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SUMMARY 

The ability of neurons to filter, to add and subtract, to divide or to multiply synaptic 

inputs gives any neuronal system a computational ascendency. Theories of motion 

vision which explain the capacity to perceive the physical displacement of an image 

through time, include all of these computational tools. Two essential ingredients of 

the so-called elementary motion detectors are the temporal filtering of signals and 

the performance of nonlinear arithmetic operations. In other words, light signals 

coming from two points separated in space are filtered so as to create a coincidental 

synaptic input onto a direction-selective cell. A following nonlinear operation 

multiplies or divides these signals in order to compute the direction of motion. How 

such algorithmic steps are biophysically implemented in neurons remains elusive.  

In Drosophila melanogaster, the motion vision pathway offers an ideal testing 

ground to explore these questions. Extensive research has led to the discovery of 

connectivity patterns and to the discovery of the functional properties of neurons in 

this pathway. Furthermore, the motion vision pathway in fruit fly is constrained to a 

relatively small circuit of stereotypical columnar neurons whose somata are readily 

accessible for electrophysiological recordings in vivo. In this context, the main focus 

of my thesis was the investigation of the cellular and biophysical substrate of 1) the 

nonlinear operation happening at the level of the dendrites of primary motion sensing 

T4 neurons and 2) the differential temporal filtering ascribed to the presynaptic 

partners of T4 neurons. In this cumulative thesis, my findings are presented 

chronologically.  

In manuscript 1, my co-authors and I recorded the membrane potentials of 

direction-selective T4 neurons and of their columnar input elements in response to 

visual and pharmacological stimuli in vivo. We showed that a multiplication-like 

operation essential to the computation of direction selectivity arises from the release 

of glutamatergic inhibition and a coincident cholinergic excitation. 

In manuscript 2, we recorded the membrane potentials of Mi9, Tm3, Mi1, Mi4, and 

C3 neurons in response to visual stimuli in vivo. We showed that the differential 

filtering of the columnar inputs to T4 neurons, the first stage of the elementary 

motion detector, emerges from the architecture of a passive network. Taken together, 

these manuscripts exemplify the biological implementation of an algorithmic model 

of motion detection. 
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INTRODUCTION 

1.1 Neurons as electrical elements of a biological circuit 

1.1.1 Branching in history 

In the 19th century, the appearance of the neuron doctrine draws attention to one of 

the building blocks of the nervous system (the neuron) (de Castro, 2019). This 

doctrine states that the nervous system is composed of a multitude of small cells 

which are interconnected to create a network. Golgi staining performed by Santiago 

Ramon y Cajal at the beginning of the 20th century lead the neuron doctrine to 

become the accepted theory (de Castro, 2019). Once the neuron theory is accepted, 

it becomes clear that if one wants to understand the workings of the human brain, he 

or she needs to understand what the neurons are and how they interact with one 

another. 

1.1.2 Neurons as biological elements of an electrical circuit 
If the nervous system is made of many single cells assembled into complex networks, 

it follows that neurons need strategies to encode, transmit, and decode information. 

The popularization of the neuron theory sees with it the rise of electrophysiology. 

In 1874, Ludimar Hermann proposes that changes in the potential of regions of an 

axon lead to small electrical impulses. He describes these impulses as ‘Strömchen’1 

down the neuron’s axis and through its ‘Hüllen’2 (Hermann, 1874). Following 

Hermann’s lead, Julius Bernstein’s membrane hypothesis introduces the idea that 

the membrane of a neuron must during an electrical impulse lower its resistance in 

order to allow for the necessary flow of ions (Hille, 1991; Seyfarth and Peichl, 2002). 

This implies that a neuron has electrical properties and that these properties are 

dependent on the composition of its membrane, on the intracellular and extracellular 

ionic concentrations, and on conductances. The conductance is the ease with which 

charges flow across the membrane for a given voltage difference. By placing the 

membrane of the neuron at the center of its function, Hermann and Bernstein pave 

the way for a generation of electrophysiologists who revolutionize the field of 

neuroscience through their kinetic description of membrane permeability (Hille, 

1991). In 1949, the sodium hypothesis, which correctly blames the positive 

1 Small currents 
2 Now known as the phospholipid polar bilayer membrane 
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overshoot during action potentials on increased permeability to Na+  ions is proven 

by Hodgkin and Katz (Hodgkin and Katz, 1949). The voltage-clamp technique and 

its use as a direct measurement of ion flow through the membrane solidifies between 

1949 and 1952. Thereafter, the electrical properties of a neuron arise from 1) the 

neuron’s membrane made of a phospholipid bi-layer with high resistance, and 2) the 

difference in ionic concentrations in and outside the neuron. This creates 

electromotive forces on either side of the membrane and a potential.  

The movement of ions across a membrane with high resistance is an essential 

characteristic of neurons. Hodgkin and Huxley propose the modeling of a piece of 

the giant squid’s axon’s membrane as a resistor–capacitor equivalent circuit. The 

circuit contains a capacitor representing the dielectric property of the membrane, 

three conductive branches representing the Na+, K+, and leak conductances with their 

respective electromotive forces, as well as resistors representing the time- and 

voltage-varying resistances (ref. Hodgkin and Huxley, 1952a; Fig. 1). In Hodgkin 

and Huxley’s equivalent circuit, the Na+- and K+-associated conductances 𝑔#$ and 

𝑔% can be calculated as 

	𝑔#$ = 
'()

*+*()
(1) 

𝑔% = ,-
./.-

 .                     (2) 

Here, 𝐼12 and 𝐼3 are the respective Na+ and K+ currents, E is the membrane potential, 

and 𝐸12 and 𝐸3 are the respective reversal potentials of Na+ and K+ (Hodgkin and 

Huxley, 1952a). Using the Nernst equation, the relationship between reversal 

potential and the ionic concentrations inside and outside the neuron can be expressed 

for 𝐸12 and for 𝐸3	as 

𝐸12 = 5678	9:	
[<=]?
[<=]@

     (3) 

𝐸3 = 5678	9:	
[A]?
[A]@
	.   (4) 

Here, R is the gas constant, T is the absolute temperature on the Kelvin scale, z is the 

charge of the ion, F is Faraday’s constant, [x]o is the external concentration of ion x, 

and [x]i is the internal concentration of ion x. Owing to the electrical properties of 

its membrane, the single neuron is thus represented as an electrical element. When 

assembled into networks, neurons become part of an electrical circuit. 
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Fig. 1. Representation of an axon membrane as an equivalent circuit 
Outside (top) and inside (bottom) are the extra-cellular and intra-cellular space, respectively. 
𝐼B, 𝐼12, 𝐼3, and 𝐼C are the respective capacitive, sodium, potassium, and leak current densities. 
𝐶E is the membrane capacity per unit area. 𝐸12, 𝐸3, and 𝐸C are the respective equilibrium 
for Na+, K+, and for the leak. They create the electromotive batteries (bottom). 𝑔12, 𝑔3, and 
𝑔C are the three conductive branches for Na+, K+, and for the leak conductances. The 
resistances with arrows through them represent the non-linear time- and voltage-varying 
conductances dependent on voltage-gated ion channels (Hille, 1991; Hodgkin and Huxley, 
1952a). 

1.1.3 Transmembrane ion channels 
The electrical properties of the neuron arise from the potential appearing at the level 

of the cell membrane. The maintenance and the changes applied to the membrane 

potential are controlled by an abundance of differently specialized transmembrane 

proteins. These proteins let specific ions flow across the membrane (Hille, 1991). As 

shown in (Fig.1), changes applied to the membrane potential do not follow a linear 

process. Non-linear time- and voltage- varying conductances depend on the identity 

and kinetics of specific transmembrane channels.  

Among the different types of channels, Voltage-gated ion channels are sensitive to 

local changes in the membrane potential. In other words, movements of the 

membrane potential away from the resting membrane potential lead to 

conformational changes of the pore of the channel. These conformational changes 

allow for the passage of ions. Some of these channels are sensitive to the 

depolarization of the membrane (Warmke et al., 1997) while others respond to its 

hyperpolarization (Brown et al., 1979; Difrancesco and Ojeda, 1980; Masuda et al., 

2006). Voltage-gated ion channels are permeable to Na+ (Hille, 1991; Warmke et al., 

1997), Ca2+ (Catterall, 1998), or K+ (Frolov et al., 2012; Hille, 1984; Kamb et al., 

1987). Because neurons are reliant on their ion channels, the specific expression 

levels and the subcellular localization of these proteins on the membrane can allow 
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for complex biological signal processing. Such signal processing can underlie signal 

filtering and arithmetic operations performed by neurons. This is reviewed in more 

detail in sections 1.2 and 1.3. 

Ionotropic receptors for their part, are ligand-gated ion channels. They are present 

in high concentrations in so-called chemical synapses. These synapses are structures 

formed between two neurons. Synapses are specialized in mediating chemical 

communication between neurons via the use of neurotransmitters. It is only upon 

binding of specific ligands that the ionotropic receptors allow ions to cross the 

membrane. A special case are N-methyl-D-aspartate (NMDA) receptors, which 

additionally require membrane depolarization (Nowak et al., 1984). Further 

description of the specificity of NMDA receptors and of its implication in neuronal 

computations are reviewed in 1.3.3. The ions which can pass through ionotropic 

pores include Na+, Cl-, Ca2+, or K+ (Cascio, 2004). Endogenous ligands binding to 

these channels include acetylcholine (ACh), l-aminobutyric acid (GABA), and 

glutamate (Glu). Furthermore, many monoamines such as serotonin, histamine, or 

octopamine (in Drosophila) can act as neurotransmitters or as neuromodulators. 

 Gap junctions are yet another type of transmembrane protein allowing for the 

communication of signals between neurons. They are found in the so-called 

electrical synapse. Gap junctions consist of a pair of connexons. One connexon is in 

the presynaptic cell membrane and one is in the postsynaptic cell membrane (Unwi 

and Zampighi, 1980). Together, these connexons form a continuous bridge between 

neurons allowing the passage of inorganic ions and of small organic molecules 

(Nielsen et al., 2008).  

Thus, conductances introduced in the neuron by its transmembrane ion channels do 

not only allow a control of its membrane potential. They are also the basis of the 

communication between neurons in a network. 

1.2 Signal Processing 

Neurons are electrical elements assembled into complex neuronal circuits. They can 

communicate with one another via chemical or via electrical synapses. If the activity 

in the brain is reduced to a complicated set of computations emerging from these 

neuronal circuits (Groschner and Miesenbock, 2019), then the timing at which each 

single neuron communicates information to its post-synaptic partners is of outmost 

importance. As Buzsáki puts it, the brain is a “foretelling device”, and its “activity 
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can be tuned to become an ideal observer of the environment” (Buzsáki, 2006). In 

other words, brains have developed strategies to optimally process environmental 

cues which are important to the animal. One of these strategies is the creation of a 

delay between two sensors. 

1.2.1 Delay  
Delays result from the distance in space between two spatially offset sensors. They 

allow for a temporal or spatial control of neuronal activity in response to 

environmental cues. To avoid confusion, in this section, delay refers to the timing 

difference of environmental signals (such as sound or moving visual stimuli) 

resulting from the distance in space of two or more sensors. On the other hand, 

“filtering” refers to a set of strategies implemented by the brain so as to change the 

timing of individual circuit elements. The implementation of delays in the brain is 

clearly exemplified by the use of interaural time differences in sound processing 

(Darrow et al., 2006). Shortly, the distance between the two ears (interaural) creates 

an asymmetry in the processing of sounds emitted from a point in space. The 

localization of the provenance of sounds is possible if an array of detectors of 

coincident inputs is created using axons with different lengths (Jeffress, 1948). The 

ability to localize the provenance of a sound is vital to nocturnal animals such as the 

barn owl where the implementation of coincidence detector arrays has been found 

(Carr, 1993). In mammals, the use of filtering lines implemented by differential 

axonal lengths at the level of the bushy cells of the cochlear nucleus allows for a 

temporal control of the signals relayed to coincidence detectors in the medial 

superior olive (Yin, 2002).  

As implied by Jeffress, in order to detect specific environmental cues, the brain needs 

1) to create a delay resulting from the spatial offset of sensors, 2) mechanisms to

differentially filter the delayed signals, and 3) mechanisms to compare these signals.

1.2.2 Low-pass filtering 
Filters are a general means of changing the timing of individual circuit elements. A 

way to differentially filter signals is to use low-pass filters. A low-pass filter is a 

filter which passes signals with a lower frequency than its cut-off frequency. It 

attenuates signals with a higher frequency than its cut-off frequency. In electronic 

circuits, a simple way to low-pass filter a signal is to make use of resistors and of 

capacitors. Since the phospholipid membrane of the neuron acts as an RC circuit 

(Hodgkin and Huxley, 1952a), it is equipped with the tools necessary to build a 

low-pass filter (Koch, 1999). Theoretically, if all non-linearities such as 

voltage-gated or ionotropic 
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channels are taken out, what is left is a neuron with a passive membrane with 

capacitor-like and with resistor-like properties. This passive cell membrane can then 

be simplified as a core-conductor cable (Rall, 1959). The description of the evolution 

of electrical potentials along the cell membrane can thereafter be modelled with 

cable theory (Koch, 1999; Rall, 1959).  

One way to increase the low-pass filtering properties of a passive dendrite is to 

increase its cable length and thereby increase propagation delays between the 

centroid (the center of gravity) of a transient current input at a point on the membrane 

and the centroid of the resulting transient voltage response at another point along the 

membrane (Agmon-snir and Segev, 1993). Hence, by reducing the diameter of its 

projections or by spatially segregating its non-linear conductances, a neuron can low-

pass filter the signals it is receiving. In summary, a neuron’s passive membrane itself 

is already the equivalent of a linear low-pass filter and the choice of its physical 

properties, such as its length or its nonlinear conductances, can allow to tune its time 

constant. 

1.2.3 Band-pass filtering 

The implementation of differential low-pass filtering strategies by neural circuits 

could allow for the coincidental detection of signals. However, the use of frequency-

domain techniques to study the brain (Puil et al., 1986) has highlighted the existence 

of stereotypical frequencies underlying the rhythmic activation of neuronal 

populations (Steriade et al., 1990). The presence of these rhythms (Buzsáki, 2006) 

is a hint to the existence of different modes of dynamical organization in the brain. 

In other words, the existence of these rhythms implies that neurons or populations 

of neurons possess frequencies at which they are preferentially activated. This 

indicates the implementation of band-pass filtering strategies in the brain. A band-

pass filter passes signals within a specific range of frequencies (band). It attenuates 

signals with frequencies outside this band. Two explanations for these rhythms exist. 

Either 1) rhythms arise from the pattern of connections between neurons in re-entrant 

or in recurrent neural circuits (Traub and Miles, 1991) or 2) neurons behave as 

oscillatory subunits possessing an intrinsic frequency preference (Llinas, 1988). In 

both cases, neurons create the equivalent of a band-pass filter. 

1) If the rhythms seen in the brain arise from the patterns of connections between

neurons, it is the architecture of the circuit itself in conjunction with the dynamic

properties of synapses which allow for the differential filtering of neuronal inputs

(Traub and Miles, 1991). Here, the connectivity of the network dictates the time
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constants assigned to each neuron. How the architecture of a circuit tunes the time 

constant of neurons can be shown by modelling neuronal responses in a simple 

network. Let us consider a network containing three neurons each acting as a low-

pass filter. If the neurons are all excitatory and connected in a feedforward manner, 

the time constant of neuron n is larger than the time constants of neuron n-1. Each 

neuron thus responds as a differently tuned low-pass filter to a step input signal (Fig 

2a). If one excitatory neuron and one inhibitory neuron with different time constants 

are connected to a third neuron, the third neuron can respond as a band-pass filter to 

a step input signal (Fig. 2b) (Cruse, 2009).  

Fig. 2. Network architecture and time constants 
(a) Three neurons are connected in a feedforward manner. Each neuron low-pass filters the
signals it receives. Neuron 1 receives a step input signal. The time constant of each neuron
increases at each new level of the network. (b) Neuron 3 receives excitatory inputs from
neuron 1 and inhibitory inputs from neuron 2. Both neuron 1 and neuron 2 receive the same
step input signal. Neuron 1 and neuron 2 have different time constants. When neuron 1 and
neuron 2 are activated by a step input signal, the response of neuron 3 can resemble a band-
pass filter.

The use of recurrent neural circuits as filtering strategies in the visual circuit of 

Drosophila melanogaster is explored in manuscript 2 and is further reviewed in 

section 3.3. 

2) If neurons possess an inherent frequency preference, the source of the differential

filtering is to be found in the membrane properties of individual cells. For single

neurons to become band-pass filters, two mechanisms are needed (Hutcheon and

Yarom, 2000). Neurons need to possess a mechanism creating a resonance as well

as a mechanism amplifying this resonance into an oscillation (Fig. 3). Because

oscillations only occur at resonant frequencies, the conjunction of both mechanisms

results in the equivalent of a “notch filter” capable of rejecting inputs at frequencies

outside the band-pass (Hutcheon and Yarom, 2000).
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Resonance 

The mechanism responsible for the resonance can be pictured as the simultaneous 

use of a low-pass filter, which attenuates voltage responses to inputs arriving at high 

frequencies, and of a high-pass filter, which attenuates voltage responses to inputs 

arriving at low frequencies. When the respective cut-off frequencies of both filters 

are far enough from one-another, this creates a frequency window where resonance 

occurs. The passive membrane itself already fulfills the role of the low-pass filter 

(Fig. 3b). However, the high-pass filter which is generally represented as an inductor 

in electrical circuits (Fig. 3c) is more complicated to reproduce in biological 

membranes (Fig. 3d). The combination of specific voltage-gated ion channels allows 

for the creation of the equivalent to a high-pass filter. To create a high-pass filter, 

the currents elicited by these voltage-gated channels must follow two criteria. 

First, these currents must directly oppose the voltage changes of the membrane. An 

example of such currents are the inwardly rectifying hyperpolarization-activated Ih 

currents (Brown et al., 1979; DiFrancesco, 1981; Hauswirth et al., 1968). Indeed, 

when the reversal potential of a channel allowing these currents falls at the base of 

its activation curve, this channel can actively oppose changes in the membrane 

voltage (Hutcheon and Yarom, 2000).  

Second, these channels must activate slowly in comparison with the membrane time 

constant. The gap between the low-frequency regions of attenuation established by 

the opposing currents and the high-frequency regions of attenuation established by 

membrane time constant defines the width of the resonance band-pass. In other 

word, resonance can only arise at intermediate frequencies where inputs induce 

voltage changes at frequencies too high to be opposed by the ‘slow’ opposing 

channels and too low to be counteracted by the passive properties of the membrane 

(Hutcheon and Yarom, 2000).   
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Fig. 3. Frequency-dependent properties of R, RC, RLC circuits and of a neuron  
The transformation of a chirp input current (Llinas, 1988) when it is passed through various 
electrical circuits or through a neuron exhibiting band-pass filtering properties. The 
quantification of the transformation (impedance) is calculated by dividing the Fourier 
spectrum (calculated using the Fast Fourier Transform) of the output signal by the Fourier 
spectrum of the input signal. The resulting magnitude is plotted along a frequency axis 
(right). (a) When the input currents are passed through a circuit containing only a resistor it 
does not result in a low-pass or in a band-pass filtering. (b) When the input current is passed 
through a circuit containing a resistance and a capacitance (RC model of the membrane) 
(Hodgkin and Huxley, 1952b), the output is low-pass filtered. (c) If the input current is passed 
through a resistance, capacitance, and inductor (RLC) circuit, the output is band-pass filtered. 
(d) Expectation of the band-pass filtering properties of a neuron from the interaction between
the membrane’s low-pass filtering property with slow opposing and fast amplifying currents.
Image taken with permission from Hutcheon and Yarom, 2000.

Oscillation 

The conjunction of both the low-pass filtering properties and the high-pass filtering 

properties of the membrane creates the equivalent of a resonance band-pass in the 

neuron (Puil et al., 1986). Yet, the existence of this resonance is of little help if it is 

not appropriately amplified. Such amplification is allowed by the addition of 

voltage-gated ion channels whose reversal potentials are at the top of their activation 

curves and which activate quickly in comparison with the membrane time constant. 

The persistent Na+ current INaP (Cummins et al., 1994; Stafstrom, 2007) or the INMDA 

(Nowak et al., 1984) current fulfill these criteria. A summary of the prerequisites for 

resonance and amplification is shown in (Fig. 4) 
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Fig. 4. Prerequisites for neurons with intrinsic band-pass filter properties  
A band-pass neuron needs mechanisms to create both a resonance and an oscillation. The 
resonance comes from the low-pass filtering property of the membrane and from the high-
pass filtering property of opposing and slow activating voltage-gated ion channels. The 
oscillation is a product of fast activating voltage-gated ion channels (Hutcheon and Yarom, 
2000).  

1.3 Biological arithmetic 
Filters are a general means of changing the timing of individual circuit elements. 

They can be used to adjust the timing of two synaptic input signals onto a cell so as 

to make them coincide. Following this coincidence, mechanisms to compare these 

inputs are needed. 

1.3.1 Addition 
The comparison between two synaptic inputs can be modelled as a basic arithmetic 

operation. What operation is used and the extent of its nonlinearity are fundamental 

parameters to the models created to acquire a mechanistic understanding of the brain. 

The addition of two excitatory synaptic inputs by a cell is an intuitive operation as 

one can simply linearly add the various synaptic inputs a neuron receives. In models 

of neuronal networks, addition is comparable to the use of the Boolean logical 

inclusive OR operator (ref. Schnupp and King, 2001; Fig. 5). If a neuron receives 

two inputs, A and B, which are either equal to 0 or to 1, it is only when A = 0 OR B 

= 0 that the neuron is silent. The rest of time, it is active. Early models of neuronal 

networks made extensive use of this type of addition. However, linear additive 

arithmetic alone cannot account for the complexity of brain functions (Koch and 

Segev, 2000). 
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Plus 0 1 OR False True 

0 0 1 False False True 

1 1 2 True True True 

Fig. 5. Table comparing addition with the Boolean logical OR operator 
In the first three columns, two inputs having values of 0 or 1 are added. If both inputs are 0, 
the output is 0. If both inputs are 1, the output is 2. In the last three columns, the interaction 
between the same inputs is represented via the Boolean logic operation OR where a neuron 
is active when the output is True and silent when the output is False. If both inputs are false, 
the neuron is silent (Schnupp and King, 2001). 

Modeling the complexity of brain computations requires nonlinearities (Koch and 

Segev, 2000). This requirement can be resolved by adding a spike threshold to the 

model (Srinivasan and Bernard, 1976). Thereafter, the firing of a cell’s action 

potential becomes dependent on the threshold established by the voltage-gated Na+

channels present in its membrane. The leaky integrate-and-fire neuron fires an 

action potential, if the sum of a neuron’s inhibitory and excitatory inputs exceeds the 

threshold established by the voltage-gated Na+ channels (Lapicque, 1907; 

McCulloch and Pitts, 1943). Although the inputs are linearly processed, the core of 

the computational power of such networks is not the implementation of additive 

arithmetic itself but the non-linear threshold. One can further question the biological 

applicability of linear additive arithmetic in neurons. For passive membranes, the 

postsynaptic potential of two simultaneous excitatory synapses is always lower than 

the linear sum of their excitatory inputs (Koch and Poggio, 1987; Koch and Segev, 

2000). As the membrane potential of the post-synaptic cell increases, the excitatory 

currents automatically decrease (Koch, 1999).  

The inevitable sublinear combination of two simultaneous excitatory inputs can be 

illustrated by a simple electrical equivalent circuit of a passive neuron. This 

isopotential neuron receives two excitatory inputs x and y, which respectively control 

the excitatory conductances 𝑔FG and 𝑔FH (Borst, 2018). The membrane potential 𝑉J 

at steady state is given by 

KL	M	
(OPQROPS).PROU.U

OPQROPSROU
 ;    (5) 

where 𝐸F	and	𝐸Y are the respective reversal potentials of excitatory and of leak 

currents. 𝑔Y  is the leak conductance. When 𝑉J	 is expressed as the difference between 

𝑉J	and 𝐸Y	and all the conductances relative to 𝑔Y	 (Borst, 2018), the response of the 

passive neuron 𝑅G,H to the combined excitatory inputs x and y can be written as 

					KL	M	*P
OPQROPS

OPQROPSRQ
 .  (6)
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If 𝑔FG	= x and 𝑔FH	= y, the individual responses 𝑅G	 and 𝑅H	 to each input presented 

in isolation are 

 𝑅G	= 	*P	
\

\RQ  and  𝑅H	=		*P
]

]RQ .           (7) 

Now we can show that for two excitatory inputs, 𝑅G,H is always smaller than the 

linear expectation 𝑅G+ 𝑅H: 

	𝐸F
^_`
^_`_G

< 𝐸F
^
^_G

+ 𝐸F
`
`_G

  .      (8) 

Factoring out 𝐸F, we obtain 

		 ^_`
^_`_G

< ^
^_G

+ `
`_G

 .  (9) 

For positive non-zero values of x and y, 
^

^_`_G
< 	 ^

^_G
 and `

^_`_G
< 	 `

`_G
 .   (10) 

It follows that the response of a passive neuron to two coincident excitatory inputs 

𝑅G,H is always smaller than the linear expectation 𝑅G+ 𝑅H (Extended Data Fig. 5b of 

manuscript 1). Further description of this sublinearity can be found in the 

supplementary equations of manuscript 1. Ultimately, it is important to remember 

that biological membranes can at best implement arithmetic-like operations. 

1.3.2 Subtraction  
While subtraction cannot be represented via Boolean arithmetic, its use can be 

evaluated computationally and biologically. Indeed, if the reversal potential of 

inhibitory inputs becomes very negative (relative to the resting membrane potential), 

then the influence of the hyperpolarizing electromotive battery starts to dominate the 

membrane potential. This type of inhibition approaches a linear subtraction (Koch, 

1999). A subtraction-like operation is theoretically sufficient in the subtraction stage 

of the Hassenstein–Reichardt detector (Egelhaaf et al., 1989) which is reviewed in 

section 1.4.2.  

Subtractive arithmetic can be illustrated by the equation for the membrane potential 

𝑉c	 at steady state for a neuron receiving an excitatory and an inhibitory input as 

KL	M	
OP.PROd.dROU.U

OPROdROU
 .   (11) 

Here, 𝑔F, 𝑔e and 𝑔Yare the respective excitatory, inhibitory, and leak associated 

conductances. 𝐸F,𝐸f, and	𝐸Y are the respective reversal potentials of excitatory, 

inhibitory, and of leak currents. If 𝑉J	is expressed as the difference between 𝑉J	and 

𝐸Y	and all the conductances relative to 𝑔Y	 (Borst, 2018), the membrane potential 

response is 

KL	M	
OP.PROd.d
OPROdRQ

 .  (12)
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As 𝐸e reaches more negative values, the equation governing 𝑉J	approaches a linear 

subtraction. Experimentally, the implementation of subtractive arithmetic was 

elegantly shown to be mediated by Cl- channels at the level of H-1 cells in Calliphora 

erythrocephala (Egelhaaf et al., 1990).  

1.3.3 Multiplication and division 
As complex operations are demanded from neuronal networks, the use of nonlinear 

multiplicative operations between the synaptic inputs made onto a neuron can be 

computationally advantageous (Koch and Segev, 2000). Once again, Boolean 

arithmetic gives a useful simplification of how such arithmetic can be understood. 

While addition is represented by an OR operator, multiplication is defined by the 

logical AND operator (ref. Schnupp and King, 2001; Fig. 6). If a neuron receives two 

inputs, A and B, which are either equal to 0 or to 1, it is only when A = 1 AND B = 1 

that the neuron is active. The rest of time, it is silent. 

Times 0 1 AND False True 

0 0 0 False False False 

1 0 1 True False True 

Fig. 6. Table comparing multiplication with the Boolean logical AND operator 
In the first three columns, two inputs with values of 0 or 1 are multiplied. If both inputs are 
0, the output is 0. If both inputs are 1, the output is 1. In the last three columns, the interaction 
between the same inputs is represented via the Boolean logic AND operation where a neuron 
is active only when both inputs are True, and silent the rest of the time (Schnupp and King, 
2001). 

The biological implementation of multiplicative arithmetic can take different forms. 

It can be achieved via the use of 1) N-methyl-D-aspartate (NMDA) receptors which 

intrinsically act as AND gates, or via the use of 2) a so-called AND-NOT operator 

(Barlow and Levick, 1965). AND-NOT operators have the ability to approximate 

either divisive or multiplicative arithmetic. 

1) NMDA receptors are glutamate-gated. They allow the flow of currents mainly

composed of Na+, K+, and of a small fraction of Ca2+ ions. Importantly, NMDA-

elicited currents also require a local depolarization of the membrane. At resting

membrane potential, external Mg2+ ions enter the NMDA channel and effectively

block it. Local depolarization of the membrane relieves the Mg2+ block and thus frees

the open pore after binding of glutamate (Nowak et al., 1984). Therefore, a synapse

containing NMDA receptors, in conjunction with other depolarizing receptors, acts
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as an AND gate since NMDA receptors are only open when presynaptic release of 

glutamate coincides with membrane depolarization.  

