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Zusammenfassung

Aufgrund ihrer starken dipolaren Wechselwirkungen zählen Rydberg Atome zu den viel-
versprechendsten Plattformen für Quanten-Simulationen und Quanten-Computing. Die
selben Wechselwirkungen liefern auch molekulare Bindungspotentiale, deren extreme Bin-
dungslängen bis in den Mikrometer-Bereich hinein reichen. Diese Arbeit präsentiert die
ersten vibrationsaufgelösten Spektroskopien dieser Rydberg Makrodimere. Die beobach-
teten Vibrationsspektren stimmen mit ab initio Berechnungen überein. Die scharfen spek-
troskopischen Signaturen der Wechselwirkungen im nicht-perturbativen Abstandsbereich
stellen den präzisesten experimentellen Zugang zu Rydberg Wechselwirkungen dar.

Die Makrodimere werden aus einem vollbesetzten zweidimensionalen optischen Git-
ter aus Atomen im Grundzustand heraus angeregt und verlassen anschließend das Sys-
tem. Die Bindungslänge stimmt in den meisten Fällen mit dem Diagonalabstand im Gitter
überein. Durch optisches Abbildung der verbleibenden Atome können Molekülanregun-
gen über den korrelierten Paarverlust von Atomen nachgewiesen werden. Diese Konfig-
uration erlaubt die Untersuchung von Photoassoziation in einem Bereich, in dem der An-
fangszustand und die Orientierung des externen Magnetfeldes und der Lichtpolarisation
relativ zur Molekülachse vollständig kontrolliert sind. Die beobachteten Abhängigkeiten
liefern einen Fingerabdruck der elektronischen Struktur der Moleküle und legen ihre Quan-
tenzahlen offen. Die orientierungsabhängige Zeeman Aufspaltung der Moleküllinien zeigt
einen deutlichen Beitrag der Hyperfeinwechselwirkung der beitragenden Rydbergatome.
Abschließend werden nicht-adiabatische Kopplungen zwischen Paarpotentialen durch die
Kernbewergung in einem Bereich in dem die der Born-Oppenheimer Näherung zusam-
menbricht spektroskopisch beobachtet und über externe Magnetfelder verstärkt.

Nach dieser präzisen Charakterisierung wurden Makrodimer Zustände in einem nicht-
resonanten Kopplungsschema verwendet um abstandsselektive Wechselwirkungen im
Grundzustand zu erzeugen. Das im Experiment realisierte System lässt sich durch einen
Ising Hamiltonian beschreiben. Die erzeugten Wechselwirkungen wurden durch korrel-
ierte Phasenentwicklung mittels Ramsey Interferometrie nachgewiesen. Hierbei wurden
für wachsende Wechselwirkungszeiten Zwei-Spin Korrelationen und Drei-Spin Korrela-
tionen beobachtet. Nach dem Berücksichtigen einer Energieverschiebung der Molekülres-
onanz aufgrund von Photodissoziation in ungebundene Bewegungszustände ist die beo-
bachtete Spin Dynamik in Übereinstimmung mit der theoretischen Erwartung.

Mit der vorgestellten Arbeit erreicht die experimentelle Kontrolle über Rydberg Wech-
selwirkungen eine neue Ebene. Die Resultate liefern darüber hinaus experimentellen Zu-
gang zu generischen Eigenschaften von Molekülen die normalerweise nicht zugänglich
sind. Das realisierte Spin System zeigt zudem eine erste Anwendung von Makrodimeren
für mögliche Quanten-Simulationen.
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Abstract

Because of their strong dipolar interactions, Rydberg atoms are now among the most
promising platforms for quantum simulation and computation. The same interactions
also give rise to molecular binding potentials with extreme bond lengths reaching into the
micrometer regime. This dissertation presents the first vibrationally resolved spectroscop-
ies of these so-called Rydberg macrodimers. The observed vibrational spectra agree with
ab initio calculations. The sharp spectroscopic signatures of the interactions in the non-
perturbative distance regime represent the most stringent tests of the interactions between
Rydberg atoms.

In the experiments, macrodimers are excited from a unity-filled two-dimensional atomic
array in the electronic ground state and then removed from the system. In most cases,
the bond lengths match the diagonal distance in the array. Imaging the remaining atoms
in the array therefore enables to observe the excited molecules via correlated atom loss.
The well-defined alignment of the initial ground state atom pairs as well as the excited
molecules provides unique access to the molecular frame of reference. This enables pho-
toassociation studies where the initial ground state, the orientation of an applied mag-
netic field and the light polarization relative to the molecular axis is fully controlled. The
observed dependencies provide direct fingerprints of the electronic structure of the mo-
lecules and expose their quantum numbers. The orientation-dependent Zeeman splittings
furthermore reveals a significant contribution of the hyperfine interaction of the macrodi-
mer states. Finally, non-adiabatic motional couplings between pair potentials, where the
Born-Oppenheimer approximation breaks down, have been spectroscopically observed
and enhanced using an external magnetic field.

After this precise characterization, macrodimer states are used to engineer Rydberg-
dressed interactions between ground state atoms in an off-resonant coupling scheme. The
system realized in the experiment can be mapped to an Ising Hamiltonian with strongly
distance-selective interactions. The interactions realized in the experiments were probed
through correlated phase evolution using many-body interferometry. For increasing in-
tegration time, the admixed interactions induce two-spin correlations as well as three-spin
correlations. After accounting for an additional energy shift originating from photodisso-
ciation into motional states in the chosen coupling scheme, the observed dynamics again
agrees with the calculations.

The present study raises the experimental control over Rydberg interactions to a new
level and provides novel experimental access to generic properties of molecular quantum
states that are usually not accessible. The realized Ising Hamiltonian furthermore shows a
first application how macrodimers can be used for quantum simulations.
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Chapter 1

Introduction

The field of atomic, molecular and optical physics has a history of more than hundred
years. Probing the structure of atoms and molecules [1–5] with light led to important
contributions to our current understanding of quantum mechanics [6–10], quantum field
theory [11–13] and possible theories beyond the standard model [14–16]. The possibility
to create coherent electromagnetic light in the visible spectrum with lasers [17] revolution-
ized the efficiency in studying and manipulating electronic quantum states of atoms and
molecules [18]. The invention of laser cooling enabled the creation of atomic samples in the
mikrokelvin regime [19]. Performing evaporative cooling allowed researchers to reach the
even lower ultracold temperature regime where quantum degenerate phenomena such as
Bose-Einstein condensation [20–22] or degenerate Fermi gases [23] have been observed.

The versatile control over many-body Hamiltonians in the ultracold temperature re-
gime contributed heavily to the field of quantum simulation [24, 25]. Here, the idea is
to experimentally realize specific quantum systems, prepare their eigenstates, and study
the corresponding unitary time dynamics. In the optimal case, the quantum simulator
performs better than a classical calculation of the same problem, allowing to probe novel
regimes of physics. Most prominent Hamiltonian parameters are the interaction between
particles, the different electronic states of the atoms, their quantum statistics, or the ex-
ternal potential [26]. In many cases, the atomic ensembles are confined in focussed laser
beams whose frequency is chosen such that the light field creates an attractive potential.

Similarly, standing waves created by interfering laser beams realize periodic potential
landscapes that allow for the realization of Hamiltonians which are of relevance in the
fields of solid state and condensed matter physics [27–29]. Among them is the so-called
Hubbard model [30, 31] where the atoms confined in the optical lattice are described only
by the coherent tunneling rate between neighboring sites and the on-site interaction of
two atoms occupying the same lattice site. Dependent on the relative srength of both
parameters, the many-body ground state for bosonic particles can be either an insulating
state, a so-called Mott insulator, or a Bose-Einstein condensate. Dynamically tuning the
parameter of the Hamiltonian enables the study of quantum phase transitions [32]. In
contrast to thermodynamic phase transitions where thermal fluctuations play a crucial
role, these are driven by quantum fluctuations and only depend on the parameters of
the Hamiltonian [33]. In the Mott insulating phase in the vicinity of the phase transition,
Hubbard models can be mapped to spin models. Operating in this regime allows one to
simulate quantum magnetism [34, 35] and maybe probe whether Hubbard models can be
used as effective models to describe high-temperature superconducting phases observed
in real solid state systems [36–38].

There exist several pathways to probe the prepared quantum states. By releasing the
atoms from the system and detecting their position after an expansion time in a time-of-
flight experiment, the occupied momentum states and the band structure can be probed [26].
In contrast to real solids, the ten thousand times larger distances in optical lattices also al-
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lows to directly probe their position with optical methods [39]. Here, the possibility to
image and manipulate individual atoms in optical lattices [40–42] with laser light using
quantum gas microscopy enabled the characterization the prepared many-body states dir-
ectly by their correlation functions [43, 44].

Interactions in ultracold atomic systems are usually restricted to short-ranged contact
interactions [45] where the motional wave packets have to overlap. A way to further ex-
tend the toolbox of quantum simulations is to engineer interactions at larger distances.
Here, the most prominent examples are atoms that interact through their magnetic mo-
ments [46], polar molecules [47], or highly-excited Rydberg atoms [48, 49]. The latter
two interact via electrostatic dipole-dipole interactions. The interactions between Rydberg
atoms are the strongest and also highly tunably by the choice of the Rydberg state [50].
During the last decade, Rydberg atoms enabled a large variety of experiments in the fields
of quantum simulation [51–53] as well as quantum computation [54]. The interaction en-
ergies easily exceed the lifetime of the Rydberg states [55] and therefore enable a coherent
manipulation of the system without significant loss. Rydberg interactions also demon-
strated that tweezer arrays [56, 57], where atoms are trapped in individually focused laser
beams, are an attractive platform for quantum simulations. Here, their strong and long-
ranged interactions enable experiments at temperatures and interatomic distances that are
both larger compared to typical values realized for ultracold atoms in optical lattices.

Systems of ultracold atoms also enabled studies of molecules at an unprecedented level
of control [58]. At room temperature, chemical reactions are described by the laws of
thermodynamics. In contrast, molecules at ultracold temperatures can be coherently as-
sociated and transfered between different internal quantum states using magnetic fields
and lasers [59]. Using these techniques, the molecules can be coherently prepared in the
rovibrational ground states [60, 61]. Addressing different rotational states can induce a
permanent dipole moment and the previously listed interactions [62, 63]. Furthermore,
reactions can be studied on a level of individual molecules [64].

Also Rydberg atoms contributed to ultracold molecular physics in the context of ultra-
long range Rydberg molecules. The large separation of the Rydberg electron from the nuc-
leus and the large interactions between Rydberg atom pairs give rise to new exotic types
of molecules [65, 66]. These molecules are special because of their large bond lengths, their
small binding energies, and their comparatively easy theoretical description. Among them
are Rydberg macrodimers [67], whose micrometer-sized interatomic separations make
them the largest existing diatomic molecules. They are bound by the same Rydberg in-
teractions used for quantum simulations and the main topic of this dissertation. Because
their bond length exceeds optical wavelenghts, the atoms in the molecule can be individu-
ally adressed using laser light. Furthermore, because their long rotational timescales are
beyond their lifetime and cannot be spectroscopically resolved, atom pairs excited into
macrodimer states keep their spatial alignment. Both features combined enable unique
access to the molecular frame of reference and, as a consequence, to the electronic struc-
ture of the molecular state. Previous studies on macrodimers were performed in bulk
systems with randomly oriented atom pairs [68–70]. The quantized vibrational states and
the orientation of the excited macrodimers remained unresolved.

The measurements presented in this dissertation used quantum gas microscopy to re-
solve rubidium atoms in an optical lattice [71]. As an initial state, the experiments started
with a two-dimensional unity-filled lattice in the electronic ground state, provided by the
Mott insulating state. The excitation into Rydberg states has been implemented using a
single-photon transition in the ultraviolet [72]. Using the same ultraviolet laser, Rydberg
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macrodimers were excited using a two-photon transition. Here, ground state atom pairs
were excited into the binding potentials that are energetically located several hundreds of
megahertz off-resonant to the Rydberg resonance. After the experiment, the ground state
atoms were imaged with a high-resolution objective placed below the atoms. Rydberg
atoms and macrodimers were ejected from the array and can be detected via atom loss.
The quantized vibrational structure of the binding potentials has been resolved by high-
resolution atom-loss spectroscopy. The observed vibrational spectra agreed with the ex-
pected vibrational energies after accounting for sufficiently many multi-pole terms in the
expansion of the Rydberg interaction Hamiltonian. By the choice of the principal quantum
number of the Rydberg state, the macrodimer bond lengths were tuned to match the lattice
diagonal distance. Macrodimer excitation therefore led to correlated loss of ground state
atoms at that distance, which can be probed by the microscope. Because of the orientation
of the optical lattice, the observed correlation signal quantifies the excitation of macrodi-
mers that were aligned in the laboratory frame. This enabled a photoassociation study
where the orientation of the magnetic field and the polarization relative to the alignment
of the molecules is well-defined. Studying the dependency of the photoassociation rate on
these variables enabled a characterization of the electronic structure of macrodimer states.
After a precise characterization of macrodimers, possible applications for quantum sim-
ulations have been tested. Using optimized coupling conditions and a phase-modulated
excitation laser, off-resonant coupling into macrodimer states realized distance-selective
long-range interactions in the ground state. The engineered interactions were observed in
a Ramsey experiment. In future experiments with improved coherence times, his provides
a path towards the realization of highly-entangled cluster states in a single massive entan-
glement operation, also in two dimensions.

Outline

This section presents the organization of the dissertation. Chapter 2 discusses the proper-
ties of Rydberg atoms and their applications in quantum science. The chapter closes with
a short introduction of Rydberg macrodimers and compares their properties with other di-
atomic molecules. Chapter 3 starts with a discussion of quantum gas microscopy and then
presents the experimental apparatus used in this dissertation. This part focuses on the
UV system used for Rydberg excitation. Chapter 4 provides a more thorough overview of
macrodimer states and discusses their optical excitation and the role of the motional wave
packets. The chapter furthermore presents first vibrationally resolved spectroscopies. In
chapter 5, the calculations of Rabi frequencies between ground state atom pairs and Ryd-
berg macrodimer states and their dependency on the molcular quantum numbers is dis-
cussed. Subsequently, the validity of the description is verified for several different mac-
rodimer binding potentials. For all potentials, additional spectroscopies of the vibrational
structure is presented. Also the response of the macrodimer states to applied magnetic
fields, the hyperfine interaction of macrodimer states, and the dependence of the elec-
tronic structure of the macrodimer states on the interatomic distance is discussed. Chap-
ter 6 demonstrates the contributions of non-adiabic motional coupling elements between
nearby pair potentials and demonstrates how it externally induced by a magnetic field.
Chapter 7 presents a coupling configuration where maximum macrodimer Rabi frequen-
cies can be achieved. In this two-color excitation scheme where the intermediate detuning
in the excitation can be strongly reduced, the contribution of photodissociation into un-
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bound motional states is discussed. In chaper 8, this two-color excitation scheme is used
in an off-resonant configuration to realize distance-selective Ising Hamiltonian in the elec-
tronic ground state. Using Ramsey interferometry, the presence of the dressed interactions
is observed via two-spin and three-spin correlations.
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Chapter 2

Interacting Rydberg atoms
The goal of this chapter is to provide an overview over the physics of Rydberg atoms.

Whenever necessary, a discussion of the state-of-the-art in the field allows the reader to
put the results presented later into context. Over the last two decades, Rydberg atoms
attracted significant attention because of their strong dipolar interactions [50, 73]. Even
at distances of several micrometers, these can easily be the dominating energy scale of
a typical experimental system. They provide a toolset to engineer different long-range
interacting many-body Hamiltonians for quantum simulations [52, 74, 75]. Because they
are capable of realizing entanglement gates between atoms, they are furthermore regarded
as a promising platform for quantum computation [49, 76–78]. Finally, Rydberg atoms give
rise to highly-excited molecules [65] that are unique because of their large bond lengths
and their exotic binding mechanisms.

2.1 Long-range interactions & experimental platforms

This section discusses long-range interactions in cold atomic systems from a general point
of view. While Rydberg atoms provide the strongest long-range interactions among neut-
ral particles, they are not the only option. Furthermore, different types of long-range in-
teractions are more suitable for different experimental platforms. These can currently be
divided into two main categories.

Ultracold atomic gases cooled down to quantum degeneracy provide a versatile plat-
form to study many-body physics. Experimental cycling times are typically longer than
ten seconds due to the time required for evaporative cooling and temperatures are on the
order of nanokelvin [26]. Realizing interactions at distances where the motional wave
functions do not overlap, such as between atoms located at different sites in an optical
lattice, requires some quantum engineering. One possibility is to use atoms with large
magnetic moments in the ground state which interact via magnetic dipole interactions [79,
80]. These interactions give rise to self-bound quantum droplets [46] and dipolar super-
solids [81–83]. As a third option, the electric dipole interactions between polar molecules
can be used. Preparing the molecules [47, 84] in superpositions of rotational states using
static electric or radiofrequency fields induces the required dipole moments. In contrast to
atoms, molecules have additional rotational and vibrational degrees of freedom [85, 86].
Furthermore, they suffer from additional loss channels [87, 88]. Despite these additional
difficulties, there has been remarkable progress [84, 89] during the last years.

On the other hand, recent experiments succeeded in initializing defect-free atomic ar-
rays made of individually focused laser beams [56, 57, 90], so-called optical tweezers. The
tweezers are directly loaded from a magneto-optical trap and rearranged after imaging
the initially randomly populated tweezers. Mainly because evaporative cooling is not re-
quired, cycling times are only on the order of a second. In order to avoid interference
between neighboring tweezers, their distance is usually larger than a micrometer and

5
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therefore larger than the spacings in optical lattices. The larger distances make it hard
to observe the interactions of magnetic atoms and also realizing interactions between in-
dividual molecules trapped in optical tweezers is a current challenge [91]. This is differ-
ent for Rydberg interactions which are strong enough to bridge the distance between the
tweezers [92–94].

In addition to the two presented experimental platforms, hybrid systems where the
fast cycling times of optical tweezers are combined with the short distances and low
temperatures achieved with conventional ultracold atom experiments are currently de-
veloped [95, 96].

Other new directions involve interactions mediated by near-resonant light [97, 98]. For
interatomic distances below the optical wavelength, this led to the observation of super-
radiant [99, 100] and subradiant states [101]. Using cavities, these interactions can be fur-
ther enhanced and scaled to a long-distance range [102–106]. Recently, this platform also
achieved to engineer spin Hamiltonians with tunable non-local interactions [107]. Finally,
ions traditionally confined in Paul traps [108] are interacting with long-ranged Coulomb
interactions. Extending these systems to optically trapped ions that are arranged in certain
spatial patterns might also lead to interesting results [109, 110].

2.2 Properties of Rydberg atoms

Rydberg atoms are highly-excited atoms where one electron populates a high principal
quantum number n [48]. The excited Rydberg electron which is mostly located at large
distances from the nucleus has only a small overlap with the rest of the atom. In this limit,
the description can be simplified by combining the nucleus and the remaining ground
state electrons to an effectively singly-charged nucleus. As a consequence, properties of
Rydberg atoms and their scalings with principal quantum number are very similar to hy-
drogen and can be calculated with high accuracy. Typical principal quantum numbers
are within the range n ∈ [15, 100]. Rydberg states have also been studied for higher
n > 100 [111] but the difficulty in spectroscopically resolving and coherently exciting the
states and the high electric-field sensitivity make them hard to control.

2.2.1 Binding energies

Historically, studying Rydberg states led to important contributions to the development of
atomic theory [1, 112, 113], in particular because of the characteristic scaling of the binding
energy with the principal quantum number n. For hydrogen, it is given by En = −R∞

n2

if the mass of the electron, relativistic effects, and contributions arising from the nuc-
lear structure and quantum field theory are neglected [114]. Here, R∞ = mee4

8ε20h
3c

= h ×
3289.8419602508 THz is the Rydberg constant, obtained from the NIST database [115]. For
atoms with more electrons, deviations from hydrogen can be quantified using quantum
defect theory. For alkali atoms such as 87Rb, the binding energies are given by the Rydberg-
Ritz formula [116, 117]

En,L,J = − R?

(n− δn,L,J)2
= − R?

(n?)2
, (2.1)
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nLJ nS1/2 nP1/2 nP3/2 nD3/2 nD5/2

δ0 3.131 [122] 2.6545 [122] 2.6415 [122] 1.348 [118] 1.346 [118]
δ2 0.179 [122] 0.290 [122] 0.295 [122] -0.605 [118] -0.594 [118]

Table 2.1: Most relevant quantum defects for 87Rb. Calculating δ(n,L, J) from δ0 and δ2

allows to predict quantities of Rydberg atoms by their scaling with n?. The quantum de-
fects decrease for higher Lwhere the system becomes more hydrogen-like. In section 5.2.3,
the dependence of the spatial overlap between the Rydberg electron and the nucleus on n?

enabled the prediction of the hyperfine structure of Rydberg macrodimers.

with R? = mRb/(mRb +me)×R∞ [48, 118], mRb the mass of the ionic core, me the mass of
the electron, and n? = n− δn,L,J the so-called effective principal quantum number. Here,

δn,L,J = δ0 +

(
δ2

n− δ0

)2

+

(
δ4

n− δ0

)2

+ ... (2.2)

are the quantum defects. They mainly depend on the orbital angular momentum L and
weakly on n and the total angular momentum J . Here, the spin-orbit coupling combines
L and the electron spin s = 1

2 to J . Quantitative numbers for δ0 and δ2 are provided in
table 2.1. Many properties of Rydberg states can be derived from their characteristic scal-
ing with n?. The effective reduction of the principal quantum number by the quantum
defect can be intuitively understood from the overlap of the Rydberg electron with the
remaining electron cloud. Because this part of the wave function will experience a higher
nuclear charge, the electron is more deeply bound compared to hydrogen [119]. This res-
ults in a deviation from the Coulomb potential of one-electron systems, in particular at
small distances from the nucleus, see Fig. 2.1 (a,b). Equivalently, this interaction with the
ionic core also affects the remaining electron orbitals through the core polarizability, which
slightly modifies the total polarizability of the atom [120, 121]. As expected from this dis-
cussion, quantum defects decrease for higher Lwhere the centrifugal barrier decreases the
probability density of the Rydberg electron at the ionic core.

2.2.2 Rydberg wave function

To predict experimental outcomes involving Rydberg atoms, calculating the Rydberg wave
functions is usually the first step. Assuming a spherically symmetric potential for the Ryd-
berg electron, the angular wave function has a well-defined angular momentum and can
be separated from the radial wave function via

|nLJmJ〉 = |RnLJ〉 ⊗ |LJmJ〉. (2.3)

Strictly speaking, the spherical symmetry of the Rydberg wave function will be violated
by the interaction of the highly excited electron with the remaining electrons. Note that
the angular momentum of all electrons combined will always be conserved. Because
of the large separation from the ionic core, this can typically be neglected. This frame-
work even provides reliable results for Rydberg states of more complex atoms with sub-
merged shells such as erbium where the angular momentum states in the ground state
are mixed [123]. The Rydberg states are expressed in the eigenbasis of the total electron
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Figure 2.1: Basic properties of Rydberg states of 87Rb. (a) The interaction potential of
the Rydberg electron can be approximated using L−dependent model potentials (orange)
which resemble the Coulomb potential of the hydrogen atom (black) at large distances. At
short distances or lower angular momenta where the Rydberg electron penetrates the or-
bitals of the remaining electrons, the binding energy shifts below the hydrogen reference.
Here, the energy levels of 87Rb also significantly deviate from the energies for hydrogen
(horizontal black lines) where different L−states are basically degenerate. (b) Exemplary
Rydberg energy levels for L = {0, 1, 2}. The higher L, the closer the energy levels shift to-
wards the values for hydrogen (dashed lines). (c) Rydberg wave function for 36S1/2 (solid
blue line). Changing n or L, the position of the outer lobe slightly shifts (upper and lower
markers). For different J , the effect is too small to be visible. The dashed gray line to the
right indicates the position for hydrogen in 36S1/2. (d) For even higher L, the outer lobe
again moves towards smaller r and the value at the ionic core vanishes (blue to gray). For
circular Rydberg states with maximum L = n− 1 and mL = L, the wave function matches
the semiclassical Bohr orbit rn = n2 × 0.0529 nm for hydrogen (dashed gray line).

angular momentum operator Ĵ = Ŝ + L̂ due to the presence of spin-orbit coupling. Here,
L̂ and Ŝ are the operators of the orbital and the spin angular momentum of the valence
electron. The hyperfine coupling to the nuclear spin is typically neglected due to the large
spatial separation. The states |LJmJ〉 can be decomposed into the basis of uncoupled an-
gular momenta via |LJmJ〉 =

∑
mLms

CL J 1/2
mLmJ mS |LmL〉|12mS〉. The expansion coefficients

C1/2 J L
mSmJ mL = 〈12mSLmL|JmJ〉 are called Clebsch-Gordan coefficients. The decomposition

allows one to compute the spatial probability amplitudes via

〈r|nLJmJ〉 = RnLJ(r)
∑

mS ,mL

C1/2 J L
mSmJ mL

Y mL
L (θ, φ)|1

2
mS〉, (2.4)

where the spherical harmonics Y mL
L (θ, ϕ) are the real space representations of the angular

momentum states |LmL〉. The radial wave functionRnLJ(r) is independent of angular mo-
mentum projections but still depends on J because of spin-orbit coupling. It can be calcu-
lated by solving the Schrödinger equation of the Rydberg electron in a species-dependent
model potential VL(r)+Vso(r) using a Numerov algorithm [124–126], see Fig. 2.1 (a). Here,
Vso(r) = αF

L̂·Ŝ
2r3

accounts for the spin-orbit coupling [117] and αF is the fine-structure con-
stant. The most frequently used formalism parametrizes the potential of the 87Rb Rydberg
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electron in atomic units using a spherically symmetric potential

VL(r) = −ZL
r
− αc

2r4

[
1− e−(r/rc)

6
]
. (2.5)

This model potential is used in most available software [50, 55] and was introduced in [126].
The quantity αc = 9.0760 is the static polarizability of the ion core, the cut-off radius rc,
L−dependent parameters {a1, a2, a3, a4}, and the effective nuclear charge

ZL = 1 + (Z − 1) e−a1r − r (a3 + a4r) e
−a2r, (2.6)

with Z = 37 the nuclear charge. Generally, the description becomes closer to hydrogen
at higher L where the overlap with the remaining electrons decreases. Hence, the model
potential modifies the simple Coulomb potential Vh(r) = 1/r of a hydrogen atom in order
to estimate the effect of the remaining electrons. It provides particularly accurate predic-
tions at large distances from the ionic core. As a consequence, the polarizability and the
interaction potentials of Rydberg atoms can be calculated with high accuracy. Here, be-
cause these quantities depend only on the overlap between different Rydberg states, the
short-distance behavior is negligible. For other quantities such as transition dipole matrix
elements between the ground state and different Rydberg states or the hyperfine interac-
tion of a Rydberg state, the properties of the Rydberg wave function at short distances are
important. A more accurate prediction of these quantities requires to extend the current
theoretical framework.

The root-mean-square distance 〈r̂2〉 =
∫∞

0 r2+2|RnLJ(r)|2dr has a characteristic scal-
ing 〈r̂2〉 ∝ (n?)2. For low angular momentum quantum numbers L, RnLJ(r) = 〈r|RnLJ〉
is rapidly oscillating in r and has up to n − 1 zero crossings, see Fig. 2.1 (c). The radial
density ρ(r) = r2|RnLJ(r)|2 peaks at the outer lobe of the Rydberg wave function and is
exponentially damped afterwards. For typical principal quantum numbers n = 36 used
in this dissertation, the outer lobe is located at a distance r ≈ 110 nm. Because this quant-
ity is much smaller than the typical interatomic seperation of our experimental apparatus,
different Rydberg electrons are not overlapping. Another important quantity is the value
of the Rydberg wave function at the origin, which decreases with principal quantum num-
ber as ∝ (n?)−

3
2 . This scaling directly transfers to the dipole matrix element between the

ground state and a Rydberg state as well as the small hyperfine coupling strength Ahfs of
Rydberg states.

2.2.3 Dipole matrix elements & Rabi frequencies

Many properties of Rydberg atoms can be directly linked to transition dipole matrix ele-
ments. This includes their optical coupling rates from the ground state, their radiative life-
time, their response to static and radiofrequency fields and also the interaction between
Rydberg atoms. The dipole operator is defined as d̂ = er̂, with r̂ = (x̂, ŷ, ẑ) the posi-
tion operator of the electron and e the elementary charge. The dipole matrix elements
between initial and final states |i〉 and |f〉 are given by dfi = 〈f |d̂|i〉. Because d̂ only
couples the orbital angular momentum L̂ while spin degrees of freedom remain unaf-
fected, calculating dfi requires to again tranform into the uncoupled basis |nLJmJ〉 =∑

mLmS
C1/2 J L
mSmJ mL |nLmL〉|12mS〉. Generally, the dipole operator can couple states with a

difference ∆L = ±1 in their orbital angular momenta L̂, which translates into ∆J = ±1, 0
in the coupled basis if the contributing orbital angular momenta are not zero [5, 19].
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For initial and final states |i〉 = |nLJmJ〉 and |f〉 = |n′L′J ′mJ ′〉, the matrix elements
dfi = e〈f |r̂|i〉 are calculated in the spherical basis r̂ = (r̂−1, r̂0, r̂+1) with r̂0 = ẑ and
r̂±1 = ∓ 1√

2
(x̂ ± iŷ) because of existing selection rules. Here, one finds that r̂0 can couple

states with ∆mJ = 0 and r̂±1 couples states with ∆mJ = ±1. Motivated by the separation
introduced in Eq. 2.3, the matrix elements can be divided into a part accounting for the
angular overlap and a part which only depends on a radial integral. This is often also
discussed in the context of the Wigner-Eckhardt theorem [127]. Applying the conventions
introduced in [55], the components rq = 〈f |r̂q|i〉 of 〈f |r̂|i〉 can be written as

rq = (−1)φ
(

J ′ 1 J
−mJ ′ −q mJ

){
J ′ 1 J
L 1/2 L′

}√
(2J ′ + 1)(2J + 1)〈n′L′J ′||r̂||nLJ〉, (2.7)

with a phase factor φ = J ′ − mJ ′ + L′ + J + 3
2 . The quantities expressed in the round

(curly) brackets are called Wigner-3j (Wigner-6j) symbols and account for the expansion
into the uncoupled angular momentum basis and the angular momentum overlap in the
coupling. They provide the selection rules discussed in the previous paragraph and can
also be expressed using Clebsch-Gordan coefficients. The term

〈n′L′J ′||r̂||nLJ〉 ∝
∫ ∞

0
R?J ′L′mJ′ r

2+1RJLmJdr (2.8)

is the so-called reduced matrix element. It is proportional to the radial integral including
the initial and final radial wave functions and is independent of the spatial orientation
specified by the index q ∈ {0,±1}. In the literature there exist different definitions where
some prefactors are either absorbed by or pulled out of the reduced matrix element. In
order to verify the consistency between different definitions, it helps to express everything
in quantities which are well-defined, such as the radial integrals or Rabi frequencies which
are well-defined up to a phase.

Single-photon excitation from the ground state

Due to their small spatial overlap, dipole matrix elements between the ground state and a
Rydberg state are suppressed by several orders of magnitude compared to stronger trans-
itions at lower n such as the D-line in alkali atoms. This results in small Rabi frequencies
and long radiative lifetimes. For the electronic ground state of 87Rb, the coupling between
the nuclear spin Î and the total electronic angular momentum Ĵ results in a strong hy-
perfine splitting of 6.835 GHz between both hyperfine states F ∈ {1, 2} which typically
dominates over other energy scales. As a consequence, the 5S1/2 hyperfine ground state
|F,mF 〉 is expressed using the coupled angular momentum basis F̂ = Î + Ĵ. Expand-
ing into the basis where the electronic spin is uncoupled from the nuclear spin leads
to |F,mF 〉 =

∑
mJ ,mJ

C1/2 F 3/2
mJ mF mI |mJmI〉. Here, C1/2 F 3/2

mJ mF mI = 〈mJmI |F,mF 〉 are Clebsch-
Gordan coefficients, J = 1

2 is the angular momentum of the electron in the ground state
and I = 3

2 is the nuclear spin of 87Rb. Because J and I are fixed in the electronic ground
state, the explicit labeling is omitted.

Due to the small hyperfine interaction, Rydberg states |n′L′J ′mJ ′ ;mI′〉 can be well
described in the fine structure basis. For completeness, the labeling of the nuclear spin
|mI′〉 = |mI〉 which remains unchanged in the transition was included here. Driving a
transition from the ground state to the Rydberg state using a light field with amplitude
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E = εE0 induces a Rabi frequency

Ω̃ =
eE0

~
〈n′L′J ′mJ ′ ;mI′ |ε · r̂|F,mF 〉 =

eE0

~
∑
mJ ,q

C1/2 F 3/2
mJ mF mI′

cqrq, (2.9)

with mI′ = mF − mJ . By convention, the z−axis is parallel to the quantization axis of
the atom, typically given by the magnetic field. Similarly as the position operator, the
normalized polarization vector is expanded in the spherical basis ε =

∑
q∈{0±1} cqeq, with

unit vectors e0 = ez and e±1 = ∓ 1√
2

(ex ± iey) in order to account for the selection rules.
Here, c0 = 1 defines π polarization and c±1 = 1 defines σ± polarization.

Combining Eq. 2.7 and Eq. 2.9 one finds that coupling rates for different polarizations
q and different initial and final angular momentum projections mF and mJ ′ only differ by
their Clebsch-Gordan coefficients. The reduced matrix element scales as

〈nJL||r̂||5S1/2〉 ∝ (n?)−
3
2 . (2.10)

Because the contributing spatial integral essentially probes the spatial overlap of the ground
state with the Rydberg state, it has the same scaling as |RnLJ(0)|. Due to the interac-
tion with the inner electrons, the uncertainty of the calculated Rydberg wave functions is
largest at the origin. From our experience, the calculation of Rabi frequencies from Eq. 2.9
with the ARC package [55] overestimates the Rabi frequencies observed for alkali atoms
by a factor 2-3.

Transitions between Rydberg states

Unlike the weak coupling to the electronic ground state, the dipole matrix elements between
different Rydberg states can be extraordinarily large. For two different Rydberg states
|nJL〉 and |n′J ′L′〉 coupled by a microwave field E, the hyperfine interaction is too small
to play a role. Because of their large separation from the nucleus, transition dipole matrix
elements

〈n′L′J ′||r̂||nLJ〉 ∝ (n?)2 (2.11)

between neighboring Rydberg states with equal or similar principal quantum numbers
n′ ≈ n and L′ = L ± 1 are much larger compared to the corresponding matrix ele-
ments at lower principal quantum numbers. This induces strong coupling rates even at
low field amplitudes, which might enable them to be used as sensitive microwave field
sensors [128]. Furthermore, transitions to nearby Rydberg states can be triggered by black-
body photons at room temperature [129, 130]. Additionally, the large matrix elements con-
tribute to a high sensitivity to static fields and to the strong interactions between Rydberg
atoms. Following the conventions of the last paragraphs, Rabi frequencies are now given
by

Ω̃ =
eE0

~
〈n′L′J ′mJ ′ |ε · r̂|nLJmJ〉 =

eE0

~
∑

q∈{0,±1}

cqrq. (2.12)

2.2.4 Polarizability

Because of their large dipole moment, Rydberg states experience large energy shifts in the
presence of static external electric fields Edc. Choosing the z-axis to be parallel with the
electric field, the Hamiltonian for the Rydberg electron writes

Ĥ = Ĥ0 + ẑEdc, (2.13)
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with Ĥ0 the Hamiltonian of the isolated atom and Edc the field amplitude [48].
For small fields where the energy shift∆Edc is lower than the energy splitting between

neighboring Rydberg levels, second order perturbation theory directly provides the DC
Stark shift

∆dc ≈ αE2
dc. (2.14)

Here, the polarizability

α =
∑
i

|〈nLJmJ |ẑ|ri〉|2

∆Eri
∝ (n?)7 (2.15)

covers the sum over nearby Rydberg states |ri〉 = |niLiJimJi〉 at energy spacings ∆Eri =
EnLJ − Eri . The separation of radial and angular coordinates in the Rydberg states mo-
tivates to calculate the matrix elements via r0 = 〈nLJmJ |r̂ cos θ̂|ri〉 with ẑ = r̂ cos θ̂. Neg-
lecting the angular dependent integrals which are independent of n, the matrix elements
again depend on reduced matrix elements, which scale as 〈nJL||r̂||ri〉 ∝ (n?)2. Combined
with the energy separation ∆Eri ∝ (n?)−3 between nearby Rydberg states, one obtains
the strong dependency of the polarizability on the principal quantum number α ∝ (n?)7.
Besides the enhanced polarizability, the presented formalism is identical for the Stark ef-
fect in the electronic ground state. If the electric field is large enough such that ∆dc is on
the order of the energy splitting ∆Eri between nearby Rydberg states, the perturbative
method breaks down and the Stark maps are dominated by crossing energy levels. This
regime shifts towards lower fields for either higher n or higher L. Generally, the observed
shifted Rydberg levels can be well predicted by theory [131–133].

Many Rydberg experiments benefit from electric field control. This enables to control
the resonance frequency using the induced Stark shift or to compensate slowly-varying
electric fields in the environment, in particular if the atoms are close to surfaces which can
have fluctuating surface charges [134–136]. Experiments have shown that these charges
can also be removed by illuminating the surfaces with UV light, for example using light
emitting diodes (LED’s) [137–139]. The large polarizability and the energy close to the ion-
ization threshold can also be used for detection. Here, Rydberg atoms are ionized either
by static electric fields [140, 141] or via pulsed field ionization (PFI) [140]. Subsequently,
the ions are accelerated to a microchannel plate (MCP) which can detect charged particles
by the emission of secondary electrons [142–145]. The field sensitivity has also been used
to control the motion of the Rydberg atom by Stark acceleration [146] and observe inter-
ference fringes in the wave packet dynamics [147]. Finally, Rydberg atoms are possible
candidates for electric field sensors [148, 149].

2.2.5 Lifetimes of Rydberg states

Neglecting state-changing collisions occuring at small distances where the electron or-
bitals overlap [150], Rydberg atoms are typically decaying via two channels [48]. First,
they can radiatively decay to the electronic ground state with a rate Γdec [151]. Second,
thermally populated microwave modes can trigger transitions to nearby Rydberg states at
rates Γbb [152, 153]. For the Rydberg states studied in this thesis, the lifetime associated
with both decay rates is typically a few tens of microseconds. As derived in the following
paragraphs, increasing n generally increases the lifetime. Because Γbb/Γdec ∝ n? for high
principal quantum numbers, black-body transitions contribute stronger to the total decay
rate Γ|r〉 = Γdec + Γbb at higher n. For 87Rb, one finds that Γbb ≈ Γdec for n ≈ 30 and
L ∈ {0, 1, 2} [72].
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For many experiments, black-body transitions are a serious limitation because they cre-
ate contaminant atoms in the system [154, 155]. A recently demonstrated way to increase
the lifetime is to cool the experimental apparatus to cryogenic temperatures [156–158].
Also engineering the local density of states of photons, e.g. by using microwave cavit-
ies [159, 160], enables control over certain black-body channels [161]. Furthermore, the
radiative decay to the ground state Γdec can be essentially switched off by exciting circular
Rydberg states with vanishing transition dipole matrix element with the electronic ground
state [162, 163].

Direct decay to the electronic ground state

Within Wigner-Weisskopf theory, excited atoms decay because the electromagnetic field
of the vacuum depopulates the exciting state by stimulated emission into the available
vacuum modes [164]. A Rydberg state |nLJmJ〉 decays into a hyperfine ground state
|FmF 〉with a rate

ΓF,mFdec =
|〈nLJmJ |d̂|FmF 〉|2ω3

r

3πε0~c3
∝ (n?)−3. (2.16)

Here, ε0 is the vacuum permittivity and ~ωr is the energy separation between the Rydberg
state and the ground state. Rydberg states are energetically close and ~ωr can be approxim-
ated by the n−independent ionization energy. Because 〈nLJmJ |d|FmF 〉 ∝ 〈nJL||r̂||5S1/2〉,
the total decay rate scales as Γdec ∝ (n?)−3. As long as the vacuum modes are isotropic, the
total decay rate Γdec =

∑
F,mF

ΓF,mFdec of a state |nJLmJ〉 does not depend on the quantiza-
tion axis of the atom and therefore is independent of mJ . However, it can slightly depend
on J due to different reduced matrix elements. For alkali atoms Γdec is about 30% higher
for S-states and D-states compared to P-states because selection rules lead to different sets
of available states at lower n [55]. Generally, observations are in good agreement with the
calculated decay rates [157, 165–167]. For lower principal quantum numbers Γdec is by far
the dominating decay channel. For Rydberg atoms however, transition rates are smaller
because of the reduced matrix elements.

Black-body radiation induced transitions

The black-body transition rate Γbb between two Rydberg states depend linearly on the
density of black-body photons and quadratically on the transition dipole moments [168].
According to Planck’s law, the spectral radiance of the black-body spectrum is given by

B(νL, T ) =
2hν3

L

c2

1

e
hνL
kBT − 1

. (2.17)

Here, νL is the frequency of the emitted electromagnetic waves and kB is the Boltzmann
constant. The rates Γbb typically experience a maximum at relatively low n ≈ 20 where
the total rate Γ|r〉 is still dominated by the decay into the ground state and then decrease
with n [169]. At room temperature T ≈ 300 KT, B(νL, T ) peaks around a frequency
νL ≈ 30 THz, the corresponding distribution for the wavelength −B(νL, T ) dνLdλL

with c =
νLλL peaks at λL ≈ 10 µm. This frequency is well above the typical transition frequency
νri ∝ (n?)−3 between neighboring Rydberg states at high principal quantum numbers. In

this regime where e
hνL
kBT ≈ 1 + hνL

kBT
, the spectral radiance scales as B(νL, T ) ∝ ν2

L, yield-
ing B(νri , T ) ∝ (n?)−6. Furthermore, the transition dipole matrix elements increase as
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〈nJL||r̂||ri〉 ∝ (n?)2. As verified by experiments, this provides black-body transition rates
Γbb ∝ (n?)−2 [55] at high n. Compared to P-state and D-state Rydberg atoms, S-state
Rydberg atoms have less available states for black-body transitions due to dipole selec-
tion rules. Observed black-body rates do agree with the calculated values but also suggest
that the local environment close to the atomic sample can influence the black-body spec-
trum [170], also in the absence of special microwave cavities.

2.3 Rydberg interactions

Interactions between Rydberg atoms have been first observed as broadening mechanisms
of the Rydberg transitions [171–174]. These exceptionally strong interactions are the main
reason behind the recent interest in Rydberg atoms because they are a versatile and useful
tool for quantum science [49, 52]. The dipole moment of an isolated Rydberg state in a
well-defined orbital angular momentum is zero because of dipole selection rules related
with the parity conservation of electromagnetism. However, due to the large dipole matrix
elements between neighboring Rydberg atoms, significant dipole moments can be created
already by slightly admixing nearby Rydberg states. Furthermore, the large polarizability
allows to create such a dipole moment already for small perturbations, such as by the
presence of a second Rydberg atom at a typical distance of a few micrometers.

Rydberg interactions are usually discussed at interatomic distances where the electron
clouds do not overlap. Only at that distance where autoionization does not limit experi-
ments [73], their interactions can be applied for applications in quantum science. For two
atoms in Rydberg states |r1〉 and |r2〉, this boundary is typically quantified using the Le
Roy radius[50, 175]

RLR = 2

(√
〈r̂2

1〉+
√
〈r̂2

2〉
)
, (2.18)

with
√
〈r̂2
i 〉 =

∫∞
0 |Rni,Li,Ji(r)|

2r2+2dr the root-mean-square size of the two Rydberg wave
functions i ∈ {1, 2}. All disucssions in this dissertations assume an interatomic distance
R� RLR.

