompson, 2003; Piscopo et al., 2013). Ball movements were registered at 90 Hz by two optical mice connected to an

Arduino-type microcontroller (http://www.arduino.cc/). Eye movements were monitored under infrared light illumination (Guppy AVT

camera, frame rate 50 Hz, Allied Vision, Exton, USA).

Visual stimulation

We used custom software (EXPO, https://sites.google.com/a/nyu.edu/expo/home) to present visual stimuli on a gamma-calibrated

liquid crystal display (LCD) monitor (Samsung SyncMaster 2233RZ; mean luminance 50 cd/m2, 60 Hz) at 25 cm distance to the

animal’s right eye. Four types of light stimuli were presented: (i) a ‘‘contrast stimulus’’ to measure the contrast response function,

consisting of drifting sinusoidal gratings at a single orientation and 12 different randomly interleaved contrasts for 2 s with 5 s pauses

between trials. (ii) the full-field chirp stimulus (see RGC section). (iii) a spatial-temporal-frequency-orientation (STFO) stimulus to cap-

ture preferred tuning properties of a large number of neurons simultaneously; the stimulus consisted of drifting sinusoidal gratings

with 8 orientations, 6 temporal (0.5, 1, 2, 4, 8, 16 cycles/sec) and 2 spatial frequencies (0.5, 0.15 cycles/�) (443 of 814 cells, Figure S7).

Trials were randomly interleaved and presented for 1 s with 0.1 s pauses between trials. The stimulus was shown at 100% contrast

with the background at mean luminance. (iv) a sparse noise stimulus for receptive field mapping, consisting of white or black squares

(5� visual angle) presented on a background of mean luminance (50 cd/m2). Squares were flashed for 200 ms each at every position

on a 12 3 12 square grid of 60 degrees.

Except for the sparse noise stimulus, all stimuli were presented in full-field mode. In experiments measuring tuning curves, a blank

screen condition (mean luminance) was included to estimate the spontaneous firing rate.

Histological reconstruction of recording sites

To verify recording sites from dLGN, we used histological reconstructions. Before recording from the dLGN, electrodes were coated

with a red-shifted fluorescent lipophilic tracer (DiD; Thermo Fisher Scientific, Waltham, Massachusetts, USA). After the last recording

session, mice were transcardially perfused and the brain fixed in a 4% paraformaldehyde phosphate buffered saline (PBS) solution

for 24 h and then stored in PBS. Brains were sliced for coronal sections (50 mm) using a vibratome (Microm HM 650 V, Thermo Fisher

Scientific, Waltham, Massachusetts, USA) and mounted on glass slides with Vectashield DAPI (Vectashield DAPI, Vector Labora-

tories Ltd, Peterborough, UK), and coverslipped. Slices were inspected for DAPI and DiD presence using a Zeiss Imager.Z1m

fluorescent microscope (Zeiss, Oberkochen, DE), and post-processed using FIJI/ImageJ (NIH; https://imagej.nih.gov/ij/; RRID:

SCR_003070).

QUANTIFICATION AND STATISTICAL ANALYSIS

Functional characterization of dLGN-p RGCs
The data analysis was performed using IGOR Pro (Wavemetrics, Lake Oswego, OR, USA), MATLAB (The Mathworks, Natick,

Massachusetts, USA) and Python (distribution by Anaconda Inc., Austin, TX; RRID:SCR_008394) using methods described previ-

ously (Baden et al., 2016).

Pre-processing
Regions of interest (ROIs) were manually drawn around the GCaMP6f-expressing somata in the recording fields. The Ca2+ traces for

each ROI were extracted (as DF/F) using the image analysis toolbox SARFIA for IGOR Pro (Dorostkar et al., 2010). A stimulus time

marker embedded in the recorded data served to align theCa2+ traces relative to the visual stimuluswith a temporal precision of 2ms.

For this, Ca2+ traces were up-sampled to 512 Hz, and the timing for each ROI was corrected for sub-frame time-offsets related to the
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scanning. The Ca2+ traces were then de-trended using a high-pass filtering above �0.1 Hz and resampled to 7.8 Hz. For all stimuli

except the dense noise (for RF mapping), the baseline was subtracted (median of first eight samples), median activity rðtÞ across

stimulus repetitions was computed (typically three to five repetitions) and normalized such that maxtðjrðtÞ j Þ = 1.

Direction and orientation selectivity
To extract time course and directional tuning of the Ca2+ response to themoving bar stimulus, we performed a singular value decom-

position (SVD) on the T by D normalized mean response matrix M (times samples by number of directions; T = 32; D = 8):

½U;S;V �= svdðMÞ
This procedure decomposes the response into a temporal component in the first column ofU and a direction dependent component

or tuning curve in the first column of V, such that the response matrix can be approximated as an outer product of the two:

MzS11U:1V
T
:1

An advantage of this procedure is that it does not require manual selection of time bins for computing direction tuning but extracts the

direction-tuning curve given the varying temporal dynamics of different neurons.

To measure direction selectivity (DS) and its significance, we projected the tuning curve V:1 on a complex exponential fk =

expðiakÞ, where ak is the direction of the kth condition:

K =fTV:1

This is mathematically equivalent to computing the vector sum in the 2D plane or computing the power in the first Fourier component.

We computed a DS index as the resulting vector length:

DSi = jK j
correcting for the direction spacing. We additionally assessed the statistical significance of direction tuning using a permutation test

(Ecker et al., 2014). To this end, we created surrogate trials (that is, stimulus repetitions) by shuffling the trial labels (that is, destroying

any relationship between condition and response), computed the tuning curve for each surrogate trial and projected it on the complex

exponential f. Carrying out the procedure 1,000 times generated a null distribution for K, assuming no direction tuning. We used the

percentile of the true K as the p value for direction tuning (Baden et al., 2016).

Orientation selectivity (OS) was assessed in an analogous way. However, we used the complex exponential fk = expð2iakÞ, cor-
responding to the second Fourier component.

Signal deconvolution
Comparing neural activity measured with different methods (i.e., spikes versus Ca2+ signals; different Ca2+ indicators) is a non-trivial

task. To assign dLGN-p RGCs to previously characterized RGC types, we needed account for the fact that the different Ca2+ indi-

cators used (OGB-1 versus GCaMP6f) have different kinetics (Chen et al., 2013). We decided to convert both signals to a ‘‘common

currency,’’ by deconvolving both signal types using Ca2+ kernels calculated for each indicator separately, using Ca2+ recordings of

multiple ROIs (nOGB-1 = 327; nGCaMP6f = 19) to the white noise stimulus, and averaging thresholded Ca2+ peak events (> 80% of the

maximum normalized activity). The kernel area under the curve was normalized to 1 (Figure S3). These kernels were then used to

deconvolve the respective calcium signal types.

Response quality index (Qi)
Tomeasure howwell a cell responded to a stimulus (local and full-field chirp, flashes), we computed the Qi, a signal-to-noise ratio, as

a selection criterion:

Qi =
Var½hCir �t�
Var½C�t

�
r

where C is the T by R response matrix (time samples by stimulus repetitions), while < > x and Var[]x denote the mean and variance

across the indicated dimension, respectively (Baden et al., 2016). If all trials are identical, such that the mean response is a perfect

representative of the response,Qi is equal to 1. If all trials are completely randomwith fixed variance (so that themean response is not

informative about the individual trial responses at all),Qi is proportional to 1/R. For further analysis, we used only cells that responded

well to the chirp and/or to the moving bar stimulus (Qichirp > 0:45 orQiDS > 0:6; Baden et al. 2016). Of the original n = 581 ROIs, n = 251

ROIs passed this criterion (Figure S2).

Match index (Mi) for dLGN-p RGC type assignment
The pre-processed ROI traces of dLGN-pRGCs (n = 251) were assigned to the functional RGCpopulation clusters reported by Baden

et al. (2016), by identifying for each dLGN-p cell the cluster with the best matching response properties. After deconvolution with the

respective Ca2+ kernel (see above), we calculated the linear correlation coefficients r between a dLGN-p cell’s mean trace (over trials)
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and all cluster mean traces (over all cells in an RGC population cluster) for the chirp stimulus (rchirp) and the moving bar stimulus (rbar).

To combine the information about stimulus-specific correlations (rchirp and rbar), weighted by stimulus-specific cell response quality

(Qichirp and Qibar), we generated an overall match index (Mi) of each dLGN-p cell to all RGC population clusters:

Mi =
Qichirp

Qichirp +Qibar
� rchirp + Qibar

Qichirp +Qibar
� rbar

Finally, each dLGN-p cell was assigned to the cluster with the highest Mi.

Cluster proportions in dLGN-p RGCs and RGC-all
Weused a binomial test to assess the statistical significance of deviations of cluster cell numbers in the dLGN-p RGCs subpopulation

compared to the RGC-all population. Starting with a total dLGN-p RGC cell number ndLGN-p RGC = 251, for each dLGN-p RGC cluster

i, we computed the test parameters ki = ‘‘number of cells cluster i in dLGN-p RGC population,’’ and pi = ‘‘proportion of cells in cluster

i in the RGC-all population’’ (nRGC-all = 5024), where piwould be the expected proportion, or probability, of cells in that cluster if it were

the same as in the RGC-all cluster. We then performed a two-tailed binomial test of obtaining a cell number deviation that extreme

given the null hypothesis of equal cluster cell numbers in the two populations. After p value correction for false discovery rate (FDR,

Benjamini-Hochberg), p values were considered significant at the significance level alpha = 0.01.

For the log2-ratio (% dLGN-p RGCs / %RGC population) plot, we used additive smoothing of the histogram, i.e., by adding one to

each group’s cell count n per default and normalizing the group cell counts by n+k, where k is the number of clusters.

Linear feedforward model
For modeling dLGN responses as a linear combination of weighted RGC types, we used RGC-all cluster means (Baden et al., 2016)

only of those clusters that were assigned at least two cells from our dLGN-p RGC data (Figure S2). The spike dataset recorded in

dLGN was smoothed, down-sampled and convolved with an artificial OGB-1 kernel to allow for a direct comparison of the dLGN

traces with the dLGN-p RGC Ca2+ responses. We then modeled dLGN responses as a linear combination of weighted RGC inputs

(Figure S2). The weights were computed, using a linear-regression algorithm (lsqlin, MATLAB) with a non-negativity constraint, and

then applied to their respective RGC population cluster responses, yielding the optimal prediction of the dLGN cell response. The

non-negativity constraint is motivated by the non-negativity of feedforward excitatory connections between RGCs and dLGN. The

model performance was cross-validated using repeated random sub-sampling with 1,000 repetitions. The trials were randomly

shuffled and divided into a training set (50% trials) and a validation set (50% trials). Both sets thus contained unique trials with no

duplicates. The training set was used to compute the weights and the performance of the model was evaluated on the validation

set. In the end, a particular dLGN cell was modeled with the mean weights across all repeats, and the performance of the model

represents the mean value across the repeats.

Functional characterization of dLGN responses
Data analysis was performed using MATLAB (The Mathworks, Natick, Massachusetts, USA; RRID:SCR_001622) and Python. Data

were organized in a custom written schema using the relational database framework ‘‘DataJoint’’ (Yatsenko et al., 2015) (https://

datajoint.io; RRID: SCR_014543).

Unit extraction and spike sorting
Wideband extracellular signals were digitized at 30 kHz (Blackrock microsystems, Blackrock Microsystems Europe GmbH, Hann-

over DE) and analyzed using the NDManager software suite (Hazan et al., 2006), as described in detail in Erisken et al. (2014). The

LFP was computed after downsampling to 1,250 Hz. To isolate single neurons from the linear arrays, we grouped neighboring

channels into 5 equally sized ‘‘virtual octrodes’’ (8 channels per group with 2 channel overlap for 32 channel probes). Using a me-

dian-based automatic spike detection threshold multiplied by a factor of 1.5, spikes were extracted from the high-pass filtered

continuous signal for each group separately. The first three principal components of each channel were used for semi-automatic

isolation of single neurons with KlustaKwik. Clusters were manually refined with Klusters (Hazan et al., 2006). We assigned each

unit to the contact with the largest waveform. Units were given a subjective quality score by the manual sorter, the firing rate, the

cleanness of the refractory period, and the stability over time. To avoid duplication of neurons extracted from linear probe recordings,

we computed cross-correlation histograms (CCHs, 1 ms bins) between neuron pairs from neighboring groups. Pairs for which the

CCH’s zero-bin was three times larger than the mean of non-zero-bins were considered to be in conflict. For each conflicting

pair, the cell with the best score was kept. Conflicts across pairs were resolved by collecting all possible sets of cells and by keeping

the set with the best total score.

Chirp quality index
We used the chirp quality index as a selection criterion that determines whether a dLGN neuron was visually driven by the full-field

chirp. We separated the stimulus into two segments (e.g., separated a 32 s stimulus into two 16 s segments), and computed the
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average between-trial correlations (CCs) (responses binned at the stimulus frame rate) within segment and between segments. Only

those cells that had significantly higher within-segment CCs (Qichirp, p < 0.01, Wilcoxon rank sum test) and firing rate > 1 spike/s were

considered to be visually responsive.

STFO correlation value
The STFO correlation value was a further unit selection criterion to assure neuronal response stability and to determine whether there

were neurons that did not respond to the full-field chirp stimulus. We played the STFO stimulus directly before and after the chirp

stimulus and performed linear regression analysis (Figure S7). To determine how well the model predicts the data, we computed

a correlation value R:

R=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

Pn
i = 1ðyi � byiÞ2Pn
i = 1ðyi � yiÞ2

s

where ŷ represents the calculated values of y and y is the mean of y.

For further analysis, we used only cells that responded well to the chirp stimulus (QiRFR0:05 and Qichirp %0:001) or had a high

STFO correlation value (R> 0:65, Figure S2).

Receptive field mapping
Receptive fields were mapped by reverse correlating unit activity to the sparse noise stimulus and fitting the center of a two-

dimensional ellipse / 2D-Gaussian for both ON- and OFF-fields:

fðx; yÞ= A

2pab
exp

�
� x

02

2a2
� y

02

2b2

�
where A is the maximum amplitude, a and b are half-axes of the ellipse, and x’ and y’ are transformations of the stimulus coordinates

x and y, considering the angle q and the coordinates of the center (xc, yc) of the ellipse. For each contact, we computed a single RF

center by averaging coordinates of the best-fit ON and OFF subfield (explained variance > 70%).

Contrast response function
Contrast responses were fitted with a hyperbolic ratio function:

rc = r0
rmax � cn�
cn
50 + cn

�
with baseline response r0, responsiveness rmax, semi-saturation contrast c50, and exponent n.

Tuning
Orientation tuning curves were fitted with a sum of two Gaussians with peaks qpref and qpref � p of different amplitudes A1 and A2 but

equal width s, with a constant baseline r0. For each neuron, spatial and temporal frequency tuning curves were taken at its preferred

direction; orientation and direction-tuning curves were taken at its optimal spatial and temporal frequencies.

Direction selectivity

Direction selectivity index (DSI) was calculated as the ratio of

DSI=
rpref � ropp
rpref + ropp

where rpref was the response at the preferred direction and ropp was the response at the opposite direction. We additionally assessed

the statistical significance of direction tuning using a permutation test (Ecker et al., 2014) as described above.

Orientation selectivity

Orientation selectivity index (OSI) was computed as:

OSI=
rpref � rortho
rpref + rortho

where rpref is the response to the preferred orientation and rortho is the response to the orthogonal orientation.

Non-negative matrix factorization (NNMF)
NNMF decomposes a matrix A into two low-rank non-negative matrices U and VT, representing elementary components and their

weights (Lee and Seung, 1999). In the case of our dLGN cell responses, this translates into finding a set of time-varying visual

response components from which cell responses can be reconstructed as a weighted combination of those components. Given a
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positive matrix A of size N x M (neuron x time) and a desired number of features k, the NNMF algorithm iteratively computes an

approximation A�UVT, whereU and VT are non-negativematrices with respective sizesN x k (neuron xweight) and k xM (component

x time).

To determine the optimal number of components k, we applied NNMF cross-validation (Williams et al., 2018), also described by

Alex H. Williams on http://alexhwilliams.info/itsneuronalblog/2018/02/26/crossval/ and implemented on https://gist.github.com/

ahwillia/65d8f87fcd4bded3676d67b55c1a3954. Analogous to cross-validation in supervised learning settings, NNMF cross-valida-

tion splits the data into a training and a test set in order to compare model performance on both sets and uses decreasing test set

performance as a function of k as an indicator of model overfitting. In contrast to supervised settings, data entries cannot simply be

held out for entire rows or columns as this would not allow to fit all parameters. Here, this problemwas overcome by randomly holding

out individual data entries from the data matrix and using the remaining data entries as training set. Formally, we define a binary ma-

trix M, which acts as a mask over our data. The results in the following optimization problem:

minimize
U;V

kM+
�
UVT � A

� k 2
F

The optimization problem amounts to the low-rank matrix completion problem which was solved by alternating minimization of the

above equation for U and VT. The model error can then be evaluated on the held-out data points as follows:

kð1� MÞ +�UVT � A
� k 2

F

We fitted NNMF models on the training data for ranks (= number of components k) 1 to 70, and compared the mean squared error

(MSE) for the training versus the validation set. Due to the random model initialization for each run, this was done with nrepeats = 200.

The optimal number of components was determined as the rank with the minimal average MSE over all runs + 5%.

The resulting components were organized into a hierarchical cluster tree by a single linkage algorithm using Euclidean distances

and theWard’s minimum variance method. The results were plotted using the dendrogram function and the leaf order was optimized

using the MATLAB function optimalleaforder.

Analysis of visual field coverage
To compute visual field coverage for dLGN recordings, we used the envelope of multi-unit activity (MUAe) to the sparse noise stim-

ulus. To do so, we full-wave rectified the median-subtracted, high pass filtered signals, before low-pass filtering (200 Hz) and down-

sampling to 2000Hz (Supèr and Roelfsema, 2005). To compute RFmaps, we used averageMUAe between 0 to 150ms after stimulus

onset (Figure S6A). To identify channels within the dLGN, we collapsed the MUAe RF map amplitudes for each channel across the

x-dimension and range-normalized collapsed amplitudes. Channels with normalized amplitudes higher than an empirically set

threshold (0.39) were included for further analysis. Non-detected channels located between detected channels were added.

This procedure was evaluated against manually labeled ground truth data (using the Python Sloth GUI, https://sloth.readthedocs.

io/en/latest/). We calculated RF centers as the location of the peaks of normalized amplitudes in x and y (Figures S6B and S6C).

Since the distribution of DS cells has been suggested to vary between dLGN shell and core, we examined DS in a subpopulation

of our recorded dLGN neurons with localized RFs and stable responses to the drifting gratings flanking the chirp stimulus

(n = 243 cells). To test for the distribution of DSI as a function of RF location (Figure S6D), we extracted recorded units whose

peak spike amplitude occurred at the identified RF-containing channels. To test for the distribution of DSIs as a function of dLGN

depth, we compared DSIs of neurons in the top dLGN channel against the rest of the population (Figure S6E).

DATA AND SOFTWARE AVAILABILITY

The essential code and data to reproduce the analyses presented is available on http://retinal-functomics.net/.
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SUPPLEMENTAL FIGURES 

1. Injection histology 

 
 

Figure S1. Related to Figure 1 | Histology of virus injections. Coronal sections at the injection site of 

a Cre-encoding retrograde Herpes Simplex Virus 1 (LT HSV-hEF1α-cre) (Neve, 2012) for the four 

floxed GCaMP6f mice (a-d) that passed the criteria of injections being local and targeted to dLGN 

(green, GCaMP6f; grey DAPI). While the histological analysis provides evidence for retrograde viral 

labeling in both dLGN shell and core, more RGC terminals are expected to be transduced in the core 

than the shell due to the large volume difference between these two structures. Scale bars: 500 μm; 

AP: anterior-posterior section coordinate (Paxinos et al., 2004); dLGN: dorsolateral geniculate 

nucleus; vLGN: ventrolateral geniculate nucleus; VPM: ventral posteromedial nucleus of the 

thalamus; HPF: hippocampal formation. 
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2. Overview of analysis steps 

 
 

Figure S2. Related to STAR Methods | Processing pipeline. (1) Heat maps of dLGN-p RGC Ca2+ 
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responses to the to the chirp and the moving bar stimulus (n = 581, recorded with genetically 

encoded Ca2+-indicator GCaMP6f, responses sorted by experimental day). Each line represents the 

responses of an individual cell (activity color-coded, with warmer colors representing increased 

activity). (2) Histogram of cell quality indices (Qis) to chirp and bar stimulus. Only cells with Qi > 0.45 

for the chirp and with Qi > 0.6 for the bar stimulus were considered for further processing. 

(Methods) (3) Heat maps of dLGN-p RGC responses passing (top, n = 251) or failing (bottom, n = 330) 

the Qi-thresholds, sorted by Qi. (4) Heat maps (like in (1)) of Ca2+ responses for all RGC clusters 

(“RGC-all” from (Baden et al., 2016), recorded with Ca2+-indicator OGB-1, n = 49 clusters). Responses 

are sorted by cluster index, with the height of a cluster ‘block’ representing the number of individual 

cells. (5) Heat maps of dLGN-p RGCs after the cluster assignment to RGC-all clusters, including trace 

deconvolution and trace correlation (Methods). The height of each cluster represents the number of 

included cells. (6) Distribution of dLGN-p RGCs per RGC-all cluster based on the cell cluster 

assignment. (7) Heat map of dLGN cell responses to chirp stimulus (responses sorted by 

experimental day). (8) Histograms of quality criteria, including, from top to bottom, quality index, 

Wilcoxon rank sum test for equal medians, cluster quality values, and STFO correlation values as 

computed by the linear regression analysis from two STFO stimuli played before and after the chirp. 

Cells had to be either above each of the top three quality criteria thresholds or the bottom one to 

pass into the analysis dataset. (9) Heat maps of dLGN cell responses that passed (top, n = 814) or 

failed (bottom, n = 1,376) the quality criteria, sorted by quality criteria values. (10) Schematic of the 

low-rank non-negative matrix factorization (NNMF), which was applied on the dLGN cell data from 

(9) Each neuron response is considered to be composed of particular temporal response 

components multiplied by neuron-specific weights. (11) OGB-1 Ca2+-kernel used for the convolution 

of dLGN spike traces into simulated OGB-1 Ca2+ traces (after down-sampling) with their 

characteristically slower Ca2+ response kinetics. This preprocessing step was applied so that the 

dLGN data better match the RGC data for the subsequent dLGN-model. (12) Heat map of dLGN 

responses after downsampling and convolution. (13) Illustration of the linear feedforward model of 

single dLGN cell responses from dLGN-p RGC cell types. The model is restricted to using only RGC 

clusters that received cell assignments in the dLGN-p RGC data set. It then predicts individual dLGN 

cell responses as a linear combination of weighted mean RGC-all cluster responses. Right of black 

arrow: Sample dLGN response (black) and its linear prediction (blue), and bar plot of contributing 

RGC-all cluster weights.  
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3. Deconvolution of retinal two-photon Ca2+-traces 
 

 
 

Figure S3. Related to Figure 2 | Deconvolution of retinal two-photon Ca2+-traces. a, Raw traces to 

binary white noise stimulus with various calcium event thresholds (top: OGB-1; bottom: GCaMP6f). 

b, Extracted mean Ca2+ event kernels for OGB-1 (top) and GCaMP6f (bottom) for thresholds shown 

in (a). c, Superposition of OGB-1 and GCaMP6f kernels. d, Example GCaMP6f trace (in black), and 

deconvolution with the GCaMP6f kernel (orange).  
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4. Match index  

 
Figure S4. Related to Figure 2 | Statistics of match index (Mi). a, Some dLGNp-RGCs have a maximal 

MI, used for cluster assignment, which is considerably different from the match indices computed 

for the remaining clusters (top). Other dLGNp-RGCs, however, have a maximal match index closer to 

the match indices for some of the other clusters (middle and bottom). This is not surprising, as the 

responses of RGC clusters are not orthogonal to each other but can share general features, such as 

ON or OFF selectivity. b, Yet, assignments based on maximal MI are meaningful: the distribution of 

match indices for each individual dLGNp-RGC does have considerable variance, such that the median 

match index for each dLGNp-RGC is substantially different from that for the best-matching cluster. 
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5. Cluster assignment of dLGN-projecting RGCs  

 
Figure S5. Related to Figure 2 | dLGN-p RGC cluster assignments. a, All dLGN-p RGC cluster 
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responses (grey: single RGCs; black: cluster mean), along with assigned RGC population cluster 

response mean (color) and SD (colored area). RGC population clusters that were not assigned any 

dLGN-p RGCs are greyed out. Scale bars: chirp stimulus: 5 s; moving bar stimulus: 2 s. b, Percentage 

of cells per RGC cluster for dLGN-p RGCs (dark colors) and all RGCs obtained from (Baden et al., 

2016) (saturated colors).  
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6. Receptive field coverage of the recorded dLGN population 

 
Figure S6. Related to Figure 3 | Receptive field coverage of the recorded dLGN population. a, 
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Multiunit RF maps for selected channels along the linear probe in two example experiments. Several 

top and bottom channels do not show clear RFs, indicating that the corresponding channels are 

likely outside of dLGN. b, RF center locations for the two example experiments. c, Coverage of RF 

centers across experiments. d, Distribution of DSI as a function of RF location. e, Comparison of DSI 

distributions of dLGN cell subpopulations located in the top or the bottom channels (Kolmogorov-

Smirnov-Test, p = 0.085). 
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7. Responses of dLGN neurons to grating stimuli presented before 

and after the chirp stimulus 

 
Figure S7. Related to Figure 3 | dLGN responses to drifting gratings. a-d, Responses of three 

example dLGN cells to the full stimulus set. a, Mean firing rates and fitted tuning curves (red) for 

orientation, spatial frequency, and temporal frequency. b, Same as a, for contrast response 

functions. c, Responses to the chirp stimulus. d, Scatter plot of average firing rates across all 

conditions of the drifting grating stimuli presented before and after the chirp stimulus, used to 

determine the stability of the recorded cells. We chose R>0.65 as criterion to determine that a dLGN 

neuron was stable over time. e-g, Population data for direction and orientation selectivity: 

Distribution of preferred direction of motion for all responsive dLGN neurons (n = 443) (e); 

percentage of direction/orientation-selective cells, with a cut-off of 0.33 for DSI and OSI (f); 
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distribution of preferred temporal frequencies (g). h-j, Same as (e-g), for DS cells (n = 22). k-m, Same 

as (e-g), for OS cells (n = 154).  
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8. Locomotion 

 
Figure S8. Related to Figure 3 | Locomotion and run speed tuning of dLGN neurons. a, Average run 

speed (cm/s) per recording session as a function of time during the chirp stimulus. Locomotion 

speed was computed as the Euclidean norm of three perpendicular components of ball velocity 

(Dombeck et al., 2007). b, Number of neurons untuned and tuned for running speed per animal (n = 

10 mice).  We determined speed tuning as previously described in (Saleem et al., 2013). In brief, 

speed traces were smoothed with a Gaussian filter (σ = 150 ms), re-sampled at 60 Hz, and binned 

such that each bin contained equal amounts of time (> 30 s). Unsmoothed neural responses were 

binned at 60 Hz. Neurons were considered speed modulated if the variance of mean responses 

across bins was greater than 99.9% of the variance of shuffled responses (p < 0.001).  
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9. Assessment of model limitations 

 
Figure S9, Related to Figure 5 | Filtering by convolution with Ca2+-kernel and systematic model 

prediction errors. a, Mean responses of 8 example dLGN cells to the chirp stimulus before (SDF, 

black) and after convolution with the OGB-1 Ca2+-kernel extracted from retinal two-photon imaging 

data (blue). Top: time course of luminance changes in the chirp stimulus. b, Top: Responses (blue) 

and model predictions (green; linear feedforward, positive weights) for an example dLGN neuron. 

Middle: Difference between data and model prediction. Bottom, left: Explained variance ratio for 

PCA components computed on the residuals for the entire population of recorded dLGN cells. 

Bottom, right: First and second principal components. 
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10. Comparing distributions of dLGN-p RGC and model RGC types  

 
Figure S10. Related to Figure 5 | Comparing distributions of dLGN-p RGC types and model RGC 

types. For easier comparison, the figure panels from Figure 2d and Figure 5e are shown together. a, 

Copy of Figure 2d. Comparison of cell-per-group percentages as log2-ratio (%dLGN-p RGCs / %RGC-

all). Significant differences in cell proportions (p < 0.01; binomial test) are marked as colored bars 

and with asterisks. b, Copy of Figure 5e. Distribution of RGC groups from Baden et al. (2016) used for 

reconstructing the population of dLGN cell responses, shown as mean weight and percentage of 

dLGN cells (top: weight threshold = 0.001, bottom: weight threshold = 0.2). RGC types not projecting 

to dLGN are greyed-out. 
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SUPPLEMENTAL TABLE 

T1. Comparison of current data with the literature  

transgenic 
line or 
marker 

dLGN 
projections 

reference RGC name group cluster 

dLGN-p 
in 

current 
dataset 

JAM-B-CreER yes (Kim et al., 2008, 2010) JAM-B  6? 9? no? 

FSTL4-CreER yes (Kay et al., 2011; Kim et al., 2010) ON-OFF DS 1 12 17, 18 yes 

Drd4-GFP yes (Huberman et al., 2009; Kay et al., 
2011) 

ON-OFF DS 1 12 17, 18 yes 

TRHR-GFP yes (Rivlin-Etzion et al., 2011) ON-OFF DS 1 12 17, 18 yes 

CB2-GFP yes (Huberman et al., 2008) OFF alpha 
transient 

8 11, 12 yes 

Opn4-Cre yes (Ecker et al., 2010; Estevez et al., 
2012; Schmidt et al., 2014) 

ON alpha 24 34 yes 

Foxp2 yes (Rousso et al., 2016) ? ? ? ? 

TYW3 no (Kim et al., 2010; Zhang et al., 2012) W3 10 14 no 

TYW7 no (Kim et al., 2010) OFF alpha sust. 5 7? no? 

Hoxd10-GFP no (Dhande et al., 2013) ON DS sust. 1 25 35 no 

Hoxd10-GFP,  
Spig1-GFP 

no (Dhande et al., 2013; Yonehara et al., 
2008, 2009) 

ON DS sust. 
2/3 

26, 29 36, 40 no 

Hoxd10-GFP no (Dhande et al., 2013) ON-OFF DS 2 12, 13 19 no 

CCK-Cre, 
PCP2-Cre 

(yes) (Ivanova et al., 2013; Zhu et al., 2014) SbC  
(CCK-1 / s-BGC) 

+others 

32 47-49 yes 

 

Table S1. Comparison of current data with the literature,  related to Figure 5. Table showing 

putative correspondences between previously studied transgenic lines/markers for subgroups of 

RGCs following (Dhande et al., 2015) and our functional RGC groups/clusters demonstrates an 

overall good match of our assignments of dLGN-p RGC groups with the literature. In case of JAM-B 

RGCs, there is a group labeled “ON-OFF JAM-B mix” in Baden et al. (2016), which is assigned no 

dLGN-p cells. However, it is uncertain whether this group really corresponds to JAM-B cells, which 

seem to be poorly responding to the stimulus set. For FSTL4, Drd4 and TRHR-cells, we chose ON-OFF 

DS1 as corresponding group in Baden et al. (2016), since the RGC types marked in these three lines 

are all ON-OFF DS and project to dLGN, as do cells in group 12. Correspondences in case of the CB2- 

and Opn4-lines to OFF alpha transient and ON alpha RGCs were based on the literature and the 

projection patterns matched well. We could not identify a match for Foxp2-RGCs. TYW3 cells were 

clearly identified in Baden et al. (2016) and were not among dLGN projecting RGCs. A subpopulation 
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labeled W7A of TYW7 cells seems to correspond to OFF alpha sustained RGCs and does not project 

to dLGN. Interestingly, there was a cluster in the group labeled “OFF alpha sustained” in Baden et al. 

