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Zusammenfassung

Diese Dissertation befasst sich mit grundlegenden Fragestellungen in Bezug auf gra-
vitative Phänomene auf großen Längenskalen, adressiert durch die Untersuchung
sowohl einer modifizierten Gravitationstheorie als auch eines Modells der Dunklen
Materie (DM).

Im ersten Teil setzen wir uns mit einer Verallgemeinerung des Dvali-Gabadadze-
Porrati-Modells (DGP-Modell) auseinander, bei der eine zweite 3+1-dimensionale
(4D) Bran, welche ebenfalls mit einem lokalisierten Krümmungsterm ausgestat-
tet ist, im 4+1-dimensionalen (5D) Bulk eingebettet ist. In diesem modifizierten
System decken wir neue, phänomenologisch interessante Erscheinungen auf. Wir
beginnen mit der Analyse der klassischen Theorie, wobei wir sowohl die volle 5D-
Darstellung als auch die Kaluza-Klein-Beschreibung gebrauchen. Dabei untersu-
chen wir die Gravitationsgesetze, indem wir die Gravitationsenergie zwischen zwei
statischen Punktquellen berechnen, welche auf unterschiedlichen Branen lokalisiert
sind. Wir entdecken eine neue Längenskala, die gleich dem geometrischen Mittel-
wert aus der kritischen DGP-Längenskala (welche die Übergangsregion zwischen
4D- und 5D-Gravitation im Einzel-Bran-Modell markiert) und dem Abstand der
beiden Branen entlang der zusätzlichen Dimension ist. Während wir für Abstän-
de, die größer sind als diese neue Längenskala, das ursprüngliche Resultat des
DGP-Modells reproduzieren, erhalten wir für kleinere Abstände ein schwächeres
Gravitationspotential. Außerdem existiert eine Region, in der ein 4D-Beobachter
eine abstandsunabhängige Kraft misst. Wir diskutieren eine mögliche Anwendung
des hier zugrunde liegenden Szenarios für die Herleitung von Rotationskurven in
Low Surface Brightness-Galaxien. Da dieses physikalische System die Existenz ei-
nes Sektors erlaubt, in dem die Teilchensorten beliebig schwach mit „unserem“
Sektor wechselwirken, beleuchten wir weiterhin die Auswirkungen dieses Umstan-
des auf Schwarze Löcher und die Beschränkung der Anzahl von Teilchensorten.
Als nächstes widmen wir uns der Untersuchung quantenmechanischer Erscheinun-
gen in diesem System. Dabei erkunden wir insbesondere den Casimir-Effekt, dem
zwei Branen in Anwesenheit der „infrared transparency“ unterliegen. Als letztere
bezeichnet man den Tatbestand, dass die ultravioletten Moden des 5D-Gravitons
auf den Branen unterdrückt sind, während die infraroten (IR) Moden diese unge-
stört durchdringen können. Zunächst bestätigen wir, dass die DGP-Branen als „ef-
fektive“ (impulsabhängige) Randbedingungen für das Gravitationsfeld fungieren,
sodass tatsächlich eine (gravitative) Casimir-Kraft zwischen den Branen auftritt.
Des Weiteren entdecken wir, dass die Anwesenheit einer IR transparency-Region
für die diskreten Moden die gewöhnliche Casimir-Kraft – wie man sie für ideale
Dirichlet-Randbedingungen herleitet – auf zwei konkurrierende Weisen modifiziert:
i) Der Ausschluss der weichen Moden vom diskreten Spektrum führt zu einer Ver-
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stärkung der Casimir-Kraft. ii) Die Abweichung der Randbedingungen von ihrem
idealen Pendant führt zu einem „leakage“ der harten Moden. Als Resultat der
Effekte i) und ii) wird die Casimir-Kraft schwächer. Da der Herleitung dieses Er-
gebnisses nur die lokalisierten kinetischen Terme eines Quantenfeldes auf parallelen
Flächen (der Kodimension eins) zugrunde liegen, ist davon auszugehen, dass die
hergeleitete Casimir-Kraft in einer Vielfalt an Systemen in beliebigen Dimensionen
auftritt.

Im zweiten Teil dieser Arbeit untersuchen wir ein DM-Modell, welches durch ein
komplexes Skalarfeld mit abstoßender, biquadratischer Selbstwechselwirkung gege-
ben ist, sowie dessen Auswirkungen auf die Struktur von galaktischen Halos. Da
wir DM-Teilchen mit ultraleichten Massen betrachten, kann ein solches Bosegas in
den inneren Halo-Regionen mit hoher Dichte einem Phasenübergang zur supraflui-
den Phase unterliegen, wobei ein homogener galaktischer Kern gebildet wird. Unter
Berücksichtigung der Tatsache, dass das Jeans-Kriterium eine obere Schranke an
die Größe einer solchen Struktur setzt, diskutieren wir den erlaubten Parameter-
Raum für ein Szenario mit Kernen, die einige Kiloparsec umfassen. Wir zeigen,
dass die Parameter durch die Restriktion des Selbstwechselwirkungsquerschnitts,
welche man durch Beobachtungen von Zusammenstößen von Galaxienhaufen ablei-
tet, stark eingeschränkt werden. Obwohl eine solche Restriktion wohlbekannt ist,
demonstrieren wir, dass im Falle von ultraleichter DM, welche einen massiv entar-
teten Phasenraum besetzt, diese Beschränkung durch eine vergrößerte Wechselwir-
kungsrate signifikant verschärft wird. Daraus resultierend erfordert das betrachtete
Szenario eine noch leichtere DM-Teilchensorte und einen thermalisierten Kern, der
in eine Ansammlung aus kleineren, suprafluiden Tröpfchen zerfällt.



Abstract

This thesis addresses fundamental questions concerning gravitational phenomena
at large distances by investigating in turn a model of modified gravity and a dark
matter (DM) model.

In the first part we study a generalization of the DGP model by embedding a
second 3+1-dimensional (4D) brane, also endowed with a localized curvature term,
in the 4+1-dimensional (5D) bulk. In this modified system we uncover phenomeno-
logically interesting, new phenomena. We start with a classical analysis, working
in both the full 5D description and the Kaluza-Klein language, and investigate
the laws of gravity by calculating the gravitational potential energy between two
static point sources localized on different branes. We discover a new length scale,
which is equal to the geometric mean of the DGP cross-over scale (that marks the
interpolation region between 4D and 5D gravity in the single-brane model) and the
separation of the two branes in the extra dimension. For distances that are larger
than this new length scale we recover the original DGP result, but for smaller dis-
tances the gravitational potential is weaker. Furthermore, a region emerges where
a 4D observer measures a distance-independent force. We discuss a possible appli-
cation of the present scenario for deriving rotation curves of low surface brightness
galaxies. Moreover, since this setup allows for the existence of a sector of particle
species that are interacting arbitrarily weakly with “our” sector, we explore the
implications of this circumstance for black holes and the bound on the number of
species. Next, we turn to the investigation of quantum phenomena in this sys-
tem. In particular, we explore the Casimir effect perceived by the two branes in
the presence of infrared (IR) transparency, meaning that the ultraviolet modes of
the 5D graviton are suppressed on the branes, while the IR modes can penetrate
them freely. First, we find that the DGP branes act as “effective” (momentum-
dependent) boundary conditions for the gravitational field, so that a (gravitational)
Casimir force between them indeed emerges. Second, we discover that the presence
of an IR transparency region for the discrete modes modifies the standard Casimir
force—as derived for ideal Dirichlet boundary conditions—in two competing ways:
i) The exclusion of soft modes from the discrete spectrum leads to an increase of
the Casimir force. ii) The non-ideal nature of the boundary conditions gives rise
to a “leakage” of hard modes. As an effect of i) and ii), the Casimir force becomes
weaker. Since the derivation of this result involves only the localized kinetic terms
of a quantum field on parallel surfaces (with codimension one), the derived Casimir
force is expected to be present in a variety of setups in arbitrary dimensions.

In the second part of this thesis we investigate a DM model given by a complex
scalar field with repulsive, quartic self-interactions and its effect on the structure
of galactic halos. Since we consider DM particles with an ultra-light mass, they
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can undergo a phase transition to the superfluid phase in the inner high-density
regions of a halo, thereby forming a homogeneous core. Taking into account that the
gravitational Jeans instability sets an upper limit on the size of such a structure,
we discuss the allowed parameter space for a scenario with kpc-size cores. We
demonstrate that the parameters get severely constrained by a bound on the self-
interaction cross section, obtained from observations of galaxy cluster collisions.
Although this constraint is well-known, we show that in the case of ultra-light DM,
which occupies a highly degenerate phase space, the bound tightens significantly
due to the enhanced interaction rate. As a result, the considered scenario requires
an even lighter DM species, and a thermalized core that has fragmented into a
collection of smaller superfluid droplets.
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Conventions, Notation, and Units

We use the “mostly minus” metric signature, i.e. the Minkowski metric is given by
ηµν = diag(1,−1,−1,−1), and employ the Einstein summation convention.

We further make use of the reduced Planck mass, MP ≡ (8πG)−1/2, where G is
the gravitational constant.

When labeling spacetime coordinates, capital roman and greek letters take val-
ues A ∈ {0, 1, 2, 3, 5} and µ ∈ {0, 1, 2, 3}, respectively. Lower-case roman letters
are used for spatial coordinates (unless stated otherwise in the text), i ∈ {1, 2, 3}.

The abbreviation “c.c.” denotes complex conjugation.
Finally, we use a subset of the Planck units throughout this thesis where the

speed of light, the reduced Planck constant, and the Boltzmann constant are set
to unity (ℏ = c = kB = 1).
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1
Introduction

1.1 Large Distance Modified Gravity
With the proud age of over a century, Einstein’s theory of general relativity (GR)
is still the standard theory to describe gravitational phenomena, having passed all
experimental tests so far [4–6]. However, most physicists consider it necessary to
modify this theory. Indeed, a modification on short distance scales seems reason-
able on the grounds that GR, being a classical theory, is incompatible with the
presumably more fundamental quantum theory and has to date rejected attempts
to be quantized (unless it is treated as an effective quantum field theory valid up
to some cutoff energy [7]1). A modification on large distance scales,2 on the other
hand, is sometimes deemed less well-motivated. Hence, in the following we shall
present arguments in favor of such a modification.

One substantial incentive for a large distance modification of gravity has its
origin in the supernova survey conducted at the end of the last century [10, 11].
In order to properly put the existing arguments into context, it is worthwhile to
examine the situation carefully. Those supernova observations (which were later
supported by measurements of the Cosmic Microwave Background anisotropies [12]
and baryon acoustic oscillations [13]) indicate that currently the expansion of the
universe is accelerating.3 According to our standard cosmological model [14] (see
also e.g. Refs. [15, 16]), also called ΛCDM model, the accelerated expansion of
the universe can be explained without the need for a modification of gravity if

1See also e.g. the reviews [8, 9].
2In this thesis we will use the term large distance in the context of modified gravity for distance

scales greater than the solar system size.
3It is accelerating in the sense that ä > 0, where a is the scale factor and (̇) denotes time

derivatives. Note that the Hubble parameter H actually decreases, Ḣ < 0, so the actual rate of
expansion (as measured by H) decreases as well.
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one postulates a dominating energy component of the universe that behaves as
(positive) vacuum energy ρvac (and hence has negative pressure) or at least varies
slowly enough with time and space to approximate a vacuum energy. In this latter,
more general, case it is also called dark energy [17, 18] (see also Ref. [19]). The
simplest realization of dark energy that is consistent with observations is a vacuum
energy, or cosmological constant Λ ≡ ρvac/M

2
P. Thus, it is adopted in the standard

cosmological model (and features in the name “ΛCDM”) that is used to deduce the
observational value ρvac ∼ 10−47 GeV4 [20].

Such an explanation for the accelerating expansion of the universe, however,
which involves invoking that particular energy content for the universe, has led to
a widely recognized puzzle, called cosmological constant problem [21]: why is the net
(observed) cosmological constant so small compared to the assumed contributions
to it, such as the zero-point energy from the Standard Model (SM) quantum fields.4
Even though this latter contribution is not calculable without an underlying high
energy theory, it is considered reasonable that it should be proportional to the
fourth power of the cutoff scale, and hence ρvac ∼ 1072 GeV4 if one uses the Planck
scale as a cutoff (assuming no new physics between the weak scale and the Planck
scale).

Although the cosmological constant problem might be one reason why some
physicists seek to explain the accelerated expansion of the universe by modifying
gravity at large distances rather than the universe’s energy-momentum content,
note that the cosmological constant problem is not solved if one merely modifies
gravity in such a way that late-time cosmology without a cosmological constant is
reproduced. In the absence of a net cosmological constant one would still expect the
large quantum corrections and hence an extremely delicate cancellation of all the
terms contributing to the vacuum energy (including the bare value). However, there
exist modified gravity proposals that show in principle that it might be possible
to solve the cosmological constant problem by employing a (zero-mode) graviton
that couples very weakly to sources with a large wavelength (such as the spatially
constant vacuum energy), so that even a large cosmological constant does not curve
space significantly, allowing it to be consistent with observations.5

It should also be mentioned that Dvali, demanding the applicability of the S-
matrix formulation for quantum gravity and applying consistency requirements,
recently argued that the (net) cosmological constant should be identically zero
[31, 32] (see also earlier but related work [33–35]).6 If this were true, it would
propel an even greater need to modify gravity at large distance scales.7

4There are also related puzzles like the “coincidence problem” or the question of why the
observed cosmological constant is not exactly zero, but we will not comment on them further.

5This class of ideas is called degravitation [22–25] and was inspired by the DGP model, which
is the central actor of this thesis. Realizing that the original DGP proposal is just on the border
of not being able to degravitate the cosmological constant motivated further developments, such
as higher-dimensional DGP [26, 27] (see also the earlier work in Ref. [28]) and cascading gravity
[29, 30].

6It is argued that in the limit of a rigid de Sitter spacetime (no back-reactions from particle
scattering), the S-matrix for graviton scattering would be trivial for a cosmological constant
Λ > 0.

7It should be noted that a number of recent surveys indicates that the isotropy of the universe,
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But even setting aside the cosmological constant, the current cosmological
model seems to be in tension with observations (see e.g. Ref. [39] for a recent
overview). Modifying GR is a widely used approach to alleviate at least some of
those tensions. Even if eventually the ΛCDM model should turn out to be capable
of explaining all observations, it is crucial to have alternative models to be able to
“stress-test” the ΛCDM model or certain aspects of it, like its reliance on GR [40].
Therefore, consistent theories of a modification of GR at large distances are called
for.

The previous discussion was intended to point out that it might ultimately be
necessary to modify gravity at large distance scales in order to explain the cosmo-
logical (especially late-time) evolution. Another, commonly applied motivation for
a large distance modification of gravity is the missing mass problem. Among the
earliest accounts for the existence of such a discrepancy were the observations of
orbital motions of galaxies in clusters [41] and gas and stars in galaxies [42, 43] that
were not explicable with the baryonic matter inside those structures. Similar to
the above-mentioned late-time evolution of the universe, these observations can be
attributed to an additional (matter) component in the universe, called dark matter
(DM), that interacts mostly gravitationally with ordinary matter, which is then
also incorporated in the ΛCDM model (where CDM stands for cold dark matter).
Later, many other observations, e.g. gravitational lensing or various features in the
cosmic microwave background radiation, called for a dark component (see e.g. the
reviews [44, 45]). Hence, nowadays DM is not just associated with the problem of
explaining observations on galactic scales, but is also needed to explain large-scale
structures in the cosmological context.

Although a majority of scientists in this field attempts to solve the missing
mass problem by invoking such DM, and in particular very often yet undiscovered
particles, one can still make a case that a failure to explain large-scale gravitational
observations with known physics cries for the need to modify gravity at large dis-
tances. Also, recently a growing number of problems (or at least curiosities) with
the standard CDM paradigm has been reported, particularly on galactic and sub-
galactic scales [46] (see section 1.2 for more details).

One of the most famous examples of an alternative to DM that is particularly
successful in providing a different explanation for the behavior on galactic scales,
avoiding many of the small-scale challenges of CDM, is the Modified Newtonian
Dynamics (MOND) [47–50] (see also e.g. the review [51]). In this proposal the
gravitational acceleration a of objects in galaxies interpolates between two expres-
sions,

a =
{
ab , ab ≫ a0 ,√
aba0 , ab ≪ a0 ,

(1.1)

which is the underpinning of the standard cosmological model, is not yet established securely (see
e.g. Refs. [36, 37]). Some authors even doubt the validity of the observation of an accelerated
cosmological expansion [38], thereby apparently disposing of the necessity to modify either gravity
or the energy-momentum content (of the universe). However, even if future observations would
confirm their assertions, the resulting departure from the standard cosmological model does not
necessarily reinforce the validity of GR at large distances. In fact, it might even increase the need
for its modification.
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where ab is the Newtonian acceleration due to baryons (ordinary matter) and a0 ≃
1.2 × 10−8 cm/s2 (see e.g. Ref. [51]).8 This so-called Milgrom’s law (or MOND
law) works astoundingly well in explaining many of the small-scale puzzles that are
challenging for the conventional DM paradigm. Thus, one should not prematurely
disregard the possibility that modified gravity is needed to explain the missing
mass.

Since the need for DM arises in many different situations and on different scales
(not all on which the MOND theory matches the observations satisfactory), it is
conceivable that both approaches do not exclude each other. We will provide a
particular example in this thesis of how a modification of GR at large distances
can help to solve part of the missing mass problem (see section 3.2). Moreover,
nowadays it is most common to view Milgrom’s law (1.1) as an empirical law and
look for DM models that can reproduce the encoded dynamics on galactic scales.
The model that we will discuss in the second part of this thesis draws part of its
motivation from this very viewpoint (see again section 1.2).

Finally, there are compelling theoretical reasons to study the modification of GR
at large distances. At the very least, one can learn a great deal about this theory
by attempting to deform it. Since GR is the unique theory of a spin-2 graviton
consistent with Poincaré invariance, locality and quantum mechanics, modifying
GR at large distances (while leaving these principles intact) introduces new degrees
of freedom, and hence turns out to necessarily alter gravity at short distances as
well [53–55]. We will illustrate a different example of this interconnection between
large and short distance scales in section 3.4 of this thesis. Hence, much of the
structure of GR has been understood by trying to modify it.

A particularly fruitful avenue in this regard was the study of massive gravity,
since a very natural way to modify gravity at large distances is to give the graviton
a mass. This turns the massless messenger that mediates a long-range force, 1/r2,
to a massive messenger (with mass m) that mediates a Yukawa-type force that
falls off exponentially for r ≳ m−1. As stated before, this modification necessarily
introduces additional degrees of freedom. Therefore, letting the graviton mass go
to zero does not recover GR but a theory of a massless spin-2, a massless spin-1
and a massless spin-0 particle. This fact is most dramatically apparent in the so-
called vDVZ discontinuity [56, 57], where a deviation from GR predictions by 25%
is obtained in the limit of m → 0, using the linearized gravity theory. However, it
can be shown [55, 58] that in the m → 0 limit non-linearities become important
and a graviton mass will lead to strong self-interactions of the scalar degree of
freedom at short distances, screening the modification of gravity below the so-
called Vainshtein radius. Besides this classical scale, there is also another distance
scale—the ultraviolet (UV) cutoff (or strong coupling scale) of the theory that
signals the breakdown of the classical theory and indicates that a more complete
quantum theory is required (see e.g. Ref. [59] for a review of this topic). In some
massive gravity theories this cutoff is so low (with the associated distance even

8One possible way to achieve this behavior is to utilize an additional scalar field that mediates
a force on top of the one mediated by the graviton [50] (see also the relativistic extension in
Ref. [52], where additionally a vector field is used as a mediator).
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larger than the Vainshtein radius) that there is no region where one can trust the
classical non-linearities and hence a regime where GR is recovered [60]. But there
are also examples where the UV cutoff is high enough so that the screening can be
applied in a certain range of distances (see e.g. Refs. [61, 62]).9

Despite this immense progress in understanding the modification of gravity, our
knowledge is not yet complete, and further surprises about the nature of gravity
might lurk around the corner. Much of the development summarized here (and
even more of it not mentioned here) was initiated or facilitated by studying a
model to which we will turn in the next section. We will also show in the present
thesis that the model in question has even more hitherto undiscovered features that
could potentially have interesting phenomenological consequences.

1.1.1 The DGP Model
In this thesis we will study a particular model of large distance modified gravity.
This model was suggested by Dvali, Gabadadze, and Porrati [64], originally in or-
der to address questions of supersymmetry breaking and the cosmological constant
problem,10 and has been known since as the DGP model. Although there have
been many proposals to modify gravity (see e.g. the review [68]), the DGP model
stands out because it was the first generally covariant, non-linear and ghost-free
model of large distance modified gravity. Also, it remains one of the few examples
of a calculable, consistent effective theory that modifies spin-2 gravity at large dis-
tances while reproducing the predictions of GR at intermediate scales. Moreover,
as already alluded to above, it has been an extraordinarily fruitful theoretical labo-
ratory for understanding general features of large distance modified gravity, as e.g.
providing the first explicit example where the Vainshtein mechanism was realized
[55], or spawning the wide research field devoted to the study of Galileons [69].

The DGP model belongs to a class of models, often described as the brane-world
scenario, that involve extra dimensions (more than four spacetime dimensions) and
the idea that certain fields (typically all except the graviton field) are localized on a
3-brane (which is our 3+1-dimensional, observable universe), while the graviton can
propagate into the extra dimensions. Extra-dimensional models can be naturally
thought of as massive gravity theories, since the dimensional reduction introduces
a (typically discrete) tower of massive Kaluza-Klein (KK) modes. In the DGP
model, the massive graviton turns out to be a resonance instead of a normalizable
zero-mode [66, 70, 71]. However, whereas most of those models modify gravity at
short distances, the DGP model modifies it at long distances.

Another attractive feature of that model is the possible quantum origin of its
action, more precisely that the 4+1-dimensional (5D) graviton propagator gets
quantum corrections from the SM fields, which are localized on the 3-brane and
running in the loop, as illustrated in Figure 1.1. That renormalized graviton prop-

9In certain theories, like the DGP model, the cutoff scale for fluctuations around non-trivial
background configurations can even be raised further, which renders these theories calculable—
and consistent with observations—for gravitational processes down to microscopic scales [63] (see
also Ref. [53]).

10See e.g. Refs. [65–67] for discussions of these matters.
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y

y = 0

Figure 1.1: The 5D bulk graviton propagator (wavy line) gets renormalized on the brane
through loop corrections (solid line), due to the SM fields. The coordinate of the extra
dimension is denoted by y.

agator on the brane is then responsible for the seemingly 3+1-dimensional (4D)
gravity below a certain length scale.

The action of the DGP model is given by

S = M3
∗

∫
d5X

√
GR(5) +M2

P

∫
d4x

√
|g|R(4) , (1.2)

where M∗ is the fundamental (5D) Planck mass, while MP is the 4D Planck mass,
observed in our world.11 The bulk action contains the bulk metric with its deter-
minant G and the bulk Ricci scalar R(5), whereas g and R(4) are the corresponding
(localized) quantities on the brane (with the induced metric gµν(xµ) on the brane).

One of the characteristic features of the theory in (1.2) is that the graviton
propagates as four-dimensional over length scales smaller than rc, but changes its
behavior to 5D propagation for scales larger than rc, where the cross-over scale
(sometimes also called DGP scale) is set by

rc ≡ M2
P

M3
∗
. (1.3)

This property is often described as that the graviton is a resonance which decays
into a tower of KK modes for large distances. One way to think about this behavior
is to note that the brane suppresses hard modes (frequencies larger than r−1

c ) of the
graviton, while it is transparent to soft modes (frequencies smaller than r−1

c ). This
11We suppress here the localized matter action and are not careful with correct numerical

factors and signs. This will be remedied in section 2.1.
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phenomenon, which in fact originated from the DGP model, is called infrared (IR)
transparency.12 It has been demonstrated explicitly, using a 4D mode expansion
(into KK modes), for the case of a single brane in Refs. [70, 71] (for a compact
extra dimension and an infinite extra dimension, respectively).

Let us briefly review the mechanism. The mode functions ψm(y) of the KK
modes, i.e. the basis functions of the space along the extra dimension with coordi-
nate y, have the form

|ψm(y = 0)| ∝ 1√
4 +m2r2

c

on the brane (y = 0), with m the masses of the KK modes.13 Hence, the amplitude
of the 5D field, which scales as ∝ ψm(y), is suppressed on the brane and vanishes
for KK modes with m ≫ r−1

c . This affects the potential energy between two static
sources (separated by the distance r), which is given by

V (r, y = 0) ∝ − 1
M3

∗

∞∫
0

dm |ψ(y = 0)|2 e−mr

r
,

leading to a 4D gravitational potential (1/r) for distances r ≪ rc and a 5D gravi-
tational potential (1/r2) for r ≫ rc (see section 2.3.1 for more details).

Another interesting implication of the localized term in (1.2), that can be
traced back to the IR transparency phenomenon, is the following. Since the brane
“screens” the 5D gravitational force between two point sources on opposite sides of
the brane (separated along the extra dimension), the situation is somewhat anal-
ogous to the so-called image problem in classical electrostatics. There, a point
charge in the vicinity of a perfectly conducting plate effectively induces a mirror
image charge on the opposite side of the plate. In the DGP scenario, the brane
effectively introduces a mirror image with a negative mass for a point mass in the
brane’s vicinity. Therefore, a source interacts non-trivially even with an empty
brane: it gets repelled (see also section 2.3.2).

One of the main goals of the present thesis is to demonstrate that this model
possesses even more distinctive features, which were not originally intended by
the authors. Of course, as we will see, the derived effects are closely tied to the
presence of the localized curvature terms, that also play the key role for modifying
gravity at large distances, and are related to the properties stated above. We will
show that the novel applications, which so far have not been explored, follow from
both classical and quantum mechanical considerations and can have implications
for various research fields, as we will briefly discuss.

In order to extract those effects, we have to consider a setup with two parallel
branes. The intriguing property concerning the analogy to mirror charges, pointed
out above, already suggests that the model might show interesting behavior if two

12This phenomenon’s physical meaning was explained in Ref. [28], where also the term infrared
transparency was coined. Later, Ref. [54] showed that any ghost-free, large distance modified
gravity theory should exhibit such a phenomenon. Furthermore, this phenomenon has been
generalized for massless gauge fields [72].

13We will derive the mode functions explicitly for the case of two branes (from where the limit
of one brane follows straightforwardly) in section 2.2.2 and appendix B.
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such branes were placed next to each other. From the phenomenological side it
is crucial to investigate setups with a multitude of branes (more than one brane),
since they feature in a number of physical proposals in the literature. One example
is brane inflation [73]. In that scenario, inflation in our universe could have been
caused by a relative motion of branes. Another example was given in Ref. [74],
where it was suggested that (anti-)baryons could be transported to such a parallel
brane, leading to a new mechanism of baryogenesis on our brane. In this thesis
we will show how the physical implications of the DGP model are modified and
what novel signatures appear if there exists a second brane with a localized cur-
vature term. Despite the theoretical interest, this can also provide important new
“handles” to experimentally test the DGP model as well as brane-world scenarios
with several branes, such as those mentioned above. We discuss these matters in
chapter 5.

A first study in that direction was already carried out in Ref. [70]. Since a
setup with a single brane and a compact extra dimension is equivalent to a setup
with infinitely many branes, Ref. [70] also showed that the phenomenon of IR
transparency is independent of the number of branes. We want to note, however,
that the system in that paper is nonetheless not equivalent to the system that we
will consider in the present work: two parallel branes separated along an infinite
extra dimension.14 This fact will be illustrated in chapter 3, where a modification
of the gravitational laws as compared to the standard DGP model (containing just
a single brane) is demonstrated. For example, we will show that (in the limit
of R ≪ rc, where R is the separation of the branes) the gravitational potential
between two sources on the same brane interpolates between the standard 4D
potential V4D(r), for r ≪ ρ, and V4D(r)/2, for ρ ≪ r ≪ rc. The emergent length
scale

ρ ≡
√
Rrc , (1.4)

which does not arise in Ref. [70],15 is essential for understanding the decrease of the
gravitational force in this case. Furthermore, we will show in this thesis that the
scale ρ also plays an important role for another physical implication—an emerging
Casimir force.

In the previously existing literature there have also appeared other works study-
ing the properties of the DGP model by modifying it through the addition of a sec-
ond brane (see e.g. Refs. [75–77]), but the properties studied in the present thesis
have not been discussed yet.

In order to provide a clear presentation and not complicate the necessary cal-
culations, we will study the present setup in the context of a slightly simplified
(prototype) model, involving a massless scalar field with a localized kinetic term
rather than the massless tensor field. In reality, the richer structure of the gauge
theory associated with the full spin-2 model involves additional degrees of freedom,

14In fact, in the present thesis we will consider two branes in both an infinite and a compact
extra dimension. The latter case, however, will be just a computational tool, and we will send
the size of the extra dimension to infinity at the end.

15We suspect that the reason for this is that in the setup with the compact dimension, there are
infinitely many branes and infinitely many sources that contribute to the gravitational potential
between “two” sources, thereby producing a different result.
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including the famous brane bending mode [61]. Moreover, adding a second brane
still increases the complexity, forcing one to take into account the related radion
excitation [75]. However, after discussing these issues briefly at several places in
chapter 2 and in chapter 5, we will argue that, fortunately, they should not alter
our results, in the context of the applications that we consider, in any significant
way when those results are taken over from the spin-0 to the spin-2 theory. This
justifies our simplification.

Before finishing this section and then explaining in detail what we will discuss
in this thesis, let us make one more remark on what we will not elaborate on.
One of the most striking properties of the DGP model is its power to provide
a mechanism for the accelerated expansion of the universe without the need of
adding a cosmological constant [78, 79]. In particular, the DGP model is endowed
with two branches for its vacuum solutions, namely the normal branch and the
self-accelerating branch. While the first corresponds to a flat brane in the case of
vanishing brane tension (or cosmological constant), the second is associated with a
de Sitter brane even for vanishing cosmological constant. There is a vast amount of
literature devoted to the subject of the self-accelerating branch and especially the
question of its stability and the presence or absence of ghosts (see e.g. Ref. [80] or
the review [68] and references therein). However, since these effects are due to the
geometrical origin of the DGP model, it is necessary to include the full spectrum
of degrees of freedom, and hence analyze the spin-2 theory, in order to capture
them.16 Thus, we will not add anything new to this rich subject in the present
thesis.

1.1.2 Further Modification of the Laws of Gravity
We will investigate the gravitational laws of the present setup by calculating the
gravitational potential energy between two static point sources localized on the
opposite, parallel branes (in chapter 3). Thereby, we will find that the second brane
enhances the effects of the DGP model by further weakening the 5D bulk gravity
at certain distances. Furthermore, we will discover that the resulting gravitational
potential gives rise to a new, (spatially) constant force in our universe that is
potentially phenomenologically relevant. In particular, we will show that it is
possible (i.e. not experimentally excluded) to choose such parameters rc and R
that there is a region where the gravitational force due to baryonic matter in
our galaxy drops while the constant force due to matter on the parallel brane takes
over. Hence, the matter on the distant brane would appear to us like “dark matter”
without having to satisfy the other constraints that are usually attributed to DM
in our universe (like having vanishing interactions with light and with itself). We
will discuss how this force could explain the rotation curves in a certain class of
galaxies without the need of invoking DM on our brane.