2.3.1 Electrostatic interaction Hamiltonian

At infinite distances, the Hamiltonian Ĥ0 of two isolated Rydberg atoms provides ei-
genstates |rirj〉 ≡ |ri〉 ⊗ |rj〉 with |ri/j〉 = |ni/jLi/jJi/jmJi/j 〉 and energies Eni,Li,Ji,mJi +
Enj ,Lj ,Jj ,mJj . At finite distances, the electrostatic interaction adds a term [50, 176]

Ĥint(R) =
e2

4πε0

(
1

|R + r̂2 − r̂1|
+

1

|R|
− 1

|R − r̂1|
− 1

|R + r̂2|

)
(2.19)

to the total electronic Hamiltonian Ĥe, with r̂1/2 the position of both Rydberg electrons and
R the distance vector between both nuclei. The first two terms represent the repulsion of
both nuclei and both Rydberg electrons. The second two terms represent the attraction of
the Rydberg electrons by the nucleus of the other atom. The interaction Hamiltonian can
be expressed as [50, 73, 177, 178]

Ĥint(R) =
∞∑

κ1,κ2=1

Ĥκ1κ2

4πε0Rκ1+κ2+1
(2.20)
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Figure 2.2: Interactions between Rydberg atoms. (a) The interactions between Rydberg
atoms in states |r〉 are calculated at distances where orbits do not overlap. Rydberg orbits
are represented in blue via cross sections through the radial wave function. (b) Exemplary
van der Waals interactions between |rr〉 = |36P1/236P1/2〉, accounting only for the coup-
ling to the pair state |r′r′′〉 = |36S1/237S1/2〉 strongly contributing in Eq. 2.26 for typical
interaction matrix elements. (c) Non-perturbative exchange interaction as described by
Eq. 2.27. This can occur either for trivially degenerate states |rr′〉 = |36P1/236S1/2〉 and
|r′r〉 = |36S1/236P1/2〉 or because of a Förster resonance. Realistic multi-channel calcula-
tions accounting also for the angular momentum projections are presented in Fig. 2.3 and
Appendix A.

using spherical multipole operators

Ĥκ1κ2 =
e2(−1)κ24π√

(2κ1 + 1)(2κ2 + 1)

κ<∑
m=−κ<

√(
κ1 + κ2

κ1 +m

)(
κ1 + κ2

κ2 +m

)
(2.21)

× r̂κ11 r̂κ22 Y m
κ1 (θ̂1, ϕ̂1)Y −mκ2 (θ̂2, ϕ̂2), (2.22)

with spherical harmonics Y m
κ (θ̂, ϕ̂) and κ< = min(κ1, κ2). Now, calculating the matrix

elements of Ĥint(R) reduces to the evaluation of single-atom multipole moments

〈RnjLjJj |r̂κ|RniLiJi〉 =

∫ ∞
0

R?nj ,Lj ,Jjr
2+κRni,Li,Jidr (2.23)

of order κ and angular integrals

〈LjmLj |Y m
κ (θ̂, ϕ̂)|LimLi〉 =

∫ ∫ (
Y
mLj
Lj

)?
(θ, ϕ)Y m

κ1 (θ, ϕ)Y
mLi
Li

(θ, ϕ) sin θdθdϕ (2.24)

after expanding |Li,jJi,jmJi,j 〉 into the uncoupled basis. Because higher orders decrease
more rapidly with the distance R, the number of multipole terms required for accurate
calculations depends on the distance between both atoms. The interactions are typically
calculated within a subspace {|rirj〉}. Due to the decreasing multipole matrix elements for
different principal quantum numbers and due to selection rules in the angular momentum
quantum numbers, nearby Rydberg pair states contribute most.

2.3.2 Dipole-dipole interactions

Most experiments operate in a regime where only the lowest order in the multipole expan-
sion is important. In this limit, the interaction Hamiltonian simplifies to the dipole-dipole
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interaction Hamiltonian [179]

Ĥint(R) ≈ Ĥdd(R) =
d̂1d̂2 − 3(d̂1 · eR)(d̂2 · eR)

4πε0R3
, (2.25)

with d̂1,2 the dipole operators of both individual atoms and eR the unit vector along the
interatomic distance. As for most properties of Rydberg atoms discussed so far, the matrix
elements of Ĥdd mainly depend on single-atom dipole matrix elements. Furthermore, for
many experiments, only the asymptotic behavior of the interactions at large distances is
important. Here, they can be classified by three limiting cases, which are pedagogially
relevant and will be presented in the next paragraphs. At shorter distances and larger
interactions, Eq. 2.19 and Eq. 2.25 typically lead to large energy shifts and a strong mixing
of pair states. This regime will be covered in the next chapters.

Van der Waals interactions

If a pair state |rr〉 corresponding to two Rydberg atoms in the state |r〉 is energetically
isolated, it is detuned from other pair states {|rirj〉} by the so-called Förster defects ∆ij

F =
2Er − Eri − Erj . Then, the other states can be only virtually populated in a second order
process. This induces a dispersive energy shift [176, 180, 181]

VvdW(R) =
∑
ij

|〈rr|Ĥdd(R)|rirj〉|2

∆ij
F

=
C6(θ)

R6
∝ (n?)11, (2.26)

which shows the typical 1/R6−dependency of van der Waals interactions. The C6(θ) coef-
ficients which cover the sum over the intermediate states feature a strong dependency
on the principal quantum number. This can be understood because the Förster defects
∆ij
F ∝ (n?)−3 in most cases have the same scaling with principal quantum number as

the the energy separation between neighboring Rydberg states. Additionally, the inter-
action matrix elements V ij

dd(R) = 〈rr|Ĥdd(R)|rirj〉 ∝ (n?)4 are proportional to products
of transition dipole matrix elements between nearby Rydberg states, which individually
increase quadratically with n?. The angular dependency enters because the interaction
matrix elements depend on the angle θ between the interatomic axis and the quantization
axis of the atoms where the projections mJ , mJi and mJj are defined. Experimentally, the
presense of such a quantization axis requires to energetically split different angular mo-
mentum projections by an amount larger than the interatomic interaction. Measured van
der Waals interaction coefficients agree with the calculated values [182, 183]. In the liter-
ature, the angular dependency is often separated from the van der Waals coefficient via
C6(θ) = C̃6D(θ) by using reduced matrix elements and Clebsch-Gordan coefficients [184].

In many cases, there is a small set of pair states {|r′r′′〉, |r′′r′〉} which dominate the
sum in Eq. 2.26 because of the small Förster defect ∆r′r′′

F . The sign of the interaction then
depends on the sign of the contributing ∆r′r′′

F . For 87Rb Rydberg S-states with |rr〉 =
|nS 1

2 mJ ;nS 1
2 mJ〉, these dominating channels are given by the states |r′r′′〉 with |r′〉 =

|nPJ ′mJ ′〉, |r′′〉 = |(n − 1)PJ ′′mJ ′′〉, J ′, J ′′ ∈ {1
2 ,

3
2} and the possible spin projections.

Because ∆r′r′′
F = 2EnS − EnPJ ′ − E(n−1)PJ ′′ > 0, interactions are generally repulsive.

Furthermore, the Förster defect is typically larger than the splitting between J = {1
2 ,

3
2}.

Neglecting the fine structure splitting, evaluating the sum over J ′, J ′′, mJ ′ and mJ ′′ in
Eq. 2.26 leads to isotropic interactions C6(θ) ≈ C6 [129, 184].
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For 87Rb Rydberg P-states |r〉 = |nPJmJ〉, the dominant states are |r′〉 = |nS 1
2 mJ ′〉

and |r′′〉 = |(n+ 1)S 1
2 mJ ′′〉, see Fig. 2.2 (b). In contrast to S-states, the sign of the smallest

Förster defects now depend on the principal quantum number n. The interactions between
Rydberg states for L > 1 can also have significant angular dependencies [72, 185, 186]. In
the absence of an external quantization axis, the interactions furthermore split into several
interaction branches [50] because of the larger set of possible angular momentum pro-
jections. Interaction curves for both S-states and P-states in this regime are discussed in
Appendix A. As discussed in the next paragraph, the van der Waals coefficient is larger for
J = 3

2 compared to J = 1
2 for the principal quantum numbers relevant for this dissertation.

Förster resonances

The perturbative method for calculating the van der Waals interaction only holds if the
interaction matrix elements are smaller than the Förster defects. At close distances where
the matrix elements increase, this condition breaks down and one can observe a transition
from the 1/R6−scaling to a regime of on-resonant dipole-dipole interactions where inter-
actions scale as 1/R3 [49]. For some Rydberg states |rr〉, there exist pair states {|r′r′′〉, |r′′r′〉}
with vanishingly small Förster defects. Here, the transition to the non-perturbative regime
occurs already at large distances and interactions generally scale as 1/R3. Such a config-
uration where interactions are strong and decrease slower in distance is called a Förster
resonance.

Förster resonances naturally occur at principal quantum numbers nwhere the C6 coef-
ficient switches sign. For 87Rb, the Förster defect between the pair states |37P3/237P3/2〉
and |36S1/237S1/2〉 is almost vanishing [55]. As a result, the interactions of Rydberg P-
states relevant in this dissertation are stronger and longer in range for the J = 3/2 state
compared to the J = 1/2 where the Förster defect is larger. Similar conditions can also be
found at higher principal quantum numbers [187].

Förster resonances can also be realized by energetically shifting the Rydberg levels
using electric fields [188, 189]. By tuning a prepared pair state |rr〉 into a Förster resonance
by abruptly changing the eletric field allows one to observe coherent oscillations between
|rr〉 and the Förster-resonant state |r′r′′〉 [190, 191]. This is an example of dipolar exchange
and the formalism of the next paragraph can be applied. The concept of Förster resonances
is not restricted to two-atom systems and also three-body [192–194] and four-body [195]
Förster resonances have been found. However, observing coherent oscillations was so far
not possible for these multi-atom Förster resonances.

Dipolar exchange

Another interesting situation is the realization of two atoms |rr′〉 in different Rydberg
states |r〉 = |nLJmJ〉 and |r′〉 = |n′L′J ′mJ ′〉with non-vanishing single-atom dipole matrix
elements drr′ = |〈r|d|r′〉|. Experimentally, this can be realized by using one P-state Ryd-
berg atom and another Rydberg atom in either a S-state or a D-state, see Fig. 2.2 (c). If other
Rydberg pair states are energetically far away, the description simplifies to a two-level sys-
tem where either the first (second) or the second (first) atom is in the state |r〉 (|r′〉). After
expanding into the basis {|rr′〉, |r′r〉}, the Hamiltonian becomes

Ĥdd(R, θ) =

(
0 Vdd(R, θ)

Vdd(R, θ) 0

)
, (2.27)
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Figure 2.3: Exact diagonalization of Ĥdd(R) for various magnetic fields B. (a) For
B = 50 G, different angular momentum projections of the S-state and the P-state split
up. At large distances R, one can find isolated pairs |rr′〉 = |36P1/236S1/2〉 and |r′r〉 =
|36S1/236P1/2〉whose dipole moments are oriented by the magnetic field B which serves as
a quantization axis for the two individual atoms. The interactions in the two-dimensional
subspace are given by Eq. 2.27. As expected from Eq. 2.28, the interaction Vdd(R, 0◦) (red)
is larger than Vdd(R, 90◦) (blue) and vanishes for θdd ≈ 54.7◦ (gray). At short distances
where the interactions dominate over the the Zeeman splitting ∆Z , more angular mo-
mentum projections contribute. Now, the picture breaks down and R serves as a quantiz-
ation axis for the interacting state. (b) At zero field, R serves as quantization axis for all
distances. In this regime, the symmetries of the interaction Hamiltonian allow one to label
the pair potentials by molecular quantum numbers Ω±g/u, see section 4.1.

with off-diagonal coupling elements

Vdd(R, θ) ≈
d2
rr′
(
1− 3 cos2 θ

)
4πε0R3

∝ (n?)4. (2.28)

The scaling with n? follows immediately from the discussion of the van der Waals inter-
action. One implication of Eq. 2.27 is that the initially prepared state coherently oscillates
between |rr′〉 and |r′r〉 at a frequency 2

hVdd(R, θ) [196]. Here, Vdd(R, θ) shows the typical
dependency of dipolar interactions on R and θ [92]. To experimentally initialize the state
|rr′〉 instead of adiabatically creating an eigenstate of Eq. 2.27 requires to switch the inter-
actions faster than the exchange time . This can be realized by using AC Stark shifts [197] of
additional laser beams or electric fields [190]. Furthermore, isolating a single pair requires
to energetically split different spin projections. This can again be achieved by enforcing an
external quantization axis that is stronger than the interatomic interaction, for examply by
applying an external magnetic field as shown in Fig. 2.3.

The same formalism as the one presented can be applied to the Förster resonant ex-
change process discussed in the previous paragraph after replacing |rr′〉 and |r′r〉 with
two Förster resonant pair states |rr〉 and |r′r′′〉.
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Property Symbol Scaling Ref. 36P1/2 36P3/2

Binding energy EnJL (n?)−2 [48, 55] −2.958 THz −2.956 THz

Fine-structure ∆fs (n?)−3 [55, 122] 2.342 GHz

Orbital size
√
〈r̂2〉 (n?)2 [48, 55] 105 nm 105 nm

Red. m. el. |r〉 ↔ |r′〉 〈r||r̂||r′〉 (n?)2 [55] −1245 ea0 −1264 ea0

Radiative dec. rate Γdec (n?)−3 [55, 129] 9.0ms−1 9.9 ms−1

Red. m. el. |g〉 ↔ |r〉 〈r||r̂||5S1/2〉 (n?)−
3
2 [55] −0.0043 ea0 −0.0057 ea0

Black-body dec. rate Γbb (n?)−2 [55, 129] 14.3 ms−1 14.4 ms−1

Van der Waals coeff. C6 (n?)11 [50, 55] −0.2 GHz µm6 6.5 GHz µm6

Rydberg blockade Rb (n?)
11
6 [55] 1.9 µm 3.4 µm

Table 2.2: Summary of the most relevant properties of Rydberg atoms. Exemplary values
are provided for the two fine-structure states 36P1/2 and 36P3/2. All single-atom proper-
ties were obtained from the ARC software [55], the interaction parameters were obtained
using the software pair interaction [50]. The reduced matrix elements do not cover the
Clebsch-Gordan coefficients which enter in the Rabi couplings. Despite the fact that black-
body transitions starting from 36P1/2 can only populate states nS1/2 and nD3/2 while the
state 36P3/2 can additionally couple to nD5/2, the total black-body decay rates are sim-
ilar. Here, the larger transition rates into states nD3/2 for 36P1/2 compensate for the addi-
tional channel for 36P3/2. Because there are more than one van der Waals potential, only
the largest C6 coefficient is presented here, see appendix A. Furthermore, because there
exists an almost Förster resonant state for 36P3/2, interactions also have a contribution
which scales as 1/R3. The blockade radius Rb was calculated for a typical Rabi frequency
Ω/(2π) = 4.0 MHz assuming only van der Waals interactions ∝ 1/R6.

2.3.3 Multipole interactions

Because of the different distance dependence in Eq. 2.20, higher-order multipole interac-
tions become more important at shorter distance. For experimentally relevant densities,
the dipole-dipole Hamiltonian Ĥdd(R) is always the dominating term in the interaction
Hamiltonian Ĥint(R) and describes the coarse structure of the pair potentials. However,
calculations showed that also higher-order terms can have an influence on the expected
pair potentials [198, 199]. Also spectroscopic signatures of pair potentials clearly indicate
a coupling between potential curves where dipole-dipole interactions vanish but a dipole-
quadrupole couplings are finite [200]. Furthermore, in the formation of so-called Rydberg
aggregates [201–203], dipole-quadrupole interactions were identified to play a role [204].
So far, experimental access beyond dipole-quadrupole interactions was not possible. The
spectroscopic data which will be presented later shows clear experimental signatures of
dipole-quadrupole interactions, see chapter 6. Furthermore, in order to get quantitative
agreement with the observed spectroscopic lines, even further multipole terms had to be
included, see section 4.2.1.
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2.4 A summary of the properties of Rydberg states

In the previous paragraphs, the most important signatures of Rydberg states were cal-
culated based on their transition dipole matrix elements and their energy splittings. The
wave functions required for the contributing radial integrals can be calculated from model
potentials. The energy levels of Rydberg states and effective principle quantum numbers
can be calculated from the quantum defect. Both quantities were obtained empirically
as ab-initio calculations require to solve the many-body problem including the electrons
occupying the filled lower orbitals [48]. Properties such as the polarizability or the in-
teraction potentials which rely on the spatial overlap between different Rydberg states
have typically very high accuracy. Properties such as Rabi couplings from the ground
state or hyperfine couplings which depend on the overlap of the Rydberg wave function
with the ionic core have higher uncertainty. All relevant scalings are again summarized
in table 2.2. Because of relevance regarding the following chapters, also the fine-structure
splitting was also included while the polarizability is not included. Nowadays, there exist
freely available scripts to calculate all those quantities to high precision. Throughout this
dissertation, the ARC package [55] was used to calculate Rydberg resonances and estimate
Rabi frequencies and lifetimes of Rydberg states. The pair-interaction [50] package was
used for the calculation of Rydberg interaction potentials.

2.5 Applications for quantum science

About twenty years ago, scientists realized that Rydberg interactions can be useful for
quantum simulation and computation [205, 206]. After a rapid progress over the last years,
Rydberg atoms are now among the most promising platforms in these fields [49, 52, 54].
The most important developments in the field will be summarized in the following.

2.5.1 Blockade physics

Imagine a ground-state atom |g〉 coupled to a Rydberg state |r〉 with a Rabi frequency
Ω̃ and a single-photon detuning ∆. Here, Ω̃ can be either an effective two-photon Rabi
frequency by using two different lasers, typically at one red and one blue wavelength for
rubidium, or a single-photon Rabi frequency in the ultraviolet (UV). For an isolated atom,
the coupling is described by the two-level Hamiltonian [5]

ĤL = ~

(
0 Ω̃/2

Ω̃?/2 −∆

)
(2.29)

after transforming into a frame rotating with the laser frequency and neglecting fast os-
cillating terms within the framework of the rotating wave approximation (RWA) [5]. For
∆ = 0, an atom initially prepared in |g〉 gets projected into the new eigenbasis and experi-
ences Rabi oscillations between |g〉 and |e〉 after switching on the coupling. For |∆| � |Ω̃|,
the initial state |g〉will be adiabatically transfered into the new dressed ground state. Here,
second order perturbation theory provides the AC Stark shift

∆AC =
~Ω̃2

4∆
. (2.30)
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Figure 2.4: Rydberg blockade. (a) The pair-state description of two ground-state atoms
|g〉 coupled to interacting Rydberg states |r〉 with a Rabi frequency Ω̃ and a detuning ∆ is
fundamental for many Rydberg experiments. (b) Coherently exciting ground-state atoms
for ∆ = 0, one observes a transition from two individually evolving atoms (blue) for
R > Rb to collectively enhanced Rabi oscillations into the state |gr〉+ for R < Rb. (c) The
ground state of Eq. 2.31 is |gg〉 for ∆ < 0 and |gr〉+ (|rr〉) for R < Rb (R > Rb) and ∆ > 0.
By adiabatically ramping ∆ one can dynamically switch between them. (d) Working at
detunings ∆ > Ω̃, Rydberg interactions can be admixed to the ground state in the context
of Rydberg dressing. (e) All mechanisms discussed here can be extended to larger systems
where Rb covers large numbers of ground-state atoms.

Because the energy shift originates from the coupling with the light field, ∆AC is also
called light shift. For two Rydberg atoms, a doubly excited state |rr〉 experiences an ad-
ditional interaction energy VvdW(R) = C6/R

6. Even at distances R ≈ 1 µm, the inter-
actions VvdW(R) can easily exceed Ω̃. Expressing the Hamiltonian in the pair-state basis
{|gg〉, |gr〉, |rg〉, |rr〉} provides the two-atom Hamiltonian

Ĥ =


0 ~Ω̃/2 ~Ω̃/2 0

~Ω̃?/2 −∆~ 0 ~Ω̃/2
~Ω̃?/2 0 −∆~ ~Ω̃/2

0 ~Ω̃?/2 ~Ω̃?/2 −2∆~ + VvdW(R)

 , (2.31)

see also Fig. 2.4 (a). Here, the atom-light interaction Hamiltonian ĤL = Ĥ
(1)
L ⊗1(2) +1(1)⊗

Ĥ
(2)
L couples the ground state |gg〉 to the intermediate state and the intermediate state to

the doubly excited state by the corresponding single-atom Hamiltonians Ĥ(1/2)
L of both

atoms, given by Eq. 2.29. If deviations from the van der Waals are significant, VvdW(R) can
be replaced by any other interaction curve.

For ∆ = 0, the dynamics now strongly depends on the interatomic distance R. For
large R where VvdW(R) ≈ 0, the two atoms will undergoe independent Rabi oscillations.
Here, a description in the pair state basis is not required and Eq. 2.29 captures the dynam-
ics. For small R where |VvdW(R)| � |Ω̃|, |∆|, the state |rr〉 is energetically unaccessible
and only the states {|gg〉, |ge〉, |eg〉} are relevant. By expanding the Hamiltonian in the
basis {|gg〉, |gr〉+, |rg〉−}with |gr〉± = 1√

2
(|gr〉 ± |rg〉) one furthermore finds that |gg〉 only



Chapter 2. Interacting Rydberg atoms 22

couples to |gr〉+ with a Rabi frequency
√

2Ω̃ while the coupling to the dark state |ge〉−
vanishes. Expressing the Hamiltonian in the basis {|gg〉, |gr〉+} yields

Ĥ = ~

(
0 Ω̃/

√
2

Ω̃?/
√

2 −∆

)
. (2.32)

Now, one observes oscillations between |gg〉 and |gr〉+ at an enhanced frequency
√

2Ω̃ [207],
see Fig. 2.4 (b). This mechanism where nearby Rydberg excitations are off-resonant for the
excitation laser because of the large interaction shift is called Rydberg blockade and was veri-
fied in many experiments [208, 209]. It can be generalized to N atoms where one finds an
enhancement by

√
N [210, 211]. In general, Rydberg interactions circumvent the excitation

if the interaction shift exceeds the bandwidth of the coupling, given by the respective Rabi
rate Ω̃. In oder to define a cut-off criterion, one typically estimates the blockade radius Rb
via VvdW(Rb) ≈ Ω̃, providing [209]

Rb ≈
(
C6

Ω̃

)1/6

. (2.33)

Implications of Eq. 2.31 for ∆� Ω̃ are are discussed in section 2.5.2.
A Hamiltonian similar as Eq. 2.31 where the doubly excited state |rr〉 is replaced by

a Rydberg macrodimer state will be presented later in section 5.1. For 0+
g potentials, it

will be discussed that also |gr〉− can be the relevant intermediate state in the excitation.
Because the interactions mix certain atomic pair states, the molecular state for certain mo-
lecular quantum numbers can have antisymmetric contributions from different pair states
|rr′〉 and |r′r〉, see section 4.1.3 and section 4.1.4. This will be treated by directly decom-
posing the ground state |gg〉 into the relevant symmetry eigenstates. It will found that the
ground state can have antisymmetric components in the fine-structure basis because of the
hyperfine interaction in the ground state.

Transverse-field Ising Hamiltonian

Extending the Hamiltonian Eq. 2.31 to more than two particles and defining operators
σ̂x = |g〉〈r|+ |r〉〈g| and n̂ = |r〉〈r| leads to

Ĥ

h
=
Ω̃

2

∑
i

σ̂ix −∆
∑
i

n̂i +
∑
i<j

VvdW(Rij)n̂in̂j , (2.34)

where the sum captures all atoms in the system. Motivated by the repulsive van der Waals
interactions of Rydberg S-states for 87Rb, the coefficient C6 > 0 is assumed to be positive.
For the terms acting on atoms i and j, the operators acting on the remaining atoms are im-
plicitly assumed to be identities. The Hamiltonian Eq. 2.34 has been intensively studied in
recent experiments [93, 212–214]. For∆ < 0, the many-body ground state is trivially given
by all atoms in the ground state. For ∆ > 0, one experiences a competition between the
detuning and the interatomic interaction, providing spatially ordered many-body ground
states, see Fig. 2.4 (c,e). The phase transition can be studied by adiabatically ramping the
detuning from ∆ < 0 to ∆ > 0. This has been benchmarked in one [93, 212] and two
dimensions [215], also for frustrated geometries [216]. By rapidly switching ∆ ≈ 0 after
preparing a specific eigenstate enables studying non-equilibrium dynamics of the many-
body states [93, 217].
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2.5.2 Rydberg dressing

The two-particle Hamiltonian Eq. 2.31 also shows interesting signatures for large detun-
ings. In order to avoid resonances when the detuning compensates for the interaction,
the detuning |∆| � Ω̃ is assumed to be negative ∆ < 0 and interactions C6 > 0 are
again assumed to be positive. At infinite distance, the ground-state atom pair experiences
twice the light shift ∆AC of an individual atom. When approaching each other, this pair
state energy gets shifted from that asymptotic energy by the Rydberg dressing potential
Vdr(R) ≈ β 4VvdW(R), with β = Ω̃/(2∆) the Rydberg admixture in the dressed ground
state |g̃〉 ≈ |g〉 + β|r〉 [218, 219]. The interaction shift can be calculated using fourth order
perturbation theory. It can be intuitively understood because it represents the probability
of both atoms being in the Rydberg state multiplied with the interaction of the Rydberg
atom pair [72]. At short distances, the coupling to |rr〉 vanishes again due to the large in-
teraction shift. Now, the contribution of the doubly-excited state to the light shift is absent
and the pair state energy saturates to a value Vdr(0) = Ω̃4/(8∆3) that is independent of
the van der Waals coefficient. Hence, by off-resonantly coupling to long-range interacting
Rydberg atoms, one can engineer soft-core interaction potentials for ground-state atoms,
see also Fig. 2.4 (d).

For two atoms trapped in individually focussed beams, the soft-core potential has
been experimentally benchmarked [220]. Rydberg dressing has also been used to engineer
long-range interacting spin Hamiltonians where both spin states |↓〉 and |↑〉 are encoded
in the electronic ground state because Rydberg states are only virtually populated. By
only coupling the spins |↑〉 to the Rydberg state, the admixed interactions Vdr(R) |↑↑〉 〈↑↑|
between two spins in the state |↑〉 can be mapped into SzSz interactions after replacing
|↑〉 〈↑| = Ŝz + 1

2 1̂ for both atoms. For a two-dimensional many-body system of spins
trapped in an optical lattice, the long-range interactions have been shown to induce cor-
related spin-flips in a Ramsey sequence [155]. In a one-dimensional system, the coherence
time was pushed into a regime where coherent revivals have been observed [221]. In a
different experimental system, the competition between dressed interactions and coherent
tunneling has been demonstrated to prevent the spreading of initially prepared atomic ar-
rangements in an optical lattice [222]. This is interesting because Rydberg experiments are
usually performed in the frozen gas regime [223, 224] where the motion of the particles is
frozen on the short timescales of the Rydberg lifetime. However, in the dressed regime,
the lifetime as well as the interaction time are increased and therefore quantum simulation
on motional timescales is in principle possible.

Further improving the coherence time in such a system might enable to study the phase
diagram of itinerant models such as extended Hubbard models [225–231], which are the-
oretically expected to host phases such as supersolids and charge density waves [232–
234]. In a regime with larger Rydberg fraction, Rydberg dressing might also allow to ob-
serve multi-atom interactions [235, 236]. Theoretical studies also showed that spin models
realized with Rydberg dressing are not limited to ŜzŜz spin interactions. By coupling
both ground states |↓〉 and |↑〉 to Rydbeg states |r〉 and |r′〉 whose pair states are mixed
by their Rydberg interactions at shorter distances, also interaction terms Ŝ−Ŝ−, Ŝ±Ŝ∓

and Ŝ+Ŝ+ can be realized [237, 238]. As recently proposed [239] and demonstrated in
chapter 8, optically coupling to minima and maxima of the pair potentials enables the
engineering of interactions that are non-negligible only at a specific distance. Because
Rydberg-dressed interactions can be easily switched on and off, also proposals to real-
ize time-periodic Hamiltonians exist [240]. Further proposals suggest to use Rydberg
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dressing for spin squeezing [241], quantum annealing [242, 243], to study the interaction
between Rydberg-dressed ground-state atoms with other Rydberg atoms [244] or to en-
gineer Rydberg interactions by dressing Rydberg states with other Rydberg state by using
microwaves [245, 246].

Currently, the coherence time of Rydberg dressing is limited by the admixed scattering
rates, which have been found to be larger than the expected rates β2Γ|r〉 and furthermore
have collective character [154, 155, 247]. For many proposed schemes, also the single-atom
light shift induced by the off-resonant coupling to the Rydberg state is problematic [222,
248]. Furthermore, operating at small detunings, Rydberg dressing critically depends on
laser phase noise [130].

2.5.3 Quantum simulation in the Rydberg manifold

An alternative approach is to operate entirely in the Rydberg manifold. One approach
is to encode the spins |↓〉 = |r〉 and |↑〉 = |r′〉 in two Rydberg states that are coupled
by a resonant dipolar exchange interaction introducted in section 2.3.2, a spin ensemble
naturally realizes a XY−Hamiltonian [74, 196, 249, 250]. If both spins are additionally
coupled by a microwave Rabi frequency Ω̃mw at a detuning ∆mw, the Hamiltonian writes

Ĥ =
∑
i 6=j

Vdd(Rij)
(
σ̂−i σ̂

+
j + σ̂+

i σ̂
−
j

)
+ ~

Ω̃mw

2

∑
i

σ̂xi + ~
∆mw

2

∑
i

σ̂zi , (2.35)

with the Pauli matrices σ̂zi = |↑〉 〈↑| − |↓〉 〈↓| and σ̂xi = |↓〉 〈↑| + |↑〉 〈↓|, σ̂+ = |↑〉 〈↓| and
|σ〉− = |↓〉 〈↑|. By utilizing the angular dependency of the dipolar exchange interaction,
this Hamiltonian has been used to realize the SSH model and study the topological charac-
ter of its ground state [92] and to realize density-dependent Peierls phases [251]. A second
approach is to use to two Rydberg states without first order resonant dipole-dipole ex-
change. Here, second order perturbation theory enables off-diagonal exchange terms via
intermediate pair states. Together with the diagonal van der Waals interactions which
are of the same order and represent ŜzŜz interactions, this realizes a XXZ Hamiltoni-
ans [94, 252–255].

2.5.4 Quantum computing

Another rapidly emerging research direction is to use Rydberg atoms as a platform for
quantum computation [49, 205, 206]. Single-qubit operations can be performed using laser
fields, also with single-qubit resolution. Entanglement gates can be realized in different
ways [94]. Encoding the qubit in the ground state |g1〉 ≡ |0〉 and the Rydberg state |r〉 ≡ |1〉,
entanglement can be created at high fidelities ≥ 99.1(4)% [78] by performing a π−rotation
in the blockaded regime because the state |gr〉+ introduced in section 2.5.1 represents an
entangled Bell state. By using the same qubit for systems of more than two atoms as
described by Eq. 2.34, the blockade has also been used to create Dicke or |W 〉 states [210,
211] and Greenberger–Horne–Zeilinger (GHZ) states [256].

For computational tasks it is typically more practical to encode the qubit in two ground
states [257] |g1〉 ≡ |0〉 and |g2〉 ≡ |1〉 because Rydberg atoms decay fast and are typic-
ally antitrapped in optical potentials. There exist several available entanglement schemes
where the coupling to the Rydberg state is only switched on for a short time during
the gate operation. One way is to sequentally perform three qubit-resolved coherent
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excitation pulses on the two qubits. This method demonstrated fidelities ≤ 90% [258]
and has also been extended to entangle different isotopes [259]. Another way is to per-
form detuned Rabi oscillations in the blockaded regime, where the phase evolution of
the doubly-excited state differs from the singly-excited terms because of the enhanced
Rabi frequency. After initializing isolated atom pairs at distances lower than the blockade
radius, this entanglement scheme which does not require individual adressing achieves
fidelities . 97.4(3)% [76, 260]. Finally, also Rydberg dressing can be used for entangle-
ment [220]. By additionally adiabatically ramping the dressing laser close to resonance,
a recent experiment realized fidelities around 92.8(2.0)% [96]. Another recent experiment
also demonstrated the ability to move the atoms between performing individual entan-
glement operations while preserving the coherence of the quantum register [54]. Finally,
an Rydberg-based entanglement scheme of ions trapped in a Paul trap has been demon-
strated [261]. Because this is currently a very active field of research, much progress can
be expected in the near future.

2.5.5 Rydberg quantum optics

Rydberg atoms contributed to quantum optics in several ways. The large transition dipole
matrix elements between neighboring Rydberg states introduced in Eq. 2.11 enables to use
Rydberg atoms as readout-tools for the quantum state of the microwave field in supercon-
ducting microwave cavities [262, 263]. Here, measuring the quantum state of a circular
Rydberg atom after moving through the cavity allows one to determine the photon num-
ber in the cavity in a non-demolition measurement [264, 265] and observe quantum jumps
in the population [266]. This allows one to reconstruct the photon distribution of coherent
states by collapsing them into photonic Fock states according to their Poissonian distrib-
tion [267, 268]. Furthermore, the Wigner function — a quasiprobability distribution which
can be used to describe a quantum state in phase space — of Fock states and Schrödinger
cat states of photons in the cavity have been reconstructed [160, 269]. Note that, in contrast
to most recent applications of Rydberg atoms, this technique does not rely on Rydberg in-
teractions.

Alternatively, Rydberg states also allow to control the quantum states of optical fields.
Here, the strong interactions of Rydberg atoms are mapped on the light field using elec-
tromagnetically induced transparency (EIT) [270–272]. Because the absorption of a single
photon creates a Rydberg excitation in the atomic ensemble that shifts the Rydberg tran-
sition and therefore the EIT window of the remaining atoms, one can realize exceptionally
high optical nonlinearities [273–275]. This mechanism leads to a different definition of the
Rydberg blockade – the so-called EIT blockade – in this subfield. Typically, the EIT scheme
relies on a pump field and a weak probe field [276]. By strongly decreasing the probe field,
it can be converted into strongly interacting Rydberg polaritons [277–279]. These systems
can be used to realize all-optical transistors where a gate light pulse switches the trans-
mission of a target pulse [187, 280], phase gates between photons [281], single-photon
sources [282, 283], and super- and subradiance [284]. The manipulated light fields can be
characterized using photon-photon correlations [285]. Rydberg EIT can also be used to
image Rydberg excitations [286–289]. Furthermore, the

√
N enhancement of the collective

Rabi frequency in these system discussed in section 2.5.1 provides coherent Rabi oscil-
lations for light pulses carrying only a few photons without using cavities. This allows
one to measure Rabi oscillations directly in the photon domain [290]. Here, instead of ob-
serving oscillations of the atomic population, one can directly observe the a oscillation in
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the photon distribtion of the pulse which is correlated with the state of the atom.

2.5.6 Further directions

Alternatively to alkali atoms, many new laboratories use alkaline-earth atoms (AEAs) and
alkaline-earth-like atoms such as strontium [291] or ytterbium [292, 293] which have a Helium-
like two-electron structure consisting of singlet and triplet states. While the preparation
and the control of these divalent atoms is technically more challenging, they have other
useful features and the qubits and spins can be encoded in internal states fundament-
ally different from alkali atoms. Narrow transitions between the singlet ground state and
the weakly coupled triplet states provide long-lived metastable states, which enables to
independently measure the population in the ground state and the metastable state [294].
Atoms occupying the metastable states have larger spatial overlap with the Rydberg states,
which significantly increases the Rabi frequencies achievable in experiments [78]. Because
of the two-electron structure, off-resonant laser light now affects the energies of the Ryd-
berg electron and the remaining electron in the singly-occupied orbital in the ground state.
While alkali Rydberg atoms experience repulsion from laser fields [295], this enables op-
tical trapping of Rydberg states [296]. Furthermore, exciting the remaining ground state
electron of a AEA atom excited to a Rydberg state triggers a fast ionization process which
allows to efficiently remove Rydberg atoms from an atomic ensemble [78].

Currently, experimentalists also try to realize a quantum simulator based on circular
Rydberg atoms [297, 298]. Spins can be encoded in different circular Rydberg states which
can again interact via Rydberg interactions. Black-body transitions to other circular Ryd-
berg states — the only dipole-allowed transition — can be reduced by cooling the ap-
paratus down to cryogenic temperatures [156, 299]. The lifetime can be additionally en-
hanced by engineering the density of states with microwave cavities. Other directions
include quantum simulations at ultrashort timescales by combining Rydberg interactions
with the toolset of attosecond physics [300–302]. Interestingly, there exist also electron-
hole pairs in solids which with similar properties than Rydberg atoms [303]. These so-
called Rydberg excitons also give rise to a Rydberg blockade [304] and hold promises for
quantum optics [305]. Finally, also the coupling to so-called ultra-long range Rydberg
molecules which are introduced in the next section can be used to control interatomic in-
teractions [239, 248, 306, 307].

2.6 Ultracold Rydberg molecules

Another active research direction is the study of weakly bound Rydberg molecules by as-
sociating initially laser cooled atoms. Molecules can be defined as "an electrically neutral
entity consisting of more than one atom (n>1). Rigorously, a molecule, in which n>1 must cor-
respond to a depression on the potential energy surface that is deep enough to confine at least one
vibrational state." [308]. In the electronic ground state, even in the diatomic case, ab-initio
calculations of the molecular structure solely based on the properties of the atoms form-
ing the molecules are usually extremely difficult because of the interaction of the large
number of contributing electrons and the correlations in the many-electron wave func-
tion. Furthermore, their small size and their large binding energies limit the experimental
access. Weakly bound molecules with binding mechanisms that rely on highly excited
atomic Rydberg states inherit the simplicity of Rydberg atoms. Now, calculations of the
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Figure 2.5: A map of energy scales and bond lengths for different diatomic molecules.
(a) For deeply bound conventional molecules with high binding energies Ub and vibrational
energies frequencies ωvib, the atoms form chemical bonds where electrons in partially filled
orbitals occupy hybrid orbitals that are delocalized over both nuclei [4], indicated by the
solid blue line. The molecular bond length is tyipcally less than a nanometer. (b) Feshbach
molecules [45] are occupying the highest vibrational states of deep binding potentials (c)
Purely long-range molecules (PLR) can occur at avoided crossings of pair potential curves
in the large-distance region where electron orbitals do not overlap and hybrid orbitals do
not form [58, 318]. (d) For noble gases where chemical bonding does not occur because
all electron orbitals are occupied, remaining van der Waals bonds can provide weaker bind-
ing potentials [319–321]. (e) Rydberg–ground-state molecules are ultra-long-range Rydberg
(ULR) molecules where ground-state atoms are bound to a Rydberg atom by their inter-
action with the Rydberg electron [65]. (f) Rydberg Macrodimers are PLR-molecules where
both atoms populate highly-excited Rydberg states [67].

molecular structure based on the known properties of the individual atoms are possible.
Furthermore, their large size and small energy scales provides an experimental level of
control not present for other molecules.

There exist several different ways to combine molecules and Rydberg excitations and
the word Rydberg molecule is not sufficient to specify the type of molecule. First, there
are Rydberg excited molecules where a conventional deeply bound molecule is excited to
Rydberg states [309–312]. Second, there exist ultra-long range Rydberg molecules [65]. These
include Rydberg–ground-state molecules where ground-state atoms are bound to a Rydberg
atom and Rydberg macrodimers where Rydberg atom pairs are bound by their Rydberg in-
teraction potentials. In this dissertation, the initial proposals [67, 313], and recent publica-
tions [314, 315] Rydberg–ground-state molecules as well as Rydberg macrodimers are classified
as ultra-long range Rydberg molecules. Because the field is relatively new, the terminology
sometimes depends on the literature. Recently, also bound states where a Rydberg atom is
electrostatically bound to an ion has been discovered [314–317].
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2.6.1 Rydberg–ground-state molecules

Here, ground-state atoms are bound to a Rydberg atom by the interaction between the
Rydberg electron and the ground-state atoms [66, 322], see Fig. 2.5 (e). The potential en-
ergy depends on the probability density of the Rydberg wave function and the energy-
dependent scattering length between both particles. This interaction, which was first ob-
served in 1934 via pressure-dependent shifts of Rydberg resonances in vapor cells [323]
and first explained by Fermi [324], can be predicted from ab-initio calculations using re-
lativistic quantum mechanics [325–327]. Long-range Rydberg molecules provide a exper-
imental way to further characterize the scattering length [327]. Because the ground-state
atom is trapped in the outer lobes of the Rydberg wave function, the bond length is given
by the separation of the Rydberg electron from the nucleus. The binding potential typic-
ally only hosts a small amount of vibrational states. First experimental studies focused on
molecules where the Rydberg electron is in a S-state [66], with binding energies of several
megahertz. Dependent on the impact of the ground-state atom on the state of the Ryd-
berg electron, the non-interacting Rydberg states might not be a good basis to describe
the molecule [328, 329]. For so-called trilobite and butterfly Rydberg molecules where
the interactions with the ground state atom mixes many orbital momentum states due
to the presence of a shape resonance, the resulting Rydberg wave function can be stron-
gly distorted. Here, also the binding potentials can be significantly deeper. Even in the
case of homonuclear diatomic molecules, this can provide large permanent dipole mo-
ments [330, 331]. The binding mechanism can be extended to multiple ground-state atoms
bound to the Rydberg atom [332, 333] and also the many-body limit where a Rydberg im-
purtity interacts with a bath of ground-state atoms in a polaronic picture [334] has been
studied. They have been used to extract the quantum statistics of the ground-state atoms
bound to the Rydberg atom [335].

2.6.2 Rydberg macrodimers

Rydberg macrodimers — the main topic of this dissertation — are Rydberg atom pairs
bound together by their electrostatic interaction [67]. Because Rydberg interactions are
large at distances above the extension of the Rydberg orbit, Rydberg macrodimers are
about one order of magnitude larger than Rydberg–ground-state molecules at the same
principal quantum number [65]. The resulting bond lengths which can easily be beyond a
micrometer make Rydberg macrodimers the largest existing diatomic molecules.

While first experimental indications of macrodimers were discovered almost 20 years
ago [68, 336], only two previous experiments reported on their observation. The first ex-
periment studied the kinetic energy released from ion-repulsion after ionizing all Ryd-
berg atoms in the sample [69, 337]. At certain spectroscopic signatures, the kinetic en-
ergy released after ionization did not depend on the waiting time between the Rydberg
excitation and the ionization pulse, which implied that the distance between the excited
Rydberg atoms did not change. From this it has been concluded that a bound object has
been observed. The second experiment performed a seeded excitation scheme using Ryd-
berg s-states and Rydberg p-state excitation to excite Rydberg atom pairs detuned from
the Rydberg resonance [70, 338, 339]. Macrodimers were then identified from the back-
ground by their spontaneous ionization rate. Before this dissertation, a vibrationally and
microscopically resolved study of Rydberg macrodimers has not been achieved.



29 2.6. Ultracold Rydberg molecules

Macrodimers and other molecules

Besides their large size and their small energy scales, Rydberg macrodimers are concep-
tually not so different from conventional molecules, see Fig. 2.5. They have the same
symmetry properties as any homonuclear diatomic molecule, their quantum state can be
labelled using molecular quantum numbers, and they have quantized vibrational motion.
Macrodimers are mainly different because of the absence of overlapping electron clouds
where the exchange interaction between the electrons can be neglected. As a result, the
formation of hybrid orbitals between both atoms which are then occupied by electrons
that are delocalized over the whole molecule does not occur and the fermionic nature of
the electrons does not play a role.

