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Abstract

Over the last decades, attosecond physics has allowed access into the dynamics of electrons
inside matter and has provided new methodologies for probing and controlling the strong
field interaction of light and matter at ever shorter time scales. On a parallel front, studies
of the light-induced emission of electrons in metallic nanostructures have suggested that
under intense laser fields the underlying mechanisms of ionization and dynamics in these
systems have strong analogies to these in atoms. Scientists in both research fronts have
recognized the intriguing possibilities that could emerge by bridging the gap between these
two areas of study. Indeed, the extension of attosecond physics from atoms to nanostruc-
tured solids can be arguably considered a major next milestone in ultrafast science, not
only because the solid state offers a broad platform for fundamental study, but also because
many ideas and concepts could eventually yield practical applications in nanophysics. The
tremendous advances in nanotechnology over the last years offer completely new opportu-
nities of control of the light matter interaction at the mesoscopic scale.

This thesis attempts an essential step towards unification of these two areas of study.
Light pulses that are confined to and controlled within a fraction of a single laser field
cycle are used to induced optical field emission from sharp tungsten nanotips. Generated
electron pulses are backscattered at the surface of the nanotip with energies that are
well within the range of modern low-energy electron diffraction microscopies. Owing to
the extreme temporal confinement of the driving pulse the emission and back-scattering
of electrons from the nanotip is confined into a sub-femtosecond window. This exciting
possibility, however, can be only verified and used for practical applications, if the emission
of electrons can be tracked in real-time. In atoms this possibility has been enabled using
attosecond techniques to track the temporal structure of high harmonics that emerge when
the electron pulses rescatter off the parent ion. However, this concept cannot be directly
transferred to metallic nanostructures, because high harmonic emission is hitherto absent.

In this thesis I develop and apply a new methodology which allows probing of the
dynamics of the electron emission in solids directly on the electron domain. Inspired by
earlier works in gas phase attosecond physics a weak replica of the same pulse that drives
emission is used to gate the electron release. A variation of the delay between the pulse
driving the emission and its weak replica allows the composition of spectrograms which
embody critical information of the emission dynamics. I extend semiclassical concepts of
strong field physics to develop an analysis framework that can be used to reconstruct these
spectrograms. Analysis of experimentally recorded spectrograms revealed the generation
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of electron pulses whose intensity envelope is confined to 53± 5 as. The retrieved spectral
and temporal properties of the attosecond electron pulse firmly establish the validity of the
recollision picture in optical field emission from metal nanostructures. More importantly
it opens the route to endowing electron-based microscopes with attosecond resolution and
provides a new PHz scale metrological tool for probing laser induced electric currents on
the nanometer scale.



Zusammenfassung

In den letzten Jahrzehnten hat die Attosekundenphysik den Zugang zur Dynamik von
Elektronen im Inneren von Materie ermöglicht und neue Methoden zur Untersuchung und
Kontrolle der Starkfeld-Wechselwirkung von Licht und Materie auf immer kürzeren Zeit-
skalen bereitgestellt. Parallel dazu haben Untersuchungen der lichtinduzierten Emission
von Elektronen in metallischen Nanostrukturen gezeigt, dass die zugrundeliegenden Mech-
anismen der Ionisierung und Dynamik in diesen Systemen unter intensiven Laserfeldern
starke Analogien zu denen in Atomen aufweisen. Wissenschaftler beider Forschungsrich-
tungen haben die faszinierenden Möglichkeiten erkannt, die sich aus der Überbrückung
zwischen diesen beiden Forschungsbereichen ergeben könnten. In der Tat kann die Er-
weiterung der Attosekundenphysik von Atomen auf nanostrukturierte Festkörper als ein
wichtiger nächster Meilenstein in der ultraschnellen Forschungsbereichen angesehen wer-
den. Nicht nur, weil der feste Zustand eine breite Plattform für die Grundlagenforschung
bietet, sondern auch, weil viele Ideen und Konzepte schließlich zu praktischen Anwendun-
gen in der Nanophysik führen könnten. Die enormen Fortschritte in der Nanotechnologie
in den letzten Jahren bieten völlig neue Möglichkeiten der Kontrolle der Licht-Materie-
Wechselwirkung auf der mesoskopischen Skala.

In dieser Dissertation wird ein wesentlicher Schritt zur Vereinheitlichung dieser bei-
den Forschungsbereiche unternommen. Lichtpulse, die auf einen Bruchteil eines einzelnen
Laserfeldzyklus begrenzt und kontrolliert sind, werden verwendet, um optische Feldemis-
sion von scharfen Wolfram-Nanospitzen zu induzieren. Die erzeugten Elektronenpulse wer-
den an der Oberfläche der Nanospitze mit Energien zurückgestreut, die innerhalb des Bere-
iches moderner Mikroskope mit niederenergetischer Elektronenbeugung liegen. Aufgrund
der extremen zeitlichen Begrenzung des Antriebspulses ist die Emission und Rückstreuung
von Elektronen aus der Nanospitze auf ein Sub-Femtosekunden-Fenster beschränkt. Diese
spannende Möglichkeit kann jedoch nur dann verifiziert und für praktische Anwendungen
genutzt werden, wenn die Emission von Elektronen in Echtzeit verfolgt werden kann. In
Atomen wurde diese Möglichkeit mit Hilfe von Attosekundentechniken geschaffen, um die
zeitliche Struktur der hohen Harmonischen zu verfolgen, die entstehen, wenn die Elektro-
nenpulse vom Mutterion zurückgestreut werden. Dieses Konzept lässt sich jedoch nicht
direkt auf metallische Nanostrukturen übertragen, da die Emission hoher Harmonischer
bisher nicht vorhanden ist.

In dieser Arbeit entwickle und verwende ich eine neue Methode, die es ermöglicht,
die Dynamik der Elektronenemission in Festkörpern direkt auf der Elektronendomäne zu
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untersuchen. Inspiriert von früheren Gasphasen-Attosekundenphysik Arbeiten wird ein
schwaches Replikat des Pulses, der die Emission antreibt, verwendet, um die freigeset-
zten Elektronen zu steuern. Eine Variation der Verzögerung zwischen dem Puls, der die
Emission antreibt, und seinem schwachen Replikat ermöglicht die Erstellung von Spektro-
grammen, die wichtige Informationen über die Emissionsdynamik enthalten. Ich erweitere
semiklassische Konzepte der Starkfeldphysik, um einen Analyserahmen zu entwickeln, mit
dem diese Spektrogramme rekonstruiert werden können. Die Analyse der experimentell
aufgezeichneten Spektrogramme zeigt die Erzeugung von Elektronenpulsen, deren Inten-
sitätseinhüllende auf 53 ± 5 as beschränkt ist. Die ermittelten spektralen und zeitlichen
Eigenschaften des Attosekunden-Elektronenpulses bestätigen die Gültigkeit des Bildes der
Rekollision bei der optischen Feldemission von Metall-Nanostrukturen. Noch wichtiger ist,
dass dies den Weg zu elektronenbasierten Mikroskopen mit Attosekunden-Auflösung ebnen
und ein neues messtechnisches Werkzeug für die Untersuchung laserinduzierter elektrischer
Ströme auf der Nanometerskala im PHz-Bereich bieten.
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Introduction

I see, I know, I believe, I am undeceived.
-Pierre Corneille

In the microcosm, the laws of quantum mechanics dictates physical phenomena to
unfold within extremely short time scales. In molecules and solids, atoms are vibrating at
the scale of picoseconds (1ps = 10−12s) and femtoseconds (1fs = 10−15s) [1, 2]. Deeper,
inside atoms, electron motion dominates the dynamics, and it is even faster. An electron
in the lowest quantum orbit of the Bohr atom takes approximately ∼150 attoseconds
(1as = 10−18s) to revolve around the nucleus [3].

Microscopic electron motion underlies a vast range of physical phenomena and their
macroscopic manifestations. For instance, the polarization of the electron cloud, is di-
rectly related to optical properties of materials such as refraction, reflection, absorption,
and emission of light [4, 5]. At the same time, the microscopic transport of electrons
in semiconductors determines their electric properties and therefore their capability to
process electronic signals. An important question that naturally arises is: how can we
“see/observe” electron motion in the microcosm?

Scientific interrogation of physical phenomena is based on measurements, and therefore
the development and advancement of measurement tools/techniques is essential for scien-
tific progress. One of the best tools to investigate the microscopic motion of electrons is
the electromagnetic wave. Primarily through its electric field component, an electromag-
netic wave can apply direct forces on electrons to probe their status inside a system. For
phenomena that evolve extremely fast, for instance electrons in an atom, a molecule or a
solid, it is of great importance that the electromagnetic fields are confined to time scales
shorter or comparable to the characteristic time scales of the electron motion.

The invention of the laser in 1960 [6] enabled for the first-time coherent sources of visible
light to reach the table-tops of experimental physicists and opened the door for generat-
ing electromagnetic fields with advanced measurement capabilities. After this essential
milestone in optical sciences the duration of laser pulses became gradually shorter with a
tremendous pace. Only two years later, the Q-switching technique [7] made the generation
of nanosecond pulses possible, and picosecond pulses were realized with mode-locked lasers
in 1964 [8]. Mode-locking drove further advancements reaching femtosecond resolution in
the 80’s. The combination of femtosecond laser with pump-probe techniques allowed the
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exploration of the dynamics of chemical bond through the field of femtochemistry [9, 10].
When the field of laser pulses is not strong enough to significantly modify the elec-

trostatic potential in atoms, molecules or crystals, nonlinear optics is typically referred to
as perturbative nonlinear optics. The action of a laser pulse on quantum systems can be
described as a small perturbation on the field-free system. In this regime, the nonlinearity
can be best understood as a result of anharmonic electronic motion in a binding potential,
and much of its description can be based on phenomenological models [5].

Nonlinear optics has not only emerged by the availability of lasers but has also followed
the rapid pace of advancement of laser technology. It has dramatically profited from
the capability of lasers to confine light into ultrashort time windows and thus to boost
the intensity of the electric fields to extraordinary magnitudes, comparable to these that
valence electrons experience inside matter. Indeed, right after the invention of the laser,
harmonic generation [11] was discovered. Light control based on nonlinear phenomena such
as saturable absorption and Kerr effects have in fact been instrumental for light oscillator
mode-locking [12, 13, 14] which has, in turn lead to the generation of pulses whose intensity
envelope is confined to only a few femtoseconds. Today, synthesis techniques allow the
confinement of visible light to sub-femtosecond windows [15, 16].

Advanced laser technology, based on mode-locked lasers and chirped pulse amplification
technique (CPA) [17] made possible high power, table-top laser systems, wherein the peak
field strength of the generated pulses can exceed the Coulombic binding field inside atoms,
molecules and crystals. The interaction of matter with such high-intensity laser fields
revealed new phenomena that cannot be described within the framework of perturbation
theory. This regime of light-matter interaction is referred to as ”strong-field regime” or
”non-perturbative” regime. On exposure to strong laser fields the atomic potential can
be significantly distorted, and electrons can be set free from the outermost orbitals of
atoms or molecules via tunneling through the potential barrier. In turn, the dynamics
of the liberated photoelectrons is governed by the ultrafast swings of the driving field.
Depending on the release time of electrons from atoms, the photoelectrons are brought
back to recombine with the parent ion and emit high harmonics. The photoelectrons can
also rescatter from the atomic core leading to above threshold ionization. The above simple
picture is broadly known as the three-step model [18].

The three-step model has provided scientists an intuitive picture to describe an inher-
ently complex process. As such it has opened the door to several advances in ultrafast
science and attosecond physics. The tunneling processes confine the electron emission to a
very short time window around a field crest. In turn, the generated electron wavepacket or
electron pulse can be driven to recollide with the atomic core within a fraction of the field-
half-cycle. Under an optical driving field whose oscillation period is ∼2 fs, the recollision
event is intrinsically confined to a sub-femtosecond temporal window. Correspondingly,
the coherent radiation of high harmonics emerging during recollision shall be also confined
to attosecond time intervals.

Strong field phenomena are sensitive to instantaneous field rather than the cycle-
averaged intensity of the driving pulse. Harnessing of the full potential of strong field
phenomena called for additional advancement on the control of light. Pulses that emerge
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from an ordinary laser cavity do not carry identical field waveforms under the intensity
envelope. As a result, the processes of tunneling and recollision which are sensitive to
the field evolution could not be controlled. This fact introduced a fundamental limitation
on controlling the strong field processes. In this context, the control of the field wave-
form is essential for the research in strong-field physics. For example, the variation of the
carrier-envelope phase (CEP) modulates the waveform of an ultrashort laser pulse while
still maintaining the same envelope and consequently, the physical quantities in a strong-
field light-matter interaction can be coherently controlled [19, 20, 21, 22, 23, 24]. Therefore,
the stabilization and control of the phase from one pulse to another in a pulse train arose
as an important factor of strong-field physics.

The possibility to generate reproducible light fields has been attained via the frequency
comb technique [25, 26]. With these tools and hand at the beginning of the new millennium,
scientists utilized high harmonic generation (HHG) in noble gases to generated isolated
attosecond pulses in the extreme ultraviolet part of the spectrum opening the field of
attosecond science [27, 28, 29, 30, 31]. Thanks to the ultrashort duration of attosecond
pulses, pump-probe schemes in which at least of one of the two pulses is an attosecond
EUV pulse have shown the possibility to probe matter with significantly higher temporal
resolution in comparison to any previous light-based metrologies of dynamical phenomena
in matter. Attosecond experiments can now offer direct access to the physics of strong field
ionization, the absolute time of emission in gases and solids [32, 33, 34, 35], the excitation
and measurement of valence electron coherences [36, 37, 38, 39] and the possibility to trace
the relaxation dynamics of core-excited excitons in solids [16, 40]. In recent years the
advancement of attosecond technology has made it possible to confine also visible fields
into sub-cycle [37, 41] and even sub-femtosecond windows [15, 16]. This capability has
enabled new ways of probing ultrafast phenomena in real-time [15, 16, 42].

Electrons as tools to explore the microcosm in space and time

The matter-wave duality of quantum mechanics suggests that an electron of an energy
E has a corresponding wavelength (λ = h/

√
2meE) typically referred to as de Broglie

wavelength. An electron of energy of say ∼30 eV corresponds to a wavelength of ∼2.23
Å. Because the spatial resolution of an electron in diffraction is directly associated with
its wavelength, it is clear that for the same energy, electron waves can offer dramatically
higher spatial resolution for probing the microcosm than electromagnetic waves. The spa-
tial resolution of high energy electrons underlies important microscopy techniques such as
transmission (TEM) [43, 44] or scanning (SEM)[45] electron microscope which are nowa-
days widely used in a broad range of research disciplines.

The efforts to introduce temporal resolution to electron diffraction and microscopy
techniques led to the development of new methodologies that could enable the temporal
confinement of electrons to very short times (electron pulse) [2, 46, 47, 48, 49]. Modern
techniques are based on a post modulation of electron pulses generated from an electron
gun using microwaves or terahertz fields to compress the pulse to as short duration as
possible [50, 51, 52]. Such kind of sources can now reach single-electron pulse durations of
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a few femtoseconds, and furthermore, attosecond pulse trains by modulating the envelope
of a femtosecond electron pulse [53, 54].

Another school of thought relies on the idea that attosecond electron pulses can be
generated/controlled and used within a strong-field process. The recolliding electron
wavepacket in a strong-field process is, in fact, an electron pulse that probes its parent
system. Moreover, from generation to recollision an electron wavepacket undergoes a tiny
amount of dispersion. Under this notion an electron pulse can probe both dynamics and
structure under the right circumstances. In atomic physics, this aspect is currently gaining
significant momentum [55, 56, 57, 58, 59].

