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Wo man massvolle Verkündung der Resultate erwartet, die sich als Vorläufer einer
genaueren Erkenntniss ausgeben, hört man rechthaberisches Pochen auf das wenige ge-
fundene, Vertheidigung sogar der richtigen Ansichten durch halbwahre Gründe. Keine
planvolle Ermittlung der thatsächlichen Verhältnisse, kein selbstbewusstes Hinstreben
nach wohlerkanntem Ziele; vielmehr zufällig entstandene Tabellen aufs willkürlichste
ausgebeutet. Wie der Reiter, wenn er die Zügel verloren hat, seinem Ross, so folgt
häufig der Schriftsteller willenlos seinem Rechenstifte, und ein Gebiet, worauf der
menschliche Geist seine Herrschaft, wie überall, befestigen sollte – wie oft sieht es den
menschlichen Geist der rohsten Empirie unterliegen.

Knapp (1868) on the struggle to let pure empirical evidence shape scientific discussions.
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Summary

Functional data analysis and age-period-cohort (APC) analysis both deal with the estimation of
flexible (association) structures over domains like time and space. This dissertation focuses on
the development of new approaches to robustly estimate such structures. All methods are moti-
vated and showcased with applications in seismological research or tourism science. The outlined
approaches are implemented in open-source software packages in the statistical software R and
are accompanied by detailed instructions on how to properly apply them.
The main methodological contribution of this dissertation focuses on the separation of amplitude
and phase variation as a central component of functional data analysis. When functional data
comprise a relevant amount of phase variation, they have to be registered to align the phase of the
individual curves by elastically deforming their domains. While registration became an active field
of research over the last decades, approaches for common data structures like generalized and not
completely observed data are still lacking. The first contributing article adapts a likelihood-based
registration method for such generalized and incomplete data, and joins it with an approach for
generalized functional principal component analysis (GFPCA) to represent the obtained solution
in a low-dimensional basis. The utility of the method is showcased on simulated seismic data
with a highly volatile Gamma structure, used to assess critical geophysical parameters associated
with strong ground motion in the event of an earthquake. The method’s performance is compared
to other established registration approaches. An implementation is available in the R package
registr which is outlined in the second article.
After the separation of amplitude and phase, functional data can be analyzed in ways conceptu-
ally similar to scalar data. One common research question is to estimate the association between
observed structures in curves and a set of scalar covariates. The third article gives an introduc-
tion to generalized functional additive models (GFAMs) as a flexible semiparametric approach
to estimate such function-on-scalar regression models. Practical guidelines are discussed for all
relevant aspects based on the analysis of the above-mentioned seismic data. Practical researchers
are guided by offering fully reproducible code as well as the R package FoSIntro which contains
numerous utility functions.
The third part of this dissertation covers APC analysis as a technique to analyze the underlying
drivers of long-term temporal processes. The critical challenge in APC analysis is the linear depen-
dency of the three dimensions age, period, and cohort (cohort = period - age). Flexible methods for
estimation and visualization are needed to properly disentangle observed temporal structures. The
fourth article introduces ridgeline matrices and partial APC plots as novel visualization techniques,
refining the concepts of established techniques like Lexis diagrams. Model-based separation of the
temporal dimensions is performed utilizing the semiparametric estimation of a two-dimensional
tensor product surface with a generalized additive model (GAM). The usefulness of the methods
is showcased with data from tourism science, analyzing drivers for altering travel distances of
German tourists over the last decades. The fifth article covers the R package APCtools which
implements the newly introduced methods as well as additional visualization techniques.





Zusammenfassung

Funktionale Datenanalyse und Alters-Perioden-Kohorten (APC-)Analyse befassen sich mit der
Schätzung flexibler (Assoziations-)Strukturen über Domains wie Zeit und Raum. Die vorliegende
Dissertation behandelt die Entwicklung neuer Ansätze zur robusten Schätzung solcher Struk-
turen. Alle Methoden werden anhand von Anwendungen in der seismologischen Forschung oder
der Tourismuswissenschaft motiviert und eingeführt. Die methodischen Ansätze sind in Open-
Source-Softwarepaketen in der Statistik-Software R implementiert und werden begleitet von de-
taillierten Ausführungen zu ihrer korrekten Anwendung.
Der zentrale methodische Beitrag dieser Dissertation fokussiert sich auf die Trennung von
Amplituden- und Phasenvariation als eine der zentralen Komponenten funktionaler Datenanalyse.
Enthalten funktionale Daten eine relevante Menge an Phasenvariation, so müssen sie registriert
werden, um die Phasen der einzelnen Kurven durch elastische Verformung ihrer Domains anzu-
gleichen. Obwohl sich die Registrierung über die letzten Jahrzehnte zu einem aktiven Forschungs-
gebiet entwickelt hat, fehlen weiterhin flexible Ansätze zur Analyse verbreiteter Datenstrukturen
wie etwa generalisierter oder nicht vollständig beobachteter Daten. Der erste Artikel dieser Dis-
sertation adaptiert eine Likelihood-basierte Registrierungsmethode für solche generalisierten und
unvollständigen Daten und verbindet sie mit einem Ansatz zur generalisierten funktionalen Haupt-
komponentenanalyse (GFPCA), um die erhaltene Lösung in einer niedrigdimensionalen Basis zu
repräsentieren. Die Nützlichkeit der Methode wird an simulierten seismischen Daten mit einer
hochvolatilen Gamma-Struktur demonstriert. Diese Daten werden zur Einschätzung zentraler
geophysikalischer Parameter verwendet, welche im Falle eines Erdbebens mit starken Boden-
bewegungen assoziiert sind. Die Performanz der Methode wird mit anderen etablierten Regis-
trierungsansätzen verglichen. Eine Implementierung ist im R-Paket registr verfügbar, das im
zweiten Artikel beschrieben wird.
Nach der Separierung von Amplitude und Phase können funktionale Daten auf konzeptionell ähn-
liche Weisen analysiert werden wie skalare Daten. Eine häufige Forschungsfrage ist die Schätzung
des Zusammenhangs zwischen beobachteten Strukturen in Kurven und einer Reihe von skalaren
Kovariablen. Der dritte Artikel gibt eine Einführung in generalisierte funktionale additive Modelle
(GFAMs), welche einen flexiblen semiparametrischen Ansatz zur Schätzung solcher Funktion-auf-
Skalar-Regressionsmodelle darstellen. Anhand der Analyse der erwähnten seismischen Daten wer-
den praktische Leitlinien für alle relevanten Aspekte der Methode diskutiert. Mit Blick auf Fach-
wissenschaftler wurde über den vollständig reproduzierbaren Code hinaus das R-Paket FoSIntro
entwickelt, welches bei der Durchführung von Regressionsanalysen Unterstützung bietet.
Der dritte Teil dieser Dissertation befasst sich mit APC-Analyse als einer Technik zur Analyse
der zugrundeliegenden Treiber langfristiger zeitlicher Prozesse. Die zentrale Herausforderung von
APC-Analysen bildet die lineare Abhängigkeit der drei Dimensionen Alter, Periode und Kohorte
(Kohorte = Periode - Alter). Flexible Methoden zur Schätzung und Visualisierung sind erforder-
lich, um die beobachteten zeitlichen Strukturen adäquat zu entflechten. Der vierte Artikel führt
Ridgeline-Matrizen und partial APC plots als neue Visualisierungstechniken ein. Diese verfeinern
etablierte Techniken wie etwa Lexis-Diagramme. Die modellbasierte Trennung der zeitlichen Di-
mensionen wird durch die semiparametrische Schätzung einer zweidimensionalen Tensorprodukt-
Oberfläche mit einem generalisierten additiven Modell (GAM) durchgeführt. Die Nützlichkeit der
Methoden wird anhand von Daten aus der Tourismuswissenschaft demonstriert, anhand welcher
die Treiber analysiert werden, welche mit sich verändernden Reisedistanzen deutscher Touristen
über die letzten Jahrzehnte assoziiert sind. Der fünfte Artikel behandelt das R-Paket APCtools,
welches die neuen Methoden sowie zusätzliche Visualisierungstechniken implementiert.
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Part I.

Introduction and Background





1. Introduction

1.1. Outline

This dissertation tackles the statistical analysis of data where some process of interest is observed
over continuous domains like time and space, and where patterns in the development over these
domains are of central interest. Contributions are made to the fields of functional data analysis
and age-period-cohort (APC) analysis and focus on one-dimensional curves and multi-dimensional
temporal processes, respectively. For functional data analysis, advances cover the alignment of
salient structures along the functional domain in a registration step to properly disentangle the
underlying sources of variation of incompletely observed curves with a non-Gaussian structure.
Further, the focus is on methods for function-on-scalar regression, where the association structures
between a functional response and purely scalar covariates are of interest. The contributions to
APC analysis most prominently comprise the development of adequately complex, yet accessible
visualization techniques for a – potentially model-based – analysis. The main goal is to disen-
tangle observed developments with respect to their variation structure along the three temporal
dimensions age, period and cohort. All methods are motivated by real-world applications in either
seismological research or tourism science.
The remainder of this introductory chapter is organized as follows. This section gives a brief
overview of the research questions covered by this dissertation and motivates their statistical
relevance. Sections 2 to 4 introduce the individual statistical problems, summarize the utilized
methodological approaches and potential alternative techniques, comment on the current state
of statistical research in the respective field and shortly discuss potential directions for future
research. The individual contributions that are the core of this dissertation are listed in Chapters
II to IV. In the spirit of open science and to ensure full reproducibility, all contributions are ac-
companied by versatile implementations of the methodological approaches in the form of packages
for the statistical open-source software R (R Core Team, 2021).

1.2. Motivation and Scope

Many fields in modern science are grounded in the quantitative analysis of data. Over the last
centuries, not only have surveys grown in size and has the design of experiments itself become
a branch of research, but scientific studies have also become more complex with respect to the
variety of different parameters that they control for. Further accelerated by steady advances in
information technology, researchers were enabled to collect and analyze increasingly large, densely
observed and high-dimensional data. Two research areas that benefitted greatly from this devel-
opment are functional data analysis and age-period-cohort (APC) analysis. APC analysis already
became an established field of research in the 1800s, driven by the growing interest in the devel-
opment of mortality rates (see e.g. Knapp, 1868). Building on advances in the understanding of
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1. Introduction

time-dependent stochastic processes, functional data analysis became more prominent in the late
1900s, culminating in the 1997 publication of the first edition of the standard work of Ramsay
and Silverman (2005). Nowadays, both APC analysis and functional data analysis are still active
fields of research and are applied in diverse settings. However, substantial challenges remain that
require further research.
Functional data are shaped by repeated measurements, e.g. observed over time. While shar-
ing many aspects with longitudinal data analysis, functional data analysis typically deals with
more densely observed measurements per curve and shifts the overall focus towards alterations in
the curves’ shape. Over time, unique strategies were developed to tackle these challenges. Two
approaches that are central to the analysis of functional data are the alignment of curves in a
registration step and the estimation of association structures in a regression framework. Reg-
istering curves is crucial since observed processes are not only shaped by their variation along
some parameter of interest (amplitude variation along the y-axis), but also by their variation
along the functional domain (phase variation along the x-axis). Both types of variation have
to be properly represented and disentangled to ensure unbiased results in subsequent analyses.
In regression-based analyses, functional data require the estimation of flexible and often multi-
dimensional association structures. To ensure their practical applicability, methods for functional
data analysis have to be robust and efficient even in data situations when data is observed on
irregular, sparse or only incompletely observed domains. Chapter 2 focuses on the first contribu-
tion Bauer et al. (2022a) which introduces a method to register curves whose processes entail a
non-Gaussian structure and are only observed incompletely, as well as on the second contribution
Wrobel and Bauer (2021), outlining the respective implementation in the R package registr.
Chapter 3 summarizes the third contribution Bauer et al. (2018) which highlights a flexible semi-
parametric approach for function-on-scalar regression and thoroughly discusses related practical
considerations.
In contrast to functional data analysis, APC analysis simultaneously focuses on its three epony-
mous temporal domains. Observed developments of a process of interest can be associated with a
person’s life cycle (age effect), with changes affecting the whole population over some time period,
like macro-economic developments or scientific progress in medicine (period effect) or with struc-
tural differences between members of different generations like socialization or exposure processes
(cohort effect). Nowadays, such research questions appear frequently not only in demographic
or epidemiological contexts but also in economic, social or general medical sciences. Similar
to functional data analysis, flexible and robust approaches are required both for the estimation
and for the visualization of nonlinear associations with said temporal dimensions. The central
challenge for statistical approaches in APC analysis is to circumvent the identification problem,
which describes the linear dependency cohort = period− age of the temporal dimensions. Many
regression-based approaches solve this problem by estimating linear effects while putting hard
constraints on specific parameters. Chapter 4 summarizes the fourth contribution Weigert et al.
(2021) which highlights a semiparametric approach without hard constraints for effect estimation
and introduces novel visualization techniques. Further, Chapter 4 also covers the fifth contribu-
tion Bauer et al. (2022b) outlining the respective implementation in the R package APCtools.
All methodological developments in this dissertation are driven by interdisciplinary research
projects. The advances in functional data analysis in Chapters 2 and 3 are motivated by
seismic ground motion data which are derived from large-scale in silico earthquake scenario
simulations with the open-source software SeisSol (Pelties et al., 2014; Uphoff et al., 2017,
github.com/SeisSol/SeisSol), based on a real seismic event that took place in Northridge (Califor-
nia) in 1994. The aim of the statistical analysis is to gain a better understanding of the associations
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1.2 Motivation and Scope

between initial seismic conditions like fault stress and fault strength prior to earthquakes as well
as local topography and geology with the temporal and spatial distribution of ground movement
caused by an earthquake. Especially since the prediction of when and where the next seismic event
will occur remains an unsolved problem, the results contribute to the necessary risk assessment
for such events.
The advances in APC analysis in Chapter 4 are motivated by research questions from tourism sci-
ence and are based on extensive data obtained between 1971 and 2018 in the German Reiseanalyse
survey, an annual cross-sectional survey on pleasure travel among approximately 7 500 German
residents (FUR Forschungsgemeinschaft Urlaub und Reisen e.V., 2020). Main interest is on how
the travel behavior of the German population changed over the last decades, and what the drivers
were for these changes. Travel behavior is the result of a (partly sub)conscious travel decision
process, which itself is shaped by the personal circumstances under which it takes place. These
circumstances can change over someone’s life cycle (e.g. the family situation) or over calendar
years (e.g. the price for long-distance trips) and can vary between generations (e.g. as a result of
different socialization processes). Adequately accounting for all relevant aspects that shape the
travel decision process (e.g. also financial and health constraints) is crucial to draw potential con-
clusions about the drivers of observed developments. Eventually, since individual travel behavior
is the result of such a highly individualistic decision process, the underlying research project also
partly contributes to a better understanding of societal change in the German society over the
last 50 years.
As focus in Chapters 2 to 4 is on the advances of the statistical methodology, conclusions about
the underlying geoscientific research questions are only briefly discussed. For full detail I refer to
the individual contributions in Chapters II to IV.
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2. Registration of Functional Data

Functional data have two central modes of variation, namely phase variation and amplitude varia-
tion. As already shortly outlined, amplitude and phase variation define the variation of a process
along some parameter of interest (i.e., along the y-axis) and the variation along the functional do-
main (i.e., along the x-axis), respectively. For example, when analyzing curves consisting of seismic
ground motion measurements over time and focusing on their initial peaks, amplitude variation
represents the overall strength of the observed ground motion. In contrast, phase variation repre-
sents the effective time distortion at the individual peaks, caused by differing propagation speeds
of the seismic waves under different physical conditions. Even if phase variation is often not of
main interest, methods for functional data analysis have to properly differentiate between both
types of variation by registering the individual curves to prevent bias in subsequent analyses.
This section focuses on the contributions Bauer et al. (2022a) and Wrobel and Bauer (2021), which
introduce and implement a likelihood-based approach for registering curves with a non-Gaussian
structure and whose processes were only observed incompletely. The registration approach is
paired with an approach for generalized functional principal component analysis (GFPCA) to
represent the aligned curves in a lower-dimensional basis.

2.1. Incomplete Curve Registration

Let Yi(t∗i ), i = 1, . . . , N be discretized incomplete curves, observed over individual chronologi-
cal time domains T ∗

i , where the observed grids t∗
i = [t∗ij ]j=1,...,Di may be irregular or sparse, and

chronological domains T ∗
i = [t∗min,i, t

∗
max,i] are defined by the individual observation periods. With-

out loss of generality, we assume that all observed curves are realizations of stochastic processes
over a common underlying internal time domain T = [0, 1] and T ∗

i ⊆ T ∀ i. Registering the curves
requires estimating inverse warping functions h−1

i : T ∗
i 7→ T that account for the data’s phase

variation and map the individual chronological time domains T ∗
i to the internal time domain T of

the underlying process. The resulting registered curves Yi(t) = Yi(h−1
i (t∗i )) only contain amplitude

variation.
We differentiate between three types of incompleteness that can be present in observed curves.
Leading incompleteness and trailing incompleteness are present when information is missing only
at the beginning and only at the end of some process, respectively. If both are present at the
same time, we use the term full incompleteness. While incompleteness occurs in many practical
settings, most existing approaches only focus on the registration of completely observed curves.
As visualized for synthetic data with trailing incompleteness in Figure 2.1 based on the established
approach of Srivastava et al. (2011), the application of conventional “complete curve” registration
methods to incomplete data often leads to nonsensical results. In contrast, our approach can
handle all three types of incompleteness and is able to properly align the curves.
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2. Registration of Functional Data

Observed curves Registered curves Warping functions

t* [observed]

t [registered]

Complete curve registration
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]

Complete curve registration

t [registered]

Incomplete curve registration

t* [observed]

t [
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st

er
ed

]

Incomplete curve registration

Figure 2.1.: Simulated observed curves with trailing incompleteness (left column), registered curves only
comprising amplitude variation (center), and inverse warping functions visualizing phase variation (right).
Registration was performed with the complete curve SRVF approach of Srivastava et al. (2011) with function
time warping() from the R package fdasrvf (top row, Tucker, 2020) and our incomplete curve approach
(bottom row, Bauer et al., 2022a). Note the extreme time dilation around the blue curve’s peak in the top
row, which yields a highly implausible registered curve.

For our registration approach, we extend the likelihood-based framework of Wrobel et al. (2019)
for registering complete curves from exponential family distributions. Inverse warping functions
h−1

i are estimated by mapping an unregistered curve Yi(t∗i ) toward a suitable template function
µi(t) so that

E
[
Yi

(
h−1

i (t∗i )
)

|h−1
i

]
= µi (t) ,

with h−1
i (t∗i ) = Θh(t∗i )βi.

(2.1)

The inverse warping functions are represented through a B-spline basis with design matrix
Θh ∈ RDi×Kh

, with Di the number of measurements for curve i, Kh the number of basis func-
tions and the corresponding coefficient vector βi. Given some distribution from the exponential
family, this yields the following log-likelihood for curve i:

ℓ
(
h−1

i |yi, µi

)
= log

 Di∏
j=1

fi,j

[
yi(t∗i,j)

] , (2.2)

with fi,j(·) the corresponding density with expected value µi

(
h−1

i (t∗i,j)
)

and observed vec-
tors of function evaluations yi(t∗ij), j = 1, . . . , Di. We impose working assumptions of mu-
tual conditional independence across functions [Yi ⊥ Yi′ ]i ̸=i′ |µi, µi′ as well as within functions
[Yi(tij) ⊥ Yi(tik)]j ̸=k |µi. The basis coefficients βi are constrained in the optimization to ensure
strictly increasing warping functions that do not exceed the overall domain of the underlying pro-
cess.
If all curves were observed on an identical time interval, domain preservation would require to
map t∗min and t∗max to themselves so that the warping functions begin and end on the diagonal
line. Forcing observed and registered domain lengths to be identical, however, is clearly unsuit-
able for incomplete curve settings. Accordingly, we allow warping functions to start and/or end

8



2.1 Incomplete Curve Registration

at any point inside the overall time domain. To avoid large domain deformations that are not
strongly supported by the data, we penalize the total amount by which the registration changes
the duration of an observed time domain, leading to the penalized log-likelihood

ℓpen
(
h−1

i |yi, µi

)
= ℓ

(
h−1

i |yi, µi

)
− λ · ni · pen

(
h−1

i

)
,

with pen
(
h−1

i

)
=

([
h−1

i (t∗max,i) − h−1
i (t∗min,i)

]
−

[
t∗max,i − t∗min,i

])2
.

(2.3)

For settings with leading incompleteness with h−1
i (t∗max,i) = t∗max,i ∀ i, this simplifies to

pen
(
h−1

i

)
=

[
h−1

i (t∗min,i) − t∗min,i

]2
and for trailing incompleteness with h−1

i (t∗min,i) = t∗min,i ∀ i
to pen

(
h−1

i

)
=

[
h−1

i (t∗max,i) − t∗max,i

]2
. These penalties for one-sided incompleteness represent

the squared distance of the respective endpoint of h−1
i to the diagonal. The penalization param-

eter λ controls the overall amount of time dilation or compression and is scaled by the number of
measurements ni of curve i to ensure that the impact of the penalization relative to the likelihood is
not affected by the number of measurement points per function. The choice of λ should be based
on substantive knowledge so that estimated warping functions represent realistic accelerations
and/or decelerations of the observed processes.

Further, we adapt the two-step approach of Gertheiss et al. (2017) to estimate a low-rank GFPCA
representation of the registered curves Yi (t) = Yi

(
h−1

i (t∗i )
)
. Following Hall et al. (2008) and the

groundwork of Yao et al. (2005), functional principal components (FPCs) are estimated using a
marginal, semiparametric method based on assuming a latent Gaussian process Xi(t), so that

E[Yi(t)] = µi(t) = g[Xi(t)],

Xi(t) ≈ α(t) +
K∑

k=1
ci,k · ψk(t),

(2.4)

where each observed Yi(t) corresponds to the transformation of a latent process Xi(t) with some
fixed response function g(·), and the latent process itself can be decomposed into a smooth global
mean α(t), FPCs ψk(t) with respective eigenvalues τk > 0, and FPC scores ci,k ∼ N(0, τk). With
known ψk(t), model (2.4) is a generalized functional additive mixed model along the lines of
Scheipl et al. (2016) with a smooth conditional latent mean function in a P-spline representation,
functional random effects in an FPC basis representation, and functional random effect scores
ci,k ∼ N(0, τk).
To derive the GFPCA solution, we first center the observed Yi(t) based on their marginal mean
µY (t) = E[Yi(t)], estimated through a simple smoother of all (tij , Yi(tij))-pairs via a generalized
additive model (GAM, Wood, 2017) with response function g(·) and an appropriate exponential
family for the response. The covariance of the latent process can then be approximated by

Ĉov [Xi(s), Xi(t)] ≈ σ̂Y (s, t)
g(1)[µX(s)] · g(1)[µX(t)]

, (2.5)

with σY (s, t) = E[Yc,i(s) · Yc,i(t)] based on the centered curves Yc,i(t), the marginal mean µX(t)
estimated accordingly to µY (t), and g(1)(·) the first derivative of the response function. For given
time points s1 and s2, σY (s1, s2) is estimated as the mean of all pairwise products yc,i(s1) ·yc,i(s2).
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2. Registration of Functional Data

The estimated surface σ̂Y (s, t) is a smoothed version of σY (s, t) based on a bivariate tensor product
P-spline basis (Fahrmeir et al., 2013). The FPCs ψk(t) and their respective eigenvalues τk are
then estimated from the spectral decomposition of Ĉov [Xi(t), Xi(s)].

Finally, we combine the approaches for registration and GFPCA by utilizing the iterative algorithm
of Wrobel et al. (2019). Our aims to do so are twofold: (i) register all observed curves Yi(t∗i ) to
suitable template functions and (ii) adequately represent the registered curves Yi(t) = Yi(h−1

i (t∗i ))
through a low-rank GFPCA basis. We solve this problem by alternating the registration step
(conditional on the current GFPCA representations µi(t)) and the GFPCA step (conditional on
the current estimates of the warping functions h−1

i ). The initial registration step is performed with
respect to a fixed common template function µ(t)[0] which has to be set by the user. Subsequent
iterations then use the low-rank GFPCA representations µi(t) as curve-specific template functions,
with the number of FPCs in each iteration chosen, e.g., based on the explained share of variance.

2.2. Alternative Approaches

A range of alternative approaches exists for curve registration. Many early approaches focused
on the alignment of curves towards given (salient) structures, i.e., landmark registration (e.g.
Kneip and Gasser, 1992). More recent proposals mostly perform alignment towards template
functions that are either based on domain knowledge or estimated based on some measure of
centrality. Warping functions are commonly estimated purely nonparametrically (e.g. Tucker,
2020; Chakraborty and Panaretos, 2021), as (piecewise) linear functions (e.g. Sangalli et al., 2010;
Vitelli, 2019; McDonnell et al., 2021) or in a basis expansion like a (penalized) B-spline (Telesca
and Inoue, 2008; Wrobel et al., 2019) or Fourier (Mattar et al., 2009) basis or using warplets
(Claeskens et al., 2010).
One of the most popular approaches is the square-root velocity function (SRVF) framework in-
troduced by Srivastava et al. (2011), who showed that the warping-invariant Fisher-Rao metric
quantifies pure amplitude distances and is equivalent to the simple L2-metric in the SRVF space.
Recently, Guo et al. (2020) have extended this framework to jointly analyze amplitude, phase and
spatial variation. Cheng et al. (2016), Kurtek (2017), Lu et al. (2017) and Ebert et al. (2021)
adapted the SRVF approach to perform registration in a Bayesian setting. Further Bayesian ap-
proaches were introduced for data settings with stronger noise under informative priors (Matuk
et al., 2019; Tucker et al., 2021). The method developed by Horton et al. (2021) allows to include
prior information about the specific placement of landmarks on the registered domain. While
Bayesian approaches can provide a full representation of the joint phase and amplitude uncer-
tainty, they are also computationally very demanding.
More recently, Nunez et al. (2021) and Chen and Srivastava (2021) introduced the neural network-
based frameworks SrvfNet and SrvfRegNet, respectively. Both approaches build on the SRVF
framework and enable a highly efficient estimation and prediction of warping functions in large-
scale data settings.

In contrast to our likelihood-based method, all the above approaches are limited to continuous
functional data, mostly under the assumption of Gaussian errors. Some extensions to binary func-
tional data circumenvent this restriction by utilizing a pre-smoothing step to obtain a continuous
representation of the curves (e.g. Wu and Srivastava, 2014; Panaretos and Zemel, 2016). Alterna-
tively, the congealing approach of Learned-Miller (2005) (adapted to functional data by Mattar
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et al., 2009) iteratively optimizes general measures of alignment and is applicable in diverse data
situations.

For analyzing the main modes of amplitude and phase variation, it is common to estimate a
low-rank representation of the registered curves and potentially also of the estimated warping
functions. Tucker et al. (2013), Hadjipantelis et al. (2015), Lee and Jung (2016) and Happ et al.
(2019) use (joint) functional principal component analysis for finding compact representations of
both phase and amplitude modes of variation.
Tucker (2014) (utilizing the SRVF approach of Srivastava et al., 2011, for registration), Wagner
and Kneip (2019) and Kneip and Ramsay (2008) (optimizing a least squares criterion) and Wro-
bel et al. (2019) (optimizing an exponential family likelihood) all utilize iterative algorithms to
successively refine warping functions that lead to registered curves whose amplitude variation can
be represented in terms of a low-rank FPC basis.