The purely electrostatic binding classifies Rydberg macrodimers as purely long-range
molecules [58]. These molecules, where the overlap of electron clouds vanishes over the full
spatial extension of the vibrational wave function, also exist at lower principal quantum
numbers. In the 1970’s, they were theoretically predicted to exist in the avoided crossings
between asymptotic potential curves [318, 340]. This happens, for example, when two
pair potentials asymptotically connected to different atomic fine-structure pair states cross
before the electrons start to overlap, see Fig. 3.5 (c). They were experimentally observed in
photoassociation studies of laser cooled alkali atoms [341–344] and predicted to also exist
for alkaline-earth atoms [345].

For most other molecules, the electron orbitals of the contributing atoms do overlap.
For molecules consisting of multi-electron atoms, this leads to repulsive barriers at short
distances because the Pauli principle pushes the electrons on higher orbits. For Fesh-
bach molecules at high vibrational quantum numbers close to the dissociation energy,
such an overlap occurs at the inner turning point of the vibrational motion [45]. Also for
weakly bound van der Waals molecules such as bound noble gases [346–349], potentially
the largest diatomic molecule in the electronic and vibrational ground state, the electron
exchange interaction describes the repulsive barrier at short distances [319, 350].
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Chapter 3

Experimental platform
This chapter introduces the most relevant features of the experimental apparatus used

in this dissertation [71, 124, 351–353]. For documentation, a new laser system for Rydberg
excitation which was built together with Kritsana Srakaew and Simon Evered is presented
and characterized. Most experiments performed in this dissertation used a first generation
laser system which was identical in its capabilities but provided less power [72]. Finally,
the atomic physics describing the excitation of single-atom Rydberg states is discussed.

3.1 Quantum gas microscopy

The experiments in this dissertation have been performed using quantum gas microscopy [39].
Here, atoms are typically trapped in a single layer of a three-dimensional periodic optical
potential. This so-called optical lattice is realized by interfering laser beams [26]. The
standing wave of the laser field creates a periodically modulated potential landscape for
the atoms whose internal energies are sligthly shifted due to the dispersive interaction
with the oscillating field [29]. Ultracold atoms confined in optical lattices have been proven
to be a fruitful platform to realize many-body Hamiltonians relevant for condensed matter
physics [28, 354]. The idea of quantum gas microscopy was to spatially resolve the lattice
occupation using fluorescence imaging. To this end, a high-resolution objective which is
able to resolve the point spread function of atoms populating neighboring lattice sites is
placed at some distance of the atomic layer [39]. The imaging process requires to scatter
sufficiently many photons at each individual atom to distinguish whether a given lattice
site is populated with an atom or not. In this process, the atoms leave the ultracold tem-
perature regime and heat up. In order to still pin the motionally excited atoms at their
position and to avoid hopping during the imaging process, the laser intensity of the lat-
tice beams has to be high enough during this stage of the experiment. Furthermore, laser
cooling techniques have to be applied to avoid heating up to a critical threshold where
pinning does not work anymore [355].

Bose-Hubbard Hamiltonian

The first laboratories using quantum gas microscopy — such as the one presented here —
used bosonic 87 Rb atoms [40, 41]. Because ultracold atoms confined in a two-dimensional
layer of a lattice naturally realize the two-dimensional Bose-Hubbard Hamiltonian

Ĥ = −J
∑
〈i,j〉

â†i âj +
U

2

∑
i

n̂i (n̂i − 1)−
∑

i

µin̂i, (3.1)

the first studies focused on phenomena related to this Hamiltonian. Here, âi (â†i ) annihilate
(create) a particle at site i, n̂i = â†i âi counts the atom number and 〈i, j〉 denotes summing

31
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over pairs of lattice sites that are coupled by nearest neighbor tunneling. Furthermore, µi
is the chemical potential which determines the total atom number in the ground state. It
depends on the lattice site in order to account for the external trapping potential, typically
determined by the size of the laser beam forming the lattice potential. The two main para-
meters of the Hamiltonian are the coherent tunneling rate J between neighboring lattice
sites and the on-site interaction U [30, 32]. Along the third direction, the lattice is deep
enough to freeze the corresponding dynamics. Interactions between atoms located at dif-
ferent sites and tunneling rates between distances larger than one lattice spacing can be
efficiently suppressed. The tunneling parameter J between neighboring lattice sites can
be tuned by the depth of the lattice potential [26]. The interaction parameter U is determ-
ined by contact interactions which can in principle also be varied. In most cases, this is
realized by tuning the magnetic field close to a Feshbach resonance [45]. Mainly because
of the high field of B = 1007 G required for 87 Rb, this tunability is not used here. [356–
358]. Depending on the relative strength of U and J , the many-body ground state has very
different signatures [351]. If the tunneling parameter dominates, the kinetic energy dom-
inates the properties of the many-body ground state and the atoms are delocalized over
the system, see Fig. 3.1 (a). The corresponding many-body state is called a Bose-Einstein
condensate (BEC) [359, 360]. It can be described by a single macroscopic wave function
centered around the potential minimum of the external trap, whose coherence can be ex-
perimentally verified in time-of-flight experiments [361, 362]. If the repulsive interaction
parameter dominates, tunneling to a site that is already occupied by an atom is energet-
ically unfavorable. In this case, the atoms will arrange themself into a configuration with
fixed atom number per lattice site. The many-body state is called a Mott insulator [32]. If
the overall confining potential created by the lattice beams varies on the scale of U , the
Mott insulating ground state can also contain regions with different fixed atom numbers.
Assuming a Gaussian laser beam, this leads to a shell-like structure with areas containing
different numbers of fixed atom numbers per site [30, 41]. Quantum gas microscopy re-
solved the signatures of both phases and the correlations close to the phase transition [43].

Hubbard Hamiltonians and quantum magnetism

Extending the toolset by fermionic atoms such as 6Li allows to also realize the Fermi-
Hubbard Hamiltonian where the different quantum statistics gives rise to new states such
as band insulators [363]. In the Mott insulating phase where first order tunneling is sup-
pressed due to interactions, second-order tunneling processes can still occur and affect the
Hamiltonian for systems with more than one internal quantum state. Mapping the internal
states to different spin orientations, this enables the study of quantum magnetism [364].
The system can be described by a Heisenberg model and the corresponding spin correl-
ations can be observed with the microscope. Depending on the quantum statistics of the
atoms, ferromagnetic (bosons) [365–367] as well as antiferromagnetic (fermions) [44, 368]
spin interactions can be observed. Here, particularly the doped Fermi-Hubbard model
with less or more than excactly one atom per site is an interesting field of research [35, 369–
372] because the interactions between the holes or doubly-occupied sites and the antifer-
romagnetic environment might give rise to novel many-body phases [37, 373, 374]. Exper-
imentally realizing this regime at sufficiently low temperatures might give insights into
the physics underlying high-temperature superconductivity which is currently not under-
stood [36, 375, 376]. Future experiments will also cover the microscopic study of tunable
anisotropic spin interactions which can be realized for spin-dependent on-site interaction
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parameter [34, 377]. In addition to pure Hubbard models and the quantum magnetism
observable close to the Mott transition, quantum gas microscopes studied effects of site-
dependent disorder potentials [378–381], time-periodic potentials [382], or complex tun-
neling rates [383] where topologically nontrivial Bloch bands can be realized [384–387].

Unity-filled atom arrays

For many experiments, a unity-filled array is the desired starting point. Here, the Mott
insulating phase or also the band insulating phase for fermions provides a pathway to
initialize such a system for short distances where rearrangement using optical tweezers
is challenging. The details of the underlying Hubbard model are not important. One
example is the experimental study of cooparative superradiant or subradiant states hos-
ted by atomic arrays at subwavelength spacing [98, 100, 101, 388]. Here, the geometric
arrangement of the array leads to interference effects in the radiated fields of the atoms
trapped in the array. This allows for an increase of the lifetime of an excitation stored in
the array compared to the corresponding lifetime of an isolated atom. As a consequence,
the linewidth of the cooperative atomic transition narrows. The same holds true for most
Rydberg experiments. Because Rydberg interactions are typically much stronger than the
tunneling parameter contributing to the Hubbard Hamiltonian, the motional degree of
freedom remains frozen over the experimental timescale. Here, the Mott insulating state
is a suitable initial state because of the deterministic lattice occupation. Starting with an
atomic Mott insulator enabled the first in situ snapshots of the Rydberg blockade [209], the
study of the transverse Ising Hamiltonian [212, 213] introduced in Eq. 2.34 and the real-
ization of a long-range interacting Ising Hamiltonian using Rydberg dressing [155, 221].
Comparing Mott insulators with atoms loaded in optical tweezer arrays shows that both
platforms are able to create unity-filled arrays [56, 57]. Because of the smaller spacing of
Mott insulators, Rydberg experiments are typically performed at lower principal quantum
numbers n ≈ 30 compared to optical tweezers where n ≈ 60 − 70 in order to realize the
same interaction strength at the relevant distance. While this allows one to achieve higher
Rabi frequencies between the ground state and the Rydberg state in lattice systems, optical
tweezer systems benefit from higher initial fillings and shorter experimental cycling times.

3.1.1 Technical challenges

Performing experiments with cold atomic gases is challenging because it requires to con-
trol a large amount of parameters. Assuming a stable vacuum system and stable laser
sources, this includes many different laser frequencies and intensities at different stages
of the experiment as well as different magnetic field values. While this has not been used
in the experiments presented here, many Rydberg laboratories also have to control their
electric fields. Typically, the laser frequencies are electronically stabilized to references
such as atomic spectroscopy lines or optical resonators. Here, laser fields oscillating at
hundreds of terahertz have to be stabilized to a linewidth lower than the atomic tran-
sition addressed in the experiments, typically a few megahertz. For Rydberg experiments
where narrow linewidths in the kilohertz regime are necessary, frequency references are
typically given by optical resonators built from ultra-low expansion glass (ULE cavities).
Parameters that require dynamical tunability are controlled from a control software that
communicates with a field programmable gate array (FPGA) that sends analog and digital
signals to different modules of the experimental setup. The digital signals are typically
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TTL (transistor-transistor logic) signals. Among other applications, they switch control
circuits for magnetic field stabilization, arbritrary waveform generators, mechanical shut-
ters to block or unblock laser beams, or accousto-optical modulators (AOM’s) which can
be used to stabilize laser intensities and – to some degree – their frequency. The analog
signals are set values for control circuits that control laser intensities or current stabiliza-
tions for magnetic field control. Additional communication between the control software
and different devices is necessary to control values such as microwave frequencies or the
orientation of micromirrors on digital mirror devices (DMD). Furthermore, because the
size of typical atomic ensembles as well as the waists of the laser beams used to trap and
manipulate them have only a length scale of a few tens of micrometers, experiments are
very sensitive to thermal drifts.

3.2 Preparation of cold atomic ensembles

The longer cycling times in quantum gas microscopes originate from the preparation of
the ultracold atomic gas and the extremely low temperatures needed to realize the many-
body ground state. Generally, performing quantum simulations with cold atoms requires
many preparation steps. In order to isolate the quantum systems from the environment
and avoid interactions with the background gas at room temperature, the atomic en-
sembles have to be prepared in vacuum chambers. Here, the atoms are guided from an
initial source into a so-called magneto-optical trap by using combinations of magnetic
fields and lasers. In the magneto-optical trap, atoms are trapped by a combination of op-
tical and magnetic fields and at the same time laser cooled to temperatures close to zero
Kelvin. For optimized parameters, the final temperature in the magneto-optical trap de-
pends on the linewidth of the cooling transition and is typically on the order of tens to
hundreds of microkelvin [19]. For very narrow transitions also lower temperatures have
been achieved [389]. Now, the atoms are cold enough to be trapped in optical tweezers
where they can be used for experiments. Additional cooling techniques such as Sisyphus
cooling [390, 391] or Raman sideband cooling [392, 393] allow one to further reduce the
temperature.

3.2.1 Preparing two-dimensional atomic Mott insulators

In order to reach ultracold temperatures where quantum degenerate phenomena can be
observed, even further cooling is required. The additionally implemented preparation
stages are typical for laboratories such as the one presented here. They are shortly sum-
marized in the following paragraph and discussed in more detail in our previous disserta-
tions [71, 72, 124, 351–353]. First the atoms are loaded from the magneto-optical trap into
a magnetic trap. Subsequently, the atomic cloud trapped in the magnetic trap undergoes
an evaporative cooling stage where hot atoms are successively removed from the system.
This step is time consuming because the atoms in the sample have to continuously reach
thermal equilibrium by interatomic scattering. After evaporation, the temperature can be
low enough to reach quantum degeneracy and perform experiments at ultracold temper-
atures [20, 21].

In order to guarantee enough optical access at the different stages of the experimental
sequence, the atoms are transported from the MOT chamber to a different vacuum cham-
ber first. Therefore, the atoms are loaded from the magnetic trap into a focused far-off-



35 3.2. Preparation of cold atomic ensembles

Reconstruction

~ 10µm

c

Rb

d

Rν

e

b

χ(R) χ(R-alat)Vlat

alat

χ(R+alat)

a

alat

U

BEC

Mott insulator

J

 ( U /J )c ~ 16.7

χ(R)

alat

λD2

Figure 3.1: Quantum gas microscopy and relevant length scales. (a) The two-
dimensional system is described by the on-site interaction U and the tunneling rate J .
Lowering J below a critical value, the system arranges itself into a unity filled Mott in-
sulating state located at the trap center [351]. The motional wave functions χ(R) of the
ground state atoms (illustrated as black balls) are a few hundred times larger than their
electron orbitals. (b) The lattices are created by three retroreflected laser beams (red). The
vertical lattice is directly reflected at the lower vacuum window. Below the atomic plane,
a high-resolution objective collects fluorescence photons for imaging. The lattice constant
alat = 532 nm is slightly smaller than the width of the point spread function of 700 nm [71]
of the atoms which are imaged at a wavelength of λD2 = 780 nm. The image was provided
by Christoph Hohmann (MCQST). (c) By collecting enough photons, occupied (filled black
circles) and empty (gray dots) sites can be distinguished. (d) A typical Rydberg blockade
Rb [72, 124] or a macrodimer bond length Rν at a principal quantum number n ≈ 36 is
larger than alat. (e) The spatial width of χ(R), here shown for Vlat = 40Er, is comparable
to the 36S1/2 Rydberg orbit (blue).

resonant laser beam whose focus is then moved. After the movement, the atoms are loaded
from the transport trap into a dipole trap formed by the two in-plane lattice beams where
an additional stage of evaporative cooling keeps the temperature low. At this stage, the
retroreflected beam of the lattices is blocked in order to allow the atoms to redistribute.

Subsequently, the atoms are loaded into the vertical lattice and all atoms but the ones
populating a single plane of the vertical lattice are removed. This slicing process represents
another critical step required for quantum gas microscopes. For the apparatus used here,
this is realized using a strong magnetic field gradient of 24 G/cm perpendicular to the
atomic plane. As a consequence, the microwave resonance between the hyperfine states
|2,−2〉 to |1,−1〉 experiences a spatial gradient 5 kHz/µm[71]. This can be used to prepare
the atoms in a single selected plane in a different hyperfine ground state compared to the
rest of the system. Then, by pushing out all remaining atoms from the system with a
resonant laser pulse, only a single occupied layer remains. After transport as well as after
slicing, further evaporation stages are implemented to keep the temperature low enough.

Finally, when the intensity of the in-plane lattices is adiabatically ramped up, the ul-
tracold atomic cloud arranges itself in the selected atomic plane according to the coher-
ent tunneling J and the on-site interaction U which contribute to the underlying Bose-
Hubbard Hamiltonian. Both quantities can be derived from the single-atom motional
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states in the lattice. Generally, the eigenstates of non-interacting particles confined in
periodic potentials are delocalized Bloch waves. The localized Wannier wave functions
χ(R) can be obtained from the Bloch waves by applying a Fourier transform. For deep
lattices, they transfer into the motional ground state obtained from solving the on-site
Schrödinger equation after performing a harmonic approximation at the potential min-
ima, yielding [26]

χ(R) =
1(

2πσ2
lat

)3/4 e−( R
2σlat

)2
. (3.2)

The width of the Wannier states is given by

σlat =
(
〈R̂2〉 − 〈R̂〉2

)1/2
=

√
~2

4mEr

(
V0

Er

)−1/4

=

√
~

2πωlat
. (3.3)

The coherent tunneling depends on the spatial overlap of neighboring Wannier states [351]

J = −
∫
χ?(R± alat)

(
− ~2

2mRb

∂2

∂R2
+ Vlat(R)

)
χ(R)dR. (3.4)

At deep lattices, it can be effectively frozen on experimental timescales due to the suppres-

sion of the tunneling rate J = 4√
π
Er

(
V0
Er

)3/4
exp

(
−2
√

Vlat
Er

)
with the lattice depth Vlat [26].

The on-site interaction depends on the overlap integral of both atoms occupying the same
single particle Wannier state. Assuming contact interactions at a s-wave scattering length
as, the on-site interaction energy can be computed via

U =
4π~as
mRb

∫
dR|χ(R)|4. (3.5)

For a two-dimensional bosonic system, the phase transition between the BEC and the Mott
insulator occurs at a lattice depth of Vlat ≈ 10Er, in agreement with the theoretical expect-
ation U/J ≈ 16.7 [351, 394]. Here, Er = h2/(8mRba

2
lat) = h× 2.0 kHz is the recoil energy of

the lattice. In the experimental apparatus used here, the interaction U ≈ h × 500 Hz only
weakly depends on the lattice depth. The temperature required to observe the Mott insu-
lating state can be estimated using T . U

kB
= 24 nK, underlining the extreme temperature

regime of the experiments.

3.3 The 87Rb quantum gas microscope

In the experimental setup used here, all three lattices are created by retroreflected laser
beams at a wavelength of λlat = 1064 nm, providing lattice constants alat = 532 nm, see
Fig. 3.1 (b). Cross-interference between lattice beams corresponding to different axes is
avoided by choosing perpendicular polarizations and preparing them at slightly different
frequencies using an AOM. The beating frequency of a few hundred megahertz is too fast
to influence the atomic ensemble. Interestingly, the associated sidebands can be observed
in our Rydberg spectroscopies, see the discussion in Fig. 4.2. After performing the experi-
ments at ultracold temperatures, the lattices are ramped to deep values around ≈ 2000Er
in order to avoid hopping within the plane or atom loss during the imaging process. The
same laser operating at the D2 transition between 5S1/2, F = 2 and 5P3/2, F

′ = 3 of 87Rb
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at λD2 ≈ 780 nm providing the fluorescence photons keeps the atoms cold by performing
laser cooling in an optical molasses configuration. To avoid population transfer into the
hyperfine ground state F = 1 which is dark during the imaging process, an additional
repumper laser brings them back into the imaging and cooling cycle. In order to cool
all dimensions accordingly, we illuminate the atoms with 5 molasses beams. Within the
plane, each direction is cooled along both directions by an incoming and a retroreflected
beam. Along the vertical direction, we only have a single beam which is sent through the
objective to avoid direct illumination of the electron-multiplying camera charge-coupled
device (EMCCD) camera used for imaging. During the imaging process, around 7000
fluorescence photons [71] are detected per atom for an illumination time of 850 ms, fol-
lowed by a reference image where the atoms are removed from the system. After subtract-
ing the reference image, a reconstruction algorithm calculates the lattice occupation. If the
focal plane of the objective is aligned with the atomic plane and atom loss during the ima-
ging process is small, the histograms of the photon counts for occupied and empty sites are
well separated and the reconstruction works with a fidelity better than 99.5% [71]. In order
to keep this alignment, the objective position has to be optimized using a high-precision
piezo on a timescale that dependends on the thermal stability of the experiment. This is
realized using an autofocusing sequence that typically runs every ten to twenty minutes
and images the same cloud for different objective positions. During imaging, the summed
rate of atom loss and hopping within the plane is around ≈ 1% and strongly depends on
the alignment of the lattice beams and the molasses beams as well as the magnetic field.
One feature of quantum gas microscopes and also optical tweezer setups is that the ima-
ging only accesses the parity of the atom population. This is called parity projection and
originates from the fact that the imaging light couples to asymptotic molecular potentials.
The created bound pairs leave the system and do not contribute to the imaging signal. As
a consequence, doubly occupied sites appear as empty sites and sites occupied by three
atoms appear as a singly-occupied sites.

The single-site resolution provided by the microscope can not only be used to image
the atoms but also to address individual atoms with lasers [42, 378, 395]. This is imple-
mented for a laser at a wavelength of 787 nm that illuminates an array of electronically
controllable mirrors. By switching the mirrors of this digital mirror device (DMD) on and
off, certain lattice sites can be illuminated or not. This allows to tune the differential light
shift of the hyperfine ground states. As a consequence, the microwave transition between
two hyperfine ground states |1,mF 〉 and |2,mF 〉 can be tuned to be on or off resonant only
for the addressed or not-addressed lattice sites. By removing the atoms in the state |2,mF 〉
from the system by applying a push-out beam certain initial atomic configurations can be
created from an initial Mott insulator.

In order to efficiently transfer the atoms between different hyperfine ground states, we
typically perform microwave Landau-Zener transitions where the frequency is adiabatic-
ally swept over the resonance. During single-site addressing and also during slicing, the
microwave Rabi rate is decreased to low values to avoid that power broadening covers
the energy splitting between addressed and not-addressed sites or between neighboring
atomic planes. At high powers of the microwave field, different hyperfine ground states
can be driven by Rabi rates up to 20 kHz. If even faster Rabi couplings are required, one
can use Raman processes using laser beams instead of microwave fields [396].
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3.4 The ULE-locked infrared laser source

In order to excite Rydberg P-states using a single-photon transition from the ground state,
laser light at an ultraviolent (UV) wavelength λuv = 298 nm is required. In the experi-
ment, this is realized by frequency quadrupling a laser operating at 1192 nm. The infrared
laser is a commercial diode laser from Toptica. The main laser path is coupled into a fiber
which seeds a commercial Raman fiber amplifier (RFA) that amplifies the infrared light
to a power of roughly 5 − 6 W. To guarantee frequency stability and tunability, a few tens
of microwatt of the laser beam is split from the main path before the RFA and coupled
into a broadband fiber electro-optical modulator. Here, the laser light is modulated by
the two frequencies νULE and νPDH. Afterwards, the light is sent to a cavity made of
ultra-low expansion glass which represents the absolute frequency reference for the Ryd-
berg experiments. The lower frequency at νPDH = 15 MHz is used to create the error
signal according to traditional Pound-Drever Hall frequency locking [397]. Modulating
at a second tunable frequency νULE between tens of megahertz up to a gigahertz creates
two additional error signals at the blue and red sidebands detuned by ±νULE from the
ULE resonances. Locking the laser to these sideband error signals stabilizes the frequency
separation between between the ULE cavity resonance and the carrier field of the laser.
The free-spectral range (fsr) of the ULE cavity is ∆ULE = 1496.66 MHz, corresponding to a
cavity length of L = c/(2∆ULE) = 10 cm. Within the bandwidth of the frequency doubling
cavities described below, the frequency of the excitation light can now be varied during
the experiments by tuning νULE. The tuning range can be extended on longer timescales
where the locks of the doubling cavity locks can follow, either between different sequences
or for long experimental timescales. Performing spectroscopy, it is important to verify
whether the offset-locked infrared laser is blue-detuned or red-detuned from the ULE ref-
erence resonance, for examply by using a wavemeter. In the blue-detuned (red-detuned)
case, increasing νULE will increase (decrease) the frequency of the UV light. Because of
the two doubling stages, it is essential to account for the factor of four entering in the two
doubling stages. As a consequence, changing the modulation frequency will lead to a four
times larger shift in the UV. More details of the laser system up to this stage can be found
in Ref. [72].

3.5 Cavity-enhanced frequency doubling

In order to enhance the available output power in the UV, the experimental system was
extended by two new bow-tie cavities where laser light is resonantly doubled using non-
linear crystals. Both bow-tie cavities consist of four mirrors. Two of them are curved in or-
der to focus the laser beam into the crystal where high intensities are required and provide
a stable cavity mode. Once per roundtrip, the fundamental beam is propagating through
a non-linear crystal where the response of the material to the laser field creates compon-
ents oscillating at twice the frequency of the fundamental. If the phase matching condition
is fulfilled, the frequency doubled waves created at different positions in the crystal are
interfering constructively. Because this strongly increases the power of the total frequency
doubled wave after the crystal, it is a necessary requirement. If frequency conversion is
the dominating loss process in the cavity, this can lead to high conversion efficiencies. To
increase the stability of the systems and because the crystal used for the second doubling
stage is very sensitive to humidity and cracks at atmospheric conditions [398, 399], both
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Figure 3.2: Technical specifications of both frequency doubling systems. (a) The LBO
crystal used for the first doubling stage allows one to realize non-critical phase matching
where θpm = 90◦ with vanishing walk-off angle ρ. The phase matching condition requires
temperature stabilization to T = 32◦. Reflection losses are suppressed using antireflection
coatings. (b) The CLBO crystal used for the second stage requires critical phase matching
at an angle θpm = 51.6◦ where the second harmonic slightly displaces from the funda-
mental due to the contributing walk-off angle ρ. Now, reflections are supressed using the
Brewster angle θB . For both crystals, the light is polarized along the ordinary axis of the
crystal which coincides with the plane of the optical layout. The crystal has to be stabil-
ized to T ≈ 132◦C. (c,d) The main difference between both doubling cavities is a differ-
ent incoupling reflectivity Ri required for impedance matching as well as different radial
curvatures rd for the curved mirrors that focus the beam into the crystal. This results in
different arm lengths and minimum beam waists wc within the crystal. Both cavities have
two piezos (green) to stabilize the cavity length to the incoming light field.

cavities are evacuated. By either reducing the pressure to around one millibar or flooding
the cavities with argon, high stability has been achieved.

3.5.1 Phase matching

Phase matching requires to fix the phase relation between the fundamental and the fre-
quency doubled wave at frequencies ωf and 2ωf over the full length of the doubling crys-
tal. This requires their refractive indices to fulfill nωf = n2ωf . While this is difficult for
normal dispersion relations, it can be realized using ordinary and extraordinary refractive
indices of birefringent materials. This requires the polarization of the frequency doubled
wave to be perpendicular relative to the fundamental wave. Generally, one distinguishes
between type-1 and type-2 phase matching. Both frequency doubling systems belong to
the first category where both photons combined in the doubling process have the same
polarization. In both cases, the fundamental wave is polarized along the ordinary crystal
axis which matches the horizontal plane parallel to the optical table.

The optimum way to obtain phase matching is so-called non-critical phase matching
where the ordinary and the extraordinary crystal axes are perpendicular to the propaga-
tion direction in the crystal. Here, the phase matching angle between the optical axis and
the extraordinary axis in the crystal is θpm = 90◦. The wave vector of the fundamental
wave and the second harmonic wave are parallel and the so-called walk-off vanishes. As
a consequence, secondary waves created at different locations in the crystal correspond to
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the same spatial mode, which leads to a good beam profile after the cavity. This method
is implemented for the frequency doubling of the high-power infrared laser at 1192 nm to
yellow light at 596 nm using a lithium triborate (LBO) crystal. In order to avoid losses,
the crystal surface is additionally anti-reflection (AR) coated for both wavelengths. The
technical specifications of the system are summarized in Fig. 3.2 (a).

Often, non-critical phase matching cannot be achieved for the typically used nonlinear
crystals. In these cases, varying the angle θpm from 90◦ provides additional tunability. For
the second doubling stage from 595 nm to 298 nm, this has been implemented to achieve
phase matching with a cesium lithium borate (CLBO) crystal for θpm = 51.6◦. This time,
because of the lower wavelengths where antireflection coatings might get damaged due to
the high circulating power, the reflections at the crystal surfaces were supressed by coup-
ling into the crystal at the Brewster angle. The technical specifications are summarized in
Fig. 3.2 (b). In contrast to other possible crystals such as BBO [72] which is less sensitive to
humidity, CLBO provides higher damage thresholds and a smaller walk-off angle which
results in a better beam quality after doubling [400].

3.5.2 Impedance matching

An additional critical quantity is the reflection of the incoupling mirror, which determines
the coupling efficiency into the cavity. On resonance, the light field Eref directly reflec-
ted at the incoupling mirror is out of phase with the field Ecav which leaves cavity after
propagating in it. As a consequence, both fields interfere destructively and the cavity
transmission reaches a maximum. Maximum conversion efficiencies requires perfect de-
structive interference, which requires both field amplitudes to be equal. This condition is
called impedance matching. The field Ecav coupled out of the cavity depends on the loss per
roundtrip, which is dominated by the frequency conversion. The conversion efficiency per
roundtrip depends on the laser intensity. As a consequence, by adjusting the reflectivity
of the incoming mirror according to the laser power, maximum conversion efficiencies can
be obtained. A last parameter entering in the optimization is the beam waist ωC of the
fundamental beam within the crystal because it affects the laser intensity within the crys-
tal. This determines the curvature of the two curved mirrors of the cavities and the length
of the cavity arms. Optimizing all parameters in order to obtain maximum laser power is
typically realized following the protocol by Boyd and Kleinman [401]. To increase the life-
time of the crystals and reduce thermal lensing, the beam waist in the crystal was chosen
to be twice as large as the result obtained from Boyd Kleinman optimization [400].

3.5.3 Summary over both bow-tie cavities

In summary, all cavity mirrors besides the incoupling mirror are highly reflective for the
fundamental beam, see Fig. 3.2 (c,d). While the reflectivity of the incoming mirror has to
be optimized to guarantee impedance matching, the reflectivity of the remaining mirrors
has to be as high as possible – or at least high enough such that frequency conversion is the
dominant loss process in the cavity. Additionally, the outcoupling mirror is highly trans-
missive for the second harmonic to efficiently collect the frequency doubled light. Both
cavities are locked to the frequency of the incoming light field using piezos. Here, two
mirrors are mounted on two different piezo stacks which operate at different frequency
bands to provide the feedback for the slow and the fast frequency components of the con-
trol circuit. The fast feedback is realized with the quarter inch mirror mounted on a small
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Figure 3.3: Schematic of the UV laser system. The two bow-tie cavities are placed on two
vertically displaced breadboards. (a) On the lower breadboard, the output of the Raman
fiber amplifier (RFA) is sent through an optical isolator and focused into the first doubling
cavity after optimizing the polarization. The frequency doubled light is collimated, passes
an AOM and is then sent upwards to the higher lying breadboard. A small amount of
the light is coupled into a fiber and sent to a wavemeter. (b) The yellow laser beam is
coupled into the second bow-tie cavity and frequency doubled to the ultraviolet. After
collimation, the light passes an EOM which can be used for phase modulation and an
AOM used for fast switching and intensity stabilization. Then, the beam profile is cleaned
using a pinhole and then expanded using two telescopes. To maximize the light intensity
in the plane of the atoms, one telescope is made of cylindrical lenses. Finally, the beam
passes the last focusing lens, is combined with the beam path of the magneto-optical trap
(MOT), and focused into the vacuum chamber. For both cavities, the reflection signal
provides the error signal for Pound-Drever-Hall (PDH) locking and the transmission beam
is used for monitoring. Further photodiodes for monitoring and stabilization are placed
after the pinhole. The focal lenghts integrated in the main beam path are given in units
of milimeters, cylindrical lenses (cl) are explicitly labelled. Low power fractions sampled
from the main beams are denoted as dashed lines.

piezo stack which has a resonance frequency above 500 kilohertz. In combination with
a special conical-shaped copper mounting system that is optimized for damping the vi-
brational motion, this enables feedback up to 50 kilohertz [400, 402]. The sideband of
both Pound-Drever Hall locks is created by modulating the current of the diode laser at a
single modulation frequency. Even if the modulation frequency is larger than the≈ 5 MHz
linewidth of the doubling cavities, the sideband amplitude after the first cavity is still large
enough to efficiently lock the second cavity. The system implemented here is very similar
to a similar system for potassium built in a neighboring laboratory described in [400]. All
differences originate from the UV wavelength required for Rydberg excitation which is
286 nm potassium and 298 nm for rubidium. This changes the optical coatings, the phase
matching angle and the Brewster angle θB relevant for the CLBO crystal.
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3.6 The UV laser system

This paragraph discusses the laser system containing both doubling stages as presented in
Fig. 3.3. After collimating the amplified laser light from the RFA, it is sent through an op-
tical isolator to avoid back reflections into the amplifier. Subsequently, the polarization is
optimized for the nonlinear crystal and focused into the cavity using a lens which provides
sufficient spatial mode overlap with the cavity mode. The reflected light which is high if
the cavity is not locked it sent to a beam dump. A small amount of the reflected light is
sent to a photodiode and used to create the error signal for the PDH lock. At full power,
the high conversion efficiency of 65% of the locked cavity provides 4 W of yellow laser
light at a high-quality Gaussian beam shape. The cavity is typically continuously locked
during our experiments. After the first doubling stage, the yellow beam is collimated, sent
through an AOM and reflected upwards to another breadboard where the second cavity is
placed. The incoupling procedure into the second cavity is identical to the first. Now, an
additional shutter protects the cavity from continuous high-power operation to increase
the lifetime of the CLBO crystal. Once the shutter opens, the control circuit recognizes the
error signal when scanning over the cavity resonance and starts locking.

The locked second cavity provides output powers up to 1 W, corresponding to an ef-
ficiency of 40%. The beam is again collimated after passing the outcoupling mirror. The
output power and also the stability of the UV light strongly depends on the alignment of
the cavity. Sometimes, the UV beam pointing was instable and drifted during the first few
milliseconds after locking the cavity. By realigning the cavity, stable configurations have
been found. Other experiments using high-power UV light at even lower wavelengths
such as 286 nm [400] observed a degradation of their optical components, possibly due to
the reaction with hydrocarbons. Over time, their transmission decreased due to the ap-
pearance of an opaque layer on the surface which can be removed by cleaning. In the
presented UV system operating at 298 nm, this has not been observed.

The finite walk-off angle for critical phase matching and also astigmatism originating
from the Brewster configuration [400] requires beam shaping and mode cleaning of the
UV beam after the second cavity. A first telescope made of cylindrical lenses provides a
non-elliptic beam shape without astigmatism. After cleaning and optimizing the polariz-
ation, the beam is sent through an electro-optical modulator (EOM). The EOM enables to
modulate sidebands on the UV light which will be used in chapter 7 to increase the coup-
ling rates into Rydberg macrodimer states. Afterwards, the beam passes an AOM, which
allows to switch the light on and off on a faster timescale (100 nanoseconds) compared
to the shutter (milliseconds). The deflected light now passes a pinhole where about 20%
of the AOM mode is damped in order to enhance the beam quality. In addition to mode
cleaning, the pinhole simplifies the alignment of the UV beam with the atoms because the
optical elements after the pinhole image the beam at the pinhole position to the position
of the atoms. This implies that after changing the optical path before the pinhole (e.g. re-
aligning the UV cavity or the UV AOM), a realignment of the pinhole will also coarse align
the UV beam with the atoms. After collimating the beam diverging from the pinhole, two
telescopes enlarge the beam size significantly to provide small beam waists at the location
of the atomic cloud. One of both telescopes is implemented using cylindrical lenses to
make the beam slightly elliptical. Because the atoms are confined in a two-dimensional
plane, a smaller waist perpendicular to the atomic plane increases the UV intensity at the
position of the atoms without introducing additional intensity gradients over the atomic
cloud. Including all losses, the final UV beam focused into the vacuum chamber has a
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power of up to 350 mW.

3.7 Calibration of the Rydberg system

Performing Rydberg experiments requires several preparation steps. First, the UV beam
has to be properly aligned with the atomic cloud. In addition to maximum Rabi coup-
lings, this provides stable intensities less susceptible to beam pointing fluctuations. Fur-
thermore, the direction of the applied magnetic field, the polarization of the UV laser, the
Rydberg resonance, and the Rabi frequency have to be calibrated.

3.7.1 Alignment of the UV laser

After propagating through a two inch lens with focal length f = 500 mm, the UV beam
is combined with one of the MOT beams at a dicroic mirror and sent into the vacuum
chamber. Here, in addition with one of the MOT beams, the UV shares its path with the
dipole trap used for transporting the atoms from the MOT chamber into the experimental
chamber where the atomic Mott insulators are created. Despite the long focusing path, the
short wavelength enables a small Gaussian beam waist w0 ≈ 20 µm at the focus position
due to the long Rayleigh length zR =

πw2
0

λuv
[403]. Such small beam waists require efficient

alignment protocols.

Coarse alignment

The first step is to align the UV beam with the dipole trap beam at both sides of the vacuum
chamber. An efficient way to further coarse align the UV beam is to excite atoms trapped
in the dipole potential of one of the two lattice beams using absorption imaging. Because
the dipole trap used for transport is aligned with the UV beam, it is beneficial to load the
atoms into one of the lattice beams. By blocking the retroreflecing mirror, the atoms can
furthermore redistribute within the elongated dipole trap after transport, which enlarges
the spatial range of the alignment technique. Assuming a UV beam near-resonant with a
Rydberg P-state transition, the excitation of antitrapped Rydberg excitations will lead to
local loss signatures which can be used for beam alignment. In order to avoid redistri-
bution of the atoms within the dipole trap after UV illumination, it is important to image
directly after the Rydberg excitation pulse. The sligthly larger matrix elements for nP3/2

Rydberg states makes them more suitable to find the resonance compared to states nP1/2.
The large length of the elongated dipole trap makes it easy to find the UV beam along
the direction of the lattice beam. This effectively reduces the optimization to the direction
perpendicular to the elongated dipole trap. Coarse alignment of the UV beam along this
direction can be done manually. The method also works for coarse alignment of the focus
position using a lens mounted on a z-translator. A typical absorption images of the UV
beam is presented in Fig. 3.4 (a).

Fine alignment

Fine alignment can be performed using the piezo mirror and the fluorescence images from
the microscope. Again, the atoms are used to image the UV beam. In order to have a image
area, the atoms are prepared in a large dilute cloud within a two dimensional plane instead
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of a small Mott insulator. This can be done by reducing the evaporation time or actively
shaking the lattice by modulating its intensity using an AOM. Detuning the UV laser from
the Rydberg transition induces an AC Stark shift

∆AC(x) =

(∑
i

Ω̃2
i

4∆i

)
e
− 2y2

w2
0 , (3.6)

where Ω̃i is the Rabi coupling from the prepared ground state to the coupled Rydberg
states and ∆i their detuning. Furthermore, w0 is the Gaussian beam waist and y is the dis-
tance from the waist position. Because Ω̃2

i (y) ∝ I0(y) is proportional to the light intensity,
knowing the AC Stark shift can be used for beam alignment. A straight-forward way to
probe the AC Stark shift is to perform narrow microwave Landau-Zeener ramps between
the two hyperfine ground states |2,mF 〉 and |1,mF 〉 at low microwave powers. Here, be-
cause only one hyperfine ground state is coupled to the Rydberg state, the AC Stark shift
induces a differential energy shift. The detunings should be chosen large enough such
that losses are small over the timescale of the ramp but small enough such that the AC-
Stark shift is still significant. Far away from the beam center, the microwave resonance
frequency will not be affected. Approaching the center of the UV beam, the shift can be
observed. In order to see the spatially dependent transfer, atoms in F = 2 are removed
from the system using a push-out beam after the ramp. A typical image is prestented in
Fig. 3.4 (b). Perpendicular to the UV propagation direction at both sides of the beam center
one can find one position where the microwave field is resonant and transfer takes place.
In the absence of a magnetic gradient, the large Rayleigh length guarantees linear and
parallel resonance lines along the propagation direction, justifying the independence of
Eq. 3.6 on x. The thickness of the lines can be tuned by the bandwidth of the ramp and the
microwave power. If the UV beam is aligned in within the atomic plane, the position of the
atomic cloud is centered relative to the resonance lines. Alignment perpendicular to the
plane can be done by tuning the vertical degree of freedom of the piezo mirror. Moving the
UV beam through the atomic plane at a fixed microwave frequency, the spatial distance
between the resonance lines will increase and then decrease again. If the maximum of the
UV beam lays in the atomic plane, their separation reaches a maximum. Due to the small
size of the UV beam, the thermal stability of the laboratory during Rydberg experiments
is essential.

3.7.2 Rabi frequency and beam waist

Spatially resolving the differential light shifts Eq. 3.6 is not only helpful for beam align-
ment. It can also be used to calibrate the Rydberg Rabi frequency and the beam waist.
Here, the detunings ∆i as well as the microwave transition frequency without UV light
have to be carefully measured before. Averaging over all atoms along x and subtracting
the total mean atom number of a dilute cloud provides the local atom number deviation
∆Nav(y) at a specific microwave frequency. The two local microwave resonances corres-
ponding to identical local UV intensities can then be obtained by fitting two resonance
profiles to ∆Nav(y), see the upper plot of Fig. 3.4 (c). Repeating the procedure for various
microwave frequencies provides the Rabi frequency as well as the beam waist. To keep
the formalism simple, it makes sense to use a configuration where only a single Reson-
ance contributes, such as the coupling from |2,−2〉 to states nP1/2 with mJ = +1/2 using
purely σ+ polarized light. This configuration also leads to a large signal because of the



45 3.7. Calibration of the Rydberg system

-1.0 -0.5 0 0.5 1.0
Detuning ∆/2π (MHz)

0

50

100

A
to

m
 n

um
b

er

6.8347 GHz

F = 2

F = 1

J = 3/2

J = 1/2

∆fs

-1/2
+1/2

-3/2
-1/2

+1/2
+3/2

-2 -1

+2
+10

0
-1

+1

π,σ+π,σ−σ+ ~~ ~~~~

gJ = 4/3

gJ = 2/3

gF = 1/2

gF = -1/2

d

e

1/2-1/2

a

b

εk40 µm

Local MW resonances

c

0 10 20 30 40 50 60
Position y (µm)

0.0

2.0

4.0

6.0

8.0

Lo
ca

l M
W

 r
es

. (
kH

z)
∆N

av

-0.1

0.0
~

1 
m

m

z
x

y

36P1/2

w0 = 29 µm
Ω/2π =  5.5 MHz
∼

k

Figure 3.4: Excitation of P-state Rydberg atoms and system calibration. (a) Coarse align-
ment of the UV beam by Rydberg-exciting atoms in the elongated dipole potentials of the
lattice beams. (b) Fine alignment by driving narrow microwave (MW) transitions between
hyperfine ground states. Removing the transfered atoms from the system enables to spa-
tially resolve their differential AC Stark shift induced by off-resonant coupling to a Ryd-
berg resonance and therefore the UV beam. (c) The spatially resolved microwave spectro-
scopy also enables to measure the UV beam waist and the experimental Rabi frequencies.
The upper plot shows the mean density of the images after averaging over x and subtract-
ing the density of a dilute cloud without transfer (gray). Fitting two resonance profiles
(red) provides the two local MW resonances at both sides of the beam, indicated as red
data points in the lower plot. Combining the results for several MW frequencies allows
to extract the beam parameters from fitting. (d) Spectroscopy of both Zeeman states of
36P1/2, starting from |F = 2,mF = 0〉 and for B = 1.0 G. The detuning is measured rel-
ative to the center of the Zeeman split lines. (e) The relative coupling strengths between
ground states |F,mF 〉 and Rydberg states nPJ with J ∈ {1

2 ,
3
2} and angular momentum

projections mJ for different light polarizations can be calculated from Eq. 2.9. In a mag-
netic field, the spin projections split according to their Landé factor gF and gJ .

large Clebsch-Gordan coefficients contributing to the coupling. An alternative method to
calibrate the Rabi frequency which provides results consistent with the method presented
here is to measure the differential Stark shift using Ramsey spectroscopy [72, 155, 222].
While this takes significantly more time, it can be applied also to lower Rabi couplings
and is more precise because of the enhanced sensitivity of Ramsey spectroscopy. In agree-
ment with the increase of the UV power sent into the vacuum chamber while keeping the
beam parameters comparable to the old UV system, we find a factor of two larger Rabi
frequencies compared to previous results.