Certainly, the extension of these capabilities to solids will offer the possibility to study
structural dynamics with attosecond resolution for a much broader range of systems.
Experiments over the last years have shown that the photoemission from nanotips or
nanospheres under intense laser fields shows characteristics that are closely related to
these in atoms. These include the linear cutoff law with intensity and the sensitivity of
the emission to the carrier-envelope phase of the driving pulse. The experiments have also
shown unique characteristics of the emission related to these systems such as the local field
enhancement near a nanotip or effects of plasmons on the electron emission. Yet, the direct
connection of the optical field emission from this system and the attosecond confinement
of electrons remains circumstantial. In other words, no direct measurement of the electron
pulses has been so far possible.

In this thesis, I used single-cycle pulses to confine the emission of electrons from a
nanotip to merely a single energetic attosecond electron pulse. I developed the theoretical
framework that allows the direct measurement of these pulses in the electron domain and
have used to demonstrate electron pulses of energy > 30 eV and a confinement to ∼50
attoseconds.

High harmonic generation in solids

There has been an immense interest to extend strong field, attosecond physics to condensed
matter. The processes that I discussed in the previous section could allow probing the
surface of solids with attosecond resolution. Yet, bulk materials cannot be studied this
way. Since the first observation of high harmonic generation (HHG) in zinc oxide (ZnO)
[60] in 2011, a tremendous attention to the underlying physics has emerged. Could high
harmonics from solids allow access to structural properties of solids in new ways? This
question can be answered firmly only if the mechanism of emission is understood. Over the
last years, experimental studies on the HHG in solids have been reported in a broad range
of driving frequencies including tera-hertz [61, 62], mid-infrared [60, 63, 64] and visible
[65, 42], and in various materials with very different bandgaps such as ZnO [60, 63], SiO2

[65, 42], GaSe [61, 62], and also graphene [66]. Up to this moment, the mechanism of
emission or what is the simplest mechanism to describe the phenomenon is still debated.
Is the mechanism the same as high harmonics in atoms? Are interband transitions in the
solid important or is the emission a result of the motion of electrons in the non-parabolic
profile of bands?
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We recently presented a new picture in which the phenomenon can be described as
a simple scattering problem between a laser driven electron and its binding potential.
Under this assumption, it is possible to visualize the electron potential and the electron
density of valence electrons by measuring the emission of harmonics versus intensity and
the angle between laser polarization and the direction of the crystal [67]. I will discuss in
this thesis how this picture could possibly emerge under strong fields and conduct phase
measurements of the high harmonic emission that support this perspective.

The structure of this thesis is as following:

• Chapter 1 offers a brief introduction to strong-field phenomena in light-matter
interactions. It also provides the physical and mathematical foundation which will
be extensively used in the next chapters.

• Chapter 2 discusses the experimental setup and methodology which will be used
for the studies in the chapters following.

• Chapter 3 presents an experimental study of the optical field emission from metallic
nanotips. Using single-cycle optical fields of precisely characterized waveforms the
study has the goal to attempt a detailed comparison of the properties of the optical
field emission with those predicted by atomic semiclassical theories of emission earlier
developed for atoms. Associated publication [P1].

• Chapter 4 introduces the theoretical foundation for a new attosecond steaking tech-
nique which can allow the characterization of attosecond electron pulses. The tech-
nique is called “Homochormic attosecond streaking (HAS)”. HAS allows the char-
acterization of attosecond electron bursts from systems where the recollision does
not yield detectable high harmonic radiation, for instance in metals. Associated
publications [P1, C1]

• Chapter 5 presents the experimental implementation of HAS and the analytical
framework used to characterize attosecond electron pulses generated by single-cycle
laser pulses in a nanotip. The technique will allow us to characterize (a) the local laser
fields, as these are enhanced by the presence of the nanostructure, (b) the duration
and chirp of the recolliding attosecond electron pulse, (c) the detailed comparison of
atomic and solid state recollision models in the time domain. Associated publications
[P1,C1]

• Chapter 6 introduces a new perspective for high harmonic generation in solids. In
this new interpretation, high harmonic generation is understood as radiation emerg-
ing from the nonlinear electron motion induced by its scattering from the periodic po-
tential of a crystal. This approach has recently enabled us to probe valence potential
and electron density of a solid under a new technique dubbed as “Laser picoscopy”.
Here, I will introduce the first steps that show how under strong laser fields harmonic
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emission can be understood not as transition between bands but as a scattering of
an electron with the crystal potential. Associated publications [P2, C2].

• Chapter 7 presents a detailed study of phase phenomena on high harmonic gener-
ation in dielectrics. Since the phase of EUV radiation embodies critical information
about the mechanism of high harmonic generation, we will argue that at least in
these systems high harmonic generation cannot be explained by semiclassical models
developed for atoms. We show that scattering based models such as the intraband
picture or the potential scattering model can account for the experimental findings.
Associated publication [P3]
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Chapter 1

Strong Field phenomena

The only way to discover the limits of the possible is to go beyond them into the impossible.
-Arthur C. Clarke

This chapter offers a brief introduction to basic theoretical concepts that will be essen-
tial for the detailed understanding of the chapters in which the key research elements of this
thesis are presented: the phenomenon of ionization under strong field and the phenomenon
of high harmonic generation in atoms and bulk solids.

1.1 Strong-field emission of photoelectrons

1.1.1 Multiphoton ionization (MPI) and Above-threshold ion-
ization (ATI)

Ever since the experimental observation of the photoelectric effect from metals in 19th cen-
tury [68] the light-induced ionization has been a central element in research of light-matter
interactions. The photoelectric effect is typically described by Einstein’s interpretation [69]:
a photon whose energy (h̄ωL) is greater than the work function (W ) of a metal h̄ωL > W
ejects an electron. The ionization of a metal under these circumstances is a linear process,
in the sense of that a single photon releases an electron, and therefore the current is linear
to the intensity (number of photons) of the impinging field, Γ(I) ∝ I. The invention of
laser opened a new era of research in photoionization of matter that goes beyond Einstein’s
interpretation of photoelectric effect. Even if a light field is carried at a photon energy
lower than the binding potential energy (Ip) or the work function of a metal, an electron
can be ejected from an atom, a molecule or a metal by the absorption of multiple photons
under irradiance by a strong field. This ionization process is now nonlinear, and it is typi-
cally referred to as multiphoton ionization (MPI) [70] (Fig. 1.1). The nonlinearity of the
ionization rate is well described by lowest order perturbation theory (LOPT) in a form of
a power law [71],

ΓMPI(I) = σIn (1.1)
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where σ is the cross-section associated with the dipole element involved in transition, I
is the intensity of the impinging field, and n is an integer number of photons minimally
required to overcome the potential barrier Ip (or W ), n = dIp/(h̄ωL)e (black arrows in Fig.
1.1).
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Figure 1.1: Schematic illustration of multiphoton ionization (MPI) and Above-
threshold ionization (ATI). Multi-photon ionization (black arrows) and above-threshold
ionization (red arrows) in an atom (a) and in a metal (b).

In the presence of a strong electric field, higher order perturbations significantly con-
tribute to the process, and the emission occurs via the absorption of a number of photons
even higher than those required to overcome the potential barrier (n) (red arrows in Fig.
1.1), as shown by an experimental observation in 1979 [72].

The above phenomenon is known as above-threshold ionization (ATI). The emission rate
also follows a power law, ΓATI(I) = σI(n+s), where s is an integer number of additionally
absorbed photons. This results in characteristic harmonic peaks in the photoelectron
spectrum separated by h̄ωL. ATI can also be understood in the time-domain as a result of
the interference between consecutive electron wavepackets that are generated every one-
cycle of the driving laser pulse.

An essential difference in the photoemission from atoms and metals (that will become
central in this thesis) is related to the geometry of these systems. An atom can be con-
veniently described by an isotropic Coulomb potential (Fig. 1.1 a). On the expose to an
electromagnetic field, an electron will be ejected in both directions along the polarization
vector of the driving field. By contrast, the potential that an electron experience at the
interface of a metal and vacuum is half-sided. Such a potential is best described by a
jellium model (Fig. 1.1 b), where the electronic states of the system are strongly bound
on one side of space. This potential in metals dictates that electron emission will only
occur in the metal to vacuum direction, that is, when the electron is driven away from the
surface and not into it.
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1.1.2 Keldysh parameter and tunnel-ionization

In the presence of a strong laser field, the binding potential of electron in an atom, a
molecule or a solid can be significantly suppressed. This allows electrons to tunnel through
the potential barrier. In 1965, Keldysh was among the first to propose a theoretical picture
of ionization under strong laser fields [73]. In his picture, the release of an electron under
multiphoton absorption and tunneling can be considered as two distinct paths of ionization.
He suggested that the dominant ionization process can be identified by evaluating the
relative ratio of the tunneling time (Ttun) and laser period (TL) [74], which can be described
as a parameter γ involving ionization energy, laser intensity (I) and frequency (ωL),

γ =
Ttun
TL

=

√
Ip

2Up
(1.2)

where Up, is the cycle-averaged quiver energy of an electron in the laser-field,

Up =
e2E2

4meω2
L

=
e2

2cε0me

I

ω2
L

(1.3)

Here, c, ε0 and me are the speed of light, the vacuum permittivity and the electron mass,
respectively. When the Keldysh parameter is γ � 1, the potential barrier is not sufficiently
suppressed, and hence the distance for electrons to tunnel the barrier is long. As a result,
time required for tunnel ionization is longer than the laser period (Ttun � TL). In this
case, the multiphoton ionization is dominant. By contrast, if γ � 1, the electron tunneling
time is much shorter than the laser period, and the emission is dominated by the tunneling
processes (Fig. 1.2).

The ionization mechanisms under strong static as well as periodic fields have not only
been of interest in the study of atoms and molecules but also in metals. One of the earliest
studies of ionization of metals under strong static fields is that of Fowler and Nordheim
[75]. By inserting a triangular potential barrier into the WKB approximation, one can
express the electron ionization rate under a strong static field (E) in the following form
[76, 77, 78]:

ΓFN ∝ E2 exp

[
− 2

h̄

∫ ∆xt

0

dx
√

2me(Ip − eEx)

]
= E2 exp

[
− 4
√

2meI
3/2
p

3h̄e|E|

]
(1.4)

Keldysh obtained the same exponential dependence of long-time-averaged tunnel ionization
probability (under low frequency waves) with an additional factor in front of the exponent
in the limit of γ � 1. The field-ionization rate has further been developed by many
theorists [79, 80, 81, 82], for example Ammosov, Delone and Krainov (known as ADK-
rate) [83]. Although the ADK rate is basically a cycle-average concept, it is also widely
used for instantaneous field emission by replacing the field, E → E(t):

ΓADK(t) ∝ N(Z, n∗, l,m)

√
3h̄eE(t)

2π
√

2meI
3/2
p

(
4
√

2meI
3/2
p

h̄eE(t)

)2n∗−|m|−1

exp

[
− 4
√

2meI
3/2
p

3h̄eE(t)

]
(1.5)
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where N(Z, n∗, l,m) is a constant for a given atomic charge Z, effective quantum number
n∗ = Z/(2IP )1/2 (in atomic unit), orbital (l) and magnetic (m) quantum numbers.
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Figure 1.2: Tunnel ionization of electrons in atoms and metals. Tunnel ionization in
the presence of a strong field EL in an atomic potential (a) and the metal-vacuum interface
(b). The binding potential (V (x), grey curve) is suppressed by the strong field (red dashed
line), and the wavefunction of the ground state tunnels through the barrier at a distance
of ∆xtun = Ip/eEL.

1.2 Dynamics of electron in intense laser fields

The electrons released in the free space by ionization are subsequently driven by the strong
laser field. Fig. 1.3 illustrates classical dynamics of electrons under an intense linearly
polarized light field. When the applied field is so strong that the Coulombic attraction
from the parent ion or metallic surface can be considered negligible, the kinematics of the
photoelectrons are purely governed by the driving laser field. This approximation is known
as “Strong field approximation” (SFA). Furthermore, since the wavelength of the optical
driving field (hundreds of nm) is much larger than the size of an atom (hundreds of pm),
the driving electric field can be safely considered spatially homogeneous in the interaction
area, known as “dipole approximation”.

1.2.1 Classical kinematics of electrons under strong laser fields

A classical method, so-called the three step model (TSM) offers an intuitive understanding
of the dynamics of a photoelectron after the ionization from its parent ionic core. A
classical description of strong field dynamics starts with the ionization of an atom by a
strong field EL(t) at an instance tb. The liberated electron is treated as a point charge (−e,
e > 0) and experiences the electric force from the oscillating laser field. The kinematics of
a photoelectron starting from its birth time tb is described by Newton’s 2nd law as:

F (t) = −eEL(t) = me
d2x(t)

dt2
for t > tb (1.6)
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Figure 1.3: Schematic illustration of the semiclassical three step model. 1. Ion-
ization: the laser electric field (red curve) ionizes the atom, and electrons are set free.
2. Acceleration: a released electron is accelerated by the electric field in vacuum. The
electrons which are not driven back to the surface (green curve) are referred to as “direct
electrons”. 3. recollision: The photoelectrons ionized around the peak of the field are
driven back to the parent ion or the surface of a metal and recollide. The back-scatted
electron from the surface (dark blue) is further accelerated by the driving field. At the rec-
ollision moment, a recombination to the parent ion leads to radiative emission at harmonic
frequencies of the laser field (purple). Harmonics from metals under the above mechanism
have not yet been observed.

The velocity v(t) and the excursion x(t) of the photoelectron can be evaluated by the
integration of the acceleration in time with the initial conditions, x(tb) = 0 and v(tb) = 0.
The velocity and accordingly the momentum are expressed by the integration of the electric
field, which can be casted into the vector potential A(t),

v(t, tb) = − e

me

∫ t

tb

dtEL(t) = − e

me

[A(tb)− A(t)] (1.7)

Depending on the phase of the electric field at the electron birth time tb, the emitted
photoelectrons can be classified into two types: direct (green in Fig. 1.3) and back-scattered
(dark blue in Fig. 1.3). For the sake of simplicity, a continuous wave (CW) laser field can
be considered as EL(t) = −E0 sin(ωLt), and the solution of the above differential equation
(Eq. 1.6) can be written as:

x(t, tb) = − eE0

meω2
L

[sin(ωLt)− sin(ωLtb)] +
eE0

meωL
(t− tb) cos(ωLtb) (1.8)
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This expression consists of temporally oscillating and linear terms, the first and second
term, respectively on the right hand side of Eq. 1.8. Depending on the ionization time
tb, the contribution of the linear term is modulated by a sinusoidal function. Now, one
can consider the solution for a trajectory that brings the electron back to the origin, i.e.,
x(t; t > tb) = 0. The equation can be solved numerically and has a solution only if
ωLtb > π/2. This implies that the electrons generated at the leading edge of an electric
field crest, within the time range from ωLtb = 0 to ωLtb = π/2, do not revisit the origin
during their excursion, i.e., x(t > tb) > 0. Photoelectrons generated within this time
window are usually referred to as direct electrons. The momentum accumulated by the
direct electrons until their detection is proportional to the vector potential of the light
waveform at the time of their birth A(tb). The maximum terminal kinetic energy (referred

to as “cutoff” energy) of the direct electron E
(d)
cutoff is related to the maximum of the vector

potential of the laser pulse as:

E
(d)
cutoff =

1

2me

(emax[A(tb)])
2 ≈ 2Up (1.9)

In contrast to direct electrons, the solution for an electron generated at the trailing edge of
a field half cycle (ωLtb > π/2) predicts return of the electron to its parent ion or metallic
surface, x(tr, tr > tb) = 0. These electrons (can) elastically rebounce at the origin x = 0.
This effect is incorporated into the model as a change of the direction of their velocity,
v(tr) → −v(tr). These electrons are referred to as “back-scattered electrons”. The back-
scattered electrons accumulate further momentum under the laser field until the end of
the laser pulse. The singularity of the back-scattering event leads to an increase of the
electron energy. The maximum momentum of the back-scattered electron is, max(p) =

emax(2A(tr)− A(tb)), and correspondingly its cutoff energy E
(bs)
cutoff is given by [84],

E
(bs)
cutoff ≈ 10Up (1.10)

In this thesis, the term “release time” is occasionally used to refer to the recollision moment
when discussing back-scattered electrons.

