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List of abbreviations

1. List of abbreviations

APS Auditory Processing Plateau

CCT Computerized Cognitive Training
EMT Emotion Matching Task

HC Healthy Control

ML Machine Learning

ROP Recent Onset Psychosis

rsFC resting-state Functional Connectivity
SP Sensory Processing

SVM Support Vector Machine
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3. Introduction

3.1.Personalization in psychiatry

Personalized medicine strives to assess proneness to disease, specify diagnosis and optimize response
to intervention by taking into account individual phenomenology, (patho-)physiology, genetic
predisposition and environment (Ozomaro et al., 2013). In comparison to other medical disciplines,
e.g. oncology, psychiatry lags behind (Ozomaro et al., 2013). Psychiatry is particularly challenged by
personalization (Marquand et al., 2016; Wardenaar & de Jonge, 2013) as most psychiatric constructs

are defined by their phenomenological nature rather than based on etiological mechanisms.

Major psychiatric diagnoses, e.g. schizophrenia, comprise heterogeneous clinical symptoms (Widiger
& Clark, 2000; Widiger & Samuel, 2005) which might be the result of different underlying
psychopathological substrates. Furthermore, high heterogeneity in pharmacological (Wong et al.,
2010) and non-pharmacological (Hofmann et al., 2012; Isaac & Januel, 2016) treatment response
occurs due to heterogeneous clinical phenotypes. For this reason psychiatric syndromes are being
stratified beyond phenomenology, including neurobiology and genetics to better understand possible
etiological mechanisms or endophenotypes present in subtypes of the disease (Marquand et al., 2016;
Wium-Andersen et al., 2017). Further, studies investigated predictors of treatment outcome related

to cognitive and neural mechanisms (figure 1).
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Figure 1. Research has stratified heterogeneous psychiatric diagnoses into subtypes to better understand underlying
etiological mechanisms and improve response to psychiatric treatment. In schizophrenia neurocognition attracted attention
as an important intermediate phenotype. The current doctoral thesis focusses on (1) neurocognitive subgroups and their
relation to brain structure in ROP and (2) the impact of learning performance and functional brain characteristics on CCT.
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In recent years progress in biomarker research and availability of advanced statistical techniques in
psychiatry brought forward research on stratification of mental disorders (Marquand et al., 2016).
Machine learning (ML) has been a major catalyst due to its potential to extract discriminant patterns
of information among a large pool of (multimodal) input characteristics (Dwyer et al., 2018; Hebart &
Baker, 2018). Furthermore, it approximates complex systems, e.g. the brain, where relationships
appear more widespread and (non-linearly) interrelated (Davatzikos, 2004; Hebart & Baker, 2018;

Lessov-Schlaggar et al., 2016).

Large multicentric initiatives benefit from statistical advances as they acquire rich data bases allowing
to characterize complex and generalizable cross-modal relationships. For example, the PRONIA
(Personalized Prognostic Tools for Early Psychosis Management; www.pronia.eu) consortium, a
European research project with study sites in Europe and Australia, has recruited individuals suffering
from recent onset psychosis (ROP), recent onset depression or at clinical high risk for psychosis. Those
individuals were characterized based on clinical, neurocognitive, neurobiological and genetical data
over a period of 36 months. A main goal of the consortium is to identify subgroups of patients with
homogeneous profiles and link them to clinical and functional outcome. ML can be a useful tool to
disentangle the complex interplay between the different data modalities obtained and generate

important knowledge to understand heterogeneity in psychiatric diseases.
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3.2.Neurocognition in schizophrenia

In schizophrenia the relevance of a cross-modal perspective is founded on the developmental
hypothesis (Murray et al.,, 2017) which understands the disease as the result of maturational
maladaptation and differentiates  genetical, neurobiological and environmental influences.
Neurocognition attracted attention as an intermediate phenotype in recent years (Gur et al., 2007;
Kahn & Keefe, 2013). Dysfunctional interactions between neurocognition and social functioning or
brain physiology perpetuate adverse conditions and behavior (e.g. difficulties in learning, social
isolation, drug abuse etc.) which ultimately increase vulnerability to schizophrenia (Kahn & Keefe,

2013; Murray et al., 2017).

Importantly, neurocognitive deficits strongly relate to functioning and functional outcome (Gur et al.,
2007; Kahn & Keefe, 2013). Patients show general (Reichenberg in Payne et al., 2011) and specific
neurocognitive impairment which interferes with social and occupational functioning (Bowie et al.,
2006; Kahn & Keefe, 2013; Mohamed et al., 2008). Verbal memory and processing speed exhibit
strongest deficits (Sheffield et al., 2018). Further, they are associated with poor community

functioning, social skill acquisition and problem solving (Green, 1996).

However, heterogeneity in neurocognitive impairment in schizophrenia has been reported in
numerous studies (Green et al., 2019) and dates back to Kraepelin describing ‘dementia praecox’ in a
group of individuals with schizophrenia (Kraepelin et al., 1919). Affective and non-affective psychosis
clustering studies, that use unsupervised ML to detect homogenous subtypes (see 3.3.2 for an
explanation of the clustering method), often show three-subtype-solutions with different
neurocognitive profiles. Findings in schizophrenia derive no clear consensus on number of subtypes
and distinctive cognitive domains. Neurocognitive impairment varies from near-normal functioning to
severe impairment and evidence converges only regarding the existence of a severely impaired

subtype (Green et al., 2019).
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Severely impaired neurocognitive subtypes show mixed clinical profiles across studies. While in some
studies (Lewandowski et al., 2014; Wells et al., 2015) severe cognitive impairment includes burden on
positive, negative and general symptoms, others find high negative symptoms in the impaired
subgroup but significantly lower positive symptoms (Green et al., 2013). However, they are associated
with a clear profile of general (Dickinson et al., 2020; Green et al., 2013; Van Rheenen et al., 2018;
Wells et al., 2015) and occupational functioning deficits (Dickinson et al., 2020; Lewandowski et al.,

2014) emphasizing the relevance for targeted clinical care.

Neurocognitive impairments have commonly been associated with structural and functional brain
alterations in schizophrenia (Antonova et al., 2004; Fornito et al., 2011; Kim et al., 2018; Sheffield et
al., 2017). Likewise, varying cognitive impairment in subgroups is reflected in differences in structural
neural substrates suggesting differences in etiology (Geisler et al., 2015; Gould et al., 2014; Van
Rheenen et al., 2018; Weinberg et al., 2016). For example, a study investigated grey matter differences
(Van Rheenen et al., 2017) in a cross-diagnostic sample of individuals with schizophrenia and
schizoaffective disorder which was clustered into ‘preserved’, ‘deteriorated’ and ‘compromised’
subtypes previously (Wells et al., 2015). A unique pattern of brain volume atrophy across frontal,
temporal, and occipital regions and significant overall brain volume reduction differentiated the most

severely impaired subtype from the others.

Most of the studies investigated neurocognitive heterogeneity in patients who suffer from chronic
schizophrenia. In this case, prolonged antipsychotic medication intake might have influenced cognitive
performance (Van Rheenen et al., 2017) and brain structure (Haijma et al., 2013). It remains unclear if
cognitive heterogeneity is the consequence of illness progression and medication effects and if it is

present early, i.e. at the illness onset, or even prior to outbreak of psychotic symptomatology.
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3.2.1. Heterogeneity in treatment response to computerized cognitive trainings

Cognitive deficits in psychotic disorders can be ameliorated through neuroplasticity-based
computerized cognitive training (CCT; Biagianti et al., 2016; Harvey et al., 2018). CCT shows small to
medium effect sizes on cognition (Kambeitz-llankovic et al., 2019; Keefe et al., 2012; McGurk et al.,
2007; Medalia & Saperstein, 2013; Prikken et al., 2019; Wykes et al., 2011) and functioning (Kambeitz-
llankovic et al., 2019; McGurk et al., 2007; Medalia & Saperstein, 2013; Prikken et al., 2019; Wykes et

al., 2011) in schizophrenia-spectrum patients.

It uses a ‘drill and practice’ strategy to stimulate neuro-plastic responses in maldeveloped brain areas
(Dale et al., 2016, 2020; Subramaniam et al., 2012; Vinogradov et al., 2012). Repetitive training of low-
level perceptual processes engages primary sensory areas in visual or auditory cortex which propagate
their input to higher-level brain regions. Therefore, CCT exploits neuroplasticity, i.e. the brain’s
adaptability to stimulation (Keshavan et al., 2015), to specifically drive modulatory responses in the
brain which ultimately translate to improvements in cognitive functioning (Vinogradov et al., 2012).
For example, it has been shown to increase activity in frontal, parietal, occipital and thalamic regions
implicated in working memory, attention and executive functioning (Matsuda et al., 2019; Ramsay &
Macdonald, 2015). Importantly, the induced plastic modulation in such regions correlates with
behavioral gains (Bor et al., 2011; Haut et al., 2010; Ramsay et al., 2017; Subramaniam et al., 2012,

2014; Wexler et al., 2000; Wykes et al., 2002).

Not only local changes in activity but specifically the strengthening of connections between sensory
and higher-order brain areas promote response to CCT. Studies (Fan et al., 2017; Matsuda et al., 2019)
support this assumption by e.g. reporting specific resting-state Functional Connectivity (rsFC) patterns
in frontal and temporal brain regions after CCT which mediate global cognition and emotion perception
and regulation (Eack et al., 2016; Keshavan et al., 2017). Additionally, low baseline cognitive

performance has been associated with stronger increases in thalamo-frontal connectivity after
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cognitive intervention (Ramsay et al., 2017). Likewise, studies tested the relevance of white matter
micro-structure integrity (Subramaniam et al., 2018) and functional network modularity (Arnemann et
al.,, 2015) in CCT and found a modulatory effect on attention and executive functioning. In sum,
evidence suggests that rsFC together with white matter and brain network characteristics are

important determinants for CCT success.

Learning performance during neurocognitive intervention, which determines the quality of the
learning stimulus administered to the brain, might be another important modulator of treatment
response. A study evaluated the effects of training an auditory processing task in patients with
schizophrenia (Biagianti et al., 2016). The results suggested that the average participant reached an
auditory processing plateau (APS) after around 20 hours of training. Critically, the amount of training
hours needed to reach APS, was highly variable between participants and significantly correlated with
global gain in cognition. This suggests that learning performance, i.e. amount of sensory processing

(SP) change during the intervention, influences improvements to untrained cognitive domains in CCT.

CCT shows heterogeneity in treatment response (Isaac & Januel, 2016) which might be explained by
differences in the brain’s susceptibility to neuroplastic processes and the quality of the learning
stimulus (induced through different learning behavior) it is exposed to. Studies are needed to

simultaneously account for both aspects when evaluating its treatment response.
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3.3.Machine learning as tool to improve personalization

ML can be described as a computational strategy that learns parameters at various stages of the
analysis to find an optimal statistical model representative of the problem (Dwyer et al., 2018). Rooted
in different philosophies (Bzdok & Meyer-Lindenberg, 2018; Hebart & Baker, 2018) classical statistics
and ML provide complementary perspectives though several aspects of ML are especially suitable to

improve personalization (Bzdok & Meyer-Lindenberg, 2018; Dwyer et al., 2018; Hebart & Baker, 2018):

First, ML aims at prediction of conditions by learning from data rather than predicting data based on
given conditions and fixed model parameters. Complex and highly interrelated multi-dimensional
concepts, like psychopathology, are more likely to be approximated by such approaches as they are
less constrained by apriori assumptions. Second, ML uses mutual information from many input
variables, so-called features, and enables to find their most discriminative combination. Thus it
supports the development of statistical models combining high-dimensional information from
behavioral, neurobiological and genetical modalities. Third, ML predicts on the level of the individual
rather than reporting average measures on the level of the group. Finally, ML models are evaluated
based on the performance in a test data set excluded from the model generation (out-of-sample
estimate). Therefore it increases generalizability as the model can be tested across different cultural
backgrounds (e.g. eastern vs. western culture) and technical standards (e.g. magnetic resonance
imaging [MRI] scanner properties) which is especially valuable in multicentric initiatives (Chen et al.,

2014).