3.7.3 Magnetic field amplitude and UV polarization

Rydberg experiments are usually performed with spin-polarized ground state atoms at fi-
nite magnetic fields B where the total angular momentum F and its projection mF on the
quantization axis is identical for all atoms. The different quantized angular momentum
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projections for the ground states |F,mF 〉 as well as the Rydberg states |J,mJ〉 are ener-
getically separated by the Zeeman effect [5]. As long as experiments are performed in
the perturbative regime where splittings are much smaller than the hyperfine splittings
of the ground state or the fine-structure splitting of the Rydberg state, first-order Zeeman
splittings can be computed via

∆E
|g〉
Z = gFmFµBB and ∆E

|r〉
Z = gJmJµBB. (3.7)

Here, gF and gJ are the Landé factors of the ground state |g〉 and the Rydberg state |r〉,
see also Fig. 3.4 (e). Furthermore, µB = h × 1.3996MHz

G is the Bohr magneton [5]. The
Zeeman splitting can be used to measure the magnetic field at the position of the atoms.
The splittings can be measured either in the ground state using microwave transitions or
directly from the Rydberg spectroscopies.

For many experiments, also the direction of the magnetic field is essential. Because of
the Clebsch-Gordan coefficients entering in the angular momentum coupling, the coup-
ling strength between a ground state atom |F,mF 〉 =

∑
F,mF

C1/2 F 3/2
mJ mF mI |mJmI〉 and a Ryd-

berg state |nPJmJ ′〉 depends on the orientation of the light polarization relative to the
projection of F , see also Eq. 2.9. Atomic transitions with ∆mJ = mJ ′ − mJ = ±1 can
only be coupled with σ± polarized light while transitions with ∆mJ = 0 are only pos-
sible for π polarization. Exemplary transitions are presented in Fig. 3.4 (e) for initial states
|2,−2〉 = | − 1

2〉J | −
3
2〉I and |2, 0〉 = 1√

2
(| − 1

2〉J |
1
2〉I + |12〉J | −

1
2〉I). Expanding the light

polarization into the spherical basis with the z−axis parallel to B and using that light is
a transversal wave, one finds that pure σ+ polarization or pure σ− polarization is only
possible for B ‖ k. Furthermore, π polarization requires B ⊥ k [5].

In order to compensate for ambient fields, the experimental apparatus has offset coils
to adjust the magnetic field in the atomic plane as well as perpendicular to the atomic
plane. The offset coils are mounted such that independent tuning of the magnetic field
up to ≈ 1 (1.5) G parallel (perpendicular) to k is possible for the implemented current
supplies. The system compensating for the transverse field perpendicular to k consists
of two coils, providing a homogeneous field at the location of the atoms. The longitud-
inal field parallel to k is compensated using a single coil where the offset field also adds
a gradient. The magnetic field perpendicular to the atomic plane can be tuned up to 25 G
using the vertical compensation coil. Using additionally the gradient coil which realizes
the magnetic field gradient required for slicing enables fields up to 60 G perpendicular to
the atomic plane. Starting from zero magnetic field as for example during fluorescence
imaging and changing the current of a specific offset coil realizes a magnetic field which
points in one of the three specified directions. After a careful calibration of the coils, ar-
bitrary magnetic field configurations can be realized by superposition. In agreement with
the discussion in the previous paragraph, the available Rydberg transitions depend on
the relative orientation of k and B. The polarization of the excitation light can be further
optimized by supressing certain transitions in the Rydberg spectroscopies.

3.7.4 Rydberg spectroscopy

In the experimental setup, Rydberg excitation spectra are aquired by measuring atom loss
for various laser frequencies. Because Rydberg atoms are antitrapped in the optical lattice
and furthermore Rydberg atoms are motionally excited due to the momentum of the UV
photon, the probability of retrapping is low. Furthermore, a significant fraction of excited



47 3.7. Calibration of the Rydberg system

1000 Er 

νuv νuv > νuv

60

65

70

75

-0.2
0

36
P

1/
2 

R
es

. (
M

H
z)

 0.2

  0.0

Time t (hours)
6 12 18

a

0 200 400 600 800 1000
Lattice 1/2 depth Vlat (Er)36

P
1/

2 
R

es
. (

M
H

z)

0 

2 

4 

6 

400 600 800 1000
Lattice 1/2 depth Vlat (Er)D

ec
. c

on
st

  (
m

s-
1 )

0.00 

0.05 
0.10 
0.15

0.20b

c

d

10 15 20 25 30 35
ULE temperature T (°C)

B
ea

t 
fr

eq
ue

nc
y 

(M
H

z)

1 2 1

Figure 3.5: Further characterization of the Rydberg system (a) For deeper lattice depth,
decreasing (increasing) the energy of the trapped ground state (antitrapped Rydberg state)
shifts the Rydberg resonance towards higher frequencies. A Rydberg spectroscopy at deep
lattices in a dilute cloud also reveals that the Rydberg resonance (white dashed circles)
moves to higher UV frequencies νuv towards the trap center. On the ring where the UV
laser can on-resonantly excite the atoms, the observed atom number vanishes. (b) The
measured Rydberg-dressed lifetime for Ω̃ < ∆ of atoms in a dilute cloud does not increase
with lattice depth, indicating that photoionization does not occur. The blue dashed line
represents the calculated Rydberg-dressed lifetime of a single atom. (c) Exemplary time
trace of the Rydberg resonance over several hours. The observed drifts of up to several
hundreds of kilohertz were possibly connected to surface charges at the vacuum window,
temperature fluctuations of the ULE cavity, or drifts of the lattice beams. (d) Beating a
laser locked to the ULE cavity with a second narrow-lindwidth reference and changing the
temperature of the ULE cavity suggests a vanishing thermal expansion for a temperature
of T = 15◦C.

Rydberg atoms will decay to other Rydberg states because of black-body transitions be-
fore decaying back to the ground state. In order to find the Rydberg resonance, the ARC
package [55] provides a good reference. First, a broad spectroscopy is performed starting
from a dense cloud for long illumination times of a few hundreds of milliseconds at full
power. The dense cloud additionally broadens the transition due to density-dependent
losses. Under these configurations, the Rydberg transition is usually several hundreds of
megahertz broad, see also the central loss resonance in Fig. 4.4 (a).

At very lower powers where density-dependent loss signatures and power broadening
are reduced, the linewidth of the Rydberg spectroscopy can reach values of about one
hundred kilohertz [72]. An exemplary spectroscopic dataset is presented in Fig. 3.4 (d). In
addition to a decreased UV power, such narrow linewidths require to optimize the locking
parameters of the infrared ULE cavity lock. The measured linewidth is still limited by
the laser [72] and larger than the natural linewidth which is on the order of only a few
kilohertz. As long as the Rabi frequency Ω̃ is larger than the measured linewidth, one will
still observe Rabi oscillations.

3.7.5 Rydberg resonance drifts

For most measurements, it is required to continuously track the Rydberg resonance to
verify the laser detunings over the timescale of the experiment. An exemplary measure-



Chapter 3. Experimental platform 48

ment of a P-state Rydberg resonance over several hours which shows typical resonance
drifts is shown in Fig. 3.4 (c). We observe drifts on the order of up to a few hundreds of
kilohertz. The uncertainty of the Rydberg resonance was contributing the largest in the
calibration of the detunings at which the vibrational resonances of macrodimer binding
potentials presented later in this dissertation were observed.

One possible reason are fluctuating charges on the view port which is only five mil-
limeter below the atomic plane [71]. Because the experimental system does not have op-
tions to control the electric field, future experiments might benefit from illuminating the
vacuum window with an UV LED to remove the charges in the beginning of the experi-
mental sequence [137–139]. Also drifts of the ULE reference might contribute, in particular
because the ULE cavity cannot be used at the temperature where the thermal expansion
coefficient vanishes.

Drifts of the ULE reference and temperature dependence

Cavities made of ULE glass are attractive frequency references for high-precision spectro-
scopies because of their low temperature expansion coefficient. The expansion coefficient
typically has a quadratic dependence on temperature and vanishes at the zero expansion
point where the highest stability can be achieved. Because of fluctuations in the man-
ufacturing process, the zero expansion temperature has to be measured for each cavity
individually. Here, the zero expansion point was obtained by beating a laser operating
at 770 nm locked to the same ULE cavity with a second narrow-linewidth laser provided
by a nearby laboratory [400]. The temperature stabilization set point of the ULE cavity
system was changed once per day and the observed shift of the beat frequency was recor-
ded, see Fig. 3.5 (d). By fitting a quadratic function, the zero expansion point was found
to be T ≈ 15◦C. Because our current stabilization system does only allow to heat the cav-
ity, temperature stabilization below room temperature is currently not possible. At the
chosen temperature around T ≈ 30◦C, the cavity resonances shift as ∆ν ≈ −2MHz

◦C ∆T . In
the UV where another factor of four enters from frequency quadrupling, a temperature
drift of 0.012◦C already induces a frequency shift of 100 kilohertz. This demonstrates the
significance of keeping the power sent to the ULE cavity stable and low. The high fin-
esse F = 10800 [72] of the cavity leads to several Watts of circulating power within the
cavity for only tens of microwatt coupled into the cavity. In addition to short term drifts,
long-term drifts of the ULE cavity occur due to the degradation of the material [124]. As
a consequence, the detuning between a given ULE resonance line and a specific Rydberg
resonance experiences a deterministic drift which is on the order of a megahertz per year.

Lattice-depth dependent Rydberg resonances

The Rydberg transition frequency also depends on the intensity of the lattice light. The
electronic ground state is trapped by the lattice potential in the light field red detuned to
the atomic transitions. In contrast, in the Rydberg state, the Rydberg electron experiences
a repulsive ponderomotive force [124, 404]. Here, the assumption of a quasi-free electron
interacting with the oscillating light field leads to a good agreement with experimental
results [405, 406] .

This was studied by measuring the shift of the Rydberg resonance for various depths
of both in-plane lattices 1 and 2 while the vertical lattice 3 depth was kept identical. Here,
the ground state energy lowers by 2 × 2.0 kHzVlatEr

while the energy of the Rydberg state
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is expected to increase. Changing the intensity of both lattice beams reveals an experi-
mental shift of the 36P1/2 resonance of ∆ν = 7.4 kHzVlatEr

, see Fig. 3.5 (a). This confirms the
repulsive potential because the observed differential light shift is larger than the shift of
the ground state atom. In an optical lattice, a comparison with the theoretical expectation
would require to spatially average the Rydberg wave function over the periodic poten-
tial [407, 408]. This introduces the relative length scale between the Rydberg wave function
and the lattice constant as a parameter into the trapping potentials and results in different
lattice potentials for different Rydberg states [409].

For deep lattices, the corresponding differential light shift also leads to spatially de-
pendent Rydberg resonances, see Fig. 3.5 (a). Performing Rydberg spectroscopy in fluor-
escence starting from a large dilute cloud, one can observe how that resonance moves
from the edge towards the center of the lattice beam for increased UV frequencies. This is
similar as for the spatially resolved microwave spectroscopy used for alignment. Again,
a differential light shift is used to resolve the intensity profile of a laser. However, in this
case it is the UV beam showing the intensity profile of the lattice beam.

3.7.6 Lattice-induced losses and photoionization

Some Rydberg experiments performed in this dissertation benefit from deep lattice po-
tentials where the initial motional wave function introduced in Eq. 3.2 has a small spatial
extension. In this context, it is important to show the insignificance of lattice-intensity
dependent loss mechanisms such as photoionization [406, 410] which has been observed
in optical tweezer systems where intensities are high [296]. In order to estimate the con-
tribution in our system, the ground state was coupled to the Rydberg state in a dressed
configuration with Ω̃/(2π) = 2.8(1) MHz and a detuning ∆/(2π) = 24 MHz. In order to
suppress density-dependent losses, the initial state was again a dilute cloud at low density.
Because atom loss coefficients are significantly higher at high densities, this configuration
was essential for the experiment, see also appendix C.1. The observed atom loss coeffi-
cient at different lattice depths obtained from independent exponential fits are presented
in Fig. 3.5 (b). At each lattice depth, the UV laser was adjusted according to the drift of the
Rydberg resonance. The observations do not show an increase of the atom-loss rate with
the lattice depth. Assuming that the atom loss is dominated by black-body transitions and
ground state decay, the theoretical atom loss rate can be estimated via Ω̃2

4∆2Γ|r〉. Here, Ω̃2

4∆2

is the Rydberg fraction of the dressed ground state and Γ|r〉 = Γbb + Γdec is the decay rate
of the Rydberg atom, see also section 2.2.5. The observed atom loss was slightly larger
than the theoretical expectation. This might be due to the presence of nearby atoms in the
initial dilute cloud, which leave the system together due to collective loss signatures [155].
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Chapter 4

Rydberg macrodimers
The previous chapters focused on the properties of Rydberg atoms, their relevance

in current research, and the experimental apparatus. After providing this background,
the discussion now shifts towards Rydberg macrodimers, which are the main topic of the
thesis. The first part of the chapter discusses the symmetries of the electronic macrodimer
states and the vibrational and rotational structure. Following the publication [411], the
two-photon excitation scheme and the experimentally observed vibrational spectrum is
presented. The interpretation of the observed spectra was worked out in close discussion
with Jun Rui and Johannes Zeiher. In the end of the chapter, the contribution of the nuclear
motion to the excitation process and the loss of the excited molecules is discussed.

4.1 Properties of macrodimers

Rydberg macrodimers are Rydberg atom pairs electrostatically bound by their long-ranged
interaction potentials [67]. Following the increase of the Rydberg interaction coefficients
C3 and C6 [249], their size increases with principal quantum number [412]. Their macro-
scopic bond length easily reaches the micrometer regime, which makes them the largest
existing diatomic molecules. As their size becomes larger than typical optical wavelengths
on the order a few hundred nanometers, one can spatially resolve the individual atoms
bound within the molecule by optical methods. This allows studying their quantum state
at an unprecedented level of control not present for other molecules [413]. They feature
quantized vibrational states which can be spectroscopically resolved and theoretically cal-
culated based on ab-initio calculations [411]. The depth of their binding potentials as well
as their vibrational energies are six orders of magnitude lower than for ”conventional”
ground-state diatomic molecules. The total amount of quantized vibrational levels hosted
by their binding potential is similar in both cases, see also Fig. 2.5. Related to their large
size, their small rotational constant is well below a kilohertz and the rotational splitting
cannot be resolved on a timescale of a macrodimer lifetime. Because of the symmetry of
the interatomic interaction, their electronic states are specified using molecular quantum
numbers. The following sections contain a more thorough discussion of these properties.

4.1.1 Macrodimers & molecular symmetries

Molecular quantum states are different from bare atomic states for several reasons. The
additional motional degrees of freedom — vibration and rotation — increase the complex-
ity. Due to the interatomic interaction introduced in Eq. 2.19, the non-interacting atomic
pair states are not eigenstates anymore and the electronic molecular states consist of a
superposition of non-interacting atomic pair states. Adding the interaction Hamiltonian
Ĥint(R) to a system of two isolated atoms furthermore restricts the symmetry of the total
system [50, 177]. Now, the total Hamiltonian is not rotationally invariant and the total
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Figure 4.1: Macrodimers & molecular symmetries. (a) Because the electrostatic interac-
tion Hamiltonian Eq. 2.19 is symmetric with respect to rotations around the interatomic
axis, the total electronic angular momentum projection Ω is conserved. (b) Inversion sym-
metry allows one to label the interaction potentials as gerade (g) and ungerade (u). The
projection Ω remains unaffected under inversion. (c) The interaction is symmetric with re-
spect to reflections through any plane containing the interatomic axis. Here, Ω undergoes
a sign flip. There are two additional symmetries which are not shown because they are not
relevant to label the molecular quantum states Ω±g/u.

electronic angular momentum is not conserved. However, there are other symmetries that
provide conserved quantities. For homonuclear diatomic molecules such as the macrodi-
mers described here, the system is linear and has an inversion center. The set of relev-
ant symmetry operations which commute with the total Hamiltonian of the system can be
summarized by the point groupD∞h [4, 414, 415]. The terminology comes from the fact that
all symmetry operations leave the position of the center of symmetry unchanged. In addi-
tion to the identity operation, the point group contains 1) rotations around the molecular
axis which acts as an internal quantization axis. As a result, the projection Ω = mJ1 +mJ2

of the angular momentum on the molecular axis is conserved. Then, D∞h contains 2) in-
version and 3) reflection symmetry with respect to any plane which contains the molecu-
lar axis. Both are further discussed in the sections 4.1.3 and 4.1.4. These three symmetries
provide the quantum numbers to label macrodimer states, they are illustrated in Fig. 4.1.
Finally, D∞h also contains 4) rotations at an angle of 180◦ about any axis perpendicular
to the interatomic axis which contains the symmetry center and 5) so-called improper ro-
tations or rotation-reflections which are a combination of a rotation and a reflection. A
complete description of the point group D∞h requires to list all symmetry operations 1)-5)
since none of them can be represented by using combinations of the others.

For heteronuclear diatomic molecules or molecules containing more than two atoms,
one finds other point groups and as a consequence different sets of conserved quant-
ities. In particular for molecules that are more complex than macrodimers where the
Schrödinger equation cannot be solved, group theory provides powerful tools to the mo-
lecular states by their symmetry properties.

Hund’s coupling case (c)

Angular momentum coupling for molecules is complex because all angular momenta of
the individual atoms as well as the rotational angular momenta contribute. Dependent
on the strength of their couplings and the strength of the molecular binding, different
angular momentum projections can be assumed to be conserved. This leads to different
idealized cases, known as Hund’s cases [4]. Macrodimers are characterized using Hund’s
case (c), where the binding potentials are labeled asΩ±g/u andΩ is conserved. The subindex
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labels gerade (g) and ungerade (u) inversion states, the superindex labels the reflection
symmetry. These are weakly bound molecules where the binding energy is lower than the
LS−coupling and the coupling of the rotational angular momentum can be neglected. For
deeply bound molecules, also other projections like Λ = mL1 + mL2 and Σ = mS1 + mS2

can be assumed to be conserved and other Hund’s cases apply.

4.1.2 Macrodimer binding potentials

At large interatomic distances, where Rydberg interactions are much smaller than the ener-
getic spacing between neighboring Rydberg states, the interaction potentials are described
by their perturbative van der Waals interactions, see section 2.3.2. Rydberg states are ener-
getically closely packed in the energy region below the ionization continuum and further-
more interact via large van der Waals coefficients. As a consequence, crossings between
pair potentials can occur at experimentally relevant distances. In this regime where a
perturbative treatment of the interactions fails, the pair potentials can be calculated by
diagonalizing the total electronic Hamiltonian Ĥe via

Ĥe|ψMol(R)〉 = V (R)|ψMol(R)〉. (4.1)

The Hamiltonian Ĥe = Ĥ0 + Ĥint consists of the Hamiltonian Ĥ0 of both isolated atoms as
well as the ineraction Hamiltonian Ĥint, see Eq. 2.19. The distance-dependent eigenvalues
V (R) represent the Born-Oppenheimer potentials for the internuclear motion. The poten-
tials V (R) are binding potentials for macrodimer states if they have a spatial minimum
that can host vibrational eigenstates.

The electronic eigenstates

|ψMol〉 =
∑
ij

cij(R)|rirj〉 (4.2)

consist of a superposition of non-interacting atomic pair states |rirj〉 mixed by Ĥint. For
macrodimers, |ri〉 and |rj〉 are the single-atom Rydberg states populated by the first and
the second atom. Because of the small hyperfine coupling of Rydberg states, both are
expressed in their fine-structure basis. Later in section 5.2.3, the effects of an observed
hyperfine interaction can still be described as a perturbation using the states obtained
from Eq 4.1. They can be further specified by |ri〉 = |niLiJimJi〉, with ni the principal
quantum number, Li the orbital angular momentum, Ji the total angular momentum, and
mJi its projection on the molecular axis. The expansion coefficients cij(R) depend on the
interatomic distance R because the interaction Hamiltonian Ĥint(R) mixing the atomic
quantum states depends on R as well, see Eq. 2.19.

At even shorter distances, the potentials enters the so-called Spaghetti regime which
is dominated by a large number of steep crossing pair potentials [55, 220] where many
asymptotic pair states are mixed.

A paradigmatic example

A typical landscape of Rydberg interaction potentials is illustrated in Fig. 4.2 for states
close to the asymptotic energy of two isolated Rydberg atoms |35P1/235P1/2〉. Because of
the symmetry of the interaction Hamiltonian, one finds sets of decoupled potential curves
which belong to certain molecular numbers |Ω|±g/u. One can identify the pair potential
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Figure 4.2: Macrodimer binding potentials in the vicinity of the 35P1/2 resonance. Due
to the symmetry of the interaction Hamiltonian, the pair potentials decouple into poten-
tials 0+

g (a), 0−u (b) and 1u (c). At asymptotically large interatomic distances, all pair state
energies equal the added energies of the non-interacting atomic states. Decreasing the
distance, the pair potentials shift from their asymptotic energy due to van der Waals inter-
actions. At closer distances, one can find several molecular binding potentials which can
host vibrational states. The blue (red) color illustrates the overlap with the fine-structure
pair states |35P1/235P1/2〉 (|35P1/235P3/2〉) which can be optically excited with the laser
used in this dissertation. The gray pair potentials cannot be optically excited because of
dipole selection rules. Figure adapted from Ref. [411].

|α̃〉 =
∑

ij cij(R)|rirj〉 within the 0+
g pair potential manifold which is asymptotically con-

nected to |35P1/235P1/2〉. Decreasing the distance R, it bends towards larger energies due
to the van der Waals repulsion from another energetically lower-lying pair potential. With
increasing energy shift, additional pair states |rirj〉 contribute to |α̃〉 with R−dependent
amplitudes cij(R). Similarly, the state |β̃〉 asymptotically connected to the energetically
higher-lying state |35P1/235P1/2〉 bends downward. At a specific distance of R ≈ 720 nm
where both potentials cross, the finite coupling between the potentials forms an avoided
crossing. If the coupling term between the crossing potential curves exceeds the vibra-
tional energy in the upper well of the forming avoided crossing, the formed binding po-
tential can host vibrational macrodimer states [411]. This is typically the case if the coup-
ling between the crossing potentials is mediated by the strong dipole-dipole interaction
term Eq 2.25 dominating in the multipole expansion of Eq. 2.19. It holds true for the exem-
plary potential formed by the crossing potentials |α̃〉 and |β̃〉. Here, even if the asymptotic
states are not coupled by the dipole-dipole interaction term, states admixed by the van
der Waals interactions mediate a significant dipole-dipole coupling at the relevant dis-
tance. This gives rise to a gap large enough to support an adiabatic vibrational motion
in the upper binding potential while diabatic transition rates to the lower pair potential
curve contributing to the avoided crossing are low.

Scaling with principal quantum number

Neglecting the influence of Förster resonances, properties of macrodimer potentials at dif-
ferent principal quantum numbers can be estimated using known scaling laws. Increasing
n?, Rydberg interactions increase and the energy spacing between asymptotic pair states
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decreases. As a result, crossings occur at larger distances where the pair potentials are less
steep and binding potentials more shallow [248, 412]. As a result, the bond length increases
as Rν ∝ (n?)8/3. The vibrational energy decreases as ωvib ∝ (n?)−3, see also section 4.1.5.
Consistent with the scaling of the energy spacing between neighboring single-atom Ryd-
berg states, the interaction shifts Uν of the vibrational states ν relative to the asymptotic
pair state energies (or, equivalently, the depth of the macrodimer potential wells) decrease
as (n?)−3.

4.1.3 Inversion symmetry

All homonuclear diatomic molecules are symmetric with respect to inversion, see Fig. 4.1
(b). Here, all electronic coordinates {ri} and nuclear coordinates {Ri} are inverted at the
inversion center and eigenstates can be labeled as gerade (ungerade) with p = +1 (−1) [50,
412]. For macrodimers, the inversion symmetry (ri → −ri,R → −R), with R = R1 − R2

the distance vector between both nuclei, fixes the relation between the coefficients cij and
cji in the expansion Eq. 4.2. Using the symmetry properties of spherical harmonics, a
symmetrized pair state for p = ±1 writes

|rirj ;Ω±g/u〉 = |rirj〉 − p(−1)L1+L2 |rjri〉. (4.3)

Now, one can further specify the states admixed into the previously introduced 0+
g pair

potential |α̃〉. Using the conventions |e〉 = |35P1/2〉 and ↑ (↓) = +1/2 (−1/2) for mJ , the
symmetrized pair state |e ↑ e ↓; 0+

g 〉which contributes most is

|e ↑ e ↓; 0+
g 〉 =

1√
2

(|e ↑ e ↓〉 − |e ↓ e ↑〉) . (4.4)

Inversion symmetry should not be confused with permutation [50]. Only approximating
the interaction Hamiltonian by the dipole-dipole interaction term where the spatial separ-
ation of the Rydberg electrons from their nuclei is neglected, the system is symmetric with
respect to a permutation of the dipoles (R→ −R).

4.1.4 Reflection symmetry

Another symmetry of homonuclear as well as heteronuclear diatomic molecules is the
reflection through planes containing the interatomic axis [50, 412], see Fig. 4.1 (c). Acting
with the reflection operator on a molecular state introduces a multiplication factor d = ±1.
The corresponding symmetrized asymptotic pair states are given by

|rirj ;Ω±g/u〉 = |rirj〉+ d(−1)L1+L2+mJ1+mJ2−J1−J2 |r̄ir̄j〉. (4.5)

The reflection operator switches sign of the angular momentum projections mJi → −mJi

and mJj → −mJj but leaves all other quantum numbers invariant. Hence, states |r̄i〉 =
|niLiJi−mJi〉 and |r̄j〉 = |njLjJj−mJj 〉 differ from |ri〉 and |rj〉 in their angular momentum
projection on the molecular axis. Usually, the reflection symmetry is only specified for
states |Ω| = 0 because for higher Ω, there is always a degenerate doublet of states with
the same absolute value of Omega, but opposite signs. In this case, the reflection operator
couples the two degenerate pair potentials Ω = ±|Ω|.
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The pair potential |β̃〉 is asymptotically connected to the pair state |35P1/235P3/2〉. De-
fining |e′〉 = |35P3/2〉, the most dominant state symmetrized with respect to inversion and
reflection is

|e ↑ e′ ↓; 0+
g 〉 =

1

2

(
|e ↑ e′ ↓〉 − |e′ ↓ e ↑〉+ |e ↓ e′ ↑〉 − |e′ ↑ e ↓〉

)
. (4.6)

Here, the interatomic axis was chosen as the quantization axis because Ω is conserved.
These decompositions into electronic states become more important in the following chap-
ter.

4.1.5 Vibrational states

The vibrational states Φν(R) are obtained from solving the time-independent Schrödinger
equation in the relative coordinate R using the calculated binding potentials V (R), see
Fig. 4.3. This assumes the Born-Oppenheimer approximation where the electronic pair
state decomposition adiabatically adapts to the nuclear motion. Because the bond lengths
Rν are typically much larger than the width σν of the vibrational wave function, a one-
dimensional approach provides an accurate description. The resulting differential equa-
tion (

−~2

2µRb

∂2

∂R2
+ V (R)

)
Φν(R) = EνΦν(R) (4.7)

was solved using a Numerov algorithm [416, 417]. For all studied macrodimer poten-
tials, the vibrational states were almost equidistant in energy and very well approximated
by a harmonic oscillator. Deviations mainly arise due to non-adiabatic vibrational mo-
tion where the Born-Oppenheimer treatment is not valid, see chapter 6. For the studied
macrodimer potentials within principal quantum numbers n ∈ [31, 42], we found typical
vibrational spacings ωvib ∈ 2π × [2.0, 6.0] MHz, corresponding to a temperature of a few
hundred µK. Vibrational frequencies at higher principal quantum numbers can be estim-
ated using ωvib ∝ (n?)−3, see section 4.1.2.

4.1.6 Rotational states

The rotational energy is given by the angular momentum in the interatomic motion. The
rotational states |`〉 are obtained from the rigid rotor Hamiltonian, the energies are E` =
hBr`(` + 1) [418]. For macrodimers, the rotational constant Br = ~2/(2µRν) is typically
well below a kilohertz. This is less than the expected radiative decay rate on the order of
a few tens of kilohertz. Therefore, at least for the rotational quantum numbers involved,
rotation cannot be resolved and only broadens the linewidth of the measured vibrational
resonances.

This has implications for photoassociation experiments because the electronic and vi-
brational quantum states can be studied in a regime where the interatomic orientation
follows the classical intuition. Before photoassociation, atom pairs have a certain ori-
entation in the sample. Using rotational states, this initial spatial arrangement requires
to superimpose rotational states according to their overlap coefficients f`. The rotational
states are given by spherical harmonics [418]. The relevant rotational states are effectively
degenerate. As a consequence, a molecular Rabi frequency Ω̃ν exciting macrodimers will
split into coupling rates Ω̃`

ν = f`Ω̃ν . Hence, all rotational states will be populated accord-
ing to their initial expansion coefficient f` and the orientation of the angular wave function
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Figure 4.3: Two-photon macrodimer excitation. (a) The potential well hosts bound states
with an energy spacing of around 6 MHz (gray horizontal lines). Before photoassociation,
the atoms are arranged in a two-dimensional array with lattice spacing alat = 532 nm. The
vibrational wave functions are much narrower in the internuclear distance R than the root
mean square width

√
2σlat of the initial relative wave function Φrel(R) in the lattice, see

also section 4.3.1. Here, Φrel(R) is shown for the relevant distance
√

2alat and for the lattice
depth chosen in the spectroscopy in arbitrary units. (b) The two-photon and two-atom ex-
citation from the ground state |gg〉 occurs off-resonantly with detuning ∆ via intermediate
states where one atom is excited to the Rydberg state |e〉 ≡ |35P1/2〉. The molecular states
can be laser-excited if 2∆ matches the interaction shift from the asymptotic pair state |ee〉.
Figure adapted from Ref. [411].

stays conserved in the excitation process, see also section 7.4. This gives unique access to
the molecular frame of reference by aligning unbound ground state atoms using optical
traps before associating them into molecular states.

4.1.7 Macrodimer decay

In the theoretical literature, Rydberg macrodimers are expected to be limited by the decay
rates of the individual Rydberg states admixed to the molecule [67, 337]. Using Eq. 4.2, the
decay rate can be calculated by

γMol =
∑
ij

|cij |2(γi + γj), (4.8)

where the single-atom decay rates γi/j include transitions to the ground state as well as
room temperature black-body rates to neighboring Rydberg pair states. For the studied
macrodimers this value is close to twice the decay time of the Rydberg states at the given
principal quantum number n. For n = 35, one finds lifetimes τMol = γ−1

Mol ≈ 20 µs. De-
pendent on the particular binding potential, non-adiabatic couplings in the vibrational
motion between coupled pair potentials can decrease the lifetime, see chapter 6.
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Penning ionization

Rydberg atoms at close distances are known to autoionize [419–423]. In the underlying
Penning ionization process [424], the deexcitation of one Rydberg electron provides the
energy to ionize a second one [425]. At their equilibrium distance, the electron clouds are
too distant and ionization rates are much lower than the radiative decay [67, 337]. How-
ever, in the presence of diabatic coupling rates to attractive potentials where both Rydberg
atoms reach a closer distance, autoionization can occur. This is expected to happen in
particular at finite fields where the broken molecular symmetries increase the number of
gaps between crossing potential curves, or in the presence of other contaminant Rydberg
atoms. Possibly due to such non-adiabatic motional couplings between different pair po-
tentials (see also section 6), macrodimers were identified in previous experimental studies
by exactly their spontaneous ionization rate [70] . Finally, ionization can also be possible
after a black-body transition to a attractive interaction curve.

4.2 Two-photon macrodimer spectroscopy

In this thesis, Rydberg macrodimers are created by exciting ground state atoms by using
laser light. Because macrodimers consist of two Rydberg atoms, this requires to excite
two atoms into the Rydberg manifold. This can be done either sequentially [70] or using
a two-photon transition [69]. In this work, macrodimers are excited using a two-photon
transition in the ultraviolet (UV) starting from the electronic ground state. Here, a pair
ground state |gg〉 gets excited into a state |ΨMol〉 by absorbing two UV photons. As shown
in Fig. 4.2 and Fig. 4.3 (a) and discussed in Section 4.1.2, the interaction shift Uν of the
vibrational series from the bare Rydberg resonance is typically several hundreds of mega-
hertz. For a single-photon detuning ∆ of the UV laser relative to the transition |g〉 to |e〉,
the two-photon detuning from an initial pair state |gg〉 to a non-interacting doubly-excited
Rydberg state |ee〉 is 2∆, see Fig. 4.3 (b). Hence, one expects the macrodimer states to be
resonant at intermediate state detunings∆/(2π) = Uν/2. The only difference of the excita-
tion scheme to the Rydberg blockade scheme introduced in 2.4 (a) is that the laser couples
to molecular binding potentials instead of asymptotic van der Waals potentials. This is
similar to so-called Rydberg antiblockade [426] configurations where a large laser detuning
compensates for a Rydberg interaction shift such that the pair potentials can be resonantly
excited.

Experimentally, macrodimers can be detected via atom loss spectroscopy. As dis-
cussed in section 4.3, excited Rydberg atoms and macrodimers leave the optical lattice
with high probability and are not detected in the images taken after the excitation pulse.
The initial state of the spectroscopy was a two-dimensional Mott insulator at a lattice
depth of V = (40, 40, 80)Er in the electronic ground state |g〉 = |F = 2,mF = 0〉. The
UV laser was directing along the lattice diagonal direction and was linearly polarized in
the atomic plane. We furthermore applied a magnetic field of 28.6 Gauss perpendicular
to the atomic plane. The Rabi frequency from |g〉 to both Zeeman states |e ↓〉 and |e ↑〉
was Ω̃/(2π) = 1.2(1) MHz. The detuning ∆ was calculated relative to the center of both
transitions, which are split by ±13.3 MHz. To ensure full coverage of the spectral region
between neighboring data points, the excitation laser was swept by 480 kHz during the
total illumination time of tuv = 100 ms. The recorded atom loss spectrum covering hun-
dreds of megahertz on both sides of the Rydberg resonances shown in Fig. 4.4 (a).
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Figure 4.4: High-resolution two-photon spectroscopy detuned from the 35P1/2 Ryd-
berg resonance. (a) Starting from a two-dimensional atomic Mott insulator, atom loss sig-
natures are recorded for single-photon detunings ∆/2π ∈ [−400, 400]MHz of the UV laser.
On the blue-detuned side of the resonance, one observes atom loss resonances with regular
spacing and alternating line strength due to the coupling to macrodimers. For very large
detuning a second series of molecular bound states belonging to a 1u potential becomes
resonant. We find no signatures of bound states on the interaction-broadened red-detuned
side of the Rydberg resonance. (b) Zooming into the frequency region between 180 and
320 MHz reveals a spacing of the vibrational resonances of around 3 MHz, which is half the
energy spacing between the vibrational energies and slightly decreases for higher vibra-
tional states. We find very good agreement between the measured resonance positions and
the theoretical predictions (orange lines). (c) High-resolution spectroscopy of the lowest
vibrational level. Each datapoint represents an average of about ten experimental shots.
All error bars on the data points denote one standard error of the mean (s.e.m.). Figure
adapted from Ref. [411].

At a detuning ∆/(2π) ≈ 180 MHz, the 0+
g binding potential starting at an interac-

tion shift of U = 2∆/(2π) ≈ 360 MHz becomes two-photon resonant. In Fig. 4.4 (b) one
can see more than 50 spectroscopically resolved vibrational resonances, which agree well
with the calculated vibrational energies using Eq. 4.7. Mainly due to the dominating mo-
tional overlap integral, the lowest vibrational state features the strongest coupling, see
also sections 4.3.1 and 5.3. For higher vibrational states, we find a decrease of the coup-
ling rates into even vibrational states. The coupling into odd vibrational modes which
is very small at low ν increases with the vibrational quantum number. Similar observa-
tions will be presented later for other macrodimer potentials. At detunings higher than
∆/(2π) = 390 MHz, another 1u macrodimer potential becomes resonant. In principle,
single-atom states |e〉 as well as |e′〉 can act as intermediate states in the excitation pro-
cess. However, because of the larger fine structure splitting of 2.556 GHz and because the
chosen potential which is much closer to the state |e〉, the contribution from |e′〉 is small
for this specific potential.

Because single-atom Rydberg states are excited by the absorption of a single UV photon,
the transitions |g〉 → |e ↓〉 and |g〉 → |e ↑〉 appear much stronger than the molecular res-
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onances. As a consequence, the saturated region at small detunings is excluded from
the spectrum. Both Rydberg transitions are asymmetrically broadened towards negat-
ive detunings due to attractive 0−u and 1u van der Waals interaction potentials shown in
Fig. 4.2 (b,c). The two narrow resonances at negative detunings are lattice-induced Raman
resonances and also appear at the corresponding positive detunings, where they are over-
lapped with the macrodimer spectrum. They are centered around the 230 MHz detuning
between both lattice lasers. Their splitting matches the Zeeman splitting of the two states
|e ↓〉 and |e ↑〉.

4.2.1 Precision test of calculated pair potentials

For deeply bound molecules closer to the electronic ground state, ab initio calculations of
the molecular binding potentials based only on the properties of the individual atoms con-
tributing to the molecule is usually not possible. For macrodimers where electron orbitals
do not overlap, the vibrational resonances can be predicted at a remarkable accuracy of
a few hundred kilohertz. From the quantum defects introduced in chapter 2, the energy
spacing between Rydberg levels, their wave functions, and the multipole matrix elements
can be calculated. The vibrational macrodimer states provide narrow spectroscopic signa-
tures in the short-distance regime where the interactions are non-perturbative and Eq. 4.2
consists of many different asymptotic Rydberg states. Therefore, resolving the vibrational
resonances experimentally represents currently the most precise test of the calculated Ryd-
berg interaction potentials.

The calculation of the binding potentials relies on a diagonalization of the interaction
Hamiltonian Eq. 2.19 after performing the multipole expansion Eq. 2.20. All calculations
used the open-source program pair interaction [50]. One crucial parameter is the order
of the multipole expansion. In order to calculate asymptotic van der Waals potentials or
resonant dipole-dipole interactions, the dipole-dipole interaction term Eq. 2.25 ∝ R−3 is
sufficient. In the non-perturbative distance regime at shorter distances, also higher-order
multipole terms have to be taken into account [73, 200, 204, 339]. A prediction of the ob-
servered vibrational resonance positions required to include even higher multipole terms
up to R−6 − R−7, see also appendix B. This precision highlights the importance of mac-
rodimer spectroscopy to benchmark the ab-initio calculations of the interaction potentials.

Accurate calculations also rely the selection of basis states used for the diagonalization.
In order to reduce the dimension of the Hamiltonian, the diagonalization was restricted to
the molecular symmetry of the potential of interest. To get accurate potentials, available
states within an energy band ∆E ≈ 550 GHz were included for the single-atom basis as
well as the two-atom basis. Within these states, only single-atom states whose quantum
numbers differ from the starting state by∆n = 7 and∆L = 4 were selected. For J andmJ ,
no further selection was necessary in most cases. The coupling between states with large
∆n can be neglected because the spatial overlap integral decreases. For larger ∆L, the
coupling reduces because higher multipole interaction terms are required due to selection
rules. In total, the dimension of the interaction Hamiltonian was d ≈ 10 000 − 15 000. At
higher (lower) principal quantum number n, the energy band ∆E has to be decreased
(increased) because nearby Rydberg states become energetically closer at higher n.

For magnetic fields B ∦ R, the symmetry of the interaction Hamiltonian is broken
and different potentials |Ω|±g/u mix. Because this strongly increases the dimension of the
Hamiltonian, a calculation of the binding potentials as accurate as the observed vibrational
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spectra was not possible. Whenever finite fields were essential for the experiments, we cal-
culated molecular states at zero field and then treated the magnetic field as a perturbation.

4.2.2 Vibrational linewidth & lifetime

Measuring the linewidth of the vibrational resonances provides a lower limit for the exper-
imental macrodimer lifetime using the Fourier uncertainty principle between energy and
time [427]. From Eq. 4.8, one theoretically expects a macrodimer lifetime of τth ≈ 20 µs,
which is half of the bare Rydberg lifetime at the same n. Fitting a Lorentz profile to the
spectroscopically resolved lowest vibrational resonance yields a FWHM of 139(5) kHz.
Note that the width shown in Fig. 4.4 (c) appears only half as broad as it actually is in the
two-photon spectroscopy because changing the frequency of a single UV photon shifts the
summed frequency of two UV photons by the double amount. Accounting for the factor
of two, we obtain τlim ≈ 0.6 µs for the experimental limit of the macrodimer lifetime.

Because of the linewidth of the laser, it is challenging to be conclusive about the range
between τlim and τth. The natural linewidth of the bare Rydberg states cannot be resolved
in the experimental apparatus [72]. At deep lattices, also lattice inhomogeneities lead to
broadening, see Fig. 3.5. Additionally, the accessible motional states of the antitrapped
Rydberg atoms which are spread over a certain energy band are expected to broaden the
resonance even at constant lattice depth. For macrodimers, this partly contributes via the
contributing rotational states. This effect is illustrated in Fig. 4.5 (d) and is larger than
the natural lifetime. This results in larger experimental linewidths, independent of the
radiative lifetime or the laser.

4.3 Motional overlap & loss dynamics

In addition to the mixing of electronic Rydberg pair states, macrodimer states are different
from the asymptotic Rydberg pair states because their interatomic motion is constrained
by the vibrational wave functions. At principal quantum numbers relevant here, the vi-
brational energy is roughly ten times larger than the kinetic energy of a ground state atom
in the motional ground state in the optical lattice. This has two consequences which will
be discussed in the following section. On the one hand, the motional overlap integral is
far from unity, which will decrease the optical coupling rates into macrodimer states. On
the other hand, a decaying macrodimer will release enough kinetic energy to efficiently
remove the corresponding pair.

4.3.1 Franck-Condon factor

The coupling rate into molecular states by the light field is mediated via the electronic
state. During photoassociation, the nuclear motion will be projected into the vibrational
wave function of the macrodimer state. Here, a Franck-Condon overlap integral between
the initial motional wave function and the vibrational wave functions enters as a prefactor
into the optical coupling. Initially, the ground-state atoms populate the lowest motional
state in the optical lattice, see Eq. 3.2. The root mean square (RMS) width of a single-
particle wave function and its relation to the on-site trapping frequency was introduced
in Eq. 3.3. For the 0+

g macrodimer potential presented in Fig. 4.3 and Fig. 4.4 where the
binding potential minimum appears at a interatomic distance larger than 700nm, the mo-
tional overlap at a distance of a lattice diagonal is expected to dominate. Fixing the origin
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of the coordinate system to be between both atoms and the interatomic axis as the z−axis
and assuming isotropic optical trapping, the normalized initial motional wave function
χm(R1,R2) of two atom pairs at the distance R =

√
2alat in the lattice reads

χm(R1,R2) =
1(

2πσ2
lat

)6/4 e− 1

4σ2lat

[(
R1−

alat√
2

ez
)2

+
(

R2+
alat√

2
ez
)2]
, (4.9)

with ez the unit vector along the z−axis. After separating the center-of-mass motion and
transforming the relative coordinates R = R1−R2 into spherical coordinates, this becomes

χrel(R, θ) =
1(

4πσ2
lat

)3/4 e− 1

8σ2lat

[
(R−

√
2alat)

2
+2
√

2alatR(1−cos θ)
]
. (4.10)

Because of the choice of the z-axis and the cylindrical symmetry of the relative motion of
two atoms pinned in the laboratory frame, χrel(R, θ) shows no ϕ−dependence. The mean
separation 〈R〉 =

√
2alat of the motional wave function in the ground state greatly exceeds

the width σrel. It is therefore well justified to separate the radial and angular parts and
write χrel(R, θ) ≈ Φrel(R)Ψrel(θ), with

Φrel(R) =
1(

16πσ2
lata

4
lat

)1/4 e− 1

8σ2lat
(R−

√
2alat)

2

, (4.11)

Ψrel(θ) =

√
a2

lat
2πσ2

lat
e
−
(
alat
σlat

sin( θ
2

)
)2
, (4.12)

and normalization conditions
∫
R2|Φrel(R)|2dR = 1 and 2π

∫
|Ψrel(θ)|2 sin θdθ = 1.