Typically, in the context of extra-dimensional models, the KK language is
adopted, where the existence of the (geometrical) extra dimension is traded for

16In fact, the addition of a second brane can further increase the richness of this topic [75]
(see also e.g. Ref. [76], where a possibility is explored to cancel the ghost in the self-accelerating
branch by adding the second brane).
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the presence of a tower of KK modes, seen by a 4D observer. Although such a
viewpoint is usually used in the case of a compact extra dimension (since in that
case one obtains a discrete mass spectrum), in section 3.1 we will also make use of
this KK language and rederive our results obtained in the full 5D treatment. In this
language, it is especially transparent how a subset of KK modes (belonging to the
anti-symmetric mode functions) acts as repulsive gravity, thereby canceling part of
the attractive potential and hence weakening the gravitational force. Furthermore,
this equivalent viewpoint will serve as a cross-check for our main result.

We will also use the results of this investigation to address another issue that is
deeply related to the modification of gravity at the opposite length scales, i.e. short
distances. In particular, we wish to address the question what are the implications
on the present scenario coming from black hole (BH) physics. For GR, or theories
that behave like GR below some distance l∗, it has been shown [81–83] that BH
physics (with a BH size smaller than l∗) puts a consistency bound on the short
distance cutoff of GR (coupled to quantum fields), namely

Λ ≲
MP√
N
, (1.5)

which is valid for a 4D observer, for whom MP is the fundamental Planck scale.
Here, Λ is the cutoff, and N is the number of particle species in the theory.17

The physical meaning of expression (1.5) is that the parameter Λ−1 marks the
lower bound on the scale of breakdown of semi-classical gravity. For example,
the Hawking radiation from a BH of the size smaller than this scale cannot be
treated as thermal, even approximately. This is a clear signal that GR requires a
UV-completion at distances shorter than Λ−1.

Furthermore, it has been demonstrated in the context of an ADD-type model
(the model with large extra dimensions due to Arkani-Hamed, Dimopoulos, and
Dvali [84]) that various setups with multiple branes, where a BH does not intersect
all of the branes, are classically not static [85] (see also Refs. [86–88]). It was
shown that there is a classical time scale until which the BH will “accrete” all of
the other branes.18 According to Ref. [85], in the language of species, this can be
understood as a “democratization” process for the BH in the following sense: a
semi-classical, thermal BH should evaporate into all species “democratically” (up
to greybody factors). But as long as the BH does not intersect certain branes, it
cannot evaporate into the species localized on them. Thus, the process of brane
accretion restores that evaporation universality. In this view, the lack of time-
independence in the setup is reflected by the lack of universal evaporation.

However, theories of the form considered in the present work differ from other
extra-dimensional models (like the ADD model or the Randall–Sundrum model
[89, 90]) in a very important aspect: they modify gravity at large distances, while
coinciding with GR at short distance scales. Moreover, as opposed to the above-
outlined “accretion” scenario, where the tension of the branes is responsible for the

17As can be seen from (1.5), in theories with a large number of species N , the maximal cutoff
can be significantly lower than the Planck scale.

18In case the time scale is larger than the evaporation time, the BH will evaporate first.
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attraction between the BH and the branes, in our setup the branes are tension-
less. Nevertheless, we will show that there would be repulsion between a BH and
the branes. We can, however, switch off that interaction by sending the distance
between the branes to infinity. This is not possible in the ADD model because in
that case we would need to send the compactification radius to infinity as well,
which would make 4D gravity vanish. So how does our scenario fit into the afore-
mentioned species picture? And what information do we receive from BH physics?
We shall address these issues in section 3.4 and explore the implications for the
bound on the number of species. This investigation beautifully illustrates how in
gravity large distance scales are intricately connected to short distance physics, as
we already alluded to in section 1.1.

1.1.3 Rise of the Casimir Force
The modified setup of two parallel DGP branes does not only give rise to a new
gravitational law. It also reveals interesting quantum mechanical behavior. In
particular, we will investigate the emergence of a Casimir effect in this scenario.

The fact that UV modes are being suppressed by the branes and the previously
mentioned observation of the mirror images already indicate that the DGP model
can provide a kind of “gravitational wave mirror”. However, since the IR trans-
parency phenomenon entails that the light modes are transparent, we expect that
the explicit form of the Casimir force between two surfaces [91], if it arises, should
be affected.

Our first goal of this investigation is to demonstrate that the Casimir effect
can be derived at all, even in the absence of ideal boundary conditions (such as
Dirichlet boundary conditions). Instead, we want to show that the DGP model
comprises “effective” boundary conditions for the gravitational field.

Usually, it is questionable to consider the “gravitational Casimir effect”, since
boundary conditions for the gravitational field are not physical. In contrast to
the electromagnetic field, that can be taken to vanish on perfect conducting plates
(leading to the standard Casimir effect), gravity interacts very weakly with any
material, which makes it difficult to realize a “gravitational wave mirror”. However,
as we intended to motivate above, the DGP model naturally provides such a setup
that does not rely on ad hoc boundary conditions or speculative quantum gravity
effects, as for example the proposal in Ref. [92]. Naturally, if such a Casimir
effect exists for gravitons, its observation would be a strong indication for the
quantum origin of the gravitational field, since the Casimir energy is due to vacuum
fluctuations of the underlying quantum field.

Our second goal is to show that there are deviations from the standard result
(i.e. the Casimir force for two perfectly conducting plates) due to the fact that
the branes are transparent to the IR modes. In particular, we will show that
there are two contributing (and opposite) effects. On the one hand, the presence
of an IR region, where the soft modes do not “see” the branes, strengthens the
Casimir force because those modes are removed from the discrete spectrum. On
the other hand, the DGP branes provide only effective boundary conditions, so
even the hard modes, those that are close to r−1

c , “leak” out of the interior enclosed
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by the two branes. We illustrate this by first considering a toy model where the
soft modes are simply removed from the spectrum (see section 4.2.1) and then
comparing to the case where the effective nature of the boundary conditions is
restored (see section 4.2.2). This emergent Casimir force, and its deviation from the
standard form, is another signature of the distinctive features of the DGP model.
Hence, besides its theoretical importance, it can lead to new ways of experimentally
probing the DGP model. Furthermore, an additional force between two branes, in
the presence of localized kinetic terms, can have important implications for many
brane-world scenarios, such as the brane inflation scenario [73] mentioned above,
where the precise form of the attractive potential between the branes, driving
inflation, is crucial.

Finally, let us stress that this effect is rather generic. As stated before, to derive
our results we will use a prototype model that only involves a quantum scalar field
with a localized kinetic term on a lower-dimensional surface. As we will explain
in the beginning of chapter 4 (see also chapter 5), we expect that the results for
bosonic fields with spins higher than zero will not change, except for numerical
factors accounting for the additional degrees of freedom. Also, we will see that the
qualitative result does not depend on whether we consider a 2D or a 5D system,
as long as we are dealing with codimension-one branes. Therefore, such a Casimir
effect would arise in a number of setups, including parallel two-dimensional surfaces
in our 4D world. In fact, the feature of IR transparency exists for many surfaces,
such as ordinary walls that act as dielectrics for the electromagnetic field. They
are transparent to radio waves, but suppress waves with higher frequencies (since
the effective kinetic terms of the photons are different in the vacuum and inside
the wall).19 Hence, this effect can be probed and investigated in any experiment
where such surfaces are present.

It should be mentioned that delta-function potentials, as the localized curva-
ture terms can be viewed, have been investigated in the literature on the Casimir
effect for around 30 years (where they often go by the name of semi-transparent
potentials), and it has been found that they lead to a modification of the Casimir
effect.20 The first paper that treated delta-function potentials in 3+1 dimensions
was Ref. [94]. Later, Ref. [95] (see also Ref. [96] for further discussion) included
such potentials in 1+1 dimensions, and Ref. [97] further clarified the situation in
3+1 dimensions (see also Refs. [98, 99] for additional results and an elucidating
discussion concerning delta-function potentials in both 1+1 and 3+1 dimensions).
However, in those papers delta-function potentials are coupled to the fields, rather
than to their derivatives. Consequently, the resulting Casimir force, although dif-
ferent from the standard result (i.e. in the case of Dirichlet boundary conditions), is
not equal to the one derived in the present work. Even though those delta-function
potentials have been studied extensively since then, to the best of our knowledge,

19Note that this is reminiscent of the so-called Dvali-Shifman mechanism, proposed in Ref. [93],
where the brane can also be considered a dielectric, while the bulk is a dual superconductor. In
that case, the massless gauge field can actually be exactly localized on a brane because in that
scenario the bulk is confining and hence does not allow the massless gauge field to escape there.

20Although, unfortunately, we were not aware of such work until the research that we published
in Ref. [2] was completed.
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the particular setup with derivative couplings, addressed in this work, (that is cru-
cial for the aforementioned IR transparency phenomenon and hence the distinctive
modified gravity behavior) has not yet been studied in the literature. Moreover,
in the examples known to us, the derived Casimir force does not have a modified
functional behavior, as we find in the present thesis, but just a modified overall
strength.

As in the case of the calculation of the gravitational potential (see section 3.1.2),
we will perform the calculation in the KK language. We will see that the masses
of the KK modes get quantized in a specific way and discover how this mass quan-
tization is eventually responsible for the Casimir force. Therefore, in this language
the emergence of the Casimir force becomes quite transparent.

1.2 Dark Matter Superfluidity
In the second part of this thesis we discuss a DM model that does not originate
from the modification of the structure of spacetime, but rather whose characteristic
feature is to allow a phase transition to a Bose-Einstein condensate inside of galaxies
in the 4D world. A model of that kind is given by

S =
∫

d4x

(
|∂µΦ|2 −m2|Φ|2 − λ

2 |Φ|4
)
, (1.6)

where a complex scalar field Φ with mass m exhibits quartic self-interactions with
the coupling constant λ > 0. Even though this particular model has certainly been
studied for a very long time, in all possible contexts, it can also be considered to
belong to a subclass of DM models that have been proposed quite recently and
which are dubbed theory of DM superfluidity [100–102] (for a recent set of lecture
notes see Ref. [103]).21 Although the theory of DM superfluidity—or rather the
theory of a certain kind of superfluid [100]—approaches the missing mass problem
by postulating a DM substance, it is still motivated by the observation that, effec-
tively, gravitational dynamics are modified on galactic scales, and it attempts to
explain the MOND empirical law (1.1). Hence, this theory provides an interest-
ing example of a model that, even without modifying gravity, effectively changes
Newton’s law.22

21Note that the term “superfluidity” actually refers to the property of certain fluids that, due
to their phonon excitations, a disturber traveling through it does not exhibit any friction if its
velocity is below the fluid’s sound speed. In this thesis we are not concerned with this frictionless
motion but the capability of such fluids to form Bose-Einstein condensates and balance the
gravitational attraction with the repulsive self-interaction. However, a substance that possesses
such a capability also exhibits frictionlessness. Furthermore, in the existing literature the term
“DM superfluid” is often used to distinguish the type of model where the phonon excitations play
the relevant role from models that also allow for a Bose-Einstein condensation but where such
collective excitations are absent. We will conform to such a terminology in this thesis.

22Although this is reminiscent of a scalar-tensor theory viewed in the Einstein frame (see e.g.
Ref. [104] for an overview), it is in fact distinct from that. One major difference is that in the
theory of superfluid DM the same degree of freedom that constitutes the more conventional DM
is also responsible for an additional long-range force between baryons in a certain regime.
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The theory of DM superfluidity can be thought of as itself being a subclass
of the so-called ultra-light DM models (see e.g. Ref. [105] for a recent review),
which have attracted much attention recently. One of their characteristic features
is that they involve very light DM particles (10−24 eV < m < eV), which behave
effectively as non-interacting, pressure-less DM on larger-than-galactic scales, while
forming a condensate on smaller scales (giving rise to collective behavior). Thus,
on cosmological scales ultra-light DM models reproduce the successful properties
of the well-established DM models that belong to the CDM paradigm, where the
DM is a perfect fluid that consists of non-relativistic, very weakly interacting (or
non-interacting) particles. However, as mentioned previously (see section 1.1),
for more than a decade this paradigm has been challenged by the appearance of
discrepancies, often called small-scale challenges (see e.g. Refs. [39, 40, 46, 105]).

One of these discrepancies is the so-called cusp-core problem. N-body simula-
tions of CDM suggest that the DM density distribution is given by the Navarro-
Frank-White (NFW) profile [106],23

ρNFW(r) = ρc

r
rs

(
1 + r

rs

)2 , (1.7)

where the characteristic density ρc and the scale radius rs are phenomenologi-
cal parameters that vary from halo to halo, but (according to numerical simula-
tions) exhibit a tight relation, known as the mass-concentration relation (see e.g.
Ref. [108]).24 Whereas the profile (1.7) diverges in the central region (leading to
a cusp), this is not supported by observations (mostly of low surface brightness
(LSB) galaxies), which rather suggest that the central region looks like a (nearly
flat) core. Other small-scale challenges include the missing satellites problem, where
the number of subhalos in the Milky Way and other galaxies of the Local Group
is much lower than predicted by simulations (in the CDM framework), and the too
big to fail problem, which states that the most massive subhalos predicted by the
aforementioned simulations should be able to host stars but apparently fail to do
so. Furthermore, one of the most intriguing puzzles is the observation of several
scaling relations, like the radial acceleration relation [109, 110] (that is closely re-
lated to the so-called mass discrepancy acceleration relation [111] and constitutes
a generalization of the baryonic Tully-Fisher relation [112–114]—which is itself an
extension of the well-known Tully-Fisher relation [115]). This relation suggests
that the observed gravitational acceleration (which is due to both DM and bary-
onic matter) in a very large and diverse class of galaxies (including dwarf galaxies
that are DM dominated) is very tightly related to the total baryonic mass (stars
and gas) in those galaxies.

To explain this last-mentioned observation is one of the trademark successes of
the MOND paradigm, and hence it is also successfully addressed by the DM super-

23Note, however, that several other density profiles have been suggested in the literature and
claimed to describe certain types of galaxies even better than the NFW profile (see e.g. Ref. [107]).

24The parameter c = RV/rs (where RV is the virial radius) is known as the concentration
parameter, whereas ρc depends on the halo mass if one integrates (1.7) up to the virial radius.
Hence, the correlation between mass and concentration reflects the correlation between ρc and
rs.



1.2 Dark Matter Superfluidity 15

fluidity model, which is designed to agree with the latter. The way to achieve this
is to couple the Goldstone mode that is present in the superfluidity models to the
baryons with a very particular coupling constant. Then, for large distances (beyond
galactic scales) the substance behaves like ordinary CDM, while for galactic and
sub-galactic scales the MOND phenomenology is recovered. The superfluidity mod-
els also address the cusp-core problem and another possible tension that we have
not mentioned yet: the dynamical friction in some galaxies, derived in the CDM
framework, might be too high to match observations (see e.g. Refs. [105, 116–119]).

Nevertheless, in the present thesis we will focus on the cusp-core problem.
Therefore, we do not need to consider the more involved model of Refs. [100–
102], but can work with the simplest DM superfluidity model given by (1.6), which
in fact has been employed for this purpose long before the advent of its more intri-
cate incarnation.25 Thus, let us use the remainder of this section for a very brief
historic overview and to explain how that model serves its purpose.

Among the earliest attempts to explain the observations of a “missing mass”
were to postulate particles that interact with baryonic matter and with themselves
mostly gravitationally. A majority of those models uses non-self-interacting parti-
cles. However, as mentioned before, such models lead to problematic predictions
regarding the halo cores. Therefore, a possible “cure” is to consider self-interacting
models [120, 121], which also improve the predictions on the abundance of dwarf
galaxies. This approach has the appealing feature that DM behaves collisionless
on larger scales, where the densities are low, but has a more favorable distribution
in central, high-density regions.

A particular model that involves repulsive self-interactions, in addition to a
sufficiently low DM particle mass, such that DM can undergo a phase transition to
a Bose-Einstein condensate in the interior of galaxies, was considered in Ref. [122]
and later slightly generalized in Ref. [123] (to include a complex rather than real
scalar field). That model was exactly the model in (1.6). Unlike the aforementioned
self-interacting scenarios, where the DM particle mass is rather high (of order GeV),
this model possesses the useful feature of suppressed dynamical friction because it
gives rise to a superfluid that can help to suppress dissipation in high-density, inner
galactic regions. Even though this scenario has been claimed to be excluded on
observational grounds in Ref. [123], in the latter work the rather drastic assump-
tion has been employed that the whole galaxy is in thermal equilibrium (see also
Ref. [124] for a more recent and improved discussion of that scenario).

Several related scenarios involving an ultra-light DM particle have been consid-
ered in the existing literature. Ref. [125] (see also Ref. [126]) has shown that in the
presence of attractive interactions (gravitational or self-interactions) the superfluid
core is prone to fragmentation unless the DM particles are extremely light, such
that the “quantum pressure” (due to the Heisenberg uncertainty principle) domi-
nates.26 This latter principle is employed in the Fuzzy Dark Matter scenario [128]

25Of course, it is reasonable to assume that the cusp-core problem is related to at least some
of the other puzzles (like the dynamical friction, which is sensitive to the DM density profile in
the core), and hence this model could offer solutions to them as well.

26Models with axion-like particles (see e.g. the review [127]), having an attractive self-
interaction, belong to this category.
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(see also Refs. [118, 129] for a detailed phenomenological study of this model), with
a particle mass of order 10−22 eV.

In the present thesis (in chapter 6) we will revisit the model (1.6) and analyze its
observational viability, investigating a scenario where the galaxy is not completely
in thermal equilibrium.27 In particular, we will discuss the stability of the emerging
superfluid core against perturbations and explore the constraints on this scenario,
taking into account bounds from the gravitational (Jeans) instability and from the
upper limit on the self-interaction strength. In the previously existing literature,
such an upper limit has frequently been derived from the so-called Bullet Cluster
constraint and widely applied to DM models, including the ones with ultra-light
DM particles. We will argue that this bound has to be modified in this latter case
because the DM particles occupy a highly degenerate phase space, which leads to an
enhanced interaction rate. Applying this new bound properly, we will demonstrate
that the outlined superfluid DM scenario is capable of producing a flat, thermalized
galactic core, provided that the superfluid core breaks into droplets. For their size
to be of order kiloparsec, the DM mass has to satisfy m ≲ 10−17 eV.

1.3 Outline
The contents of this thesis is organized as follows. The first part (Part I) deals
with large distance modified gravity, in particular the DGP model. Chapter 2 con-
tains both a review of the standard DGP model (with a single brane), including the
derivation of the 4D metric perturbation (section 2.1.1), as well as the gravitational
force law on the brane (section 2.1.2), and original material, setting up the inves-
tigation of the double-brane DGP model. The latter includes a derivation of the
propagator in section 2.2.1 and the translation to the KK language in section 2.2.2.
This chapter also discusses the well-known concept of the graviton resonance (sec-
tion 2.3.1) and the potentially slightly less-known mechanism of “mirror images”
in the DGP model (section 2.3.2).

In the ensuing chapter 3 we study the classical effects of the modified DGP
system with two branes. For this, we derive the gravitational potential energy
both in the 5D description (section 3.1.1) and using the KK decomposition (sec-
tion 3.1.2). We then use the novel force law to discuss a possible application in
DM phenomenology in section 3.2. Next, we show how the system behaves for
large brane separations (section 3.3) and then make use of this behavior in the
discussion about the cutoff of semi-classical gravity in the presence of a large num-
ber of particle species (section 3.4). We conclude that chapter with a summary in
section 3.5.

The next chapter 4 deals with a quantum mechanical consequence of the present
setup in the form of the Casimir effect. First, in section 4.1, we quantize the
system and explain how to regularize and renormalize the vacuum energy within
the dimensionally reduced description, showing how a discrete spectrum of modes
arises. Then, we set out to derive the Casimir effect. We start with a derivation in

27In the context of the more involved theory of DM superfluidity such a scenario has already
been discussed in Ref. [102].
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1+1 dimensions, since some of the analytical expressions can only be obtained in
this simplified system. For this, we discuss the effect of the IR transparency region
on the Casimir force (section 4.2.1) and explain how the effective nature of the
boundary conditions, provided by the DGP branes, further modifies the final result
(section 4.2.2). This is done by deriving approximate analytical expressions. The
result is then further justified and refined by a numerical analysis in section 4.2.3. In
section 4.3 we finally treat the 5D system, obtaining most of the results numerically.
We then summarize and discuss our findings in section 4.4.

The research reported on in Part I of the present thesis is summarized and
concluded in chapter 5, where we also discuss the experimental viability of the
DGP model, the implications of our results, and the possible extensions of our
work.

In the second part (Part II) of this thesis, we study superfluid DM (chapter 6).
We start with a review of the particular model, including the derivation of the
DM density distribution in the presence of gravity (section 6.1). Then, we discuss
several possibilities of how the formation of superfluid cores in galaxies and clusters
can proceed (section 6.2). The next section 6.3 contains the derivation of the
modified Bullet Cluster bound on the DM interaction strength in the case of highly
degenerate, ultra-light particles. We conclude this investigation with the analysis
and display of the full parameter space of the present scenario (section 6.4) and a
discussion of the results (section 6.5).

Some additional and more detailed material, which is vital for the investiga-
tion of the DGP model in Part I, is delegated to the appendix, starting with
the discussion of the propagator for arbitrary (and not just stationary) sources
(in appendix A). The actual calculation of the mode functions, necessary for the
KK description, and derivation of the mass quantization equation is performed in
appendix B. Various additional numerical cross-checks on the validity of the ap-
proximate solution of the modified force law can be found in appendix C. Finally,
appendix D contains the evaluation of a particular Bessel function sum that is
crucial for the analytical calculation of the 5D Casimir energy in the limit rc → ∞.
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Part I

Modified Gravity





2
Fundamentals of the DGP Model

With One and Two Branes

In this chapter we shall derive and collect basic results in the DGP framework that
we will use in subsequent chapters. In the first section we will review the original
DGP model in some depth. However, since the literature on the DGP model
has grown immensely in the past two decades (see e.g. just the more theoretically
focused Refs. [22, 25–29, 53, 55, 59, 61, 63, 64, 66, 70, 71, 75–79, 130–137] and many
more), it is beyond the scope of this thesis to discuss the model (and its decoupling
limit) exhaustively. Also, as we will explain below, the results derived in this thesis
all follow from very basic features of the DGP model, which are even present if the
graviton (spin-2 particle) would be replaced by a scalar (spin-0 particle). Since we
then do not require the mastery of all the intricacies of the DGP model, it would
be misplaced to discuss the latter in this thesis. In particular, we will not discuss
the issue of the brane bending mode (or radion stabilization), since this is a feature
of the gauge theory of a spin-2 particle, not of the spin-0 particle. Rather, we will
mostly focus on the graviton propagator and the properties of the gravitational
potential between two static sources in the DGP model.

On the other hand, we will derive some (to the best of our knowledge) new
expressions for the propagator and the fields in the presence of a second DGP brane.
The second section of this chapter is devoted to these derivations. Furthermore, it
will be useful to discuss both the 5D language and the dimensionally reduced KK
formulation, so we will derive and compare various expressions in both languages.
This too is allocated to the second section.

We conclude this chapter with a section on the phenomenon of infrared trans-
parency, which is a key feature of the DGP model, related to most of its salient
properties.

Note that a major part of section 2.2.2 is a verbatim reproduction of Refs. [1, 2],
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and a minor part of section 2.3.2 uses verbatim material from Ref. [1].

2.1 Spin-2 Field With One Brane
Let us begin with the review of the DGP model in the presence of a single 3-brane,
which was the setup introduced originally in Ref. [64]. The action is given by1

S = −M3
∗

2

∫
d5X

√
GR(5) − M2

P
2

∫
d4x

√
|g|R(4) . (2.1)

The 5D coordinates are denoted by XA. To work with the theory (2.1), a conve-
nient foliation is chosen: the 5D bulk is foliated with 4D (timelike) hypersurfaces
with constant y, where the 3-brane (i.e. the 3+1-dimensional brane that consti-
tutes “our” universe) is the hypersurface at y = 0.2 The coordinates on those
hypersurfaces are given by xµ. Thus, the coordinates in the chosen foliation read
XA=̇(xµ, y). The bulk metric in these coordinates is denoted GAB(xµ, y), and the
(5D) Ricci scalar is given by R(5). Hence, the first term in (2.1) is the usual (5D)
Einstein-Hilbert action, where M∗ is the fundamental (i.e. five-dimensional) Planck
mass. The basis vectors respecting this foliation are given by

Y A ≡ ∂XA

∂y

∣∣∣∣∣
xµ=const

and eAµ ≡ ∂XA

∂xµ

∣∣∣∣∣
y=const

.

To further specify the foliation, we could fix the “lapse” and “shift” functions of the
y-coordinate, i.e. specify how the vector Y A is oriented with respect to the normal
vector lA (that is orthogonal to the hypersurfaces). Although we can choose the
lapse and shift functions arbitrarily (see e.g. Ref. [138]), we will keep the lapse
function undetermined for the moment, in order to have more gauge freedom,
which we want to use for simplifications later. Then, the simplest choice is to take
Y A ∝ lA, thereby setting the shift function to zero. With this choice, the metric
takes the form

GAB =
(
g̃µν 0
0 −N2

)
,

where N is the lapse function and g̃µν is the induced metric, satisfying

g̃µν = GABe
A
µ e

B
ν .

The metric determinants are related via
√
G =

√
|g̃|N . (2.2)

1Notice that we choose here a slightly different convention than for the action (1.2), in light
of the anticipated inclusion of the matter sector.

2Note that by choosing this foliation, the position of the brane is fixed (in this coordinate
system). In other words, we reduce some of the gauge redundancy associated with the bulk
diffeomorphism invariance by choosing a gauge where the brane is located at y = 0 (see Ref. [61]
or e.g. Ref. [59] for more details). In this gauge (or coordinate system), the brane breaks the
translational invariance.
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From the point of view of the 4D observer on the (y = 0)-hypersurface,

gµν(xµ) ≡ g̃µν(xµ, y = 0)

is just “our” 4D spacetime metric. Hence, the second term in (2.1) is the 4D
Einstein-Hilbert action (with the 4D Ricci scalar R(4)), which is added to the
theory. Note that in this model the associated Planck mass MP is the one observed
in our world and in general independent of M∗.

Of course, (2.1) should be supplemented with the corresponding action for all
the other fields in the theory. In particular, if one views the 4D Einstein-Hilbert
action as induced by quantum corrections, one has to add the worldvolume theory
(i.e. the SM fields and possibly additional fields from physics beyond the SM,
localized on the 3-brane) that leads to those quantum corrections. We will specify
those additional actions when they are needed.

Note that we do not include a tension (which the brane localizing the non-
gravitational fields could in general possess) to the 4D worldvolume theory, follow-
ing the original proposal. One possible reason for that would be that the induced
(by quantum corrections) vacuum energy cancels it. For the most part, we will not
enter into this discussion in the present thesis. However, we will provide additional
comments on this issue in chapter 5.

2.1.1 Four-Dimensional Metric Perturbation
Equations of Motion

We now want to find the equations of motion for the metric (i.e. the Einstein field
equations), in the presence of some localized fields on the 3-brane. Mostly, we
follow here the original derivation in Ref. [64] (but see also e.g. Refs. [59, 137]). We
can write the appropriate action as

S = −M3
∗

2

∫
d5X

√
GR(5) +

∫
d4x dy

√
|g|δ(y)

(
−M2

P
2 R(4) + LSM

)
, (2.3)

where LSM includes all the non-gravitational fields on the worldvolume (although
we choose to call them SM fields, the Lagrangian could be more general).

Varying (2.3) with respect to the metric leads to

δS = −M3
∗

2

∫
d5X

√
GG(5)

ABδG
AB + 1

2

∫
d4x dy

√
|g|δ(y)

(
−M2

PG(4)
µν + Tµν

)
δgµν ,

(2.4)
where

G(5)
AB = R(5)

AB − 1
2R(5)GAB and G(4)

µν = R(4)
µν − 1

2R(4)gµν

denote the 5D and 4D Einstein tensor, respectively, and

Tµν ≡ 2∂LSM

∂gµν
− gµνLSM
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is the worldvolume energy-momentum tensor.3 The integrand in the second term
of (2.4) can be written as (keeping in mind the present delta-function)(

−M2
PG(4)

µν + Tµν
)
δg̃µν =

(
M2

PGµν
(4) − T µν

)
δg̃µν ,

=
(
M2

PGµν
(4) − T µν

)
δ
(
GABe

A
µ e

B
ν

)
,

=
(
−M2

PG(4)
AB + TAB

)
δGAB ,

where in the last line we made use of the fact that the basis vectors eAµ are not
affected by the variation (since they only depend on the chosen foliation) and wrote
the “transverse” tensors (having no component orthogonal to the 3-brane) in the
5D coordinates. Since in our 4+1 coordinate system (xµ, y) we have eAµ =̇δAµ , we
can also write(

−M2
PGAB

(4) + TAB
)

≡
(
−M2

PGµν
(4) + T µν

)
eAµ e

B
ν =̇

(
−M2

PGµν
(4) + T µν

)
δAµ δ

B
ν .

Then, the Einstein field equations read

M3
∗ G(5)

ABN = δ(y)
(
−M2

PG(4)
µν + Tµν

)
δµAδ

ν
B , (2.5)

where we also made use of (2.2).4

Linearized Theory

Since we are interested in the linearized theory, we expand (2.5) around Minkowski
spacetime, using

GAB = ηAB + hAB , (2.6)

where hAB is the 5D metric perturbation. Up to first order in hAB, the Einstein
tensor, in any dimension D, reads

G(D)
ab = 1

2
[
∂b∂ch

c
a + ∂a∂ch

c
b − ∂a∂bh

(D) − □(D)hab − ηab
(
∂c∂dh

cd − □(D)h
(D)
)]
,

(2.7)
where

h(D) ≡ haa , □(D) ≡ ∂a∂
a ,

are the D-dimensional trace of hab and the D-dimensional d’Alembertian, respec-
tively, and the indices take values in D spacetime dimensions. The general coor-
dinate transformation invariance of the full (5D) theory translates to the gauge
redundancy

hAB → hAB + ∂AξB + ∂BξA (2.8)
3We dropped here the part of the variation that can be expressed as a variation of quantities

on the spacetime boundary. Note that since these quantities involve derivatives of the metric,
one has to include Gibbons-Hawking-York boundary terms to obtain a well-posed variational
principle (see e.g. Ref. [138]). We will assume that those boundary terms are present and not
enter into these subtleties here.

4 The factor N on the left-hand side of (2.5) will become unity, to leading order in hAB , once
we go to the linearized theory, using (2.6), since N ≃ 1 − 1

2hyy.
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of the linearized theory, where ξA(XA) can have an arbitrary coordinate depen-
dence. The transformation (2.8) implies

hµν → hµν + ∂µξν + ∂νξµ (2.9)

for the 4D metric perturbation. It is easy to check that (2.7) is invariant under (2.8)
in D = 5 and under (2.9) in D = 4. Hence, as expected, the equations of motion
(2.5) are invariant under the gauge transformation (2.8) (see also footnote 4). We
can use this redundancy to transform to the de Donder gauge5

∂Bh
AB − 1

2∂
Ah(5) = 0 , (2.10)

in which the 5D Einstein tensor reduces to

G(5)
AB = −1

2□(5)

(
hAB − 1

2ηABh
(5)
)
.

Notice that since h(5) = h− hyy, where we defined

h ≡ ηµνhµν , (2.11)

the gauge fixing condition (2.10) implies

∂νh
µν − 1

2∂
µh = −

(
∂yh

µy + 1
2∂

µhyy

)
for the 4D metric perturbation. Hence, the 4D Einstein tensor takes the more
cumbersome form

G(4)
αβ = −1

2□
(
hαβ − 1

2ηαβh
)

− 1
2

[
∂α∂yh

y
β + ∂β∂yh

y
α + ∂α∂βhyy − ηαβ

(
∂µ∂yh

µy + 1
2□hyy

)]
, (2.12)

where
□ ≡ □(4) .