(2016) which was not assigned any dLGN-p cells. It is possible that the “OFF alpha sustained” group 

consists of heterogeneous RGC types. Alternatively, W7A cells are not “OFF alpha sustained” RGCs 

and all alpha RGCs project to dLGN. The three types of ON DS sustained in the Hoxd10 line do not 

project to the dLGN, and neither do the “ON DS sustained 1-3” groups in our data (although not for 

all of them the reduction in the representation is significant). Finally, the ON-OFF DS RGCs in the 

Hoxd10 line do not project to dLGN. Therefore, they most likely correspond to the ON-OFF DS 2 

group of Baden et al. (2016), which is also not assigned any dLGN-p cells. While so far no SbC-

exclusive lines is known, evidence from two transgenic mouse lines with multiple labeled RGCs 

suggest that at least one type of SbC project to the dLGN core (Ivanova et al., 2013; Zhu et al., 2014). 
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Abstract Neurons in the dorsolateral geniculate nucleus (dLGN) of the thalamus receive a 
substantial proportion of modulatory inputs from corticothalamic (CT) feedback and brain stem 
nuclei. Hypothesizing that these modulatory influences might be differentially engaged depending 
on the visual stimulus and behavioral state, we performed in vivo extracellular recordings from 
mouse dLGN while optogenetically suppressing CT feedback and monitoring behavioral state by 
locomotion and pupil dilation. For naturalistic movie clips, we found CT feedback to consistently 
increase dLGN response gain and promote tonic firing. In contrast, for gratings, CT feedback effects 
on firing rates were mixed. For both stimulus types, the neural signatures of CT feedback closely 
resembled those of behavioral state, yet effects of behavioral state on responses to movies persisted 
even when CT feedback was suppressed. We conclude that CT feedback modulates visual informa-
tion on its way to cortex in a stimulus-dependent manner, but largely independently of behavioral 
state.

Editor's evaluation
This paper will be of interest to neuroscientists interested in understanding the role of corticotha-
lamic feedback in coding of sensory inputs. The authors show that feedback is stronger for natural 
stimuli compared to artificial stimuli. Surprisingly, the feedback from the cortex works in parallel 
with other modulatory influences reflecting changes in the arousal (measured here with pupil size) or 
changes in locomotion.

Introduction
Mammalian vision is based on a hierarchy of processing stages that are connected by feedforward 
circuits projecting from lower to higher levels, and by feedback circuits projecting from higher to 
lower levels. Feedforward processing is thought to create feature selectivity (Lien and Scanziani, 
2018; Hubel and Wiesel, 1962) and invariance to low-level stimulus features (Hubel and Wiesel, 
1962; Chance et al., 1999; Riesenhuber and Poggio, 1999; Riesenhuber and Poggio, 2000), to 
ultimately enable object recognition (DiCarlo et al., 2012). Hypotheses about the functional role of 
feedback circuits include top-down attention, working memory, prediction, and awareness (Squire 
et al., 2013; Roelfsema and de Lange, 2016; Bastos et al., 2012; Lamme and Roelfsema, 2000; 
Takahashi et al., 2016; Larkum, 2013). Compared to theories of feedforward processing, however, 
there is little consensus on the specific function of feedback connections (Heeger, 2017; Gilbert and 
Li, 2013).
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Feedback in the mammalian visual system targets brain areas as early as the dorsolateral genic-
ulate nucleus (dLGN) of the thalamus, where up to 30% of synaptic connections onto relay cells are 
established by corticothalamic (CT) feedback (Sherman and Guillery, 2002). Direct CT feedback is 
thought to arise from V1 layer 6 (L6) CT pyramidal cells (Briggs, 2010; Sillito and Jones, 2002), 
which are known for their notoriously low firing rates (Vélez-Fort et al., 2014; Stoelzel et al., 2017; 
Crandall et al., 2017; Oberlaender et al., 2012; Swadlow, 1989; Pauzin and Krieger, 2018), their 
sharp tuning for orientation (Vélez-Fort et al., 2014; Liang et al., 2021), and their diverse signaling 
of behavioral state (Augustinaite and Kuhn, 2020; Liang et al., 2021). The action of CT feedback on 
dLGN activity is generally considered modulatory rather than driving (Sherman and Guillery, 1998), 
as CT feedback inputs contact the distal dendrites of relay cells via NMDA glutamate (Augustinaite 
et al., 2014) or mGluR1 metabotropic receptors (Godwin et al., 1996), implying rather slow and 
long-lasting effects on dLGN activity. Similar to other depolarizing inputs to dLGN, such as neuromod-
ulatory brain stem inputs (McCormick, 1992), CT feedback has been linked to promoting switching 
from burst to tonic firing mode, and to facilitating transmission of retinal signals (Augustinaite et al., 
2014; de Labra et al., 2007; Wang et al., 2006; Dossi et al., 1992). However, since L6 CT pyramidal 
cells provide both direct excitation and indirect inhibition of dLGN via the thalamic reticular nucleus 
(TRN) and dLGN inhibitory interneurons (Sillito and Jones, 2002; Usrey and Sherman, 2019), the 
effects of CT feedback are expected to be complex and dependent on temporal and spatial aspects 
of the stimulus (Crandall et al., 2015; Born et al., 2021; Murphy and Sillito, 1987; McClurkin and 
Marrocco, 1984; Jones et al., 2012; Hasse and Briggs, 2017).

Most of the previous in vivo studies have probed the functional role of CT feedback with artifi-
cial stimuli, and often in anesthetized animals; CT feedback, however, might be most relevant for 
processing of dynamic naturalistic information and during wakefulness. From a conceptual perspec-
tive, if the role of feedback was to provide context based on an internal model built from the statistics 
of the world (Berkes et al., 2011; Lee and Mumford, 2003; Rao and Ballard, 1999; Clark, 2013), 
natural stimuli would be expected to best comply with this model, and hence better drive these feed-
back mechanisms. Indeed, it has previously been suggested that CT feedback might be more strongly 
engaged for moving compared to stationary stimuli (Sillito and Jones, 2002), and for complex 
dynamic noise textures than simple moving bars (Gulyás et al., 1990), consistent with a potential role 
in figure-ground processing (Poltoratski et al., 2019; Sillito et al., 1993; Cudeiro and Sillito, 1996). 
Furthermore, since the responsiveness of feedback projections (Makino and Komiyama, 2015; Keller 
et al., 2020), including those originating from V1 CT neurons (Briggs and Usrey, 2011), seem to be 
strongly reduced by anesthesia, it is critical to examine CT feedback effects in awake animals. Indeed, 
L6CT neurons have recently been found to have diverse response modulations according to pupil-
indexed behavioral state (Augustinaite and Kuhn, 2020).

Here, we recorded spiking activity in dLGN of awake mice and investigated how CT feedback 
affected dLGN responses to naturalistic movie clips. Suppressing CT feedback either via photostim-
ulation of V1 parvalbumin-positive (PV+) inhibitory interneurons or via direct photosuppression of 
L6CT neurons, we found that CT feedback had consistent modulatory effects on dLGN responses to 
movie clips, which could largely be captured by an increase in gain. Effects of CT feedback on dLGN 
responses to grating stimuli were more diverse, highlighting the stimulus-dependency of CT feedback 
effects. Finally, while geniculate responses to movies during V1 suppression resembled those during 
quiescence, we found effects of CT feedback and behavioral state to be largely independent. Overall, 
our results demonstrate that neural responses to naturalistic movies en route to cortex can be robustly 
modulated by extra-retinal influences such as cortical feedback and behavioral state, which seem to 
be largely conveyed via different modulatory pathways.

Results
CT feedback robustly modulates dLGN responses to naturalistic movie 
clips
To investigate the impact of CT feedback on visual processing of naturalistic stimuli, we presented to 
head-fixed mice full-screen movie clips and compared responses of dLGN neurons during optogenetic 
suppression of V1 activity to a control condition with CT feedback left intact (Figure 1 and -Supplement 
1). The responses of individual dLGN neurons to naturalistic movie clips were characterized by distinct 
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Figure 1. CT feedback modulates dLGN responses to full-screen naturalistic movie clips. (a) Left: Schematic of 
experimental setup. Head-fixed mice were placed on a floating Styrofoam ball and visual stimuli were presented 
on a screen located ∼25 cm away from the animal. Right: ChR2 was conditionally expressed in PV + inhibitory 
interneurons (green) in all layers of V1 using a viral approach. Extracellular silicon electrode recordings were 

Figure 1 continued on next page
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response events that were narrow in time and reliable across trials (Figure 1d, top, example neuron). 
Consistent with the notion that CT feedback has a modulatory rather than driving role (Sherman, 
2016), even during V1 suppression this temporal response pattern remained somewhat preserved 
(Pearson correlation ‍r = 0.54‍, ‍p < 10−6

‍, Figure 1d and e). Yet, as illustrated in the example neuron, 
with CT feedback intact, firing rates were higher and burst spikes were less frequent (Figure 1e, left). 
Accordingly, the distributions of instantaneous firing rates in the two conditions were significantly 
different (KS test, ‍p < 10−6

‍), and were more skewed during V1 suppression than with CT feedback 
intact (‍γ‍ = 2.02 vs 1.22; Figure 1e, right).

We observed similar effects in the recorded population of dLGN neurons, where CT feedback 
enhanced overall responses and promoted tonic firing mode. Indeed, while mean firing rates varied 
almost 4 orders of magnitude across the population (∼ 0.1–100 spikes/s), they were higher in control 
conditions with CT feedback intact than during V1 suppression (13.7 vs 10.5 spikes/s; linear multilevel-
model (LMM): ‍F1,63.2 = 17.1‍, ‍p = 0.0001‍; Figure 1f). In addition, CT feedback also influenced more 
fine-grained properties of geniculate responses. First, with CT feedback, the mean proportion of 
spikes occurring as part of a burst event was about half of what we observed during suppression (0.05 
vs 0.09; LMM: ‍F1,64.0 = 17.9‍, ‍p = 7.5 × 10−5

‍; Figure 1g). Second, consistent with the distributions of 
firing rate for the example neuron (Figure 1e, right), responses to the naturalistic movie clips with 
CT feedback intact were, on average, less sparse (0.35 vs 0.45; LMM: ‍F1,63.0 = 33.7‍, ‍p = 2.2 × 10−7

‍; 
Figure 1h), indicating that neurons fired less selectively across the frames of the movie. Finally, we also 
examined the effect of CT feedback on response reliability. To quantify reliability, we computed the 
Pearson correlation coefficient of a neuron’s responses between each pair of the 200 stimulus repeats 

performed in dLGN with and without optogenetic suppression of V1. (b) Coronal section close to the V1 injection 
site for an example PV-Cre mouse (blue: DAPI; green: eYFP; Bregma: -3.4 mm). (c) Coronal section at the dLGN 
(white outline) recording site, same animal as in (b). For post-mortem confirmation of the electrode position, the 
back of the probe was stained with DiI (magenta) for one of the recording sessions (blue: DAPI; Bregma: -1.82 mm). 
(d) Raster plots of an example neuron for 200 presentations of a 5 s naturalistic movie clip, with CT feedback intact 
(control condition, top) and during V1 suppression (bottom). Red: burst spikes; black bar: movie clip presentation; 
light blue bar: V1 suppression. (e) Left: PSTHs for both the control (dark blue) and V1 suppression (light blue) 
conditions. Superimposed are PSTHs of burst spikes only, separately for control (red) and V1 suppression (pink) 
conditions. Right: Corresponding instantaneous firing rate distributions. (f–i) Comparison of control vs. V1 
suppression conditions for mean firing rate (f), burst ratio (g), temporal sparseness (h), and response reliability 
(i), all calculated for the duration of the movie clip. Sparseness captures the activity fraction of a neuron, re-scaled 
between 0 and 1 (Vinje and Gallant, 2000). Response reliability is defined as the mean Pearson correlation of 
all single trial PSTH pairs (Goard and Dan, 2009). For sample sizes, see Table 1. Purple: example neuron. Black 
markers in (f,g,i) indicate neurons with individually significant effects (Welch’s t-test). See also Figure 1—figure 
supplement 1 to Figure 1—figure supplement 6.

The online version of this article includes the following video and figure supplement(s) for figure 1:

Figure supplement 1. Confirmation of optogenetic suppression of V1 responses and targeting dLGN for 
recordings.

Figure supplement 2. Effects of CT feedback on additional parameters of responses to naturalistic movies and 
their relationship with firing rate.

Figure supplement 3. Feedback effects during movie presentation are largely independent of functional cell type 
classification.

Figure supplement 4. Selective optogenetic suppression of L6 CT feedback in Ntsr1-Cre yielded similar results as 
global V1 suppression via PV + activation.

Figure supplement 5. Photostimulation in an Ntsr1- control mouse injected with cre-dependent stGtACR2 had no 
effect on neural responses.

Figure supplement 6. Effects of photostimulation on pupil size were unrelated to CT feedback effects on dLGN 
neuronal activity.

Figure 1—video 1. First example 5 s movie clip used for visual stimulation.

https://elifesciences.org/articles/70469/figures#fig1video1

Figure 1—video 2. Second example 5 s movie clip used for visual stimulation.

https://elifesciences.org/articles/70469/figures#fig1video2

Figure 1 continued
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per condition, and averaged the correlation coefficients over all pair-wise combinations (Goard and 
Dan, 2009). With CT feedback intact, mean response reliability was lower than without feedback (0.15 
vs 0.18; LMM: ‍F1,63.1 = 17.8, p = 8.1 × 10−5

‍; Figure 1i). Except for the effects on sparseness, the feed-
back effects on responses to naturalistic movies were unrelated to changes in firing rates (Figure 1—
figure supplement 2c-g). The increased trial-to-trial reliability during V1 suppression could not be 
explained by higher stability in eye positions, because variability in eye position was slightly larger 
with CT feedback intact vs. suppressed (Figure 1—figure supplement 2h), and effects of CT feed-
back on neural reliability were unrelated to changes in variability of eye position (Figure 1—figure 
supplement 2i). Splitting the dLGN population into putative cell types according to several func-
tional characteristics and location within dLGN revealed few differences in how global V1 suppression 
affected firing rates and bursting (Figure 1—figure supplement 3). As V1 suppression by PV +activa-
tion is robust, yet lacks selectivity (Wiegert et al., 2017), we repeated our experiments while directly 
photo-suppressing L6CT neurons. To this end, we expressed the inhibitory opsin stGtACR2 (Mahn 
et al., 2018) in V1 Ntsr1+ neurons, which correspond to ‍≥ 90%‍ to L6 CT neurons (Bortone et al., 
2014; Kim et al., 2014, Figure 1—figure supplement 4). These experiments with specific suppres-
sion of L6 CT neurons during viewing of naturalistic movies yielded identical conclusions (Figure 1—
figure supplement 4a-h).

Lastly, we performed two additional controls to rule out that photostimulation per se caused our 
findings. First, we repeated our experiments on an Ntsr1- control mouse, which was injected and 
underwent the same visual and photostimulation protocol. This negative control mouse did not show 
any effects of photostimulation on dLGN responses (Figure 1—figure supplement 5a-d). Second, 
we identified those experiments (14/31 for PV  + activation, 0/10 for Ntsr1  + suppression experi-
ments), where photostimulation decreased pupil size, indicative of light leakage into the retina. Even 
with these sessions removed, we found that our results remained qualitatively unchanged (Figure 1—
figure supplement 6a-f). Finally, considering again all recordings, the effects of CT feedback on 
neuronal activity were unrelated to light-induced changes in pupil size (Figure 1—figure supplement 
6g-j). Together, these results rule out that photostimulation per se led to the modulation of dLGN 
responses during naturalistic movie viewing.

Taken together, our results indicate that CT feedback can robustly modulate responses of dLGN 
neurons to naturalistic movie clips. The modulations are consistent with a net depolarizing effect, 
which supports higher firing rates and more linear, tonic firing mode with higher dynamic range, at the 
expense of sparseness, trial-to-trial reliability, and signal-to-noise.

V1 suppression decreases dLGN responses to naturalistic movies by 
reducing response gain
To better understand the effects of V1 suppression on dLGN firing rate, we next asked whether the 
observed reduction in responsiveness could be explained by a divisive and/or subtractive change 
(Figure  2). Using repeated random subsampling cross-validation, we fit a simple threshold linear 
model (Figure 2a, inset) to timepoint-by-timepoint responses in suppression vs. feedback conditions, 
and extracted the slope and threshold of the fit for each subsample (Figure 2b and d). In the two 
example neurons shown in Figure  2a–d, the fitted slope was significantly smaller than 1 (neuron 
2: median slope of 0.66, 95% CI: 0.63–0.69, Figure 2b; neuron 1: median slope of 0.37, 95% CI: 
0.32–0.41, Figure 2d), while the threshold (‍x‍-intercept) was either small or not significantly different 
from 0 (neuron 2: median of 1.58, 95% CI: 0.39–2.91; neuron 1: median of ‍−0.14‍, 95% CI: ‍−1.49‍–0.89). 
We obtained similar results for the population of recorded neurons, where V1 suppression decreased 
the neurons’ responses to naturalistic movie clips via a substantial change in response gain (slope of 
‍0.75 ± 0.1‍; LMM) without a significant shift in baseline (threshold of ‍−0.19 ± 1.15‍; LMM; Figure 2e). 
This demonstrates that V1 suppression influences responses in dLGN to naturalistic movie clips 
predominantly via a divisive effect.

We noticed that the threshold linear model could predict the effects of V1 suppression better 
for some neurons than for others. We therefore explored whether poor fits of the model might be 
related to our finding that V1 suppression can trigger non-linear, burst-mode firing. For instance, the 
threshold-linear model accurately captured the responses of example neuron 2 (median ‍R2 = 0.90‍, 
cross-validated; Figure 2a and b), which exhibited little bursting during V1 suppression (burst ratio: 
0.007). Neuron 1, in contrast, had a higher burst ratio during suppression (0.28) and the prediction 
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sometimes overestimated or underestimated peaks in the actual response, such that the percentage 
of explained variability was rather low (median ‍R2 = 0.29‍, cross-validated, Figure 2c and d).

Indeed, across the population of recorded neurons, the model goodness of fit (median ‍R2‍, cross-
validated) during V1 suppression was inversely related to the burst ratio (slope of ‍−1.29 ± 0.5‍; LMM; 
Figure 2f), consistent with the notion that the highly non-linear, all-or-none-like burst mode firing 
(Sherman, 2001) cannot be captured by the threshold-linear model (see also Lesica and Stanley, 
2004). To further investigate the impact of bursting on response transformations by CT feedback, 
we re-computed the PSTHs for each neuron during V1 suppression after removing all burst spikes. 
Removal of burst spikes allowed our model to capture the effects of V1 suppression even better (all 
spikes: mean ‍R2 = 0.58‍; non-burst spikes: mean ‍R2 = 0.61‍; LMM: ‍F1,160.8 = 4.8‍, ‍p = 0.03‍; Figure 2g). 
Importantly, this increase in model performance was not simply a consequence of removing a certain 
proportion of spikes that originally needed to be predicted: discarding an equivalent number of 
randomly selected tonic spikes did not yield improved fit quality (random tonic spikes removed: 
mean ‍R2 = 0.58‍; LMM: ‍F1,162 = 0.005‍, ‍p = 0.9‍; Figure 2h). While burst spikes cannot be captured by 
the threshold-linear model, removing burst spikes, however, did not change our conclusion that the 

-25 0 25
0.0625

0.125
0.25

0.5
1
2

0.0 0.2 0.4
0.0

0.5

1.0

-25 0 25
0.0625

0.125
0.25

0.5
1
2

0.0 0.5 1.0
0.0

0.5

1.0

0.0 0.5 1.0
0.0

0.5

1.0

0 1 2 3 4 5
Time (s)

0

50

100

0 1 2 3 4 5
Time (s)

0

20

40

Fir
ing

 ra
te 

(sp
k/s

)
Fir

ing
 ra

te
(sp

k/s
)

Neuron 1

Suppression burst ratio

Al
l s

pik
es

 R
2

f

Neuron 2

c

a Movie

Threshold

Sl
op

e

e All spikes

Feedback

Su
pp

re
ss

ion

V1
 S

up
pr

es
se

d r
ate

 (s
pk

/s)

b

d

0 20
V1 Control rate (spk/s)

0

20

R2 = 0.29

0 50 100
0

50

100

V1
 S

up
pr

es
se

d r
ate

 (s
pk

/s)

V1 Control rate (spk/s)

R2 = 0.90

Threshold

Sl
op

e

i Non-burst spikes

V1 Control

V1 Suppressed burst

V1 Suppressed
V1 Suppressed model

All spikes R2

Ra
nd

. re
m.

 sp
ike

s R
2

Goodness of fithGoodness of fitg

No
n-

bu
rst

 sp
ike

s R
2

All spikes R2

p= 0.03 p= 0.9

Figure 2. The effect of V1 suppression on dLGN responses to naturalistic movie clips is predominantly divisive. (a) PSTHs of an example neuron during 
control (dark blue) and V1 suppression (light blue) conditions, for a random subset of 50% of trials per condition not used for model fitting. Responses 
during the V1 suppression condition are approximated by the threshold linear model (dashed light blue) based on responses during the control 
condition. Pink: PSTH during V1 suppression for burst spikes only. Inset: cartoon of threshold linear model. (b) Timepoint-by-timepoint comparison of 
instantaneous firing rates of the PSTHs (derived from the 50% of trials not used for fitting) during the suppression vs. feedback conditions. PSTH data 
points are plotted at 0.01ms resolution. Dashed light blue line: threshold linear model fit. (c,d) Same as (a,b) for a second example neuron (same as in 
Figure 1d and e). (a,b) and (c,d) each contain data from 1 representative subsample. (e) Slope and threshold parameters for all neurons. Each point 
represents the median for each neuron across 1000 random subsamples of trials. Black points indicate neurons with slopes significantly different from 1 
(95% CI). (f) Cross-validated model prediction quality (median ‍R2‍) vs. burst ratio during V1 suppression. Red line: LMM fit. (g) Model prediction quality 
‍R2‍ with and without removal of burst spikes. (h) Model prediction quality with and without removal of an equivalent number of tonic spikes. (i) Same as 
(e) but with burst spikes removed. (e–h) Purple, green: example neurons; red triangle: LMM estimate of the mean.
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effect of V1 suppression on movie responses was predominantly divisive (slope: ‍0.74 ± 0.09‍; threshold: 
‍0.09 ± 1.3‍; LMM; Figure 2i), likely because burst events were much rarer than tonic spikes (see also 
Figure 1g). Indeed, firing mode (all spikes vs. non-burst spikes) had no effect on either slope (LMM: 

‍F1,162.7 = 0.6‍, ‍p = 0.4‍) or threshold estimates (LMM: ‍F1,157.3 = 0.2‍, ‍p = 0.7‍) of the simple linear model. 
Together, these results show that V1 suppression decreases dLGN responses to naturalistic movies 
mostly by reducing response gain.

CT feedback modulates dLGN responses evoked by drifting gratings
Previous studies have investigated the effects of CT feedback using artificial stimuli, such as grat-
ings and bars (Olsen et al., 2012; Denman and Contreras, 2015; Wang et al., 2006; Murphy and 
Sillito, 1987). To relate our findings to these studies, and to investigate the role of stimulus type, we 
next examined the effects of V1 suppression during the presentation of drifting gratings (Figure 3). 
To approximate the visual stimulus configuration used for naturalistic movie clips, we presented full-
screen gratings drifting in one of 12 different orientations, and selected a pseudo-random subset 
of trials for V1 suppression. As expected, we found that many single dLGN neurons in the control 
condition with CT feedback responded at the temporal frequency (TF, 4 cyc/s) of the drifting grating 
(Figure 3a and b). Similar to previous studies in mouse dLGN (Piscopo et al., 2013; Román Rosón 
et al., 2019; Marshel et al., 2012), we also encountered some dLGN neurons with tuning for grating 
orientation or direction (Figure 3, a2, b).

Contrary to the robust effects of CT feedback on movie responses, V1 suppression had mixed 
effects on dLGN responses to drifting gratings. Example neuron 1, for instance, had lower firing rates 
with CT feedback intact, both in the orientation tuning (Figure 3, a2) and the cycle-averaged response 
to the preferred orientation (Figure 3a3). In addition, in control conditions with CT feedback intact, 
there were markedly fewer burst spikes. In contrast, example neuron 3 responded more strongly 
with CT feedback intact (Figure 3, b2,3). Such diverse effects of CT feedback, as reported before for 
anesthetized mice (Denman and Contreras, 2015), were representative of the recorded population 
(Figure  3c): V1 suppression during grating presentation significantly reduced responses for some 
neurons, but significantly increased responses for others, such that the average firing rates in the two 
conditions were almost identical (control: 14.5 spikes/s, V1 suppression: 15.0 spikes/s) and statistically 
indistinguishable (LMM: ‍F1,43.0 = 0.15‍, ‍p = 0.70‍). In contrast to these diverse effects on firing rate, but 
similar to our findings for naturalistic movie clips, intact CT feedback was consistently associated with 
less bursting (burst ratios of 0.043 vs 0.15; LMM: ‍F1,43.0 = 25.3‍, ‍p = 9.2 × 10−6

‍; Figure 3d). Also similar 
to our findings for movies, there was no relationship between the strength of feedback effects on 
firing rate and on bursting (LMM: slope ‍0.029 ± 0.41‍, Figure 4—figure supplement 1a).

Beyond studying overall changes in responsiveness and firing mode, we next asked how CT 
feedback affected the tuning for grating orientation of dLGN neurons. It is known from previous 
studies (Piscopo et al., 2013; Cruz-Martín et al., 2014; Marshel et al., 2012; Zhao et al., 2013; 
Scholl et al., 2013) that mouse dLGN neurons show various degrees of orientation tuning, ranging 
from few strongly tuned neurons, potentially relaying tuned input from the retina (Cruz-Martín 
et al., 2014), to a larger group with orientation bias (Piscopo et al., 2013; Scholl et al., 2013). 
We computed orientation tuning curves separately for control conditions with CT feedback and 
V1 suppression conditions. For neuron 1, intact CT feedback was associated not only with lower 
average firing rates, but also poorer selectivity (OSIs of 0.14 vs 0.25; Figure 3, a2). In contrast, for 
neuron 3, orientation selectivity was similar during control and V1 suppression conditions (OSIs of 
0.1 vs 0.09; Figure 3, b2). These results were representative of the population, where CT feedback 
affected orientation selectivity in diverse ways, with virtually no difference in population means 
(control OSI: 0.13; V1 suppression: 0.12; LMM: ‍F1,88.7 = 0.31‍, ‍p = 0.58‍; Figure 3e; see also Scholl 
et  al., 2013; Li et  al., 2013; Lien and Scanziani, 2013; Denman and Contreras, 2015). For 
neurons with OSI > 0.02 and well-fit orientation tuning curves (‍R2 > 0.5‍), preferred orientation 
during feedback and suppression conditions was largely similar, except for some cases where 
it shifted (Figure  3f). As was the case for movies, splitting the dLGN population into putative 
cell types according to several functional characteristics and their location within dLGN revealed 
few consistent differences in how global V1 suppression during gratings affected firing rates and 
bursting (Figure 3—figure supplement 1). Taken together, although effects of V1 suppression on 
firing rate were more diverse in magnitude and sign for grating stimuli, the similarity of orientation 
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Figure 3. CT feedback modulates dLGN responses to drifting gratings. (a) Responses of example neuron 1 (same as in Figures 1d, e ,, 2c and d) 
to full-screen, drifting gratings. (a1) Raster plot in response to drifting gratings, with trials sorted by grating orientation (10 trials per orientation, 30° 
steps). Red: burst spikes; black bar: grating stimulation; light blue bar: V1 suppression. (a2) Corresponding orientation tuning curve. Dashed lines 
represent spontaneous firing rates in response to medium gray screen. Error bars: standard error of the mean. (a3) Cycle average response to preferred 
orientation. Dark blue, light blue: cycle average constructed from all spikes. Red, pink: cycle average constructed from burst spikes only. Dark blue, 
red: Control condition with CT feedback intact; light blue, pink: V1 suppression. (b) Same as (a), for another example neuron (example neuron 3). (c–h) 
Comparison of the control conditio with CT feedback intact vs. V1 suppression, for mean firing rate (c), burst ratio (d), orientation selectivity index 
(OSI) (e), preferred orientation ‍θ‍ (f), F1/F0 (g), and cycle average phase ‍ϕ‍ (h). Purple, blue: example neurons. Black markers in (c,d) indicate neurons 
with individually significant effects (Welch’s t-test). (i) Cumulative distribution of cycle average phase differences between control and V1 suppression 
conditions. Dark blue: neurons with little burst spiking (ratio of cycle average peak for burst spikes to cycle average peak for all spikes ‍< 0.1‍); red: 
neurons with substantial burst spiking (ratio of cycle average peak for burst spikes to cycle average peak for all spikes ‍≥ 0.1‍).

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. As for movies (Figure 1—figure supplement 3), feedback effects during grating presentation are largely independent of 
functional cell type classification.
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selectivity between CT feedback conditions suggests underlying changes in gain, in accordance 
with what we observed for naturalistic movies.

Inspecting the spike rasters at different orientations, we realized that dLGN neurons appeared 
to have a stronger response component at the grating’s temporal frequency during V1 suppression 
than when feedback was intact (Figure 3, a1). To test whether V1 suppression affected the ability of 
dLGN to respond at the gratings’ temporal frequency, for each neuron we computed the amplitude 
of the response at the stimulus frequency (F1 component) relative to the mean response (F0 compo-
nent) (Skottun et al., 1991; Carandini et al., 1997) and found that F1/F0 ratios were indeed lower 
when feedback was intact (1.08 vs 1.22; LMM: ‍F1,43.5 = 15.6‍, ‍p = 0.00028‍; Figure 3g). To explore the 
impact of CT feedback on the F1 response component in more detail, we examined the cycle average 
responses to the preferred orientation, and asked how CT feedback affected response phase. Similar 
to the results obtained for the example neurons (Figure 3, a3, b3), we found that V1 suppression could 
advance response phase (Figure 3h). This phase advance occurred more often for neurons whose 
responses during V1 suppression included a substantial proportion of burst spikes (Figure 3i, red; 25 
of 29 neurons showed phase advance, ‍p = 0.0001‍, binomial test) than for neurons which during V1 
suppression burst little or not all (Figure 3i, dark blue; 11 of 21 neurons advanced, ‍p = 1‍, binomial 
test). In agreement with earlier findings from intracellular recordings in anesthetized cats (Lu et al., 
1992), these analyses demonstrate that the phase advance is driven by the dynamics of burst spiking. 
Finally, as for our re-assessment of CT feedback effect on responses to naturalistic movies, our conclu-
sions regarding the effects of CT feedback on grating responses did not change when we repeated 
our experiments using a selective suppression of Ntsr1 + neurons with stGtACR2 (Mahn et al., 2018, 
Figure 1—figure supplement 4i-o). Also, during grating experiments, the Ntsr1- mouse controlling 
for effects of photostimulation per se showed no effects on neural responses to gratings (Figure 1—
figure supplement 5e-i).

Effects of CT feedback on dLGN firing rates are more consistent and 
stronger overall for full-screen movies than full-screen gratings
Our analyses suggest that the impact of CT feedback on firing rates might be stronger overall for natu-
ralistic movie stimuli than for gratings. To test this hypothesis, we focused on the subset of neurons 
recorded with both types of stimuli. Indeed, when we compared feedback modulation indices (FMIs, 
i.e. the difference between feedback conditions over their sum of firing rates), we found that FMI was 

Figure 4. Effects of CT feedback on dLGN firing rate depend on stimulus type. (a) Comparison of the strength 
of CT feedback effects on firing rate (feedback modulation index, FMI) during presentation of full-screen movie 
clips and gratings. (b) Comparison of the strength of CT feedback effect on firing rate for blank stimuli interleaved 
with movies or gratings. Red: mean (LMM), dark lines: changes in sign of feedback modulation effect with stimulus 
type from positive for movies to negative for gratings (solid) and vice versa (dashed). For (a) and (b), we randomly 
jittered the horizontal position of the points to avoid overlap; lines connecting the paired samples still end at the 
central position to represent change. See also Figure 4—figure supplement 1.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Control analyses assessing the difference in CT feedback effects for gratings and movies.
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on average more positive for movies than for gratings (0.15 vs 0.053; LMM: ‍F1,38 = 5.21‍, ‍p = 0.028‍; 
Figure 4a). Remarkably, in 10/39 neurons (Figure 4a, dark lines) V1 suppression decreased firing rates 
for movies (positive movie FMI), but increased firing rates for gratings (negative grating FMI). The 
opposite effect only occurred in 3/39 neurons (dark dashed lines). These findings were not a conse-
quence of differences in firing rates that might have already been present in control conditions with 
CT feedback intact (Figure  4—figure supplement 1b), and were also not a consequence of the 
longer duration of V1 suppression during movie clips (Figure 4—figure supplement 1c, d).