Also for the macrodimer state, the radial part which is given by the vibrational wave
function Φν (R) is assumed to be decoupled from the angular wavefunction. The angular
states are rotational states Y m

` (θ, ϕ). For the isotropic trapping conditions, contributions
can only be found for ϕ−independent states Y 0

` (θ).
The Franck-Condon integral

fν` = 2π

∫ ∫
χ?rel(R, θ)Y

0
` (θ)Φν (R)R2 sin θdRdθ

≈ 2π

∫
Ψ?rel(θ)Y

0
` (θ) sin θdθ

∫
Φ?rel(R)Φν (R)R2dR = f`fν (4.13)

quantifies the overlap of the nuclear motion. The second line uses that σrel � 〈R〉. This
provides two independent Franck-Condon integrals f` for the rotational contribution and
fν for the vibrational contribution. Justified by the same limits, fν can be also further
simplified by a one dimensional integral. The different overlap coefficients are related via√∑

`

|fν`|2 ≈ fν ,
∑
`

|f`|2 = 1. (4.14)

Since the rotational basis represents a complete basis, the original angular distribution can
always be reproduced by a sufficiently large amount of contributing rotational states, if
they are energetically accessible.
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Tunability of the motional overlap

Since the coupling rates will be proportional to the motional overlap integrals fν , coupling
rates can be optimized by engineering a ground state relative wave function which equals
the vibrational wave function of the molecule. On the one hand, this requires to choose
binding potentials where the bond length matches the relevant distance in the lattice. On
the other hand, the size of the initial relative wave function σlat has to be comparable
to the vibrational wave function σν . For the macrodimers studied in this work, σν was
significantly lower than σlat. As a consequence, one observes a stronger coupling starting
from a Mott insulating state at deeper lattice depths V0. Starting from a Bose-Einstein
condensate where Wannier wave functions are broad and particles are delocalized, the
vibrational resonances were almost within the background atom loss. Here, in addition
to lower molecular excitation rates, the background atom loss increased due to collective
loss signatures, see also appendix C.1.

For the lowest vibrational modes, the maximum achievable spatial overlap integral
was found to be fν ≈ 0.6 for the available laser power. This limit arises because of the
weak scaling of σlat ∝ V

1/4
0 [26]. Note that deeper lattices also induce motional side ef-

fects, as discussed in section 4.2.2 and 4.3.2. As an alternative, one can use more shallow
macrodimer potentials. Using the scalings discussed in section 4.1.2, one finds that at
principal quantum numbers n ≈ 60, unity Franck-Condon factors are possible. It might be
interesting to perform further studies on macrodimers in this regime using optical tweez-
ers.

4.3.2 Macrodimer loss dynamics

After photoassociation of macrodimers, their ejection from the trap is unavoidable due to
several motional effects. First, associated molecules gain a recoil velocity vrec = 15.4nm

µs
from the absorption of two UV-photons. Second, Rydberg states are antitrapped in the
optical lattice. As a result, the kinetic energy initially stored in the confined Wannier wave
function gets released into the center-of-mass coordinate of the excited macrodimer. Ad-
ditional acceleration occurs due to the repulsive lattice potential, which depends on the
depth V0 of the optical lattice. These mechanisms occur also for single-atom Rydberg states
and are of similar order. As a consequence, the excitation of single-atom Rydberg states is
usually also experienced as atom loss. Additional motional effects which make retrapping
for macrodimers even more unlikely are discussed in the following paragraphs.

Rotational dephasing

Due to the kinetic energy stored in the Wannier states, the associated molecules which,
in contrast to the ground state atoms, not trapped by the lattice potential, experience a
dephasing of their relative orientation while the interatomic distance stays locked to the
minimum of the binding potential. The rotational states Y m

` (θ, ϕ) superimposed for the
initial interatomic orientation are assumed to be energetically split by the rigid rotator
Hamiltonian Ĥ = BrL̂

2. The eigenenergies are E` = Br`(` + 1). The rotational constant
Br = ~2

2µRb(Rν)2
depends on the reduced mass µRb = mRb/2 and the molecular bond length

Rν . For molecules excited at Rb =
√

2alat, the rotational constant is Br ≈ 200 Hz, which
is significantly smaller than the vibrational splitting. Assuming that all rotational states
needed to reproduce the initial wave functions are occupied accordingly, the initialized
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Figure 4.5: Motional overlap and angular dephasing. (a) The motional relative wave
function in the ground state is decomposed into a radial contribution Φrel(R) and an an-
gular contribution Ψrel(θ). (b) The radial relative wave function Φrel(R), here for a lattice
depth of V0 = 1000Er. (c) Full width at half maximum (FWHM) of Φrel(θ), shown for
different lattice depths. Because of the weak scaling σlat ∝ V

−1/4
0 , the tunability of the

ground state wave function is limited. (d) Decomposition of the inital angular wave func-
tion Ψrel(θ) for different lattice depths into angular momentum states Y 0

` (θ, ϕ) for two
different lattice depths. (e) After photoassociation, the interatomic distance R is strongly
confined by Φν(R). Because of the kinetic energy stored in the Wannier wave functions,
the orientation of the macrodimers after photoassociation will get lost at a faster timescale
than the expected radiative decay rate. The narrower the initial distribution Φrel(θ), the
faster the dephasing.

state evolves as
Ψrel(θ, t) =

∑
`

f`Y
0
` (θ)e−

i
~E`t. (4.15)

The time-dependent angular probability density ρrel(θ, t) = 2π|Ψrel(θ, t)|2 sin(θ) which is
normalized according to

∫
ρrel(θ, t)dθ = 1 is shown in Fig. 4.5 (e) for two initial relative

wave function. In particular at deep lattices one finds that the initial orientation is lost at
times lower than the radiative lifetime of the macrodimer. This result can also be under-
stood as a time-of-flight expansion in the angular degree of freedom.

Kinetic energy in macrodimer decay

The decay of macrodimers is different from the decay of Rydberg atom pairs at distances
larger than a blockade radius Rb because of the released kinetic energy. If one of both
Rydberg atoms decays back to the electronic ground state, the final electronic pair state
is effectively non-interacting. However, the kinetic energy stored in the vibrational wave
function gets released and both nuclei expand in their relative distance coordinate. Since
the confinement of the macrodimer binding potentials studied here exceeds the optical
lattice potential, the related velocity

δvν =

(
(ν + 1/2)~ωvib

µRb

)1/2

≈ (ν + 1/2)1/2 × 150
nm

µs
(4.16)
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Figure 4.6: Distance-dependent loss signatures. (a) Changing the initial density distribu-
tion from a Mott insulator with unity filling (gray datapoints and left inset) to a configura-
tion without atom pairs at distances of

√
2alat (right inset) leads to a strong suppression of

the macrodimer resonances (gray data points). For both spatial configurations, the atom
number was normalized to the initial atom number without UV light and the illumina-
tion time was tUV = 20 ms. (b) Spectroscopic signature at the lower branch of the studied
avoided crossing. The pair states can be excited within a broad energy region below the
potential maximum. At the maximum where the continuum states have low kinetic en-
ergy, the coupling reaches a maximum because of large motional overlap. Afterwards,
due to the energy gap between the potential maximum and the binding potential, the pair
potential becomes off-resonant and pair excitation turns off. As expected, the hole-hole
correlation signal can only be observed at detunings below the potential maximum and
vanishes within the gap. The UV light was polarized linearly in the atomic plane. For the
calculation of the correlation signals, all data points within the gray boxes were combined.
All error bars denote one s.e.m. Figure adapted from Ref. [411].

for the vibrational states ν [9] is significantly larger than the expansion velocity of a re-
leased Wannier wave function.

If a macrodimer decays via a black-body process instead, dipole-dipole selection rules
favor final states where both Rydberg atoms interact via strong resonant dipole-dipole
interactions. Because of the short distance, a fast acceleration process releases up to hun-
dreds of megahertz within less than a microsecond, resulting in atom pairs moving at rel-
ative velocities of several micrometers per microsecond. If the final pair potential is attract-
ive, this can induce ionization [420]. If it is repulsive, both Rydberg atoms separate at high
relative kinetic energies. After such a decay, the rotational dephasing typically already
strongly affected their orientation and it cannot be assumed that both repelling Rydberg
atoms separate along their original orientation during photoassociation, see Fig. 4.5 (e).

4.3.3 Spatially resolved atom pair losss

The discussion of the Franck-Condon overlap in section 4.3.1 concluded that the atom loss
occurs pairwise and at a distance of

√
2alat. Using the site-resolved imaging system of

the experimental platform, one should therefore be able to detect the macrodimer excita-
tion microscopically. In a first experimental test, one can compare the atom loss spectrum
for different initial spatial arrangements in the lattice. In addition to a unity-filled Mott
insulator, the spectrum was measured in a system where the rows in the lattice are al-
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ternatively occupied and empty [395, 411]. As expected, the result shown in Fig. 4.6 (a)
suggests that macrodimer excitation in the density-modulated initial state is much lower
due to the absence of initial atom pairs at a distance of

√
2alat. In total, the suppression

was found to be roughly a factor of ten. The remaining macrodimer excitation rate in
the density-modulated state comes from imperfect initial state preparation and a small
remaining Franck-Condon factor at nearest-neighbor distance.

Another direct method is to observe the correlated pair loss by evaluating ensemble-
averaged hole-hole correlation functions

g
(2)
δR =

(
〈ĥk+δx,l+δyĥk,l〉 − 〈ĥk+δx,l+δy〉〈ĥk,l〉

)
k,l

(4.17)

at distances δR = (δx, δy). Here, (.)k,l denotes averaging over the relevant pairs in the
ensemble. Furthermore, ĥk,l = 1 − n̂k,l is the hole operator at site (k, l) which is one
for an empty site and zero for an occupied site and n̂k,l is the number operator. For our
system size, evaluating g

(2)
δR requires a dataset of about 200 experimental shots at a sim-

ilar scattering rate. In the spectroscopy of the vibrational resonances where each data
point represents the average of about 10 realizations, this was not possible. However,
the spectroscopy in the vicinity of the lower branch of the avoided crossing of the poten-
tials |α̃〉 and |β̃〉 shows a broad loss signature which stops at the potential maximum, see
Fig. 4.6 (b). Here, the coupling to the motional continuum does not lead to such sharp res-
onances as observed for the vibrationally bound states and the distance still agrees with√

2alat. By combining a sufficiently large amount of data points close to the maximum
of the potential, the correlation signal g(2)

δR converges. In agreement with the expectation,
the correlation signal peaks at the corresponding distance vector δR = (1,−1) alat. Inter-
estingly, the small signal for the perpendicular orientation δR = (1, 1) alat suggests that
the excitation rate is strongly directional. The excitation rate was observed to be much
stronger perpendicular to the polarization of the UV light, which was linearly polarized
along the direction with the weak signal. The solution to that puzzle lies in the electronic
structure of the pair potential at the crossing point and will be presented in the end of the
next chapter.



Chapter 5

Electronic structure tomography
The previous chapter focused on the spectroscopically resolved vibrational resonances

of macrodimer potentials. In section 4.1.6 it was furthermore argued that the orientation of
the atom pairs stays conserved in the photoassociation process. This unique access to the
molecular frame of reference motivates to further characterize the molecular states by their
orientation-dependent photoassociation rates, see Fig. 5.1. After calculating the associated
molecular Rabi frequencies, the microscopic signal recorded for different molecular states
blue-detuned from the 36P1/2 is discussed. Then, the response of macrodimer states on
applied magnetic fields and the influence of a spatially varying electronic structure on
the photoassociation (PA) process are discussed. This chapter discusses results from the
publications [411] and [413]. The presented description of the optical coupling process
was developed in close discussion with Jun Rui.

5.1 Molecular Rabi frequencies

Rabi frequencies between internal states of atoms depends on the initial state, the final
state and the light polarization. The excitation process is described in the atomic frame
of reference, which can be externally controlled by applying a magnetic field B. For mo-
lecules, controlling the quantization axis requires to control the orientation of the molecu-
lar state. Here, the interatomic axis R defines an internal quantization axis and the angular
momentum projectionΩ is only well-defined on R. In the optical excitation process of mo-
lecules, this introduces the angle β between the quantization axis of the initially unbound
atoms and the molecular orientation as an additional parameter to the coupling. Similar
to the selection rules appearing in the optical coupling between atomic states, one finds
dependencies that are characteristic for different molecular quantum numbers Ω±g/u and
allow for their identification, see Fig. 5.1 (d,e). Furthermore, the mixing of atomic states
leads to a larger number of contributing single-atom Rabi couplings to the molecular coup-
ling rates [428].

5.1.1 Competing reference frames

Before photoassociation, the atoms are initialized in the 87Rb [429] ground state |g〉B =
|F,mF 〉 ≡ |g〉, here expressed in the frame of the applied magnetic field B. The reference
frame of the molecule is given by the interatomic axis R and has a relative angle β relative
to B. A consistent microscopic description of the photoassociation process thus requires to
rotate either the initial state into the molecular frame or vice versa. Rotating |g〉B expressed
in the magnetic frame into the molecular frame using the rotation operator Û(β) yields

|g〉B → Û(β)|g〉B =
∑
mF

cFmF |F,mF 〉 ≡ |g〉R, (5.1)

67
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Figure 5.1: Electronic structure tomography of Rydberg macrodimers. (a) The orienta-
tion of the atom array is fixed in the laboratory frame by the optical lattice. The direction
of the magnetic field B is tunable and the wave vector k of the ultraviolet (UV) laser is
pointing along the lattice diagonal direction. As indicated in the individual figures, the
polarization ε of the UV laser is either linear in the atomic plane, linear orthogonal to the
atomic plane, or circular. (b) Excited macrodimers were observed as correlated atom loss.
(c) Blue-detuned from the 36P1/2 Rydberg resonance, one finds macrodimer binding po-
tentials with different molecular symmetries 0+

g , 0
−
u and 1u potentials. (d,e) The unique

spatial configuration allows one to study the dependence of photoassociation on the angle
β between the orientation of the atom pairs relative to a magnetic field (d) and on the
circularity ϕ of the light polarization ε(ϕ) (e). (f) Additionally, the response of the mo-
lecular state to magnetic fields can be studied. These signatures provide an experimental
fingerprint of the electronic structure of the molecule and will be studied in the following
paragraphs. Figure adapted from Ref. [413].

where cFmF are the coefficients of the populated hyperfine states after the rotation. Altern-
atively, the molecular state

|ΨMol;Ω
±
g/u〉R → Û(−β)|ΨMol;Ω

±
g/u〉R ≡ |ΨMol;Ω

±
g/u〉B (5.2)

can be rotated into the atomic frame [411, 412, 430]. Because the molecular states |ΨMol;Ω
±
g/u〉

consist of a large number of atomic pair states which have to be rotated individually, it is
more convenient to rotate the initial state using Eq. 5.1.

5.1.2 Decomposition of the initial state

The strong hyperfine coupling in the electronic ground state mixes the electronic angular
momentum with the nuclear angular momentum. Because the Rydberg states contributing
to |ΨMol;Ω

±
g/u〉 are expressed in the fine-structure basis, it is convenient to do the same for

the ground state. Decomposing the previously rotated initial pair state |gg〉R yields

|gg〉R =
∑

mJ1mJ2
∈{↑,↓}

|mJ1mJ2〉
∑

mI1 ,mI2∈
[−3/2,3/2]

C1/2 F 3/2
mJ1 mF1 mI1

C1/2 F 3/2
mJ2 mF2 mI2

cFmF1
cFmF2

|mI1mI2〉
(5.3)

after reordering the electron and nuclear angular momenta. Furthermore, the spin pro-
jections mJ1 and mJ2 of both atoms are denoted as ↑ (↓) = +1/2 (−1/2) and C1/2F 3/2

mJ mF mI =
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〈1/2,mJ , 3/2,mI |F,mF 〉 are Clebsch-Gordan coefficients. For 87Rb with a nuclear spin
I = 3/2, the four spin projections are mI1(2) ∈ {−3/2,−1/2, 1/2, 3/2}. The index 1 (2)
refers to the first (second) atom contributing to the pair state. The sum over the different
spin projections mF1(2)

contributing after applying the rotation operator Û(β) in Eq. 5.1
on the initial state is omitted because only contributions mF1(2)

= mJ1(2) + mI1(2) have
non-vanishing Clebsch-Gordan coefficients. After introducing coefficients

c 2
mJ1 ,mJ2

=
∑
mI1
mI2

(
C1/2 F 3/2
mJ1 mF1 mI1

C1/2 F 3/2
mJ2 mF2 mI2

cFmF1
cFmF2

)2
(5.4)

and normalizing the nuclear spin states |ΨmJ1mJ2 〉I corresponding to the electronic states
|mJ1mJ2〉, this can be simplified to

|gg〉R = c↓↓ |↓↓〉J ⊗ |Ψ
↓↓〉I + c↑↑ |↑↑〉J ⊗ |Ψ

↑↑〉I

+ c↓↑

(
|↓↑〉J ⊗ |Ψ

↓↑〉I + |↑↓〉J ⊗ |Ψ
↑↓〉I

)
.

(5.5)

Throughout this thesis, both atoms are initialized in the same single-atom ground state |g〉.
Because this configuration leads to c↑↓ = c↓↑, the coefficient is placed outside of the brack-
ets in the second line. Since dipole-allowed single-photon transitions enforce an inversion
symmetry flip, our two-photon photoassociation (PA) conserves the inversion symmetry
of the initial state. It is therefore convenient to further decompose |gg〉R into gerade (g)
and ungerade (u) inversion eigenstates |MJ g/u〉, with MJ = mJ1 + mJ2 the summed an-
gular momentum projection on R. For ground state 87Rb with orbital angular momentum
L = 0, applying Eq. 4.3 leads to pair states |0g〉J = 1/

√
2 (|↑↓〉J − |↓↑〉J), | − 1u〉J = |↓↓〉J ,

|0u〉J = 1/
√

2(|↑↓〉J + |↓↑〉J) and | + 1u〉J = |↑↑〉J , which are formally equivalent to the
singlet and triplet basis states of two coupled spin-1/2 systems. Introducing new normal-
ized nuclear spin states |Ψ−1

u 〉I = |Ψ↓↓〉I , |Ψ0
u〉I = 1√

2

(
|Ψ↓↑〉I + |Ψ↑↓〉I

)
, |Ψ+1

u 〉I = |Ψ↑↑〉I and

|Ψ0
g 〉I = 1√

2

(
|Ψ↓↑〉I − |Ψ↑↓〉I

)
yields

|gg〉R = c−1
u |−1u〉J ⊗ |Ψ

−1
u 〉I + c0

u |0u〉J ⊗ |Ψ
0
u〉I

+ c+1
u |+1u〉J ⊗ |Ψ

+1
u 〉I + c0

g |0g〉J ⊗ |Ψ
0
g 〉I .

(5.6)

The β-dependent coefficients for the three studied ground states |F = 2,mF = −2〉, |2,−1〉
and |2, 0〉 are shown in Fig. 5.2. Note that no normalized spin state |Ψ0

g 〉I can be constructed
for |Ψ↓↑〉I = |Ψ↑↓〉I . This is the formal reason why the initial state |2,−2〉 has no contribu-
tion from |Ψ0

g 〉I , see also section 5.2.2. In many cases only one of the four initial states is
coupled to a specific molecular state. As discussed in the following paragraphs, measur-
ing the photoassocation rates for various angles β then directly reproduces these plots. For
ungerade states and certain light polarizations, more than one state can contribute to the
coupling. Since both final macrodimer states are distinguishable by their different nuclear
spin state, this will lead to different molecular Rabi frequencies which cannot interfere. In
these cases, the corresponding excitation rates add up.

5.1.3 Light polarization

For atoms, the anomalous Zeeman effect provides a useful example to visualize the in-
terplay between the quantization axis and the angular momentum conservation during
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Figure 5.2: Initial pair state decomposition and light polarization. (a) For |g〉 = |2,−2〉
and β = 0◦ (180◦), only | − 1u〉J (| + 1u〉J) contributes. For β = 90◦, the initial pair state
is a superposition of all three ungerade states. There is no contribution from |0g〉J . (b)
For |g〉 = |2,−1〉, the tendency is similar but the dependence is weaker. Additionally,
c0
g is now finite but independent of β. (c) For |g〉 = |2, 0〉, all states contribute with the

same amplitude for all angles. (d) For R ⊥ k, the polarization can be decomposed into
a π−component and a component representing an equally weighted superposition of σ+

and σ−. For R ‖ k, π polarization is not possible. Now, the polarization can be varied from
σ− to σ+ by tuning the ellipticity ϕ. Figure adapted from Ref. [413].

optical tranistions. Here, the presence of a magnetic field B guarantees a well-defined
angular momentum projection of the atomic states along the magnetic field. As a con-
sequence, some transitions can only be observed only parallel or perpendicular to the
field. Because light is a transversal wave, π polarized light where the field oscillates paral-
lel to the quantization axis requires a propagation direction k ⊥ B perpendicular to it. On
the other hand, pure σ+ or pure σ− polarization can only be realized parallel to k ‖ B. An
equally weighted superposition σ± can be achieved in both cases.

For molecules, such a study is more difficult because the angular momentum projec-
tion of molecules is only well-defined along the molecular axis R. As a consequence, a
useful quantization axis is R instead of B and a experimental study similar as the one for
atoms requires to orient the molecular state in the laboratory frame. For the macrodimer
excitation scheme used in this thesis, this requirement is fulfilled. Replacing B by R, the
intuition gained from the anomalous Zeeman effect can now directly be translated to the
excitation of molecules.

Here, the polarization ε of the excitation light field E = E0ε with amplitude E0 is ex-
panded into the spherical basis ε =

∑
q∈{0,±1} cqeq in the molecular frame where ez ‖ R.

Again, π polarized light is oscillating parallel to the interatomic axis e0 = ez and σ± polar-
ized light e±1 = ∓ 1√

2
(ex ± iey) oscillates in a plane perpendicular to R. In the experiment,

the PA laser propagates along one lattice diagonal and the bond length for most molecules
studied here is close to the lattice diagonal distance. This leads to PA either parallel or per-
pendicular to k. For R ⊥ k and a UV polarization parallel (perpendicular) to the atomic
plane, the polarization vector is ez (ex), see Fig. 5.2 (d). For R ‖ k, the π-component is
always zero and all linear polarizations are equivalent. Now, the phase delay ϕ between
ex and ey parametrizes a general polarization vector ε(ϕ) = 1√

2

(
ex + eiϕey

)
. An experi-

mental study of the related selection rules is dicussed in section 5.2.4.



71 5.1. Molecular Rabi frequencies

5.1.4 Calculation of Rabi frequencies

In a three-level system, the effective two-photon Rabi frequency Ω̃ef coupling an initial
state to a final state via an intermediate state amounts to Ω̃ef = Ω̃1Ω̃2

2∆ . Here, Ω̃1(2) are the
Rabi couplings from the final state to the intermediate state and from the intermediate state
to the initial state and ∆ � Ω̃1 (2) is the intermediate state detuning. The same formalism
describes our PA, however, with more than one intermediate state and also several coupled
asymptotic pair states within the macrodimer state. The coupling Hamiltonian reads

ĤL(E) = −(d̂(1) ⊗ 1(2) + 1(1) ⊗ d̂(2)) · E, (5.7)

with d̂(1(2)) the dipole operators of both individual atoms forming the molecule. The mo-
lecular states |ΨMol;Ω

±
g/u〉 =

∑
i,j cij(R)|rirj〉 consist of several asymptotic Rydberg pair

states |rirj〉 = |niLiJimJi;njLjJjmJj〉, mixed by the interatomic interaction. Since the UV
laser can only excite Rydberg P-states, only pair states where Li = Lj = 1 contribute.
Acting with Eq. 5.7 on the initial ground state |gg〉 can only couple singly-excited states.
As a consequence, the macrodimer states are coupled from |gg〉 by two-photon transitions
via the two intermediate states where only one atom is excited, see also Fig 4.3 (b). This
provides molecular Rabi frequencies

Ω̃ν = 〈gg|ĤL(E)

(∑
k

|rkg〉〈rkg|+ |grk〉〈grk|
2∆k

)
ĤL(E)

∑
ij

fνij(R)|rirj〉. (5.8)

The Franck-Condon overlap first introduced in Eq. 4.13 now enters via state-dependent
integrals

fνij =

∫
Φ ∗ν (R)c∗ij(R)Φrel(R)R2dR (5.9)

where the motional overlap is evaluated for each of the contributing pair states |rirj〉 indi-
vidually. Again, Φν(R) is the vibrational wave function of the molecular state and Φrel(R)
is the relative wave function before PA, in our case given by the Wannier state in the op-
tical lattice. In principle, the presented coupling scheme is similar to the Rydberg blockade
Hamiltonian introduced in Eq. 2.31. The main difference is the presence of a macrodimer
state instead of an asympototic pair state, an additional interaction shift of the doubly-
excited state, and the possibility to have several intermediate states.

For |rirj〉 one finds that only the intermediate states |grj〉 for k = j and |rig〉 for k = i
contribute with a coupling strength

Ω̃ij =
Ω̃iΩ̃j

2

(
1

∆i
+

1

∆j

)
= Ω̃ji. (5.10)

Here, ∆i/j are detunings to either 36P1/2 or 36P3/2, dependent on the electron angular
momentum Ji/j of the states |ri〉 and |rj〉. The product of single-atom Rabi couplings
Ω̃i/j = 1

~〈ri/j |d̂ · E|g〉 is the same for both possible paths.
In a typical experiment, the single-photon Rabi frequency between the ground state

and one particular Rydberg state is calibrated at high precision. Different Rabi couplings
vary due to different Clebsch-Gordan coefficients and reduced matrix elements, see sec-
tion 3.7.3. Because their relations are well-known, all other coupling terms can be refer-
enced to the experimentally calibrated one and Eq. 5.10 provides accurate predictions for
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Figure 5.3: Visualization of the coupling. Throughout this thesis, macrodimer states are
excited from the ground state |gg〉 via intermediate states where one atom populates ex-
cited states |e〉 or |e′〉. Following the convention introduced in section 4.1, states |e,mJ〉
and |e′,mJ〉 represent Rydberg P-states nPJ with J = 1/2 and J = 3/2 and angular mo-
mentum projection mJ . The total coupling rate decouples into a sum of the contributions
of the individual pair states |rirj〉, which contribute via a product of single-atom Rabi fre-
quencies. As indicated by the red color, one generally finds two intermediate states for
each contributing pair state. The red arrows illustrate the two corresponding detunings.
Due to selection rules, only Rydberg pair states with Li = Lj = 1 can be coupled. In
addition to the shown parameters, the coupling terms also depend on the single-atom
angular momentum projections of the ground state and the Rydberg states and the light
polarization.

the experimental coupling rates. Summing over all contributing states, the total coupling
rate Ω̃ν to the molecular state is

Ω̃ν =
∑
ij

fνijΩ̃ij ≈ fν
∑
ij

cijΩ̃ij . (5.11)

A visualization of the coupling process showing the intermediate states and the contrib-
uting pair states is shwon in Fig. 5.3. If the electronic state decomposition of the molecule
remains roughly constant over the extension of the vibrational wave function, only a single
Franck-Condon integral remains and fν can be calculated based on Eq. 4.13 . In this case,
the motional overlap fν decouples from the electronic contribution to the Rabi coupling
and contributes as an overall scaling factor. This is a good approximation for the results
presented in section 5.2. Here, the excitation rates were studied for the narrow lowest
vibrational state and the discussion focuses on the electronic structure. Later, studying
higher vibrational modes in section 5.3, the approximation breaks down and the spatially-
dependent optical couplings become important.

5.1.5 Interpretation

One implication of Eq. 5.10 and Eq. 5.11 is the conservation of inversion symmetry in the
optical excitation process. As discussed in section 4.1.3 and 4.1.4, the molecular symmet-
ries fix the relation between the coefficients cij and cji in the decomposition |ΨMol;Ω

±
g/u〉 =∑

i,j cij |rirj〉 introduced in Eq. 4.2. Since dipole matrix elements vanish for∆L 6= ±1, both
ground state atoms |gg〉 with L = 0 can only couple to pair states |rirj〉 with Li/j = 1,
yielding cij = ±cji for coupled ungerade (gerade) pair states. Using Eq. (5.6), one finds
that only for an initial state which has the same inversion symmetry as the molecular
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state, both added coupling terms Ω̃ij and Ω̃ji in Eq. (5.11) interfere constructively, while
they cancel each other otherwise.

Another implication of Eq. 5.10 is that asymptotic pair states |36P1/236P3/2〉 = |ee′〉 and
|e′e〉 energetically located between |ee〉 and |e′e′〉 cannot be optically excited. From the two-
photon coupling scheme introduced in Fig. 4.3 (b) one expects a two-photon resonance
for intermediate state detunings equal to half the fine-structure splitting between |36P1/2〉
and |36P3/2〉which both act as intermediate states in the coupling. However, because both
intermediate state detunings have the opposite detuning, the contribution vanishes. For
the state |ee′〉 these are |eg〉 and |ge′〉. It has also been experimentally confirmed that there
are no striking spectroscopic signatures at these frequencies.

5.1.6 Excitation rates and correlation signal

For all experiments presented in this chapter, the coupling rates Ω̃ν were below the calcu-
lated scattering rate based on Eq. 4.8. Hence, the photoassociation rate can be estimated
using the steady-state solutions of the optical Bloch equations in the incoherent coupling
regime [5]. On resonance, this yields a calculated photoassociation rate

γth ≈
Ω̃2
ν

γMol
. (5.12)

Throughout this chapter, macrodimers were observed by the correlation signal introduced
in section 4.17. Because the molecular bond length of all studied molecular potentials at
a principal quantum number of n = 36 is close to a lattice diagonal distance, the relevant
correlation signals are g(2)

1,±1 for both possible orthogonal orientations. In the experiments,
Mott insulators at initial fillings of 94(2)% were illuminated by a UV pulse for an illumin-
ation time tuv. Here, the laser was tuned on resonance to different macrodimer resonances
and the excitation was studied in a non-saturated regime where only a few molecules were
excited. In that regime, experimental photoassociation rates can be estimated by

γexp ≈ g(2)
1,±1/tuv. (5.13)

In order to get statisticially significant values for g(2)
1,±1, the experimental datasets covered

about 200 images at identical conditions. A comparison of the experimental and theoretical
scattering rates based on these equations can be found in Ref. [413].

5.2 Identifying molecular quantum numbers

In the following paragraphs, the previously presented theoretical framework will be ex-
perimentally tested using the quantum gas microscope. This reveals the state-specific op-
tical excitation rates in the molecular frame. Furthermore, the response of the macrodimer
state to an applied magnetic field will be tested. The results provide knowledge about the
electronic structure of the molecular state and expose the molecular quantum numbers.

5.2.1 0−u molecules: The frame matters

In a first experiment, 0−u molecules are characterized using a potential energetically loc-
ated at an interaction shift U = 1.84 GHz above the |36P1/236P1/2〉 reference asymptote,
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see Fig. 5.1 (b). The separaration from the higher-lying pair state |36P3/236P3/2〉 is only
−2∆fs + U = −3.02 MHz. At these large detunings, single-atom states |e〉 as well as |e′〉
contribute to the intermediate states in the optical coupling. Performing two-photon spec-
troscopy as described in section 4.2, one observes the vibrational resonances starting from
initial states |F = 2,mF = −2〉 as well as |2, 0〉. The observed vibrational series presented
in Fig. 5.4 agrees well with the calculation. As expected from the Franck-Condon principle,
one again finds that PA rates are maximal for the lowest vibrational quantum number ν
and are higher for even compared to odd ν.

While the spectroscopic signal only provides excitation rates averaged over all possible
orientations, hole-hole correlations g(2)

δR provide information about the excitation rates for
a specific molecular orientation, see Eq. 4.17. In order to access g(2)

δR , the laser was tuned
on resonance to the lowest vibrational level. The UV laser was directing along one lattice
diagonal direction and the polarization ε was linear in the atomic plane. As a consequence,
the two possible molecular orientations are R ‖ ε and R ⊥ ε. In order to have a well-
defined initial quantization axis, a magnetic field B = 1.0 G was applied. The prepared
Mott insulators were illuminated with the UV until about three molecules were excited in
the system. The atoms were first initialized in the ground state |2,−2〉 and the magnetic
field was parallel to the light polarization B ‖ ε. The result is shown in the upper part of
Fig. 5.4 (b). The observed correlation signal suggests that photoassociation is only possible
for R ⊥ B. Interestingly, by rotating the magnetic field by 90◦, also the correlation signal
flips and molecules can again only be excited perpendicular to B. All other parameters
were kept identical. This dependence on the relative orientation between the molecule
and an external field is a striking signature of the molecular states which have their own
internal frame of reference.

These observations can be explained using the formalism presented above. Charac-
terizing the excitation in the molecular frame, the UV light is π polarized for ε ‖ R (i.e.
g

(2)
1,1) and a superposition of σ±-components for ε ⊥ R (i.e. g(2)

1,−1). For R ‖ B, the initial
state in the molecule frame writes |gg〉 = |2,−2〉 ⊗ |2,−2〉 = |−1u〉J ⊗ |MI = −3〉 using
the decomposition |2,−2〉 = |mJ = −1/2〉⊗ |mI = −3/2〉. For π polarization as well as σ±

polarization, dipole selection rules do not allow a transition from | − 1u〉J with MJ = −1
to Ω = 0 by the absorption of two photons. However, if the initial state would have a con-
tribution from |0u〉J , excitation would be possible. From Fig. 5.2 (a), one can see that the
state |0u〉J has a large contribution in a frame rotated by β = 90◦. Here, because the initial
state |2,−2〉 appears different in the rotated frame of reference, molecules can be excited.

A systematic study

In a more detailed study, the relative angle β between the atom pairs and the magnetic
field B = 1.0 G was varied in five steps from 0◦ to 90◦. We then quantified the PA signal
by the observed hole-hole correlations along both diagonals ε ‖ R and ε ⊥ R. The result
for different initial states |2,−2〉, |2,−1〉 and |2, 0〉 is shown in Fig. 5.4 (c). In agreement
with the previous findings, PA rates starting from |2,−2〉 vanish for β = 0 and are max-
imal for β = 90◦ for both linear polarization configurations. Starting from |2,−1〉, one
finds a strikingly different β-dependence, again consistent with the calculation. For |2, 0〉,
the photoassociation does not depend on β any longer. The observed angular distribu-
tions are characteristic for 0−u potentials and can be attributed to the angular dependent
electronic decomposition of the ground state in the molecular frame. Because for both
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Figure 5.4: Microscopic excitation signatures for 0−u molecules. (a) The spectroscopic
photoassociation signal can be observed starting from |2,−2〉 (red) and |2, 0〉 (blue) and
matches the calculated energies for even (odd) vibrational quantum numbers ν, indicated
by solid (dashed) gray lines. b Comparing the hole-hole correlations g(2)

δx,δy starting from
|2,−2〉 (red) for two orthogonal magnetic field orientations, one observes that excitation
only occurs for atom pairs oriented perpendicular to the magnetic field. For both cases, a
exemplary image from the quantum gas microscope from which the correlation strengths
are calculated is included. (c) Rotating the orientation of the magnetic field for three dif-
ferent initial states, one finds excitation curves characteristic for 0−u , which depend on the
initial state and the polarization ε. As indicated in (b), ε was parallel (perpendicular) to
R for g(2)

1,±1. Solid lines are theoretically expected angular dependencies, where the overall
amplitude was left as a fitting parameter. All error bars on the data points denote one
standard error of the mean and gray filled circles indicate the expected background cor-
relation signal. Figure adapted from Ref. [413].

light polarizations only the initial state |0u〉J can be excited to theΩ = 0 macrodimer state,
the observed dependencies match the contributions |c0

u|2 in Fig. 5.2 (a).
Furthermore, it has been observed that the PA rates in Fig. 5.4 (c) for ε ‖ R reach only

83% of the value for ε ⊥ R. This is close to the theoretical value of 87% obtained from
evaluating the sum Eq. 5.11 for the electronic decomposition of this specific 0−u potential.

5.2.2 0+
g molecules: Entangling nuclei

In a second experiment, 0+
g molecules are studied using a molecular potential shifted by

U = 0.34 GHz relative to the reference asymptote, see Fig. 5.1 (b). In contrast to the pre-
vious discussion of 0−u molecules where molecular excitation was possible for both initial
states |2,−2〉 and |2, 0〉, one finds that the vibrational series can now only be observed
starting from |2, 0〉, see Fig. 5.5 (a). Because of the conservation of inversion symmetry,
only the state |0g〉J = 1/

√
2 (|↑↓〉J − |↓↑〉J) can contribute to the excitation. For β = 0, the

initial state |2,−2〉 ⊗ |2,−2〉 = |−1u〉J ⊗ |MI = −3〉 with |−1u〉J = |↓↓〉J has no contribu-
tion of |0g〉J . Starting from |−1u〉J , all terms in Eq. 5.11 cancel each other because of the
shape of the contributing symmetrized asymptotic pair states, see also Eq. 4.4 and Eq. 4.6.
Because the state |0g〉J is formally equivalent to a rotationally invariant spin singlet, the
contribution c0

g is independent of β, see also Fig. 5.1 (b,c). As a consequence, excitation
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Figure 5.5: Excitation signatures for 0+g molecules. (a) Because the electronic and nuclear
angular momenta in the ground state |F = 2,mF = −2〉 = |12 ,−

1
2〉J ⊗ |

3
2 ,−

3
2〉I separate,

the coupling vanishes. The vertical gray lines denote the calculated vibrational energies
for even (solid) and odd (dashed) vibrational quantum numbers ν. (b) Only the fraction
of the ground state in the inversion eigenstate |0g〉J can take part in the excitation. For the
87Rb ground state used here, |0g〉J is rotationally invariant. In contrast to 0−u molecules,
this leads to excitation rates that are independent of β. However, the excitation rates still
depend on the molecular orientation relative to the polarization. In agreement with the
calculations, excitation rates are larger for ε ‖ R compared to ε ‖ R. All error bars on
the data points denote one standard error of the mean and gray filled circles indicate the
expected background correlation signal. Figure adapted from Ref. [413].

starting from |2,−2〉 is generally not possible.
The situation changes starting from |2, 0〉 and |2,−1〉. Now, because of the hyperfine

interaction in the ground state, one finds a finite contribution of |0g〉J . A systematic study
verifies the expected independence of the angle β, see Fig. 5.5 (b).

In addition to these signatures that are characteristic for all 0+
g macrodimers, Fig. 5.5 (b)

also suggests that the excitation rates is larger for ε ‖ B compared to ε ⊥ B. This is again
specific for the chosen 0+

g potential and agrees with a calculation of the molecular Rabi
frequencies using Eq. 5.11. From the decomposition in Eq. 5.6 one can furthermore infer
that exciting a 0+

g macrodimer projects the nuclear spin state into |Ψ0
g 〉I . For |2, 0〉 and β =

0, one finds the non-separable state |Ψ0
g 〉I = 1/

√
2
(
|32 ,

1
2〉I ⊗ |

3
2 ,−

1
2〉I − |

3
2 ,−

1
2〉I ⊗ |

3
2 ,

1
2〉I
)
.

Here, |32 ,mI〉 are the single-atom nuclear spin states of both atoms. As a consequence,
exciting macrodimers also provides an interesting possibility to entangle nuclear spins at
micrometer distance. Similar entangled nuclear spin pairs can be found for other binding
potentials |Ω±g/u|. Unfortunately, there was no possibility to experimentally verify this
entanglement in this dissertation.

5.2.3 1u molecules: Magnetic field response & hyperfine coupling

In a third experiment, 1u molecules are characterized based on the molecular potential
shifted by U = 0.73 GHz relative to |36P1/236P1/2〉, see Fig. 5.1 (b). Performing atom
loss spectroscopy at zero field again shows the agreement between the observed vibra-
tional resonances with the calculated vibrational energies, see Fig. 5.6 (a). The previous
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discussion suggests to measure again the characteristic β−dependent excitation rates, see
Fig. 5.1 (d). Because this is now well understood, the response to applied magnetic fields
indicated in Fig. 5.1 (f) is presented instead. A finite magnetic field does not induce energy
shifts for |Ω| = 0 potentials to first order. Also second order couplings are typically weak
because other pair potentials are detuned by hundreds of megahertz. This changes for
|Ω| 6= 0, where the two degenerate states with angular momentum projections ±|Ω| are
expected to shift in opposite directions if the magnetic field has components parallel to the
molecular axis.

Orientation-dependent Zeeman shift

In order to show this effect, a magnetic field ofB = 2.0 G was applied perpendicular to the
propagation direction of the UV-light. Because the UV laser propagates along the diagonal
direction, the molecular alignment will be either parallel or perpendicular to B. The res-
ulting spectroscopic signal of the lowest vibrational level is shown in Fig. 5.6 (b) for linear
polarization either pointing out of the atomic plane or laying in the atomic plane. Further-
more, the signal was recorded for all three initial states |2,−2〉, |2,−1〉 and |2, 0〉. While
the strength of the different resonance profiles depends on the initial state and the polar-
ization, one can generally identify three available spectroscopic signatures. The observed
splitting of two degenerate pair potentials into three lines is possible because the orient-
ation of the molecule adds as an additional parameter and is discussed in the following
paragraphs.