2) The biological use of an AND-NOT gate can approximate divisive arithmetic. AND-

NOT operations are allowed by the combination of inhibitory and of excitatory inputs

onto a cell. The inhibitory input needs to be tonic in some fashion and must

additionally exert a so-called “silent inhibition”. Such inhibition occurs when the

reversal potential of the inhibitory channels 𝐸f lies close to the leak reversal potential

𝐸C. The opening of “shunting” channels leads to an increase in conductance while

no effect on the membrane potential can be distinguished. This type of shunting

inhibition can be illustrated using eq. (12).

In cases where 𝐸f = 𝐸C = 0 but 0 < 𝑔e £ 1, the effect of increases of the inhibitory

conductance is divisive. The higher the inhibitory conductance is, the more it

controls the equation (McKenna et al., 1992):

	KL	M	 OP.P
OPROdRQ

 .   (13) 

Shunting inhibition can thus be equivalent to a division. Thereafter, in cases where 

both excitation and silent inhibition coincide, the AND-NOT operator acts as a veto 

(Fig. 7). A theoretical application of AND-NOT veto is found in theories of motion 

vision (Barlow and Levick, 1965). As exemplified by eq. (13), if both the shunting 

input and the excitatory input coincide, this results in a sublinearity. The larger 𝑔e is, 

the larger the extent of the sublinearity becomes.  

An AND-NOT operator can also approximate a multiplication. In cases where a tonic 

shunting inhibitory input and its associated Cl- conductance cease in conjunction 

with the start of excitatory inputs, the post-synaptic cell is disinhibited and its 

depolarization is facilitated (McKenna et al., 1992). This type of facilitation can 

easily be explained in cases where the inhibitory and the excitatory conductances are 

temporally shifted so as to follow three distinct steps. First, inhibition is followed by 

disinhibition. Second, following the disinhibitory step there is a period where the 

cell does not receive any input (note that this step is not necessary but helps to 

describe multiplicative facilitation). Third, the lack of input is followed by an 

excitatory input. Starting from eq. (13) where a tonic silent inhibition is present, 

during disinhibition 𝑔e approaches 0 while 𝑔F is still 0. This results in an increase of 

the input resistance 𝐼g (as it is the reverse of the sum of all conductances). For the 

extreme case where 𝑔F = 𝑔e = 0, 

	'5	M	 Q
OPROdRQ

	M	G .       (14)
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If following (or coinciding with) this increase in 𝐼g, excitatory conductances are 

opened so that 0 < 𝑔F	£ 1, then 

 KL	M	
OP.P
OPRQ

 .   (15) 

Consequently, the coincidence of high 𝐼g and of excitatory inputs leads to a 

multiplicative nonlinearity as it is predicted by Ohm’s law: 

      K	M	'∗g .                                                                  (16) 

Here, V is the voltage, I is the current, and R is the resistance. I is defined as 

       '	M	k∗* ,                                                                     (17) 

where g is the conductance. R is defined as 

 g	M	QO .   (18) 

V can then be expressed as 

 K	M	k	∗	*	∗	QO .      (19) 

In eq. (19), in cases where E = 0, changes in R scale I multiplicatively. Using eq. 

(14), the larger gf is, the more nonlinear the facilitation resulting from disinhibition 

becomes. These examples illustrate the importance of the temporal processing of 

excitatory and of inhibitory input signals to a cell. For an AND-NOT operator, the 

achievement of multiplicative or of divisive arithmetic depends on the timing and 

on the polarity of the respective inputs. The coincidence of disinhibition and of 

excitation leads to a multiplication-like operation (Fig. 7). A simultaneous shunting 

and excitation leads to a division-like operation (Fig. 7). Biological evidence for 

multiplication-like arithmetic is further described in manuscript 1.  

Neurons have the ability to compare filtered signals using arithmetic. When 

coincidence of signals occurs, the conjunction of shunting inhibition and of 

Facilitation Veto

Excitation Inhibition

Fig. 7. AND-NOT applications 
Input conductances permitting AND-NOT facilitation and veto. Facilitation (left) results 
from the coincidence of the release from inhibitory conductances (purple) with increase in 
the excitatory conductances (red). Veto (right) results from the coincidence of inhibitory 
and excitatory conductances. 
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excitation results in a division-like operation (veto). The coincidence of the release 

of shunting inhibition with excitation results in multiplication-like arithmetic 

(facilitation). 

1.4 Motion vision and correlation-type motion detectors 

1.4.1 Optomotor response 
Armed with the knowledge about signal processing and about the mechanisms to 

biologically implement arithmetic operations, one might be tempted to try to acquire 

a complete understanding of how the human brain computes information. However, 

at present, the complexity of the organ renders it impossible to fully fathom. To 

overcome this shortcoming, scientists seek insights from the study of innate 

behaviors and reflexes in various animal models. The neuronal operations 

underlying these behaviors and reflexes can then be modelled using signal filtering 

and arithmetic operations (Götz, 1964; Hassenstein and Reichardt, 1956; Orger et 

al., 2000). In such a constellation, it is interesting to consider the capacity to sense 

visual motion, that is the displacement in space of a visual object through time. This 

ability known as motion perception is a major theme of systems neuroscience. 

Naturally, the importance of motion vision to any animal relying on sight cannot be 

emphasized enough. Yet, what gives the study of the neuronal computations 

underlying the ability to detect moving objects an exhilarating incentive, is that it 

might be simple enough to be fully understood. In zebra fish, in the snout beetle, 

or in the fruit fly the ability these animals have to distinguish the directionality 

of a visual stimulus is reflected by their optomotor response (Borst et al., 

2010; Hassenstein, 1951). For instance, when a walking Chlorophanus viridis or a 

walking Drosophila melanogaster is presented with a horizontally moving edge, 

the animal reflexively turns in the direction of the moving stimulus to counteract 

the perceived rotation (Fig. 8). Such a behavior which can be reproduced 

in a controlled environment is a useful window into the perception of the animal. 

Fig. 8. The optomotor response 
Tethered Drosophila walking on an air-cushioned ball which was tracked by cameras. 
Arbitrary visual stimuli on screens surrounding the animal can be displayed. This 
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experimental set-up has been used for behavioral experiments in this thesis. Photo by R. 
Schorner.   
 

1.4.2 Hassenstein–Reichardt detector  

In order to understand the computation underlying the ability to sense visual motion, 

two main correlation-type motion detectors were initially proposed. Using the 

optomotor response of the snout beetle (Hassenstein, 1951), Hassenstein and 

Reichardt propose a model consisting of multiple elementary motion detectors 

(Hassenstein and Reichardt, 1956). This model is purely algorithmic and was 

designed to explain the minimal amount of computation required in order to 

discriminate the direction of visual motion. At its periphery, the “half-detector” 

receives signals from two light detectors physically separated in space (Fig. 9). Both 

photoreceptors give input to a direction-selective cell which multiplies the input 

signals. The signal of one photoreceptor is delayed relative to the other. This delay 

is created so that the sequential stimulation of both receptors, in the sequence that 

would occur during visual motion in the detector’s preferred direction (PD), results 

in the coincidence of the two signals (Fig. 9a). The output signals of two mirrored 

half-detectors are subtracted at a third stage (Fig. 9c). The “full correlator model” 

outputs a positive signal for visual motion in PD. It outputs a negative signal for 

visual motion in the null direction (ND). A variation to this model is proposed in 

the F model where instead of a delay, low-pass filters are used (Thorson, 1966). In 

the F-H model, the low-pass filter is complemented by the use of a high-pass filter 

on the opposing arm (Poggio and Reichardt, 1976). 
 

  
Fig. 9. Hassenstein–Reichardt detector 
The input to the correlation-type motion detector is given by the light intensities measured at 
two points in space by two channels. In each half-detector, signals are multiplied (M) after 
one of them is delayed by a time interval e (a) When the sequential input signal moves in the 
preferred direction, the temporal separation of the signal in both channels is compensated in 
the left arm by e. This allows for a coincidental input of both arms which results in a larger 
response after the multiplication stage (b) When the sequential input signal moves in the null 
direction, e increases the delay between both input signals. This results in two separated 
peaks after the multiplication stage. (c) The full correlation-type motion detector is composed 
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of mirrored half-detectors where the respective outputs from each multiplication stage are 
subtracted. Image taken and adapted with permission from Borst and Egelhaaf, 1989.  

1.4.3 Barlow–Levick detector 
In their study of direction-selective retinal ganglion cells in the rabbit’s retina, 

Barlow and Levick find evidence for a different mechanism of motion detection 

(Barlow and Levick, 1965). Similarly to the Hassenstein–Reichardt detector, the 

Barlow–Levick detector relies on the coincidence of two inputs. The half-detector 

consists of two light detectors one of which is delayed. Here, a nonlinear operation 

is created by a veto stage. Visual stimulation in the ND allows for the coincidence 

of an inhibitory input with an excitatory input. The inhibition vetoes the excitation 

(Fig. 10). By contrast, visual stimulation in the PD creates an inhibition and an 

excitation that do not coincide. This in turn leads to an excitation of the direction 

selective unit. In the Barlow–Levick detector, the non-linear inhibitory stage can be 

represented by a divisive AND-NOT operation or by a subtraction. Noticeably, the 

Barlow–Levick model does not require a delay of the inhibitory arm in cases where 

“inhibition simply persists longer than excitation and can thus continue[s] to be 

effective after a lapse of time” (Barlow and Levick, 1965). 

Fig. 10. Barlow–Levick detector 
The input to the correlation-type motion detector is given by the light intensities measured at 
two points in space by two channels. In the half-detector, signals are divided after one of 
them is delayed by a time interval e. (a) When the sequential input signal moves in PD, e 
increases the delay between both input signals. This hinders the right arm from vetoing the 
input from the left arm. The result is a larger response after the division stage. (b) When the 
sequential input signal moves in the ND, e allows for a coincidental input of both arms. This 
allows the right arm to veto the input from the left arm and leads to a smaller peak after the 
division stage (Barlow and Levick, 1965).    

a b

ε

Δψ

Preferred Direction

÷

ε

Δψ

Null Direction

÷



19 

1.5 Drosophila and the insights it brings 

1.5.1 The genetic toolbox of Drosophila 
In most animal models, the exploration and characterization of the operations 

performed by neuronal networks are limited by the large number of cells involved 

in each circuit as well as by the impracticability for systematic recording of the 

electrical properties of all neurons in vivo (Lerner et al., 2016). In Drosophila 

melanogaster, these limitations do not apply. Drosophila’s brain contains 199,380 ± 

3,400 neurons (Raji and Potter, 2021). This is a large enough number of cells in order 

to support complex computations and behaviors. Yet, it is small enough to attempt 

to understand the structure and function of the microcircuits it contains. Being one 

of the most studied animal models since the early 20th century, a great ease in rearing 

comes with the fruit fly. Furthermore, almost a century of research in diverse fields 

has given the Drosophila scientific community a substantial number of tools. The 

creative use of these tools has the potential to answer many of the important 

questions asked within the field of systems neuroscience.  

Short life cycles and ease of husbandry are considerable advantages of the fruit fly. 

Furthermore, the genetic toolbox developed in Drosophila makes it a very interesting 

animal model. Notably, the repurposing of the UAS-Gal4 yeast binary expression 

system allows for cell type specific expression of a given transgene. This tool 

endows the researcher with the ability to target any neuron, cell type, or assembly of 

cells belonging to a circuit of interest and for which a Gal4 line has been developed 

(Brand and Perrimon, 1993). At its core, the transcription factor Gal4 (originally 

derived from yeast) binds to the Upstream Activation Sequence (UAS). This, in turn, 

activates the transcription of transgenes present downstream of the UAS. 

Importantly, to express a UAS-transgene in cells of interest, it suffices to cross a fly 

containing a Gal4 transgene under the control of regulatory sequences (such as 

promoters or enhancers) with another fly containing the UAS-transgene. The 

offspring from this cross will possess both the UAS and the Gal4 transgenes (Fig. 

11). 
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Fig. 11. Gal4-UAS system crossing scheme 
A fly with the enhancer trap Gal4 is crossed to a fly with the UAS-Gene X to obtain directed 
gene expression. The enhancer trap Gal4 fly has a genomic enhancer fused to a Gal4 
sequence while the UAS-reporter fly has a UAS sequence followed by a Gene X of interest 
(Brand and Perrimon, 1993). The tissue-specific Gal4 binds to the UAS sequence which 
allows for the expression of Gene X in a cell-type-specific manner. Image taken with 
permission from Brand and Perrimon, 1993. 

A common use of the UAS-Gal4 system is the expression of structural markers in 

cells of interest. It is possible to express cytosolic or membrane-bound fluorescent 

proteins in targeted cells. The discovery and development of these fluorescent 

proteins is on its own a leap in scientific accomplishment which cannot be overrated. 

The green fluorescent protein (GFP) is now used across biological sciences to 

explore the anatomical properties of cells (Chalfie et al., 1994). 

The UAS-Gal4 system can also be used in order to shed light into the specific role 

of genes in Drosophila. This is accomplished by means of so-called loss-of-function 

experiments. Here, the UAS-Gal4 system is not used to explore anatomical 

properties of targeted cells but to knock down specific genes using RNA interference 

(RNAi). This interference is accomplished via the degradation of mRNA which in 

turn prevents the translation of proteins of interest (Dietzl et al., 2007; Perkins et al., 

2015). It is thus possible to target a cell type via the use of Gal4 constructs so as to 

deplete it of specific proteins. A major drawback of this approach is the possible 

developmental repercussion or the unspecific gene targeting resulting from the use 

of RNAi tools. The use of RNAi might thus create off-target effects and lead to a 

misinterpretation of experimental results. Its use should therefore be adequately 

controlled. 
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1.5.2 Functional imaging 

Taking advantage of the ease with which the UAS-Gal4 system permits the 

expression of any UAS-transgene, systems neuroscience in Drosophila has been 

revolutionized by the ability to perform functional imaging experiments. The non-

invasive imaging of targeted cell populations in vivo is permitted by the use of 

genetically encoded calcium indicators (GECI). GECI give a readout of the 

electrical activity of cells in which they are expressed (Miyawaki et al., 1997). 

Depolarization of the membrane can lead to the opening of voltage-gated ion 

channels. This, in turn, allows the influx of Ca2+ ions into the cell (Hille, 1991). Ca2+ 

conductance is generally linked to the start of cascading signals such as the ones 

used in exocytosis (Hille, 1991). Because of the small concentration of Ca2+ present 

in the ‘resting’ cell, any influx of Ca2+ can readily be detected by GECI. The Ca2+ 

indicator GCaMP (Chen et al., 2013; Nakai et al., 2001) consists of a GFP protein 

which has been fused to the M13 domain of the myosin light-chain Kinase protein 

which is activated by the calcium-binding protein calmodulin. Calmodulin is an 

endogenous Ca2+ detector present in neurons. With GFP fused to the myosin Kinase, 

the conformational change of calmodulin upon binding of Ca2+ leads to a 

deprotonation of the GFP chromophore. This results in an increase in fluorescence. 

The use of GCaMP and of other GECI has clear advantages. Armed with these tools, 

the simultaneous structural and functional exploration of a vast array of neurons is 

possible. Nevertheless, GECI only give an approximation of a cell’s electrical 

activity. The Ca2+ signal is itself filtered by the limited forward and backward rate 

constants of the indicator proteins (Chen et al., 2013). Furthermore, GECI bind to 

free cytosolic Ca2+ which in itself buffers it and might lead to a significant alteration 

of Ca2+ dynamics in the cell and thus to nonlinearities which could perturb the circuit 

(Borst and Abarbanel, 2007). Finally, because GECI are bound to the non-linear 

activity of the voltage-gated Ca2+ channels, their inactivation via the 

hyperpolarization of the membrane leads to at least a half-wave rectification of the 

voltage-to-calcium transformation. 

1.5.3 Anatomical reconstructions of neural circuits 

The understanding of neuronal networks implies the need for a mapping of each node 

(neuron) and edge (connection) of the network. The small size of Drosophila’s brain 

renders this tantalizing task achievable. The gold standard of neuronal reconstruction 

is the use of electron microscopy (EM). EM has a spatial resolution of less than 

35 nm (Harris et al., 2006). Because of the high spatial accuracy which comes with 

it, EM enables the morphological reconstruction of very fine neural processes and 
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the distinction of single synapses. This does not only allow for the building of 

connectivity matrices. It can also reveal a neurite’s length and diameter. These are 

both values coveted by biophysicists. They make it possible to model and predict the 

evolution of electrical potentials across the membrane of traced neurons (Meier and 

Borst, 2019; Rall, 1959). There exist two main methods to perform circuit 

reconstructions with EM (Briggman and Bock, 2012). Serial-section transmission 

electron microscopy (ssTEM) involves the small sectioning of a sample followed 

by the scanning of each section with a transmission electron beam. The process is 

ended with a manual and time intensive tracing of single neurons and with the 

determination of their connectivity patterns (Harris et al., 2006). Tracing can 

however be accelerated with the help of deep neural nets (Dorkenwald et al., 2017). 

In serial block-face scanning electron microscopy (SBF-SEM), the most 

superficial layer of an embedded sample is imaged. Subsequently, either a diamond 

knife or a focused ion beam is used to shave off the most superficial and already 

imaged layer of the sample. This process is repeated until the whole sample has been 

chiseled off. Both methods come with their own advantages. While the process of 

the SBF-SEM can be highly automated (Denk and Horstmann, 2004; Xu et al., 

2017), the ssTEM method allows to collect and save the samples. In Drosophila, 

recent large-scale projects have allowed the imaging and tracing of important 

structures in the optic lobe (Rivera-alba et al., 2011; Shinomiya et al., 2019; 

Takemura et al., 2017). 

1.5.4 Electrophysiology 
Since the “heroic time of what can be called classical biophysics (1935-1952)” 

(Hille, 1991), electrophysiology has been the tool of choice to study the electrical 

properties of neurons. Electroencephalogram, multi-electrode array (Tochitsky et al., 

2016), sharp electrode, or inside-out recording are only a few of the many techniques 

used in order to record the electrical activity of single or of multiple neurons. In 

Drosophila, whole-cell patch clamp is the prevailing technique to measure the 

electrical activity of single neurons in vivo (Wilson et al., 2004). Whole-cell patch 

clamp permits to study the electrical properties of excitable cells and of their ion 

channels. Towards this, a micropipette filled with an electrolyte solution is attached 

to the cell membrane so as to form a seal. The breaking through the membrane within 

this seal allows for the solution in the pipette and the cytosol to mix. Clamping of 

the membrane is thus made possible. In the voltage-clamp recording configuration 

(Cole and Moore, 1960; Hodgkin et al., 1952), the characterization of the ion flow 

across a cell’s membrane is made possible by measuring the electrical current while 
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controlling the membrane potential via the use of a feedback amplifier. In the 

current-clamp recording configuration, it is the changes in membrane potential 

occurring as a consequence of the changes in ion channel activity which are 

measured. The relatively small size of Drosophila’s brain in comparison with 

mammalian brains renders the performance of whole-cell patch clamp the gold 

standard of electrophysiology in the fly. However, it is important to keep in mind 

that even if the somata of many neurons in the optic lobe of the fly are relatively 

easily accessed, the diameter of most of these somata is much smaller when 

compared to mammalian neuronal somata. While the soma of a stereotypical 

pyramidal neuron has a diameter of about 20µm (Wang et al., 2018), the soma of a 

direction-selective T4 neuron in Drosophila is less than 5 µm wide (Fischbach and 

Dittrich, 1989). Until recently, it was thought that the extremely small size of many 

neurons in the optic lobe made whole-cell recordings impossible (Gruntman et al., 

2018). 

 

1.6 Motion vision in Drosophila 
 
Section 1.5 highlights some of the advantages Drosophila melanogaster brings to 

the study of neuronal microcircuits. Notably, the brain of the fruit fly has revealed 

itself to be auspicious to the study of the biological implementation of textbook 

models of motion vision (Barlow and Levick, 1965; Hassenstein and Reichardt, 

1956). In part, that is because of a stereotypical and repetitive direction-selective 

circuit where the computation of the direction of motion was found to reside in the 

dendrites of T4 and T5 neurons (Maisak et al., 2013). 

 

1.6.1 Columnar system 

 
Ommatidia and retina 

In the fly, visual information is first processed in the retina upstream of the optic 

lobes. Drosophila possesses compound eyes divided into 700 to 800 facets where 

highly precise hexagonal structures called ommatidia sequester light input (Kumar, 

2012; Zeleny, 1922). In each ommatidium, light is focused with the help of a lens 

onto photoreceptors present in the retina. The photoreceptors, in turn, allow for the 

phototransduction of electromagnetic information into biochemical signals (Montell, 

2012). In the retina, increase of light intensity correlates with the increase of 

photoreceptor activity (Pak and Pinto, 1976). As each ommatidium focuses light 

onto seven or eight photoreceptors, six of these photoreceptors (R1-R6) are devoted 
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to detecting changes in light intensity. They cover a spectrum between 360 nm and 

475 nm (Heisenberg and Buchner, 1977; Pak and Pinto, 1976). Two photoreceptor 

types (R7 and R8) are mainly devoted to color vision. They specialize in 

discriminating changes in the intensity of electromagnetic signals of 375 nm and of 

508 nm, respectively (Yamaguchi et al., 2010). 

Lamina 

The retina and its photoreceptors relay visual information to the optic lobe. Each 

optic lobe is divided into discrete neuropils: the lamina, the medulla, the lobula, 

and the lobula plate (Fig. 12). Photoreceptors release histamine onto cells of the 

lamina (the first optic neuropil). Lamina monopolar neurons (L) are hyperpolarized 

by the histamine released by photoreceptors via the histamine-gated chloride channel 

HisCl (Hardie, 1989). Lamina monopolar cells L1, L2, L3, and L4 increase their 

activity with decreasing light intensity. L5 increases its activity with increasing light 

intensity (Arenz et al., 2017; Drews et al., 2020). Importantly, each lamina cell 

receives light information in a columnar, retinotopic fashion (Fischbach and 

Dittrich, 1989). There is one exemplar of each lamina monopolar cell per neuro-

ommatidium. While photoreceptors mainly release histamine, L2 to L5 are 

cholinergic and L1 is glutamatergic.  

Fig. 12. Drosophila’s optic lobe 
(a) Drosophila’s head with anatomical representation of the brain. The optic lobes are shown
in red. Adapted from illustration courtesy of Kei Ito, Sheena Brown and Nicholas J.
Strausfeld. (b) Early optic lobe representation where the retina, the lamina, and the medulla
can be seen. Lamina projections to the medulla are represented in green. Image taken and
adapted with permission from Schützenberger and Borst, 2020.

a b



25 

Medulla 

Light information processed in the lamina is relayed to the medulla (the second optic 

neuropil) where transmedullary (Tm), medulla intrinsic (Mi), and centrifugal (C) 

neurons further process, transform, and relay these signals (Fig. 12 and 13). Once 

again, spatial information received by the array of Mi, Tm, and C cells is preserved 

in a columnar fashion. The increasing complexity of the wiring between cells in the 

medulla contributes to the signal processing. However, the exact contribution of 

individual connections remains elusive. Lamina, medulla, transmedullary, and 

centrifugal cells belong to the ON pathway, in which neurons respond preferentially 

to light increments, or to the OFF pathway, in which neurons respond preferentially 

to light decrements (Joesch et al., 2010). This thesis focuses on the implementation 

of motion vision in the ON pathway. The ON motion pathway includes Mi9, Tm3, 

Mi1, and Mi4 neurons (Arenz et al., 2017; Takemura et al., 2017). Noticeably, most 

of the medulla cells involved in the motion detection circuit possess center-surround 

antagonistic receptive fields. While Mi1, Tm3, and Mi4 neurons each possess an ON 

center with some degree of OFF surround, Mi9 has an OFF center and an ON surround 

(Arenz et al., 2017). Each columnar cell in the lamina and in the medulla 

preferentially receives inputs from a single neuro-ommatidium. While Tm3 is also a 

columnar neuron, its receptive field encompasses two neuro-ommatidia.  

EM studies have highlighted the recurrent property of the neuronal network in the 

ON motion pathway (Shinomiya et al., 2019; Takemura et al., 2017). The increasing 

wiring complexity in the medulla is further complemented by the use of a variety of 

neurotransmitters. The columnar neuron Mi9 releases glutamate. Columnar Mi1 and 

Tm3 cells release acetylcholine while columnar Mi4 and C3 neurons release GABA 

(Davis et al., 2020; Shinomiya et al., 2019; Takemura et al., 2017). In the tenth layer 

of the medulla, inputs from seven to eight columns are funneled to the dendrites of 

a single T4 neuron (Fig. 13). Since there is only one Mi9, Tm3, Mi1, Mi4, or C3 

neuron per column, the columnar system can be said to dictate the retinotopy of the 

inputs to T4 cells.  
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Fig. 13. Inputs to the ON motion circuit 
(a) Signals coming from the retina are relayed to the lamina by photoreceptors R1 to R6
(green) and photoreceptors R8 and R7 (red and purple). OFF lamina neurons L1-L4 (blue)
relay signals from the lamina to the medulla. ON lamina L5 (burnt sienna) also relays signals
from the lamina to the medulla. The chiasm between the lamina and the medulla spatially
inverts anterior and posterior signals. (b) Mi9, Tm3, C3, Mi1, and Mi4 are the main columnar
inputs to T4 direction-selective neurons.

1.6.2 T4 neurons and their inputs 
In the optic lobe, the direction of motion is first computed at the level of the dendrites 

of T4 neurons (ON pathway) and at the level of the dendrites of T5 neurons (OFF 

pathway) (Fisher et al., 2015; Maisak et al., 2013). T4 cells are divided into four 

subtypes, each selective for light increments moving in one of the four cardinal 

directions (Fig.14a). The use of calcium imaging revealed the presence of both a 

supralinear and a sublinear response of T4 neurons to PD and ND stimuli, 

respectively (Haag et al., 2017). Such supralinearity is predicted by the Hassenstein–

Reichardt half-detector and could be achieved via a multiplicative operation 

(Hassenstein and Reichardt, 1956). The sublinearity could result from ND 

suppression. It would then be achieved via the divisive (or subtractive) stage of the 

Barlow–Levick detector (Barlow and Levick, 1965). In such a constellation, a 

detailed characterization of direction-selective T4 cells is facilitated by 1) knowledge 

about the identity of the neuronal inputs to T4 neurons, 2) knowledge about 

ionotropic receptors present on T4 dendrites (Fendl et al., 2020), 3) the responses of 

T4 neurons to the sequential activation of its inputs, and 4) the characterization of 

the nonlinear operations happening at the level of T4 dendrites. 

1) Direction selectivity has been observed in T4 dendrites but not in its inputs

(Maisak et al., 2013). Therefore, the nonlinear stage of the detector is likely to reside
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at the level of T4 dendrites. As mentioned in 1.6.1, EM studies have allowed to map 

the majority of the synaptic inputs to T4 neurons (Shinomiya et al., 2019; Takemura 

et al., 2017). Mi9, Tm3, Mi1, Mi4, C3, TmY15, and CT1 are the major input neurons 

to a T4 cell. Furthermore, the interaction between T4 and its pre-synaptic partners is 

spatially stereotyped (Fig. 14b). One T4 neuron gathers inputs from seven to eight 

columns. Its dendrite is divided in three regions based on intrinsic coordinates: distal 

(tips), central, and proximal. Inputs to the tips of a single T4 dendrite correspond to 

the glutamatergic Mi9 cells residing in the concerned columns. On the other hand, 

the central inputs are mostly mediated by the cholinergic Tm3 and Mi1 neurons 

contained in different columns than those where Mi9 reside. Finally, inhibitory 

GABAergic Mi4 and C3 inputs come from yet other columns at the proximal region 

(Shinomiya et al., 2019; Takemura et al., 2017) (Fig.14b and c).  

2) An advantage of the spatial segregation of T4 inputs is that chemical synapses and

thus receptors between T4 and its pre-synaptic partners are also spatially segregated.

Using single cell FlpTag (Fendl et al., 2020) as well as UAS-Neurotransmitter-

Receptor::GFP transgenes, it was found that the post-synaptic receptor to T4’s

glutamatergic Mi9 input is the glutamate-gated Cl- channel GluCla (Fendl et al.,

2020) (Fig. 14d). Hence, the input Mi9 makes onto T4 is inhibitory (Cully et al.,

1996; Liu and Wilson, 2013). Tm3 and Mi1 make cholinergic inputs onto excitatory

Da7 receptors present at the center of the T4 dendrite. GABAergic Mi4 and C3

inputs are localized on the distal side of the dendrite where Resistant to dieldrin (Rdl)

chloride channels reside (Fendl et al., 2020; Harrison et al., 1996) (Fig. 14d).