ML techniques are commonly subdivided into supervised methods, that base the generation of the
model on given categorical or continuous labels, and unsupervised methods, that are used to infer
underlying labels in the data set based on criteria of similarity. The current doctoral thesis applied
Support Vector Machine (SVM) algorithms (supervised ML) and K-means clustering (unsupervised ML),

which will be described in a nutshell in the following paragraphs (figure 2).
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Figure 2. ML techniques and nested cross-validation. (A) SVM algorithms fit a (hyper-)plane into a n-dimensional space by
optimizing the margin, i.e. the distance between the hyperplane and the observations of each label (blue and red dots). (B)
K-means clustering partitions a given data set into an apriori defined number k of subgroups by minimizing the within-cluster
variation, i.e. the distance between the cluster centroid (asterisk) and individual observations. (C) Nested cross-validation
splits the data set into training and test folds both on an outer and inner loop. Models generated on the inner loop training
folds are first evaluated on the inner loop test fold and subsequently on the outer loop test fold. This procedure is repeated
until each fold has been test fold. Nested cross-validation is conducted to (1) minimize overfitting, (2) assess model
generalizability and (3) optimize model parameters.
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3.3.1. Supervised machine learning

A SVM algorithm is a ML technique commonly used in psychiatry due to its high interpretability (Dwyer
et al., 2018). The linear SVM approach fits a decision boundary in the form of a plane (‘hyperplane’
when fitting to n > 3 dimensions) to classify two given labels, e.g. diagnostic entities (figure 2A; Cortes
& Vapnik, 1995). The decision boundary describes an imagined border in high-dimensional space (e.g.
in brain imaging data each voxel represents a dimension) separating the observations of the labels.
The highest classification performance of an SVM is achieved by maximizing the distance of the
decision boundary to the observations of each label (maximum margin SVM) and thereby maximizing

the separation between the two groups (Cortes & Vapnik, 1995).

In complex real-world data, however, a separation of groups using a linear kernel is often not possible.
Therefore, the extent of the margin is optimized by manipulating the cost parameter (soft margin SVM;
Cortes & Vapnik, 1995; Dwyer et al., 2018) to balance classification accuracy and generalizability. In
detail, a high cost parameter leads to a narrow margin, fits the hyperplane closely to the observations
and results in a high classification accuracy. In contrast, a low cost parameter extends the margin,
tolerates a certain amount of misclassifications but is less likely to model noise in the data. Therefore,

it increases generalizability to observations that have not been included in model generation.

The process of optimization is commonly embedded into a scheme, e.g. nested cross-validation (figure
2C), that strictly separates the data set for model generation (training data set) from the data set for
model evaluation (test data set). Nested cross-validation splits the data set into training and test folds
on an outer loop and additionally, on a nested inner loop. Models are generated on the training folds
of the inner loop and evaluated on the inner loop test fold. Models revealing the highest performance
are then tested against the test fold of the outer loop. This procedure is repeated until each fold of
both outer and inner loop has been test fold. Nested cross-validation is established to (1) minimize

overfitting, (2) evaluate the generalizability to external data (e.g. from another study site or acquired
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using different technical devices), and (3) allow for optimization of model parameters (e.g. cost
parameter). A comprehensive description of the nested cross-validation scheme applied in the papers

of the doctoral thesis can be found in Koutsouleris et al. (2018).

The SVM approach enables to integrate information from a multiplicity of inputs as the algorithm
‘learns’ the weight of each feature when determining the position of the (hyper-)plane in the analyzed
data space (Cortes & Vapnik, 1995). The weight holds information about how discriminative its
associated feature is with respect to the investigated labels. The cumulative information of all features
and weights for a given observation is represented by the decision value. This value captures the

reliability of an observation to be classified as one label or the other.

Therefore, SVM algorithms are capable of extracting the most informative features of multivariate data
and express them in a single continuous scale. This property can be useful to monitor ‘multivariate’
changes over time in response to interventions which is shown in the second paper of the current

thesis.

3.3.2. Unsupervised machine learning

Unsupervised (ML) methods, particularly clustering (Hastie et al., 2009) and finite mixture models
(Bishop, 2006; Lazarsfeld, 1957; Muthén, 2002), are prominent tools for stratification in large data sets
in psychiatry (Marquand et al., 2016). Such approaches automatically identify intrinsic structures in a
data set based on statistical similarity and sort observations with the most coherent characteristics in

multi-dimensional space.

In K-means clustering single observations of a given data set are assigned to an apriori defined number
k of subgroups with the objective to minimize the variation within a subgroup (James et al., 2021).

Similarly to supervised ML, K-means clustering handles information from a multitude of variables by
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placing observations in high-dimensional space. During the optimization process, the algorithm
determines the distance of each observation to the centroids, which represent the center position of
the k subgroups. Observations are assigned to the subgroup with the closest centroid to minimize the

variation.

Owed to the exploratory nature of the approach, free parameters, such as k, the measure of distance
between the observations, and the definition of the centroid position, require extensive validation to
hold meaningful results (Kassambara, 2015; Monti et al., 2003). Indices, e.g. the Calinski-Harabasz
index (Califiski & Harabasz, 1974) or the average silhouette width (Rousseeuw, 1987), measure the
ratio between within-group closeness and between-group distance. Therefore, they provide means to
evaluate the statistical separability. Furthermore, resampling, i.e. the process of repetitively drawing
subsamples from a data set, can be used to obtain an estimate of stability of the subgroup assignments
under varied conditions (Hennig, 2007). Importantly, as most unsupervised algorithms will output a
partitioning result with potentially high statistical validity, external validation showing the

discriminability of the subgroups with respect to other criteria is recommended.

The first paper of the doctoral thesis uses K-means clustering to identify subgroups of patients based
on their neurocognitive performance. To meet the demands for cluster validation, this approach is
incorporated in a resampling scheme that tests the stability of the solution over several clustering
iterations. The generalizability of the cluster solution is further assessed through validation in an
independent sample. Finally, subgroups are evaluated by comparing clinical and functional

characteristics and their grey matter brain structure.



Research questions 19

3.4.Research questions: Heterogeneity in neurocognition and CCT response

In schizophrenia, heterogeneity in neurocognitive impairment and in therapeutic response to CCT has
drawn attention to neurocognition and brain connectivity as potential markers for stratification and
improvement of treatment. Recent implementation of ML in psychiatric research has promoted such

findings.

However, studies mainly investigated patients suffering from chronic schizophrenia and only a minority
of studies characterized neurocognitive subtypes and response to cognitive intervention in early stages
of the disease when patients are minimally affected by pharmacological treatment. Further, as yet no
study has implemented information of both brain and learning phenotypes when investigating
response to CCT. The doctoral thesis uses supervised and unsupervised ML to address the following

research questions:

1) Do ROP patients early in the course of the disease map onto different neurocognitive profiles?
2) Can training response to 10 hours of CCT in ROP patients be monitored using rsFC patterns

and learning performance?
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3.5.Publication summaries

3.5.1. ‘Cognitive subtypes in recent onset psychosis: Distinct neurobiological fingerprints?‘
Previous studies suggest neurocognitive subtypes in chronic schizophrenia samples (Green et al.,
2019). Neurocognitive subtypes have been associated with structural brain correlates (Geisler et al.,
2015; Gould et al., 2014; Van Rheenen et al., 2018; Weinberg et al., 2016). Most studies included
patients with chronic schizophrenia that have been treated with extensive antipsychotic medication
affecting cognitive performance (Lewandowski et al., 2011) and brain structure (Haijma et al., 2013).
Therefore, we investigated 108 patients with a recent psychotic episode (ROP) who were recruited in
the multi-site EU project PRONIA (Prognostic tools for early psychosis management) and minimally
exposed to antipsychotic treatment due to recent onset. We analyzed 8 neurocognitive domains
capturing performance in social cognition, executive functioning, processing speed, attention,
salience, working memory and verbal and visual memory. All domains were corrected for age, sex,
education years and study site. A K-means algorithm clustered the sample into subtypes based on
neurocognitive (dis-)abilities. We assessed stability of the cluster solution using resampling. Further,
we characterized the obtained neurocognitive subtypes and healthy controls (HC; N=195) based on
their grey matter volume of the brain using SVM classification. The clustering algorithm yielded a
cognitively impaired (N=41) and a cognitively spared (N=67) subtype which were functionally distinct
and validated in an independent psychosis sample (N=53). The cognitively impaired subtype showed
widespread deficits in cognitive performance and social and occupational functioning in comparison
to the cognitively spared subtype and HC. The impaired subtype showed significant increases and
decreases across several fronto-temporal-parietal brain areas, including basal ganglia and cerebellum
relative to HC (balanced accuracy = 60.1%; p = 0.01) whereas no significant grey matter differences
were found for the other comparisons (spared vs HC: BAC = 55.4%, p = 0.09; impaired vs spared: BAC
=47.2%, p = 0.79). Our findings are in line with previous clustering results in chronic schizophrenia
patients (Green et al., 2019). Our impaired subgroup reveals neurocognitive and functional difficulties

together with a significant neuroanatomical signature presumably present prior to florid psychotic
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symptoms. It supports the developmental hypothesis of psychosis (Murray et al., 2017) by showing
decline in premorbid intelligence, general cognition and lower level of occupational functioning in early
stages of the disease (Dickinson et al., 2020; Lewandowski, 2020). Our findings emphasize the
relevance for early targeted treatment, e.g. through neurocognitive training, to improve the

deteriorative course of the disease.
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3.5.2. ‘A multivariate neuromonitoring approach to neuroplasticity-based computerized
cognitive training in recent onset psychosis’
Research has shown marked variability in response to CCT potentially due to different learning
performance (Biagianti et al., 2016) and brain phenotypes (Arnemann et al., 2015; Subramaniam et al.,
2018). We investigated the effects of a neurocognitive intervention as function of individual SP change,
i.e. learning performance, and rsFC patterns in 26 ROP patients. SP change during 10h of CCT was
modeled during an emotion matching task (EMT). Presentation times of the stimuli, i.e. faces, during
training were indicator for difficulty level, i.e. short presentation times refer to high difficulty while
longer presentation times refer to lower difficulty. ROP patients showing high presentation times at
baseline but reaching EMT psychophysical threshold over the course of the level, were classified as
improver (N=12) whereas ROP patients sustaining low presentation times throughout the level, were
classified as maintainer (N=14). To account for individual differences in rsFC, we trained a SVM
hyperplane on a naturalistic sample of 35 ROPs and 56 HC of the PRONIA study (balanced accuracy =
65.5%, p <0.01). The rsFC hyperplane was applied to the 26 patients of the intervention study marking
their position on a hypothetical continuum between ROP-likeness and HC-likeness before and after
training. Our main results show that maintainers improve in attention though keeping their ROP status
on the rsFC hyperplane at follow-up (p < 0.05). In contrast, improver’s attentional gains occurred only
for those shifting to the HC-like side of the hyperplane. The study indicates that in early course of
psychotic disorders learning performance and individual rsFC are likely modulators of cognitive training
gains. Further, it shows the methodological feasibility to track individual brain characteristics to
monitor success in neurocognitive interventions. The ML approach used might be a way to integrate
complex data in early recognition and intervention programs, to develop targeted and effective

neurocognitive treatments.



Contribution to the publications 23

3.6.Contribution to the publications

Both publications are based on data sets acquired within the frameworks of the PRONIA (PI: Prof. Dr.
Nikolaos Koutsouleris) and PNKT (‘Personalisiertes Neurokognitives Training zur Verbesserung des
Funktionsniveaus bei Psychosen’; Pl: Dr. Lana Kambeitz-llankovic) project. | have been involved in the
acquisition of the PRONIA data set through recruitment of ROP patients from March 2018 until
September 2019 in the working group for Neurodiagnostic Applications at the Ludwig Maximilian
University of Munich (PI: Prof. Dr. Nikolaos Koutsouleris). In parallel, | have been involved in the
recruitment of ROP patients for the PNKT project at the same study site. In both PRONIA (study site
Munich) and PNKT project | have been responsible for the quality control of the magnetic resonance
imaging data, which comprised documentation, artefact inspection and server upload of the

generated brain images.

| am the first author of the publication ‘Cognitive subtypes in recent onset psychosis: Distinct
neurobiological fingerprints?. | have been involved in each step of the generation process of the
publication. | have developed the concrete research question guided by literature search and an
analysis proposal of the PRONIA consortium. Furthermore, | have derived the research hypotheses
and developed the unsupervised clustering framework for the analysis using the programming
languages R (https://cran.r-project.org/bin/windows/base/) and MATLAB
(https://de.mathworks.com/products/matlab.html). Supervised by Dr. Kambeitz-llankovic and Prof.
Dr. Koutsouleris | generated and interpreted the results of the analysis pipeline. | produced the draft
of the manuscript and revised it in accordance with comments of the coauthors. | was responsible for
the submission process to the journal and adapted the manuscript in accordance with suggestions by

the reviewers.

| am co-author of the publication ‘A multivariate neuromonitoring approach to neuroplasticity-based
computerized cognitive training in recent onset psychosis’. Besides the measurement of rsFC changes

in response to CCT, the modulation due to learning performance has been a critical element of the
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publication. | was responsible for the quality control of the learning performance data in the PNKT
project. Furthermore, | contributed to the publication by developing the methodological framework
to analyze the learning performance in the data set. | assisted in further data analysis and in the

interpretation of the results. Finally, | revised the draft of the manuscript.
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4. Summary

High heterogeneity in psychiatric diagnoses (Widiger & Clark, 2000; Widiger & Samuel, 2005) and
treatment response (Hofmann et al., 2012; Isaac & Januel, 2016; Wong et al., 2010) pose challenges in
the process of personalization (Marquand et al., 2016; Wardenaar & de Jonge, 2013). Nonetheless,
large multicentric initiatives and recent implementation of ML in psychiatric research have stimulated

work on stratification of psychiatric diagnoses (Marquand et al., 2016).