At the current status, a diagonalization of the interaction Hamiltonian at finite fields
is not feasible at the required precision. This problem appears because the magnetic
field breaks the molecular symmetry of the interaction Hamiltonian, leading to a mix-
ing of different molecular quantum numbers and an increase of the Hilbert space di-
mension. However, for the energetically isolated 1u potential where only the two states
|ΨMol;±1u〉 =

∑
i,j c
±1
ij |rirj〉 with Ω = ±1 are relevant, perturbation theory is expected

to provide solid results. Combining the coupling term for both contributing atoms, the
perturbation Ĥ1 can be written as

Ĥ1 = Ĥ
(1)
B ⊗ 1

(2) + 1(1) ⊗ Ĥ(2)
B , (5.14)

with single particle operators

ĤB = µB

(
gS Ŝ + gLL̂

)
· B. (5.15)

Here, L̂ and Ŝ are orbital angular momentum and electronic spin operators, gS and gL the
corresponding Landé factors. Furthermore, the total angular momentum of the electron
is given by Ĵ = L̂ + Ŝ. The angular momentum operators perpendicular to R can be
expressed as L̂± = L̂x± iL̂y and Ŝ± = Ŝx± iŜy. In this representation, one can see that ĤB

can only couple states with∆Ω = 0,±1. As a consequence, both degenerate statesΩ = ±1
of the 1u potential remain uncoupled. However, the z−component of the magnetic field
which is parallel to R can induce a first order Zeeman shift

∆EZ = geffµBΩBz. (5.16)

Using gSŜz + gLL̂z = gLĴz + (gS − gL)Ŝz with gL = 1 and gS ≈ 2, the effective molecular
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Figure 5.6: Molecular Zeeman shift & hyperfine coupling of macrodimers for n = 36.
(a) At zero field, the vibrational spectrum for a 1u potential features narrow resonances
as observed for molecular potentials with Ω = 0. As predicted, the vibrational modes ν
are observed at detunings half the calculated vibrational energies Uν (vertical gray lines).
Solid (dashed) lines indicate even (odd) ν. (b) Measurements at finite magnetic field re-
veal a splitting of the lines. The two outer resonances can be associated with a molecular
alignment R ‖ B, molecules excited at the central resonance have an alignment R ⊥ B, as
shown in the recorded correlation signals. The signal was recorded for a linearly polarized
UV laser either oscillating perpendicular (left) or parallel (right) to the atomic plane. The
difference between the data and a calculation accounting only for the electronic state de-
composition (gray solid line) can be explained by the hyperfine interaction of the admixed
Rydberg pair states (colored bars). The calculated relative coupling strengths are indicated
by the heights of the bars (arbitrary units) and agrees with the observation. Figure adapted
from Ref. [413].

g-factor can be written as

geff =
∣∣± 1 + 〈ΨMol;±1u|Ŝ(1)

z ⊗ 1(2)|ΨMol;±1u〉
+ 〈ΨMol;±1u|1(1) ⊗ Ŝ(2)

z |ΨMol;±1u〉
∣∣, (B17)

yielding geff ≈ 0.66 after expanding the contributing asymptotic states |rirj〉 into un-
coupled spin and orbital angular momenta.

From this analysis, the experimental observation can be understood. For R ‖ B, both
degenerate states split up by an energy shift ±∆EZ . For R ⊥ B, the energy shift vanishes
and both 1u molecular states remain degenerate. The correlation signals g(2)

δR plotted be-
low the spectroscopic signal in Fig. 5.6 (b) confirm this interpretation. The calculated line
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nLJ nS1/2 nP1/2 nP3/2 nD3/2 nD5/2

Aref
hfs (MHz) 2.14 (28S1/2) 59.9 (7P1/2) 4.05 (9P3/2) 4.53 (7D3/2) 2.2 (7D5/2)

Table 5.1: Hyperfine constants for Rydberg states. The hyperfine constants Arihfs ∝
(n?)−3 are calculated by extrapolating from reference values Aref

hfs obtained from the lit-
erature [122, 431] using n∗ = n − δ(n,L, J), δ(n,L, J) ≈ δ0 + (δ0)2 / (n− δ2)2, and
Arihfs = (n?ref)

3 / (n?i )
3Aref

hfs [432]. Contributions from D-states were included but affected
the effective hyperfine coupling Aeff of the macrodimer state by less than 1%, states with
L > 2 were neglected.

splitting for the oriented molecules R ‖ B from the non-shifted reference using Eq. 5.20
is indicidated as vertical gray lines in the spectroscopies. Here, the factor of two enter-
ing from the two-photon spectroscopy has been taken into account. In the spectroscopy,
changing the single-photon detuning ∆ affects the two-photon detuning by the double
amount. Overall, the observations agree with the calculation. However, a closer look re-
veals a systematic deviation which will be explained in the next paragraph.

Hyperfine structure of macrodimers

Comparing the deviations between the observed resonance shift and the calculated Zee-
man shifts∆EZ for |2, 0〉 in Fig. 5.6 (b), one finds a significant asymmetry betweenΩ = ±1.
Starting from |2,−2〉, the splitting is symmetric but significantly below the expectation.
Additionally, the line splitting depends sligthly on the light polarization. These observa-
tions motivate to extend the calculations by the hyperfine coupling terms for the macrodi-
mer state. This adds a term

Ĥ2 = Ĥ
(1)
hfs ⊗ 1

(2) + 1(1) ⊗ Ĥ(2)
hfs (5.18)

to the Hamiltonian of the system. The single-particle hyperfine Hamiltonians were in-
cluded via

Ĥhfs =
∑
i

Arihfs|ri〉〈ri| Î · Ĵ. (5.19)

Here, Î is the nuclear spin operator and operators |ri〉〈ri| project the corresponding terms
in the molecular wave function to the associated hyperfine coupling term Arihfs. The Zee-
man interactions of both isolated nuclei with the magnetic field were neglected because
of the small g-factor gI = 9.95 × 10−4 [431]. In particular for Rydberg P-states and D-
states, there exists only limited experimental data for hyperfine couplings at higher prin-
cipal quantum numbers. However, the hyperfine constants Arihfs can be calculated based
on measurements at lower principal quantum numbers and known quantum defects, see
Table 5.1. For n = 36, one expects A

36S1/2

hfs ≈ 487 kHz, A
36P1/2

hfs ≈ 132 kHz and A
36P3/2

hfs ≈
28 kHz.

Extending the wave function by the nuclear spin, the relevant Hilbert space is given
by {|ΨMol;±1u〉 ⊗ |mI1 ,mI2〉}. Here, mI1(2) are the nuclear spin orientations of both atoms.
Accounting for both molecular states Ω = ±1 and the four nuclear spin projections of
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Figure 5.7: Molecular Zeeman shift & hyperfine coupling of macrodimers for n = 31. At
the lowest vibrational mode of the corresponding 1u potential blue-detuned from 31P1/2,
one again finds a splitting of the molecular resonances in the presence of a magnetic field
of B = 1.5 G. Here, ε was directing out of the atomic plane and the magnetic field was
applied along the lattice direction. Because of the lower principal quantum number, the
vibrational series starts at higher detunings and the bond length is reduced to a value
close to the lattice constant alat. The correlation signal at the three resonances, recorded
with |2, 0〉 as an initial state, shows correlated loss rates at nearest neighbor distance. While
two outer resonances correspond to molecular alignment R ‖ B, the molecular alignment
at the central line is perpendicular to B. Furthermore, the hyperfine coupling strength
almost doubled while the Zeeman interaction remained essentially the same. As a con-
sequence, the asymmetric splitting starting from |2, 0〉 and the underestimated splitting
starting from |2,−2〉 are even more prominent. Again, the gray lines indicates the calcu-
lated line positions accounting only for the electronic structure while the position of the
colored bars also accounts for the hyperfine splitting. The height of the bars represents the
calculated relative line strength. Figure adapted from Ref. [413].

both atoms, one finds 32 states. It is convenient to express the hyperfine interaction as
Î · Ĵ = 1

2(Î−Ĵ+ + Î+Ĵ−)+ ÎzĴz , with Ĵ± = Ĵx± iĴy and Î± = Îx± iÎy. As for the magnetic
field, one finds that none of the contributing states can be coupled by Ĥ1 and Ĥ2 and all
shifts are diagonal.

As a result, all angular momentum operators can be replaced by their z−components.
The hyperfine energy shifts are then obtained by

∆Ehfs = Aeff(mI1 +mI2)
Ω

2
, (B20)

with the effective hyperfine interaction strength

Aeff =
∑
i,j

|c±1
ij |

2(ArihfsmJi +A
rj
hfsmJj). (5.21)

The hyperfine interaction of the macrodimer state increases from the contributing S-states
and decreases from contributions from higher angular momenta. Using the electronic
structure of the studied 1u potential, the equation provides Aeff ≈ 127 kHz. Because the
molecular bond lengths and the lattice spacing are larger than the contributing Rydberg
orbits (≈ 130 nm), the calculations only consider the coupling of the Rydberg electrons to
the nucleus they are bound to.
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Using the initial nuclear spin wave function before photoassociation and the dipole se-
lection rules for different light polarizations, one can now calculate the expected hyperfine
interaction shifts. The calculated line positions are shown as colored bars in Fig. 5.6 (b).
The height of the bars indicates the calculated photoassociation rates, referenced to the
strongest transition from |2,−2〉 to Ω = +1 for R ‖ B and orthogonal polarization. Now,
the deviations from the previously calculated line position can be explained and the obser-
vations agree with the calculations. Comparing the three resonances, one also finds that
the central line has typically a larger linewidth. This is in agreement with the expecta-
tion and originates from the perpendicular orientation between R and B. Here, rotating
the initial states into the molecular frame leads to a larger number of contributing nuc-
lear spin orientations, which differ in their hyperfine interaction and therefore broaden
the resonance.

To further verify the presence of the hyperfine coupling, also the magnetic field split-
ting for the corresponding 1u potential at the blue-detuned side of the lower-lying Ryd-
berg state 31P1/2 has been measured, see Fig. 5.7 (c). The reduced bond length close to
the lattice constant now leads to a correlation signal peaking at a distance of alat. This
requires a magnetic field applied along the lattice direction in order to keep the conditions
identical to Fig. 5.6 (b). While geff ≈ 0.63 remains almost the same, the hyperfine interac-
tion Aeff ≈ 216 kHz is significantly larger. This leads to an even more striking deviation
from the calculation neglecting the hyperfine interaction. Because the linear UV polariza-
tion was pointing out of the atomic plane, the dataset can be compared to the scans at the
left side in Fig. 5.6 (b). For n = 31 and an initial state mF = 0, it has been reproducibly
observed that the Ω = −1 resonance appears stronger than the Ω = +1 resonance. Fur-
thermore, the calculations now seem to slightly underestimate the effect of the hyperfine
interaction.

5.2.4 Identification via polarization

Here, the role of the light polarization on the photoassociation process is discussed in more
detail. The discussion follows the conventions introduced in section 5.1.3. The oriented
molecular states, the conservation of angular momentum during photoassociation enables
to measure the molecular quantum number Ω.

Linear polarization

The relative height of the two outer resonances Ω = ±1 for R ‖ B ⊥ k in Fig. 5.6 (b) allows
one to study how photoassociation differs between π polarization and σ± polarization.
Starting from |2, 0〉, all four states in Eq. 5.6 are equally populated, see also Fig. 5.2. For
out-of-plane polarization, the states Ω = ±1 are excited from | ∓ 1u〉J using two σ− polar-
ized photons. For in-plane polarization, the states Ω = ±1 are excited from | ± 1u〉J using
two π polarized photons. Evaluating Eq. 5.11, the larger Clebsch-Gordan coefficients con-
tributing for out-of-plane polarization lead to a larger signal. Additionally, because the
nuclear spin states are different for | ∓ 1u〉J , the hyperfine couplings excite macrodimer
states that are sligthy shifted in energy.

Starting from |2,−2〉, the initial state for B ‖ R is |−1u〉J . For out-of-plane polarization,
the Ω = +1 state is strongly coupled by the absorption of two σ+ photons. The excitation
rate of theΩ = −1 molecular state which requires one σ+ and one σ− photon is supressed.
Here, the number of pair states |rirj〉 contributing to the optical coupling is limited because
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Figure 5.8: Identifying Ω from polarization dependent excitation rates. (a) The spatial
arrangement R ‖ k allows one to study photoassociation using σ− and σ+ polarziation.
For the two potentials 0+

g (b) and 0−u (c) withΩ = 0 one finds that photoassociation reaches
a maximum for linear polarization ε ⊥ R. (d) Exciting 1u macrodimer states with Ω = +1
from |2,−2〉, one finds a strong maximum for σ+ polarization. In all three plots, the cor-
relation signal g(2)

1,−1 quantifies the excitation rate, see Eq. 5.13. Gray filled circles represent
the observed background correlation signal. Figure adapted from Ref. [413].

it requires a single-atom Rydberg states with J = 3
2 and mJ = −3

2 , see also Fig. 5.3. For in-
plane polarization, the Ω = +1 resonance vanishes because π polarization does not allow
excitation from | − 1u〉J .

Circular polarization

Realizing σ+ or σ− polarized light requires the interatomic axis to be aligned with R ‖ k.
Here, the light polarization can be parametrized as ε(ϕ) = 1√

2
(ex + eiϕey), see Fig. 5.8 (a).

For ϕ = 0, the light is linearly polarized and therefore a superposition of σ±. For ϕ = −90◦,
the light is σ+ polarized. The dependence of the photoassociation on ϕ was studied by
measuring the correlation signal g(2)

1,−1 for R ‖ k at the lowest vibrational resonance for
the three previously studied molecular states 0+

g , 0−u with Ω = 0 and 1u with Ω = +1
blue-detuned from |36P1/2〉, see Fig. 5.8 (b,c,d). Before performing the experiments, the
light polarization was calibrated comparing the coupling strength to magnetic sublevels
of single-photon Rydberg transitions, see section 3.7.3.

First, the two potentials 0+
g and 0−u with Ω = 0 were studied. The initial state was

|2, 0〉. Here, the magnetic field orientation β is irrelevant, see also Fig. 5.2 (c). Because π
polarization cannot be realized for R ‖ k, the two-photon excitation requires one σ− and
one σ+ photon. For σ+ or σ− polarization, the excitation rate vanishes. For the 1u po-
tential, a magnetic field B ‖ k with B ≈ 0.5 G was applied to energetically separate the
two resonances Ω = ±1 for molecular orientations parallel to k. In contrast to Fig. 5.4 (b)
where the magnetic field direction B ⊥ k induced a separation for the perpendicular ori-
entation, this now requires to apply the field parallel to k. The measurements show that
photoassociation vanishes for σ− polarization and reaches a strong maximum for σ+ po-
larization. This particular configuration of initial and final states, light polization, and
spatial arrangement where |2,−2〉 atoms are excited into Ω = +1 molecules by absorb-
ing two σ+ photons is special because all contributing Clebsch-Gordan coefficients reach
a maximum. It will be used to maximize macrodimer excitation rates in chapter 7 and 8.



83 5.3. Distance-dependent electronic structure

30

50

70

a ε
k

ε
k

30

50

70

250 260 270 280

A
to

m
 n

um
b

er

Φ
 ν
(R

)
Φ

 g(
R

)

c  (R)c  (R) ∼  β α~

A
to

m
 n

um
b

er

Distance R (nm)
650 700 750

0

1

A
m

p
lit

ud
e

c

ν=22

0g
+

In
t.

 U
 ν=24 ν=26 ν=28 ν=30 ν=32 ν=34

ν=21 ν=23 ν=25 ν=27 ν=29 ν=31 ν=33

Detuning ∆/2π (MHz) from 35P1/2

b

Figure 5.9: Spatially dependent electronic state amplitudes. (a) A zoom into the spectro-
scopic signal presented in Fig. 4.4 for the 0+

g potential blue-detuned from 35P1/2 for a UV
laser linearly polarized in the atomic plane. As observed for most other binding poten-
tials, one finds a stronger signal for even vibrational quantum numbers. (b) For a linear
polarization pointing out of the atomic plane, odd vibrational modes are coupled more
strongly. For both spectroscopies, the distance between neighboring data points is larger
than the widths of the vibrational resonances. In order to be able to compare the different
datasets, a frequency sweep covering the range between the data points during the UV
illumination time ensured an identical spectral weight at the individual resonances. All
error bars on the data points denote one s.e.m. (c) This signature can be explained us-
ing the strong spatially dependent state decomposition of this specific potential and the
polarization-dependent two-photon Rabi frequencies Ω̃α̃ and Ω̃

β̃
. Figure adapted from

Ref. [411].

5.3 Distance-dependent electronic structure

After presenting a rigorous theoretical and experimental benchmark of photoassociation
into different macrodimer states |Ω±g/u|, it is now worth to have a more detailed look into
the previously studied 0+

g potential blue-detuned from 35P1/2, see section 4.2. The spectro-
scopy presented in Fig. 4.4 was performed for linear UV polarization in the atomic plane.
A zoom into the spectroscopic signal at higher vibrational quantum numbers ν is shown
in Fig. 5.9 (a). In agreement with the Franck-Condon principle and also other studied
macrodimer potentials, one generally finds larger excitation rates for even ν. Interestingly,
performing the spectroscopy for a linear polarization pointing out of the atomic plane, one
finds stronger excitation rates for odd ν, see Fig. 5.9 (b). This observation contradicts the
approximated expression on the right side of Eq. 5.11 where the Franck-Condon integral
contributes via an overall scaling factor because the electronic structure is assumed to be
constant over the spatial extension of the vibrational wavepacket.

Studying the electronic structure of the pair potentials which originates from the par-
ticularly sharp avoided crossing between the potentials |α̃〉 and |β̃〉, one finds an abrupt
change at the binding potential minimum. In Fig. 5.9 (c) one can see that the coefficient cα̃
dominates the potential at the left side while the coefficient c

β̃
dominates at the right side.

Accounting for this spatial dependence of the specific 0+
g potential, the optical coupling
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Figure 5.10: Molecular alignment via vibrational state parity (a) Evaluating g(2)
δR after il-

luminating the atoms with UV light polarized in the atomic plane for various macrodimer
lines ν confirms the understanding obtained from the spectroscopy. Whereas the excita-
tion rate γ‖ along the polarization of the excitation laser dominates for even vibrational
states, odd states favor molecule excitation γ⊥ perpendicular to the polarization. For both
cases, an exemplary image from the quantum gas microscope is included. As before, the
light is π polarized for ε ‖ R and σ± polarized for ε ⊥ R. (b) For out-of-plane polariza-
tion, there is no longer a preferred direction and one observes equal correlations for both
diagonal directions. Figure adapted from Ref. [411].

rate using the left side of Eq. 5.11 writes

Ω̃ν = fνα̃Ω̃α̃ + fν
β̃
Ω̃
β̃
. (5.22)

Here, fνα̃ =
∫
Φ ?ν (R)c?α̃(R)Φrel(R)R2dR and fν

β̃
=
∫
Φ ?ν (R)c?

β̃
(R)Φrel(R)R2dR are the Franck-

Condon factors of both pair potentials |α̃〉 and |β̃〉. Because the motional ground state wave
function Φrel(R) is much broader than the states Φν(R), it is intuitively clear that the relat-
ive sign between fνα̃ and fν

β̃
is the same for even ν and opposite for odd ν. Calculating the

couplings rates into the pair potentials Ω̃α̃ and Ω̃
β̃

, one finds a positive relative sign for
ε ‖ R (π polarization) and a negative relative sign for ε ⊥ R (σ± polarization). This result
can already be obtained by only accounting for the two asymptotic states |e ↑ e ↓; 0+

g 〉 and
|e ↑ e′ ↓; 0+

g 〉 that contribute the most to the two pair potentials |α̃〉 and |β̃〉, see Eq. 4.4
and 4.5. In conclusion, one expects constructive interference in Eq. 5.22 for either even
vibrational modes and ε ‖ R or odd vibrational modes and ε ⊥ R.

In the spectroscopy where the polarization vector was laying in the atomic plane, both
spatial configurations contribute to the total excitation rate which is given by γ = γ‖ + γ⊥.
While γ‖ is larger for even ν, γ⊥ is larger for odd ν. In total, the strong excitation rates
γ‖ at even modes dominate the signal in Fig. 5.9 (a). However, rotating the polarization
out of the plane, only perpendicular configurations γ⊥ remain. As a consequence, odd
vibrational resonances dominate the spectroscopic signal in Fig. 5.9 (b).

In addition to the ensemble-averaged signal, this dependence on the parity of the vi-
brational state has also been tested by measuring the correlation signal g(2)

δR at different
vibrational resonances, see Fig. 5.10 (a). In agreement with the calculations, molecular
excitation at even vibrational modes occurs predominantly parallel to the light polariza-
tion, while it occurs predominantly perpendicular at odd vibrational modes. Rotating the
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polarization out of the atomic plane, both orientations are equivalent and the correlation
signal is symmetric.

Finally, the strong directional excitation of Rydberg pair states for ε ⊥ R observed at
the lower branch of the avoided crossing discussed at the end of chapter 4 in Fig. 4.6 (b) can
be understood. The excited motional continuum modes are located in the spatial region
close to the maximum of the potential well where the electronic states |α̃〉 and |β̃〉 are
mixed with similar amplitude. First, one might expect to observe a similar directionality
in the excitation rate as for the narrow lowest vibrational mode ν = 0 on the upper side
of the avoided crossing. Here, the two terms in Eq. 5.22 interfere constructively for ε ‖ R.
However, as for any avoided crossing, the relative sign between the coefficients cα̃ and c

β̃
is opposite on the upper and the lower side. As a consequence, constructive interference
now occurs for ε ⊥ R.
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Chapter 6

Vibronic structure

The Born-Oppenheimer approximation [433] is one of the cornerstones of molecular
physics and was implicitly assumed to hold in the previous chapters. Here, the fast elec-
tron dynamics adiabatically follows the much slower motion of the nuclei [415]. When
the interatomic distance varies during the vibration, the electronic structure adapts itself
according to the spatially dependent electronic structure of the pair potential. As a con-
sequence, the molecular states can be described by isolated electronic binding potentials
and their vibrational eigenstates. This can be illustrated by the example discussed in sec-
tion 5.3 where the electronic state will oscillate between the states |α̃〉 and |β̃〉 during the
vibration.

In many cases in molecular physics, the Born-Oppenheimer approximation does not
hold. Such a breakdown of the Born-Oppenheimer approximation occurs if the motional
states hosted by a single isolated electronic pair potential cannot be regarded as eigen-
states because of non-adiabatic coupling terms to other nearby potentials. These cases are
discussed in this chapter. As will be discussed below, the Born-Oppenheimer framework
still provides intuition in the context of a more general Born-Oppenheimer expansion.

In the context of conventional molecules, these non-adiabatic terms are often neces-
sary to describe transition rates in photochemistry [415]. With the advance of femtosecond
spectroscopy, the study of time-resolved relaxation dynamics revealed the importance of
non-adiabatic transitions to other crossing potential curves [434]. In many cases, the ob-
served non-radiative relaxation occurs at timescales well below the radiative lifetime. Also
in photodissociation experiments, such transitions are often important [435]. Here, mo-
lecules are first excited into a higher-lying state with large Franck-Condon overlap. Non-
adiabatic coupling terms between the binding potentials and a repulsive potential branch
can then induce the breakup of the molecule, a process called predissociation [436]. In the
context of polyatomic molecules, the crossing between multidimensional potential sur-
faces leads to so-called conical intersections [437]. They are believed to play an important
role in many photobiological processes such as photosynthesis [438, 439].

Using macrodimers, these phenomena can be studied in a regime where the crossing
pair potentials, their electronic structure, and the contributing motional states are obtained
from ab initio calculations. This makes them an ideal testbed to study these phenom-
ena. Because of the small binding energies of macrodimers, the non-adiabatic coupling
terms can be easily induced by applying external fields. The induced coupling strength
depends on the molecular orientation relative to the applied fields and can be controlled
in an experimental apparatus such as the one used here. This discussions follow the pub-
lications [411] and [413]. The theoretical description of the observations was developed in
close discussion with Valentin Walther.
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6.1 Non-adiabatic vibrational motion

As discussed in section 4.1.2, the adiabatic Born-Oppenheimer potentials V̄j(R) are ob-
tained from diagonalizing the electronic Hamiltonian Ĥe introduced in Eq. 2.19 via

Ĥe|Ψ̄ jel(R)〉 = V̄j(R)|Ψ̄ jel(R)〉. (6.1)

The parametric dependence of the electronic eigenstates |Ψ̄ jel(R)〉 on the nuclear coordinate
R was observed in section 5.3.

Adding the kinetic energy operator T̂ = −~2
2µRb

∂2

∂R2 leads to motional eigenstates Φj(R),
see Eq. 4.7. Dependent on the shape of the potentials V̄j(R), the states Φj(R) can be bound
vibrational states or motional continuum modes. Within the Born-Oppenheimer approx-
imation, the motional modes Φj(R) are supported by a single electronic potential V̄j(R).
Here, the molecular states can be written as |ΨMol〉 = Φj(R)|Ψ̄ jel(R)〉.

In a more general framework, the vibronic molecular wave function can be expressed
in a Born-Oppenheimer expansion

|ΨMol〉 =
∑
j

Φ̄j(R)|Ψ̄ jel(R)〉. (6.2)

Now, different Born-Oppenheimer potentials |Ψ̄ jel(R)〉 are admixed through spatially de-
pendent amplitudes Φ̄j(R). As a consequence, the concept of an internuclear motional
state supported by a well-defined electronic potential breaks down. Inserting Eq. 6.2
into the total Hamiltonian Ĥ = Ĥe + T̂ , multiplying 〈Ψ̄j(R)| from the left and using
〈Ψ̄j(R)|Ψ̄j′(R)〉 = δjj′ yields

[
T̂ + V̄j(R)

]
Φ̄j(R)− ~2

2µRb

∑
j′

[
2d̄jj′

∂

∂R
+ D̄jj′

]
Φ̄j′(R) = EΦ̄j(R). (6.3)

The kinetic energy operator T̂ acts on Φj(R) as well as |Ψ̄ jel(R)〉. In addition to the terms
present in Eq. 4.7, one now finds non-adiabatic coupling terms

d̄jj′ = 〈Ψ̄ jel(R)| ∂
∂R
|Ψ̄ j

′

el (R)〉, (6.4)

D̄jj′ = 〈Ψ̄ jel(R)| ∂
2

∂R2
|Ψ̄ j

′

el (R)〉 (6.5)

between different electronic states.
An elegant way to calculate the vibronic eigenstates utilizes the framework of gauge

transformations [437]. Choosing a proper gauge, the non-adiabatic couplings between
the different pair potentials can be canceled out. As a result, one obtains new diabatic
potentials whose eigenstates can be calculated using the Born-Oppenheimer approxim-
ation [411]. As presented in the next section, the coupled vibronic eigenstates are then
calculated by diagonalizing the pair potentials, which become off-diagonal after such a
gauge transformation.
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Figure 6.1: Breakdown of the Born-Oppenheimer approximation (a) A closer look at
the vibrational spectrum of the 0+

g potential blue-detuned from 35P1/2 at low vibrational
quantum numbers reveals a significant perturbation from the equidistant harmonic oscil-
lator eigenenergies expected from the previous discussion. The gray area indicates the
region where the perturbations are the strongest. Using the formalism discussed in the
text, most of the observed reonances can be calculated (orange vertical lines). (b) For the
corresponding 0+

g potential for n = 36, the perturbation is absent. Solid (dashed) lines in-
dicate the calculated resonance positions of the even (odd) vibrational resonances. (c) The
reason for the perturbed vibrational spectrum for n = 35 is a weakly coupled pair potential
|γ̃〉 crossing the binding potential formed by |α̃〉 and |β̃〉 close to the potential minimum.
For n = 36, such an additional crossing cannot be found. As expected from the discussion
in section 4.1.2, the binding potential for n = 35 is slightly more off-resonant and shifted
towards shorter distances. All error bars on the data points denote one standard error of
the mean (s.e.m.). Figure adapted from Ref. [411].

6.2 Higher-order multipole interactions

In the previous chapters, the vibrational eigenenergies were calculated by diagonalizing
the interatomic motion in the Born-Oppenheimer potentials using Eq. 4.7. The binding po-
tentials were surprisingly harmonic, predicting a clean spectrum of equidistantly spaced
resonances. However, a more careful look at the observed spectrum at lower vibrational
resonances shown in Fig. 4.2 (b) and Fig. 4.6 (a) reveals a significant deviation from an
equidistantly spaced harmonic oscillator energy spectrum. Also the broadening at the
blue-detuned side of the lowest vibrational mode in Fig. 4.2 (c) and at the second vibra-
tional mode shown in Fig. 5.6 (a) suggests perturbations for some of the vibrational reson-
ances. An additional spectroscopy of the perturbed frequency region for the 0+

g potential
blue detuned from 35P1/2 at a magnetic field B = 0.43 G is shown in Fig. 6.1 (a). The mag-
netic field only acts as an initial quantization axis and is too small to affect the magnetically
insensitive 0+

g potential. Again, the observed spectrum contradicts an adiabatic motion in
the previously dicussed 0+

g binding potential. Increasing the principal quantum number
to n = 36, such a perturbation cannot be observed, see Fig. 6.1 (b).

The binding potentials are typically formed by the strong dipole-dipole interaction
term Eq. 2.25 which induces large-scale avoided crossings between coupled pair poten-
tials. However, also crossings between pair potentials where admixed electronic pair
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states have vanishing single-atom dipole matrix elements occur frequently. In these cases,
higher-order multipole interaction terms can still induce smaller gaps. In Fig. 4.2 (a), one
can see that the previously studied 0+

g potential blue-detuned from 35P1/2 crosses an-
other pair potential |γ̃〉 asymptotically connected to |32D3/237P3/2〉. Here, weak dipole-
quadrupole interactions induce a coupling between two macrodimer potential wells which
is comparable to the vibrational energy in the original binding potential. As a consequence,
the vibrational motion close to the gap will neither follow the adiabatic nor the diabatic
path. For n = 36, this additional crossing is absent and the Born-Oppenheimer approx-
imation holds. If the couplings are mediated by even higher-order terms, the induced
gaps will be even smaller. In these cases, the gap will not be recognized by the vibrational
motion which crosses the gap diabatically.

A complete treatment for n = 35 requires to account for non-adiabatic couplings
between the vibrational modes of both potential wells by the kinetic energy operator. Ap-
plying the unitary transformation

Û =

(
cos(ϕ(R)) sin(ϕ(R))
− sin(ϕ(R)) cos(ϕ(R))

)
(6.6)

in the basis |Ψ̄1
el(R)〉 and |Ψ̄2

el(R)〉with the gauge ϕ(R) =
∫ R
R0
d̄12(R′)dR′, one can eliminate

the coupling in Eq. 6.3 between the potentials V̄1(R) and V̄2(R) [411]. This leads to a two-
component Schrödinger equation(

~2

2µRb

∂2

∂R2
1 + V̂ (R)

)
Φ = EΦ. (6.7)

In contrast to Eq. 6.3, the non-adiabatic coupling terms are absent. Instead, the coupling
now appears in the operator V̂ (R) = Û(R) ˆ̄V (R)Û(R) that was diagonal before the trans-
formation, yielding

V̂ (R) =

(
cos2(ϕ)V̄1(R) + sin2(ϕ)V̄2(R) sin(ϕ) cos(ϕ)

[
V̄1(R)− V̄2(R)

]
sin(ϕ) cos(ϕ)

[
V̄1(R)− V̄2(R)

]
sin2(ϕ)V̄1(R) + cos2(ϕ)V̄2(R)

)
. (6.8)

The diagonal elements provide diabatic potentials V11(R) ≡ V1(R) and V22(R) ≡ V2(R)
and electronic states |Ψ1

el(R)〉 and |Ψ2
el(R)〉, see Fig. 6.2 (a). Here, diabatic refers to the ab-

sence of the coupling by the kinetic energy operator which guarantees a diabatic vibra-
tional motion at the crossing. The potential V1(R) is the potential formed by the crossing
between |α̃〉 and |β̃〉, see Fig. 5.10. Far away from the crossing, the observed vibrational res-
onances and the microscopic excitation rates are well described by the binding potential
V1(R), see Fig. 5.9 and Fig. 5.10. The corresponding Born-Oppenheimer wave functions
can be written as |Ψ1

Mol〉 = Φ1
ν(R)|Ψ1

el(R)〉. The second potential V2(R) supports another set
of Born-Oppenheimer states |Ψ2

Mol〉 = Φ2
ν(R)|Ψ2

el(R)〉.
A convenient way to solve the coupled problem is to expand Eq. 6.7 into these dia-

batic eigenstates and then diagonalize the coupled Hamiltonian. This provides vibronic
molecular states

|ΨMol〉 =
∑

ν,i∈{1,2}

Cνi Φ
i
ν(R)|Ψ iel(R)〉. (6.9)

The calculated energies of the vibronic states which experience the strongest optical ex-
citation rates are shown as vertical orange lines in the upper spectroscopy presented in
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Figure 6.2: Diabatic and adiabatic binding potentials. (a) In the diabatic basis obtained
by a gauge transformation, one finds two sets of vibrational modes {Φ1

ν(R)} and {Φ2
ν(R)}.

(b) A solution of the coupled problem provides vibronic states which are a superposition
of both sets of bound states. (c) The calculated ν−dependent Rabi frequencies for the
eigenstates in the diabatic and the coupled potentials, for a linear light polarization ε ‖
R. The resonance position of the even (odd) vibrational modes in the diabatic potential
are indicated as solid (dashed) vertical orange lines for both plots. While the coupling
modifies the spectrum in the energetic vicinity of the gap, the overal structure is similar in
both cases. Figure adapted from Ref. [411].

Fig. 6.1 (b). Now, most of the observed resonances in the vicinity of the gap can be pre-
dicted by the calculation. The coupled spatial modes which now extend over the spatial
extension of both potentials are shown in Fig. 6.2 (b). The same formalism as the one
presented in chapter 5 can be used to calculate the optical excitation rates of the vibronic
states. The expected two-photon Rabi frequencies into the diabatic and vibronic molecular
states are shown in Fig. 6.2 (c) for a typical UV intensity. The excitation laser was assumed
to be π polarized where the polarization vector is aligned with the interatomic axis. The
calculated spectrum in the diabatic potential V1(R) agrees with the observations far away
from the crossing. Using the vibronic states, one finds additional resonances. Particularly
in the vicinity of the gap, a coupling between the eigenmodes in the potentials V1(R) and
V2(R) leads to a splitting of the modes that can be excited by the UV laser. As expected, the
description in the diabatic potential V1(R) is a good approximation away from the gap. In
this region, the vibrational states in the additional diabatic potential V2(R) are only weakly
coupled to the modes in the potential V1(R) that are coupled by the light field.

6.2.1 Finite magnetic fields

The studied 0+
g binding potential showed no first order Zeeman coupling and the spec-

troscopy at low magnetic field agreed with calculations at zero field. However, at higher
fields, higher-order contributions from the magnetic field are expected to contribute. Be-
cause the coupled vibronic eigenenergies critically depend on the gap position, the per-
turbed eigenmodes might change. A spectrocopy for B = 28.8 G perpendicular to the
atomic plane is shown in Fig. 6.3. The magnetic field was pointing out of the atomic plane.
As a consequence, it was perpendicular to the distance vectors of all atom pairs that were
excited into macrodimer states. In comparison with the low field result, one finds a modi-
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Figure 6.3: Effects of a magnetic field on the vibronic eigenstates. Applying a magnetic
field B = 28.8 G perpendicular to the atomic plane modifies the vibronic structure of the
magnetically insensitive potential close to the gap. Because accurate calculations were not
feasible in this regime, the locations of the vibrational energies calculated in the diabatic
potential V1(R) at zero field are plotted instead. Again, the expected location of the gap is
indicated in gray. Comparing the correlation signal at the three resonances close to the gap
suggests that the two left resonances correspond to the same diabatic eigenstate, split by
the non-adiabatic couplings. A small frequency offset between the resonance positions in
the upper and the lower spectrocopy is related to an uncertainty in the calibrated 35P1/2

Rydberg resonance. All error bars on the data points denote one s.e.m. Figure adapted
from Ref. [411].

fication of the perturbed spectrum as well as a broadening for most lines. Currently, the
precision of the potential calculations at finite fields are not accurate enough to provide
accurate predictions. However, the electronic structure of the split states can still be ex-
perimentally studied by measuring orientation-dependent excitation rates. For the three
dominant resonances close to the gap, one finds similar signatures for the two left lines,
while the right line is different. This might indicate that the two left resonances have
strong admixtures of the same eigenstate in the diabatic potential V1(R).

6.3 Potential engineering & predissociation

In the previous discussion, the macrodimer binding potentials originated from the avoided
crossings induced by the Rydberg interactions between crossing potential curves. This sec-
tion discusses the possibility to engineer binding potentials by inducing avoided crossings
with external magnetic fields. The discussion focuses on two pair potentials V0−u (R) and
V1u(R) that cross at an interaction shift U ≈ 3 GHz above the |36P1/236P1/2〉 asymptote,
see also Fig. 5.1 (c). At zero field, the 0−u binding potential cannot be coupled to the repuls-
ive 1u potential because the molecular quantum numberΩ is protected by the symmetry of
the interaction Hamiltonian, see section 4.1.1. The observed spectrum agrees well with the
calcuated eigenmodes in the isolated 0−u binding potential up to high vibrational quantum
numbers, see Fig. 6.4 (a). For an external field that is not aligned with the interatomic
axis, the rotational symmetry of the molecule is broken. As a consequence, Ω cannot be
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regarded as a good quantum number and avoided crossings between the crossing pair po-
tentials can occur. In the experiment, the magnetic field of variable strength was applied
perpendicular to the atomic plane. In this configuration, this induces a gap between the
two crossing potentials that is identical for all pairs in the plane, see Fig. 6.4 (b).

In the presence of a coupling between V0−u (R) and V1u(R), the continuum modes sup-
ported by the repulsive 1u potential are admixed to the bound vibrational states. Depend-
ent on the strength of the coupling, this is expected to reduce the lifetime of the vibra-
tional states and broaden the vibrational resonances. This phenomenon where molecules
can dissociate due to non-adiabatic transitions to repulsive potential barriers is another
example where the Born-Oppenheimer approximation breaks down and is called predis-
sociation [436].

A calculation of the electronic decomposition of both crossing pair potentials V0−u (R)

and V1u(R) by diagonalizing the Rydberg interaction Hamiltonian is again only possible
at high precision at zero field. For low fields, the interaction with the field can again be
predicted using perturbation theory. The induced couplings between both potentials can
be calculated using the Hamiltonian Ĥ1 = Ĥ

(1)
B ⊗1(2) +1(1)⊗ Ĥ(2)

B introduced in Eq. 5.14.
For B ⊥ R, the single particle Hamiltonians can be expressed as

ĤB = µB

(
gSŜx + gLL̂x

)
Bx. (6.10)

Again, R is assumed to be parallel to the z−axis. Without loss of generality, the mag-
netic field was chosen to point along the x−axis. The relevant electronic pair states are
|ΨMol;±1u〉 and |ΨMol; 0−u 〉. In the following discussion, it is convenient to define states

|ΨMol;Su〉 =
1√
2

(|ΨMol; +1u〉+ |ΨMol;−1u〉) (6.11)

|ΨMol;Au〉 =
1√
2

(|ΨMol; +1u〉 − |ΨMol;−1u〉) . (6.12)

The magnetic field induces a coupling

∆C(R) = 〈ΨMol; 0−u |Ĥ1|ΨMol;Su〉 (6.13)

which is proportional to the magnetic field and can again be calculated using the decom-
position of the molecular state into asymptotic states |rirj〉, see Eq. 4.2. Again, the molecu-
lar state decompositions depend on R.

Because 〈ΨMol; +1u|Ĥ1|ΨMol; 0−u 〉 = 〈ΨMol;−1u|Ĥ1|ΨMol; 0−u 〉, the state |ΨMol;Au〉 re-
mains uncoupled, leaving one of the two crossing 1u potential energy curves unchanged.
The new combined potentials are obtained by diagonalizing the Hamiltonian

Ĥ =

(
V1u(R) ∆C(R)
∆C(R) V0−u

(R)

)
. (6.14)

At the crossing point Rc of both potentials, the gap size is 2∆C(Rc).
The coupling of the bound states to the continuum states does not only depend on the

electronic coupling ∆C(R) but also on the spatial overlap between both sets of motional
states. In our case, where one potential is a repulsive potential well, a Franck-Condon
density (FCD) estimates the coupling strength between a vibrational state Φν(R) to nearby
continuum modes. An estimation of the FCD by the overlap integral of the vibrational
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Figure 6.4: Potential engineering & predissociation. (a) The observed spectrum at zero
field agrees with the calculated resonance positions. These are indicated as solid (dashed)
vertical lines for even (odd) vibrational states ν. (b) At a magnetic field perpendicular to
the molecular axis, the binding potential V0−u

(R) (dark gray) can be coupled to a repuls-
ive potential barrier V1u(R) (light gray). As a consequence, the vibrational modes in the
binding potential are coupled to the continuum modes supported by V1u(R). For large
gaps, one expects a new binding potential hosting stable eigenmodes (orange). Above the
crossing point (vertical red line), the Franck-Condon density (FCD) between the bound
states and the continuum modes oscillates with the vibrational quantum number. The
gray area indicates the frequency region studied in the spectroscopies. (c) At a magnetic
field of B = 4.5 G, the resonance positions still agree with the unperturbed vibrational
energies. However, a broadening of some vibrational resonances confirms the coupling
to the continuum. At an even higher field of B = 12 G, the perturbation in the spectrum
is absent again. Now, the vibrational spacing exceeds the calculated value in the isolated
potential (vertical gray lines) but agrees with a calculation in the combined potential (ver-
tical orange lines). Because of an overall energy shift that appears at higher magnetic field
values, both sets of calculated eigenenergies were manually overlapped with the first ob-
served vibrational resonance ν = 48. All error bars on the data points denote one s.e.m.
Figure adapted from Ref. [413].

bound states with the continuum states at same energy is shown in Fig. 6.4 (b). We find that
the FCD vanishes for vibrational states energetically below the crossing, while it oscillates
with the vibrational quantum number ν above. This is consistent with previous studies on
predissociation [440] and can be understood by comparing the continuum states with the
vibrational states Φν(R), see the upper plot in Fig. 6.4 (b). The FCD reaches a maximum
when the first lobes of the continuum states coincide with the first lobe of Φν(R). In con-
trast, it becomes small when it matches with the first zero crossing of Φν(R). It increases
again when the first lobes of the continuum states match with the second lobe of Φν(R)
and so on.
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In the experiment, we find perturbations in the vibrational spectra for magnetic fields
within the range between B = 3.5 G and B = 6.5 G. Spectroscopic data starting from |F =
2,mF = 0〉 for detunings above the crossing point and finite field values are presented in
Fig. 6.4 (c). For B = 4.5 G, where the calculated gap size is 2∆C ≈ 17 MHz, one finds a
significant broadening of the vibrational resonances for vibrational quantum numbers ν ≈
54. The resonance positions are still in agreement with the calculations of the eigenmodes
in the isolated potential V0−u

(R) calculated at zero field. For a larger field B = 12 G where
2∆C ≈ 40 MHz, the perturbations in the spectra disappear again. However, the resonance
positions are now shifted from the vibrational energies at zero field. Furthermore, the
observed vibrational spacing ∆

exp
ν ≈ 2.66(1) MHz is found to be significantly above the

calculated value ∆0−u
ν ≈ 2.45(1) MHz within the binding potential V0−u

(R) but agrees with
the calculation ∆C

ν ≈ 2.66(2) MHz in the combined potential. This observation indicates
that the vibrational wave function at higher magnetic fields is confined in the combined
potential VC(R) rather than the isolated 0−u potential.

For larger magnetic fields where the vibrational resonances were shifted by the mag-
netic field, a quantitative agreement between the calculated and the observed vibrational
energies could not be achieved. A quantitative agreement in this regime would require to
account for more than just the two potentials V0−u

(R) and V1u(R). However, the spacing
between neighboring vibrational resonances is still a useful quantity to describe the bind-
ing potential. The experimental values for the vibrational spacings ∆exp

ν were obtained by
fitting a vibrational series with varying frequency spacing to the data. Uncertainties on the
calculated values∆ν0−u

and∆C
ν account for the anharmonicity of both molecular potentials

in the frequency range of the spectroscopies performed above the potential crossing.
Magnetically induced predissociation has also been observed for conventional deeply

bound molecules [440, 441]. In such experiments, spectroscopic signals are averages over
all molecular orientations in the samples. If gaps between crossing potentials are induced
by external fields, this is critical because the gap depends on the orientation of the field
relative to the molecular axis. For macrodimers, the wide tuning range covering both
Born-Oppenheimer limits is possible because of the small binding energies. Even larger
tunabilities can be expected from using electric instead of magnetic fields because of the
large polarizability of the contributing Rydberg states. This once more shows that mac-
rodimers can serve as an interesting playground to study generic features of molecules
with maximum experimental control in a regime where ab-initio calculations provide reli-
able predictions.
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Chapter 7

Two-color macrodimer excitation
The last chapters provided a detailed experimental and theoretical study of Rydberg

macrodimers and their optical excitation. This chapter focuses on a new two-color excita-
tion scheme where the molecular Rabi freuqencies are strongly enhanced. In combination
with an optimized choice of the contributing electronic states and the light polarization,
this enables an increase of the molecular Rabi frequencies by up to a factor of 50. The
small intermediate state detunings of the new coupling scheme also induces a level shift
of the macrodimer resonance that originates from the optical coupling into photodissoci-
ated motional continuum states. This chapter follows the publication [442]. The theoretical
description of the observations was developed in close discussion with Andreas Krucken-
hauser and Valentin Walther.