3) Because of the columnar retinotopic nature of their input cells, T4 neurons receive

light inputs from different points in space. This allows for the creation of a delay in

response to moving visual stimuli and is in fact a prerequisite of the correlation-type

motion detectors (Fig. 9 and 10). The anatomy of the T4 dendrites reveals its

subtype. The distal tips of the dendrites reach in the cell’s PD (Fig. 14b). It follows

that for a single T4 neuron, the sequential light stimulation of the ommatidium

containing its inputs from Mi9, followed by the stimulation of the ommatidium

containing its Tm3 and Mi1 inputs, and finally a stimulation of the ommatidium

containing its Mi4 and C3 inputs results in an enhanced response (Haag et al., 2016,

2017) . Sequential stimulation in the reverse order leads to a suppressed response of

the T4 neuron (Gruntman et al., 2018; Haag et al., 2016, 2017). The order in which

a T4 cell receives inputs from its pre-synaptic partners is thus of utmost importance

to the computations it is performing.
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4) At this point, a reconsideration of the underlying implementation of a motion

detector by T4 neurons is necessary. Both supralinearities as well as sublinearities

have been measured in T4 (Haag et al., 2016, 2017). The connectivity between Mi9,

Mi1, Tm3, and T4 neurons hints to the implementation of a Hassenstein–Reichardt

detector. However, the connectivity between Mi4, C3, Mi1, Tm3, and T4 neurons

hints to the implementation of a Barlow-Levick detector. A so-called three-arm

model containing both the Hassenstein–Reichardt supralinearity and the Barlow–

Levick sublinearity (named HRBL detector) can be conceived (Arenz et al., 2017;

Haag et al., 2016) (Fig. 14c). The importance of TmY15 neurons to the computation

performed by T4 neurons is limited by the fact that they spread multiple columns

(Shinomiya et al., 2019). Because of this lack of spatial acuity, they are not expected

to play a major role in the computation of direction selectivity.

Implementation of biological multiplication by T4 neurons 

Calcium imaging studies of the presynaptic partners to T4 have revealed some of 

their response kinetics (Arenz et al., 2017). Mi9 has an OFF center. It has thus a 

different polarity than the other inputs to T4 neurons which have ON centers and 

which increase their activity in response to ON visual stimuli (Arenz et al., 2017; 

Richter et al., 2018). The succession of an OFF inhibitory input followed by an ON 

excitatory input would indeed be the optimal application of the AND-NOT logical 

operator described in 1.3.3. The multiplication of coincidental inputs is predicted by 

the Hassenstein-Reichardt detector. In manuscript 1, we investigate the biophysical 

implementation of multiplicative arithmetic by T4 neurons and by its inputs.  

Implementation of differential filtering of the inputs to T4 neurons 

Various correlator models predict the necessity for the differential filtering of the 

input signals to nonlinear operators. This need for filtering is a natural consequence 

of the physical delays established by spatially separated sensors (Jeffress, 1948). 

Thereafter, the inputs to T4 should show signs of differential filtering. Some 

evidence to that effect can be found in previous calcium imaging studies (Arenz et 

al., 2017). The temporal kernels – resulting from the reverse-correlation of a noisy 

stimulus – of Mi4 and Mi9 neurons show low-pass filter properties while temporal 

kernels of Tm3 and Mi1 neurons show band-pass filter properties (Arenz et al., 

2017). However, knowledge about the origin of this differential filtering is scant. In 

manuscript 2, we investigate the biological strategies leading to the emergence of 

the differential filtering of the inputs to T4 neurons. 
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Fig. 14.  Direction-selective T4 neurons 
(a) The dendrites of ON direction-selective T4 neurons are found in the medulla while the
dendrites of OFF direction-selective T5 neurons are situated in the lobula (left). T4 and T5
neurons are separated in four sub-types each selective for light increments in one of the
cardinal directions (right). Images taken with permission from Maisak et al., 2013. (b) From
electron microscopy studies, the position of input synapses onto the dendrites of a T4 are
known. Each color represents an input from Mi9, Tm3, Mi1, Mi4, C3, CT1, and TmY15
(TmY) neurons. (c) A three-arm model combining the Hassenstein–Reichardt and the
Barlow–Levick half-detectors. Here Mi9, Mi4, and C3 inputs act as slow low-pass filtering
lines while Tm3 and Mi1 act as the fast-central input line. The AND-NOT facilitation operator
happening between the left and the central arms is represented by a multiplication. The AND-
NOT veto happening between the right and the central arms is represented as a division. (d)
Mi9 glutamatergic inputs at the tips of T4 dendrites are made onto GluCla receptors (left).
Mi1 and Tm3 cholinergic inputs to T4 dendrites are made onto Da7 receptors (middle). Mi4 
and C3 GABAergic inputs to T4 dendrites are made onto Rdl receptors (right). Images taken
with permission from Fendl et al., 2020.
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1.7 Concluding words 

Motion vision has been the subject of intense research for the best part of the last 

seventy years. From differential filtering to nonlinear multiplication, the motion 

vision circuit in Drosophila contains most of the operations intrinsic to 

computational theories of the brain and has the advantage of being tightly packed in 

a relatively small and stereotypical neuronal circuit. As I started my doctoral work, 

the electron microscopic mapping of Drosophila’s direction-selective circuit had 

already been exhaustively accomplished (Takemura et al., 2013, 2017). Functional 

imaging studies had uncovered the direction-selective properties of T4 neurons 

(Haag et al., 2017; Maisak et al., 2013) as well as the differential temporal filtering 

of its inputs (Arenz et al., 2017). Multiple correlation-type models of direction 

selectivity from the Hassenstein–Reichardt detector (Hassenstein and Reichardt, 

1956) to the F-H model (Poggio and Reichardt, 1976) ending with the three arms 

detector (Arenz et al., 2017) had been proposed. It seemed clear that the inputs from 

Mi9, Tm3, and Mi1 cells onto T4 neurons had to be the components of a supralinear 

multiplicative operation. On the other hand, the inputs from Mi4, C3, Mi1, and Tm3 

cells onto T4 neurons had to be components of a sublinear divisive (or subtractive) 

operation. Furthermore, it had to be the temporal filtering properties of the inputs to 

T4 which allowed for the coincidental detection of light signals and thus for the 

possibility of operational nonlinearities. In this constellation, my first project was to 

artificially reconstruct the multiplicative stage of the Hassenstein–Reichardt detector 

via the use of GCaMP, optogenetic tools, and of pharmacological tools. Although 

the use of GCaMP had made the recent scientific advancements possible, it quickly 

became clear that the limitations of this tool rendered the functional knowledge about 

T4 neurons and about its columnar inputs too unprecise for a reconstitution task. 

What was needed was an intimate knowledge of the electrical properties of T4 

neurons and of its inputs at a high temporal resolution. This could only be achieved 

via whole-cell patch clamp recordings in vivo. This technique would grant access to 

the biophysical relevance of targeted ion channel types as well as access to the 

signature current composition of each cell type. Finally, with whole-cell patch clamp 

recordings, the data missing in order to build a conductance-based model where each 

cell’s activity is measured would be within the reach of a few borosilicate glass 

capillaries. In this context, the main focus of my thesis became the investigation of 

the cellular and biophysical substrates of 1) the nonlinear, multiplication-like 

operation happening at the level of the dendrites of the primary motion sensing T4 

neurons and 2) the biological strategies leading to the differential filtering of the 

presynaptic partners of T4 neurons.   
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In manuscript 1, my co-authors and I describe how the multiplication stage of a 

Hassenstein–Reichardt detector is biophysically implemented at the dendrite of T4 

neurons. In manuscript 2, we further describe how the differential filtering of the 

inputs to T4 neurons emerges from the connectivity of the direction-selective 

network in the ON pathway.  
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membrane potentials of direction-selective T4 neurons and of their columnar input 

elements in response to visual and pharmacological stimuli in vivo. Our 
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on T4 dendrites. We show that this multiplication-like nonlinearity arises from the 

coincidence of cholinergic excitation and release from glutamatergic inhibition. The 

latter depends on the expression of the glutamate-gated chloride channel GluClα in 

T4 neurons, which sharpens the directional tuning of the cells and shapes the 
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excitatory synapses have long been postulated as an analogue approximation of a 
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A biophysical account of multiplication by a 
single neuron

Lukas N. Groschner1,2 ✉, Jonatan G. Malis1,2, Birte Zuidinga1 & Alexander Borst1 ✉

Nonlinear, multiplication-like operations carried out by individual nerve cells greatly 
enhance the computational power of a neural system1–3, but our understanding of 
their biophysical implementation is scant. Here we pursue this problem in the 
Drosophila melanogaster ON motion vision circuit4,5, in which we record the 
membrane potentials of direction-selective T4 neurons and of their columnar  
input elements6,7 in response to visual and pharmacological stimuli in vivo. Our 
electrophysiological measurements and conductance-based simulations provide 
evidence for a passive supralinear interaction between two distinct types of synapse 
on T4 dendrites. We show that this multiplication-like nonlinearity arises from the 
coincidence of cholinergic excitation and release from glutamatergic inhibition.  
The latter depends on the expression of the glutamate-gated chloride channel 
GluClα8,9 in T4 neurons, which sharpens the directional tuning of the cells and shapes 
the optomotor behaviour of the animals. Interacting pairs of shunting inhibitory and 
excitatory synapses have long been postulated as an analogue approximation of a 
multiplication, which is integral to theories of motion detection10,11, sound 
localization12 and sensorimotor control13.

Motion vision in insects represents a textbook example14 of non-
linear signal processing by a single neuron. Each photoreceptor of 
the compound eye captures changes in light intensity, but it is blind 
to the direction of motion. To compute visual motion, the signals 
of at least two neighbouring photoreceptors must be processed 
nonlinearly by a downstream local motion detector (Fig. 1a). In the  
Hassenstein–Reichardt model10, multiplication ensures detector 
output only if the two signals coincide. The coincidence results from 
asymmetric temporal filtering of the input signals and the sequence of 
photoreceptor activation, one after the other, as it unfolds during visual 
motion in the detector’s preferred direction (PD). The Barlow–Levick  
model of motion vision, which was first proposed for the rabbit retina15, 
uses a divisive nonlinearity to cancel responses to motion in the detector’s  
null direction (ND).

The visual system of Drosophila is compatible with both models 
(Fig. 1a). T4 neurons, which are functionally equivalent to the nonlinear 
stages of both models, respond selectively to luminance increments 
moving in one out of four cardinal directions5. Their direction selec-
tivity arises in the second optic neuropil5,16,17, where spatial informa-
tion is preserved in a retinotopic columnar organization18. Each T4 
dendrite innervates approximately seven columns—at least three in 
a row along the neuron’s PD6 (Fig. 1b)—and, therefore, samples from 
multiple adjacent points in visual space. Recent studies6,7 identified 
most—if not all—columnar medulla intrinsic (Mi), transmedullary (Tm) 
and centrifugal (C) neurons that form synapses at distinct locations 
along a T4 neuron’s dendrite: glutamatergic Mi9 neurons at the dis-
tal branches (where stimuli moving in the T4 cell’s PD first affect its 
membrane potential), cholinergic Tm3 and Mi1 neurons at the centre, 
and GABAergic Mi4 and C3 neurons at the proximal segment (Fig. 1b).  

The emerging three-legged circuit motif involves a divisive interaction 
between cholinergic and GABAergic synapses and a multiplicative inter-
action between glutamatergic and cholinergic synapses17,19–22 (Fig. 1a, b).  
However, crucial assumptions concerning the multiplicative term of 
this model21 remain untested: (1) the multiplication-like synaptic inter-
action involves disinhibition; (2) the supralinearity arises from the T4 
cells’ passive membrane properties; and (3) it sharpens the directional 
tuning of the neurons and the optomotor acuity of the animal.

The first assumption, that multiplication requires release from 
inhibition, hinges on the conditions that the signals carried by glu-
tamatergic Mi9 neurons are of opposite polarity to those of the other 
input elements and that glutamate controls the input resistance of 
T4 neurons through shunting inhibition23. Direct measurements of 
input resistance and membrane voltage are possible only through 
patch-clamp experiments, which we conducted in vivo in tethered flies, 
guided by cell-type-specific expression of green fluorescent protein 
(GFP; Extended Data Fig. 1a). We recorded the membrane potentials 
of T4 cells and of their presynaptic partners while projecting a 60 Hz 
spatiotemporal binary white-noise stimulus with a pixel size of 2.8° 
onto the fly’s eye. To characterize the receptive fields of the neurons, 
we cross-correlated the luminance of each pixel with the recorded volt-
age (Fig. 1c–e and Extended Data Fig. 1b). We found that the membrane 
potentials of Tm3, Mi1, Mi4 and C3 neurons were positively correlated 
with luminance, whereas those of Mi9 neurons were anticorrelated 
(Fig. 1d). The negative correlation was due to a rapid hyperpolarization 
following increments in luminance, as opposed to a possible depolari-
zation in response to luminance decrements (Extended Data Fig. 2). 
Thus, the Mi9 neuron maintains a degree of continuous activity in 
darkness that ceases abruptly when the centre of its receptive field 
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is stimulated by light. Yet, while the delayed inhibition mediated by 
GABAergic inputs24 was clearly discernible in the spatiotemporal recep-
tive fields of direction-selective T4 neurons (Fig. 1e–g), the contribution 
of Mi9 neurons was not immediately apparent.

To test the effect of glutamate—and, indirectly, that of Mi9—on T4 
neurons, we applied the neurotransmitter directly to T4 dendrites 
(Fig. 2a). Pneumatic ejection of glutamate transiently hyperpolarized 
T4 cells by 3.72 ± 0.61 mV (mean ± s.e.m.; Fig. 2b, c). The mild hyperpo-
larization was paralleled by a 25.27% decrease in input resistance, which 
was fully reversible. Repeated applications of glutamate enabled us to 
toggle T4 cells between states of high and low resistance (Fig. 2d, e). 
Targeted RNA interference (RNAi) with transcripts of GluClα8, the most 
highly expressed glutamate receptor gene in T4 neurons25–28, blocked 
glutamate-gated whole-cell currents (Fig. 2f) and abolished the effects 
of glutamate on membrane potential and input resistance (Fig. 2b, c, e), 
while leaving the morphology of T4 cells intact (Extended Data Fig. 3). 

Importantly, post-transcriptional silencing of GluClα caused an average 
11.94 mV depolarization of the resting membrane potential (Fig. 2g) 
and an increase in input resistance from 5.28 ± 0.12 to 6.70 ± 0.16 GΩ 
(mean ± s.e.m.; Fig. 2h), measured under dark conditions. This speaks 
for a persistent release of glutamate in the dark that keeps GluClα chan-
nels open and clamps the membrane potential of T4 neurons close 
to the equilibrium potential of chloride—a GluClα-mediated short 
circuit that curtails any excitation, unless glutamatergic Mi9 neurons 
are switched off first.

To break down the precise temporal sequences of synaptic signals 
evoked by visual stimulation, we obtained membrane potential record-
ings while moving contrast edges through the T4 neuron’s receptive 
field in its PD and ND (Fig. 3). Bright ON and dark OFF edges travelling 
at a velocity of 30° s−1 revealed distinct, fingerprint-like signatures of 
electrical activity. To explain these signatures in terms of their under-
lying synaptic conductances, we subjected the five columnar input 
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elements of T4 cells to an identical set of stimuli (Fig. 3a). Our recon-
structions of the receptive fields of the cells (Extended Data Fig. 1b) 
enabled a post hoc alignment of their responses, which we used to 
recreate the direction-dependent input sequences that are expected 
to shape the voltage responses of a T4 cell (Fig. 3b, c). With all input 
signals and the respective reversal potentials at hand (Extended Data 
Fig. 4a–d), we simulated the electrical equivalent circuit of a pas-
sive single-compartment T4 neuron (Fig. 3b, c and Extended Data 
Fig. 5a). Measured membrane voltages of presynaptic neurons were 
transformed into postsynaptic conductance values using two free 
parameters per neuron: a gain (that is, synaptic weight) and a threshold 
below which no transmission occurred. The T4 neurons’ electrically 
compact morphology (Extended Data Fig. 4e, f) led us to neglect the 
membrane capacitance. After estimating the model parameters on 
the basis of a least-squares fit to the average voltage responses of T4 
neurons, we quantified parameter uncertainty using an artificial neural 
network29. Examination of the full range of parameter combinations 
compatible with our measurements confirmed the estimated values, 
which fell within regions of high conditional probability (Extended 
Data Fig. 6). In agreement with our second assumption, the voltage 
responses of T4 neurons to all four stimuli were captured by our passive 
conductance-based model (Fig. 3b, c), which naturally joins an excita-
tory and an inhibitory signal in a supralinear manner. While, in a passive 
membrane, two excitatory inputs are bound to combine sublinearly 
(Extended Data Fig. 5b), the coincidence of an excitatory input with the 
release from an inhibitory one will almost invariably yield a supralinear 
response1,21 (Extended Data Fig. 5c). Exceptions are rare and can occur 
only under conditions in which the reversal potential of the excitatory 
current is closer to the leak reversal potential than that of the inhibi-
tory current (Extended Data Fig. 5d, e and Supplementary Equations). 

For ON edge motion in the PD, a brief interval of minimal inhibitory 
conductance—a window of opportunity30—opened up (Fig.  3b).  
The transient lack of inhibition led to the amplification of excitatory 
inputs from Mi1 and Tm3 neurons during the upstroke of the T4 cell’s 
voltage trajectory (Fig. 3b and Extended Data Fig. 7). Intuitively, this 
can be explained by the coincident drop in overall conductance or, in 
other words, the increase in input resistance.

Direct evidence for the predicted increase in resistance (Extended 
Data Fig. 8) was obtained using current-clamp experiments. We took 
advantage of each T4 neuron’s stereotyped responses to moving 
edges and presented the fly with repeated episodes of identical visual 
stimulation. Varying the holding current in between episodes ena-
bled us to obtain time-locked measurements of membrane potential 
and resistance (Fig. 4 and Extended Data Fig. 9). For ON edges mov-
ing in the neuron’s PD, the input resistance revealed a distinct peak 
that preceded the depolarizing voltage excursion and amounted to 
approximately 147% of the initial resistance (Fig. 4). Under all other con-
ditions, the T4 cell experienced, if anything, a dip in excitability (Fig. 4). 
RNAi-mediated silencing of GluClα pre-empted the increase in that the 
resistance of GluClα-deficient T4 neurons at the baseline was already 
equivalent to the peak values reached by wild-type neurons (Fig. 4). 
Owing to the shift in resting potential towards the reversal potential 
of acetylcholine-induced currents, depletion of GluClα also reduced 
the membrane potential response amplitude from 18.10 ± 0.77 mV in 
wild-type T4 neurons to 13.63 ± 1.05 mV in GluClαRNAi-expressing T4 
neurons (mean ± s.e.m.; n = 53 and n = 30 cells, respectively; P = 0.0008, 
two-tailed Mann–Whitney U-test).

The ability to restrict the arithmetic repertoire of T4 neurons by 
interfering with the abundance of GluClα enabled us to test the pre-
diction that multiplication sharpens directional tuning. We moved 
bright edges at a speed of 30° s−1 in 36 evenly spaced directions while 
recording the membrane potentials of GFP-labelled wild-type and 
GluClαRNAi-expressing T4 neurons (Fig. 5a–c). RNAi targeting transcripts 
of Nmdar1, which encodes a glutamate-gated cation channel with neg-
ligible expression in T4 cells25–28, was used as an additional control. 
Silencing GluClα in T4 cells in vivo replicated the effect of silencing Mi9 
neurons in silico—it broadened the directional tuning curve (Fig. 5a). 
Response amplitudes of wild-type and Nmdar1RNAi-expressing neurons 
declined steeply with increasing angular distance from PD, to 72.97% 
and 72.74% at a deviation of 60°, respectively. The decline was much 
shallower in GluClαRNAi-expressing T4 neurons of which the response 
amplitudes at PD ± 60° still averaged 89.62% of the corresponding 
PD responses (Fig. 5a). Rather than enhancing voltage responses to 
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visual motion in the PD, the presence of GluClα attenuated responses 
to motion in all other directions, an effect that was especially obvious 
at those directions not affected by inhibition from Mi4 and C3 neurons 
(Fig. 5a–c). This was reflected in a significant reduction of the T4 neu-
rons’ directional tuning indices (Ldir) in the absence of GluClα compared 
with the wild-type controls (P = 0.0002, Kruskal–Wallis test followed 
by Dunn’s multiple-comparisons test; Fig. 5c).

The impact of this intervention on the flies’ optomotor responses 
offered an opportunity to link a molecular mechanism to behavioural 
performance. Walking on a spherical treadmill (Fig. 5d), flies express-
ing GluClαRNAi in T4 neurons and their OFF-responsive T5 twins under 
control of R39H12-GAL4 (Extended Data Fig. 10a) overestimated the 
velocity of bright, but not of dark, edges moving in different direc-
tions. In their attempt to compensate for the perceived egomotion, 
animals that carried both the GAL4 and the UAS-GluClαRNAi transgene 
rotated the treadmill excessively about the vertical axis and strayed 
off the virtual paths of their parental controls (Fig. 5e, f). The angular 
velocities of animals of all other genotypes, including those express-
ing Nmdar1RNAi in T4/T5 neurons, were indistinguishable (Fig. 5f).  
In contrast to ON-responsive T4 neurons, which are speckled with 
GluClα receptors at both dendritic and axonal compartments, T5 
neurons feature the receptor exclusively at their axon terminals31.  
It follows that the impairment of optomotor acuity specific to moving 
ON edges can, in all likelihood, be attributed to a process that is local-
ized to the dendrites of T4 neurons.

To test the ability of animals with a T4/T5-cell-restricted GluClα 
deficiency to hold a steady course under closed-loop conditions, we 
took advantage of the flies’ tendency to approach a dark vertical bar, a 
behaviour that depends on T4/T5 neurons32,33. When given the oppor-
tunity to control the bar position through their walking behaviour 
(Fig. 5g), control animals had a clear preference for holding the bar in 
front of them at 0 ± 30°. By contrast, flies expressing GluClαRNAi in T4/T5 
neurons failed to maintain a stable bearing relative to the bar (Fig. 5h) 
despite moving at a comparable pace (Extended Data Fig. 10b). We 
corroborated this discovery using another, more specific split GAL4 
line (Extended Data Fig. 10c–e). Independent of the driver line used, 
animals with a T4/T5-cell-restricted GluClα-deficiency performed at 
chance level (Fig. 5i and Extended Data Fig. 10f). In accordance with our 
third assumption, locking T4 neurons in a state of high gain (Figs. 2h 
and 4) resulted in exaggerated optomotor responses (Fig. 5d–f) and 
impaired performance as the animals navigated a virtual environment 
(Fig. 5g–i). These observations reveal the behavioural significance of a 
multiplication-like operation in a specific type of neuron.

Discussion
Nervous systems rely on nonlinearities to process information1.  
A multiplication-like operation—possibly the simplest form of non-
linearity—is implicated in the transformation of eye-centric into 
head-centric coordinates13, the localization of sound12, the combina-
tion of multisensory signals34,35 and the detection of visual motion10. 
The biophysical underpinnings of such an operation in a single neuron 
are by and large unclear. One exception is the looming detector of 
locusts, in which—just like on a slide rule—the sum of two logarithmi-
cally scaled signals is exponentially transformed into spike rates36. 
Other multiplicative synaptic interactions involve NMDA recep-
tors37,38. Both mechanisms are contingent on threshold-like nonlin-
earities in the current–voltage relationships of ion channels: the gating 
of tetrodotoxin-sensitive sodium channels in the former and the mag-
nesium block of NMDA receptors in the latter case. Here, we describe 
a multiplication-like nonlinearity that is independent of thresholds.

Using the visual circuit of the fruit fly as an example5, we took advan-
tage of the neurons’ compact sizes, their known connectivity6 and 
our ability to manipulate them genetically to study the biophysical 
basis of the multiplication step in a Hassenstein–Reichardt detector10.  
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36



Nature  |  www.nature.com  |  5

We recorded the membrane potentials of ON motion-sensitive T4 neu-
rons and of their columnar input elements in response to a defined set 
of visual stimuli. Our measurements of both pre- and postsynaptic 
voltages obviated the need for assumptions regarding the tempo-
ral dynamics of input signals when modelling the detector’s output.  
The voltage responses of T4 neurons were reproduced rather faithfully 
by our passive conductance-based model (Figs. 3b, c and 5a). Discrepan-
cies between simulation and reality could be due to selective synaptic 
delays or the 15% of dendritic inputs from wide-field TmY15 and CT1 
neurons6,7,39, which were not taken into account. In the model, as in our 
data, the supralinearity arises from the coincidence of excitation and 
release from shunting inhibition23. Such ‘multiplicative disinhibition’ 
constitutes the inverse operation of divisive inhibition. It is free from 
the voltage dependence that often limits threshold-based systems40 and 
less sensitive to changing signal amplitudes21 (Extended Data Fig. 5c). 
More broadly, theory invokes multiplication as a strategy to gate infor-
mation flow41,42. The passive biophysical mechanism that we propose 
could lend itself to other systems, such as the logical conjunction of che-
mosensory signals43 or the gating of cortical afferents44. Motion vision 
in flies may provide one of many cases of multiplicative disinhibition.
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Methods

Fly husbandry and genotypes
Flies were cultivated on a cornmeal, molasses and yeast medium under 
a 12 h–12 h light–dark cycle at 25 °C and 60% humidity. All of the experi-
ments were carried out on female flies bearing at least one wild-type 
allele of the white gene. The experimenters were not blinded.

Drosophila melanogaster of the following genotypes were used to tar-
get transgene expression to the respective types of neuron: P{R48A07-p65.
AD}attP40, P{10XUAS-IVS-mCD8::GFP}su(Hw)attP5; P{VT046779-GAL4.
DBD}attP2 was used to label Mi9 neurons, P{R13E12-p65.AD}
attP40/+;  P{R59C10-GAL4.DBD}attP2/P{40XUAS-IVS-mCD8::GFP}
attP2 was used to label Tm3 neurons, P{R19F01-p65.AD}attP40/+; 
P{R71D01-GAL4.DBD}attP2/P{40XUAS-IVS-mCD8::GFP}attP2 was used to 
label Mi1 neurons, P{R48A07-p65.AD}attP40, P{10XUAS-IVS-mCD8::GFP}
su(Hw)attP5; P{R13F11-GAL4.DBD}attP2 was used to label Mi4 neu-
rons,  P{R26H02-p65.AD}attP40/+; P{R29G11-GAL4.DBD}attP2/
P{40XUAS-IVS-mCD8::GFP}attP2 was used to label C3 neurons  
and P{R42F06-p65.AD}attP40, P{10XUAS-IVS-mCD8::GFP}su(Hw)attP5; 
P{VT037588-GAL4.DBD}attP2 (abbreviated T4 > GFP) was used to label 
T4 neurons, with a preference for subtypes T4c and T4d17,27,45,46. In elec-
trophysiological experiments, P{TRiP.HMC03585}attP40/P{R42F06-p65.
AD}attP40, P{10XUAS-IVS-mCD8::GFP}su(Hw)attP5; P{VT037588-GAL4.
DBD}attP2/+ (abbreviated T4 > GluClαRNAi) and P{TRiP.HMS02199}
attP2/P{R42F06-p65.AD}attP40, P{10XUAS-IVS-mCD8::GFP}su(Hw)attP5; 
P{VT037588-GAL4.DBD}attP2/+ (abbreviated T4 > Nmdar1RNAi) were used 
to silence the expression of GluClα and Nmdar1, respectively47.

In behavioural experiments, P{UAS-Dcr-2.D}2; P{R39H12-GAL4}
attP2 (abbreviated T4/T5 >), which yields strong and comprehen-
sive expression in T4 and T5 neurons, was used to drive either P{TRiP.
HMC03585}attP40 (abbreviated GluClαRNAi) or P{TRiP.HMS02199}
attP2 (abbreviated Nmdar1RNAi). For the experiments in Extended 
Data Fig.  10c–f, P{R59E08-p65.AD}attP40; P{R42F06-GAL4.DBD}
attP2 was used as the driver line. All flies, including the parental con-
trols, were heterozygous for the respective transgenes. P{UAS-Dcr-
2.D}2/P{10XUAS-IVS-mCD8::GFP}su(Hw)attP5; P{R39H12-GAL4}attP2/+
and P{R59E08-p65.AD}attP40/P{10XUAS-IVS-mCD8::GFP}su(Hw)
attP5; P{R42F06-GAL4.DBD}attP2/+ were used to visualize the expres-
sion pattern of the respective driver lines immunohistochemically.

With the exception of the strain used to label C3 (a gift from A. Nern 
and M. Reiser), all of the flies were obtained from the Bloomington 
Drosophila Stock Center.