Neurocognition is a promising marker for stratification in schizophrenia. Recent findings of subgroups
with differential neurocognitive impairment (Green et al., 2019), specific clinical (e.g. Lewandowski et
al., 2014), and neurobiological correlates (e.g. Van Rheenen et al., 2018) underline this. However, the
main body of evidence refers to samples of chronic schizophrenic patients often treated with extensive
antipsychotic medication influencing cognitive performance (Lewandowski et al., 2011) and the brain
(Haijma et al., 2013). The current work presents evidence on cognitive subtypes and their clinical,
functional, and brain correlates in a sample of ROP patients using unsupervised and supervised ML

techniques:

Wenzel, J., Haas, S. S., Dwyer, D. B., Ruef, A., Oeztuerk, O. F., Antonucci, L. A., von Saldern, S.,
Bonivento, C., Garzitto, M., Ferro, A., Paolini, M., Blautzik, J., Borgwardt, S., Brambilla, P.,
Meisenzahl, E., Salokangas, R. K. R., Upthegrove, R., Wood, S. J., Kambeitz, J., ... PRONIA
consortium. (2021). Cognitive subtypes in recent onset psychosis: distinct neurobiological
fingerprints? Neuropsychopharmacology : Official Publication of the American College of
Neuropsychopharmacology, January. https://doi.org/10.1038/s41386-021-00963-1

We find a cognitively impaired and cognitively spared subtype with clinically and functionally distinct
characteristics accompanied by brain morphological changes. The characteristics of the impaired
cognitive subtype support the developmental hypothesis of psychosis (Murray et al., 2017) by showing
decline in premorbid intelligence, general cognition and lower level of occupational functioning in early

stages of the disease (Dickinson et al., 2020; Lewandowski, 2020).
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Cognitive deficits in psychotic disorders can be ameliorated through CCT (Biagianti et al., 2016; Harvey
et al., 2018). However, rsFC between sensory and higher-order brain areas, e.g. between temporal and
frontal regions, modulates neurocognitive gains in response to CCT (Eack et al., 2016; Keshavan et al.,
2017). Furthermore, a study indicates that different learning performance during the intervention
(Biagianti et al., 2016) relates to untrained neurocognitive improvements. In a proof-of-concept study
we investigated the effects of CCT as a function of individual rsFC and SP change, i.e. learning

performance:

Haas, S. S., Antonucci, L. A., Wenzel, J., Ruef, A., Biagianti, B., Paolini, M., Rauchmann, B. S., Weiske,
J., Kambeitz, J., Borgwardt, S., Brambilla, P., Meisenzahl, E., Salokangas, R. K. R., Upthegrove,
R., Wood, S. J.,, Koutsouleris, N., & Kambeitz-llankovic, L. (2020). A multivariate
neuromonitoring approach to neuroplasticity-based computerized cognitive training in recent
onset psychosis. Neuropsychopharmacology, 0(September), 1-8.

Both individual rsFC and SP change during the intervention modulate cognitive gains in attention. Our
findings show both methodological feasibility and clinical relevance of tracking individual rsFC and SP
changes in the process of CCT response evaluation. This is, to the best of our knowledge, the first study
using ML to monitor changes in neuro-functional characteristics and their association with learning

behavior and cognitive gains in CCT.

Patients in early stages of a psychotic disease show marked heterogeneity in neurocognitive
functioning, learning performance and brain structure and possibly experience different paths on their
way into the illness. Our ML approach has proven feasible to (neuro-)monitor heterogeneity in relevant
characteristics in ROP undergoing CCT. In summary, the current doctoral thesis emphasizes the
relevance for personalization in diagnostics and treatment in early stages of psychotic disorders and

promotes the utility of ML in this process.
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Note: The data of publication #2 (‘A multivariate neuromonitoring approach to neuroplasticity-based
computerized cognitive training in recent onset psychosis’) has been part of the PhD project from
Shalaila Haas which has been submitted as a monography.
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5. Zusammenfassung

Hohe Heterogenitadt bei psychiatrischen Erkrankungen (Widiger & Clark, 2000; Widiger & Samuel,
2005) und beim Ansprechen auf die Behandlung (Hofmann et al., 2012; Isaac & Januel, 2016; Wong et
al., 2010) erschweren die Personalisierung von Diagnostik und Behandlung in der Psychiatrie. GroRRe
Multizentrumstudien und die Implementierung maschineller Lernverfahren in die psychiatrische

Forschung ermoglichen Studien zur Stratifizierung psychiatrischer Diagnosen (Marquand et al., 2016).

Bisher gewonnene Erkenntnisse betonen die Bedeutung von Neurokognition bei der Stratifikation von
Patienten mit Schizophrenie. Studien die Subgruppen mit unterschiedlicher neurokognitiver
Beeintrachtigung identifizieren (Green et al., 2019) und mit klinischen (z.B. Lewandowski et al., 2014)
und neurobiologischen Markern (z.B. Van Rheenen et al., 2018) assoziieren konnten, bestatigen diese.
Ein GroRteil der bisher durchgefiihrten Forschungsvorhaben untersuchte schizophrene Patienten,
deren Hirnphysiologie (Haijma et al., 2013) und kognitive Leistungsfahigkeit (Lewandowski et al., 2011)
bereits durch antipsychotische Medikation beeinflusst wurde. Daher nutzt die erste Studie
supervidierte und unsupervidierte maschinelle Lernverfahren, um kognitive Subtypen bei Patienten,
die an einer kirzlich aufgetretenen psychotischen Episode leiden, zu identifizieren und diese durch
klinische Symptomatik, Funktionsniveau und Veranderungen der grauen Substanz im Gehirn zu

unterscheiden:

Wenzel J., Haas, S. S., Dwyer, D. B., Ruef, A., Oeztuerk, O. F., Antonucci, L. A., von Saldern, S.,
Bonivento, C., Garzitto, M., Ferro, A., Paolini, M., Blautzik, J., Borgwardt, S., Brambilla, P.,
Meisenzahl, E., Salokangas, R. K. R., Upthegrove, R., Wood, S. J., Kambeitz, J., Koutsouleris, N.,
Kambeitz-llankovic, L. (in press). Cognitive Subtypes in Recent Onset Psychosis: Distinct
neurobiological fingerprints? Neuropsychopharmacology, X, X—X.

Die Analyse zeigt eine Subgruppe mit starker neurokognitiver Beeintrachtigung und eine Subgruppe,
die in ihrer kognitiven Leistung gesunden Probanden dhnelt. Die Subgruppen unterscheiden sich

hinsichtlich klinischer und funktioneller Charakteristika voneinander. Die Subgruppe mit starken
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neurokognitiven EinbuBen zeigte zusatzlich hirnstrukturelle Unterschiede im Vergleich zu gesunden
Probanden. Die Charakteristika der neurokognitiv stark beeintrachtigten Subgruppe bestatigen die
Neuroentwicklungshypothese (Murray et al., 2017), welche einen beeintrachtigten pramorbiden 1Q,
reduzierte kognitive Fahigkeiten wahrend des Krankheitsbeginnes und geringes Rollen-Funktionieren

beschreibt (Dickinson et al., 2020; Lewandowski, 2020).

Kognitive Einschrdankungen in psychotischen Erkrankungen kénnen durch CCT verbessert werden
(Biagianti et al., 2016; Harvey et al., 2018). Forschung zeigt, dass die rsFC zwischen sensorischen und
hoher-rangigen Hirnarealen, z.B. temporalen und frontalen Regionen, einen modulierenden Einfluss
auf die neurokognitive Verbesserung nach CCT ausiibt. Eine Studie konnte zeigen, dass zusatzlich
unterschiedliches Lernverhalten wéahrend des Trainings das Ansprechen auf die Intervention
beeinflusst (Biagianti et al., 2016). Daher ist es das Ziel in der zweiten Studie, die Effekte eines CCT in

Abhéangigkeit der individuellen rsFC und des individuellen Lernverhaltens (SP change) zu betrachten:

Haas, S. S., Antonucci, L. A., Wenzel, J., Ruef, A., Biagianti, B., Paolini, M., Rauchmann, B. S., Weiske,
J., Kambeitz, J., Borgwardt, S., Brambilla, P., Meisenzahl, E., Salokangas, R. K. R., Upthegrove,
R., Wood, S. J.,, Koutsouleris, N., & Kambeitz-llankovic, L. (2020). A multivariate
neuromonitoring approach to neuroplasticity-based computerized cognitive training in recent
onset psychosis. Neuropsychopharmacology, 0(September), 1-8.
https://doi.org/10.1038/s41386-020-00877-4

Sowohl die individuelle rsFC als auch das Lernverhalten wahrend der Intervention beeinflussen die
Verbesserung der Aufmerksamkeit. Unsere Ergebnisse verdeutlichen die Sinnhaftigkeit individuelle
rsFC und individuelles Lernverhalten (SP change) im Rahmen eines CCT zu charakterisieren, um
kognitive Veranderungen zu untersuchen. Nach bestem Wissen ist diese Studie die Erste, die
maschinelle Lernverfahren verwendet, um Veranderungen in funktionellen Gehirneigenschaften nach

CCT zu messen und diese mit Lernverhalten und kognitiven Verbesserungen assoziiert.
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Bereits Patienten in friihen Stadien von psychotischen Erkrankungen zeigen deutliche Unterschiede in
ihrer Neurokognition, ihrem Lernverhalten und ihren hirnstrukturellen Eigenschaften, welche
unterschiedliche pathophysiologische Prozess andeuten. ML erweiset sich als niitzliche Methode, um
neurobiologische Heterogenitat bei psychotischen Patienten im Hinblick auf das Ansprechen bei CCTs
zu betrachten. Zusammenfassend betont die vorliegende Doktorarbeit die Relevanz von
Personalisierung bei der Diagnostik und Behandlung von Psychosen im friihen Verlauf und den Nutzen

von ML, um diese Aspekte weiter zu untersuchen.

Notiz: Die Daten von Publikation #2 (‘A multivariate neuromonitoring approach to neuroplasticity-
based computerized cognitive training in recent onset psychosis’) sind Bestandteil des als Monographie
eingereichten Phd-Projektes von Shalaila Haas.
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6.1.Publication #1

Neuropsychopharmacology

www.nature.com/npp

ARTICLE
Cognitive subtypes in recent onset psychosis: distinct
neurobiological fingerprints?

Julian Wenzel, Shalaila S. Haas?, Dominic B. Dwyer’, Anne Ruef®, Oemer Faruk Oeztuerk®*, Linda A. Antonucci®?,

Sebastian von Saldern®, Carolina Bonivento®, Marco Garzitto®, Adele Ferro’®, Marco Paolini®, Janusch Blautzik'®, Stefan Borgwardt(®'’,

Paolo Brambilla(®/*%, Eva Meisenzahl'?, Raimo K. R. Salokangas(®'?, Rachel Upthegrove'*'®, Stephen J. Wood'*'%"7,
Joseph Kambeitz !, Nikolaos Koutsouleris®'®'?, Lana Kambeitz-llankovic'* and the PRONIA consortium

In schizophrenia, neurocognitive subtypes can be distinguished based on cognitive performance and they are associated with
neuroanatomical alterations. We investigated the existence of cognitive subtypes in shortly medicated recent onset psychosis
patients, their underlying gray matter volume patterns and clinical characteristics. We used a K-means algorithm to cluster 108
psychosis patients from the multi-site EU PRONIA (Prognostic tools for early psychosis management) study based on cognitive
performance and validated the solution independently (N = 53). Cognitive subgroups and healthy controls (HG; n = 195) were
classified based on gray matter volume (GMV) using Support Vector Machine classification. A cognitively spared (N =67) and
impaired (N = 41) subgroup were revealed and partially independently validated (Nspared = 40, Nimpaired = 13). Impaired patients
showed significantly increased negative symptomatoclogy (pg, = 0.003), reduced cognitive performance (psqr < 0.001) and general
functioning (psq, < 0.035) in comparison to spared patients. Neurocognitive deficits of the impaired subgroup persist in both
discovery and validation sample across several domains, including verbal memory and processing speed. A GMV pattern (balanced
accuracy = 60.1%, p = 0.01) separating impaired patients from HC revealed increases and decreases across several fronto-temporal-
parietal brain areas, including basal ganglia and cerebellum. Cognitive and functional disturbances alongside brain morphological
changes in the impaired subgroup are consistent with a neurodevelopmental origin of psychosis. Our findings emphasize the
relevance of tailored intervention early in the course of psychosis for patients suffering from the likely stronger
neurodevelopmental character of the disease,

Neuropsychopharmacology (2021) 0:1-9; https://doi.org/10.1038/541386-021-00963-1

INTRODUCTION

In accordance with the neurodevelopmental hypothesis [1] the
majority of patients suffering from psychosis show general and
specific neurocognitive impairments [2, 3] as premorbid signs of
early developmental insults and brain alterations (4], However,
studies report substantial heterogeneity regarding the severity of
neurocognitive impairments [2] putatively representing different
underlying disease trajectories marked by specific (neuro-)
biological, clinical and functional characteristics [5].