The above formalism has been developed under CW laser fields. However, a more
realistic consideration is that the driving fields are generally pulsed, and one can expect
differences. Especially at the limit of single-cycle pulses used in the experiments in this
thesis, the electron trajectory highly depends on the waveform of the driving field. The
ionization rate and time, as well as the release time for each type of the photoelectrons
(direct of back-scattered) are modified by the incident electric field waveform.

For recolliding electrons, a further classification based on their classical trajectories is
possible. Depending on their excursion time and energy profile, we refer to them as long
and short trajectories. Long trajectories are of those electrons that are ionized earlier in
time and recollided later, i.e., with a longer excursion time than short trajectories resulting
in descending recollision energy profile in time. The recollision events happen within a sub-
half cycle (< TL/2) time window. For optical fields whose period is TL ∼ 2 fs, this implies
a sub-femtosecond time scale.
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Figure 1.4: Kinetic energy of back-scattered and direct electrons. Terminal kinetic
energies of back-scattered (purple) and direct (green) photoelectron under a strong electric
field pulse (central energy of 1.7 eV, duration of 5 fs and intensity of 5 × 1014 W/cm2).
The red curve denotes the electric field force (−eEL(t)). The cyan points denote the
kinetic energy at the moment of the recollision (recollision energy). Upper and lower sides
correspond to electrons detected in these directions of the field force (red arrows). The
dimmed purple points indicate the terminal kinetic energy of the back-scattered electrons
as a function of the ionization time. Long and short trajectories are classified by the
excursion time from ionization to recollision (black arrows). The spectra of photoelectron
from xenon atom calculated by TDSE (red) and TSM (blue) are shown in the right panel.

1.2.2 Quantum mechanical description

Numerical approach

For the quantum mechanical description of ionization and the ensuing dynamics in the
presence of a strong field of a laser pulse, one can consider the time-dependent Schrödinger
equation (TDSE) in one dimension [85, 86].

i
∂ψ(x, t)

∂t
= Ĥψ(x, t) (1.11)

where the Hamiltonian is given by a superposition of laser-free, Ĥ0 = 1
2
∂2

∂x2
+ V (x), and

laser-driven dipolar interaction, Ĥint = −E(t)x terms in the length gauge,

Ĥ = Ĥ0 + Ĥint =
1

2

∂2

∂x2
+ V (x)− E(t)x (1.12)
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Atomic units (e = h̄ = me = 1) is used in this discussion. The atomic potential V (x) is
typically represented by a Coulombic potential. However, because of the singularity of a
Coulomb potential V (x) ∝ 1/x at the origin, x = 0, a modified Coulomb potential known
as the soft-core potential is widely used in atomic physics, V (x) ∝ −1/

√
x2 + a2, with

the core size of a [87, 85]. The core size can be chosen to fit the ionization energy of the
considered atom. For instance, the ionization energy calculated with a soft-core size of
∼1.19 (atomic units) predicts well that of argon, ∼15.7 eV. A solution of the TDSE is
typically obtained numerically. There the initial state of the system is the ground state of
an electron in the atomic potential and can be calculated by imaginary time propagation
or by diagonalization of the Hamiltonian utilizing finite differences. From the ground
state, the time propagation of the wavepacket can be numerically calculated by the split-
step Fourier method [88]. A detailed description of numerical process is summarized in
Appendix A.

A TDSE calculation of the photoelectron spectra in xenon is shown in the Fig. 1.4,
and it is compared with the results of the three-step model. The quantum mechanical
results produce a slightly higher cutoff energy than the semiclassical calculation under the
same parameters. This difference can be understood as an effect of quantum tunneling and
diffusion effect of the electronic wavefunction [89].

Analytical approach

The possibility of a quasi-analytical description of the strong field emission is essential
for developing a new time-resolving technique that allows the measurement of attosecond
electron pulses (Chapter 4 and 5). In this section therefore we review previous works
on strong field emission [90, 91, 92], and therewith provide a firm background for the
theoretical framework discussed later in Chapter 4.

Generally, the wavefunction of electrons can be described as a coherent superposition
of the ground state |0〉 and the unbounded continuum states |p〉,

ψ(t) =

[
|0〉+

∫
d3pχ(p, t)|p〉

]
eiIpt (1.13)

where Ip is the ionization energy of the system, and χ(p, t), represents the complex tran-
sition amplitude from the ground to the continuum state, |0〉 → |p〉 at a detection time t.
Since we are interested in the temporal characteristics of the electron wavepacket, only the
temporal component of the wavefunction is considered. As described in Eq. 1.13, the tran-
sition amplitude is related to both the spectral and temporal characteristics of the electron
wavepacket. Therefore, the primary subject of this section is the theoretical formalism of
the transition amplitude χ(p, t) and its analytical expression.

As in the classical description of the strong field emission, the dynamics of an electron
are classified based on whether it undergoes a back-scattering event or not. Similarly,
the transition amplitude can be considered as composition of two different contributions:
direct χdir(p, t) and back-scattered χsc(p, t) amplitudes,

χ(p, t) = χdir(p, t) + χsc(p, t) (1.14)
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Because the direct electron does not undergo back-scattering, the transition amplitude
at the detection time is simply the ionization probability amplitude after the electron
propagation from the ionization time to the detection time. Analytically, this is given by
a superposition of the probability amplitude E(t′)d(p + A(t′)) with a phase accumulation
during the propagation following the ionization time t′ as:

χdir(p, t) = i

∫ t

−∞
dt′E(t′)d(p+ A(t′)) exp

[
− i
∫ t

t′
dt

1

2
[p+ A(t)]2

]
(1.15)

where E(t) and A(t) are electric field and vector potential, respectively, and d(p+A(t′)) is
the dipole element which is associated with the transition from the bound to the continuum
states, d(p + A(t′)) = 〈p + A(t′)|r|0〉. In this derivation, the strong field approximation
is used; the dynamics of the electron is governed purely by the strong electric field, i.e.,
without considering the Coulomb potential of the ion. The phase term in the exponent is
the accumulated phase during the time from t′ to t which is the semiclassical action also
known as Volkov phase [93],

S(p, t2, t1;A(t)) =

∫ t2

t1

dt′
1

2
[p+ A(t′)]2 (1.16)

In contrast to the direct electron, a formalism of the transition amplitude for the back-
scattered electron calls upon inclusion of the scattering process. The back-scattering pro-
cess can be introduced by a scattering transition matrix g(p) associated with the mo-
mentum component p. Now we can split the process into two steps before and after the
back-scattering time tr: 1) from ionization (t′) to back-scattering (tr) time 2) from back-
scattering (tr) to detection time (t). In the first step 1), the electron wavepacket at the
back-scattering time ψbs(tr) can be expressed as a coherent superposition of all momentum
components of the ionization and scattering amplitudes with the Volkov phase accumu-
lated:

ψbs(tr) =

∫ tr

−∞
dt′
∫
d3p′E(tr)g[p′ + A(tr)]E(t′)d[p′ + A(t′)] exp[−iS(p′, tr, t

′;A(t))] (1.17)

In analogy to the case of the direct electron (Eq. 1.15), E(t′)d[p′ + A(t′)] describes the
ionization amplitude at time t′. The back-scattering amplitude is expressed by E(tr)g[p′+
A(tr)] at time tr. The phase propagation from the ionization to back-scattering time is
given by the Volkov phase S(p, tr, t

′;A(t)). After the back-scattering event, in the step
2), the electron wavepacket ψbs(tr) propagates to the detector. Hence, the electron spec-
tral amplitude at time t can be easily obtained by an integration of the back-scattered
wavepacket with the Volkov phase over time,

χsc(p, t) = −
∫ t

−∞
dtrψbs(tr) exp[−iS(p, t, tr;A(t))] (1.18)

The detection time is virtually the time after the end of the transient electric field (t→∞).
Eq. 1.15 and 1.18 can be now simplified as χ(p, t = ∞) = χ(p) (referred to as ”terminal
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amplitude”). The electron spectrum of the strong field emission is then give by

I(p) = |χ(p)|2 = |χdir(p) + χsc(p)|2 (1.19)

The formalism of Eq. 1.18 clearly shows that the spectral amplitude χsc(p) is linked with
the back-scattered electron wavepacket at its release time, ψbs(tr). It implies that the
electron pulse ψbs(tr) can be characterized, if the complex spectral amplitude χsc(p) is
known, and the electric field and back-scattering time are precisely known in order to
evaluate the Volkov phase. A realization of this idea will be presented in Chapter 4 and 5.

1.3 High harmonic generation

1.3.1 Three-Step model: High harmonic generation in gaseous
media

High harmonic generation (HHG) in atoms shares the same mechanism as that of strong
field photoemission. The electron recombines with the parent ion in its ground state and
emits radiation. In other words, the recombination event leads to a conversion of the kinetic
energy of the recolliding electron to coherent radiation. The highest energy of the coherent
radiation is thus directly related to the maximum kinetic energy of photoelectron at the
recollision time tr. The highest momentum at the recollision instance can be evaluated
as max(p) = emax(A(tr) − A(tb)), and the corresponding cutoff energy of the radiation

E
(HH)
cutoff is given by [18, 94, 95]

E
(HH)
cutoff ≈ 3.17Up + Ip (1.20)

The extension of the high harmonic generation process from the semiclassical to the quan-
tum mechanical description was introduced by Lewenstein et. al. [89]. In this model,
high harmonics generation is described as the time-dependent electronic dipole under the
strong field approximation. Fig. 1.5 shows simulated high harmonic spectra based on the
Lewenstein model (blue) and the semiclassical three step model (red). Higher cutoff energy
is observed in the Lewenstein model compared to the three step model, which is once again
attributed to quantum properties, i.e., quantum tunneling and diffusion.

The probability of recombination of electrons with the parent ion is highly related to
the scattering cross-section of the electronic wavepacket and the parent ion. The electron
wavepacket is naturally broadened in space during its excursion due to dispersion. The
short trajectory electron is less broadened and therefore, a larger scattering cross-section
than that of the long electron trajectory is anticipated. This fact implies that high har-
monic radiation from atoms is primarily dictated by the physics of the short trajectories.
Consequently, its temporal properties are related to the recolision times of the short trajec-
tory such as positive chirp. For the same reasons, the wavelength of the driving fields plays
a key role in the conversion efficiency. A driving field of a longer wavelength can provide
higher ponderomotive energy, but the excursion time to recollision is longer. Therefore,
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Figure 1.5: High harmonics in atoms. High harmonic spectra in neon calculated by
the Lewenstein (blue) and the three step (red) models under the identical conditions as
used for Fig. 1.4.

lower energy conversion efficiency is to be expected [96, 97]. High harmonic emission takes
place at each consecutive half cycle of the driving field. Due to inversion symmetry, only
odd harmonics are produced and are manifested in the spectrum as peaks separated by
2h̄ωL. High harmonic bursts from many half cycles of similar intensity spectrally interfere
and create the plateau of the harmonic spectrum (blue shaded area in Fig. 1.5). Around
the cutoff regime of the spectrum (purple shaded area in Fig. 1.5), a continuum can be
observed due to the isolation of the highest energy components.

1.3.2 High harmonics and EUV attosecond pulses

In high harmonic generation, the recollision process occurs within a half-cycle of driving
field. This implies that high harmonic generation provides a route for generating EUV
attosecond pulse bursts. To better understand this aspect, a time-resolved simulation
based on the Lewenstein model [89] is once again considered. In the simulation, a Gaussian
laser pulse is used with a peak intensity of I = 6× 1014 W/cm2 and a central wavelength
of 700 nm. As shown in Fig. 1.6 a, the EUV emission occurs at every half cycle of the
driving field, that is, a sub-femtosecond window. The highest photon energy, ∼ 80 eV
under the considered parameters (Fig. 1.6 b), is released around the zero transition of
main half-field-cycle, as shown in the time-frequency analysis (Gabor transformation) of
the EUV burst in Fig. 1.6 c.

The temporal isolation of EUV attosecond pulses is crucial for their use in time-resolved
measurements. Over the last decades, different types of gating approaches that allow the
temporal isolation of the EUV attosecond pulse have been invented such as polarization
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gate [98, 99], double optical gate [100], amplitude gate [29, 22] and ionization gate [101,
102]. In the AS beamline of this group, the amplitude gate is the method of choice. I will
therefore briefly discuss this technique. Because a few or single cycle pulse has high contrast
in field strength of consecutive cycles and therefore the energy variation of adjacent EUV
burst around highest energy is large enough to have a wide bandwidth for an attosecond
scaled pulse duration, a spectral filtering around cutoff regime (blue curves in Fig. 1.6 b
and c) is able to provide single isolated attosecond EUV burst (Fig. 1.6 d). Metallic filter
for the amplitude gating must be chosen by its characteristic transmission and the cutoff
energy under laser parameters.
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Figure 1.6: High harmonic generation in gaseous media and temporal isolation
of an attosecond EUV pulse. a and b, The EUV high harmonic emission calculated
using the Lewensteim model (blue) under a strong incident field (I = 6× 1014 W/cm2) at
central wavelength of 700 nm (red) in time domain (a) and its spectrum was computed
by the Fourier transform (b). c, Time-frequency analysis of the radiated EUV is shown
for energies above ∼50 eV. The blue curve in panel b and c is shows the application of a
spectral filter (Zr foil and a customized EUV multilayer mirror used in AS beamline). The
dashed lines indicate the margins of the filter. d and e, Spectrally filtered EUV pulse (d)
and its spectrum (e). f-j, The EUV radiation under identical condition but with a 0.5π
CEP shifted waveform.
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Just as in strong field ionization, high harmonic generation is a field-waveform sensi-
tive process. As a result, a carrier-envelope phase (CEP) variation of the driving pulse
can control the temporal and spectral characteristics of the generated EUV bursts. A
simulation under identical conditions as used in Fig. 1.6 a-e, but with a CEP shifted by
0.5π illustrates this effect. For a CEP of 0, a single energetic bust of radiation emerges
around the cutoff energy, whereas for a CEP 0.5π there are multiple EUV bursts (2 bursts
in the single-cycle pulsed case) as shown in the time-frequency analysis (Fig. 1.6 h). The
appearance of discrete harmonics in the cutoff region indicates a clear spectral signature
of the multiple pulses in the time domain (Fig. 1.6 g and j). Therefore, only spectral
filtering of the cutoff radiation is not sufficient to isolate a single attosecond pulse but also
the appropriate carrier-envelope phase setting of the pulse.

1.3.3 High harmonic generation in bulk solids

The extension of the non-perturbative optics from atom to condensed matter was limited
by the irreversible structural damage of solids under extreme fields. This obstacle was
overcome by the advancement of laser pulses to short durations and towards infrared carrier
frequencies. Ever since the first report on the high harmonic generation in ZnO in 2011
[60], the properties of high harmonics emerging from bulk solid have been at the research
focus of several research groups. Typical studies include field scaling of the cutoff energy
[60, 62, 65, 103], nonlinearity of harmonic yield versus the driving field strength [60, 62, 65],
field waveform sensitivity of the harmonic spectra [65, 104, 105], temporal confinement
and distribution of the emerging EUV pulses [61, 42, 104]. Many distinct characteristics of
the solid-state high harmonics which are in contrast to those in atom have been reported.
Experiments focused on the spectral characteristics of the high harmonics in solids revealed
a linear scaling of the cutoff energy to the field strength [60, 62, 65, 103]. This is in contrast
to the high harmonics in atoms where the cutoff energy exhibits a quadratic scaling of field.
This feature has been observed in diverse solids from semiconductors (ZnO [60], GaSe [62])
to wide band-gap dielectrics (SiO2 [65], Ai2O3 [103]) under incidence of broad range of the
central frequency, THz [62, 61], mid-infrared [60] and up to visible range [65, 42]. However,
despite this feature, a mechanism that can describe the temporal characteristics of solid-
state harmonics is still under debate, because of contradicting experimental observations.
For example, experimental reports on measurements with ZnO [63, 106] revealed chirped
harmonics, which can be understood by a mechanism similar to the recollision picture,
while experiments with SiO2 using a time-resolving technique [42] and an interferometry
technique [107] revealed synchronization of harmonic pulse with the peak of the driving
field and a zero-chirp, which are supporting non-recollisonal pictures such as the intraband
scattering.