Histology
Brains of female flies (aged 1–3 days) were dissected in phosphate- 
buffered saline (PBS; 137 mM NaCl, 3 mM KCl, 8 mM Na2HPO4, 1.5 mM 
KH2PO4, pH 7.3) and fixed in 4% (w/v) paraformaldehyde in PBS over-
night at 4 °C, followed by four 30 min washes in PBS containing 0.2% 
(v/v) Triton X-100 (PBT). To label biocytin-filled neurons, the samples 
were incubated with DyLight 633-conjugated streptavidin (21844, 
Invitrogen, 1:200) for 48 h at 4 °C, followed by four 30 min washes 
in PBT. To visualize GFP expression patterns driven by R39H12-GAL4 
and R59E08-AD; R42F06-DBD, brains were fixed for 25 min at room 
temperature and blocked in PBT containing 10% normal goat serum 
(NGS) overnight at 4 °C. Synaptic structures and GFP were labelled, first 
with mouse anti-bruchpilot antibodies (nc82, AB2314866, Develop-
mental Studies Hybridoma Bank, 1:20) and chicken anti-GFP antibodies  
(600-901-215S, Rockland, 1:400), respectively, for 48 h and then with 
Atto 647N-conjugated goat anti-mouse IgG antibodies (610-156-040, 
Rockland, 1:300) and Alexa 488-conjugated goat anti-chicken IgY anti-
bodies (A-11039, Invitrogen, 1:500), respectively, for 72 h, both diluted 
in PBT containing 5% NGS, at 4 °C. Immunodecorated samples were 
mounted in Vectashield antifade mounting medium (Vector Labora-
tories) and imaged on a Leica TCS SP8 confocal microscope equipped 
with an HCX PL APO ×63/1.30 NA glycerol-immersion objective (506353, 

Leica). Micrographs were acquired using the Leica Application Suite 
X (Leica) and processed using the Fiji distribution of ImageJ (v.2.0)48.

Patch-clamp recordings
For whole-cell recordings in  vivo49,50, female flies aged 2–24 h 
post-eclosion were cold-anaesthetized and fixed to a custom, laser-cut 
polyoxymethylene mount with soft thermoplastic wax (Agar Scien-
tific). The preparation was submerged in extracellular solution (pH 7.3) 
containing 5 mM TES, 103 mM NaCl, 3 mM KCl, 26 mM NaHCO3, 1 mM 
NaH2PO4, 1.5 mM CaCl2, 4 mM MgCl2, 10 mM trehalose, 10 mM glucose 
and 7 mM sucrose (280 mOsM, equilibrated with 5% CO2 and 95% O2). 
Cuticle, adipose tissue and trachea were surgically removed in a win-
dow large enough to expose the left dorsal optic lobe. Patch pipettes 
(15–20 MΩ) were fabricated from borosilicate glass capillaries with 
outer and inner diameters of 1.5 mm and 1.17 mm or 0.86 mm, respec-
tively, using a P-97 (Sutter Instruments) or a PC-10 (Narishige) micro-
pipette puller. Pipettes were polished using a microforge (MF-830, 
Narishige) and filled with solution (pH 7.3) containing 10 mM HEPES, 
140 mM potassium aspartate, 1 mM KCl, 4 mM MgATP, 0.5 mM Na3GTP, 
1 mM EGTA and 10 mM biocytin (265 mOsM). Green fluorescent somata 
were targeted visually using a combination of bright-field and epif-
luorescence microscopy on an InVivo SliceScope (Scientifica) or an 
Axio Scope.A1 microscope (Zeiss), each equipped with a ×60/1.0 NA 
water-immersion objective (LUMPLFLN60XW, Olympus) and an 
LQ-HXP 120 light source (Leistungselektronik Jena). Transillumina-
tion was achieved by butt-coupling a white LED (MCWHD5, Thorlabs) 
to a liquid light guide, the far end of which was positioned caudally 
at a distance of 1 cm to the fly allowing for an unobstructed field of 
view. To gain access to cell membranes, a micropipette was used to 
make a small incision in the perineural sheath. Signals were recorded 
at room temperature (21–23 °C) with a MultiClamp 700B amplifier, 
low-pass-filtered and sampled at 10 kHz using a Digidata 1550B digitizer 
controlled through pCLAMP 11 software (all from Molecular Devices). 
Data were corrected for the liquid junction potential and analysed using 
custom-written software in Python v.3.7 (Python Software Foundation) 
using NumPy v.1.15, Pandas v.0.25, SciPy v.1.3, Matplotlib v.3.0 and 
pyABF v.2.1 (https://pypi.org/project/pyabf/). After temporal align-
ment, current-clamp data were analysed at a sampling rate of 1 kHz. 
The most negative membrane potential recorded within 2 min after 
break-in, in darkness and in the absence of a holding current was taken 
to represent the resting potential. Only cells with a measured rest-
ing potential that was more negative than −25 mV were characterized 
further. Input resistances, as plotted in Fig. 2, were calculated on the 
basis of linear fits to the steady-state voltage changes elicited by 1 s 
steps of hyperpolarizing currents (2 pA increments, starting at −10 pA).  
In voltage-clamp recordings, voltage steps were applied 2 s in advance of 
pharmacological applications and linear leak currents were subtracted.

Visual stimulation in electrophysiological experiments
Visual stimuli were projected with two mirrors onto a cylindrical screen 
using two DLP Lightcrafter 3000 pico projectors (Texas Instruments) 
as previously described20. The screen covered 180° in azimuth and 105° 
in elevation of the fly’s left frontal visual field and doubled as a Faraday 
shield. Restricting the projectors to the green channel (500–600 nm) 
allowed for a refresh rate of 180 Hz at 8-bit colour depth and a maximal 
luminance of 1,274 cd m−2. The average luminance of stimuli, which 
were presented in full contrast, was set to an 8-bit greyscale value of 
128 corresponding to an average luminance of ~637 cd m−2. Stimuli were 
created and predistorted to account for the curvature of the screen 
using the Panda3D game engine in Python v.2.7.

Receptive fields were located and characterized using a binary 
white-noise stimulus with a pixel size of 2.8° × 2.8°. Samples were drawn 
at a rate of 60 Hz and projected onto the screen for durations ranging 
from 3 min to 20 min. Stimuli and simultaneously recorded membrane 
potentials were time-locked using a continuously recorded trigger 
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signal on the screen. Stimulus files were exported after lossless com-
pression and cross-correlated to each neuron’s recorded membrane 
voltage using standard techniques for reverse correlation in Python 
(v.3.7)20. Slow voltage drifts were corrected post hoc by subtracting a 
low-pass-filtered version of the signal obtained using a Gaussian blur 
with a standard deviation of 60 s. The reverse correlation was calcu-
lated as

∫K x τ tS x t τ V t( , ) = d ( , − ) × ( ),
T

0 m

where Vm denotes the neuron’s baseline-subtracted membrane voltage 
at time point t and S denotes the stimulus at position x and time point 
t − τ for values of τ ranging from −0.5 to +3.0 s. The resulting spati-
otemporal receptive fields were converted into standard scores. Only 
neurons with clear standard score peaks (typically >4 s.d. from the 
mean) and with receptive field centres >8 px (22.48°) from the bezel 
of the screen were included in the analysis to guarantee full cover-
age of the surround. Receptive fields were normalized and aligned in 
space using the extremum (that is, the maximum or minimum with 
the highest absolute value) of the standard score as a point of refer-
ence, which was placed at 0°. After cropping the individual spatial 
receptive fields to the largest common region holding data from all 
neurons, scores were averaged across neurons of one class. For Fig. 1, 
averages were upsampled by a factor of 10 by linear interpolation and 
smoothed with a Gaussian filter (1.8 px s.d.). For direction-selective T4 
neurons, individual receptive fields were rotated in space to align along 
the neurons’ PDs; therefore, in Fig. 1e, azimuth and elevation do not 
necessarily correspond to horizontal and vertical coordinates on the 
screen, but to coordinates parallel and orthogonal to the T4 cell’s PD.

To determine a neuron’s PD, square-wave gratings with a spatial 
wavelength of 30° spanning the full extent of the screen were moved 
at a temporal frequency of 1 Hz in eight different directions separated 
by 45°. The neuron’s peak membrane voltage during motion, after 
subtracting a 1 s prestimulus baseline, was taken to represent the mag-
nitude of a Euclidean vector v(φ) pointing in the direction given by the 
angle of rotation φ of the associated stimulus. PD was defined as the 
direction of the resultant of all individual vectors. Temporal frequency 
tuning curves were measured using gratings of the above properties 
that were moved alternatingly in PD and ND (that is, PD + 180 ) at tem-
poral frequencies ranging from 0.5 Hz to 16.0 Hz. ΔVm was defined as 
the absolute difference between the maximal and minimal membrane 
potential.

The fine-grained directional tuning curves in Fig. 5 were assessed 
using ON edges moving at 30° s−1 in 36 evenly spaced directions. Mem-
brane potentials were recorded in the presence of a constant holding 
current of −1 pA, which enabled stable recordings over extended peri-
ods of time. In Fig. 5c, |v(φ)| was defined as the maximum of a Voigt pro-
file fit to the membrane potential in a 700 ms time window surrounding 
the peak response during motion in the respective direction using the 
VoigtModel function of the lmfit.models module in Python v.3.7. Thus 
the readout incorporated more data points than just the maxima of the 
raw traces. To make directional tuning curves comparable between 
experiments and genotypes, each neuron’s PD was aligned post hoc to 
0° and its tuning curve was minimum–maximum normalized. Direc-
tional tuning was quantified as the magnitude of the resultant vector 
divided by the sum of the individual vectors’ magnitudes:
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For the experiments in Fig. 3, bright (ON) and dark (OFF) edges 
were moved across the screen at a velocity of 30° s−1. The responses 
of individual neurons of one type were temporally aligned based on 
the cross-correlation maximum between the time derivative of the 

low-pass-filtered membrane potential of each neuron and that of one 
hand-picked template neuron in response to ON edges (moving in PD for 
T4 cells). The responses of different input neuron classes were aligned 
based on the relative distances of the template neurons’ receptive field 
centres on the screen. Correct alignment was verified by recording light 
intensities from a 5°-wide area of the screen located at the respective 
template neuron’s receptive field centre using a custom-built photo-
diode under identical stimulus conditions.

Time-locked measurements of a T4 neuron’s membrane potential 
and input resistance (Fig. 4 and Extended Data Fig. 9) were achieved 
through repeated presentations of identical stimuli with varying hold-
ing current amplitudes ranging from −5 to 0 pA. The slope of a linear 
regression of voltages onto holding currents provided a measure of the 
neuron’s input resistance at each time point. For experiments with only 
two different holding current amplitudes, the slope of the regression 
is equivalent to the input resistance calculated as ΔVm/ΔI, where ΔVm 
denotes the change in membrane potential and ΔI denotes the change 
in holding current in between repetitions. Resistances shown in Fig. 4 
were smoothed with a Gaussian filter (13 ms s.d.). Input resistances 
did not change significantly throughout recording sessions. The dif-
ference in input resistance between the start and the end of record-
ing sessions averaged at 0.28 ± 0.56 GΩ (mean ± s.e.m., n = 30 cells;  
P = 0.6143, two-tailed paired Student’s t-test).

Pharmacology
For applications of glutamate, acetylcholine and GABA, a micropipette 
with a bore diameter of 5 µm was filled with 1 mM of neurotransmitter 
(dissolved in extracellular solution) and aimed at the GFP-labelled T4 
dendrites in layer 10 of the medulla. To elicit transient neurotransmit-
ter responses in patch-clamped T4 neurons, pressure (50 kPa) was 
applied in 100 ms pulses using a PDES-02DX pneumatic drug ejec-
tion system (NPI Electronic). For long-lasting responses during input 
resistance measurements, pulse times were increased to 500 ms. Two 
wild-type neurons were lost after the third glutamate application dur-
ing patch-clamp recordings for Fig. 2e and were excluded from the 
repeated-measures analysis.

Multi-compartment model
We built a passive compartmental model of a T4 neuron (Extended 
Data Fig. 4c, d) in Python v.3.7 to account for possible space-clamp 
problems due to neuronal morphology in voltage-clamp experiments 
and to assess signal propagation between dendrite and soma (Extended 
Data Fig. 4e, f). The model was based on an electron microscopic 
reconstruction7 (http://neuromorpho.org/neuron_info.jsp?neuron_
name=T4a-25_85) and comprised 2,012 compartments. A connectivity 
matrix, which held values of 1 where two compartments were con-
nected and values of 0 otherwise, was used as a template to calculate a 
conductance matrix M. The latter was based on the three-dimensional 
coordinates and the length as well as the diameter of each compartment 
assuming, unless stated otherwise, an axial resistivity (Ra) of 150 Ω cm, 
a membrane resistance (Rm) of 28 kΩ cm2, and a specific membrane 
capacitance (Cm) of 1 µF cm−2. All parameters were on the same scale 
as those commonly used to model Drosophila neurons51 and were con-
sidered to be uniform across the entire cell. Varying Ra and Rm over a 
biophysically plausible range had negligible effects on model output 
(Extended Data Fig. 4f, g).

The voltage vector Vm(t) indicating the membrane potential of each 
compartment and at each time point t was determined by using the 
sparse.linalg.spsolve function of the SciPy v.1.3 module to iteratively 
solve the matrix equation M × Vm(t) = Vm(t − 1) × cm/Δt + Eleak × gleak + I(t), 
where Vm(t − 1) denotes the voltage vector at the previous time point, 
cm is the vector holding the specific capacitances of all compartments, 
Δt denotes the time step, Eleak denotes the leak reversal potential, gleak 
denotes the vector holding the specific transmembrane leak conduct-
ances of all compartments and I(t) is the vector indicating the current 
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injected at time point t into each compartment. Simulations were per-
formed with a fixed Δt of 0.1 ms. If only steady-state was considered, the 
diagonal of the conductance matrix M held no capacitive conductances 
and the right side of the equation simplified to Eleak × gleak + I(t). At the 
time of transmitter application, synaptic conductances were added 
both to the diagonal of the conductance matrix and, multiplied by 
the reversal potential of the current, to the right side of the equation.

To simulate voltage clamp, the current injected at the soma was 
calculated on the basis of the difference between the chosen com-
mand voltage Vcmd and the actual potential at the soma Vm,soma 
using a proportional-integral control loop that served to emulate a 
voltage-clamp amplifier in Python v.3.7. The current to be injected at 
time point t was calculated as I(t) = Kp × (Vcmd(t) − Vm,soma(t)) + Ki × I(t − 1);  
where Kp denotes the proportional gain and Ki the integral gain. With 
values of 2 × 109 and 1 for Kp and Ki, respectively, Vm,soma could be clamped 
reliably at the desired Vcmd under all conditions and synaptic inputs.

Single-compartment model
Recorded membrane voltages of input neurons were averaged, mini-
mum–maximum normalized (retaining the signal ratios across stimuli) 
and converted into relative conductances using a rectilinear trans-
fer function with two free parameters per neuron: a threshold below 
which all conductances were set to 0 and a gain (that is, a scaling factor).  
Taking into account an average inter-ommatidial angle θ of 4.8°  
(refs. 52,53) and the edge velocity v of 30° s−1, conductances of Mi9 neu-
rons and those of Mi4 and C3 neurons were advanced or delayed in time, 
respectively, by Δt relative to those of Mi1 and Tm3 neurons, depending 
on the angle φ of the virtual edge: Δt = θ cosφ/v.

For each stimulus condition, the membrane potential of the T4 neu-
ron was calculated as

V
E g E g g E g g E g

g g g g g g
=

+ ( + ) + ( + ) +

+ + + + +
,m

Glu Mi9 ACh Tm3 Mi1 GABA Mi4 C3 leak leak

Mi9 Tm3 Mi1 Mi4 C3 leak

where g denotes the relative conductance associated with each input 
neuron and E denotes the reversal potential of the respective synaptic 
current with EGlu = −71 mV, EACh = −21 mV and EGABA = −68 mV as measured/
modelled in voltage-clamp experiments (Extended Data Fig. 4a–d). 
Owing to the compact size of a T4 neuron, the small amplitudes of 
capacitive currents (in relation to the steady-state amplitudes) and 
their short time constants (in relation to those of synaptic currents) 
eliminated the need for a differential equation to calculate Vm. Free 
parameters (thresholds, gains, Eleak and gleak) were estimated from a 
least-squares fit to measured membrane voltage traces of T4 neurons, 
computed with the help of the optimize.minimize function of the SciPy 
v.1.3 module and hand-tuned using a FaderPort 16-channel mix produc-
tion controller (Presonus). Upper and lower bounds for parameter
values were set to 0 and 1 for thresholds, 0 and 2 for gains, −80 mV 
and −45 mV for Eleak, and 0 and 3 for gleak, respectively. The parameters 
used for the simulations shown in Figs. 3b, c and 5a and Extended 
Data Figs. 7b, c and 8 were as follows: Mi9gain = 0.92, Tm3gain = 0.35,
Mi1gain = 0.65, Mi4gain = 1.10, C3gain = 1.49, Mi9thld = 0.20, Tm3thld = 0.35,
Mi1thld = 0.88, Mi4thld = 0.44, C3thld = 0.70, Eleak = −65.0 mV and gleak = 0.50, 
where ‘thld’ refers to the respective threshold values.

To validate our choice of parameters and to quantify the sensitiv-
ity, robustness and uniqueness of parameter sets, we resorted to 
simulation-based inference29, which enabled us to examine the full 
range of possible parameter combinations. We used 20,000 model 
simulations, drawing parameters from uniform distributions within 
the above bounds, to train the artificial neural network implemented 
in the sequential neural posterior estimation (SNPE) algorithm of 
the software package sbi (v.0.8)54. On the basis of Bayesian infer-
ence, SNPE provided a conditional probability distribution P(α|Vdata), 
which is high for parameter sets α that are consistent with the experi-
mentally measured voltage traces Vdata, but close to zero otherwise.  

To visualize P(α|Vdata) we drew 10,000 sample parameter sets that 
are compatible with Vdata and compared them to our chosen param-
eters (Extended Data Fig. 6). All of the simulations were written in 
Python v.3.7.

Behaviour
Female flies (aged 1–5 days) were cold-immobilized and attached to 
a pin with light-curing composite glue (Sinfony Opaque Dentin, 3M) 
using dental curing light (440 nm, New Woodpecker). Five independ-
ent locomotion recorders32 were operated in parallel. In each recorder, 
a tethered fly was positioned on top of an air-suspended polyure-
thane sphere with a diameter of 6 mm and a weight of around 40 mg.  
The sphere floated freely on an air stream supplied by a rotary vane pump 
(G6/01-K-EB9L, Gardner Denver Thomas) through an inlet at the bottom 
of a concave holder, allowing the walking fly to rotate the sphere about 
any axis through its centre. The rotation of the spherical treadmill, lit by 
an infrared LED ( JET-800-10, Roithner Electronics), was tracked at 4 kHz 
and digitized at 200 Hz using a custom-designed system based on two 
optical computer mouse sensors focused on two 1 mm2 equatorial squares 
at ±30° from the centre of the sphere55. A camera (GRAS-20S4M-C, Point 
Grey Research) was used to facilitate proper positioning of the fly on the 
ball. To encourage prolonged walking, the air temperature surrounding 
the fly was maintained at 34 ± 0.1 °C using a custom-built air condition-
ing system with a Peltier heater (QC-127-1.4-6.0MS, Quick-Cool) and a 
thermometer positioned below the sphere.

Visual stimuli were presented with a refresh rate of 120 Hz on three 
liquid crystal displays (2233RZ, Samsung) arranged vertically to form 
a U-shaped visual arena surrounding the fly, which spanned approxi-
mately 270° in azimuth and 120° in elevation of the fly’s visual field 
at a resolution of <0.1°. The maximal luminance of the displays was 
131 cd m−2; the average intensity of stimuli, which were presented at a 
Michelson contrast of 50%, was set to an 8-bit greyscale value of 100. 
Stimuli were created, and predistorted to mimic a cylindrical panorama, 
using the Panda3D game engine in Python v.2.7.

In open-loop experiments, ON and OFF edges were moved at a veloc-
ity of 60° s−1 in 16 evenly spaced directions. Owing to the geometry of the 
visual arena, full translation of edges at different angles required vari-
able amounts of time. Thus, to limit stimulus durations to 5 s, an edge 
of which the direction of motion deviated from the cardinal directions 
was initialized with a small segment of the edge already present in one of 
the outer corners (never covering any part of the central display). Edges 
started moving 0.5 s after stimulus initialization and crossed the arena 
within 5 s. In a single experiment (~80 min), flies experienced 50 trials of 
either ON or OFF edges moving in all 16 directions in a pseudorandom 
order. The first 15 trials were used to equilibrate the temperature and 
to accustom the fly to the treadmill and were excluded from analyses.  
As inclusion criteria, we used a forward walking speed of ≥0.15 cm s−1 on 
a trial-by-trial basis and a minimum of ten trials per fly. To correct for a 
possible constant turning bias, the time-averaged rotational velocity 
of each full trial (comprising all 16 directions) was subtracted from all 
measurements of the corresponding trial. The optomotor response 
was quantified as the average rotational velocity during 5 s of edge 
motion in the corresponding direction. The slope of a linear regres-
sion of optomotor responses onto the absolute horizontal stimulus 
components |cosφ| served as a single measure of an animal’s angular 
velocity across different edge angles φ.

In closed-loop experiments, bar-fixation was assessed using a 
10°-wide dark vertical bar, the position of which along the azimuth 
was controlled in real time by the rotation of the spherical treadmill 
(Δbar position = −rotation about z axis, updated every ~9 ms). The bar 
appeared at a random position between −180° and 180° at the start of 
each 20 s trial, during which the fly could control the bar’s position 
through its walking behaviour. One experiment (~60 min) consisted 
of 180 trials, the first 40 of which were not analysed, as they served 
to equilibrate the temperature and to accustom the fly to the virtual 
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environment. For the results presented in Extended Data Fig. 10d–f, 
each experiment consisted of 80 longer multi-stimulus trials, the 
first 10 of which were excluded. Only trials with a forward walking 
velocity of ≥0.40 cm s−1 and flies with at least 50 (20 for Extended 
Data Fig. 10d–f) of such trials were included in the analysis. To avoid 
possible turning bias (for example, due to skewed mounting), flies 
whose average turning deviated from zero by >10° s−1 were excluded. 
Probability density functions of bar positions were calculated for 
each 20 s trial using a bin width of 5° before averaging over trials.  
The measure ‘fixation in front’ was obtained by summing the prob-
abilities of finding the bar in a 60° window in front of the fly and aver-
aging these probabilities over trials.

Statistics and reproducibility
Statistical tests were performed in Prism v.9.2 (GraphPad). Details, 
including test statistics, degrees of freedom and exact P values for 
statistical analyses of data shown in Figs. 2 and 5 and Extended Data 
Fig. 10 are reported in Supplementary Tables 1 and 2.

Data were assessed for normality and equality of variances using Sha-
piro–Wilk and Brown–Forsythe tests, respectively. Two groups of nor-
mally distributed data were compared using two-tailed Student’s t-tests 
(paired if applicable). Two groups of nonparametric data were com-
pared using two-tailed Mann–Whitney U-tests for independent datasets 
and using Wilcoxon matched-pairs signed-ranks test for paired data-
sets. Differences between the means of multiple independent groups 
of data that met the assumptions of normality and equality of vari-
ances were compared using one-way ANOVA followed by Holm–Šídák’s 
multiple-comparisons test. Where the assumptions of normality or of 
equality of variances were violated, group means were compared using 
Kruskal–Wallis tests followed by Dunn’s multiple-comparisons test 
or by Welch’s ANOVA followed by Dunnett’s T3 multiple-comparisons 
test, respectively. Reported P values were corrected for multiple com-
parisons. Data shown in Fig. 2e were analysed using two-way repeated 
measures ANOVA with Geisser–Greenhouse correction. For multiple 
comparisons with parental controls, the highest of two P values was 
reported in the figure legend.

No sample size calculations were performed before experimentation. 
Sample sizes were chosen to match or exceed standard sample sizes 
in the field. Sample sizes in electrophysiological experiments corre-
spond to the number of cells, each of which was recorded in a different 
animal. Sample sizes in behavioural experiments correspond to the 
number of flies. The investigators were not blinded. Randomization was 
not applicable, because flies were grouped on the basis of genotype.  
In open-loop behavioural experiments (Fig. 5d–f) and all experiments 
involving two directions of visual stimuli, stimulus directions were alter-
nated randomly; all of the remaining visual stimuli were presented in a 
strict sequence to enable quick, intuitive interpretation (Figs. 1f and 5b). 
Two wild-type neurons were lost after the third glutamate application 
during patch-clamp recordings for Fig. 2e and were excluded from the 
repeated-measures analysis. Six cells were lost during voltage-clamp 
experiments shown in Fig. 2f and Extended Data Fig. 4b due to pneu-
matic ejection. The current–voltage relationships of those cells do not 
include all, but at least six, data points per cell.

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this paper.

Data availability
Data are available at the Edmond Open Research Data Repository of 
the Max Planck Society (https://doi.org/10.17617/3.8g). Source data 
are provided with this paper.