Impaired cognitive and psychosocial functioning represent the
top of the dysfunctional pyramid of schizophrenia (SZ) [6]. For a
number of patients with psychosis, cognitive impairment persists
beyond the presence of positive and negative symptoms and

relates to reduced psychosocial outcome [6]. For this reason,
identifying homogeneous subgroups of patients showing specific
cognitive profiles may enhance the effects of promising novel
treatments including neurocognitive interventions [7]. Previous
studies using unsupervised machine learning (ML) found between
two and four cognitive subgroups in SZ samples, ranging from
unimpaired to severely deteriorated patient subgroups [8-11].
These subgroups differed not only with respect to their cognitive
performance yet also in clinical symptomatology [8, 9, 11], general
[8, 10, 11] and occupational functioning [9, 11]. Furthermore, they
were linked to different patterns of alterations in brain morphol-
ogy [10, 12]. Complementary, studies using unsupervised ML
identified neuroanatomical subgroups that were related to
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differences in premorbid functioning [13, 14] and neuropsycho-
logical performance [14].

Existing evidence on cognitive subgroups is mainly based on
chronic SZ samples presenting with clinical symptoms for a
prolonged period. These findings could be limited as patients may
already be susceptible to change due to the effects of
antipsychotic medication on cognitive performance [15] and brain
structure [16].

The current study aims at disentangling variability in neuro-
cognitive impairment. To achieve this, we (1) subgroup a recent
onset psychosis (ROP) sample based on neurocognitive perfor-
mance using cluster analysis and validate the cluster solution on
neurocognitive data of an independent validation sample [17], (2)
associate obtained ROP subgroups to symptom burden and
functional disability and (3) investigate morphological brain
differences between the cognitive subgroups and healthy controls
(HC) using gray matter volume (GMV) within a supervised ML
framework.

MATERIALS AND METHODS

Sample

In the discovery sample 121 ROP patients and 201 HC, age
between 15 and 40 years, were recruited within the PRONIA study
(Personalized Prognostic tools for early psychosis management;
www.pronia.eu; German Clinical Trials Register: DRKS00005042) at
seven sites across Europe. Patients were included in the study if
they fulfilled DSM-IV-TR criteria [18] for a psychotic episode
present in the last 3 months, lasting longer than 1 week and with
first onset in the last 24 months [19]. HC volunteers were required
to not fulfill any current or past DSM-IV-TR axis | or Il diagnosis,
clinical high-risk (CHR) status for psychosis as defined by the
Structured Interview for Prodromal Syndromes [20] and Schizo-
phrenia Proneness Instrument [21] or positive familial history (1st
degree relatives) for psychosis accompanied by a drop in
functioning in the last year. HC participants with any intake of
psychotropic medications more than five times/year or in the
month before study entry were excluded. Written informed
consent was obtained from the subjects. The study received
ethical approval by each Local Research Ethics Committee at every
study site separately (Supplementary Materials and Methods) [19].

The independent validation sample comprised baseline data of
a monocentric, longitudinal cognitive intervention study called
Personalized Neurocognitive Training (ClinicalTrials.gov Identifier:
NCT03962426). Overall, 58 ROP patients were recruited at the Early
Detection and Intervention Center at the Department of
Psychiatry and Psychotherapy of the Ludwig-Maximilians-
University in Munich, Germany. Inclusion and exclusion criteria
were identical to those required for the discovery sample of the
PRONIA study.

The analysis data set consisted of 108 ROP patients and 195 HC
for the discovery sample and 53 ROP patients for the independent
validation sample (Table 1, Fig. 58, Supplementary Materials and
Methods).

Clinical and neurocognitive assessment

Participants were assessed using multiple clinical scales and
neuropsychological tests focusing on the General Assessment of
Functioning Scale (GAF) [22], split into two subscales (symptoms
and disability), the Global Functioning Scale (GF social and
occupational) [23] and the Positive and Negative Syndrome Scale
(PANSS) [24]. The neuropsychological test battery comprised of
ten tests that were assigned to cognitive domains comparable to
the MATRICS Consensus Cognitive Battery (MCCB) domains [25]
including visual memory (Rey-Osterrieth Complex Figure test
[26]), social cognition (Diagnostic Analysis of Non-Verbal Accuracy
[271), working memory (Auditory Digit Span Task [28], Self-ordered
Pointing Task [29]), processing speed (Verbal Fluency Test [30],

SPRINGER NATURE

Trail Making Test A [31], Digit-Symbol-Substitution Test [28]),
verbal learning and memory (Rey Auditory Verbal Learning Test
[32]), executive functioning (Trail Making Test B [31]),
attention and vigilance (Continuous Performance Test, Identical
Pairs version [33]) and one psychosis-specific domain: aberrant
salience [34] (Tables S1, S2 and Supplementary Materials and
Methods).

Preprocessing and clustering of neurocognitive data

All selected neurocognitive variables were used. Preprocessing
followed the steps of (1) imputing missing values by median and
(2) linear regression of effects of age, sex, years of education and
study site to account for site and demographic differences [35]. In
addition, we used (3) principal component analyses (PCA) for
dimensionality reduction on each group of neuropsychological
variables associated with a certain cognitive domain (Table S1)
and retained the first PCA component of each domain for cluster
analysis (Fig. S1).

A K-means clustering algorithm [36] was applied to the
neurocognitive domain values (PCA components) using Euclidean
distance. Two independent resampling strategies were followed
to assess cluster stability [37].

Preprocessing of the validation sample followed procedures
identical to the discovery sample. To estimate the generalizability
of the discovery clustering model to new observations, cluster
assignment in the validation data set was based on the minimum
Euclidean distance of a single observation to the centroids of the
discovery sample cluster solution.

Demographic, clinical and neuropsychological characteristics of
the obtained ROP subgroups and the HC sample were compared
using one-way permutation and chi-squared tests. P values were
corrected using the Benjamini-Hochberg false discovery rate
method [38] (Supplementary Materials and Methods).

Preprocessing, clustering and statistical analyses were con-
ducted in R version 3.6.1 (https://cran.r-project.org/bin/windows/
base/). Cluster stability was assessed using the ‘clusterboot’-
function [37] contained in the ‘fpc’ package [39]. Cluster assign-
ments of the validation observations were predicted using the
‘flexclust’ package [40]. Characteristics of subgroups were
compared using non-parametric statistical tests from the ‘coin’-
and the ‘rcompanion’-package [41, 42].

Preprocessing of neuroimaging data

MRI data were inspected for scanner artefacts and anatomical
abnormalities by a trained radiologist. Images were preprocessed
using the open-source CAT12 toolbox (version >r1200; http://
dbm.neuro.uni-jena.de/cat12/), an extension of the
SPM12 software (Wellcome Department of Cognitive Neurology,
London, UK; http//www filion.ucl.ac.uk/spm/software/spm12/)
following previously described steps [19] and the CAT12 manual
(www.neuro.uni-jena.de/cat12/CAT12-Manual.pdf)  (Supplemen-
tary Materials and Methods).

Neuroimaging classification analysis

A ML pipeline was employed to compare GMV between the
obtained clusters and the HC population. Model generation and
testing were embedded in a tenfold x tenfold nested cross-
validation pipeline with ten permutations on inner (CV1) and
outer (CV2) loop using the in-house ML tool NeuroMiner (http://
www.pronia.eu/neurominer)  running in  MATLAB  2019a
(MathWorks Inc.).

Within CV1 modulated, normalized GMV images were (1)
smoothed with a Gaussian kernel (optimized for 4, 6 and 8 mm),
(2) corrected for total intracranial volume and (3) pruned by
removing zero-variance voxels. Moreover, images were (4) pruned
for voxels with low reliability across study sites using a G
coefficient map to account for scanner differences [19], (5)
dimensionality was reduced by PCA (optimizing the retainment

Neuropsychopharmacology (2021) 0:1-9
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Table 1. Demographic and clinical characteristics of the discovery and validation sample used in the study.
Discovery Validation Validation vs.
discovery
ROP vs. HC ROP vs. HC ROP (val) vs.
ROP (disc)
ROP (N=108) HC (N=195  t/X* p ROP (N=53) 7 p t p
Demographics
Age 24.91 (5.11) 2532 (6.23) -0.63 053 25.74 (6.39) 042 068 082 041
Site® 39/20/28/8/13 48/39/60/35/13 11.62 0.02*¢ 53/0/0/0/0 98.1 <0.001*** 5926 <0.0071***
Sex” Female = 35 Female = 121 23.28 <0.001*** Female — 21 767 001* 0.53 047
Years of education 14.08 (3.3) 16.02 (3.43) —4.83 <0.001%** 14.05 (3.54) —3.62 <0.001*** —0.06 096
lliness duration in days 181.51 (187.46) - - - 186.38 (203.88) - - 0.15 088
Chlorpromazine equivalentb 388.18 (1020.61) - - - 1208.09 (5205.17) 1.06 029
Premorbid intelligence
WAIS (Vocabulary) 9.89 (3.64) 1211 (2.85) —5.48 <0.001*** 922 (3.3) —5.61 <0.001** —113 026
WAIS (Matrices) 9.35 (2.7) 11.23 (2.25) —6.14 <0.001*** 10.35 (2.73) —2.15 0.03* 216  0.03*
GAF (symptoms)
Lifetime 77.77 (10.09) 88.48 (5.63) -10.15  <0.001*** 77.22 (8.79) 861 <0.001** -035 073
Past year 59.12 (15.79) 87.43 (6.1) —17.83 <0.001*** 62.3 (14.19) -1224 <0001*** 126 021
Past month 41.85 (13.52) 86.98 (6.48) —32.54 <0.001*** 39.86 (13.02) —2481 <0001*** 088 038
GAF (disability)
Lifetime 77.11 (8.99) 86.84 (5.21) —10.29 <0.001*** 75.78 (9.74) —7.75 <0.001** 082 042
Past year 61.36 (13.66) 85.95 (5.82) 17.76 <0.001*** 61.82 (14.21) 11.76 <0.001*** 019 085
Past month 45.39 (12.24) 85.51 (6.16) —31.78 <0.001*** 428 (11.77) —248 <0.001** —127 021
PANSS
Positive scale 18.07 (6.43) = = = 20.27 (4.72) = = —239 002
Negative scale 16.75 (8.11) - - = 15.33 (6.21) = - 1.2 023
General scale 36.05 (10.6) & & = 34.02 (10.02) = = 115 025
BDI score 2091 (11.41) 2.80 (4.73) —14.91 <0.001*** 22.44 (12.79) —10.14 <0.001** —0.69 049
ROP recent onset psychosis, HC healthy control, WAIS Wechsler Adult Intelligence Scale, GAF General Assessment of Functioning, PANSS Positive and Negative
Syndrome Scale, BD/ Beck Depression Inventory.
“Chi-squared test.
bCumulative sum of Chlorpromazine equivalents divided by number of days treated.
*p < 0.05, **p < 0.001.

of the highest ranking components optimizing 40, 60 and 80%)
and (6) values were scaled between zero and one.

To find a discriminative pattern of GMV between groups, a
linear support vector machine (SVM) algorithm (optimized c-
parameter range between 0.015625 and 16; 11 parameters)
weighted by group sizes was applied on the GMV maps. Model
performance was assessed by calculating the balanced accuracy
(BAC). Statistical significance of the overall winning model was
assessed using permutation tests (Nperm = 1000; alpha = 0.05)
[43]. Reliability of discriminative voxels contributing to the
classification performance of the winning model was inspected
by the cross-validation ratio (Supplementary Materials and
Methods).

RESULTS

Discovery sample

A two-cluster solution indicated maxima on the Calinski-Harabasz
index [44] and the average silhouette width score [45]. Stability
assessment revealed clusterwise Jaccard similarity [46] indices
of 0.84 and 090 for the 'subset’ and 0.90 and 093 for the
‘noise’-method, respectively, indicating highly stable clusters
(Fig. S3) [37].