Comparatively few approaches exist for the registration of incomplete curves. Some heuristic
approaches were developed in the field of dynamic time warping (DTW) for time series analysis.
Subsequence DTW aims to find a subsequence of a (fully observed) template curve to which a
partially observed curve can be matched (see Müller, 2015, 7.2). Tormene et al. (2009) introduce
an algorithm for “open-begin and open-end” DTW (OBE-DTW) that is also able to handle full
incompleteness.
More sophisticated registration approaches were only introduced recently. Sangalli et al. (2010)
and Vitelli (2019) make use of linear warping functions with free starting points and endpoints.
These warpings are constrained so that they dilate or compress the observed domains by maximal
factors between 0.9 and 1.1 to ensure reasonable results. The Bayesian approach of Matuk et al.
(2019) allows to analyze sparse and fragmented Gaussian functional data, but their approach is
feasible only for small to intermediate datasets.
Bryner and Srivastava (2021) very recently introduced an approach for elastic partial matching to
tackle trailing incompleteness. Before registering each curve to its template using the complete
curve SRVF approach of Srivastava et al. (2011), they estimate the time scaling necessary to
(partially) match the observed domain of a specific curve to the domain of the template curve,
and perform the registration only on the intersection of the curves’ domains. Both steps are
combined in a joint, gradient-based algorithm.

2.3. Contribution and Prospects

Incomplete data are very common in longitudinal settings but remain under-discussed in many
fields of functional data analysis. Our likelihood-based approach for joint registration and general-
ized FPCA allows for analyzing curves with leading, trailing or full incompleteness in the presence
of substantial phase variation and is able to handle non-Gaussian data.
The simulation study results in Bauer et al. (2022a) indicate that accounting for incompleteness
improves the performance in different data settings. While our approach shows some bias in the
estimation of the underlying FPC structure for curves with a Gamma structure, its substantially
better estimation of the warping functions leads to improved overall performance in terms of
the representation of the joint phase and amplitude variation structure of the individual curves.
Stronger incompleteness does not seem to structurally harm the overall performance.
In contrast to methods based on the SRVF framework of Srivastava et al. (2011), we delib-
erately do not utilize the warping-invariant Fisher-Rao metric. Instead, our flexible penalized
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likelihood-based approach allows for representing more complex structures of variation in diverse
non-Gaussian data situations and is backed by robust optimization algorithms. While SRVF ap-
proaches rely on the availability of functional derivatives evaluated on a common, regular grid and
may struggle in the presence of stronger (non-Gaussian) noise, this is generally not the case for
our method.
The statistical approach for jointly applying registration and GFPCA is implemented in R pack-
age registr (Wrobel and Bauer, 2021). The package comprises an implementation of the original
approach of Wrobel et al. (2019) as well as the incomplete curve approach of Bauer et al. (2022a),
and allows for the registration of Gaussian and non-Gaussian curves from several exponential
family distributions with leading, trailing or full incompleteness.
The joint registration and GFPCA approach proved its worth in the application on the seismic
ground velocity data. The method takes into account both the incompleteness of the observed
curves and their non-Gaussian structure. Bauer et al. (2022a) provide a thorough discussion of
estimated amplitude and phase variation patterns. All obtained results are geophysically plausible
and in line with previous analyses of the seismic experiments (Bauer et al., 2017).

Several issues exist that should be addressed by future research on curve registration. First, the
registration literature still lacks sophisticated methods to robustly handle incomplete data set-
tings. This was the motivation for us to approach this issue and – together with the works of
Matuk et al. (2019) and Bryner and Srivastava (2021) – we made an important step towards
filling this research gap. However, each of these three approaches still has its specific shortcom-
ings. Second, the practical applicability of general registration approaches is most often limited
by the computational cost for larger-scale data and / or the missing ability to naturally handle
non-Gaussian data structures.
With many techniques for functional data analysis being grounded on utilizing the covariance
structure in the data, one central topic for future research on GFPCA is a thorough evaluation
of the consistency and robustness of different covariance estimators. This comprises questions
like at what point in the estimation procedure smoothing and centering (of the raw curves or the
final covariance surface) should be performed to obtain the best estimator. Covariance estimators
should be evaluated for common practical data settings entailing relevant non-Gaussian noise in
combination with small numbers of curves and measurements per curve and different levels of
their respective density over the domain.
A practical constraint for the application of the evaluated methods remains their computational
efficiency in large-scale data settings. In this regard, a promising strain of research are the re-
cently proposed neural network based frameworks by Nunez et al. (2021) and Chen and Srivastava
(2021) for registration (as noted in Section 2.2) and by Sarkar and Panaretos (2021) for covariance
estimation.
Regarding the seismic application, future research can build on the aligned curves and estimated
warping functions and use them as (functional) response to perform regression analyses, for exam-
ple similar to the seismic application performed in Bauer et al. (2018). As outlined in Section 3.4,
both amplitude and phase variation are relevant for geophysicists in the setting at hand. Respec-
tive regression analyses on amplitude and phase variation could also be performed jointly in a
multivariate functional regression setting (see e.g. Volkmann et al., 2021).
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3. Function-on-Scalar Regression

When functional data only comprise amplitude variation – potentially after registering observed
curves in a pre-processing step – subsequent analyses can be performed. One widely used approach
in functional data analysis is functional regression, which deals with the problem of estimating
potentially nonlinear association structures between a set of scalar or functional covariates and a
scalar or functional response variable. This section focuses on function-on-scalar regression, where
the response variable is functional – i.e., it consists of multiple measurements over some domain
like time – and where all covariates are scalar.
The corresponding contribution Bauer et al. (2018) offers guidance on the use of generalized
functional additive regression models to estimate such association structures. It centrally builds on
the flexibility and robustness of generalized additive models (GAMs) for scalar data. Accordingly,
the following section first gives a brief introduction to the basic concepts of the GAM framework
before discussing the functional approach, potential alternative techniques and future directions
for the research problem.

3.1. Generalized Additive Models

Generalized additive models (Hastie and Tibshirani, 1990) are an established approach to flexibly
estimate nonlinear association structures. Estimation is based on a semiparametric framework
where nonlinear effects are represented by spline bases and where overfitting is prevented by
penalizing overly flexible effects. The following compact overview of the basic structure of GAMs
is based on the standard work of Wood (2017). For full details on the following concepts as well
as for a complete overview of existing extensions to the framework – including mixed modeling for
hierarchical data structures, generalized additive models for location, scale and shape (GAMLSS)
for the joint analysis of mean and variance structures, more efficient estimation algorithms, etc.
– I also refer the reader to Wood (2017).

Based on a sample of size n with observation index i, a generalized additive model with some
scalar response variable Y and a set X of scalar covariates has the following structure:

Yi|X i ∼ F (µi,ν)

g(µi) = β0 +
R∑

r=1
fr(X ri), i = 1, . . . , n,

(3.1)

with µi = E(Yi|X i) the conditional expected value of the response given the covariates, link
function g(·) and an intercept β0. The conditional response follows some exponential family
distribution F (·) with expected value µi and dispersion and shape parameters ν. The set X ri

contains the observed value of one covariate for which a linear or nonlinear effect structure fr(·)
should be estimated. Alternatively, X ri can comprise multiple covariates, in which case the
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3. Function-on-Scalar Regression

corresponding effect fr(·) represents some interaction between these covariates.
Nonlinear effects are represented by some spline basis consisting of J individual basis functions
Brj(·). Based on observed values xri of a single covariate the corresponding nonlinear effect is
defined as follows:

fr(xri) =
J∑

j=1
γrj ·Brj(xri), (3.2)

where each basis function is scaled by a linear parameter γrj which is estimated in the regression
model. Whenever estimating nonlinear effect structures in a GAM-based framework in the con-
tributions to this work, we utilize penalized B-splines (P-splines, Eilers and Marx, 1996) as basis
functions. P-spline bases combine the versatility of B-splines with a penalization of the flexibility
of each nonlinear effect, and are a robust tool for estimating nonlinear structures in diverse data
situations (Eilers and Marx, 2021).
In addition to the above definition of univariate nonlinear effects based on some spline basis, the
GAM framework in formula 3.2 can also include multidimensional nonlinear effects fr(X ri). Such
multidimensional effects can be useful in various situations, for example for the estimation of inter-
action structures or of time-varying nonlinear effects. The corresponding functions fr(·) are then
represented by an appropriate multidimensional spline basis. One established way to define such
multidimensional spline bases is the use of a tensor product representation, where a spline basis
is created by taking the Kronecker product of multiple marginal, one-dimensional spline bases.
A major advantage of this method is its large flexibility, since the marginal bases and penalties
can be chosen freely and penalization is done separately for each dimension, allowing for different
roughnesses of the various marginal dimensions.

The extent to which nonlinear effects fr(·) are penalized towards linearity is controlled by pe-
nalization parameters λr which are estimated as part of the model. Given the vector of all such
penalization parameters λ and the dispersion and shape parameters ν, the estimation of the joint
parameter vector θ = (βT ,γT )T is based on the maximization of the penalized log-likelihood

ℓpen(θ|y,λ,ν) =
n∑

i=1
log fθ,ν(yi) −

R∑
r=1

λr · pen(θr), (3.3)

with fθ,ν(·) the respective exponential family density parametrized by θ and ν, and pen(θr) an
appropriate penalization term for the respective coefficients θr of effect r, e.g. penalizing the
second-order differences between the coefficients of consecutive basis functions. To estimate the
parameters θ, this penalized likelihood can be optimized utilizing the penalized iteratively re-
weighted least squares (PIRLS) algorithm. This PIRLS step is iteratively alternated with an
optimization step for the penalization parameters λ, which are for example estimated based on
optimizing the generalized cross-validation (GCV) criterion or by optimizing the marginal REML
(restricted maximum likelihood) likelihood. If necessary, the estimation of dispersion and shape
parameters ν can be performed jointly with the estimation of λ in the optimization of the marginal
REML likelihood, or can be based on alternative measures, for example utilizing the Pearson
statistic.

3.2. Generalized Functional Additive Models

The framework for generalized additive models was extended by Greven and Scheipl (2017) to
handle both functional response variables and functional covariates. Similar to Section 2, we
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focus on some functional variable Y (t) and, without loss of generality, refer to its functional
domain t as time domain. For a function-on-scalar regression setting with a functional response
and purely scalar covariates, the generalized functional additive model (GFAM) of Greven and
Scheipl (2017) has the following form:

Yi(t)|X i ∼ F (µit,ν)

g(µi(t)) = β0(t) +
R∑

r=1
fr(X ri, t), i = 1, . . . , n,

(3.4)

with µi(t) = E(Yi(t)|X i) the time-varying conditional expected value of the functional response
Y (t), β0(t) the time-dependent intercept curve and fr(X ri, t) flexible effect structures which are
based on one or multiple of the individual covariates and which are either linear or (multi-
dimensionally) nonlinear. The functional response Y (t) is assumed to come from some given
distribution F (·) with conditional expectation µi(t) and dispersion and shape parameters ν. We
utilize the semiparametric GFAM approach as it is rather flexible in terms of incorporating dif-
ferent types of covariate effects, is applicable for both regular and irregular data with possible
missing values, and is accompanied by a flexible software implementation for function-on-scalar
regression.

Being a direct extension of the GAM framework, the same principles as outlined in the previous
section hold for effect specification and model estimation in the functional case. Nonetheless, some
important differences remain between the functional and the scalar modeling approach, mainly
because of the additional focus on the functional domain in all aspects of the analysis. In contrast
to purely scalar regression models, model evaluation in the functional case should specifically focus
on potential autocorrelation of error terms along the functional domain. If functional residuals
show substantial intra-curve correlation, uncertainty estimates will be overly optimistic. In such
cases, curve-specific functional random intercept terms can be added to the regression model to
explicitly represent the structural variation that is present in the residuals.
Regarding the assessment of uncertainty, there exist different types of confidence intervals for non-
linear effect structures as well as confidence or prediction intervals for predictions of the functional
response which differ in their coverage properties. Confidence or prediction intervals for curves
can either be constructed globally (or simultaneously), pointwise or intervalwise, the interpreta-
tion being that the interval overlaps the true process globally, at a specific point or in a specific
interval with a given probability, respectively. Depending on the targeted interpretation of the
uncertainty intervals, different estimates are available for their computation. In the contribution
Bauer et al. (2018) we give an overview of existing approaches to compute these different types of
uncertainty intervals and additionally outline a generally applicable bootstrap-based estimation
scheme. (Non)parametric bootstrapping can be used to construct all different types of uncertainty
intervals. However, bootstrapping can be computationally expensive – often prohibitively so for
high-dimensional data or complex models.
The versatility of the semiparametric approach is backed by sophisticated software packages for
R. In specific, the GFAM framework is implemented in the refund package (Goldsmith et al.,
2021), which builds on the sophisticated implementation of the estimation of generalized additive
models in package mgcv (Wood, 2017). In the FoSIntro package (Bauer, 2017) that accompa-
nies the contribution Bauer et al. (2018), we implemented some further functionalities for data
visualization, model evaluation and the bootstrap-based estimation of confidence and prediction
intervals, based on models estimated with function pffr from the refund package.
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3.3. Alternative Approaches

Several alternative approaches exist to perform function-on-scalar regression. One such alterna-
tive class of methods, which can deal with functional data that were potentially observed over
non-regular grids and with missing values, utilizes a pre-smoothing step prior to model estimation.
In doing so, each functional observation is smoothed and the resulting smooth curve is treated
as the novel functional observation (e.g. Ramsay and Silverman, 2005). While this can allow for
more efficient estimation as of a compact representation of the smooth curve, the method comes
with the major disadvantage that the measurement error removed by the smoothing step is not
taken into account in subsequent inference.
An overview of nonparametric methods and their applications is provided by Ferraty and Vieu
(2006). Respective regression approaches are usually based on kernel methods and are able to
model highly nonlinear association structures. However, nonparametric methods are mostly lim-
ited to univariate models with a single covariate only. For a more recent survey of nonparametric
functional regression approaches and potential future research directions see Ling and Vieu (2018).
Very recently, Rao and Reimherr (2021) have introduced a framework that allows to estimate (non-
linear) function-on-function regression models with multiple predictor functions, based on a neural
network architecture.
As another alternative, fully Bayesian functional regression can be used. The currently most com-
prehensive Bayesian framework is the functional mixed model (FMM) framework of Morris (2017)
and collaborators, who also provide a comprehensive comparison to the approach of Greven and
Scheipl (2017). Generally speaking, fully Bayesian approaches have the advantage that diverse
between- and within-function correlation structures can be incorporated into the model in a very
flexible way. Also, handling inference is much easier as approximate posterior distributions of all
parameters are available in the form of MCMC samples.
The componentwise gradient boosting framework of Brockhaus et al. (2017) is spline-based and
extremely versatile. The advantages are most noticeable when working with very high-dimensional
data requiring an efficient estimation technique or when dealing with data situations with more
parameters than observations, as such settings remain computationally feasible using a boosting
approach. However, uncertainty quantification for boosting is currently only possible using com-
putationally expensive resampling techniques like bootstrapping (Hastie et al., 2009).
Based on further groundwork of Brockhaus et al. (2018), the boosting approach has been extended
by Stöcker et al. (2021) to the distributional regression setting to simultaneously model location,
scale and shape parameters of the distribution of a functional response. Maier et al. (2021) utilize
a boosting-based approach to estimate density-on-scalar regression which specifically accounts for
the properties of a density function as a special case of a functional response. Further, several
recent works introduced frameworks for performing functional quantile regression, either utilizing
a Bayesian (e.g. Liu et al., 2020) or a frequentist (Beyaztas et al., 2021) approach.
When interest is on multiple functional response variables at once, multivariate functional regres-
sion approaches can be used. Different methods were developed for this case. More sophisticated
versions are able to model hierarchical data structures and were introduced by Goldsmith and
Kitago (2016), Zhu et al. (2017) and more recently Volkmann et al. (2021). The latter introduces
a multivariate functional additive mixed model (multiFAMM) framework which is implemented
in R package multifamm (Volkmann, 2021).
Apart from this latter package that was only published very recently, a sophisticated overview of
existing software packages that implement approaches for function-on-scalar regression is given in
the contribution Bauer et al. (2018).
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3.4. Contribution and Prospects

The contribution Bauer et al. (2018) provides an introduction into the general concepts of function-
on-scalar regression. Important practical considerations and best practices are outlined for the
most important modeling tasks. The paper is aimed at researchers to use this work as a starting
point for applying functional regression models to their own data. The contribution is accompanied
by the R package FoSIntro (Bauer, 2017) which implements functionalities for data visualization,
model evaluation and bootstrap-based uncertainty quantification.
We concentrated on the semiparametric approach of Greven and Scheipl (2017) as this framework
is rather flexible in terms of incorporating different types of covariate effects, is applicable for both
regular and irregular data with possible missing values, and is accompanied by a flexible implemen-
tation of function-on-scalar regression in the refund package (Goldsmith et al., 2021). However,
important differences regarding practical aspects of the application of the existing function-on-
scalar regression frameworks are also outlined. Furthermore, current limitations like the problem
of accounting for phase variation and intra-functional correlation are made clear.
Also based on the preceding analyses published in Bauer (2016) and Bauer et al. (2017), the
semiparametric function-on-scalar approach showed promising results when applied to the seismic
ground velocity curves. Most prominently, in contrast to a purely scalar analysis, the use of a
functional data analysis method allowed for a flexible estimation of association structures that
potentially vary both over the domain of the respective covariate and the functional domain. Re-
garding the estimated effects, the strongest association with the observed ground velocities could
be found – as expected – with the hypocentral distance of a measurement station. Additionally,
among the evaluated parameters describing the physical conditions at the underground fault, our
analyses show that the second most relevant parameter with a large impact on the resulting ground
velocities in the evaluated setting is the dynamic coefficient of friction.

Given the discussion of alternative function-on-scalar regression approaches in the previous sub-
section, it is apparent that functional regression is currently a very active field of research. Taking
its current state into account, several main directions for future research exist that still require
substantial progress.
While the GFAM framework has important benefits compared to alternative approaches, it also
has several limitations. As Morris (2017) points out, the underlying semiparametric approach
is mainly suited for “relatively smooth functions sampled on coarse or moderately sampled 1D
Euclidean domains”. Most importantly, the computational feasibility of the framework can be
limited, especially when estimating models on huge datasets with a multitude of nonlinear effects
while accounting for remaining intra-curve correlation by including curve-specific random inter-
cept functions.
A recent branch of research is the estimation of functional regression based on deep learning ar-
chitectures. Such approaches are especially promising to improve how models scale to larger-scale
data settings with huge amounts of parameters. As already noted, Rao and Reimherr (2021)
introduced a framework to estimate function-on-function regression based on a neural network
structure. Rügamer et al. (2021) also recently introduced an approach which combines a neural
network architecture with the semiparametric estimation of scalar GAMs for performing distribu-
tional regression, implemented in the R package deepregression. Combining these two frame-
works would be a promising step towards joining the flexibility and robustness of semiparametric
functional regression with an architecture that allows for a more efficient model estimation.
Most alternative approaches for function-on-scalar regression are also accompanied by relevant is-
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sues that still need future research. Regarding their practical applicability, the vision should be to
develop methods which are able to robustly handle sparse, non-Gaussian data on irregular grids.
These methods should allow for the estimation of flexible association structures and for accounting
for hierarchical data structures. All this should be backed by robust uncertainty estimates and
should be accompanied by efficient estimation algorithms and implemented in comprehensive soft-
ware packages. Potential pre-processing steps like curve smoothing or curve registration should
optimally be integrated into a joint estimation scheme with the regression to fully represent the
observed variation in the method. While big advances were made in many of the listed fields in
the last two decades alone, no approach has yet been developed which fully ticks off all the above
boxes.
Regarding the seismic application, two major limitations of the current modeling approach should
be addressed by future research. First, phase variation in curves was only partly accounted for
in Bauer et al. (2018) by discarding leading zero measurements up to the first relevant ground
movement as part of a pre-processing step. To better differentiate amplitude variation and phase
variation, functional regression should be applied to aligned curves after the application of a reg-
istration step as outlined in Section 2, as well as to the resulting warping functions that comprise
the curves’ phase variation. This especially suggests itself since both amplitude variation (com-
prising information on the strength of seismic ground motion) and phase variation (comprising
information on the propagation speed of seismic waves) are of central interest to geophysicists.
Further, the current regression models implicitly rely on the strict assumption that seismic waves
originate from the hypocenter as a fixed point source on the fault. Initial analyses hinted that
this assumption does not hold for the evaluated seismic setting (Bauer, 2016), due to a generally
large-scale rupture that emits relevant seismic waves from different regions on the fault.
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In contrast to the previous two sections on functional data analysis, typically focusing on a single
functional domain, the main interest in age-period-cohort (APC) analysis is on its three epony-
mous dimensions. APC analysis aims to flexibly estimate the developments over these individual
dimensions to describe temporal alterations of some process of interest and to deduce potential
drivers for the respective changes. Sophisticated techniques both for descriptive and for model-
based analysis can help to reach this goal.
The following section outlines the contributions Weigert et al. (2021) and Bauer et al. (2022b)
which utilize novel descriptive visualization techniques as well as a state-of-the-art modeling ap-
proach to disentangle the temporal association structures. Similar to the function-on-scalar regres-
sion approach outlined in the previous section, the model-based approach is based on generalized
additive models (GAMs) as a flexible and robust modeling framework. The basic concepts of
GAM modeling are outlined in Section 3.1.

4.1. Semiparametric APC Analysis

When trying to differentiate between the individual temporal dimensions, statistical methods have
to account for their linear dependency (see e.g. Yang and Land, 2013):

cohort = period− age. (4.1)

Due to this identification problem, a perfect separation of the temporal effects is not possible. Still,
different techniques were developed that aim to circumvent this issue. Descriptive approaches typ-
ically focus on jointly visualizing all three temporal dimensions, usually building on the concept of
Lexis diagrams where age and period groups are depicted in horizontal and vertical direction, re-
spectively, so that individual cohorts are represented along the diagonals (Carstensen, 2007). One
drawback of Lexis-based visualizations, however, is that they typically only focus on developments
in the mean structure. We adapt the concept of Lexis diagrams in the newly introduced density
matrices or ridgeline matrices to shift the focus from a single statistical moment to the whole
distribution of the main variable. As exemplarily visualized in Figure 4.1 for the analysis of travel
distances of German travelers, density matrices are able to simultaneously highlight alterations of
multiple salient characteristics of a distribution.

When focus is not on the overall distribution, but on a specific characteristic like the mean,
the variance or a specific quantile, a heatmap can be used to visualize the developments in this
parameter. Similarly to other Lexis-based visualization schemes, however, classical heatmaps
depict cohorts along the diagonals in an orthogonal coordinate system and accordingly have one
central problem: Compared to the age and period dimensions – depicted along the y-axis and x-
axis, respectively – changes over cohorts are hard to grasp since developments along the diagonals
are visually underrepresented (Jalal and Burke, 2020). To resolve this issue, Jalal and Burke
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Figure 4.1.: Density matrix of the main trips’ travel distance of German tourists in different age and period
groups. Two cohort groups are exemplarily highlighted.

(2020) recently introduced hexamaps (i.e., hexagonally binned heatmaps) as a novel visualization
concept where a heatmap is depicted in a coordinate system with tilted axes to ensure similar
visual emphasis on all temporal dimensions. Hexagonal tiles are used instead of rectangular ones
since they are a natural fit in the utilized coordinate system which mutually uses 60◦ angles
between each two of its three axes. Similarly to the other visualization approaches outlined in
this section, we integrated hexamaps as an alternative to classical heatmaps in the R package
APCtools described in Bauer et al. (2022b).

To estimate individual association structures with the temporal dimensions, we utilize a regression
model-based approach. Weigert et al. (2021) outlines a semiparametric approach based on the
estimation of a two-dimensional interaction surface to represent all three temporal dimensions.
Following Clements et al. (2005), we estimate a generalized additive model (see Chapter 3.1) with
the following structure:

g(µi) = β0 + fap(agei, periodi) + ηi, i = 1, . . . , n, (4.2)

with observation index i, µi the expected value of an exponential family response, link function g(·)
and the intercept β0. The interaction surface fap(agei, periodi) is represented by a two-dimensional
tensor product spline basis based on two marginal P-spline bases. ηi represents an optional linear
predictor that contains further covariates. In contrast to alternative approaches – which are often
based on the estimation of linear parameters under specific hard constraints (see Section 4.2) –
this semiparametric estimation approach has the main benefit that the linear dependency of the
temporal dimensions is dealt with implicitly. Instead of using explicit constraints, a nonlinear,
highly flexible approach is used where one temporal dimension (typically cohort) is naturally
represented as the interaction of the other two dimensions (typically age and period). On the
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resulting interaction surface, the age, period and cohort effects are represented along the y-axis,
x-axis and the diagonals, respectively.
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Figure 4.2.: Partial APC plot of estimated odds ratios for the cohort effect dependent on age group (left
panel) and period (right), based on a logistic regression model analyzing if people’s main trip was a long-
distance trip (with trip length > 6 000km) or not. The mean marginal effect is marked as bold blue line.

The estimated interaction surface can again be visualized using classical heatmaps or the outlined
hexamaps. Marginal effects of age, period and cohort can be extracted by averaging over indi-
vidual slices of the surface. Additionally, since perfect separation of the association structures is
not possible, APC analyses should always comprise a thorough evaluation of how the temporal
interdependencies shape the observed developments. We introduce partial APC plots as a novel
visualization technique to tackle this issue. In addition to one marginal effect, partial APC plots
display appropriate slices of the tensor product surface so that, e.g., one line represents the non-
linear variation over cohorts for one specific age group only. In this way, the visualization shows
potential interaction structures, for example if differences between cohorts structurally vary when
focusing on different age groups. Further, this also highlights how the composition of the under-
lying sample might affect the estimated marginal effect in different regions of the domain. This
can be used to highlight potentially problematic structures in the data, for example when the
available data on people from young cohorts only consist of people in young age groups. Such
interdependent data structures exacerbate the separation of the temporal effects. Since similar
problems with the composition of the data are, however, often inevitable in the studies that re-
quire APC analysis, highlighting this information enables a better evaluation of which regions of
the marginal effects have to be interpreted with care. An exemplary partial APC plot is visualized
in Figure 4.2.

4.2. Alternative Approaches

As noted, descriptive approaches for the analysis of APC data are most commonly based on the
concept of Lexis diagrams. Typical visualizations focus on the depiction of average values or rates
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of some parameter, similarly to the heatmaps motivated in the previous subsection. Adaptations
of this basic technique exist for different data situations, for example when observations are only
available on differently coarse categorizations of the temporal dimensions.
Variation over one specific temporal dimension can be visualized in classical line plots, showing,
e.g., age-specific mortality rates which depict the rates observed in different age groups along the
x-axis, potentially drawing separate lines for separate period or cohort groups (Yang and Land,
2013). In a similar manner, it is common to visualize age-standardized developments where the
temporally varying age distribution in the population is accounted for based on some standard-
ization technique (see e.g. Ahmad et al., 2001). The resulting developments can then be plotted
against period or cohort along the x-axis. Combined with faceting, such visualizations are also
used to control for or display association structures with other covariates. In the end, however,
all standardization techniques implicitly rely on substantial assumptions that, e.g., give specific
age groups higher or lower weight in the resulting statistic (Ahmad et al., 2001).