Since in the present DGP setup all of the energy-momentum that sources gravity
is localized on the 3-brane (the right-hand side of (2.5) vanishes for A ̸= α and/or
B ̸= β), the αy- and yy-components lead to the equations

□(5)hµy = 0 ,
□(5)(hyy + h) = 0 .

Thus, we can find the solutions6

hµy = 0 and hyy = −h .
5Note that we have already fixed some part of the gauge above. In particular, we set the

shift function to zero, and hence hµy = 0. Thus, one has to check if this is consistent with the
de Donder gauge choice. We will do that by keeping hµy arbitrary for the moment and see later
that it can indeed be set to zero.

6Note that this is, of course, not the most general solution, unless we specify some special
boundary conditions. In fact, a more careful analysis, and not choosing this particular solution,
would reveal that hyy is associated with the so-called brane bending mode, which is responsible
for shifting the brane in the presence of matter (see e.g. Refs. [59, 61, 75, 137]). However, for our
purposes we do not have to go into these subtleties.
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Using these, (2.12) simplifies to

G(4)
αβ = −1

2(□hαβ − ∂α∂βh) ,

and hence the (inhomogeneous) Einstein field equations (2.5) read

M3
∗□(5)(hµν − ηµνh) = −δ(y)

[
M2

P(□hµν − ∂µ∂νh) + 2Tµν
]
. (2.13)

Going to momentum space (with respect to the worldvolume coordinates), this
equation can be expressed as7

M3
∗

(
hµν(k, y) − ηµνh(k, y)

)
= A(k, y)

[
M2

P

(
k2hµν(k, y = 0) − kµkνh(k, y = 0)

)
− 2T µν(k)

]
, (2.14)

where k2 is the worldvolume 4-momentum squared,8 the barred quantities are the
Fourier transforms, e.g.

hµν(k, y) =
∫

d4x eikαxα

hµν(x, y) ,

and
A(k, y) ≡

∫ dk5

2π
eik5y

(k5)2 − k2 . (2.15)

From this, we see that the metric perturbation on the brane (in momentum space),

h0
µν ≡ hµν(k, y = 0) ,

satisfies the following equations of motion

k2h0
µν − kµkνh

0 −m2(k)(h0
µν − ηµνh

0) = 2
M2

P
T µν , (2.16)

where
h0 ≡ h(k, y = 0)

and

m2(k) ≡ M3
∗

M2
PA(k, y = 0) ,

= −2ik
rc

, (2.17)

with k ≡
√
k2. The last line of the previous expression follows from expression

(A.6) that is derived in appendix A (and the definition (1.3)). Here we can ob-
serve that in the DGP model the metric perturbation on the brane acquires a

7For example, we can multiply the equation by e−ik5y, then integrate over y and finally revert
back to the y-position space (see also appendix A).

8Note that in our notation Tµν(x) already denotes a quantity that is only defined at y = 0,
and hence we can suppress this extra-dimensional coordinate.
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(4-momentum dependent) mass term. The mass term, m2(k), can be imaginary
or real, depending on whether the source is time-dependent or static, and hence
whether the metric perturbation is propagating or not. Although we will only con-
sider time-independent sources in this thesis (static point sources or the vacuum),
for completeness, we discuss the propagator structure in generality and calculate
(2.17) in appendix A. We can solve (2.16) in the standard way: take the trace and
insert back the expression for h0, which leads to

(k2 −m2(k))h0
µν(k) = 2

M2
P

[
T µν(k) − 1

3

(
ηµν − kµkν

m2(k)

)
T (k)

]
. (2.18)

This has the solution

hµν(x, y = 0) = 2
M2

P

∫
d4k e−ikαxα 1

k2 −m2(k)

[
T µν(k) − 1

3

(
ηµν − kµkν

m2(k)

)
T (k)

]
(2.19)

in position space.9

2.1.2 Gravitational Potential Energy
From (2.18), written in the slightly more convenient form

h0
µν(k) = 2

M2
P

1
k2 −m2(k)

[
1
2(ηµαηνβ + ηµβηνα) − 1

3ηαβ
(
ηµν − kµkν

m2(k)

)]
T
αβ(k) ,

(2.20)
we can immediately read off the graviton propagator, which is just the quantity
(up to the normalization factor) contracted with T

αβ(k),10

Dµν,αβ(k) = 1
k2 −m2(k)

[1
2(PµαPνβ + PµβPνα) − 1

3PαβPµν
]
, (2.21)

with
Pµν = ηµν − kµkν

m2(k) . (2.22)

Note that in (2.20) the tensors Pµν that are contracted with the energy-momentum
tensor reduce to ηµν because the (worldvolume) energy-momentum tensor is con-
served. The latter is a consequence of the 5D energy-momentum conservation,
∂µT

µν + ∂yT
yν = 0, and the fact that we only consider energy-momentum ten-

sors that are localized on the brane and do not have components orthogonal to it
(T yν = 0).

We see that in the DGP model the metric perturbation (and the propagator)
has the following two interesting properties: first, the tensor structure is the one
for a massive spin-2 field (note the factor 1/3 as opposed to 1/2 in standard GR),

9In the literature, sometimes the canonically normalized perturbation is used, hµν → 2
MP

hµν .
10Equation h0

µν(k) = 2
M2

P
Dµν,αβ(k)Tαβ(k) translates to hµν(x, 0) = 2

M2
P

∫
d4x′ Dµν,αβ(x−x′)×

×Tαβ(x′) in position space. We suppress here the y-dependence of the propagator, since we are
only considering propagation along the brane in this section.
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leading to the vDVZ-discontinuity [56, 57] (see the discussion below). Second, the
pole structure is very distinctive. The mass is momentum-dependent and leads to
the fact that the graviton on the brane is a resonance [66, 70, 71], i.e. a continuum
of states rather than a normalizable zero-mode (see also section 2.3.1).

Let us calculate the gravitational potential energy between two static point
masses, located on the brane. In this case, the energy-momentum tensor is given
by

T µν(x) = δµ0 δ
ν
0

(
m1δ

(3)(x⃗) +m2δ
(3)(x⃗− r⃗)

)
,

where mi are the masses, separated by the distance r ≡ |r⃗|. Then, the vacuum
energy in the presence of the sources (and hence the potential energy between
them) is given by (see e.g. Ref. [139])

V =
(∫

dx0
)−1 1

2
1
M2

P

∫
d4x1 d4x2 T

µν(x1)Dµν,αβ(x1 − x2)Tαβ(x2) ,

=
(∫

dx0
)−1 1

2
1
M2

P

∫ d4k

(2π)4T
µν(−k)Dµν,αβ(k)Tαβ(k) .

As noted above, for conserved energy-momentum the momentum-dependent part
of the tensor structure in (2.21) drops out, and hence

V =
(∫

dx0
)−1 1

2M2
P

∫ d4k

(2π)4
T µν(−k)T µν(k) − 1

3T (−k)T (k)
k2 −m2(k) . (2.23)

Inserting the energy-momentum tensor for the static point sources, for which

T µν(−k)T µν(k) = T (−k)T (k) =
∫

dx0 2πδ(k0)m1m2
(
ei⃗k·r⃗ + c.c.

)
(after dropping the self-energy terms), we obtain

V = −2
3
m1m2

M2
P

∫ d3k

(2π)3
ei⃗k·r⃗

|⃗k|2 +m2(k)|k0=0
,

with
m2(k)|k0=0 = 2|⃗k|

rc
,

using (2.17). We can now solve this integral and find

V = −1
3
m1m2

π2M2
Pr
FDGP(r) , (2.24)

where

FDGP(r) ≡ sin
(2r
rc

)
Ci
(2r
rc

)
+ cos

(2r
rc

)[
π

2 − Si
(2r
rc

)]
, (2.25)

≃


π

2 +
(

O(1) + 2 ln r

rc

)
r

rc
+ O

(
r2

r2
c

)
, r ≪ rc ,

1
2
rc

r
+ O

(
r2

c
r2

)
, r ≫ rc ,
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and Si(z) and Ci(z) are the sine integral and the cosine integral, respectively. We
see that for short distances (relative to the cross-over scale), we recover the 4D
gravitational potential energy, ∝ m1m2

M2
P

1
r
, while for large distances we obtain the 5D

Newton’s law, ∝ m1m2
M3

∗

1
r2 .

Note, however, that in the short distance limit the above result has a factor
of 4/3, which is different from the standard result in GR, where the numerical
factor in the gravitational potential is unity (recall that M2

P = (8πG)−1). This
difference comes from the fact that the factor in front of the second term in the
numerator of (2.23) is 1/3 rather than 1/2 (as for a massless graviton). Even though
one could absorb the above factor of 4/3 in the definition of the Planck mass (or
equivalently, in the gravitational coupling constant), this redefinition would lead
to a wrong result in situations where photons are involved because the trace of the
energy-momentum tensor is zero for the Maxwell Lagrangian, and hence it does
not contribute to the second term of the numerator of expression (2.23). This is
what is known as the vDVZ discontinuity: a finite measurement is apparently able
to tell us if the graviton mass is identically zero or not.

The situation is even more transparent if one goes to the zero-mass limit and
decomposes the five degrees of freedom of the massive graviton into two degrees
of freedom of a massless spin-2 field,11 two degrees of freedom of a massless spin-1
field and one degree of freedom of a massless spin-0 field. Then, one can see that
the scalar field couples to the trace of the matter energy-momentum tensor and
hence increases the gravitational potential between sources for which this quantity
is non-vanishing (see e.g. Ref. [59]). This additional, gravitational contribution is
sometimes called fifth force in the literature.

However, for small graviton masses, the linear approximation cannot be trusted
below some distance scale, known as the Vainshtein radius rV [58], because the
(classical) expansion parameter in massive gravity is rV/r instead of rg/r, as in
massless gravity, where rg is the Schwarzschild radius. Since rV ≫ rg (for a typical
system), non-linearities in massive gravity become important much earlier than
non-linearities in GR.12 In terms of the fundamental degrees of freedom, it has
been realized [55] that the scalar field degree of freedom is strongly coupled (i.e.
its self-interaction dominates over its kinetic term) inside rV and actually does
not contribute (relevantly) to the gravitational potential. Therefore, the vDVZ
discontinuity only appears if one incorrectly attempts to compute the potential in
the massive gravity case by using the one-graviton exchange amplitude. Hence, the
existence of the Vainshtein radius has the consequence that the leading behavior
of gravity inside the 4D regime (below rc) is not just Einsteinian but interpolates
between 4D GR for r ≪ rV (mediated by two tensorial degrees of freedom) and a
4D scalar-tensor gravitational theory for r ≫ rV (mediated by two tensorial and
one scalar degree of freedom).

The aforementioned state of affairs is well known and will not be discussed
11We will show later that the graviton in DGP is rather quasi-massive, since it corresponds to

a resonance. However, the decomposition in terms of degrees of freedom goes through.
12The precise form of rV depends on the particular massive gravity theory. For example, in the

case of the DGP model it is given by rV ∼ (rgr
2
c )1/3, where rg is the Schwarzschild radius of the

spherically symmetric system.
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further in the present thesis. Our focus lies on the non-trivial pole structure (the
momentum-dependent mass) of the propagator, which is directly responsible for the
distinctive behavior of the gravitational potential (in situations where the linearized
theory is applicable). Therefore, in order to trace back the results to the pole
structure as clearly as possible (and also for the sake of simplicity), in the remainder
of this thesis (Part I), we will consider a simplified scalar field prototype model,
which will be introduced in the next section. In particular, since we will only study
certain energy-momentum tensors (of static point sources and of the vacuum),
we will adopt the viewpoint that a scalar field theory with just a scalar degree
of freedom is an excellent prototype theory to study physics resulting from the
non-trivial pole structure in the DGP model. However, we have to keep in mind
that for an actual problem in nature the result will get modified. As long as
we consider just the regimes r ≪ rV (and can verify that a Vainshtein screening
mechanism, as described above, is indeed operational) or r ≫ rV, but not the
transition between them, our result will capture the correct qualitative behavior,
up to order-one numerical coefficients. We will return to this issue when we will
discuss the validity of our results, in more detail, in chapter 5.

Also, note that the situation outlined above leads to some ambiguity in the
overall numerical coefficient of the Newton potential, depending on whether we
want to reproduce the standard factor of unity (multiplying Gm1m2/r) for an
exchange of a massless tensor, a massless tensor and a massless scalar (although we
saw that this option would contradict experiment for distances below the Vainshtein
radius because the scalar decouples there), or just a massless scalar. For example,
Ref. [64] seems to normalize the gravitational potential energy mediated by just a
scalar to 1/2. We will discuss the choice of our convention, in detail, in section 3.1.1.

Another comment is in order here. As was indicated above, a careful treatment
of the decomposition of the 5D graviton into the tensor, vector, and scalar modes,
taking into account the gauge redundancy, would reveal that the scalar mode is
associated with the “brane bending” [61] (see also Refs. [140, 141]). However,
since the immediate results in this thesis, as just explained, do not depend on the
particular gauge structure of the spin-2 theory, we shall not have anything more to
say about this topic (except some brief, additional comments in section 3.4.1 and
chapter 5).

2.2 Spin-0 Field With Two Branes
As explained in the previous section, in the remainder of this thesis we will consider
a scalar field theory that exhibits some crucial properties of the (linearized) DGP
model (2.1), in particular the pole structure of the propagator, but lacks the more
complicated gauge structure, which is not essential for our discussion. Such a scalar
field theory is modeled by

S =
∫

d4x dy
{1

2(∂AΦ)2 + 1
2rcδ(y)(∂µΦ)2

}
. (2.26)
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Here, Φ(xµ, y) is a real, massless, 5D scalar field, which has an additional 4D kinetic
term, localized on the brane, with the coupling strength rc.13 If rc ∝ M2

P
M3

∗
, which

then quantifies the relative strengths of the scalar field propagators on the brane
and the bulk, respectively, then this prototype model imitates the gravitational
behavior of the model (2.1), for the class of sources considered in this thesis.

We will show in the following chapters that this model (for the sake of brevity,
we will refer to it as the DGP model in the following) possesses further, phe-
nomenologically interesting implications if one adds a second (parallel) 3-brane to
the setup. The two branes are separated by a distance R along the fifth dimension.
For concreteness, we will assume that the coupling strength is identical on both
branes, although we will later also consider generalizations of this (see section 3.3).
Thus, the model that we will study in the present thesis is

S =
∫

d4x dy
{1

2(∂AΦ)2 + rc

[
δ
(
y + R

2

)
+ δ

(
y − R

2

)]1
2(∂µΦ)2 + J(xµ, y)Φ

}
,

(2.27)
where we also included the source term J(xµ, y) and placed the branes symmetri-
cally around the origin for later convenience.

From now on, all quantities are understood as expressions in the presence of
two branes. However, to avoid notational clutter, we will not use special notation
for that. In those cases where we wish to express the single-brane quantities, we
will indicate that explicitly.

We would like to pause here for a moment in order to briefly discuss the dif-
ference between the prototypical spin-0 theory and the full spin-2 theory when it
comes to adding a second brane. Such an extension increases the complexity of the
model in the case of the spin-2 gauge theory because it can lead to the appearance
of an additional mode, the radion, due to the separation of the branes. The status
of the radion mode depends on the nature of the branes and the bulk, in particular
on the presence or absence of the corresponding cosmological constants. Such a
mode could in principle destabilize the brane separation. However, in Ref. [75]
it was shown that in the case considered in this thesis, i.e. a tensionless brane
(and provided that we deal with the normal branch) without a bulk cosmological
constant, there is no physical radion.14 Hence, the results obtained in this thesis
should not get affected if we extrapolate our findings in the spin-0 setup to the full
spin-2 case (except the order-one modifications, coming from taking into account
the contribution from all five degrees of freedom, as mentioned before).

2.2.1 Scalar Field Propagator
Let us derive the propagator for the action (2.27). This action leads to the equation
of motion [

□ − ∂2
y + rcδ

(
y + R

2

)
□ + rcδ

(
y − R

2

)
□
]
Φ = J(xµ, y) . (2.28)

13In other words, rc quantifies the strength of the derivative coupling to the delta-function.
14We comment on the more general case of a non-vanishing brane tension in chapter 5.
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If the source is static, we can look for static solutions (we discuss the general,
non-static case in appendix A). For this, we can first solve[

∆ + ∂2
y + rcδ

(
y + R

2

)
∆ + rcδ

(
y − R

2

)
∆
]
G(x⃗, x⃗′; y, y′) = δ(3)(x⃗− x⃗′)δ(y − y′) ,

(2.29)
where ∆ is the Laplace operator and G(x⃗, x⃗′; y, y′) is the Green’s function. Note
that the operator on the left-hand side is not translationally invariant along the
y-direction, but it is translationally invariant along the brane-direction. Hence, the
above equation can be written as[

∆ + ∂2
y + rcδ

(
y + R

2

)
∆ + rcδ

(
y − R

2

)
∆
]
G(x⃗; y, y′) = δ(3)(x⃗)δ(y − y′) .

We can Fourier transform this, with respect to the coordinates x⃗, to get[
|⃗k|2 − ∂2

y + rcδ
(
y + R

2

)
|⃗k|2 + rcδ

(
y − R

2

)
|⃗k|2

]
G(|⃗k|; y, y′) = −δ(y − y′) ,

where
G(|⃗k|; y, y′) =

∫
d3x e−i⃗kx⃗G(x⃗; y, y′) .

Next, we can also Fourier transform with respect to the coordinate of the extra
dimension y, using

G(|⃗k|; y, y′) =
∫ dk5

2π eik5yG̃(|⃗k|; k5, y′) ,

where k5 is the momentum in the fifth dimension. We then find the formal solution

G̃(|⃗k|; k5, y′) = −
e−ik5y′ + rc |⃗k|2

(
G(|⃗k|; −R

2 , y
′)eik5 R

2 +G(|⃗k|; R2 , y
′) e−ik5 R

2
)

|⃗k|2 + (k5)2
.

Transforming back to the y-coordinates and using
∫ dk5

2π
eik5(y+a)

|⃗k|2 + (k5)2
= e−|⃗k||y+a|

2|⃗k|
, (with a ∈ R) , (2.30)

we get

G(|⃗k|; y, y′) = e−|⃗k||y−y′|

2|⃗k|
−
rc |⃗k|2G(|⃗k|; −R

2 , y
′)

2|⃗k|
e−|⃗k||y+ R

2 |

−
rc |⃗k|2G(|⃗k|; R2 , y

′)
2|⃗k|

e−|⃗k||y− R
2 | .

We can now solve for the coefficients G(|⃗k|; −R
2 , y

′) and G(|⃗k|; R2 , y
′) and arrive at

G(|⃗k|; y, y′) = −e−|⃗k||y−y′|

2|⃗k|
− rc

2
rc |⃗k|e−|⃗k|R

(
E(y,−y′) + E(−y, y′)

)
(2 + rc |⃗k|)2 − r2

c |⃗k|2 e−2|⃗k|R

+ rc

2
(2 + rc |⃗k|)

(
E(y, y′) + E(−y,−y′)

)
(2 + rc |⃗k|)2 − r2

c |⃗k|2 e−2|⃗k|R
, (2.31)
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where
E(z, z′) ≡ e−|⃗k|(|z− R

2 |+|z′− R
2 |) . (2.32)

In the case of a single brane, located at the origin (R → 0), the above propagator
reduces to

G
(1B)(|⃗k|; y, y′) = −e−|⃗k||y−y′|

2|⃗k|
+ rc

2
e−|⃗k|(|y|+|y′|)

2 + rc |⃗k|
, (2.33)

where we also re-scaled rc → rc/2, so that this limit reproduces the correct action
(2.26).15 Of course, (2.33) coincides with the expression found in Ref. [71] (up to
different normalization conventions, as explained in section 2.1.2).

2.2.2 Kaluza-Klein Decomposition
It is possible to re-express the theory in (2.27) in the so-called Kaluza-Klein lan-
guage, where one expands (symbolically)

Φ(xµ, y) =
∫∑

dmψm(y)ϕm(xµ) ,

with ψm(y) the mode functions and ϕm(xµ) the 4D KK modes, and integrates over
the extra dimension. Usually, such a decomposition is performed if the extra di-
mension is compact, which then leads to the replacement of the extra dimension
for an infinite (discrete) tower of massive KK modes. In the present case the ex-
tra dimension is infinite, and hence the KK modes exhibit a continuous spectrum.
Nevertheless, performing the calculation in the KK language is not only a use-
ful cross-check to the fully 5D calculation (as seen in section 3.1) but also adds an
interesting new perspective (see chapter 4): when we regularize the system, by com-
pactifying the extra dimension on a ring, the masses become discrete (quantized)
and lead directly to the Casimir energy. Hence, the result is an immediate conse-
quence of the particular KK mass quantization. In this section, we will perform
the KK decomposition both in an infinite extra dimension and on a ring. While
the former is simpler and more directly related to the original (single-brane) DGP
model, the latter is needed for the calculation of the Casimir force in chapter 4. Of
course, we will see that performing the appropriate limit in the compactified case
will bring us back to the infinite-dimension case, as it should.

Infinite Extra Dimension

We can expand the field Φ in the following way:

Φ(xµ, y) =
2∑

α=1

∫ ∞

0
dmψm,α(y)ϕm,α(xµ) .

The mode functions (or wave functions) ψm,α(y) constitute a complete basis of the
y-space. Since the system is symmetric around the origin, we have divided the

15Note that just placing two branes on top of each other, without re-scaling rc, effectively
doubles the coupling strength.
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mode functions into even (α = 1) and odd (α = 2). We can render the Lagrangian
in (2.27) diagonal in the KK modes ϕm,α(xµ) if the mode functions satisfy the
equation {

∂2
y +m2

α

[
1 + rc δ

(
y + R

2

)
+ rc δ

(
y − R

2

)]}
ψm,α(y) = 0 , (2.34)

which implies the orthonormality condition∫ ∞

−∞
dy ψm,α(y)ψm′,α′(y)

[
1 + rc δ

(
y + R

2

)
+ rc δ

(
y − R

2

)]
= δ(m−m′)δαα′ .

(2.35)
Using this, the 5D action reduces to

S =
∫

dx4
2∑

α=1

∫ ∞

0
dm

{
−1

2ϕm,α(xµ)
(
□ +m2

)
ϕm,α(xµ) + ϕm,α(xµ)Jm,α(xµ)

}
,

(2.36)
with16

Jm,α(xµ) =
∫

dy J(xµ, y)ψm,α(y) . (2.37)

We can determine the basis {ψm,α(y)} by solving (2.34). This is done in ap-
pendix B.1.

From the action (2.36), we derive the equation of motion(
□ +m2

)
ϕm,α(xµ) = Jm,α(xµ) . (2.38)

We can now further proceed to derive the Green’s function in the KK language.
Since we will later be interested in the static source

J(xµ, y) = g
[
δ(3)(x⃗)δ

(
y + R

2

)
+ δ(3)(x⃗− r⃗)δ

(
y − R

2

)]
,

the 4D source (see (2.37))

Jm,α(xµ) = g
[
ψm,α

(
−R

2

)
δ(3)(x⃗) + ψm,α

(
R

2

)
δ(3)(x⃗− r⃗)

]
(2.39)

will be static as well. Thus, we can look for the solution of(
∆ −m2

)
Gm(x⃗− x⃗′) = δ(3)(x⃗− x⃗′) ,

leading to the (4D) Green’s function

Gm(x⃗− x⃗′) = −
∫ d3k⃗

(2π)3
ei⃗k·(x⃗−x⃗′)

|⃗k|2 +m2
,

= − 1
4πre−mr , (2.40)

with r = |x⃗− x⃗′|, as usual.
16Note that Jm,α(xµ) is not a KK mode of J(xµ, y), which would rather be J̃m,α(xµ) ≡∫
dy ψm,α(y)[1 + rcδ(y +R/2) + rcδ(y −R/2)]J(xµ, y).
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I II III

Figure 2.1: The setup: Periodic space (with period L) along the extra dimension y, with
two DGP branes (solid lines). The branes (with suppressed transverse dimensions) are
repeated (dashed lines) after the period. I, II and III are the regions we need to match
in order to find the field solution.

Compact Extra Dimension

For the derivation in chapter 4, it will prove useful to introduce an IR regulator
for the system by compactifying the extra dimension, using periodic boundary
conditions. We take the finite size of the extra dimension to be L. Later, we will
remove the regulator and end up with an infinite space. Focusing on the extra
dimension and suppressing the transverse dimensions, the system is illustrated by
Figure 2.1.

We proceed in a very similar way as in the previous derivation. Now, we can
decompose the 5D scalar field as

Φ(xµ, y) =
2∑

α=1

∑
m

ψm,α(y)ϕm,α(xµ) ,

where the mode functions ψm,α(y) again span a complete basis of the y-space, sat-
isfying the same equation (2.34) as before, but now they are subject to the periodic
boundary condition. We derive the appropriate mode functions in appendix B.2.
Using that they satisfy the orthonormality condition

L
2∫

− L
2

dy ψm,α(y)ψm′,α′(y)
[
1 + rc δ

(
y + R

2

)
+ rc δ

(
y − R

2

)]
= δm,m′δα,α′ , (2.41)

the 5D action then reduces to

S =
∫

d4x
2∑

α=1

∑
m

1
2

[(
∂µϕm,α(x)

)2
−m2

αϕ
2
m,α(x)

]
. (2.42)

Note that we dropped here the source term, since we will only consider the vacuum,
for the application to the Casimir effect.
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The information about the extra dimension and the brane configuration is now
encoded in the discrete masses. By solving for ψm,α(y), we found (see appendix B.2)
that the masses have to satisfy the following quantization equation:

tan
(
mαL

2

)
= −mαrc

2 ×


1 + cos (mαR)

1 + mαrc
2 sin (mαR) , for α = 1 (even) ,

1 − cos (mαR)
1 − mαrc

2 sin (mαR) , for α = 2 (odd) .
(2.43)

Note that we only have one mode with zero mass, the even zero-mode, since the
odd zero-mode vanishes, ψ0,2(y) = 0.

We have thus traded the extra dimension for a KK tower of massive Klein-
Gordon fields, satisfying the equation(

□ +m2
α

)
ϕm,α(x) = 0 . (2.44)

2.3 Infrared Transparency
The IR transparency phenomenon, outlined in section 1.1.1, i.e. the fact that mas-
sive KK modes can only be exchanged efficiently at short distances (below rc),
while the light modes (lighter than ∼ r−1

c ) can also propagate at long distances,
is responsible for a number of interesting features in the DGP model. Not only
can the gravitational behavior (see (2.25)) be understood as a consequence of this
phenomenon but also other properties can be traced back to it. We will outline two
of them in the following sections, since they provided a motivation to investigate a
third consequence—the impact on the Casimir effect—that is a major part of this
thesis. We will illustrate this phenomenon using the original setup with a single
brane.

2.3.1 Resonance Graviton
Five-Dimensional Language

We saw in section 2.1.2 that the pole structure of the graviton propagator is given
by

D(k) ≡ 1
k2 −m2(k) .

For a freely propagating wave (on the brane), m2(k) is given by −ikΓ (see (2.17)),
where Γ ∼ r−1

c can be interpreted as a resonance width [71]. For short wavelengths,
|k| ≫ Γ, the width Γ effectively goes to zero, and the above propagator describes
a stable, massless particle, propagating in four dimensions. However, it is only
completely stable in the limiting case of Γ = 0, which corresponds to rc → ∞ and
hence the situation where the bulk gravity is decoupled. For finite rc, the propa-
gator corresponds to a continuum of states, where long wavelengths contribute in
the propagator as D(k) ∝ 1/k and hence mediate a 5D Newton force.



2.3 Infrared Transparency 37

This can be made even more explicit by using a Källén-Lehmann spectral rep-
resentation, where the propagator is decomposed as (cf. (A.10))

1
rck2 + 2ik =

∫ ∞

0

ds
2πρ(s)

1
k2 − s+ iε ,

with the spectral function

ρ(s) = 4
rc

1√
s

rc

4 + sr2
c
.

Since ρ(s) is continuous in s, this demonstrates that the DGP propagator represents
a continuum of massive states (as to be expected, since the extra dimension is
infinite). Moreover, we can see that for large rc (as compared to 4D distances r),
this spectral function is sharply peaked around s = 0, and in particular

ρ(s) rc→∞−→ constant × δ(s) .

Thus, for distances r ≪ rc the gravitational force is effectively mediated by a
single massless graviton (we ignore the additional vector and scalar modes in this
discussion), leading to a 4D Newton’s law. For distances r ≫ rc, however, this
graviton “decays” into a continuous tower of massive gravitons, leading to a 5D
force law.

Kaluza-Klein Language

We can understand the same physics, as outlined above, directly using the KK
language. We have shown that the (massive) propagators of the tower of KK
modes (derived for static sources) are given by (2.40). The analog of (2.39) for two
point masses on the brane (separated by distance r⃗), in the presence of a single
brane at the origin, can be obtained by sending R to zero, which leads to

J (1B)
m,α (xµ) = g

[
ψ(1B)
m,α (0)δ(3)(x⃗) + ψ(1B)

m,α (0)δ(3)(x⃗− r⃗)
]
.

In order to find the mode function ψ(1B)
m,α (0), we just take the R → 0 limit of the

relevant expressions in appendix B.1, noting that the odd functions vanish at the
origin, and re-scale rc → rc/2 as before (to end up with the correct action (2.26)).
Hence,

ψ(1B)
m,α (0) = δα,1

√
4
π

(
4 + r2

cm
2
)−1/2

,

as was first obtained in Ref. [70].
Thus, the potential energy between two point sources on the brane is

V
(1B)

KK (r) =
∑
α

∫ ∞

0
dm 1

2

∫
d3x d3x′ J (1B)

m,α (x⃗)Gm(x⃗− x⃗′)J (1B)
m,α (x⃗′) ,

= − g2

π2r

∫ ∞

0
dm e−mr

4 + r2
cm

2 .
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We see that for distances r ≪ rc the denominator (i.e. the mode functions) cut
off the integral long before the exponential becomes relevant, which leads to a 4D
(1/r)-potential. On the other hand, for r ≫ rc the denominator is frozen, while
the exponential cuts off the integral, leading to a 5D (1/r2)-potential.

Hence, in the KK language, the massive modes “conspire” in such a way as to
reproduce the resonance-graviton behavior.

2.3.2 Gravitational Mirror Images
Our second example involves a feature of the DGP brane that is apparent to a 5D
observer and which can also be traced back to the IR transparency phenomenon.
The discussion in this section follows a similar one in Ref. [71] and is additionally
based on an argument presented to us by Gia Dvali.

The propagator for the DGP model between two static point masses at y and
y′ along the extra dimension, in the presence of the brane at the origin, is given by
(see section 2.2.1 for the derivation)

G
(1B)(|⃗k|; y, y′) ∼ −e−|⃗k||y−y′|

|⃗k|
+ rc

e−|⃗k|(|y|+|y′|)

2 + rc |⃗k|
, (2.45)

where we suppressed the overall numerical coefficient, since we only care about the
pole structure, but not the contribution of the various degrees of freedom, for the
following argument. We can approximate (2.45) in the regime r ≪ rc (and hence
krc ≫ 1) as

G
(1B)(|⃗k|; y, y′) ∼ −e−|⃗k||y−y′|

|⃗k|
+ e−|⃗k|(|y|+|y′|)

|⃗k|
− 2e−|⃗k|(|y|+|y′|)

rc |⃗k|2
.