Neuropsychopharmacology (2021) 0:1-9

Neurocognitive characteristics

Patients in cluster 1 (N =41) showed significantly lower perfor-
mance in processing speed (pg,<0.001, d=1.89), executive
functioning (prg, < 0.001, d = —1.60), attention (psy, <0.001, d =
1.01), working memory (psy, = 0.004, d = 0.67), verbal (pgy, < 0.001,
d = —1.37) and visual memory (pgy, < 0.001, d = 1.44) as compared
to patients belonging to cluster 2 (N =67).

Cluster 1 patients showed significantly lower performance in
processing speed (pw, < 0.001, d=2.11), executive functioning
(Prar <0001, d=-077), attention (pg,<0.001, d=1.01),
working memory (pg4, < 0.001, d =1.10) and verbal (pg, < 0.001,
d=-243) and visual memory (pfy <0.001, d=1.66) as
compared to HC group. We refer to cluster 1 as ‘impaired’ due
to its largely inferior cognitive performance in comparison to
cluster 2 and HC.

Cluster 2 patients showed significantly decreased performance
in attention (prg, < 0.001, d=0.65) and verbal memory (ps =
0.001, d = —0.47) as compared to HC. They showed improved
performance in executive functioning (psg, <0.001, d=053),
salience (prg, = 0.003, d =044) and visual memory (pgy, = 0.003,
d = 0.44) compared to HC. We refer to this cluster as 'spared’ as its
performance was inferior to HC only in two cognitive domains
(Table 2 and Fig. 1A).
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Table 2. Neuropsychological domain-specific effects between impaired and spared cluster and healthy controls in discovery and validation sample.
Overall Impaired vs. spared Impaired vs. HC Spared vs. HC
T (max) p (uncorr) p (FDR) p (FDR) Cohen’s d p (FDR) Cohen’s d p (FDR) Cohen'’s d

Discovery
Social cognition 0.980 0.583 0.583 - - - - -
Working memory 6.089 <0.001 <0.007%** 0.004** 0.68 <0.0071%#* 1.1 0.053 0.28
Processing speed 10.070 <0.001 <0.0071%** <0.0071%** 1.90 <0.0071%** 212 0.223 —-0.17
Executive functioning 5416 <0.001 <0.007%** <0.0071%** —1.62 <0.0071*** —0.78 <0.007*** 0.53
Attention 8.756 <0.001 <0.001%#* <0.007%** 1.02 <0.001*#* 205 <0.0071*** 0.65
Verbal memory 10.385 <0.001 <0.001#%%* <0.007%** —1.39 <0.001*#* —244 0.0071% —0.48
Visual memory 8423 <0.001 <0.001%%* <0.0071*** 1.45 <0.001*#* 1.67 0.003** —0.44
Salience 2.646 0.022 0.023* 0.175 —0.28 0913 —0.02 0.003** 0.45

Validation
Social_cognition 2824 0.012 0.014% 0.008* -1.13 0.010* —0.75 0.159 -
Working_memory 0.792 0.700 0.720 - - - - -
Processing_speed 7.256 <0.001 <0.001%%* <0.0071%** 1.91 <0.001*%* 248 0.007#%* 0.50
Executive_functioning 2497 0.031 0.034% 0.020* 0.98 0.023* 0.67 0.212 -
Attention 0.249 0.965 0.965 = = o = =
Verbal_memory 7112 <0.001 <0.001%%* <0.00 1##* —1.48 <0.001*#* 251 0.050 -
Visual_memory 8.628 <0.001 <0.0071%** <0.0071%** 229 <0.001*** 3.04 0.052 -
Salience 3.533 0.001 0.001#* 0.008** -1.12 <0.001*** —1.03 0.578 -

HC healthy control.

*p < 0.05, *¥p <001, **p<0.001.

Demographic characteristics

Cognitively impaired patients showed significantly reduced
number of years of education (p,<0.001) and a significantly
decreased female-to-male ratio (pry, = 0.009) compared to HC.
Patients in the spared cluster showed significantly lower
number of years of education (pgy, = 0.002) and lower female-to-
male ratio (pg,<0.001) as compared to HC. The number
of patients recruited across sites differed significantly for the
two clusters (pgy, = 0.046) and when comparing the impaired
group and HC (pg, =0.014). Clusters did not differ regarding
chlorpromazine equivalent level (pgy, < 0.100) and illness duration
(Prar < 0.440) (Table 3).

Clinical characteristics

Cognitively impaired patients showed significantly lower premor-
bid intelligence (psq, < 0.001, d > 1.04), lower GAF score in the last
month (pgg, = 0.027, d = 0.49), in the last year (psq — 0.035, d =
0.46) and lifetime (pry, = 0.011, d=0.59) and lower GF scores at
examination (psg < 0.045, d > 0.43), last year (pgy, < 0.50, d > 0.42)
and across lifetime (pg, <0.024, d>0.51) when compared to
patients in the spared cluster. Cognitively impaired patients
showed significantly higher scores on the PANSS negative scale
(prar = 0.003, d = —0.72) (Table S4 and Fig. 1B-E).

Validation sample

Observations in the validation sample were assigned to the
impaired (impaired,a, N=13) and spared (spared,.; N=40)
cluster of the discovery sample.

Neurocognitive characteristics

Cognitively impaired,, patients showed significantly worse
performance in social cognition (pg, = 0.008, d = —1.13), proces-
sing speed (pg, < 0.001, d=1.91), executive functioning (pry, =
0.020, d = 0.98), salience (pry, = 0.008, d = —1.12) and verbal (pry,
<0.001, d=—1.48) and visual memory (psq, < 0.001, d = —2.29)
compared to cognitively spared,, patients.

SPRINGER NATURE

Cognitively impaired,; patients performed significantly worse
regarding social cognition (pgy, = 0.010, d= —0.75), processing
speed (pgr < 0.001, d =2.48), executive functioning (P, = 0.023,
d=0.67), salience (p¢y, < 0.001, d = —1.03) and verbal (pry, < 0.001,
d=-2.51) and visual memory (pg, <0.001, d=3.04) when
compared to HC.

Cognitively spared,. patients showed significantly reduced
performance in processing speed (pg,=0.007, d=0.50) in
comparison to HC.

Demographic characteristics

Cognitively impaired,, patients showed no significant differences
to cognitively spared,,; patients and HC. Cognitively spared,s
patients showed a significantly lower number of years of
education (pgg, = 0.001) and lower female-to-male ratio (ps4, =
0.017) compared to HC. Clusters did not differ regarding
chlorpromazine equivalent level (pg, = 0.535) and illness duration
(Pras = 0.535) (Table 3).

Clinical characteristics

Cognitively impaired,, patients showed significantly lower pre-
morbid intelligence (pgy, < 0.001, d = 1.66) and lower GF scores for
role functioning last year (pgg, = 0.042, d = 0.87) and across life
span (pr =0.042, d=0.87) when compared to cognitively
spared,, patients (Table S4 and Fig. S5B-E).

sMRI classification results

A neurcanatomical SVM classification model discriminated the
cognitively impaired patient group from HC (BAC = 60.1%,
sensitivity = 56.1%, specificity = 64.1%, NND=5.0; p=0.01) in
the discovery sample. The classification model of the cognitively
spared group against the HC (BAC = 55.4%, sensitivity = 47.8%,
specificity =63.1%; p=0.09) and the cognitively spared
group against the cognitively impaired group (BAC = 47.2%,
sensitivity = 31.7%, specificity = 62.7%; p = 0.79) remained non-
significant (Fig. 2).
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Fig. 1 Neuropsychological and clinical differences between clusters and HC in the discovery sample. Differences between the impaired
(blue; N = 41) and spared cluster (green; N = 67) and HC (yellow; N = 195) regarding A the neuropsychological PCA components, B the General
Assessment of Functioning score (GAF), € the General Functioning score (GF), D the Positive and Negative Syndrom Scale (PANSS) and
E Premorbid Verbal Intelligence are shown. A High PCA scores represent high performance. PCA scales for cognitive domains where high PCA
scores represent low performance, are inverted. socog social cognition, wm working memory, proc processing speed, exfun executive
functioning, att attention, verbmem verbal memory, vismem visual memory, sal salience.

The neuroanatomical signature between cognitively impaired
ROP and HC group comprised both cortical and subcortical
regions. Bilateral GMV increases associated with ‘cognitively
impaired ROP' status were predominantly found in basal ganglia
and cerebellum and to a lesser extent in the middle frontal and
inferior temporal gyrus. The unilateral GMV decreases were

Neuropsychopharmacology (2021) 0:1-9

localized in the right superior frontal, supplementary motor areas
and anterior cingulum. Left lateralized reductions were found in
inferior occipital and orbito-frontal gyrus and superior
temporal pole.

Increases in GMV associated with HC status were found
bilaterally in the Heschl's gyrus, supramarginal gyrus, superior
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Table 3. Demographical effects between impaired and spared cluster and healthy controls in discovery and validation sample.
Impaired Spared Overall Impaired vs. spared Impaired vs. HC Spared vs. HC
Mean (sd) Mean (sd) Timax)/Z p (uncorr) p (FDR) p (FDR) p (FDR) p (FDR)
Discovery
N 41 67
Age 235 (4.3) 258 (54) 2.015 0.106 0.109 - = -
Years of Education 135(3.2) 145 3.3) 4612 <0.001 <0.001*** 0.135 <0.007*** 0.002*
Sex® female = 16 female = 19 25611  <0.001 <0.001*** 0.302 0.009%* <0.001%**
Site™ 11/5/11/5/9 28/15/17/3/4 23.614 0.003 0.003**  0.046* 0.061 0.014*
Illness duration in days® 163.66 (153.82) 19243 (205.69) —0.770 0.440 0.440 - - -
Chlorpromazine equivalent® 685.65 (1596.42) 19695 (125.38) 1.940 0.052 0.100 - - -
Validation
N 13 40
Age 242 (5.3) 26.2 (6.7) 0.899 0.630 0.673 e - -
Years of Education 143 (3.7) 14.0 (3.5) 3.594 <0.001 0.001** 0.858 0.081 0.001**
Sex® Female = 5 Female =16 8.575 0.014 0.016* 1.000 0.140 0.017*
lliness duration in days® 149.00 (91.46) 198.53 (228.55) —0.761 0.447 0.535 - - -
Chlorpromazine equivalsmd 127.80 (267.83) 1578.48 (6006.66) —0.833 0.405 0.535 - - -
HC healthy control, sd standard deviation, FDR False Discovery Rate.
“Nominal permutation test are used; Fisher’s exact p value is reported.
PSites: Munich/Basel/KaIn/Udine/Milan.
“Difference in time between first fulfillment of psychotic diagnosis according to Structured Clinical Interview for DSM-IV (SCID) and date of MRI examination.
dCumulative sum of chlorpromazine equivalents divided by the number of days treated.
*p < 0.05, *p <001, **p<0.001.

temporal gyrus and rolandic operculum. Further, bilateral
increases in GMV were located in superior frontal and middle
occipital regions, precuneus, in the cingulum and parahippocam-
pal gyrus. The unilateral GMV increases were shown in left inferior
frontal areas and cerebellum alongside with GMV increases in
right superior parietal regions and angular gyrus, inferior orbital
gyrus and hippocampus.

DISCUSSION

Qur study reveals two cognitively and clinically distinct neuro-
cognitive subgroups in ROP patients in line with previously
reported cognitive subgroups in chronic SZ patients [8-11]. To the
best of our knowledge, this is the first study showing altered
cognitive, clinical and neuroanatomical features, using unsuper-
vised ML methods, in the early stages of psychosis when patients
are minimally affected by antipsychotic medication. We obtain a
largely impaired and a spared subgroup and validate both in an
independent behavioral data set of ROP patients. Whilst the
applied neuroanatomical classification analysis was successful in
distinguishing the cognitively and clinically impaired cluster from
HC, it revealed no statistical differences between the spared
subgroup and HC.

The current study found an impaired cluster presenting with
more profound cognitive deficits in the domains of processing
speed, working memory, executive functioning, attention and
visual and verbal memory in comparison to HC. The spared cluster
shows impairments in attention and verbal memory relative to HC,
however, a similar performance in working memory, processing
speed and social cognition. Conversely, this cluster shows
increased performance in executive functioning, salience and
visual memory relative to HC (Fig. 1 and Table 2). Increased
performance in a psychosis subgroup relative to HC has been
reported in a previous study [47]. The presence of cognitively and
functionally preserved individuals in one subgroup might have
been easier to identify due to our minimally medicated recent
onset sample in comparison to previously employed chronic
patient cohorts [8-11].