The differences in the effects of CT feedback on firing rates during full-screen gratings vs. movies 
might be related to feedback-induced changes in bursting, which might be stimulus-dependent (Lu 
et al., 1992; Grubb and Thompson, 2005) and can drive high-frequency firing. To test this hypothesis, 
we compared CT feedback modulation of burst ratio for gratings vs. movie clips, and found that V1 
suppression indeed induced stronger bursting for gratings than for movies (Figure 4—figure supple-
ment 1e). However, for both movies (Figure 1—figure supplement 2c) and gratings (Figure 4—
figure supplement 1a), CT feedback effects on firing rates were unrelated to those on bursting. Thus, 
while suppression of CT feedback engages bursting overall more strongly for gratings than movies, 
this differential recruitment does not seem to account for differences in CT feedback-related modula-
tions of firing rates for movies vs. grating stimuli.

Differences in CT feedback effects between firing rates to full-screen gratings and movies might 
instead be related to differences in longer-lasting, systematic changes in neural activity, which might 
occur due to differential adaptation or differences in behavioral state induced by the two stimulus types. 
To address this possibility, we focused on periods of blank screen, which were contained in both stim-
ulus types. These were short (∼0.3 s) periods directly preceding each full-screen movie and grating trial 
(see e.g., Figures 1d and 3a), as well as blank trials interleaved as one condition in the grating experi-
ments. Applying our analyses to these various blank stimuli (Figure 4b, Figure 4—figure supplement 
1g-i), we found that CT feedback enhanced mean firing rates regardless of blank type or blank period 
duration (positive firing rate FMIs, mean FMIs: 0.27 vs. 0.30 vs. 0.36; LMM: ‍F2,76 = 1.69‍, ‍p = 0.19‍; 
Figure 4b). This CT feedback-related average enhancement for blank stimuli was even stronger than 
the enhancement observed during movie presentation (LMM: ‍F1,116 = 15.1‍, ‍p = 0.0002‍), and stronger 
than the mixed effects during grating presentation (LMM: ‍F1,116 = 34.9‍, ‍p = 3.6 × 10−8

‍). Since the CT 
feedback effects on these various blank stimuli did not depend on blank period duration or whether 
blanks were embedded in grating or movie experiments (see also Figure 4—figure supplement 1f-l), 
we conclude that differences in longer lasting changes in neural activity or behavioral state did not 
underlie the differential effect of CT feedback for full screen movies vs. gratings. Instead, we interpret 
these findings to highlight that CT feedback modulates dLGN responses in a stimulus-dependent 
way. In particular, the strength and sign of CT feedback gain might be sensitive to features of the 
visual stimulus, such as the contrast, the dynamics, or the statistics of the center and the surround 
stimulation.

Effects of behavioral state on dLGN responses resemble effects of CT 
feedback, but are largely independent
Previous studies have reported that responses of mouse dLGN neurons to grating stimuli are modulated 
by behavioral state as inferred by locomotion (Erisken et al., 2014; Aydın et al., 2018; Williamson 
et al., 2015). To assess how these findings extend to more complex stimuli, we separated the trials 
with CT feedback intact according to the animals’ locomotion behavior. We considered trials as ‘run 
trials’ if the animal’s speed exceeded 1 cm/s for at least 50% of the stimulus presentation and as ‘sit 
trials’ if the animal’s speed fell below 0.25 cm/s for at least 50% of the stimulus presentation. When 
we examined the spike rasters and PSTHs of example neuron 1 in control conditions with CT feed-
back intact (Figure 5a and b), we found that, despite preserved temporal features of the responses 
(Pearson correlation ‍r = 0.72‍ between run and sit PSTHs, ‍p < 10−6

‍), firing rates were higher overall 
during locomotion than stationary periods. Additionally, during locomotion, the distribution of firing 
rates was less skewed (‍γ‍ = 1.15 vs 1.45 during stationary trials), with a decrease of low and an increase 
of medium firing rates (KS test, ‍p < 10−6

‍). This pattern was also observed in the population of dLGN 
neurons, where firing rates were consistently higher for trials with locomotion compared to trials when 
the animal was stationary (11.9 vs 8.9 spikes/s; LMM: ‍F1,63.9 = 94.1‍, ‍p = 3.5 × 10−14

‍; Figure 5c). Similar 
to previous reports using gratings (Niell and Stryker, 2010; Erisken et al., 2014), we found that 
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bursting was lower during locomotion than stationary periods (0.035 vs 0.063; LMM: ‍F1,66.7 = 20.2‍, 

‍p = 2.9 × 10−5
‍; Figure 5d). Beyond these established measures, using movie clips allowed us to test 

the effects of locomotion on additional response properties: trials with locomotion were associated 
with lower sparseness (0.40 vs 0.47; LMM: ‍F1,181.9 = 22.8‍, ‍p = 3.8 × 10−6

‍; Figure 5e) and lower trial-to-
trial reliability (0.13 vs 0.16; LMM: ‍F1,176.1 = 11.8‍; Figure 5f). This locomotion-related decrease of reli-
ability could be related to, but is likely not fully explained by, the increase in eye movements typically 

Figure 5. Effects of locomotion on dLGN responses resemble those of CT feedback, but persist even during V1 suppression. (a) Spike raster of example 
neuron 1 (same as Figure 1d) in response to a naturalistic movie clip during locomotion and stationary trials with CT feedback intact. Top: trials with 
run speed > 1 cm/s; bottom: trials with run speed <0.25 cm/s, both for at least ‍> 50%‍ of each trial. Red: burst spikes. (b) Corresponding PSTHs. Green: 
locomotion, orange: stationary; black bar: duration of movie clip. (c–f) Comparison of firing rates (c), burst ratio (d), sparseness (e), and trial-to-trial 
reliability (f) during locomotion and stationary trials. Black markers in (c,d,f) correspond to individually significant observations (Welch’s t-test). (g–l) Same 
as (a–f), for locomotion and stationary trials during V1 suppression. Light blue bar: V1 suppression. See also Figure 5—figure supplement 1.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Effects of locomotion on additional parameters of responses to naturalistic movie clips and relationship with firing rate.

Figure supplement 2. Effects of pupil-indexed arousal on dLGN responses to movies.
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associated with running (Figure 5—figure supplement 1h, i; Erisken et al., 2014; Bennett et al., 
2013). These analyses demonstrate that in dLGN, processing of naturalistic movie clips is robustly 
modulated by locomotion. Curiously, in all aspects tested, these modulations by locomotion had the 
same signatures as those of CT feedback: increased firing rates, reduced bursting, and decreased 
sparseness and trial-to-trial reliability.

Since the effects of CT feedback and locomotion closely resembled each other, and since L6CT 
neurons themselves are modulated by locomotion (Augustinaite and Kuhn, 2020), are the effects of 
locomotion on dLGN responses inherited via feedback from cortex? To test this hypothesis, we next 
focused on only those movie trials in which feedback was suppressed by V1 PV+ photostimulation 
and repeated the separation according to locomotion (Figure 5g–h). These analyses revealed that 
effects of locomotion on the responses to our movies persisted, even if CT feedback was suppressed 
(Figure 5i–l; firing rate: 9.7 vs 7.6 spikes/s; LMM: ‍F1,64.8 = 71.1‍, ‍p = 5.2 × 10−12

‍; burst ratio: 0.081 
vs 0.11 spikes/s; LMM: ‍F1,68.1 = 19.5‍, ‍p = 3.7 × 10−5

‍; sparseness: 0.47 vs 0.56; LMM: ‍F1,179.5 = 54.7‍, 

‍p = 5.1 × 10−12
‍; reliability: 0.14 vs 0.18; LMM: ‍F1,175.7 = 24.9‍, ‍p = 1.5 × 10−6

‍).
Besides running, another often-used indicator for behavioral state is pupil size (Reimer et  al., 

2014; Vinck et  al., 2015; Erisken et  al., 2014). Indexing arousal via pupil size, however, is chal-
lenging for movie stimuli, whose fluctuations in luminance will themselves drive changes in pupil size 
(Figure 5—figure supplement 2a). To test whether locomotion-independent, pupil-indexed arousal 
also modulates dLGN responses and whether this modulation depends on CT feedback, we exploited 
methods initially proposed by Reimer et al., 2014, focusing on periods within the movie when the 
animal was sitting and assuming that the average change in pupil size over multiple movie repetitions 
was due to luminance changes in the movie, while the variability around this average reflected trial-by-
trial differences in behavioral state (Figure 5—figure supplement 2b-g). Recapitulating our running-
related results, we found that both with CT feedback intact and during V1 suppression, response 
periods with faster than average pupil dilation (or slower than usual constriction; top quartile pupil 
change) were associated with higher firing rates, while periods with faster than usual pupil constriction 
(or slower than usual dilation; bottom quartile pupil change) were associated with lower firing rates 
(Figure 5—figure supplement 2b-c). In contrast, response reliability and SNR were not significantly 
different during periods of rapid dilation vs. rapid constriction, regardless of photostimulation condi-
tion (Figure 5—figure supplement 2d-g).

Finally, to further test the relationship between effects of behavioral state and CT feedback, we 
directly compared CT feedback and running-related modulations on a neuron-by-neuron basis. We 
focused on experiments with naturalistic movies, because this was the condition in which we observed 
robust effects of both CT feedback and behavioral state (for a related analysis with gratings and qual-
itatively similar results, see Figure 6—figure supplement 1a). First, we hypothesized that if effects of 
locomotion on dLGN responses were inherited from primary visual cortex, such effects should vanish 
during V1 suppression (Figure 6,a0). However, consistent with the observations shown in Figure 5i–l, 
even during V1 suppression, running-related modulations were significantly different from 0 (firing rate 
run modulation index (RMI): ‍0.18 ± 0.06‍; burst ratio: ‍−0.17 ± 0.1‍; sparseness: ‍−0.12 ± 0.04‍; reliability: 
‍−0.11 ± 0.09‍; Figure  6,a1-4-4, ). In fact, the degree of running modulation was correlated between 
control conditions with feedback intact and V1 suppressed (firing rate: slope of ‍0.51 ± 0.12‍; burst 
ratio: slope of ‍0.38 ± 0.2‍; sparseness: slope of ‍0.44 ± 0.14‍; reliability: slope of ‍0.50 ± 0.15‍; Figure 6,a1-

4). Interestingly, for firing rates and burst ratios, locomotion effects were slightly stronger, on average, 
with CT feedback intact compared to V1 suppression (firing rate RMI: 0.23 vs 0.20; LMM: ‍F1,168.3 = 4.3‍, 

‍p = 0.04‍, Figure 6, a1; burst ratio RMI: ‍−0.25‍ vs. ‍−0.17‍; LMM: ‍F1,154.7 = 6.3‍, ‍p = 0.013‍, Figure 6, a2), 
indicating that these two modulatory influences likely interact.

We next tested the hypothesis that CT feedback might have a stronger impact during active behav-
ioral states than during quiescence. Indeed, it has previously been shown that during brain states 
associated with anesthesia, the responsiveness of feedback circuits is particularly reduced (Briggs and 
Usrey, 2011; Makino and Komiyama, 2015; Keller et al., 2020). One might therefore predict that 
during quiescence, if feedback circuits were already completely disengaged, we should not be able 
to observe further effects of V1 suppression (Figure 6, b0). This was clearly not the case, because CT 
feedback effects were correlated across behavioral states (firing rate: slope of ‍0.72 ± 0.10‍; burst ratio: 
slope of ‍0.34 ± 0.15‍; sparseness: slope of ‍0.85 ± 0.12‍; reliability: slope of ‍0.43 ± 0.14‍; Figure 6, b1-4). In 
addition, and similar to the slightly stronger run modulation with feedback left intact, we discovered 
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a locomotion-dependent CT feedback effect for firing rates and burst ratios: CT feedback effects 
were slightly stronger, on average, during locomotion than during quiescence (firing rate FMI: 0.18 vs 
0.15; LMM: ‍F1,172.8 = 3.5‍, ‍p = 0.065‍; Figure 6, b1; burst ratio FMI: ‍−0.27‍ vs. ‍−0.19‍; LMM: ‍F1,166.9 = 6.8‍, 

‍p = 0.0097‍; Figure 6, b2). This subtle interaction between behavioral state and CT feedback effects 
might relate to a previous finding, where careful dissection of brain states by depth of anesthesia 
had already suggested that the effects of transient cortical inactivation on dLGN responses were 
more evident during lighter anesthesia, that is, during desynchronized cortical activity (Wörgötter 
et al., 2002). However, our ability to observe effects of V1 suppression in dLGN while the animal 
was stationary suggests that CT feedback circuits are engaged even under conditions of behavioral 
quiescence.

Finally, if modulations by CT feedback and behavioral state exploited the same circuitry, neurons 
experiencing strong modulation by V1 suppression should also be strongly affected by locomotion 
(Figure 6, c0). Contrary to this prediction, we found that effects of CT feedback (FMI) and behav-
ioral state (RMI) were uncorrelated (firing rate: slope of ‍0.054 ± 0.13‍; burst ratio: slope of ‍−0.1 ± 0.13‍; 
sparseness: slope of ‍0.005 ± 0.23‍; reliability: slope of ‍−0.095 ± 0.12‍; Figure 6c‍1−4‍). Together, these 
comparisons demonstrate that effects of behavioral state associated with locomotion and effects of 
CT feedback are largely independent.

Figure 6. The effects of CT feedback and locomotion on movie responses are largely independent. (a0–c0) Predicted relationships between modulation 
indices and response measures in different conditions, assuming dependence in the effects of CT feedback and locomotion. (a) Comparison of 
modulation by running (RMI) during CT feedback intact and V1 suppression for firing rates (a1), burst ratio (a2), sparseness (a3), and reliability (a4). Running 
effects were quantified with a run modulation index (RMI), where RMI = ‍(running − sitting)/(running + sitting)‍. (b) Comparison of modulation by 
CT feedback (FMI) during locomotion and stationary periods for firing rates (b1), burst ratio (b2), sparseness (b3), and reliability (b4). (c) Comparison 
of modulation by feedback (FMI) and modulation by running (RMI) for firing rates (c1), burst ratio (c2), sparseness (c3), and reliability (c4). Red: LMM fit. 
Green, purple: example neurons from Figure 2a and b.

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. The effects of CT feedback and locomotion on responses to gratings are also largely independent.
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Discussion
In this study, we used naturalistic movies to reveal that corticothalamic feedback and behavioral state 
can have robust effects on dLGN responses. We found that V1 suppression during movie presentation 
reduces the gain of time-varying dLGN firing rates, and leads to increases in bursting, sparseness and 
trial-to-trial reliability. The effects of CT feedback seem to be stimulus-specific, as V1 suppression led 
to more consistent and therefore stronger overall effects on firing rates for naturalistic movies than 
for gratings. Interestingly, the signatures of CT feedback closely resembled those of behavioral state. 
However, we found their effects during movie viewing to be largely independent, demonstrating that 
behavioral modulations of dLGN activity are not simply inherited from cortex. Overall, our findings 
highlight that dLGN responses to naturalistic movies can be reliably modulated by two extra-retinal 
sources – cortical feedback and behavioral state – which likely exert their influences via largely sepa-
rate neural circuits.

Manipulation of CT feedback
To manipulate CT feedback, we chose a potent, yet global, V1 suppression approach based on opto-
genetic activation of ChR2 expressed in local PV+ inhibitory interneurons (Lien and Scanziani, 2013; 
Li et  al., 2013; King et  al., 2016; Olsen et  al., 2012; Wiegert et  al., 2017). While silencing by 
excitation of inhibitory interneurons can exploit the robust effects of GABA-mediated inhibition in 
cortical circuits, it comes with a limitation in specificity. Hence, in addition to the direct L6 → thalamus 
circuit, indirect polysynaptic effects might be exerted via alternative routes. One example is L5 corti-
cofugal pyramidal cells projecting to the superior colliculus (SC), where tectogeniculate neurons in 
the superficial layers provide retinotopically organized, driving inputs to the dorsolateral shell region 
of the dLGN (Bickford et al., 2015). To address this lack of specificity, in control experiments, we 
replaced photoactivation of PV +neurons with direct, selective suppression of V1 Ntsr1 +neurons, 
encompassing the population of L6 CT pyramidal cells (Kim et  al., 2014; Bortone et  al., 2014). 
Since photosuppression via the light-gated chloride channel stGtACR2 (Mahn et al., 2018) did not 
alter any of our conclusions regarding the effects of CT feedback on dLGN responses, we assume 
that the effects of V1 suppression to a large degree reflect the specific impact of the L6 CT circuit. 
L6 CT neurons, however, have an intracortical axon collateral making privileged connections with a 
translaminar PV +interneuron subtype in L6 (Frandolig et al., 2019; Bortone et al., 2014), which in 
turn strongly regulates the gain of the entire V1 column (Olsen et al., 2012; Bortone et al., 2014; 
Frandolig et al., 2019), so that even with such specific suppression, polysynaptic effects cannot be 
excluded. However, since suppression of L6 CT neurons increases the gain in V1 (Olsen et al., 2012), 
and since this is the opposite of the global effects of V1 suppression via PV +activation, L6 CT gain 
modulation of V1 seems unlikely to drive our effects. Nevertheless, decisively ruling out alternative 
circuits would require the selective suppression of L6 CT axon terminals at the thalamic target.

Cortical layer 6 is well known for its particularly high diversity of neuronal cell types (Briggs, 2010). 
Even within the population of L6 CT pyramidal cells there is heterogeneity, with at least two subtypes 
defined by morphology (Frandolig et al., 2019; Tasic et al., 2016; Gouwens et al., 2019; Augusti-
naite and Kuhn, 2020), three subtypes defined by electrophysiology and morphology (Gouwens 
et  al., 2019), and four major subtypes defined by transcriptomics (Tasic et  al., 2016; Gouwens 
et al., 2019). Whether these subtypes mediate different aspects of feedback modulations is currently 
unknown. In the visual system of primates and carnivores, CT feedback circuits seem to be organized 
into distinct streams (Briggs et al., 2016; Hasse et al., 2019; Briggs and Usrey, 2009) whose func-
tional organization mimics that of the feedforward streams. Whether the known subtypes in mice 
can convey independent, stream-specific information is currently unknown, partly because already 
at the level of feedforward processing, the notion of streams in mouse dLGN is a matter of ongoing 
debate (Chen et al., 2016; Denman and Contreras, 2016; Morgan et al., 2016; Chen et al., 2016; 
Zhuang et al., 2019), and dLGN response properties are diverse (Piscopo et al., 2013; Román Rosón 
et al., 2019; Liang et al., 2018). Our own assessment of CT feedback effects revealed few system-
atic differences for various dLGN cell-type classifications. Such an absence of differences, however, 
is not surprising, because our optogenetic circuit manipulations non-specifically suppressed all L6 CT 
neuron subtypes. Once genetic targeting of L6 CT subtypes will become possible, it will be important 
to test the stream-specificity of CT feedback in the mouse.
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CT feedback effects on gain, reliability, and bursting
Our analyses of the time-varying firing rates in response to naturalistic movies revealed that V1 
suppression results in a robust decrease of geniculate response gain. Divisive effects of CT feedback 
suppression have also been previously reported for contrast response functions of parvocellular dLGN 
neurons in anesthetized macaques (Przybyszewski et al., 2000). A crucial element to produce gain 
modulations seems to be changes in the level of synaptically driven Vm fluctuations, often called 
‘synaptic noise’ (Hô and Destexhe, 2000; Shu et al., 2003; Chance et al., 2002). Indeed, in vivo 
V1 recordings suggest that the combined impact of changes in Vm fluctuations, input resistance, and 
depolarization is needed to produce gain changes (Cardin et al., 2008). These cellular properties are 
altered by both feedback (Chance et al., 2002) and neuromodulation (Disney et al., 2007), not only 
in cortex (Ferguson and Cardin, 2020) but also in the corticothalamic system (Béhuret et al., 2015; 
Augustinaite et al., 2014). Here, ‘synaptic noise’ together with varying degrees of T-type channel 
recruitment has been shown to change the slope of the input-output function and alter the temporal 
filtering characteristics of thalamic relay cells (Wolfart et  al., 2005; Béhuret et  al., 2015). Thus, 
by providing variable synaptic input and affecting membrane depolarization, for example, through 
NMDA plateau potentials (Augustinaite et al., 2014), CT feedback might be in a prime position to 
dynamically tune the gain of the thalamic relay.

In addition to potentially contributing to the observed gain modulations, ‘synaptic noise’ from CT 
feedback may also help explain the less precise and less reliable dLGN responses we observed when 
feedback was left intact. Specifically, V1 neurons are known to exhibit about double the trial-to-trial 
variability of simultaneously recorded dLGN neurons (Kara et  al., 2000), and eliminating variable 
cortical input might unmask the even greater reliability of feed-forward retinal inputs (Kara et al., 
2000).

Our analyses of movie and grating response characteristics showed that V1 suppression robustly 
and consistently biased geniculate activity toward burst firing mode. Burst firing mode occurs when 
dLGN neurons undergo sustained (‍≥ 100‍ ms) hyperpolarization (Sherman, 2001), which allows for the 
de-inactivation of low-threshold T-type calcium channels abundant in thalamus (Jahnsen and Llinás, 
1984). Such ‘calcium bursts’ can only be unequivocally separated from high-frequency firing in intra-
cellular recordings or calcium imaging, but can be inferred in extracellular recordings, such as ours, 
by imposing a minimum duration of 100 ms of silence preceding a high-frequency ( < 4 ms ISI) firing 
event (Lu et al., 1992). Previous in vivo intracellular recordings in cat dLGN have revealed that cortical 
ablation can hyperpolarize the resting membrane potential of dLGN relay cells by ∼9 mV, enough 
to push them into burst-firing mode (Dossi et al., 1992). Conversely, direct optogenetic activation 
of L6 CT neurons in primary somatosensory cortex has been shown to decrease burst mode firing 
(Mease et al., 2014), potentially mediated by NMDA plateau potentials as observed in slice record-
ings (Augustinaite et al., 2014). In burst firing mode, reminiscent of the effects we observed during 
V1 suppression, dLGN spontaneous activity is low (Sherman, 2001), stimulus-evoked responses show 
phase-advance (Lu et al., 1992; Alitto et al., 2005) and high trial-to-trial reliability (Alitto et al., 
2005). The increase in trial-to-trial response reliability we observed during V1 suppression might 
therefore be explained not only by the removal of a more variable input as mentioned above (Kara 
et al., 2000), but also by a shift towards burst mode, where retinogeniculate communication efficacy 
is elevated (Alitto et al., 2019).

Theories about the function of thalamic firing modes can provide a useful framework for inter-
preting the effects of CT feedback we observed here, in particular since the greater precision and trial-
to-trial reliability of responses during V1 suppression might be unexpected at first glance. Thalamic 
burst mode is often linked with ‘inattentive states’, where the sudden appearance or change of a 
visual stimulus from non-preferred to preferred RF contents (Lesica and Stanley, 2004; Lesica et al., 
2006; Wang et al., 2007) can reliably trigger a thalamic burst. Bursting is associated with high signal-
to-noise, well-suited for stimulus detection (Sherman, 2001; Whitmire et  al., 2016). In addition, 
thalamic burst mode is known to augment the efficacy of retinal input to drive spiking in dLGN (Alitto 
et  al., 2019), and increases the probability of relay between thalamus and cortex (Swadlow and 
Gusev, 2001). This in turn might lead to depolarizing CT feedback, switching the thalamus to tonic 
mode and allowing more faithful, linear relay of information with a higher dynamic range, better suited 
for encoding of more finely graded details (Sherman, 2001; Béhuret et al., 2015). Such a ‘wake-up-
call’ for cortex (Sherman, 2001; Lesica and Stanley, 2004) could represent a neural implementation 
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of bottom-up attention in dLGN (Hochstein and Ahissar, 2002). To understand if CT feedback is 
indeed recruited for detailed perceptual analyses, an essential next step would be to measure the 
activity of L6 CT neurons under behaviorally relevant conditions. Interestingly, in the auditory system, 
activation of L6 CT feedback has been shown to influence sound perception, with enhancements of 
sound detection or discrimination behavior, depending on the relative timing between CT spiking and 
stimulus onset (Guo et al., 2017). Beyond having a broad impact on coding regimes and transmis-
sion, bursting in thalamus is also known to have specific computational properties, such as efficiently 
encoding high- and low-frequency information in parallel (Mease et al., 2017).

Stimulus-dependence of CT feedback effects
So far, most studies using naturalistic stimuli to probe dLGN responses have been performed in anes-
thetized animals and have not considered CT feedback (Dan et al., 1996; Lesica and Stanley, 2004; 
Lesica et  al., 2006; Lesica et  al., 2007; Wang et al., 2007; Mante et  al., 2005). Similarly, most 
studies investigating the impact of CT feedback have relied on artificial stimuli (Olsen et al., 2012; 
Denman and Contreras, 2015; Wang et al., 2006; Murphy and Sillito, 1987). Comparing the effects 
of CT feedback during naturalistic movies and gratings, we found evidence that CT feedback modu-
lates firing rates at the geniculate level in a stimulus-dependent fashion. What could be the relevant 
difference? For artificial stimuli, such as gratings and bars, it has long been known that CT feed-
back can enhance dLGN surround suppression by increasing responses to small stimuli and reducing 
responses to large stimuli (Born et al., 2021; McClurkin and Marrocco, 1984; Murphy and Sillito, 
1987; Jones et  al., 2012; Wang et al., 2018; Cudeiro and Sillito, 1996; Andolina et  al., 2013; 
Hasse and Briggs, 2017; Webb et al., 2002). Such CT feedback-mediated enhancement of surround 
suppression might result from recruitment of a more narrow direct excitatory and a wider indirect 
inhibitory CT feedback component according to grating size (Born et al., 2021), with the balance 
shifting more towards direct excitation for small gratings and more towards indirect inhibition for 
large gratings. Size, however, is likely not the only determinant of relative recruitment of CT feedback 
circuits: for instance, V1 ablation or pharmacological suppression in anesthetized cats leads to more 
prominent reductions of dLGN surround suppression for iso- vs. cross-oriented gratings (Cudeiro and 
Sillito, 1996; Sillito et al., 1993), suggesting an additional role of stimulus context. For naturalistic 
stimuli with complex context, measurements in area V1 have already demonstrated that surround 
suppression is generally lower than for iso-oriented gratings, and is flexibly invoked depending on the 
specific statistics in the RF center and surround (Coen-Cagli et al., 2015). The differential effect of CT 
feedback on dLGN firing rates for full-screen naturalistic movies and iso-oriented gratings observed 
in our study might therefore be parsimoniously explained by differences in the relative strength of 
direct excitatory and indirect inhibitory CT feedback. It would be of prime interest to measure, in 
future experiments, size tuning curves with and without CT feedback using different stimuli, such as 
naturalistic movies, iso- and cross-oriented gratings. Given our results, we predict that CT feedback 
would affect firing rate responses to full-screen cross-oriented gratings more similarly to full-screen 
naturalistic movies than would iso-oriented gratings. Alternatively, CT feedback might change firing 
rates more consistently for lower contrast stimuli, such as our movies, where additional top-down 
inputs might be helpful for detection or discrimination.

Relationship between CT feedback and behavioral state
By measuring the effects of V1 suppression on movie responses during different behavioral states, and 
by measuring effects of behavioral state with and without CT feedback, we found that behavioral state 
and CT feedback had similar effects on dLGN responses, but seemed to operate via largely separate 
circuits. The lack of substantial dependence between effects of CT feedback and behavioral state on 
responses to our naturalistic movies is remarkable: neuromodulation accompanying changes in behav-
ioral state will affect cortical layer 6, which receives dense cholinergic afferents from basal forebrain 
(Radnikow and Feldmeyer, 2018). Accordingly, in slice recordings, upon bath application of ACh, 
mouse V1 L6 CT neurons increase action potential firing (Sundberg et al., 2018). Potentially related, 
many V1 L6 CT neurons themselves increase activity during locomotion or arousal (Augustinaite and 
Kuhn, 2020; Swadlow and Weyand, 1987). Together, these studies would predict that effects of 
behavioral state should be augmented during CT feedback. Indeed, two recent studies investigating 
the interactions between CT feedback and arousal reported, during suppression of CT feedback, 



 Research article﻿﻿﻿﻿﻿﻿ Neuroscience

Spacek et al. eLife 2022;11:e70469. DOI: https://doi.org/10.7554/eLife.70469 � 17 of 32

less correlation between dLGN firing and pupil size (Molnár et al., 2021), and a loss of effects of 
behavioral state on dLGN tuning curves for temporal and spatial frequency, but not for spontaneous 
activity (Reinhold et al., 2021). Together with other findings more consistent with our results (Murata 
and Colonnese, 2018; Nestvogel and McCormick, 2022; Schröder et al., 2020), this discrepancy 
suggests that the degree to which effects of behavioral state in dLGN might be dependent on cortex 
is not fully understood.

If not inherited from CT feedback, which alternative circuits could mediate the effects of behav-
ioral state in dLGN (Erisken et al., 2014; Aydın et al., 2018; Williamson et al., 2015)? Locomo-
tion is accompanied by arousal (Vinck et al., 2015), which in turn involves various neuromodulatory 
influences [reviewed in Zagha and McCormick, 2014]. For instance, norepinephrine from the locus 
coeruleus (LC) and acetylcholine (ACh) from the midbrain are known to act directly on the thalamus 
[reviewed in McCormick, 1992; Lee and Dan, 2012] and could drive some of the arousal-related 
depolarizing effects on firing rate independent of cortical feedback, for instance by blocking a long-
lasting Ca2+-dependent K+ current (Sherman and Koch, 1986). In addition, electrical stimulation 
of the LC (Holdefer and Jacobs, 1994) and the parabrachial region (PBR) (Lu et al., 1993) within 
the mesencephalic locomotor region (MLR), and direct application of noradrenergic (Funke et al., 
1993) and cholinergic (McCormick, 1992; Sillito et al., 1983) agonists within dLGN, are sufficient 
to reduce thalamic burst mode firing. Finally, at least part of the locomotion effects in dLGN might 
also be related to modulations of retinal output (Schröder et al., 2020; Liang et al., 2020). Indeed, 
two-photon calcium imaging of retinal ganglion cell boutons in dLGN (Liang et al., 2020) and SC 
(Schröder et al., 2020) revealed that their activity can be modulated by locomotion, albeit with an 
overall suppressive effect. In future studies, it will be key to further dissect the contributions of retinal, 
cortical and potentially collicular modulations, and the different neuromodulatory sources of behav-
ioral state-related modulations in thalamic targets.