Then, the potential energy between two point sources m1 and m2 at y and y′ is

V (1B)(r; y, y′) ∼ −m1m2

M3
∗

(
1

r2 + |y − y′|2
− 1
r2 + (|y| + |y′|)2

+ 2
rrc

arctan r

|y| + |y′|

)
(2.46)

(see also section 3.1.1). Although this result gives us the potential energy between
two point sources, we can read off from it the gravitational potential due to one
point source, evaluated at the location of the other (probe) source, in the presence
of a brane because of the following reason: for a static point source with mass m1
at (r⃗, y), the solution for the scalar field (evaluated at the point (x⃗, y′)) is

Φ(x⃗, y′) ∼ m1

M
3/2
∗

∫
d3k⃗ ei⃗k·(x⃗−r⃗)G

(1B)(|⃗k|; y, y′) .

But since our scalar field Φ is essentially the graviton (see the discussion in sec-
tion 2.1.2), the gravitational potential is M−3/2

∗ Φ (recall that Φ is canonically nor-
malized), which is the same as V (1B)(r; y, y′)/m2 (from (2.46)). Hence, expression
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(2.46), divided by m2, can be viewed as the gravitational potential of a point mass
m1 at location (r⃗, y), evaluated by a (probe) point mass m2 at (x⃗ = 0⃗, y′).

We see that the resulting potential differs from a mere
(
−m1
M3

∗

1
r2+|y−y′|2

)
-potential

quite dramatically, due to the presence of the DGP brane. The situation is similar
to the so-called image problem in classical electrostatics, so we can use that intu-
ition to interpret the present setup. There, we consider the situation of a point
charge in the presence of a perfectly conducting plate. The (positive) point charge
induces a negative charge on the plate, and the resulting potential is the same as
if a mirror image charge had been introduced on the opposite side of the plate.

Similarly, the potential in the DGP scenario has a form as if the brane intro-
duced a negative (anti-gravitating) mass on the opposite side of the brane (opposite
to the probe mass). For probe masses at y′ ≤ 0 (with the source m1 at positive y)
the “image” mass cancels the 5D potential, while for probe masses at y′ > 0 the
image mass enhances the attraction between m1 and m2.

However, there is an important difference to the situation in the electrostatics
case. In the DGP scenario, if the point masses are located at opposite sides of
the brane, there is still an attractive (but 4D) potential left (since the last term in
(2.46) scales as either r−1

c /(|y| + |y′|) or r−1
c /r, depending on if |y| + |y′| ≫ r or

|y| + |y′| ≪ r, respectively). In this sense, the DGP brane “screens” 5D gravity.
Hence, we can conclude that if we consider a single point mass in the bulk near

the brane, the brane will have a repulsive force on the point mass (by effectively
generating an “anti-gravitating” mirror image on the opposite side).
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3
Modification of the DGP
Gravitational Force Law

In this chapter, we want to explore how Newton’s law gets modified in a DGP
scenario where a second DGP brane is present. In particular, we wish to investigate
how the potential energy (2.24) between two static point sources on the same brane
changes, but also derive the gravitational force between two sources on different
branes. We will see that the second brane has the effect of further screening gravity,
even the already weakened gravity as deduced in the original single-brane case. We
will show that this has interesting phenomenological implications.

As explained in section 2.1.2, the “true” gravitational force is due to the ex-
change of the massive graviton, and hence it will introduce an additional Vainshtein
scale to the problem. However, as we will argue in chapter 5, the full gravitational
force will only differ from our result (i.e. in the relevant region) by an order-one
numerical factor.

Furthermore, we discuss the present setup in the context of the cutoff of semi-
classical gravity, which differs from the Planck scale in the presence of a large
number of particle species.

The contents of this chapter is based on Ref. [1] and is mostly a verbatim
reproduction, although modifications, adjustments and extensions have been made.
Also, the order of the presentation of the material has been changed and (hopefully)
helpful comments have been added.
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y

r

R

Figure 3.1: Potential energy between two static point sources on different, parallel branes,
mediated by the scalar field.

3.1 Gravitational Potential Energy Between Sta-
tic Point Masses

Let us start with calculating the gravitational potential energy between two static
point sources, localized on the opposite branes, as shown in Figure 3.1. We will
begin with the full 5D calculation and then perform an analogous computation in
the KK decomposition.

3.1.1 Five-Dimensional Description
For time-independent sources, J(x⃗, y), the potential energy is given by

V = 1
2

∫
d3x dy d3x′ dy′ J(x⃗, y)G(x⃗− x⃗′; y, y′)J(x⃗′, y′) .

Using
J(x⃗, y) = g

[
δ(3)(x⃗)δ

(
y + R

2

)
+ δ(3)(x⃗− r⃗)δ

(
y − R

2

)]
(3.1)

and the (Fourier transform of the) propagator (2.31), the energy reduces to (again
dropping the self-energy terms)

V = g2
∫ d3k

(2π)3 ei⃗k·r⃗G
(

|⃗k|; −R

2 ,
R

2

)
,

= g2
∫ d3k

(2π)3 ei⃗k·r⃗

− 2
|⃗k|

e−|⃗k|R

(2 + rc |⃗k|)2 − r2
c |⃗k|2 e−2|⃗k|R

 ,
= − g2

π2
1
r

∫ ∞

0
d|⃗k| sin (|⃗k|r) e−|⃗k|R

(2 + rc |⃗k|)2 − r2
c |⃗k|2 e−2|⃗k|R

, (3.2)

where r ≡ |r⃗|.
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We see already from (2.27), with (3.1), that if the field Φ is to mimic the
graviton, the correct coupling constant should be g ∝ M

−3/2
∗ = √

rc/MP (for unit-
mass point sources). We fix the numerical coefficient such that

g2 = rc

2M2
P
. (3.3)

A comment on this point should be in order here. We already explained in sec-
tion 2.1.2 that the exact normalization depends on if we want to reproduce the
standard Newton’s law for an exchange of tensor degrees of freedom or/and an ex-
change of a scalar degree of freedom. Moreover, as will become clear in section 3.2,
the presence of a second brane provides us with an additional choice of normaliza-
tion. We can either reproduce the standard Newton’s law for point sources on the
same brane if their 4D separation is much smaller than a characteristic distance
scale ρ, to be introduced below, (i.e. r ≪ ρ) or for the opposite case (r ≫ ρ).
The normalization (3.3) corresponds to the choice that the scalar field (would-be
graviton) mediates the standard Newton force between static point sources on our
brane that are close enough (r ≪ ρ).

The resulting integral in (3.2) cannot be solved exactly, but we can extract the
leading-order behavior for the three interesting regimes to be specified shortly. Let
us rewrite (3.2) as

V (r, R) = − g2

4π2
1
rrc

J , (3.4)

where
J =

∫ ∞

0
dx sin x e− R

r
x

r
rc

+ x+ 1
4
rc
r
x2
(
1 − e−2 R

r
x
) . (3.5)

Note that in the present discussion we are solely interested in the situation where
r, R < rc because rc is already at least of the order of the Hubble size (see the
discussion in chapter 5). Hence, we want to approximate the potential energy for
the regime r ≪ rc and R ≪ rc.

Since the exponential cuts off the above integral at r/R, we can approximate it
as

J ≃
∫ r

R

0
dx sin x

r
rc

+ x+ 1
2
ρ2

r2x3
, (3.6)

where we have introduced the new length scale

ρ ≡
√
Rrc (3.7)

because it will emerge in the result. In the regime r ≫ R, we can further rewrite

J ≃
∫ ∞

0
dx sin x

r
rc

+ x+ 1
2
ρ2

r2x3
. (3.8)

For r ≫ ρ, the last term in the denominator of (3.8) is never dominant in the
relevant integration region (x ≲ 1), and hence we can approximate

J ≃
∫ ∞

0
dx sin x

r
rc

+ x
= FDGP

(
r

2

)
+ O(1)e−

√
2 r

ρ , r ≫ ρ , (3.9)
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with FDGP(r) given by (2.25). Thus, in this regime the potential energy is approx-
imately the same as the one found in the original DGP setup [64].1 Since we are
only interested in the regime r ≪ rc, the above expression reduces to

FDGP

(
r

2

)
≃ π

2 +
(

O(1) + ln r

rc

)
r

rc
+ O

(
r2

r2
c

)
, r ≪ rc .

For r ≪ ρ, the last term in the denominator of (3.8) cannot be neglected.
However, now we can approximate

J ≃
∫ ∞

0
dx

sinx
x

1 + 1
2
ρ2

r2x2
+ O

(
r

rc

)
+ O

(
R

rc

)
,

= π

2
(
1 − e−

√
2 r

ρ

)
+ O

(
r

rc

)
+ O

(
R

rc

)
,

≃ π√
2
r

ρ
+ O

(
r2

ρ2

)
+ O

(
r

rc

)
+ O

(
R

rc

)
, r ≪ ρ . (3.10)

Since an asymptotic expansion of the integral (3.5) is not available, which would
justify the approximations (3.9) and (3.10) analytically, we use numerical means
to show in appendix C.1 that the approximations are nevertheless reliable in the
stated regimes. We also verify numerically (in the same appendix C.1) that the
corrections to the leading-order terms, given above, are correct.

Finally, in the region r ≪ R, we can approximate sin x ≃ x in the numerator
of (3.6) and (using Mathematica) find2

J ≃
∫ r

R

0
dx x

r
rc

+ x+ 1
2
ρ2

r2x3
,

≃ π√
2
r

ρ
H
(
R

rc

)
+ O

(
r3

R3

)
× O

(
R

rc

)
, r ≪ R , (3.11)

where

H
(
R

rc

)
≡ 1 − 1

π
√

2

(
O(1) + ln R

rc

)√
R

rc
+
(

subleading orders of R
rc

)
. (3.12)

1This is not surprising, since for two point sources that are separated by a large distance r,
their bulk separation becomes less important and thus the system with two branes behaves like a
single-brane system. Note, however, that FDGP(r/2) = FDGP(r)|rc→2rc because two branes, with
coupling rc, on top of each other have effectively twice the coupling strength.

2The subleading terms in this expression were extracted numerically. However, we can under-
stand some of their features from the following consideration. Note that in going from (3.5) to
(3.11), we omitted terms with positive (possible fractional) powers of r/R (and additional powers
of R/rc), which are subleading in this regime. What is the next-to-leading power of r/R? On
physical grounds, we know that the force along the brane should go to zero for r → 0. Also,
we can see from (3.5) explicitly that ∂

∂r (J/r) → 0 for r → 0. Hence, we know that the leading
correction (in r/R) to (3.11) has to vanish faster than quadratic. From this argument, it follows
that the (magnitude of the) force in the regime r ≪ R is bounded by the (magnitude of the)
force in regime R ≪ r ≪ ρ and will approach zero eventually. However, to determine how fast
it will approach zero, we resort to a numerical analysis (see appendix C.1), which shows that the
leading correction in (3.11) is cubic in r/R (with a coefficient of order R/rc).
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We can now state the asymptotic behavior of the potential energy in the three
specified regimes. For r, R ≪ rc,

V (r, R) = − 1
8π2M2

P

1
r
J

≃ − 1
16πM2

P
×



(I) 1
r

+ 2
π

(
O(1) + ln r

rc

) 1
rc

+ O(1)1
r

e−
√

2 r
ρ , ρ ≪ r ,

(II)
√

2
ρ

− r

ρ2 + 1
r

(
O
(
r3

ρ3

)
+ O

(
r

rc

)
+ O

(
R

rc

))
, R ≪ r ≪ ρ ,

(III)
√

2
ρ
H
(
R

rc

)
+ 1
r

O
(
r3

R3

)
× O

(
R

rc

)
, r ≪ R ,

(3.13)

with ρ and H
(
R
rc

)
as defined in (3.7) and (3.12), respectively.

Thus, we see that for regions (II) and (III) the potential is proportional to 1/
√
R,

and it is weaker than the ( 1
r2+R2 )-potential that we would get without the DGP

branes (but for sources that are still separated by R along the extra dimension),
since 1/(rcρ) ≪ 1/(r2 +R2). It is also weaker than the potential in the case when
only one of the two branes is removed (which has been first obtained in Ref. [71]).
From (2.46), we see that such a potential would be given by

V (1B)(r;R, 0) ∝ − 1
M3

∗

1
rrc

arctan r

R
∼ − 1

M2
P

×


1
R
, r ≪ R ,

1
r
, r ≫ R ,

(3.14)

with r, R ≪ ρ. In Ref. [71] it was argued that the DGP brane acts as a kind of
anti-gravity and reduces 5D gravity to 4D gravity (see also section 2.3.2). Now we
find in the present work that two branes enhance this effect and further weaken
gravity.

Relating to the discussion of section 2.3.2, we can infer that the effect of the
branes is to introduce even stronger repulsive (anti-gravitating) image point masses.
Hence, if we would consider a point mass on our brane, then the parallel brane (if it
would be empty of sources) would be repelled.3 This repulsion in our double-brane
setup would be even greater than the repulsion between a brane and a point source
in empty space in the original DGP setup.

3.1.2 Kaluza-Klein Description
The gravitational potential energy can be derived in the Kaluza-Klein language.
The advantage of this calculation is that we can gain more insight into the system
and compare the results in both languages.

3Of course, strictly speaking, in our present construction the branes are boundaries and hence
do not respond to dynamics. However, we can switch gears and consider a situation where the
mechanism that localizes a point mass on the brane dominates over the mechanism which fixes
the branes to particular spacetime points.
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Figure 3.2: Wave profiles (given by (3.17)), with m in units of r−1
c and rc/R = 5. The

wave profiles are non-vanishing only for certain values of m, separated by ∼ R−1 (see
(3.18)). The even modes contribute to the attractive potential, while the odd modes
contribute repulsively.

The potential energy between the two sources is

VKK(r, R) =
∑
α

∫ ∞

0
dm 1

2

∫
d3x d3x′ Jm,α(x⃗)Gm(x⃗− x⃗′)Jm,α(x⃗′) ,

= − g2

4πr
∑
α

∫ ∞

0
dmwm,αe−mr , (3.15)

where we have used (see section 2.2.2)

Jm,α(xµ) = g
[
ψm,α

(
−R

2

)
δ(3)(x⃗) + ψm,α

(
R

2

)
δ(3)(x⃗− r⃗)

]
, (3.16)

the propagator (2.40), and defined the “wave profile”

wm,α ≡ ψm,α

(
−R

2

)
ψm,α

(
R

2

)
,

=



1
π

1 +
(
rcm+ tan

(
mR

2

))2
−1

, α = even ,

− 1
π

1 +
(
rcm− cot

(
mR

2

))2
−1

, α = odd ,

(3.17)

which has been plotted in Figure 3.2.
We observe that the wave profiles quickly tend to zero, except for distinct

“peaks” (of height 1/π) at certain values of m. The smaller R/rc, the wider the
peaks are apart. These distinct peaks result from the fact that the wave profiles
have to satisfy certain matching conditions at the branes, and it makes sense that
for less distant branes there are also less modes (or peaks) in a certain m-interval.
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Hence, the modes that contribute effectively to the potential are discrete. For
m ≫ r−1

c , only those modes contribute for which

even:
∣∣∣∣tan

(
mR

2

)∣∣∣∣ ≫ 1 ⇒ m ∼ π

R
(2n− 1) ,

odd:
∣∣∣∣cot

(
mR

2

)∣∣∣∣ ≫ 1 ⇒ m ∼ 2π
R
n ,

(3.18)

with n ∈ N. Of course, the Yukawa-suppression factor in (3.15) determines which
of those discrete modes eventually survive and contribute to the resulting potential.

Another interesting observation is that the even wave profile invariably con-
tributes positively (and hence to the attractive gravitational potential), while the
odd wave profile always contributes negatively (and hence adds a repulsive part to
the gravitational potential).

Now we want to see how these wave profiles conspire together, so that the
potential turns out to be the same as in the 5D description. Unfortunately, in
the KK picture it is very difficult to approximate the integral (3.15) in all but the
case (I).

We have to solve

VKK(r, R) = − g2

4π2
1
rrc

(Jeven − Jodd) , (3.19)

with

Jeven =
∫ ∞

0
dx e− r

rc
x

1 +
[
x+ tan

(
1
2
R
rc
x
)]2 , (3.20a)

Jodd =
∫ ∞

0
dx e− r

rc
x

1 +
[
x− cot

(
1
2
R
rc
x
)]2 . (3.20b)

Let us first consider case (I): both integrals are cut off at rc/r. The result of the
integrals crucially depends on the interplay between the two terms in the square-
bracket of the denominator. In Jeven, the tangent is always sub-dominant, so

Jeven ∼
∫ rc

r

0
dx 1

1 + x2 = arctan rc

r
∼ π

2 − r

rc
+ O

[(
r

rc

)3
]
. (3.21)

In Jodd, the two terms in the square-bracket become of the same order for x ∼ x∗,
with

x∗ ≡
√

2 ρ
R
. (3.22)

But in the case (I), x∗ ≫ rc/r, so the cotangent always dominates, and we find

Jodd ∼ 1
4
R2

r2
c

∫ rc
r

0
dx x2 = 1

12
R

r

ρ2

r2 . (3.23)

Hence, the leading contribution to the potential comes from Jeven, and we recover
the same result (for the leading order) as in the 5D description.
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Now, let us turn to case (II). In Jeven, the tangent is still sub-dominant. How-
ever, in Jodd the story changes. Now x∗ ≪ rc/r, and hence for x ∼ x∗, the terms
in the square-bracket cancel each other, and the integrand has a finite contribution
in that integration interval. We were not able to approximate the result analyti-
cally, but numerical calculations show that, in the leading approximation (where
we take e− r

rc
x ∼= 1), Jodd goes to the same value as Jeven. Hence, up to (at least)

second order, the corresponding first peaks (see Figure 3.2) cancel each other and
the resulting potential energy vanishes.

If we examine (3.20a) and (3.20b) more closely (taking into account the Yukawa-
suppression factor), we find that the first peak of Jeven and Jodd, respectively,
together contribute the same leading factor ρ−1 that we found in the 5D calculation.
We can interpret this result as if those modes that contribute to the repulsive
potential (belonging to the first odd peak) counteract the modes that contribute to
the attractive potential (belonging to the first even peak) and thus weaken gravity.

In case (III), the square-brackets in the denominators go to zero multiple times,
so many of the peaks contribute to the result. A numerical analysis again shows
that we recover the leading behavior of (3.11).

3.2 Force Along the Brane
Although the potential (3.13) is R-dependent, the sources in our scenario are, per
construction, localized on the brane, so nothing can move into the bulk (except
the graviton itself). Stated differently, every force that is orthogonal to the brane
is compensated by the force that is responsible for localizing the matter on the
brane. Hence, in the following section, we will be interested in the force along the
r-direction.

We find

Fr ≡ −∂V (r, R)
∂r

≃ − 1
16πM2

P
×



(I) 1
r2 + O

(
1
rρ

)
e−

√
2 r

ρ + O
( 1
rrc

)
, ρ ≪ r ,

(II) 1
ρ2 + 1

ρ2 O
(
r

ρ

)
+ 1
r2 O

(
R

rc

)
, R ≪ r ≪ ρ ,

(III) 1
R2 O

(
r

R

)
× O

(
R

rc

)
, r ≪ R .

(3.24)

The exact force (i.e. the numerical solution) is shown in Figure C.2 (or rather its
modulus in units of G/(2R2)), where we also plotted the analytical approximations
in the corresponding regimes, given in (3.24).

We see that the following picture emerges. Let us assume that we are an
observer who can be approximated by a static point source with mass m, living
on “our” brane at y = 0. Now imagine there is a different static point source with
mass M , located on the parallel brane, at the location y = R and r⃗ = 0. We
start on our brane at r⃗ = 0 and probe the gravitational force along the spatial
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dimensions of our world. If we started increasing the worldvolume distance r, we
would measure a linearly growing force, which would be suppressed by O

(
r
R

)
(with

respect to regime (II)), as long as we stayed within the region r ≪ R. However,
if we measured again at R ≪ r ≪ ρ, we would determine the constant force
Fr = −GMm

2ρ2 . Finally, for r ≫ ρ, we would measure the same (or rather 1/2) 4D
force Fr = −GMm

2r2 as if the second point source were located on our brane and there
were no extra dimensions.

We would like to emphasize that this force behaves differently than both the
standard 5D force and the 4D force found in the original single-brane setup [71]. In
particular, the emergence of regime (II), giving rise to the spatially constant force,
is a special feature of the present double-brane scenario. Let us explicitly compare
the newly discovered force to the following two other scenarios involving 3-branes
embedded in a 5D spacetime. One scenario is that a point source is located outside
our 3-brane along the extra dimension, but it is located either in empty space or on
a brane that does not contain a DGP term (responsible for quasi-localizing gravity).
Note that we should still assume that we live on a 3-brane because otherwise it
would not be reasonable to consider the force along the r-direction, since nothing
would keep us on a hypersurface with fixed y. Moreover, without brane localization,
our world would be truly five-dimensional, which is experimentally ruled out. We
also assume that our brane is a DGP brane (i.e. containing a localized curvature
term) in this scenario, which we therefore call 1B.

The second scenario is similar to the first but additionally assumes that our
brane does not contain a DGP term. This is, of course, also observationally ex-
cluded because we know that gravity behaves four-dimensional, but let us consider
this scenario for illustrative purposes, anyway. We call this second scenario 0B.

In scenario 0B, if two point sources were separated by a distance R along the
extra dimension, then the potential would be given by ∝ − 1

M3
∗

1
r2+R2 , and the force

along our brane would be4

F (0B)
r ∝ − 1

M3
∗

r

(r2 +R2)2 . (3.25)

In scenario 1B, which was considered in Ref. [71], with two point sources again
separated by a distance R along the extra dimension, the potential is (see (2.46))
∝ − 1

M2
P

1
r

arctan r
R

, leading to a force along our brane of the form

F (1B)
r ∝ − 1

M2
P

(
arctan r

R

r2 −
R
r

r2 +R2

)
. (3.26)

Both forces, F (0B)
r and F (1B)

r , have a linear regime (for r ≪ R) and a regime
(for r ≫ R) where they approach the 5D (∝ −1/r3) and 4D (∝ −1/r2) Newton’s
law, respectively, with the transition scale at r ∼ R. However, they lack the spa-
tially constant regime exhibited by the force (3.24), which is present if both branes
contain a DGP term. We display the three scenarios, just discussed, in Figure 3.3.
The forces are given in units of (MPR)−2 and are additionally normalized such that

4We neglect here, and in the following discussion, the prefactors involving π’s and other
numerical constants.
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Figure 3.3: Log-log plot of the forces F
(0B)
r (magenta), F (1B)

r (light blue), and Fr
(dark blue), given in (3.25), (3.26), and (3.24), respectively. The forces are plotted in
units of (MPR)−2 and are normalized such that their numerical coefficient in the linear
regime (III) is unity. Thus, all three forces are given by r

rc
for r ≪ R, but the scaling with

rc/R is different, namely F
(0B)
r ∝ (rc/R)F (1B)

r ∝ (rc/R)2Fr. The functions are plotted
for rc/R = 106. We see that F (0B)

r and F (1B)
r change to an (r−3)- and an (r−2)-behavior,

respectively, at r ∼ R. This behavior extends to region (I) (ρ ≪ r ≪ rc). In contrast, the
force Fr, found in the case of two parallel DGP branes, exhibits a constant regime (II)
(R ≪ r ≪ ρ), before it assumes the same (r−2)-behavior as F (1B)

r , in region (I).

they all have the same numerical prefactor (unity) in the linear regime, which is
done for clarity of presentation (these factors are almost invisible in the log-log
plot, anyway, and they depend on how we normalize the standard Newton force).
We clearly see that all three forces have a linear regime, but whereas the other
two forces change immediately (at R) to the 4D and 5D regimes, “our” force has a
constant region (whose size depends on the ratio rc/R). The forces have constant
offsets, with respect to each other, in this log-log plot because they satisfy the rela-
tion F (0B)

r ∼ (rc/R)F (1B)
r ∼ (rc/R)2Fr. This is as expected, since our double-brane

force is weaker than the original DGP force, which is itself weaker than the 5D
force, as we already pointed out in section 3.1.1.

Now, it is intriguing that in the scenario with two DGP branes, a spatially
constant attractive force emerges, beyond the length scale R. Let us entertain the
possibility for a moment that this force could compensate the decreasing force (as
we increase r) originating from the baryonic matter on our brane (in our present
scenario, this baryonic matter would constitute a galaxy, centered around r⃗ =
0). Then, one might hope that such a scenario could explain the fact that the
gravitational force being exerted from, say, the interior of our galaxy, is stronger
than the baryonic mass distribution would imply (as discussed in section 1.1),
without the need of postulating the presence of DM on our brane.

In the regime R ≪ r ≪ ρ, the mass M of the source on the second brane has
to be much larger than the enclosed baryonic matter on our brane, so that the
constant force can compete with the baryonic Newton force. In other words, one
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is forced to take
M ∼ Mb(r∗)

(
ρ

r∗

)2
≫ Mb(r∗) , (3.27)

where Mb(r∗) denotes the enclosed baryonic mass at the radius r∗, at which the
baryonic Newton force starts to decrease. One also has to assume r∗ ≳ R (in the
following, we will consider the lower bound in order to maximize the size of the
region where the constant force dominates), so that the constant force does not
spoil the observations that are compatible with the usual baryonic Newton force
for r ≲ r∗.

In this scenario, the constant force would dominate at the outer galactic region,
and the angular velocities of orbiting objects would go like v(r) ∝

√
r
√
GM/ρ.

Although this behavior is not observed in more massive galaxies, where the rotation
curves tend to become flat, there exist claims in the literature that in LSB galaxies
the circular velocities at large radii scale as ∝

√
r [142] or even ∝ r [143] (see also

e.g. Refs. [144, 145]).
Note that for the validity of the above-outlined scenario we have to check if

the Newton force between the baryonic matter on our brane and the observer
would not be modified by the parallel brane in a severe way. For this, we can again
approximate the baryonic matter as a point mass and calculate the potential energy,
as given in (3.30), where r is the distance between the point sources. The integral
one has to evaluate is even more involved than the one we considered previously.
Hence, the analysis is carried out numerically and displayed in appendix C.2. We
see (from Figure C.5) that the Newton force is unchanged for r ≪ ρ (regimes (II)
and (III)).5 For ρ ≪ r ≪ rc, the force crosses over to an equivalent Newton force
with one half its value. This can be understood by noting that, in this region, the
observer is at such a large distance that the two branes appear to lie on top of
each other, and hence rc → 2rc (see also footnote 2 in appendix C). Since after r∗
(≪ ρ) the Newton force falls off, the proposed scenario remains valid. Figure 3.4
summarizes the above statement, by comparing the “baryonic” force to the “dark”
force (which is due to the point source on the parallel brane). We fixed the mass
of the “baryonic” point source to be

Mb = M

2

(
R

ρ

)2

= M

2
R

rc
, (3.28)

where M is the mass of the “dark” point source on the parallel brane, such that
the asymptote of the “dark” force in regime II is equal to the “baryonic” force at
r = R. We see from Figure 3.4 that in this scenario, for r ≪ R (the interior of our
galaxy), the usual baryonic force is much larger than the dark force. However, for
r ≳ R, the constant dark force takes over.

5Although we actually plotted there not the force but the quantity ∝ rVb(r), the force will
also stay unchanged across R (see also Figure 3.4). One should contrast this to the “dark” force,
discussed before, where the force in r-direction does change its scaling across R, although the
potential does not change its leading behavior in this region. The difference is due to the fact
that, up to leading order, Vb depends on r in that region, while the leading term in V does not
(and hence deriving with respect to r removes this term).
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Figure 3.4: Log-log plot of the (norm of the) force along the brane, as a function of r
(in units of R). The “dark” force (due to a point source with mass M on the parallel
brane), expressed in units of (GMm)/(2R2) (which is just −f from (C.2)), is plotted
as the blue solid curve. The blue dashed curves are its asymptotes in regimes (III) and
(II), given by r

rc
and R

rc
, respectively. The orange curve shows the “baryonic” force (due

to a point source on our brane), expressed in the same units. The “baryonic” force is
obtained numerically from (C.3), with Fb = − ∂

∂rVb (cf. footnote 1 in appendix C). Note
that we reintroduced the point source masses and took Mb = MR/(2rc) (see (3.28)). We
did not plot the asymptote ∼ 1/r2 because, in the regime r ≪ ρ, it is indistinguishable
from Fb. The point mass that gives rise to Fb is chosen such that both forces are of the
same order at r = R. We chose the ratio rc/R = 106.

It should be emphasized that the above distance-independent force was derived
for a point source at the second brane. Thus, it could be interesting to take an
extended source and investigate how the asymptotic circular velocities would be
affected. It has been pointed out [146] that there is a substantial diversity in the
rotation curves in LSB galaxies. This diversity might be explained by varying mass
distributions on the parallel brane. Since in the present scenario only the parallel
brane would contain this “dark” matter distribution, the latter does not have to
be weakly interacting, but could even form a highly localized density distribution.

Let us estimate, very crudely, the values of the involved length scales, such that
the above-outlined scenario can be valid. If we wish the distance-independent force
to be operational at r ≳ 1 kpc, we should choose R ∼ 1 kpc. If we then want this
regime to hold up to at least r ≳ 102 kpc, we should take

ρ ≳ 102 kpc

because for r ≳ ρ the potential drops and the angular velocities would start to
decrease. Since there is the constraint rc ≳ H−1

0 ∼ 106 kpc, where H0 is the Hubble
constant, from cosmological observations [147] (see also the discussion in chapter 5),
we actually require ρ ≳ 103 kpc, which is significantly larger than the size of the
galaxy. This constraint, however, does not necessarily imply that the constant
force should extend to galaxy cluster scales because our analysis shows that the
constant force gets corrections as r approaches ρ. For example, from Figure 3.4,
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we see that this force starts to deviate from its constant behavior for r ≳ 102 kpc if
we take ρ = 103 kpc. A more detailed investigation is needed in order to establish
the exact behavior of this new force at those large scales. Moreover, the results
have to be compared to predictions made by the standard CDM scenario and to
observations. Such an analysis has to be postponed to future work.

Let us finally note that if the above scenario is valid, we have to ask the ques-
tion why the mass on the parallel brane is so tightly related to the mass in the
“baryonic” galaxy, as seen from (3.27). This question should then be addressed in
the investigation of galaxy formation.

3.3 Decoupling the Second Brane
We now want to consider two static point sources on our brane (but still in the
presence of the parallel brane). For convenience, we will position our brane at
y = 0, while the parallel brane is shifted to y = R (so the distance between the
branes remains R), by performing an appropriate shift of coordinates. Also, since
both sources are now located at y′ = y = 0, we only need the expression G(|⃗k|; 0, 0)
(that we get after shifting the coordinates in (2.31)), which reads

G(|⃗k|; 0, 0) = − 1
|⃗k|

2 + rc |⃗k|
(2 + rc |⃗k|)2 − r2

c |⃗k|2 e−2|⃗k|R
+ rc

e−2|⃗k|R

(2 + rc |⃗k|)2 − r2
c |⃗k|2 e−2|⃗k|R

.

(3.29)
The potential energy is

V (r) = g2
∫ d3k⃗

(2π)3 ei⃗k·r⃗G(|⃗k|; 0, 0) . (3.30)

In the limit R → ∞, the propagator becomes

G(|⃗k|; 0, 0)|R→∞ = − 1
|⃗k|

1
2 + rc |⃗k|

, (3.31)

which is the same as in the case with only one single brane. This can be seen by
comparing to (2.33), with y = y′ = 0. Hence, for R → ∞, we find the same result
for the potential energy as in Ref. [64]:

V (r)|R→∞ = − g2

2π2
1
rrc

FDGP(r) , (3.32)

where FDGP(r) is again given by (2.25).6 Thus, we find that a second brane,
together with its induced kinetic term, has no influence on gravity in our world if
the brane is far away.