More sophisticated, model-based approaches to differentiate the temporal effects often build on a
three-factor regression model which includes a linear effect for every temporal dimension (see e.g.
Holford, 1983). For cross-sectional data aggregated over age groups, periods and cohorts, this is
a generalized linear model (GLM Nelder and Wedderburn, 1972) of the form

g(µapc) = β0 + βa · agea + βp · periodp + βc · cohortc, (4.3)

where µapc denotes the expected value of an exponential family response for age group a = 1, . . . , A,
period p = 1, . . . P , and cohort c = 1, . . . , C, g(·) denotes the link function, β0 the intercept, and
βj (j ∈ {a, p, c}) the linear coefficients. When modeling the absolute number or the relative rate
of some event (e.g. death), this model is usually estimated with some logarithmic link function,
leading to a multiplicative interpretation of the effects. For such applications, the model framework
also allows for the incorporation of an offset term to control for different characteristics or exposure
levels in the observational units. Finally, the model structure is easily adaptable to individual
data (e.g. Fannon et al., 2018). Panel data can be analyzed by introducing random effects into
the model (Diggle et al., 2002; Yang and Land, 2013).
As of the identification problem, the estimation of model 4.3 is only possible when imposing
additional constraints in the estimation process. While early methods often used strict linear
constraints such as the equality of two of the three effects (e.g. Fienberg and Mason, 1979), modern
approaches rely on less restrictive assumptions. Carstensen (2007) estimates nonlinear instead of
linear effects for the temporal dimensions and bases the estimation on more subtle constraints
for which he also motivates how they still allow for reasonable substantial interpretations of the
individual effects. Schmid and Held (2007) use Bayesian hierarchical models in which they restrict
first- and second-order differences of the effects. Fu (2000) introduced the intrinsic estimator,
which utilizes a form of principal components regression to estimate association structures. A
thorough overview of existing methodology is given by Yang and Land (2013). An overview of
existing software packages that implement routines for APC analysis is given in the contribution
Bauer et al. (2022b).

4.3. Contribution and Prospects

Despite substantial methodological progress over the last decades, circumventing the identification
problem to separate the effects of age, period, and cohort remains the crucial challenge in APC
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analysis. In the contributions Weigert et al. (2021) and Bauer et al. (2022b) we utilize a semi-
parametric regression framework as a flexible estimation approach. Building on the framework
of generalized additive models, the respective optimization algorithms are robust and efficiently
applicable to a large variety of data settings, including cross-sectional and panel data as well as
aggregated and individual-level data. Nonetheless, even if this approach does allow for the proper
separation of the temporal dimensions, the interpretation of the intertwined association structures
remains challenging, especially when communicating results to practitioners without a thorough
knowledge of the statistical concepts.
To tackle this issue, both publications contribute to developing better, more accessible visualiza-
tions and summary statistics that communicate the association structures in adequate complexity.
Weigert et al. (2021) introduces ridgeline matrices and partial APC plots as novel visualization
concepts both for the descriptive analysis of APC structures as well as for a model-based analysis.
Bauer et al. (2022b) introduces the R package APCtools which implements all methods outlined
in Weigert et al. (2021) as well as the hexamap visualization concept introduced by Jalal and
Burke (2020) and several convenience functions for performing an APC analysis.
The GAM framework is an adequate basis for estimating APC structures in widespread research
settings, also because of available extensions that allow to account for diverse statistical issues.
Among others, these include mixed regression models for analyzing panel data (Diggle et al.,
2002), more efficient estimation schemes for larger-scale data situations (Wood et al., 2017), as
well as approaches for distributional regression to jointly model location, scale and shape param-
eters (GAMLSS, Rigby and Stasinopoulos, 2005).
Regarding the analysis of destination choice patterns in Weigert et al. (2021), the applied statis-
tical framework proved its worth in contributing to a deeper understanding for explaining alter-
ations in the travel behavior of German travelers over the last decades. Our results confirm that
such alterations in travel behavior occur in accordance with life cycle theory (age), macro-level
developments in economy and society (period), and generational theory (cohort).

Since perfect separation of the three temporal effects is not possible, and since the outlined
semiparametric framework is able to adequately represent the temporal association structures in
widespread research settings, future research should focus on two main fields (in addition to fur-
ther refining the underlying statistical models). First, specific focus should be on the development
and refinement of tools to make the interpretation of the complex temporal patterns more acces-
sible. Especially model-based visualization techniques like partial APC plots can provide valuable
insights into specific temporal structures. Descriptive APC analyses currently mostly highlight
potential alterations in the mean structure of some process. Similarly to ridgeline matrices, exist-
ing techniques should be adapted to also specifically highlight changes in the variation structure.
As a side note, while we designed ridgeline matrices specifically for cross-sectional data, it remains
to be evaluated if they can also be adapted for panel data settings. Second, outdated inferential
approaches for APC analysis are still established in many fields of science. To this day, researchers
often only evaluate linear effect structures and build on restrictive constraints, thus preventing
a reasonable representation of the temporal patterns present in the data. It is also in the duty
of statisticians to work towards establishing flexible state-of-the-art approaches in other fields of
science.
Future research regarding our tourism science application should follow multiple directions. While
our travel distance analysis in Weigert et al. (2021) mainly focuses on specific distance categories
(e.g. long-distance trips), more advanced statistical methods such as functional density-on-scalar
regression approaches (see Section 3.4 and Maier et al., 2021) could provide further insight into
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specific aspects of the observed developments. Further, similar analyses should be conducted for
other dimensions of individual travel behavior and other touristic source markets to eventually
obtain a holistic picture of how tourism has changed over the last decades. Given the ability of the
outlined regression approach to include covariates, such analyses should also account for specific
characteristics of individual travelers like financial or health constraints that shape their travel
decision process. In this way, the modeling framework can be used to estimate temporal changes
in travel behavior based on the comparison of individuals with similar initial conditions.
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Summary. We analyze seismological data comprising spatially indexed, incomplete ground
velocity time series with a highly volatile Gamma structure. These functional data are used
to assess critical geophysical parameters associated with high ground motion in the event
of an earthquake. To separate phase from amplitude variation, functional data are regis-
tered, i.e., their observed domains are deformed elastically to align the curves with template
functions. Most available registration approaches are limited to complete, densely measured
curves with Gaussian noise and cannot handle incomplete curves which are not recorded
over their entire domain. We develop a method for joint likelihood-based registration and la-
tent Gaussian process-based generalized functional principal component analysis to handle
incomplete curves, provide sophisticated open-source software and compare the approach to
existing routines.

Keywords: amplitude variability; curve alignment; functional data analysis; partially ob-
served curves; phase variability; seismology.

1. Introduction

Dealing with phase variability is crucial in functional data analysis. Many different ap-
proaches exist for registering curves (see e.g. Marron et al., 2015), but their application to
diverse real world data settings remains challenging. Most existing approaches target small
to intermediate datasets of completely observed curves with small amounts of Gaussian

†A. Bauer’s research was partially funded by the German Research Foundation (DFG) under
Grant KU 1359/4-1; F. Scheipl’s research was partially funded by the German Federal Ministry of
Education and Research (BMBF) under Grant No. 01IS18036A. The authors of this work take full
responsibilities for its content.
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Fig. 1. Simulated observed curves with trailing incompleteness (left column), registered curves only
comprising amplitude variation (center), and inverse warping functions visualizing phase variation
(right). Registration was performed with the complete curve SRVF approach of Srivastava et al.
(2011) with function time warping() from the R package fdasrvf (top row; Tucker, 2020) and our
incomplete curve approach (bottom row). Note the extreme time dilation around the blue curve’s
peak in the top row, which yields a highly implausible registered curve.

noise, evaluated on dense, regular grids. Especially the registration of incomplete curves,
i.e., curves whose underlying process is not observed from its natural starting point all the
way to its natural endpoint, has received only limited attention so far (see e.g. Matuk et al.,
2019; Bryner and Srivastava, 2021). However, such data arise in many fields. Missing in-
formation about the initial development of some processes, i.e. leading incompleteness, can
be caused by different starting conditions of subjects at the beginning of a study. Trailing
incompleteness towards the end of the underlying processes is present in experiments and
studies with a fixed endpoint that causes right-censoring, or in panel studies with relevant
dropout rates. If both types of incompleteness are present, we use the term full incomplete-
ness.

— Notation

In this functional data setting, we observe discretized incomplete curves Yi(t
∗
i ), i = 1, . . . , N

over individual chronological time domains T ∗
i , where the observed grids t∗i = [t∗ij ]j=1,...,ni

may be irregular or sparse, and chronological domains T ∗
i = [t∗min,i, t

∗
max,i] are defined by

the individual observation periods. W.l.o.g. we assume that all observed curves are real-
izations of stochastic processes over a common underlying internal time domain T = [0, 1]
and T ∗

i ⊆ T ∀ i. Registering the curves requires estimating inverse warping functions
h−1
i : T ∗

i 7→ T that account for the data’s phase variation and map individual chronolog-
ical times to the internal time of the underlying process. The resulting registered curves
Yi(t) = Yi(h

−1
i (t∗i )) only contain amplitude variation.

Applying conventional “complete curve” registration methods to incomplete curves of-
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Fig. 2. Typical seismic observations recorded at different hypocentral distances. As a preprocess-
ing step, the leading zero measurements of the raw curves (left pane) are cut off and absolute
ground velocities are analyzed on the time since the first relevant absolute ground velocity measure-
ment t∗0 (right).

ten leads to nonsensical results (see Figure 1). This is caused by the implicit, unwarranted
assumption that the endpoints of the individual observed chronological domains T ∗

i are
identical to those of the global internal time domain T .

— Data setting

Our approach is motivated by synthetic seismic data originating from large-scale numerical
in silico experiments based on the 1994 magnitude 6.7 earthquake in Northridge (Califor-
nia). The experiments were performed by the Department of Earth and Environmental
Sciences (LMU Munich, Germany) using the software SeisSol (Pelties et al., 2014; Uphoff
et al., 2017github.com/SeisSol/SeisSol) and are used to assess critical geophysical pa-
rameters associated with high ground motion in the event of an earthquake. The simulated
ground motion curves contain highly relevant phase variation due to different propagation
velocities of the seismic waves and their varying distance to the hypocenter of the earth-
quake. The complete data comprise 800 000 curves, each recorded over 30 seconds with a
frequency of 2Hz. Seismic activity has not subsided after 30 seconds in many cases, so the
curves are mostly incomplete. For more information on the data setting see Bauer et al.
(2017), Bauer et al. (2018) and Happ et al. (2019). In order to investigate the structure
of phase and amplitude variability of these highly variable and spatially indexed data, we
register them to spatially varying template functions learnt from the data and represent
the registered curves in a lower-dimensional space. Note that these data do not have a
simple structure with additive Gaussian noise since absolute ground motion velocities are
nonnegative and higher values entail higher variability (see Figure 2).

We also apply our method to a version of the well-known Berkeley child growth study
data (Ramsay and Silverman, 2005). The data contain annual measurements of the body
heights of 39 boys and 54 girls from ages 1 to 18. The focus lies on the first derivatives
of the data, i.e., the speed of growth in different stages of childhood and adolescence. We
simulate full incompleteness in these data by drawing an artificial initial age for every child
in the first quarter of the time domain as well as an individual drop-out year in the second
half of the domain. The observed curves with simulated incompleteness are visualized in
Figure 6.

5. Disentangling the Variation Structure of Seismic Ground Velocities – Registration for
Incomplete Non-Gaussian Functional Data
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— Study aim and contributions

Motivated by the challenges inherent in the seismic data, we require a curve registration
method that (i) is able to handle incomplete curves, (ii) is applicable to non-Gaussian data
and (iii) includes a lower-dimensional representation of the registered curves. The latter is
especially of interest for further analyses of the estimated phase and amplitude variation
structure. To achieve these goals, we (i) derive and implement a novel penalized approach
for incomplete data registration and (ii, iii) derive and implement extensions of the methods
introduced by Wrobel et al. (2019) for exponential family distributions beyond Binomial
and Gaussian data. Furthermore, we implement multiple computational improvements in
the underlying software stack to accelerate and stabilize the algorithm. Our implementation
is available in the registr package (Wrobel and Bauer, 2021) for the open-source software
R (R Core Team, 2020). All analyses in this paper can be reproduced based on the code
and data in our public GitHub repository (Bauer, 2021).

Before introducing our method in Section 3 we give an overview of prior work in Section 2.
Sections 4 and 5 comprise an extensive simulation study and the applications. We end with
a discussion in Section 6.

2. Related Work

2.1. Registration
Accounting for phase variation is often critical when analyzing functional data. We refer to
Marron et al. (2015) and the references therein for an introduction to the general issue and
a detailed overview of available registration approaches. Many early approaches focused
on the alignment of curves towards given (salient) structures, i.e., landmark registration
(e.g. Kneip and Gasser, 1992). More recent proposals mostly perform alignment towards
template functions that are either based on domain knowledge or estimated based on some
measure of centrality, with such estimates often iteratively refined over the course of the
registration procedure. Warping functions are commonly estimated purely nonparametri-
cally (e.g. Tucker, 2020; Chakraborty and Panaretos, 2021), as (piecewise) linear functions
(e.g. Sangalli et al., 2010; Vitelli, 2019; McDonnell et al., 2021) or in a basis expansion.
Common examples for the latter are the use of (penalized) B-spline (Telesca and Inoue,
2008; Wrobel et al., 2019) or Fourier (Mattar et al., 2009) bases or of warplets (Claeskens
et al., 2010).

— SRVF-based registration approaches

One of the most popular approaches is the square-root velocity function (SRVF) framework
introduced by Srivastava et al. (2011), who showed that the warping-invariant Fisher-Rao
metric quantifies pure amplitude distances and is equivalent to the simple L2-metric in the
SRVF space. Recently, Guo et al. (2020) have extended this framework to jointly analyze
amplitude, phase and spatial variation.

Cheng et al. (2016), Kurtek (2017) and Lu et al. (2017) adapted the SRVF approach
to perform registration in a Bayesian setting. Bayesian approaches were also introduced
for data settings with stronger noise under informative priors (Matuk et al., 2019; Tucker
et al., 2021). These Bayesian approaches can provide a full representation of the joint
phase and amplitude uncertainty, but are computationally very demanding. The method
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of Matuk et al. (2019) handles sparse and fragmented Gaussian functional data where
measurements are only available over some parts of the observation domain, but no software
implementation was publicly available at the time of writing.

More recently, Nunez et al. (2021) and Chen and Srivastava (2021) introduced the neural
network-based frameworks SrvfNet and SrvfRegNet, respectively. Both approaches build
on the SRVF framework and enable a highly efficient estimation and prediction of warping
functions in large-scale data settings for registering curves to their Karcher mean or fixed
and pre-specified template functions.

— Other registration approaches

All the above approaches are limited to continuous functional data, mostly under the as-
sumption of Gaussian errors. Some extensions to binary functional data such as Wu and
Srivastava (2014) and Panaretos and Zemel (2016) rely on a pre-smoothing step to obtain a
continuous representation of the curves. The congealing approach of Learned-Miller (2005)
(adapted to functional data by Mattar et al., 2009), which iteratively optimizes measures of
alignment like the integrated point-wise differential entropy via gradient descent, is appli-
cable in diverse data situations and computationally efficient. Wrobel et al. (2019) utilizes
a likelihood-based optimization approach for exponential family data which is able to prac-
tically handle moderate-to-large scale datasets (Wrobel et al., 2021).

— Joint registration and low-rank representations

For analyzing the main modes of amplitude and phase variation, it is common to estimate
a low-rank representation of the registered curves or, at least, the template functions that
serve as registration targets, and potentially also of the estimated warping functions. Tucker
et al. (2013), Hadjipantelis et al. (2015), Lee and Jung (2016) and Happ et al. (2019) use
(joint) functional principal component analysis (FPCA) for finding compact representations
of both phase and amplitude modes of variation.

Tucker (2014) (utilizing the SRVF approach of Srivastava et al., 2011, for registration),
Wagner and Kneip (2019) and Kneip and Ramsay (2008) (optimizing a least squares cri-
terion) and Wrobel et al. (2019) (optimizing an exponential family likelihood) all utilize
iterative algorithms to successively refine warping functions that lead to registered curves
whose amplitude variation can be represented in terms of a low-rank FPC basis.

— Incomplete curve registration

Comparatively few approaches have been developed so far for the registration of incom-
plete curves. Some heuristic approaches are available in the field of dynamic time warping
(DTW) for time series analysis. Subsequence DTW offers a framework to find a subsequence
of a (fully observed) template curve to which a partially observed curve can be matched
(see Müller, 2015, 7.2). Tormene et al. (2009) introduce an algorithm for “open-begin and
open-end” DTW (OBE-DTW) that is also able to handle full incompleteness.

More sophisticated registration approaches were introduced only recently. Sangalli et al.
(2010) and Vitelli (2019) make use of linear warping functions with free starting points and
endpoints. The observed curve domains are constrained so that they dilate or extend the
domain by a factor 0.9− 1.1 to ensure reasonable warpings. As noted above, Matuk et al.
(2019) allows to analyze fragmented functional data, but their approach is feasible only for
small to intermediate sets of Gaussian data.

5. Disentangling the Variation Structure of Seismic Ground Velocities – Registration for
Incomplete Non-Gaussian Functional Data
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Bryner and Srivastava (2021) introduced an approach for elastic partial matching to
tackle trailing incompleteness. Before registering each curve to its template using the com-
plete curve SRVF approach of Srivastava et al. (2011) they estimate the time scaling nec-
essary to (partially) match the observed domain of a specific curve to the domain of the
template curve and perform the registration only on the intersection of the curves’ domains.
Both steps are combined in a joint, gradient-based algorithm. At the time of writing, no
implementation of their method was available on request.

— Software implementations

Multiple packages for the statistical open-source software R (R Core Team, 2020) exist that
implement registration approaches. Basic approaches outlined in Ramsay and Silverman
(2005) are implemented in package fda (Ramsay et al., 2020). The OBE-DTW approach
of Tormene et al. (2009) is available in dtw (Giorgino, 2009). Package fdasrvf (Tucker,
2020) implements the SRVF registration of Srivastava et al. (2011) and the iterative pro-
cedure of Tucker (2014) for finding overall similar registered curves with a low-rank FPCA
representation. Code for Wagner and Kneip (2019) is available on GitHub (Wagner, 2020).
R package registr (Wrobel and Bauer, 2021) implements the likelihood-based approach of
Wrobel et al. (2019) and the incomplete curve extensions presented in this work for various
exponential family distributions.

2.2. Generalized Functional Principal Component Analysis
Functional principal component analysis (FPCA) is a technique to analyze and represent
functional data in terms of their main modes of variation (Ramsay and Silverman, 2005). To
purely represent amplitude variation, FPCA is most commonly applied to curves without
phase variation, potentially after an initial registration step. As noted above, the concept of
FPCA was also extended to separately (Tucker et al., 2013) or simultaneously (Happ et al.,
2019) analyze amplitude and phase variation. Multiple approaches exist for FPCA on sparse
or partially observed functional data, but mostly assume Gaussianity (c.f. Stefanucci et al.,
2018). Adaptations to the non-Gaussian case for performing generalized FPCA (GFPCA)
do exist, but have to be assessed with care since marginal estimation of the overall mean
can introduce bias (Gertheiss et al., 2017).

— Probabilistic GFPCA

A popular method for multivariate non-Gaussian data is probabilistic FPCA (Tipping and
Bishop, 1999), based on likelihood optimization. For the case of Gaussian functional data,
James et al. (2000) and Rice and Wu (2001) use a similar approach based on mixed-effects
regression. Zhou et al. (2008) adapted these methods in a paired-curve setting. Huang et al.
(2014) extended the ideas of James et al. (2000) and Zhou et al. (2008) to non-Gaussian
functional data and combined them with a clustering approach. Recently, Wrobel et al.
(2019) further adapted the mixed model-based approach by introducing a link function and
estimating the GFPCA based on computationally efficient variational approximations. To
the best of our knowledge, efficient approximations are available only for Gaussian and
binary data and are not directly adaptable to further exponential family distributions.

Bayesian adaptations of probabilistic FPCA to non-Gaussian settings were introduced
by van der Linde (2009) for binary and count data, and Goldsmith et al. (2015) with an
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extension to multilevel data. While these Bayesian approaches can provide a full represen-
tation of the underlying uncertainty and show good performance in sparse data situations
(c.f. Gertheiss et al., 2017), they are computationally demanding.

— Two-step GFPCA

A nonparametric approach to Gaussian FPCA was introduced by Yao et al. (2005) and
adapted by Hall et al. (2008) for the non-Gaussian case. Serban et al. (2013) extended this
method to further handle multilevel binary data with potentially rare events. Li and Guan
(2014) used a similar approach to model point processes with a spatio-temporal correlation
structure. Gertheiss et al. (2017) showed that the marginal mean estimates proposed by
Hall et al. (2008) can introduce bias in non-Gaussian data settings and tackled this issue by
plugging the eigenfunction estimates into a generalized additive mixed model to achieve an
estimation of the mean structure conditional on FPC scores represented as random effects.

— Some notes on consistency

Consistent estimators for the covariance operator are crucial for FPCA. The consistency
and convergence rates of estimators for covariance operators were thoroughly studied for
differently dense data settings (c.f. Wang et al., 2016; Cao et al., 2016), their properties
in the presence of stronger, potentially non-Gaussian noise, however, remain an area of
active research. Standard techniques for covariance estimation quickly become computa-
tionally infeasible in high-dimensional (Li et al., 2020) or irregular (Cederbaum et al., 2018)
data settings and algorithmic innovations are required. Recently, Sarkar and Panaretos
(2021) introduced promising neural network architectures for the efficient, nonparametric
approximation of (multidimensional) covariance operators and their eigen-decomposition.

Several studies evaluated the consistency of covariance and FPCA estimators for incom-
plete curve settings. When incompleteness originates from a missing completely at random
(MCAR) process and measurements are dense, established estimators for the mean, the
covariance and for eigenfunctions and eigenvalues are consistent (Kraus, 2015). For the
subject-specific functional principal component (FPC) scores, Kraus (2015) introduced a
consistent estimator. His comparison to the PACE approach of Yao et al. (2005) indicates
that the bias of comparable conditional methods for estimating the FPC scores is likely to
be small.

Substantial bias can be caused by systematic missingness in the data. Liebl and Rameseder
(2019) review certain violations of the MCAR assumption and motivate novel estimators
for the mean and covariance structure for dense incomplete curve settings. While the clas-
sical estimators for the mean and covariance are consistent in regions of the domain with
(virtually) no missingness, they are prone to (severe) bias the stronger the violation from
the MCAR assumption and the fewer observations are available.

Estimation accuracy is also crucially affected by the coverage of the overall domain,
especially so for estimating the covariance operator. Only if a sufficient number of observed
curves overlap on the respective parts of their observed domains can the corresponding
regions of the covariance surface be estimated reliably. For the setting of short observed
domains (”functional fragments”), Delaigle et al. (2020), Descary and Panaretos (2019) and
Zhang and Chen (2017) introduce conditions and approaches for consistently estimating
(parts of) the covariance surface.

5. Disentangling the Variation Structure of Seismic Ground Velocities – Registration for
Incomplete Non-Gaussian Functional Data
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— Software implementations

Some general FPCA methods are implemented in R packages fda (Ramsay et al., 2020)
and refund (Goldsmith et al., 2020). The multivariate FPCA approach of Happ et al.
(2019) is implemented in package MFPCA (Happ-Kurz, 2020); the PACE algorithm of Yao
et al. (2005) in fdapace (Carroll et al., 2020). The methods outlined in Gertheiss et al.
(2017) are available for the binary curves setting in gfpca (Goldsmith, 2016), where the
mixed regression in the two-step approach is estimated with package gamm4 (Wood and
Scheipl, 2020). Our accompanying package registr (Wrobel and Bauer, 2021) implements
the Gaussian and binary curve GFPCA of Wrobel et al. (2019) as well as the two-step
approach of Gertheiss et al. (2017) for various exponential family distributions.

3. Methods

As outlined, curves can have missing information at the beginning of their domain (i.e.,
leading incompleteness), at the end of their domain (trailing incompleteness), or both (full
incompleteness). Our approach is able to handle all three types of incompleteness for curves
observed on potentially irregular individual grids of evaluation points, without assuming
Gaussianity of the observed data.

We first introduce our registration approach and the approach for generalized FPCA in
full detail, and then present the main iterative algorithm to obtain a solution where the
registered curves are well represented by a low-rank GFPCA basis. Potential identifiability
issues and practical implications are discussed at the end of this section. Computational
details are given in Appendix A1.

3.1. Registration for incomplete curves
We extend the likelihood-based framework for registering complete curves from exponential
family distributions of Wrobel et al. (2019). In the registration step, the individual chrono-
logical time domains T ∗

i are mapped onto the registered internal time domain T . This is
achieved by estimating inverse warping functions h−1

i that deform an unregistered curve
Yi(t

∗
i ) toward a suitable template function µi(t) so that

E
[
Yi
(
h−1
i (t∗i )

)
|h−1
i

]
= µi (t) ,

with h−1
i (t∗i ) = Θh(t∗i )βi,

(1)

with Yi(t) the registered curve. The inverse warping functions are represented through a
B-spline basis with design matrix Θh ∈ RDi×Kh

, Kh basis functions and a corresponding
coefficient vector βi.

Given some distribution from the exponential family this yields the log-likelihood for
curve i:

`
(
h−1
i |yi, µi

)
= log




Di∏

j=1

fi,j
[
yi(t

∗
i,j)
]

 , (2)
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with fi,j(·) the corresponding density with expected value µi

(
h−1
i (t∗i,j)

)
and observed vec-

tors of function evaluations yi(t
∗
ij), j = 1, . . . , Di. We impose working assumptions of mu-

tual conditional independence across functions [Yi ⊥ Yi′ ] |µi, µi′ as well as within functions
[Yi(tij) ⊥ Yi(tik)] |µi .

— Constrained optimization

Warping functions must follow certain constraints so that they yield reasonable transfor-
mations of the time domain. First, all warping functions have to be strictly increasing to
preserve the temporal order of a curve’s measurements. Second, warping functions have to
be domain-preserving with regard to the maximal domain of the underlying process. We
ensure both by using a constrained optimization algorithm for the warping functions’ basis
coefficients (see Appendix A1).

— Circumventing the constraint of fixed time intervals

If all curves are observed over an identical time interval, domain preservation requires that
all warping functions map t∗min and t∗max to themselves so that they begin and end on the
diagonal line. This assumption is made in most currently available registration procedures,
based on an implicit assumption that the process of interest (e.g., the growth process of
children) was observed from its very beginning up to its very end for all subjects. For
incomplete curves, however, forcing observed and registered domain lengths to be identical
is clearly unsuitable. We drop these hard constraints on the warping functions’ basis coeffi-
cients and allow warping functions to start and / or end at any point inside the overall time
domain. To avoid large deformations of the time domain that are not strongly supported
by the data, we penalize the total amount by which the registration changes the duration
of the (observed) time domain. In a setting with full incompleteness, we use the following
penalized log-likelihood for the registration step:

`pen
(
h−1
i |yi, µi

)
= `

(
h−1
i |yi, µi

)
− λ · ni · pen

(
h−1
i

)
,

with pen
(
h−1
i

)
=
([
h−1
i (t∗max,i)− h−1

i (t∗min,i)
]
−
[
t∗max,i − t∗min,i

])2
.

(3)

For leading incompleteness with h−1
i (t∗max,i) = t∗max,i ∀ i, this simplifies to pen

(
h−1
i

)
=[

h−1
i (t∗min,i)− t∗min,i

]2
and for trailing incompleteness with h−1

i (t∗min,i) = t∗min,i ∀ i to pen
(
h−1
i

)
=

[
h−1
i (t∗max,i)− t∗max,i

]2
. In other words, the penalty for one-sided incompleteness represents

the squared distance of the respective endpoint of h−1
i to the diagonal. The penalization

parameter λ controls how much overall time dilation or compression the registration can
perform and is scaled by the number of measurements ni of curve i to ensure that the impact
of the penalization relative to the likelihood is not affected by the number of measurement
points per function. Details on the choice of λ are given in Section 3.4.