Materials and methods

 Continued on next page

Key resources table 

Reagent type (species) or 
resource Designation Source or reference Identifiers Additional information

Recombinant DNA reagent
pAAV EF1a.DIO.hChR2(H134R)- eYFP.WPRE.
hGH Addgene #20298-AAV9

Recombinant DNA reagent pAAV hSyn1-SIO-stGtACR2- FusionRed Addgene #105,677

Strain, strain background (Mus 
musculus) B6;129P2-Pvalbtm1(cre)Arbr/J Jackson Laboratory #008069 PV-Cre, Pvalb-Cre

Strain, strain background (Mus 
musculus) B6.FVB(Cg)-Tg(Ntsr1-cre) GN220Gsat/Mmcd MMRRC #030648-UCD Ntsr1-Cre

Chemical compound, drug Metamizole MSD Animal Health Vetalgin 200 mg/kg

Chemical compound, drug Buprenorphine Bayer Buprenovet 0.1 mg/kg

Chemical compound, drug Lidocaine hydrochloride bela-pharm 2 %

Chemical compound, drug Meloxicam Böhringer Ingelheim Metacam 2 mg/kg

Chemical compound, drug Isoflurane CP Pharma in oxygen

Chemical compound, drug Bepanthen Bayer eye ointment

Chemical compound, drug DAPI-containing mounting medium Vector Laboratories Ltd

Chemical compound, drug Vectashield DAPI H-1000 Vector Laboratories Ltd

Chemical compound, drug DiI Invitrogen electrode stain

Software, algorithm Python 3.6 http://python.org RRID:SCR_008394

Software, algorithm R R Core Team, 2017 RRID:SCR_001905

Software, algorithm MATLAB R2019b Mathworks RRID:SCR_001622

Software, algorithm EXPO
https://sites.google.com/a/nyu.edu/​
expo/home visual stimulus display
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Reagent type (species) or 
resource Designation Source or reference Identifiers Additional information

Software, algorithm Kilosort Pachitariu et al., 2016 RRID:SCR_016422

Software, algorithm Spyke Spacek et al., 2009

Software, algorithm Fiji/ImageJ NIH RRID:SCR_003070

Software, algorithm DataJoint Yatsenko et al., 2018 RRID:SCR_014543

 Continued

Surgical procedures
Experiments were carried out in 6 adult PV-Cre mice (median age at first recording session: 
23.5 weeks; B6;129P2-Pvalbtm1(cre)Arbr/J; #008069, Jackson Laboratory) and 3 adult Ntsr1-Cre mice 
(median age: 29.4 weeks; B6.FVB(Cg)-Tg(Ntsr1-cre)GN220Gsat/Mmcd; #030648-UCD, MMRRC) of 
either sex. Thirty minutes prior to the surgical procedure, mice were injected with an analgesic 
(Metamizole, 200 mg/kg, sc, MSD Animal Health, Brussels, Belgium). To induce anesthesia, animals 
were placed in an induction chamber and exposed to isoflurane (5% in oxygen, CP-Pharma, Burg-
dorf, Germany). After induction of anesthesia, mice were fixated in a stereotaxic frame (Drill & 
Microinjection Robot, Neurostar, Tuebingen, Germany) and the isoflurane level was lowered (0.5–2% 
in oxygen), such that a stable level of anesthesia could be achieved as judged by the absence of 
a pedal reflex. Throughout the procedure, the eyes were covered with an eye ointment (Bepan-
then, Bayer, Leverkusen, Germany) and a closed loop temperature control system (ATC 1000, WPI 
Germany, Berlin, Germany) ensured that the animal’s body temperature was maintained at 37 ° C. At 
the beginning of the surgical procedure, an additional analgesic was administered (Buprenorphine, 
0.1  mg/kg, sc, Bayer, Leverkusen, Germany) and the animal’s head was shaved and thoroughly 
disinfected using idodine solution (Braun, Melsungen, Germany). Before performing a scalp incision 
along the midline, a local analgesic was delivered (Lidocaine hydrochloride, sc, bela-pharm, Vechta, 
Germany). The skin covering the skull was partially removed and cleaned from tissue residues with a 
drop of H2O2 (3%, AppliChem, Darmstadt, Germany). Using four reference points (bregma, lambda, 
and two points 2 mm to the left and to the right of the midline respectively), the animal’s head was 
positioned into a skull-flat configuration. The exposed skull was covered with OptiBond FL primer 
and adhesive (Kerr dental, Rastatt, Germany) omitting three locations: V1 (AP: -2.8 mm, ML: -2.5 
mm), dLGN (AP: -2.3 mm, ML: -2 mm), and a position roughly 1.5 mm anterior and 1 mm to the right 
of bregma, designated for a miniature reference screw (00–96 X 1/16 stainless steel screws, Bilaney) 
soldered to a custom-made connector pin. Two μL of the adeno-associated viral vector rAAV9/1.
EF1a.DIO.hChR2(H134R)-eYFP.WPRE.hGH (Addgene, #20298-AAV9) was dyed with 0.3 μL fast 
green (Sigma-Aldrich, St. Louis, USA). After performing a small craniotomy over V1, in PV-Cre mice a 
total of ∼ 0.5 μL of this mixture was injected across the entire depth of cortex (0.05 μL injected every 
100 μm, starting at 1000 μm and ending at 100 μm below the brain surface), using a glass pipette 
mounted on a Hamilton syringe (SYR 10 μL 1701 RN no NDL, Hamilton, Bonaduz, Switzerland). In 
V1 of Ntsr1-Cre mice, we injected 0.35 μL of stGtACR2 (pAAV_hSyn1-SIO-stGtACR2-FusionRed, 
Addgene, #105677; 0.05 μL injected every 100 μm, starting at 1000 μm and ending at 500 μm 
below the brain surface). A custom-made lightweight stainless steel head bar was positioned over 
the posterior part of the skull such that the round opening in the bar was centered on V1/dLGN. The 
head bar was attached with dental cement (Ivoclar Vivadent, Ellwangen, Germany) to the primer/
adhesive. The opening was later filled with the silicone elastomer sealant Kwik-Cast (WPI Germany, 
Berlin, Germany). At the end of the procedure, an antibiotic ointment (Imex, Merz Pharmaceu-
ticals, Frankfurt, Germany) or iodine-based ointment (Braunodivon, 10%, B. Braun, Melsungen, 
Germany) was applied to the edges of the wound and a long-term analgesic (Meloxicam, 2 mg/kg, 
sc, Böhringer Ingelheim, Ingelheim, Germany) was administered and for 3 consecutive days. For at 
least 5 days post-surgery, the animal’s health status was assessed via a score sheet. After at least 
1 week of recovery, animals were gradually habituated to the experimental setup by first handling 
them and then simulating the experimental procedure. To allow for virus expression, neural record-
ings started no sooner than 3 weeks after injection. On the day prior to the first day of recording, 
mice were fully anesthetized using the same procedures as described for the initial surgery, and 
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a craniotomy (ca. 1.5 mm2) was performed over dLGN and V1 and re-sealed with Kwik-Cast (WPI 
Germany, Berlin, Germany). As long as the animals did not show signs of discomfort, the long-term 
analgesic Metacam was administered only once at the end of surgery, to avoid any confounding 
effect on experimental results. Recordings were performed daily and continued for as long as the 
quality of the electrophysiological signals remained high.

Electrophysiological recordings, optogenetic suppression of V1, 
perfusion
Head-fixed mice were placed on an air-cushioned Styrofoam ball, which allowed the animal to freely 
move. Two optical computer mice interfaced with a microcontroller (Arduino Duemilanove) sampled 
ball movements at 90 Hz. To record eye position and pupil size, the animal’s eye was illuminated with 
infrared light and monitored using a zoom lens (Navitar Zoom 6000) coupled with a camera (Guppy 
AVT camera; frame rate 50 Hz, Allied Vision, Exton, USA). Extracellular signals were recorded at 30 kHz 
(Blackrock microsystems). For each recording session, the silicon plug sealing the craniotomy was 
removed. For V1 recordings, a 32- or 64 channel silicon probe (Neuronexus, A1 × 32-5 mm-25-177, A1 
× 32Edge-5mm-20–177 A32 or A1 × 64-Poly2-6mm-23s-160) was lowered into the brain to a median 
depth of 1025 μm. For dLGN recordings, a 32-channel linear silicon probe (Neuronexus A1 × 32Edge-
5mm-20–177 A32) was lowered to a depth of ∼2300–3611 μm below the brain surface. We judged 
recording sites to be located in dLGN based on the characteristic progression of RFs from upper to 
lower visual field along the electrode shank (Piscopo et al., 2013, Figure 1—figure supplement 1b), 
the presence of responses strongly modulated at the temporal frequency of the drifting gratings (F1 
response), and the preference of responses to high temporal frequencies (Grubb and Thompson, 
2003; Piscopo et al., 2013). For post hoc histological reconstruction of the recording site, the elec-
trode was stained with DiI (Invitrogen, Carlsbad, USA) for one of the final recording sessions.

For photostimulation of V1 PV +inhibitory interneurons or photosuppression of V1 L6CT neurons, 
an optic fiber (910 μm diameter, Thorlabs, Newton, USA) was coupled to a light-emitting diode 
(LED, center wavelength 470 nm, M470F1, Thorlabs, Newton, USA; or center wavelength 465 nm, 
LEDC2_465/635_SMA, Doric Lenses, Quebec, Canada) and positioned with a micromanipulator less 
than 1 mm above the exposed surface of V1. A black metal foil surrounding the tip of the head bar 
holder prevented most of the photostimulation light from reaching the animal’s eyes. To ensure that 
the photostimulation was effective, the first recording session for each mouse was carried out in V1. 
Only if the exposure to light reliably induced suppression of V1 activity was the animal used for subse-
quent dLGN recordings. For gratings, photostimulation started either 0.1 s before stimulus onset and 
ended 0.1 s after stimulus offset (2 experiments), or photostimulation started 0.3 s before stimulus 
onset and ended 0.2 s after stimulus offset (11 experiments), or photostimulation started 0.3 s before 
stimulus onset and ended 0.45 s after stimulus offset (12 experiments). For movie clips, photostimu-
lation started either 0.1 s before stimulus onset and ended 0.1 s after stimulus offset (2 experiments), 
or photostimulation started 0.3 s before stimulus onset and ended 0.45 s after stimulus offset (45 
experiments). LED light intensity was adjusted on a daily basis to evoke reliable effects (median inten-
sity: 13.66 mW/mm2 for activating ChR2 in PV-Cre mice, and 10.84 mW/mm2 for activating stGtACR2 
in Ntsr1-Cre mice, as measured at the tip of the optic fiber). Since the tip of the fiber never directly 
touched the surface of the brain, and since the clarity of the surface of the brain varied (generally 
decreasing every day following the craniotomy), the light intensity delivered even to superficial layers 
of V1 was inevitably lower. Importantly, changes in dLGN firing rates induced by V1 suppression 
(FMI, see below) did not differ, on average, from those induced by behavioral state (RMI, see below) 
(firing rate: FMI 0.20 vs. RMI 0.15, LMM: ‍F1,145.7 = 3.02‍, ‍p = 0.08‍; burst ratio: FMI ‍−0.27‍ vs. RMI ‍−0.28‍, 

‍F1,124.0 = 0.002‍, ‍p = 0.97‍; sparseness: FMI ‍−0.12‍ vs. RMI ‍−0.14‍, ‍F1,144.9 = 1.03‍, ‍p = 0.31‍; reliability: FMI 
‍−0.084‍ vs. ‍−0.037‍, ‍F1,183.0 = 1.96‍, ‍p = 0.16‍; Figure 6c), indicating that optogenetic stimulation effects 
were not outside the physiological range.

After the final recording session, mice were first administered an analgesic (Metamizole, 200 mg/
kg, sc, MSD Animal Health, Brussels, Belgium) and following a 30  min latency period were tran-
scardially perfused under deep anesthesia using a cocktail of Medetomidin (Domitor, 0.5  mg/kg, 
Vetoquinol, Ismaning, Germany), Midazolam (Climasol, 5  mg/kg, Ratiopharm, Ulm, Germany) and 
Fentanyl (Fentadon, 0.05 mg/kg, Dechra Veterinary Products Deutschland, Aulendorf, Germany) (ip). 
A few animals, which were treated according to a different license, were anesthetized with sodium 
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pentobarbital (Narcoren, 400 mg/kg, ip, Böhringer Ingelheim, Ingelheim, Germany). Perfusion was 
first done with Ringer’s lactate solution followed by 4% paraformaldehyde (PFA) in 0.2 M sodium 
phosphate buffer (PBS).

Histology
To verify recording site and virus expression, we performed histological analyses. Brains were removed, 
postfixed in PFA for 24 hr, and then rinsed with and stored in PBS at 4 °C. Slices (40 μm) were cut 
using a vibratome (Leica VT1200 S, Leica, Wetzlar, Germany), stained with DAPI solution before (DAPI, 
Thermo Fisher Scientific; Vectashield H-1000, Vector Laboratories) or after mounting on glass slides 
(Vectashield DAPI), and coverslipped. A fluorescent microscope (BX61, Olympus, Tokyo, Japan) was 
used to inspect slices for the presence of yellow fluorescent protein (eYFP) and DiI. Recorded images 
were processed using FIJI (Rueden et al., 2017; Schindelin et al., 2012).

Visual stimulation
Visual stimuli were presented on a liquid crystal display (LCD) monitor (Samsung SyncMaster 2233RZ, 
47 × 29 cm, 1680 × 1050 resolution at 60 Hz, mean luminance 50 cd/m2) positioned at a distance of 
25 cm from the animal’s right eye (spanning ∼ 108 × 66°, small angle approximation) using custom 
written software (EXPO, https://sites.google.com/a/nyu.edu/expo/home). The display was gamma-
corrected for the presentation of artificial stimuli, but not for movies (see below).

To measure receptive fields (RFs), we mapped the ON and OFF subfields with a sparse noise 
stimulus. The stimulus consisted of nonoverlapping white and black squares on a square grid, each 
flashed for 200ms. For dLGN recordings, the square grid spanned 60° on a side, while individual 
squares spanned 5° on a side. For a single experiment, the vertical extent was reduced to 50°. For 
subsequent choices of stimuli, RF positions and other tuning preferences were determined online 
after each experiment based on multiunit activity, that is high-pass filtered signals crossing a threshold 
of 4.5–6.5 SD.

We measured single unit orientation preference by presenting full-screen, full-contrast drifting 
sinusoidal gratings of either 12 (23 experiments) or 8 (2 experiments) different, pseudo-randomly 
interleaved orientations (30° or 45° steps). For dLGN recordings, spatial frequency was either 0.02 
cyc/° (17 experiments) or 0.04 cyc/° (8 experiments) and temporal frequency was either 2 Hz (2 exper-
iments) or 4 Hz (23 experiments). One blank condition (i.e. mean luminance gray screen) was included 
to allow measurements of spontaneous activity. The stimulus duration was either 2 s (23 experiments) 
or 5 s (2 experiments), with an interstimulus interval (ISI) of 2.4 s (21 experiments) or 1.25 s (2 experi-
ments). For two Ntsr1-Cre experiments, ISIs varied and were either 0.58 s or 1.09 s.

For laminar localization of neurons recorded in V1, we presented a full-screen, contrast-reversing 
checkerboard at 100% contrast, with a spatial frequency of either 0.01 cyc/° (2 experiments) or 0.02 
cyc/° (5 experiments) and a temporal frequency of 0.5 cyc/s.

Movies were acquired using a hand-held consumer-grade digital camera (Canon PowerShot SD200) 
at a resolution of 320 × 240 pixels and 60 frames/s. Movies were filmed close to the ground in a variety 
of wooded or grassy locations in Vancouver, BC, and contained little to no forward/backward optic 
flow, but did contain simulated gaze shifts (up to 275°/s), generated by manual camera movements 
(for example movies, see Figure 1—video 1 and Figure 1—video 2). Focus was kept within 2 m 
and exposure settings were set to automatic. The horizontal angle subtended by the camera lens 
was 51.6°. No display gamma correction was used while presenting movies, since consumer-grade 
digital cameras are already gamma corrected for consumer displays (Poynton, 1998). For presenta-
tion, movies were cut into 5 s clips and converted from color to grayscale. Movie clips were presented 
full-screen with an ISI of 1.25 s (43 experiments). For two Ntsr1-Cre experiments, ISIs varied and were 
either 0.58 s or 1.08 s.

Spike sorting
To obtain single unit activity from extracellular recordings, we used the open source, Matlab-based, 
automated spike sorting toolbox Kilosort (Pachitariu et al., 2016). Resulting clusters were manually 
refined using Spyke (Spacek et al., 2009), a Python application that allows the selection of channels 
and time ranges around clustered spikes for realignment, as well as representation in 3D space using 
dimension reduction (multichannel PCA, ICA, and/or spike time). In 3D, clusters were then further split 



 Research article﻿﻿﻿﻿﻿﻿ Neuroscience

Spacek et al. eLife 2022;11:e70469. DOI: https://doi.org/10.7554/eLife.70469 � 21 of 32

via a gradient-ascent based clustering algorithm (GAC) (Swindale and Spacek, 2014). Exhaustive 
pairwise comparisons of similar clusters allowed the merger of potentially over-clustered units. For 
subsequent analyses, we inspected autocorrelograms and mean voltage traces, and only considered 
units that displayed a clear refractory period and a distinct spike waveshape. All further analyses 
were carried out using the DataJoint framework (Yatsenko et al., 2018) with custom-written code in 
Python.

Response characterization
We used current source density (CSD) analysis for recordings in area V1 to determine the laminar 
position of electrode contacts. To obtain the LFP data we first down-sampled the signal to 1 kHz 
before applying a bandpass filter (4–90 Hz, 2nd-order Butterworth filter). We computed the CSD from 
the second spatial derivative of the local field potentials (Mitzdorf, 1985), and assigned the base of 
layer 4 to the contact that was closest to the earliest CSD polarity inversion. The remaining contacts 
were assigned to supragranular, granular and infragranular layers, assuming a thickness of ∼1 mm for 
mouse visual cortex (Heumann et al., 1977).

In recordings targeting dLGN, we used the envelope of multi-unit spiking activity (MUAe) (van der 
Togt et al., 2005) to determine RF progression (Figure 1—figure supplement 1b). Briefly, we full-wave 
rectified the high-pass filtered signals (cutoff frequency: 300 Hz, 4th-order non-causal Butterworth 
filter) before performing common average referencing by subtracting the median voltage across all 
channels in order to eliminate potential artifacts (e.g. movement artifacts). We then applied a low-pass 
filter (cutoff frequency: 500 Hz, Butterworth filter) and down-sampled the signal to 2 kHz. Recording 
sessions for which RFs did not show the retinotopic progression typical of dLGN (Figure 1—figure 
supplement 1b; Piscopo et al., 2013) were excluded from further analysis.

Each unit’s peristimulus time histogram (PSTH, i.e. the response averaged over trials) was calcu-
lated by convolving a Gaussian of width ‍2σ‍ = 20 ms with the spike train collapsed across all trials, 
separately for each condition.

We defined bursts according to Lu et al., 1992, which required a silent period of at least 100ms 
before the first spike in a burst, followed by a second spike with an interspike interval < 4 ms. Imposing 
the silent period was found to be crucial for separating dLGN ‘low threshold calcium bursts’ from 
high-frequency firing in extracellular recordings (Lu et al., 1992); note however, that ‘low-threshold 
calcium bursts’ can only be unequivocally detected in intracellular recordings or calcium imaging. Any 
subsequent spikes with preceding interspike intervals < 4ms were also considered to be part of the 
burst. All other spikes were regarded as tonic. We computed a burst ratio (the number of burst spikes 
divided by the total number of spikes) and compared this ratio in conditions with CT feedback intact 
vs. V1 suppression or during locomotion vs. stationary conditions. PSTHs for burst spikes were calcu-
lated by only considering spikes that were part of bursts before collapsing across trials and convolving 
with the Gaussian kernel (see above). PSTHs for non-burst spikes were calculated in an analogous way.

To quantify the effect of V1 suppression on various response properties, we defined the feedback 
modulation index (FMI) as

	﻿‍ FMI = feedback−suppression
feedback+suppression ‍� (1)

Characterization of responses to naturalistic movie clips
Signal to noise ratio (SNR) was calculated according to Baden et al., 2016 by

	﻿‍ SNR = Var[⟨Cr⟩]t
⟨Var[C]t⟩r ‍� (2)

where ‍C‍ is the ‍T ‍ by ‍R‍ response matrix (time samples by stimulus repetitions) and ‍⟨⟩x‍ and Var[]‍x‍ 
denote the mean and variance across the indicated dimension, respectively. If all trials were identical 
such that the mean response was a perfect representative of the response, SNR would equal 1.

The sparseness ‍S‍ of a PSTH was calculated according to Vinje and Gallant, 2000 by
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where ‍ri ≥ 0‍ is the signal value in the ‍ith‍ time bin, and ‍n‍ is the number of time bins. Sparseness 
ranges from 0 to 1, with 0 corresponding to a uniform signal, and 1 corresponding to a signal with all 
of its energy in a single time bin.

Response reliability was quantified according to Goard and Dan, 2009 as the mean pairwise 
correlation of all trial pairs of a unit’s single-trial responses. Single-trial responses were computed by 
counting spikes in 20ms, overlapping time bins at 1ms resolution. Pearson’s correlation was calculated 
between all possible pairs of trials, and then averaged across trials per condition.

To detect response peaks in trial raster plots and measure their widths, clustering of spike times 
collapsed across trials was performed using the gradient ascent clustering (GAC) algorithm (Swindale 
and Spacek, 2014), with a characteristic neighborhood size of 20ms. Spike time clusters containing 
less than 5 spikes were discarded. The center of each detected cluster of spike times was matched 
to the nearest peak in the PSTH. A threshold of ‍θ = b + 3‍ Hz was applied to the matching PSTH 
peak, where ‍b = 2 median(x)‍ is the baseline of each PSTH ‍x‍. Peaks in the PSTH that fell below ‍θ‍ were 
discarded, and all others were kept as valid peaks. Peak widths were measured as the temporal sepa-
ration of the middle 68% (16th to 84th percentile) of spike times within each cluster.

To determine whether V1 suppression changes dLGN responses in a divisive or subtractive manner, 
we fit a threshold-linear model using repeated random subsampling cross-validation. To this end, 
we first selected a random set of 50% of the trials for each condition for fitting to the timepoint-by-

timepoint responses a threshold linear model given by ‍Rsupp = s Rfb + b‍, where ‍Rsupp > 0‍, with ‍s‍ repre-

senting the slope and ‍b‍ the offset. Fitting was done using non-linear least squares (scipy.optimize.
curve_fit). Throughout Figure 2, we report the resulting ‍x‍-intercept as the threshold. We evaluated 
goodness of fit (‍R2‍) for the other 50% of trials not used for fitting. We repeated this procedure 1000 
times and considered threshold and slope as significant if the central 95% of their distribution did not 
include 0 and 1, respectively.

Characterization of responses to drifting gratings
For display of spike rasters (Figure  3), trials were sorted by condition. We computed orientation 
tuning curves by fitting a sum of two Gaussians of the same width with peaks 180° apart:

	﻿‍ R(θ) = R0 + Rpe−
(θ−θp)2

2σ2 + Rne−
(θ−θp+180)2

2σ2 ‍� (4)

In this expression, ‍θ‍ is stimulus orientation (0–360°). The function has five parameters: preferred 
orientation ‍θp‍, tuning width ‍σ‍, baseline response (offset independent of orientation) R0, response at 
the preferred orientation ‍Rp‍, and response at the null orientation ‍Rn‍.

Orientation selectivity was quantified according to Bonhoeffer et al., 1995; Olsen et al., 2012 as

	﻿‍ OSI =
√

(
∑

Rk sin(2θk))2+(
∑

Rk cos(2θk))2
∑

Rk ‍� (5)

where ‍Rk‍ is the response to the ‍k‍ th direction given by ‍θk‍. We determined OSI for each unit during 
both feedback and suppression conditions.

We computed the first harmonic of the response ‍R‍ from the spike trains according to Carandini 
et  al., 1997 to obtain the amplitude and phase of the best-fitting sinusoid, which has the same 
temporal frequency as the stimulus. For each trial, we calculated

	﻿‍
R = (1/D)

∑
k

cos(2πftk) + i sin(2πftk)
‍� (6)

where ‍D‍ is the stimulus duration, ‍f ‍ is the temporal frequency of the stimulus, and the tk are 
the times of the individual spikes. We excluded the first cycle to avoid contamination by the onset 
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response. For (Figure 3g), we calculated average amplitude F1 by obtaining the absolute value of 
the complex number ‍R‍ on each trial, before averaging across trials, to avoid potential confounds 
due to differences in response phase across conditions. For the comparison of response phase, we 
focused on the orientation which elicited the maximal cycle average response across both feedback 
and suppression conditions.

Cell typing
Units were classified as suppressed by contrast (SbC) or not suppressed by contrast (non-SbC) by 
comparing their mean firing rates during full-screen drifting grating presentation to their mean firing 
rates during blank-screen presentation. Units were classified as SbC if they were visually responsive 
to gratings (see below) and had a median z-scored response across orientation conditions of ‍≤ −3‍ 
during at least one grating experiment. Otherwise, units were classified as non-SbC. SbC units seem 
to constitute a sizeable fraction in our dataset, which is similar to our previous results (Román Rosón 
et al., 2019), where SbC was also found to be among the overrepresented retinal ganglion cell (RGC) 
types providing input to dLGN.

To identify electrode channels within the dLGN, and their relative depth, which could be useful to 
distinguish between shell and core, we concentrated on the RF progression as assessed with MUAe 
maps that were constructed using sparse noise experiments. Because RF progression is mainly along 
elevation, amplitudes of MUAe for each channel were collapsed across azimuth and then range normal-
ized. Channels with normalized amplitudes higher than an empirically set threshold (0.4) were consid-
ered part of dLGN. Non-detected channels located between detected channels were also included.

Direction selectivity index (DSI, Niell and Stryker, 2008) was calculated for each unit as

	﻿‍ DSI = Rp−Rn
Rp+Rn+2R0 ‍� (7)

where ‍Rp‍ and ‍Rn‍ are the firing rates in the preferred and null directions, respectively, extracted 
from tuning curves fit to drifting grating responses (see above), and R0 is baseline firing rate indepen-
dent of orientation.

The RF distance from the center of the screen was calculated for each unit by finding the position 
of the MUAe RF for the channel on which the unit’s mean spike waveform had the largest amplitude.

Exclusion criteria
Neurons with mean evoked firing rates < 0.01 spikes/s were excluded from further analysis. For movie 
clips, only neurons with SNR ‍≥ 0.015‍ in at least one of the conditions in an experiment were consid-
ered. Of this population, 2 neurons were excluded from the analysis of the parameters returned 
by the threshold linear model, because their ‍R2‍ was lt0. For gratings, we converted firing rates in 
response to each orientation to z-scores relative to responses to the mean luminance gray screen. We 
only considered visually responsive neurons, with an absolute z-scored response ‍≥ 2.5‍ to at least 1 
orientation. For the analysis of response phase, we only considered neurons with a peak of the cycle 
average response of at least 10 Hz in both feedback and suppression conditions, and an F1/F0 ratio of 
at least 0.25.

Locomotion
We used the Euclidean norm of three perpendicular components of ball velocity (roll, pitch, and yaw) 
to compute animal running speed. For the analysis of neural responses as a function of behavioral 
state, locomotion trials were defined as those for which speed exceeded 1 cm/s for at least 50% of 
the stimulus presentation, and stationary trials as those for which speed fell below 0.25 cm/s for at 
least 50% of the stimulus presentation. To quantify the effect of running vs. sitting on various response 
properties, the run modulation index (RMI) was defined as

	﻿‍ RMI = running−sitting
running+sitting ‍� (8)

Eye tracking
The stimulus viewing eye was filmed using an infrared camera under infrared LED illumination. Pupil 
position was extracted from the videos using a custom, semi-automated algorithm. Briefly, each video 
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frame was equalized using an adaptive bi-histo-
gram equalization procedure, and then smoothed 
using median and bilateral filters. The center of 
the pupil was detected by taking the darkest point 
in a convolution of the filtered image with a black 
square. Next, the peaks of the image gradient 
along lines extending radially from the center 
point were used to define the pupil contour. Lastly, 
an ellipse was fit to the contour, and the center of 
this ellipse was taken as the position of the pupil. 
A similar procedure was used to extract the posi-
tion of the corneal reflection (CR) of the LED illu-
mination. Eye blinks were automatically detected 
and the immediately adjacent data points were 
excluded. Adjustable algorithm parameters were 
set manually for each experiment. Output pupil 
position time-courses were lightly smoothed, and 
unreliable segments were automatically removed 
according to a priori criteria. Finally, the CR posi-
tion was subtracted from the pupil position to 
eliminate translational eye movements, and pupil 
displacement in degrees relative to the baseline 
(median) position was determined by

	
‍θ = 2 arcsin(d/2)

r ‍� (9)

where ‍d‍ is the distance between the pupil 
and the baseline position, and ‍r = 1.25‍ mm is the 
radius of the eye (Remtulla and Hallett, 1985). 
Angular displacement was computed separately 
for ‍x‍ and ‍y‍ directions.

Eye position standard deviation was computed 
by first taking the standard deviation of the hori-
zontal eye position at each time point across 
trials, and then averaging over the 5  s during 
which the visual stimulus was presented. We 
focused on horizontal eye position because hori-
zontal and vertical eye movements tend to occur 
in tandem under head-fixed conditions, and the 
horizontal position variance is larger (Sakatani 
and Isa, 2007), thus serving as a better proxy for 
variance in 2D. For each experiment, trials were 
sorted either by the presence of optogenetic 
suppression of CT feedback (Figure  1—figure 
supplement 2h), or by the behavioral state of 
the animal as described above (Figure 5—figure 
supplement 1h). The eye position standard devi-
ation FMI and RMI (Figure 1—figure supplement 
2i and Figure  5—figure supplement 1i) were 
calculated in the same manner as for the neural 
response properties.

Table 1. Breakdown of sample sizes (N) for the 
analyses of neural data.
See text for details.

Neurons Mice

Figure 1f–i 65 6

Figure 2e–i 63 6

Figure 3c–e and g 44 4

Figure 3f 28 4

Figure 3h–i 35 3

Figure 4a–b 39 4

Figure 5c–f,i–l 66 6

Figure 6, a1-3 64 6

Figure 6, a2 58 6

Figure 6, a4 63 6

Figure 6, b1 and b3 63 6

Figure 6, b2 58 6

Figure 6, b4 62 6

Figure 6, C1,3 and 4 59 6

Figure 6, c2 56 6

Figure 1—figure supplement 2a 65 6

Figure 1—figure supplement 2b,g 57 6

Figure 1—figure supplement 2c 63 6

Figure 1—figure supplement 2d-f, i 64 6

Figure 1—figure supplement 2h 6

Figure 1—figure supplement 3a,c 39 4

Figure 1—figure supplement 3b,j 63 6

Figure 1—figure supplement 3d 54 6

Figure 1—figure supplement 3e 64 6

Figure 1—figure supplement 3f, h 38 4

Figure 1—figure supplement 3g 62 6

Figure 1—figure supplement 3i 53 6

Figure 1—figure supplement 4e-h 62 3

Figure 1—figure supplement 4l-n 73 3

Figure 1—figure supplement 5c,d,h,i 19 1

Figure 1—figure supplement 6c-f 35 5

Figure 1—figure supplement 6g 65 6

Figure 1—figure supplement 6h 56 3

Figure 1—figure supplement 6i 64 6

Figure 1—figure supplement 6j 54 3

Figure 3—figure supplement 1a,c,e 44 4

Figure 3—figure supplement 1b,f,h,i 42 4

Figure 3—figure supplement 1d 36 4

Figure 3—figure supplement 1g 40 4

Table 1 continued on next page
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Analysis of pupil dilation during 
movies
Following (Reimer et al., 2014), changes in pupil 
area collected during movie clip presentation (e.g. 
Figure 5—figure supplement 2a) were measured 
at 20ms resolution. Spiking responses were 
binned to match the temporal resolution of the 
pupil change signal, masked to exclude periods 
of locomotion (> 0.25 cm/s), and then further 
masked to only include bins corresponding to the 
top or bottom quartiles (dilation or constriction) 
of the pupil area dynamics. Neural responses 
(firing rate, reliability, and SNR) were then calcu-
lated separately for the remaining unmasked 
top or bottom pupil quartile bins. To make our 
analyses comparable to those obtained for V1 by 
Reimer et al., 2014, we considered pupil-related 
response modulations as a function of instanta-
neous firing rate. For Figure  5—figure supple-
ment 2c, we therefore separated each time point 
of the PSTH, determined without taking pupil 
size into account, into firing rate quartiles. We 
then computed, for each neuron, the % change 
in median firing rates between top and bottom 
pupil quartiles in each of the four firing rate quar-
tiles. While Reimer et al., 2014 observed a multi-

plicative effect of pupil size change on V1 responses to movies, our results for dLGN rather resemble 
an inverted U-shape pattern.