Since a part of this thesis is concerned with the electron dynamics and associated high
harmonic radiation in dielectrics, in this section I will briefly summarize the current models
for HHG in solid which have been developed in the strong-field physics community.
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Quantum mechanical description: Semiconductor Bloch equation (SBE)

In the band picture of solids, electron dynamics in solids are directly linked to the time evo-
lution of populations involving transition among different electronic bands and the trans-
portation of charge carriers within individual band. Within the premises of this model, the
fully occupied bands of a semiconductor or a dielectric cannot yield an electronic current.
However, in the presence of a strong-laser field transitions of electron population from
fully occupied valence bands to unoccupied conduction bands give rise to partially filled
bands, i.e., by creating a vacancy on valence bands (holes) and electron in the conduction
bands. The polarization by the motion of the electron-hole pair is typically referred to as
interband polarization. In parallel to the interband motion of electrons, the electrons and
holes are simultaneously driven on underlying bands, and this gives rise to a second current
which is typically referred to as intraband current. Inter- and intraband motion evolves in
a coupled manner over time. A quantum mechanical treatment of the electron dynamics
can be understood as an extension of optical Bloch equation [108]: semiconductor Bloch
equation (SBE) [109, 110, 111]. The SBE describes the time evolution of polarization (pk)
and population (fλk ) of electrons and holes as:

ih̄
∂

∂t
pk =

[
ελk + ελ

′

k − i
1

Td

]
pk − dkE(t)(1− fλk − fλ

′

k ) + ieE(t)∇kpk (1.21)

where λ is an index for electron and hole, λ = e, h. The first term stands for the phase
evolution including the dephasing (1/Td) of wavepacket. The second term represents the
transition rate dictated by the dipole (dk), and the last term has a meaning of the trans-
portation of polarization in the momentum space k. The time evolution of population of
electrons and holes is given by:

h̄
∂

∂t
fλk = −2Im[dkE(t)p∗k] + eE(t)∇kf

λ
k (1.22)

The total interband polarization P (t) is expressed by a coherent superposition of polar-
ization contributions, P (t) =

∑
k dkpk, while the total intraband current is given by a

summation of group velocity, vg(k) = h̄−1∇kεk, of holes and electrons on all populated
bands, J(t) =

∑
k[
∑

h f
λ
k∇kε

h
k +
∑

e f
λ
k∇kε

e
k]. The amplitude of high harmonic radiation is

proportional to the time variation of the total current, EHH(t) ∝ d
dt

[
dp
dt

+ J(t)
]
, and hence

its spectrum can be expressed as

IHH(ω) ∝ |ω2P (ω) + iωJ(ω)|2 (1.23)

The first and second terms on the right hand side denote the spectral contribution from
interband and intraband motions, respectively.

Semiclassical description of intraband motion

The harmonics originated from intraband current can be more intuitively understood
within the concept of Bloch oscillations of an electron on the conduction bands of a solid
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(or a hole on a valence band) in the semiclassical approach [74, 65]. In this approach, the
transition of an electron from a valence band to a conduction band is not considered, but
the electronic wavepacket is treated as being pre-existing before the incidence of the field.
Furthermore, the population of the band is assumed to remain constant in time without
any depletion. The acceleration theorem describes the equation of electron motion with
the laser field, EL(t) = E0 cos(ωLt), as h̄dk

dt
= −eEL(t). The time dependent momentum is

given by a description with the vector potential, A(t) =
∫∞
t
dt′EL(t′) = E0

ωL
sin(ωLt) as,

k(t) = k0 +
e

h̄
A(t) = k0 +

eE0

h̄ωL
sin(ωLt) (1.24)

The time evolution of the electron momentum distribution g(k,t) is given by the Boltzmann
transport equation,

∂g(k, t)

∂t
=
∂g(k, t)

∂k

dk

dt
(1.25)

It is important to note that this is the same equation as Eq. 1.22 but without the term that
accounts for the population variation of the band in time (the first term). The analytical
solution of the Boltzmann’s equation results in a translation of the initial momentum
distribution from k0 to the instantaneous momentum, k(t) = k0 + A(t).

g(k0, t) = g(k0 + A(t), t0) (1.26)

The laser induced intraband current is given by the weighted group velocity over the
electron distribution within the Brillouin zone, J(t) = eh̄−1

∫
dk∇εi(k)g(k, t). In the one-

dimensional tight-binding model, the energy dispersion of a band εi(k) can be described as
the superposition of harmonics as a Fourier series, εi(k) = Re[

∑
m ε̃i,m exp(imkd)] where

i and m are indices of the band and reciprocal harmonics, respectively, and d is the lat-
tice constant of the crystal lattice. For the simple case of a system having inversion
symmetry, the band dispersion consists of cosine functions with real valued coefficients,
εi(k) =

∑
m εi,m cos(mkd). With an assumption of the initial central momentum of, k0 = 0

and the delta-function-like initial momentum distribution, the current density reads

J(t) ∝ ∇kεi(k)|k=A(t) =
∑
m

mdεi,m sin

(
m
eE0d

h̄ωL
sin(ωLt)

)
(1.27)

Applying the Jacobi-Anger expansion to the above equation yields the current as a su-
perposition of harmonics of the laser field with an amplitude of odd order 1st kind Bessel
function JN ,

J(t) ∝ 2
∑
m

mdεi,m
∑
N

JN

(
m
eE0d

h̄ωL

)
sin(NωLt) (1.28)

where N is odd integer number. The Nth order harmonic intensity can thus be derived as,

IN ∝
∣∣∣∣NωL∑

m

mdεi,mJN

(
m
eE0d

h̄ωL

)∣∣∣∣2 (1.29)
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Owing to the fact that the Bessel function is maximized approximately when the argument
is equal to its order, the cutoff energy of high harmonics is scaled with the highest order
of significant Fourier component of the band dispersion (ncutoff ),

EHH
cutoff =

(
ncutoff

eE0d

h̄ωL

)
h̄ωL (1.30)

The cutoff energy of high harmonics from solids exhibits linear dependence to the field
strength rather than intensity. This property is one of distinct contrasts to harmonics in
atomic gases.
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Figure 1.7: Interpretation of HHG in solids in the band picture. Interband polar-
izations (blue arrows) and intraband currents (purple dotted arrows) of electrons (cyan)
and holes (yellow) play a key role as sources of the coherent radiation of high harmonics
(blue and purple pulses, respectively) in the presence of a strong laser field (red pulse).
Figure adapted from ref. [42].



Chapter 2

Experimental tools

Nicht Kunst und Wissenschaft allein, Geduld will bei dem Werke sein.
-Johann Wolfgang von Goethe

All the experiments presented in this thesis were conducted in the AS beamline of our
group. In this chapter we will explore the most advanced features of the beamline which
will facilitate a comprehensive understanding of the details of the experiments reported
in this thesis. Along with the introduction of the beamline, founding bricks of ultrafast
optics as well as attosecond metrology will be reviewed to enable an independent reading
of this thesis. Further details of individual experiment will be introduced in the associated
chapters.

2.1 Light source of the AS Beamline

2.1.1 Laser system: Kerr-lens Mode locked (KLM) oscillator and
Chirped Pulse Amplification (CPA) system

The laser system of the AS beamline can be mainly divided into two parts, the oscillator
and the amplifier, a widely used configuration of laser systems in the ultrafast optics. The
laser source is a commercial Kerr-lens mode locked (KLM) oscillator (Rainbow, Femtolaser
Gmbh) shown schematically in Fig. 2.1. A Titanium-doped Sapphire crystal (Ti:Sa) is
used as a gain medium, and it is pumped by a continuous wave laser at a wavelength of
∼532 nm (Verdi V6, Coherent) and a power of ∼3W, giving a gain spectrum centered at
∼800 nm. The oscillator provides ultrashort pulse trains with a duration of ∼6 fs and
an energy of 3 ∼ 4 nJ per pulse at a repetition rate of 78 MHz. In the next step, the
pulse-train delivered from the oscillator is boosted to ∼1 mJ of energy, and the repetition
rate is reduced to ∼3 kHz by the amplifier (Femtopower, Femtolaser). The amplifier is
implemented based on the chirped pulse amplification (CPA) principle which consists of
3 steps: stretching, amplification and compression. CPA allows avoiding optical damage
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to the optical components, resulting from a high peak intensity of the pulses during the
amplification process. This is possible by stretching the pulse in time domain, resulting in
a reduction of the peak intensity of the pulses. In our system, the seeded pulses (∼6 fs)
are temporally stretched to ∼25 ps before the amplification process using highly dispersive
materials (SF57). The stretched pulse trains are amplified in a Ti:Sa crystal during the
first 4 passes and are picked (3 kHz) by a Pockels cell. The picked pulses are further
amplified by additional 5 passes. A total of 9 amplification passes gives rise to pulses with
an energy in excess of ∼1 mJ.
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Figure 2.1: Schematic of the laser source. At the front end, the Kerr-lens mode-locked
(KLM) oscillator delivers a train of pulses with duration of ∼6 fs at a repetition rate of
78 MHz. These pulses are temporally stretched by passing through a highly dispersive
material, SF57. The stretched pulses are amplified pass by pass in the Ti:Sa crystal, which
is optically pumped by Q-switched Nd:YLF laser (532nm). After the 4th pass, pulses are
picked from the train by a Pockels cell (PC) at a repetition rate of 3 kHz. An AOPDF
(Dazzler) is employed to compensate for gain narrowing effects and to shape the spectrum
of the amplified pulse. After the 9th pass, the amplified pulses are enlarged by a telescope
and are sent to a transmission grating compressor which reduces their duration down to
∼23 fs. Figure adapted from ref. [112]
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In order to overcome gain narrowing, an acousto-optic, programmable, dispersive filter
(AOPDF, commercially available as Dazzler from Festlite)[113, 114] which can shape the
spectrum of the pulses is utilized. In such way at the end of amplification, a quasi-flat-top
spectrum is attained. After the 9th pass the beam size of the amplified pulses is enlarged to
∼25 mm such as to prevent damage of the optics in the compression stage, the last step of
CPA. A transmission grating compressor temporally compresses the pulses down to ∼23 fs.
A diagnostic device based on the Self-Referenced Spectral Interferometry technique (SRSI,
commercially available as Wizzler from Festlite) [115] is utilized to measure the temporal
characteristics of the amplified pulses. The Wizzler gives a feedback to the Dazzler to
compensate high order chirp up to 4th order. The amplified pulses are delivered with a
pulse-to-pulse intensity stability better than 1%.

2.1.2 Spectral broadening

To generate single cycle pulses, a spectrum spanning at least one-octave is required ac-
cording to the time-bandwidth product, ∆t∆ω ≥ 2π. An established method for spectral
broadening is exploiting the physics of self-phase-modulation (SPM) via the Kerr effect.
In the presence of a strong field, the refractive index exhibits a nonlinearity which is pro-
portional to the intensity of the driving pulse, n(t, I) = n0 + n2I(t) [5, 116], where n0 and
n2 indicate linear and nonlinear refractive index, respectively. If the propagation of a laser
pulse, whose intensity profile is I(t) = I0 exp(−t2/τ 2), in a nonlinear medium of thickness
L is considered, the temporal phase variation induced by the nonlinear refractive index n2

is given by ∆ϕ(t) = n2I0L exp(−t2/τ 2). The instantaneous frequency of the laser pulse
undergoing SPM can be calculated by the time derivative of the temporal phase as:

ω(t) = ωL − 2n2I0Lt exp

(
− t2

τ 2

)
(2.1)

Around the central frequency of the incident laser pulse ωL, new frequency components
are generated depending on the slope of the intensity envelope. As connoted in Eq. 2.1,
the spectral width of the new frequencies is linear to the peak intensity I0, and therefore, a
good efficiency in frequency conversion can be assured by a good compression of the input
pulse.

Gaseous medium such as neon filled hollow-core fiber (HCF) is one of the best options
for the spectral broadening of intense pulses. One of the key advantages of using hollow-
core fibers, other than the efficient generation of a broad coherent spectrum, is the quality
of the beam profile. A good matching of an incident laser beam size and the fiber diameter
results in a rather pure TEM00 spatial eigenmode at the exit of the capillary. The near
Fourier limited pulse delivered from the laser compressor is gently focused by a thin convex
lens with focal length of ∼1.8 m onto the entrance of the hollow core fiber (Fig. 2.2 a). To
avoid spatial instability for the coupling, a PID control-based beam stabilization system
(Aligna4D from TEM) consisting of two mirror actuators and position sensitive diodes
(PSD) is employed in the system (marked in green in Fig. 2.1). In the AS beamline, a 1.1
m long hollow-core fiber of a core-size of ∼250 µm is used. It is encapsulated in a tube



26 2. Experimental tools

filled with neon at a pressure of ∼2 bar. An AR-coated entrance window at the front and a
Brewster window (0.5 mm thick at ∼ 57◦) at the exit ensure minimal energy and spectral
losses. The Brewster window is used not only for minimizing the reflection loss but also
for selecting a weak portion of the beam which is in turn used for the CEP measurement
of the pulses.

With our laser parameters (central wavelength of 800 nm, duration of ∼23 fs and ∼1 mJ
pulse energy), SPM in neon at a pressure of ∼2 bar provides ∼2.5-octave broadband spec-
trum extending from 250nm to 1100 nm (Fig. 2.2 b). The corresponding Fourier limited
pulse duration is ∼0.9 fs, connoting the possibility of an optical attosecond pulse genera-
tion [15, 16]. To maintain a consistent efficiency of spectral broadening and beam profile,
the temporal compression and spatial beam profile at the focus is frequently optimized for
long term applications.
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Figure 2.2: Spectral broadening in neon filled hollow core fiber. a, Intense laser
pulses are focused onto a neon-filled hollow core fiber to generate a spectrum of ∼2.5
octaves. b, Spectrum of the supercontinuum spanning from ∼250nm to 1100nm (red
curve). The blue curve is the spectrum of the incident laser to the fiber. Figure adapted
from ref. [41].
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2.1.3 Carrier-Envelope Phase (CEP) and stability control

In few-cycle and in single-cycle pulses, the control and stabilization of the carrier-envelope
phase (CEP) from pulse to pulse is essential for research of field-sensitive phenomena. This
is because the waveform under the pulse envelope is drastically affected by the variation
of CEP. An instability of CEP from pulse to pulse can causes incoherent superposition of
measurable quantities in strong-field phenomena resulting in a smearing of key observables.
Technically, the CEP variation of consecutive pulses emerging from an oscillator is a result
of the difference between the group and phase velocities inside the laser resonator [25, 26].
For each round trip in a cavity with a length l, the consecutive pulses exiting the laser
cavity have a phase difference of

∆ϕCEP =
2πl

Tc

(
1

vg
− 1

vp

)
(2.2)

where Tc, vg and vp are laser period, group velocity and phase velocity, respectively.
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Figure 2.3: Principles of carrier-envelope phase (CEP) stabilization. a and b, A
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The comb spacing is directly related to the repetition rate of the pulses νrep. An offset of
the frequency comb from the zero frequency ν0 results in a CEP variation of consecutive
pulses (b). c, A pulse-picking process by a Pockels cell inside the amplifier enables selection
of pulses with the same CEP.
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The phase shift can be well understood in the spectral domain. A pulse train is analyt-
ically described by the multiplication of a continuous spectrum and a comb of frequencies
that correspond to the laser longitudinal modes (Fig. 2.3 a). Pulse-to-pulse CEP differ-
ences can be understood as a result of an onset ν0 of the frequency comb (inset in Fig.
2.3 a), referred to as carrier-envelope offset (CEO). The comb frequencies are located at
νm = ν0 + mνrep, where m is an integer as depicted by vertical solid lines in Fig. 2.3 a.
The inverse Fourier transform shows that the frequency offset introduces a constant phase
shift between two adjacent pulses in the time domain which amounts to (Fig. 2.3 b),

∆ϕCEP = 2π
ν0

νrep
(2.3)

If ν0 is set to be an integer fraction (1/n) of the repetition frequency of νrep, i.e., nν0 = νrep,
the above equation dictates that every nth pulse has an identical phase, when ∆ϕCEP
returns to 2π. Pulses with the same phase are obtained by a Pockels cell pulse picking in
the amplifier as illustrated in Fig. 2.3 b and c. The timing of the Pockels cell is adjusted
such that pulses with the same CEP are selected. As one can notice from the comparison
of Eq. 2.2 and 2.3, the frequency offset is a result of the difference between the group
and phase velocities which are characteristics directly related to the properties of the laser
cavity. Random noise impacting on the laser cavity, typically originating from thermal or
mechanical drifts of the optical elements results in a jitter of the CEO and consequently
a pulse-to-pulse phase instability. The stabilization of the CEO can be attained by a fast
active feedback loop whose speed is comparable to the repetition rate of the laser.