3.2. Generalized Functional PCA for incomplete curves
We adapt the two-step approach of Gertheiss et al. (2017) to estimate a low-rank GFPCA
representation of the registered curves Yi (t) = Yi

(
h−1
i (t∗i )

)
. Following Hall et al. (2008) and

the groundwork of Yao et al. (2005), functional principal components (FPCs) are estimated

5. Disentangling the Variation Structure of Seismic Ground Velocities – Registration for
Incomplete Non-Gaussian Functional Data
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using a marginal, semiparametric method based on assuming a latent Gaussian process
Xi(t) so that

E[Yi(t)] = µi(t) = g[Xi(t)],

Xi(t) ≈ α(t) +

K∑

k=1

ci,k · ψk(t),
(4)

where each observed Yi(t) corresponds to the transformation of the latent process Xi(t)
with some fixed response function g(·), and the latent process itself can be decomposed
into a smooth global mean α(t), FPCs ψk(t) with respective eigenvalues τk > 0, and FPC
scores ci,k ∼ N(0, τk). With known ψk(t), model (4) is a generalized functional additive
mixed model along the lines of Scheipl et al. (2016a) with a smooth conditional latent
mean function in a P-spline representation, functional random effects in an FPC basis
representation, and functional random effect scores ci,k ∼ N(0, τk). While the derivation of
the covariance approximation below assumes that Xi(t) shows only small variation around
its mean, stronger variation only has “a modest effect on the errors in individual predictions”
(Hall et al., 2008, 4.2).

To derive the GFPCA solution, we first center the observed Yi(t) based on their marginal
mean µY (t) = E[Yi(t)], estimated through a simple smoother of all (tij , Yi(tij))-pairs via a
generalized additive model (GAM, Fahrmeir et al., 2013) with response function g(·) and
the appropriate exponential family for the response. The covariance of the latent process
can then be approximated by

Ĉov [Xi(s), Xi(t)] ≈
σ̂Y (s, t)

g(1)[µX(s)] · g(1)[µX(t)]
, (5)

with σY (s, t) = E[Yc,i(s) · Yc,i(t)] based on the centered curves Yc,i(t), the marginal mean

µX(t) estimated accordingly to µY (t) and g(1)(·) the first derivative of the response function.
For given time points s1 and s2, σY (s1, s2) is estimated as the mean of all pairwise products
yc,i(s1) · yc,i(s2). The estimated surface σ̂Y (s, t) is a smoothed version of σY (s, t) using a
bivariate tensor product P-spline basis (Fahrmeir et al., 2013). Since the surface is expected
to show some discontinuity along the diagonal this smoothing step is performed under ex-
clusion of the diagonal elements (c.f. Yao et al., 2005). The FPCs ψk(t) and their respective

eigenvalues τk are then estimated from the spectral decomposition of Ĉov [Xi(t), Xi(s)]. Our
approach deviates slightly from the method of Hall et al. (2008) it is based on: We mean-
center the data before taking their crossproducts instead of subtracting the crossproduct
of the estimated mean from the crossproducts of the data. In our experience, this yields
smoother estimates of the covariance surface which are more amenable to a low-rank FPC
representation.

3.3. Joint approach
We utilize the iterative algorithm of Wrobel et al. (2019) to combine the outlined ap-
proaches for registration and GFPCA. Our aims are twofold: (i) register all observed curves
Yi(t

∗
i ) to suitable template functions and (ii) adequately represent the registered curves
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Yi(t) = Yi(h
−1
i (t∗i )) through a low-rank GFPCA basis. We solve this problem by alternat-

ing the registration step (conditional on the current GFPCA representations µi(t)) and the
GFPCA step (conditional on the current estimates of the warping functions h−1

i ). The ini-

tial registration step is performed with respect to a fixed common template function µ(t)[0]

which has to be set by the user. Subsequent iterations then use the low-rank GFPCA repre-
sentations µi(t) as curve-specific template functions. Full details on the iterative estimation
are given in Algorithm 1.

The number of FPCs in each iteration can be chosen based on the explained proportion
of variance. We adapt this criterion to account for peculiarities of the covariance structure
estimated with the two-step approach. Full details are discussed at the end of Section 3.4.

Algorithm 1 Joint Registration & GFPCA

Require: Observed curves yi(t
∗
i ); starting template µ(t)[0]; explained share of variance κvar

of GFPCA solution; convergence tolerance ∆h, iteration counter q = 0.

1: Initial registration of observed curves yi(t
∗
i ) to global initial template µ(t)[0] to initialize

ĥ−1
i (t?)

[0]
;

2: while
∑N

i=1

(∑Di

j=1

[
ĥ−1
i (t∗i,j)

[q] − ĥ−1
i (t∗i,j)

[q−1]
]2)

> ∆h do

3: q → q + 1

4: Update GFPCA using registered curves yi

(
ĥ−1
i (t∗i )

[q−1]
)

(Section 3.2).

5: Re-estimate GFPCA representations µi(t)
[q] based on the first K [q] FPCs that explain

at least a share κvar of the total variance (Model (4))

6: Update warping function estimates ĥ−1
i (t?)

[q]
by re-registering observed curves yi(t

∗
i )

to µi(t)
[q].

7: end while

8: Final GFPCA estimation based on the registered curves yi

(
ĥ−1
i (t∗i )

[q]
)

to obtain GFPCA representations µi(t) based on the first K FPCs that explain at least
share κvar of the total variance.

3.4. Pitfalls and Practical Considerations

— Identifiability

A common issue in the separation of amplitude and phase variation is that disentangling
the two types of variation is an ill-posed problem in most realistic settings. Structured
variability in the curves can almost always be attributed to either warpings of the time
domain or superpositions of principal components, or any combination of the two. Both
Wagner and Kneip (2019) and Chakraborty and Panaretos (2021) have shown that the gen-
eral registration problem has a unique solution only if the amplitude variation is of rank 1,
i.e. for FPC rank K = 1. In practice, this non-identifiability can be removed by introduc-
ing suitable inductive biases for estimates of the warping and template functions through
priors, penalties and/or limiting the expressivity of model components, e.g. by choosing

5. Disentangling the Variation Structure of Seismic Ground Velocities – Registration for
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low-rank basis representations. We assess the severity of this identifiability problem for our
method in a simulation study in Section 4. Note that the low-rank basis representations
of the warping functions we employ also seem to successfully avoid the “pinching” problem
(see e.g. Ramsay and Li, 1998, 4.2).

— Choice of the template function

As outlined above, the template function µ(t)[0] for the initial registration step in the joint
estimation has to be set by the user. The choice should be based on subject knowledge
and can be crucial for obtaining reasonable results (compare Appendix A7) and quick
convergence in subsequent iterations.

— Choice of the penalization parameter λ

Our registration approach controls the overall amount of compression or dilation through
the penalization parameter λ. The choice of λ should be based on substantive knowledge
so that estimated warping functions represent realistic accelerations and/or decelerations
of the observed processes.

— Choice of the number of FPCs

The number of FPCs can be chosen based on the explained share of variance of the low-
dimensional FPC basis. In this regard, the two-step approach faces two issues: First, since
the spectral decomposition is applied to a smoothed covariance surface and not the raw
covariance of the data itself, the “explained” share of variance is relative to this “structured”
part of the total observed variance. Second, based on our practical experience, spectral
decompositions of covariance surfaces often yield a large number of subordinate FPCs which
each explain only a very small amount of overall variation, but jointly explain a relevant
share. As we show in Appendix A6, it can be argued that these subordinate FPCs often
represent phase variation rather than amplitude variation.

We deliberately avoid including such subordinate FPCs in the FPCA solution since
the FPCs in the joint approach should only represent the main amplitude variation. Our
goal is to find suitable template functions to register against which don’t include modes
of phase variation, i.e., the template functions do not need to represent each individual
registered curve with high fidelity. Accordingly, we suggest a two-fold criterion for choosing
the number of FPCs based on our two-step approach: Choose as many FPCs as are needed
to explain a large portion (90%, by default) of the overall structured variation. However, do
not include such FPCs in the final solution that account for very little variation (less than
2%, by default). In this way, we define a low-rank FPCA representation for the template
functions which might explain less than 90% of the overall variation but does not include a
multitude of subordinate modes of (phase) variation.

4. Simulation Study

To assess the performance of our method and compare it to other established approaches we
perform a simulation study on both Gaussian and Gamma data, motivated by our seismic
application. We focus on the comparison of approaches that jointly perform registration
and FPCA and assess (i) their ability to recover de-noised underlying curves, (ii) their
performance in disentangling and estimating the underlying amplitude and phase variation,
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and (iii) their computational efficiency.
We compare our proposal (called “FGAMM” in the following) – combining two-step

FPCA with our (in)complete curve registration – with the earlier approach of Wrobel et al.
(2019) (“varEM”) – using an identical registration approach combined with a variational
EM-based FPCA – and the joint SRVF approach of Tucker (2014) (Algorithm 4.1, “SRVF”)
which combines the SRVF registration of Srivastava et al. (2011) with the vertical fPCA
introduced in Tucker et al. (2013). The latter approach is only applied to complete curve
settings since the software implementation available at the time of writing (Tucker, 2020,
R-package fdasrvf) is not able to handle incomplete curves.

4.1. Simulation design
In each simulation setting, we first simulate N = 100 complete curves on a regular time
grid on [0, 1] with length Di = 50 ∀i from model (4) with FPC rank K ∈ {1, 3, 4}, with

• mean function α(t) a Gaussian density function with µ = 0.45 and σ = 0.2,

• eigenfunctions ψk(t) as the (k + 1)th orthonormal polynomial on [0, 1],

• mutually independent FPC scores ci,k ∼ N(0, τk) and τ = 1 for K = 1, τ =
(0.7, 0.25, 0.05) for K = 3, τ = (0.4, 0.3, 0.2, 0.1) for K = 4,

• Gaussian setting: Yi(tj) ∼ N
(
Xi(tj), σ

2 = 0.03
)
,

• Gamma setting: Yi(tj) ∼ Γ
(
k = 5, θ = 1

5 exp (Xi(tj))
)
,

with Xi(tj) = α(t) +
∑K ψk(t)ci,k the simulated (latent) process.

Warping functions are simulated utilizing a B-spline basis using cubic splines and three
degrees of freedom. Their basis coefficients are drawn from a uniform distribution over [0, 1]
and cumulatively summed up to ensure monotony. Three settings of (in)completeness are
analyzed: Complete curves, weak incompleteness and strong incompleteness. The latter
two settings only comprise trailing incompleteness. Weak incompleteness and strong in-
completeness are simulated by randomly drawing a cut-off time from a uniform distribution
over the last 40% and 70% of the time domain, respectively.

Regarding the correlation structure between the extents of (i) amplitude variation, (ii)
phase variation and (iii) incompleteness we analyze three different settings. In the first,
the three dimensions are mutually uncorrelated. The second setting comprises a strong
negative correlation between amplitude and phase variation, shifting the peaks of curves
with larger amplitudes towards the beginning of the domain. The third setting comprises a
stronger positive correlation between amplitude and the amount of incompleteness, resulting
in stronger incompleteness for curves with lower amplitudes.

Visualizations of the simulated data can be found in Appendix A3.1. For the meth-
ods FGAMM and varEM, we use eight and four basis functions for the estimation of the
mean curve and the inverse warping functions, respectively. In the Gaussian setting, the
penalization parameter is set to λ = 0.025. In the Gamma setting, it is set to 1 and 0.5
for FGAMM (assuming a Gamma distribution) and varEM (assuming a Gaussian distribu-
tion), respectively. The observed overall mean curve is used as the initial template function.

5. Disentangling the Variation Structure of Seismic Ground Velocities – Registration for
Incomplete Non-Gaussian Functional Data
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In the FGAMM approach, the covariance surface is smoothed with ten marginal P-spline
basis functions. Since the implementation of the SRVF approach relies on the curves being
observed on a regular grid, the simulated curves are linearly interpolated onto a regular
grid. We perform 100 replications for each simulation setting and method. The following
results only cover the simulation settings without correlation between phase, amplitude and
incompleteness. Unless noted otherwise, the results for the other simulation settings are
structurally similar (see Appendices A3.2 and A3.3).

— Adaptive estimation of the number of FPCs

The number of estimated FPCs was pre-set to the respective true simulated amplitude
rank. While our method includes adaptive, data-based estimation of the number of FPCs
(see Algorithm 1), we did not pursue this approach here since this would jeopardize our
ability to differentiate (i) its ability to recover FPCs and their scores accurately and (ii)
its ability to select a suitable number of FPCs based on the data. Additional results
based on the more realistic use-case with adaptive estimation of the FPCs are given in
Appendices A3.4 and A3.5. The methods’ performances on the Gaussian simulation settings
with adaptively estimated FPC rank K are structurally similar to the ones with pre-specified
rank. In the Gamma settings, while this is the case for the estimated phase components,
all methods struggle to recover the correct number of FPCs and specifically the varEM
approach performs worse in terms of the estimation of amplitude variation.

4.2. Results

— Performance metrics

We base our method comparisons in Figures 3 and 4 on different performance metrics,
most based on the mean (integrated) squared error (MISE, MSE) for functional and scalar
estimates, respectively. Overall performance is quantified using the difference between the
simulated individual mean structures (before adding random noise) and the respective rep-
resentations based on the final FPCA solution (measure MISEy). This metric indicates how
well the complete structured variation, i.e, the combined phase and amplitude variation,
of the observed data is recovered. The performance regarding the separation and estima-
tion of amplitude and phase variation is quantified by (i) comparing the spans of the true
and estimated FPC bases with a measure introduced by Larsson and Villani (2001) and
adapted by Scheipl et al. (2016b) (amplitude variation, LVψ) and by (ii) comparing the
true and estimated warping functions (phase variation, MISEh). Following Scheipl et al.
(2016b), the measure LVψ quantifies the overlap of the spans of two matrices A ∈ Rn×pA
and B ∈ Rn×pB , n > pA, pB:

LVψ(A,B) =
1

pA
· trace

(
V T
BV AV

T
AV B

)
,

with V Z , Z ∈ {A,B}, a matrix of the left singular vectors of matrix Z. We scale the
measure by the dimension of the true FPC basis pA to obtain a codomain of [0, 1] where
value 1 encodes perfect representation of the true amplitude variation space and 0 represents
completely orthogonal spans. In accordance with the other performance measures we report
1 − LVψ so that smaller values encode better performance. Note that LVψ cannot be
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computed for the SRVF approach since that method is based on an FPCA of the SRVF
transforms of the original functions and does not yield orthonormal eigenfunctions in the
original function space. Finally, we compute the estimation performance of the overall
amount of time dilation or compression by comparing the true and estimated domain lengths
of the registered curves (MSEd).

— Results Gaussian settings

The results for the Gaussian settings are visualized in Figure 3. While methods varEM
and FGAMM do a good job in representing the underlying structured variation (MISEy)
and in estimating both warping functions (MISEh) and original domain lengths (MSEd),
amplitude variation (LVψ) is only estimated with higher accuracy for amplitude rank 1.
Both FPCs and warping functions are estimated more accurately if amplitude variation has
smaller rank.

Comparing the methods and focusing only on the complete curve settings (left panels)
for which it is applicable, the joint SRVF approach performs consistently worse than the
other two approaches. For MISEy and MISEh the median performance of FGAMM for
amplitude rank 2–3 is better by 89% and 79% compared to SRVF, respectively. The varEM
approach performs slightly better than FGAMM for the complete curve settings in terms
of representing the overall variation, and slightly worse in terms of recovering the space
of amplitude variation. Regarding the incomplete curve settings, the incomplete curve
approaches perform consistently best with respect to MSEd and MISEy. The estimated
curve representations contain a much higher share of the originally observed variation than
is represented by methods with assumed completeness. While the incomplete curve ap-
proaches mostly perform better in terms of phase variation (MISEh and MSEd), this is
not consistently the case for the estimation of amplitude variation (LVψ). In summary,
among the evaluated incomplete curve methods, varEM performs somewhat better than
FGAMM, especially for representing the observed variation. We do not observe a large
drop in estimation performance between the settings with weak and strong incompleteness.

— Results Gamma settings

For the Gamma settings, the varEM and SRVF approachesfall back on a misspecified Gaus-
sian or ”least squares” approach since neither are implemented for Gamma data. FGAMM
utilizes the appropriate Gamma likelihood for both registration and GFPCA steps. The
results are displayed in Figure 4. All in all, for the setting without correlation between
amplitude, phase and incompleteness, the performance with regard to MISEh and MSEd is
similar to the Gaussian case. All methods show consistently worse performance than in the
Gaussian setting in terms of MISEy and LVψ, also for small amplitude ranks.

On complete data, the SRVF approach again performs worst in terms overall representa-
tion and warping function estimation, with the FGAMM median performance for amplitude
rank 2–3 being better by 83% and 82%, respectively. Regarding the estimation of the overall
representation and the warping functions, the (incomplete) FGAMM approach assuming the
Gamma structure performs consistently better than varEM. However, FGAMM performs
worse in recovering the FPC space, especially for the largest amplitude rank. For the es-
timation of the amplitude structure and the domain lengths, varEM leads to consistently
better results. Comparing these results to the settings with weak and strong incompleteness,

5. Disentangling the Variation Structure of Seismic Ground Velocities – Registration for
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Fig. 3. Results for the simulation setting with Gaussian data and mutually uncorrelated amplitude,
phase and amount of incompleteness. All y scales are log10 transformed.
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Fig. 4. Results for the simulation setting with Gamma data and uncorrelated amplitude, phase and
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the latter only show a structurally worse estimation performance for MSEd.

4.3. Runtime analysis
We evaluate the efficiency of the approaches on one simulation setting with a Gaussian
structure, amplitude rank 2–3 and complete curves. Only FGAMM is additionally applied
to the respective setting with Gamma data. The median runtimes of each method, based
on 20 runs, are visualized in Figure 5.

For the comparison, methods FGAMM and varEM (“varEM 2.1”) are based on function
register fpca in version 2.1.5 of the registr package, which uses methods from packages
gamm4 (Wood and Scheipl, 2020) (v0.2.7) and lme4 (Bates et al., 2015) (v1.1.26). These
methods are compared to the old version of registr (v1.0.0, based on gamm4 v0.2.6 and lme4

v1.1.23), which does not contain the algorithmic improvements outlined in Appendix A1.
We also compare our methods to function align fPCA of package fdasrvf (Tucker, 2020)
(v1.9.4) which implements the joint SRVF approach. All methods except version 1.0 of
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Fig. 5. Median runtimes for one setting of the simulation study with amplitude rank 2-3 and no
incompleteness, based on 20 runs for each parameter combination. For the analysis, we vary the
number of curves N and the number of measurements per curve Di. Dashed curves are runtimes
for FGAMM (Gamma).

package registr (“varEM 1.0”) were run in parallel mode using ten cores.

— Main findings

As can be seen in Figure 5, the optimized algorithm in varEM 2.1 is clearly the most
efficient method. For the setting with 50 measurements per curve and 3 000 curves (“Di =
50, N = 3000”) varEM 2.1 (runtime 23 seconds) is on average 86% faster than varEM 1.0
(159 seconds). The estimation of FGAMM is computationally much more expensive. For
the setting “Di = 50, N = 3000” it takes about 14 min, i.e., 37 times longer than varEM
2.1. Also, the runtime of FGAMM scales quadratically in both the number of curves and
the number of measurements per curve. The efficiency of the SRVF approach lies between
the other methods for smaller samples. However, it becomes computationally demanding
for densely observed datasets with higher numbers of measurements per curve.

5. Application

5.1. Berkeley growth study
We compare FGAMM and varEM results on the well-known Berkeley growth data with sim-
ulated strong full incompleteness as outlined in Section 1 and visualized in Appendix A4.1.
That is, we randomly remove both leading and trailing segments of the curves, with start-
ing points and endpoints drawn at random in the first quarter and the last half of the time
domain, respectively. Both methods are then applied with and without the assumption of
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completely observed curves, using a Gaussian likelihood and the same hyperparameters as
used for the simulation study. The number of FPCs to be used in each iteration of the joint
registration and FPCA algorithm was estimated adaptively, based on the criterion outlined
at the end of Section 3.

While the FGAMM approach chose 5 (assuming completeness) and 4 (incomplete) FPCs,
the varEM method chose 7 and 6 FPCs, respectively. In the comparison in Figure 6, we
focus on the first two FPCs estimated by each method. Results in full detail are given in
Appendix A4.2. Appendix A4.3 shows how the results of the incomplete curve FGAMM
approach changes when different values for the penalization parameter λ are used.

While the first two FPCs estimated by the methods with assumed incompleteness show
some differences, they represent similar main modes of amplitude variation. The first FPC
mainly represents variation at the very beginning of the domain along with the information
that the peak in growth in adolescent age appears earlier on if the growth rate in the very
first year was stronger. The second FPC represents the information that if the initial growth
rate was higher, the peak in adolescent age is more attenuated.

These first two FPCs as estimated by the incomplete curve approaches differ from the
first FPCs estimated with assumed completeness. This is mainly due to the fact that the
“completeness-assumed” approaches are not able to adequately align the structures observed
in the last third of the domain (c.f. top row of Figure 6). In this data setting, the incomplete
curve approaches are clearly better able to recover the underlying phase variation in the
curves. In terms of computation time, both FGAMM variants and the incomplete varEM
take about a minute, while varEM assuming completeness takes almost 2 minutes.

5.2. Seismic ground motion propagation
We analyze a subset of seismological interest of the seismic data outlined in Section 1, com-
prising 2 484 curves from various earthquakes simulated with different physical parameters.
Sepcifically, we use data from simulated quakes characterized by (i) a sedimentary subsur-
face structure amplifying ground shaking, (ii) a geologically well-oriented direction of the
tectonic background stress between 27◦ and 35◦, and (iii) the friction parameter of critical
linear slip weakening distance between 1.1m and 1.5m. We also restrict the data to those
seismograms most relevant for seismic hazard assessment, which (i) lie in forward directivity
direction (between cardinal directions 280◦ and 342◦) to focus on wave propagations to the
northwest in the direction of the main rupture pulse, and (ii) with a hypocentral distance
shorter than 35km. Previous analyses show that the ground velocity curves we study are
primarily shaped by the hypocentral distance of the measurement station and the dynamic
coefficient of friction which resembles the frictional resistance of the geological fault dur-
ing earthquake propagation (Bauer et al., 2017). For our analysis, we focus on how these
two parameters and the topography of the evaluated region are associated with phase and
amplitude variation.

As shown in Figure 2, all curves are pre-processed by cutting off any leading zero mea-
surements below 0.01, leading to the observed time domain t∗0 which – being the time since
the first relevant absolute ground velocity measurement – begins with the arrival time of
seismic P-waves and comprises trailing incompleteness only towards the end of the domain
after t∗0 = 23.5 seconds. Since this induces a MAR structure, where short observed domain
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Fig. 6. Observed curves with simulated incompleteness (top left pane), registered curves (top row)
and the first two estimated FPCs based on the different approaches. The FPCs ψk(t) are visualized
by the overall mean curve (solid line) plus (blue line) and minus (red line) 2 ·
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τ̂k · ψk(t), with
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the standard deviation of the estimated scores for the k’th FPC.
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Fig. 7. Lasagna plots of observed and registered curves and of the curves as represented by
the final GFPCA solution based on the FGAMM approach, on log10 scale (left pane). Curves are
sorted by their maximum observed value. The FPCs ψk(t) are visualized by the overall mean curve
(black line) plus (blue line) and minus (red line) 2 ·

√
τ̂k · ψk(t), with

√
τ̂k the standard deviation of

the estimated scores for the k’th FPC (right pane).

lengths are caused by higher hypocentral distances (causing later P-wave arrival times and
smaller amplitudes), the results towards the end of the domain must be interpreted with
great care.

We apply the FGAMM approach assuming a Gamma structure and trailing incomplete-
ness, and using a similar parametrization as in the simulation study. The mean curve of all
observed curves was used as the template function for the initial registration step. We use a
penalization parameter of λ = 0.004 to discourage extreme distortions of the time domain.
Estimation of the joint approach took ten joint iterations and a runtime of 3:31h using a
parallelized call for the registration steps with 5 cores. Two FPCs were chosen based on the
selection criterion outlined in Section 3 when aiming to explain 95% of amplitude variation.

The two estimated FPCs along with the observed, registered and represented curves are
visualized in Figure 7. The full estimated warping functions are shown in Appendix A5.1.
The first FPC as the main mode of amplitude variation represents the overall magnitude
of the ground velocities, shaped by two salient peaks that resemble the shaking caused by
surface wave phase arrivals. The second FPC represents a subsequent mode of variation
and mainly shapes how pronounced the initial peak is.

The associations of phase and amplitude variation with the hypocentral distance and the
dynamic coefficient of friction are visualized in Figure 8. Amplitude variation shows a very
pronounced association structure with both parameters. Focusing on the first FPC, ground
velocities are overall stronger the closer the measurement was taken to the hypocenter and
the smaller the dynamic friction. The strongest ground motion is observed at hypocentral
distances between 20 and 25km, caused by the nonlinear interaction of rupture propagation
and the radiated seismic wavefield with topography and the subsurface structure. We
find that in this region source effects (rupture directivity) and seismic wave path effects
(surface waves) unleash the most energy. The second FPC’s scores show a somewhat similar
association structure but are more strongly shaped by the hypocentral distance. The highest
scores were estimated at around 25km of distance, representing the most pronounced initial
peak structure, especially in simulations with low dynamic friction values.
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Fig. 8. Estimated phase and amplitude variation conditional on the hypocentral distance of the
virtual seismometer and the dynamic coefficient of friction µd of the simulation. Phase variation and
amplitude variation are shown by displaying the mean of the overall time distortion after 5 and 20
seconds (left pane, with positive and negative values representing time dilation and compression,
respectively) and of the curves’ mean scores for the FPCs shown in Figure 7, respectively.

Phase variation is also strongly associated with both evaluated parameters. The esti-
mated time distortions at time t given by ĥ−1

i (t)− t for t ∈ {5, 20} show somewhat similar
patterns to the association structures of the FPC scores. This corroborates the structure
displayed in Figure 2 which indicates a strong coupling between amplitude and phase vari-
ation since the initial peak is generally observed later for smaller overall observed ground
velocities (an effect known in seismology as geometrical spreading). Stronger time distor-
tion of the initial five seconds was mostly estimated for medium-to-large friction values,
which are accompanied by smaller ground velocities. While these initial five seconds for
curves observed between 20 and 25km of hypocentral distance (shaped by a more pro-
nounced structure of the initial peak around t0 = 5, see Figure 7) were mainly compressed,
for curves closer to and farther away from the hypocenter (shaped by a less salient initial
peak around t0 = 2) they were mainly dilated. The time distortion of the initial 20 sec-
onds shows a very similar structure to the scores for the first FPC. For curves with higher
ground velocities, these initial 20 seconds are mainly compressed, and mainly dilated for
lower ground velocities. Finally, the estimated inverse warping functions more often tend to
more extreme distortions for higher hypocentral distance and higher dynamic friction values
(see Appendix A5, Figure 20). This is due to curves under these conditions showing very
small ground velocities with a less salient structure that is hard to align to the estimated
template functions.

As expected due to the dominant effects of source directivity and surface waves in the
evaluated region around the hypocenter, no structural association of amplitude or phase
variation with the local topography was detected (see Appendix A5.2). The obtained results
are geophysically plausible and in line with previous analyses of the seismic experiments
(Bauer et al., 2017).
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6. Discussion

Incomplete data are very common in longitudinal settings but remain under-discussed in
many fields of functional data analysis. Our likelihood-based approach for joint registration
and generalized FPCA allows for analyzing curves with leading, trailing or full incomplete-
ness in the presence of substantial phase variation and is able to handle non-Gaussian data.
All methods are implemented in the open-source R package registr.