Statistical methods
To assess statistical significance, we fitted and examined multilevel linear models (Gelman and Hill, 
2007). Such models take into account the hierarchical structure present in our data (i.e. neurons nested 
in experiments, experiments nested in recording sessions, recordings sessions nested in animals), and 
eliminate the detrimental effect of structural dependencies on the likelihood of Type I errors (false 
positive reports) (Aarts et  al., 2014). By considering the nested structure of the data, multilevel 
models also eliminate the need for ‘pre-selecting’ data sets, such as one out of several experiments 
repeatedly performed on the same neurons. Whenever we have several experiments per neuron, we 
include all of them, and also show them in the scatter plots (‘observations’). We provide the sample 
size for each analysis in Table 1. To account for repeated measurements, we fitted by-neuron random 
intercepts and random slopes over measurement conditions (V1 control vs V1 suppressed). By-neuron 
random intercepts model, the difference between neurons in overall firing rates, while by-neuron 
random slopes model between-neuron differences in how they responded to V1 suppression. Where 
possible, we included random intercepts for experiments nested in recording sessions, nested in 
mice, and random intercepts and slopes for neurons partially crossed in experiments. In cases where 
the model structure was too complex for a given data set (i.e. did not converge, or gave singular fits), 
we simplified the random effects structure by removing one or more terms. We fit these models in 
R (R Core Team, 2017), using the lme4 package (Bates et al., 2015). We estimated F-values, their 
degrees of freedom, and the corresponding p-values using the Satterthwaite approximation (Luke, 
2017) implemented by the lmertest package (Kuznetsova et al., 2017). For each analysis, we provide 
the exact model specification and the complete output of the model (see Data and code availability).

Throughout the manuscript, uncertainty in estimated regression slopes is represented as ‍slope ± x‍, 
where ‍x‍ is ‍2×‍ the estimated standard error of the slope.

Acknowledgements

Neurons Mice

Figure 3—figure supplement 1i 35 4

Figure 4—figure supplement 1a 42 4

Figure 4—figure supplement 1b,k,i 43 4

Figure 4—figure supplement 1c-d,g,i 65 6

Figure 4—figure supplement 1e 36 3

Figure 4—figure supplement 1f 29 3

Figure 4—figure supplement 1h, i 44 4

Figure 5—figure supplement 1a 66 6

Figure 5—figure supplement 1g 56 6

Figure 5—figure supplement 1c 57 6

Figure 5—figure supplement 1d-f, i 65 6

Figure 5—figure supplement 1h 6

Figure 5—figure supplement 2d-g 57 6

Figure 6—figure supplement 1,a1,b1,c1 37 4

Figure 6—figure supplement 1, a2,c2 34 3

Figure 6—figure supplement 1, b2 33 3

Table 1 continued
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ABSTRACT15

The dorsolateral geniculate nucleus (dLGN) of the thalamus is an essential processing stage for retinal signals to reach the
primary visual cortex (V1). How these feedforward signals are modulated by cortico-thalamic (CT) feedback and behaviour
remains an open question. Here, we recorded extracellular responses in dLGN of awake mice to a rich movie stimulus,
while selectively and reversibly photo-suppressing V1 layer 6 (L6) CT pyramidal cells and simultaneously tracking locomotion
behaviour and pupil size. To estimate spatiotemporal receptive fields (RFs) and the impact of CT feedback and behavioral
modulations, we predict the recorded dLGN responses using a generalized linear model (GLM) with a spline basis (spline-LNP).
We found that the spline-LNP model successfully captured diverse spatial and temporal RF shapes, such as different RF
polarities and uni- vs. bimodal temporal responses. The shapes of the modulatory kernels allowed to independently quantify
their contributions: we found, on average, positive model kernels for running and pupil size, consistent with the overall
enhancement of dLGN responses with behavioral state; we also found, on average, negative model kernels for optogenetic
feedback suppression, capturing the removal of top-down excitation. Finally, training models on either movies or artificial noise
stimuli revealed RFs with similar characteristics, although the noise stimulus elicited overall lower firing rates. By integrating
feedforward drive, feedback modulation, and behavior into an interpretable spline-LNP model for dLGN responses, this work
presents an important step towards a quantitative understanding of how dLGN responses to complex, naturalistic stimuli are
modulated by CT feedback and behaviour.

16

Introduction17

The dorsolateral geniculate nucleus (dLGN) of the thalamus occupies a central position in the processing of visual information18

from retina to primary visual cortex (V1)1, 2, being one of the first visual processing stages that combines signals from multiple19

visual and extra-visual brain areas3. Thus, rather than only relaying retinal information to V1, the local and long-range circuits20

in dLGN transform the feedforward retinal inputs: these transformations include the recombination of retinal inputs for novel21

feature selectivity4–8, the sharpening of spatial and temporal responses through inhibition9, the contextual modulations by L622

cortico-thalamic (CT) feedback10–15, as well as the gating of responses according to signals reflecting the animal’s behavioural23

state transmitted by brain stem nuclei16–20. While these factors have often been studied in isolation, it is still poorly understood24

how feedforward retinal input and the modulations by CT feedback and behavioural state act in combination to shape dLGN25

responses, in particular during wakefulness and in the context of a rich naturalistic visual stimulus2, 3.26

Past studies have established how CT feedback and behavioural state act separately on dLGN activity. Concerning the27

effects of CT feedback, in face of a huge diversity of findings it seems agreed that CT feedback can sharpen spatial and temporal28

properties of dLGN RFs and change dLGN firing mode10, 14, 21–24. In addition, effects of CT feedback on dLGN firing rates29

seem to be particularly robust during viewing of naturalistic movies, where they can be well captured by an increase in response30



gain18. Concerning state-dependent modulations, the dLGN has long been known as one of the earliest stages in the visual31

hierarchy where activity is shaped by the animal’s behavioural state25–27. For instance, in the mouse, arousal, as inferred by32

locomotion28, 29 or pupil dilation18–20, 30, can enhance the responses of dLGN neurons. A quantitative understanding of the33

relative strengths of these extraretinal effects on dLGN responses during wakefulness and how they might depend on the visual34

stimulus is currently lacking.35

In order to disentangle the combined impact of different extra-visual influences and investigate neuronal response properties36

to arbitrary visual stimuli, a useful framework is offered by generalized linear models (GLMs)31–33. In the early visual37

system34, 35, including the dLGN36, GLMs are generalizations of linear-nonlinear-Poisson (LNP) models. Here, the stimulus38

is firstly filtered linearly in space and time; the output of this filter is then passed through a non-linear function which39

translates input to a firing rate; this rate is then used to generate spikes according to Poisson process. GLMs can, in addition,40

contain predictors accounting for any additional sensory, behavioral, or inter-neuronal influences. While GLMs are purely41

phenomenological models, they offer the advantage of being interpretable: for instance, GLM filters applied to the stimulus42

approximate the integration by the spatio-temporal receptive field (RF), and filters applied to any additional inputs represent43

spike-induced gain adjustments33, 37. Pioneered in the retina34, GLMs have since then been used in numerous studies to separate44

influences of the visual stimulus and other variables, like spike history, interneuronal interaction effects, task-engagement,45

learning, reward prediction, task-related motor action, locomotion, and arousal38–42. In dLGN, GLMs have previously been46

employed to separate retinal from extra-retinal36 and spike-history influences36, 43.47

Here, we investigated how feedforward, feedback and behavioural state signals influence dLGN activity in awake, head-fixed48

mice viewing a complex, dynamic movie stimulus. To this end, we simultaneously recorded extracellular dLGN activity, mouse49

run speed and pupil size, while photosuppressing CT feedback during stimulus presentation. We then fitted a spline-based50

LNP model containing predictors for the spatio-temporal RF, CT feedback and behavioral variables to predict dLGN responses.51

The model was able to capture dLGN responses to the movie in a held-out test set, and yielded biologically plausible filters.52

Compared to a null model containing only the visual stimulus as predictor, all additional predictors, representing CT feedback53

and behavioural state, contributed to successful performance. On average, we found that both CT feedback and behavioural54

state enhanced dLGN responses. Finally, a comparison of filters obtained from models fitted to responses under different visual55

stimulation conditions revealed that spatio-temporal RFs predicted from the responses to the dynamic movie stimulus were56

similar to those based on responses to artificial noise stimuli. Together, our interpretable model of dLGN activity promises to57

present an important step towards a quantitative understanding of how dLGN responses to complex, naturalistic stimuli are58

modulated by CT feedback and behavioural state.59

Results60

In vivo dLGN activity, locomotion and eye-tracking during movie presentation and optogenetic L6CT feed-61

back suppression62

To investigate how CT feedback, locomotion and arousal modulate thalamic responses, we recorded in vivo extracellular63

dLGN activity in head-fixed mice together with run speed and pupil size, while randomly photo-suppressing L6CT feedback64

(Figure 1a-c). We presented a complex, dynamic movie stimulus that consisted of a diverse sequence of black-and-white scenes65

from various feature films (’movies’, Figure 1c). To assess the effect of V1 L6CT feedback suppression, we accompanied the66

movie stimulus with a random train of 1 s optogenetic pulses occurring each second with 50 % chance. In order to later model67

dLGN responses to the movies, we designated 80 % of the movie scenes as training sets and 20 % as test set. Training sets were68

composed of 8 blocks of 36 unique 5 s movie clips (scenes). The test set consisted of 8 scenes repeated 9 times throughout the69

stimulus.70

In order to suppress L6CT feedback directly and reversibly, we conditionally expressed the soma-targeting, chloride-71

conducting channelrhodopsin stGtACR2-RFP44 in L6CT pyramidal cells by injecting a small volume of Cre-dependent AAV72

into V1 of Ntsr1-Cre mice45 (Figure 1d,e). The high light sensitivity of stGtACR2, its strong photocurrents, and its targeting73

to the soma and axon-initial segment (AIS) are ideal to avoid unintended side-effects during photosuppression, which can74

include accidental axonal depolarization at high light intensities46–48. We used post-mortem histological analyses to confirm75

both the localisation of stGtACR2 to L6CT somata and the AIS (Figure 1e, left), and the correct electrode position in dLGN76

(Figure 1e, right).77

We found rich neural responses while mice viewed our dynamic movie stimulus (Figure 1f). As illustrated for an example78

neuron during a small segment of our recording, firing rates varied across time, likely reflecting a combination of different input79

sources. These presumably included aspects related to the visual stimulus, such as the time-varying drive by specific features80

that occurred in and around the receptive field of the example neuron, and slower modulations of global luminance changes81

in the different movie scenes (“stimulus intensity”). Responses also encompassed modulations arising from the randomly82

occurring optogenetic suppression of CT feedback. In addition, other sources of inputs affecting the time-varying firing rates83

were expected to be modulations of behavioural state, which we inferred from the animal’s pupil size and running speed. For84
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Figure 1 | Experimental design and dLGN responses to the movie stimulus. (a) Schematic of the recording setup.
(b) Schematics of CT feedback photosuppression. (c) Movie stimulus consisting of 8 sets of unique, randomized training
scenes (Training 1, 2, etc.; 36 unique scenes per training block; 5 s per scene), interleaved with 9 sets of the same repeated test
scenes (Test; 8 scenes repeated across blocks; 5 s per scene), and flanked by a period of blank grey screen presentation at the
beginning and at the end (Spon). To assess the effect of L6CT FB suppression, the stimulus presentation was accompanied by a
random train of optogenetic pulses (Opto, 1 s duration, 50 % probability every second). (d) Schematic of viral transduction.
of V1 L6CT pyramidal neurons in Ntsr1-Cre mice with Cre-dependent AAV-stGtACR2-RFP virus expressing RFP-tagged
chloride-conducting channelrhodopsin used for optogenetic suppression of V1 L6 CT feedback. (e) Histology. Left: Coronal
section near V1 injection site, with stGtACR2-RFP expression (red) in somata and axon-initial segments of Ntsr1+ cells. Blue:
DAPI; scale bar: 1 mm. Inset: Magnification of area marked by dotted rectangle. Scale bar: 50 µm; top-left number: slice
position relative to Bregma. Right: Coronal section of dLGN recording sites, with highlighted dLGN contours (dotted line),
and electrode tracks for two consecutive recording sessions (arrows 1 and 2) being marked by DiI-stain (yellow). Scale bar:
1 mm. (f) Example dLGN recording with stimulus intensity averaged per movie frame across the entire screen, opto pulse
train, peri-stimulus time histogram (PSTH, spikes/s) of one example neuron, pupil area, and run speed for one example training
sequence and one repeat of the test sequence. (g) Responses of the example dLGN neuron (same as in f) for periods of L6CT
feedback photosuppression onsets (blue) and for control periods without photosuppression (black). Top: Raster plots, red:
Spikes fired in bursts; bottom: Corresponding PSTHs. Blue horizontal bar: Photosuppression period. (h) Responses of the
example dLGN neuron (same as in f) triggered on transitions in locomotion. Top: Raster plots for transition from sit→run
(green) and from run→sit (black), with running periods marked by green bars. Bottom: Corresponding PSTHs. (Continued on
next page)
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Figure 1 (Continued) (i) Effects of L6CT FB photosuppression (left), locomotion (middle), and pupil size (right) on dLGN
mean firing rates (N = 159,152,62 neurons, respectively). Inset: Histogram of firing rate fold-change (log2-ratio) relative to
control. (k) Correlation matrix of average stimulus intensity, optogenetic light pulses, mouse run speed and pupil area traces,
showing average correlation values across experiments (N = 6). *** = p < 0.001.

instance, in the time between 90–130 s, larger pupil size and faster run speed seemed to coincide with increases in firing85

rates. How these various inputs interact to specifically affect the neural responses on short and longer timescales, however, is86

impossible to deduce from visual inspection alone.87

To explore whether a simple approach based on condition-wise averaging could reveal the effects of CT feedback and88

run-indexed behavioural state, we first split the continuous neuronal responses to the onsets of optogenetic light pulses or89

transitions between sitting and running, respectively. For the example neuron shown in Figure 1f, the concatenation of all90

onsets of L6CT photosuppression revealed that photosuppression of CT feedback suppression reduced its activity by almost91

50% (Figure 1g). As regards the effect of locomotion, consistent with previous investigations28, 29, the activity of this example92

neuron also slowly changed around transitions from sitting to running and vice versa (Figure 1h).93

We observed similar effects in the population of recorded neurons. First, the net effect of V1 L6CT FB suppression on94

dLGN mean firing rates (FR) was on average suppressive (Figure 1i, left). By contrast, running periods were associated, on95

average, with increased FRs (Figure 1i, middle). Similarly, periods of large pupil sizes coincided with an average increase96

in FRs (Figure 1i, right). For all variables, however, we observed substantial neuron-by-neuron diversity, indicating that97

average effects will likely be limited in capturing to which degree responses of dLGN neurons are shaped by one or multiple98

extra-retinal influences.99

Having found effects of feedforward stimulus drive, CT feedback, run speed, and pupil size on dLGN firing rates separately,100

we went on to investigate to what extent they might be related. For instance, aside from indicating arousal, pupil size is101

also influenced by light intensity (pupil light reflex; e.g., Figure 1f, right), where increases in average stimulus intensity102

coincide with decreases in pupil size, and vice versa (Figure S1a). Indeed, across experiments, we found a negative correlation103

between pupil size and stimulus intensity (r =−0.41±0.14 (mean ± SD); p < 0.001 for 6/6 experiments, permutation test;104

Figure 1k). Consistent with previous results28, 49, 50, we also found a positive correlation between pupil diameter and run speed105

(r = 0.19±0.18; p < 0.001 for 5/6 experiments; Figure 1k), indicating that these indicators likely reflecting partially different,106

but also overlapping set of arousal states49, 50. Taken together, we found rich neural responses evoked by our dynamic movie107

stimulus, which were modulated in complex and neuron-specific ways by several non-retinal inputs, including behavioural108

variables and L6CT FB suppression.109

Modelling dLGN spatio-temporal RFs and their modulation by L6CT feedback, running and pupil size110

The need to quantify the complex relations of feedforward input, L6CT feedback, and behaviour, motivated us to next turn111

to a computational model that allowed us to quantitatively estimate the relative influences of each dLGN neuron’s sensory112

response properties and the various extraretinal modulations. To this end, we employed a spline-based linear-nonlinear-Poisson113

(spline-LNP) model51 (Figure 2a), a variant of the generalized linear model (GLM)33, 35, 52. Similar to other forms of GLMs,114

the spline-LNP offers interpretability, by predicting neural firing rates as a function of a linear filtering step, approximating115

the spatio-temporal RF, followed by a non-linearity and an inhomogeneous (time-varying) Poisson process to reflect the116

stochastic nature of neural spiking. Furthermore, the feedback and behavioural components of the model are added to the117

filtered spatio-temporal RF (Figure 2a), and thereby incorporate gain modulations33 by CT feedback, running, and pupil118

size. By exploiting a spline basis instead of operating on the pixels of the visual stimulus or the discrete time bins of the119

additional inputs, our model is efficient in producing smooth and local filters51. Moreover, in the context of our complex visual120

stimulus with substantial spatio-temporal redundancies typical of natural environments53, GLM-like models, in comparison to a121

simple spike-triggered average, are better suited for estimating spatio-temporal RFs, as illustrated for one example neuron in122

Figure S2.123

Given the known diversity of mouse dLGN response properties4, 54, we reasoned that the relative influence of the stimulus,124

CT feedback and behavioural factors in shaping dLGN responses will differ from neuron to neuron. Hence, for each neuron, we125

performed a grid search over potential model hyperparameters, to find the most suitable model configuration. Hyperparameters126

included, for instance, the number of spline bases for spatio-temporal RF fitting, the strength of regularisation, as well as the127

filter length for optogenetic, locomotion and pupil filter kernels (see Methods). We then chose, for each neuron, the model with128

the best performance in predicting the responses to the validation set (variance explained R2).129

We found a rich diversity of predicted GLM model filters, both for the dLGN neurons’ spatio-temporal RFs and the effects130

of CT feedback and the behavioural variables. As can be seen from the three example neurons shown in Figure 2b-d, our GLM131

model allowed us to describe a neuron’s polarity in terms of its spatial RF weights (ON/OFF) and its response dynamics in132
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Figure 2 | Spline-based linear-
nonlinear-Poisson (spline-LNP)
model of dLGN responses to
our dynamic movie stimulus
and their modulation by non-
retinal influences. (a) Schematics
of the spline-LNP model. The linear
stage filters the stimulus input and cor-
responds to the spatio-temporal RF.
The outputs of filters for CT feed-
back suppression and the behavioural
variables run speed and pupil area
are added to the output of the linear-
stage, which conceptually corresponds
to a gain modulation of the firing
rates33. Finally, the total output is
passed through a point non-linearity
(here, the softplus), resulting in a time-
varying rate parameter, which serves
as input to a Poisson process to gen-
erate stochastic spiking. Spikes are
time-binned to create firing rates. Dur-
ing model fitting, the GLM filters are
optimized to maximize the correlation
between observed and predicted firing
rates. (b) Fitted model for an exam-
ple dLGN neuron (same example neu-
ron as in Figure 1f-h) with learned
filters and firing rate predictions. Top
(left to right): Spatial and temporal
RF components of the spatio-temporal
RF extracted via singular value de-
composition (SVD). The negative spa-
tial RF weight values are indicative
of an OFF-cell, and the peak of the
temporal RF at -33 ms corresponds a
maximal response to a matching dark
stimulus 33 ms after its appearance.
The non-zero CT feedback suppres-
sion and run-filters suggest an influ-
ence by those predictors, whereas the
flat eye-filter indicates independence
of this neuron’s activity from pupil
size. Middle: Spatio-temporal RF at
individual time points prior to spik-
ing. Bottom: Observed (gray) ver-
sus predicted (purple) firing rates to
one training block (left) and test block
(right) of the movie stimulus, along
with the correlation coefficient (Pear-
son’s r). (c) and (d): Same as (b) for
two more example neurons.
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terms of its temporal RF kernel. As expected54, 55, the predicted spatio-temporal RFs were mostly circular, sometimes with an133

opposite-polarity surround, and varied across neurons in terms of location, polarity, RF size and temporal response dynamics.134

Considering the extra-retinal predictors, for the example neuron in Figure 2b (same example neuron as in Figure 1f-h),135

the model predicted an enhancing filter for run speed and a slightly suppressive filter for CT feedback suppression. These136

filter signs were consistent with our previous observations for this neuron, which showed suppression of firing rates during137

photosuppression of L6CT FB and an enhancement of rates triggered on transitions between sitting and running. Consistent138

with the diverse effects of the extra-retinal influences on firing rates across the population Figure 1i, we found a variety of139

GLM model filter shapes for the extra-retinal predictors. For instance, for the neuron in Figure 2c, the predicted filter shape140

for CT feedback suppression suggested that CT feedback did not modulate its activity. Yet, this neuron did not only process141

feedforward information, as the modelled filter for running speed indicated a substantial suppressive effect, whereas the filter142

for pupil size indicated a response enhancement. The third example neuron (Figure 2d) is interesting in that its contribution of143

the pupil size filter to firing rates seemed even larger than that of the spatio-temporal RF, despite the fact that the RF was well144

defined both in space and time.145

Having observed considerable variability in the magnitude and shape of the modelled filters across our example dLGN146

neurons, we next asked to which degree each predictor contributed to improving model performance. To investigate to which147

degree the integration of behavioural influences and L6CT FB suppression was relevant for predicting firing rates in our model,148

we compared the performance of our full model with that of model variants with different sets of predictor variables (Figure 3a).149

Indeed, comparing the correlation coefficient between observed and predicted responses across the population of recorded150

neurons, we found that a model with only a single filter related to the stimulus (’Stimulus only’ model), on average, performed151

worse than the full model including all predictors (r = 0.140 vs. r = 0.153; (Figure 3a, top)). However, when examining in152

more detail the contribution of the individual predictors in the current implementation of our GLM model, we realised that the153

performance gain by the full model was most strongly influenced by the inclusion of L6CT FB (r = 0.153, ’Stim + FB’ model,154

(Figure 3a, 2nd row, left))), since a model adding only this predictor performed better than the "stimulus only" model and in155

fact had equal performance compared to the full model. In contrast, models with filters for run speed or pupil size (Figure 3a,156

3rd and 4th row)) actually performed worse than the baseline ’Stimulus only’ model (all r < 0.134).157

To understand better, on a neuron-by-neuron basis, the various ways in which the non-retinal predictors contributed to158

the performance of our spline LNP model, and to relate the predicted filters to firing rate modulations by L6CT feedback,159

locomotion and pupil size, we next examined the GLM filter shapes. To this end, we split the recorded dLGN population160

into neurons that were modulated or non-modulated by those factors, as judged respectively by the FR opto-modulation index161

(OMI), the run-modulation index (RMI), and the eye-modulation index (EMI) (see Methods), and examined the averaged filter162

shapes (Figure 3b). As judged by visual inspection, we found that modulated neurons, as expected, had stronger absolute163

weights compared to non-modulated neurons, whose filter weights fluctuated around zero. In addition, the sign of the filters164

matched the sign of the average effects, with the filters for CT feedback suppression having overall negative weights, while165

filters for run speed and pupil size had positive weights. In summary, the absolute magnitude and sign of the filter weights166

suggest that our GLM model successfully recovered the influence of those factors in modulated vs. non-modulated units. In167

future analyses, it will be important to quantitatively related the weights and time course of the filters, and investigate whether,168

on a neuron-by-neuron basis, the modulation by extra-retinal predictors relates to the strength of feedforward processing.169

Comparing spatio-temporal receptive fields across stimuli170

Since RFs of visual neurons are not fixed, but can vary in size, complexity, and temporal dynamics when measured under171

different visual stimulation conditions56–60, we next asked whether the spatio-temporal RFs of our dLGN neurons differed when172

estimated from the movie compared to a sparse noise stimulus, classically used to measure RFs. To allow for a fair comparison,173

we equated the input image resolution and the models’ spatial degrees of freedom (number of spline bases; see Methods).174

Moreover, for both stimuli, we concentrated on the reduced model containing only a stimulus filter, since our previous analysis175

had revealed that the run speed and pupil size-related predictors conferred little benefit in terms of predictive performance in176

the current version of the model. In the future, when results for the improved versions of the model will be available, we will177

obviously include these predictors, since – in addition to investigating the stimulus dependence of spatio-temporal RFs – it will178

be equally interesting and relevant to investigate to which degree the modulation by the extra-retinal influences will depend on179

the stimulus type.180

As illustrated for an example dLGN neuron, our spline-LNP model was successful in recovering the spatio-temporal RF,181

also when fitted to responses recorded during the sparse noise stimulus (Figure 4a, top). More specifically, the extracted182

spatio-temporal RF of the example neuron was circular and had an ON-polarity, responding best to bright stimuli at around183

t =−40 ms. However, note that model performance was poor, with only occasional increases in firing rate predicted when the184

optimal stimulus was presented in the RF, which occurred rarely given the sparse nature of the visual stimulus. We expect185

that future versions of the model including the behavioural predictors will substantially improve response predictions. With186
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these caveats in mind, the spatio-temporal RF predicted for the sparse noise stimulus qualitatively resembled that predicted for187

the movie stimulus (Figure 4a, bottom), in terms of general polarity, location, and temporal dynamics. Interestingly, visual188

inspection suggested that the opposite polarity surround in the spatial RF might be stronger during movies compared to sparse189

noise stimuli.190

We observed similar results for the population of dLGN neurons recorded in both stimulus conditions (n = 27, Figure 4b).191

Spatial RFs tended to be larger for the movie compared to the sparse noise stimulus (99.0±47.3 deg2 vs. 73.9±36.3 deg2;192

Wilcoxon test: p = 0.08), which might potentially be related to the spatial correlations in natural movies or the larger variation193

in eye position during viewing natural movies. As observed for the example neuron, model prediction performance was worse194

for the sparse noise stimulus (rtest sparse noise vs. movie: 0.11±0.06 vs. 0.22±0.12; Wilcoxon test: p = 0.00004). This195

might be related to the overall sparser activity during the sparse noise compared to the movie stimulus (mean FR sparse noise196

vs. movie: 10.3±5.3 sp/s vs. 7.3±5.1 sp/s; Wilcoxon test: p = 0.0001). In future work, the relationship between performance197

and firing rate should be explicitly tested by correlating the two variables or mean-matching the firing rates across stimuli61.198

To conclude, the spline-LNP model might be able to successfully generalize its ability to extract spatio-temporal RFs across199

stimuli, including a sparse noise stimulus, in spite of the drastically different stimulus nature.200
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Discussion201

Here, we asked how dLGN responses are influenced by the combined impact of retinal feedforward inputs, CT feedback and202

behavioural state. To this end, we predicted dLGN single unit responses using a spline-based LNP model, which received as203

inputs the visual stimulus, periods of optogenetic suppression of CT feedback, and as behavioral variables the animal’s run204

speed and pupil size. Our LNP model was able to recover spatio-temporal RFs of individual dLGN neurons and modulatory205

influences of CT feedback and behavioral markers for arousal, which were consistent with the previous literature. For the206

current version of the model, we found that for the population of recorded neurons, at least some of the non-visual model inputs207

improved response predictions. Finally, comparing the extracted RFs to a movie stimulus and to an artificial noise stimulus,208

we found overall similar spatio-temporal RFs, with spatial RF sizes tending to be larger for the movie compared to the noise209

stimulus, potentially related to the lower contrast or the larger variability in eye position for the movie stimulus. Together,210

our study provides a modelling framework that promises a quantitative understanding of how dLGN responses to complex,211

naturalistic stimuli are modulated by CT feedback and behaviour.212

One key advance of our study is to extend previous LNP models of dLGN responses to naturalistic movies, by incorporating213

additional predictors for CT feedback and behavioural state. Indeed, we directly build on work performed in anaesthetised214

cats, which explored LNP model architectures and their GLM extensions to predict dLGN responses to artificial stimuli and215

naturalistic movies43, 56. Importantly, as pioneered by Babadi and colleagues for spots of different sizes and luminances in216

dLGN of the anesthetized cat36, the specific aim of the GLM presented in this study was to provide a quantitative statistical217

model probing how dLGN responses are shaped by non-retinal factors. While Babadi and colleagues36 exploited simultaneous218

recordings of retinal S-potentials with dLGN spiking output and could thus separate the impact of the retinal input from219

the combined role of intra-dLGN computations and influences mediated by the visTRN and CT feedback, the optogenetic220

suppression of L6 CT pyramidal cells allowed us to tease apart the influence of V1 L6 CT feedback. In line with Babadi’s221

study36, who reported that the incorporation of the non-retinal predictor in their GLM improved prediction quality, in particular222

for stimulus sizes that exceeded the classical RF size36, we found in our model that including the predictor for CT feedback223

suppression improved prediction quality. As noted before36, the amount of improvement varied across neurons, in line with224

experimental observations of diverse effects of CT feedback62. Note that for the model version reported here, adding predictors225

for pupil size and locomotion did not improve the quality of the model predictions. Preliminary results obtained with a modified226

model, and improved pre-processing and quality control of the pupil size signal, indicate that this conclusion will likely change227

in future iterations of our methods.228

In the current model version, we chose to use a softplus nonlinearity over an exponential nonlinearity as we encountered229

issues with model convergence with the latter. However, there are good theoretical and empirical reasons to prefer an exponential:230

mathematically, exponentiating the summed filter responses for all three extra-retinal predictors is equivalent to modelling them231

as multiplicative influences on neural activity33, i.e. gain modulations. In the context of locomotion, such gain modulations have232

been known to operate on several stimulus dimensions, such as orientation, contrast, temporal and spatial frequency)28, 29, 50, 63
233

(but see28, 64 for stimulus size). Similarly, in case of pupil size change, multiplicative influences on responses to natural movies234

have been reported for V150. Finally, a multiplicative model generally captured well the effects of CT feedback on dLGN235

responses to movies18. Together, these previous findings would clearly justify such a design for the next iteration of our GLM.236

The multiplicative behaviour of the predictors, however, will obviously not be able to cover any sharpening of orientation237

selectivity, as reported for effects of pupil dilation on V1 orientation tuning curves50, and the well-known changes in spatial238

integration of dLGN neurons driven by CT feedback13, 65. Nevertheless, some of these shortcomings could be addressed in239

further extensions of the model (see below).240

The predicted influences of CT feedback, locomotion, and pupil size matched previous results that considered these241

extra-retinal factors mainly independently. Consistent with previous findings18–20, 28, 29, increases in running speed and pupil242

size were related to overall higher dLGN responses, and were also captured by mostly positive filter shapes in our GLM.243

Our findings of decreased dLGN responses and negative GLM model filters for optogenetic suppression of CT feedback244

also matched previous results obtained for naturalistic movies18. It should be noted, however, that CT feedback effects vary245

dramatically across studies12, 62, 66–70, for reasons that are still incompletely understood and that might be related to the type of246

visual stimulus, the feedback manipulation method, or the state of the animal. Beyond these average effects of the extra-retinal247

influences reported in our study, one striking observation we made concerns their variability across neurons. Further analyses248

will be required to explain this variability, by testing, for instance, differential effects for functional cell types, such as ON- vs.249

OFF-cells, transient vs. sustained cells, suppressed-by-contrast cells, obtained from other stimuli recorded but not yet analysed250

here.251

Consistent with previous studies quantifying RFs in the mouse dLGN54, 55, 71, 72, our spline-LNP model predicted circular252

spatial RFs, which often consisted of a single domain responding to either light increases or decreases. As has been noted253

before54, 55, fewer dLGN neurons also had an opposing surround. Given previous reports of similar proportions of ON- and254

OFF-center71, or even a higher proportion of OFF-center dLGN neurons54, we were surprised to find a tendency for more255
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ON-center compared to OFF-center cells. For the final version of this study, a statistical quantification of the relative frequencies256

of ON- and OFF-cells will be imperative. Similarly, dLGN receptive fields differed in their temporal profile, with some257

neurons having a biphasic profile indicative of transient responses, while others had a monophasic profile indicative of sustained258

responses (see also54).259

We found a trend for larger spatial RFs obtained from movie vs. sparse noise stimulation. RF size is known to be inherently260

variable, given its sensitivity to both low level stimulus attributes, such as contrast, stimulus context, and behavioural variables,261

such as locomotion and eye movements28, 58–60, 64. To which degree some or all of these factors contribute to the difference in RF262

size between the two simuli remains a matter of future quantification. Interestingly, a previous study comparing spatio-temporal263