For the feedback to the oscillator, a continuous detection of the CEO is required. The
CEO is detected by the f to 0 interferometric method. The pulse train at the exit of the
oscillator is focused on a periodically poled magnesium-oxide-doped lithium niobate (PP-
MgO:LN) crystal (See Oscillator in Fig. 2.1). Difference frequency generation (DFG) in
PP-MgO:LN eliminates the CEO in the DFG frequencies, which results in multiple of νrep
i.e., νDFG = kνrep, where k is an integer. Detection of the beating between fundamental
and DFG modes gives access to the CEO, whose frequency is ν − νDFG = ν0. The beating
frequency signal is captured by an avalanche photodiode (APD) following a low-pass filter-
ing at radio-frequencies. The shift of the beating frequency directly indicates the shift of
the CEO, and it is used to provide feedback to an acousto optical modulator (AOM). The
AOM controls the intensity of the pump laser of the Ti:Sa oscillator, and CEP stabilization
is attained by controlling the phase induced by the Kerr-effect in the gain medium.

Long-term instability of the phase (tens of Hz range) is introduced during the propa-
gation of the pulses in the laser system including amplification. To overcome this issue a
second stabilization stage referred to as “slow-loop”, is also important. In the slow-loop, a
small portion of the white light generated in the hollow-core fiber is routed to a f-2f inter-
ferometer [117]. In this device, the laser beam is focused by an off-axis parabolic-mirror
onto a β-BBO crystal to generate its second harmonic. The phase of the second harmonic
is double than that of the fundamental pulse, ESHG(t) = exp(2iωt + 2iϕCEP ). A spectral
overlap of the fundamental and the second harmonic (time delayed by ∆t) gives rise to
a spectral interference, I(ω) = |Efund(ω)|2 + |ESHG(ω)|2 + 2EfundESHG cos(ω∆t+ ϕCEP ).
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Variation of the fringe pattern directly enables tracing of the CEP variation and provides
a signal for corrections. A piezoelectric stage driven by a PID-control based active-loop
adjusts the distance of a pair of SF57 prisms in the stretcher of the amplifier to compen-
sate the CEP variation and stabilize the long-term CEP. The capability of controlling the
phase by the above method also allows setting a desirable CEP. A pulse-to-pulse CEP
stabilization of less than 100 mrad can be achieved with this system [117, 41].

2.1.4 Light field Synthesizer

The light field synthesizer provides us the possibility to shape the electric field of pulses
with a higher degree of freedom in comparison to ordinary CEP control. It is based on
a very intuitive working principle as shown in Fig. 2.4. The coherent broadband light
delivered from the hollow-core fiber is spectrally and spatially divided into 4 channels
(NIR: 700∼1100nm, VIS: 500∼700nm, VIS-UV: 350∼500nm, and UV-DUV: 270∼350nm)
by broadband dichroic beam-splitters (DBS).

6 custom-designed chirped mirrors (CM) installed in each channel compress the cor-
responding pulses. The sequence of channels is designed to minimize dispersion of pulses
by arranging more dispersive wavelengths (DUV, UV-VIS, VIS and NIR in sequence) first
such as to avoid their extensive propagation through dispersive optics. At the exit of the
apparatus, all four channels are coherently recombined using identical DBSs as for spectral
division. The temporal profiles of the pulses in each channel are typically characterized by
a transient grating frequency-resolved optical gating (TG-FROG) [118]. Thin fused-silica
wedges introduced in the beam path of each channel enable fine tuning of the dispersion of
each pulse. The pulse duration of constituent pulses is compressed to nearly their Fourier
limit, NIR: ∼8 fs, VIS: 6-7 fs, VIS-UV: 6-7 fs, and UV-DUV: 6-7 fs. The spatial su-
perposition of the beams of the constituent pulses is one of the essential parameters for
synthesis. Each beam is carefully aligned by adjusting the corresponding beam splitters
via observation of beam profile in the near and far-field. A desirable electric field waveform
is synthesized by tuning the relative delay among the channels using piezo-electric stages.
The fine precision of piezoelectric stages down to 10 nm provides a capability of controlling
the timing among the channels with accuracy better than ∼80 as. In order to avoid ther-
mal drifts which hinder the long term spatial and temporal accuracy of the synthesized
pulses, a passive water-cooling system under the metallic base of the synthesizer is im-
plemented. Additionally, for the stability of the temporal synchronization, a PID-control
based active loop is implemented. At the exit of the apparatus, a small fraction of the
synthesized beam is sent to a spectrometer to trace the interference pattern in the spectral
region where neighboring channels overlap. The interferometric pattern is used to provide
a feedback to the active-loop which in turn adjusts the delay to compensate for the drifts.
In total, an interferometric stability better than 50 mrad can be achieved [41]. The synthe-
sized waveforms are completely characterized by EUV attosecond streaking measurement
[29, 119] as discussed in the next section.
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Figure 2.4: Light field Synthesizer. a, A coherent multi-octave supercontinuum pulse
delivered from the HCF (red dashed curve) is spectrally divided into 4 channels, NIR
(red), VIS (yellow), UV-VIS (blue) and DUV (purple) by dichroic beam splitters (DBS).
b, Schematic of the second-generation light field synthesizer. The pulses in each channel are
temporally compressed down to their Fourier limit by 6 reflections off broadband chirped
mirrors designed for their corresponding bandwidths. At the exit of the apparatus, all
constituent pulses are spatially and temporally superimposed. By controlling the timing
among these pulses with piezoelectric stages introduced in the path of each channel, custom
waveforms reaching also the optical attosecond domain can be attained. Figure adapted
from ref. [41]

2.2 Attosecond metrology

2.2.1 AS beamline

A schematic drawing of the AS beamline is shown in Fig. 2.5. The experimental setup
is in a series of high vacuum chambers, which consists of two main chambers, referred to



2.2 Attosecond metrology 31

as “HHG” and “experimental” chambers. At the core of the beamline stands the EUV
attosecond streaking technique. High harmonic generation in noble gas is implemented in
the first chamber, the HHG chamber. A strongly focused synthesized laser field is shone to
a gas nozzle filled with a noble gas (neon or argon). The generated high harmonics which
extend to the EUV range (blue beam in Fig. 2.5 a) collinearly propagate with the optical
laser beam (red beam in Fig. 2.5 a). An adjustable iris controls the intensity of the optical
pulse by clipping the outer rim of the beam. A spatial isolation of the EUV pulse from
the optical pulse is possible by using a free-standing ultrathin (< 100 nm) metallic filter
(Al, Zr, In and etc.) placed at the center of the beam. The filter holder is attached on a
transitional stage which can change the type of filter on demand. The co-propagating inner
EUV and outer optical beams are reflected off a dual concave mirror assembly (inset in
Fig. 2.5 a) with a focal length of 12.5 cm. The inner mirror whose size matches with that
of the EUV pulse beam is mounted on a piezo stage. The time-delay between inner and
outer beams which is an essential ingredient for measurements in pump-probe schemes is
given by the optical path difference introduced by the piezoelectric stage. A time-of-flight
electron spectrometer (TOF) which is mounted on the top of the experimental chamber,
allows the measurement of photoelectron spectra. A number of ports on the experimental
chamber permits installation and use of several measurement instruments such as EUV
spectrometers, beam profiler and etc.

2.2.2 EUV attosecond streaking

The term, “EUV attosecond streaking” generally refers to a technique used for the temporal
characterization of EUV attosecond pulses as well as optical driving pulses. The EUV
pulse instantaneously ionizes atoms and releases photoelectrons through a single-photon
absorption process. The temporal and the corresponding spectral structure of the EUV
attosecond pulse is directly transferred to the photoelectron pulse.

Under a classical perspective, a photoelectron released by an EUV pulse is driven in
free space by the weak optical field (gate field), following the classical equation of motion.
The momentum gained by the electron from its ionization time (tb) to the end of the pulse
(t =∞) can be mathematically treated as integration of the acting electric force −eEL(t)
within that time window. Using the definition of the vector potential A(t), the momentum
change imparted to the electron by the optical gate field can be expressed as:

∆p = −e
∫ ∞
tb

dtEL(t) = e

∫ ∞
tb

dt
dA

dt
= −eA(tb) (2.4)

Accordingly, the terminal kinetic energy of the electron at the end of the optical pulse
(t =∞) is given as a function of the delay (τ) between EUV and optical gate pulses:

E(τ) =
(p0 + ∆p(τ))2

2me

=
1

2me

(
p2

0 + 2p0∆p(τ) + (∆p(τ))2
)
≈ p2

0

2me

+
p0∆p(τ)

me

(2.5)

If the optical field is sufficiently weak, so that the momentum variation is negligible com-
pared to the initial momentum of the electron, ∆p� p0, the term (∆p(τ))2 in Eq. 2.5 can



32 2. Experimental tools

Synthesized
laser pulse

Time-of-flight
electron or ion spectrometer
(mounted from the top)

Target

EUV �at �eld grating

Adjustable
irisHHG target Turbomolecular pumps

HH-Meter

Differential
pumping stages

Metallic �lter

CCD
spectrometer

MCP+phosphor screen

CCD

Focus diagnostics:

power meter

EUVCCD

Gold/Platin coated
EUV mirrors on 
translation stage

HHG chamber
Translation mirror

Two-component
NIR/EUV

mirror-delay stage
(movable)

Experimental chamber

Time-of-�ight
electron or ion spectrometer

Time-of-flight
electron or ion spectrometer

Delay
Synthesized
laser pulse

Neon gas jet

Delay

ee
e

Dual mirror
 assembly

Piezo mounted 
inner mirror

EUV Pulse
Optical pulse

EUV �lter

Streaking target:
Neon gas jet

a.

b.

Figure 2.5: AS Beamline. a, A schematic of the experimental configuration of EUV
attosecond streaking measurement. Optical driving pulses (red pulse) from the light field
synthesizer are tightly focused onto a neon gas jet to generate EUV pulses. A metallic filter
(for example, Zr) filters out the optical frequency from the inner beam to spectrally and
spatially separate EUV and optical pulses. Concentrically propagating EUV and optical
pulses are reflected off the inner and outer mirrors of the dual mirror assembly, respectively.
Both the inner and outer mirrors having a short focal length (12.5 cm) focus the EUV and
optical pulses onto the streaking gas target. The inner mirror has a high reflectivity in the
EUV range centered at ∼85 eV. A Piezo-electric transitional stage carrying the inner mirror
enables a time-delay of EUV pulse with respect to the optical pulse (inset). Spectrum of
photoelectrons released by the EUV pulses and perturbed by the optical pulses is recorded
by a time-of-flight electron spectrometer (TOF). b, Overview of AS beamline with all the
essential equipment used in experiments discussed in this thesis. Figure adapted from ref.
[120]

be neglected, and the energy modulation by the optical gate field can be approximated as
a linear function of the vector potential, ∆E(τ) = E(τ)− p2

0/(2me) ≈ −eA(tb + τ)p0/me.

The vector potential of the optical gate pulse can be directly extracted by tracing the
centroid of the spectrogram. The phase information of the photoelectron pulse emitted by
the EUV pulse is also embodied in the spectrogram in accordance to the principles shown
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Figure 2.6: EUV attosecond streaking principle. A simulated EUV attosecond streak-
ing spectrogram for a positively chirped EUV pulse. EUV pulse (purple) and vector po-
tential of optical gate field (blue) for different delay instances (black vertical dashed lines
in top panel) are shown in bottom panels. The arrows (red and purple) indicate the mo-
mentum variation introduced by the vector potential to the released photoelectrons. The
photoelectron spectrum is shown at the right side at each delay instance. The red curves
indicate the gate-free photoelectron spectrum, while the blue curves denote the photoelec-
tron spectrum streaked by the optical gate field.

in Fig. 2.6.

How the vector potential of the gate pulse probes the time structure of the released
electron pulse can be best understood based on the schematics of bottom panels in Fig.
2.6. At a delay for which the electron pulse is released within a negative half cycle of
the vector potential (τ1), the overall electron pulse wavepacket loses momentum resulting
into a reduction of terminal kinetic energy (down-streaked). When the electron pulse is
released within a positive half cycle of the vector potential (τ3), the overall energy of the
wavepacket is increased (up-streaked). The detailed shape of the spectrogram depends on
the chirp of the photoelectron pulse. This is clearly shown, when the photoelectron pulse
is synchronized with the zero transition of the vector potential (τ2 and τ4). At a positive
slope of the vector potential, the front tail of electron pulse loses kinetic energy, while
its end tail gains kinetic energy. For a positively chirped electron pulse, the low energy
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constituents of the electron pulse at its leading edge lose kinetic energy, while the high
energy constituents at its trailing edge gain kinetic energy. This effect is manifested by a
broadening of the photoelectron spectrum (τ2). On the negative slope (τ4), the situation
is the opposite, resulting in a narrowing of the spectrum. Similarly, a spectrogram with a
negatively chirped EUV pulse and a corresponding photoelectron pulse exhibits opposite
effects: spectral narrowing on the positive slope and broadening on the negative slope of
the vector potential.

Theoretical description of EUV attosecond streaking

A formal description of an attosecond streaking spectrogram as a frequency resolved
optical gate(FROG) spectrogram was introduced in ref. [121, 122]. In this picture,
the electronic wavepacket can be described as a coherent superposition of the ground
state |0〉 and the unbounded continuum states |p〉 as Eq. 1.13 discussed in chapter 1,
ψ(t) = [|0〉 +

∫
d3pχ(p, t)|p〉]eiIpt. The transition amplitude χ(p, τ) from the ground state

to a continuum state via the photons of the EUV pulse under a weak optical gate field is
described by the dipole transition without consideration of the Coulomb potential of the
parent ion, that is, in the strong field approximation (SFA). In the velocity gauge, the
complex transition amplitude is given by

χ(p, τ) = −i
∫ ∞
−∞

dtdp(t)EXUV (t) exp[−i∆S(p, t, τ)] exp

[
i

(
p2

2
+ Ip

)
t

]
(2.6)

where the phase introduced by the optical gate field is described by the Volkov phase
∆S(p, t, τ). A(t) is the vector potential of the gate field.