Our simulation study results indicate that accounting for incompleteness improves the
performance in different data settings. While the FGAMM approach shows some bias in the
estimation of the underlying FPC structure in the Gamma settings, its substantially better
estimation of the warping functions leads to improved overall performance in terms of the
representation of the joint phase and amplitude variation structure of the individual curves.
Stronger incompleteness does not seem to structurally harm the overall performance. Ap-
plications to incomplete Berkeley growth curves and a seismic data setting showcase the
practical utility of our new approach.

— Comparison to SRVF-based approaches

In contrast to methods based on the SRVF framework, we do not utilize the warping-
invariant Fisher-Rao metric. Instead, our flexible penalized likelihood-based approach al-
lows for representing more complex structures of variation in diverse non-Gaussian data
situations and is backed by robust optimization algorithms. While SRVF approaches rely
on the availability of functional derivatives evaluated on a common, regular grid and may
struggle in the presence of stronger (non-Gaussian) noise, this is generally not the case for
our method. We utilize a low-dimensional B-spline basis for the inverse warping functions.
In our applications, this seemed sufficient to avoid the pinching problem. Extreme time
distortions were only estimated for few seismic curve outliers without a pronounced shape.

— Covariance estimation

One central topic for future research on GFPCA is a thorough evaluation of the consistency
and robustness of different covariance estimators. This comprises questions like at what
point in the estimation procedure smoothing and centering (of the raw curves or the final
covariance surface) should be performed to obtain the best estimator. Covariance estima-
tors should be evaluated for common practical data settings entailing relevant non-Gaussian
noise in combination with small numbers of curves and measurements per curve and differ-
ent levels of their respective density over the domain.

— Computational efficiency

A practical constraint for the application of the evaluated methods remains their computa-
tional efficiency in large-scale data settings. In this regard, a promising strain of research
are recently proposed neural network based frameworks like Nunez et al. (2021) and Chen
and Srivastava (2021) for registration and Sarkar and Panaretos (2021) for covariance esti-
mation.
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A1. Computational Details

We implemented our approach in the package registr (Wrobel and Bauer, 2021) for the
statistical open-source software R (R Core Team, 2020). The registr package allows for the
estimation of the joint registration and GFPCA approach both for complete and incomplete
curves. All three types of incompleteness (leading, trailing and full incompleteness) and
irregular grids are supported. Additional to the methods outlined in this work the package
comprises the methods of Wrobel et al. (2019). Several exponential family distributions are
available. In the following, we give details on some computational aspects of our method.

A1.1. Registration
The registration codebase builds on the implementation outlined in Wrobel et al. (2019) and
Wrobel (2018). We extended the methods by allowing the observed curves to be incomplete.
Since the estimation of warping functions in the registration step is performed separately
for each curve, we added the option of a parallelized call over the individual curves.

Constrained optimization for the spline coefficients representing the warpings is per-
formed with function constrOptim() by inducing linear inequality constraints of the form

ui · βi − ci ≥ 0,

†A. Bauer’s research was partially funded by the German Research Foundation (DFG) under
Grant KU 1359/4-1; F. Scheipl’s research was partially funded by the German Federal Ministry of
Education and Research (BMBF) under Grant No. 01IS18036A. The authors of this work take full
responsibilities for its content.
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with parameter vector βi and constraints given by matrix ui and vector ci. Further details
on the constraint matrices are given in Appendix A2. Alternative optimization algorithms
from the NLopt library (Johnson, 2020) and made available by package nloptr (Ypma and
Johnson, 2020) were evaluated as well, but did not improve the overall results or lead to a
more efficient estimation.

A1.2. Generalized Functional Principal Component Analysis
As outlined in Section 3.2, our adaptation of the two-step GFPCA approach of Gertheiss
et al. (2017) is based on an additive regression model with random intercept terms for the
individual FPCs. We build on robust and highly efficient software for these kinds of models,
available in packages gamm4 (Wood and Scheipl, 2020) and lme4 (Bates et al., 2015). The
algorithms of lme4 are highly efficient for estimating models with random intercept terms
with several thousand individual categories. The estimation of the marginal mean of the
process Xi(t) in the case of very large data with > 100 000 rows is performed with the
discretization-based estimation algorithm of function mgcv::bam (Wood et al., 2017) rather
than the estimation algorithm of mgcv::gam (Wood, 2017).

Our implementation of the two-step GFPCA approach of Gertheiss et al. (2017) is based
on their accompanying package gfpca (Goldsmith, 2016). Additionally we made several
adjustments to their codebase to improve overall efficiency: First, while functions lmer()

and glmer() from the lme4 package default to the optimization routine implemented in
function bobyqa (package minqa, Bates et al., 2014), we make use of the more efficient
optimizer NLOPT LN BOBYQA from the NLopt library (Johnson, 2020) as described in Powell
(2009).

Second, we tackle one major issue in the building of the covariance structure. In principle,
the covariance matrix comprises the pairwise covariances between all unique observed time
points per functional datum yi(t). In real data situations with highly irregular grids, the
number of unique combinations of time points can explode in size even for settings with
a relatively low number of curves. We utilize a binning strategy to handle this problem.
Before building the covariance matrix, we round the vector of observed time points to k
significant digits. E.g., k = 3 then leads to at most 10002 unique combinations and a
covariance matrix with maximal size 1000×1000. Similar to the estimation of the marginal
mean of Xi(t), the smoothing of the covariance surface is performed with the discretization-
based estimation algorithm mgcv::bam rather than mgcv::gam if the crossproduct matrix
comprises > 100 000 elements.

Third, we updated the codebase of gamm4 to make the initial construction of the random
effect model matrices much more efficient by fully exploiting their sparse structure. Our
patched version is currently available on GitHub (https://github.com/r-gam/gamm4) and
will in future be integrated into the main codebase of the gamm4 package.

A1.3. Joint approach
To make the overall algorithm more efficient, we introduce two major changes. First, all
intermediate iterations regarding the GFPCA step, apart from the very first and the very
last one, are performed with less accuracy. Above all else, we use larger tolerance values and
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a simple Laplace approximation to the GLMM likelihood (i.e., nAGQ = 0 and nAGQinitStep

= FALSE in function gamm4::gamm4) for these iterations. Secondly, we use the solution of
the previous GFPCA step as starting values for the subsequent GFPCA step.

A2. Constraint Matrices for constrOptim()

As outlined in Appendix A1, we estimate the warping functions using function constrOptim().
In the estimation step for one warping function, the parameter vector is constrained s.t.
the resulting warping function is monotone and does not exceed the overall time domain
[tmin, tmax].

In the following the constraint matrices are listed for the different settings of (in)completeness
and assuming a parameter vector of length p:

βi =




βi1
βi2
...
βip


 ∈ Rp×1

A2.1. Complete curve setting

When all curves were observed completely – i.e. the underlying processes of interest were all
observed from the beginning until the end – warping functions can typically be assumed to
start and end on the diagonal, since each process is completely observed in its observation
interval [t∗min,i, t

∗
max,i] ⊂ [tmin, tmax].

Assuming that both the starting point and the endpoint lie on the diagonal, we set
βi1 = t∗min,i and βip = t∗max,i and only perform the estimation for




βi2
βi3
...

βi(p−1)


 ∈ R(p−2)×1

This results in the following constraint matrices, that allow a mapping from the observed
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domain [t∗min,i, t
∗
max,i] to the domain itself [t∗min,i, t

∗
max,i] ⊂ [tmin, tmax]:

ui =




1 0 0 0 . . . 0 0 0
−1 1 0 0 . . . 0 0 0
0 −1 1 0 . . . 0 0 0
...

. . .
. . .

. . .
. . .

. . .
. . .

. . .

0 0 0 0 . . . 0 −1 1
0 0 0 0 . . . 0 0 −1



∈ R(p−1)×(p−2)

ci =




t∗min,i
0
0
...
0

−1 · t∗max,i



∈ R(p−1)×1

A2.2. Leading incompleteness only
In the case of leading incompleteness – i.e. the underlying processes of interest were all
observed until their very end but not necessarily starting from their beginning – warping
functions can typically be assumed to end on the diagonal, s.t. one assumes βip = t∗max,i to
let the warping functions end at the last observed time point t∗max,i. The estimation is then
performed for the remaining parameter vector




βi1
βi3
...

βi(p−1)


 ∈ R(p−1)×1

This results in the following constraint matrices, that allow a mapping from the observed
domain [t∗min,i, t

∗
max,i] to the domain [tmin, t

∗
max,i] ⊂ [tmin, tmax]:

ui =




1 0 0 0 . . . 0 0 0
−1 1 0 0 . . . 0 0 0
0 −1 1 0 . . . 0 0 0
...

. . .
. . .

. . .
. . .

. . .
. . .

. . .

0 0 0 0 . . . 0 −1 1
0 0 0 0 . . . 0 0 −1



∈ Rp×(p−1)

ci =




tmin
0
0
...
0

−1 · t∗max,i



∈ Rp×1
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A2.3. Trailing incompleteness only
In the case of trailing incompleteness – i.e. the underlying processes of interest were all
observed from the beginning but not necessarily until their very end – warping functions
can typically be assumed to start on the diagonal, s.t. one assumes βi1 = t∗min,i to let
the warping functions start at the first observed time point t∗min,i. The estimation is then
performed for the remaining parameter vector




βi2
βi3
...
βip


 ∈ R(p−1)×1

This results in the following constraint matrices, that allow a mapping from the observed
domain [t∗min,i, t

∗
max,i] to the domain [t∗min,i, tmax] ⊂ [tmin, tmax]:

ui identical to the version for leading incompleteness

ci =




t∗min,i
0
0
...
0

−1 · tmax



∈ Rp×1

A2.4. Leading and trailing incompleteness
In the case of both leading and trailing incompleteness – i.e. the underlying processes of
interest were neither necessarily observed from their very beginnings nor to their very ends –
warping functions can typically only be assumed to map the observed domains [t∗min,i, t

∗
max,i]

to the overall domain [tmin, tmax].
This results in the following constraint matrices:

ui =




1 0 0 0 . . . 0 0 0
−1 1 0 0 . . . 0 0 0
0 −1 1 0 . . . 0 0 0
...

. . .
. . .

. . .
. . .

. . .
. . .

. . .

0 0 0 0 . . . 0 −1 1
0 0 0 0 . . . 0 0 −1



∈ R(p+1)×p

ci =




tmin
0
0
...
0

−1 · tmax



∈ R(p+1)×1
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A3. Simulation study

A3.1. Simulation setting
This subsection contains figures for all relevant components of the curves simulated in the
simulation study.

A3.1.1. Distribution of the data
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Fig. 1. Structure of simulated Gaussian and Gamma data (top and bottom row, respectively), before
adding amplitude variation
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A3.1.2. Rank of amplitude variation
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Fig. 2. Simulated eigenfunctions / functional principal components (FPCs), visualized by adding
and subtracting them from a some mean curve (black line)
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Fig. 3. Simulated curves with Gaussian structure, including amplitude variation and random
warping.
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A3.1.3. Strength of incompleteness
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Fig. 4. Simulated curves with Gaussian structure and different strengths of incompleteness.
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A3.1.4. Correlation structure
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Fig. 5. Simulated curves with Gaussian structure and correlated amplitude and phase variation.
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A3.2. Simulation results – Gaussian with correlation structure
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Fig. 7. Results for the simulation setting with Gaussian data and a correlation between amplitude
and phase.
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Fig. 8. Results for the simulation setting with Gaussian data and a correlation between amplitude
and the amount of incompleteness.
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A3.3. Simulation results – Gamma with correlation structure
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Fig. 9. Results for the simulation setting with Gamma data and a correlation between amplitude
and phase.
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Fig. 10. Results for the simulation setting with Gamma data and a correlation between amplitude
and the amount of incompleteness.

A3.4. Simulation results – Gaussian with adaptive FPC estimation
In contrast to the previous settings of the simulation study, the number of Functional
Principal Components (FPCs) in the following settings is not fixed to the simulated rank
of amplitude variation. Instead, in each iterative FPCA step (i) the varEM approach uses
as many FPCs as are needed to explain 90% of the overall amplitude variation, and (ii)
the FGAMM approach uses as many FPCs as are needed to explain 90% of the overall
amplitude variation, while dropping such FPCs that explain < 2% of the variation (see
criterion outlined at the end of Section 3).

For the varEM approach, the explained share of variance and accordingly the number of
FPCs in each iteration is estimated before the main iteration’s estimation step by once run-
ning the FPCA with 20 FPCs and correspondingly 20 B-spline basis functions to represent
the FPC basis. Doing so, we approximate the overall variance in the varEM approach with
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the variance represented by this FPC basis with 20 FPCs. In contrast to the simulation
results in the main part of our paper, we accordingly use 20 instead of eight basis functions
for the estimation of the FPC basis in the varEM approach.

Note that the third and fourth FPC in the simulation settings with amplitude rank
2–3 and 3–4 only explain 5% and 10% of the overall amplitude variation, respectively (see
Section 4.1). Accordingly, it is not unreasonable if fewer than 3 and 4 FPCs are chosen
based on the ≥ 90% criterion, respectively.
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Fig. 11. Results for the simulation setting with Gaussian data and mutually uncorrelated amplitude,
phase and amount of incompleteness, where the number of FPCs was adaptively estimated. All y
scales are log10 transformed.
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Fig. 12. Results for the simulation setting with Gaussian data and a correlation between amplitude
and phase, where the number of FPCs was adaptively estimated.
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Fig. 13. Results for the simulation setting with Gaussian data and a correlation between amplitude
and the amount of incompleteness, where the number of FPCs was adaptively estimated.

A3.5. Simulation results – Gamma with adaptive FPC estimation

Note our remarks at the beginning of Appendix A3.4. The only difference to the Gaussian
setting is that the FGAMM approach assumes a Gamma distribution instead of a Gaussian
structure.
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Fig. 14. Results for the simulation setting with Gamma data and mutually uncorrelated amplitude,
phase and amount of incompleteness, where the number of FPCs was adaptively estimated.
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Fig. 15. Results for the simulation setting with Gamma data and a correlation between amplitude
and phase, where the number of FPCs was adaptively estimated.
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Fig. 16. Results for the simulation setting with Gamma data and a correlation between amplitude
and the amount of incompleteness, where the number of FPCs was adaptively estimated.
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A4. Berkeley application

A4.1. Curves with simulated incompleteness
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Fig. 17. Lasagna plot of observed curves (left pane) and curves with simulated incompleteness
(right) for the first derivative of the Berkeley child growth data.
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A4.2. Detailed results
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Fig. 18. Observed curves (top left pane), registered curves (top row), estimated inverse warping
functions (second row) and the first four estimated FPCs based on the different approaches. The
FPCs ψk(t) are visualized by displaying the overall mean curve (solid line) plus (dashed line, +) and
minus (dotted line, −) x · ψk(t), with x twice the standard deviation of the individual FPC’s scores.
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A4.3. Varying the penalization parameter λ
The results based on different λ values are shown in Figure 19. The example is based on
the Berkeley data discussed in Section 5.

While the overall domain dilation of the warping functions is not penalized with λ = 0,
this is the case the higher the penalization parameter λ is chosen. With value λ = 1 the
penalization is strong enough to cause all registered domain lengths to be (quasi) identical
to the observed domain lengths.

0

10

20

5 10 15
t [registered]

D
er

iv
at

iv
e

λ = 0

5 10 15
t [registered]

λ = 0.025

5 10 15
t [registered]

λ = 1

5

10

15

5 10 15
t* [observed]

t [
re

gi
st

er
ed

]

5 10 15
t* [observed]

5 10 15
t* [observed]

5

10

15

5 10 15
domain length [observed]

do
m

ai
n 

le
ng

th
 [r

eg
is

te
re

d]

5 10 15
domain length [observed]

5 10 15
domain length [observed]

Fig. 19. Results for varying values of the penalization parameter λ after joint registration and Gaus-
sian FPCA with the FGAMM approach. The graphic shows spaghetti plots of the registered curves
(first row), estimated warping functions (second row) and the difference between the observed
domain lengths and the registered domain lengths (bottom row).
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A5. Seismic application

A5.1. Estimated inverse warping functions
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Fig. 20. Estimated inverse warping functions displayed against the hypocentral distance of the
seismometers (x-axis) and the dynamic coefficient of friction µd (y-axis). In each panel, a solid blue
curve marks the mean curve based on all respective warping functions.
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A5.2. Estimated phase and amplitude variation over space
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Fig. 21. Estimated phase and amplitude variation visualized over the evaluated region. Phase
variation and amplitude variation are shown by displaying the mean of the overall time distortion
after 5 and 20 seconds (left pane, with positive and negative values representing time dilation and
compression, respectively) and of the curves’ mean scores for the FPCs, respectively. The right
plot shows the topography of the region, with the epicenter marked as red dot. The grey dashed
lines mark the distance to the epicenter in 5km steps.

A6. GFPCA: Structure of subordinate FPCs

This section evaluates one Gaussian data setting from the simulation study to showcase the
issue of subordinate functional principal components (FPCs) which

(a) individually explain a very small share of the overall amplitude variation, but jointly
explain a relevant share, and

(b) often tend to represent phase variation rather than amplitude variation.
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Fig. 22. Lasagna plot of the simulated curves.

5. Disentangling the Variation Structure of Seismic Ground Velocities – Registration for
Incomplete Non-Gaussian Functional Data

82



Appendix: Incomplete Functional Data Registration 27

For this evaluation, 100 curves are simulated similarly to the simulation setting with
complete curves, Gaussian noise, amplitude rank 2–3 and no correlation between amplitude
variation and phase variation. The only differences to the simulation study are the following:

• the curves are not randomly warped,

• a regular time grid with length 100 is used.

The simulated curves are visualized in Figure 22. We estimate a solution with 20 FPCs
with the two-step approach. These first 20 FPCs and their explained shares of variance are
visualized in Figure 23.
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Fig. 23. Visualization of the first 20 FPCs including their percentage of explained variance (PVE).
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A7. Choosing the initial template function

To check how much the results of the joint registration and GFPCA approach vary based
on different template functions for the initial registration step, we run the application on
the Berkeley data (from Section 5.1) with four different template functions:

• Template 1: Overall mean curve (similar to the application in the main paper)

• Template 2: Curve where the main peak in the second half of the domain is not very
salient and occurrs quite early on

• Template 3: Curve where the main peak occurs a bit later on and is a bit more salient

• Template 4: Curve where the main peak is even more salient

The template functions and the results of the application of the FGAMM approach to
the data can be found in the following Figure.
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Fig. 24. Results of the FGAMM approach based on the different initial template functions (one
column per template function). The rows contain the observed curves with the template function in
blue (first row), the registered curves (second row), the estimated inverse warping functions (third
row) and the first two estimated FPCs (last two rows). The FPCs ψk(t) are visualized by the overall
mean curve (solid line) plus (blue line) and minus (red line) 2 ·

√
τ̂k · ψk(t), with

√
τ̂k the standard

deviation of the estimated scores for the k’th FPC.
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Introduction

Functional data are observed in many different fields. Typical examples are longer-term panel
studies where a sequence of measurements is observed for each subject. Compared to clas-
sical longitudinal studies, functional data analysis focuses more on the shapes of the (time-
dependent) processes by analyzing the observed curve per subject. E.g., one can analyze the
speed of growth of children until adulthood in the Berkeley child growth study (see left pane
of Figure 1).
Functional data comprise different modes of variation. In the Berkeley study, not only can
growth spurts be more or less pronounced regarding the actual growth (i.e., amplitude variation
along the y-axis), but each spurt can also be shifted for some months / years for individual
subjects (i.e., phase variation along the x-axis). Observed curves often have to be preprocessed
with a registration method in order to separate phase and amplitude variation before analysis.
Most registration methods can only handle continuous data or data with a Gaussian structure.
However, functional data are often non-Gaussian or even categorical. E.g., function values
could be binary indicators representing physical (in)activity of patients over time (Wrobel et
al., 2019). Moreover, most registration approaches are only applicable to completely observed
curves that comprise the underlying process from its very start to its very end.
Basic routines for registering (Gaussian) data are implemented in R package Ramsay et al.
(2020). Performing joint registration and clustering is possible with Parodi et al. (2015). The
popular square-root velocity function (SRVF) framework for curve registration is implemented
in Tucker (2020) for completely observed curves on a regular grid. Similar to our approach
the package allows for registering all curves to similar shapes which can be well represented
by some low-rank basis.

Exponential Family-based Registration

The registr package is based on the methods outlined in Wrobel et al. (2019). Registra-
tion is performed using a likelihood-based approach and estimates inverse warping functions
h−1
i : t∗i 7→ t that map the observed time domain t∗i for subject i to the common time domain
t. The overall model is

E
[
Yi

(
h−1
i (t∗i )

)
|h−1

i , α(t), ci,ψ(t)
]
= µi(t),

g [µi(t)] = α(t) +
K∑

k=1

cikψk(t),

Wrobel et al., (2021). registr 2.0: Incomplete Curve Registration for Exponential Family Functional Data. Journal of Open Source Software,
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with Yi (t
∗
i ) and Yi

(
h−1
i (t∗i )

)
the unregistered and registered curves, respectively, and µi(t)

the estimated subject-specific means serving as template functions, i.e., the target for the
registration. The assumed distribution with link function g(·) and this conditional expectation
allow us to define a log-likelihood ℓ(i) for each observed function (see Wrobel et al., 2019).
The subject-specific means µi(t) are expressed through a low-rank representation based on a
population-level mean α(t) and a linear combination of population-level basis functions ψk(t)
and subject-specific scores ci, composed with a fixed link function g(·). We estimate this rep-
resentation using a likelihood-based approach for generalized functional principal component
analysis (GFPCA).
The overall model is estimated with function register_fpca(), which iterates between the
estimation of warping functions (implemented in function registr()) and GFPCA estimation
(functions fpca_gauss() or bfpca() for Gaussian or binomial data, respectively). This
approach is consistent with earlier versions of the registr package (compare Wrobel, 2018).
In version 2.0, the package now includes the two-step GFPCA approach of Gertheiss et al.
(2017) to handle further exponential family distributions. The respective implementation is
based on the gfpca package of Goldsmith (2016). New distributions are supported both
for registration and GFPCA. Furthermore, for the registration step, the individual template
functions (to which each curve is mapped) can now be flexibly defined by the user with the
argument Y_template in registr() and register_fpca(). This is of relevance since in
many settings the overall mean of the unregistered curves is no reasonable template.

Incomplete Curve Registration

We extend the approach of Wrobel et al. (2019) to incomplete curves where the underlying
process was either not observed from its very beginning (i.e., leading incompleteness) or until
its very end (trailing incompleteness), or both (full incompleteness).
Since the underlying process is fully contained in the observed interval for complete curves, the
first and last value of complete-curve warping functions lie on the diagonal line so that they
preserve the overall domain. For incomplete curves, warping functions are estimated without
this starting point and / or endpoint constraint.
However, fully removing these constraints can lead to extreme distortions of the time do-
main. We include a regularization term λ that penalizes the amount of domain dilation or
compression performed by the inverse warping functions. Mathematically speaking, we add a
penalization term to the log likelihood ℓ(i) for curve i. For a setting with full incompleteness
this results in

ℓpen(i) = ℓ(i)− λ · ni · pen(i),

with pen(i) =
(
[ĥ−1

i (t∗max,i)− ĥ−1
i (t∗min,i)]− [t∗max,i − t∗min,i]

)2

,

where t∗min,i, t
∗
max,i are the minimum / maximum of the observed time domain of curve i

and ĥ−1
i (t∗min,i), ĥ

−1
i (t∗max,i) the inverse warping function evaluated at this minimum / maxi-

mum. For leading incompleteness with h−1
i (t∗max,i) = t∗max,i∀i this simplifies to pen(i) =(

ĥ−1
i (t∗min,i)− t∗min,i

)2

, and for trailing incompleteness with h−1
i (t∗min,i) = t∗min,i∀i to

pen(i) =
(
ĥ−1
i (t∗max,i)− t∗max,i

)2

. The penalization term is scaled by the number of mea-
surements ni of curve i to ensure a similar impact of the penalization for curves with different
numbers of measurements. In practical settings, λ has to be set manually to specify which
kinds of warpings are deemed unrealistic and should be prevented. The choice of λ should be
based on subject knowledge by comparing the registration results given different λ values.
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In registr() and register_fpca() the type of incompleteness can be defined by argument
incompleteness. Further details are given in the package vignette incomplete_curves.
When applied to the Berkeley data with simulated full incompleteness, our approach leads to
a reasonable registration as shown in Figure 1.

Figure 1: Left pane: Berkeley child growth data with simulated incompleteness; center: curves after
registration; right: estimated inverse warping functions.
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Abstract: Function-on-scalar regression models feature a function over some domain as the response
while the regressors are scalars. Collections of time series as well as 2D or 3D images can be considered
as functional responses. We provide a hands-on introduction for a flexible semiparametric approach for
function-on-scalar regression, using spatially referenced time series of ground velocity measurements
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1 Introduction

Regression models for functional responses try to model structures like time-depen-
dent processes or 2D or 3D images (Ramsay and Silverman, 2005). Functional data
are thereby defined as data that vary over a specific domain T, for example, time.
Observations typically consist of measurements at individual points over that domain.

One valid alternative to functional response regression for data structured
like this is longitudinal data analysis, modelling the separate measurements along
each function using scalar regression while explicitly specifying their temporal
correlation structure, for example, by including (random) time effects or by assuming
autocorrelated residuals over time. However, eliciting an appropriate correlation
structure is usually non-trivial. Using functional regression, correlation structures
over the functional domain can be modelled flexibly and implicitly.

A functional approach should be the method of choice if the shape of a response
over its functional domain is of main interest. Functional regression models enable
researchers to quantify how various parameters influence the expected level and shape
of the functional responses.
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An introduction to semiparametric function-on-scalar regression 347

If the response is of a functional nature and all predictor variables are constant over
the functional responses’ domain, the corresponding model is a function-on-scalar
regression model. This work gives an introduction to this model class aimed at
researchers looking for a pragmatic overview on how to apply this method without
having to dive deeper into the technical part of it. As such, our focus is on explaining
general concepts rather than providing detailed mathematical explanations of the
method. Furthermore, we list important practical considerations and give advice on
which methods are needed in which situation. Throughout the text, we show how to
apply the methods using real-world data.

Various approaches to model function-on-scalar data exist. Our main focus lies
on the flexible framework of Greven and Scheipl (2017a) which covers models of the
form

Yi(t)|Xi ∼ F(�it, �)

g(�it) = ˇ0(t) +
R∑

r=1

fr(Xri, t).
(1.1)

For all observational units i = 1, . . . , n, the functional response, evaluated at specific
points t of the functional domain, is assumed to come from some given distribution F
with conditional expectation �it = E(Yi(t)|Xi) and dispersion and shape parameters
�. The expectation is connected to an additive predictor with a functional intercept
ˇ0(t) and R potentially nonlinear covariate effects fr(·) by a pre-specified link function
g(·). The covariate effects fr(·) each depend on a subset Xr of the covariate set X and
can potentially vary over the functional domain T. More specifically, we refer to T
as the time domain, as this is the functional domain in our running example. All
methods, however, are also applicable for other functional domains.