7.1 Optimizing the angular overlap coefficients

In order to realize maximum excitation rates, all contributing Clebsch-Gordan coefficients
have to reach a maximum. As discussed in chapter 5, this is generally more difficult com-
pared to the optical coupling between two internal states of an atom where the quantiza-
tion axis, e.g. the magnetic field B, and the polarization of the light field ε are the only two
contributing vectors. Now, also the interatomic distance vector R contributes.

The angular momentum projection of the initial ground state atom pairs is only well-
defined relative to B, see also Fig. 5.2. As a first optimization step it therefore makes sense
to optimize the Rabi rates into molecules with an orientation R ‖ B. Here, the descrip-
tion of the optical coupling does not require apply a rotation Eq. 5.1 on the contributing
quantum states. This reduces the mixing of different angular momentum projections, al-
lowing the full quantum state to contribute to the coupling. For the same reason, it makes
sense to choose a stretched state |F = 2,mF = ±2〉 = |mJ = ±1

2〉J ⊗ |mI ± 3
2〉I with

maximum |mF | = F as an initial state. Here, the nuclear spin projection mI remains
unentangled from the electronic angular momentum projection mJ and mixing between
different mJ does not occur.

In the optical excitation, large Clebsch-Gordan coefficients can be found using pure σ
transitions. Describing the excitation in the frame of the oriented molecule, this requires
R to be parallel to the wave vector k of the light, see also section 3.7.3 and section 3.7.3.
Comparing the possible initial states presented in Fig. 5.2 for the molecular states 0+

g , 0−u
and 1u available in our system, one finds that only molecular states 1u with Ω = ±1 can
be coupled by two σ polarized photons of the same kind.

In order to fulfill these conditions, the ground state atoms in this chapter were prepared
in the hyperfine ground state |5S1/2, F = 2,mF = −2〉, see Fig. 7.1 (a). From the set
of available 1u potentials, we chose the vibrational spectrum energetically located blue-
detuned from |36P1/2〉 ≡ |e〉, see Fig. 5.6. As in previous chapters the Rydberg P-state
with J = 1

2 is denoted as |e〉. The magnetic field B = 0.5 G was pointing along the lattice

97
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Figure 7.1: Optimizing molecular Rabi frequencies. (a) Throughout this chapter, only
the 1u potential blue-detuned from the |36P1/2〉 ≡ |e〉 resonance is optically excited. Coup-
ling ground state atoms |F = 2,mF = −2〉 to molecular states with Ω = +1 with a ori-
entation R ‖ B ‖ k using σ+ polarized light realizes stong molecular Rabi couplings. (b)
Modulating a weak sideband at a frequency ωsb on the carrier frequency ωC enables two-
photon excitation with one sideband photon and one carrier photon. Now, the ground
state |gg〉 is coupled to the intermediate state |i〉 = 1/

√
2 (|eg〉+ |ge〉) with a tunable Rabi

frequency Ω̃sb. The intermediate states are coupled by carrier Rabi frequencies Ω̃ν
C to the

macrodimer states. For modulation frequencies ωsb similar to the interaction shifts Uν of
the macrodimer states |ΨνΩ〉, this allows to drastically reduce the large intermediate state
detunings ∆ observed in Fig. 5.6 for the same binding potential. The detuning ∆ and
the two-photon detunings δν are typically on the order of a few megahertz and can be
independently tuned with the modulation frequency. Figure adapted from Ref. [442].

diagonal direction which coincides with the propagation direction of the UV light k ‖ B.
This configuration is identical to the one chosen for the study of the molecular excitation
rate on the light polarization in Fig. 5.9 (d). The excitation light was purely σ+ polarized.

The calculated bond length Rν = 0.712(5) µm of the macrodimers is again close to
the diagonal distance

√
2alat in the optical lattice, with alat = 532 nm. As a consequence,

the excited molecules are either parallel or orthogonal to B and k, with the possible ori-
entations Ω = ±1. The four possible states can then be labelled as |ΨνΩ‖〉 and |ΨνΩ⊥〉,
with ν the vibrational quantum number. In the given configuration, the initial pair state
|gg〉 = | − 1u〉J ⊗ |MI = −3〉I can be strongly excited into molecular states |Ψν+1‖

〉 with
Ω = +1. Using the notation introduced in section 5.1, the subindex specifies the ungerade
symmetry of the state | − 1u〉J = | − 1

2〉J ⊗ | −
1
2〉J .

In contrast, excitation rates into the two states |ΨνΩ⊥〉with orthogonal molecular orient-
ation R ‖ B are strongly suppressed because of two reasons. First, in this perpendicular
molecular frame, the light is not σ+ polarized anymore. Second, as one can see from
Fig. 5.2 (a) for a rotation angle of 90◦, the initial states expressed in the molecular frame
now do not have a well-defined angular momentum projection mJ .
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7.2 Two-color Rydberg macrodimer excitation

A second obstacle towards the realization of strong molecular Rabi couplings is the large
intermediate state detuning in the two-photon excitation scheme. For the previously stud-
ied 1u potential, the lowest vibrational state with vibrational quantum number ν = 0 was
observed at a detuning ∆/2π = U0/2 = 367.65(5) MHz, corresponding to an interaction
shift U0 = 735.3(1) MHz, see Fig. 5.6. The large intermediate state detuning can be re-
duced by using two UV photons oscillating at two different frequencies, see Fig. 7.1 (b). If
the first photon in the two-photon excitation scheme is closer to the singly-excited interme-
diate state, this will directly increase the molecular Rabi frequencies. Keeping the power
in the near-resonant field low, also the scattering at the singly-excited intermediate states
remains sufficiently low. Here, the second field is created by phase modulating the car-
rier field using an electro-optical modulator (EOM). The modulation frequency ωsb/(2π)
is chosen to be sligthly lower than U0.

For the given light polarization, the possible intermediate states are |eg〉 and |ge〉. For
the same reason as discussed in section 2.5.1 one finds that for 1u molecules with ungerade
symmetry only the symmetric superposition |i〉 = 1/

√
2 (|eg〉+ |ge〉) contributes to the

coupling. Because the coupling to the antisymmetric superposition vanishes, it will be
neglected in the following description.

7.2.1 Two-color vibrational spectroscopy

The easiest way to perform the two-color spectroscopy is to vary the overall UV frequency
while keeping ωsb identical. The reason is that the EOM has an integrated resonant cir-
cuit matched to the modulation frequency. Whenever ωsb is changed, also the resonant
circuit has to be adjusted accordingly. The starting point for the spectroscopy is the single-
photon Rydberg transition between a ground state atom |g〉 and a Rydberg state |e〉. After
performing Rydberg spectroscopy with the carrier field, the corresponding resonance of
the red sideband can be found by increasing the overall UV frequency by ωsb from the
observed carrier resonance. Throughout this chapter, this single-photon transition driven
by the red sideband acts as the new reference for the detuning of the UV light, see Fig. 7.2.
As previously observed in Fig. 4.2, the resonance is asymmetrically broadened towards
red detunings due to attractively interacting van der Waals potentials.

For interaction shiftsUν of the vibrational states sligthly larger than ωsb, the vibrational
states become two-photon resonant by one photon from the red sideband and one photon
from the far detuned carrier field if the laser frequency is sligthly detuned from the new
reference ∆ = 0. The vibrational resonances are expected to appear at detunings

∆

2π
=

1

2

(
Uν − ωsb

2π

)
. (7.1)

The factor of two enters the description because the overall UV frequency was swept dur-
ing the spectroscopy. Because this changes the frequency of the carrier and the sideband,
the UV laser only has to be varied by half the subtracted value between Uν and ωsb/(2π)
to become two-photon resonant to the macrodimer states.

In contrast to previously observed vibrational spectra, the intermediate state detuning
is now on the same order of magnitude as the vibrational frequencies ωvib. As a con-
sequence, higher vibrational states are not only suppressed because of the lower Franck-
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Figure 7.2: Vibrational spectroscopy using two-color excitation. The two-photon and
two-color macrodimer resonances between ground states |gg〉 and macrodimer states |Ψν〉
can be observed at the single-photon detunings calculated by Eq. 7.1 (vertical orange lines)
relative to the Rydberg transition |g〉 → |e〉 driven by the red sideband of the phase mod-
ulated UV laser. Here, the modulation frequency was ωsb/(2π) = 723 MHz. Error bars
denote one standard error of the mean (s.e.m.). Figure adapted from Ref. [442].

Condon factors discussed in section 4.2 but also experience significantly higher interme-
diate state detunings.

7.3 Photodissociation into the motional continuum

The spectroscopy data presented in Fig. 7.2 has been taken at low overall UV power. Using
either higher powers or modulation frequencies closer to the vibrational energies where
the intermediate state detunings are smaller, the vibrational resonances experience an ad-
ditional energy shift V ν

pd which modifies the resonance position obtained from Eq. 7.1. An
exemplary dataset for the lowest vibrational state is shown in Fig. 7.3 (a). The shift

V ν
pd

2π
= a(∆C)

(
Ω̃

2π

)2

(7.2)

depends linearly on the UV intensity and quadratically on the calibrated carrier Rabi fre-
quency Ω̃ that couples |g〉 to |e〉, see Fig. 7.3 (b). For all measurements presented here, the
power in the sideband was low and did not contribute to V ν

pd. This suggests that V ν
pd is a

second order AC Stark shift induced by the carrier field. In any three-level system, both
paths in principle induce AC Stark shifts. However, the Rabi frequencies contributing to
the excitation are not strong enough to explain the observed shift.

The origin of the unexpectedly large shift is carrier-induced photodissociation into mo-
tional states at kinetic energies similar to the one of the vibrational wave function Φ0(R).
Calculating the shift requires to explicitly account for the accessible motional states con-
tributing to the intermediate state |i〉, see Fig. 7.3 (c). In the two-photon excitation, only
motional states which have a finite Franck-Condon overlap with both the initial and the fi-
nal motional wave functions can contribute. However, the carrier field can photodissociate
an excited macrodimer state also into higher energetic motional states. The quantitative
model describing this process will be discussed in the following paragraphs.
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7.3.1 Overlap with continuum states

Separating the relative coordinate of both unbound atoms in an angular and a radial
component leads to motional states Ψk` (R) = j`(kR)Y m

` (θ). Their energies are given by
Ek = ~2k2/(2µ) = ~ωk, with µ = mRb/2 the reduced mass of 87Rb. The spherical Bessel
functions j`(kR) account for motional excitations at wavenumber k and the rotational
states Y m

` (θ) account for the angular momentum ` of the atom pair and its projection m.
In this and the next chapter, all lattices had a depth of 1000Er, with Er = h2/(8mRba

2
lat) =

h × 2.0 kHz the recoil energy of the lattice. As discussed in section 4.3.1, only spherical
harmonics Y 0

` (θ) with m = 0 are expected to contribute for isotropic trapping conditions.
Note that the assumption of motional states Ψk` (R) neglects the lattice potential for the
intermediate states |i〉. Because the lattice potential is significantly lower than the kinetic
energy stored in the vibrational wave function of the macrodimer state, the treatment still
covers the essential physics. What is essential is that there is a complete basis of motional
states where the molecular state can be coupled to.

The Franck-Condon integrals fkg` between the ground state relative wave functionΦrel(R)

and the motional states Ψk` (R) are given by

fkg` = f`

∫ ∞
0

j`(kR)Φrel(R)R2dR. (7.3)

The angular overlap coefficients f` are determined from independent angular integrals,
see section 4.3. The calculated overlap fkg` for ` = 0 and different wavenumbers k is presen-
ted in the upper plot in Fig. 7.3 (d). The envelope of the distribution is essentially given
by the Fourier transform of the Gaussian wave function and the period of the underly-
ing oscillation is determined by the interatomic distance Rν . Besides a suppression of the
overlap at low k−values as well as a phase shift in the oscillations, the results for ` 6= 0
look similar.

Similar as for the ground state, the overlap between the vibrational state Φν(R) and the
Bessel functions is given by

fkν` =

∫ ∞
0

j`(kR)Φν(R)R2dR. (7.4)

A calculation for ν = 0 provides the vibrational state Φ0(R) =
(
2πR4

0σ
2
0

)− 1
4 e
−
(
R−Rν
2σ0

)2
,

with σ0 ≈ 5.5 nm. The corresponding overlap fkν` for ` = 0 is shown in the lower plot in
Fig. 7.3 (d). As expected, the motional wave function which is more narrow in real space
has a broader distribution ∝ e−2k2σ2

0 in k-space.

7.3.2 Excitation model

In the optical coupling, the Rabi frequency between |g〉 and |ik` 〉 can be parametrized as
Ω̃sb = β

√
2Ω̃. Here, β is the ratio between the field amplitude in the sideband and the

calibrated single-particle Rabi frequency of the carrier field Ω̃, see section 3.7.2. As for
the Rydberg blockade, the factor of

√
2 enters from the symmetric electronic intermediate

state |i〉, see section 2.5.1. The Rabi frequency between |ik` 〉 and the molecular state can
be parametrized as Ω̃C = α

√
2Ω̃. The scaling factor α = 1.04 accounts for the electronic

structure of the molecular state |Ψν+1‖
〉, see section 5. Defining single-photon detunings
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Figure 7.3: Photodissociation into continuum states. (a) A closer look reveals an addi-
tional shift V 0

pd which increases for higher UV intensities (gray to red). Here, the modula-
tion frequency was ωsb/(2π) = 728 MHz. (b) The observed shift V 0

pd depends quadratically
on the calibrated single-atom Rabi frequency Ω̃. (c) The shift originates from the coup-
ling of the molecular state to the motional continuum energetically located above the bare
electronic intermediate state |i〉 by the strong carrier field Ω̃C, shown here for ν = 0. On-
resonant coupling for k-modes where ∆0k

C = 0 furthermore induces photodissociation. In
the excitation from the ground state |gg〉, only modes at low k with finite overlap with
Φrel(R) as well as Φν(R) contribute. (d) A decomposition of Φrel(R) (upper plot) and the
lowest vibrational wavepacket Φ0(R) (lower plot) for ` = 0 into photodissociated states
at various wavenumbers k reveals the significantly higher kinetic energy stored in Φ0(R).
(e) The shift is described by the real part of Eq. 7.7. The contributions |fkν`|2/(∆νk

C ), shown
here for ν = 0, ` = 0, and ∆C/(2π) = −6.3 MHz, are distributed over the whole energy
band of the coupled continuum states and switch sign at the divergence.

∆k = ∆ − ωk of the sideband field relative to the intermediate states |ik` 〉 and two-photon
detunings δν relative to the vibrational states, the Hamiltonian is given by

Ĥ =
Ω̃sb

2

∑
`k

(
fkg`|Ψgg〉〈ik` |+ h.c.

)
−
∑
`k

∆k|ik` 〉〈ik` | (7.5)

+
Ω̃C

2

∑
ν`k

(
fkν`|Ψν`+1‖

〉〈ik` |+ h.c.
)
−
∑
ν`

δν |Ψν`+1‖
〉〈Ψν`+1‖

|.

While the illustration of the coupling in Fig. 7.3 (c) only accounts for the lowest vibra-
tional state, the Hamiltonian covers also the higher-lying states ν 6= 0. The electronic
and motional ground state are combined into the state |Ψgg〉. The molecular states in
rotational states Y 0

` (θ) are labelled as |Ψν`+1‖
〉. The oriented molecular states are again

obtained by the superposition |Ψν+1‖
〉 =

∑
f`|Ψν`+1‖

〉. Using the vibrational frequency
ωvib/(2π) = 3.80 MHz of the macrodimer potential, the two-photon detunings δν can be
expressed as δν = δ0 − νωvib.



103 7.3. Photodissociation into the motional continuum

7.3.3 Elimination of the continuum

In this paragraph, the dressing of the macrodimer states with the motional continuum is
calculated. The total wave function of the system can be expressed as

|Ψtot(t)〉 = cgg(t)|Ψgg〉+
∑
`k

ck`(t)|ik` 〉+
∑
ν`

cν`(t)|Ψν`+1‖
〉.

For an initially prepared macrodimer state with cν`(t = 0) = 1 at a rotational quantum
number `, the coupling to the motional continuum is described by the time-dependent
Schrödinger equation

i
d

dt
ck`(t) = ∆νk

C ck`(t) +
Ω̃C

2
cν`(t)f

k
ν`

i
d

dt
cν`(t) =

Ω̃C

2

∑
k

ck`(t)f
k
ν`. (7.6)

Here, ∆νk
C = ∆ν

C + ωk is the single-photon detuning of the carrier field relative to the
transition from the macrodimer states to the intermediate states |ik` 〉. The single-photon
detunings ∆ and ∆ν

C are related via δν = ∆ + ∆ν
C. While most motional states are off-

resonantly coupled where ∆νk
C � Ω̃Cf

k
ν`, there is also a small on-resonant part ∆νk

C = 0
where the kinetic energy of the motional states compensates for the detuning ∆ν

C.
In the stationary limit d

dt ck`(t) = 0, one obtains

i
d

dt
cν` =

∫ ∞
0

dk
ρ|Ω̃Cf

k
ν`|2

4∆νk
C

cν` = 2
(
V ν`

pd + iγν`pd

)
cν`. (7.7)

Assuming a large system size, the sum can be replaced by an integral
∑

k →
∫
ρ dk, with

ρ the density of states along the radial coordinate. The integral can be solved by using the
Sokhotski-Plemelj theorem. [443, 444] The real part represents the summed AC Stark shift
of the contributing k−modes which modifies the two-photon detuning δ̃`ν = δν − 2V ν`

pd .
Generally, contributions can be found for all wavenumbers where fkν` does not vanish,
also close to the divergence. If the carrier detuning ∆C is small such that the divergence
appears at wavenumbers within the envelope of fkν`, the final AC Stark shift is a combina-
tion of blue-detuned and red-detuned contributions, see Fig. 7.3 (e).

The imarginary part of the integral γν`pd represents on-resonant deexcitation. For ν = 0,
an analytical calculation of the imaginary part provides

2γ0`
pd =

Ω2
Cσ0

2

√
4πµ

~∆0
C
e−4µ|∆0

C|σ
2
0/~, (7.8)

which is identical to the result obtained from Fermi’s Golden rule. The dependence of
V ν`

pd and γν`pd on the rotational quantum number ` arises from the oscillatory behavior of
fkν` at wavenumbers close to the divergence in Eq. (7.7), see Fig. 7.3 (c,d,e). Dependent on
the slope of coefficients fkν` at the wavenumber where ∆ν,k

C = 0, the shift V ν`
pd varies in its

amplitude, in particular at smaller detunings ∆ν
C .
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Figure 7.4: Line shift and broadening induced by photodissociation. (a) The experi-
mental line shifts obtained from Eq. 7.2 agree with the theoretical expectations based on
Eq. 7.7 and Eq. 7.9. The AC Stark shifts also depend on the different contributing ro-
tational angular momenta `. The closer the detunings, the more the corresponding en-
ergy shifts deviate. The blue shaded region denotes the corresponding minimum and
maximum values. (b) Full width half maximum (FWHM) of the resonance profiles for
∆C/(2π) = −3.6 MHz, −6.35 MHz, and −10.1 MHz (gray to red) at different Rabi frequen-
cies. The observation again agrees with the calculation (solid lines). Error bars on the
data points mark the 1σ − 67% confidence interval of the fitted resonance profiles. Figure
adapted from Ref. [442].

7.3.4 Level shift and line profiles

For the calculation of the optical excitation signatures, the system is assumed to be initially
in the ground state where cgg(t = 0) = 1. Accounting for the full Hilbert space, the time-
dependent Schrödinger equation is given by

i
d

dt
cgg(t) =

Ω̃sb

2

∑
`k

fkg` ck`(t)

i
d

dt
ck`(t) = −∆k ck`(t) +

Ω̃C

2
fkν` cν`(t) +

Ω̃sb

2
fkg` cgg(t)

i
d

dt
cν`(t) =

(
−δ`ν − iγlp

)
cν`(t) +

Ω̃C

2

∑
k

fkν` ck`(t).

In order to also include the resonance profile to the description, the experimentally ob-
served linewidth 2γlp = 2π × 920 kHz at low UV intensities was included as a non-
Hermitian term to the differential equation. In order to calculate the resonance profile
observed in two-photon spectroscopy, one can restrict the description to detunings close to
the two-photon resonance. Here, the hierarchy of energy scales |∆| � δν , f

k
ν`|Ω̃C|, fkg`|Ω̃sb|

allows to adiabatically eliminate the intermediate state. Calculating again the stationary
solution via i ddt ck`(t) = 0 and inserting the obtained expression for the coefficients ck`(t)
in the remaining equations, one again obtains the level shift V ν`

pd and the photodissociation

rate γν`pd. After neglecting terms quadratic in Ω̃sb which represent a negligible energy shift
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in the ground state, one obtains

i~
d

dt
cgg(t) =

∑
`

Ω̃`
ν

2
cν`(t)

i~
d

dt
cν`(t) =

[
−δ̃`ν − i(γlp + γν`pd)

]
cν`(t) +

Ω̃`
ν

2
cgg(t).

Here, Ω̃`
ν is the effective two-photon Rabi frequency coupling the ground state and the mo-

lecular states |Ψν+1‖
〉. A detuning-dependent steady-state analysis of the total macrodimer

population
∑

` |cν`|2 for cgg(t) ≈ 1 provides the resonance profile

Γ ν(δ) ∝
∑
`

|f`|2(
δν
2 − V

ν`
pd

)2
+ 1

4

(
γlp + γν`pd

)2 . (7.9)

As expected from section 7.3.3, the two-photon resonances are shifted by V ν`
pd . The shift

agrees with the experimental results obtained from fitting Eq. 7.2 at different single-photon
detunings ∆C , see Fig. 7.4 (a). Experimentally, different values for ∆C were realized by
changing the modulation frequency ωsb where two-photon resonance occurs at different
intermediate state detunings. In the individual spectra, only the overall frequency of the
UV laser was varied while ωsb was kept the same.

The calculations furthermore show that V ν`
pd are effectively `−independent for larger

single-photon detunings∆C but start to deviate at small detunings. As a consequence, the
resonance profile at small detunings ∆C is expected to broaden because different angular
momentum state become resonant at slightly different laser frequencies. Furthermore, on-
resonant photodissociation into motional states where ∆ν

C = −ωk directly increases the
width of the individual resonances. Both effects are small at detunings ∆ν

C larger than
the energy band of the continuum states contributing to the vibrational wave function but
become important at smaller detunings. Experimental values for the power-dependent
linewidths at three different values of ∆ν

C are presented in Fig. 7.4 (b). Again, the calcula-
tions agree with the observations.

Further comments

The experimental value for the linewidth observed at low powers which was included
into the model was larger compared to measurements taken at different macrodimer res-
onances, see also section 4.2.2. One reason for this is that the measurements were per-
formed at deep lattice depths where broadening due to the larger amount of rotational
states related to the deeper lattice depth contributes, see also section 4.2.2. Furthermore,
the resonances of the chosen 1u binding potential at low vibrational quantum numbers
were naturally sligthly broader, see also Fig. 5.6 (a). The broadening which is particularly
present for the second even vibrational resonance originates from another crossing pair
potential which affects the spectrum due to non-adiabatic motional couplings as discussed
in chapter 6.

Direct photodissociation of a molecular state into a non-interacting electronic state [445,
446] is uncommon. In typical photodissociation experiments, "conventional" molecules are
optically excited into energetically higher electronic pair potentials. Dissociation happens
mostly because these pair potentials are repulsive or because of predissociation. Here, this
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direct coupling into pair potentials is realized because the interaction between both Ryd-
berg atoms are much stronger compared to the negligible interactions between a ground
state atom and a Rydberg atom.

7.4 Two-color Rabi frequencies

In the last section, adiabatic elimination provided two-color Rabi frequencies coupling the
ground state into macrodimer states |Ψν`+1‖

〉 at fixed rotational quantum number `. Assum-
ing large detunings ∆C such that the splitting of the rotational states can be neglected, the
oriented molecular state |Ψν+1‖

〉 =
∑
f`|Ψν`+1‖

〉 will be coupled with a combined Rabi rate

Ω̃ν =
∑
f`Ω̃

`
ν which is given by

Ω̃ν = Ω̃sbΩ̃C
∑
`k

f`
fkg`f

k
ν`

2∆k
≈ Ω̃sbΩ̃C

2∆
fνg =

αβ|Ω̃|2

∆
fνg . (7.10)

In agreement with the previous discussion, the small kinetic energy in the ground state
restricts contributions from fkg` to small wavenumbers where ∆k ≈ ∆ is effectively inde-
pendent of k and the above sums collapse to identities∑

k

fk`gf
k
ν` = f`f

ν
g = f`

∫ ∞
0

Φg(R)Φν(R)R2dR. (7.11)

The second sum over the variable ` vanishes because of the normalization condition
∑

` |f`|2 =
1. As a consequence, the calculated two-color Rabi frequencies match the intuitive initial
guess without accounting for the continuum state. However, the frequency where the mac-
rodimer resonance can be observed and the linewidth of the transition are still affected by
Eq. 7.9.

Comparing the two-color excitation scheme with the single-color scheme, one finds
that the intermediate state detuning can easily be decreased by more than two orders of
magnitude. At the same time, one of both Rabi frequencies is decreased by the sideband
amplitude β which was typically between 0.05 and 0.3. Because the power in the sideband
is proportional to ∝ β2, the carrier still had by far the dominant power for the available
modulation depths of the EOM. Combining both factors, the two-photon Rabi frequen-
cies can be increased by one to two orders of magnitude, leading to Rabi frequencies up
to Ω̃ν/(2π) ≈ 100 kHz. These Rabi frequencies are in principle high enough to observe
Rabi oscillations between ground state atom pairs and Rydberg macrodimers, see also
section 9.2.



Chapter 8

Rydberg macrodimer dressing
This chapter discusses Rydberg dressing based on macrodimer states. Off-resonant

admixing of the macrodimer states realizes strongly distance-selective interactions where
the interaction potential of the dressed ground state atoms feature a sharp peak in the
interatomic distance. The optical coupling scheme used in this chapter is based on the
configurations presented in the previous chapter and most of the notation will be adopted.
Because the Hamiltonian realized in this chapter can be mapped to a spin model, the
previous ground state will be labelled as |g〉 ≡ |↑〉. The experiments are based on a Ramsey
sequence where the dressed interactions faciliate the formation of two-spin and three-
spin correlations. Despite of the large amount of contributing parameters, the observed
dynamics can be predicted reasonably well. The chapter follows the publication [442].
The idea of using a two-color excitation scheme for Rydberg dressing was developed in
close discussion with Jun Rui.

8.1 Engineering distance-selective interactions

The idea of Rydberg dressing is to engineer long-range interactions between ground state
atoms by off-resonantly admixing Rydberg states, see also section 2.5.2. So far, experi-
mental schemes were based off-resonant coupling to the asymptotic van der Waals poten-
tials [155, 220–222]. A typical Rydberg-dressed potential using this conventional coupling
scheme is shown in Fig. 8.1 (a) for the chosen principal quantum number n = 36. The
typically soft-core shaped interactions Jsc decay algebraically at large distances and are
non-vanishing over an extended distance range [218]. The depth of the soft-core potential
can be approximated by Ω̃4/(8∆3) and depends on the Rabi coupling Ω̃ and the detuning
∆. For a larger spin system, this scheme makes it hard to isolate interactions to a selected
distance. As a consequence, the individual atoms always interact with several atoms in
their environment, with an interaction strength given by the profile of the soft-core poten-
tial.

The first theoretical proposal to use spatial minima or maxima of the pair potentials
for Rydberg dressing was published in [239]. Originally, the idea was to increase the
ratio of coherent interactions and admixed atom loss. The loss coefficients were only
considering single-atom loss and neglected experimentally observed density-dependent
losses [154, 155]. Another signature of the new dressing scheme is the different distance
dependence of the admixed interactions. Because the admixed interactions are finite only
at distances close to the potential minimum or maximum, the potentials are strongly
peaked in the interatomic distance. The width of the engineered interaction profile is typ-
ically limited by the spatial extension of the relative wave function in the ground state and
not the narrow dressing potential. In this chapter, these distance-selective interactions are
used to engineer a spin model in a two-dimensional spin lattice. Based on the results from
the previous chapters, the description of the original proposal is extended by the contrib-
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Figure 8.1: Distance-selective dressing potentials. (a) In an off-resonant coupling config-
uration, Rydberg-dressed interactions arise from a virtual four-photon coupling into the
macrodimer state (here shown for the lowest vibrational state). The two two-photon pro-
cesses can be combined into an effective Rabi frequency Ω̃ν . In the experiment, the coup-
ling of the macrodimer state into photodissociated continuum states induces an energy
shift V 0

pd which had to be taken into account. The notation was adopted from the previous
chapter, where the coupling into the continuum states was discussed. (b) The calculated
macrodimer-dressed interactions Jth are strongly peaked in distance (blue), in stark con-
trast to typical soft-core interactions Jsc cobtained by coupling to asymptotic interaction
curves (gray). Crosses denote the distances present in the optical lattice. The atoms are
arranged in a two-dimensional square array with a spacing alat and are illuminated by
the σ+ polarized UV laser with wave vector k oriented along the diagonal direction of the
lattice and parallel to the magnetic field B. Figure adapted from Ref. [442].

uting Franck-Condon factors and the electronic structure of the potentials [411, 413].
Previous chapters focused on the on-resonant excitation of macrodimers with molecu-

lar Rabi frequencies Ω̃ν for vanishing two-photon detunings δν ≈ 0. In an off-resonant

coupling configuration δν 6= 0, the coupling gives rise to a dispersive energy shift Jν = Ω̃2
ν

4δν
which can be understood as an AC Stark shift originating from the two-photon coupling
to the macrodimer state. Because the AC Stark shift only contributes if both ground state
atoms are placed at the distance where their relative motional state has a large overlap
with the macrodimer states, this represents an interaction potential between the ground
state atoms. The sign of the potential can be tuned by the detuning δν .

8.1.1 Two-color macrodimer dressing

Using a single UV frequency, the macrodimer-dressed interaction potential is too weak
for the available UV intensities. However, using the two-color excitation scheme as well
as the optimized coupling configuration presented in chapter 7, the realized potentials
are sufficiently strong. The EOM modulation frequency for the UV sideband was set to
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ωsb/(2π) = 726 MHz. At low powers, the two-photon resonance δ0 = 0 of the lowest
vibrational state can be observed at intermediate state detunings ∆/(2π) = −∆C/(2π) =
4.65(5) MHz, see Eq. 7.1 and Fig. 3.2 and Fig. 3.3 (a). Decreasing the intermediate state
detuning to the value∆/(2π) = 3.58 MHz chosen for the dressing configuration provides a
two-photon detuning δ0/(2π) = 2 (4.65(5)− 3.58) MHz = −2.14(10) MHz. Increasing the
carrier Rabi frequency between |g〉 ≡ |↑〉 and |e〉 to Ω̃/(2π) = 2.83(5) MHz shifts the lowest
macrodimer state ν = 0 by V 0

pd because of the coupling into the motional continuum, see
Fig. 3.4 (a). This leads to a modified two-photon detuning δ̃0 = δ0−2V 0

pd = −2π×3.01 MHz,
where V ν

pd can be calculated based on Eq. 7.2 using the extracted value for the scaling factor
a(∆C). The intermediate state detuning ∆ remains unaffected. Shifts V ν

pd for higher-lying
states ν 6= 0 can be neglected because they are further detuned. The modification of the
electronic structure of the molecular state due to the admixing of single-atom Rydberg
states in the photodissociation channel was neglected.

A calculation of the overall interaction strength accounting for many vibrational levels
provides

Jth =
∑
ν

Jνth =
∑
ν

Ω̃2
ν

4δ̃ν
=
α2β2Ω̃4

4∆2

∑
ν

(
fνg
)2

δ̃ν
≈ 2π × 370(40)Hz. (8.1)

The calculation depends on the electronic structure of the molecular state which enters
with the parameter α = 1.04 and the sideband amplitude β = 0.062 which was extrac-
ted from the manual of the EOM. Furthermore, δ̃ν are the two-photon detunings and
fνg are the Franck-Condon integrals between the relative wave function in the ground
state and the vibrational wave function. The estimated uncertainty of the calculated spin
interaction J ∝ Ω̃4 is dominated by the uncertainty in the calibrated Rabi frequenciy
Ω̃ = 2.83(5) MHz. The strong distance selectivity of the admixed interactions arise from to
the Franck-Condon integrals fνg , see also Fig. 8.1 (b). Because of the large Franck-Condon
integral f0

g ≈ 0.37 of the lowest vibrational state at lattice diagonal distance and the smal-
ler detunings, the contribution of J0

th ≈ 2/3Jth has the largest contribution to the total
dressed interaction. For the same reasons as discussed in section 7.4 for the molecular
Rabi frequencies Ω̃ν , extending the calculation of Jth by the available motional states in
the intermediate state has negligible consequences on the spin interaction. It only enters
as a level shift because the molecular state shifts by V ν

pd. The strong directionality origin-
ating from the coupling to the oriented molecular state can be included into the coefficient
α. For the chosen configuration, the coupling into molecular states oriented perpendicular
to the direction of B is suppressed. For a calculation at the orthogonal orientation, a spin
coupling J⊥th ≈ 0.06Jth remains.

8.2 A distance-selective Ising spin model

The presence of the dressed interactions can in principle be studied in several ways. Sim-
ilar as for a Mott insulator where the competition of on-site interactions and hopping gives
rise to a insulating phase, the formation of certain atomic configurations on the lattice
would be an interesting direction [225, 447, 448]. However, such a study in the itinerant re-
gime requires coherence times on motional timescales [222]. Decreasing the lattice depths
lowers the Franck-Condon factors and furthermore has been found to increase collective
loss rates which limit many Rydberg dressing experiments, see also appendix C. Also the
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Figure 8.2: Many-body interferometry. (a) The two hyperfine ground states |↓〉 and |↑〉
representing the spin model are coupled using a microwave field (MW). The spin interac-
tions are studied using a Ramsey sequence where two dressing pulses are inerrupted by
a spin echo. Finally, the state of each spin is observed using the site-resolved detection.
(b) The presence of the dressed potential gives rise to two-spin correlations C(2)

R‖
as well as

multi-spin correlations, here shown by the example of the three-spin correlator C(3)

R‖R‖
. (c)

The calculated dynamics of C(2)

R‖
(tuv) and C

(3)

R‖R‖
(tuv) in the absence of dissipation shows

coherent oscillation cycles between entanglement and disentanglement. At a time t = tc ,
the system realizes a highly-entangled cluster state. Figure adapted from Ref. [442].

gradient of the AC Stark shift admixed from the single-photon transitions contributing to
the coupling is problematic [248]. As a consequence, the lattices were kept at a depth of
1000Er where all motional dynamics is frozen. In this regime, macrodimer-dressed inter-
actions can be used to realize a two-dimensional spin model where the spin interactions
are finite only at a selected distance in the lattice.

In order to realize a spin model, a second spin state was encoded in the ground state
|↓〉 = |F = 1,mF = −1〉. The single-spin states |↓〉 and |↑〉 can be coherently coupled
using microwave fields. While the state |↑〉 is coupled to the Rydberg state, |↓〉 remains
off-resonant to Rydberg transitions. In this configuration, the energy of pair states |↑↑〉
shifts at the selected distance due to the admixed interaction while all other combinations
experience no energy shift. For the chosen configuration of the coupling, this adds in-
teraction terms Jth |↑↑〉 〈↑↑| for all spin pairs at distance vectors R‖ = (+1,−1) alat to the
Hamiltonian. Using the identification |↑〉 〈↑| = Ŝz + 1

21, the interaction term transfers into
spin interactions ŜzŜz and terms proportional to single-spin operators Ŝz .

8.2.1 Many-body Ramsey interferometry

Because the ŜzŜz interaction terms are restricted to the z−basis, dynamics can only be
observed if the initial atoms are not prepared in an eigenstate of Ŝz . Here, many-body
Ramsey interferometry provides a suitable pathway [155]. Initially, the system is prepared
in the state |↑〉⊗N0 , with N0 the total number of spins in the system. By performing a first
π/2−rotation that is resonant with the microwave transition |↓〉 → |↑〉 in the absence of the
UV light, the state leaves the z−basis and transfers into |→〉⊗N , with 1√

2
(|↓〉 − i |↑〉), see

Fig. 8.2 (a). Then, a first dressing pulse with an illumination time tuv/2 is applied. Here, all
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spin pairs at the correct distance R‖ are expected to accumulate a phase |↑↑〉 → eiϕJ (tuv) |↑↑〉
with ϕJ(tuv) = −Jth

tuv
2 . Furthermore, single-spin states |↑〉 accumulate phases because the

off-resonant coupling to the single-atom Rydberg state shifts their energy by the AC Stark
shift∆AC. Subsequently, a resonant π−pulse transforms the single-spin states according to
|↑〉 → −i |↓〉 and |↓〉 → −i |↑〉. Then, a second dressing pulse whose illumination time tuv

2 is
identical to the first one induces interactions between the terms which were previously in
the non-interacing state |↓↓〉. The spin echo between both UV pulses is important because
it cancels the contribution of single-spin terms such as the strong AC Stark shift ∆AC.
In contrast, the two-spin operator ŜzŜz of the Ising interaction is symmetric under the
π−pulse and does not cancel in the evolution. The Hamiltonian describing the dynamics
can therefore be written as

Ĥ = ~
∑
i 6=j

Jij

2
Ŝzi Ŝ

z
j , (8.2)

where interactions Jij = Jδi−j,R‖ are restricted to the relevant distance vector R‖ and in-
dices i(j) represent the position vectors in the lattice. Applying a push-out beam resonant
with the cycling transition |↑〉 → |5P3/2, F

′ = 3〉 using a laser operating at the wavelength
λD2 = 780 nm removes all spins |↑〉. Spins |↓〉 remain are unaffected. Finally, the remaining
spins in the state |↓〉 are imaged with the microscope.

In principle, the near-resonant sideband as well as the far-detuned carrier also give rise
to conventional Rydberg-dressed soft-core potentials, see section 2.5.2. However, because
the sideband has only very low intensity and because the carrier field is more than seven
hundred megahertz detuned from the |↑〉 → |e〉 transition, the corresponding interaction
strengths are below 5 Hz and therefore negligible. For the same reason, the two contribut-
ing single-atom AC Stark shifts ∆AC are both only around two kilohertz, only a few times
larger than Jth. In previous Rydberg dressing experiments, the ratio between ∆AC and
the admixed interactions was significantly larger, see also Ref. [155, 221]. In the chosen
two-color coupling scheme where the detuning of the carrier field is almost one third of
the fine-structure splitting to the higher-lying fine-structure state |36P3/2〉, the contribution
from the off-resonant carrier field is further decreased because both states |e〉 = |36P1/2〉
and |36P3/2〉 contribute with a different sign. As a consequence, the scheme is less sensitive
to a power imbalance between both UV pulses arising from imperfect intensity stabiliza-
tion.

Calculated dynamics without dissipation

In order to provide further intuition, the expected dynamics is first discussed without the
presence of decoherence. For a system of two isolated spins, an analytical calculation of
the time-dependent pair state yields |Ψ(tuv)〉 = − 1√

2
cos (ϕJ4 ) |↑↑〉 + i 1√

2
sin (ϕJ4 ) |↓↓〉 after

neglecting a global phase. For a vanishing interaction phase ϕJ = 0, the spin orientation
of the state |Ψ(0)〉 = |↑↑〉 is equal to the initial configuration because all three microwave
pulses add up to a 2π−pulse. In this case, no spins will be observed in the images after
the resonant push-out. For times unequal to zero, the interaction triggers correlated spin
flips into the state |↓↓〉. This gives rise to finite connected two-spin correlations C(2) =
〈Ŝz1 Ŝz2〉−〈Ŝz1〉〈Ŝz2〉 between both spin orientations. At the time tc = π/J , the system evolves
into the maximally entangled Bell state where the correlations reach a maximum C

(2)
R = 1

4 .
After evolving into the inverted initial state i |↑↑〉 and passing the Bell state a second time,
the state evolves back into the initial spin state at t = 4tc.
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For a larger two-dimensional spin lattice, the dynamics looks qualitatively similar. Be-
cause only interactions at the distance R‖ are relevant on the accessible timescales, the
system decouples into several one dimensional spin chains oriented along the diagonal
direction of the lattice. Again, accumulated phases trigger correlated spin flips which give
rise to correlation signals, see Fig 8.3 (b). Because any of the spins in the chain can flip
their state during the sequence, the correlation signal

C
(2)
R = (〈ŜzR′ŜzR′+R〉 − 〈ŜzR′〉〈ŜzR′+R〉)R′ (8.3)

of spins at a distance R is now averaged over the positions R′ in a central region of interest
in the lattice, denoted by ( . )R′ . Here, also the maximum correlation strength is lower
than for the case of two isolated spins. The two-spin correlation signal C(2)

R‖ is restricted to
distances R = R‖.

Even if interactions occur only pairwise, also multi-spin correlations are expected to be
present in the dynamics [449]. This can be intuitively explained by the example of three
spins. Here, because a spin within the chain can either participate in a spin flip process
with one of both neighboring spins, the state of all three spins becomes correlated. The
coresponding connected three-spin correlator is defined by

C
(3)
R1R2

=

(〈(
ŜzR′ − 〈ŜzR′〉

)(
ŜzR′+R1

− 〈ŜzR′+R1
〉
)(

ŜzR′+R2
− 〈ŜzR′+R2

〉
)〉)

R′
, (8.4)

where ( . )R′ denotes averaging over three-spin subsystems with distances R1 and R2. In
the realized system, three-spin correlations are expected to be present at distances R1 =
R2 = R‖, see also Fig. 8.2 (b). It can be shown that in such a system without dissipation, the
presence of multi-spin correlations can be directly linked to multi-spin entanglement [450].
The calculated correlation signalsC(2)

R‖ (tuv) andC(3)

R‖R‖(tuv) for the calculated spin coupling

Jth is shown in Fig. 8.2 (c). The onset of three-spin correlations C(3)

R‖R‖ occurs with a delay

relative to C(2)

R‖ because it can be regarded as a higher-order process.
At later times, even higher-order correlations form. At the time tc, the system evolves

into an highly-entangled cluster state, see Fig 8.3 (c). Here, lower-order correlators such
as C(2)

R‖ (tc) = 0 and C
(3)

R‖R‖(tc) = 0 vanish but the system is still globally correlated [450].
Furthermore, the magnetization 〈Ŝz〉 of the cluster state vanishes. After passing the cluster
state, the system disentangles again and refocuses into the initial state |↑〉 with mean mag-
netization 〈Ŝz〉 = 0.5 at a revival time tr = 2tc where ϕJ = π.

The realization of the paradigmatic nearest-neighbor Ising Hamiltonian using Ryd-
berg macrodimer dressing is ideal for the realization of cluster states [451]. The presented
Ramsey sequence naturally realizes the standard preparation scheme which consists of a
Hadamard gate, an Ising interaction time to create entanglement, and a second Hadamard
gate [452]. Cluster states are discussed as resource states for one-way quantum comput-
ing [453].