6If one doubts that (3.31) is a good approximation because values for k → 0 enter the integral
in (3.30), one can take the full propagator G(|⃗k|; 0, 0) and approximate the resulting potential
energy. We find that in the regime r, rc ≪ R (for an arbitrary hierarchy between r and rc) the
potential approaches indeed (3.32). For the regime r ≪ R ≪ rc, the Newtonian limit (r ≪ rc) of
(3.32) is recovered. Also note that the numerical prefactor of (3.32) can differ, due to a different
normalization, which can be absorbed in the coupling g (see also the comment below (3.3)).
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In the previous discussion, we considered identical induced kinetic terms on the
two branes, by taking an equal length scale rc for them. However, we can reproduce
an equivalent conclusion if we consider the theory

S =
∫

d4x dy
{1

2(∂AΦ)2 + [rcδ(y) + r̃cδ(y −R)]12(∂µΦ)2 + J(xµ, y)Φ
}
, (3.33)

where, in general, rc ̸= r̃c. Performing the same steps that led to (2.31), we now
find

G(|⃗k|; 0, 0) = 1
|⃗k|

2 + r̃c |⃗k| − r̃c |⃗k| e−2|⃗k|R

(2 + r̃c |⃗k|)(2 + rc |⃗k|) − rcr̃c |⃗k|2 e−2|⃗k|R
, (3.34)

which again reduces to (3.31) in the limit R → ∞.7

3.4 Consistency With Black Hole Physics and In-
terpretation in Terms of Particle Species

In this last section, we want to use our findings to discuss some implications for
the present system, imposed by the consistency with BH physics. Although the
existence of BHs (and their exact form) in the DGP setup has not yet been conclu-
sively established,8 the following discussion will be based on the assumption that,
for distances r ≪ rc, there should exist BHs in the DGP model that have the same
properties as the standard 4D BHs in GR.

3.4.1 Classically Static Configuration
In Ref. [85], several scenarios (in the context of the ADD model) have been investi-
gated where a BH, seemingly, could not evaporate into the species localized on one
or more branes because its size was smaller than the distance to those branes. It has
been found that all of those scenarios corresponded to time-dependent configura-
tions. It was shown that a (classically) static configuration was only reached, after
the BH has accreted all the branes (or had evaporated altogether) and henceforth
could evaporate into all species. This was interpreted as a “democratic transition”
from a “Non-Einsteinian” BH (meaning that it is not the usual time-independent,
universally evaporating BH, derived from GR) to a time-independent, semi-classical
BH.

Now we want to apply that investigation to our present setting. Let us consider
a BH that is localized on “our” brane, in the presence of a parallel brane that
has some species localized on it, which are not localized on our brane. In the
situations of Ref. [85], the tension of the branes was the key property in deriving
the gravitational interaction between the branes and the BH and discovering the
“accretion” mechanism. However, in our scenario, the branes are tensionless, so
one might naively suspect that they would not interact with a BH on our brane.

7It is simpler to derive this propagator from (2.29) (with the shifted branes and unequal
cross-over scales) if one immediately fixes the first source at y′ = 0.

8For some discussions, see Refs. [130, 133].
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But we showed in section 2.3.2 that the branes in our scenario, due to their DGP
term, would react to a present mass source, such as a BH, by repelling it. Thus,
unless we treat the branes as fixed boundaries, our configuration would be also
time-dependent.

It goes beyond the scope of this thesis to investigate if a static configuration
can be reached and to determine the time scale. However, the fact that the second
brane does not influence us if it is very far away (see section 3.3) suggests that
there is at least the trivial static configuration where the second brane is sent to
infinity. In this case, there could be a situation where a BH on our brane cannot
evaporate into the species on the parallel brane.

This result differs from the one in the ADD case, and it seemingly tells us that
in the DGP scenario a BH that does not evaporate universally into all species does
not have the tendency to “democratize” its evaporation.

However, it is subtle to adopt such an interpretation. For the authors of Ref. [85]
to interpret the evolution towards time-independence (the accretion of the branes)
as the evolution towards democratization, driven by the presence of the localized
species on the distant branes, it was crucial to note the following relation: since
in a general coordinate invariant setup the branes have a dynamical origin (they
are domain walls, instead of being merely boundary conditions), they must have a
tension, which then will excite particles (even without additionally localized bulk
fields). Hence, an attraction between a BH and the branes is always accompanied
by the presence of localized species on the latter. In our setup, however, the branes
were originally introduced as boundaries, and hence they can be tensionless.

Thus, our result could indicate that in the DGP brane-world an interpretation
in terms of species has its limits. Alternatively, the species picture could be trying
to tell us that our construction of two distant DGP branes is not consistent. For
example, it might be the case that it is not possible to localize different species on
the two branes in such a way.

Another possibility is that this apparently qualitatively different behavior than
in Ref. [85] is an artifact of our simplified scalar field prototype theory. As men-
tioned in the beginning of section 2.1, the general coordinate invariance in the DGP
model, and in particular its translational invariance along the extra dimension, is
best observed if one does not fix the position of the brane/s but employs the full
gauge redundancy to transform between different positions. This, in turn, is asso-
ciated with the brane bending mode. Hence, if one analyzes the full spin-2 theory,
it is conceivable that the brane bending mode will restore a similar behavior in the
present setup as the one observed in Ref. [85]. Such an investigation is beyond the
scope of this thesis.

3.4.2 Dependence of the Cross-Over Scale on the Number
of Species

As explained in section 1.1.2, in theories that tend to GR in the IR, consistency with
BH physics requires a bound on the cutoff of semi-classical gravity. This bound



56 3. Modification of the DGP Gravitational Force Law

depends on the number of particle species in the theory.9 Now, in our scenario,
the situation is somewhat different. We consider a model that goes to GR at short
distances but not at large distances. However, it is possible to derive a similar
bound in our case if one assumes the existence of ordinary BHs. Furthermore,
postulating the equality of the cutoffs for a 5D and a 4D observer, leads to an
interesting relation between the cross-over scale and the number of species. In the
following, we will reproduce the derivation given in Ref. [136].

If the existence of the standard 4D BH with Schwarzschild radius

rg = M

M3
∗ rc

= M

M2
P
,

for length scales r < rc, is assumed, one can derive the same bound for a 4D
observer as in (1.5),

Λ ≲
MP√
N
,

where Λ is the cutoff of semi-classical gravity and N is the number of localized
species on the brane. Let us, for definiteness, consider the case that we can have a
semi-classical BH of a size all the way down to

√
N/MP. Then, the highest possible

cutoff will be
Λmax = MP√

N
.

Although, in principle, this cutoff could be independent of the cutoff for the 5D
bulk observer (who only sees one species), the authors in Ref. [136] explore the
possibility that they are the same, so Λmax = M∗. Since rc ≡ M2

P/M
3
∗ , this leads to

N = rcM∗ . (3.35)

If we accept the relation (3.35), we see that, for fixed M∗ in the bulk, the number
of localized particles is

N = M2
P

M2
∗
, (3.36)

and hence, from this point of view, is responsible for the strength of gravity on the
brane.

On the other hand, we saw in our discussion in section 3.3 that if the second
brane is separated far enough, then no matter how strong gravity is on that brane,
it will not affect the gravitational laws in our world. Hence, the above assumption
of the equality of 5D and 4D cutoffs of semi-classical gravity leads to an interesting
observation: even if there is a very high number of species in the theory (but
localized on a different brane), it does not alter the cutoff of semi-classical gravity
in our universe. This is, again, an implication that differs from the situation in
models where there is a normalizable zero-mode of the graviton.

9A similar relation as (1.5) can also be derived on perturbative grounds, using that the gravi-
ton propagator will get radiative corrections from the N fields [28, 148]. However, we want to
emphasize that the perturbative argument is, in fact, a naturalness argument, since the radia-
tive corrections could cancel each other, whereas the non-perturbative (BH) argument leads to a
consistency limit.
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3.5 Summary and Discussion
We have investigated the modification of the original DGP setup [64] due to the
addition of a second 3-brane with a localized curvature term, parallel to the brane
where our SM fields are localized. We have shown that the potential energy between
two static point masses exhibits similar properties as in the original DGP setup,
but it also acquires a qualitatively different behavior. By calculating the potential
energy between two point masses on different branes, in the regime where the cross-
over scale rc is much bigger than the 4D distance r and the brane separation R,
we found that a new length scale emerges, namely ρ =

√
Rrc. For ρ ≪ r, the

(leading contribution of the) potential energy goes like 1/r, while for r ≪ ρ, it
scales as 1/

√
R. Thus, we found that in the presence of the branes, 5D gravity is

screened. Although a screening was already observed in Ref. [71] for one brane, we
established that the addition of the second brane weakens gravity still further, so
it behaves even weaker (for r ≪ ρ) than four-dimensional.

Taking into account higher-order contributions to the potential, we found a
linear r-dependence in the region R ≪ r ≪ ρ. Hence, if we consider the force along
the 3-brane, there is a spatially constant attractive force between the point masses.
This constant force, being exerted from matter sources on the parallel brane, can
lead to circular velocities of objects, orbiting e.g. the center of our galaxy, that
do not decrease but rather slightly increase. This might be phenomenologically
interesting for LSB galaxies, as it suggests that an explanation of the observed
rotation curves might be possible without introducing DM on our brane. It may
be worthwhile to consider extended sources on both branes and to investigate, in
a future work, how the potential energy behaves and hence what rotation curves
can be obtained. Moreover, much work remains to be done in order to derive
the cosmological implications and the viability, on all relevant scales, of a scenario
where DM (with the standard CDM properties) on our brane is replaced by matter
distributions (with potentially much different behavior than in the standard CDM
paradigm) on a parallel brane.

We derived the potential energy in two different ways: we calculated it in five
dimensions and derived an expression in terms of KK modes, after performing
the dimensional reduction. In the KK picture, we showed that the even modes
contribute only to the attractive potential, while the odd modes contribute only to
the repulsive part, and thus weaken gravity.

Finally, we have considered the limiting case where the second brane is sent far
away (R ≫ rc). In this case, the laws of gravity on our brane behave like in the
original DGP scenario and are not influenced by the presence of another brane.
If one assumes the existence of BHs at distances r ≪ rc and adopts a species-
viewpoint, this result is interesting for the following reasons. A BH on our brane will
just evaporate into species localized on our brane. The strength of the gravitational
potential and the cutoff of semi-classical gravity in our universe are not altered by
the (possibly large) number of species on the distant brane. This suggests that
either the usual bound on the number of species has limited applicability for a
DGP-type model or that the species-viewpoint points to an inconsistency in our



58 3. Modification of the DGP Gravitational Force Law

assumed construction of two DGP branes, including the potential inconsistency of
neglecting the brane bending mode for this discussion.

To gain more insight, one could investigate, in a future work, how a classi-
cally static configuration (where the second brane is at a finite distance) might be
achieved in the presence of the branes and their repulsive nature. Would the BH
also attempt to accrete the other brane, as in Ref. [85]?



4
The Casimir Effect

In this chapter, we will show that the DGP branes give rise to (effective) boundary
conditions for the gravitational field and hence lead to the (gravitational) Casimir
effect. We will also see that the Casimir force is modified with respect to the stan-
dard result that is derived for Dirichlet boundary conditions on parallel plates. We
will continue to work with the simplified theory (2.27), which describes only one
propagating (scalar) degree of freedom, instead of the five propagating degrees of
freedom (scalar, vector and tensor) of the full-fledged DGP theory (or rather its
generalization with two branes). However, the standard Casimir effect is qualita-
tively the same for all bosonic fields (see e.g. Ref. [149] for spin-0 and spin-1 and
Refs. [150, 151] for spin-2), with the different numbers of degrees of freedom just
affecting the numerical factor of the result. As we will show, the modification of
our derived Casimir effect is entirely due to the special mass quantization that
results from the presence of the branes. Hence, we do not expect differences for
higher-spin fields, besides the usual factors accounting for the differing degrees of
freedom (see also section 4.4 for more commentary on this issue).

In the present chapter, we will work (exclusively) in the KK picture, since it is
elucidating to observe how the Casimir effect follows from the particular structure
of the quantized masses of the KK modes. For the derivation, it will prove useful
to work with the regularized system, as depicted in Figure 2.1, and only at the end
send the size of the extra dimension to infinity. In the next section, we will derive
the vacuum energy of this system.

This chapter is based on Ref. [2] and is, to a large extent, a verbatim reproduc-
tion, with minor modifications.
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4.1 Vacuum Energy
As shown in section 2.2.2, the KK modes satisfy (2.44), with masses given by
the solution of the transcendental equation (2.43). Using a finite 3-volume on the
brane, with size V , and periodic boundary conditions,1 the solutions to (2.44) can
be quantized in the standard way, leading to

ϕ̂m,α = 1√
V

∑
k⃗

1√
2ωm,α(k⃗)

(
âm,α(k⃗)e−i(ωm,α(k⃗)t−k⃗·x⃗) + â†

m,α(k⃗)ei(ωm,α(k⃗)t−k⃗·x⃗)
)
,

with
ωm,α(k⃗) =

√
|⃗k|2 +m2

α , ki = 2πni
V 1/3 , ni = 0,±1, . . . (4.1)

and the canonical commutation relations[
âm,α(k⃗), â†

m′,α′(k⃗′)
]

= δk⃗,k⃗′δm,m′δα,α′ , (all others zero) .

The Hamiltonian is then given by

Ĥ =
∑
α

∑
m

∑
k⃗

ωm,α(k⃗)
(
â†
m,α(k⃗)âm,α(k⃗) + 1

2

)
,

and the vacuum energy per unit 3-volume (i.e. the vacuum energy density measured
by a brane-observer) is

E = 1
V

⟨0|Ĥ|0⟩ = 1
V

∑
α

∑
m

∑
k⃗

ωm,α(k⃗)
2 .

Let us now go to the limit of an infinitely large 3-brane (V → ∞). Then, we can
replace

1
V

∑
k⃗

↔
∫ dk1 dk2 dk3

(2π)3

and find

E = 1
4π2

∑
α

∑
m

∞∫
0

dk k2ωm,α(k⃗) .

Of course, this quantity is divergent because we are integrating over all momenta
and summing over the full KK tower of masses. In order to regularize this ex-
pression, we will use the scheme of cutoff regularization (there is a vast amount of
literature on different regularization schemes; see e.g. Ref. [149]) and introduce the
exponential cutoff

exp
[
−ωm,α(k⃗)a

π

]
.

Thus, we are cutting off the high frequencies at the frequency ∼ a−1. We can
interpret this in an analogous way to the standard calculation of the vacuum energy

1We use here the box normalization on the 3-brane just for clarity and will take the limit of
the infinite-size box shortly.
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between two conducting plates in the presence of an electromagnetic field. There,
the plates are not expected to provide Dirichlet boundary conditions for the photon
at frequencies much larger than the plasma frequency of the plates. Here, we also
expect the effective Lagrangian (2.27) to be valid only for distances larger than a.
Therefore, the regularized vacuum energy is

Ereg = 1
4π2

∑
α

∑
m

∞∫
0

dk k2ωm,α(k⃗)e−ωm,α(k⃗) a
π . (4.2)

By construction, expression (4.2) is cutoff dependent and will blow up for a → 0.
However, since this singular behavior has nothing to do with the presence of the
branes, but comes from the fact that the vacuum energy is divergent, we will renor-
malize the energy by subtracting the vacuum energy of a system without branes.
Note, however, that such a subtraction does not remove the divergence completely.
We will find in section 4.2.3, using numerical methods, that the renormalized en-
ergy in 2D still has a non-vanishing, logarithmic a-dependence. Also, in the 5D
system an a-dependence remains. However, this divergent part is independent of
the separation distance of the branes. Hence, the Casimir force is finite and cutoff
independent.2

Now, in the system without the branes we can again decompose the 5D scalar
field into massive KK modes, using just cos (my) and sin (my) as mode functions.
The periodic boundary conditions will then lead to

m0 = 2πn
L

, n = 0, 1, 2, . . . (4.3)

Note that here, unlike in the setup with branes, the masses of the even and the
odd modes are equal (and again, only the even modes have a zero-mode because
sin(0) = 0).3 Further notice that the masses m0 can also be recovered from (2.43)
in the limit rc → 0, as it should be.

Thus, the (regularized) vacuum energy in the absence of branes is given by

Ereg
0 = Ereg|m→m0 . (4.4)

Then, the Casimir energy of the DGP system is

EC ≡ lim
a→0
L→∞

(Ereg − Ereg
0 ) , (4.5)

where we removed the short distance cutoff a and sent the size of the extra di-
mension to infinity (which is usually the case in the DGP model). We expect

2Note that there exists extensive literature that deals with improved regularization and renor-
malization techniques, such that those kinds of remaining divergences are removed. In the context
of delta-function potentials, one can also find discussions of the physical origin of such divergences
(see e.g. Refs. [97, 99]). Since we are only interested in the observable Casimir force, where these
divergences drop out, it is beyond the scope of this thesis to discuss this further.

3The reason that in the dimensionally reduced system every mode (except the even zero-
mode) is twofold degenerate, is that the original 5D setup (without branes) had a conserved
fifth momentum, due to the translational invariance in y-direction, which translates to an O(2)-
invariance in the reduced system.
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expression (4.5) to be finite, since the Casimir effect is known to be an IR effect
and therefore should be independent of high energy physics. We will now calculate
this expression and show that this is indeed the case (note, however, the comment
below (4.2)).

4.2 Casimir Effect in 1+1 Dimensions
Since evaluating expression (4.2) is quite involved, we will first consider a simplified
version in order to isolate the relevant features, before tackling the full problem.

Let us consider our setup in 1+1 dimensions, i.e. with just the “extra” dimension
and time. In this case, the 3-branes become 0-branes (i.e. just points in the y-
direction) and there are no transverse dimensions on the branes. This situation is
described by the action

S2D =
∫

dt dy 1
2

{
Φ̇2 − (∂yΦ)2 + rc

[
δ
(
y + R

2

)
+ δ

(
y − R

2

)]
Φ̇2
}
, (4.6)

where (˙) denotes time-derivatives.
Now we decompose

Φ(t, y) =
2∑

α=1

∑
m

ψm,α(y)ϕm,α(t) ,

where ψm,α(y) are the same mode functions as before, satisfying (2.34). Then, the
dimensionally reduced action reads

S2D =
∫

dt
∑
α

∑
m

1
2
(
ϕ̇2
m,α(t) −m2

αϕ
2
m,α(t)

)
. (4.7)

The KK fields are now just harmonic oscillators, with the frequencies given by
the solutions of (2.43). Following the same steps as in section 4.1, we find the
Hamiltonian

(2D)Ĥ =
2∑

α=1

∑
m>0

mα

(
â†
m,αâm,α + 1

2

)
.

Note that in the 2D case the Hamiltonian does not contain the zero-mode (with
m1 = 0) because it is constant and hence drops out (ϕ̇0,1 = 0).

The vacuum energy is given by

E(2D) = ⟨0|(2D)Ĥ|0⟩ =
2∑

α=1

∑
m>0

mα

2 ,

and after regularizing we get

E(2D) reg =
2∑

α=1

∑
m>0

mα

2 e−mα
a
π , (4.8)

which is much simpler than (4.2). However, since the masses mα cannot be deter-
mined exactly, we can calculate (4.8) only either approximately or numerically. We
will do the former in the next two sections and the latter in the section after that.
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4.2.1 Infrared Transparent and Opaque Regions—Sharp
Transition Approximation

In this thesis, we are interested in the parameter space covering R ≲ rc (cf. sec-
tion 3.1.1). If we especially consider the limit R ≪ rc, we find that (2.43) allows
two different regimes. We can rewrite it as

−
2 sin

(
mαL

2

)
mαrc

=


2 cos

[
mα

2 (L−R)
]

cos
(
mαR

2

)
, for α = 1 (even) ,

−2 sin
[
mα

2 (L−R)
]

sin
(
mαR

2

)
, for α = 2 (odd) .

(4.9)
For mαrc ≪ 1, the left-hand side of (4.9) blows up, and hence we find solutions

for (since the right-hand side lies in the interval [−2, 2])

mα = 2πn
L

, n = 1, 2, 3, . . .
(
mα ≪ r−1

c

)
. (4.10a)

For mαrc ≫ 1, the left-hand side of (4.9) vanishes, which leads to

m1 =


πn

L−R
πn

R

, n = 1, 3, 5, . . . (even modes) ,

m2 =


πn

L−R
πn

R

, n = 2, 4, 6, . . . (odd modes) ,

(
mα ≫ r−1

c

)
. (4.10b)

Note, however, that the upper solutions of the even and odd parts of (4.10b) are
only valid for n ≫ (L−R)/rc.

We see that the system has an infrared transparent regime (for m ≪ r−1
c ),

where the modes do not “see” the branes and hence have the same frequency as in
a (periodic) box of size L. The system also has an opaque regime (for m ≫ r−1

c ),
where the branes act effectively as Dirichlet boundary conditions for the modes,
and hence the latter acquire frequencies as expected for such a configuration. The
system is depicted in Figure 4.1.4

Now, let us first ignore the fact that there is a transition region at m ∼ r−1
c

and consider a “toy model” where we artificially construct boundary conditions for
the scalar field in such a way that the modes with m ≤ r−1

c are “free”, i.e. they do
not have to fulfill any boundary conditions at the location of the branes, while all
heavier modes, m > r−1

c , have to satisfy Dirichlet boundary conditions there (so
the branes act as “perfect conductors” for the scalar field5). Then, the (regularized)
energy for a system with such a sharp transition is given by

E(2D) reg
s =

nmax∑
n=1

2πn
L

e− 2an
L

︸ ︷︷ ︸
Σs

1

+ 1
2

∞∑
n=nmin+1

πn

L−R
e− an

L−R

︸ ︷︷ ︸
Σs

2

+ 1
2

∞∑
n=1

πn

R
e− an

R

︸ ︷︷ ︸
Σs

3

, (4.11)

4This is, of course, just a slightly different way to view Figure 2.1.
5We can see explicitly that the field amplitudes vanish at y = ±R

2 , for mrc ≫ 1, from the
expressions for the mode functions (B.10) and (B.11).
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L−R

R

Figure 4.1: A ring (with circumference L) with two branes (perpendicular lines), sepa-
rated by R. For “transparent” branes, one expects the frequencies to obey m = (2πn)/L,
with n ∈ N. For Dirichlet boundary conditions at the branes, one expectsm = πn/(L−R)
and m = πn/R, with n ∈ N. Both solutions are the limiting cases of (2.43) for m ≪ r−1

c
and m ≫ r−1

c , respectively.

with
nmax = 1

2π
L

rc
and nmin = 1

π

L−R

rc
. (4.12)

If we perform the summations and then expand around a = 0 and 1/L = 0, we
find

Σs
1 = L

4πr2
c

+ 1
2rc

− La

6π2r3
c

+ O
(
a

r2
c

)
+ O

(
a

Lrc

)
, (4.13a)

Σs
2 = πL

2a2 − πR

2a2 − L

4πr2
c

+ R

4πr2
c

− 1
4rc

+ La

6π2r3
c

+ O
( 1
L

)
+ O

(
a

r2
c

)
, (4.13b)

Σs
3 = πR

2a2 − π

24R + O
(
a2

R3

)
. (4.13c)

To renormalize expression (4.11), we again subtract the vacuum energy of a
system in the absence of branes,

E
(2D) reg

0 =
∞∑
n=1

2πn
L

e− 2an
L = πL

2a2 + O
( 1
L

)
+ O

(
a2

L3

)
. (4.14)

Then, it follows that

E
(2D) s

C = lim
a→0
L→∞

(
E(2D) reg

s − E
(2D) reg

0

)
,

= − π

24R + 1
4rc

+ R

4πr2
c
. (4.15)

Thus, we find that, after removing the regulators a and L, the resulting Casimir
energy has three finite and cutoff-independent terms. The first term is identical
to what one would get if calculating the standard Casimir energy between two
conducting plates (Dirichlet boundary conditions), separated by a distance R in
1+1 dimensions. However, we see that the inclusion of an IR transparency region
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leads to two new contributions, which modify the Casimir energy. The first new
contribution (second term in (4.15)) increases the Casimir energy by a constant.
However, note that the sign of this term depends on whether the first mode in the
opaque region is even or odd. In the present situation, the constant is positive
because the first mode entering Σs

2 in (4.11) is odd. Had we organized the system
according to a different prescription—modes with m < r−1

c are “free” and modes
with m ≥ r−1

c are “bound”—the first mode to enter the summation would have
been the even one. In this case, the constant contribution would be negative, − 1

4rc
.

Since we are ultimately interested in the Casimir force, which is given by

FC ≡ −EC

∂R
, (4.16)

the more important, novel contribution is the last term in (4.15). Here, the sign
turns out to be independent of the particular separation of the free and bound
modes (i.e. independent of whether the first mode is even or odd) and is always
positive. Thus, the Casimir force, in the presence of an IR transparency region, is

F
(2D) s

C = − E
(2D) s

C
∂R

= − π

24R2 − 1
4πr2

c
. (4.17)

Hence, it is amplified as compared to the standard Casimir force without an IR
transparency region.

This result can be interpreted in the following way: usually (that is, in the case
where the branes provide ideal Dirichlet boundary conditions), we can “fit” only
those wavelengths λ into the system shown in Figure 4.1 that are fractions of 2R
and 2(L−R), and hence

λ =


2R
n
, (inside the branes) ,

2L−R

n
, (outside the branes) ,

(4.18)

where n ∈ N. However, we have to exclude wavelengths that lie below the validity
distance of the theory, by introducing the cutoff a and hence excluding wavelengths
λ ≲ a. One then finds in the limit L → ∞ (which turns the “outside”-modes
continuous) and a → 0 that due to the fact that the “inside”-modes are discrete
(and hence reduced in number) there is an attractive force between the plates
(branes). The fact that this effect is independent of the short distance cutoff a is
said to indicate that the Casimir effect is an IR effect.

Now we found the following modification to this situation. If we remove all
the (“outside”) wavelengths from (4.18) for which n ≲ 2(L − R)/rc, such that all
wavelengths λ ≳ rc do not “see” the boundary conditions at the branes anymore6,
we diminish the number of allowed modes in our brane system even further. Hence,
the (magnitude of the) Casimir force is increased by a constant (proportional to
the size of the “exclusion window”).

We summarize the relevant distance scales in Figure 4.2.
6Thus, the wavelengths with λ ≳ rc are given by λ = L/n. In the continuous limit L → ∞,

these wavelengths are not constrained at all.
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a R rc L

short dis-
tance physics

modes can be fit only
inside or outside the branes

modes of periodic
box do not

“see” the branes

Figure 4.2: Different scales of the system and their relevance for the Casimir effect.

4.2.2 Taking Into Account the Transition Region—Leaking
Branes

In order to analyze our more realistic model, where the branes do not just alternate
between being perfect conductors (for m > r−1

c ) and being invisible (for m < r−1
c )

but have the DGP-like behavior, we have to study more closely the region m ∼ r−1
c .

In this case, the right-hand side of (4.9) is an oscillating function, and hence the
solutions for mα are not available exactly. However, working in the limit R ≪
rc < L, we can derive leading corrections to the results (4.10a) and (4.10b), which
improve the accurateness of the result as we approach m ∼ r−1

c . In this limit, the
“inside”-modes, m ∝ n/R, of the regime mrc ≫ 1 are already good approximate
solutions, so we can focus on the “outside”-modes, m ∝ n/(L−R), there.

Even Modes

For the correction of the even modes in the opaque region, we can expand (4.9),
using m(L − R) = πn + ϵ (for |ϵ| ≪ 1), and find ϵ ∼ 2(L − R)/(πnrc), as long as
n ≲ 2L/(πR).

Similarly, for the IR region, we expand with the ansatz mL = 2πn + ϵ (for
|ϵ| ≪ 1) and find ϵ ∼ −4πnrc/L.

Thus, in the leading approximation, we obtain

m1 =



2πn
L

− 4πn
L

rc

L
, for n ≪ nmax , (for n ∈ N) ,

πn

L−R
+ 2
πn

1
rc︸ ︷︷ ︸

mc
1

, for nmin ≪ n ≪ n∗ ,


(for odd integers n) ,
πn

R
,

(4.19)

with nmax and nmin again given by (4.12). Note that the form of the correction of
mc

1 is only valid up to n ∼ n∗, with

n∗ ≡ 2
π

L−R

R
. (4.20)

Odd Modes

The leading correction of the odd modes in the opaque region has a more subtle
form than for the even modes. It turns out that it first grows (with n) and then
decreases again, with the turning point set by a new scale. We can see this as



4.2 Casimir Effect in 1+1 Dimensions 67

follows. We rewrite (4.9), using m(L − R) = πn + β (for |β| ≪ πn),7 and find
β ∼ 2 arctan [f(n)], as long as n ≲ 2L/(πR). The argument of the arctan is given
by

f(n) = R

2L
nπ(

n
nρ

)2
− 1

, (4.21)

where
nρ =

√
2L−R

πρ
and ρ =

√
Rrc . (4.22)

Notice that first (for n ≲ nρ) the correction grows linearly with n (since β ∝
−nR/L) and later (for n ≳ nρ) decreases again (β ∝ L/(nrc)). At the turning
point, at n ∼ nρ, the mass (leading term) is m ∼ ρ−1, and thus we have found a new
characteristic scale, ρ. Interestingly, ρ is the same scale that played a prominent
role for the behavior of the gravitational force in chapter 3.

Finally, for the IR region, we expand with the ansatz mL = 2πn+ ϵ (for ϵ ≪ 1)
and find ϵ ∼ −4(πn)3R2rc/L

3.
Then, in the leading approximation, we obtain

m2 =



2πn
L

− 4(πn)3R
2rc

L4 , for n ≪ nmax , (for n ∈ N) ,
πn

L−R
+ 2
L−R

arctan [f(n)]︸ ︷︷ ︸
mc

2

, for nmin ≪ n ≪ n∗ ,


(for even
integers n) ,

πn

R
,

(4.23)
with

mc
2 ≃


mc

2,a ≡ πn

L−R
− πn

L−R

R

L
, n ≪ nρ ,

mc
2,b ≡ πn

L−R
+ 2L−R

πnLrc
, n ≫ nρ .

(4.24)

Again, the form of the correction of mc
2 is only valid up to n ∼ n∗, with n∗ given

in (4.20).

Validity of the Approximations

Note that the corrections that we derived in (4.19) and (4.23) improve the solutions
for mα, as we approach the transition region from the IR transparent and the
opaque regimes, respectively, but they are not valid at m ∼ r−1

c . Here, we cannot
write down an asymptotic expansion for mα. However, if we extend the validity
region of the solutions in (4.19) and (4.23) all the way to m ∼ r−1

c , we will only
introduce an error to the vacuum energy that is of the order of r−1

c . We can see
this by looking at (4.9). For m ∼ r−1

c , the solutions will obviously be modified.
However, the number of modes that solve this equation is still proportional to the

7Note that this time we do not assume β to be much smaller than 1. However, we still require
it to be much smaller than πn, since we are looking for a correction to the leading term of m2.
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number of times the left-hand side and the right-hand side crosses zero. In the
limit L > rc ≫ R, this is of the order L/rc, which is independent of R. Hence, the
contribution to the energy, from that region, is(

∼ 1
rc

+ ∼ 1
L

)
L

rc
= O(1)L

r2
c

+ O(1) 1
rc
, (4.25)

which deviates by O(1) factors from the true result. The first term cancels from
the two sums Σs

1 and Σs
2, as can be seen explicitly in (4.11),8 but the second term

will contribute to the energy. Hence, correcting the masses around r−1
c , would just

change the r−1
c -part of the vacuum energy by an O(1) numerical factor. Since

this constant term will drop out in the expression of the Casimir force, we can
safely use the expansions (4.19) and (4.23) for n ≪ n∗ (mα ≪ R−1). Although
the corrections lose their validity as we approach mα ∼ R−1, they are suppressed
as ∼ R/rc. Thus, in this section, we will consider the above expressions to be
good approximate solutions (up to corrections R/rc) of (2.43) for the full range
of masses. However, we will see in the next section, by performing a numerical
analysis, that the corrections for n ≳ n∗ will in fact also contribute, since they do
not fall off fast enough at the lower limit.