Well-written introductions to the basic concepts and philosophy of functional
data analysis are given in Ramsay and Silverman (2005) and Ramsay et al. (2009).
Reviews of current research can be found in Morris (2015) and Wang et al.
(2015). Readers interested in an in-depth review of available implementations for
function-on-function and scalar-on-function regression models are pointed to Greven
and Scheipl (2017a). An alternative approach that is closely related to the approach
used here was developed by Reiss et al. (2010).

We perform our analyses in R (R Core Team, 2016, v. 3.3.2) using the function
pffr from the package refund (Goldsmith et al., 2016), which is based on the
gam function for scalar additive regression from the mgcv package (Wood, 2006,
v. 1.8-15). The refund package is a flexible and fully documented package for
functional data analysis. This article is accompanied by the open source R package
FoSIntro (Bauer, 2017), available on GitHub, which comprises several convenience
functions for the work with function-on-scalar models based on pffr. The GitHub
repository also contains code showing how to apply all methods shown in this article.

The article is structured as follows: Section 2 introduces the running example for
this work. Important statistical aspects of semiparametric regression are sketched
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in Section 3. Section 4 discusses concepts and challenges of function-on-scalar
regression. We finish with a discussion and outlook in Section 5.

If the main interest lies in predicting or analysing specific characteristics of the
functional response, alternative approaches are often more adequate. In particular, the
function-on-scalar regression approach presented here is not well suited for predicting
peak ground velocities as the penalized estimation of smooth structures tends to
systematically underestimate the maxima.

2 Application to seismic ground motion data

Bauer (2016) used function-on-scalar regression to quantify how frictional failure
across an earthquake fault affects ground velocities at different distances from
the earthquake’s hypocentre over time. Figure 1’s left panel shows three typical
observations of the functional response ground velocity over the functional domain
time. All covariates in the study were constant over time.
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Figure 1 Left: Typical observations of absolute ground velocity over time. Peak ground velocity is delayed
and decreases as the hypocentral distance increases. Middle: Overall functional mean of the ground
velocities based on model (3.1) which only contains the intercept. Right: Estimated mean ground velocities
by categorized hypocentral distance, based on model (3.2)

The aim of statistical modelling is to gain a better understanding of the associations
between initial seismic conditions like fault stress and fault strength prior to
earthquakes as well as local topography and geology with the temporal and spatial
distribution of ground movement caused by an earthquake. The data is derived from
large-scale in silico earthquake scenario simulations with the open source software
SeisSol (Breuer et al., 2014; Pelties et al., 2014 www.seissol.org), based on a real
seismic event that took place in Northridge (California) in 1994. Multiple simulations
with varying initial conditions are analysed.

Shaking velocity and ground movement was recorded in high temporal resolution
at a dense network of virtual seismometers distributed across Southern California.
In the notation of (1.1), each response function Yi(t) represents the first 15s of the
absolute ground velocity measurements from one of 75 such simulations for a given
virtual seismometer i in a resolution of 2Hz. A subset of 260 seismometers was
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used for the analysis. Leading zeros were discarded up to the first relevant ground
movement (Yi(t) ≥ 0.01) in order to remove irrelevant phase variation as described on
p. 21. In keeping with the introductory level of this text, we only look at a submodel
of Bauer (2016) and omit most seismological details.

The analysis is focused on the effects of five physical parameters on ground
velocity: three frictional resistance variables, the direction of the regional tectonic
background stress and the soil material of the simulated area: either rock or sediment.
These parameters were pre-set in each seismic simulation. As seen in Figure 1, distance
from the fault has an important effect on both the shape and the level as well.

3 Basic concepts of semiparametric modelling

The regression framework introduced by Greven and Scheipl (2017a) is based on
additive or semiparametric regression models. Such models are one approach for
estimating nonlinear effects of variables. In the following, we will introduce the basic
modelling concepts of semiparametric functional regression by practically motivating
differently complex models, each followed by a brief summary of the most important
methodological basics.

3.1 Semiparametric models with one-dimensional smooth effects

In the simplest setting, we estimate the overall functional mean of ground velocities
using a model only containing a functional intercept and no covariates:

g(E(Yi(t))) = ˇ0(t). (3.1)

As the response in our application is strictly positive, we assume a Gamma distribution
with a log link function g(·) in all examples throughout this article. Figure 1’s middle
panel shows this overall estimated functional mean for Equation (3.1). It can be seen
that the overall mean is increasing over the first few seconds until it reaches a constant
level.

As a next step, we want to assess a possible association of ground velocities with
hypocentral distance, that is, we also want to quantify just how different curves
at different hypocentral distances are on average. This can be done by extending
Equation (3.1) with a dummy-coded categorical covariate x for grouped hypocentral
distance

g(E(Yi(t)|xi)) = ˇ0(t) + ˇ1(t)Imedium(xi) + ˇ2(t)Ilarge(xi), (3.2)

where Imedium(xi) is 1 if the hypocentral distance xi of the station where observation
Yi(t) was recorded is intermediate, and 0 otherwise. Interpretation of categorical
effects is equivalent to scalar regression, meaning that each effect ˇ1(t) and ˇ2(t)
quantifies a deviation from the reference category ‘small distance’. As can be seen in
Figure 1’s right panel, the estimated effects in Equation (3.2) show relevant differences
in their level and shape.
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3.2 Estimating one-dimensional smooth effects

Estimation of the functional intercept and the time-varying distance category effects
is performed using a spline-based approach, where the effect is represented as the
sum of scaled spline basis functions. Readers not familiar with this and other basic
concepts regarding penalized estimation for generalized additive models are pointed
to Fahrmeir et al. (2013) or Wood (2006). In a nutshell, penalization is a useful tool
in estimating smooth effects as it allows estimation of nonlinear effects simply by
defining the maximally possible wiggliness of each effect’s shape, which is limited
by the number of spline basis functions being used for that effect. Overfitting is
then prevented by using an estimation criterion that punishes complexity of the
effect estimates (i.e., wigglier shapes) while simultaneously rewarding goodness of
fit. Parameters that control the relative weights in this trade-off between a good fit of
the training data on one hand and a parsimonious model with simple effect shapes
that is more likely to generalize well for previously unseen test data on the other hand
are estimated from the data automatically.

Many different spline bases are available for one-dimensional smooth effects,
cf. the documentation for mgcv. P-splines (Eilers and Marx, 1996) with second
order difference penalties as well as thin plate regression splines (TPRS, see Wood
(2003), based on Duchon (1977)) correspond to a weak prior assumption of linear
effects. By default, pffr uses cubic P-splines with first order differences over the
functional responses’ domain. This yields smooth effects and corresponds to a weak
prior assumption of effects being constant over T. TPRS bases often perform slightly
better than P-splines (Wood, 2003), but also suffer from numerical problems in some
situations and are much more computationally expensive to set up.

Some more specialized spline bases are very useful in particular situations
and easily available in the software we use here, for example, cyclic splines for
periodic effects where boundary values must be equal or soap film smooths for fits
with constraints along complex domain boundaries like seashores. Morris (2017)
compares a Bayesian wavelet-based approach well suited for spiky data on regular
grids to the method described here.

Using the spline-based approach, both the estimation of time-varying effects and
of effects that vary nonlinearly over the variable domain itself is possible. An example
for the latter is given in Figure 2’s left panel, which shows the estimated effect of the
variable slip weakening, that is, the distance over which initial friction diminishes to
its minimum. Higher values in this parameter correspond to bigger overall friction
and thus to ground velocity curves that have a lower level overall. Note that this type
of time-constant effect does not affect the shape of the functional responses, only
their overall level.

Putting all currently described effect shapes together, we are now capable of
specifying models of the form

g(E(Yi(t)|Xi)) = ˇ0(t) +
J∑

j=1

ˇj(t)xji +
K∑

k=1

fk(xki), (3.3)
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which include J time-varying linear effects ˇj(t) as well as K smooth effects fk(·) which
are time-constant, but vary over the respective variables xk.

3.3 Semiparametric models with multidimensional smooth effects

As a final step, we now include multidimensional smooth effects into the model. Such
effects can vary nonlinearly both over the domain of the functional response and
the domain of the covariate (or multiple covariate domains in the case of interaction
effects). As an example, the three rightmost panels of Figure 2 visualize the estimated
nonlinear time-varying effect of the hypocentral distance. To facilitate interpretation
of the effect, it is shown using both a heatmap (panel 3) as well as a 3D surface (panel
4). In addition, a comparison of the predictions for specific values is a valuable tool
as well (panel 2). One can see (a) that smaller hypocentral distances correspond to
higher ground velocities (note the large negative slope of the estimated surface along
the distance axis), (b) that the initial peak of ground velocity sets in later the farther
away from the earthquake centre the virtual seismometers are located (note that the
peak for a given distance is located higher up the time axis as distance increases), (c)
that the peak becomes somewhat less pronounced for larger distances and (d) that
the effect is almost linear over hypocentral distance.
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Figure 2 Panel 1: Estimated time-constant effect of slip weakening fslip(xslip), which implies a (nonlinear)
shift in the average level of Yi (t ) as xslip changes. 2: Predictions for specific values of hypocentral distance
with remaining covariates set to realistic values. 3, 4: Effect of hypocentral distance visualized using a
heatmap and a 3D surface. Note that values in panels 1, 3 and 4 are on the scale of the additive predictor
(i.e., loge([m/s])), while panel 2 is on log10-scale

3.4 Estimating multidimensional smooth effects

Incorporation of multidimensional smooths into Equation (3.3) is easily done by
generalizing it to

g(E(Yi(t)|Xi)) = ˇ0(t) +
R∑

r=1

fr(Xri, t). (3.4)
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In addition to the functional intercept we now have R covariate effects fr(Xri, t)
which potentially vary over both covariate domains and the functional domain T.
We write Xri instead of xri to emphasize that each smooth potentially depends on
multiple covariates, thereby covering linear interactions terms and multidimensional
smooths. Note that fr(·) can obviously also be a time-constant, linear effect.

We briefly sketch two possibilities for setting up a multidimensional spline basis
for representing effects fr(Xri, t). Tensor product spline bases are created by setting
up an adequate marginal one-dimensional basis for each dimension of the effect (e.g.,
hypocentral distance and the time domain) and then taking the Kronecker product of
the marginal bases (i.e., multiplying each basis function of each marginal dimension
with all basis functions of all other marginal dimensions). This results in a multivariate
spline basis defined on the joint domain of all involved covariates (and time). A
major advantage of this method is its large flexibility as the appropriate marginal
bases and penalties can be chosen freely to suit the problem. Since penalization of
such tensor product spline terms is done separately for each dimension, this also
allows for different roughnesses of the various marginal dimensions (e.g., an effect
f (xr, t) that is very smooth over some covariate xr but still wiggly over time t). A
disadvantage of tensor product splines is that tensor basis functions are defined on a
regular grid over the joint domain and some basis functions may lie in regions where
there are not many or no data points at all, leading to computational inefficiencies
and badly conditioned model fits. An alternative to tensor product spline bases are
multidimensional TPRS, a direct generalization of the one-dimensional TPRS basis.
The most important difference is that TPRS basis functions imply identical roughness
in all directions. In practice, this only makes sense if marginal variables are on
comparable scales, for example, in a 2D spatial effect with longitude and latitude
as the marginal covariates.

3.5 Some practical considerations

Since the number of basis functions limits the maximal complexity of the shape
of any effect fr(Xri, t), it needs to be sufficiently large. Which number to choose
initially depends greatly on the data situation and it is very difficult to provide
general advice. For most applications, 20-30 basis functions for a one-dimensional
effect will typically be sufficient, but this is feasible only if enough observations are
available for estimation. In situations with fewer data points or simple effect shapes,
however, it can also be appropriate to use only 5 or 10 basis functions initially.
After estimating the model, the effective degrees of freedom (edf; see Wood, 2006,
Ch. 4.4) of each term give an indication of whether the amount of flexibility was
sufficient or not. If the edf are near their maximum, the model should be re-estimated
using a larger number of basis functions. In this case, a larger basis that is expressive
enough for the effect’s true complexity can improve the estimate. An automated
approach for checking adequacy of the chosen basis dimension was introduced
by Pya and Wood (2016) and is implemented in the gam.check function of R
package mgcv.
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In some situations, the placement of the basis functions over the effect’s domain
can be of great importance. If no further information is available an equidistant
placement is a valid approach. In contrast, a user-specified placement can make sense
if the data are spread very unequally across the domain and the researcher supposes
that the effect will vary more strongly in regions where more data points lie or when
a few data points lie far beyond the main data cloud. In such cases, it can be more
efficient to place more knots in regions with more data, especially in situations with
small to moderate sample size.

4 Inference and model checking

This section focuses on setting up and evaluating a function-on-scalar model. As
motivated in the last section, the general model of Greven and Scheipl (2017a) can
be written as

g(E(Yi(t)|Xi, Ei(t))) = ˇ0(t) +
R∑

r=1

fr(Xri, t) + Ei(t), (4.1)

where the conditional expectation of the response Yi(t) is modelled by R potentially
nonlinear effects (as defined on p. 10) and a functional intercept ˇ0(t). The
newly introduced term Ei(t) specifies functional error terms. Those smooth errors
are estimated as curve-specific functional random intercepts and can be used to
incorporate possible autocorrelation and variance heterogeneity along the functional
domain (Scheipl et al., 2015) as motivated in the next paragraph. The additive
predictor is mapped to the domain of the functional responses by a given link
function g(·), which for the Gamma-model in our application example is simply
the natural logarithm. Note that the interpretation of effects in models including
(functional) random effects like Ei(t) is generally conditional, not marginal, similar
to conditional GLMMs (Diggle et al., 2002): the estimates quantify the expected
change in individual conditionally expected values, not in population averages. This
distinction is meaningless if the link function g(·) is the identity, that is, for Gaussian
models.

In many practical applications, the assumption of independence along t
conditional on the additive predictor for each functional response is not borne out
and observed residuals are correlated (and frequently heteroscedastic) along t. This
can easily be diagnosed by computing the empirical covariance and correlation of
the residuals (see panel 4 of Figure 4, p. 24). If residual intra-curve correlations
are non-negligible, confidence intervals (CIs) and tests will be overly optimistic. If
computationally feasible, models should then include functional smooth residuals
Ei(t) to account for such autocorrelation and variance heterogeneity.

Generally speaking, all response distributions from scalar regression are also
available for use in models with a functional response. Whether effects are constant or
varying over the functional domain should be investigated for all variables (metric and
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categorical). How appropriate effect types can be determined as part of the modelling
process is outlined in Section 4.4.

4.1 Uncertainty quantification

CIs for smooth effects can either be constructed globally (or simultaneously),
pointwise or intervalwise, the interpretation being that the CI overlaps the true
effect globally, at a specific point or in a specific interval with a given probability,
respectively. This is an area of active research; see, for example, Krivobokova et al.
(2010) or Marra and Wood (2012). As a generally applicable method, bootstrapping
can be used to construct all different types of CIs. However, it can be computationally
expensive—often prohibitively so for high-dimensional data or complex models.

Several bootstrap strategies exist that can be used in this context. The most
established approach in the context of regression modelling is the conditional or
parametric bootstrap (Efron and Tibshirani, 1994), which consists of the following
steps for constructing a pointwise CI for the linear coefficient ˇ1 based on a sample
of size n, but is also easily generalizable to compute intervalwise or global intervals:

1. Create B bootstrap samples from the data. In each of the B samples a new
response value yb

i is generated for each observation i by drawing a random value
from the conditional response distribution specified by the regression model. In
the Gaussian case, new response values yb

i can be drawn from the distribution

Yi|X i∼N(ŷi, �̂2
� ),

where ŷi is the model-based prediction for observation i and �̂2
� is the estimated

error variance.
2. Calculate the model on each of the B samples and save ˇ1 as ˇb

1, b = 1, . . . , B.
3. Define the CI using empirical quantiles, for example, the 2.5% and 97.5%

quantiles to obtain a 95% CI.

Note that parametric bootstrapping heavily relies on the underlying model being
specified correctly. In case of violation of the model assumptions, this approach can
lead to overly optimistic intervals and instead nonparametric bootstrapping should
be used, where resampling is based on the raw data (Efron, 1979). Because of the
exemplaric character of our running example we use nonparametric bootstrapping
to estimate CIs.

As an alternative to bootstrapping, the empirical Bayesian CIs developed by
Marra and Wood (2012), which are an extension of Nychka’s (1988) CIs, are
computationally efficient and implemented in mgcv. However, Marra and Wood
show that these intervals do not perfectly fulfil the property of pointwise CIs.
Figure 3 shows a comparison of the CIs of Marra and Wood and real pointwise,
bootstrap-based CIs, with the latter being ever so slightly wider throughout in this
case. Considering, however, that differences between these two are usually small as
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effect of hypocentral distance using 1000 Bootstrap samples

long as the model is not severely misspecified, the Marra and Wood CIs are a useful
tool to compute uncertainty of smooth estimates efficiently.

In contrast to one-dimensional effects, visualization of uncertainty for
multidimensional smooth effects is more complex as a 3D surface plot cannot be used
to show both the point estimate and CIs. Instead, the best approach is to use separate
heatmaps for the point estimate, the lower CI boundary and the upper CI boundary
using identical colour legends, as shown in Figure 3. Looking at the estimates, it can
be seen that the uncertainty about the effect of hypocentral distance is rather small.

Regarding predictions, both pointwise CIs for the predicted mean values and
pointwise prediction intervals can be obtained based on Wood (2006,Ch. 1.3.6). For
intervalwise or global versions of both interval types again bootstrap-based methods
have to be used, but our practical experience suggests that the differences to pointwise
CIs are usually negligible for practical purposes.

4.2 Hypothesis testing

Most of the relevant hypotheses in function-on-scalar regression can be tested using
the five test approaches listed in Table 1. All tests apart from the bootstrap are
Wald-like tests which are based on the approximate normal distribution of the
estimated regression coefficients. For details, see Wood (2013) and Marra and Wood
(2012). The appropriate test distribution mostly depends on the question whether
the scale or dispersion parameter � has to be estimated or not (Wood, 2006). For a
normal response � = �2 is generally unknown, whereas the use of Poisson or Binomial
responses implies a known value of � = 1.

Hypotheses for scalar coefficients of the form ˇj = 0 can be tested using a t-test.
For testing multiple ˇ’s being zero at the same time an F-test can be used (Wood, 2006,
Ch. 4.8.5). A different F-test based on the test statistic introduced in Wood (2013) is
available to test whether a nonlinear effect is significantly different from zero. Note
that this is a test only for the global hypothesis. For a pointwise or intervalwise
evaluation, a bootstrap-based approach has to be used. As in the previous section,
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Table 1 Overview on relevant tests, based on whether the scale or dispersion parameter � has to be
estimated or not. (1) test based on Wood (2006, 4.8.5); (2) test based on Wood (2013)

Test Testable alternative hypotheses

� unknown � known
t-test z-test Is a linear effect different from zero?
F-test(1) �2-test(1) Is at least one of multiple parameters different from zero?
F-test(2) �2-test(2) Is a smooth effect different from zero?

LR-test Is model M1 better than model M2?
Bootstrap-based test All hypotheses

a bootstrap is hereby used to create an appropriate CI and as a second step the
null hypothesis is rejected if zero is not (or at no point for an intervalwise test)
inside of the CI. Finally, specific hypotheses can also be tested by comparing models
using likelihood ratio (LR)-tests (Wood, 2006, Ch. 4.10.1). Be aware that an LR-test
can only be used for model comparison if the two models are nested. Some more
information on model comparison is given in Section 4.4.

Note that all the tests given earlier are conditional on the estimated penalty
parameters that control the effective degrees of freedom of each term. However,
neglecting smoothing parameter uncertainty does not seem to have a large negative
impact on the validity of p-values and the performance of CIs unless penalty
parameters are poorly identified (Marra and Wood, 2012). An approach to account
for smoothing parameter uncertainty in p-value calculation is outlined in Wood et al.
(2016b) and implemented in mgcv as well (see Vc in ?gamObject).

An overview on the most important hypotheses in function-on-scalar regression is
given in Table 2, which lists possible research questions together with the appropriate
tests. As a special note, testing whether two scalar effects (or two smooth effects) of
xk and xj are different from one another only arises in situations where, for example,
two treatments xk and xj (with time-varying effects) should be compared. Thus, this
can be translated into another hypotheses by using one treatment as the reference
category and then testing the hypothesis ‘Is the linear (or smooth) effect estimating
the difference between treatments different from zero?’

Apart from the penalized likelihood-based (or empirical Bayesian) framework
introduced here, fully Bayesian inference like, for example, the framework of Morris
(2017), see Section 4.6, often allows for easier handling of complex or non-standard
inferential problems. When relying on the software implementation of the Greven
and Scheipl (2017a) framework in the R package refund, Bayesian estimation of all
exponential family models is available using the automatic translation of the model
specification and model data into JAGS (Plummer, 2016) code using mgcv’s jagam
function (Wood, 2016) for automated, tuning-free, fully Bayesian inference based on
Markov Chain Monte Carlo sampling.

Working with generally high-dimensional functional data, researchers should be
aware that, all else being equal, large sample sizes lead to smaller p-values in the case
of H0 not being true. In such cases, importance should not be attached primarily
to p-values of point hypotheses of ‘no effect’. Instead, best practice in interpreting
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Table 2 Overview on possible hypotheses with corresponding tests. (0) tests are only reported for the case
of unknown scale parameter �. If � is known we refer to Table 1; (1) F-test based on Wood (2006, 4.8.5); (2)

F-test based on Wood (2013)

Research question (alternative hypothesis) Test(0)

Is the linear effect of xj different from zero?
↪→ Case 1: xj is metric or binary t-test
↪→ Case 2: xj is categorical with > 2 categories LR-test
Is the smooth effect of xj different from zero?
↪→ Globally F-test(2)

↪→ At a specific point Bootstrap
↪→ In a specific interval Bootstrap
Is at least one of multiple parameters different from zero? LR-test

Are the linear effects of xj and xk different from one another? see text
Are the smooth effects of xj and xk different from one another? see text

Is the linear effect of xj different depending on the value of xk ?
↪→ Case 1: both xj and xk are metric or binary

↪→ Case 1a: xk is binary or the effect is varying linearly over the metric xk t-test
↪→ Case 1b: the effect is varying nonlinearly over the metric xk LR-test

↪→ Case 2: xj and/or xk are categorical with > 2 categories LR-test
Is the smooth effect of xj different depending on the value of xk ?
↪→ Case 1: xk is binary F-test(2)

↪→ Case 2: xk is metric or categorical with > 2 categories LR-test

Is model M1 better than M2? LR-test

regression results is based on well-founded discussion of the relevance of the estimated
effect strength and its associated uncertainty while considering whether the sample is
appropriate for drawing general conclusions from it. Having quite high-dimensional
data ourselves, we do not report specific test results for our running example.

4.3 Some specific challenges

We now list some further challenges that are specific to dealing with functional data.
A first comparison of different modelling approaches regarding those problems is
given and is complemented by the main discussion in Section 4.6.

If the functional responses have hierarchical, longitudinal or spatio-temporal
structure, there may be non-negligible inter-curve correlation that the model has
to account for. In the case of grouped data, that is, longitudinal or hierarchical
data, functional random intercepts and slopes varying over the functional domain
of the response can be incorporated into the model (Greven and Scheipl, 2017a).
Spatio-temporal correlation with a pre-specified structure between functional
responses can be included explicitly by including smooth effects over space or time.
Scheipl et al. (2015, Online Appendix C) contains a worked example and code for
spatially correlated curves.

Another common problem when dealing with time-varying functional data is
misalignment or phase variation of functional observations. This means that certain
salient features of the functional responses like peaks or plateaus do not occur at the
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exact same time points. Few functional data analysis frameworks are currently able
to incorporate both phase and amplitude variation (cf. fdasrvf, Tucker, 2016)
and we are not aware of any implementation of functional response regression able
to do so. Ignoring misalignment typically results in blurred estimates. Therefore, an
appropriate pre-processing of the data is necessary, for example, to align all peaks at
the same time points. An overview on methods tackling phase variation in functional
data analysis is given by Marron et al. (2015). In our application, ground velocity
curves are heavily misaligned since the seismic shock waves take longer to reach
seismometers further away from the hypocentre and the corresponding curves thus
remain at (close to) zero for longer times. We pragmatically solve this problem by
removing leading zeros before model estimation.

Functional data are frequently high-dimensional and estimation of complex
models can be very expensive, both in terms of computation time and memory
requirements. Pragmatically speaking, analysts facing such a problem should
consider downsizing the data, for example, by reducing the resolution of functional
measurements over the functional domain or by using only a subset of the data
for estimation and the remainder for model validation. Highly efficient estimation
algorithms are available for some approaches. For the class of spline-based models
we focus on here, one can use the algorithm of Wood et al. (2016a), which is imple-
mented in the function bam in R package mgcv (Wood, 2006), also accessible
via pffr. The fully Bayesian wavelet-based approach of Morris (2017) and
collaborators, implemented in the WFMM software (Herrick, 2015) has excellent
scaling behaviour for time and memory both in terms of data set size and model
complexity.

Finally, users should be aware that some methods for functional data are only
applicable if the functional observations contain no missing measurements and were
observed on a regular grid, that is, all functional observations are evaluated at the
same points of the functional domain. A comparison of the applicability of various
function-on-scalar regression frameworks is given in Section 4.6.

4.4 Model selection

Generally speaking, model selection in functional regression models underlies the
same principles as in scalar regression (see, e.g., Marra and Wood, 2011; Fahrmeir
et al., 2013, Ch. 3.4.3). Using model selection in function-on-scalar regression can
be useful for various issues, for example, for deciding which response distribution
and link function is optimally suited to the data or whether an effect should be
incorporated linearly or as a smooth curve. Additionally, very high-dimensional data
often reduces the effectiveness of penalization methods as the information in the
observed data overwhelms the penalization prior (Gelman et al., 2014). In such
situations it can be necessary to use model selection to optimize the number of basis
functions for each smooth effect.

Leeb and Pötscher (2005) propose a test set based approach to prevent overfitting
and preserve valid p-values when performing model selection. For smaller datasets,
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k-fold cross validation is a valid alternative (Hastie et al., 2009). Using one of those
two approaches, the best model can, for example, be found by using the prediction
error as the optimization measure. When model selection is based on training set
performance, other criteria like AIC or LR tests should be used (Fahrmeir et al., 2013).
Note that if using the semiparametric approach smoothing parameter uncertainty
should be accounted for in AIC computation (see Wood et al., 2016b).

For our data, we use a test set based model selection approach with mean square
prediction error (MSE) as the criterion for two purposes. First, penalization did not
work very well in this setting, probably due to the massive amount of data available.
Therefore, we use a pragmatic model selection procedure to select the number of basis
functions for each smooth effect and to decide whether individual effects should be
incorporated as a smooth effect or linearly. Second, we use model selection to choose
between different response distributions and link functions.

4.5 Model evaluation

Model assumptions for functional response regression are mostly the same as in
respective scalar models, that is, observations are independent conditional on the
additive predictor. Model evaluation is mainly done by visualizing the residual
structure.