SPRINGER NATURE

Analysis of the cognitive clusters’ clinical characteristics
revealed premorbid general functioning (8, 10, 11], social and
occupational functioning [9, 11] difficulties in the impaired group
which were less present in the spared group (Supplementary
Table S4). In line with prior studies, we confirmed a higher level of
negative symptoms in impaired ROP patients as compared to the
spared ROP patients [8, 9] (Supplementary Table S4). Importantly,
though making a major contribution to the cluster solution,
cognitive subgroups were not entirely explained by premorbid
intelligence (Supplementary Materials and Methods).

Similar as in the discovery sample, we found reduced
performance in processing speed, executive functioning and
verbal and visual memory alongside impaired premorbid intelli-
gence level and partially impaired functioning for impaired,,
patients when compared to spared,, patients and HC of the
independent behavioral data set. The concordance on verbal
memory and processing speed deficits between impaired patients
across both samples supports recent efforts of the second phase
of the North American Psychosis Longitudinal Study-ll that
generated a risk calculator for transition to psychosis integrating
both domains in its prediction model [48].

Our classification analysis reliably showed patterns of GMV
increases associated with impaired-cluster status predominantly in
the subcortical area of putamen [13] while we observed smaller
increases in cortical areas [49]. Basal ganglia enlargement seems
to occur in medication-naive populations with clinical and genetic
risk [50]. As our ROP patients were newly exposed to antipsychotic
treatment, larger basal ganglia appear to reflect striatal hyperdo-
paminergia possibly related to acute psychotic symptoms [51]. In
previous studies, unaffected family members have also shown
larger putamen [51]. However, HC have shown increases in fronto-
temporo-parietal cortical regions with an emphasis on Heschl's
gyrus [52] and parahypocampal areas [53] which are particularly
prone to GMV loss in psychosis [16, 49].

Previous studies propose a preadolescent decline trajectory for
SZ, characterized by impaired premorbid intelligence, reduced
general cognition at illness onset and lower level of occupational
functioning [11]. First, impaired patients show high levels of
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in ROP. Cool colors represent the 10% most reliable voxels predicting HC status, i.e,, areas with increased GM in HC. Left and right hemisphere

are reversed.

negative symptoms [8, 9] and gradual differences in social and
occupational functioning in comparison to spared subgroup and
HC. Second, studies demonstrate developmental lags relative to
same-aged HC [54] in CHR individuals who go on to develop full-
blown psychosis. Large cohort studies in CHR [55] implicate that
immediate verbal learning, memory and processing speed are the
most relevant domains for prediction of transition to psychosis.
Those domains are significantly reduced in our impaired subgroup
(Supplementary Fig. S9) and replicate in the validation sample.
Third, previous cross-sectional findings on ultra-high risk (UHR)
individuals who later transitioned to psychosis reported reduced
GMV in prefrontal areas, temporal gyrus and cerebellum relative to
HC and to UHR who did not transition to psychosis, respectively
[56, 57]. In the current study, the impaired subgroup shows a
significant neurcanatomical signature relative to HC. The presence
of GMV reduction, despite the absence of chronicity and long-
term medication effects, suggests these brain alterations may
have emerged before the onset of florid psychotic symptoms.
Finally, both behavioral and imaging effects persist after control-
ling for differences across subgroups regarding age, sex, educa-
tional years, study site and group sizes. In addition, post hoc
examination of the relationship between decision scores of the
‘impaired subgroup vs HC' neurcimaging classification model and
study site ensures that our classification model is not mainly
driven by site-specific scanner differences (Supplementary Materi-
als and Methods).

The current study has several limitations. First, the applied
neuropsychological tasks differed from the MCCB [25] and
cognitive domains, e.g., social cognition and executive function-
ing, were underrepresented in comparison to other tests
(Table S1). Second, we could only partially replicate the effects
of the discovery cluster solution. This might be due to differences
in sample characteristics and sizes (Table 1) or the monocentric
characteristic of the validation sample. Third, while we suggest
that the characteristics of the impaired subgroup align with early
maladaptive processes as proposed in the neurodevelopmental

Neuropsychopharmacology (2021) 0:1-9

hypothesis [1], our assessment of functioning is retrospective and
cross-sectional. Future studies would benefit from a longitudinal
design providing a more comprehensive answer. Fourth, as cross-
site data acquisition differences arise as key issues in multi-center
studies [58], we accounted for such effects in both behavioral and
neuroimaging analysis. However, an effect of an unbalanced
distribution of participants between subgroups and HC on our
cluster findings cannot be ruled out entirely.

Cognitive and clinical differences in the psychosis subgroups of
the discovery sample support the idea of distinct trajectories in
early stages of the disease [5]. In accordance with this finding is
the neurobiological separability of cognitively impaired patients
from HC. Early detection of psychosis subgroups could help to
tailor early interventions for ROP patients with likely stronger
neurodevelopmental character of psychosis. A prime candidate to
achieve this might be neurocognitive intervention showing
positive effect on cognition and functioning in patients suffering
from SZ [7]. Further studies should investigate if the suggested
clusters are shared between different phenotypes, particularly
affective psychosis, and if common transdiagnostic pathways can
be found for patients with cognitive impairments.
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A multivariate neuromonitoring approach to neuroplasticity-
based computerized cognitive training in recent onset psychosis

Shalaila S. Haas (', Linda A. Antonucci®?, Julian Wenzel®, Anne Ruef?, Bruno Biagiantiﬁ’s, Marco Paolini’, Boris-Stephan Rauchmann?®’,
Johanna Weiske?, Joseph Kambeitz (&, Stefan Borgwardt (&P, Paolo Brambilla(®™'°, Eva Meisenzahl'!, Raimo K. R. Salokangas(®'?,

Rachel Upthegrove'>'*, Stephen J. Wood'*'>'8, Nikolaos Koutsouleris? and Lana Kambeitz-llankovic®*

Two decades of studies suggest that computerized cognitive training (CCT) has an effect on cognitive improvement and the
restoration of brain activity. Nevertheless, individual response to CCT remains heterogenous, and the predictive potential of
neurcimaging in gauging response to CCT remains unknown. We employed multivariate pattern analysis (MVPA) on whole-brain
resting-state functional connectivity (rsFC) to (neuro)monitor clinical outcome defined as psychosis-likeness change after 10-hours
of CCT in recent onset psychosis (ROP) patients. Additionally, we investigated if sensory processing (SP) change during CCT is
associated with individual psychosis-likeness change and cognitive gains after CCT. 26 ROP patients were divided into maintainers
and improvers based on their SP change during CCT. A support vector machine (SVM) classifier separating 56 healthy controls (HC)
from 35 ROP patients using rsFC (balanced accuracy of 65.5%, P < 0.01) was built in an independent sample to create a naturalistic
model representing the HC-ROP hyperplane. This model was out-of-sample cross-validated in the ROP patients from the CCT trial to
assess associations between rsFC pattern change, cognitive gains and SP during CCT. Patients with intact SP threshold at baseline
showed improved attention despite psychosis status on the SYM hyperplane at follow-up (p < 0.05). Contrarily, the attentional gains
occurred in the ROP patients who showed impaired SP at baseline only if rsfMRI diagnosis status shifted to the healthy-like side of
the SVM continuum. Our results reveal the utility of MVPA for elucidating treatment response neuromarkers based on rsFC-SP
change and pave the road to more personalized interventions.

Neuropsychopharmacology (2020) 0:1-8; https://doi.org/10.1038/s41386-020-00877-4

INTRODUCTION

Neuroplasticity-based computerized cognitive training (CCT) has
frequently been used as a supplementary treatment in psychotic
illness [1, 2]. CCT implements learning-based neuroplasticity
principles to restore neuromodulatory processes underlying the
structure, function, and connections in the brain that support
perceptual, cognitive, social, and motor abilities often disturbed in
psychotic illness [3, 4]. This therapeutic approach received
evidence in circumventing cognitive deficits [5-7] and poor
functional outcome in psychosis [8, 9]. Previous meta-analyses
indicate that cognitive remediation has a small to moderate effect
on multiple cognitive domains including attention, working
memory, executive functioning, and social cognition in the
treatment of schizophrenia [6, 7, 10]. In particular, research has
documented the neural plasticity of cortical responses as an
individual acquires new perceptual and cognitive abilities [11, 12].
Further evidence suggests that preserved brain network

modularity [13] and neuronal fiber integrity may be important
determinants for training-induced neurocognitive plasticity, parti-
cularly in domains of attention [14], executive function [14], and
social cognition [15]. Previous research on selective attention
demonstrates marked malleability of neural systems in charge of
potential changes in response to intervention [16]. Dysplasticity in
schizophrenia has been known for decades, and while it has
predominantly been reported in motor and frontal areas (17, 18], it
is also expressed in multiple brain regions including sensory
systems [19]. The underlying mechanism of neuroplasticity-based
CCT is meant to induce widespread changes in both cortical and
subcortical representations and may not be captured by single-
region activation maps measured by task-based MRI [3, 20, 21].
Importantly, the variability in neuroplastic response induced by
intermediate neurocognitive and brain phenotypes may moderate
the neuroplastic response induced by respective training para-
digms [22]. To mitigate the heterogeneity in response to CCT and
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multidimensionality of neuroimaging data, multivariate pattern
analysis (MVPA) allows quantification of diagnostic group member-
ship or treatment response at the individual level [23, 24],
particularly when clinical data is complemented with neurobiolo-
gical proxies [25]. These proxies may entail information on
intermediate- and endo-phenotypes responsible for the high
degree of variability in the response to CCT. Specifically, they may
serve as “neuromarkers” [26, 27] that successfully aid in identifying
disorders and factors determining not only illness progression
[28, 29], but also monitoring response to treatment (theranostics)
[27, 30-32]. Recently, brain connectivity measures derived from
task-based functional Magnetic Resonance Imaging (fMRI) were
used as a proxy for cognitive performance [33]. Resting-state
functional connectivity (rsFC) has been used to predict diagnosis
and clinical outcome of patients with psychosis and it demon-
strated a high level of within-subject reproducibility that is relevant
for longitudinal monitoring of treatment response [34, 35].

Finally, the high degree of variability in cognitive gains may be
explained by individual differences in engagement level of
the underlying neural system target and learning progress in
CCT [36, 37]. These studies showed greater deficits in mismatch
negativity, an event-related potential elicited pre-attentively,
predicted greater improvements after auditory CCT. Still, it
remains unknown whether inter-individual differences in sensory
processing during CCT in combination with neuroimaging
prediction on the single-subject level may inform more persona-
lized CCT in patients at the earlier stages of psychosis [38] early in
the course of CCT (first 10 h).

The aim was to investigate individual response to 10h of CCT
by measuring changes in psychosis-likeness based on rsFC
patterns in relation to sensory processing. First, we developed
an original multivariate model, able to distinguish HC from ROP
patients using rsFC in a naturalistic sample. Second, this model
was applied to the CCT intervention sample, to assess and monitor
clinical outcome in response to CCT. Hereby, we measured the
change of psychosis-likeness after 10h of CCT at the single-
subject level employing machine learning on rsFC pattern before
and after CCT. In the third step, we investigated how psychosis-
likeness change was related to sensory processing. In the final
step, we investigated the effects of sensory processing change
(SPC), psychosis-likeness change (ROP-HC continuum) and their
association on cognitive gains, in response to the intervention. We
expected to observe cognitive gains in lower-order cognitive
functions due to the drill-and-practice approach used and short
duration of the intervention.

MATERIALS AND METHODS

Sample

Two samples were included from the Early Detection and
Intervention Center at the Department of Psychiatry and Psy-
chotherapy of the Ludwig-Maximilians-University (LMU) in Munich,
Germany: (1) the original PRONIA study diagnostic sample of 35
ROP patients and 56 HC recruited from the LMU Munich site of the
naturalistic, European multi-center PRONIA study [39] (Table 1) to
generate the SVM classification HC-ROP model to create the
psychosis-likeness hyperplane, and (2) the CCT intervention sample,
independent from the original SYM sample cohort, that included 26
patients with ROP (Fig. S1) undergoing CCT in a randomized
controlled trial (ClinicalTrials.gov Identifier: NCT03962426). Although
PRONIA is a multi-center study, we included only the LMU, Munich
site to generate our HC-ROP model as (1) the intervention sample
was acquired from the same study site (2) neuroimaging site-effects
can be an additional source of variability in SVM classification which
is challenging to mitigate, especially for the resting-state modality
[40-44). For both the diagnostic classification and intervention
samples, ROP patients were included if illness duration was below 2
years and if the criteria for an affective or non-affective psychotic

SPRINGER NATURE

Table 1. Baseline demographic and clinical characteristics for ROP
patients and HC individuals included for the generation of a healthy-
to-psychosis model based on resting-state functional connectivity.