We further observe that the relevant correction to the Casimir energy (due to
the “leakage”) comes from the region R < λ < rc. There, the correction of the
even modes goes like 1/n and hence does not vanish fast enough, leading to a
logarithmic contribution to the energy. The correction of the odd modes also has
a contribution 1/n (for n ≫ nρ), however, more importantly, it has an additional
contribution that peaks around n ∼ nρ, where m2 ∼ ρ−1. Hence, the energy will
get a contribution ρ−1, as we will explain below.

Corrected Casimir Energy

Let us now study the new contributions to (4.11) in detail. If we use the (corrected)
even mass from (4.19) for the IR transparency region and plug it into Σs

1, we find
that (4.13a) acquires the additional contribution

− 1
4πrc

+ . . .

where the ellipses denote terms vanishing in the limit a → 0, L → ∞. However,
as we explained before, the precise numerical factor of the term ∼ 1/rc is only
numerically calculable and not the one given above. The correction of the odd
mass in the IR transparency region, (4.23), is much smaller than for the even
modes. Since we did not expand the even masses up to that order, we have to
use the leading approximation for the odd modes if we want a consistent error
estimate for Σs

1.9 Hence, there is no additional contribution to Σs
1 from the odd

modes. Thus, the energy from the IR transparency region is modified according to

Σs
1 → Σ1 = Σs

1 + O(1) 1
rc

+ . . . (4.26)

8This is just an “artifact” from the fact that we split the sum there.
9If we would take into account this correction, Σ1 would now contain a term ∝ R2/r3

c .
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We see that, as expected, the correction of the IR transparency modes due to the
non-sharp transition at m ∼ r−1

c only modifies the r−1
c -term of the energy.

Next, we consider the correction of Σs
2 coming from the even modes. We cannot

just plug in the correction that we found in (4.19) and sum up to infinity because
the correction is only valid up to n ∼ n∗. Hence, we have to divide the sum into
two parts,10

1
2

n∗∑
n=nmin+2

(odd n)

mc
1e−mc

1
a
π + 1

2

∞∑
n=n∗+2
(odd n)

πn

L−R
e− an

L−R .

Thus, the correction to Σs
2 will come entirely from the first part. Unfortunately, it

cannot be summed exactly. However, we can find an asymptotic expansion around
a = 0 for this sum (we have used Mathematica for this). The new contribution is

− 1
2πrc

ln R

2rc
+ . . .

For the correction of Σs
2 resulting from the odd modes, we again have to note

that the correction that we found in (4.23) is only valid up to n ∼ n∗. Furthermore,
because it is the rather complicated function ∼ arctan f , an asymptotic expansion
of the sum, involving this correction, is not available. Therefore, we will split the
sum even further and use the two approximate expressions, given in (4.24), in the
respective regions. Hence, we have to evaluate the sums

1
2

nρ∑
n=nmin+1

(even n)

mc
2,ae−mc

2,a
a
π

︸ ︷︷ ︸
Ia

+ 1
2

n∗−1∑
n=nρ+2
(even n)

mc
2,be−mc

2,b
a
π

︸ ︷︷ ︸
Ib

+1
2

∞∑
n=n∗+1
(even n)

πn

L−R
e− an

L−R ,

where the new contributions to Σs
2 will come solely from Ia and Ib. From Ia, we

find the new contributions:

Ia ⊃ L

4πρ2 +
√

2
4ρ − 2 + π

4πrc
+ R

8πr2
c
. (4.27a)

The sum Ib, as in the even case, cannot be evaluated exactly, so we again have
to rely on an asymptotic expansion around a = 0. We obtain the following new
contributions:

Ib ⊃ − L

4πρ2 −
√

2
4ρ + 1

4πrc
− 1

4πrc
ln R

2rc
. (4.27b)

Note that to derive expressions (4.27a) and (4.27b) we assumed that the two
limiting values in (4.24) are valid right up to n ∼ nρ. Then, by adding (4.27a) and
(4.27b), the terms proportional to L/ρ2 and 1/ρ cancel, in the same way as the

10Note that the first sum now starts “two steps” after the transition region because the first
step is taken care of by the odd modes. The same is true for the second sum. Note, however, that
since individual modes contribute only with ∼ 1/L to the sum, in the continuous limit L → ∞
these subtleties could just as well be ignored.
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terms ∝ L/r2
c canceled in (4.11), patching together Σs

1 and Σs
2. However, analogous

to what we explained in the paragraph around (4.25) regarding region m ∼ r−1
c ,

the masses at m ∼ ρ−1 should also get order-one corrections, since the exact form
(2 arctan f)/(L − R) differs from the approximations in (4.24) at this transition
region. But now the number of modes contributing to that correction is ∼ L/ρ,
and hence the expressions (4.27a) and (4.27b) will have terms ∝ ρ−1 that do not
cancel.

Thus, we find that the corrections of both the even and the odd masses modify
Σs

2 according to

Σs
2 → Σ2 = Σs

2 + O(1) 1
rc

+ O(1)1
ρ

− 3
4πrc

ln R

2rc
+ R

8πr2
c

+ . . . (4.28)

The sum, taking care of the “inside” modes, Σs
3 is unaffected by the correction

of the modes in our leading approximation, so

Σs
3 = Σ3 + . . . (4.29)

Finally, with the modification

E(2D) reg
s → E(2D) reg ≡ Σ1 + Σ2 + Σ3 , (4.30)

the DGP analogue of (4.15), in the first approximation, is

E
(2D)

C = lim
a→0
L→∞

(
E(2D) reg − E

(2D) reg
0

)
,

= − π

24R + O(1) 1
rc

+ O(1) 1√
Rrc

− 3
4πrc

ln R

2rc
+ 3

8π
R

r2
c

+ O
(
R2

r3
c

)
. (4.31)

Let us make a couple of comments about this result. We see that the two
terms, which were already present in the sharp transition approximation, ∝ r−1

c
and ∝ R/r2

c , are slightly modified by this more detailed resolution of the transition
region, which is expected. However, note that the exact numerical prefactors are
sensitive to our rough approximations. The constant term (∝ r−1

c ) depends on
the precise (only numerically accessible) solutions at the transition region. The
modification of the linear term comes entirely from mc

2,a, where the correction
term is ∼ R/rc smaller than the corresponding correction of the even modes, so
it is possible that the numerical factor would change further if we would take into
account higher correction terms of the even modes.

More importantly, we found two new contributions to the Casimir energy, which
are due to the fact that the masses in the region r−1

c ≲ m ≲ R−1 get corrections
from the “DGP nature” of the branes. These corrections vanish only slowly in the
limit R ≪ rc. In fact, we found that the correction of the masses of the odd modes
even increases in the region r−1

c ≲ m ≲ ρ−1, before again falling off like ∝ n−1,
where the characteristic scale of the turning point is ρ =

√
Rrc. The growing

correction of the odd modes leads to a 1√
Rrc

-contribution, while the correction
∝ n−1 gives a logarithmic contribution.
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This leads to the (novel) Casimir force

F
(2D)

C = − π

24R2 + O(1) 1
R

√
Rrc

+ 3
4π

1
Rrc

+ O
(

1
r2

c

)
.

O(1) ?

(4.32)

We will see in the next section that the coefficient in front of the term ∝ (Rrc)−1

gets further modified by an O(1) factor. Furthermore, we will find that the coeffi-
cient in front of the term ∝ 1/(R

√
Rrc) is positive, thus leading to a weakening of

the Casimir force. This result reflects the fact that the DGP branes are not just
ideal boundary conditions (being completely transparent to soft modes and com-
pletely opaque to hard modes) but have a finite transition region, where they “try
to keep” the hard modes, but still “leak” some of them. This affects the branes’
ability to confine modes inside their interior and hence weakens the Casimir force
as compared to the case of perfect conducting plates. Since this leakage effect turns
out to be stronger than the effect we discovered in the previous section (leading
to a constant increase of the Casimir force), the resulting Casimir force is weaker
than in the case of ideal boundary conditions.

4.2.3 Numerical Analysis of the Casimir Energy
The derivation of the Casimir force in the previous section relied on approximations
of the quantized masses that have different forms in different regions. Since it is
difficult to control the introduced errors in this way, in the present section we
will justify, qualitatively, the expression (4.32) and obtain a positive sign for the
leading correction by using numerical methods. Our starting point is to numerically
solve (2.43) for several different values of R, rc and L. Since this equation has
infinitely many solutions, we have to choose where we want to truncate them. We
choose the largest mass in such a way that ma < 100 because then the exponential
factor exp(−ma/π) is sufficiently small, such that the rest of the solutions does not
contribute to the Casimir energy anymore. Then, using those numerical solutions,
we calculate

E(2D) ren ≡ E(2D) reg − E
(2D) reg

0 (4.33)

as a function of R. The result for a = 0.1 and two different sets of parameters rc
and L is shown in Figure 4.3.11 We see that the Casimir energy indeed approaches
the form of the standard result, − π

24R (blue, solid curve), but it also deviates from
it. To see that the difference is not just a constant but actually R-dependent, we
also plotted the standard result with a constant shift (gray, dashed curve).

Next, we compare the numerical result to our analytical approximation in Fig-
ure 4.4. There, we fitted the leading three terms of (4.31) to the numerical result
for rc = 150 and L = 150 (red data points), thereby obtaining the coefficients c1
and c3 numerically. Both are positive and O(1). We see that this function already
reproduces the numerical result very well. The numerical result for rc = 100 and

11In all of the following figures, we express all quantities with dimension of length in some unit
l, whereas the energy is expressed in units of l−1. We use dimensionless units by setting l = 1.
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Figure 4.3: Casimir energy, calculated numerically (data points) for a = 0.1 and two
different sets of parameters rc and L. Compared to the standard result due to Dirichlet
boundary conditions (blue, solid curve) and the shifted version (gray, dashed curve).

L = 100 (teal data points) is in slightly worse agreement because, for this value
of rc, the suppression R/rc is less pronounced, and hence the higher-order terms
become more important.

So far, everything is as expected by the previous discussion. However, the
numerical analysis shows one feature that was not visible in the analytical analysis.
The Casimir energy appears to depend on the cutoff a not just with powers a, a2, . . .
etc., which vanish in the limit a → 0, but it has an (ln a)-term. To see this, in
Figure 4.5 we plotted the Casimir energy (blue points) for the fixed value R = 1,
as a function of a. Comparing it to the function −A − B ln a (blue curve), we
see that the logarithmic dependence is very robust (for this range of a, the terms
with positive powers of a are subleading). We suspect that a term proportional to
r−1

c ln (a/R) arises in (4.31) because of the following reason. In our calculation of
Σ2, we approximated the correction to the even masses in the region r−1

c ≲ m ≲ R−1

as ∝ n−1. Therefore, the contribution to Σ2 from that correction was

∼ 1
rc

n∼ L
R∑

n∼ L
rc

1
n

e− an
L−R ∼x

in the limit
L → ∞

1
rc

(
ln a

R
− ln a

rc

)
= − 1

rc
ln R
rc
,

so the a-dependence dropped out. Then, for the region m ≳ R−1, we neglected the
correction to the mass and hence did not get any further contribution. However,
if we would derive a correction term there as well, it is expected that we would
generate a term ∝ r−1

c ln (a/R), coming from the lower limit of m ∼ R−1. A similar
argument holds for the odd masses.

In fact, our numerical analysis shows that the term ∝ r−1
c ln (a/R) enters with

a much larger coefficient than the term ∝ r−1
c ln (2rc/R), which we found in (4.31).

In Figure 4.6, we show how the ( 1
rc

ln a
R

)-term improves the numerical fit to the
data points. Even, if we include another data set (blue points) with an even less
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Figure 4.4: Casimir energy, calculated numerically (data points) for a = 0.1 and two
different sets of parameters rc and L. We fitted the analytical approximation − π

24R +
c1
rc

+ 2c3√
Rrc

, with free coefficients c1 and c3, to the numerical result for rc = 150 and
L = 150 (red data points). The resulting function, with such determined coefficients
c1 ≃ 3.32 and c3 ≃ 0.32, is plotted for rc = 150 (red curve) and rc = 100 (teal curve).

pronounced suppression R/rc, the fit is very good.12

Now, at the first glance, the logarithmic term seems problematic because it
depends on a and does not vanish in the limit a → 0. However, the force is
the actual observable, and for that the cutoff parameter drops out. Indeed, the
term ∝ r−1

c ln (a/R) will contribute to the force in the same way as the third term
in (4.32), modifying its numerical factor. To prove that the term ∝ r−1

c ln (a/R),
which we found numerically, does not have an R-dependent coefficent (which would
invalidate the previous argument), we show in Figure 4.7 the results for different
values of R. The fitted curves (solid lines) all have the same slope B. Only the
offsets, which of course depend on R, differ.

After we established the correctness of (4.32) numerically and found the mag-
nitudes and signs of the coefficients, we can finally state the Casimir force as

F
(2D)

C = − π

24R2 + c3

R
√
Rrc

− c4

Rrc
+ O

(
1

rc
√
Rrc

)
, (4.34)

with the coefficients c3 ≃ 0.37 and c4 ≃ 0.51.
Thus, we find indeed that, in the presence of the IR transparency region, the

Casimir force becomes weaker, due to the “leakage” of hard modes.

12Note that now we had to include a term ∝ L−1 in the plot of Figure 4.6. In the plot of
Figure 4.4 we absorbed it into the term ∝ r−1

c , since we had rc = L. However, for the data
points with rc ̸= L the curve would get a constant shift if we would not take this into account.
Of course, other than that, this term is not relevant, since it vanishes in the limit L → ∞.
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Figure 4.5: Log-linear plot of the numerical Casimir energy (data points) for R = 1,
L = 100 and rc = 50. The function −A−B ln a, with free coefficients A and B, is fitted
to the data set. The resulting function, with such determined coefficients (A,B > 0), is
plotted as the blue curve. We see that the Casimir energy depends logarithmically on a.
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Figure 4.6: Casimir energy, calculated numerically (data points) for a = 0.1 and three
different sets of parameters rc and L. We fitted the analytical approximation − π

24R +
c1
rc

+ c2
L + 2c3√

Rrc
− c4

rc
ln a

R , with free coefficients ci, to the numerical result for rc = 150
and L = 150 (red data points). The resulting function, with such determined coefficients
c1 ≃ 0.50, c2 ≃ 0.48, c3 ≃ 0.37 and c4 ≃ 0.51, is plotted for rc = 150 (red curve), rc = 100
(teal curve) and rc = 50 (blue curve).
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Figure 4.7: Log-linear plot of the functions −A − B ln a (solid curves), which are fitted
to the numerical results for L = 100 and rc = 50 (data points) for different values of R.
The slopes B ≃ 0.0127 are identical for all curves, and only A depends on R.
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4.3 Casimir Effect in 4+1 Dimensions
After we have analyzed the properties of the given system in 2D, which led to
the novel Casimir force, we can now turn our attention to the system in (the full)
five dimensions. In principle, we do not expect a qualitative difference from our
previous result, since the branes that produce the effective boundary conditions
are still codimension-one objects, and the discrete masses of the KK modes are
still given by (2.43). However, the sum that has to be evaluated in order to get
the Casimir energy is much more involved in 5D (see (4.2)) than in 2D (see (4.8)).
For this reason, we are not able to completely reproduce the analytical analysis
and the quantitative results of the previous sections, but have to rely on numerical
methods. We will further explain these matters in the following.

Let us start with expression (4.2) and note that we can perform the integration,
which leads to

Ereg = −1
4
∂

∂a

∑
α,m

m2
α

a
K2

(
amα

π

)
, (4.35)

where K2 is the modified Bessel function of the second kind.
Now, we would like to calculate an analogue of (4.11) in the (toy model) ap-

proximation of a sharp transition, however the sum (4.35), with the masses given
by (4.10a) and (4.10b), cannot be solved analytically. Moreover, we were not able
to find an asymptotic expansion of this sum.

However, we will show in the next section that in the extreme case rc → ∞,
where Σs

1 vanishes (because there is no IR transparency regime anymore), we can
use (4.35) to derive the standard Casimir energy, proving that also in 5D the
DGP branes, which provide only effective boundary conditions in the finite rc case,
approach Dirichlet boundary conditions in the limit of infinite rc.

4.3.1 Analytical Result for the Casimir Force in the Limit
rc → ∞

First, note that the Hamiltonian in the 5D case does include the zero-mode (m1 =
0) because, even if it is constant along the extra dimension, the oscillations along
the transverse directions still contain energy, ω0,1(k⃗) ̸= 0 (see (4.1)). Also, m1 = 0
is still a solution of (2.43), even in the limit rc → ∞. Thus, separating out this
zero-mode and using the masses (4.10b), valid in the limit rc → ∞, we get

Ereg(rc → ∞) = 3
2
π2

a4 − π2

4
∂

∂a

[
1
a

(
1
d2

1
S(d1) + 1

d2
2
S(d2)

)]
, (4.36)

with
S(di) ≡

∞∑
n=1

n2K2

(
an

di

)
, d1 = L−R , d2 = R . (4.37)

The evaluation of S(di) is performed in appendix D. Inserting the result (D.6)
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in (4.36), we find

Ereg(rc → ∞) = 3
2
π2

a4 − π2

4

(
−6π
a5 d1 + 3

a4 + ζ ′(−4)
8

1
d4

1
+ O

(
a2

d2
1

)
+ (d1 ↔ d2)

)
,

= 3π3

2
L

a5 − π2ζ ′(−4)
32

1
R4 − π2ζ ′(−4)

32
1

(L−R)4 + O
(
a2

d2
i

)
, (4.38)

with ζ ′ the derivative of the Riemann zeta function. In order to renormalize this
expression, we have to once again subtract the vacuum energy of a system without
branes. The latter is conveniently derivable from (4.35) for masses (4.3). Thus, we
get

Ereg
0 = Ereg(rc → 0) = 3

2
π2

a4 − π2

2
∂

∂a

(
1
a

1
d2

3
S(d3)

)
,

with S(d3) again given by (4.37), for d3 = L/2. Then, again using (D.6), we find

Ereg
0 = 3π3

2
L

a5 − π2ζ ′(−4) 1
L4 + O

(
a2

L2

)
. (4.39)

With this, we obtain the Casimir energy (per unit 3-volume) as

EC(rc → ∞) = lim
a→0
L→∞

(
Ereg(rc → ∞) − Ereg(rc → 0)

)
,

= −π2ζ ′(−4)
32

1
R4 (4.40)

and the Casimir force (per unit 3-volume) as13

FC(rc → ∞) = −3ζ(5)
32π2

1
R5 . (4.41)

Notice that this is the same result as one would obtain for a system with a
real, massless, 5D scalar field and two parallel “conducting” plates (with Dirich-
let boundary conditions), separated along the fifth dimension [152]. However, we
calculated this result in the DGP setup, using the limit rc → ∞ (after an explicit
dimensional reduction). Thus, we proved that the DGP branes can indeed lead
to effective Dirichlet boundary conditions, which give rise to the standard Casimir
force in the limit of a vanishing IR transparency region.

4.3.2 Numerical Derivation of the Casimir Force
Since we are not able to derive the 5D analogues of (4.17) and (4.32), in the 5D
system we have to rely entirely on numerical methods to show that the Casimir
force gets weakened due to the leakage of the modes.

In order to calculate (4.35) numerically, we rewrite it as

Ereg = 3π2

2a4 + 1
8π

1
a2

∑
α,m>0

m2
α

{
2πK2

(
amα

π

)
+ amα

[
K1

(
amα

π

)
+K3

(
amα

π

)]}
.

(4.42)
13We used here ζ ′(−4) = 3ζ(5)

4π4 .
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Figure 4.8: Logarithmic plot of the Casimir energy, calculated numerically (data points)
for a = 0.1, rc = 150 and L = 150. The dashed curve represents the standard (5D)
Casimir energy (due to Dirichlet boundary conditions). We plotted the absolute values.

The vacuum energy without branes, which we have to subtract from (4.42), is
obtained if we insert the masses (4.3) in the above expression (where the zero-
mode has already been separated out), leading to

Ereg
0 = 3π2

2a4 + π

L2a2

∞∑
n=1

n2
{

2πK2

(2an
L

)
+ amα

[
K1

(2an
L

)
+K3

(2an
L

)]}
. (4.43)

Figure 4.8 shows the result for calculating

Eren ≡ Ereg − Ereg
0 (4.44)

numerically (for rc = 150, L = 150 and a = 0.1), where we again shifted the
result by an a-dependent constant (i.e. R-independent). We see that the standard
Casimir energy (i.e. (4.40)) changes faster than our derived one. Hence, analogous
to the 2D case, we find that the DGP branes weaken the resulting Casimir energy.

Guessing the first (non-constant) correction by analogy with the 2D case, (4.31),
we suspect a term ∼ (R3ρ)−1. We can convince ourselves by looking at Figure 4.9
that this correction gives indeed a good fit to the data. Hence, we finally establish
the 5D Casimir force as

FC = −3ζ(5)
32π2

1
R5 + C

R4
√
Rrc

+ O
( 1
R4rc

)
, (4.45)

with the positive coefficient C ≃ 2.6 · 10−3. The smallness of this coefficient should
not surprise us, since the coefficient of the leading term is already as small as
3ζ(5)
32π2 ≃ 9.8 · 10−3.14

14The coefficients in front of the (ordinary) Casimir force usually decrease rapidly with increas-
ing spacetime dimension [152].
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Figure 4.9: Logarithmic plot of the Casimir energy (data points) for the parameters
a = 0.1, rc = 150 and L = 150. Also shown is the plot of the function, stated in the
plot legend, that was fitted to the data points, thereby determining the coefficient C.
We suppress here the constant shift that we had to apply to the curve in order to fit the
points. The dashed curve represents the standard (5D) Casimir energy (due to Dirichlet
boundary conditions). We plotted the absolute values.

4.4 Summary and Discussion
We have investigated and established the existence of the Casimir effect in a sys-
tem without fixed (Dirichlet) boundary conditions, but with surfaces that have the
property to suppress the high-energy modes of a quantum field while being trans-
parent to the low-energy modes. The DGP model with two parallel 3-branes in a
5D spacetime, where the DGP branes provide “effective” boundary conditions for
the 5D quantum field, provided a particular example of such a system.

Furthermore, we have shown that the just described phenomenon, called IR
transparency, has a profound implication for the arising Casimir force: it is weak-
ened.

In order to analyze quantitatively how the IR transparency affects the Casimir
force, we have studied in detail the 2D version of the system (two parallel 0-
branes, separated along the extra dimension) and found that the IR transparency
phenomenon has in fact two opposite contributions to the Casimir force. First, in
the case of sharply separated regimes of “opaque” and “IR transparent” branes,
the Casimir force increases due to the exclusion of IR modes from the spectrum of
vacuum fluctuations between the branes. Second, since the DGP branes distinguish
between hard and soft modes in a smooth manner, some of the hard modes “leak”
out of the interior region between the branes, thereby weakening the Casimir force.
It turns out that the latter effect dominates, and hence the resulting Casimir force
decreases.

We have analytically derived the qualitative expressions of the leading correc-
tion terms to the Casimir force in the 2D case and justified the expressions by
numerical analysis, for both the 2D and 5D system. Regardless of the dimension-
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ality, we find that the corrections are suppressed by increasing powers of ρ, where
ρ ≡

√
Rrc is the new distance scale (geometric mean between the separation dis-

tance of the branes and the DGP cross-over scale) that already arose in this system
when we explored its gravitational force law. The similarity between systems of
different dimensions is not surprising, since in both cases the effect comes from
codimension-one DGP branes, separated along the extra dimension.

We have performed our analysis for a massless, real scalar field with localized
kinetic terms on parallel surfaces, thereby showing that the derived effect is very
generic. It is beyond the scope of this thesis to repeat the analysis for spin-1 and
spin-2 fields. However, as we explained in the beginning of this chapter, we do not
expect the results to change, except for numerical O(1) factors due to the increased
number of degrees of freedom. Also, even though a modified gravitational theory
such as the DGP model exhibits non-linear behavior at intermediate distances, i.e.
where gravity behaves four-dimensional (see the discussion in section 2.1.2), this
should not modify our result because the Casimir effect is an IR effect that persists
after cutting off the high-energy behavior of the system. Moreover, the Vainshtein
radius, below which such non-linearities set in, goes to zero if we are considering a
vacuum setup without sources. Of course, the assertions made in this paragraph
should be verified in future work.

Since the emergent Casimir force—along with its corrections—is a signature
for brane-world scenarios with parallel DGP branes, it might be interesting for
future research to further investigate how the presence of this force affects those
scenarios. Moreover, since this effect should also be present for a large number of
setups, including our 4D world, it is worthwhile to investigate if there are materials
that allow for surfaces with a sufficiently low scale rc such that an observation of
this modified Casimir force is possible.

Finally, the presence of the derived effect shows that it is natural to construct
“effective” boundary conditions for the graviton in the described way, thereby pro-
viding a mechanism to produce the gravitational Casimir effect and the means
to probe the quantization of the gravitational field, which otherwise eludes ex-
perimental access. However, we want to point out that the parameter rc for a
quasi-localization of gravitons on surfaces in our four-dimensional world should be
minuscule. But then, the above result is not valid anymore, since we worked in the
limit rc ≫ R and implicitly assumed that the width of the branes is much smaller
than R (to be able to use the idealization of zero width). Therefore, to trust our
result, rc has to be much larger than the width of the surfaces—a situation which
is probably not realized for realistic materials in two-dimensional surfaces in our
world.
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Conclusion and Outlook

If our world is indeed described by an embedding of a lower-dimensional plane,
with a DGP curvature term, in a higher-dimensional spacetime, then it might very
well be possible that other DGP branes, dislocated from us, exist in the universe.
In fact, as mentioned in section 1.1.1, various scenarios exist in the literature that
employ a brane-world construction, albeit usually without considering those DGP
curvature terms. Yet, it appears natural that a higher-dimensional graviton propa-
gator should receive quantum corrections on branes with localized particle species,
thus leading to such DGP branes.

The first part of the present thesis dealt with the exploration of such a scenario.
In the preceding chapters we demonstrated that the DGP model, extended through
the inclusion of a second brane with a localized curvature term, gives rise to dis-
tinctive forces if the brane separation R is parametrically smaller than the DGP
cross-over scale rc. Those forces have both a classical and a quantum mechanical
origin.1

New Forces

The classical gravitational force in this double-brane setup carries a new length
scale, ρ =

√
Rrc. Whereas for distances much larger than ρ the original results of

the single-brane DGP model are recovered, for smaller distances gravity is screened
even more, resulting in the fact that the gravitational force has a different form
and exhibits phenomenologically interesting new regimes. In particular, we found
that the force between point masses on different branes is distance-independent if
the worldvolume distance r is much larger than the brane separation R (i.e. R ≪

1Of course, if the localized curvature term is indeed due to quantum corrections from the SM
fields, then both the modified gravitational force and the Casimir force ultimately emerge from
quantum mechanics.
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r ≪ ρ). For sources on the same brane, we discovered that the force interpolates
between a 4D Newton force for r ≪ ρ and a 4D Newton force with half its strength
for r ≫ ρ (the latter is the ordinary DGP behavior in the r ≪ rc limit).

The same characteristic length scale ρ also appears in the emerging Casimir
force, which is quantum mechanical in origin. There, it controls the (weakening)
first-order correction to the Casimir force, whose leading term is the same as in the
standard result for parallel boundaries with Dirichlet boundary conditions.

We discussed several phenomenological applications of these forces. For exam-
ple, we outlined the tantalizing implications of the distance-independent gravita-
tional force for galactic dynamics, possibly avoiding the missing mass problem. We
also pointed out that the Casimir effect, which emerges naturally in the present
setup, can be a probe of the quantization of the gravitational field.

Furthermore, those results can have important implications for the numerous
proposals in the brane-world framework. As previously mentioned, it is conceiv-
able that in many scenarios proposed in the literature the branes should be supple-
mented by the localized DGP terms. Hence, the potentials discussed in the present
work could affect those proposals and would possibly modify their predictions.
Thus, it might be worthwhile to revisit some of those brane-world scenarios in
future work and estimate if the results of this thesis would have a relevant impact.

Moreover, if the higher-dimensional world does indeed incorporate such a set-
ting, the physical effects derived in this thesis will indeed occur, and hence ob-
serving them could in turn provide information about that brane-world structure.
Although we considered just a special idealization—two parallel branes—there is
also the possibility to extend our work and explore scenarios with more than two
branes and possibly to consider branes that intersect each other at different angles.
It is likely that such generalizations of the present setup still experience the key
properties of our result, as long as the generalized configurations are not too much
deformed. For example, one could consider two branes that intersect each other at
a small angle, or one could include a third brane that has a much greater distance
than the separation of the initial two branes. It would be interesting to analyze
what new regimes for the forces would open up in these cases. Such an investi-
gation could further increase our diagnostic tool set for exploring the brane-world
surrounding us—if it is indeed out there.

Observational Signatures

Besides the fact that the discovered forces are interesting in their own right, with
possibly crucial phenomenological implications, they could be powerful experimen-
tal signatures not just for the existence of a brane-world but for the DGP model
itself (in the presence of more than a single brane) and a further method to test
the DGP framework.

Before discussing that, let us briefly summarize some of the existing results
of testing the observational viability of the DGP model. First, we have to switch
back to the more realistic geometrical model (with the action given in (1.2)), which
describes more than just our propagating toy scalar field, in order to discuss the
experimental status of the DGP model. Also, since the observational tests are
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usually carried out for the original single-brane proposal, we will now discuss that
single-brane model.

Experimental tests have been performed on all scales, from laboratory to Hubble
distances, but we would like to focus on just two kinds of experimental observations:
cosmological surveys and solar system tests (see e.g. Refs. [134, 137] for a more
complete discussion, including other tests). Let us start with the solar system
tests.

For the DGP model to be able to reproduce the experimentally well-tested 4D
Newton’s law on solar system scales, it is clear that rc has to be much larger than the
solar system size. This much is already apparent from looking at (2.24) (together
with (2.25)). However, as discussed in section 2.1.2, Newton’s law (2.24) is only
valid for distances that are much larger than the Vainshtein radius rV, where the
linear approximation can be applied and the scalar degree of freedom contributes
to the gravitational potential. The actual (i.e. observed) 4D Newton’s law (with
the correct numerical prefactor) is only valid for r ≪ rV, where that scalar degree
of freedom decouples, due to self-interactions. Hence, the DGP model predicts a
deviation from the observed 4D Newton’s law already for distances that are much
smaller than rc. For example, if we take rc ∼ H−1

0 ∼ 109 pc, then the Vainshtein
radius for Earth is

rV ∼
(
r2

cGMEarth
)1/3

∼ 1 pc (5.1)

(see also Ref. [134] for a review).2 Although this is still parametrically larger than
the solar system size, it shows that deviations from 4D Newtonian gravity would
set in much earlier, even for a Hubble-size cross-over scale rc. In other words,
measurements in our solar system could test the DGP model and constrain its
parameter rc [131, 132]. A recent overview of completed and planned experimental
tests of the DGP model can be found in Ref. [153] (and references therein).