A selection of useful residual plots is shown in Figure 4. The structure of the
residuals plotted against the fitted values (panel 1) is acceptable. Most measurements
are predicted approximately correct. The odd structure of negative residuals is based
on the ground velocities being non-negative, which results in highly negative residuals
not being possible. Plotting the mean residuals over space (panel 2) shows that a
substantial spatial struture is remaining in the residuals. Nearly all regions where
ground velocities were substantially underestimated are west of the earthquake centre,
while seismometer readings in regions to the east and to the south of the epicentre
were overestimated. Across time, however, we again observe an acceptable amount of
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residual structure—the hexbin plot (panel 3) does not show any systematic deviations
from a constant trend at zero, with some extreme peak ground velocities observed
at around five seconds. As functional data often are very high-dimensional standard
scatterplots of the residuals, having the problem of overplotting should generally be
avoided in favour of alternative plots like density plots or hexagonal binning (Carr
et al., 2016), as was done in the left and middle plots of Figure 4. The empirical
autocovariance of the residuals (panel 4) corresponds well enough to the model
assumptions: it is fairly constant along the diagonal (i.e., the variance of the residuals
is fairly homogeneous over functional domain t) and drops off quickly towards zero
away from it (i.e., the autocorrelation of the residuals along t is rather small and very
short-range), slightly less so for t > 10.
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Figure 5 Comparison of model predictions and raw observations for typical observations with different
hypocentral distances

For an evaluation of the prediction power of the model, measures like MSE of the
predictions can be calculated. We also recommend graphical evaluation of predictions
for single functional observations as was done in Figure 5 to get an overview on model
performance.

4.6 Alternative approaches and software implementations

As alternative approaches to semiparametric regression we only cover the most
versatile frameworks for performing function-on-scalar regression. The capabilities
of the respective software implementations are also outlined, a comprehensive
comparison of available software implementations is given in Table 3 of Greven
and Scheipl (2017b). Many specialized function-on-scalar regression methods have
been proposed in the literature, oftentimes with corresponding small software
implementations, which we do not cover here. See Morris (2015) for an in-depth
review of this field.

The semiparametric approach of Greven and Scheipl (2017a) was already outlined
extensively. The methodology is ready-to-use in the refund package in R (Goldsmith
et al., 2016), the most versatile function therein being pffr.
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One class of alternative approaches includes a pre-smoothing step prior to model
estimation, meaning that each functional observation is smoothed and the resulting
smooth curve is then treated as the functional observation (see, e.g., Ramsay and
Silverman, 2005). The disadvantage is that the measurement error removed by the
smoothing step is not taken into account in subsequent inference. On the plus side, this
can allow for more efficient estimation as the smooth curve can then be represented
compactly by the vector of spline coefficients yielding the smoothed curve. The R
package fda is publicly available (Ramsay et al., 2014) and implements simple linear
models for functional responses.

An overview of nonparametric methods and their applications is provided in
Ferraty and Vieu (2006). Their regression approaches are usually based on kernel
methods and are able to model highly nonlinear associations. However, the methods
mostly cover only univariate models with a single covariate. Febrero-Bande et al.
(2012) introduce the R package fda.usc which implements a subset of these methods
and related extensions.

The componentwise gradient boosting framework of Brockhaus et al. (2016b) is
spline based and extremely versatile. With boosting being a popular, very efficient yet
very powerful estimation technique, it represents a neat alternative to the standard
regression approach. The advantages are most noticeable when working with very
high-dimensional data requiring an efficient estimation technique or when dealing
with data situations with more parameters than observations, as such settings remain
computationally feasible using a boosting approach. Also, the boosting approach
automatically performs variable selection. However, uncertainty quantification for
boosting is currently only possible using computationally expensive resampling
techniques like bootstrapping (Hastie et al., 2009). The method is implemented in
the R package FDboost (Brockhaus, 2016). Recently, this approach has also been
extended to model the variance of functional responses conditional on covariates
(Brockhaus et al., 2016a), using techniques developed in the literature on generalized
additive models for location, scale and shape (GAMLSS; Mayr et al., 2012). More
general details on boosting and GAMLSS can be found in the tutorials by Mayr and
Hofner (2018) and Stasinopoulos et al. (2018), respectively, which are also part of
this special issue.

As another alternative, fully Bayesian functional regression can be used. The
most comprehensive framework we are aware of is the one of Morris (2017) and
collaborators, who also provide a comprehensive comparison to the approach of
Greven and Scheipl (2017a). Generally speaking, fully Bayesian approaches have the
advantage that diverse between- and within-function correlation structures can be
incorporated into the model in a very flexible way. Also, handling inference is much
easier as approximate posterior distributions of all parameters are available in the
form of MCMC samples. Readers interested in a general introduction to Bayesian
distributional regression are pointed to the tutorial paper by Umlauf and Kneib
(2018). Unfortunately, the Morris (2017) framework lacks a comprehensive and
well-documented publicly available software implementation at the time of writing.
A C++ and Matlab implementation called WFMM (Herrick, 2015) for conditionally
Gaussian functional responses with a limited feature set is publicly available.
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5 Discussion and outlook

This work provides an introduction into the general concepts of function-on-scalar
regression. Important practical considerations and best practices are outlined
for the most important modelling tasks. We hope that researchers can use this
work as a starting point for applying functional regression models to their
own data. Comprehensive R code for our running example is available in the
online supplement.

We concentrated on the semiparametric approach of Greven and Scheipl (2017a)
as this framework is rather flexible in terms of incorporating different types of
covariate effects, is applicable for both regular and irregular data with possible
missing values, and is accompanied by a flexible implementation of function-on-scalar
regression in the refund package. However, important differences regarding
practical aspects of the application of the existing function-on-scalar regression
frameworks are also outlined. Furthermore, current limitations like the
problem of accounting for phase variation and intra-functional correlation are
made clear.

As this work is mainly aimed at introducing the approach to those not familiar
with functional response regression and to offer advice on the correct application
of such methods, it should be clear that not all methodological aspects of functional
regression are covered. One crucial point we have not discussed is the use of functional
principal components (fPCs) as a popular alternative to using spline basis functions.
fPCs often lead to a very compact basis and nicely interpretable results. An overview
on fPC-based approaches is given in Wang et al. (2016). Note that functional residuals
and other functional random effects can be represented using fPCs as well in the
approach described here (cf. Greven and Scheipl, 2017a).

Finally, we look forward to the ongoing development of ready-to-use and robust
methodology for functional regression. Being both an important method for working
with complex data structures and a field where research is still needed for some
important aspects, functional regression stays one of the currently most exciting fields
of modern statistics.
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(cohort effect). We introduce ridgeline matrices and partial APC plots as innovative visualization
techniques facilitating the intuitive interpretation of complex temporal structures. Generalized additive
models are used to circumvent the identification problem by fitting a bivariate tensor product spline
between age and period. The results indicate that participation in short-haul trips is mainly associated
with age, while participation in long-distance travel predominantly changed over the period. Gen-
erational membership shows less association with destination choice concerning travel distance. The
presented APC approach is promising to address further questions of interest in tourism research.

Keywords
APC analysis, cohort analysis, destination choice, generalized additive models, ridgeline matrices,
travel distance

Introduction

Overcoming geographic distances is, by definition, one of the constitutive elements of tourism as

people need to temporarily travel to places outside their everyday environment to be defined as

tourists (Cooper and Hall, 2016). Alterations of tourist flow can be attributed to time-related

factors, including developments across the life cycle, over time periods or between successive

generations (Oppermann, 1995). Technological developments in transportation (Castro et al.,

2020), economic conditions of the source market (Sun and Lin, 2019) and the greater availability

of information through modern communication technology (Yang et al., 2018) have facilitated

long-distance travel over time. Apart from these external influences, destination choice, and hence

travel distance, depends on sociodemographic and psychological characteristics of the traveler

(Wong et al., 2016). Travel behavior changes over the course of someone’s life cycle due to

changing personal circumstances and increasing age (Bernini and Cracolici, 2015) and between

generations (Lohmann and Danielsson, 2001). Furthermore, travel-related factors such as time

availability also affect destination choice (McKercher and Mak, 2019).

Thorough analyses of such temporal patterns particularly rely on quantifying and compre-

hensively communicating the developments over age, period, and cohort. The separation of these

factors is performed with statistical age–period–cohort (APC) analysis methods. Therein, each

temporal dimension describes characteristic developments regarding the individual traveler or

external circumstances of holiday trips. Following Yang and Land (2008), age effects represent the

ageing process of an individual, period effects refer to external events and environmental changes,

and cohort effects relate to specific groups of individuals who experience the same events in a

specific span of time. APC analyses require long-term panel or repeated cross-sectional data (Yang

and Land, 2013). Due to the sparse availability of adequate data and the complexity of existing

methods, only few studies in tourism research have examined alterations in travel behavior based

on all three temporal dimensions so far (e.g. Oppermann, 1995). In this work, we introduce an

established APC approach into tourism research by analyzing the temporal development of travel

distances of German tourists, investigating the research question:

How are age, period, and cohort related to altering travel distances?

The key challenge in APC analyses is to separate these temporal effects by overcoming the

identification problem that each component is a linear combination of the others (Clayton and
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Schifflers, 1987), for example, age ¼ period � cohort. In other words, the three components can

never be fully separated and interpretation requires a thorough understanding of their interrela-

tions. Statistical models based on linear effect structures only yield a unique solution if further

assumptions about these interrelations are made. The quality of the solution highly depends on the

adequacy of the substantial assumptions and the underlying data.

Novel to tourism research and based on a repeated cross-sectional German survey which covers

travel information from almost 50 years, our study highlights the potential of holistic APC

modeling to generate a more comprehensive understanding of the factors that drive changes in

travel behavior. We provide three major contributions. First, we introduce a state-of-the-art

approach for APC analysis into the field of tourism research. It is based on a generalized addi-

tive modeling framework, where cohorts are represented as an interaction between age and period.

The approach is applicable for panel and repeated cross-sectional data as well as individual and

aggregated data. Secondly, we introduce ridgeline matrices and partial APC plots as novel gra-

phical tools for analyzing APC structures to facilitate the communication of complex temporal

patterns. The former build on the visualization concept of Lexis diagrams (Carstensen, 2007).

Finally, we contribute new insights about the key factors that trigger destination choice by ana-

lyzing the associations of age, period, and cohort with altering travel distances using a compre-

hensive statistical approach which has not yet been applied in tourism science. The latter comprises

both the pure analysis of APC structures and the inclusion of further variables potentially asso-

ciated with altering travel distances. In terms of practical implications, understanding the spa-

tiotemporal movements of tourists and their influencing factors can support practitioners and

policy-makers in the planning and management of destinations, including future travel behavior

predictions.

Literature review

Geographic distance and destination choice

Tourism literature emphasizes the importance of geographic distance in destination choices (Lee

et al., 2012; Yang et al., 2018). Adopted from Tobler’s (1970) first law of geography, the negative

impact of distance between origin and destination on destination choice can be explained by

distance decay theory: tourism demand declines with increasing geographic distance (McKercher

et al., 2008). This spatial decline of outbound tourism demand is associated with rising physical,

temporal, and monetary costs (Taylor and Knudson, 1973).

Advances in transportation and communication technologies coupled with reduced travel time

and costs have facilitated long-haul travel in the last decades (McKercher and Mak, 2019). These

developments lead to the assumption that the negative impact of distance (i.e. the friction effect of

distance) on tourism demand diminished over time (Yang et al., 2018), indicating a strong period

effect. Even so, studies investigating temporal changes of international tourism flows show that

geographic distance still has a substantial impact on demand patterns, supporting the robustness of

distance decay theory (Lee et al., 2012; McKercher and Mak, 2019).

How far one is willing to travel depends on sociodemographic and psychographic traits of the

traveler such as age, household size, or income (Eugenio-Martin and Campos-Soria, 2011), tri-

pographic characteristics such as trip duration (Guillet et al., 2011), and socioeconomic factors of

the place of residence (Sun and Lin, 2019; Wong et al., 2016). The distribution of traveled dis-

tances can be visualized by demand curves. Their shape varies depending on the respective source
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market, type of tourist, and type of travel (McKercher and Mak, 2019; Wong et al., 2017), indi-

cating the influence of such factors on destination choices.

Distance decay studies usually take advantage of available macro data on tourist flows. They

use aggregated international tourist arrival or departure data to examine the association between

travel distance and international travel patterns (McKercher and Mak, 2019; McKercher et al.,

2008; Sun and Lin, 2019). The data sources limit these studies to the analysis of period effects (i.e.

the influence of societal and economic factors on temporal changes). For example, Sun and Lin

(2019) found that economic welfare and transport capacity are key factors for longer travel dis-

tances. The influence of sociodemographic or travel-related characteristics on tourist flows is often

neglected in such studies (Yang et al., 2018). Identifying the key factors for changing destination

choices considering both external and internal factors remains a challenge in tourism research. It

requires both long-term data on individual level and complex statistical approaches such as APC

analysis.

Age–period–cohort analysis

Association of age, period, and cohort with travel behavior.
Travel behavior is changing over time due to various reasons. To explain temporal developments,

research suggests considering three dimensions: age, period, and cohort (e.g. Oppermann, 1995).

The effect of an individual’s age on the propensity to travel or the type of holiday experience is

generally explained by life cycle theory (Bernini and Cracolici, 2015). According to this concept,

age-related shifts in travel behavior are mainly associated with the varying life stages an individual

or family passes (Chen and Shoemaker, 2014), ranging from childhood, young adulthood, newly

married couple, parenting, empty nest to retirement. Most notably, the different stages are char-

acterized by the change of marital status as well as altering income levels over the life cycle

(Bowen and Clarke, 2009). This indicates that age serves as a proxy for these and other personal

changes such as physical health (Scheiner and Holz-Rau, 2013). Studies indicate a nonlinear age

effect on tourism demand including a small mid-30s to 40s dip in the overall decreasing curve

(Collins and Tisdell, 2002). In terms of distance traveled, Oppermann (1995) found a bimodal

pattern showing that the propensity for long-distance travel has its maximum among young people

in their 20s and a second peak around age 50 (i.e. when children have moved out). The overall

negative correlation of age with long-haul travel is associated with a gradual decline in health and

mobility (You and O’leary, 2000). However, due to social change and modern life cycles, mod-

ifications and extensions of the traditional family life cycle need to be considered. For example,

while single-parent families are less likely to choose long-distance destinations, this is not the case

for couples of the same age without children (Collins and Tisdell, 2002).

Alterations in travel behavior are also caused by external factors of the macro environment

simultaneously affecting people of all ages (Pennington-Gray and Spreng, 2002). These period

effects comprise various factors including single events such as terror attacks, which have short-

and long-term impacts on travel behavior (Karl et al., 2017), pandemic crises (Romagosa, 2020), as

well as long-term trends such as economic developments in the source market (Wong et al., 2016),

technological advances in transportation (Castro et al., 2020), and mobile technology (Cohen et al.,

2014) or climate change (Gössling et al., 2012). While modern developments in transportation

permanently encourage long-distance travel, events such as economic downturns can deter people

from traveling overseas (Sun and Lin, 2019). New climate change protection policies and changes

in consumers’ perception of air travel (e.g. flight shame) may reduce travel distance in the future
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(Becken and Carmignani, 2020). Potential long-term changes are also expected due to the COVID-

19 pandemic which leads to a revival of short-distance travel (Romagosa, 2020). The impact of

such external factors on (future) travel behavior is assessed in tourism demand modeling. Meth-

odological approaches in this field comprise predictive methods purely based on historic tourist

data (i.e. time series studies) or based on known causal relationships between demand and

explanatory variables (i.e. econometric studies) (Song and Li, 2008). More recent advances in

tourism demand modeling include artificial intelligence-based models, where different data

sources can be combined to estimate models that are mainly focused on deriving sound predictions

(Song et al., 2019).

Besides age and period effects, researchers indicate that travel behavior is also shaped by

generational membership (McKercher et al., 2020). According to generational theory, members of

a birth cohort share collective values and experiences through epochal events (Pendergast, 2010),

reflected in similar consumer behavior patterns (Glover and Prideaux, 2009). Reviewing consumer

behavior research in tourism, Cohen et al. (2014) identified generational membership as one of the

core influential factors of tourism behavior. The specific beliefs and attitudes of each generation

remain consistent over the ageing and life cycle process (Schewe and Noble, 2000). Targeted

cohort analyses were applied in various tourism research settings, investigating generational dif-

ferences regarding travel motivation and preferences (Chen and Shoemaker, 2014; Huang and Lu,

2017; Pennington-Gray et al., 2003), tourism expenditure (Bernini and Cracolici, 2015), online

travel information search (Beldona, 2005), tourism experiences sought (Lehto et al., 2008), activity

participation (You and O’leary, 2000), and destination choice (Huang and Lu, 2017; Li et al.,

2013). Regarding destination selection, studies found that younger generations are more inclined to

travel abroad to visit off-the-beaten path destinations (Li et al., 2013). This can be related to the

effect of generation-specific socialization experiences on travel behavior (Oppermann, 1995).

Evidently, changes in travel behavior are triggered simultaneously and interactively by the

effects of age, period, and cohort. In tourism research, the above stated cohort analyses aim to

separate these effects with the main goal of identifying generation-specific consumption patterns.

These insights are used for market segmentation (Schewe and Noble, 2000) and as a tool for

tourism forecasting (Pennington-Gray et al., 2002). However, due to the sparse availability of long-

term data on tourist behavior, studies investigating the temporal variations of travel behavior with a

comprehensive (APC) approach are rare (Bernini and Cracolici, 2015). Instead, cohort analyses in

tourism are often based on single cross-sectional surveys (e.g. Huang and Lu, 2017) or include only

a few time points (e.g. Beldona, 2005). Such data settings exacerbate a reliable separation of age

and cohort effects in these studies. Although research confirmed an association between these

factors and destination choice (e.g. Bernini and Cracolici, 2015; Oppermann, 1995), to our

knowledge no empirical studies have yet analyzed travel distance alterations based on all three

temporal dimensions.

Statistical APC approaches. Examining to which extent observed developments can be attributed to

each temporal component requires a joint analysis framework. APC analyses have primarily

originated in epidemiological science to analyze mortality rates for specific population groups

defined by age, period, and cohort (Kupper et al., 1985). The last decades showed an increasing use

of APC methods across various research fields (Yang and Land, 2013), also due to the availability

of more sophisticated statistical approaches. Descriptive analysis is usually performed with Lexis

diagrams (Figure 1), that is, a two-dimensional table or graph depicting age groups and periods in
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horizontal and vertical direction, respectively (Carstensen, 2007). Accordingly, unique cohorts are

displayed along the diagonals.

The most popular version of an APC model for repeated cross-sectional data is defined as a

multiplicative three-factor regression model (see, e.g. Holford, 1983). More generally, it is a

generalized linear model (GLM, Nelder and Wedderburn, 1972) of the form

g �apc

� �
¼ b0 þ ba � agea þ bp � periodp þ bc � cohortc ð1Þ

where mapc denotes the expected value of an exponential family response for age group

a ¼ 1; . . . ;A, period p ¼ 1; . . . ;P, and cohort c ¼ 1; . . . ;C, g �ð Þ denotes the link function, b0

denotes the intercept, and bj j 2 a; p; cf gð Þ denotes the linear coefficients. The parameterization of

this classical APC model is based on cross-sectional data aggregated over age groups, periods, and

cohorts. However, the structure is easily adaptable to individual data (e.g. Fannon et al., 2018).

Panel data can be analyzed by introducing random effects into the model (Diggle et al., 2002).

Given its linear predictor and the linear dependency of age, period, and cohort, model (1) cannot

be estimated without setting constraints on the effect structures. Numerous strategies have been

developed to overcome the identification problem. While early methods often used strict linear

constraints such as the equality of two of the three effects (e.g. Fienberg and Mason, 1979), modern

approaches rely on less restrictive assumptions. For instance, Bayesian hierarchical models restrict

first- and second-order differences of the effects (e.g. Schmid and Held, 2007); the intrinsic

estimator applies a form of principal components regression (Fu, 2000). Clayton and Schifflers

(1987) give a detailed consideration to the identification problem and common issues in estimation

Figure 1. Sketch of a Lexis diagram. Period and age are displayed on the x-axis and y-axis, respectively.
Cohorts are represented as diagonals.
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and interpretation. A thorough overview of existing methodology is given by Yang and Land

(2013).

A model class which has gained popularity in APC analysis since the late 1990s (e.g. Car-

stensen, 2007; Heuer, 1997) is spline-based regression. This approach overcomes the identification

problem by estimating potentially nonlinear age, period, and cohort effects. Building on this

approach, Clements et al. (2005) propose an APC model using a bivariate spline function

depending on age and period in a generalized additive regression model (GAM). The resulting two-

dimensional interaction surface implicitly contains information about cohorts on the diagonals.

Given data on aggregated level, the model structure is given by

g �ajc

� �
¼ b0 þ f ap agea; periodp

� �
ð2Þ

where f �; �ð Þ is a nonlinear interaction surface represented by a two-dimensional spline basis. As a

direct extension of GLMs, generalized additive regression is a robust and flexible approach for

modeling nonlinear effect structures (Wood, 2017). GAMs are applicable to all exponential family

responses and to research settings with additional explanatory variables. Penalized splines (e.g.

Eilers and Marx, 1996) enable the estimation of nonlinear relationships in the data but avoid

overfitting by imposing a penalty on the effect’s roughness. The application of GAMs is facilitated

by sophisticated and freely available software (e.g. Wood, 2017).

Data and methods

Database

The data used in this study were collected in the Reiseanalyse, an annual cross-sectional survey on

pleasure travel among approximately 7500 German residents (FUR, 2020b). Survey data are

available from 1971 to 2018 and comprise around 227,000 holiday trips. Travelers from former

East Germany have been included since 1990. The target population comprises (West) German

citizens until 2009, and all German-speaking residents thereafter. Data are representative

respective to federal state, city size, age, sex, household size and income, education level and

citizenship (FUR, 2020a). We focus on five generations following the classification of Herhoffer

and Meurer (2018). A description of these generations and their observed data is given in Table 1.

We analyze travel distances of the main holiday trips, each one defined as the personally most

important trip within a year, lasting at least 5 days. This comprises both domestic and outbound

Table 1. Overview of the generations in the data and the respective periods and age groups in which they
were observed.

Generation Birth years Relative frequency (%) Observed periods Observed ages

Generations born before 1939 1874–1938 25.0 1971–2018 33–99
Silent Generation 1939–1946 13.8 1971–2018 25–79
Baby Boomer 1947–1966 37.5 1971–2018 14–71
Generation X 1967–1982 17.7 1981–2018 14–51
Generation Y 1983–1994 5.2 1997–2018 14–35
Generation Z 1995–2010 0.8 2009–2018 14–23

Note: Generations before 1939 are not of special interest and are summarized.

Weigert et al. 7

123



travel. Direct distances were calculated in kilometers between the region of origin (i.e. the centroid

of the federal state) and the destination. For the latter, we typically use the centroid of the stated

country. Information on farther destinations was often not available explicitly but only as part of its

greater region (e.g. “Southeast Asia”). To distinguish short-, medium-, and long-haul travel, dis-

tances were analyzed in five categories similar to Frick et al. (2014). Distance categories and

exemplary destination countries are displayed in Table 2 and Figure 2. Since travel distances are

approximated from the respective federal state of origin, some European countries are not assigned

to a consistent group.

Methods

Our methodological framework consists of descriptive and model-based analysis of APC struc-

tures. For descriptive visualization, we introduce ridgeline matrices as a novel technique. These

are a two-dimensional extension of ridgeline plots (Wilke, 2018), an established tool to display

densities against a secondary grouping variable. In accordance with Lexis diagrams, we display

age groups along the horizontal axis and periods along the vertical axis, so that diagonals represent

specific cohorts. The resulting plot layout enables a direct comparison of distributions over

several age groups, periods, and cohorts. For our individual-level data setting, we exploit

the survey structure by calculating travel distances based on the weighted observations, leading to

Table 2. Overview of the travel distance categorization used in the analyses.

Travel distance Exemplary destinations Relative frequency

<500 km Germany and neighboring countries 1971: 57.9%
2018: 31.9%

500–1000 km Neighboring and close European countries 1971: 24.5%
2018: 18.7%

1000–2000 km European countries (e.g. Spain, Portugal, Malta, and Finland) 1971: 15.3%
2018: 28.4%

2000–6000 km North Africa, Middle East, Russia, and Mongolia 1971: 1.5%
2018: 11.5%

>6000 km America, Africa (excluding North Africa), Asia, and Australia 1971: 0.8%
2018: 9.5%

Figure 2. Travel distance categorization for travelers from Bavaria, Germany. Germany is framed in gray.
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representative results for German travelers within each group. Following Clements et al. (2005),

our modeling approach builds on model (2), addressing the identification problem by implicitly

regarding the cohort effect as a statistical interaction between age and period, represented by the

diagonal of the estimated nonlinear surface. We apply semiparametric additive logistic regression

to model the individual travel distance categories as binary outcomes. In accordance with Fannon

et al. (2018), we use the following model structure for our repeated cross-sectional data setting

with observations on individual level

log
pi

1� pi

� �
¼ b0 þ f ap agei; periodið Þ; i ¼ 1; . . . ; n ð3Þ

with pi the probability to travel in the respective distance category, b0 the intercept, f �; �ð Þ a two-

dimensional nonlinear function, and n the number of individuals. In the remainders of this work,

we call model (3) the pure APC model. All quantitative interpretations and visualizations of effects

in this study are based on odds ratios (OR ¼ pi

1�pi
).

We represent the two-dimensional function f �; �ð Þ by a tensor product basis, defined as the

Kronecker product of two one-dimensional marginal spline bases over age and period (Wood,

2017). More specifically, each marginal basis function of age is multiplied with each marginal

basis function of period to obtain the two-dimensional spline basis. We use penalized B-splines

(Eilers and Marx, 1996) to define marginal spline bases, each of them made up of 10 basis

functions and the penalization of second-order differences. The estimated tensor product surface is

visualized by a heatmap, giving a compact overview of the interrelations of age, period, and cohort.

To facilitate the comprehension of effect structures, we use a lower resolution of the heatmap by

computing mean effects over APC groups of 5 years. Uncertainty is displayed using 95% pointwise

confidence intervals (Marra and Wood, 2012). As an additional graphical tool, individual marginal

effects for age, period, and cohort fa(age), fp(period), and fc(cohort) offer a more accessible

visualization of temporal developments by focusing on a specific dimension only. This also

facilitates effect strength comparisons within and between different models. The mean marginal

effects are extracted from the tensor product estimate

f a ageað Þ ¼ 1

P

XP

p¼1

f ap periodpjagea

� �

f p periodp

� �
¼ 1

A

XA

a¼1

f ap ageajperiodp

� �

f c cohortcð Þ ¼ 1

A� P

XA

a¼1

XP

p¼1

f ap agea; periodpjcohortc

� �
ð4Þ

To visualize the interplay of APC effects, we propose partial APC plots as an extension of

marginal effect plots with specific focus on the interrelation of two selected temporal factors. In

our experience, this substantially facilitates communication of the model complexity to practi-

tioners. In addition to one marginal effect of interest, partial APC plots display appropriate slices of

the tensor product where, for example, the nonlinear variation over cohorts is shown for one

specific age group only.

The pure APC model aims at a descriptive interpretation of the estimated temporal structures.

Causal conclusions should not be drawn as age, period, and cohort each represent underlying
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internal and external factors that are not directly incorporated in the model. To estimate the

attribution of observed temporal developments to such factors, we integrate additional covariates

into the model structure

log
pi

1� pi

� �
¼ b0 þ f ap agei; periodið Þ þ hi ð5Þ

where hi denotes a linear predictor containing further (non)linear effects. While we primarily focus

on the pure APC model in this study, we also estimate an extended covariate model by evaluating a

selected set of sociodemographic and travel-related variables on individual level to exemplarily

demonstrate the application of APC models in tourism research. Effects obtained through this

covariate model have to be interpreted with caution since we do not account for all factors

potentially associated with travel behavior.

Based on both models, we apply additive logistic regression for all five distance categories,

similar to a multinomial modeling approach. Model performance is evaluated by area under the

curve (AUC) values (Japkowicz and Shah, 2011), calculated on a hold-out test set comprising 20%
of the data when re-estimating each model on the remaining training set. AUC values vary between

0.55 and 0.67 for the pure APC models and 0.58 to 0.83 for the models including covariates with

best model performances for the highest (“>6000 km”: 0.66 pure model, 0.83 covariate model) and

lowest (“<500 km”: 0.63, 0.72) distance categories.