The reason why the revival time occurs at an interaction phase of ϕJ = π instead of 2π
where all states of the overall system rephase in the Ramsey sequence is that the evaluation
is restricted to a centered region of the system. For the spins at the edge of the system, a
revival time takes twice as long [221], see also the discussion of two isolated spins in the
first part of the paragraph.
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Figure 8.3: Observed two-spin correlation signal. (a) With increasing Ramsey interaction
time tuv, correlations C(2)

R (tuv) can be observed at the distance R = (δx, δy) = R‖, here
shown for tuv = 0.18 ms, 0.3 ms, 0.5 ms. At distances R 6= R‖, no correlations form. As in
previous chapters, the signal for R = 0 was excluded from the plot. (b) The correlation
dynamics C(2)

R‖ (tuv) agrees with the calculations based on the expected interaction Jth =
2π× 370(40) Hz after accounting also for the observed atom loss (red shaded region). This
is in agreement with the result J = 2π × 318(20) Hz obtained from a fit (solid red line).
Again, spins at distances R 6= R‖ remain uncorrelated (gray shaded area). The insets show
exemplary images from the quantum gas microscope. Error bars on the data points were
calculated using a bootstrap algorithm (delete-1 jackknife). Figure adapted from Ref. [442].

8.3 Observed spin dynamics

Both previously discussed correlators are experimentally accessible from the reconstruc-
ted images from our microscope taken after the Ramsey sequences. The experimental
datasets clearly show correlations C(2)

R (tuv) that are increasing with illumination time tuv.
Furthermore, the correlations are restricted to R‖ and−R‖ where the distance machtes the
molecular bond length and the direction matches the orientation of the strongly coupled
molecular state, see Fig. 8.3 (a). Both signals C(2)

R‖ = C
(2)

−R‖ are identical after spatially av-
eraging over all spin pairs in the system. The flipped spin pairs are also directly visible
in the individual images, see Fig. 8.3 (b). Analysing the recorded time-dependent cor-
relation signal C(2)

R‖ (tuv) shows qualitative agreement with the calculation using the calcu-
lated spin coupling Jth based on the experimentally calibrated single-atom Rabi frequency
Ω̃/(2π) = 2.83 MHz without dissipation. The main difference is the smaller correlation
amplitude due to the presence of dissipation. Extending the model by atom-loss terms
which can be motivated by off-resonant Rydberg excitation, the full dynamics can be de-
scribed.

The calculations including dissipation are based on a master equation and solved using
QuTip [454]. In addition to both spin states, the single-atom Hilbert space was extended
by a third state |0〉 which represents an atom lost because of excitation. The simulation
accounted for the fact that lost atoms in the state |0〉 are identified as an atom in the state
|↑〉 in our spin-dependent imaging technique. The loss rates were included as single-spin
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Figure 8.4: Observed three-spin correlation signal. (a) Two dimensional plots of correla-
tions C(3)

R‖R2
for various values of the distance vector R2. At later times, correlations C(3)

R‖R‖

can be observed for R2 = R‖, here shown for tuv = 0.3 ms, 0.5 ms. As discussed in the
text, the signal for R2 = 0 and R2 = (−1,+1) alat was excluded. (b) Again, the observed
signal C(3)

R‖R‖(tuv) is in agreement with the theoretical expectation (blue shaded region).
The signal at other distances R2 6= R‖ is shown in gray. The expectation based on the fit
result for the two-spin signal (solid blue line) shows that both signals are consistent with
respect to the model. Error bars in the correlation signal were calculated using a bootstrap
algorithm (delete-1 jackknife). Figure adapted from Ref. [442].

Lindblad operators that project the spin states |→〉 into |0〉 at a rate Γ ex
|→〉 = 0.6(1) ms−1.

The experimentally calibrated loss rate Γ ex
|→〉 was obtained from independent reference

measurements, see section 8.3.1. In order to describe the dynamics, it was not necessary
to include density-dependent correlated losses that might also be present in the system. It
was also not required to include projections from |↑〉 to |↓〉 induced by the coupling to the
Rydberg state [221], possibly because antitrapped Rydberg excitations leave the system
too fast. The same model which was used to calculate the spin dynamics based on the
expected parameters Jth and Γ ex

|→〉 can also be used to determine J and Γ fit
|→〉 from fitting.

The obtained values J = 2π × 318(20)Hz and Γ fit
|→〉 = 0.46(5) ms−1 are in agreement with

the expectations.
In addition to C

(2)
R , also the three-spin correlations C(3)

R1R2
can be evaluated from the

same experimental dataset. The correlation signalC(3)
R1R2

depends on two distances R1 and

R2. Fixing one distance R1 = R‖ enables to displayC(3)

R‖R2
(tuv) for the positions R2 in a two

dimensional plot similar as the ones presented for two-spin correlations, see Fig. 4.4 (a).
Only the three-spin correlation signal where all three spins are located at different lattice
sites are presented in the plot. As a consequence, the signal was excluded at distances
R2 = 0 and R2 = −R‖, see also Fig. 8.2 (b).

At short times tuv = 0.3 ms where two-spin correlations were already large, the three-
spin correlation signal is still negligible. This observation is covered by the previously
discussed delay of the three-spin correlation dynamics relative to the two-spin correlation
dynamics. Later, a negative signal can be observed at distances R2 = R‖ and R2 = −2R‖.
As one can infer from the illustration presented in Fig. 8.2 (b), the signal at both dis-
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tances is identical after spatially averaging the correlation signal. Three-spin correlations
at other distances remain within the background. Again, the observed time dependence
of C(3)

R‖R(tuv) follows the theoretical expectation. It also agrees with a calculation based on
the parameters obtained from fiting the model to the two-spin correlation data.

Finally, also the magnetization 〈Ŝz〉 = N0/2−〈Nat〉
N0

of the dataset can be analyzed, with
N0 the total number of intially prepared spins in the region of interest (ROI) of 11 × 11
lattice sites. The initial state at tuv where all atoms N0 are removed by the push-out pulse
before taking the empty images with 〈Nat〉 ≈ 0 corresponds to a magnetized system 〈Ŝz〉 =
1
2 , see Fig. 8.5 (a). As expected, the magnetization decreases in the presence of the dressed
interactions because the flipped spin pairs are not removed by the push-out pulse, leading
to Nat 6= 0. Similar as for the correlation dynamics, the observed magnetization dynamics
agrees with the theoretical expectation.

8.3.1 Limitations

At later times, where calculations without dissipation predict oscillations, the experimental
spin dynamics was dominated by atom loss. Here, the atoms initialized in the state |→〉
after the first π/2−pulse are either Rydberg-excited and then leaving system or projec-
ted into the state |↓〉 which is not coupled to the Rydberg state. The dressing quality
factor which is the ratio of coherent interaction and dissipation realized in the experi-
ments was J/Γ ex

|→〉 ≈ 2π × 0.5. This is similar as the quality factors achieved in the
same laboratory for two-dimensional systems [155] using conventional Rydberg dress-
ing but below the achievements in one dimension where coherent revivals have been ob-
served [221]. The atom loss was experimentally calibrated in independent measurements
where atoms are either prepared in the state |→〉 or in the state |↑〉, see Fig. 8.5 (b). All other
parameters were identical to those in the dressing sequence. The observed loss coeffi-
cients Γ ex

|→〉 = 0.6(1)ms−1 and Γ ex
|↑〉 = 3.0(5) ms−1 were significantly above the expectations

Γ th
|→〉 = 0.011 ms−1 assuming only off-resonant excitations of single-atom Rydberg states

or macrodimers. The expected loss rates Γ th
|→〉 ≈

γe
2

(
βΩ̃
2∆

)2
+ γν

2

∑
ν

(
Ω̃ν
2δν

)2
were calculated

based on the admixture in the ground state and the decay rates of both kinds of excited
states. Factors of 1/2 account for the probability to be in the coupled state |↑〉 and the fact
that macrodimer excitation removes two atoms in a single event.

It has been experimentally verified that off-resonant excitation of macrodimers did not
play a role during the dressing experiments. One the one hand, the datasets used for
the calibration of the loss-rates shown in Fig. 8.5 (b) did not contain the pair correlation
signal that is typical for macrodimer excitation, see chapter 5. On the other hand, the
calculations of the spin dynamics showed that the presence of macrodimer excitations
would have strong implications on the correlation signal observed during the Ramsey
sequences. However, the observed dynamics can be described by using a model where all
dissipative terms represent single-atom loss rates. Furthermore, the atom loss was only
dependent on the power in the near-resonant sideband and not on the off-resonant carrier
field which contributes to the macrodimer excitation.

Comparing the two experimental values Γ ex
|→〉 and Γ ex

|↑〉 one finds that the atom loss
rate for both atoms prepared in the state |↑〉 is more than two times the excitation rate
observed for the atoms in |→〉 where the probability to be in the optically coupled state
is reduced by 1/2. This indicates the presence of density-dependent losses such as the
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Figure 8.5: Further details of the spin dynamics. (a) The observed magnetization dynam-
ics in the two-dimenional spin lattice agrees with the expectation (gray shaded region).
The solid line again represents a calculation using the parameters obtained from the fit of
the two-spin correlation dynamics C(2)

R (tuv). (b) Independent measurements of the life-
time of the two-dimensional unity filled lattice initially prepared in the states |→〉 (gray)
or |↑〉 (blue) provided atom loss coefficients of Γ ex

|↑〉 = 3.0 (5)ms−1 and Γ ex
|→〉 = 0.6(1)ms−1

for both cases. All error bars on the data points denote one standard error of the mean.
Figure adapted from Ref. [442].

ones observed in earlier Rydberg dressing experiments because the density of atoms that
populate the relevant state is twice as high when all atoms populate the state |↑〉, see also
appendix C.1. Also phase noise induced by the UV laser is expected to increase the off-
resonant single-atom excitation rate, in particular for the small detuning ∆ of the near-
resonant sideband [130].

In addition to atom loss, also the coherence time of the Ramsey sequence represents
an experimental limitation. Here, global phase fluctuations limit experimental timescales
to tuv ≤ 1 ms. In addition to magnetic field fluctuations that are independent of the coup-
ling to the Rydberg state, UV intensity fluctuations contribute because they induce an
imbalance of the two accumulated AC Stark shifts ∆AC during both dressing pulses with
durations tuv/2. In order to efficiently cancel the AC Stark shift using the spin echo, the
ratio between the spin interaction J and the AC Stark shift of the chosen coupling scheme
is critical. In the Ramsey sequence, global phase fluctuations are expected to influence the
magnetization of the spin system. The observation that the system demagnetizes sligthly
faster than expected might indicate that global phase fluctuations have a small contribu-
tion to the spin dynamics, see Fig. 8.5 (b).

Finally, also the motional states that contribute to the molecular dressing scheme but
were absent in conventional Rydberg dressing schemes add limitations. The contribution
of Franck-Condon factors fνg between the ground state wave function and the vibrational
wave function decrease the achievable coupling strengths. For the two-color excitation
scheme, also the coupling into the motional continuum observed in Fig. 7.3 introduces
limitations. Here, the single-photon detuning ∆C between the carrier field and the photo-
dissociation transition from the molecular state into the intermediate state has to be larger
than the kinetic energy band of continuum states contributing to the molecular wave func-
tion. During macrodimer dressing, the detuning ∆C/(2π) = −6.3 MHz was chosen to be
large enough such that the power-dependent broadening of the vibrational resonances
was small, see also Fig. 7.4. However, as discussed previously, the level shift V 0

pd originat-
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ing from the coupling into the motional continuum still had to be taken into account.
These limitations arising from the contributing motional states can be reduced by coup-

ling to more shallow macrodimer potentials where the molecular wave function are sim-
ilar as the initial relative wave function that can be achieved using optical traps. These are
available at higher principal quantum numbers n ≈ 70 where the macrodimer bond length
increases and the confinement within the binding potentials is reduced. Pinning the initial
atom pairs at the distance where the relative wave function has maximum overlap with
the molecular wave function, Franck-Condon factors fνg ≈ 1 close to unity are achievable.
Note that for the potential chosen here, the binding potential minimum was sligthly dis-
placed from the diagonal distance in the lattice, see Fig. 8.1 (b). Because an increase of fνg
directly increases J ∝

(
fνg
)2 but keeps the losses induced by the limiting near-resonant

sideband identical, larger Franck-Condon factors will significantly increase the dressing
quality factor. An additional advantage of the broader vibrational wave functions is that
the kinetic energy band of the photodissociated continuum modes is more narrow. This
allows to operate at smaller single-photon detunings where the observed broadening of
the vibrational line due to photodissociation was already limiting for the vibrational wave
functions chosen here.
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Chapter 9

Summary and Outlook

9.1 Summary

This dissertation provides the first vibrationally and microscopically resolved study of
Rydberg macrodimers. The narrow vibrational resonances resolved in two-photon spec-
troscopy demonstrate their importance for benchmarking the interaction potentials. Cal-
culating the observed vibrational resonances required to include thousands of basis states
and to account for higher-order multipole terms [73, 339]. The contribution of hyperfine
interactions to the Rydberg pair potentials has been observed for the first time [50]. Fur-
thermore, the response of macrodimer states to magnetic fields has been measured and
confirmed by theoretical calculations.

The hierarchy of energy scales furthermore enabled photoassociation studies in a re-
gime where the ground state atom pairs as well as the associated molecules were ori-
ented in the laboratory frame. Here, because of the negligible rotational energies, the
rotational states of the associated molecule were populated such that alignment remained
conserved in the excitation process. This provided direct access to the molecular frame of
reference and the electronic structure of the molecular state. Using the site-resolved de-
tection method of the experiment, the selection rules contributing to the photoassociation
into molecular quantum states was microscopically benchmarked in the molecular frame
of reference. While similar observations could in principle be observed for any aligned
diatomic molecule, it is the large size of Rydberg macrodimers which made such experi-
ments possible here.

Using a new two-color excitation scheme furthermore enabled to engineer significantly
increased Rabi frequencies into macrodimer states. In an off-resonant coupling configura-
tion, the new scheme realizes distance-selective interaction potentials in the ground state
that were strong enough to be observable in an experiment. The presence of the spin
interactions was experimentally verfied by evaluating spin correlations after a Ramsey se-
quence. The observed two-spin and three-spin correlations match the theoretical expecta-
tions after accounting for an additional energy shift originating from the optical coupling
into unbound motional states

9.2 Outlook

At present, this dissertation represents the most detailed experimental characterization of
Rydberg interaction potentials. It is remarkable that the calculations match the observa-
tions after accounting for sufficiently many basis states in the diagonalization. Performing
spectroscopies at even higher resolution might further characterize the pair potentials or
even reveal other unexpected contributions, also for atomic species where the Rydberg
states and their quantum defects are not known to such a high precision as for rubidium.
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Studying the dependency of the molecular excitation rates on the molecular orienta-
tion reveals the significance of the interatomic axis for molecular quantum states. Further-
more, it provides the required formalism to optimize the coupling into macrodimer states
such that they can be utilized for future applications in quantum science. At present,
quantum simulations and quantum computations using Rydberg atoms are mainly using
the asymptotic shape of the pair potentials at large distances. The realization of distance-
selective interactions by off-resonant coupling to macrodimer binding potentials located in
the non-perturbative distance regime represents a first application towards this direction.

Several directions how the research presented in this dissertation might be continued
are presented in the following paragraphs.

Realization of cluster states

The realized distance-selective interactions presented in chapter 8 were restricted along
one diagonal direction in order to optimize the Clebsch-Gordan coefficients contributing
to the coupling. Changing the direction of the magnetic field and the light polarization,
also symmetric Ising interactions in a two-dimensional spin system are available. For ex-
tended coherence times, this enables the realization of two-dimensional cluster states in a
single entanglement operation. Such a study will require to use more shallow macrodi-
mer potentials where Franck-Condon factors are higher as well as higher UV power. Both
improvements combined, the coupling rates between the ground pair states and the mac-
rodimer states might be strong enough.

Coherent macrodimer excitation and macrodimer blockade

There are also research directions using the two-color excitation scheme discussed in chap-
ter 7. The molecular Rabi frequencies Ω̃ν ≈ 100 kHz available in the two-color excitation
scheme exceed the calculated decay rates. For specific configurations, this might enable
the observation of coherent Rabi oscillations between ground state atoms and the mo-
lecular states. Here, it will be crucial to keep the lattices deep enough to provide high
Franck-Condon factors with the initial motional ground state in the lattice. This is not
only important to maximize the molecular Rabi frequency but also because the coher-
ent deexcitation of the macrodimer state back into the electronic ground state after the
first π−pulse can otherwise populate many different motional states. In larger systems,
an even larger molecular Rabi frequency might be available because of the presence of a
collectively enhanced Rabi rate similar to the ones observed in Rydberg blockade meas-
urements, see also section 2.5.1. First experimental signals already indicate that such a fast
excitation pulse enables the observation of a spatial blockade between pairs of macrodi-
mers. In the absence of dephasing on the relevant timescales, such a blockade mechanism
can in principle be used to realize four-atom gates.

Hybridization of macrodimers and Rydberg atoms

In the discussion of the two-color excitation scheme it has been found that macrodimer
resonances broaden at small intermediate-state detunings because of the photodissoci-
ation into the motional continuum, see Fig. 7.3 and Fig. 7.4. It would be interesting to
study the excitation in the Autler-Towns regime where the phase modulated laser is at



121 9.2. Outlook

the same time single-photon resonant with the transitions |g〉 → |36P1/2〉 as well as two-
photon resonant with |gg〉 → |Ψν〉. In the limit where the upper carrier Rabi frequency is
much higher than the lower sideband Rabi frequency, which acts as a probe, one might
observe a Autler-Towns splitting where the intermediate states |ge〉 and |Ψν〉 hybridize. In
order to avoid the observed broadening of the macrodimer resonance, this might require
the Rabi coupling of the carrier field to be larger than the bandwidth of the motional states
contributing to the vibrational wave function. In this limit, the intermediate state |ge〉 con-
tributing to the hybridized states of the Autler Towns splitting is intuitively expected to
inherit the motional state of the vibrational wave function.

Light-mediated spatial macrodimer exchange

Using the two-color excitation scheme introduced in Fig. 7.1, the two-photon transition
from the ground state |gg〉 into molecular states |Ψν〉 in the optical lattice is not the only
two-photon transition that is expected to contribute to the experiments. Assume an ini-
tially prepared state |ggg〉 of three ground state atoms aligned along a straight line and
separated by one lattice diagonal distance. After exciting the left two atoms into a mac-
rodimer state |Ψνg〉, another transition which is naturally on resonance is the two photon
transition between |Ψνg〉 → |g Ψν〉 driven by the strong carrier field. This corresponds to
an light-mediated spatial exchange process of the macrodimer state by one lattice diagonal
distance. Both photons in this transition are absorbed from the strong carrier field. As a
consequence, the expected transition rates between both spatially displaced macrodimers
should be significantly larger than the two-color Rabi frequencies from the ground state
where the weak sideband Ω̃sb contributes. For large carrier Rabi frequencies Ω̃C and low
intermediate state detunings, first estimates provide Rabi rates that approach the mega-
hertz regime.

The exchange should also be observable since after such an exchange all three atoms
will leave the system. Because of the release of the kinetic energy stored in the original
molecular wave function after the exchange, also the atom transfered from the molecular
state back to the electronic ground state will carry enough kinetic energy to be removed
from the system. First measurements indicate a statistically significant loss of three atoms
aligned along the lattice diagonal direction if the two-color excitation is on resonant to the
macrodimer resonance at strong carrier field. Also the correlation signal of four lost atoms
aligned along the diagonal direction of the lattice is significant, indicating the presence
of secondary processes. Longer chains cannot be observed, most likely due to motional
dephasing such as the ones discussed in Fig. 4.5. As expected, the signal disappears after
decreasing the power in the carrier field. Possible future studies might also include to
observe signatures related to this exchange mechanism in the two-color and two-photon
spectroscopies similar as the ones presented in Fig. 7.2 and Fig. 7.3 or to time-resolve the
exchange.

Correlated and collective loss signatures

Furthermore, correlated loss signatures that were observed off-resonant to the Rydberg
resonance can be studied in further detail, see also appendix C. Some rare individual shots
from our miroscope reveal long chains of missing atoms oriented along the lattice diagonal
direction. This observation seems consistent with the proposed light-mediated macrodi-
mer exchange using the two-color excitation scheme proposed in the previous paragraph.
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However, most images were taken using the single-color excitation scheme where the UV
laser had a detuning of several hundreds of megahertz and the estimated optical exchange
rates are too small. The observations also indicate that an additional trigger process is re-
quired to start the loss process, suggesting that the microscopic process is different.

Additionally, previously observed collective loss signatures that represent a strict lim-
itation for many Rydberg dressing proposals might be studied in more detail.

Itinerant lattice models and macrodimers

The macrodimer-excitation mediated loss of atom pairs represents a dissipation mechan-
ism which might allow for interesting quantum Zeno dynamics [455]. In the itinerant
regime where atoms are allowed to tunnel in the lattice, the coherent tunneling might be
prevented if the atom loss rate induced by macrodimer excitation with another nearby
ground state atom is larger than the coherent tunneling rate [456]. An additional interest-
ing direction might be to study the dressed interaction potentials directly in the itinerant
regime [248]. Both projects require to keep the AC Stark shift induced by the off-resonantly
coupled UV laser low such that coherent tunneling to neighboring sites is not inhibited due
to the spatially varying UV intensity. Here, the two-color excitation scheme might again
be beneficial because the AC Stark shift of the off-resonant carrier field can be further re-
duced.

Rydberg macrotrimers

Also the observation of Rydberg macrotrimers might be within reach [457, 458]. If ac-
curate calculations of mactrotrimer potentials are available, the spectroscopic and micro-
scopic schemes developed in this dissertation can directly be applied. A possible excitation
scheme would be a three-photon transition from a ground state |ggg〉 via singly-excited
and doubly-excited intermediate states into the mactrotrimer states. Again, the prefered
spatial arrangment of the states |ggg〉will be such that the Franck-Condon overlap reaches
a maximum. In contrast to the two-photon excitation into macrodimer states where all
intermediate states are non-interacting, the doubly-excited intermediate states will be in-
teracting pair potentials. Because the coupling rates are expected to be lower than for
macrodimers, large illumination times will be required. Here, studies will be restricted
to the incoherent coupling regime where the excitation rates are proportional to the third
power in the UV intensity.

By observing correlation signals for three holes after illuminating an initially prepared
Mott insulator and again studying their dependence on the orientation the magnetic field
and the light polarization, the resonances will be distinguished from macrodimers. Mact-
rotrimer spectroscopies will furthermore have a richer substructure because the contribu-
tion of an additional atom leads to more than one vibrational frequency.



Appendix A

Van der Waals potentials
This section approaches the van der Waals potentials introduced in section 2.3.2 using

the language of molecular physics introduced in chapter 4 and compare the interactions
for different Rydberg states. In section 2.3.2 it was mentioned that the presense of a strong
external quantization axis allows one to define angularly dependent C6−coefficients. For
an external magnetic field, the arguments are similar as for the dipole-dipole interactions
discussed in Fig. 2.3 where the single-atom states contributing to the asymptotic pair states
have well-defined magnetic quantum numbers m. Here, one finds isotropic interactions
for Rydberg S-states. Additionally, as for example discussed in [72, 155, 184], Rydberg
P-states and states with even higher L can have strong angular dependencies. Again,
the picture only holds as long as the interaction energies are lower than the energy scale
related with the external quantization axis, such as the splitting by the magnetic field.

If there is no external quantization axis, the van der Waals potentials decouple into mo-
lecular potentials with different quantum numbers Ω±g/u. For Rydberg S-states, 0+

g , 0−u and
1u potentials are possible. Consistently, the isotropic interactions observed in the presence
of an external quantization axis translate into van der Waals interactions that are inde-
pendent of the molecular quantum number, see Fig. A.1 (a) for 36S1/2. Here, because of
the repulsive interaction with the lower-lying states |36PJ , 35PJ〉 and |35PJ , 36PJ〉, inter-
actions are repulsive. For 36P1/2 Rydberg pair states, one finds the same set of molecular
quantum numbers, see Fig. A.1 (b). However, now the different molecular symmetries
decouple into different asymptotic van der Waals potentials. As described in Fig. 2.2 (b)
by a simple two-channel model, two branches have attractive interactions because they
get repelled from the energetically highly-lying states |36S1/237S1/2〉 and |37S1/236S1/2〉.
On the blue-detuned side, one can furthermore find the macrodimer binding potential ob-
served in Fig. 5.5. Van der Waals potentials for 36P3/2 pair states are shown in Fig. A.1 (c).
The asymptotic pair state |36P3/236P3/2〉 are almost Förster resonant to the pair states
|35P1/236P1/2〉 and |36S1/235S1/2〉. As a consequence, the symmetries 0−u , 0+

g and 1u that
can be found for both sets of pair states feature large van der Waals coefficients. At closer
distances, the pair potentials mix and interactions become non-perturbative. On the other
hand, the remaining potentials 1g, 2g, 2u and 3u which cannot couple to the pair states
|35P1/236P1/2〉 have small van der Waals coefficients. Note that the energy separation of
the asymptotic pair states |36P1/236P1/2〉 and |36P3/236P3/2〉 in Fig. A.1 (b) and Fig. A.1 (c)
is only twice the single-atom fine-structure splitting.

A.1 Optical coupling to van der Waals potentials

For many experiments, the relevant question is how strongly the different pair poten-
tials are optically coupled. Here, the formalism introduced in chapter 5 holds, which can
be explained by an example. Assume an initial state |g〉 = |2,−2〉 = |−1

2〉J ⊗ |−
3
2〉I

optically coupled to |36P3/2〉 using a single-photon transition. The initial pair state is

123



Appendix A. Van der Waals potentials 124

600

400

200

0

-200

-400

-600

In
te

ra
ct

io
n 

en
er

gy
 U

 (M
H

z)

|36S1/236S1/2〉

|36PJ35PJ〉

C6 ≈ 0.26 GHz µm6

|36P1/236P1/2〉
|36P3/236P3/2〉

|37S1/236S1/2〉

C6 ≈ - 0.2
 GHz µm6

Interatomic distance R (µm)  Interatomic distance R (µm)  Interatomic distance R (µm)  
2.01.51.0 2.01.51.0 2.01.51.0

C6 ≈ 0.05
 GHz µm6

C6 ≈ 6.5
 GHz µm6

C6 ≈ 0.04
 GHz µm6

a 36S1/2 36P1/2 36P3/2b c

0u
-

1u
0g

+
0u

-

0u
-

1u

0g
+1u

0g
+

0u
-

1u

0g
+

1g,2g,2u,3u

|35PJ36PJ〉 |36S1/237S1/2〉

|37S1/236S1/2〉
|36S1/237S1/2〉

Figure A.1: Van der Waals interactions between different Rydberg states at zero mag-
netic field. (a) Repulsive van der Waals interactions for 36S1/2 are independent of the
molecular symmetry. The part of the potential used for fitting the C6 coefficient is indic-
ated by the dashed black line. (b) For 36P1/2, the interaction strength and the sign of the
potentials depend on the molecular symmetry. (c) For 36P3/2, all pair states which can
couple to the almost Förster resonant pair states |37S1/236S1/2〉 and |36S1/237S1/2〉 feature
strong van der Waals interactions. The C6 coefficients of the remaining potentials 1g, 2u,
2g and 3u are smaller.

|gg〉 = | − 1〉J ⊗ | − 3〉I and the relevant potentials can be found in Fig. A.1 (c). A small
magnetic field B ensures an initial quantization axis. The induced Zeeman shifts are as-
sumed to be below the Rabi frequency and the interaction shifts due to the pair potentials.
The light is assumed to be σ− polarized in this initial frame. From angular momentum
conservation, the initial state | − 1〉J for R ‖ B can only couple to the 3u pair potential.
Because its van der Waals potential is small, the corresponding Rydberg blockade will be
small. For an orthogonal configuration R ‖ B, the quantization axis of the pair potential
is different from the quantization axis of the initial atoms. Here, the formalism presen-
ted in chapter 5 applies. After rotating the initial state and the light polarization into the
frame perpendicular to B, one finds that more than one pair potential contributes to the
coupling. In particular, one finds a large contribution from the strongly interacting pair
potentials 0−u and 1u, whose Rydberg blockade is significantly larger than for 3u. As a
result, one expects to find a Rydberg blockade which significantly depends on the orient-
ation of the atom pairs, as found in [72]. The picture presented here is consistent with
Fig. 4 (c) and (d) in the supplementary information of Ref. [155] where Rydberg-dressed
interactions are calculated based on the coupled pair states for the same configuration but
slightly lower principal quantum number as discussed here.



Appendix B

Precision test of pair potentials

This section discusses the calculation of the macrodimer binding potentials using the
pair interaction software [50] and the precision required in order to describe the observa-
tions. The discussion focuses on the 1u potential blue-detuned from the 36P1/2 resonance
which was first discussed in Fig. 5.6 and later used in chapter 7 and 8. The intuition ob-
tained here can also be applied to the other binding potentials studied in this dissertation.
The experimentally determined interaction shift of the lowest vibrational resonance ν = 0
was U0 = 735.3(1) MHz. Using the single color coupling scheme at zero field, U0 is twice
the single-photon detuning where the vibrational state is on resonance, see section 4.2.

All single-atom states within an energy band ∆E = 550 GHz were included to the
calculation. For the pair state basis, the same energy band was chosen as an additional
selection criterion. The single-atom states were further restricted according to ∆n = 6,
∆L = 4, ∆J = 4, ∆mJ = 4, see also section 4.2.1. The calculations only accounted
for ungerade states. Furthermore external fields were chosen to be zero and the sum of
angular momentum projections along the interatomic axis was conserved.

B.1 Higher-order multipole terms

This section compares calculations of the 1u binding potential accounting for different
orders in the multipole expansion Eq 2.20. All other parameters were kept idential.

Using only the first non-vanishing term in the multipole expansion leads to the dipole-
dipole interaction Hamiltonian Ĥ3(R) ≡ Ĥdd(R) which scales as ∝ 1/R3, see Eq. 2.25.
The calculated potential obtaind from exact diagonalization for the specified basis states
is shown in Fig. B.1 (a). Most other Rydberg experiments that rely on asymptotic dipole-
dipole interactions or van der Waals interactions can be quantitatively described using
Ĥdd(R). However, a calculation of the vibrational macrodimer resonances requires more
precision [73, 176]. As one can see, the calculation underestimates the interaction energy
by several tens of megahertz.

Additionally accounting for dipole-quadrupole terms which scale as ∝ 1/R4 leads to
the Hamiltonian Ĥ4(R) [200, 204]. The calculated pair potential using Ĥ4(R) is shown
in Fig. B.1 (b). Even if the lowest vibrational energy shifted closer towards the experi-
mental value, the deviation is still substantial. Furthermore, another crossing pair poten-
tial which can couple to the binding potential via the dipole-quadrupole term opens a gap
in the binding potential. The gap leads to a perturbation of the vibrational motion due
to non-adiabatic motional coupling terms similar as the ones discussed in chapter 6. This
is the reason why the vibrational state ν = 2 in Fig. 5.6 (a) appears broader compared
to the other vibrational states. The calculations of the vibrational energies presented in
Fig. 5.6 (a) neglected this additional perturbation in the binding potential and assumed
diabatic transitions at the avoided crossing.
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Figure B.1: Convergence of the multipole expansion. (a) A calculation of the 1u binding
potential using the dipole-dipole interaction Hamiltonian Ĥdd(R) underestimates the ex-
perimentally obtained location of the lowest vibrational resonance (dashed red line), see
Fig. 5.6 (a). (b) Accounting also for dipole-quadrupole interactions using the Hamiltonian
Ĥ4(R) is not sufficient to predict the observed vibrational resonances. (c) Adding also mul-
tipole terms proportional to ∝ 1/R5 reduced the deviation between the measured and the
calculated vibrational energy to about one megahertz. (d) A calculation based on H6(R)
where also multipole terms which scale as∝ 1/R6 were added finally led to an agreement.

Acounting also for dipole-octupole and quadrupole-quadrupole terms in the multi-
pole expansion which scale as ∝ 1/R5 leads to Ĥ5(R), see Fig. B.1 (c). The calculated
lowest vibrational energy shifts even closer to the observed value but there is still a de-
viation larger than a megahertz. After also accounting for octupole-octupole interactions
and other terms that scale as∝ 1/R6, the observations and the calculations agree. For some
of the studied potentials, also terms scaling as∝ 1/R7 had to be taken into account. Some-
times, these further modified the energy of the binding potential by another few hundred
kilohertz.



Appendix C

Correlated losses
Off-resonant coupling to Rydberg states can trigger correlated loss processes. This

section first discusses collective losses which represent a strong limitation for many ex-
periments. Second, the discussion focuses on rare observations of correlated losses where
atoms aligned along a given direction in the lattice leave the system at once while the
environment remains unaffected.

C.1 Collective loss

Many recent Rydberg dressing experiments at high densities suffered from atom loss rates
that were much larger than expected [154, 155, 247]. Only at low densities, the loss rates
were in agreement with the calculated single-atom loss rates [221]. The present under-
standing is that they are triggered by black-body transitions to neighboring Rydberg states,
followed by an excitation avalanche at distances where the interaction shift of the created
impurity compensates for the detuning [130]. Such a Rydberg antiblockade [426] where in-
teractions shift an applied light field at a specific distance into resonance and therefore
facilitate further excitations have been observed in other circumstances [70, 459–462]. This
work focuses on Rydberg P-states |nPJ〉 with principal quantum numbers n between 30
and 40 and fine-structure states J = 1

2 and J = 3
2 . Collective losses were observed detuned

from both fine-structure states and broaden the observed Rydberg resonances. However,
for J = 3

2 , they extend to much higher detunings.
Neglecting collective lossess, the higher-lying state |nP3/2〉 would be the better choice

in most cases. Dressing experiments benefit from higher Rabi frequencies compared to
|nP1/2〉. Furthermore, the shallow macrodimer potentials close to the |nP3/2nP3/2〉 asymp-
tote give rise to higher Franck-Condon factors, see Fig. A.1 (c). Because these advant-
ages cannot compensate for the higher collective loss rates, most of our Rydberg dressing
experiments were performed close to the nP1/2 resonance. Also the macrodimer stud-
ies presented here were restricted to potentials closer to the |nP1/2nP1/2〉 asymptote, see
Fig. 5.1 (c). Interestingly, the observed collective atom loss detuned from the lower-lying
state |nP1/2〉 is reduced at detunings higher than a few tens of megahertz, such that the
much higher macrodimer excitation rates on-resonant to the vibrational resonances loc-
ated at detunings higher than hundred megahertz can be observed. In contrast, binding
potentials closer to the |nP3/2nP3/2〉 asymptote were not accessible because the loss was
higher than the macrodimer excitation rates, even several hundred megahertz detuned.

In order to experimentally study the loss rates, a unity-filled Mott insulator in the elec-
tronic ground state |g〉 = |F = 2,mF = −2〉 was illuminated by the ultraviolet (UV) laser
red detuned from the |g〉 → |36P3/2〉 transition. A small magnetic field of B ≈ 3 G dir-
ecting out of the atomic plane acted as a quantization axis. The UV laser was linearly
polarized in the atomic plane perpendicular to B. This configuration realizes σ+ and σ−

polarization at equal weights, while it does not allow for π polarization. The Rabi frequen-
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Figure C.1: Collective loss signatures. (a) Detuned from the Rydberg transition, one
finds collective avalanche losses that represent limitations for many Rydberg experiments.
If the collective loss process did not occur, the initially prepared Mott insulator is not
affected by the UV pulse. After the avalanche process, only a dilute cloud of ground
state atoms remains. (b,c,d) Atom number histograms for various detunings ∆ from the
|36P3/2〉 resonance and illumination times tuv show the presence of unexpectedly large
collective loss rates.

cies coupling the ground state and the off-resonant states |36P3/2〉 with mJ = +1/2 and
mJ = −3/2 were Ω̃−3/2/(2π) ≈ 3.2(3) MHz and Ω̃+1/2/(2π) ≈ 1.8(2) MHz.

During the illumination time tuv, the collective loss process decreases the atom num-
ber in the chosen region of interest (ROI) from Nroi ≈ 100 to roughly Nroi ≈ 50, see
Fig. C.1 (a). Histrograms of the final atom number after the illumination are presented in
Fig. C.1 (b,c,d). For detunings ∆/(2π) = −103 MHz, it takes illumination times tuv ≈ 6 µs
until such an avalanche occured in almost all sequences. Even for ∆/(2π) = −292 MHz
and tuv ≈ 20 µs one can see that the avalanche process was triggered in most cases. Fur-
ther increasing the detuning to ∆/(2π) ≈ −323 MHz finally leads to a slightly reduced
loss rate. The observed bimodality in the histogram clearly shows the collective nature
of the loss where a single event is responsible for the loss [155]. At even larger detun-
ings ∆/(2π) < −323 MHz where the loss reduces further, macrodimer potentials can be
studied.

These experiments at the given Rabi frequencies showed experimental collective loss
rates Γ ex

col ≥ 100ms−1 over a large range of detunings. Assuming that the collective loss is
triggered by a single black-body transition [155], the rate can be estimated via

Γ th
col = N0

(
β− 3

2

)2
Γbb +N0

(
β+ 1

2

)2
Γbb, (C.1)

withN0 ≈ 250 the total initial atom number in the system, Γbb ≈ 14.4 ms−1 the black-body
decay rate into neighboring Rydberg states (see also table 2.2) and βi = Ω̃i

2∆i
the Rydberg

fractions of both states mJ = −3
2 ,+

1
2 in the dressed ground state. For the parameters

presented in Fig. C.1 (b,c,d), Eq. C.1 provides Γ th
col = 1.1 ms−1, 0.14 ms−1, 0.12 ms−1. Even

if Eq. C.1 already assumes that a single black-body process can trigger a collective loss
where all atoms leave the system, it underestimates the observed atom loss rate by three
orders of magnitude.

One difference between the states |36P1/2〉 and |36P3/2〉 is that their interactions are sig-
nificantly higher for the higher-lying J = 3/2 state because the pair state |36P3/236P3/2〉 is
close to a Förster resonance. However, these interactions do not contribute to the admixed
single-atom black-body transitions estimated by Eq. C.1. After a black-body transition,
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the relevant quantity is the interaction between the created impurity atom and the optic-
ally coupled Rydberg state and not the interaction between P-state pairs. The black-body
rates for the states |36P1/2〉 and |36P3/2〉 are basically identical. One difference are the fi-
nal Rydberg D-states available for black-body transitions. Here, the state |36P3/2〉 decays
more prominently into |nD5/2〉 while |36P1/2〉 can only decay into |nD3/2〉. While the C3

coefficients after a black-body decay with the optically coupled state are slightly larger for
|36P3/2〉, further studies are required to verify whether this can explain the larger differ-
ence between both states.

Possible future directions

To further study the connection between black-body transitions and the observed collect-
ive losses rates, the impurity atoms could be deterministically prepared. This could be
done by exciting a Rydberg S-state or a Rydberg D-state using the conventional two-
photon excitation schemes from the ground state. The required lasers at wavelengths
780 nm and 480 nm are available in the laboratory [212]. Also a microwave transition
between excited P-state atoms to nearby Rydberg states can be used. The initial state, the
magnetic field direction or the polarization of the UV light are additional tuning knobs. It
might also be interesting to study whether the nearby Förster resonance has some contri-
bution to the loss rates.

The length scale of the collective loss and the typical distance between the removed
atoms can be studied. In particular the dependence on the detuning ∆ and the Rabi fre-
quency Ω̃ is interesting. Because the presence of several Rydberg atoms spreads the Ryd-
berg transition frequencies of the remaining atoms over a large energy band, one would
intuitively expect to observe a fast saturation and a subsequent reduction of the excita-
tion rates. Similarly as for a Rydberg blockade, a picture based on an excitation avalanche
should in principle only allow for a limited amount of possible Rydberg excitations, and
their distance should strongly depend on the laser detuning.

It might also be interesting to measure the dependence of the collective loss signatures
on the lattice depth to further study the role of doubly occupied sites and the motional
energies in the ground state. We observed that the loss coefficient is larger at low lat-
tice depths where the atoms form a BEC. Measurements also indicate that even after the
phase transition deep in the Mott insulating state the loss coefficients further decrease by
increasing the lattice depth.

C.2 Oriented loss chains

Under some specific configurations also other correlated loss signatures were observed,
see Fig. C.2 (a). Here, initially unity-filled Mott insulatores were illuminated with the UV
beam which was again detuned from a Rydberg P-state transition. Some rare images show
the presence of a correlated loss process where atoms aligned along the lattice diagonal
parallel as well as perpendicular to the propagation direction of the UV laser are removed
from the system. The loss rates were small and not limiting other Rydberg experiments.
Nevertheless, it would be interesting to study the underlying microscopic process.

All images were taken on resonance to Rydberg pair potentials such as the vibrational
resonance of macrodimers. Here, the UV laser was up to hundreds of megahertz detuned
from the Rydberg resonance. Off-resonant to pair potentials, such events were not ob-
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a b

Figure C.2: Diagonal loss signatures. (a) Even far detuned from the Rydberg states where
collective losses have not been observed, images taken from the microscope show the pres-
ence of rare loss channels along the lattice diagonal distance. For some parameters, also
chains oriented along the direction of the lattice were observed. (b) Further studies will
benefit from using larger Mott insulators as initial state where it is easier to get statistical
significant rates for these rare events.

served. Many images contributed to the presented correlation signals presented in chap-
ter 5. In these datasets, the excitation of macrodimers was the main correlated loss process
in most of the images. Otherwise, the background in the correlation signals would have
been larger. Most images contained only a few correlated pair losses. However, some
images also contained longer chains of missing atoms. For most configurations, the mac-
rodimer excitation rates were strongly directional. The direction of the diagonal loss was
aligned with the favoured orientation of the coupled macrodimer state in almost all cases.
Combining these observations it seems plausible that interacting Rydberg pair states such
as macrodimers are required as an initial state before such a loss can be triggered.

It was noticeable that several, but not all, images were part of the datasets used for
the evaluation of the correlation signals presented in Fig. 5.10. A few images taken at
large detunings close the binding potential studied in Fig. 6.4 showed that the directed
loss channel was aligned with the lattice, see the last image in Fig. 8.3 (a).

A possible trigger event might again be a black-body process for one of both Rydberg
atoms which transfers the pair state into another Rydberg pair state. After such an event,
in order to observe images as the ones presented, the process has to happen significantly
faster than the macrodimer excitation that happens in parallel. Some of the images were
taken at illumination times less than 20 microseconds, to give an absolute timescale.

After a black-body transition to a pair state with repulsive C3 interactions, the atom
pair will rapidly accelerate along the radial coordinate of the decayed macrodimer and
then move through the system, see section 4.3.2. It might therefore be interesting to study
whether motion contributes to the underlying microscopic process. Other atoms hit by the
moving Rydberg atom might also become Rydberg-excited (e.g. due to antiblockade [426])
and subsequently leave the system. However, it seems likely that the interactions between
the moving Rydberg atom and secondarily excited Rydberg atoms will affect the motion
of the moving Rydberg atom and therefore stop the avalanche or change the direction. At
least at deep lattice depths, the excited macrodimers will also lose their relative orientation
before they decay, see Fig. 4.5. Furthermore, they will be repelled by the optical lattice. It
might also be interesting whether dipolar interactions of the pair state created after such
a black-body transition with the Rydberg-dressed background gas can be contributing to
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the process. Experimentally, the contribution of a black-body decay can be studied by
coupling the excited macrodimers into unbound pair states using microwave fields. In
order to increase the size of the datasets, future studies will strongly benefit from the larger
Mott insulators that are accessible in the present experimental system [367], see Fig. C.2 (b).
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