Next, let us have a look at the cosmological observations, which so far appear
to have put the tightest constraints on rc. Cosmological observations can be fur-
ther divided into “geometric probes” (which include the late-time evolution of the
universe) and studies of the formation of large-scale structures. It is useful to com-
bine these observations because whereas the DGP model and the ΛCDM model
can predict similar late-time evolutions of the universe, the formation of large-scale
structures is also sensitive to the underlying gravitational theory, and in fact ob-
servations of the latter can distinguish effectively between the DGP model and the
ΛCDM model (see e.g. Refs [135, 154]).3

2Note that the form of the Vainshtein radius given in (5.1) is valid for compact, spherically
symmetric sources on a Minkowski background. If, instead, we consider more realistic cosmo-
logical backgrounds like de Sitter (using the normal branch), as we will do in a moment, then
the expression gets modified by an additional factor (1 + 2rcH0)−2/3 [131]. However, if we take
rc ∼ H−1

0 , then rV just gets an order-one correction. Also note that for rc ≳ H−1
0 , the Vain-

shtein radius approaches the distance scale beyond which the cosmological flow dominates over
the gravitational effects of the local source. Hence, even if we take into account a brane tension
in the following discussion, (5.1) still marks the scale below which gravity behaves approximately
as 4D GR, in the single-brane setup.

3In addition, weak lensing observations can also help to distinguish between those models
[155].
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Since cosmological observations indicate that the late-time evolution of the uni-
verse exhibits an accelerated expansion (see also the discussion in section 1.1), it
can be expected that a tensionless brane, using the normal branch of solutions (see
section 1.1.1), i.e. the setup we have been exploring in this thesis, would be much
inferior to the ΛCDM model in explaining cosmological data. At least, it would be
required to consider a tensionless brane in the self-accelerating branch. Unfortu-
nately, however, cosmological tests even seem to suggest that the self-accelerating
branch is disfavored by observations (see e.g Refs. [156, 157], as well as Ref. [158]
and references therein), unless a brane cosmological constant is included as well.
In the case of the normal branch (and including a brane tension), observations in-
dicate that the DGP model is compatible with observations for rc ≳ H−1

0 [147, 157]
(or even rc ≳ 10H−1

0 according to Ref. [159]).
Thus, since the DGP model has neither been experimentally excluded so far

nor have its numerous predictions been observed, it might be useful that the setup
studied in the present thesis delivers new, distinctive features. As just explained,
the DGP model makes the strong prediction that 5D gravity gets screened, and
the result is 4D gravity, which interpolates between a region where GR is recovered
(below the Vainshtein radius) and a region where scalar-tensor gravity is operating
(above the Vainshtein radius but below the cross-over scale). Because the Vain-
shtein radius of massive objects in the solar system like Earth is so large and the
cross-over scale is around the Hubble scale, the effects of the DGP model on solar
system physics have not quite been relevant enough, yet. The same is true for the
Milky Way and associated galactic-size physics.

However, in the present thesis, we demonstrated that a second DGP brane
can further change that behavior by even weakening 4D gravity and producing an
intricate novel force with a modified behavior in the region r ≪ ρ. This adds to
the signatures of both the DGP model and brane-world scenarios with more than
a single brane, especially if sources are located on the other branes as well. But
also for the gravitational force between sources on our brane, we found that at
distances r ≃ ρ the force changes; it interpolates between two 4D Newton’s laws
with a different overall constant. Since ρ ≪ rc, we could find ourselves in the
fortunate situation that the presence of an additional, nearby brane can improve
the observability of the effects of the DGP model.

More precisely, returning to our discussion in section 3.2, there would be the
following difference between a single-brane and a double-brane scenario: let us
first consider two sources on our brane. If we approximate one of the sources as a
point source with the mass of the Milky Way, then, in the single-brane case, the
force acting on us (the probe source) would be the standard Newton force (due
to the exchange of two tensor degrees of freedom). Since the Vainshtein radius is
around 1 Mpc, it is difficult to measure an effect due to DGP inside our galaxy,
whose visible part is one to two orders of magnitude smaller. However, if a second
(empty) brane would be present at distance R, then the gravitational force would
start to change around

r ∼ ρ = 1 Mpc
(
R

kpc

)1/2

.
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Hence, for R ≲ kpc, there might be hope for this change in behavior to be mea-
surable.

Let us next consider the force acting on us from a point source (a “dark galaxy”)
separated along the extra dimension. As we saw in section 3.2 (see e.g. Figure 3.3),
if the source is located in empty space (as in the case of the single-brane scenario),
then the force would interpolate between a linear regime and the ordinary 4D
Newton force in the transition region r ∼ R. In the scenario where the dislocated
source is attached to a DGP brane, there is also a change in behavior around R, but
it is different. Now, the force interpolates between a linear and a constant force.
Only later, at r ∼ ρ, the 4D Newton force is recovered. We already explained
in section 3.2 that this new behavior could not only be observable but even be
potentially critical for explaining observations in a certain class of galaxies.

In this last-mentioned example, the Vainshtein radius of the “dark galaxy” is
even larger than 1 Mpc, and hence it would be hopeless to observe the transition to
the scalar-tensor gravity regime (i.e. the regime where the scalar degree of freedom
becomes relevant). The reason for this is that (as explained in section 3.2) if
we want to consider a “dark galaxy” whose gravitational effect is observationally
significant, we have to postulate its mass to be much larger than the Milky Way
mass.

Finally, the discovered Casimir effect could also contribute to the phenomeno-
logical consequences of the DGP model if the Casimir force between the branes
could be measured or deduced through secondary effects. Moreover, we showed
that the DGP model would not just generate the standard Casimir force but also
induce a distinct correction to it, which scales as√

R

rc
= 10−3

(
R

kpc

)1/2

.

Hence, in this case, a brane separation of R > kpc (as long as R ≲ rc ∼ 106 kpc)
would increasingly raise the correction and hence sharpen the characteristic signa-
ture of the DGP model.

Interplay Between Short and Long Distances

Another, possibly important result of our analysis is the implication of a system
containing a multitude of DGP branes for the assertion that the modifications of
GR at large and short distances are actually interconnected. We explored such a
relation by means of the short distance cutoff of semi-classical gravity, obtainable
from BH physics. Although we merely touched upon this subject, our investiga-
tion shows some indication that the large distance modification of gravity in the
simplified scalar field model, which does not take into account all degrees of free-
dom, is in tension with the short distance modification of GR coupled to quantum
fields. As we pointed out in section 3.4.1, a more detailed analysis of the present
setup, working in the full spin-2 theory and tracking the effect of the brane bending
mode, might be necessary to clarify the relation of the BH bound, in the presence
of a large number of particle species, and theories that modify gravity at large
distances.
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Validity of the Simplified Model

We have repeatedly pointed out that we do not expect any qualitatively different
behavior of the results (with the possible caveat expressed in the previous para-
graph) if we generalize our analysis to the full-fledged DGP model, which is the
theory of a spin-2 particle rather than a spin-0 particle. The main change will be
that instead of a scalar mode, the derived effects will be mediated by different de-
grees of freedom. In the case of the Casimir force, these include the full spectrum
of five degrees of freedom: two tensor modes, two vector modes and one scalar
mode. In contrast, for the gravitational force between static point masses, two
tensor degrees of freedom will contribute at distances below the Vainshtein radius
and three degrees of freedom (two tensorial and one scalar) in the region above
that scale. Hence, as long as we do not discuss gravitational regimes that include
this transition region at rV, we anticipate that the analysis of the complete spin-2
theory would produce results that are merely modified by multiplicative order-one
factors with respect to our findings.

We have to mention, however, that the previous conclusion (in the case of the
gravitational force) relies on the existence of the Vainsthein mechanism. Although
it appears likely, it is important for future research to confirm that such a mecha-
nism, which ensures that the scalar mode decouples below a certain distance scale,
is indeed present in the double-brane system. Furthermore, our earlier discussion
about the difference between experimental signatures in the single-brane and the
double-brane DGP model implicitly assumed that the Vainshtein radius continues
to have the form (5.1) and, especially, that it is independent of the new scale ρ.
This too has to be verified in future work.

Concerning additional degrees of freedom, we further explained that the poten-
tial appearance of a radion mode in the spin-2 theory, due to the presence of a
second brane, would not affect our result (according to Ref. [75]) because we are
considering a Minkowski brane, embedded in 5D Minkowski space, and hence such
a mode is unphysical. As explained above, however, observations indicate that a
modification of the current setup is required, prompting us to consider a de Sitter
brane (i.e. we have to include a non-vanishing brane tension). In such a situation,
a tachyonic radion would indeed appear, leading to a destabilization of the brane
separation [75] (see also Refs. [160, 161]). Hence, further detailed analysis would be
necessary, including the investigation of possible mechanisms of radion stabilization
[162] (see also Ref. [163]). Such issues have to be addressed in future work.

Now, does the addition of a brane tension have another impact on the gravi-
tational dynamics and the Casimir effect derived in this thesis, not related to the
threatening radion instability? In the case of the modification of the DGP gravi-
tational laws, since we are still assuming a vanishing bulk cosmological constant,
the presence of a brane tension could only affect gravitational dynamics along
our brane, e.g. our discussion about the application to galactic rotation curves.
However, since the brane cosmological constant has to be extremely small, on ob-
servational grounds (its best fit value, obtained from observations, is very close to
the value of the ΛCDM model), it would not affect our results for the same reason
that in the standard ΛCDM paradigm galactic dynamics are not affected by the
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cosmological constant.
The Casimir effect would also likely be not affected, because the space between

the branes would still be Minkowski. Also, even though for the infrared modes the
constant term from the modified brane action (containing the brane tension) could
become increasingly important, it is not a priori obvious to us if it would affect
the resulting Casimir force. Moreover, it is not clear if a possible correction would
be comparable to the one we found in the phenomenologically relevant regime
where R is much smaller than the de Sitter curvature radius, associated with the
brane cosmological constant. This question would need to be investigated in future
research.
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Part II

Dark Matter





6
Superfluid Dark Matter

In this last part of the thesis, we wish to analyze a particular DM model. We
will begin this chapter by introducing it and then examine the different parameter
regions that lead to diverse DM phenomenology. To be self-contained, we will
review some of the well-known properties of that model in the first section, before
discussing the new (observational) bounds on the considered scenario in subsequent
sections.

Note that we will work exclusively in the non-relativistic limit, since cosmo-
logical observations indicate that DM should behave as a non-relativistic fluid, i.e.
pressure-less dust (see also section 6.3).

This chapter is based on the collaborative work published in Ref. [3]. Fig-
ures 6.2, 6.3, and 6.4 and some of the equations have been reproduced verbatim.

6.1 The Superfluid in the Presence of Gravity
In the following, we will be concerned with a DM model of a massive (with mass
m), complex, repulsively self-interacting (with coupling constant λ > 0) scalar field
Φ, minimally coupled to gravity. The corresponding action is given by

S =
∫

d4x
√

−g
(

−M2
P

2 R + |∂µΦ|2 −m2|Φ|2 − λ

2 |Φ|4
)
, (6.1)
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where, as usual, g and R are the (determinant of the) metric and the Ricci scalar,
respectively.1 The equations of motion for this theory read

Gµν = M−2
P (∂µΦ∂νΦ∗ + ∂µΦ∗∂νΦ − gµνLM) (Einstein field equations) ,

(gµν∇µ∇ν −m2 − λ|Φ|2)Φ = 0 (equation of motion for Φ) ,
(6.2)

where ∇µ is the covariant derivative, and

LM ≡ |∂µΦ|2 −m2|Φ|2 − λ

2 |Φ|4 . (6.3)

If we switched off gravity, the above theory would have the (classical) solution

Φ = veiµt , (6.4)

where v and
µ ≡

√
m2 + λv2 (6.5)

are constants. The physical interpretation of these quantities is well studied in
the literature (see e.g. the lecture notes in Ref [103]), so we will not discuss this
further. The solution (6.4) describes a homogeneous field configuration, which can
be interpreted as a Bose-Einstein condensate (since we are at zero temperature,
all the DM particles are in the zero-momentum ground state). Due to the U(1)
symmetry of the theory (6.1), there is a conserved quantity, the particle number
(or number density n), that stabilizes the configuration (6.4) against decay.2 In
the non-gravitational case, the particle number density of the constituents (the DM
particles) is not only time-independent but also constant throughout space.

However, in the presence of gravity the picture changes, since now the energy
density of the condensate sources the gravitational Newton potential, which, in
turn, modifies the energy distribution of the condensate.3 In order to find a stable
configuration, one must then solve the full set of equations (6.2), in the appropriate
limit that we consider. Often, this is done in the hydrodynamical description, where
the DM substance is treated as a perfect fluid with the equation of state

p = λρ2
DM

8m4 , (6.6)

which relates the pressure p to the DM energy density ρDM, with the relation
ρDM = nm. Then, one can use Euler’s equation, together with Poisson’s equation,
to solve for the now spatially varying ρDM (see e.g. Ref. [164]). We show the
resulting profile below (see (6.9)).

An alternative derivation can be performed using the Lagrangian formalism
directly. For this, it is convenient to describe the DM sector not in terms of Φ but
to expand around the solution (6.4),

Φ =
(
v + χ(x)

)
ei[µt+π(x)] , (6.7)

1In the present chapter, all quantities are understood to be four-dimensional.
2Note that in the non-relativistic limit that we are considering even the decay of the classic

solution of a real scalar field would be highly suppressed.
3Recall that we are considering the non-relativistic (and gravitational weak-field) limit of the

theory, in the present chapter.
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where χ and π are real scalar field degrees of freedom. It is then straightforward
to integrate out χ perturbatively (on the level of equations of motion), using a
derivative expansion, thereby deriving a low-energy effective theory for the Gold-
stone mode π and the gravitational potential ϕN.4 At leading order (i.e. simply
neglecting the (∇χ)2-terms), this leads to (see e.g. Refs. [119, 165])

S =
∫

d4x

M2
PϕN∆ϕN + 2m2

λ

(
µNR −mϕN + π̇ − (∇π)2

2m

)2
 , (6.8)

with
µNR ≃ µ−m

(in the non-relativistic limit).
We can thus derive the static configuration, by setting π = 0 (which is consistent

with its equation of motion) and solving the equation for the Newton Potential,

∆ϕN = 16πGm3

λ
(µNR −mϕN) .

From its solution
ϕN = µNR

m

(
1 − sin (2πr/a)

2πr/a

)
and the Poisson equation

∆ϕN = 4πGρDM(r) ,

we can immediately read off the DM density profile

ρDM(r) = ρ0
sin (2πr/a)

2πr/a , (6.9)

where the size of this profile is given by

a ≡
√

πλ

4Gm4 , (6.10)

and
ρDM(r = 0) ≡ ρ0 = 4m3

λ
µNR = nm (6.11)

is the (unperturbed) energy density of the condensate, with n being the conserved
particle number density, as introduced above.

The corresponding configuration is depicted in Figure 6.1. It is sometimes called
(non-topological) soliton in the literature because it is the stationary, minimum-
energy solution (for a given particle number) of the theory in (6.1).

Another way to see that the homogeneous configuration (6.4) is not stable in the
presence of gravity and to find the characteristic scale a of the stable configuration,
given in (6.10), is to keep π switched on in (6.8) and consider perturbations. But

4The actual massless mode will be a linear combination of π and χ because of a kinetic mixing
term π̇χ.
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Figure 6.1: Log-linear plot of the density profile (6.9) (normalized by ρ0) in units of r/a.
We see that for r ≲ 0.1a the profile is given by a constant core.

note that if we also want to account for processes with momentum transfer k ≳
csm, where cs is the sound speed of the phonons, (while still being in the non-
relativistic regime, k ≪ m and cs ≪ 1) we have to include higher-order terms in
the aforementioned derivative expansion [119]. If taking into account the next-to-
leading-order term in this expansion, one can derive the dispersion relation of the
perturbation π to be (see e.g. Ref. [119])

ω2
k = −4πGρ0 + c2

sk
2 + k4

4m2 , c2
s ≡ λρ0

4m4 . (6.12)

It is clear that the first term, which can be considered a tachyonic mass due to
gravity, tends to destabilize the perturbations. It leads to the Jeans length, be-
yond which the structure is not stable anymore, for perturbations of the appropriate
wavelengths. The precise critical wavenumber depends on which of the two posi-
tive terms dominates the perturbation spectrum. These two terms correspond to
different pressure components of the fluid that are responsible for balancing the at-
tractive gravitational force. The quadratic (in k) term, proportional to the sound
speed or the coupling constant, is due to the repulsive self-interactions, while the
quartic term corresponds to the so-called quantum pressure, which is due to the
de-localized nature of quantum particles. The critical value for the wavenumber,
below which the perturbations cause instabilities, is given by the expression

k2
∗ ≡ 2m2c2

s

(
−1 +

√
1 + 4πGρ0

m2c4
s

)
. (6.13)

We see that the dimensionless quantity

ξ ≡ m2c4
s

4πGρ0
, (6.14)

= 4πρ0M
2
Pσ

m4 (6.15)

controls which is the relevant pressure component that competes with the gravita-
tional attraction. To derive (6.15), we have used the expression for the scattering



6.1 The Superfluid in the Presence of Gravity 95

cross section
σ = λ2

32πm2 . (6.16)

For ξ ≪ 1 (the non-interacting limit),

lim
ξ≪1

k2
∗ =

√
16πGρ0m2 , (6.17)

while for ξ ≫ 1, we get
lim
ξ≫1

k2
∗ = 4πGρ0

c2
s

. (6.18)

The first case (ξ ≪ 1), which we will refer to as the degeneracy pressure case,
has been explored extensively in the so-called Fuzzy Dark Matter (FDM) scenario
[118, 128]. Hence, the second case (ξ ≫ 1), called interaction pressure case, will
be the focus of the present work.

Let us estimate ξ for a typical scenario in that we are interested. If we use
ρ0 ≃ 10−25 g/cm3, which is the average DM density in inner regions of the Milky
Way,5 we find

ξ ≃ 1027
(
σ/m

cm2/g

)(
m

eV

)−3
,

using (6.15). Here, we already see that ξ ≫ 1, unless the scattering cross section
(per mass) is extremely low, in which case we are forced to consider an ultra-light
DM scenario, with m ≪ eV, to stay in the interaction pressure case.

In this regime, high-energy corrections are not important, and thus we can use
(6.8). Therefore, the stable density profile is well approximated by expression (6.9),
and the Jeans length

ℓ ≡ 2π/k∗ =
√

πλ

4Gm4 (6.19)

precisely coincides with the size of the spherical configuration (see (6.10)). Note
that this length scale is independent of the number density of DM particles, which
is a feature of the particular scalar field theory (possessing 2-body interactions)
but does not generalize to other potentials. We can also express the Jeans length
in terms of the scattering cross section

ℓ = 2π
(

8πM4
P

m5
σ

m

)1/4

≃ 2 kpc
(
σ/m

cm2/g

)1/4(
m

meV

)−5/4
, (6.20)

which shows what is the necessary combination of the parameters of the theory in
order to achieve a macroscopic (i.e. kpc-size) core.

A comment is in order here regarding the validity of describing the DM in the
central regions of galaxies and galaxy clusters in terms of Bose-Einstein conden-
sates, where all particles occupy the ground state. Underlying the above discussion,
was the presumption that we deal with zero temperatures, which is of course not
realized in real, astrophysical situations. However, if we relate the temperature T

5In particular, this is approximately the value for the average density of a thermalized core
within a radius between 15 kpc and 60 kpc, determined by using the NFW profile.
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to the virial velocity (dispersion) v ∼ 10−3 in a typical galaxy, by using T ∼ mv2,
we find

T ∼ 10−6 eV
(
m

eV

)
.

The fraction of particles in the condensate with respect to the total number is given
by (see e.g. Ref. [166])

n

ntot
= 1 −

(
T

Tc

)3/2
, (6.21)

where Tc ∼ m−5/3ρ
2/3
DM is the critical temperature,6 which again for a typical galactic

density can be approximated by

Tc ∼ 5 × 10−5 eV
(
m

eV

)−5/3
.

Instead of comparing T and Tc, we can alternatively compare the energy density
to the critical density, which in a typical galaxy is

ρc ∼ m4v3 ∼ 10−28 g/cm3
(
m

eV

)4
.

Hence, we see that for particles whose masses are significantly lighter than eV the
zero-temperature approximation is well justified in the inner regions of galaxies.
Even though in a physical situation the superfluid cores will always be accompanied
by a “normal” gas component, the latter will become significant only outside the
cores, when the densities have dropped by several orders of magnitude.

6.2 Formation of the Superfluid Core
Next, we want to discuss in more detail the conditions leading to the formation of
the superfluid cores. In order for the Bose-Einstein condensate to form, two condi-
tions must be satisfied. First, the particles must have reached thermal equilibrium.7
For this, the interaction rate Γ has to satisfy Γ ≳ t−1

eq , where teq is the time available
to achieve the equilibrium. At the very least, the particles need enough time to
scatter once on average, which we will denote by t1 = Γ−1. Since the interaction
rate depends on the particle density, which in turn grows for decreasing distances
from the center of the galaxy or cluster, we can associate a thermal radius RT
below which thermal equilibrium is reached.

6Although the fractional power of 3/2 only holds for a non-interacting Bose gas, we can still
use this formula as an estimate for our weakly interacting bosons.

7Note that even without thermalization, it would be possible to describe highly degenerate
DM particles by the classical, homogeneous field configuration, with the perturbation spectrum
given by (6.12). The coherence length in this case is estimated as lc ≃ min(2π/k∗, λdB) [125],
where λdB denotes the de Broglie wavelength. However, without the additional ingredient of
thermal equilibrium, it can be shown (by using typical galactic virial velocities) that lc always
reduces to λdB (unless one is willing to consider masses that are even lighter than in FDM). Hence,
without invoking thermalization, one ends up with the FDM scenario, which requires extremely
light particles (≲ 10−22 eV) to get a kpc-size core.



6.2 Formation of the Superfluid Core 97

Second, the particles need to start populating the ground state, which happens
at densities n ≳ nc ∼ (mT )3/2, as indicated above. Below the radius that we denote
as the degeneracy radius Rdeg the particle density exceeds such a critical density.

Which of these conditions is satisfied first in an astrophysical setting, or equiv-
alently the hierarchy of the radii RT and Rdeg, depends on several parameters (λ,
m, ρDM). Additionally, a third length scale enters, namely the Jeans scale, which
determines the size of stability of the superfluid cores that can form after both of
those conditions are met.

In the following, we want to distinguish two cases, corresponding to the scenar-
ios that either RT > Rdeg (case (i)) or RT < Rdeg (case (ii)). Since a full analysis of
the non-linear process responsible for creating the galactic structures is beyond the
scope of the present thesis, we will discuss the process in a somewhat qualitative
manner, exploring the scenario that in the outside regions of galaxies there is no
thermal equilibrium. Thus, we assume that in the outer regions, where the con-
densate has not formed yet, the density profile of the galaxy is well approximated
by the NFW profile (1.7). This assumption appears to be justified by simulations
of self-interacting DM scenarios (see e.g. Ref. [121] and references therein).

Then, if we approach smaller radii, one of the two scenarios will be realized,
depending on the parameters m and λ. In case (i), the interaction rate is given
by the standard expression (see (6.25)). However, if case (ii) occurs and hence
the DM substance is in a highly degenerate state while thermalization sets in, the
interaction rate is enhanced by a degeneracy factor that roughly corresponds to
the number of bosons in the same state.

Thus, the interaction rate can be expressed as [167, 168]

Γ = σ

m
ρDMvN , (6.22)

where we estimate v as the orbital circular velocity

v(r) =
√
GM(r)

r
, (6.23)

with M(r) the enclosed mass at distance r, and

N = max
{

1, ρDM

m

( 2π
mv

)3}
(6.24)

is the aforementioned degeneracy factor.
Now, we want to study the two cases in turn. We would also like to note that

whenever we will be using the NFW profile in the following sections in order to
produce numerical estimates for a Milky Way-like galaxy, we are going to use the
total mass MDM = 1012M⊙ and the concentration parameter c = RV/rs = 6 (note
that the parameter ρc is then also fixed).

6.2.1 Case (i): Non-Degenerate Thermalization
For r > RT > Rdeg, we have a classical gas of weakly interacting DM particles
that approaches local thermal equilibrium at r ≃ RT (while N ≃ 1). Then,
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for RT > r > Rdeg, the DM particles are approximately in thermal equilibrium,
but since they mostly occupy excited states, the density profile in this region is
similar to the one obtained in self-interacting DM models. Finally, at distances
RT > Rdeg > r, condensation will occur, and the configuration is expected to be
dominated by either one superfluid core of size ℓ or a collection of superfluid islands
if Rdeg ≫ ℓ.

In order to derive the thermalization radius RT, we have to solve

Γtg = σ

m
ρDM(RT)v(RT)tg = 1 , (6.25)

where we have defined the thermalization radius as the radius below which the
DM particles had enough time to scatter once on average, i.e. teq = t1 = Γ−1.
For our crude estimates, it suffices to use the rough approximation tg ≃ 13 Gyr
(i.e. approximately the Hubble time) for the age of the galaxy. Since we assume
the density profile at r > RT to be the NFW profile (1.7), the solution RT is
a cumbersome function of σ/m, ρc, and rs. To visualize it, we can look at the
following limits:

RT ≃ rs

(
ρcrs

√
2πGρc

σ

m
tg

)γ
, with γ =


2 , for RT ≪ rs ,

2
7 , for RT ≫ rs .

(6.26)

We see that RT is a monotonically increasing function of σ/m (which also holds
for the full result). So, as expected, the stronger the interactions the earlier the
DM particles reach equilibrium (in regions where the densities are lower). However,
the self-interactions affect RT more mildly in outer regions (RT ≫ rs), where the
density scales as r−3 and hence has to be overcome by stronger self-interactions.
On the other hand, for inner regions (RT ≪ rs) the resulting thermal radius is very
sensitive not only to the self-interactions but also to the specific values of rs and
ρc that are characteristic of a given numerical fit to a certain halo.

Since the present case is only valid for N ≲ 1, we can use the latter inequality
to derive a bound for the DM particle mass m. For example, at distances RT ≪ rs,
we find

m ≳ 20 eV
(
σ/m

cm2/g

)−5/4

. (6.27)

Hence, this scenario requires masses that are significantly above eV (for RT ≫ rs,
we get qualitatively the same result, just with a different power law for (6.27)), as
long as the scattering cross section satisfies the Bullet Cluster constraint, which we
derive below (see (6.36)).

Masses in this region tend to make the Jeans length come out too small to be
phenomenologically interesting, as can be seen by using (6.20) together with (6.36),
which leads to

ℓ ≲ 5 × 10−2 pc .

6.2.2 Case (ii): Degenerate Thermalization
In the alternative scenario, we have Rdeg > RT. This scenario incorporates a
simpler structure, since the density profile is expected to have the NFW form all
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the way down to r ∼ RT and hence be similar to the one in the non-self-interacting
DM paradigm.8 Then, at r < RT we expect the phase transition of DM to happen,
leading to the emergence of superfluid islands of size ℓ.

Now, in order to find RT, we have to solve

Γtg = σ

m
ρDM(RT)v(RT)N tg = 1 , with N = ρDM

m

( 2π
mv

)3
≫ 1 . (6.28)

As before, we visualize the solution by considering the two limits:

RT ≃ rs

(
4π2ρc

Gm4r2
s

σ

m
tg

)δ
, with δ =


1
3 , for RT ≪ rs ,

1
5 , for RT ≫ rs .

(6.29)

In this case, the result is not particularly sensitive to a change of the NFW param-
eters, since (6.29) depends only mildly on rs and ρc. Moreover, since now the size
of the thermalized region depends on the combination of parameters (σ/m)m−4

(as opposed to just σ/m as in the non-degenerate case), there exists a wide range
of parameters for which a significant fraction of the halo has reached local thermal
equilibrium.9

The previous analysis indicates that we have to explore the scenario in which
Rdeg > RT if we want to end up with kpc-size superfluid cores.

We would like to finish this section with noting that by using tg as the time
scale available for thermalization, we implicitly assumed that dynamical effects
(as for example dynamical friction) within the galaxy are not important. If this
assumption is not justified, one should rather use the dynamical time (see e.g.
Ref. [169])

tdyn = r/v , (6.30)

which is the time scale available to DM particles in order to complete an orbit.
Although in this case the thermalization radius is reduced, we will now show that
the change is only of order one.

The equation for RT now becomes

Γtdyn = σ

m
ρDM(RT)RTN = 1 , (6.31)

whose solution can again be expressed in the limits

RT ≃ rs

√8π3ρc

G3
1

m4r2
s

σ

m

δ , with δ =


2
5 , for RT ≪ rs ,

2
7 , for RT ≫ rs .

(6.32)

8Note that in contrast to the standard CDM scenario, here there will be a region where, due
to the DM particles’ large degeneracy, the DM fluid is still described by the homogeneous field
configuration (see footnote 7).

9This was already shown in Ref. [102].
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Comparing (6.29) to (6.32) (using the parameters for a Milky-Way type galaxy),
we find

RMW
T,dyn

RMW
T,g

≃


1
2

[
σ/m

cm2/g

(
m

eV

)−4
]1/15

, for RT ≪ rs ,[
σ/m

cm2/g

(
m

eV

)−4
]3/35

, for RT ≫ rs .

(6.33)

We see that since the above ratio depends very weakly on σ/m and m, RT would
not be reduced by more than half.

6.3 Revised Bullet Cluster Constraint
We saw in the last section that many of the details of the core formation depend
on the values of m and λ (or σ). Thus, let us discuss if we can infer anything
about these parameters. Historically, one of the first and most powerful methods
to constrain the self-coupling of DM was the observation of a system of two galaxy
clusters called Bullet Cluster [170]. That system consists of a smaller sub-cluster
(the “bullet”) that has traversed the larger sub-cluster (the “target”) in the dis-
tant past. Strikingly, the configuration looks very different depending on whether
one observes the gas distributions of the sub-clusters (via X-ray imagery) or if
one measures the centers of the total mass distribution (via gravitational micro-
lensing): the latter is offset with respect to the former. In other words, while the
baryonic matter of the two sub-clusters has interacted significantly (electromag-
netically) during the collisional encounter, the DM halos appear to have passed
each other with only gravitational interactions. Hence, that system provides a rare
opportunity to derive an upper bound on the strength of DM self-interactions.

Note that other galaxy cluster mergers have been observed as well, leading to
similar bounds on the interaction rate. However, for definiteness, we will focus on
the Bullet Cluster in this work.

From the aforementioned observation, we can deduce that a DM particle from
the bullet cluster has not interacted with a DM particle from the target cluster (on
average) even once,

⟨Nsc⟩ < 1 ,
where ⟨Nsc⟩ denotes this average number of scatterings. Taking 2RV/vin-fall as the
crossing time, where RV is the virial radius (and hence effective size) of the target
cluster and vin-fall is the crossing velocity, the above can be expressed as

⟨Nsc⟩ = Γ 2RV

vin-fall
< 1 . (6.34)

In order to derive a bound on the cross section σ, one has to know the functional
form of the interaction rate Γ that, as we have discussed in the previous section,
depends on the nature of DM.

The original bound, known as the Bullet Cluster constraint, has been derived
for non-degenerate DM, subject to 2-body interactions, which leads to

⟨Nsc⟩ = 2 σ
m
RVρDM < 1 , (6.35)
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and hence, using ρDM ≃ 10−25 g/cm3 as the average DM density and RV ≃ 2 Mpc,10

to
σ

m
≲ 1 cm2/g . (6.36)

If we focus on m ≫ eV and translate (6.36) into a bound on the coupling
constant, we get

λ ≲
(

m

10 MeV

)3/2
.

Hence, for DM particles that are heavier than a few MeV, the theory has to be in
the strong coupling regime in order to violate the above Bullet Cluster bound.

We would like to mention that there is another bound that competes with (6.36)
for ultra-light DM particles. If we require that this DM candidate behaves as a
non-relativistic fluid on cosmological scales, we can derive the following bound for
the scattering cross section from its equation of state (which is dominated by the
interaction pressure)

p

ρDM

∣∣∣∣
equality

= λρDM|equality

8m4 ≪ 1 , ⇒ σ

m
≪
(

m

2 × 10−5 eV

)5
cm2/g , (6.37)

where we have used ρDM|equality ≃ 0.4 eV4 for the DM density at matter-radiation
equality.11 We see that for DM particles that are light enough the bound (6.37) can
be even more constraining than (6.36). However, in the following, we shall argue
that the bound (6.36) has to be revisited in the present scenario.