RFs fitted by a LNP model to movies vs. white noise stimuli in anesthetized cats56 also reported larger RFs for movies264

compared to white noise, even when the stimuli were equalized in terms of contrast. Strikingly, movies also led to a stronger265

surround and a shorter temporal width of the RF56, potentially to reduce the spatio-temporal redundancy in natural stimuli.266

In the future, there are a number of possible extensions of our spline-LNP model. First, CT feedback could be modelled as267

a spatio-temporal filter instead of a single gain factor, accounting for the well-known differential effects of CT feedback on268

spatial integration13, 65. Second, instead of considering the spatio-temporal RF fixed, the model could contain mechanisms269

for fast adaptation of gain and integration time according to luminance and contrast56, 73, accounting for the constant changes270

in spatial and temporal integration elicited by dynamic natural stimuli. Finally, an important non-linear feature of thalamic271

responses are bursts, which are thought to be related not only to the behavioral state of the animal26, 28, 63, but can also be272

triggered by features of natural stimuli74. Different model architectures will be needed to include this non-linear response273

feature of thalamic neurons.274

In conclusion, our results add to the growing body of evidence that dLGN activity is influenced not only by retinal visual275

inputs but also extra-retinal influences from CT feedback and behavioural state. While our model is purely phenomenological33,276

this work presents an important step towards a quantitative understanding of how dLGN responses to complex, naturalistic277

stimuli are shaped by the simultaneous influences of retinal feedforward inputs, CT feedback and behaviour. Future iterations278

of our model and further quantification of the results will be needed to finalise the conclusions.279

10/22



References280

1. Berson, D. Retinal ganglion cell types and their central projections. In Masland, R. H. (ed.) The Senses: a Comprehensive281

Reference, 491–520 (Elsevier Inc., 2008).282

2. Usrey, W. M. & Alitto, H. J. Visual Functions of the Thalamus. Annu. Rev. Vis. Sci. 1, 351–371, DOI: 10.1146/283

annurev-vision-082114-035920 (2015). 15334406.284

3. Weyand, T. G. The multifunctional lateral geniculate nucleus. Rev. Neurosci. 27, 135–157, DOI: 10.1515/285

revneuro-2015-0018 (2016).286

4. Román Rosón, M. et al. Mouse dLGN Receives Functional Input from a Diverse Population of Retinal Ganglion Cells287

with Limited Convergence. Neuron 102, 462–476, DOI: 10.2139/ssrn.3205414 (2019).288

5. Morgan, J. L., Berger, D. R., Wetzel, A. W. & Lichtman, J. W. The Fuzzy Logic of Network Connectivity in Mouse289

Visual Thalamus. Cell 165, 192–206, DOI: 10.1016/j.cell.2016.02.033 (2016).290

6. Hammer, S., Monavarfeshani, A., Lemon, T., Su, J. & Fox, M. A. Multiple Retinal Axons Converge onto Relay Cells in291

the Adult Mouse Thalamus. Cell Reports 12, 1575–1583, DOI: 10.1016/j.celrep.2015.08.003 (2015).292

7. Ellis, E. M., Gauvain, G., Sivyer, B. & Murphy, G. J. Shared and distinct retinal input to the mouse superior colliculus293

and dorsal lateral geniculate nucleus. J. Neurophysiol. 116, 602–610, DOI: 10.1152/jn.00227.2016 (2016).294

8. Liang, L. et al. A fine-scale functional logic to convergence from retina to thalamus. Cell 173, 1343–1355.e24, DOI:295

10.1016/j.cell.2018.04.041 (2018).296

9. Hirsch, J. A., Wang, X., Sommer, F. T. & Martinez, L. M. How inhibitory circuits in the thalamus serve vision. Annu.297

Rev. Neurosci. 38, 309–329, DOI: 10.1146/annurev-neuro-071013-014229 (2015).298

10. Sillito, A. M., Cudeiro, J. & Jones, H. E. Always returning: feedback and sensory processing in visual cortex and299

thalamus. Trends Neurosci. 29, 307–316, DOI: 10.1016/j.tins.2006.05.001 (2006).300

11. Briggs, F. & Usrey, W. M. Corticogeniculate feedback and parallel processing in the primate visual system. J. Physiol.301

589, 33–40, DOI: 10.1113/jphysiol.2010.193599 (2011).302

12. Olsen, S. R., Bortone, D. S., Adesnik, H. & Scanziani, M. Gain control by layer six in cortical circuits of vision. Nature303

483, 47–52, DOI: 10.1038/nature10835 (2012).304

13. Born, G. et al. Corticothalamic feedback sculpts visual spatial integration in mouse thalamus. Nat. Neurosci. 24,305

1711–1720, DOI: 10.1038/s41593-021-00943-0 (2021).306

14. Andolina, I. M., Jones, H. E. & Sillito, A. M. Effects of cortical feedback on the spatial properties of relay cells in the307

lateral geniculate nucleus. J. Neurophysiol. 109, 889–899, DOI: 10.1152/jn.00194.2012 (2013).308

15. Shepherd, G. M. G. & Yamawaki, N. Untangling the cortico-thalamo-cortical loop: cellular pieces of a knotty circuit309

puzzle. Nat. Rev. Neurosci. 22, 389–406, DOI: 10.1038/s41583-021-00459-3 (2021).310

16. McCormick, D. A. Neurotransmitter actions in the thalamus and cerebral cortex and their role in neuromodulation of311

thalamocortical activity. Prog. Neurobiol. 39, 337–388, DOI: 10.1016/0301-0082(92)90012-4 (1992).312

17. Sherman, S. M. & Guillery, R. W. Functional organization of thalamocortical relays. J. Neurophysiol. 76, 1367–1395,313

DOI: 10.1152/jn.1996.76.3.1367 (1996).314

18. Spacek, M. A. et al. Robust effects of corticothalamic feedback and behavioral state on movie responses in mouse dlgn.315

bioRxiv DOI: 10.1101/776237 (2022). https://www.biorxiv.org/content/early/2022/02/09/776237.full.pdf.316

19. Nestvogel, D. B. & McCormick, D. A. Visual thalamocortical mechanisms of waking state-dependent activity and alpha317

oscillations. Neuron 0, DOI: 10.1016/j.neuron.2021.10.005 (2021).318

20. Molnár, B. et al. Cell-Type Specific Arousal-Dependent Modulation of Thalamic Activity in the Lateral Geniculate319

Nucleus. bioRxiv DOI: 10.1093/texcom/tgab020 (2021).320

21. Cudeiro, J. & Sillito, A. M. Spatial frequency tuning of orientation-discontinuity-sensitive corticofugal feedback to the321

cat lateral geniculate nucleus. The J. Physiol. 490, 481–492, DOI: 10.1113/jphysiol.1996.sp021159 (1996).322

22. Hasse, J. M. & Briggs, F. Corticogeniculate feedback sharpens the temporal precision and spatial resolution of visual323

signals in the ferret. Proc. Natl. Acad. Sci. United States Am. 114, E6222–E6230, DOI: 10.1073/pnas.1704524114324

(2017).325

23. Sherman, S. M. Tonic and burst firing: Dual modes of thalamocortical relay. Trends Neurosci. 24, 122–126, DOI:326

10.1016/S0166-2236(00)01714-8 (2001).327

11/22



24. Wang, W., Jones, H. E., Andolina, I. M., Salt, T. E. & Sillito, A. M. Functional alignment of feedback effects from328

visual cortex to thalamus. Nat. Neurosci. 9, 1330–1336, DOI: 10.1038/nn1768 (2006).329

25. Swadlow, H. A. & Weyand, T. G. Corticogeniculate neurons, corticotectal neurons, and suspected interneurons in visual330

cortex of awake rabbits: receptive-field properties, axonal properties, and effects of EEG arousal. J. Neurophysiol. 57,331

977–1001, DOI: 10.1152/jn.1987.57.4.977 (1987).332

26. Bezdudnaya, T. et al. Thalamic burst mode and inattention in the awake LGNd. Neuron 49, 421–432, DOI: 10.1016/j.333

neuron.2006.01.010 (2006).334

27. Cano, M., Bezdudnaya, T., Swadlow, H. A. & Alonso, J.-M. Brain state and contrast sensitivity in the awake visual335

thalamus. Nat. Neurosci. 9, 1240–1242, DOI: 10.1038/nn1760 (2006).336

28. Erisken, S. et al. Effects of locomotion extend throughout the mouse early visual system. Curr. Biol. 24, 2899–2907,337

DOI: 10.1016/j.cub.2014.10.045 (2014).338

29. Aydın, Ç., Couto, J., Giugliano, M., Farrow, K. & Bonin, V. Locomotion modulates specific functional cell types in the339

mouse visual thalamus. Nat. communications 9, 4882, DOI: 10.1038/s41467-018-06780-3 (2018).340

30. Liang, L. et al. Retinal inputs to the thalamus are selectively gated by arousal. Curr. Biol. 30, 3923–3934.e9, DOI:341

10.1016/j.cub.2020.07.065 (2020).342

31. McCullagh, P. Generalized linear models (Chapman and Hall, Boca Raton London New York, 1989).343

32. Paninski, L. Maximum likelihood estimation of cascade point-process neural encoding models. Network: Comput.344

Neural Syst. 15, 243–262, DOI: 10.1088/0954-898x_15_4_002 (2004).345

33. Pillow, J. W. et al. Spatio-temporal correlations and visual signalling in a complete neuronal population. Nature 454,346

995–999, DOI: 10.1038/nature07140 (2008).347

34. Pillow, J. W., Paninski, L., Uzzell, V. J., Simoncelli, E. P. & Chichilnisky, E. J. Prediction and decoding of retinal348

ganglion cell responses with a probabilistic spiking model. J. Neurosci. 25, 11003–11013, DOI: 10.1523/JNEUROSCI.349

3305-05.2005 (2005).350

35. Schwartz, O., Pillow, J. W., Rust, N. C. & Simoncelli, E. P. Spike-triggered neural characterization. J. Vis. 6, 13, DOI:351

10.1167/6.4.13 (2006).352

36. Babadi, B., Casti, A., Xiao, Y., Kaplan, E. & Paninski, L. A generalized linear model of the impact of direct and indirect353

inputs to the lateral geniculate nucleus. J. Vis. 10, 22–22, DOI: 10.1167/10.10.22 (2010).354

37. Paninski, L., Pillow, J. & Lewi, J. Statistical models for neural encoding, decoding, and optimal stimulus design. In355

Progress in Brain Research, 493–507, DOI: 10.1016/s0079-6123(06)65031-0 (Elsevier, 2007).356

38. Steinmetz, N. A., Zatka-Haas, P., Carandini, M. & Harris, K. D. Distributed coding of choice, action and engagement357

across the mouse brain. Nature 576, 266–273, DOI: 10.1038/s41586-019-1787-x (2019).358

39. Runyan, C. A., Piasini, E., Panzeri, S. & Harvey, C. D. Distinct timescales of population coding across cortex. Nature359

548, 92–96, DOI: 10.1038/nature23020 (2017).360

40. Park, I. M., Meister, M. L. R., Huk, A. C. & Pillow, J. W. Encoding and decoding in parietal cortex during sensorimotor361

decision-making. Nat. Neurosci. 17, 1395–1403, DOI: 10.1038/nn.3800 (2014).362

41. Musall, S., Kaufman, M. T., Juavinett, A. L., Gluf, S. & Churchland, A. K. Single-trial neural dynamics are dominated363

by richly varied movements. Nat. Neurosci. 22, 1677–1686, DOI: 10.1038/s41593-019-0502-4 (2019).364

42. Goltstein, P. M., Reinert, S., Bonhoeffer, T. & Hübener, M. Mouse visual cortex areas represent perceptual and semantic365

features of learned visual categories. Nat. Neurosci. 24, 1441–1451, DOI: 10.1038/s41593-021-00914-5 (2021).366

43. Butts, D. A., Weng, C., Jin, J., Alonso, J.-M. & Paninski, L. Temporal precision in the visual pathway through the367

interplay of excitation and stimulus-driven suppression. J. Neurosci. 31, 11313–11327, DOI: 10.1523/jneurosci.0434-11.368

2011 (2011).369

44. Mahn, M. et al. High-efficiency optogenetic silencing with soma-targeted anion-conducting channelrhodopsins. Nat.370

communications 9, 4125, DOI: 10.1038/s41467-018-06511-8 (2018).371

45. Gong, S. et al. Targeting Cre Recombinase to Specific Neuron Populations with Bacterial Artificial Chromosome372

Constructs. J. Neurosci. 27, 9817–9823, DOI: 10.1523/JNEUROSCI.2707-07.2007 (2007).373

46. Mahn, M., Prigge, M., Ron, S., Levy, R. & Yizhar, O. Biophysical constraints of optogenetic inhibition at presynaptic374

terminals. Nat. Neurosci. DOI: 10.1038/nn.4266 (2016).375

12/22



47. Wiegert, J. S. & Oertner, T. G. How (not) to silence long-range projections with light. Nat. Neurosci. 19, 527–528, DOI:376

10.1038/nn.4270 (2016).377

48. Wiegert, J. S., Mahn, M., Prigge, M., Printz, Y. & Yizhar, O. Silencing Neurons: Tools, Applications, and Experimental378

Constraints. Neuron 95, 504–529, DOI: 10.1016/j.neuron.2017.06.050 (2017).379

49. Vinck, M., Batista-Brito, R., Knoblich, U. & Cardin, J. A. Arousal and Locomotion Make Distinct Contributions to380

Cortical Activity Patterns and Visual Encoding. Neuron 86, 740–754, DOI: 10.1016/j.neuron.2015.03.028 (2015).381

50. Reimer, J. et al. Pupil Fluctuations Track Fast Switching of Cortical States during Quiet Wakefulness. Neuron 84,382

355–362, DOI: 10.1016/j.neuron.2014.09.033 (2014).383

51. Huang, Z., Ran, Y., Euler, T. & Berens, P. Estimating smooth and sparse neural receptive fields with a flexible spline384

basis. Neurons, Behav. Data analysis, Theory 8, 1–14 (2021).385

52. Weber, A. I. & Pillow, J. W. Capturing the dynamical repertoire of single neurons with generalized linear models. Neural386

Comput. 29, 3260–3289, DOI: 10.1162/NECO_a_01021 (2017). 1602.07389.387

53. Felsen, G. & Dan, Y. A natural approach to studying vision. Nat. Neurosci. 8, 1643–1646, DOI: 10.1038/nn1608 (2005).388

54. Piscopo, D. M., El-Danaf, R. N., Huberman, a. D. & Niell, C. M. Diverse Visual Features Encoded in Mouse Lateral389

Geniculate Nucleus. J. Neurosci. 33, 4642–4656, DOI: 10.1523/JNEUROSCI.5187-12.2013 (2013).390

55. Grubb, M. S. & Thompson, I. D. Quantitative characterization of visual response properties in the mouse dorsal lateral391

geniculate nucleus. J. neurophysiology 90, 3594–3607, DOI: 10.1152/jn.00699.2003 (2003).392

56. Lesica, N. A. et al. Adaptation to stimulus contrast and correlations during natural visual stimulation. Neuron 55,393

479–491 (2007).394

57. Walker, E. Y. et al. Inception loops discover what excites neurons most using deep predictive models. Nat. Neurosci. 22,395

2060–2065, DOI: 10.1038/s41593-019-0517-x (2019).396

58. Levitt, J. B. & Lund, J. S. The spatial extent over which neurons in macaque striate cortex pool visual signals. Vis.397

Neurosci. 19, 439–452, DOI: 10.1017/s0952523802194065 (2002).398

59. Sceniak, M. P., Ringach, D. L., Hawken, M. J. & Shapley, R. Contrast's effect on spatial summation by macaque v1399

neurons. Nat. Neurosci. 2, 733–739, DOI: 10.1038/11197 (1999).400

60. Kapadia, M. K., Westheimer, G. & Gilbert, C. D. Dynamics of spatial summation in primary visual cortex of alert401

monkeys. Proc. Natl. Acad. Sci. 96, 12073–12078, DOI: 10.1073/pnas.96.21.12073 (1999).402

61. Churchland, M. M. et al. Stimulus onset quenches neural variability: a widespread cortical phenomenon. Nat. Neurosci.403

13, 369–378, DOI: 10.1038/nn.2501 (2010).404

62. Denman, D. J. & Contreras, D. Complex effects on in vivo visual responses by specific projections from mouse cortical405

layer 6 to dorsal lateral geniculate nucleus. The J. Neurosci. 35, 9265–80, DOI: 10.1523/JNEUROSCI.0027-15.2015406

(2015).407

63. Niell, C. M. & Stryker, M. P. Modulation of Visual Responses by Behavioral State in Mouse Visual Cortex. Neuron 65,408

472–479, DOI: 10.1016/j.neuron.2010.01.033 (2010).409

64. Ayaz, A., Saleem, A. B., Schölvinck, M. L. & Carandini, M. Locomotion controls spatial integration in mouse visual410

cortex. Curr. Biol. 23, 890–894, DOI: 10.1016/j.cub.2013.04.012 (2013).411

65. Murphy, P. C. & Sillito, A. M. Corticofugal feedback influences the generation of length tuning in the visual pathway.412

Nature 329, 727–729, DOI: 10.1038/329727a0 (1987).413

66. Wörgötter, F., Eyding, D., Macklis, J. D. & Funke, K. The influence of the corticothalamic projection on responses in414

thalamus and cortex. Philos. Transactions Royal Soc. London. Ser. B: Biol. Sci. 357, 1823–1834, DOI: 10.1098/rstb.415

2002.1159 (2002).416

67. de Labra, C. et al. Changes in visual responses in the feline dLGN: Selective thalamic suppression induced by transcranial417

magnetic stimulation of v1. Cereb. Cortex 17, 1376–1385, DOI: 10.1093/cercor/bhl048 (2006).418

68. Marrocco, R., McClurkin, J. & Young, R. Modulation of lateral geniculate nucleus cell responsiveness by visual419

activation of the corticogeniculate pathway. The J. Neurosci. 2, 256–263, DOI: 10.1523/JNEUROSCI.02-02-00256.1982420

(1982).421

69. McClurkin, J. W. & Marrocco, R. T. Visual cortical input alters spatial tuning in monkey lateral geniculate nucleus cells.422

The J. Physiol. 348, 135–152, DOI: 10.1113/jphysiol.1984.sp015103 (1984).423

13/22



70. King, J. L., Lowe, M. P., Stover, K. R., Wong, A. A. & Crowder, N. A. Adaptive Processes in Thalamus and424

Cortex Revealed by Silencing of Primary Visual Cortex during Contrast Adaptation. Curr. Biol. 26, 1295–1300, DOI:425

10.1016/j.cub.2016.03.018 (2016).426

71. Tang, J., Jimenez, S. C. A., Chakraborty, S. & Schultz, S. R. Visual receptive field properties of neurons in the mouse427

lateral geniculate nucleus. PLOS ONE 11, e0146017, DOI: 10.1371/journal.pone.0146017 (2016).428

72. Durand, S. et al. A comparison of visual response properties in the lateral geniculate nucleus and primary visual cortex429

of awake and anesthetized mice. J. Neurosci. 36, 12144–12156, DOI: 10.1523/JNEUROSCI.1741-16.2016 (2016).430

73. Mante, V., Bonin, V. & Carandini, M. Functional Mechanisms Shaping Lateral Geniculate Responses to Artificial and431

Natural Stimuli. Neuron 58, 625–638, DOI: 10.1016/j.neuron.2008.03.011 (2008).432

74. Lesica, N. A. & Stanley, G. B. Encoding of natural scene movies by tonic and burst spikes in the lateral geniculate433

nucleus. J. Neurosci. 24, 10731–10740, DOI: 10.1523/JNEUROSCI.3059-04.2004 (2004).434

75. Wietek, J. et al. Anion-conducting channelrhodopsins with tuned spectra and modified kinetics engineered for optogenetic435

manipulation of behavior. Sci. Reports 7, 1–18, DOI: 10.1038/s41598-017-14330-y (2017). 156422.436

76. Govorunova, E. G., Sineshchekov, O. A., Janz, R., Liu, X. & Spudich, J. L. Natural light-gated anion channels: A437

family of microbial rhodopsins for advanced optogenetics. Science 349, 647–650, DOI: 10.1126/science.aaa7484 (2015).438

15334406.439

77. Sherman, S. M. & Guillery, R. W. The role of the thalamus in the flow of information to the cortex. Philos. transactions440

Royal Soc. Lond. 357, 1695–708, DOI: 10.1098/rstb.2002.1161 (2002).441

78. Sillito, A. M. & Jones, H. E. Corticothalamic interactions in the transfer of visual information. Philos. Transactions442

Royal Soc. London. Ser. B: Biol. Sci. 357, 1739–1752, DOI: 10.1098/rstb.2002.1170 (2002).443

79. Briggs, F. & Usrey, W. M. Corticogeniculate feedback and visual processing in the primate. J. Physiol. 589, 33–40,444

DOI: 10.1113/jphysiol.2010.193599 (2010).445

80. Madisen, L. et al. A robust and high-throughput Cre reporting and characterization system for the whole mouse brain.446

Nat. neuroscience 13, 133–140, DOI: 10.1038/nn.2467.A (2010).447

81. Josh Huang, Z., Zeng, H., Huang, Z. J. & Zeng, H. Genetic Approaches to Neural Circuits in the Mouse. Annu. review448

neuroscience 36, 183–215, DOI: 10.1146/annurev-neuro-062012-170307 (2013).449

82. Bortone, D. S., Olsen, S. R. & Scanziani, M. Translaminar inhibitory cells recruited by layer 6 corticothalamic neurons450

suppress visual cortex. Neuron 82, 474–485, DOI: 10.1016/j.neuron.2014.02.021 (2014).451

83. Frandolig, J. E. et al. The Synaptic Organization of Layer 6 Circuits Reveals Inhibition as a Major Output of a Neocortical452

Sublamina. Cell Reports 28, 3131–3143, DOI: 10.1016/j.celrep.2019.08.048 (2019).453

84. Poynton, C. A. Rehabilitation of gamma. In Rogowitz, B. E. & Pappas, T. N. (eds.) Human Vision and Electronic454

Imaging III, vol. 3299, 232–249, DOI: 10.1117/12.320126 (International Society for Optical Engineering, San Jose, CA,455

1998).456

85. Rueden, C. T. et al. ImageJ2: ImageJ for the next generation of scientific image data. BMC Bioinf. 18, DOI:457

10.1186/s12859-017-1934-z (2017).458

86. Schindelin, J. et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods 9, 676–682, DOI:459

10.1038/nmeth.2019 (2012).460

87. Pachitariu, M., Steinmetz, N., Kadir, S., Carandini, M. & Harris, K. D. Kilosort: realtime spike-sorting for extracellular461

electrophysiology with hundreds of channels. bioRxiv 061481, DOI: 10.1101/061481 (2016).462

88. Spacek, M. A., Blanche, T. J. & Swindale, N. V. Python for large-scale electrophysiology. Front. Neuroinform. 2, 9,463

DOI: 10.3389/neuro.11.009.2008 (2009).464

89. Swindale, N. V. & Spacek, M. A. Spike sorting for polytrodes: A divide and conquer approach. Front. Syst. Neurosci.465

DOI: 10.3389/fnsys.2014.00006 (2014).466

90. Yatsenko, D., Walker, E. Y. & Tolias, A. S. DataJoint: A simpler relational data model (2018). 1807.11104.467

91. Harris, K. D. Nonsense correlations in neuroscience. bioRxiv 1–13, DOI: 10.1101/2020.11.29.402719 (2020).468

92. Harris, K. D. A shift test for independence in generic time series. arXiv 1–6 (2020). 2012.06862.469

93. Sahani, M. & Linden, J. F. Evidence optimization techniques for estimating stimulus-response functions. Adv. neural470

information processing systems 317–324 (2003).471

14/22



94. Park, M. & Pillow, J. W. Receptive field inference with localized priors. PLoS computational biology 7, e1002219472

(2011).473

Acknowledgements474

This research was supported by the Deutsche Forschungsgesellschaft (DFG) Sonderforschungsbereich (SFB) 1233, Robust475

Vision: Inference Principles and Neural Mechanisms, Teilprojekt (TP) 13, project number: 276693517 (L.B., P.B.), by SPP2041476

(BU 1808/6-1 and BU 1808/6-2) and the RTG2175 “Perception in context and its neural basis”. Lisa Schmors was supported by477

the International Max Planck Research School for Intelligent Systems (IMPRS-IS). We thank E. Froudarakis (A. Tolias Lab,478

Baylor College of Medicine, Houston, TX) for provision of the movie stimulus files, and A. Ecker and T. Euler for discussion479

of the stimulus design. We also thank O. Yizhar, R. Beltramo, C. L. Lao, H. Wohlfrom and C. Kopp-Scheinpflug for discussion480

regarding the AAV vector and stGtACR2 opsin. Thanks also go to M. Sotgia for lab management and support with animal481

handling and histology, S. Schörnich for IT support, and B. Grothe for providing excellent research infrastructure.482

Author contributions483

Conceptualization, L.B., P.B., S.S.; Methodology, L.B., P.B., Y.B., L.S., Z.H., S.S.; Software, L.S., Y.B., S.R, D.C., Z.H.;484

Formal Analysis, L.S., Y.B., A.K.; Investigation, Y.B., L.M., A.K.; Resources, L.B., P.B.; Data Curation, Y.B., L.S., A.K., L.M.,485

D.C.; Writing – Original Draft, Y.B., L.S., L.B.; Writing – Review & Editing, all authors; Visualization, Y.B., L.S.; Supervision,486

L.B., P.B., S.S.; Project Administration, L.B., P.B.; Funding Acquisition, L.B., P.B.487

Declaration of Interests488

The authors declare no competing interests.489

Methods490

All procedures complied with the European Communities Council Directive 2010/63/EU and the German Law for Protection of491

Animals, and were approved by local authorities, following appropriate ethics review.492

Surgical procedures493

Experiments were carried out under under Licence ROB-55.2-2532.Vet_02-17-40 (part 2a) in 6 adult Ntsr1-Cre mice (median494

age: 16.4 weeks; B6.FVB(Cg)-Tg(Ntsr1-cre)GN220Gsat/Mmcd; MMRRC) of either sex.495

Stereotactic surgeries were performed to implant a head-post for head-fixation, implant a ground/reference screw for496

electrophysiology, inject a virus for optogenetic feedback manipulation, and drill a craniotomy for acute electrode insertions.497

Stereotactic surgery preparation and initiation498

Thirty minutes prior to the surgical procedure, mice were injected with an analgesic (Metamizole, 200 mg/kg, sc, MSD Animal499

Health, Brussels, Belgium). To induce anesthesia, animals were placed in an induction chamber and exposed to isoflurane (5%500

in oxygen, CP-Pharma, Burgdorf, Germany). After induction of anesthesia, mice were fixated in a stereotaxic frame (Drill &501

Microinjection Robot, Neurostar, Tuebingen, Germany) and the isoflurane level was lowered (0.5 %–2 % in oxygen), such502

that a stable level of anesthesia could be achieved as judged by the absence of an interstitial reflex. Throughout the procedure,503

the eyes were covered with an eye ointment (Bepanthen, Bayer, Leverkusen, Germany) and a closed loop temperature control504

system (ATC 1000, WPI Germany, Berlin, Germany) ensured that the animal’s body temperature was maintained at 37° C.505

At the beginning of the surgical procedure, an additional analgesic was administered (Buprenorphine, 0.1 mg/kg, sc, Bayer,506

Leverkusen, Germany) and the animal’s head was shaved and thoroughly disinfected using iodine solution (Braun, Melsungen,507

Germany). Before performing a scalp incision along the midline, a local analgesic was delivered (Lidocaine hydrochloride, sc,508

bela-pharm, Vechta, Germany). The skin covering the skull was partially removed and cleaned from tissue residues with a drop509

of H2O2 (3 %, AppliChem, Darmstadt, Germany). Using four reference points (bregma, lambda, and two points 2 mm to the510

left and to the right of the midline respectively), the animal’s head was positioned into a skull-flat configuration for the further511

steps.512

Virus injection513

In order to suppress V1 L6 CT FB selectively and reversibly, we conditionally expressed the chloride-conducting channel-514

rhodopsin stGtACR244, 75, 76 in L6a CT pyramidal cells77–79 by injecting AAV-stGtACR2-RFP into the left hemisphere V1515

of Ntsr1-Cre mice45, 80, 81 (Figure 1a). Ntsr1+ neurons are known to correspond with > 90% specificity to L6CT pyramidal516
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cells12, 82, 83. Furthermore, the opsin stGtACR2 restricts expression to somata and the axon-initial segment which prevents possi-517

ble accidental axonal depolarization due to a differential Cl- ion reversal potential across different neuronal compartments46–48.518

It also offers improved photocurrents and higher sensitivity, which are of particular relevance to manipulating deeply located519

L6 CT neurons, while avoiding light artifacts and tissue damage arising from excessive light intensities48.520

Before surgery, the Cre-dependent, stGtACR2-expressing adeno-associated virus (AAV) vector (pAAV_hSyn1-SIO-521

stGtACR2-FusionRed, Addgene, #105677) stock solution was diluted to 5×1011 gc/ml titers, and aliquotted to 4 µL.522

During surgery, aliquots were front-loaded into a glass pipette mounted on a Hamilton syringe (SYR 10 µL 1701 RN no523

NDL, Hamilton, Bonaduz, Switzerland), controlled by the Injection Robot of the Neurostar Stereotax. After performing a small524

craniotomy for injection (100 µm diameter), we injected 300 nl of virus solution into V1 (2×50 nl shots injected at a rate of525

50 nl / 30 s at a respective depth of 900 µm, 800 µm and 700 µm below the brain surface.526

Head-post and ground and reference screw implantation527

For implant fixation, the exposed skull was covered with OptiBond FL primer and adhesive (Kerr Dental, Rastatt, Germany)528

omitting three locations: V1 (AP: −3.28 mm, ML: −2.4 mm), dLGN (AP: −2.3 mm, ML: −2 mm), and a position roughly529

1.5 mm anterior and 1 mm to the right of bregma, designated for a miniature ground and reference screw.530

A custom-made lightweight stainless steel head bar was positioned over the posterior part of the skull such that the round531

opening in the bar was centered on V1/dLGN. The head bar was attached with dental cement (Ivoclar Vivadent, Ellwangen,532

Germany) to the primer/adhesive. The opening was later filled with the silicone elastomer sealant Kwik-Cast (WPI Germany,533

Berlin, Germany). Then the miniature screw (00-96 X 1/16 stainless steel screws, Bilaney), which served both as ground and534

reference that was soldered to a custom-made connector pin, was implanted.535

Post-surgical treatment and animal setup habituation536

At the end of the procedure, an iodine-based ointment (Braunodivon, 10%, B. Braun, Melsungen, Germany) was applied to537

the edges of the wound and a long-term analgesic (Meloxicam, 2 mg/kg, sc, Böhringer Ingelheim, Ingelheim, Germany) was538

administered and for 3 consecutive days. For at least 5 days post-surgery, the animal’s health status was assessed via a score539

sheet.540

After at least 1 week of recovery, animals were gradually habituated to the experimental setup by first handling them and541

then simulating the experimental procedure. To allow for virus expression, neural recordings started after an incubation time of542