Code availability
Custom-written code is available at the Edmond Open Research Data 
Repository of the Max Planck Society (https://doi.org/10.17617/3.8g).
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Extended Data Fig. 1 | Neuronal morphologies and receptive fields of the 
ON motion detection circuit. a, Maximum intensity projections of confocal 
stacks with GFP expression in the respective neuronal population (green) and 
single biocytin-filled neurons (white) recovered after patch-clamp recordings. 
Scale bars, 20 μm. Micrographs are representative of independent 

experiments in different flies (Mi9: n = 5, Tm3: n = 3, Mi1: n = 3, Mi4: n = 4, C3: 
n = 3, T4: n = 7). b, Individual spatial receptive fields of T4 and their columnar 
input neurons obtained by reverse correlation (corr.) of membrane potentials 
and white noise stimuli. AU, arbitrary units. Filtered averages are shown in 
Fig. 1d, e.
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Extended Data Fig. 2 | Mi9 neurons hyperpolarize in response to luminance 
increments. Membrane potential responses of the same Mi9 neurons to 
increments (left) and decrements in luminance (right) presented in a 5° circle at 
the centre of the neurons’ receptive fields on a dark or bright background, 

respectively. Traces on top are normalized light intensities at the respective 
receptive field centre. The light lines represent technical replicates; the dark 
lines represent the mean; n = 14 technical replicates/2 cells/2 flies. Note the 
difference in membrane potential depending on the baseline luminance.
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Extended Data Fig. 3 | Morphology of wild-type and GluClα-deficient T4 
neurons. Maximum intensity projections of representative confocal stacks of 
T4 neurons expressing GFP (left) or GFP and GluClαRNAi (right), each containing 
an individual biocytin-filled neuron (white) recovered after patch-clamp 
recording. The soma of the GluClαRNAi-expressing neuron was lost during 
pipette removal. Scale bars, 20 μm. Micrographs are representative of 
independent experiments in different flies (T4 > GFP: n = 7 and T4 > GFP + 
GluClαRNAi: n = 3). At the light microscopic level, no obvious genotype-specific 
morphological differences were detectable.
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Extended Data Fig. 4 | Measured and modelled T4 whole-cell currents in 
response to three types of neurotransmitter. a, Placement of pipettes for 
neurotransmitter application during whole-cell recording. b, Average 
whole-cell currents of T4 neurons in response to 100 ms applications of 
neurotransmitter to the dendrite at different holding potentials (left) and full 
current-voltage relationships (right). Coloured dashed lines are linear fits to 
measurements taken at membrane potentials in the physiologically observed 
range between −100 and −40 mV. Filled triangles denote reversal potentials 
obtained by linear fits to currents measured at the soma (Erev Soma). Data are 
mean ± s.e.m. n values indicate the number of cells. The inward rectification of 
GABA-induced currents could be due to coupling of GABAB receptors to 
inwardly-rectifying potassium channels. c, Electron microscopic reconstruction 
of a T4 neuron7 used for compartmental modelling. Pipettes indicate 
approximate locations of conductances and the recording site for simulations 
in d. d, Somatic currents at different holding potentials simulated during 
100 ms openings of conductances at the electron microscopically-determined 
synaptic sites corresponding to the respective transmitter (left) and 

current-voltage relationships (right). Conductances were adjusted in order to 
approximate measured reversal potentials at the soma. Filled triangles denote 
modelled reversal potentials at the soma (Erev Soma); open triangles denote 
corresponding reversal potentials at the dendritic root (Erev Dend.). Note the 
predicted deviation of Erev Soma from Erev Dend. for currents induced by 
acetylcholine, but not for currents induced by glutamate or GABA. e, Pipettes 
indicate locations of recording sites on the compartmental model (c) for 
simulations in f. f, Ratio of somatic to dendritic membrane potential in 
response to dendritic injection of 10 pA of depolarizing current as a function of 
membrane resistance (Rm) and axial resistivity (Ra) in the model. Note that 
soma and dendrite were quasi-isopotential (ratio > 0.9) across a wide range  
of parameters. Asterisk indicates parameter set used for simulations in  
d. g, Modelled somatic input resistance as a function of Rm and Ra. Solid and 
dashed lines correspond to the measured mean input resistance ± s.d. for 
wild-type T4 neurons (as shown in Fig. 2h). Asterisk indicates parameter set 
used for simulations in d.
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Extended Data Fig. 5 | Nonlinear response properties of model circuits.  
a, Resistor-capacitor equivalent circuit of a passive T4 neuron used for 
simulations in Fig. 3b, c, and 5a and Extended Data Figs. 6, 7, and 8. EGlu, EACh,  
and EGABA denote the equilibrium potentials and gGlu, gACh, and gGABA denote the 
conductances associated with glutamate, acetylcholine and GABA, 
respectively. The signals of Mi9 neurons control gGlu, the signals of Tm3 and  
Mi1 neurons control gAch, and those of C3 and Mi4 neurons act on gGABA.  
Vm, membrane potential; Cm, membrane capacitance; gleak, leak conductance.  
b, c, Top: Equivalent circuits of two passive isopotential neurons. One neuron 
(b) receives two input signals x and y, which control the excitatory 
conductances gexc1 and gexc2, respectively. The other neuron (c) receives one 
input signal x controlling the excitatory conductance gexc and another input 

signal y of opposite polarity that controls the inhibitory conductance ginh. Eexc, 
Einh, and Eleak are the equilibrium potentials of excitatory, inhibitory, and leak 
currents, respectively. Bottom: Nonlinearity as a function of signal amplitude 
for two excitatory conductances (b) and for one excitatory and the release 
from an inhibitory conductance (c). Nonlinearity was defined as the difference 
between the voltage response to both coincident inputs and the sum of the 
responses to each individual input. Equilibrium potentials were set to 
Eexc − Eleak = 50 mV and Einh − Eleak = −10 mV. d, e, Nonlinearity of the circuit  
in c as a function of Eexc and Einh. Conductances were set to gexc = ginh = gleak (d) or 
gexc = ginh = 0.5 × gleak (e). Disinhibition supports supralinear responses over a 
wide range of equilibrium potentials and input signal amplitudes.
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Extended Data Fig. 6 | Free parameters of the conductance-based T4 
neuron model. Samples (n = 10,000) drawn from conditional probability 
distributions of input neuron gains and thresholds, leak reversal potential 
(Eleak), and leak conductance (gleak) consistent with measured voltage traces of 
T4 neurons inferred by deep neural density estimation29. Histograms of 

individual parameter distributions are shown at the bottom; the remaining 
panels each contain the relationship between two respective parameters. Pink 
arrowheads and crosses indicate model parameters used for simulations 
shown in Figs. 3b, c, and 5a and Extended Data Figs. 7b, c, and 8.
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Extended Data Fig. 7 | A direction-selective ‘window of opportunity’.  
a, Schematic columnar organization of T4 neuron inputs. Synapses from Mi9 
neurons (green), Tm3/Mi1 neurons (red), and Mi4 /C3 neurons (blue) are each 
separated by one column (hexagons) resulting in direction-dependent time 
differences during visual motion. Arrows indicate the directions of edge 
motion in corresponding panels in b and c. b, c, Top: Normalized T4 cell 

conductances (g/gleak) of respective input synapses during ON (b) and OFF edge 
motion (c) at a velocity of 30° s−1 in the directions indicated in a using the same 
model parameters as in Figs. 3b, c, and 5a and Extended Data Fig. 8. Data are 
mean and area under curve. Arrowheads in b mark the coincidence of increased 
excitability and cholinergic excitatory input (red). Bottom: T4 cell membrane 
voltage (Vm) responses predicted by the model.
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Extended Data Fig. 8 | Predicted relationship between membrane potential 
and input resistance during edge motion. Simulated T4 cell membrane 
potential (Vm) as a function of input resistance (Rin) in response to ON (top) and 
OFF edges (bottom) moving at 30° s–1 in the preferred (PD, left) and the null 
direction (ND, right) of the model. The arrowhead marks the peak in input 
resistance.
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Extended Data Fig. 9 | Input resistance measurements during visual 
stimulation. Holding currents (solid lines, top), membrane potentials (solid 
lines, centre), and input resistances (dashed lines, bottom) of exemplary T4 
neurons expressing either GFP (a) or GFP + GluClαRNAi (b). To obtain input 
resistance measurements at high temporal resolution, neurons were subjected 
to at least two repetitions of identical visual stimulation while recording their 
membrane potentials. In this case, the stimulus was an ON edge moving at 
30° s−1 in the neuron’s preferred direction. The holding current I was altered in 
between the first (#1) and the second repetition (#2) by ΔI = −1 pA. The input 
resistance Rin at each time point was calculated as ΔVm/ΔI, where ΔVm denotes 
the difference in membrane potential between repetitions (shaded areas/
dashed arrows in a).
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Extended Data Fig. 10 | GAL4 expression patterns, walking speeds, and bar 
fixation. a, Confocal cross section through the optic lobe of a fly expressing 
GFP (green) under control of R39H12-GAL4 (T4/T5 >) as used in behavioural 
experiments in Fig. 5d–i. Synaptic structures were counterstained with an 
antibody against bruchpilot (grey). Scale bar, 40 µm. The micrograph is 
representative of 8 biological replicates. b, Average forward walking speeds of 
flies expressing GluClαRNAi (teal) or Nmdar1RNAi (grey) in T4/T5 neurons and their 
parental controls (black/grey) during closed-loop bar fixation experiments in 
Fig. 5h, i. c, Confocal cross section through the optic lobe of a fly expressing 
GFP (green) under control of the split GAL4 line R59E08-AD; R42F06-DBD. 
Synaptic structures were counterstained with an antibody against bruchpilot 
(grey). Scale bar, 40 µm. The micrograph is representative of 5 biological 
replicates. d, Average forward walking speeds of flies expressing GluClαRNAi 
(teal) under control of R59E08-AD; R42F06-DBD and their parental controls 
(black/grey) during closed-loop bar fixation in e, f. e, Exemplary bar 
trajectories (242 trials and 11 flies per genotype, top) and the overall bar 
position probabilities (bottom) for flies expressing GluClαRNAi (teal) under 
control of R59E08-AD; R42F06-DBD and their parental controls (back/grey). 
Data are mean ± s.e.m. of flies in f. f, The percentage of time that the bar 
occupied a central 60° window (fixation in front, dashed lines in e). The dashed 
line indicates the chance level. Circles, individual flies; bars, mean ± s.e.m. 
Asterisk denotes a significant difference from both parental controls 
(P = 0.0012, one-way ANOVA followed by Holm–Šídák’s multiple comparisons 
test). n values indicate the number of flies.
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Supplementary information 
Supplementary equations 
Here, we examine under which conditions a passive membrane can give rise to 
multiplication-like signal amplification. To extract the nonlinearity, we compare the 
response to two coincident inputs with the sum of the responses to each individual input 
presented in temporal isolation (‘linear expectation’). We consider the simple case of an 
electrical equivalent circuit of a passive isopotential neuron that receives two excitatory 
input signals 𝑥 and 𝑦, which control the excitatory conductances 𝑔$%&' and 𝑔$%&(, 
respectively (Extended Data Fig. 5b). The neuron’s membrane potential 𝑉* at steady state is 
given by 

𝑉* = ,-./	(2-./34	2-./5)	4	,7-89	27-89
2-./3	4	2-./5	4	27-89

 ; 

where 𝐸$%& and 𝐸;$<= are the reversal potentials of excitatory and leak currents, respectively,
and  𝑔;$<= is the leak conductance. In the absence of input signals (i.e. when 𝑥 = 𝑦 = 0), the 
neuron’s resting potential 𝑉?$@A = 𝐸;$<= . 

If we express the membrane potential response ∆𝑉 as the difference between 𝑉*  and 𝑉?$@A 
and all conductances relative to 𝑔;$<=, then the membrane potential response to two 
coincident excitatory inputs is 

∆𝑉 = ,-./(2-./3	4	2-./5)4,7-89
2-./3	4	2-./5	4	'

− 𝑉?$@A .

For 𝑔$%&' = 𝑥, 𝑔$%&( = 𝑦, and 𝑉?$@A = 𝐸;$<= = 0 the response to the combined inputs can be 
written as 

 ∆𝑉',( = 𝐸$%&
%	4	H

%	4	H	4	'
 . 

The individual responses ∆𝑉' and ∆𝑉( to each input presented in isolation are 

∆𝑉' = 𝐸$%&
%

%	4	'
  and  ∆𝑉( = 𝐸$%&

H
H	4	'

 . 

Now we show that, for two excitatory inputs, ∆𝑉',( is always smaller than the linear 
expectation ∆𝑉' + ∆𝑉( : 

𝐸$%&
%4H

%4H4'
< 𝐸$%&

%
%4'

+ 𝐸$%&
H

H4'
 . 

Factoring out 𝐸$%&, we obtain 

%4H
%4H4'

< %
%4'

+ H
H4'

 . 

The left expression can be broken into two components: 

%
%4H4'

+ H
%4H4'

< %
%4'

+ H
H4'

 . 
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If follows that, for positive non-zero values of 𝑥 and 𝑦, 
 

%
%4H4'

< %
%4'

  and  H
%4H4'

< H
H4'

 . 
 
If 𝑎 < 𝑐	and 𝑏 < 𝑑, then 𝑎 + 𝑏 < 𝑐 + 𝑑. Therefore, the response of a passive neuron to two 
coincident excitatory inputs ∆𝑉',( is always sublinear; i.e. smaller than the linear expectation 
∆𝑉' + ∆𝑉( (Extended Data Fig. 5b). 
 
Next, we consider the pairing of an excitatory with an inhibitory input (Extended Data 
Fig. 5c). This neuron’s steady-state membrane potential is 
 

𝑉* = ,-./2-./4,OPQ2OPQ4,7-8927-89
2-./42OPQ427-89

  . 
 
As before, we let 𝑔$%& = 𝑥, but the inhibitory conductance 𝑔RST follows 1 − 𝑦, meaning that it 
decreases with increasing signal 𝑦 (just like Mi9 neurons hyperpolarize with increasing light 
intensity). Again, we express the membrane potential response ∆𝑉 as the difference between 
𝑉* and 𝑉?$@A and all conductances relative to 𝑔;$<=: 
 

𝑉* = ,-./	%	4	,OPQ	('VH)4,7-89
%	4	('VH)	4	'

  and 
 

∆𝑉 = 𝑉* − 𝑉?$@A . 
 
All reversal potentials are expressed as the difference to 𝐸;$<=, which we set to zero (𝐸;$<= =
0). Note that, unlike before, the neuron’s membrane potential at rest (i.e. when 𝑥 = 𝑦 = 0) is 
now 𝑉?$@A = 𝐸RST 2⁄ . The response to the combined inputs is 
 

∆𝑉',( =
,-./	%	4	,OPQ	('VH)

%	V	H	4	(
− ,OPQ

(
 ; 

 
which can be written as 
 

∆𝑉',( =
%	((,-./	V	,OPQ)	V	H,OPQ

(((	4	%	V	H)
 . 

 
The individual responses are 
 

∆𝑉' =
%((,-./	V	,OPQ)

(((	4	%)
	 and  ∆𝑉( =

VH,OPQ
(((	V	H)

 . 
 

In the following, we show under which conditions, ∆𝑉',( is larger than the linear expectation 
∆𝑉' + ∆𝑉( : 
 

%((,-./	V	,OPQ)	V	H,OPQ
(((	4	%		V	H)

> %((,-./	V	,OPQ)
(((	4	%)

− H,OPQ
(((	V	H)

. 
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This simplifies to 
 

%((,-./	V	,OPQ)	V	H,OPQ
(	4	%	V	H

> %((,-./	V	,OPQ)
(	4	%

− H,OPQ
(	V	H

 . 
 
Put over a common denominator, it can be written as 

 
(𝑥(2𝐸$%& − 𝐸RST) − 𝑦𝐸RST)(2 + 𝑥)(2 − 𝑦) 	> 	𝑥(2𝐸$%& − 𝐸RST)(2 + 𝑥 − 𝑦)(2 − 𝑦) −

𝑦𝐸RST(2 + 𝑥 − 𝑦)(2 + 𝑥) . 
 
Expansion leads to 
 

𝑥(2𝐸$%& − 𝐸RST)(2 + 𝑥)(2 − 𝑦) − 𝑦𝐸RST(2 + 𝑥)(2 − 𝑦) > 
𝑥(2𝐸$%& − 𝐸RST)(2 + 𝑥)(2 − 𝑦) − 𝑥𝑦(2𝐸$%& − 𝐸RST)(2 − 𝑦) − 𝑦𝐸RST(2 − 𝑦)(2 + 𝑥) −

𝑥𝑦𝐸RST(2 + 𝑥) . 
 
Subtraction of the blue and the red expressions on both sides yields 
 

0 > −𝑥𝑦(2𝐸$%& − 𝐸RST)(2 − 𝑦) − 𝑥𝑦𝐸RST(2 + 𝑥) . 
 
Division by (−𝑥𝑦) reverses the inequality sign: 
 

(2𝐸$%& − 𝐸RST)(2 − 𝑦) + 𝐸RST(2 + 𝑥) > 0 . 
 

This simplifies to 
2𝐸$%&(2 − 𝑦) + 𝐸RST(𝑦 + 𝑥) > 0 ; 

or 
𝐸$%& > −𝐸RST

%4H
(((VH)

 . 
 

Note that 𝐸$%& and 𝐸RST are expressed as the difference to 𝐸;$<=. For 0 ≤ 𝑥 ≤ 1 and 0 ≤ 𝑦 ≤ 1 
(i.e. positive conductances smaller or equal to 𝑔;$<=) and |𝐸$%&| > |𝐸RST|, the above inequality 
always holds. In the extreme case of 𝑥 = 𝑦 = 1 the coincidence of an excitatory input with 
the release from an inhibitory one gives rise to a supralinearity as long as 𝐸RST is closer to 
𝐸;$<= than 𝐸$%& (Extended Data Fig. 5d). Other values of 𝑥 and 𝑦 yield supralinear responses 
over much wider ranges of 𝐸$%& and 𝐸RST (Extended Data Fig. 5e).  

55



4 

Supplementary Table 1. Statistical analyses of Figs. 2, 5. 

Figure Statistical test Measured variable Experimental 
groups/comparisons 

Test statistic P 

2c Shapiro–Wilk test 
Shapiro–Wilk test 
Two-tailed paired Student's t-test 
Two-tailed Wilcoxon matched-pairs 
signed rank test 

Membrane potential change 
Membrane potential change 
Membrane potential  
Membrane potential  

T4 > GFP  
T4 > GluClαRNAi  
T4 > GFP before vs. after glutamate 
T4 > GluClαRNAi before vs. after 
glutamate 

W = 0.9317 
W = 0.8429 
t25 = 6.124 
W = 27.00 

0.0849 
0.0178 

2.111×10-6 

0.4263 

2e Two-way repeated-measures ANOVA Input resistance Genotype × glutamate 
Genotype 
Glutamate 
Cell 

F8, 216 = 9.743 
F1, 27 = 2.263 
F3.515, 94.92 = 22.57 
F27, 216 = 77.93 

1.579×10-11 

0.1441 
3.458×10-12 

4.295×10-96 

2g Shapiro–Wilk test 
Shapiro–Wilk test 
Two-tailed Mann–Whitney U test 

Resting membrane potential 
Resting membrane potential 
Resting membrane potential 

T4 > GFP  
T4 > GFP, GluClαRNAi 
T4 > GFP vs. T4 > GFP, GluClαRNAi 

W = 0.9827 
W = 0.9915 
U = 2959 

0.0178 
0.7673 

3.404×10-23 

2h Shapiro–Wilk test 
Shapiro–Wilk test 
Two-tailed Mann–Whitney U test 

Input resistance 
Input resistance 
Input resistance 

T4 > GFP  
T4 > GFP, GluClαRNAi 
T4 > GFP vs. T4 > GFP, GluClαRNAi 

W = 0.9708 
W = 0.9677 
U = 5979 

0.0002 
0.0115 

4.751×10-11 

5c Shapiro–Wilk test 
Shapiro–Wilk test 
Shapiro–Wilk test 
Kruskal–Wallis test 
Dunn's multiple comparisons test 

Ldir 
Ldir 
Ldir 
Ldir 
Ldir 
Ldir 

T4 > GFP 
T4 > GluClαRNAi 
T4 > Nmdar1RNAi  

T4 > GFP vs. T4 > GluClαRNAi 
T4 > GFP vs. T4 > Nmdar1RNAi  

W = 0.9626 
W = 0.8984 
W = 0.8522 
H = 15.27 
Z = 3.906 
Z = 1.318 

0.4679 
0.0640 
0.0391 
0.0005 
0.0002 
0.3748 

5f, ON Shapiro–Wilk test 
Shapiro–Wilk test 
Shapiro–Wilk test 
Shapiro–Wilk test 
Shapiro–Wilk test 
Brown–Forsythe test  
One-way ANOVA 
Holm–Šídák’s multiple comparisons test 

Angular velocity 
Angular velocity 
Angular velocity 
Angular velocity 
Angular velocity 
Angular velocity 
Angular velocity 
Angular velocity 

T4/T5 > 
GluClαRNAi  
T4/T5 > GluClαRNAi  
Nmdar1RNAi  
T4/T5 > Nmdar1RNAi  

T4/T5 > vs. T4/T5 > GluClαRNAi  
GluClαRNAi vs. T4/T5 > GluClαRNAi  
T4/T5 > vs. T4/T5 > Nmdar1RNAi  
Nmdar1RNAi vs. T4/T5 > Nmdar1RNAi  

W = 0.9418 
W = 0.9038 
W = 0.9605 
W = 0.9478 
W = 0.9701 
F4, 88 = 1.589 
F4, 88 = 7.715 
t88 = 3.000 
t88 = 4.084 
t88 = 1.857 
t88 = 0.4669 

0.2839 
0.0670 
0.5536 
0.3915 
0.8000 
0.1843 

2.237×10-5 

0.0105 
0.0004 
0.1289 
0.6417 

5f, OFF Shapiro–Wilk test 
Shapiro–Wilk test 
Shapiro–Wilk test 
Shapiro–Wilk test 
Shapiro–Wilk test 
Kruskal–Wallis test 
Dunn's multiple comparisons test 

Angular velocity 
Angular velocity 
Angular velocity 
Angular velocity 
Angular velocity 
Angular velocity 
Angular velocity 

T4/T5 > 
GluClαRNAi  
T4/T5 > GluClαRNAi  
Nmdar1RNAi  
T4/T5 > Nmdar1RNAi  

T4/T5 > vs. T4/T5 > GluClαRNAi 
GluClαRNAi vs. T4/T5 > GluClαRNAi  
T4/T5 > vs. T4/T5 > Nmdar1RNAi  
Nmdar1RNAi vs. T4/T5 > Nmdar1RNAi  

W = 0.9258 
W = 0.9532 
W = 0.9039 
W = 0.9183 
W = 0.9251 
H = 14.54 
Z = 1.796 
Z = 3.488 
Z = 0.8056 
Z = 0.4493 

0.0695 
0.3398 
0.0488 
0.0920 
0.1241 
0.0058 
0.2897 
0.0019 

> 0.9999
> 0.9999

5i Shapiro–Wilk test 
Shapiro–Wilk test 
Shapiro–Wilk test 
Shapiro–Wilk test 
Shapiro–Wilk test 
Brown–Forsythe test 
Welch's ANOVA 
Dunnett's T3 multiple comparisons test 

Fixation in front 
Fixation in front 
Fixation in front 
Fixation in front 
Fixation in front 
Fixation in front 
Fixation in front 
Fixation in front 

T4/T5 > 
GluClαRNAi  
T4/T5 > GluClαRNAi  
Nmdar1RNAi  
T4/T5 > Nmdar1RNAi  

T4/T5 > vs. T4/T5 > GluClαRNAi 
GluClαRNAi vs. T4/T5 > GluClαRNAi  
T4/T5 > vs. T4/T5 > Nmdar1RNAi  
Nmdar1RNAi vs. T4/T5 > Nmdar1RNAi  

W = 0.9786 
W = 0.9274 
W = 0.9447 
W = 0.9611 
W = 0.9216 
F4, 72 = 5.425 
W4.000, 27.14 = 12.78 
t27.87 = 6.427 
t29.42 = 3.641 
t8.760 = 0.1015 
t15.65 = 0.6369 

0.9513 
0.1751 
0.2696 
0.7406 
0.4427 
0.0007 

5.645×10-6 

2.337×10-6 

0.0042 
> 0.9999

0.9456
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Supplementary Table 2. Statistical analyses of Extended Data Fig. 10. 
 

Extended 
Data 
Figure 

Statistical test Measured variable Experimental groups/comparisons Test 
statistic 

P 

      
10b Shapiro–Wilk test 

Shapiro–Wilk test 
Shapiro–Wilk test 
Shapiro–Wilk test 
Shapiro–Wilk test 
Kruskal–Wallis test 

Forward walking speed 
Forward walking speed 
Forward walking speed 
Forward walking speed 
Forward walking speed 
Forward walking speed 

T4/T5 > 
GluClαRNAi  
T4/T5 > GluClαRNAi  
Nmdar1RNAi  
T4/T5 > Nmdar1RNAi  
 

W = 0.9605 
W = 0.9340 
W = 0.9422 
W = 0.9454 
W = 0.8049 
H = 4.563 

0.6706 
0.2280 
0.2403 
0.4913 
0.0323 
0.3352 

10d Shapiro–Wilk test 
Shapiro–Wilk test 
Shapiro–Wilk test 
Brown–Forsythe test 
One-way ANOVA 

Forward walking speed 
Forward walking speed 
Forward walking speed 
Forward walking speed 
Forward walking speed 

R59E08-AD; R42F06-DBD 
GluClαRNAi  
R59E08-AD; R42F06-DBD > GluClαRNAi 

W = 0.8979 
W = 0.9520 
W = 0.9309 
F2, 36 = 0.2397 
F2, 36 = 0.1688 

0.1743 
0.5927 
0.3139 
0.7881 
0.8453 

10f Shapiro–Wilk test 
Shapiro–Wilk test 
Shapiro–Wilk test 
Brown–Forsythe test 
One-way ANOVA 
Holm–Šídák’s multiple comparisons 
test 
 

Fixation in front 
Fixation in front 
Fixation in front 
Fixation in front 
Fixation in front 
Fixation in front 

R59E08-AD; R42F06-DBD 
GluClαRNAi  
R59E08-AD; R42F06-DBD > GluClαRNAi  
 
 
R59E08-AD; R42F06-DBD vs. R59E08-AD; 
R42F06-DBD > GluClαRNAi  
GluClαRNAi vs. R59E08-AD; R42F06-DBD > 
GluClαRNAi 

W = 0.9553 
W = 0.9909 
W = 0.9768 
F2, 36 = 1.748 
F2, 36 = 19.00 
t36 = 6.120 
 
t36 = 3.523 

0.7126 
0.9998 
0.9517 
0.1887 

2.327×10-6 

9.599×10-7 

 
0.0012 
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2.2 Manuscript 2: Differential temporal filtering in a small 

neuronal network 

 
Abstract 

In the brain, the differential temporal filtering of sensory inputs signals by neuronal 

networks is required for a wide range of neural computations including the detection 

of visual motion and sound localization. However, our understanding of how 

temporal filters arise in biological circuits is limited. We study the mechanism 

underlying signal filtering in the ON motion vision circuit of Drosophila, where we 

record the membrane potentials of the columnar Mi9, Tm3, Mi1, Mi4, and C3 

neurons in response to visual stimuli in vivo. Together with conductance-based 

network modelling, these measurements demonstrate that differential filtering is 

independent of the neurons’ intrinsic membrane properties, but emerges from the 

connectivity of the neuronal network comprising of feedforward and feedback 

connections. Specifically, we demonstrate that the temporal tuning of Mi1 depends 

on L1 inhibition and that mutual inhibition between Mi9 and Mi4 neurons allows for 

the adaptive modulation of filter time constants. This work illustrates how a small 

passive recurrent network creates a vast bank of temporal filters. 
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In the brain, the differential temporal filtering of sensory inputs signals by neuronal 1 

networks is required for a wide range of neural computations including the detection of 2 

visual motion1 and sound localization2. However, our understanding of how temporal 3 

filters arise in biological circuits is limited3. We study the mechanism underlying signal 4 

filtering in the ON motion vision circuit4 of Drosophila, where we record the membrane 5 

potentials of the columnar Mi9, Tm3, Mi1, Mi4, and C3 neurons5–8 in response to visual 6 

stimuli in vivo. Together with conductance-based network modelling, these 7 

measurements demonstrate that differential filtering is independent of the neurons’ 8 

intrinsic membrane properties, but emerges from the connectivity of the neuronal 9 

network comprising feedforward and feedback connections. Specifically, we 10 

demonstrate that the temporal tuning of Mi1 depends on L1 inhibition and that mutual 11 

inhibition between Mi9 and Mi4 neurons allows for the adaptive modulation of filter 12 

time constants. This work illustrates how a small passive recurrent network creates a 13 

vast bank of temporal filters9. 14 

 15 

Differential temporal filtering of visual10 , auditory11 , or memory-related signals12,13 is 16 

thought to be a requirement of complex neuronal computations, such as those ascribed to the 17 

cerebral cortex. However, in the cortex insights into circuit function are often limited by the 18 

large number of neurons that make up each circuit, by the lack of knowledge about their 19 

connectivity, and by the impracticability of recording from each node in vivo14. In the optic 20 

lobe of Drosophila, none of these limitations apply. Theoretical accounts of motion vision 21 

and direction selectivity rely on the differential temporal filtering of neuronal signals15–19. The 22 

Hassenstein–Reichardt20 and the Barlow–Lewick21 detectors are two prominent models of 23 

motion vision which define, at an algorithmic level,  the computations underlying direction 24 

selectivity. Both formalisms rest on a filtering stage which allows for the coincidence of 25 

multiple signals measured at different points in space during visual motion22. There are hints 26 
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to the biological implementation of such a  system in the visual system of Drosophila 27 

melanogaster 8,23. Following a strict retinotopic organization24, signals received by the retina 28 

are relayed to the lamina and the medulla before they reach fourth order neurons such as the 29 

direction-selective T4 cells. While each neuro-ommatidium of the compound eye captures 30 

changes in light intensity, it does not compute the directionality of these changes. In the ON 31 

pathway 4, it is first in the dendrites of T4 neurons located in the tenth layer of the medulla in 32 

the optic lobe, that the direction of moving light increments is computed25. T4 neurons are 33 

separated in four subtypes respectively responding to one of the four cardinal directions 25. If 34 

there is an upstream filtering of the signals reaching T4 dendrites, it should be detectable at 35 

the level of the membrane potentials of the input elements of T4 neurons. These inputs to T4 36 

cells have been meticulously catalogued in a series of electron microscopic studies6,7. Each 37 

input belongs to one out of ten cell types that make for a small and compact direction 38 

selective circuit, which recurs for each T4 neuron across the optic lobe (Fig. 1a and 1b) and 39 

whose transmitters and receptors have been extensively characterized6,26. Mi9 neurons release 40 

glutamate onto the GluCla receptor present at the distal tips of T4 dendrites27. Tm3 and Mi1 41 

neurons release acetylcholine at the central area, and Mi4 and C3 neurons release GABA at 42 

the proximal base of T4 dendrites. It has been suggested that the computation of direction 43 

selectivity in T4 neurons results from the concerted use of slow inhibitory and fast excitatory 44 

inputs8,28. In this constellation, inhibitory Mi9 and Mi4 inputs act as slow delay lines while 45 

excitatory Tm3 and Mi1 inputs act as fast central lines (ref. 8,28; Fig. 1b). Mi9 is essential to 46 

the preferred direction enhancement and to the tuning of T4 neurons 23. MI4 is thought to be 47 

mediate null direction suppression seen in T4 neurons 8. Such a model fulfils the theoretical 48 

requirements of both the Hassenstein–Reichardt and the Barlow–Levick detectors. 49 