∆S(p, t, τ) =

∫ ∞
t

dt′
[
pA(t′ + τ) +

A(t′ + τ)2

2

]
≈
∫ ∞
t

dt′pA(t′ + τ) (2.7)

The square term of the vector potential A(t′ + τ)2 can be ignored, when the central mo-
mentum of the wavepacket is much higher than the momentum gained by the weak gate
field in analogy to the expression in Eq. 2.5. Under the assumption that the EUV pulse
promotes the electron wavepacket from the ground state to the continuum state by a sin-
gle photon absorption, the dipole matrix element can be approximated by dp(t) ≈ 1. This
assumption has a meaning that the electronic wavepaket probed by the streaking pulse has
the same temporal structure as the EUV pulse. The Volkov phase has a dependence on the
electron momentum p. However, under the assumption that the bandwidth of the electron
wavepacket momentum (accordingly energy) is narrow, so that the central momentum can
represent all momentum components of the wavepaket, the momentum variable can be
replaced by the constant central momentum, p→ pc,

∆S(p, t, τ) ≈ ∆SCMA(t, τ) = pc

∫ ∞
t

dt′A(t′ + τ) (2.8)

This approximation simplifies the reconstruction problem by reducing the number of coor-
dinates, widely known as “Central momentum approximation” (CMA) in the research field
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of attosecond physics. Finally, the two-dimensional spectrogram as a function of energy
(E) and delay (τ) is given by the absolute-square of the transition amplitude,

I(E, τ) =

∣∣∣∣ ∫ ∞
−∞

dtdp(t)EXUV (t) exp[−i∆SCMA(p, t, τ)] exp

[
i

(
p2

2
+ Ip

)
t

]∣∣∣∣2 (2.9)

The attosecond spectrogram described in Eq. 2.9 has the same form as that of the ordinary
frequency resolved optical gating (FROG),

I(ω, τ) =

∣∣∣∣ ∫ ∞
−∞

dtP (t)G(t+ τ)eiωt
∣∣∣∣2 (2.10)

The EUV field EEUV (t) plays a role of a pump, P (t) in the FROG form, and the exponent of
the Volkov phase corresponds to the gate, G(t−τ). The Volkov phase does not influence the
amplitude of the spectrogram but only the phase. This kind of gate is called “phase gate”
to distinguish from the case where the gate modulates the intensity of the spectrogram
known as “amplitude gate”.

Reconstruction of EUV attosecond streaking spectrogram

The temporal and corresponding spectral information of the pump P (t) and gate G(t)
field is embodied in the 2D spectrogram. However, it is difficult to analytically retrieve
two unknown functions P (t) and G(t), because the spectrogram is recorded in intensity
(the absolute square of the complex amplitude), which eliminates the phase information
of the product of P (t) and G(t + τ). Therefore, a reconstruction algorithm is required to
find the unique solution for pump and gate pulses. For more than a decade, reconstruction
algorithms particularly for the FROG-like form have been developed by taking inspiration
from those used in image processing: the generalized projection algorithms (GPA). Many
algorithms such as principal components (PCGPA) [123, 124], Least-squares (LSGPA)
[125] and Volkov-transform (VTGPA) [126] are based on this idea.

I briefly discuss the most common algorithm, PCGPA. The PCGPA starts with an
initial guess for the unknown functions. A matrix representing a solution, is generated by
the outer product of P (t) and G(t), i.e., O = P (t)G(t)T , in the grid of the time axis. A
time-shift process for the delay of the gate vector (which is represented by row vectors) can
be performed by circularly shifting the row vector of the outer-product matrix O, so that
each column vector represents P (t)G(t+τ) at each delay point. Fourier transform, column
by column, results in a complex amplitude of the spectrogram, so-called signal matrix
S(ω, τ). The projection process in PCGPA is one the main steps for the reconstruction.
By projecting the intensity of the measured spectrogram I(ω, τ) (“target”) onto the signal
matrix, the complex amplitude of the signal matrix is driven to converge towards that
of the target spectrogram, i.e., S ′(ω, τ) =

√
I(ω, τ) exp

[
i ang(S(ω, τ))

]
. The projected

signal matrix S ′(ω, τ) is inverse-Fourier transformed back to the time domain, and the
inverse circular shifting of the row vectors creates a new outer-product matrix O′. The
singular value decomposition (SVD) of O′ provides the new optimized solution set of P (t)
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and G(t) at each iteration of the process. An example reconstruction of experimental data
recorded in the AS beamline is shown in Fig. 2.7. Iteratively, the solution (Fig. 2.7
b) efficiently converges to the target spectrogram (Fig. 2.7 a). The gate electric field is
completely characterized, including its absolute strength and phase (dashed white curves
in Fig. 2.7 b). The attosecond EUV pulse is also retrieved both in amplitude (blue) and
phase (red), in both spectral and temporal domains (Fig. 2.7 c and d, respectively).
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Figure 2.7: Experimental attosecond streaking and its reconstruction. a and b,
Measured EUV attosecond spectrogram (a) and its reconstruction by PCGPA (b). The
retrieved optical gate pulse (white dashed curve) is superimposed on the reconstructed
spectrogram in panel b. c and d, The retrieved spectral (c) and temporal (d) structure of
EUV attosecond pulse. The blue and red curves denote intensity and phase, respectively.



Chapter 3

Optical-field emission from tungsten
nanotips at the single-cycle limit

The summit is what drives us, but the climb itself is what matters.
-Conrad Anker

This chapter presents spectral studies of photoemission from a tungsten nanotip under
intense singe-cycle pulses. An essential advance in comparison to previous studies is the
use of single-cycle pulses of precisely characterized fields. As we will see bellow, this
capability allows a detailed examination of the validity of semiclassical strong-field pictures
in describing the process. The conclusions of this chapter will set the stage for the complete
characterization of the optical field emission in real time in the chapters that follow.

3.1 Strong field emission from nanotips at the single-

cycle limit

3.1.1 Experiment

Conically shaped nanotips with an apex radius of ∼35 nm and a full opening angle of
∼ 15◦ (Fig. 3.1 a) were used in this study. They were mounted on a controllable, three-
dimensional positioning stage and were placed ∼3 mm below the entrance aperture of
a time-of-flight electron spectrometer (TOF). The orientation of the tip was along the
polarization direction of the driving field vector. To avoid charge accumulation, both the
nanotip as well as its carrier stage were electrically connected to the ground of the system.

The linearly polarized single-cycle pulses were produced in the light field synthesizer
apparatus presented in chapter 2 and were characterized by EUV attosecond streaking as
shown in Fig. 3.1 b. Other than the field waveform, important characteristics of the pulses
are: the central energy ∼1.8 eV and the duration τ ∼1.9 fs.

A concave nickel mirror (f=12.5 cm) was used to focus the pulses at the apex of the
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Figure 3.1: Experimental setup for single-cycle optical field emission. a, Strong,
single-cycle optical pulses were shone on a sharp tungsten nanotip. The photoelectrons
released from the nanotip (cyan cloud) were captured, and their spectra were recorded
by a TOF electron spectrometer. The tungsten nanotip and the neon gas nozzle were
mounted on a 3D Piezo-electric stage, so that they can be promptly swapped under de-
mand. The insets show a photo of the nanotip in the experimental chamber as well as a
scanning electron microscope (SEM) image provided by the tip manufacturer (Unisoku,
Japan). b, The optical single-cycle pulses used in the experiment were characterized by
EUV attosecond streaking measurement. The left panel shows the recorded attosecond
streaking spectrogram, and the right panel displays the retrieved electric field waveform.
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nanotip. The emitted photoelectrons were collected by a time-of-flight spectrometer with
an acceptance angle of ∼6 deg. A digital oscilloscope with a sampling rate of 10 Gs/s,
(Waverunner 610Zi, Teledyne LeCroy) was used to record the photoelectron spectra.

In a first set of measurements, electron spectra were recorded as a function of the peak
intensity of the incident laser driving pulse (Fig. 3.2). The intensity range of this study
was from ∼5 TW/cm2 to ∼40 TW/cm2 and was precisely controlled by a motorized iris.
Damage of the nanotips was observed at a peak intensity of ∼ 45 TW/cm2.
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Figure 3.2: Photoelectron spectra from tungsten nanotip under single-cycle op-
tical pulses. Electron spectra from the tungsten nanotip recorded at peak intensities,
13.9, 21.7, 31.4 and 41.3 TW/cm2 are shown in red, yellow, green and purple solid curves,
respectively. The blue dashed curve displays the electron spectrum recorded with neon at
an intensity of ∼40.1 TW/cm2. Figure adapted from ref. [127]

To precisely calibrate the intensity of the pulses at each iris setting the following proce-
dure was taken. Using the motorized iris the intensity of the beam was adjusted to a level
for which an ordinary EUV attosecond streaking in neon can be conveniently performed.
At this aperture setting the peak intensity and the field waveform can be accurately char-
acterized. Because the adjustment of the iris aperture not only modifies the energy in the
focus but also the focal spot size, an imaging system based on a set of lenses and a CCD
camera was used to record both the focal spot size and the laser power at the focus. With
the help of these measurements an absolute calibration of the intensity for each aperture
setting was possible. Fig. 3.2 shows photoelectron spectra emerging from the tungsten
nanotip for gradually increasing peak intensity of the incident single-cycle pulse. For the
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highest peak intensity, the cutoff energy reaches approximately 180 eV. Note that the cut-
off energy is defined as the energy beyond which the electron yield exponentially drops (see
dashed lines in Fig. 3.2).

Even though the electric field of the driving pulse is already characterized, a direct
comparison at this point with semiclassical theory is not possible, because the local field
enhanced at the apex of the tip is not trivially accessible. We can however perform the same
experiment with an atomic system under the same driving field to acquire an estimation of
the field enhancement in the vicinity of the nanotip. To this end, the tungsten nanotip was
replaced by a neon gas jet, and photoelectron spectra were recorded under the identical
experimental conditions. A comparison of the tungsten spectra (purple curve in Fig. 3.2)
to the neon spectra (blue dashed curve in Fig. 3.2) at a similar peak intensity reveals an
increase of the cutoff energy by a factor of ∼ 12. To understand the origin of this dramatic
difference it is important at this stage to introduce the concept of field enhancement.

3.1.2 Near-field enhancement

When a nanostructured metal is shone by an electromagnetic field, the discontinuity of
the dielectric constant at the interface between vacuum and the material gives rise to a
rearrangement of charges. Such rearrangement leads to a spatial concentration of charge on
the surface of the metal and thus results in a local field enhancement of the incident pulse.
In the case of a nanotip, the charge concentration and consequently the field enhancement
factor intrinsically depend on the geometrical characteristics of the structure, such as the
apex radius and the opening angle [128, 129, 130]. A sharper nanotip generally exhibits
higher local field enhancement due to a higher local charge confinement. This effect is
also known as “lightning rod effect” in the broad field of nano-optics [130, 131, 132].
Moreover, plasmonic effects under a resonance condition also results in a strong local field
enhancement [133, 134, 132]. Therefore, one can expect strong optical-field enhancement
in materials like gold and silver which have a negative permittivity in the visible and near-
infrared [130, 135]. For the case study here, tungsten does not exhibit plasmonic effects in
the optical frequency range. As a result, the geometry of the nanostructure has a leading
role in describing field enhancement.

In order to quantify the enhancement factor in the vicinity of our tungsten nanotip we
performed a numerical simulation based on the three dimensional Maxwell equations using
a commercially available software (COMSOL). This Maxwell solver is based on the finite-
difference time-domain (FDTD) method [136], which solves the finite differential equation
by leapfrog integration in time and space. The boundary conditions, which are essential
in solving the Maxwell equation, were dictated by the geometry of the given nanotip. As
we were primarily interested in the field enhancement very close to the apex of the tip,
geometry was modeled as a hemisphere of radius ∼35nm on a cone with an opening angle
of ∼15◦, in accordance with the properties of the tip used in experiments. The simulation
was carried out with a single-cycle laser pulse carried at an energy of ∼1.8 eV. The spatial
distribution of the local field enhancement factor based on this simulation is shown in Fig.
3.3. The field-enhancement factor, which is the ratio between the enhanced and impinging
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near-field strengths, was estimated to ∼4 on the apex of the tip. It smoothly decreases with
distance from the metal surface and reduces by a factor of two at a distance of ∼20 nm.
This result also agrees well with values reported in the previous works [130, 137, 23, 132]
for similar tips.

Figure 3.3: Simulated field-enhancement in the vicinity of the tungsten nanotip.
Utilizing a Maxwell solver based on FDTD, the field enhancement factor of a tungsten
nanotip was computed within a range of ±100 nm from the tip apex. The geometry of the
nanotip in the simulation was chosen to mimic this in the experiment (apex radius of 35
nm, opening angle of 15◦). Figure adapted from ref. [127]

In one dimension, the spatial distribution of the enhanced near-field can be expressed
analytically. It can be expressed as a power-law with a dipolar distance dependence.
Assuming a Gaussian distribution of the laser intensity in the focus, the near-field en-
hancement factor as a function of the distance (z) from the tip apex is given by [138].

f(z) =

[
(f0 − 1)

(
r0

z + r0

)3

+ exp

[
− 2 log 2z2

(2wfoc)2

]]
(3.1)

where f0 is the field enhancement factor on the surface, i.e.. when z = 0, and r0, wfoc are
the radius of the tip apex and the beam waist of the laser, respectively. The enhanced near-
field in space and time can now be expressed as a multiplication of the incident field and
the enhancement factor as: Enear(z, t) = f(z)EL(0, t). Fig. 3.4 b plots the enhancement
factor as a function of distance z. This analytical description is useful in accounting for
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the space dependent near-field in numerical simulations of semiclassical trajectories in the
vicinity of the nanotip surface as presented in the next section.

3.1.3 Quiver and sub-cycle motion

In the previous section, we have shown that the photoelectrons emerging from metallic
nanostructures experience inhomogeneous near-field enhancement in space, and as a con-
sequence, its dynamics is expected to be generally different from this in free space. To
explore the relevance of this effects in our experiments, we consider the electron motion
in the presence of a monochromatic electric field with an amplitude of E0 and an angular
frequency of ωL. The electron quivers in space with an amplitude of lq = eE/meω

2
L. Con-

sidering that the field enhancement monotonically declines versus distance from the apex
of the nanotip one can define a characteristic distance lf as the (1/e)-decay length from
the apex. The comparison between the quiver length of the electron and the decay length
can be used to quantify the effect of the spatial distribution of the near-field enhancement
on the dynamics [138, 139, 140]. An adiabaticity parameter is then defined as:

δ =
lf
lq

(3.2)

If the quiver length is shorter than the decay length (δ > 1), the excursion of electron
takes place within a slowly varying near-field. In this case, it can be safely assumed that
the electron experiences a nearly homogeneous near-field, and its kinetic energy is simply
scaled by the enhancement factor. This regime is known as “quiver regime”. However,
in the opposite case (δ < 1, known as sub-cycle regime) which occurs for driving fields
of long wavelength, the electron experiences a drastic variation of the local field along
its excursion. In this case, the total momentum accumulated from the field is less than
that under a homogenous field, and the back-scattering process is quenched. This fact
results in a suppression of the electron kinetic energy under the inhomogeneous near-field
as experimentally observed by Herink et. al. [138]. Extending the above discussion to
the case study of our experiments the decay length of the near-field is ∼29.9 nm. This
is much longer than the quiver length of the ponderomotive motion, ∼1.3 nm, giving
rise to an adiabaticity parameter of δ ∼23. Therefore, we can expect that under our
experimental condition the emitted electron experiences a quasi-homogeneous field with
negligible quenching effects in the back-scattering process.

To better understand the kinematics of electrons in the space-dependent field enhance-
ment as well as to introduce the calculation methodology used later on in this thesis, a
semiclassical simulation of electron trajectories was conducted by utilizing the three step
model under the experimental conditions. In the simulation a single-cycle optical pulse
with a peak intensity of 25 TW/cm2 and a central energy of 1.8 eV was used. The electron
trajectories were traced by solving the classical equation of motion (Fig. 3.4 a) in the pres-
ence of a spatially varying enhanced near-field, me(d

2zi/dt
2) = −ef(zi)E(t), where me, e

and zi are mass, charge and position of the ith electron, respectively. The simulation was
performed in the single electron limit, i.e. interaction among the electrons was ignored.
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Figure 3.4: Electron dynamics in spatially inhomogeneous near-field. a and b,
Photoelectron trajectories (top in panel a) and their speed (bottom in panel a) calculated
semiclassically under a single-cycle electric field (red curve) and a spatial distribution of
the field enhancement as described by Eq. 3.1 (b). The field enhancement factor was
calculated using parameters relevant to the experiments, f0 = 4, r0 = 35 nm and wfoc=15
µm. The red solid line shows the quiver length, while the lines in green and blue denote the
half and the 1/e-decay length of the field enhancement factor, respectively. The red dotted
vertical line displays an unitary number that represents the incident field. c, The terminal
energies of photoelectron as a function of the ionization time. The red and blue colors
indicate the back-scattered and direct electron energy, respectively. The shadowed plots
display the electron energy calculated in the absence of field-enhancement. The color of the
circles superimposed on the plot is associated with the corresponding electron trajectories
shown in the panel a.