2-4 weeks after injection.543

Craniotomy544

On the day prior to the first day of recording, mice were fully anesthetized using the same procedures as described for the initial545

surgery, and a craniotomy (ca. 2×1 mm on the AP×BL axes) was performed over dLGN (ca. 2.5 mm posterior from bregma546

and 2.3 mm lateral from midline) and V1 and re-sealed with Kwik-Cast (WPI Germany, Berlin, Germany). As long as the547

animals did not show signs of discomfort, the long-term analgesic Metacam was administered only once at the end of surgery,548

to avoid any confounding effect on experimental results. Recordings were performed daily and continued for as long as the549

quality of the electrophysiological signals remained high.550

Recordings551

After 2-4 weeks of incubation time, we performed in vivo extracellular multi-electrode array (MEA) recordings of dLGN552

neurons in awake, head-fixed mice that were passively viewing visual stimuli on an LCD monitor screen in their right visual553

field while being free to run on an air-floating Styrofoam ball. Additionally, we optogenetically suppressed L6CT FB, recorded554

run speed via locomotion sensors, as well as pupil size via an infrared (IR) eye-tracking camera directed at the eye viewing the555

stimulus (Figure 1a, b).556

Extracellular multi-electrode array (MEA) electrophysiology557

Extracellular signals were recorded at 30 kHz (Blackrock microsystems, Blackrock Microsystems Europe GmbH, Hanover,558

Germany). For each recording session, the silicon plug sealing the craniotomy was removed. For dLGN recordings, a 32559

channel linear silicon probe (Neuronexus A1x32Edge-5mm-20-177-A32) was lowered to a depth of ∼ 2700–3500 µm below560

the brain surface. We judged recording sites to be located in dLGN based on the characteristic progression of RFs from upper561

to lower visual field along the electrode shank54, the presence of responses strongly modulated at the temporal frequency of the562

drifting gratings (F1 response), and the preference of responses to high temporal frequencies54, 55. For post hoc histological563

reconstruction of the recording site, the electrode was stained with DiI (Invitrogen, Carlsbad, USA) for some (typically the last)564

recording sessions.565

Locomotion-capturing566

Two optical computer mice interfaced with a microcontroller (Arduino Duemilanove) sampled ball movements at 90 Hz.567
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Eye-tracking568

To record eye position and pupil size, the animal’s eye was illuminated with infrared LED light and monitored using a zoom569

lens (Navitar Zoom 6000) coupled with a camera (Guppy AVT camera; frame rate 50 Hz, Allied Vision, Exton, USA).570

Optogenetic feedback suppression571

To photosuppress V1 Ntsr1+ L6CT pyramidal cells, an optic fiber (480 µm core diameter, MFP_480/500/1000-0.63_m_SMA,572

Doric Lenses, Quebec, Canada) was coupled to a light-emitting diode (blue LED, center wavelength 465 nm, LEDC2_465/635_SMA,573

Doric Lenses, Quebec, Canada) and positioned with a micromanipulator less than 1 mm above the exposed surface of V1. A574

black metal foil surrounding the tip of the head bar holder prevented the photostimulation light from reaching the animal’s eyes.575

To ensure that the photostimulation was effective, the first recording session for each mouse was carried out in V1. Only if576

the exposure to light reliably induced suppression of V1 activity was the animal used for subsequent dLGN recordings. LED577

light intensity was adjusted on a daily basis to evoke reliable effects and account for variations in exact virus titer, volume,578

incubation time, virus expression levels, and fiber position (0.85-9.5 mW at the fiber tip). Since the tip of the fiber never579

directly touched the surface of the brain, and since the clarity of the surface of the brain varied (generally decreasing every day580

following the craniotomy), the light intensity delivered even to superficial layers of V1 was inevitably lower. For the movie581

stimulus, optogenetic pulses of 1 s duration were sent randomly each second with a 50 % chance.582

Visual stimulation583

Visual stimuli were presented on a gamma-calibrated liquid crystal display (LCD) monitor (Samsung SyncMaster 2233RZ,584

47×29 cm, 1680×1050 resolution at 60 Hz, mean luminance 50 cd/m2) positioned at a distance of 25 cm from the animal’s585

right eye (spanning ∼ 108×66° visual angle by small angle approximation) using custom written software (EXPO, https:586

//sites.google.com/a/nyu.edu/expo/home). The display was gamma-corrected for the presentation of artificial587

stimuli, but not for movies (see below).588

Movie stimulus589

For movie stimulus generation, we adopted a set of randomly picked scenes from various movies. Briefly, source movie scenes590

were converted to grey scale, temporally downsampled to 30 frames per s, spatially resampled and cropped to 424×264 pixels,591

to be presented on our 47×29 cm monitor screen at 25 cm distance at 106×66° (4 pixels/°) visual angle (by small angle592

approximation, which preserves the desired pixel resolution at the screen center better than the arctangent). Movie frames593

were not histogram-equalized and presented at 60 Hz (repeating each frame twice) without monitor gamma correction, since594

cameras are already gamma corrected for consumer displays84. To generate the movie sequence, we used a random set of 296595

unique movie scenes (5 s each), split into a set of 188 training scenes and 8 test scenes. The training scenes were blocked into596

8 parts of 36 unique scenes (5 s×36 = 180 s per part), which were interleaved with the test block of 8 scenes (5 s×8 = 40 s)597

which was repeated 9 times. Test scene repetition served to give an estimate of response variability to the same scenes. The598

movie sequence was flanked by a period of blank grey screen presentation (1 min) at the beginning and at the end, to record599

spontaneous activity. This resulted in a total stimulus duration of ∼ 32 mins, with a train-test split of 80 % vs. 20 %. To rule600

out sequence effects, we randomized the scene order for different stimulus presentations. To investigate the effects of L6 CT601

FB suppression, we simultaneously presented a random optogenetic pulse train of 1 s pulses, occurring each second with a602

probability of 50 %, throughout the entire stimulus duration, including blank grey screen periods.603

Sparse noise stimulus604

To measure receptive fields (RFs) in a more standard manner, we also presented an (artificial) sparse noise stimulus. The605

stimulus consisted of a rapid sequence of non-overlapping white and black squares appearing in succession within a 12x12606

square grid presented on a grey background of mean luminance (50 cd/m2). The square grid spanned 60° per side, while607

individual squares spanned 5° per side. Each square flashed for 200 ms.608

Histology609

To verify virus expression and recording sites, we performed post-mortem histological analyses. After the final recording610

session, mice were first administered an analgesic (Metamizole, 200 mg/kg, sc, MSD Animal Health, Brussels, Belgium)611

and following a 30 min latency period were transcardially perfused under deep anesthesia using a cocktail of Medetomidin612

(Domitor, 0.5 mg/kg, Vetoquinol, Ismaning, Germany), Midazolam (Climasol, 5 mg/kg, Ratiopharm, Ulm, Germany) and613

Fentanyl (Fentadon, 0.05 mg/kg, Dechra Veterinary Products Deutschland, Aulendorf, Germany) (ip). Perfusion was first614

done with Ringer’s lactate solution followed by 4% paraformaldehyde (PFA) in 0.2 M sodium phosphate buffer (PBS). Brains615

were removed, postfixed in PFA for 24 h, and then rinsed with and stored in PBS at 4° C. Slices (50 µm) were cut using a616

vibrotome (Leica VT1200 S, Leica, Wetzlar, Germany), stained with DAPI-solution (DAPI, Thermo Fisher Scientific, Waltham,617

Massachusetts, USA), mounted on glass slides with Vectashield mounting medium (Vectashield H-1000, Vector Laboratories,618
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Burlingame, USA), and coverslipped. A scanning fluorescent microscope (BX61, Olympus, Tokyo, Japan) was used to inspect619

slices for the presence of red fluorescent protein (RFP/FusionRed) marking stGtACR2-channels, and DiI, marking electrode620

tracks. Recorded images were processed off-line using FIJI85, 86.621

Spike sorting and unit extraction622

Spike sorting was performed to obtain single unit activity from extracellular recordings. Electrophysiological signal recordings623

were filtered using a 4th-order Butterworth high-pass non-causal filter with a low frequency cutoff of 300 Hz. We then624

used the open source, MATLAB-based (The Mathworks, Natick, Massachusetts, USA), automated spike sorting toolbox625

Kilosort and Kilosort287. Resulting clusters were manually refined using Spyke88, a Python application that allows for the626

selection of channels and time ranges around clustered spikes for realignment, as well as representation in 3D space using627

dimension reduction (multichannel PCA, ICA, and/or spike time). In 3D, clusters were then further split via a gradient-ascent628

based clustering algorithm (GAC)89. Exhaustive pairwise comparisons of similar clusters allowed the merger of potentially629

over-clustered units. For subsequent analyses, we inspected autocorrelograms and mean voltage traces, and only considered630

units that displayed a clear refractory period and a distinct spike waveshape.631

Data analysis framework632

All further data analyses were carried out in a MySQL-based database using the DataJoint framework90 with custom-written633

code in Python.634

Firing rate calculations635

To obtain units firing rates in spikes/s, each unit’s spike density function (SDF) was calculated by binning spikes into a firing636

rate histogram (bin width = 20 ms) and convolving this with a Gaussian of width 2σ = 10 ms. Mean firing rates (FRs) over a637

given condition were calculated as the mean of the time-varying firing rates for the defined periods.638

Exclusion criteria639

Neurons with mean evoked firing rates < 0.1 spikes/s were excluded from all further analysis. Further analysis-specific selection640

criteria are stated in the appropriate subsections.641

Optogenetic feedback modulation642

To quantify the effect of V1 L6CT suppression on various response properties, we defined the optogenetic modulation index
(OMI) based on the mean FRs during L6CT FB suppression (’opto’) versus the control condition as

OMI =
opto− control
opto+ control

(1)

To test for a significant difference in mean FRs between the photosuppression vs. control conditions matched for each643

neuron, we used the Wilcoxon signed-rank test (Figure 1i).644

Locomotion data processing645

To compute animal run speed, we used the Euclidean norm of three perpendicular components of ball velocity (roll, pitch and
yaw) and smoothed traces with a Gaussian filter (σ = 0.2 s). To quantify the effect of running vs. sitting on various response
properties, the run modulation index (RMI) was defined based on the mean firing rates during running vs. sitting periods as

RMI =
running− sitting
running+ sitting

, (2)

where running periods were defined as those for which speed exceeded 1 cm/s, and sit periods as those for which speed fell646

below 0.25 cm/s.647

To test for a significant difference in mean FRs between the run vs. sit conditions matched for each neuron, we used the648

Wilcoxon signed-rank test (Figure 1i).649

Eye tracking data processing650

Pupil position was extracted from the eye-tracking videos using a custom, semi-automated algorithm. Briefly, each video651

frame was equalized using an adaptive bi-histogram equalization procedure, and then smoothed using median and bilateral652

filters. The center of the pupil was detected by taking the darkest point in a convolution of the filtered image with a black653

square. Next, the peaks of the image gradient along lines extending radially from the center point were used to define the pupil654

contour. Lastly, an ellipse was fit to the contour, and the center and area of this ellipse was taken as the position and size of the655
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pupil, respectively. A similar procedure was used to extract the position of the corneal reflection (CR) of the LED illumination.656

Eye-closure, grooming, or implausible ellipse fitting was automatically detected and the adjacent data points 0.15 s before and657

after were excluded. Linear interpolation and a subsequent Gaussian smoothing (σ = 0.06 s) was applied to fill the removed658

segments. Adjustable algorithm parameters, such as the threshold of the mean pixel-wise difference between each frame and a659

reference frame to detect blinks, were set manually for each experiment.660

To quantify the effect of large vs. small pupil sizes on various response properties, the eye modulation index (EMI) was
defined based on the mean firing rates during periods of large vs. small pupils as

EMI =
pupil large−pupil small
pupil large+pupil small

, (3)

where periods of large pupils were defined as those for which pupil size was above the 50th percentile of the median normalized661

pupil trace, and periods of small pupils as those for which pupil size fell below the 25th percentile.662

To test for a significant difference in mean FRs between the large vs. small pupil conditions matched for each neuron, we663

used the Wilcoxon signed-rank test (Figure 1i).664

Predictor correlations665

To test for the correlations between the predictors stimulus, opto, run, and eye, we temporally aligned these traces, including666

only time points for which we had data points in all traces (e.g. removing periods of eye blinks). We then explored their667

cross-correlations in order to detect potential delays in their effects on each other. Such is the case, for instance in the pupil668

light reflex, where increases in stimulus intensity are followed by a delayed decrease in pupil size (Figure S1a). We then used669

the delay time to shift the traces appropriately before computing their correlation value (Pearson’s r; Figure 1k).670

In order to test for statistical significance of the obtained correlation values (Figure S1b), we first needed to account for the671

fact that our time-series inherently contain autocorrelations which would lead to an overestimation of correlations between672

them (except for the random opto pulses)91. We therefore used a permutation test in which we randomly permuted the stimulus673

traces for k = 1000 iterations, and then computed the p-value of the observed correlation value as its percentile within the null674

distribution of p-values for the permuted traces92.675

Spline-based linear-nonlinear-Poisson (spline-LNP) model676

To estimate the spatio-temporal receptive fields (STRFs), the RFEst Python toolbox for spline-based spatio-temporal RF
estimation was used51. Here, the receptive field is parameterized with a set of basis functions. This reduces the number of
hyperparameters compared to alternative approaches of receptive field estimation (such as automatic smoothness determination93

or automatic locality determination94). RFEst is also less data demanding and reduces the computation time significantly51.
The number of parameters is given by the number of basis functions, also referred to the degrees of freedom. By using natural
cubic splines as the basis the estimates are automatically smooth, which is a desirable property for single STRFs. To impose
sparsity on the weights (also a desirable property of SRFs) we added L1 regularization, which pushed the weights for less
relevant bases to zero. To compute the spline-based STRFs, wSPL, the coefficients, bSPL, were obtained as

bSPL = (ST XT XS)−1ST XT y (4)

with X as the stimulus design matrix, y as the neural response vector, and S as the spline matrix. The spatio-temporal RF was
computed as

wSPL = SbSPL = S(ST XT XS)−1ST XT y (5)

To generate the natural cubic spline matrices (S) the package Patsy (0.5.1) is integrated into RFEst. The code for RFEst is677

available from https://github.com/berenslab/RFEst.678

The spline-based spatio-temporal RF was incorporated into a linear-nonlinear-Poisson (LNP) model, where the neural
activity is estimated by (1) multiplying the spatio-temporal RF with a weight vector (w), (2) adding an offset, (3) passing
the result through a non-linearity (g(·), here a softplus function) and (4) applying a Poisson process to estimate spike times.
Hyperparameter tuning was achieved in an ordered grid search: First, evenly spaced numbers of basis were fitted starting from
many to few and stopping when a smaller number of basis would decrease the performance. Then, the L1 regularization weights
were fitted, starting with the smallest value and interrupting the grid search when the performance stopped increasing. The
STRFs were initialized with maximum likelihood estimates (MLE) and optimized using gradient decent and 1500 iterations.
The MLE was computed as

wMLE = (XT X)−1XT y (6)
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The fitting was interrupted when the training cost changed less than 1e-5 for the last 10 iterations as an early stopping criterion.
The set of hyperparameters was selected based on the performance for a held-out validation set. The final performance of the
model was reported as the mean correlation coefficient for the repeated nine test data trials (see section ’Movie stimulus’).In
addition to the “stimulus only” model, where the prediction of neural activity was solely based on the visual stimulus, other
behavioral components, such as running speed and pupil size could be integrated into the model. To estimate the effect of
cortico-thalamic (CT) feedback, an additional input comprising the optogenetic light stimulation could be given to the model.
All additional inputs where also parameterized with a set of spline basis and multiplied with an extra weight vector (also
referred to as filter):

f (s,o,r,e) = g(wT
s s[t : t−∆t]+wT

o o[t : t−∆t]+wT
r r[t : t−∆t]+wT

e e[t : t−∆t]) (7)

with s, o, r, and e denoting the additional model inputs of stimulus, optogenetics, running and eye, respectively, and [t : t−∆t]679

defining the temporal integration window for each filter.680

Spatio-temporal RF component extraction681

To separate spatial and temporal components of the 3D STRFs, we performed singular value decomposition (SVD) on the norm682

of the stimulus weight vector w. The temporal RF is extracted as the first left-singular vector of U , i.e. temporal dimension with683

the highest variance, and the spatial RF as the first right-singular vector of V , reshaped into the height- and width-dimensions of684

the input vector w. The extremes of the reshaped spatial RF vector are then used to quantify RF position and RF area.685

Spatial RF contour estimation686

Model spatial RFs were estimated by extracting the 2D spatial RF component from the model weights (see subsection ’Spatio-687

temporal RF component extraction’), and then drawing a contour line around the largest absolute peak (assumed to be the688

center of the spatial RF). The contour threshold gets gradually lowered until any further decrease would result in a second689

contour around the second largest extremum (background irregularities considered as noise). To avoid overly large RFs in very690

clean spatial components (without any major second extremum), the contour threshold had to be 2 standard deviations above or691

below the mean. To improve estimate accuracy, the spatial RF component was upsampled 16-fold via cubic spline interpolation.692

Spatial RF area estimation693

The spatial RF areas were estimated by using the spatial RF component and contour (see subsection ’Spatial RF contour694

estimation’) and calculating the number of pixels of the spatial RF contour mask in relation to the total number of pixels in the695

image frame, which was then scaled by the stimulus extent to obtain the value in squared degrees of visual angle. To improve696

estimate accuracy, the spatial RF component was upsampled 16-fold via cubic spline interpolation.697

Spatial RF quality index (RF QI)698

The spatial RF quality index (RF QI) was calculated by taking the ratio of the smallest possible absolute spatial RF contour
threshold value SRFtreshold that still results in a single contour area (see subsection ’Spatial RF contour estimation’), and
SRFextreme, the highest absolute spatial RF component value (i.e. the spatial RF center extremum), and subtracting this from
one:

RFQI = 1−|SRFtreshold |/SRFextreme, (8)

where RFQI = 1 indicates one clear spatial RF without any spatial background noise and RFQI = 0 indicates no clear spatial RF699

within background noise.700

Model comparison for movie versus sparse noise stimulus701

In order to reduce the effect of different model parameters on the interpretation of our results, we made models as comparable702

as possible: First, given that the sparse noise stimulus was presented in a 12x12 grid spanning 60°, we reduced the model image703

input resolution of the movie from the original 424x264 spanning 106x66° to a 21x13 grid, resulting in approximately 5° per704

pixel in each stimulus. Secondly, we matched the spatial degrees of freedom (sDFs, number of splines), allowing 12x12 sDFs705

for the sparse noise, and 21x13 sDFs for the movie stimulus, resulting in 1 sDF per pixel for each stimulus. Thirdly, we matched706

the model predictor configurations by comparing only ’stimulus-only’ configurations. For the population comparison of model707

paired by neuron, we then searched for cells that had both stimuli presented, and further restricted our selection via minimum708

model quality criteria of the explained variance of model predictions R2 > 0.001 and RF quality index (RF QI) of RFQI > 0.2.709

With these restriction, the best-performing model for each stimulus per neuron was used for the paired comparison.710
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Figure S1 | Pupil light reflex. (a) Normalized cross-correlogram of pupil area and average stimulus light intensity time
traces, showing delayed dip in pupil size in response to light increases, indicative of the pupil light reflex (delay-time indicated
by arrow annotation). (b) Box plot of correlation values between average stimulus intensity traces and pupil size traces, after
time-shifting by pupil response delay found in (a) (n = 6 experiments).
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Figure S2 | RF estimation via our spline-LNP model versus spike-triggered average (STA). (a) Spatial RF
estimates for the movie stimulus, illustrated for one example dLGN neuron. Left: spatial RF for spline-LNP model. Second from
left: STA corrected for stimulus average intensity gradient (right). Agrees with model spatial RF in terms of spatial RF polarity
and location but has larger, fuzzy spatial RF area. Third from left: Simple STA uncorrected for stimulus average and therefore
shows the stimulus intensity gradient in the RF estimate, resulting in an even noisier estimate than the stimulus-subtracted
STA. Right: Stimulus average intensity showing gradient from top to bottom, reflecting decreasing light intensity gradient from
sky to ground in natural scenes. (b) Sparse noise stimulus RF estimates for same example dLGN neuron. Left: Model spatial
RF estimate. Corresponds to movie spatial RF estimate in terms of polarity and location. Right: Normalized spike-triggered
average (STA). In contrast to the movie stimulus STA, the sparse noise stimulus STA already yields a sparse, localized spatial
RF estimate which corresponds well to the model spatial RF estimate. Thus, the model proves useful for estimating RFs from
movie stimuli, whereas it may not be so necessary for sparse noise stimuli (unless one is also interested in other predictors
such as feedback and behavioural state). This effect is likely due to the spatio-temporal pixel correlations as well as the global
luminance patterns in movies, that are difficult to handle with an STA-based approach, whereas in the sparse noise stimulus,
pixels are made statistically independent.
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5D I S C U S S I O N

"Nature is like a genie
that answers exactly the question we pose,
not necessarily the one we intend to ask."

— Judea Pearl, The Book of Why

Robust visual perception starts in the retina, and the dorsolateral genic-
ulate nucleus of the thalamus (dLGN) presents the most direct route to
the primary visual cortex (V1). Yet, our understanding of the underlying
neural signal computations in the dLGN is incomplete.

In this thesis, I investigated if and how converging retinal feedforward
(FF) signals, cortico-thalamic (CT) feedback (FB) signals and behaviour
shape the responses in the mouse dLGN. A guiding framework was
that the dLGN is an active signal transformer rather than a mere passive
relay. The role of CT FB in the dLGN is particularly controversial, in part
due to heterogeneity of approaches as well as the subtlety of functional
FB effects. To address these questions, I adopted a mainly functional
approach in the mouse as a model organism, using ex vitro retinal two-
photon (2P) Ca2+ imaging as well as in vivo extracellular multi-electrode
array (MEA) recordings and optogenetic perturbation techniques, and
exploring the effects of naturalistic movie stimuli in the dLGN of awake,
head-fixed mice.

In the first part, I looked at retino-thalamic feedforward convergence
(Introduction Section 1.2.2), which resulted in our publication as Román
Rosón et al., 2019 (Chapter 2). In the second part, I turned the focus to
the influences of cortico-thalamic feedback connections and behavioural
state (Introduction Section 1.3 and Section 1.4.1). The results are pre-
sented in the study published as Spacek et al., 2022 (Chapter 3), and the
manuscript by Bauer et al., 2022 (Chapter 4).

In the following, I will review the key results of each of these parts in
turn and discuss their implications, methodological considerations and
open questions. After turning to some future directions for this project,
I will conclude this thesis with a synthesis of our findings and their
implications.

5.1 feedforward signals to the dlgn

At the beginning of this project, the role of the dLGN in visual signal
transformations had already been subject to much controversy, and it
continues to be a topic of debate (Chen et al., 2016) (Introduction Sec-
tion 1.2.2). On the one hand, the longstanding view of the dLGN as a
passive relay of retinal information has been supported by a series of
functional studies that found that feature selectivity in dLGN closely
resembles that of (a few dominant) retinal afferents (Hubel & Wiesel,
1961; Kaplan et al., 1987; Sincich et al., 2007). On the other, more recent
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anatomical data showing massive divergence of RGC projections and
retinogeniculate convergence (Morgan et al., 2016; Rompani et al., 2017)
suggest the opposing view that the dLGN could recombine signals and
thus be an active signal transformer. However, it was unclear which of
the ca. 40+ RGC types (Baden et al., 2016; Goetz et al., 2021; Labois-
sonniere et al., 2019; Peng et al., 2019; Sanes & Masland, 2015; Sümbül
et al., 2014) project to the dLGN and what their functional impact on
individual dLGN neurons would be.

román rosón & bauer et al . (2019)

In the first part of this project, we investigated these questions in our
study that was published as Román Rosón et al., 2019. Our results were
as follows: First, many of the previously identified functional RGC types
innvervate the dLGN, with a few exceptions. Second, the dLGN pop-
ulation response revealed a high degree of functional diversity. Third,
dLGN responses could be predicted as a linear combination of on aver-
age five RGC types, and mostly by two strong inputs. We concluded that
dLGN neurons have a higher degree of functional diversity than previ-
ously appreciated (Piscopo et al., 2013), and that this diversity is based
on the limited convergence of multiple distinct RGCs, two of which exert
the strongest influence.

Given that the recent years have brought in ever-increasing estimates
for the degree of functional diversity within the RGC population, which
seem to be converging towards 40+ RGC types (Baden et al., 2016; Goetz
et al., 2021), it might not come as a surprise to find a comparable degree
of diversity in the dLGN. On the contrary, it might have been more sur-
prising to see feature selectivity reduced at this later processing stage.
On top of that, retino-thalamic convergence and divergence could result
in a recombination of features that increases the diversity of functional
feature selectivity within the dLGN (Liang et al., 2018). Such recombi-
nation would be one process by which the dLGN actively transforms
retinal signals.

On the other hand, our finding and that of several other studies (e.g.
Bauer et al., 2021; Liang et al., 2018; Litvina & Chen, 2017), that only a
few RGC types exert a strong functional impact on dLGN activity, also
implies that convergence does not lead to an explosion of the number of
dLGN features. Taken together, this offers a reconciliation of the appar-
ently conflicting physiological and anatomical views via considerations
of connection strength: dLGN relay cells might indeed receive diverse
inputs from many different RGCs but under normal conditions, only a
few of those will be functionally relevant.

One open question then is what purpose the non-dominant RGC in-
puts might serve. To date, we can only speculate that they might have
been most relevant during development (Thompson et al., 2016), sup-
port adult plasticity through changes in synaptic weight, or that they
might be un-silenced via depolarization to improve the signal-to-noise
ratio, to create novel RFs, or to synchronize dLGN (see Litvina & Chen,
2017; Román Rosón et al., 2019).
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Of course, we should not forget that our results also depend on the
design of our non-negative linear regression model. This choice cer-
tainly oversimplified retino-thalamic signal processing by approximat-
ing dLGN activity as a purely feedforward process. Firstly, it failed
to capture non-linear neural amplifications properties resulting, for in-
stance, from luminance and contrast adaptations and bursting activity
(Bonin et al., 2006; Lesica et al., 2007; Lesica & Stanley, 2004; Mante et al.,
2005). Secondly, the model ignored the effects of inhibitory interneurons,
cortico-thalamic feedback and behaviour in shaping dLGN responses.
Lastly, it was based on the responses to the highly artificial and simplis-
tic full-field flicker ‘chirp’ stimulus, which is unlikely to capture the full
dLGN response diversity simply because many neurons will respond to
other features not sampled by this stimulus.

We addressed these points in the following studies presented in the
next part.

5.2 feedback and behavioural state signals to the dlgn

If the role of retinogeniculate feedforward (FF) signal processing is con-
sidered controversial, then there was even less consensus on the func-
tional role of cortico-thalamic (CT) feedback (FB) signals in shaping dLGN
responses (Introduction Section 1.3.2).

One reason why robust findings have been so elusive is that CT FB
synapses are only modulatory and that, consequently, their impact on
dLGN cells is subtle compared to the impact of strong retinal driving
synapses, despite the fact that, from a purely anatomical perspective, CT
FB synapses vastly outnumber retinal inputs in all studied species (Erişir
et al., 1997; Macknik & Martinez-Conde, 2009; Sherman & Guillery, 2002;
Weyand, 2016).

Moreover, given the complexity of the CT FB circuitry (see Figure 1),
the functional effects are expected to be complex and highly dependent
on the specific experimental design, including choice of species, animal
state, perturbation technique, recording technique and stimulus type
(Briggs & Usrey, 2011; Usrey & Sherman, 2019). In particular, CT feed-
back effects might be drastically reduced if the animal is anaesthetized
(Durand et al., 2016).

Therefore, it had become increasingly clear that insights into the role
of CT FB would likely depend on studies in awake animals performed
with sensitive and effective tools for specific and reversible inactivation
of cortical layer 6 (L6) CT pyramidal cells, the sole direct route for CT
FB (Briggs, 2010). In addition, CT FB effects might be most relevant and
thus most apparent for naturalistic stimuli rather than the commonly
used artificial stimuli (Cudeiro & Sillito, 1996; Gulyás et al., 1990; Rao &
Ballard, 1999; Sillito & Jones, 2002).

Turning to the influence of behaviour on dLGN activity, it had long
been known as one of the earliest stages in the visual hierarchy where
activity is shaped by the animal’s behavioural state (Bezdudnaya et al.,
2006; Cano et al., 2006; Swadlow & Weyand, 1987) through signals trans-
mitted by brain stem nuclei (McCormick, 1992; Molnár et al., 2021; Nestvo-
gel & McCormick, 2021; Sherman & Guillery, 1996). For instance, in-
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creased arousal states, as indexed by increased run speed or pupil dila-
tion, can increase the response gain in dLGN neurons (Liang et al., 2020;
Molnár et al., 2021; Nestvogel & McCormick, 2021).

Yet, how the combination retinal feedforward signals and the modu-
lations by CT feedback and behavioural state shape the dLGN response
has been incompletely understood Usrey and Alitto, 2015, in part due
to the challenges of recording them simultaneously and disentangling
their separate influences and potential interactions.

spacek et al . (2022)

In our Spacek et al., 2022 study, we found that CT feedback suppres-
sion reduced dLGN firing rates, and increased bursting, sparseness and
trial-to-trial reliability. Secondly, we showed that these effects were more
consistent and stronger for naturalistic movies than for artificial grat-
ing stimuli. Third, we showed that CT FB effects resembled those of
behavioural state effects, as assessed by locomotion, but that CT FB ef-
fects and behavioural effects were independent. We thus concluded that
CT FB can induce reliable effects on dLGN firing rates, and that these
are stronger for naturalistic than artificial stimuli, as well as being inde-
pendent from effects of behavioural state.

Nevertheless, one issue regarding the optogenetic approach in this
study was that the indirect CT FB suppression via global V1 PV interneu-
ron photoactivation may have been accompanied by complex side effects
mediated by alternative circuits, including the route via the superior col-
liculus (SC) to the dLGN shell region (see Figure 1). As mentioned ear-
lier, a more specific, direct suppression of L6 CT pyramidal cells would
have been preferable. However, the reason for this approach was that, at
the time, inhibitory optogenetics has long been much more challenging
due to more limited sensitivity, efficacy and the risk of potential exci-
tatory side-effects (see Introduction Section 1.4.2; Wiegert et al., 2017)
whereas optogenetic ChR2-activation was well-established to produce
reliable, strong effects. We addressed this point with a direct L6 CT neu-
ron suppression approach used in the ongoing Bauer et al., 2022 study
and found that the effect on dLGN FRs was qualitatively the same.

A second issue in this study concerned the type of naturalistic movie
stimulus employed, which consisted of a single 5 s scene that was re-
peated multiple times. While this choice still captured the essential im-
age statistics and dynamics of a naturalistic movie (Felsen & Dan, 2005)
and was particularly useful for investigating dLGN reliability and preci-
sion, which required a large number of trial repeats, the lack of stimulus
diversity did not probe a large enough feature space that would have
allowed us to identify other dLGN properties, most importantly spatio-
temporal RFs. This point, too, was addressed in Bauer et al., 2022, for
which we designed a more diverse movie stimulus.

bauer & schmors et al . (2022) [in prep.]

In our current Bauer et al., 2022 study, we have been able to address
several issues that arose in Román Rosón et al., 2019 and Spacek et al.,
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2022. First, instead of suppressing CT feedback via global V1 suppres-
sion (Spacek et al., 2022), we have established an optogenetic approach in
the lab to suppress L6 CT cells directly. Second, to probe a larger stimu-
lus space that would allow us to model dLGN STRFs, we have designed
a complex, dynamic movie stimulus based on a diverse set of scenes
randomly chosen from various feature films. Third, overcoming the in-
herent limitations of the simple non-negative linear regression model
used in our Román Rosón et al., 2019 study, we adapted a spline-based
linear-nonlinear Poisson model (spline-LNP) that allowed us to quantify
the influence of the stimulus, CT feedback, locomotion and pupil size
on dLGN activity.

We found that the net effect of CT feedback suppression on dLGN
mean firing rates was suppressive, implying an excitatory effect for in-
tact feedback, consistent with Spacek et al., 2022 and previous studies
(Kim et al., 2014; Olsen et al., 2012). Conversely, a behavioural arousal
state, as indicated by increased locomotion and pupil size, was associ-
ated with higher dLGN mean FRs, in agreement with previously found
effects of those variables in Spacek et al., 2022 and other studies (Mc-
Cormick, 1992; Molnár et al., 2021; Nestvogel & McCormick, 2021). Con-
sistent with previous results Erisken et al., 2014; Reimer et al., 2014;
Vinck et al., 2015, we also found a positive correlation between pupil di-
ameter and run speed, confirming that both variables might track overall
arousal states.