Nevertheless, it has yet to be determined whether the differential temporal filtering of the 50 

columnar inputs is inherited, inherent, or if it is an emerging property of the network. In the 51 

mechanosensory system of Drosophila, differential temporal filtering has been shown to rely 52 
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on the band-pass filtering contingent on the cells’ intrinsic membrane properties as well as on 53 

the non-linearities of their voltage-gated conductances29. Here, we argue that parallel channels 54 

in the visual system of Drosophila are differentially filtered and that filter time constants 55 

emerge predominantly from the architecture of the neuronal network12. Thus, a small neural 56 

circuit can create an exhaustive bank of different temporal filters necessary for computing the 57 

direction of motion. 58 

To investigate the temporal dynamics of the presynaptic partners of T4 neurons, we 59 

systematically performed in vivo whole-cell current clamp recordings of each columnar input 60 

to T4 neurons. The membrane potentials of GFP-labeled cells were recorded while showing 61 

the fly a random noise, binary stimulus pattern at a refresh rate of at 60 Hz and with a pixel 62 

size of 2.8° (Fig. 1c). From the cross-correlation of each pixel’s luminance with the recorded 63 

membrane potential (Fig. 1d), we determined the linear spatiotemporal receptive fields of 64 

Mi9, Tm3, Mi1, Mi4, and C3 neurons (Fig. 1e). We found that temporal kernels extracted 65 

from the centers of the receptive fields of Tm3 and of Mi1 neurons exhibited an undershoot 66 

indicative for a band-pass filter. In contrary, those of Mi9, Mi4, and C3 neurons revealed a 67 

single exponential decay, characteristic of low-pass filters. Noticeably, Mi9 cells had a 68 

different polarity than the ON-sensitive Tm3, Mi1, Mi4, and C3 neurons. 69 

In order to test if the different temporal kernels correspond to differential temporal filtering in 70 

response to moving visual stimuli, we recorded the membrane potential of each of the five 71 

columnar cell types while showing the fly gratings moving at various temporal frequencies 72 

(Fig. 2a). While Tm3, Mi1, and C3 strongly modulated the amplitude of their response across 73 

frequencies, Mi4 and Mi9 responded with only a weak modulation amplitude (Fig. 2a and 2c). 74 

Although we categorized both Mi9 and Mi4 as similar to low-pass filters, their respective 75 

response properties were different. While the membrane potential of Mi4 neurons tended to 76 

exhibit sharp depolarizations followed by slow decays, the membrane potential of Mi9 77 

neurons was inclined to slowly depolarize in the lead-up to a sudden, fast hyperpolarization. 78 
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When comparing the different tuning curves obtained in frequency space, Tm3, Mi1, and to 79 

some extent C3 were tuned to frequencies above 2 Hz (Extended Data Fig. 1). Convolving the 80 

stimuli shown to the flies with the temporal kernels measured at the center of the cells’ 81 

receptive fields (Fig. 1e) precisely predicted the tuning in frequency space of the different cell 82 

types (Fig. 2b and 2c). Presentation of 1-s full-field flashes of light to the fly also revealed the 83 

differential response kinetics of each cell types (Extended Data Fig. 2a). Notably, C3 neurons 84 

exhibited an undershoot at stimulus offset characteristic of band-pass filters and which was 85 

not seen in its temporal kernel derived from the 60-Hz noise stimulus. Individual Mi9 cells 86 

either responded with a depolarization or with a hyperpolarization to the onset of the stimulus 87 

(Extended Data Fig. 2b). We attributed this variability to the strong center-surround 88 

antagonism present in Mi9 neurons. A small imbalance between the strength of the center and 89 

the surround of the receptive field will tip over the cell’s responses towards a preference to 90 

either ON or to OFF full-field stimuli. Leaving aside the possible role of the surrounds in 91 

tailoring the shape of the cellular response, distinct filtering properties were clear: In response 92 

to moving gratings as well as to full-field flashes, Mi4 and Mi9 neurons retained low-pass 93 

filtering properties with much lower cutoff frequencies than Tm3, Mi1, and C3 neurons. 94 

The specific response dynamic of a neuron is shaped, among others, by its intrinsic membrane 95 

properties. The intrinsic temporal properties of individual neurons rests on two main 96 

mechanisms. First, intrinsic passive membrane properties impose a low-pass filter 30. Second, 97 

non-linearities introduced by voltage-gated ion channels can create the high-pass filters 98 

necessary to generate phenomenological band-pass filters 3,29. In order to test if the different 99 

temporal tunings of the cells are due to different intrinsic membrane properties, we recorded 100 

for each cell type the input resistance and the passive membrane time constant (Fig. 3a to 3d). 101 

If passive membrane properties 31 are the foundations upon which differential filtering is built, 102 

it would be expected that the passive membrane time-constants and the input resistances 103 

correlate with the cells’ respective temporal tuning. While further exploration of the electrical 104 
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compact morphology of the columnar presynaptic partners of T4 gave us reassurance to the 105 

veracity of our recordings (Extended Data Fig. 3a), no such correlation was present, neither in 106 

the input resistance (Fig. 3b) nor in the membrane time-constant (Fig. 3c). Therefore, the 107 

temporal tuning of the fast-modulating Mi1, Tm3, and C3 neurons or of the slow-modulating 108 

Mi9 and Mi4 neurons cannot be explained by differences in their passive membrane 109 

properties. This finding is supported by a correlation coefficient of 0.17 between the passive 110 

membrane time-constants and the time constants inferred by the membrane repolarization 111 

following full-field visual stimulation of the neurons (Fig. 3d). To see if active properties of 112 

the membrane lead to band-pass filtering 32, we first searched for frequency bands of 113 

amplified responses in each cell type. The application of current pulses of increasing 114 

magnitude did not reveal any resonance or oscillation 33 indicative of a band-pass filter (ref. 115 

33; Fig. 3a). Additionally, the use of a current chirp stimulus 1 unveiled in all measured cells a 116 

purely low-pass filtering response of the membrane (Extended Data Fig. 3b). Further 117 

exploring if band-pass filtering emerges from the nonlinearities introduced by voltage-gated 118 

ion channels, we recorded currents in voltage clamp mode for each of the columnar inputs to 119 

T4 (Fig. 3e to g). The fast modulating Mi1neuron possessed two fold higher whole-cell 120 

currents than the slow Mi4 and Mi9 cells (Fig. 3e and 3f). However, the amplitude of currents 121 

measured in the fast Tm3 and C3 neurons were three fold smaller than those measured in Mi4 122 

and Mi9 cells (Fig. 3f). Although variability between cell types was demonstrated in the 123 

magnitude of whole-cell currents (Fig. 3e and 3f), this could not explain the difference in 124 

temporal tuning measured in response to visual stimuli. Indeed, the differential filtering of the 125 

columnar inputs to T4 dendrites was only apparent when visual stimuli were employed. In 126 

summary, differential filtering of visual input signals in this circuit is not due to intrinsic 127 

passive membrane properties nor is it due to nonlinearities introduced by voltage-gated ion 128 

channels. 129 
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We hypothesized that the passive network itself was to be held responsible for a large part of 130 

the differential temporal processing in the system. Supporting the notion that the columnar 131 

inputs to T4 neurons are filtered by the recurrent architecture of the network9,12, we simulated 132 

a passive neuronal circuit containing the ten neuronal classes of the direction selectivity 133 

network (Fig. 4a and 4b). Built on empirical data, our conductance model was simple and 134 

reflected the recurrent aspect of the biological circuit by incorporating all synapses identified 135 

by EM analysis. The network was defined by 136 

																																																							
1
τ
𝑑y&
𝑑t = 𝑴 ∗ 𝒚,		.																																																																					(1) 137 

Here, M represents the connectivity matrices for histaminergic, GABAergic, cholinergic, and 138 

glutamatergic inputs (Fig. 4b) and 𝒚, is a matrix with the activity of each neuron in the model. 139 

The connection strength between cells was based on the number of synapses measured in 140 

electron microscopic studies. For each cell in the network; the leak conductance [𝑔1234], the 141 

leak reversal potential [𝐸1234], and a variable incorporating the cell’s intrinsic membrane 142 

properties [C] were left as free parameters. Common to all cells in the network, four 143 

parameters representing the reversal potential of ACh-, histamine-, glutamate-, and GABA- 144 

induced currents were left as free parameters. The membrane potential of each cell type was 145 

calculated as  146 

678
69

=
:;<=>∗?@;<=>(9)A:BCD∗?@BCD(9)A:EF;∗?@EF;(9)A:GEHE∗?@GEHE(9)A:IJKL∗@IJKLAM∗78(9NO)APQRS(9)

?@;<=>(9)A?@BCD(9)A?@EF;(9)A?@GEHE(9)A?@IJKLAM
		. (2) 147 

Here, g denotes the relative conductance associated with all histaminergic, glutamatergic, 148 

cholinergic, or GABAergic inputs to a neuron as well as the leak conductance, and E denotes 149 

the reversal potential of the respective currents. The model was trained using membrane 150 

potential recordings of Mi9, Tm3, Mi1, Mi4, and C3 neurons in response to a full-field visual 151 

chirp stimulus (Fig. 4c). 152 

After fitting the model parameters to the measured membrane potential responses of the 153 

neurons, our biophysically realistic simulations reproduced the electrical activity of all 154 
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network elements (Fig. 4c). Small discrepancies of a few mV in the simulations of Mi9 and 155 

Mi4 were attributed to the omission of wide-field neurons34 to the model.  In a next step, we 156 

used our model to tease apart the individual contributions of specific synaptic connections to 157 

the network’s activity. In silico, transforming the circuit into a pure feedforward network by 158 

removing all recurrent connections drastically reduced the voltage responses and unified the 159 

formerly distinct filter time constants of medullary neurons (Extended Data Fig. 4). To test, in 160 

a more targeted approach, if individual connections in the circuit could determine a cell’s 161 

response kinetics we severed in silico the inhibitory feedforward connection between L1 and 162 

Mi1(Fig. 5a).  This slowed down the temporal tuning of Mi1 (Extended Data Fig. 5a). 163 

Targeted RNA interference (RNAi) with GluCla, the most highly expressed glutamate 164 

receptor 26,35 in Mi1 neurons allowed us to recreate this intervention in vivo. We showed chirp 165 

stimuli as well as full-field flashes to the fly while recording the membrane potentials of GFP-166 

labeled and GluCla RNAi-expressing Mi1 neurons (Fig. 5b and 5c). While Mi1 neurons 167 

depleted of GluCla retained their preference for ON stimuli, they adopted additional low-pass 168 

filtering properties with a decrease in the magnitude of their impedance (ref. 3; Extended Data 169 

Fig. 5b). 170 

Having shown that network connectivity is necessary to maintain the fast activity of Mi1 171 

neurons, we further investigated if the same principles underlie the temporal tunings of the 172 

slow Mi9 and Mi4 neurons. In T4, moving visual stimuli create a delay of the signals coming 173 

from two adjacent neuro-ommatidia. This delay is physically determined by the inter-174 

ommatidial angle of approximately 4.8° (ref. 36,37; Fig. 6a). Hence, the speed at which visual 175 

stimuli move defines the neuro-ommatidial delay. For visual motion in T4’s preferred 176 

direction (PD), the network-based filtering of Mi9 signals is expected to allow for the 177 

coincidence of disinhibitory and of excitatory inputs onto the postsynaptic T4 neurons. For 178 

motion in the null direction (ND), filtering of Mi4 signals is expected to allow for the 179 

coincidence of inhibitory and of excitatory inputs (Fig. 6a). The filtering of signals in Mi9 and 180 
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Mi4 neurons is thus anticipated to be titrated to adjust inhibitory inputs onto T4 dendrites to 181 

the velocity of the stimuli. To ensure coincidence—and hence DS—over a wide range of 182 

temporal frequencies, filter time constants of Mi9 and of Mi4 neurons need to be malleable in 183 

order to adjust the timing of their outputs to the velocity of the stimulus. The slow 184 

depolarization and fast hyperpolarization of Mi9 membrane potential responses and, 185 

conversely, the fast depolarization and slow hyperpolarization of Mi4 responses could be a 186 

reflection of such an adaptive mechanism (Fig. 2a). To test if changing stimulus velocities 187 

were compensated for by network-based filtering, we recorded membrane potentials of Mi9, 188 

Tm3, Mi1, Mi4, and C3 neurons while showing the fly bright and dark edges moving at 189 

different velocities (Fig. 6b and Extended Data Fig. 6). As a result, Mi9 was the only neuron 190 

which covaried its responses with the changes in interommatidial delay. Mi4 did not adjust its 191 

activity to the velocity of moving dark edges (Extended Data Fig. 7a) and retained a decaying 192 

t of 436 ± 28 ms across velocities. Models of direction selectivity predict the modulation seen 193 

in Mi9 but not the lack thereof seen in Mi4. Such an uncontainable and long-lasting inhibition 194 

of T4 neurons mediated by Mi4 neurons would be detrimental in cases of the fast succession 195 

between bright and dark edges found in moving gratings. Yet, in response to moving gratings, 196 

Mi4 covaried the t of its repolarization with the frequency of the stimulus (Extended Data 197 

Fig. 7b). After a dark moving edge, the activity of Mi4 must therefore be differentially 198 

regulated at least when the dark edge is promptly followed by a bright edge. Following the 199 

notion that the temporal tuning of the neurons in this system is a product of the connectivity 200 

of the circuit, we searched for a connection which would allow the modulation of Mi4 by 201 

incoming bright edges. A good candidate for this modulator was Mi9 since it is the source of 202 

the highest number of columnar inhibitory synapses onto Mi4 neurons, it is stemming from 203 

the same column (Fig. 6c), and since it is most responsive to incoming bright edges before 204 

they reach the center of its column (Fig. 6b). Conversely, Mi9 receives the majority of its 205 

columnar inhibitory synapses from Mi4. This in turn makes Mi4 into an ideal candidate for 206 
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the sharp inhibition witnessed in Mi9 when an ON edge reaches the center of its receptive 207 

field. Examination of the activity of Mi9 and Mi4 neurons aligned post hoc to make them 208 

belong to the same column revealed almost perfectly mirrored responses to moving gratings 209 

and to moving bright edges (Fig. 6d). In silico, removing these inhibitory connections 210 

drastically changed Mi9’s responses to static full field chirps (Extended Data Fig. 8). It is 211 

expected that even if an Mi4 neuron does not adjust its time constants to the speed of moving 212 

bright or dark edges, the inhibitory inputs it receives from an Mi9 adjust its responses to 213 

incoming bright edges. Conversely, Mi4’s inhibitory inputs onto Mi9 contribute to the fast 214 

hyperpolarization of Mi9 neurons observed when a bright edge stimulates the center of their 215 

receptive field (Fig. 6b).  During T4 neurons’ ‘window of opportunity’23, Mi9 and Mi4 are 216 

thus expected to short-circuit one another thereafter hindering any unwanted inhibition onto 217 

T4 neurons. 218 

219 

Discussion 220 

In this study, we recorded in vivo the membrane potentials of Mi9, Tm3, Mi1, Mi4, and C3 221 

neurons. Taking advantage of the high temporal resolution of whole-cell patch clamp 222 

experiments and by standardizing the stimuli shown to the fly, we could define a 223 

spatiotemporal kernel for each columnar input to T4 neurons (Fig. 1). While the pre-synaptic 224 

partners to T4 could be separated based on their respective temporal tuning, each cell type 225 

possessed a unique spatial-temporal receptive field identity (Fig. 1 and Fig. 2). This bank of 226 

temporal filters is independent of intrinsic membrane properties (Fig. 3). We identified the 227 

architecture of the passive network as the source of the measured temporal filters. We built a 228 

realistic model of a microcircuit within the optic lobe that reproduced all major characteristics 229 

of a direction selectivity network (Fig. 4). This model at hand, we predicted the functional 230 

contributions of specific connections in silico and tested our predictions by removing the 231 

same connections in vivo (Fig. 5). We identified the inhibitory connection between L1 and 232 
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Mi1 neurons and mediated by the GluCla receptor as essential to the temporal tuning of Mi1. 233 

Finally, we identified the mutual inhibition between Mi9 and Mi4 neurons of one column as 234 

an essential modulator adjusting their activity to the velocity and to the shape of stimuli (Fig. 235 

6). Because this direction selective microcircuit is repeated across the eye in a hardwired 236 

fashion, there is a need for mechanisms to expand the range of T4 sensitivity across as many 237 

visual inputs as possible. The engineering of a small network which allows for the emergence 238 

of a large bank of temporal filters is advantageous in that it can easily be copied. 239 

 240 
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Fig. 1| Spatiotemporal receptive fields of the inputs to T4 neurons.  
a, Optic lobe representation with single Mi9, Tm3, Mi1, Mi4, C3, TmY15, and T4 neurons. b, 
Circuit architecture for the ON motion detector. c, Targeted patch clamp recording in vivo 
during visual stimulation. d, Exemplary membrane potential recordings of Mi9, Tm3, Mi1, 
Mi4, and C3 neurons in response to visual stimulation with a white noise stimulus. e, Average 
spatiotemporal receptive field of Mi9, Tm3, Mi1, Mi4, and C3 neurons (left) with the average 
temporal kernel extracted from the center of each spatial receptive field (right). n, number of 
cells. 
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Fig. 2| Differential temporal filtering of moving gratings. 
a, Membrane potentials in response to gratings moving at 0.5Hz, 1Hz, 2Hz, 4Hz, and 8Hz 
(top) of Mi9, Tm3, Mi1, Mi4, and C3 neurons. Membrane potentials are mean ± s.e.m. n, 
number of cells. b, Convolution of the temporal kernel extracted at the center of the spatial 
receptive field of each cell type with the visual stimulus shown to the flies c, Temporal kernel 
in frequency space for each cell type in response to moving gratings (black). Kernels are 
mean ± s.e.m. Prediction made from the convolution of the temporal kernels and the grating 
stimuli in a (purple). Average temporal kernel in frequency space of the slow Mi4 neuron 
(dashed). 
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Fig. 3| Intrinsic membrane properties do not predict differential filtering. 
a, Voltage responses (mV) of single Mi9, Tm3, Mi1, Mi4, and C3 neurons to steps of 
depolarizing current. b, Input resistance of each columnar input to T4 neurons. Circles, 
individual cells; bars, means ± s.e.m. n, number of cells. c, Measured membrane time 
constants. Circles, individual cells; bars, means ± s.e.m. n, number of cells.  d, Visually 
evoked time constant (y-axis) plotted against membrane time constant (x-axis) for all cell 
types. Circles, individual cells. n, number of cells. e, Currents evoked by stepping each 
columnar input cell type from variable holding potentials (120 mV to -30 mV) to a probe 
potential of +50 mV. f, Gating of currents measured in Mi9 inactivation (n = 26 cells), 
activation (n = 6 cells), Tm3 inactivation (n = 3 cells), activation (n = 3 cells), Mi1 
inactivation (n = 16 cells), activation (n = 12 cells), Mi4 inactivation (n = 5 cells), activation 
(n = 5 cells), and C3 inactivation (n = 7 cells), activation (n = 4 cells). Circles, means. 
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Fig. 4| Differential filtering is captured by a recurrent network model. 
a, Circuit architecture for the inputs to the ON motion detector. b, Connectivity matrix 
between R, L1, L5, L3, Mi1, Tm3, C3, Mi9, Mi4, and TmY15 (TmY) neurons. Connections 
are color-coded based on the identity of the neurotransmitter and the number of synapses. c, 
Averaged recorded (back) and modelled membrane potentials (purple) in response to visual 
chirp stimuli (top) of Mi9 (n = 7 flies), Tm3 (n = 7 flies), Mi1 (n = 8 flies), Mi4 (n = 4 flies), 
and C3 (n = 4 flies) neurons. 
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Fig. 5| L1 glutamatergic inputs allow the fast temporal tuning of Mi1. 
a, Architecture of the Mi1 hyper-motif. b, Averaged membrane potentials recordings to visual 
chirp stimuli (top) Mi1>GFP (black, top). Output of modelled Mi1 neurons to the same 
stimuli (dashed purple, top). Averaged membrane potentials recordings to visual chirp 
stimulation of Mi1> GluClαRNAi (red, bottom). Membrane potentials are mean ± s.e.m.  
Output of modelled Mi1 neurons without L1 input to the same stimuli (dashed purple, 
bottom). n, number of cells.  c, Membrane potentials in response to ON flash stimuli (top) 
Mi1>GFP (black, top). Membrane potentials recordings of Mi1> GluClαRNAi (red, bottom). 
Membrane potentials are mean ± s.e.m. n, number of cells. 
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Fig. 6| Mi4 and Mi9 interconnections modulate their filtering time constants 
a, Schematic of the inputs to one T4 neuron (left). Normalized membrane potentials of Mi9, 
Tm3, Mi1, Mi4, and C3 neurons in response to gratings moving at 0.5Hz. Responses are time-
shifted to simulate delays during visual motion in the T4 neuron’s preferred (PD) and null 
direction (ND), respectively (right). Responses are mean and area under curve. n, number of 
cells. b, Time course of normalized light intensity at the receptive field centre is shown on 
top. Membrane potentials (mV) of Mi9 neurons (middle) or Mi4 neurons (bottom) in response 
to bright and dark edges (left) moving at different velocities. Integrated cellular response 
(right) to moving bright edges (red) and moving dark edges (blue) in comparison to the inter-
ommatidial delay given at each velocity (green). n, number of cells. c, Schematic of the 
Mi9/Mi4 hyper-motif and of its inputs and outputs. d, Time course of normalized light 
intensity at the receptive field centre is shown on top. Average response of respectively Mi9 
(white) and Mi4 (blue) neurons to gratings moving at 0.5Hz (left) and to bright edges moving 
at 15°/s. Signals are normalized mean and area under curve. Signals were time-shifted to 
simulate visual motion in one column. n, number of cells. 
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Methods 

Fly husbandry and genotypes 

Flies were cultivated on a cornmeal, molasses, and yeast medium under a 12-hour light/12-

hour dark cycle at 25 ˚C and 60% humidity. All experiments were carried out on female flies 

bearing at least one wild-type allele of the white gene. The experimenters were not blind to 

genotype. 

Drosophila melanogaster of the following genotypes were used to target transgene 

expression to the respective types of neuron: P{R48A07-p65.AD}attP40, P{10XUAS-IVS-

mCD8::GFP}su(Hw)attP5; P{VT046779-GAL4.DBD}attP2 was used to label Mi9 neurons, 

P{R13E12-p65.AD}attP40/+; P{R59C10-GAL4.DBD}attP2/P{40XUAS-IVS-

mCD8::GFP}attP2 was used to label Tm3 neurons, P{R19F01-p65.AD}attP40/+; 

P{R71D01-GAL4.DBD}attP2/P{40XUAS-IVS-mCD8::GFP}attP2 was used to label Mi1 

neurons, P{R48A07-p65.AD}attP40, P{10XUAS-IVS-mCD8::GFP}su(Hw)attP5; P{R13F11-

GAL4.DBD}attP2 was used to label Mi4 neurons, P{R26H02-p65.AD}attP40/+; P{R29G11-

GAL4.DBD}attP2/ P{40XUAS-IVS-mCD8::GFP}attP2 was used to label C3 neurons, and 

P{R42F06-p65.AD}attP40, P{10XUAS-IVS-mCD8::GFP}su(Hw)attP5. In 

electrophysiological experiments, P{TRiP.HMC03585}attP40/ P{R19F01-p65.AD}attP40, 

P{10XUAS-IVS-mCD8::GFP}su(Hw)attP5 P{R71D01-GAL4.DBD}attP2/+ (abbreviated 

Mi1 > GluClαRNAi) was used to silence expression of GluClα 38. 

All flies, including parental controls, were heterozygous for the respective transgenes.  

With the exception of the strain used to label C3 (a gift from A. Nern and M. Reiser), 

all flies were obtained from the Bloomington Drosophila Stock Center (BDSC). 

Patch clamp recordings 

For whole-cell recordings in vivo 39,40, female flies aged 2-24 hours post-eclosion were cold-

anaesthetized and fixed to a custom, laser-cut polyoxymethylene mount with soft 

thermoplastic wax (Agar Scientific). The preparation was submerged in extracellular solution 
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(pH 7.3) containing 5 mM TES, 103 mM NaCl, 3 mM KCl, 26 mM NaHCO3, 1 mM 

NaH2PO4, 1.5 mM CaCl2, 4 mM MgCl2, 10 mM trehalose, 10 mM glucose, and 7 mM 

sucrose (280 mOsM, equilibrated with 5% CO2 and 95% O2). Cuticle, adipose tissue, and 

trachea were surgically removed in a window large enough to expose the left dorsal optic 

lobe. Patch pipettes (15-20 MΩ) were fabricated from borosilicate glass capillaries with outer 

and inner diameters of 1.5 and 1.17 or 0.86 mm, respectively, using a P-97 (Sutter 

Instruments) or a PC-10 (Narishige) micropipette puller. Pipettes were polished using a 

microforge (MF-830, Narishige) and filled with solution (pH 7.3) containing 10 mM HEPES, 

140 mM potassium aspartate, 1 mM KCl, 4 mM MgATP, 0.5 mM Na3GTP, 1 mM EGTA, 

and 10 mM biocytin (265 mOsM). Green-fluorescent somata were targeted visually using a 

combination of bright-field and epifluorescence microscopy on an InVivo SliceScope 

(Scientifica) or an Axio Scope.A1 microscope (Zeiss), each equipped with a 60×, 1.0 NA 

water immersion objective (LUMPLFLN60XW, Olympus) and an LQ-HXP 120 light source 

(Leistungselektronik Jena). Transillumination was achieved by butt-coupling a white LED 

(MCWHD5, Thorlabs) to a liquid light guide whose far end was positioned caudally at a 

distance of 1 cm to the fly allowing for an unobstructed field of view. To gain access to cell 

membranes, a micropipette was used to make a small incision in the perineural sheath. Signals 

were recorded at room temperature (21-23 ˚C) with a MultiClamp 700B amplifier, lowpass-

filtered, and sampled at 10 kHz using a Digidata 1550B digitizer controlled through pCLAMP 

11 software (all from Molecular Devices). Data were corrected for the liquid junction 

potential and analysed with custom-written software in Python 3.7 (Python Software 

Foundation) using NumPy 1.15, Pandas 0.24, SciPy 1.3, Matplotlib 3.0, and pyABF 2.1 

(https://pypi.org/project/pyabf/). After temporal alignment, current clamp data were analysed 

at a sampling rate of 1 kHz. The most negative membrane potential recorded within 2 min 

after break-in, in darkness, and in the absence of a holding current, was taken to represent the 

resting potential. Only cells with a measured resting potential more negative than –25 mV 
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were characterized further. Input resistances, as plotted in Fig. 3, were calculated based on 

linear fits to the steady-state voltage changes elicited by 1-s steps of hyperpolarizing currents 

(1-pA increments, starting at –5 pA). Membrane time constants were determined by fitting a 

single exponential to the voltage deflection caused by a hyperpolarizing currents (1-pA 

increments, starting at –5 pA). Visually evoked time constants were determined by fitting a 

single exponential to the repolarization of the neurons following full-field flash stimuli. 

Correlation coefficient was calculated using the corrcoef function of the Numpy 1.21.2 

module. In voltage-clamp recordings, steady-state activation parameters were determined by 

applying depolarizing 50 ms voltage pulses from a holding potential of –100 mV; the pulses 

covered the range to +50 mV in steps of 10 mV. Steady-state inactivation parameters were 

obtained with the help of a two-pulse protocol, in which a 500 ms pre-pulse (–120 to –30 mV 

in 5 mV increments) was followed by a 50 ms test pulse to +50 mV; non-inactivating outward 

currents, measured from a pre-pulse potential of –30 mV, were subtracted. Peak A-type 

currents (IA) were normalized to the maximum current amplitude (Imax) of the respective 

cell and plotted against the pre-pulse potential (V).  

Visual stimulation in electrophysiological experiments 

Visual stimuli were projected, via two mirrors, onto a cylindrical screen using two DLP 

Lightcrafter 3000 pico projectors (Texas Instruments) as previously described 8. The screen 

covered 180° in azimuth and 105° in elevation of the fly’s left frontal visual field and doubled 

as a Faraday shield. Restricting the projectors to the green channel (500-600 nm) allowed for 

a refresh rate of 180 Hz at 8-bit colour depth and a maximal luminance of 1274 cd/m2. The 

average luminance of stimuli, which were presented in full contrast, was set to an 8-bit 

greyscale value of 128 corresponding to an average luminance of ~637 cd/m2. Stimuli were 

created and pre-distorted to account for the curvature of the screen using the Panda3D game 

engine in Python 2.7. 
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Receptive fields were located and characterized using a binary white noise stimulus 

with a pixel size of 2.8° × 2.8°. Samples were drawn at a rate of 60 Hz and projected onto the 

screen for durations ranging from three up to 20 min. Stimuli and simultaneously recorded 

membrane potentials were time-locked using a continuously recorded trigger signal on the 

screen. Stimulus files were exported after lossless compression and cross-correlated to each 

neuron’s recorded membrane voltage using standard techniques for reverse correlation in 

Python 3.7. Slow voltage drifts were corrected post hoc by subtracting a low-pass filtered 

version of the signal obtained using a Gaussian blur with a standard deviation of 60 seconds. 