ROP (N=35) HC (N=56) T/y* Pvalue

Number of female (%) 13 (37.14 %) 36 (64.29 %) 6.39 0.012*

Age (5D) 3043 (6.15) 30.64 (6.78) 0.151 0.88
Years education (SD)* 13.88 (345) 1573 (3.26) 251 0014*
Premorbid 1Q (SD) 100.29 (18.59) 109.64 (13.24) 2.80 0.006**
Handedness® - - 027 088
Right (%) 29 47 - -
Mixed (%) 2 5 - -
Left (%) 2 3 - -
Diagnosis (%)
No Axis | Diagnosis 0 56 - -
Schizophrenia 19 (54.29 %) - = =
Schizoaffective 1 (2.63 %) - - -
disorder
Schizophreniform 3 (8.57 %) - = =
disorder
Delusional disorder 5 (13.16 %) - = =
Psychotic 5(13.16 %) - - -

disorder NOS

Substance-induced 2 (5.26 %) - - -
psychotic disorder

GAF past month 41.18 (9.87)  83.7 (5.11) 2691 <0.001%**
GF current
Role (D) 5.06 (1.82) 8.29 (0.59) 12.24 <0.007%**
Social (SD) 565 (1.32) 8.25 (0.69) 12.24 <0.007***
PANSS
Total (SD) 67.03 (14.45) - - -
Positive (SD) 18.00 (5.48) - - -
Negative (SD) 15.06 (5.82) - - -
General (SD) 33.97 (6.76) - - -

MRI Magnetic Resonance Imaging, NOS not otherwise specified, MDD Major
Depressive Disorder, CPZ chlorpromazine equivalent, GAF Global Assess-
ment of Functioning, GF Global Functioning, PANSS Positive and Negative
Syndrome Scale.

“Two participants did not provide total years of education at baseline and
three did not complete the selfrating instrument which includes
information regarding handedness.

episode according to the Diagnostic and Statistical Manual of
Mental Disorders (DSM-IV) [45] was fulfilled (supplementary
information, Section 1.1). All participants provided written informed
consent prior to study inclusion while all procedures performed in
this study were in accordance with the ethical standards of the
Local Research Ethics Committee of the LMU and with the 1964
Helsinki Declaration and its later amendments or comparable
ethical standards.

Procedures

CCT Intervention. Participants included in the active intervention
group (N =26, Table 2) completed an average of 9.98 h of CCT
within 20 30-min individual sessions over 5 weeks (Supplementary
Information, Fig. S1 and Section 1.2). The training consisted of four
exercises (Table 51) that strike a balance in improving multiple
cognitive domains including social cognition, processing speed,
and attention. Task difficulty is adjusted to maintain 75-80%
accuracy of the participants’ responses by constantly adapting
presentation times of the displayed facial stimulus [3, 46].
Difficulty levels are modulated based on a specific individual's

Neuropsychopharmacology (2020) 0:1-8
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Table 2. Baseline demographic information of the intervention
sample.

Maintainers Improvers T/ 3 Pvalue]

EMT (N=14) EMT (N=12)

Number of female (%) 8 (57.14%) 3 (25.00%) 274 0.098

Age (SD) 27.46 (5.84) 26.10 (7.00) 0.54 0594

Years education (SD) 14.96 (2.71) 1579 (4.73) 056 0.582

Premorbid 1Q (SD) 97.14 (16.02)  100.83 —0.63 0537

(13.62)

Handedness = = 220 0333
Right (%6) 9 11 - -
Mixed (%) 2 0 - -
Left (%) 1 1 - -

Diagnosis - - 6.55 0477
Schizophrenia (%) 4 (28.57 %) 4 (33.33 %) - -
Schizoaffective 11(7.14 %) — = =
disorder (%)

Schizophreniform 11(7.14 %) 2 (16.67 %) - -
disorder (%)

Brief psychotic 3(21.43 %) 3(25.00%) - -
disorder (%)

Delusional 11(7.14 %) 2 (16.67 %) - -
disorder (%)

Psychotic disorder 1 (7.14%) - - -
NOS (%)

MDD with psychotic 3 (21.43 %) - - -
symptoms (%)

Substance-induced - 1(8.33 %) - -
psychotic

disorder (%)

Medication at baseline

(N = 39)

CPZ equivalent (SD) 142.68 278.44 1.63 0.117
(162.49) (258.96)

Days between 51.29 (13.12) 4742 (8.99) 0.86 0397

assessments

Number of hours 9.91 (0.74) 10.10 (0.73) —0.49 0.630

trained

GAF past month 46.25 (13.86) 48.00 (16.87) —0.29 0.774

GF current
Role (5D) 4.57 (1.45) 4.25 (1.54) 0.55 0.590
Social (SD) 6.00 (1.30) 6.00 (0.95) 0.00  1.000

PANSS
Total (SD) 66.07 (15.61) 69.83 (17.94) —0.57 0.573
Positive (SD) 19.21 (6.12) 19.83 (5.88) —0.26 0.796
Negative (SD) 13.43 (5.24) 15.83 (6.19) —~1.07 0.294
General (SD) 3343 (9.10) 34.17 (9.11) 0.21 0.839

EMT Emotion Matching Task, MRI Magnetic Resonance Imaging, NOS not
otherwise specified, MDD Major Depressive Disorder, CPZ chlorpromazine
equivalent, GAF Global Assessment of Functioning, GF Global Functioning,
PANSS Positive and Negative Syndrome Scale.

rate of learning, represented by a ‘learning score’, are quantified
by analyzing the stimulus presentation times for a specific level
within a specific task (Supplementary Information, Sectien 1.3) and
have previously been shown to influence neural plasticity and
transfer of the training [47]. While all four exercises target early
social sensory processing, we chose to study the Emotion
Matching Task (EMT) as a potential proxy for target engagement,
given its ability to capture the processing of basic social
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information while improving speeded facial emotion decision-
making (Supplementary Information, Section 1.3). 26 patients that
completed training on the Emotion Matching Task (EMT) were
thus dichotomized into maintainers (N = 14) and improvers (N =
12) based on a median split of their learning scores (Supplemen-
tary Information, Section 1.3, Fig. 52). Improvers showed impaired
performance at baseline and reached the psychophysical thresh-
old (~31 ms) for EMT during training (high SPC), while maintainers
showed intact psychophysical threshold for EMT at baseline that
were sustained throughout the training (low SPC). The current
analysis selected a level that was played by everyone and
contained the most repetitions per participant.

Assessment procedure

Clinical assessment occurred during intake at baseline (T0) and again
at follow-up (FU) post-intervention. Clinical diagnosis was assessed
using the Structured Clinical Interview for Diagnostic and Statistical
Manual of Mental Disorders (SCID) [45]. In order to assess clinical
status and the presence and severity of symptoms, the Positive
and Negative Syndrome Scale (PANSS) was administered [48]. Global
rating of functioning was assessed using the Global Assessment
of Functioning (GAF) Disability and Impairment Scale of the DSM-IV
[49], Additionally, the clinician-rated Global Functioning - Social
(GF-S) and Global Functioning - Role (GF-R) Scales were used to
assess social and role functioning separately [50].

A cross-domain neuropsychological test battery comprising 9
tests were administered to patients in the intervention sample at
TO and FU in a fixed order (Supplementary Information, Section
1.4). Tests were z-score transformed based on the study sample to
closely reflect cognitive domains based on the Measurement and
Treatment Research to Improve Cognition in Schizophrenia
(MATRICS) recommended procedures [51] (Table 52).

Imaging procedure

All participants from both the original sample and intervention
sample were scanned using the same 3 Tesla Philips Ingenia
scanner with 32-channel radio-frequency coil at the Radiology
Department in the university clinic of the LMU in Munich,
Germany (Supplemental Information, Section 1.5). Both structural
MRI (sMRI) and resting-state fMRI (rsfMRI) were acquired from all
participants. T1 sMRI images were preprocessed using CAT12
(Supplementary Information, Section 1.6). rsfMRI preprocessing
was divided into two main processes: core steps included
realignment, coregistration, warping to Montreal Neurological
Imaging (MNI) space and smoothing, whereas denoising steps
comprised of motion correction using time series despiking with
the BrainWavelet Toolbox (http://www .brainwaveletorg/) [52],
background filtering and temporal band-pass filtering (0.01-0.08
Hz), extracting signal from white matter (WM) and cerebrospinal
fluid (CSF), correcting for movement (Friston 24 movement
parameters) [53] and calculating framewise displacement (FD)
for each subject to determine inclusion [54] (Supplementary
Information, Section 1.6).

Following sMRI and rsfMRI preprocessing, the brain was
parcellated into 160 regions of interest (ROIs) according to the
Dosenbach functional atlas [55]. We extracted the mean signal
from 10 mm spheres centered at each ROl using the MarsBaR
Toolbox [56] version 0.42. Next, the Pearson’s correlation of
average time series between pairwise ROIs was calculated within
Matlab R2015 using in-house scripts—resulting in 12720 rsFC for
each participant. Connectivity matrices were generated for each
subject in both the intervention sample and the original
diagnostic classification sample.

Machine learning strategy

The machine learning software NeuroMiner [39] version 1.0
was used to set up the machine learning analysis pipeline to
extract multivariate decision rules from the rsFC data using an
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ROP-HC Model OOCV Model

Original sample "> Inter

Fig. 1 Proposed model depicting the application of a healthy-to-
psychosis-like spectrum that could be used for monitoring
treatment response to CCT. rsFC correlation matrices are entered
into the SVM classification model to distinguish HC from ROP in an
external sample. Using OOCV, the model is validated on patients
who underwent the intervention sample at two time-points.
Changes in decision scores are compared at the two time-points
(FU-TO) in order to measure the direction of shift across the
hyperplane based on rsFC.

out-of-sample cross-validation (OOCV) strategy. First, a HC-ROP
rsFC classifier was built to identify a disease-related rsFC signa-
ture. To investigate whether this disease-related signature
could be used to track neural response to CCT in ROP patients,
models generated for HC-ROP classification were applied to the
intervention sample at both TO and FU using OOCV. Here, we
expected to identify a pattern of rsFC anomalies that not only
classified HC and ROP with high accuracy, but that could also
identify a set of individuals whose rsFC would shift to a more
healthy-like rsFC pattern across the SVM hyperplane (Fig. 1).

Machine learning analysis pipeline

NeuroMiner was used to create a predictive model that could
separate patients with ROP from HC based on rsFC in the original
diagnostic classification sample. To avoid overfitting, test the
estimation of the model's generalizability, and prevent informa-
tion leakage between training and test participants, repeated-
nested double cross-validation (CV) was employed [57, 58]
(Supplementary Information, Section 1.7). This CV structure
embeds a 10-fold inner CV cycle (CV1), where models are
generated, in another super-ordinate 10-fold outer CV cycle
(CV2), which is ultimately used to test the model’s generalizability
[59, 60]. Both inner and outer CV cycles were permuted 10
iterations. Within CV1, matrices were pruned of zero-variance
features, and sex and |Q effects were regressed out of the feature
set using a partial correlation method. Then, a dimensionality
reduction procedure was applied using Principal Component
Analysis (PCA) in the CV1 training data to reduce the risk of
oveffitting and increase the generalizability of classification
models [61] following previous methods [62]. Principal compo-
nent (PC) scores were 0-1 scaled and fed to a linear class-
weighted Support Vector Machine (SVM) algorithm (LIBSVM 3.1.2
L1-Loss SVC) [39, 63] to detect a set of PCs that optimally
predicted the training and test cases’ labels in a given CV1
partition. The default regularization parameter of C =1 was used
within CV1 [64]. This analysis pipeline was subsequently applied to
each k-fold and N-permutation CV2 cycle, determining the
participant’s classification (HC vs. ROP) through majority voting.

SPRINGER NATURE

Statistical significance was assessed through permutation testing
[57, 65], with a=0.05 and 1000 permutations (Supplementary
Information, Section 1.7).