The changes in the underlying population in 1990 and 2010 were accounted for by sensitivity

analyses. For this purpose, all models were re-calculated based only on the population of Western

German travelers and German citizens, respectively. No substantial deviations from the presented

results were found. Results of these analyses are listed in the Online Appendix C.

All statistical analyses were performed with the open source software R (R Core Team, 2019).

Models are estimated with the function gam from the package mgcv (Wood, 2017), and all

visualizations are based on the package ggplot2 (Wickham, 2016). Code for the statistical analysis

is freely available in an open source GitHub repository (Weigert et al., 2020).

Results

Descriptive analysis

Over the last 50 years, Germans travel considerably longer distances for their main holiday. As

illustrated in Figure 3, trips of less than 500 km have decreased, while the share of trips with a

distance of 2000 km and more has steadily increased. Since 2000, the distribution of trips across all

distance categories is stable with one-third of trips being conducted within 500 km.

The demand curve for pleasure trips in the most recent year 2018 (Figure 4) follows the Eur-

opean tourism demand pattern observed by McKercher and Mak (2019). Proceeding from the

majority of holidays spent in rather close destinations, demand declines with increasing distance.

The popularity of package holiday destinations in the Mediterranean regions is reflected by a

secondary peak around 1800 km distance.

The two-dimensional ridgeline matrix (Figure 5) represents an extension of the demand curve

and gives a first impression of the extent to which travel distances simultaneously change over age,

period, and cohort. Density functions of distances are displayed on a log10 scale to focus on

changes in lower distance categories. The figure reveals increasing travel distances since the 1970s

as the highest peak of the densities moves towards the right for all age groups. An association
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between age and travel distances is visible as travel distance is consistently highest for 20- and

30-year-olds. Only minor differences are visible comparing different generations.

APC models

Pure APC model. Our attribution of the observed developments to the three temporal dimensions is

based on separate logistic regression models purely conditioning on age, period, and cohort. The

main model results are visualized by a heatmap of the estimated tensor product surface allowing

the comparison of areas with a higher chance to travel in the examined distance category and areas

with a respective lower chance. The according heatmap for distance category “>6000 km” is

displayed in the left panel of Figure 6. Overall, younger age groups, recent periods, and younger

cohorts are all attributed the highest chance to travel long distance. Substantial uncertainty is only

Figure 3. Relative frequency of travel distance of main holiday trips between 1971 and 2018. Some abrupt
developments are caused by minor changes in the survey design.

Figure 4. Distribution of travel distances of German travelers in 2018. Travel distance values 0 mark travels
inside the traveler’s federal state. Higher density values encode higher frequency.
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Figure 5. Ridgeline matrix depicting the development of travel distances for different age, period, and cohort
groups. Cohorts born between 1950 and 1959 and between 1970 and 1979 as representatives of Baby
Boomers and Generation X are exemplarily highlighted brown and green, respectively. Higher densities
encode higher frequency. Distances are displayed on a log10 scale.

Figure 6. Heatmaps of the estimated tensor product surface (left panel) and the respective lower (center)
and upper (right) 95% CI boundary for distance category “>6000 km”. Effects are averaged over 5-year blocks.
Exponentiated values smaller than 0.1 are trimmed to 0.1. CI: confidence interval.
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present for age groups 90 or higher since very few such travelers were observed. The uncertainty of

the effect estimates is similar for all distance category models (see the Online Appendix A).

Figure 7 shows the respective marginal effects for the temporal domains. The displayed ORs

have a multiplicative interpretation, dependent on the currently focused distance category: for

example, the age effect for distance category “<500 km” shows that the chance to make one’s

holiday trip within 500 km is about twice as high for persons aged 62 (estimated OR � 0:98)

compared to persons aged 30 (OR � 0:49) since the effects show a difference in chance of around

þ100% (¼ 0:98
0:49
� 1).

Age. The age effects show pronounced differences between short- and long-haul travel. The

tendency for short-haul trips within 500 km increases with age (age 23: OR� 0:39) and reaches its

peak at age 88 (OR � 2:94). Teenagers also are more likely to travel to closer destinations.

Reversed and partly bimodal age effects are obtained for travel distances over 1000 km with the

highest chances around age 25 (“>6000 km”: OR � 2:01) and 50 (“>6000 km”: OR � 1:50). The

dip between 35 years and 45 years becomes more pronounced with increasing distances and is most

visible in the distance category “>6000 km” (age 41: OR � 1:30). From the mid-50s onwards, the

chance for long-distance holidays decreases continuously.

The results are in accordance with life cycle theory (e.g. Collins and Tisdell, 2002; Oppermann,

1995). The increase in choosing longer distance travel between the ages of 14 and 30 might

be explained by increasing travel experience. Teenagers most commonly are in the early stages

of their travel careers (independent from their parents) and prefer more familiar, low-risk desti-

nations closer to home. In contrast, self-sufficient young people in their 20s seem to become more

Figure 7. Estimated marginal odds ratios of age, period, and cohort for each distance category on a log2
scale. The dashed vertical lines in the cohort plot mark the boundaries between the generations defined
in “Database” section.
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adventurous and therefore are more likely to choose distant destinations (Karl, 2018). The

changing marital status between mid-30 and mid-40 associated with parenting reduces preference

for long-haul trips as families with dependent children prefer easily accessible and safe destina-

tions (Collins and Tisdell, 2002; Karl, 2018). With the transition to the empty nest stage, the

demand for distant destinations is growing again due to the reduction of travel constraints (Bernini

and Cracolici, 2015). The decline in travel distance with age can be explained by decreasing

physical health, limited mobility, and reduced disposable income of the elderly (You and O’leary,

2000).

Period. Regarding the period effect, long-distance travels have strongly increased over the last

decades. Particularly, the effect structures of short- and long-distance travels reversed around the

year 1992, suggesting that Germans were inclined to visit rather close destinations beforehand,

while the tendency to choose distant destinations has been increasing ever since. The strongest

period effect is observed for destinations within “2000–6000 km” (1971: OR � 0:14; 2018: OR

� 2:35) as well as “>6000 km” (1971: OR � 0:25; 2018: OR � 1:75). Since 2000, the effects are

comparably stable.

The growth in travel distance over time can be mainly explained by technological developments

in transportation which have led to distant destinations being faster and more cheaply accessible,

especially for low-income populations (Castro et al., 2020). Additionally, the regular confrontation

with information about foreign destinations increased with the advent of digital media (Beldona,

2005; Kim et al., 2015) leading to a decrease in perceived distance (Yang et al., 2018). According

to positive correlations between the economic situation of the source market and outbound travel

participation (Sun and Lin, 2019; Wong et al., 2016), it can be assumed that the growing economy

of Germany is reflected in the period effect. The increase in travel within 2000–6000 km distance

can be attributed to the growing popularity of specific destinations, such as Turkey or Egypt. The

emerging saturation since 2000 can be linked to declining population dynamics and flattening

economic growth rates (Frick et al., 2014).

Cohort. The cohort effect shows a clear association between generational affiliation and distance

traveled. Overall, younger generations show a greater chance for overseas travels and lower

tendencies for short-haul trips than older generations. For instance, members of Generation Y

(mean OR � 5:69) have more than twice the chance to travel within 2000–6000 km compared to

Baby Boomers (mean OR� 2:59), while travels to destinations within 500 km are about 47% more

likely for Baby Boomers (OR � 0:53) than for Generation Y (mean OR � 0:36). In parts, the

cohort effect reflects the observed age differences since, for example, our data on the youngest

cohorts only comprise teenagers. Further detail is given in the discussion of Figure 8.

The cohort effect is in line with other research showing that younger generations travel to more

distant (Oppermann, 1995) and international destinations (Pennington-Gray et al., 2002). The

higher probability of long-distance travel among young cohorts can be attributed to the sociali-

zation processes, also shaped by advances in transport and communication technologies in for-

mative years (Oppermann, 1995), increasing the potential to gain greater travel experiences in

childhood. This is closely linked to younger cohorts showing higher tendencies to be novelty

seekers that prefer nonmainstream destinations (Li et al., 2013).

Comparison of effects. While substantially varying travel distances are observed over all temporal

dimensions, the marginal association structures show differences in their effect strengths. As given

in Table 3, the chance for short-haul trips, especially those under 500 km, is mainly associated with
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age differences. Long-distance travel predominantly varies over the period. Particularly within

destinations in 2000–6000 km distance, a noteworthy period effect is shown, underlining the

findings of the marginal effects. Differences between generations born from 1939 onwards are less

Figure 8. Partial APC plot of estimated odds ratios for the cohort effect dependent on age group (left panel)
and period (right) for the model “>6000 km.” The mean marginal effect is marked as bold blue line. APC: age–
period–cohort.

Table 3. Overview of marginal effects of the pure APC model (see Figure 7).

Model Effect
Value with maximum

OR
Value with minimum

OR
Maximum

OR
Minimum

OR Ratio

<500 km Age 88 23 2.94 0.39 7.5
Period 1971 2018 2.13 0.66 3.2
Cohort 1939 1989 0.77 0.36 2.1

500–1000 km Age 14 99 1.49 0.59 2.5
Period 1983 2018 1.14 0.85 1.3
Cohort 2004 1989 1.30 0.97 1.3

1000–2000
km

Age 22 86 2.27 0.39 5.8
Period 2018 1971 1.51 0.46 3.3
Cohort 1994 2004 2.50 1.35 1.9

2000–6000
km

Age 25 99 2.54 0.14 18.1
Period 2009 1971 3.01 0.14 21.5
Cohort 2004 1939 6.54 1.97 3.3

>6000 km Age 27 99 2.10 0.32 6.6
Period 2018 1971 1.75 0.25 7.0
Cohort 1979 2004 2.64 1.11 2.4

Note: APC: age–period–cohort; OR: odds ratio. For each model and effect, the following information is listed, from left to

right. Variable value where the OR reaches its maximum/minimum; maximum/minimum of the OR; ratio between the

respective maximum OR and minimum OR. The maximum ratios per model are highlighted in bold. According to the

generations defined in “Database” section, cohort effects are considered for birth years from 1939 onwards only.
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pronounced regarding travel distances. Overall, the effect strengths underpin the developments

visualized in the ridgeline matrix (Figure 5).

The observed tendencies may imply that choosing short-haul destinations depends on personal

characteristics and age-related travel constraints such as physical or family restrictions (You and

O’leary, 2000). Contrarily, long-distance travel might be more constrained by macro-level factors

such as developments in transport technology attributed to reduced costs for long-haul travel or

economic growth in the source market leading to an increase in disposable income which can be

used for more expensive long-distance travel (Sun and Lin, 2019). In Germany, the positive

economic development in the time period investigated in this study has made long-term travels

considerably more accessible. Moreover, technological advances in transportation (Castro et al.,

2020) have considerably reduced flight costs for German travelers in the past five decades. The

access to a wider range of information sources through modern communication technologies

further reduces perceived (cultural) distances to previously inaccessible destinations (Yang et al.,

2018), which might also explain the strong increase in long-distance travel over time. In com-

parison with age and period, generational membership seems to be less important for alterations in

travel distances. This broadens previous insights of cohort studies that focused on generational

differences without accounting for all three temporal dimensions (e.g. Bernini and Cracolici,

2015).

Interrelations of age, period, and cohort. Figure 8 shows an exemplary partial APC plot that

highlights the interrelations between the temporal dimensions. In addition to the marginal cohort

effect, it includes one line for each partial cohort effect, that is, for the estimated differences

between cohorts when just focusing on travelers with a specific age (left panel) or travels in a

specific period (right panel). The displayed effects originate from the model for long-distance

travels “>6000 km”.

The figure displays different kinds of information: First, it shows which cohort entails obser-

vations in which age group or period, as already listed in Table 1. For instance, the age-dependent

plot highlights that the youngest cohorts solely comprise observations of teenagers. Secondly, it is

easily deducible how substantial this partial observation structure affects the marginal cohort

effect. The drop in the marginal effect for the youngest cohorts can be fully traced back to the

observed age groups, since teenagers travel distinctively lower distances than travelers in their 20s

or 30s. Thirdly, the partial cohort effects separately display the cohort differences in each age

group and period. For example, 14-year-olds show less variation over the observed cohorts than

20-year-olds. Overall, very young (light gray lines) and very old (dark gray lines) people show

more consistent travel distances than middle-aged, generally less constrained travelers. Regarding

the cohort differences for a given period, more consistent travel distances are observed in the older

periods (light gray) compared to the most current periods (dark gray). The partial age and period

effects and the effects on other distance categories are given in the Online Appendix B.

Covariate model. Travel behavior is shaped by several internal and external factors (Moutinho,

1987). To showcase the integration of additional factors associated with travel behavior, partic-

ularly destination choice, we extend the pure APC model for distance category “>6000 km” by the

following internal covariates: (i) inflation-adjusted household net income (as a nonlinear effect)—

the integration of this covariate is motivated by the income elasticity of tourism demand which

assumes an overall positive correlation, especially for outbound travel participation (Eugenio-

Martin and Campos-Soria, 2011); (ii) household size—this reflects the marital, financial, and
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social situation of an individual and the related travel constraints (Alegre and Pou, 2004). It is well-

established that the larger the household, the less likely it is to travel abroad (Guillet et al., 2011);

(iii) trip duration is included because of its positive association to travel distances since higher

costs owing to longer distances are compensated by longer trip lengths (Jackman et al., 2020).

External, macro-level factors like the economic climate in the source market and technological

developments are not explicitly accounted for. As outlined, these are jointly reflected by the period

effect.

Overall, Figure 9 illustrates substantial associations between the chance to travel farther than

6000 km and all included covariates. While trip duration shows a very strong positive association,

the chance for long-distance travel decreases continuously with increasing household size. More

specifically, someone from a two-person household has on average a 293% (� 0:48
0:12
� 1) higher

chance to travel farther than 6000 km than a member of a �5-person household. Regarding the

positive income effect, the chance for long-distance travel increases almost linearly within income

levels of 1000–5000 € before flattening for high-income values (1000 €: OR � 0:40; 8000 €: OR

� 4:63).

The inclusion of additional covariates alters the strengths of the estimated age, period, and

cohort effects compared to the pure APC model (Figure 10). Accounting for household size

attenuates the age-related dip around 40. This can be related to the impact of travel constraints

caused by specific personal circumstances of this age group. The variations in the period and

cohort effect are mainly triggered by conditioning on the trip duration. More specifically, assuming

trips of equal length, the chance for holiday trips over 6000 km increases more steeply both over

Figure 9. Estimated odds ratios of the variables household income, household size (reference category: one-
person household) and trip duration (reference category: trips of 5 days) in the model for the distance
category “>6000 km” on a log2 scale. Uncertainty is displayed by 95% confidence intervals.
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time and across generations underlining the higher affordability and easier accessibility of long-

haul trips in recent years and for younger cohorts.

Conclusion

Comprehension of changing destination choice patterns requires a thorough understanding of all

temporal interrelations and their respective drivers. APC analysis is an established tool for the

investigation of such time-related changes, separating cohort effects from age and period (Yang

and Land, 2013). Nevertheless, this method and its possibilities for the examination of behavioral

changes in tourism science are not yet fully exploited. The purpose of this study was threefold: (1)

establish a flexible, state-of-the-art statistical modeling approach for APC analysis in tourism

science, (2) introduce ridgeline matrices and partial APC plots as novel graphical tools for

visualizing complex APC structures in a comprehensive way, and (3) generate new insights into

temporal developments of travel behavior by applying the comprehensive APC approach, based on

a rich secondary data set.

From a methodological perspective, our contributions focus on refining and showcasing a

widely applicable and well accessible APC approach. We build our modeling framework on

semiparametric GAMs to overcome the identification problem without using restrictive assump-

tions on the temporal effects. The approach can be formulated for aggregated and individual data

settings (i.e. travel information for groups of travelers or for individual travelers) as well as

repeated cross-sectional or panel data, making it adaptable to a variety of research settings. The

GAM framework is highly flexible and offers robust and efficient concepts for estimation and

inference, accompanied by sophisticated and freely available software. Since APC analyses rely on

a thorough understanding of the temporal interrelations, we offer innovative visualizations to

Figure 10. Estimated odds ratios of the full model for distance category “>6000 km versus <6000 km”
including covariates (covariate model) compared to the APC effects in the model without covariates (pure
APC model) on a log2 scale. The dashed vertical lines in the cohort plot mark the boundaries of the analyzed
generations. APC: age–period–cohort.
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facilitate their comprehension. Ridgeline matrices present an easily accessible tool for displaying

three-dimensional temporal changes. On a model-based level, partial APC plots are a novel way to

visualize bivariate interrelations of the individual effects. Their application is vital in APC anal-

yses since birth cohorts are most commonly not observed across all available age groups and

periods. In such settings, partial APC plots can help understand to which extent the estimated

association structures are due to the specific data structure.

From a tourism perspective, the holistic APC framework contributes to new insights about

temporal changes of destination choice. It offers a more comprehensive alternative to previously

applied approaches in tourism research. In combination with our long-term data set comprising

travel behavior on individual level, it allows a deeper understanding of the temporal structures. Our

study confirms that alterations in travel behavior occur in accordance with life cycle theory (age),

macro-level developments in economy and society (period), and generational theory (cohort).

Moreover, we produced new insights on the main temporal drivers that alter destination choices. In

contrast to cohort studies focusing on generational differences (e.g. Huang and Lu, 2017), our

findings especially suggest that cohort differences seem less pronounced when all three temporal

dimensions are considered. Contrary to common approaches in studies on changes in travel

behavior (e.g. Bernini and Cracolici, 2015), our simultaneous analysis of developments over age,

period, and cohort does not neglect any specific interrelations in the temporal structures. Since

destination choice is determined by various internal and external factors (Wong et al., 2017),

another benefit of our framework is the possibility to incorporate additional explanatory variables.

For example, our approach allows to investigate to what extent the observed developments can be

attributed to specific characteristics of the travel decision process. If data are modeled on indi-

vidual level, this most notably comprises the simultaneous incorporation of explaining variables on

individual (e.g. income of the traveler) and macro level (e.g. general economic indices). Especially

for studies observing individual travelers, accounting for further variables offers great potential for

future tourism research by identifying the influences and interactions of socioeconomic and travel-

related factors (e.g. travel motivation or transportation mode). Often it is the interplay between

such internal and external factors, related to the tourist and the destination, that shapes travel

decision-making (Karl, 2018) and consequently tourism demand. For instance, the individual

motivation to travel and the price level at and transport costs to a destination commonly influence

tourists’ destination choices (Nicolau and Más, 2006). Finally, both the academic sector and the

industry can make use of these newly generated insights. Understanding which and how different

factors cause changes in travel behavior (e.g. domestic and outbound tourist flows) may lead to

better predictions of future tourism demand, supporting touristic stakeholders in tourism planning

and management.

Using repeated cross-sectional data from an established long-term survey has its advantages

(valid and representative sample, cost-efficiency) but is not without limitations. A critical aspect

which had to be considered in the analysis were changes of the underlying population in 1990 after

German reunification, and in 2010 from German citizens to the German-speaking population.

However, our comparative sensitivity analyses show that these modifications have no substantial

impact on the overall results. Regarding our main findings, transferability is limited to source

markets like Western European countries, with conditions similar to the German market (economic

situation, transportation system and freedom of travel). Future studies should apply our proposed

approach to other source markets to investigate how APC structures change when different

macroeconomic and sociocultural conditions are considered. Finally, as generally is the case in

observational studies, findings should be interpreted with caution regarding causal relationships.
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The overall APC effects can be differentiated reasonably well. Causal conclusions, however,

should not be drawn as all observed temporal interdependencies can be traced back to specific

socioeconomic factors, societal changes, or shared socialization processes that affect each indi-

vidual tourist. Accordingly, a clear distinction between these underlying factors is not possible

without explicitly accounting for them as further covariates in the model. To make accurate

predictions of tourism demand, future research needs to focus on integrating relevant factors from

tourism demand modeling (e.g. economic development and technological advancement) and the

travel decision-making literature (see review by Smallman and Moore, 2010) into the outlined

analyses of individual travel data. Among others, this includes the impact of economic changes in

the source market, technological advancement leading to reduced transport costs or political events

(e.g. German reunification and establishment of the Schengen area) on destination choices

regarding short- or long-haul destinations.

Due to the identification problem, separating the effects of age, period, and cohort remains the

crucial challenge in APC analysis. Generally speaking, the GAM framework is an adequate basis

for estimating mean APC structures in widespread research settings. Since perfect separation of the

three temporal effects is not possible, future research should specifically focus on tools to make

association structures more accessible. Especially model-related visualization techniques such as

partial APC plots are promising to be further refined for this purpose. Ridgeline matrices are

extendable by further building on additional concepts of ridgeline plots (Wilke, 2018) to display

the distribution of each matrix cell conditional on, for example, socioeconomic groups. While we

designed both novel visualization techniques specifically for the application on cross-sectional

data, their adaptation to panel data remains to be evaluated. Regarding our application, alternative

statistical approaches to model travel distances should be taken into consideration. In the

regression context, this comprises modeling the raw distances as a response as well as the eva-

luation of more complex techniques like functional data analysis (Bauer et al., 2018) to compare

the demand curves between different groups.

In conclusion, the outlined modeling approach proved its worth in the application on travel

distances and contributed to deeper knowledge in destination choice. Combining the flexibility of

semiparametric regression with modern visualization tools offers great potential for future studies

analyzing temporal changes in diverse fields of (tourism) research.
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Summary
Age-Period-Cohort (APC) analysis aims to determine relevant drivers for long-term developments and is
used in many fields of science (Yang and Land 2013). The R package APCtools offers modern visualization
techniques and general routines to facilitate the interpretability of the interdependent temporal structures
and to simplify the workflow of an APC analysis. Separation of the temporal effects is performed utilizing a
semiparametric regression approach. We shortly discuss the challenges of APC analysis, give an overview of
existing statistical software packages and outline the main functionalities of the package.

Keywords: R; Statistical analysis; APC analysis; Age-period-cohort analysis; Hexamaps

Statement of Need
The main focus in APC analysis is on disentangling the interconnected effects of age, period, and cohort.
Long-term developments of some characteristic can either be associated with changes in a person’s life cycle
(age), macro-level developments over the years that simultaneously affect all age groups (period), or the
generational membership of an individual, shaped by similar socialization processes and historical experiences
(cohort).

The critical challenge in APC analysis is the linear dependency of the components age, period, and cohort
(cohort = period - age). Flexible methods and visualization techniques are needed to circumvent this
identification problem. Several packages for APC analysis exist for the statistical software R. Package apc
(Fannon and Nielsen 2020) implements methods based on the canonical parametrization of Kuang, Nielsen,
and Nielsen (2008), which however lack flexibility and robustness when compared to nonlinear regression
approaches. Package bamp (Schmid and Held 2007) offers routines for the analysis of incidence and mortality
data based on a Bayesian APC model with a nonlinear prior. R package Epi (Carstensen et al. 2021)
implements the methods introduced in Carstensen (2007) to analyze disease and mortality rates, including
the estimation of separate smooth effects for age, period and cohort. Rosenberg, Check, and Anderson (2014)
developed an R-based web tool for the analysis of cancer rates, including different estimates for marginal
effect curves.

In contrast to the above software packages, APCtools builds on a flexible and robust semiparametric
regression approach. The package includes modern visualization techniques and general routines to facilitate
the interpretability of the estimated temporal structures and to simplify the workflow of an APC analysis.
As is outlined below in further detail, sophisticated functions are available both for descriptive and regression
model-based analyses. For the former, we use density (or ridgeline) matrices, classical heatmaps and hexamaps
(hexagonally binned heatmaps) as innovative visualization techniques building on the concept of Lexis
diagrams. Model-based analyses build on the separation of the temporal dimensions based on generalized
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additive models, where a tensor product interaction surface (usually between age and period) is utilized to
represent the third dimension (usually cohort) on its diagonal. Such tensor product surfaces can also be
estimated while accounting for further covariates in the regression model.

Descriptive Analysis
In the following, we showcase the main functionalities of the APCtools package on the included travel
dataset, containing data from the German Reiseanalyse survey – a repeated cross-sectional study comprising
information on German travelers between 1971 and 2018. Focus is on travelers between 14 and 89 years and
the distance of each traveler’s main trip – i.e. each traveler’s most important trip in the respective year – and
how these distances change over the temporal dimensions.

Several descriptive visualization techniques are implemented that are all based on the classical concept of
Lexis diagrams where two temporal dimensions (of age, period, and cohort) are depicted on the x- and y-axis,
and the remaining dimension along the diagonals. Additional to heatmaps and hexamaps (see below) this
includes density matrices (called ridgeline matrices in Weigert et al. (2021)) which can be used to flexibly
visualize observed distributions along the temporal dimensions. Such visualizations can for example be used
to illustrate changes in travel distances. As can be seen in Figure 1 and Figure 3, longer-distance travels are
mainly undertaken by young age groups and in more recent years.

Figure 1: Density matrix of the main trips’ travel distance in different age and period groups. Two cohort
groups are exemplarily highlighted.

Model-based Analysis
To properly estimate the association of a process with the individual dimensions age, period, and cohort,
we utilize the approach introduced by Clements, Armstrong, and Moolgavkar (2005) who circumvent the
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identification problem by representing the effect of one temporal dimension (e.g. cohort) based on a nonlinear
interaction surface between the other two dimensions (age and period). This leads to a generalized additive
regression model (GAM, Wood (2017)) of the following form:

g(µi) = β0 + fap(agei, periodi) + ηi, i = 1, . . . , n,

with observation index i, µi the expected value of an exponential family response, link function g(·) and the
intercept β0. The interaction surface is included as a tensor product surface fap(agei, periodi), represented
by a two-dimensional spline basis. ηi represents an optional linear predictor that contains further covariates.
Model estimation can be performed with functions gam or bam from R package mgcv (Wood 2017). As outlined
in Weigert et al. (2021) this modeling approach can both be applied to repeated cross-sectional data and
panel data.

Based on an estimated GAM, a heatmap of the smooth tensor product surface can be plotted (see Figure 2).
Additionally, marginal effects of the individual temporal dimensions can be extracted by averaging over each
dimension.

Figure 2: Heatmap of the estimated tensor product surface (left pane) and marginal APC effects based on an
additive model with the travel distance as response and no further control variables (right pane).

As an alternative to classical heatmaps the raw observed APC structures or the subsequently estimated
model-based tensor product surface can also be visualized using hexamaps, i.e. hexagonally binned heatmaps
where developments over age, period, and cohort are given equal visual weight by distorting the coordinate
system (Jalal and Burke 2020). This resolves the central problem of classical heatmaps where developments
over the diagonal dimension are visually underrepresented compared to developments over the dimensions
depicted on the x- and y-axis.

APCtools further provides partial APC plots, which can be used to visualize interdependencies between
the different temporal dimensions (see Weigert et al. (2021) for details). Also, several utility functions are
available to plot covariate effects as well as functions to create publication-ready summary tables of the
central model results.
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Figure 3: Hexamaps of the observed travel distances (left pane) and the estimated tensor product surface
based on an additive model with the travel distance as response and no further control variables (right pane).
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Bauer, A., Scheipl, F., Küchenhoff, H., and Gabriel, A.-A. (2018). An introduction to semipara-
metric function-on-scalar regression. Statistical Modelling, 18(3–4): 346–364.

Weigert, M., Bauer, A., Gernert, J., Karl, M., Nalmpatian, A., Küchenhoff, H., and Schmude,
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