The reverse correlation was calculated as 

𝐾(𝑥, 𝜏) = 	∫ 𝑑𝑡	𝑆(𝑥, 𝑡 − 𝜏) ∙ 𝑉 (𝑡)_
`  ; 

Where Vm denotes the neuron’s baseline-subtracted membrane voltage at time point t and S 

denotes the stimulus at position x and time point t – τ for values of τ ranging from –0.5 to 

+3.0 s. The resulting spatiotemporal receptive fields were converted into standard scores. 

Only neurons with clear standard score peaks (typically > 4 standard deviations from the 

mean) and with receptive field centres > 8 pixels (22.48°) from the bezel of the screen were 

included in the analysis to guarantee full coverage of the surround. Receptive fields were 

normalized and aligned in space using the extremum (i.e. the maximum or minimum with the 

highest absolute value) of the standard score as a point of reference, which was placed at 0°. 

After cropping the individual spatial receptive fields to the largest common region holding 

data from all neurons, scores were averaged across neurons of one class.  

Temporal frequency tuning curves were measured using gratings of the above 

properties at temporal frequencies ranging from 0.25 to 64.0 Hz. ΔVm was defined as the 

difference between maximal and minimal membrane potential. Impedance was calculated by 

dividing the fast Fourier transform of the minimum-maximum normalized membrane 

potentials by the fast Fourier transform of the minimum-maximum normalized chirp stimulus. 
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For experiments in Fig. 6, bright (ON) and dark (OFF) edges were moved across the 

screen at a velocity from 15°/s to 240°/s. The responses of individual neurons of one type 

were temporally aligned based on the cross-correlation maximum between the time derivative 

of the low-pass filtered membrane potential of each neuron and that of one hand-picked 

template neuron in response to ON edges. The responses of different input neuron classes were 

aligned based on the relative distances of the template neurons’ receptive field centres on the 

screen. Correct alignment was verified by recording light intensities from a 5°-wide area of 

the screen located at the respective template neuron’s receptive field centre using a custom-

built photodiode under identical stimulus conditions. 

Multi-compartment model 

We built a passive compartmental model of Mi9, Tm3, Mi1, Mi4, and C3 neurons 

respectively (Supplementary Fig. 3) to account for possible space-clamp problems due to 

neuronal morphology in voltage clamp experiments and to assess signal propagation between 

dendrite and soma. The models were based on an electron microscopic reconstruction 7 

(http://neuromorpho.org/neuron_info.jsp?neuron_name=Mi9-Q_179, 

http://neuromorpho.org/neuron_info.jsp?neuron_name=Tm3-C-post_172, 

http://neuromorpho.org/neuron_info.jsp?neuron_name=Mi1_Home_212, 

http://neuromorpho.org/neuron_info.jsp?neuron_name=97, and 

http://neuromorpho.org/neuron_info.jsp?neuron_name=18274) and all comprised 2,012 

compartments. For each reconstruction, a connectivity matrix, which held values of one 

where two compartments were connected and values of zero otherwise, served as a template 

to calculate a conductance matrix M. The latter was based on the three-dimensional 

coordinates and the length as well as the diameter of each compartment assuming, unless 

stated otherwise, an axial resistivity (Ra) of 150 Ωcm, a membrane resistance (Rm) of 28 

kΩcm2, and a specific membrane capacitance (Cm) of 1 µF/cm2. All parameters were on the 

same scale as those commonly used to model Drosophila neurons 41 and were considered to 
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be uniform across the entire cell. Varying Ra and Rm over a biophysically plausible range had 

negligible effects on model output (Extended Data Fig. 3a). 

The voltage vector Vm(t) indicating the membrane potential of each compartment and 

at each time point t was determined by using the sparse.linalg.spsolve function of the 

SciPy 1.3 module to iteratively solve the matrix equation M × Vm(t) = Vm(t–

1) × cm / Δt + Eleak × gleak + I(t); where Vm(t–1) denotes the voltage vector at the previous time

point, cm  is the vector holding the specific capacitances of all compartments, Δt denotes the 

time step, Eleak denotes the leak reversal potential, gleak denotes the vector holding the specific 

transmembrane leak conductances of all compartments, and I(t) is the vector indicating the 

current injected at time point t into each compartment. Simulations were performed with a 

fixed Δt of 0.1 ms. If only steady-state was considered, the diagonal of the conductance 

matrix M held no capacitive conductances and the right-hand side of the equation simplified 

to Eleak × gleak + I(t). At the time of transmitter application, synaptic conductances were added 

both to the diagonal of the conductance matrix and, multiplied by the reversal potential of the 

current, to the right-hand side of the equation. 

To simulate voltage clamp, the current injected at the soma was calculated based on 

the difference between the chosen command voltage Vcmd and the actual potential at the soma 

Vm,soma using a proportional-integral control loop that served to emulate a voltage clamp 

amplifier in Python 3.7. The current to be injected at time point t was calculated as 

I(t) = Kp × (Vcmd(t) – Vm,soma(t)) + Ki × I(t–1); where Kp denotes the proportional gain and Ki 

the integral gain. With values of 2 × 109 and 1 for Kp and Ki, respectively, Vm,soma could be 

clamped reliably at the desired Vcmd under all conditions and synaptic inputs. 

Single-compartment model 

Recorded membrane voltages of Mi9, Tm3, Mi1, Mi4, and C3 were averaged. EM 

connectivity data was separated into four matrices corresponding to the identity of the 

neurotransmitter released by the neurons (histamine, glutamate, ACh, and GABA). For each 
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neuron in the model, the membrane potentials of its inputs were transformed into 

conductances. The gain of each conductance was determined by the minimum-maximum 

normalized number of synapses received by each neuron. The network was defined as 

																																																							
1
τ
𝑑𝒚,
𝑑t

= 𝑴 ∗	𝒚,	.																																																																									 

Here, M represents the connectivity matrix for histaminergic, GABAergic, cholinergic, and 

glutamatergic inputs and 𝒚, is the matrix of the activity of each cell in the model. 

The membrane potential of each neuron was calculated as  

678
69

=
:;<=>∗?@;<=>(9)A:BCD∗?@BCD(9)A:EF;∗?@EF;(9)A:GEHE∗?@GEHE(9)A:IJKL∗@IJKLAM∗78(9NO)APQRS(9)

?@;<=>(9)A?@BCD(9)A?@EF;(9)A?@GEHE(9)A?@IJKLAM
		,  

where g denotes the relative conductance associated with each input neuron and E denotes the 

reversal potential of the respective current with Ehist = −64 mV, EGlu = −74 mV, EACh 

= −48 mV, and EGABA = −97 mV. At time point (t), conductances 𝑔aRPQ, 𝑔bcd, 𝑔eMa, and 𝑔fege 

for one neuron where defined by the minimum-maximum normalization of the membrane 

potentials of its cellular inputs at time point (t-1). The compact size of all neurons of the 

circuit eliminated the need for a differential equation to calculate Vm. Free parameters (C, 

Ehist, Eglu, EGABA, EACh, Eleak, and gleak) were estimated from a least-squares fit to measured 

membrane voltage traces of Mi9, Tm3, Mi1, Mi4, and C3 neurons, computed with the help of 

the optimize.minimize function of the SciPy 1.3 module. Upper and lower bounds for 

parameter values were set to 0 and 10 for C, −100 mV and 0 mV for Ehist, Eglu, EGABA, EACh, 

Eleak respectively, and 0 and 1 for gleak, respectively. The parameters used for simulations 

shown in Figs. 4c, 6b, and Extended Data Figs. 4, 5, and 8: 𝑅ijklm	= -68 mV, 𝐿1ijklm		= -8 

mV, 𝐿3ijklm	= -67 mV, 𝐿5ijklm= -64 mV, 𝑀𝑖9ijklm= -41 mV, 𝑇𝑚3ijklm= -81 mV,    

𝑀𝑖1ijklm	= -100 mV, 𝑀𝑖4ijklm= -10 mV, 𝑀𝑖4ijklm	= -31 mV, 𝐶3	ijklm= -70 mV, 𝑇𝑚𝑌ijklm= 0 

mV, 𝑅@jklm= 1.0, 𝐿1@jklm	= 0.3, 𝐿3@jklm	= 0.2, 𝐿5@jklm	= 1.0, 𝑀𝑖9@jklm	= 1.0, 𝑇𝑚3@jklm	= 0.0, 

𝑀𝑖1@jklm	= 0.0,   𝑀𝑖4@jklm	= 0.0, 𝐶3@jklm	= 0.0, 𝑇𝑚𝑌@jklm	= 1.0,  𝑅y	= 0.8, 𝐿1y	= 0.6, 𝐿3y	= 

0.8, 𝐿5y	= 0.2, 𝑀𝑖9y	= 0.6, 𝑇𝑚3y	= 10, 𝑀𝑖1y	= 3.3, 𝑀𝑖4y	= 1.0, 𝐶3y	= 3.6, and 𝑇𝑚𝑌y	= 0.6.  
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All simulations were written in Python 3.7 

Statistics and reproducibility 

No sample size calculations were performed prior to experimentation. Sample sizes were 

chosen to match or exceed standard sample sizes in the field. Sample sizes in 

electrophysiological experiments correspond to the number of cells, each of which was 

recorded in a different animal. The investigators were not blind to genotype. Randomization 

was not applicable, because flies were grouped based on genotype.  
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Extended Data Fig. 1| Differential filtering of moving gratings.  
Frequency responses of Mi9, Tm3, Mi1, Mi4, and C3 neurons to moving gratings. Traces are 
mean ± s.e.m. Arrows and dotted lines denote frequencies at which differential temporal 
tuning is visible. n, number of cells. 
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Extended Data Fig. 2|Full field flash responses. a, Membrane potentials in response to 1-s 
full-field flashes (top) of Tm3, Mi1, Mi4, and C3 neurons. Membrane potentials are mean ± 
s.e.m. n, number of cells. b, Membrane potentials in response to 1-s full-field flashes of Mi9 
neurons responding with a hyperpolarization (Mi9OFF, top) or a depolarization (Mi9ON, bottom) 
to ON full-field flashes. c, Percentage of recorded Mi9 cells which responded to ON full-field 
flashes with a hyperpolarization (Mi9OFF, top) or with a depolarization (Mi9ON, bottom). 
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Extended Data Fig. 3| Electrical morphology of each cell type. a, Modelled somatic input 
resistance as a function of the axial resistivity (Ra) and of the membrane resistance (Rm). Solid 
lines correspond to the measured mean input resistance for wild-type Mi9, Tm3, Mi1, Mi4, 
and C3 neurons (as shown in Fig. 3). Ratio of somatic to dendritic membrane potential in 
response to dendritic injection of 10 pA of depolarizing current as a function of membrane 
resistance (Rm) and axial resistivity (Ra) in the model (bottom). Note that for all cells soma 
and dendrite were quasi-isopotential (ratio > 0.9) across a wide range of parameters. b, 
Membrane potentials in response to current chirp injections for Mi9, Tm3, Mi1, and TmY15 
(TmY) neurons. Membrane potentials are mean ± s.e.m. n, number of cells. 
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Extended Data Fig. 4| Recurrent connections are essential to differential filtering. a, 
Connectivity matrix between R, L1, L5, L3, Mi1, Tm3, C3, Mi9, Mi4, and TmY15 neurons in 
a pure feedforward network. Connections are color-coded based on the identity of the 
neurotransmitter used and the number of synapses. b, Averaged membrane potential 
recordings in response to visual chirp stimuli (top, black) of Mi9 (n = 7 flies), Tm3 (n = 7 
flies), Mi1 (n = 8 flies), Mi4 (n = 4 flies), and C3 (n = 4 flies). Output of modelled Mi9, Tm3, 
Mi1, C3, and Mi4 neurons to the same stimuli when the direction selective circuit has a 
strictly feedforward connectivity (purple). 
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Extended Data Fig. 5| L1 accelerate Mi1. a, Impedance of modelled Mi1 neuron in 
response to visual chirps with L1 input (black) and without input from L1 (red). b, Impedance 
of mean recorded Mi1>GFP neurons (black) and of mean recorded Mi1> GluClαRNAi neurons 
(red) in response to visual chirps. 
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Extended Data Fig. 6| Responses to moving bright and dark edges. Time course of 
normalized light intensity at the receptive field center is shown on top. Membrane potentials 
of Tm3, Mi1, and C3 neurons respectively in response to ON (left) and OFF edges (right) 
moving at 15, 30, 60, 120, and 240°/s. n, number of cells. 
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Extended Data Fig. 7| Time constants of Mi4 in response to moving gratings. a, Measured 
time constants of Mi4 membrane potential responses to dark edges moving at 15°/s (n = 11 
flies), 30°/s (n = 11 cells), 60°/s (n = 9 cells), 120°/s (n = 10 cells), and 240°/s (n = 10 cells), 
respectively. Circles, individual cells; bars, means ± s.e.m. b, Measured time constants of Mi4 
membrane potential responses (n = 10 cells) to gratings moving at 0.5Hz, 1Hz, 2Hz, and 4Hz, 
respectively. Circles, individual cells; bars, means ± s.e.m. 
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Extended Data Fig. 8| Direction selective circuit without Mi9/Mi4 feedback loop. a, 
Connectivity matrix between R, L1, L5, L3, Mi1, Tm3, C3, Mi9, Mi4, and TmY15 neurons in 
a network lacking the Mi9/Mi4 interconnections. Pathways are color-coded based on the 
identity of the neurotransmitter used and the number of synapses for each connection. 
Asterisks denote connections which were removed. b, Membrane potential recordings in 
response to visual chirp stimuli (top, black) of Mi9 (n = 7 flies), Tm3 (n = 7 flies), Mi1 (n = 8 
flies), Mi4 (n = 4 flies), and C3 (n = 4 flies). Output of modelled Mi9, Tm3, Mi1, C3, and 
Mi4 neurons to the same stimuli when the Mi9/Mi4 interconnection are removed (purple). 
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DISCUSSION 
 

As I started my doctoral work, motion vision in Drosophila melanogaster was 

mainly studied by calcium imaging. These studies have undeniably led to a leap in 

the understanding of motion vision in the fly (Arenz et al., 2017; Clark et al., 2011; 

Haag et al., 2016, 2017; Maisak et al., 2013). However, genetically encoded calcium 

indicators (GECI) can only provide a limited insight into the biophysical properties 

leading to direction selectivity in the optic lobe. GECI neither reflect the 

hyperpolarization of the membrane, nor do they reveal the currents in cells. 

Furthermore, GECI cannot be used to measure the input resistance of neurons. In 

this thesis, I describe how my co-authors and I could – with electrophysiological 

recordings of T4 neurons and of its inputs – unravel biophysical mechanisms of 

direction selectivity in the fly, how we could build realistic models of these 

mechanisms, and how these findings are a starting point in the reconciliation 

between theories of signal processing in complex networks and experimental 

neurophysiology. 

 

3.1 Mechanisms of direction selectivity in T4 cells 

Our understanding of the computations underlying the ability to sense visual motion 

is guided by mechanistic models of motion vision. Correlation-type motion detectors 

compute the direction of motion using the coincidence of light inputs followed by 

the performance of nonlinear operational arithmetic (Barlow and Levick, 1965; 

Hassenstein and Reichardt, 1956). This coincidence of signals is possible through 

filtering mechanisms such as the ones seen in the presynaptic columnar partners to 

T4 neurons. The signal filtering implemented upstream of T4 neurons is thus a 

necessary part of the computation of the direction of motion.  

 

3.1.1 Differential filtering of input signals to T4  
Many studies looking at the origins of differential temporal filtering focus on the 

intrinsic temporal filtering properties of single neurons (Azevedo et al., 2017; 

Hutcheon and Yarom, 2000; Llinas, 1988). In such a constellation, rhythms seen in 

the brain are understood as emerging from the temporal properties of individual 

neurons. They have therefore been experimentally studied in the context of 1) the 

intrinsic passive properties of their membrane and 2) the patterns of expression of 

voltage-gated ion channels in their membrane (Section 1.2 of this thesis). Together, 

passive membrane properties and voltage-gated ion channels can dictate the level of 
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filtering implemented by a single neuron. This approach undeniably illustrates real 

filtering properties single neurons can have (Smotherman and Narins, 1999) but it 

ignores the temporal properties emerging from the architecture of neuronal 

networks.  

 

Less experimentally studied, is the role of networks of neurons in the creation of 

temporal filters. This is not without reason. It is extremely difficult to biophysically 

study every node of a complex neuronal network. In the cortex, the prediction of the 

evolution of electrical potentials is made difficult by the size of neurons, the number 

of inputs they receive, and by the nonlinearities introduced by their voltage-gated 

ion channels (Lerner et al., 2016). Added to this, if the architecture of the network 

itself is one of the key mechanisms to temporally process signals, the state of the 

brain where neuronal activity is measured might have a crucial impact on cellular 

activity. Experiments performed ex vivo or in vivo – but under anesthesia (Pisokas 

et al., 2022) – might reveal cellular activity specific to the state the brain is forced 

into. For these reasons, the study of network-based filtering in complex neuronal 

circuits has mostly been theoretical and explored via model simulations. These 

simulations often involve ‘point neurons’ where each neuron is represented as an 

isopotential unit (Traub and Miles, 1991; Tzilivaki et al., 2019).  

 

The motion vision circuit of Drosophila melanogaster can be more thoroughly 

explored than circuits found in the retina or in the cortex (Borst and Helmstaedter, 

2015). The direction-selective circuit is relatively small, it is very stereotyped, a 

plethora of genetic tools is available (Chalfie et al., 1994), and much is already 

known about connectivity patterns between neurons (Davis et al., 2020; Shinomiya 

et al., 2019; Takemura et al., 2017). Furthermore, as we show in manuscripts 1 and 

2, many of the cells involved in this network possess electrically compact 

morphologies which make them phenomenologically close to point neurons. These 

factors make the direction-selective circuit optimal to study network-based 

filtering. It further allows to bridge signal processing in complex networks with the 

biophysical dissection of neuronal networks in the brain.  

 

In manuscript 2, we explore the origins of the differential filtering of Mi9, Tm3, 

Mi1, Mi4, and C3 neurons. We find that differential filtering seen in the inputs to T4 

neurons is not an intrinsic property of each cell type. It is rather dictated by the 

architecture of the network. We further show that the differential expression of 

voltage-gated ion channels across the different cell types is not a decisive factor in 



  97 

the implementation of differential temporal filtering. In our passive conductance 

model, we found that the differential temporal filtering of the columnar inputs to T4 

neurons is reduced when the network is transformed into a pure feedforward 

network. We attribute the reduction to the direction-selective circuit’s reliance on 

directed feedforward networks, feedback loop network motifs, and on feedforward 

loop network motifs. The use of network motifs as a filtering strategy is further 

discussed in 3.3.  

 

Most of the recent studies which have explored differential temporal filtering in the 

optic lobe use so-called temporal kernels. These kernels result from the reverse 

correlation of signals acquired when presenting the fly with a noisy visual stimulus 

(Arenz et al., 2017; Behnia et al., 2014; Drews et al., 2020; Kohn et al., 2021). This 

way, each cell type is assigned a temporal kernel measured at the center of its 

receptive field. However, can a neuron’s response to white noise stimuli predict its 

response to moving gratings or its response to moving edges? 

 

The answer to this question is both “yes” and “no”. While some features of a 

neuron’s response can be captured by white noise stimuli (Fig. 2b of manuscript 2), 

many others are still missing. In manuscript 2, contradictory pictures of the 

temporal properties of neurons are revealed. Sometimes, cells of one neuronal type 

respond as band-pass filters, while at other times they respond as low-pass filters. 

Response as a low-pass filter or as a band-pass filter is dependent on what visual 

stimulus is shown to the fly. For instance, in response to moving gratings and to 

visual chirp stimuli, C3 neurons behave as low-pass filters. In response to full-field 

flashes and to light flickers at the center of their receptive field, they respond as 

band-pass filters. Here, the variability of the temporal properties exhibited by a cell 

type is explained by the architecture of the circuit. Hence, the variability seen in the 

time constants of C3 neurons is a direct reflection of how temporal filtering 

properties can be dependent on a network’s architecture. 

 

Network-based filtering also explains how a recent study could find variability in the 

temporal properties of the inputs to T5 neurons (the equivalent of T4 neurons in the 

OFF pathway) in response to various visual stimuli (Kohn et al., 2021). Indeed, if the 

filtering of the inputs to T5 neurons is also mostly based on complex network 

architecture, then, it is to be expected that a cell’s temporal filtering will change 

depending on the stimulus presented to the fly. This is an example of how a 
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hardwired microcircuit is able to expand the range of responses of a neuron across a 

battery of different visual stimuli.  

 

3.1.2 Multiplication-like arithmetic on T4 dendrites  
In 1.3.3, multiple strategies which neurons can use in order to implement 

multiplicative arithmetic are described. However, the multiplication that my co-

authors and I find in T4 neurons is peculiar since it is free from the voltage 

dependence which limit threshold-based systems (Srinivasan and Bernard, 1976) 

and since it is not limited by the amplitude of the input signals (Borst, 2018). The 

question whether T4 neurons use multiplicative arithmetic in the computation of 

direction selectivity has been the object of heated scientific debate (Arenz et al., 

2017; Behnia et al., 2014; Gruntman et al., 2018; Haag et al., 2016, 2017; Yang and 

Clandinin, 2018; Zavatone-Veth et al., 2020). Recently, a study has attempted to 

answer this question by performing whole-cell patch clamp of T4 neurons while 

showing the flies apparent-motion stimuli (Gruntman et al., 2018). Shortly, apparent 

motion stimuli consist of the alternating succession of multiple stationary visual 

stimuli which are separated by a fixed spatial distance (Cavanagh and Mather, 1989). 

Given proper calibration of the distance between the visual stimuli and of their 

timing, these stimuli create the illusion of motion. While recording the membrane 

potentials of T4 neurons in response to apparent motion stimuli, the authors did not 

find evidence of a multiplicative arithmetic operation. A shortcoming of this study 

is that – because it uses apparent motion stimuli – it ignores the complex 

spatiotemporal receptive fields of the input neurons to T4. 

 

 In manuscript 1, my co-authors and I show that multiplication-like arithmetic is 

indeed essential to motion vision in T4 cells. We show that Mi9 neurons control the 

input resistance of T4 neurons via the glutamate-gated chloride channel GluCla. 

While recording from T4 neurons during visual stimulation in its PD, we found a 

transient increase of the input resistance of the cells prior to voltage excursions. Such 

an increase of the input resistance is what is expected in cases of AND-NOT 

facilitation. This type of disinhibitive multiplication is reliant on the conductances 

elicited by the inputs to T4 neurons (reviewed in 1.3.3). This led us to 

electrophysiologically record from the columnar inputs to T4 neurons while 

subjecting the fly to the exact same battery of stimuli used when recording from T4 

cells. 
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As of yet, it is impossible to record simultaneously from all the inputs to a single T4 

neuron. However, because we can record the receptive field of the cells we measure, 

we can align the respective responses of different neurons to a single point in space. 

We know that the inputs a single T4 cell receives from Mi9, Mi1/Tm3, and Mi4/C3 

originate in different columns. After measuring all of T4’s columnar inputs, we can 

make a post hoc alignment of their responses to recreate the input sequences that are 

expected to shape the T4 cell’s voltage responses to motion in its preferred direction 

(PD) and in its null direction (ND). After alignment, we show that there is a ‘window 

of opportunity’ which appears only when visual stimuli move in a T4 neuron’s 

preferred direction. In this case, Mi9 releases T4 from shunting inhibition while Tm3 

and Mi1 are still not fully active. At this moment, the input resistance of T4 

increases. When this state of high input resistance coincides with the excitatory 

inputs from Tm3 and Mi1 neurons, a multiplication-like operation eq. (14 to 19) is 

performed on the dendrites of T4. In the null direction (ND), we found that inhibitory 

Mi4 and C3 neurons perfectly overlap their responses with those of Tm3 and Mi1 

neurons. 

 

Finally, we show that the role of Mi9 is to shunt T4 neurons when stimuli move in a 

direction oblique to a T4’ PD. This shunting occurs between PD ± 60° and PD ± 90°. 

Mi9, Mi4, and C3 are thought to inhibit T4 neurons when stimuli move in a T4’s ND  

(Arenz et al., 2017). It is only when visual stimuli move in a T4’s PD that Mi9 

releases T4 from shunting inhibition hence allowing for a disinhibitive 

multiplication. The further the angle of the stimulus is from the PD of a T4 neuron, 

the smaller the window of opportunity becomes (Extended Data Fig. 7 of manuscript 

1). When the angle of the stimulus is too far from a T4’s PD, inhibition from Mi9 

neurons overlaps with the excitation from Tm3 and Mi1 neurons (Extended Data 

Fig. 7 of manuscript 1).  

 

3.1.3 Mechanisms of null direction suppression 
Measuring GCaMP signals in T4 neurons, recent studies have shown a suppression 

of T4 responses when visually stimulated with apparent motion in their ND (Haag 

et al., 2016, 2017). Here, the response to sequential stimulation of neuro-ommatidia 

in ND is less than the linear expectation of the responses to the stimulation of each 

single ommatidium. The so-called ‘ND suppression’ could result from an AND-NOT 

veto gate (reviewed in 1.3.3). Biologically, this would be implemented by the 

conjunction of inhibition from Mi4 and C3 inputs and excitation from Tm3 and Mi1 

inputs onto T4 dendrites. In manuscript 1, we show that when a T4 neuron is 
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stimulated with bright edges moving in its ND, the respective membrane potential 

deflections of Mi4 and of C3 overlap perfectly with the respective membrane 

potential deflections of Mi1 and of Tm3 neurons. In manuscript 2, we show that 

when a T4 neuron is stimulated in its ND with moving gratings, aligned membrane 

potentials recorded from Mi4, C3, and Mi9 inputs overlap with the membrane 

potentials of Mi1 and of Tm3 inputs. In manuscript 1, we further show an 

asymmetric trailing of anticorrelated responses to light stimuli in the spatiotemporal 

receptive fields of T4 neurons (Fig. 1e of manuscript 1). This anticorrelation could 

either be due to the excitation of T4 in the dark or to its inhibition in the light. 

Because the trailing is on the null side of T4’s receptive field, it is thought that it is 

a product of ON sensitive Mi4 and C3 inhibitory inputs mediated by GABAergic Rdl 

receptors (Fendl et al., 2020). 
 

 The nature of the arithmetic operation happening on the proximal side of T4 

dendrites is still unknown. Indeed, a subtractive, or a divisive operation could be 

implemented. This is dependent on the reversal potentials associated to inhibitory 

currents and on the amplitude of these conductances. As seen in 1.3.2, the more 

negative 𝐸e is compared to the resting membrane potential, the more the equation for 

the membrane eq. (12) resembles a linear subtraction. However, as seen in eq. (13), 

if 𝐸f lies close to the resting membrane potential while 𝑔f	is high, then it is likely that 

the inhibition onto T4 is shunting and thus divisive. In manuscript 1, we show that 

a slight drop in T4’s input resistance happens in response to motion in the ND. This 

is a hint to the implementation of a shunting divisive operation. Further 

electrophysiological experiments aiming to understand the operation involved in ND 

suppression are still needed. One could deplete T4 dendrites from Rdl by using cell 

type specific RNAi and see if T4 neurons still perform ND suppression, if there is a 

change in the reversal potentials of currents after local application of GABA, or if 

there are changes in the kinetics of the input resistance of T4 neurons in response to 

edges moving in its ND.  

 

3.1.4 Other nonlinearities  
Types of nonlinearities other than operational nonlinearities are known or 

hypothesized to happen in T4 neurons and in its inputs. These are 1) nonlinearities 

introduced by voltage-gated ion channels, 2) nonlinearities of the transformation 

from neurotransmitter to membrane potentials in the post-synapse, and 3) 

nonlinearities of the transformation from membrane potentials to neurotransmitter 

exocytosis. 
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1) Voltage-gated ion channels are a well-documented source of nonlinearity 

present in neurons. In T4 neurons, the voltage-gated Na+ channels paralytic (para) is 

found along the axons while the inwardly rectifying hyperpolarization-activated Ih  

channel is present on the dendrites (Fendl et al., 2020). Yet, in T4 neurons the 

function of these voltage-gated ion channels is still unknown. They could for 

instance combine with the cell’s intrinsic passive membrane low-pass filtering 

properties in order to create a phenomenological band-pass filter. Such mechanism 

of temporal filtering is reviewed in detail in 1.2.3. Yet, it is not clear which advantage 

T4 neurons would gain from acquiring band-pass filter properties. Indeed, this would 

be a step back from a direction-selective system which we describe in manuscript 

1 as being free from the voltage-dependence limiting threshold-based systems 

(Srinivasan and Bernard, 1976) and less sensitive to changes in signal amplitudes 

(Borst, 2018). In T4 neurons, voltage-gated ion channels could also be used to 

transform a graded signal coming from the dendrites into action potentials at the 

level of T4 terminals. The latter is less likely given the electrical compact 

morphology of T4 neurons which makes them quasi-isopotential. Indeed, any action 

potential happening in a quasi-isopotential neuron would be expected to be 

detectable at the soma. In any case, further experiments aimed at characterizing the 

properties of voltage-gated ion channels in T4 neurons and in its inputs are still 

needed. 