Validation analyses of classifier

The HC-ROP classifier built on the independent sample was
subsequently applied to the intervention sample at TO and FU
without any in-between retraining using OOCV. The OOCV model
provides a subject-specific linear SVM decision score at each
timepoint for every ROP patient in the intervention sample.
Positive decision scores indicate a predicted class membership of
ROP, whereas negative decision scores indicate a predicted class
membership belonging to HC. The difference in decision scores
between the two time-points (FU-TO), that we address as
psychosis-likeness change, provides an estimate of the direction
of shift across the SVM hyperplane following CCT. Positive
differences indicate a shift in the more psychosis-like direction,
whereas negative differences indicate a shift in the more healthy-
like direction across the SVM hyperplane. The measured changes
in decision scores between the two time-points serve to verify if
the multivariate rsFC signature from psychosis-like to healthy-like
has been altered in the CCT intervention group. We performed
platt scaling [66] to calibrate the decision score and assure that
SVM predicted probabilities match the expected distribution of
probabilities for each class. We calibrated the trained model by
fitting the logistic regression to decision scores of the original HC-
ROP model and applied this to the decision scores of the
intervention data set. The HC-ROP classifier built on the LMU
independent sample was additionally applied to three indepen-
dent samples without any in-between retraining using OOCY in
order to further assess generalizability of our model (Supplemen-
tary Information, Section 1.8, Table S5). We conducted additional
correlational analyses to confirm our results are not biased by
antipsychotic medication intake (Supplementary Information,
Section 1.8, Table 56). We also ran additional correlational analyses
to assess the associations between the psychosis-likeness model
and 1) unhealthy consumption (e.g., cigarettes, alcohol), 2)
variables indicative of socio-economic status (education and
occupation of parents), patients functioning (GAF), traumatic
experiences (Childhood trauma Questionnaire, CTQ [67, 68]) and
age of illness onset (Supplementary Information, Section 1.8,
Table 57).

Statistical analyses of clinical and cognitive data

The following analyses were carried out in Jamovi version 1.1.9
(https://www.jamovi.org/), with a significance level of a=0.05,
with False Discovery Rate (FDR) correction for multiple compar-
isons [69]. Participants identified as outliers on cognitive domains
(>25SD) were excluded from further analyses. Demographic
differences between groups were assessed using independent t-
tests for continuous variables and chi-square tests for categorical
variables. Repeated measures ANOVA was used to assess changes
in cognition over time (1) based on SPC, (2) psychosis-likeness
change, and (3) the interaction of SPC and psychosis-likeness
change. Post-hoc analyses investigating the direction of effects
were done using paired-samples t-tests. Effect sizes were reported
using Cohen's d [70].

RESULTS

Group-level sociodemographic and clinical data

Independent sample (HC-ROP). At baseline there were signifi-
cantly more females in the HC group as compared to the patient
group (df=1, X2:6.39, P=0.012). Patients had significantly
fewer years of education (7[86]=2.51, P=0.014), and lower
premorbid 1Q (7[89] =2.80, P=0.006) than HC individuals
(Table 1). Patients with ROP showed significantly lower levels of
functioning in all measures at TO including GAF Disability and
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Impairment (T[88] = 26.91, P<0.001), GF-R (T[88]1=12.24, P<
0.001), and GF-S (T[88] = 12.24, P < 0.001).

Intervention Sample (maintainers - improvers). At baseline, there
were no significant differences between maintainers and
improvers in demographic characteristics, symptom severity,
functioning, number of days between assessments, training
intensity or antipsychotic medication (P> 0.05) (Table 2). The
performance on all cognitive domains, except for verbal learning
at baseline (T[24] =2.18, P =0.04) was balanced between the
maintainers and improvers. We observed a marginally significant
between groups effect on social cognition FU scores (F[1,25] =
4.45, P=0.046), while controlling for TO performance (F[1,25] =
4.08, P=0.055). Although symptoms and functioning improved
over time in all measures, there were no differences based on
SPC (Table $3).

Resting-state functional connectivity prediction performance. The
HC-ROP classifier correctly discriminated patients with ROP from
HC with a cross-validated balanced accuracy (BAC) of 65.54%
(sensitivity = 54.29%, specificity = 76.79%) and was significant
(P=0.01). Detailed statistics of the classification model are
reported in Table S4, Inspection of the mean feature weights
generated within the CV framework revealed that the rsFC
connections driving correct classification between ROP and HC
were long-range connections between (1) left parietal and right
frontal lobe and (2) bilateral parietal lobe and thalamus, and short-
range connections between (1) left parietal and left occipital area
(2) right temporal and right angular gyrus, (3) left inferior temporal
with right insula and left cerebellum, and (4) bilateral temporal
lobe with bilateral thalamus (Fig. 2, Table S7). The connectivity
patterns were mainly characterized by stronger FC associations in
patients as compared to HC (Fig. 2) whereas only a few fronto-
parietal and temporal-insular connectivities showed stronger
connectivity in HC as compared to ROP patients (Fig. 2).

Applying the ROP-HC model generated within the independent
PRONIA sample to the intervention sample resulted in a model
sensitivity of 65.38% at baseline and 57.69% at follow-up. When
looking across all patients in the maintainer and improver
subgroups, rsFC patterns shifted in the healthy-like direction (i.e.,
a decrease in decision scores from TO to FU), with no significant
differences in the number of patients whose rsFC shifted in the
healthy-like direction (maintainers = 8, improvers = 8) as opposed
to the psychosis-like direction (maintainers =6, improvers =4;
df=1, ¥’ =0.25, P=0.62). Although there were no significant
differences between maintainers and improvers in psychosis-
likeness changes over time (F[1,25] = 0.96, P = 0.34), the overall
shift to the healthy-like decision scores seems to be driven by a
shift to the healthy-like part of SVM hyperplane in improvers
(ES[Cohen’s d] = —0.35), whereas maintainers showed rather
stable decision score values from TO to FU (ES[Cohen’s d] = 0.03;
Fig. 3a; Supplementary Information, Fig. 53 [A-B).

Comparing maintainers and improvers further, we found a
significant interaction between the group and the change in
decision scores on the attentional gain (F[1,23] = 8.13, P=0.01,
[P =0.06 with FDR correction]; Fig. 3b; Supplementary Informa-
tion, Fig. S3 [C-D]). However, the effect of the group (F[1,23] =
0.06, P=0.81) and decision score change (F[1,23] =0.13, P=
0.72) alone on the attentional change was not significant. We
observed a moderate effect size of improvement in attention
despite psychosis-likeness change in the psychosis-like direction
on the SVM hyperplane only in patients who showed intact SPC
at baseline and maintained peak performance throughout the
CCT (T3] =1.26, P=0.26, ES=0.51). Contrarily, attentional
gains showed a large effect size in the ROP patients who
showed impaired SPC at baseline only if the rsFC shifted to the
healthy-like side of the SVM hyperplane (T11]=2.29, P=0.06,
ES=0.87).
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Top 20 Features

Fig. 2 Depiction of the cross-validation ratio-based most reliable
connections driving the classification between HC and ROP. The
inter- and intrahemispheric connectivities of the top 20 features
were extracted using a percentile rank of ~99.99% mapped onto the
brain using BrainNet Viewer. Details of the regions that comprise the
top 20 features are depicted in Table S8 in the Supplement. Blue
lines indicate higher connectivity degree in the HC group; red lines
indicate greater connectivity in the ROP group. Reliability is defined
as the mean value of the SVM weight divided by its standard error
across all the generated models in the cross-validation scheme.
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Fig. 3 Decision scores and cognitive changes following compu-
terized cognitive training. a SVM decision score change, reflecting
the degree of psychosis-likeness based on resting-state functional
connectivity (rsFC), in maintainers versus improvers and b atten-
tional change based on shift across the hyperplane using rsFC and
sensory processing change. Higher SVM decision scores reflect more
psychosis-like rsFC. Error bars represent standard error. EMT Emotion
Matching Task, FU follow-up, HC healthy control, ROP recent onset
psychosis, SYM Support Vector Machine, TO baseline.

DISCUSSION

In this study, we performed a proof-of-concept analysis aimed at
investigating the potential utility of rsFC to assess and monitor
individual neural response to CCT. This is, to the best of our
knowledge, the first study utilizing a machine learning rsFC model
to investigate change of psychosis-likeness in response to CCT and
associate it to changes in cognition and sensory processing.

To achieve this, we employed a model that was built on an
independent sample of LMU ROP patients not undergoing the
intervention, providing us with a quantifiable clinical outcome
measure of psychosis-likeness change across the HC-ROP con-
tinuum with a BAC of 65.54%. This BAC is within the range of
classification accuracies that utilize the resting-state modality for
classifying chronic and first-episode psychosis patients from
healthy controls [71].
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After showing a solid generalizability of this model to the CCT
sample, we followed the notion that various types of sensory [19]
and multimodal plasticity impairments [72] may be differentially
susceptible to interventions [37]. We used EMT as a proxy for
sensory processing and created two patient groups based on the
median split of SPC. We identified a subgroup of ‘improvers’ who
initially presented with sensory processing impairments, however
showed significant improvements in SPC throughout the course of
the CCT. The other subgroup of ‘maintainers’ initially presented
with unimpaired sensory processing and maintained peak
performance throughout CCT at the optimal psychophysical level.
We found that rsFC psychosis-likeness change in these two
subgroups was differentially associated with attentional gains in
response to CCT. Although we did not find a significant difference
between improvers and maintainers in psychosis-likeness changes
over time, the improvers showed a stronger change in psychosis-
likeness to the healthy rsFC pattern. Importantly, these rsFC shifts
seemed to be accompanied by attentional gains in improvers,
while psychosis-likeness change in maintainers appeared com-
pensated by efficient sensory processing that helped this
subgroup nevertheless achieve attentional gains. Improvements
in the attention domain after 10h training is consistent with
previous findings that improvements in low-order cognitive
functions via drill-and-practice techniques precede gains in
higher-order cognitive domains [73].

Stepping back to understand the resting-state pattern underlying
psychosis-likeness in our original HC-ROP model, we observed
widespread changes in both cortical and subcortical functional
connectivities. We observed reduced rsFC between fronto-parietal
regions and thalamo-cortical areas which successfully distinguished
ROP patients from HC group, that may indicate less disturbed
neuroplasticity in areas of top-down regulatory control, highly
relevant for attentionally demanding cognitive tasks.

The importance of preserved fronto-parietal [13] and thalamo-
cortical connectivity [66] is critical for normal cognitive function-
ing, in particular attention and sequential planning [74, 75], and
relevant for mechanisms of learning in CCT. Our findings support
this notion as the improvers, whose psychosis-likeness decreased
or remained healthy-like, were able to translate cognitive skills
acquired during CCT to attenticnal gains. Conversely, maintainers
showed greater transfer effects to the domain of attention despite
preserved psychosis-like rsFC, possibly due to their efficient
sensory processing at baseline that served as cognitive reserve
[14]. Our results suggest that improvement in attention may
depend on an association between more healthy-like whole-brain
rsFC patterns and efficient sensory processing during CCT and
demonstrates feasibility of using resting-state as a valid biomarker.
In line with our work, a recent fMRI study using resting-
state connectivity networks was able to predict medication-class
of response in hard-to-diagnose patients [76], further supporting
the utility of resting-state fMRI in the real-world’ clinical context.
In the recent meta-analysis on the utility of resting-state as
biomarker, the authors warn about its moderate test-retest
variability, while at the same time highlighting the complexity of
its application and circumstances that improve the reliability of
this neuroimaging modality [40, 77]. Future studies are necessary
to determine the exact methodological conditions necessary to
optimize the utility of neuroimaging to reliably trace the response
to pharmacological and non-pharmacological interventions.

Several limitations of the present study need to be considered.
First, the current study used a relatively short CCT as we wanted to
keep the intervention duration comparable to the duration of
clinical treatment. Our intention was to provide greater resem-
blance to the real-world clinical setting that appears common in
many other health centers across Europe [78], and provides a
strong clinical care framework due to the initial stay of the
patients at the ward or frequent clinical checks. However, we
cannot claim that ROP patients who did not respond with an
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improvement of rsFC pattern and did not show efficient SPC
learning would not achieve neural ‘recovery’ associated with
enhancement of cognition with a slightly different form of
intervention, longer duration, or implementing more diverse
protocols [7]. Second, we attempted to operationalize sensory
processing during CCT by using a median split to categorize
patients into improvers and maintainers. However, our approach
may limit the generalizability of our findings and needs to be
further investigated in future studies. Third, while the CCT in this
study uses social stimuli, we have not observed any interaction
between psychosis-likeness change and social cognition. While we
measured performance on facial affect recognition, which
represents only one domain of social cognition, a greater number
of social cognitive measures would be needed to capture social
cognition improvement at a fine-grained level [79]. Fourth, though
we were not able to assess long-term effects of the intervention in
an additional follow-up session, investigating durability effects of
the intervention would be crucial for future studies. Finally,
though we followed the generalizability rule in MVPA, including
an independent sample in the study to generate the model and
tested the generalizability of this model to three additional
independent samples across multiple sites, future studies replicat-
ing our findings in multi-site cohorts with larger numbers of
participants are warranted.

Prospectively, this MVPA approach may be integrated into
individual early identification and intervention programs, thus
resulting in a likely cheaper and more effective personalized psy-
chiatry application [80, 81]. Psychotic disorders are highly hetero-
geneous at many levels, from biological pathways to clinical
presentation and usage of the neuromonitoring approach may lead
to faster identification of individuals with shared biological path-
ways that show a greater potential to improve through CCT [82].
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