As we have already discussed in the previous section, for DM particles that
occupy highly degenerate states, the interaction rate is enhanced by the degeneracy
factor N (see (6.28)). It is easy to see that this is precisely the case for the Bullet
Cluster system, since for a galaxy cluster with RV ≃ 2 Mpc, RV/rs ≃ 4, and
ρDM ≃ 10−25 g/cm3, the quantity N exceeds unity everywhere (using the NFW
profile) inside the virial radius if one considers m ≪ eV.

Notice that even though Ncluster ≃ 10−3Ngalaxy (considering that the velocities
in clusters are about an order of magnitude higher than in galaxies), for extremely
degenerate galaxies the interaction rates in clusters too can be enhanced.

Thus, using the modified relation (6.28) and the aforementioned typical (aver-
age) astrophysical values, we can derive the improved Bullet Cluster bound

σ

m
≲ 10−2

(
m

eV

)4
cm2/g . (6.38)

We have to stress that the above bound is only valid if the halos still contain a
significant DM fraction in the form of a gaseous, non-condensed medium because
the enhancement factor N was obtained in that situation. If, instead, almost the
entirety of particles would occupy the ground state, the transitions to excited states

10This value for ρDM is the average density of the target cluster within 500 kpc, obtained by
using an NFW profile [171]. Note that this region is around the size rs, i.e. we are averaging over
the region that contains most of the halo mass.

11Note that if a fraction of the DM is in the excited state, then an additional (linear) contri-
bution to the pressure would be present, which could tighten the bound (6.37).
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would not enjoy such an enhancement. Although this issue requires a more detailed
investigation in the future, in the present thesis we work on the assumption that
the process of thermalization and fragmentation will leave a significant (order one)
fraction of DM particles in the excited states.

Using the bound (6.38), together with (6.28), we can derive the upper bounds
on the thermal radii of various halos. For the Milky Way, one finds

(RT)Milky Way ≲ 125 kpc , (6.39)

while the thermal radii of the target and bullet clusters cannot exceed ≈ 0.5 Mpc.
Thus, only the inner regions of DM halos are capable of reaching thermal equilib-
rium.

Finally, if instead of tg one uses the dynamical time as the available time scale
for thermalization, one finds

(Rdyn
T )Milky Way ≲ 60 kpc , (6.40)

which is slightly tighter than (6.39), as expected.

6.4 Core Fragmentation and Remaining Param-
eter Space

Having established the new Bullet Cluster constraint (6.38) and decided to consider
the particular scenario where the DM particles reach thermal equilibrium in inner
regions of galaxies, while being in a highly degenerate state (case (ii)), we are
finally in a position to analyze the formation of superfluid cores in the interior of
galaxies and galaxy clusters.

Let us begin by focusing on the relation between the Jeans scale ℓ and the
thermal radius RT. In the interaction-pressure case (large ξ), which we are inter-
ested in, the two length scales are controlled by different combinations of m and
σ. Although this seems to suggest that we can find parameters for which kpc-size
superfluid islands can be generated while RT can vary from values lower than ℓ up
to RV, this is in fact not possible. We can express ℓ in terms of RT as(

ℓ

2 kpc

)
≃
[
F(RT/kpc) ×

(
m

meV

)−1
]1/4

, (6.41)

where the function F is determined by the density profile of a halo and can be
deduced from (6.28). We see that for a given RT the Jeans scale depends only
mildly on m, and hence we need ultra-low values of the latter in order to have a
macroscopic value of the former. More precisely, in order to have ℓ ≥ RT, the DM
mass has to enter the regime of the FDM parameter space (i.e. a dispersion relation
dominated by the quartic term in (6.12)), which then would violate the condition
ξ ≫ 1. In other words, since ℓ, ξ and RT depend on three different combinations of
m and σ/m, the superfluidity condition ξ ≫ 1 is not satisfied by a generic choice
of ℓ and RT.
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Figure 6.2: The black lines correspond to slices of the parameter space that generate
a Jeans scale of 0.1 kpc/2 kpc/6 kpc in the Milky Way DM halo, assuming a DM par-
ticle governed by the action (6.1). To obtain them, we evaluated (6.13) numerically,
using ρDM ≃ 10−25 g/cm3. The curves interpolate between the superfluid regime, ξ ≫ 1
(sloped part), and the “non-interacting” regime, ξ ≪ 1 (flat part). Blue/Orange/Red,
dashed curves highlight the parameter space that generates a thermal radius RT of
0.1 kpc/2 kpc/6 kpc, where RT is the radius within which the particles had the chance to
scatter at least once throughout the lifetime of the halo. On the right of the gray line,
the Milky Way DM halo is in global thermal equilibrium. The colored regions show how
RT changes varying the sufficient mean number of scattering events in the interval 1–10.
We see that it is impossible to have an interaction pressure-dominated core with ℓ ≳ RT.
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The viable parameter space for which we can get macroscopic superfluid patches
within the thermalization radius is shown in Figure 6.2, where we used the full
expression for the Jeans scale (6.13) that is valid for arbitrary ξ. We plot different
values for the Jeans scale and the thermal radius for a Milky Way-like halo. Note
that, even though ℓ is density independent in the interaction pressure case, this is
not true for the quantum pressure case. Thus, only the sloped part of the solid
curves is equal for all astrophysical structures. For the turning point and the flat
part of the solid curves, this is not the case.

We can read off from Figure 6.2 the result that ℓ ≳ RT is impossible for halos
sustained by the interaction pressure, by observing that in the sloped region (in-
teraction pressure limit) the lines corresponding to a given ℓ do not intersect the
lines describing thermal radii with smaller values.

Therefore, we have obtained the result that for DM that consists of a scalar par-
ticle with a (λΦ4)-potential, forming an interaction pressure-supported superfluid
core, the only viable scenario is for

ℓ < RT . (6.42)

We would like to remark that this result was obtained for a thermal radius
that we defined as the region below which the DM particles had sufficient time to
interact once (teq = t1). However, the same result is obtained if we use the more
conservative assumption that successful thermal equilibrium can only occur if the
number of scattering events is increased. We illustrate the result for a number in
the interval 1–10 with the colored regions in Figure 6.2.

In order to determine the allowed parameter space of the present DM candi-
date capable of generating kpc-size solitons in partially thermalized clusters, we
combined all the limits discussed in this chapter in Figure 6.3 (which displays the
most interesting part of the parameter space) and in Figure 6.4 (which displays the
entire parameter space).

The region in pink is excluded due to the upper limit on the self-interaction
strength, obtained from the analysis of the collision of the clusters in the degenerate
setting (see section 6.3).

We would like to reiterate that the preceding, qualitative analysis is generally
sensitive to the particular density profile taken for the halo before thermalization
and in particular to the values chosen for the parameters of the NFW profile.
Furthermore, if thermalization would affect the outer galactic regions as well, the
mean density of the thermal core is expected to drop by one order of magnitude.
However, this would neither modify the behavior in the interaction pressure case
(because it is density independent) nor the halo’s fate to succumb to fragmentation.
In fact, the turning point between the different scalings (degeneracy pressure and
interaction pressure, respectively) shown in Figure 6.2 would move more to the
right because the lower mean density of the thermal core has to be compensated
by a stronger self-interaction.

Finally, as pointed out in section 6.3, the bound (6.38) is only applicable if a
significant fraction of the halos remains in gaseous form, instead of a scenario where
the clusters thermalize completely and undergo the phase transition to (a collection
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Figure 6.3: Allowed parameter space for the considered scenario. Since we focused on
the superfluid regime, we excluded halos sustained by quantum pressure (green region).
The pink region is excluded by the Bullet Cluster constraint (6.38), while the purple one
represents condensates that were relativistic at matter-radiation equality (see (6.37)).
The striped region corresponds to the parameter space where both the bullet and target
cluster are in global thermal equilibrium. Black solid lines identify the parameter space
that generates a Jeans scale of 0.5 kpc/2 kpc/6 kpc.

of) superfluid cores. Even though the latter scenario appears unlikely, we have
highlighted the parameter space in Figure 6.3 (and Figure 6.4) that corresponds
to that situation. In this case, the resulting density profile would deviate from the
NFW profile and a more detailed analysis would be needed to find constraints on
the parameter space. Such an analysis lies beyond the scope of the present work.

To conclude this section, we would like to comment on the implication of our
finding on the coupling constant λ. As we can read off from Figure 6.3, superfluid
cores with a size ℓ ≳ 0.5 kpc are only possible for cross sections σ/m ≲ 10−63 cm2/g
and masses m ≲ 10−15 eV. From this, we can infer that λ ≲ 10−65.
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Figure 6.4: This figure is equivalent to Figure 6.3, except that here we plot the whole
parameter space, highlighting ℓ = 10−3 pc/1 pc/6 kpc, for reference.

6.5 Summary
We have argued that for an ultra-light (scalar) DM candidate with repulsive, quartic
self-interactions, given by the theory (6.1), the following scenario should arise in an
astrophysical setting. As long as the DM particles that begin to clump and form a
halo did not have sufficient time to reach thermal equilibrium, their density profile
is approximated by the one considered in the CDM paradigm, i.e. it is given by
the NFW density profile. However, in interior regions, where the densities are high
enough, within the lifetime of the halo, local thermal equilibrium can be reached
through the self-interactions. This process can be enhanced due to the fact that
the ultra-light bosonic particles occupy highly degenerate states in the phase space.

We have further demonstrated that a scenario including kpc-size cores requires
that Rdeg > RT, meaning that with decreasing distance to the center of the halo,
first a radius is reached where the inter-particle separation is less than the particles’
de Broglie wavelength, and only after that the radius emerges where self-scatterings
are efficient enough to reach thermal equilibrium. In this way, the thermal equili-
bration is supported by the large degeneracy.

Moreover, we have shown that the validity of this scenario entails the presence
of not just one single core but a collection of superfluid droplets of size ℓ. The
latter is the gravitational Jeans length above which the core is unstable and prone
to fragmentation. The shape of each superfluid island is approximately given by the
superfluid soliton (see (6.9)). We have not further analyzed the resulting dynamics
of the droplets, which will influence the precise form of the final density distribution.
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However, since the superfluid solitons are expected to behave as weakly interacting
effective particles, at scales between ℓ and RT the density profile should resemble
its counterpart of the CDM scenario.

Finally, a large portion of the possible parameter space has been removed by
the improved Bullet Cluster constraint that we have derived in this work. We
have shown that for ultra-light DM particles the interaction rate is enhanced so
dramatically that the only way to accommodate the observation in the Bullet
Cluster is to have an extremely small scattering cross section. This, however, leads
to much smaller Jeans lengths, and hence superfluid core sizes, than might have
been expected otherwise.
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A
Propagator for Time-Dependent

Sources

Here, we will derive the general expression for the propagator in the case of arbitrary
(i.e. in general time-dependent) sources. Since we do not need it for our study of
the double-brane setup, but only wish to use the derivation to elucidate some of
the points addressed in chapter 2, we will perform the calculation for the single-
brane case. In order to avoid clutter in our notation, we will refrain from using the
superscript “1B”.

Let us start with the derivation for the scalar field theory in order to expose
the essential parts of the calculation. For simplicity, we will derive the propagator
between points where one of the points is located at the brane (at the origin). A
generalization to arbitrary locations along the extra dimension is straightforward.
The propagator G(xµ, y) then fulfills the equation(

□ − ∂2
y + rcδ(y)□

)
G(xµ, y) = −δ(4)(xµ)δ(y) . (A.1)

Fourier transforming with respect to the worldvolume coordinates, using

G(kµ, y) =
∫

d4x eikµxµ

G(xµ, y) ,

and with respect to the extra dimension, using

G̃(kµ, k5) =
∫

dy e−ik5yG(kµ, y) ,

we arrive at
G̃(kµ, k5) = 1

(k5)2 − k2

(
rck

2G(kµ, 0) − 1
)
,
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with k2 ≡ kµk
µ. Transforming back to the y-coordinates leads to

G(kµ, y) = A(k, y)
(
rck

2G(kµ, 0) − 1
)
, (A.2)

with A(k, y) as defined in (2.15). From (A.2), we can find

G(kµ, 0) = 1
rck2 − A−1(k, 0) , (A.3)

and hence
G(kµ, y) = A(k, y)

A(k, 0)
1

rck2 − A−1(k, 0) . (A.4)

In order to calculate A(k, y), we have to prescribe how the integration contour
should go around the poles (which will be encountered for k2 > 0). We choose the
prescription

A(k, y) = lim
ε→0

∫ dk5

2π
eik5y

(k5)2 − k2 − iε , (A.5)

which is consistent with the iε-prescription for the Feynman propagator. With this,
we find

A(k, y) = i
2

eik|y|

k
, k ≡

√
k2 . (A.6)

Thus, the propagator is given by

G(xµ, y) =
∫ d4k

(2π)4
e−ikµxµeik|y|

rck2 + 2ik . (A.7)

It is now straightforward to repeat the appropriate calculation for the graviton
in the full DGP theory. We can rewrite (2.14), using (2.16), as

hµν(k, y) − ηµνh(k, y) = A(k, y)
A(k, 0)

(
hµν(k, 0) − ηµνh(k, 0)

)
.

From this, it follows that

hµν(k, y) = eik|y|hµν(k, 0) , (A.8)

and hence

hµν(xµ, y) = 2
M3

∗

∫
d4k

1
rc

e−ikαxαeik|y|

k2 −m2(k)

[
T µν(k) − 1

3

(
ηµν − kµkν

m2(k)

)
T (k)

]
, (A.9)

where we employed (A.6) and (2.19). We also used a normalization factor in front,
which is appropriate for the 5D graviton.

We can now read off the propagator (see also section 2.1.2) for propagation
between a point on the brane and a point along the extra dimension. In (world-
volume) momentum space, it reads

Dµν,αβ(kµ, y) = 1
rc

eik|y|

k2 −m2(k)

[1
2(PµαPνβ + PµβPνα) − 1

3PαβPµν
]
, (A.10)

with m2(k) and Pµν as given in (2.17) and (2.22), respectively.



B
Mode Functions

B.1 Infinite Extra Dimension
In order to find the solutions ψm,α(y) of (2.34), we have to solve the harmonic
oscillator equation in the three regions I, II and III (see Figure B.1) and then match
the solutions at the boundaries of those regions (this is the standard procedure
for Schroedinger-type equations with delta-function potentials). In particular, the
matching conditions (at the branes) between the regions I and II and the regions
II and III are: continuity of ψm(y) at y = −R

2 and y = R
2 ; discontinuity of dψm(y)

dy
at y = −R

2 and y = R
2 .1 This calculation leads to

ψm(y) =



Am cosmy +Bm sinmy , y < −R

2 ,

Cm cosmy +Dm sinmy , −R

2 ≤ y ≤ R

2 ,

Em cosmy + Fm sinmy , y >
R

2 ,

where 4 of the 6 integration constants are fixed as

Am = Cm

[
1 + rcm sin

(
mR

2

)
cos

(
mR

2

)]
− rcmDm sin2

(
mR

2

)
,

Bm = Dm

[
1 − rcm sin

(
mR

2

)
cos

(
mR

2

)]
+ rcmCm cos2

(
mR

2

)
,

Em = Cm

[
1 + rcm sin

(
mR

2

)
cos

(
mR

2

)]
+ rcmDm sin2

(
mR

2

)
,

Fm = Dm

[
1 − rcm sin

(
mR

2

)
cos

(
mR

2

)]
− rcmCm cos2

(
mR

2

)
,

1 lim
ε→0

dψm(y)
dy

∣∣∣± R
2 +ε

± R
2 −ε

+m2rcψm(±R
2 ) = 0.
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Figure B.1: The setup: Two DGP branes along the (infinite) extra dimension y (with
suppressed transverse dimensions). I, II and III are the regions we need to match in order
to find the field solution.

with two arbitrary integration constants Cm and Dm. In principle, every choice of
Cm and Dm parametrizes a different solution in the two-dimensional solution-space.
However, since the operator acting on ψm,α(y) in (2.34) is symmetric around y = 0,
we can find solutions that are either even (α = 1) or odd (α = 2). Hence, our mode
functions are

ψm,1(y) =



Am cosmy +Bm sinmy , y < −R

2 ,

Cm cosmy , −R

2 ≤ y ≤ R

2 ,

Am cosmy −Bm sinmy , y >
R

2 ,

(even) , (B.1)

with

Am = Cm

[
1 + rcm sin

(
mR

2

)
cos

(
mR

2

)]
and Bm = rcmCm cos2

(
mR

2

)
,

(B.2)
and

ψm,2(y) =



Am cosmy +Bm sinmy , y < −R

2 ,

Dm sinmy , −R

2 ≤ y ≤ R

2 ,

− Am cosmy +Bm sinmy , y >
R

2 ,

(odd) , (B.3)

with

Am = −rcmDm sin2
(
mR

2

)
and Bm = Dm

[
1 − rcm sin

(
mR

2

)
cos

(
mR

2

)]
.

(B.4)
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It is straightforward to establish that these mode functions satisfy condition (2.35).
Performing that lengthy calculation, fixes the coefficients

C2
m = 1

π

1
cos2

(
mR

2

)
+
[
sin

(
mR

2

)
+ rcm cos

(
mR

2

)]2 , (B.5)

D2
m = 1

π

1
sin2

(
mR

2

)
+
[
cos

(
mR

2

)
− rcm sin

(
mR

2

)]2 . (B.6)

B.2 Compact Extra Dimension
To find the solutions ψm,α(y) of (2.34) subject to periodic boundary conditions, we
proceed analogously to the derivation in appendix B.1. Now the three regions I, II
and III are defined as shown in Figure 2.1. The matching conditions (at the branes)
between the regions I and II and the regions II and III are as before: continuity of
ψm(y) at y = −R

2 and y = R
2 ; discontinuity of dψm(y)

dy at y = −R
2 and y = R

2 . This
calculation leads to

ψm(y) =



Ãmeimy + B̃me−imy , −L

2 < y < −R

2 ,

C̃meimy + D̃me−imy , −R

2 < y <
R

2 ,

Ẽmeimy + F̃me−imy ,
R

2 < y <
L

2 ,

where 4 of the 6 integration constants (we choose here a representation with gen-
erally complex coefficients) are fixed as

Ãm = C̃m

(
1 − imrc

2

)
− D̃m

imrc

2 eimR ,

B̃m = C̃m
imrc

2 e−imR + D̃m

(
1 + imrc

2

)
,

Ẽm = C̃m

(
1 + imrc

2

)
+ D̃m

imrc

2 e−imR ,

F̃m = −C̃m
imrc

2 eimR + D̃m

(
1 − imrc

2

)
,

with two arbitrary integration constants C̃m and D̃m.
The conditions of periodicity, ψm(L2 ) = ψm(−L

2 ) and ∂yψm|L
2

= ∂yψm|− L
2
, lead

to the quantization of the masses according to

eimL = b∗
α(m)
bα(m) , for

C̃m = D̃m , α = 1 ,
C̃m = −D̃m , α = 2 ,

(B.7)

with
b1,2(m) = 1

2

(
1 + imrc

2
(
1 ± e−imR

))
. (B.8)
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Notice that the solutions (automatically) split into even (α = 1) and odd (α = 2).
The mass quantization equation (B.7) can be rewritten as

tan mL2 = −Im [bα(m)]
Re [bα(m)] , (B.9)

which leads to the expression given in (2.43).
Putting everything together, the (real-valued) solutions for the mode functions

are

ψm,1(y) =



C1(m1)b1(m1)e−im1y + c.c. , −L

2 < y < −R

2 ,

C1(m1) cosm1y , −R

2 < y <
R

2 ,

C1(m1)b1(m1)eim1y + c.c. , R

2 < y <
L

2 ,

(even) , (B.10)

and

ψm,2(y) =



iC2(m2)b2(m2)e−im2y + c.c. , −L

2 < y < −R

2 ,

C2(m2) sinm2y , −R

2 < y <
R

2 ,

−iC2(m2)b2(m2)eim2y + c.c. , R

2 < y <
L

2 ,

(odd) , (B.11)

with bα(mα) and mα given by (B.8) and the solutions of (B.9), respectively.2
The integration constants Cα(mα) can be fixed by requiring a normalization

according to (2.41). We find

Cα(mα) = 1√
2

(
|bα(mα)|2(L−R) + R

4 + Im [bα(mα)]
mα

)−1/2

, for mα ̸= 0 ,

(B.12)
and3

C1(0) = 1√
2rc + L

, for m1 = 0 . (B.13)

It is now straightforward to check that the above results reduce to the results
of the infinite-dimension case (see appendix B.1) if one takes the limit L → ∞,
leading to

C1
L→∞−→

√
2π
L
C ,

C2
L→∞−→

√
2π
L
D ,

and goes over to the cosine- and sine-basis.4 In this limit, the masses regain their
continuous spectrum.

2As opposed to the previous case (infinite dimension), now we distinguish between m1 and m2
because the masses do not take continuous values anymore but are the solutions of two distinct
quantization equations.

3As explained in section 4.2, there is no zero-mode for α = 2.
4Notice that the factor

√
2π
L appears because the mode functions are plane-wave normalized

in the infinite-dimension case.



C
Numerical Demonstration of the

Validity of Integral Approximations

C.1 Point Sources on Different Branes
In order to show that the leading-order approximations, which we found for the
three specified regimes in section 3.1.1, are correct, we compare the numerical value
of J (obtained by numerical integration of (3.5)), as a function of r, to the two
asymptotes FDGP(r/2) (see (2.25)), valid for r ≫ ρ, and π√

2
r
ρ
, valid for r ≪ ρ,

respectively. Since J can be viewed as a function of the dimensionless variables
r/R and rc/R, all functions plotted in Figure C.1 depend just on r and rc, expressed
in units of R. We see that J is approximated excellently by the given leading-order
expressions for the two regimes r ≪ ρ and r ≫ ρ. Furthermore, if the ratio rc/R
is large enough, J can be approximated by a constant, for ρ ≪ r ≪ rc.

Next, let us verify that also the corrections to the leading-order terms of J ,
given in section 3.1.1, are accurate. Since in section 3.2 we are interested mostly
in the force along the brane, where the terms linear in r will drop out, in the
remainder of this section, we will perform our numerical analysis exclusively for
the force (3.24). In order to plot a dimensionless quantity f , we define the physical
(dimensionfull) force as

Fr ≡ − 1
16πM2

P

1
R2f(r, rc) , (C.1)

so that1

f ≡ − 2
π
R2 ∂

∂r

(
J

r

)
. (C.2)

1 In order to extract a numerical result, we pull the derivative inside the integral of (3.5) and
then integrate numerically.
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10-6

10-3

1

Figure C.1: Log-log plot of the numerical value of J (see (3.5)), as a function of r (in
units of R), for two different values of rc/R (solid curves). The dashed curves are the
functions FDGP(r/2) (see (2.25)), for r ≳ ρ, and π√

2
r
ρ , for r ≲ ρ, in two different colors,

depending on the value of rc/R. We see that J is approximated very well by the two
asymptotes in the two regimes, separated by ρ (we have plotted the asymptotes with an
offset because otherwise the curves would lie on top of each other). We observe that J
does not change its leading-order behavior by crossing r ≃ R. At r ≃ ρ, J crosses over
from a linear behavior to the “DGP behavior”, where J is approximately constant for
r ≪ rc and then crosses over to a (1/r)-scaling for r ≫ rc. The constant part is more
pronounced for larger ratios rc/R.

We, again, consider f as a function of r and rc (in units of R). Figure C.2 shows
the force along the brane between two point sources on different branes. We see
that the leading-order terms of (3.24) approximate the actual behavior of the force
very accurately in the regimes (I)-(III).

To justify the corrections to the leading-order terms in the expression (3.24),
let us consider regimes (I) and (II) separately. For R ≪ r ≪ ρ, we compare the
numerical value of f where we subtracted the leading-order term R

rc
to the correction

terms given in (3.24), in Figure C.3 (the numerical prefactors are specified in the
caption of that figure). We see that the two given corrections in (3.24) are in good
agreement with the numerical result, where 1

πr2
R
rc

dominates for smaller r, while
2
√

2
3

r
ρ3 dominates for larger r, in the regime (II).
Next, we compare the corrections for ρ ≪ r, given in (3.24), to the numerical

value of f where we subtracted the leading-order term R2

r2 . We show in Figure C.4
that the two corrections, given in (3.24), are again quite good approximations for
the numerical result, where the correction

√
2

rρ
e−

√
2 r

ρ dominates for r → ρ, while the
correction 2

π
1
rrc

dominates for r → rc.
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10-15

10-12

10-9

10-6

Figure C.2: Log-log plot of the numerical value of f , defined in (C.2), as a function of r
(in units of R), shown as the solid curve. The dashed curves show the functions r

rc
for

r ≲ R, R
rc

for R ≲ r ≲ ρ and R2

r2 for r ≳ ρ. We see that f is approximated very well by
the three asymptotes in the stated regimes. We observe that already for rc/R = 106, the
regime (II), where the force can be approximated as constant, extends over almost three
orders of magnitude. Increasing rc/R, extends this region. For r ≪ R, the force vanishes
linearly, while for r ≫ ρ it interpolates between a (1/r2)- and a (1/r3)-behavior.

10-10

10-8

10-6

Figure C.3: Log-log plot of the numerical value of f − R
rc

(since the leading correction
terms in regime (II) always have the opposite sign from the leading term, we plot here
the absolute value), as a function of r and rc (in units of R), for two different values of
rc/R (solid curves). The dashed curves are the functions R3

πr2rc
, for r → R, and 2

√
2

3
r
√
R

r
3/2
c

,
for r → ρ, in two different colors, depending on the value of rc/R. We see that the
corrections given in (3.24) are good approximations for the numerical result of Fr, with

1
πr2

R
rc

dominating for smaller r and 2
√

2
3

r
ρ3 dominating for larger r, in the regime (II).

The vertical lines show the scales that separate the regimes. We see that for larger rc/R
the approximation gets better.



118 C. Validity of Integral Approximations

10-15

10-12

10-9

10-6

Figure C.4: Log-log plot of the numerical value of f − R2

r2 (since the leading correction
terms in regime (I) always have the opposite sign from the leading term, we plot here
the absolute value), as a function of r (in units of R), for two different values of rc/R

(solid curves). The dashed curves are the functions
√

2R3/2

r
√
rc

e−
√

2 r
ρ , for r → ρ, and 2

π
R2

rrc

for r → rc, again for two different values of rc/R. We see that the corrections given in
(3.24) are good approximations for the numerical result of Fr, with

√
2

rρ e−
√

2 r
ρ dominating

for smaller r and 2
π

1
rrc

dominating for larger r, in the regime (I). The vertical lines show
the scales that separate the regimes. We see that for larger rc/R the approximation gets
better.
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C.2 Point Sources on the Same Brane
The potential energy due to two point sources on “our” brane, in the presence of
an empty second DGP brane, is given by (3.30) with (2.31). This leads to the
“baryonic” potential energy

Vb(r) = − g2

4π2
1
rrc

Jb , (C.3)

with

Jb = 2
∫ ∞

0
dx sin x

2 r
rc

+ x− x e−2 R
r
x(

2 r
rc

+ x
)2

− x2 e−2 R
r
x
. (C.4)

The plot in Figure C.5 shows the numerical result for (C.4), for two different
values of rc/R. We see that for r ≪ ρ, Jb = π, so we recover the standard Newton
potential. In particular, there is no change of behavior in going from r ≲ R to
r ≳ R. Only when r approaches ρ, does the potential energy cross over to the
DGP-behavior, found in Ref. [64]. Interestingly, if rc/R is large enough, there will
still be a region (for ρ ≪ r ≪ rc) where the potential is approximately Newtonian,
but with half its value.2 One of the results of the present work is that we found
the length scale that differentiates between these two behaviors to be ρ.

2The reason for the factor 1/2 is easy to understand: in the region ρ ≪ r ≪ rc the brane
distance is effectively zero (ρ → 0 for R → 0), so the propagator is the one for two branes on top
of each other, i.e. rc → 2rc. Since the propagator scales as r−1

c for r ≪ rc, the Newton potential
gets halved. See also the discussion in the paragraph below (3.3).
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10-1

1

Figure C.5: Log-log plot of the numerical value of Jb (see (C.4)), as a function of r (in
units of R), for two different values of rc/R (solid curves). The dashed horizontal lines
go through the points π and π/2. We see that Jb starts with a constant value of π for
r ≪ ρ, does not change across R, and then crosses over to a DGP-behavior at r ∼ ρ,
where it then goes from a constant value of π/2 to a (1/r)-behavior. Again, the constant
region (π/2) is more pronounced for larger values of rc/R.



D
Evaluation of the Bessel Function

Sum

In order to evaluate the sum (4.37), we will closely follow Ref. [172], where several
asymptotic expansions of Bessel function sums that are similar to ours are derived.
We start by defining the new variable

τ := a

di
(D.1)

and taking the Mellin transform of

S
(
a

di

)
= S(τ) =

∞∑
n=1

n2K2(τn) ,

which leads to

S̃(s) =
∫ ∞

0
dτ τ 2s−1S(τ) ,

=
∞∑
n=1

n2
∫ ∞

0
dτ τ 2s−1K2(τn)︸ ︷︷ ︸

I

. (D.2)

This expression converges for Re(s) > s0, with s0 specified below. The integral, I,
in (D.2) can be easily performed, giving

I = 1
422sΓ(s− 1)Γ(s+ 1)n−2s ,

with the Gamma function Γ. Now we can take the sum
∞∑
n=1

n2−2s = ζ(2s− 2) ,
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where ζ is the Riemann zeta function, and find

S̃(s) = 1
422sΓ(s− 1)Γ(s+ 1)ζ(2s− 2) .

Finally, we take the inverse Mellin transform

S(τ) = 1
πi

s0+i∞∫
s0−i∞

ds τ−2sS̃(s) ,

= 1
4πi

s0+i∞∫
s0−i∞

ds τ−2s22sΓ(s− 1)Γ(s+ 1)ζ(2s− 2) . (D.3)

The integrand in (D.3) has an infinite set of poles, originating from both the
Riemann zeta function (pole at s = 3

2) and the Gamma functions. The poles at
s = 3

2 , 1, 0 are simple, while the ones at s = −1,−2, . . . are double poles. We now
see that s0 = 3

2 , so the integration contour in (D.3) has to be on the right-hand side
of this in order for S(τ) to converge. Using the residue theorem, we can rewrite
the above expression as

S(τ) = 1
2
∑
si

Res
(
f(s), si

)
, (D.4)

where we sum over all the residues of

f(s) = 4sτ−2sΓ(s− 1)Γ(s+ 1)ζ(2s− 2) , (D.5)

with the poles si given above. Expression (D.4) is correct if the integration along
the contour around all the poles to the left of s0 vanishes. It can be shown that
this is indeed the case, by carefully analyzing the asymptotic behavior of ζ(2s− 2)
and Γ(s± 1) (see e.g. Ref. [172]).

Now, we do not have to consider all the residues in (D.4) because we are only
interested in the terms of S(τ) that are not higher than second order in τ , since
all higher orders will lead to positive powers of a in (4.36). But these will not
contribute to the Casimir energy in the limit a → 0. Hence, we only have to
consider the poles higher than and up to s = −1. We find

S(τ) = 1
2

[
3π
τ 3 − 2

τ 2 + ζ ′(−4)
4 τ 2 + O

(
τ 4
)]
, (D.6)

where ζ ′ is the derivative of ζ (and τ as defined in (D.1)).
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