Our spline-LNP model enabled us to extract interpretable dLGN neu-
ron properties. By feeding in the predictor traces for the stimulus, CT
feedback photosuppression, locomotion and pupil size, we were able to
disentangle their independent contributions to dLGN firing. The model
filter shapes for CT feedback, locomotion and pupil size agreed with
our expectations based on their cell-specific effects on mean FRs. Never-
theless, we were surprised to find that the model performance did not
improve with added information about run speed and pupil size, which
we attribute to potential problems with current model implementation
(see Discussion in Bauer et al., 2022).

Beyond the issues discussed in the Bauer et al., 2022 and Spacek et al.,
2022 studies, there are remaining questions about the relations between
CT feedback and behavioural influences seen in the dLGN. We have seen
how CT feedback and behaviour can exert their independent influences
at multiple stages of visual processing (Andolina et al., 2013; Cudeiro
& Sillito, 1996; Niell & Stryker, 2010; Reimer et al., 2014), including the
dLGN (Erisken et al., 2014; Molnár et al., 2021; Spacek et al., 2022), and
that we can use modelling techniques to extract them in the form of filter
kernels (Bauer et al., 2022). However, although our model design sepa-
rated the terms for CT feedback, locomotion and running, this separa-
tion is likely artificial and should not be taken at face value. Interestingly,
Andermann et al., 2013 identified locomotion-suppressed neurons in V1

L6 and Augustinaite and Kuhn, 2020 could pinpoint locomotion- and
pupil-effects more precisely to L6 CT neurons. Relatedly, Molnár et al.,
2021 found that the correlation between pupil size and dLGN relay cell
membrane potential was abolished when they suppressed CT feedback.
In this sense, CT feedback might also serve to send behaviour-related
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signals to the dLGN. Since it is unlikely that behavioural information is
computed de novo in L6 CT cells, but instead is probably inherited from
brain stem inputs to V1 (Lee et al., 2014; McCormick, 1992; Nestvogel
& McCormick, 2021; Reimer et al., 2016; Sherman & Guillery, 1996), we
are likely dealing with overlaps in the circuitry underlying CT feedback
and behavioural signals to the dLGN – or put differently: this calls into
question the separability of visual and extra-visual input types to dLGN
into distinct circuits, both in practice and in principle.

Instead, in modelling dLGN activity as a function of stimulus, CT
feedback and behaviour, we should consider potential relations and in-
teractions between these terms. Besides the independent effects of loco-
motion and pupil size on visual pathway activity (Molnár et al., 2021;
Reimer et al., 2014; Vinck et al., 2015), we have already seen in Bauer
et al., 2022 and Erisken et al., 2014 that they are also correlated, likely
both indicating an arousal state (Busse, 2018). In our model, we could
capture their combined effects on dLGN activity by incorporating inter-
action terms.

In general, we can of course model dLGN activity with arbitrary com-
plexity by adding such terms on top of terms for luminance adaptation
and burst activity (see Discussion in Bauer et al., 2022). However, with
increased complexity, we are at risk of sacrificing simplicity and inter-
pretability. And in the end, our GLM will still be only a descriptive
model that merely provides the first generative description of phenom-
ena to guide further research on the physiological interpretations and
mechanisms (Pillow et al., 2008).

In summary, by integrating feedforward drive, CT feedback, and be-
havior into an interpretable spline-LNP model for dLGN activity, this
work presents an important step towards a quantitative understanding
of how responses to complex, naturalistic stimuli are modulated by CT
feedback and behavior. Nevertheless, some unexpected results also high-
light the sensitivity of this process on model design. On top of that, the
relations between these predictors and the overlap of their underlying
circuitry calls for further research. Lastly, there are potential improve-
ments on our CT feedback manipulation, modelling and visual stimula-
tion that I will address in the next section.

5.3 future directions

In the following, I will lay out some concrete plans and open avenues
with regards to selective CT feedback manipulation, neural systems iden-
tification and ecological validity.

selective inhibition of the l6 ct feedback pathway : Natu-
rally, in spite of the improvements on the optogenetic CT FB manipula-
tion, our current approach in Bauer et al., 2022 can still be optimized
even further. In particular, manipulating L6 CT cells in V1 may still
elicit confounding effects through the circuit from V1 via the TRN to
the dLGN (see Figure 1). In this sense, an optimal manipulation would
target L6 CT synapses selectively in the dLGN, a technique that we are
in the process of establishing in the Busse Lab.
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Furthermore, some newly developed bistable anion-conducting channel-
rhodopsins may reduce the need for constant illumination (Govorunova
et al., 2015; Mahn et al., 2021) and consequently decrease the risk of arte-
facts (Wiegert et al., 2017) while being sensitive and effective enough to
operate within the spatio-temporal constraints of optogenetic activation
(Li et al., 2019).

neural systems identification : In order to reach our goal of
neural systems identification in the dLGN, we have moved from a sim-
ple feedforward linear regression model (Román Rosón et al., 2019) to-
wards a LNP-GLM that is capable of accounting for non-linear response
properties and also integrates optogenetic and behavioural predictors
(Bauer et al., 2022). Both models capture a substantial fraction of vari-
ance in the dLGN responses. In future, we are planning to benefit from
the advantages conferred by more complex deep neural network (DNN)
models (Yamins et al., 2014). These have have already successfully pre-
dicted neural responses in the salamander retina (Maheswaranathan et
al., 2018) and macaque V1 (Bashivan et al., 2019; Cadena et al., 2019;
Ecker et al., 2018; Walker et al., 2019). Not only do they promise to im-
prove prediction quality with fewer data points, they would also allow
us to fit the entire population of recorded cell responses simultaneously
and separate general and cell-specific neural features (‘what’) and their
cell-specific RF location (‘where’) (Klindt et al., 2017). Specifically, based
on our existing experiment design, we are planning to develop a mul-
tilayer DNN of mouse dLGN responses to naturalistic movies that also
includes additional predictor terms for feedback and behavioural state
as modulator and shifter networks (Sinz et al., 2018) in order to elucidate
how feedforward and feedback computations, as well as behavioural
states, contribute to the neural processing of visual stimuli in the dLGN.

ecological validity : Thanks to the advances of one of our par-
allel projects on a naturalistic movie stimulus design, we will also be
able to improve on the stimulus design towards a more naturalistic, eco-
logically valid direction (Qiu et al., 2020). Specifically, these movies are
recorded in natural environments from the typical vantage point of mice,
which will greatly improve on the somewhat unnatural nature of our cur-
rent feature film stimulus. Moreover, since the movies are recorded at the
peak UV and green wavelengths of mouse cones, and will be projected at
these wavelengths onto a dome covering most of the mouse visual field,
this will improve on the current experimental setup of presenting BW-
scenes on an RGB-LCD (human) consumer display. Nevertheless, rather
than dismissing less naturalistic stimuli per se, it is an interesting sci-
entific question to what extent degrees of naturalness matter for visual
responses, and if they do, what the relevant features are.

Moreover, in future, since the sensory systems are designed to guide
action, it would be very interesting to overcome the discrepancy between
mouse behaviour and visual stimulus that is present in our open-loop
setup, and replace it with a closed-loop design through the use of a
virtual reality setup.
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5.4 conclusion

What difference does dLGN make? What role do thalamic feedforward, feedback,
and behavioural signals play?

It depends on what we look at and how we look at it. One recurrent
theme that has become apparent especially throughout the discussion of
the role of cortico-thalamic feedback, is the impact of the diverse meth-
ods that have led to conflicting results and interpretations. In the series
of studies presented here, we have tried to iteratively address the issues
raised in the previous steps, e.g. improving our optogenetic stimulation,
our models, or our visual stimuli, in an attempt to allay doubts about
their validity. However, this is a continuous, endless process. Every ex-
periment is an imperfect approximation of the natural phenomenon that
we are trying to uncover. In line with the quote introducing this section,
one can say that this is fine so long as we do not confuse the answer
given by nature to our experimental ‘question’ with the answer to our
original question.

Turning back to the dLGN, first, we have seen that, much like the
recent proliferation of cell types being reported in the retina (Baden et
al., 2016; Goetz et al., 2021), there is more functional diversity than pre-
viously thought (Piscopo et al., 2013; Román Rosón et al., 2019). One
potential source of this diversity is the recombination of retinal feed-
forward input signals from various RGC types that allows novel dLGN
response feature creation. Retino-thalamic feedforward signal computa-
tions continue to be an active area of investigation and has more re-
cently been advanced by in vivo two-photon calcium studies on the role
of neuromodulation on retinal terminals in the dLGN (Liang et al., 2018;
Schröder et al., 2019).

How cortico-thalamic feedback and behaviour act in concert to shape
thalamic processing is still a classic question and a major unknown (Tren-
holm & Krishnaswamy, 2020). What seems clear is that feedback does
shape thalamic signals, albeit subtly. In order to elicit these subtle ef-
fects, in vivo approaches in awake animals stimulated with naturalistic
movies combined with specific and reversible cortico-thalamic feedback
manipulations seem to be necessary to evoke a clearer picture. At this
stage, it probably does not make sense to speak of a single role, and
instead be open to the possibility of multiple roles being served.

In summary, both feedforward, feedback and behavioural signals seem
to shape dLGN signals. This is in support of the view of the dLGN as
an active signal transformer, not a passive relay. One question is to what
extent this is surprising or makes the dLGN stand out from other parts
of the brain which arguably are all about transforming signals.



B I B L I O G R A P H Y

Ahmed, B., Anderson, J. C., Douglas, R. J., Martin, K. A., & Nelson, J. C. (1994).
Polyneuronal innervation of spiny stellate neurons in cat visual cortex.
J Comp Neurol, 341(1), 39–49. https://doi.org/10.1002/cne.903410105

(cit. on p. 8)

Alitto, H. J., & Usrey, W. M. (2008). Origin and Dynamics of Extraclassical Sup-
pression in the Lateral Geniculate Nucleus of the Macaque Monkey.
Neuron, 57(1), 135–146. https://doi.org/10.1016/j.neuron.2007.11.019

(cit. on pp. 2, 10)

Andermann, M. L., Gilfoy, N. B., Goldey, G. J., Sachdev, R. N., Wölfel, M., Mc-
Cormick, D. A., Reid, R. C., & Levene, M. J. (2013). Chronic Cellular
Imaging of Entire Cortical Columns in Awake Mice Using Microprisms.
Neuron, 80(4), 900–913. https://doi.org/10.1016/j.neuron.2013.07.052

(cit. on pp. 9, 121)

Andermann, M. L., Kerlin, A. M., Roumis, D. K., Glickfeld, L. L., & Reid, R. C.
(2011). Functional specialization of mouse higher visual cortical areas.
Neuron. https://doi.org/10.1016/j.neuron.2011.11.013 (cit. on p. 11)

Andolina, I. M., Jones, H. E., Wang, W., & Sillito, A. M. (2007). Corticothalamic
feedback enhances stimulus response precision in the visual system.
Proceedings of the National Academy of Sciences, 104(5), 1685–1690. https:
//doi.org/10.1073/pnas.0609318104 (cit. on p. 10)

Andolina, I. M., Jones, H. E., & Sillito, A. M. (2013). Effects of cortical feedback
on the spatial properties of relay cells in the lateral geniculate nucleus.
Journal of Neurophysiology, 109(3), 889–899. https://doi.org/10.1152/jn.
00194.2012 (cit. on pp. 2, 9, 121)

Angelucci, A., & Sainsbury, K. (2006). Contribution of feedforward thalamic
afferents and corticogeniculate feedback to the spatial summation area
of macaque V1 and LGN. Journal of Comparative Neurology. https://doi.
org/10.1002/cne.21060 (cit. on p. 7)

Atallah, B. V., Bruns, W., Carandini, M., & Scanziani, M. (2012). Parvalbumin-
Expressing Interneurons Linearly Transform Cortical Responses to Vi-
sual Stimuli. Neuron, 73(1), 159–170. https://doi.org/10.1016/j.neuron.
2011.12.013 (cit. on p. 12)

Augustinaite, S., & Kuhn, B. (2020). Complementary Ca2+ Activity of Sensory
Activated and Suppressed Layer 6 Corticothalamic Neurons Reflects
Behavioral State. Current Biology, 30(20), 3945–3960.e5. https : / / doi .
org/10.1016/j.cub.2020.07.069 (cit. on pp. 8, 9, 121)

Aydın, Ç., Couto, J., Giugliano, M., Farrow, K., & Bonin, V. (2018). Locomotion
modulates specific functional cell types in the mouse visual thalamus.
Nature communications, 9(1), 4882. https://doi.org/10 .1038/s41467-
018-06780-3 (cit. on p. 11)

Babadi, B., Casti, A., Xiao, Y., Kaplan, E., & Paninski, L. (2010). A generalized
linear model of the impact of direct and indirect inputs to the lateral
geniculate nucleus. Journal of vision, 10(10), 22. https ://doi .org/10 .
1167/10.10.22 (cit. on pp. 2, 15)

125

https://doi.org/10.1002/cne.903410105
https://doi.org/10.1016/j.neuron.2007.11.019
https://doi.org/10.1016/j.neuron.2013.07.052
https://doi.org/10.1016/j.neuron.2011.11.013
https://doi.org/10.1073/pnas.0609318104
https://doi.org/10.1073/pnas.0609318104
https://doi.org/10.1152/jn.00194.2012
https://doi.org/10.1152/jn.00194.2012
https://doi.org/10.1002/cne.21060
https://doi.org/10.1002/cne.21060
https://doi.org/10.1016/j.neuron.2011.12.013
https://doi.org/10.1016/j.neuron.2011.12.013
https://doi.org/10.1016/j.cub.2020.07.069
https://doi.org/10.1016/j.cub.2020.07.069
https://doi.org/10.1038/s41467-018-06780-3
https://doi.org/10.1038/s41467-018-06780-3
https://doi.org/10.1167/10.10.22
https://doi.org/10.1167/10.10.22


126 bibliography

Baden, T., Berens, P., Franke, K., Román Rosón, M., Bethge, M., & Euler, T.
(2016). The functional diversity of mouse retinal ganglion cells. Nature,
529(7586), 1–21. https://doi.org/10.1038/nature16468 (cit. on pp. 2–6,
118, 124)

Baker, C. A., Elyada, Y. M., Parra, A., & Bolton, M. M. L. (2016). Cellular
resolution circuit mapping with temporal-focused excitation of soma-
targeted channelrhodopsin. eLife, 5(8), 1–15. https://doi.org/10.7554/
eLife.14193 (cit. on p. 13)

Bar, M. (2004). Visual objects in context. Nature Reviews Neuroscience, 5(8), 617–
629. https://doi.org/10.1038/nrn1476 (cit. on p. 7)

Barlow, H. B. (1953). Summation and inhibition in the frog’s retina. The Journal
of Physiology, 119(1), 69–88. https://doi.org/10 .1113/jphysiol .1953 .
sp004829 (cit. on p. 3)

Barlow, H. B. (1961). Possible principles underlying the Transformations of
sensory messages. In W. A. Rosenblith (Ed.), Sensory communication
(pp. 217–234). https : / / doi . org / 10 . 7551 / mitpress / 9780262518420 .
001.0001. (Cit. on p. 2)

Bashivan, P., Kar, K., & DiCarlo, J. J. (2019). Neural population control via deep
image synthesis. Science, 364(6439). https://doi.org/10.1126/science.
aav9436 (cit. on p. 123)

Bastos, A. M., Usrey, W. M., Adams, R. A., Mangun, G. R., Fries, P., & Fris-
ton, K. J. (2012). Canonical Microcircuits for Predictive Coding. Neuron,
76(4), 695–711. https://doi.org/10.1016/j.neuron.2012.10.038 (cit. on
p. 7)

Bauer, J., Weiler, S., Fernholz, M. H., Laubender, D., Scheuss, V., Hübener, M.,
Bonhoeffer, T., & Rose, T. (2021). Limited functional convergence of eye-
specific inputs in the retinogeniculate pathway of the mouse. Neuron,
109(15), 2457–2468.e12. https://doi.org/10.1016/J.NEURON.2021.05.
036 (cit. on pp. 6, 118)

Bauer, Y., Schmors, L., Huang, Z., Kotkat, A. H., Crombie, D., Meyerolbersleben,
L., Renner, S., Sokoloski, S., Busse, L., & Berens, P. (2022). An inter-
pretable spline-LNP model to characterise feedforward and feedback
processing in mouse dLGN. In preparation (cit. on pp. 3, 93, 117, 120–
123, 154).

Baylor, D. A., Lamb, T. D., & Yau, K. W. (1979). Responses of retinal rods to
single photons. The Journal of Physiology, 288(3), 613–634. https://doi.
org/10.1113/jphysiol.1979.sp012716 (cit. on p. 3)

Berndt, A., Lee, S. Y., Ramakrishnan, C., & Deisseroth, K. (2014). Structure-
guided transformation of channelrhodopsin into a light-activated chlo-
ride channel. Science, 344(6182), 420–4. https : / / doi . org / 10 . 1126 /
science.1252367 (cit. on p. 12)

Berndt, A., Lee, S. Y., Wietek, J., Ramakrishnan, C., Steinberg, E. E., Rashid,
A. J., Kim, H., Park, S., Santoro, A., Frankland, P. W., Iyer, S. M., Pak,
S., Ährlund-Richter, S., Delp, S. L., Malenka, R. C., Josselyn, S. A., Car-
lén, M., Hegemann, P., & Deisseroth, K. (2015). Structural foundations
of optogenetics: Determinants of channelrhodopsin ion selectivity. Pro-
ceedings of the National Academy of Sciences, 113(4), 822–829. https://doi.
org/10.1073/pnas.1523341113 (cit. on p. 12)

https://doi.org/10.1038/nature16468
https://doi.org/10.7554/eLife.14193
https://doi.org/10.7554/eLife.14193
https://doi.org/10.1038/nrn1476
https://doi.org/10.1113/jphysiol.1953.sp004829
https://doi.org/10.1113/jphysiol.1953.sp004829
https://doi.org/10.7551/mitpress/9780262518420.001.0001
https://doi.org/10.7551/mitpress/9780262518420.001.0001
https://doi.org/10.1126/science.aav9436
https://doi.org/10.1126/science.aav9436
https://doi.org/10.1016/j.neuron.2012.10.038
https://doi.org/10.1016/J.NEURON.2021.05.036
https://doi.org/10.1016/J.NEURON.2021.05.036
https://doi.org/10.1113/jphysiol.1979.sp012716
https://doi.org/10.1113/jphysiol.1979.sp012716
https://doi.org/10.1126/science.1252367
https://doi.org/10.1126/science.1252367
https://doi.org/10.1073/pnas.1523341113
https://doi.org/10.1073/pnas.1523341113


bibliography 127

Berson, D. (2008). Retinal ganglion cell types and their central projections. In
R. H. Masland (Ed.), The senses: A comprehensive reference (pp. 491–520).
Elsevier Inc. (Cit. on p. 2).

Bezdudnaya, T., Cano, M., Bereshpolova, Y., Stoelzel, C. R., Alonso, J. M., &
Swadlow, H. A. (2006). Thalamic burst mode and inattention in the
awake LGNd. Neuron, 49(3), 421–432. https : / / doi . org / 10 . 1016 / j .
neuron.2006.01.010 (cit. on p. 119)

Bickford, M. E., Zhou, N., Krahe, T. E., Govindaiah, G., & Guido, W. (2015). Reti-
nal and Tectal ’Driver-Like’ Inputs Converge in the Shell of the Mouse
Dorsal Lateral Geniculate Nucleus. Journal of Neuroscience, 35(29), 10523–
10534. https://doi.org/10 .1523/JNEUROSCI.3375 - 14 .2015 (cit. on
p. 16)

Bonin, V., Mante, V., & Carandini, M. (2006). The statistical computation un-
derlying contrast gain control. The Journal of Neuroscience, 26(23), 6346–
6353. https ://doi .org/10 .1523/JNEUROSCI .0284 - 06 .2006 (cit. on
pp. 14, 119)

Bortone, D. S., Olsen, S. R., & Scanziani, M. (2014). Translaminar inhibitory cells
recruited by layer 6 corticothalamic neurons suppress visual cortex.
Neuron, 82(2), 474–485. https://doi.org/10.1016/j.neuron.2014.02.021

(cit. on pp. 7, 9, 16)

Boyden, E. S., Zhang, F., Bamberg, E., Nagel, G., & Deisseroth, K. (2005). Millisecond-
timescale, genetically targeted optical control of neural activity. Nature
neuroscience, 8(9), 1263–8. https ://doi .org/10 .1038/nn1525 (cit. on
p. 12)

Briggs, F., & Usrey, W. M. (2011). Corticogeniculate feedback and visual pro-
cessing in the primate. Journal of Physiology, 589(1), 33–40. https://doi.
org/10.1113/jphysiol.2010.193599 (cit. on pp. 2, 9, 10, 15, 119)

Briggs, F. (2010). Organizing principles of cortical layer 6. Frontiers in Neural
Circuits. https://doi.org/10.3389/neuro.04.003.2010 (cit. on pp. 7–9,
119)

Busse, L. (2018). The influence of locomotion on sensory processing and its
underlying neuronal circuits. Neuroforum, 24(1), A41–A51. https://doi.
org/10.1515/nf-2017-A046 (cit. on pp. 10, 122)

Butts, D. A., Weng, C., Jin, J., Alonso, J. M., & Paninski, L. (2011). Temporal
precision in the visual pathway through the interplay of excitation and
stimulus-driven suppression. Journal of Neuroscience. https://doi.org/
10.1523/JNEUROSCI.0434-11.2011 (cit. on p. 15)

Cadena, S. A., Denfield, G. H., Walker, E. Y., Gatys, L. A., Tolias, A. S., Bethge,
M., & Ecker, A. S. (2019). Deep convolutional models improve predic-
tions of macaque V1 responses to natural images. PLoS computational
biology, 15.4, e1006897. https://doi.org/10.1101/201764 (cit. on p. 123)

Cano, M., Bezdudnaya, T., Swadlow, H. A., & Alonso, J. M. (2006). Brain state
and contrast sensitivity in the awake visual thalamus. Nature neuro-
science, 9(10), 1240–1242. https ://doi .org/10 .1038/NN1760 (cit. on
p. 119)

Carandini, M., Demb, J. B., Mante, V., Tolhurst, D. J., Dan, Y., Olshausen, B. A.,
Gallant, J. L., & Rust, N. C. (2005). Do we know what the early visual
system does? Journal of Neuroscience, 25(46), 10577–10597. https://doi.
org/10.1523/JNEUROSCI.3726-05.2005 (cit. on p. 1)

https://doi.org/10.1016/j.neuron.2006.01.010
https://doi.org/10.1016/j.neuron.2006.01.010
https://doi.org/10.1523/JNEUROSCI.3375-14.2015
https://doi.org/10.1523/JNEUROSCI.0284-06.2006
https://doi.org/10.1016/j.neuron.2014.02.021
https://doi.org/10.1038/nn1525
https://doi.org/10.1113/jphysiol.2010.193599
https://doi.org/10.1113/jphysiol.2010.193599
https://doi.org/10.3389/neuro.04.003.2010
https://doi.org/10.1515/nf-2017-A046
https://doi.org/10.1515/nf-2017-A046
https://doi.org/10.1523/JNEUROSCI.0434-11.2011
https://doi.org/10.1523/JNEUROSCI.0434-11.2011
https://doi.org/10.1101/201764
https://doi.org/10.1038/NN1760
https://doi.org/10.1523/JNEUROSCI.3726-05.2005
https://doi.org/10.1523/JNEUROSCI.3726-05.2005


128 bibliography

Chen, C., Bickford, M. E., & Hirsch, J. A. (2016). Untangling the Web between
Eye and Brain. Cell, 165(1), 20–21. https://doi.org/10.1016/j.cell.2016.
03.010 (cit. on pp. 5, 117)

Chen, C., & Regehr, W. G. (2000). Developmental remodeling of the retinogenic-
ulate synapse. Neuron, 28(3), 955–966. https://doi.org/10.1016/S0896-
6273(00)00166-5 (cit. on p. 5)

Chow, B. Y., Han, X., Dobry, A. S., Qian, X., Chuong, A. S., Li, M., Henninger,
M. A., Belfort, G. M., Lin, Y., Monahan, P. E., & Boyden, E. S. (2010).
High-performance genetically targetable optical neural silencing by
light-driven proton pumps. Nature, 463(7277), 98–102. https://doi.org/
10.1038/nature08652 (cit. on p. 10)

Cruz-Martín, A., El-Danaf, R. N., Osakada, F., Sriram, B., Dhande, O. S., Nguyen,
P. L., Callaway, E. M., Ghosh, A., & Huberman, A. D. (2014). A dedi-
cated circuit links direction-selective retinal ganglion cells to the pri-
mary visual cortex. Nature, 507(7492), 358–61. https : / / doi . org / 10 .
1038/nature12989 (cit. on pp. 2, 6)

Cudeiro, J., & Sillito, A. M. (1996). Spatial frequency tuning of orientation-
discontinuity-sensitive corticofugal feedback to the cat lateral genic-
ulate nucleus. The Journal of Physiology, 490(2), 481–492. https://doi.
org/10.1113/jphysiol.1996.sp021159 (cit. on pp. 2, 9, 10, 15, 119, 121)

Dacey, D. M., Peterson, B. B., Robinson, F. R., & Gamlin, P. D. (2003). Fireworks
in the Primate Retina. Neuron, 37(1), 15–27. https://doi.org/10.1016/
S0896-6273(02)01143-1 (cit. on p. 5)

Dana Ballard. (2015). Brain Computation as Hierarchical Abstraction. Mit press
(pp. 3–40). Cambridge University Press. https : / / doi . org / 10 . 7551 /
mitpress/9780262028615.003.0001. (Cit. on p. 8)

De Labra, C., Rivadulla, C., Grieve, K., Marino, J., Espinosa, N., Cudeiro, J., Mar-
iño, J., Espinosa, N., & Cudeiro, J. (2007). Changes in visual responses
in the feline dLGN: Selective thalamic suppression induced by tran-
scranial magnetic stimulation of V1. Cerebral Cortex, 17(6), 1376–1385.
https://doi.org/10.1093/cercor/bhl048 (cit. on p. 10)

Deisseroth, K. (2011). Optogenetics. Nature methods, 8(1), 26–9. https://doi.org/
10.1038/nmeth.f.324 (cit. on p. 12)

Denman, D. J., & Contreras, D. (2015). Complex effects on in vivo visual re-
sponses by specific projections from mouse cortical layer 6 to dorsal
lateral geniculate nucleus. The Journal of Neuroscience, 35(25), 9265–80.
https://doi.org/10.1523/JNEUROSCI.0027-15.2015 (cit. on pp. 9, 10)

Dhande, O. S., Estevez, M. E., Quattrochi, L. E., El-Danaf, R. N., Nguyen, P. L.,
Berson, D. M., & Huberman, A. D. (2013). Genetic dissection of retinal
inputs to brainstem nuclei controlling image stabilization. Journal of
Neuroscience, 33(45), 17797–813. https://doi.org/10.1523/JNEUROSCI.
2778-13.2013 (cit. on pp. 4, 6)

Dhande, O. S., & Huberman, A. D. (2014). Retinal ganglion cell maps in the
brain: Implications for visual processing. Current Opinion in Neurobiol-
ogy, 24(1), 133–142. https://doi.org/10.1016/j.conb.2013.08.006 (cit. on
p. 3)

Dhande, O. S., Stafford, B. K., Lim, J.-H. A., & Huberman, A. D. (2015). Con-
tributions of Retinal Ganglion Cells to Subcortical Visual Processing

https://doi.org/10.1016/j.cell.2016.03.010
https://doi.org/10.1016/j.cell.2016.03.010
https://doi.org/10.1016/S0896-6273(00)00166-5
https://doi.org/10.1016/S0896-6273(00)00166-5
https://doi.org/10.1038/nature08652
https://doi.org/10.1038/nature08652
https://doi.org/10.1038/nature12989
https://doi.org/10.1038/nature12989
https://doi.org/10.1113/jphysiol.1996.sp021159
https://doi.org/10.1113/jphysiol.1996.sp021159
https://doi.org/10.1016/S0896-6273(02)01143-1
https://doi.org/10.1016/S0896-6273(02)01143-1
https://doi.org/10.7551/mitpress/9780262028615.003.0001
https://doi.org/10.7551/mitpress/9780262028615.003.0001
https://doi.org/10.1093/cercor/bhl048
https://doi.org/10.1038/nmeth.f.324
https://doi.org/10.1038/nmeth.f.324
https://doi.org/10.1523/JNEUROSCI.0027-15.2015
https://doi.org/10.1523/JNEUROSCI.2778-13.2013
https://doi.org/10.1523/JNEUROSCI.2778-13.2013
https://doi.org/10.1016/j.conb.2013.08.006


bibliography 129

and Behaviors. Annual Review of Vision Science, 1(1), 291–328. https :
//doi.org/10.1146/annurev-vision-082114-035502 (cit. on p. 3)

Dodge, S., & Karam, L. (2016). Understanding how image quality affects deep
neural networks. 2016 8th International Conference on Quality of Multime-
dia Experience, QoMEX 2016. https://doi.org/10.1109/QoMEX.2016.
7498955 (cit. on p. 1)

Dong, D. W., & Atick, J. J. (1995). Temporal decorrelation: A theory of lagged
and nonlagged responses in the lateral geniculate nucleus. Network:
Computation in Neural Systems, 6(2), 159–178. https://doi.org/10.1088/
0954-898X_6_2_003 (cit. on pp. 2, 14)

Drinnenberg, A., Franke, F., Morikawa, R. K., Jüttner, J., Hillier, D., Hantz, P., Hi-
erlemann, A., Azeredo da Silveira, R., & Roska, B. (2018). How Diverse
Retinal Functions Arise from Feedback at the First Visual Synapse. Neu-
ron, 99(1), 117–134.e11. https://doi.org/10.1016/j.neuron.2018.06.001

(cit. on p. 7)

Dugué, G. P., Akemann, W., & Knöpfel, T. (2012). A comprehensive concept of
optogenetics. Progress in Brain Research, 196, 1–28. https://doi.org/10.
1016/B978-0-444-59426-6.00001-X (cit. on p. 12)

Durand, S., Iyer, R., Mizuseki, K., De Vries, S., Mihalas, S., & Reid, R. C. (2016).
A comparison of visual response properties in the lateral geniculate
nucleus and primary visual cortex of awake and anesthetized mice.
Journal of Neuroscience, 36(48), 12144–12156. https://doi.org/10.1523/
JNEUROSCI.1741-16.2016 (cit. on pp. 2, 10, 119)

Ecker, A. S., Sinz, F. H., Froudarakis, E., Fahey, P. G., Cadena, S. A., Walker,
E. Y., Cobos, E., Reimer, J., Tolias, A. S., & Bethge, M. (2018). A rotation-
equivariant convolutional neural network model of primary visual cor-
tex. arXiv, 1809.10504 (cit. on p. 123).

Ecker, J. L., Dumitrescu, O. N., Wong, K. Y., Alam, N. M., Chen, S. K., LeGates,
T., Renna, J. M., Prusky, G. T., Berson, D. M., & Hattar, S. (2010). Melanopsin-
expressing retinal ganglion-cell photoreceptors: Cellular diversity and
role in pattern vision. Neuron, 67(1), 49–60. https://doi.org/10.1016/j.
neuron.2010.05.023 (cit. on p. 6)

Einevoll, G. T., & Plesser, H. E. (2012). Extended difference-of-Gaussians model
incorporating cortical feedback for relay cells in the lateral geniculate
nucleus of cat. Cognitive Neurodynamics, 6(4), 307–324. https://doi.org/
10.1007/s11571-011-9183-8 (cit. on p. 15)

Ellis, E. M., Gauvain, G., Sivyer, B., & Murphy, G. J. (2016). Shared and dis-
tinct retinal input to the mouse superior colliculus and dorsal lateral
geniculate nucleus. Journal of Neurophysiology, 116(2), 602–610. https :
//doi.org/10.1152/jn.00227.2016 (cit. on pp. 2, 4, 6, 16)
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