The propagation of the trajectories was performed by the Verlet propagation method which
allows us to account for the position dependent field-enhancement. The spatial distribu-
tion of the field enhancement was modeled according to Eq. 3.1 with the nanotip and laser
parameters (r0 = 35 nm, wfoc =15µm and f0 = 4) as displayed in Fig. 3.4 b.

Fig. 3.4 a shows the simulated electron excursions and velocities as a function of time
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in the top and bottom panels, respectively. We can observe that the electron excursion
remains within the half-maximum length of the field enhancement factor (marked as green
line in Fig. 3.4 b) for the entire duration of the driving pulse. Furthermore, the electron
momentum (velocity) reaches more than the half of the terminal value within the quiver
length as marked by the red dashed and solid line in Fig. 3.4 a and b, respectively. This
fact highlights that the field-electron interaction and the consequent electron momentum
accumulation mostly occur within a range where the near-field is quasi-constant. Therefore,
the enhancement factor can be effectively considered homogeneous during the interaction.

Because the energy scales linearly with the local field intensity, the terminal electron
energy is accordingly enhanced (Fig. 3.4 c). In our simulation, we obtained an enhancement
factor of ∼3.852 which is close to that on the surface (f0 = 4)2. Energy enhancement of
exact f 2

0 can be obtained only with a fully homogeneous field-enhancement factor. For a
better approximation concerning the spatial effects, one can define a space-averaged field
enhancement factor covering the range from the origin to the quiver length.

f̄ =
1

lq

∫ lq

0

dzf(z) (3.3)

In our simulation, the space-averaged value of f̄ = 3.82 was obtained, which is in excellent
agreement with the value from the semiclassical calculation, ∼3.85. This fact further
supports the notion that the electron dynamics under our experimental conditions can be
effectively considered to occur under a homogeneous near-field with enhancement of f̄ .

3.2 Energetic features of photoelectron emitted from

a tungsten nanotip

3.2.1 Extendibility of the recollision physics from atom to nanos-
tructured metals

To best visualize the relation between intensity and cutoff energies in our experiments,
a 2D plot is considered (Fig. 3.5). Fig. 3.5 a and b show electron spectra from neon
gas and tungsten nanotip versus peak pulse intensity, respectively. In both cases, a linear
relationship between the electron cutoff energy and the intensity is apparent, and it is
highlighted by the experimentally evaluated points on the plot and their linear fitting
(dash lines). The dramatic difference, however, in the slopes is also apparent, and this can
provide information about the field enhancement in the vicinity of the metal nanotip.

The cutoff energy slope in Ne was evaluated by a linear fit (black dashed line in Fig.

3.5 a) of the measured data (black points), s
(exp)
Ne = dE

(exp)
Ne /dI = 0.446± 0.016 eV/(TW ·

cm−2). This slope is compatible with a relation of E
(exp)
Ne ∝ (9.88 ± 0.343)Up. where

Up is the ponderomotive energy of the electron in the driving field. This result is in
excellent agreement with well-established semiclassical theory (see also Chapter 1). A
precise calculation based on the experimental field-waveform yields a relation between the
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Figure 3.5: Experimental photoelectron spectra. Recorded photoelectron spectra
emerging from Ne gas (a) and tungsten nanotip (b). The points on the plot denote the
evaluated cutoff energy, while the dashed lines show its linear fit. Figure adapted from ref.
[127]

cutoff energy and the ponderomotive energy: E
(theo)
Ne ∝ 10.8Up. Note that 10Up is strictly

correct under a CW driving light field, and it is slightly modified at the limit of single-cycle
pulses.

The dramatic difference in the photoemission properties between neon and tungsten
nanotip targets can best be understood quantitively by comparing the corresponding cutoff
energy slopes. The slope of the highest energy cutoff in tungsten is (red dashed line in

Fig. 3.5 b) s
(exp)
W,high) = 5.35± 0.23 eV/(TW · cm−2), and it is by factor of ∼12 “steeper” in

comparison to that of neon. At energies below 50 eV, the tungsten spectra show a second
cutoff energy bearing a slope of s

(exp)
W,low = 1.09± 0.06 eV/(TW · cm−2) (blue dashed line in

Fig. 3.5 b). The relative ratio between the high and low energy cutoffs in the tungsten

tip is s
(exp)
W,high/s

(exp)
W,low = 4.91± 0.35 and agrees well with the theoretically expected value of

10Up/2Up ∼ 5 in the semiclassical single-electron model. This observation supports the
notion that the potential space charge effects do not play a significant role in the kinematics
of electrons in our experiments.

Under this consideration, we can now process to evaluate the field-enhancement factor
in the vicinity of the nanotip from the ratio of the slopes of the high energy cutoffs in neon
gas and tungsten nanotip as, f̄ =

√
sW/sNe. We obtained a factor of f̄ ∼ 3.46 ± 0.10

which is in reasonable agreement with the calculated value of 3.82 in the previous section
with less than 10% of discrepancy.

The evaluated field enhancement factor and the incident electric pulse waveform pre-
cisely measured by EUV attosecond streaking allow us to conduct a complete semiclassical
simulation (Fig. 3.6) to investigate the temporal and spectral properties of the emission.
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Figure 3.6: Semiclassical simulation of the optical field emission in tungsten
nanotips. a, Terminal electron energy was simulated by the recollision model and plotted
on the axis of ionization time. The waveform of the driving pulse was precisely characterized
by EUV attosecond streaking (red curve). In the simulation, the field enhancement factor of
3.46 evaluated from the slope comparison in Fig. 3.5 was used. The purple and green colors
denote the back-scattered and direct electrons, respectively, and the logarithmic color scale
stands for the ionization probability. b, Simulated photoelectron spectra as function of the
intensity of the driving pulse. Red and blue dashed lines display theoretically evaluated
cutoff energies. Figure adapted from ref. [127].

The theoretically evaluated features in the electron spectrum match well with those in
the experimental observation. These include the linear slopes of the cutoff in the high
(5.91 eV/(TW · cm−2), red dashed line) and the low (1.18 eV/(TW · cm−2), blue dashed
line) energy electron spectra and the absence of electrons at the intermediate energies
between the two cutoffs. This good agreement between the experimental and theoreti-
cal results suggests that the single-electron recollision physics, well established in atomic
physics, can be successfully extended to the dynamics of field-emitted electrons from solids.

3.2.2 Optical field emission and electron yield

The relation between photoelectron yield and the driving pulse peak intensity is a useful
observable that can allow the understanding of the ionization regime. In the previous
section, we have made the tacit assumption that tunneling ionization is dominant in our
experiments. We have also based our semiclassical simulations on this assumption. Yet,
extracting this information from experiments is essential for utilizing theoretical models
in order to interpret the experimental data and to derive useful physical properties of the
system. To figure out the dominant emission process under our experimental conditions,
a measurement of the photoelectron yield (total number of electrons) under the variation
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of driving pulse intensity was conducted.
Since the TOF spectrometer can record photoelectrons only within a limited solid

emission angle (∼6◦) and is more sensitive to energies higher than ∼ 20 eV, a method to
capture all emitted electrons was considered. To this end a thin metallic electrode plate
was introduced ∼2 mm above the tungsten nanotip (Fig. 3.7). Like all other instruments
in this setup the metallic plate can be inserted and removed in the setup on demand. This
allows spectral and total electron count measurements under the identical conditions.

Figure 3.7: Experimental module for the measurement of the total photoelectron
yield. Experimental configuration for a measurement of photoelectron yields. A thin
metallic electrode was placed ∼2 mm above the tungsten nanotip. The photoelectrons
generated from the metallic nanotip were collected by the electrode, and the induced
voltage was measured by a lock-in amplifier.

The metallic electrode, whose size is approximately 5 × 5 mm, was sufficiently large
to capture photoelectrons emerging from the tip in solid angles higher than 100◦. The
electrode was connected to a high gain lock-in amplifier that allowed the precise determi-
nation of the induced current. According to its operational principles the lock-in amplifier
selectively amplifies the frequency components of the voltage at the reference frequency,
which in our case was the repetition rate (3 kHz) of the laser source. In this way a great
deal of noise can be eliminated. The photocurrent was evaluated by Ohm’s law, i.e., by
dividing the measured voltage by the system impedance (10 MΩ). In a next step, the
number of electrons per pulse was evaluated by dividing the photocurrent with the laser
repetition rate.
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In the experiment, the photoelectron yield was recorded as a function of the laser
intensity. A linear fit of the measured data points reveals a slope of ∼ 1.18 ± 0.09 (Fig.
3.8). Because the minimum number of photons (energy of ∼1.8 eV) required to release
electrons under a multiphoton process is, dW/h̄ωLe = 3 where W denotes the workfunction
of tungsten, we can safely conclude that under the experimental conditions the processes
is in the tunneling or optical-field emission regime [141, 142].
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Figure 3.8: Optical field emission and the total electron yield per pulse. The
evaluated photoelectron counts released per laser shot is mapped as a function of the
incident intensity of driving laser pulse in log-log scale. Figure adapted from ref. [127]

At this stage it is also useful to evaluate the Keldysh parameter of the system and to
investigate if the above conclusion is in good accordance. Here the Keldysh parameter is:

γ =

√
W

2Up
(3.4)

where W denotes the work-function of the metal. With the work-function of tungsten
(W=4.55 eV for polycrystalline tungsten [143]) and the laser parameters used in the ex-
periment such as the enhanced local intensity of f 2I = 3.462 × 25 TW/cm2 and central
energy of h̄ωL=1.8 eV, the Keldysh parameter is evaluated to γ ∼0.41, indicating once
again that the ionization process is in the tunneling regime.

In the measurement, the maximum electrons per pulse observed was ∼1000 at an inten-
sity of ∼ 40 TW/cm2. This number is lower compared to previous reports even at lower
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intensities [142, 144]. This fact can be attributed to a lower number of cycles of laser field
(∼1.2 cycle) as well as a reduced area of the tip (∼35 nm) used in our measurement.

3.2.3 Field sensitivity of the optical field emission

The sensitivity of the emission to the driving field waveform is often considered as another
important criterion for identifying the onset of the strong field regime, for instance in
atoms [20]. Such field-sensitivity and–controllability supports the notion that the electron
emission is localized to half-cycles of the driving field. Several studies on this feature in
photoelectron spectra with a variation of carrier-envelope phase (CEP) have earlier sug-
gested the possibility of attosecond control of the photoelectron emission [23, 24]. However,
these studies were conducted at much lower driving intensities and consequently electron
energy remained lower compared to our study. It is therefore important to also investigate
this aspect here, before we advance to the next chapter and introduce methods that allow
us to directly probe the dynamics of the electron pulse emerging from the system.
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Figure 3.9: Single-cycle CEP control of the optical field emission. a, Photoelectron
spectra emerging from the tungsten nanotip as a function of the CEP of the driving pulse
at a peak intensity of ∼ 35 TW/cm2. b, The variations of the photoelectron yield at high
(∼160 eV) and low (∼32 eV) cutoff energies (white dashed lines in panel a) are shown in
top and bottom panels, respectively.

To this end, we recorded photoelectron spectra versus the CEP of the driving pulse at
a peak intensity of I ∼ 35 TW/cm2. A conspicuous modulation of the cutoff energy with
a 2π periodicity was observed (Fig. 3.9 a). Near the higher cutoff energy (∼160 eV, upper
white line) of the spectra, the spectral yield modulation is higher than 50% (Fig. 3.9 b
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top panel). At energies lower than 50 eV (∼32 eV, lower white line) the contrast in the
yield variation is dramatically reduced to ∼10% (Fig. 3.9 b bottom panel). The fact that
the higher cutoff energy has a dramatically higher contrast can be understood (in close
analogy to high harmonic emission in atoms [20, 21, 22]) as a result of the confinement of
electron pulse emerging at these energies to within the main half-cycle of the driving field
(see Fig. 3.6 a). By contrast, the lower energy emission comprises a mixture of several
electron pulses emerging from different half-cycles of the driving pulse, and this results in
a reduction of the sensitivity to the half-cycle variation of the field.



Chapter 4

Homochromic Attosecond Streaking
(HAS): The principles

An artist makes a work of art because it is not there.
-Carl Andre

In the previous chapter, the general features of the strong field electron emission in
metallic nanotips were explored: cutoff laws, nonlinearity of the photoelectron yield and
sensitivity to the carrier-envelope phase of the driving pulse. Despite the large number
of emitted electrons, the analysis of the energetic characteristics of the electron emission
suggests a close relation to strong field ionization in atoms without notable deviations. As
such, it is logical to anticipate that attosecond electron bursts must be also generated in the
optical field emission in metals. However in analogy to previous works, a spectral domain or
time-integrated study only offers circumstantial evidence for the generation of these pulses.
To understand the physics of the optical field emission from metal nanostructures under
a strong ultrafast optical field and to explore its potential applications in spectroscopy
and microscopy, a characterization technique for the emitted electron pulse in real time is
essential.

The attosecond streaking technique summarized in the previous chapters is one of the
most essential temporal characterization techniques in ultrafast optics. A key characteristic
of EUV attosecond streaking is that the optical pulse acting on the photoelectrons released
by an EUV attosecond pulse does not influence ionization. This optical pulse is often
referred to as a “phase gate”. If a strong pulse is used to release electrons, the introduction
of a phase gate is not that trivial, but efforts over the last decade have shown that in
atoms this approach is possible [29, 119, 22]. Whereas in atoms the electron emission can
be directly probed in time by inspecting the properties of the emerging high harmonics,
in metals this is not possible as high harmonic generation has not been so far observed.
In this chapter, I will introduce an extension of the streaking technique by utilizing the
optical phase gate onto strong field emitted photoelectron from a metallic nanotip. The
technique allows probing the dynamics of the electron emission directly in the electron
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spectral domain.

4.1 Homochromic attosecond streaking (HAS): Con-

cept

To characterize the time structure of an electron pulse emerging from an optically driven
solid, the concept of the optical phase gate, as used in the EUV attosecond streaking
technique, needs to be extended. This is because the EUV pulse is now replaced by a
strong optical pulse (pump pulse) which serves not only as a ”photoelectron generator”
but also as a ”free-space driver” to the released photoelectrons, while the weak replica of
the pump field (gate pulse) introduces a gentle perturbation to the final energy distribution.
Spectral measurements as a function of the time delay between the pump and gate pulses
composes a temporally and spectrally resolved spectrogram. Since the two pulses are
spectrally identical, this new technique will be referred to as “Homochromic attosecond
streaking (HAS)” hereafter to distinguish from the conventional EUV attosecond streaking
technique. Thanks to the reduced nonlinearity of the photoelectron emission versus pump
field, the weak gate field, intensity of which is ∼ 2 order less than that of the pump pulse,
is expected to act only on the kinetic energy of the photoelectrons with marginal variation
of photoelectron counts. In other words, it serves only as a phase gate to the photoelectron
pulse generated by the pump field rather than an amplitude gate.
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Figure 4.1: Illustration of the concept of Homochromic attosecond streaking
(HAS). A strong pump pulse (red solid pulse) generates and drives electrons to compose
a photoelectron spectrum. A weak replica of the gate field (red dashed pulse) leads a small
perturbation on the photoelectron energy. The gate-free energy trajectories are shown
as thin solid lines, while up- and down streaked trajectories are shown in dot-dashed
and dashed curves, respectively. The energy spectrum of the streaked photoelectron is
calculated at each delay point between pump and gate field and are used to compose a 2D
spectrogram.
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The conceptual illustration of HAS is shown in Fig. 4.1. In the absence of a gate
(gate-free case), the strong optical pump pulse (red solid pulse) generates and accelerates
the photoelectrons. A portion of generated electrons are driven back to the surface of the
nanotip and back-scatters (blue solid curve). These back-scattered electrons gain more
energy (> 100 eV) than the direct electrons which do not undergo scattering (green solid
curve) as discussed earlier. In the presence of an additional weak gate field, the gate
(red dashed pulse) energetically perturbs the electron trajectories in comparison to those
of the gate-free case. The distribution of the terminal electron energy is up- or down-
streaked depending on the time delay of the gate with respect to the pump. The up
and down-streaked trajectories are shown in dot-dashed and dashed curves, respectively.
This spectrally and temporally resolved measurement encrypts temporal information of
the strong field electron emission in a 2D HAS spectrogram (right in Fig. 4.1).