 

2) Nonlinearities could be found at the level of the neurotransmitter receptors on 

the postsynaptic membrane. They would involve the transformation from ligand 

binding (to ionotropic or metabotropic receptors) into membrane potentials. In 

mechanistic models of neuronal networks, these non-linearities can be simulated by 

adding a threshold or a nonlinear transformation. In its simplest form, this can be 

implemented by the use of Hill functions (Adler and Medzhitov, 2021). 

Nonlinearities found at the level of receptors could help in the filtering of signals 

needed by elementary motion detectors. RNA sequencing has hinted to the possible 

expression of metabotropic receptors sensitive to ACh or to GABA in T4 neurons 

(Davis et al., 2020). The presence of metabotropic GABAA receptors coupled to G 

proteins inwardly rectifying K+ (GIRK) are a possible source of a delaying non-

linearity (Davis et al., 2020; Lüscher and Slesinger, 2010). Such G protein-coupled 

receptor could be useful in leading to further delaying of inhibition provoked by 

GABAergic inputs. They could also explain the strong inward rectification of the 

currents induced by the application of GABA onto T4 dendrites (Extended Data 
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Fig.4 in manuscript 1). A biophysical characterization of each receptor present on 

T4 is ultimately a goal which would allow to understand the role of each receptor in 

the computations T4 neurons perform. This type of studies are pressing since in 

comparison with their mammalian counterpart, ion channels in invertebrate are not 

as well-characterized (Littleton and Ganetzky, 2000; Podlaski et al., 2017). 

 

3) The level of linearity of the transformation from membrane potential to 

neurotransmitter release in T4 and in its inputs is still elusive. In manuscript 1, the 

assumption of the conductance model is that the inputs to T4 have a threshold under 

which the neurons do not release neurotransmitters. The instauration and the values 

given to such a rectilinear transformation are however arbitrary. The natural question 

which can be asked here is on the nature of the cells’ encoding of information. Do 

neurons in the direction-selective circuit base their neurotransmitter release on a 

binary (action potentials) code, or, do they use an analogue (graded potentials) code? 

Given the quasi-isopotential nature of the neurons and the electrophysiological 

recordings shown in manuscripts 1 and 2, it is unlikely that T4 neurons or that their 

inputs use a spike-based code. If this was the case, one would record those spikes 

from the cell body.  

If these neurons are ‘graded-potential neurons’, they could encode information 

similarly to vertebrate photoreceptors. Vertebrate photoreceptors demonstrate a 

tonic graded neurotransmitter release (Heidelberger, 2007). In the motion vision 

circuit of Drosophila, further knowledge about the transformation between 

membrane potentials and exocytosis would be advantageous when trying to build 

biophysically realistic mechanistic models. To that end, one could perform whole-

cell recordings of an Mi9 neuron while simultaneously imaging glutamate release 

with the genetically encoded glutamate sensor iGluSnFR (Richter et al., 2018). 

Using iGluSnFR, a direct correlation between membrane potentials and glutamate 

release could be made. With the recent and constant creation and optimization of 

fluorescent neurotransmitter reporters (Jing et al., 2018; Marvin et al., 2013; 

Patriarchi et al., 2018), the ability to perform this type of experiments for all the 

columnar inputs to T4 dendrites is likely to be imminent. 

 

3.2 Biophysically realistic, conductance-based modeling 
It is not possible to simultaneously record the membrane potential of every single 

neuron in a neuronal circuit. Hence, neuroscientists build mechanistic models of 

neuronal networks. These models allow neuroscientists to simulate the temporal 

properties emerging from these circuits. The simplest type of network is the one 
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containing nodes representing neurons and edges representing the connections 

between neurons. The connections between neurons are at best based on anatomical 

reconstructions of the neuronal circuit of interest. This type of reconstruction is 

reviewed in 1.5.3 and was used in the conductance-based single-compartment 

models described in manuscripts 1 and 2. 

 

3.2.1 Single- vs. multi-compartmental modeling 
In manuscript 1, we built a passive single-compartment model reflecting the 

direction-selective operation happening at the level of T4 dendrites. For that, we 

used measured electrophysiological membrane potentials from T4 neurons and from 

all its columnar inputs in response to an identical set of stimuli. In other words, we 

measured the inputs to T4 as well as T4 responses. We further measured the reversal 

potential associated with the currents carried by each major ionotropic receptor type. 

Using the membrane equation eq. (11) we built a passive conductance-based model 

which contained free parameters representing the reversal potential and the gain of 

the leak conductance of T4 neurons as well as two free parameters per input to T4: 

a threshold below which all conductances were set to zero, and a gain. Using a least-

square regression algorithm to find values for the free parameters, we could 

mechanistically describe the operations resulting in T4’s direction selectivity. In 

manuscript 2, we used a similar approach. We simulated a neuronal circuit 

containing the ten neuronal classes of the direction-selective network. Here, the gain 

of each connection was set according to the number of synapses present between the 

cells. The model was ultimately trained on electrophysiological recordings from 

Mi9, Tm3, Mi1, Mi4, and C3 neurons in response to an identical battery of stimuli. 

However, it is important to note that single-compartment models reduce the neurons 

to isopotential units (Herz et al., 2006). In a single-compartment model, the shape 

and the length of the processes, the spatial segregation of neurotransmitter receptors, 

or the segregation of voltage-gated ion channels on the membrane do not influence 

the propagation of currents.  

 

Neurons have varying morphologies and it is likely that the morphology of a neuron 

can have an effect on its electrical properties (Gulledge and Bravo, 2016; Koch, 

1999). According to notions brought by cable theory, the length of a cable given an 

axial resistivity and a membrane resistance has an impact on the propagation of 

current (Agmon-snir and Segev, 1993). The branching of dendrites also plays a role 

in the propagation of current (Debanne, 2004; Koch, 1999). In many cases, the use 
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of single-compartment models might not be appropriate in order to model neurons 

(Tzilivaki et al., 2019). 

 

Multi-compartmental models take into account the morphology of the cell in the 

prediction they make about the evolution of electrical potentials along its membrane 

(Herz et al., 2006). Here, the neuron is not simplified as a single isopotential unit. It 

is divided into isopotential compartments linked by cables. A recent study made the 

comparison between the use of single compartment models and multi-compartment 

models of Drosophila’s local5 neurons in the lateral horn (Liu et al., 2021b). It found 

that a multi-compartment model can make better predictions of the amplitude of 

EPSPs measured in a local5 neuron than a single compartment model could. In 

manuscripts 1 and 2, we show that in T4 neurons and in their columnar inputs, the 

use of multi-compartment simulations does not provide any added advantage. These 

neurons are so small that they already are quasi-isopotential. This type of electrical 

compact morphology allows the clamping of an entire neuron (at steady state) from 

the soma. It also negates the role of its morphology in the computation of direction 

selectivity or in the differential filtering of signals. 

 

3.2.2 Parameter Search 

Parameters are the foundation on which all models rest. The challenge when 

building mechanistic models of biological phenomena is to find a realistic set of 

parameters which can fit and ultimately predict experimental data. The error, that 

is how far the output of the model deviates from experimental data is used to define 

how accurate the model is. In manuscript 1, we used a conductance model in order 

to understand the mechanisms underlying multiplicative arithmetic in the direction-

selective T4 neurons. To this end, we used the recorded membrane potentials of T4 

neurons and of their columnar inputs in response to a set of stimuli. We then tried to 

model the input/output transformation. Using the equation for the membrane 

potential 𝑉c	 eq. (11), responses of T4 neurons can be understood as resulting from 

the interactions between a set of inhibitory, excitatory, and leak conductances and a 

set of reversal potentials. The conductances on T4 dendrites are controlled by the 

leak and by Mi9, Tm3, Mi1, Mi4, and C3 neurons. The response of a T4 neuron RT4 

can then be calculated as  

								𝑅mn 	= 	
*opq	krds_*tuv	(k6Lw_krdQ)_*otxt	(krdy_kuw)_	*pP)z	kpP)z

krds_k6Lw_	krdQ_	krdy_kuw_kpP)z
 ,         (20) 

where 𝑔 denotes the relative conductance associated with each input neuron or with 

the leak. 𝐸 denotes the reversal potential associated to the various currents. 
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Based on this simplified understanding of the input/output functions of T4 neurons, 

the modeled response of a T4 neuron MT4 is 

MT4 = f(q) .                                               (21) 

Here, f() is a function based on eq. (20). It transforms the set of conductances and 

reversal potentials into the modeled membrane potential of T4 neurons. f() takes q 

as argument. q = [q1, q2, q3…] is a set of free parameters applying a gain and a 

threshold to each conductance. MT4 is thus the output of the model given the free 

parameters q. 

 In a next step, MT4 is compared with RT4. This comparison gives the error such that 

																										𝐽(q) = 	S	(𝑅T4 	− 𝑀T4	(q))H = 𝐸𝑟𝑟𝑜𝑟.                                      (22) 

To avoid confusion, 𝐽(q) can also be referred to as the cost function or as the fit 

function (Baldi, 1995). The model is then fit to the experimental data RT4 by 

searching free parameter settings such that Error is minimized. The parameter search 

can be achieved via the use of a so-called gradient descent, an algorithm used to 

minimize the error (Fig. 15) (Baldi, 1995). In the simplest form of gradient descent, 

𝐽(q) is fed with initial random values of q (comprised within set bounds). This results 

in a value for Error. The values of q then keep on being changed until Error reaches 

a minimum. This works by simultaneously updating each free parameter (Baldi, 

1995) such that 

θ� ≔ 	θ� − α
�
���

𝐽(q) .   (23) 

Here, k is one of n parameters. The variable α is the learning rate. It defines the size 

of each step (simultaneous change for each value of q). The derivative gives the 

direction where each step should be made in order to minimize Error. By iterating 

this process, one hopes to reach a convergence (Baldi, 1995), that is a minimum 

where there are no new steps which can further minimize Error (Fig. 15).  

Fig. 15. Gradient descent and output of the fit function in parameter space 
Output of the fit function in the parameter space of two parameters q1 and q2. High Error 
(yellow) represents parameter settings for which there is a bad fit of the data. Low Error 
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(dark blue) represents parameter settings which fit the experimental data best. The grey ball 
represents the error for each new update of θ. The ball moves towards convergence. 

 

3.2.3 Assessment of parameter-estimation 

To repeat the gradient descent multiple times with different random initial settings 

of θ helps to discern a global minimum from local minima. When 𝐽(q) is ploted for 

all possible combinations of free parameter settings q, the output of the fit function 

in parameter space is revealed (Fig. 15). Grid search which performs a brute-force 

complete search over all possible parameter settings is a common strategy used to 

obtain all outputs of the fit function in parameter space (Bergstra and Bengio, 2012). 

The output of the fit function in parameter space can reveal if the relationship 

between the parameters of a model and its output is degenerate (Marder and Taylor, 

2011). Different types of degeneracy exist. Zero-slope degeneracy occurs when the 

relationships between system parameters and system outputs have a slope of zero. In 

such a case, the parameter does not contribute to the behavior of the studied system 

(Marder and Taylor, 2011). Compensating degeneracy is found when multiple 

parameters compensate for each other. Compensating degeneracy leads to a strong 

positive correlation between the parameters compensating each other (Marder and 

Taylor, 2011) (Fig.16). In manuscript 1, compensating degeneracy was found 

between ELeak and gLeak.  

 

 
Fig. 16. Compensating degeneracy 
(a) Output of the fit function in parameter space of two parameters q1 (x-axis) and q2 (y-axis). 
The z-axis is Error = J(θ) and described in eq. 22. In blue is the minimum where values of 
parameters q1 and q2 allow for the best fit of the model to the experimental data. (b) A 2-
dimensional representation of the parameter space of q1 and q2 from (a) where dark blue 
values represent the minimal error. Here, compensating degeneracy is clearly visible. 
 

In parameter space, the description of compensating degeneracy can be achieved via 
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representing output of the fit function in parameter space, the resulting Hessian 

matrix is 

  𝑯(𝑺) = �

�S𝑺
��QS

�S𝑺
��Q ��S

�S𝑺
��S ��Q

�S𝑺
��SS

� .      (24) 

Because the Hessian matrix is based on the second-order partial derivatives of S, it 

reflects the curvature of the fit function’s output in parameter space. Using the 

Eigenvectors and the Eigenvalues of matrix H, it is then possible to define the 

direction of robustness and the direction of sensitivity of the fit function in 

parameter space. 

Robustness-direction is found along the Eigenvector with the smallest absolute 

eigenvalue. This Eigenvalue determines the range in robustness. Sensitivity-

direction is found along the Eigenvector with the largest absolute Eigenvalue. This 

Eigenvalue determines the range in sensitivity. Explained in terms of linear 

transformations, the Eigenvector with the smallest absolute Eigenvalue represents 

the smallest determinant of the linear transformation. It points to the elongated axis 

of this distribution which is the robustness. The Eigenvector with the largest absolute 

Eigenvalue represents the largest determinant of the linear transformation. It points 

to the sensitivity of the fit function. Describing the robustness of degenerate 

solutions allows to know how resistant the solution is to perturbations (Goldman et 

al., 2001). On the other hand, sensitivity analysis is used to determine how changes 

in one parameter influence a model’s behavior (Marder and Taylor, 2011).  

Compensating degenerate solutions of a model might hint to the existence of 

homeostatic mechanisms (Maffei and Fontanini, 2009). In this case, the addition of 

extra parameters to the model could help discern if the degeneracy reflects real 

biological phenomena. However, increasing the dimensionality of the parameter 

space increases the computing time exponentially. This is prohibitively long for a 

grid search. High-dimensional parameter sets can in fact only be explored. 

3.2.4 Simulator-based models 

Mechanistic models are used to understand and predict how systems behave in 

various circumstances but they are not suited for statistical inference (Cranmer et al., 

2020). An essential ingredient to both frequentist and Bayesian inference methods is 

the likelihood (Cranmer et al., 2020). Likelihood is expressed as p(D|θ). Here, D is 

the observed data. In our case, an analytical expression for the likelihood of the 

parameters given experimental observations is not available (Papamakarios and 
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Murray, 2018). Conventional Bayesian inference is therefore not applicable. For 

such cases, a set of algorithms for simulation-based inference (also known as 

likelihood-free inference) have been developed (Cranmer et al., 2020). These 

algorithms are based on Approximate Bayesian computation (ABC) 

(Papamakarios and Murray, 2018). In their simplest form, algorithms such as the 

ABC rejection algorithm repeatedly simulate data from a given model and from a 

given set of parameters (Papamakarios and Murray, 2018). They then reject 

parameter settings which generate synthetic data too different from the 

experimentally observed data. Such an approach, although it bypasses the need to 

calculate likelihoods, comes with its own limitations. The resulting parameter 

sample does not come from the real Bayesian posterior p(θ|D) but from the synthetic 

data. A solution to this is to directly learn the parametric approximation to the exact 

posterior (Papamakarios and Murray, 2018). This can be accomplished using 

conditional density estimation (Cranmer et al., 2020; Rothfuss et al., 2019). Here, 

what can be modeled is a conditional density such as the likelihood p(D|θ) or the 

posterior p(θ|D). Conditional density estimation has been implemented using neural 

density estimators (Gonçalves et al., 2020). Conditional density estimators which are 

based on deep neural networks do not reject the parameter settings generating data 

different from the observed data. They train deep neural conditional density 

estimators or classifiers on the observed data (Tejero-Cantero et al., 2020). Deep 

generative neural networks are a type of neural network which can be trained into 

density estimators (Liu et al., 2021a). Deep generative neural networks possess many 

hidden layers which are trained to approximate high dimensional probability 

distributions (Ruthotto and Haber, 2021). In manuscript 1, we were able to use a 

deep neural density estimator in order to estimate a posterior distribution consistent 

with measured voltage traces of T4 neurons. 

 

3.3 Temporal filtering strategies in the optic lobe 

The experimental study of network-based filtering in the brain has until now been a 

difficult task. Indeed, it cannot be achieved without a precise knowledge about 

neuronal connectivity or without a way to record simultaneously from all neurons of 

a circuit. Few animal models are suitable to these types of studies. In zebrafish, the 

ability to non-invasively record GCaMP signals (Yildizoglu et al., 2020), the 

extensive work currently being done to map neuronal connectivity (Kunst et al., 

2019), and progress made in two-photon light-sheet microscopy (Wolf et al., 2015) 

make the larval zebrafish an promising vertebrate model to the study of neuronal 

networks.  
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In the motion vision pathway of Drosophila, we showed that simultaneous recording 

from multiple nodes of a network could be by-passed by post-hoc alignment of 

signals. This is reviewed in section 3.1.2. Alignment is only possible when a precise 

receptive field of the recorded neurons has been measured. As reviewed in section 

1.6, the direction-selective circuit can be drawn as a complex network where 

photoreceptors first transform light information into biophysical signals. These 

signals are then relayed to neurons in the lamina and medulla. The lamina and 

medulla further transform and relay this information to the lobula and to the lobula 

plate. The flow of information goes unhindered to the central brain. However, this 

flow does not follow a simple feedforward pattern. There is a great amount of 

parallel, recurrent, and self-looping connectivity. Taken together, this complexity 

allows for the temporal and spatial filtering of the nodes in the motion vision 

pathway. Ultimately, it is a prerequisite to the computation of the direction of 

motion. Nevertheless, the more complex a network becomes, the more difficult it is 

to get an intuitive grasp of how its connectivity leads to specific patterns of activity. 

To this effect, the study of some of the recurring motifs contained within the motion 

vision pathway is a first step in understanding the temporal filtering strategies which 

emerge from it. Examples of such emerging patterns of connectivity are described 

in manuscripts 1 and 2.  

 

3.3.1 Feedforward network motifs 
Complex networks, be they biological, electronic, or linguistic, are studied across 

multiple fields of science because they can be reduced to patterns of connectivity 

between nodes in a network (Milo et al., 

2002). A network consists of a set of 

nodes linked together by edges. The 

graphs thus formed can be undirected, 

that is where edges do not have a 

direction. They can also be directed and 

thus have edges with directionality. In the 

brain, edges between nodes (neurons) can 

be undirected via the use of bidirectional 

gap junctions (Nielsen et al., 2008). They 

can be directed via chemical synapses. In 

this thesis, only the latter is reviewed. 

The first step in understanding a directed 

Fig. 17. Feedforward loop motifs  
(a) Representation of a coherent feedforward 
loop with input X excites Y and Z, and Y 
excites Z. (b) Representation of an incoherent 
feedforward loop with input X inhibits Y but 
excites Z while Y excites Z (Adler and 
Medzhitov, 2021). 
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complex network is to reduce it to a set of interconnected network motifs. These 

motifs are recurring patterns of connections occurring in a complex network but not 

in a randomized way. The feedforward loop is one of these recurring network motifs 

(Adler and Medzhitov, 2021; Mangan and Alon, 2003; Milo et al., 2002). In its 

simplest form, the feedforward loop can be represented by three vertices X, Y, and 

Z where X is the input node, Y is the intermediate node, and Z is the output node 

(Fig. 17). If Y excites Z, the feedforward loop is coherent (Fig. 17a). If Y inhibits 

Z, the feedforward loop is termed incoherent (Fig. 17b). Coherent and incoherent 

feedforward loops exhibit distinct emerging temporal properties. A recent study has 

described the temporal properties of the feedforward loops present in the 

transcription networks of the bacterium Escherichia coli and the yeast 

Saccharomyces cerevisiae (Mangan and Alon, 2003). Intriguingly, the authors found 

that coherent feedforward loop can serve to delay regulation of an ‘output’ gene. 

Conversely, incoherent feedforward loops can accelerate the regulation of the output 

gene. In the direction-selective circuit of Drosophila, the connection between Mi1 

as input node, Tm3 as intermediate node, and T4 as output node is an example of a 

coherent feedforward loop (Mangan and Alon, 2003). 
 

3.3.2 Feedback network motifs 

Network motifs termed feedback 

loops have been observed in many 

systems (Fig. 18). Notably, feedback 

loops have been an object of interest 

because of their ability to create 

oscillations (Adler and Medzhitov, 

2021) or because they allow for the 

persistent activity of cells possessing 

short time-constants (Goldman, 2009). 

In other words, feedback loops could 

be the mechanisms underlying the 

rhythmic activation of neuronal 

populations. They could also be 

network motifs essential to the 

formation of short-term memories. The self-loop consists of a vertex with outputs 

onto itself (Fig. 18a). If this output is positive, it autoregulates its own levels which 

allows for the stability of the vertex (Adler and Medzhitov, 2021). In the optic lobe, 

L1 lamina neurons are glutamatergic. Yet they express the GluCla receptor on their 

ba

c d

X X

X X Y

Y

Y

Fig. 18. Feedback loop motifs  
(a) Self-loop motif where X excites itself. (b) 
Toggle switch motif where X and Y mutually 
inhibit each other. (c) Lock-ON motif where X 
and Y mutually excite each other. (d) Oscillator 
motif where X excites Y while Y inhibits X 
(Adler and Medzhitov, 2021). 
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axon terminals (personal communications, Sandra Fendl). Each time L1 releases 

glutamate, it most likely also opens the GluCla receptors on its terminals and thus 

inhibits itself. This could be an example of a negative feedback self-loop. Contrary 

to the positive (excitatory) self-loop, a negative self-loop allows to speed-up the 

kinetics of the node (Adler and Medzhitov, 2021). This is in accordance with L1’s 

role in the fast kinetics of the ON motion vision circuit (Ammer et al., 2015). The 

possibility of describing the use and the function of a self-loop motif in the optic 

lobe is intriguing and requires further exploration. 

 

Other feedback network motifs are the so-called mutual feedback circuits. The 

toggle-switch circuit where X and Y inhibit each other allows the nodes to switch 

between their final levels (Fig. 18b). Mi9 and Mi4 neurons – because of their mutual 

inhibition – are an example of toggle-switch feedback motif. In the lock-ON circuit, 

both X and Y are turned ON because of their mutual excitation (Fig. 18c). The 

interconnections between Mi1 and Tm3 make the connectivity between the two 

neurons a lock-ON motif. The oscillator circuit where X excites Y while Y inhibits 

X leads to the emergence of oscillations (Fig. 18d). The interconnections between 

L1 and Mi1 neurons is an example of oscillator circuit. However, the functional 

relevance of various feedback loops is also dependent on the strength of the 

connections between the neurons. For instance, any asymmetry found in the number 

of input/output connections between L1 and Mi1 neurons would be expected to 

influence the temporal properties emerging form this network motif. As a matter of 

fact, EM studies have revealed that L1 sends more inputs onto Mi1 than it receives 

from it (Shinomiya et al., 2019; Takemura et al., 2017). Finally, even if these motifs 

are present in the optic lobe, they are only small pieces of the complex network 

making for the whole direction-selective circuitry. It is thus essential, to not only 

explore these small network motifs, but to also study the bigger networks that they 

build together. 

 

3.3.3 Hyper-motifs 

 Network motifs assembled to create larger networks are called network hyper-

motifs (Adler and Medzhitov, 2021). Because of their increased complexity, 

network hyper-motifs are closer to the biological reality of neuronal circuits than 

network motifs are. As expected, increase in complexity of the connectivity also 

leads to a diversification of the temporal properties emerging from network hyper-

motifs. It is possible to create a network performing any wished temporal low-pass 

filtering by building a hyper-motif composed of many coherent feedforward loops 
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(Goldman, 2009). In such a network, each vertex represents a different temporal 

filtering stage. Depending on the architecture of the hyper-motif, the responses of 

individual cells in the network are only limited by the fact that the response of the ith 

neuron (node) in the hyper-motif has to be the sum of the first i neuronal activities 

(Goldman, 2009). A similar circuit has been suggested to be implemented in the cat’s 

oculomotor neural integrator (Delgado-García et al., 1989; Escudero et al., 1992). In 

the optic lobe of the fly, such a feedforward construction of the network could be 

used to implement the differential filtering shown in manuscript 2. However, the 

physiological and morphological study of the neurons belonging to the motion vision 

circuit as well as their modelling hint to the implementation of a different 

mechanism.  

A recurrent network behaving in a feedforward 

manner could also result in differential filtering 

of individual nodes (Goldman, 2009). An 

advantage this type of recurrent network brings 

to a circuit is that it allows for a richer set of 

emerging temporal properties. Concretely, 

because it encompasses the temporal properties 

of feedforward but also of feedback loops, it 

can react differently to different stimuli. It can 

thus allow a circuit to optimally respond to a 

battery of stimuli. While the motion vision 

circuit in Drosophila possesses many feedback 

loops, it is still a feedforward circuit since it 

ultimately propagates activity from the retina 

through the lamina, the medulla, the lobula, and 

the lobula plate (Fig. 19). In manuscript 2, the 

effect such a “feedforward loop in disguise” (Goldman, 2009) has on the time 

constants of single neurons is studied. We show that the direction-selective network 

can be described as a hyper-motif containing both feedforward loop and feedback 

loop characteristics. This in turn, allows it to mediate the emergence of a vast number 

of temporal filters. 

Fig. 19. Feedforward in disguise 
Schematic representation of the 
network hyper-motif containing the 
L1/L5 oscillatory feedback loop and 
the Mi4/Mi9 toggle-switch feedback 
loop. Yet information is processed in 
a feedforward manner from 
photoreceptors (R) to Mi9 (white) 
and Mi4 (blue) neurons. 

Mi9 Mi4

R

L3 L1 L5
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3.4 Conclusion and outlook 
More than half a century after Hassenstein and Reichardt propose their correlation 

type motion detector (Hassenstein and Reichardt, 1956), the manuscripts in this 

thesis describe the biophysical implementation of multiplication-like arithmetic in 

T4 neurons as well as the emergence of differential filtering in the inputs to T4. 

Taken together, these describe the biological implementation of the two first stages 

of a Hassenstein–Reichardt half-detector. 

Similar arithmetic operations and filtering strategies are possibly occurring in other 

systems. In the mammalian retina, local computation of direction-selectivity has 

been revealed at the connections single bipolar cells make onto direction-selective 

retinal ganglion cells (Matsumoto et al., 2021). Direction selective boutons on the 

dendrites of retinal ganglion cells result from the activity of bipolar cells, starburst 

amacrine cells, and wide-field cells (Fig. 20) (Matsumoto et al., 2021). The 

biophysical mechanisms described in this thesis could be implemented in this type 

of microcircuit. Recording unitary synaptic events in mammalian neurons is possible 

(Vandael et al., 2021). However, because the axon terminals of bipolar cells are 

situated in the inner plexiform layer of the retina, the use of electrophysiology to 

describe the operations happening 

at single boutons under visual 

stimulation of the retina still 

remains a challenge. In this regard, 

the easily accessed and quasi-

isopotential neurons in the medulla 

and the lobula plate of Drosophila 

remain an ideal playground to 

explore the physiological basis of 

this type of passive neuronal 

computation.  

 

In Drosophila, many of the central questions still remain unanswered. For instance, 

a biophysical inspection of ND suppression in T4 neurons is still lacking. It is still 

unclear if this suppression is implemented via subtraction- or via division-like 

arithmetic. Further use of RNAi tools to target different channels presumed to be 

involved in the ND suppression of T4 neurons while performing whole-cell patch 

clamp is likely to give insights fundamental to answer this question. Furthermore, it 

is still unclear how the direction of motion is computed by T5 neurons in the OFF 

pathway (Gruntman et al., 2019; Serbe et al., 2016). If multiplication-like arithmetic 

Fig. 20. Direction selectivity at single boutons 
Field of view during glutamate imaging in direction 
selective retinal ganglion cells and using iGluSnFR. 
Preferred direction of identified tuned single 
boutons (color). The dotted lines are the rough 
borders of each cell. Image taken with permission 
from Matsumoto et al., 2021. 
Sf  
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similar to the one implemented by T4 neurons is also implemented by T5 neurons, 

is still elusive. Given the neuronal inputs to T5 neurons (Shinomiya et al., 2019), 

there is no intuitive explanation for the implementation of disinhibitive 

multiplication. An electrophysiological characterization of T5 neurons and of their 

inputs following strategies described in this thesis is still missing. Such experiments 

are likely to give new insights into the biophysical mechanisms underlying direction 

selectivity in T5 neurons.  

 

Finally, the membrane potentials of T4 and T5 neurons are determined by the 

opening and the closing of ion-channels. The manuscripts in this thesis explore 

properties of only a few of these channels. The biophysical properties and the role 

of ionotropic, voltage-gated, and of metabotropic channels present in the membrane 

of T4 and of T5 neurons still needs to be investigated (Davis et al., 2020; Fendl et 

al., 2020; Pankova and Borst, 2016). Taken together, these remaining questions give 

a breath of possibilities and challenges to future researchers using the visual system 

of Drosophila as a model to understand how the brain computes. 
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