4.2 Theoretical description of the Homochromic At-

tosecond Streaking (HAS)

4.2.1 Phase gate of HAS

Just as in the previous techniques that are based on pump and probe fields of the same
color [145, 146], HAS relies on the utilization of an optical gate which is sufficiently weak
to perturb the momentum (energy) of a released electron pulse but without contributing
to the strong field emission from an atom, a molecule or a solid. In this sense, HAS bears
similarities to EUV attosecond streaking. However, a great difference between the two is
that in HAS the final kinetic energy of the photoelectrons (terminal energy) develops along
with the strong pump driving field before and after the back-scattering event, whereas that
of photoelectron in EUV attosecond streaking is instantly transferred from EUV pulse
at the release of photoelectrons. Hence, in HAS the phase accumulation after a back-
scattering event is the result of both pump and gate. The goal of this section is to derive
an analytical description of the concept of HAS as an extension of that in the strong field
emission described in Chapter 1 (section 1.2.2). As verified in the previous chapter, the
strong field emission under our experimental conditions exhibits a reduced nonlinearity.
For instance, based on the measurements shown in Fig. 3.8, a 5% of variation of the laser
intensity results in a marginal change of ∼ 6% in the photoelectron yield. This suggests
that a sufficiently weak gate pulse in comparison to the pump will marginally affect the
ionization and thus could be approximated as a pure phase gate which acts solely on the
momentum of the strong field-emitted electrons. In HAS, since the highest energetic back-
scattered electron has an essential role for the gate field characterization (see Fig. 4.1), and
moreover in future applications of the electron pulses for instance in low energy electron
diffraction, the temporal characteristics of the high energetic electron is more central than
those of low energy electrons. Therefore, the theoretical framework that we put together
here primarily focuses on the properties of back-scattered electron rather than the direct
electrons.



54 4. Homochromic Attosecond Streaking (HAS): The principles

As a first step, we revisit the analytical description of the complex terminal amplitude
of the back-scattered electron once again (see Eq. 1.17 and 1.18). The term, ”terminal”
electron wavepacket or amplitude in this context will refer to the back-scattered electron
at the end of the driving pulse (t =∞), when the development of its kinetic energy under
the field terminates. The term ”back-scattered electron” will be used hereafter to refer
to the electron at the recollision instance to distinguish from the other. In the gate-free
case, i.e., when only the pump pulse is acting on the system, the complex amplitude of the
terminal electron χ

(0)
tr (p) in the electron momentum space (p) is written as an integration

of the back-scattered electron wavepacket amplitude ψ
(0)
bs (tr) with the phase accumulation

from the recollision moment to the detection S(0)(p, t = ∞, tr;Ap(t)) over all recollison
time (tr):

χ
(0)
tr (p) ∝ i

∫ ∞
−∞

dtrψ
(0)
bs (tr) exp[−iS(0)(p, t =∞, tr;Ap(t))] (4.1)

Note that the superscript (0) is used to denote the gate-free quantities to distinguish from
the quantities altered by the gate pulse field. The accumulation of phase introduced by
the pump field within the time window from t1 to t2 is expressed by the Volkov phase as:

S(0)(p, t2, t1;Ap(t)) =

∫ t2

t1

dt
1

2
[p+ Ap(t)]

2 =

∫ t2

t1

dt
p2

2
+

∫ t2

t1

dt

[
pAp(t) +

A2
p(t)

2

]
(4.2)

where Ap(t) is the vector potential of the pump pulse. Henceforth, atomic units (h̄ = e = 1)
are used for simplicity. Since the first term on the right hand side of Eq. 4.2 represents
a plane wave basis, one can define a “terminal electron wavepacket” ψ

(0)
tr (tr) on the basis

of continuum states (plane waves) by merging the back-scattered electron wavepacket and
the phase term introduced by the field (second term on the right hand side of Eq. 4.2).

χ
(0)
tr (p) ≡

∫ ∞
−∞

dtrψ
(0)
tr (tr) exp

[
i
p2

2
tr

]
(4.3)

The terminal electron wavepacket here ψ
(0)
tr (tr) represents the terminal state of the back-

scattered electron, the phase of which is modulated by the driving pump pulse, i.e., the
final energy distribution. The resulting spectrum of the electron at the detector is then
given by the absolute square of the complex amplitude of the terminal electron wavepacket
as:

I(0)(ω = p2/2) =
∣∣χ(0)

tr (ω = p2/2)
∣∣2 (4.4)

Now we move on to the case where a weak gate time-delayed by (τ) is added to the pump,
and we scrutinize how the terminal wave is affected. To do so we simply replace the terms
of the electric field and the vector potential with the superposition of pump and gate, i.e.,
Ep(t)→ Ep(t) +Eg(t+ τ) and Ap(t)→ Ap(t) +Ag(t+ τ). Now the Volkov phase (Eq. 4.2)
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can be rewritten as,

S(p, t2, t1;Ap(t) + Ag(t+ τ)) =

∫ t2

t1

dt
1

2
[p+ Ap(t) + Ag(t+ τ)]2

≈
∫ t2

t1

dt
1

2
[p+ Ap(t)]

2︸ ︷︷ ︸
=S(0)(p,t2,t1;Ap(t))

+

∫ t2

t1

dt[p+ Ap(t)]Ag(t+ τ)︸ ︷︷ ︸
≡∆S(p+Ap(t),t2,t1;Ag(t+τ))

(4.5)

Since the gate is very weak in intensity compared to the pump field, |Ap(t)|2 � |Ag(t)|2, the
contribution of the squared term of the gate vector potential is negligible in comparison to
the others and can be safely ignored in Eq. 4.5. The Volkov phase can now be decomposed
into two terms, the gate-free Volkov phase (S(0)) and the additional phase introduced by
the weak gate (∆S).

First, we will have a close look on the phase variation of the back-scattered electron
wavepacket ψbs(tr) under the addition of the weak gate. The gate-free back-scattered
electron wavepacket described by Eq. 1.17 is now rewritten with the gate field terms as
following:

ψbs(tr) =

∫ tr

−∞
dt′
∫
d3p′[Ep(tr) + Eg(tr + τ)]g(p′ + Ap(tr) + Ag(tr + τ))

× [Ep(t
′) + Eg(t

′ + τ)]d(p′ + Ap(t
′) + Ag(t

′ + τ)) exp[−iS(p′, tr, t
′;Ap(t) + Ag(t+ τ))]

(4.6)

The assumption of the phase gate leads to an approximation under which the dipole element
is not affected by the weak gate, i.e., it remains constant along the delay, [Ep(t) + Eg(t+
τ)]d(p + Ap(t) + Ag(t + τ)) ≈ Ep(t)d(p + Ap(t)). This approximation also applies to the
scattering transition matrix g, so that it is also assumed to be invariant under the condition,
[Ep(t) +Eg(t+ τ)]g(p+Ap(t) +Ag(t+ τ)) ≈ Ep(t)g(p+Ap(t)). Under these circumstances
the effect of the weak gate on the back-scattered electron is dictated by the variation of
the Volkov phase in Eq. 4.7.

S(p′, tr, t
′;Ap(t) +Ag(t+ τ)) ≈ S(0)(p′, tr, t

′;Ap(t)) + ∆S(p′+Ap(t), tr, t
′;Ag(t+ τ)) (4.7)

By inserting Eq. 4.7 into Eq. 4.6, one can derive the perturbed back-scattered electron
wavepacket in the form of a gate-free back-scattered electron wavepacket with an additional
phase as:

ψbs(tr) ≈
∫ tr

−∞
dt′
∫
d3p′Ep(tr)g(p′ + Ap(tr))Ep(t

′)d(p′ + Ap(t
′)) exp[−S(0)(p′, tr, t

′;Ap(t))]

× exp[−i∆S(p′ + Ap(t), tr, t
′;Ag(t+ τ))]

(4.8)

As alluded to earlier, the weak gate field contributes an additional phase ∆S to the gate-
free back-scattered electron wavepacket. Since the strong pump in terms of Ap(t) of the
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gate-free Volkov phase S(0) dominantly contributes to the momentum, the momentum
p′ + Ap(t) in the additional phase ∆S can be replaced by the momentum of the gate-free
back-scattered electron ps in the integral over the momentum p′ of Eq. 4.8.

Furthermore, in the time integration over t′ of Eq. 4.8, we assume that the additional
phase can be effectively replaced with its time average over the excursion time |∆t|,

∆S(ps, tr;Ag(t+ τ)) =
1

|∆t|

∫ tr

tr+∆t

dt′∆S(ps, tr, t
′;Ag(t+ τ)) (4.9)

Note that ∆t denotes the time difference from the back-scattering (tr) to the ionization
(ti) events, ∆t = ti − tr < 0. Using the property of the definite integral,

∫ tr
t′
· · · =

−
∫∞
tr
· · ·+

∫∞
t′
· · · , one can decompose ∆S into two terms according to the t′ dependence

as,

∆S(ps, tr, t
′, Ag(t+ τ)) =

∫ tr

t′
dtpsAg(t+ τ) = −

∫ ∞
tr

dtpsAg(t+ τ) +

∫ ∞
t′

dtpsAg(t+ τ)

(4.10)
and the averaged phase described by Eq. 4.9 can be expressed in the following form:

∆S = −
∫ ∞
tr

dtpsAg(t+ τ) +

∫ ∞
tr

dtps

[
1

|∆t|

∫ 0

∆t

dt′′Ag(t+ t′′ + τ)

]
= −

∫ ∞
tr

dtps
[
Ag(t+ τ)− Ā(b)

g (t+ τ)
] (4.11)

where Ā
(b)
g (t+ τ) is defined as,

Ā(b)
g (t+ τ) =

1

|∆t|

∫ 0

∆t

dt′′Ag(t+ t′′ + τ) (4.12)

Eq. 4.11 implies that the time-averaged phase (∆S) is equivalent to the additional phase

effectively introduced by the vector potential of Ag(t + τ) − Ā
(b)
g (t + τ), i.e., ∆S =

−∆S(ps, t = ∞, tr;Ag(t + τ) − Ā(b)
g (t + τ)). The time-averaged perturbing phase term is

acting on the momentum constituents of the gate-free back-scattered electron wavepacket
independently from the ionization time t′. Therefore, we can plug the gate-free back-
scattered electron wavepacket and the perturbing phase independently into the spectral
amplitude of the terminal electron under the consideration of the phase inversion due
to the back-scattering (∆S → −∆S) and the canonical momentum (ps → p + Ap(t)).
In other words, the back-scattered electron wavepacket in Eq. 4.1 can be replaced by
ψ

(0)
bs (tr)→ ψ

(0)
bs (tr) exp[−i∆S(p+ Ap(t), t =∞, tr;Ag(t+ τ)− Ā(b)

g (t+ τ))] to yield:

χtr(p, τ) ≈ i

∫ ∞
−∞

dtrψ
(0)
bs (tr) exp[−iS(p, t =∞, tr, Ap(t) + Ag(t+ τ)]

× exp[−i∆S(p+ Ap(t), t =∞, tr;Ag(t+ τ)− Ā(b)
g (t+ τ))]

(4.13)
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Time integration of the phase terms S and ∆S are performed over the same time window
from tr to t =∞. Therefore, they can be effectively merged into a single phase term, and
the transition amplitude can be rewritten as:

χtr(p, τ) ∝ i

∫ ∞
−∞

dtrψ
(0)
bs (tr) exp[−iS ′(p, t =∞, tr, τ)] (4.14)

where the effective Volkov phase by the gate field is expressed as

S ′(p, t =∞, tr, τ) =

∫ ∞
tr

dt
1

2
[p+ Ap(t) + Aeff (t+ τ)]2 (4.15)

and the effective HAS vector potential Aeff (t+ τ) is now given by

Aeff (t+ τ) = 2Ag(t+ τ)− Ā(b)
g (t+ τ) (4.16)

The HAS spectrogram is the absolute square of the streaked complex amplitude,

I(p, τ) =
∣∣χtr(p, τ)

∣∣2 ∝ ∣∣∣∣ ∫ ∞
−∞

dtrψ
(0)
bs (tr) exp[−iS ′(p, t =∞, tr, τ)]

∣∣∣∣2 (4.17)

The HAS spectrogram described in Eq. 4.17 now has a form similar to that of a frequency
resolved optical gating (FROG) [147]. Importantly, we note that under a variation of the
time delay the modulation of the electron momentum follows the effective HAS vector
potential which is closely linked to that of the incident gate pulse. The delay dependent
effective Volkov phase is acting therefore as a phase gate on the back-scattered electron
wavepacket at its release time, and hence the temporal characteristics of the wavepacket is
imprinted in the delay-energy spectrogram like in a conventional EUV streaking spectro-
gram.

Fig. 4.2 a illustrates the effects of the phase gate in HAS. In the gate-free case, the
momentum distribution of the back-scattered electron pulse |χ(0)

bs (p)|2 (orange) is trans-

ferred to the terminal distribution |χ(0)
tr (p)|2 (blue) by the vector potential of the pump

field −eAp(tr) (red curve in Fig. 4.2 a) at its moment of release. The gate-field (yellow
dashed curve) introduces an additional momentum shift of −eAeff (tr + τ) and gives rise
to a spectral modulation of the photoelectron spectrum. As the delay τ varies it gives rise
to a streaked spectrum as a function of its delay, |χtr(p, τ)|2 (purple). In order to see how
the temporal features of the back-scattered electron are manifested in a HAS spectrogram,
simulations based on Eq. 4.17 were performed for three different kinds of chirp of the back-
scattered electron pulse: chirp-free, positive group delay dispersion (GDD), and third order
dispersion (TOD). As shown in Fig. 4.2 b, the different types of chirp manifest themselves
as conspicuous shifts of intensity modulation in the spectrogram along the energy and time
delay axes. This fact suggests that an analysis and reconstruction of a HAS spectrogram
can offer attosecond measurement of the back-scattered electron pulse, if the pump/gate
fields and their relative timing are precisely known.
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Figure 4.2: Phase gate on a back-scatted electron wavepacket. a, An electron
pulse at the back-scattering instance |ψ(0)

bs (tr)|2 ,and its momentum distribution |χ(0)
bs (p)|2

are shown as their intensity envelope. In the absence of the gate, the momentum of the
photoelectron further evolves by the vector potential of the pump field Ap(t) (red curve)

after the back-scattering instance and forms a terminal momentum distribution |χ(0)
tr (p)|2

(blue). An applied gate field with a time delay (τ) with respect to the pump pulse effectively
modulates the momentum distribution by a shift of −eAeff (t+τ) and results in a streaked
spectrum |χtr(p, τ)|2 (purple). b, HAS spectrograms simulated under different types of
chirp of the back-scattered electron pulse, chirp-free (left), positive GDD (middle) and
TOD (right). The white dashed curves are guides for eye and highlight the intensity
modulation in the spectrograms. From ref. [127]
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HAS spectrogram in terminal energy

Similarly as in Eq. 4.7, the effective Volkov phase in Eq. 4.15 can be decomposed into
gate-free and gate-associated terms as:

S ′(p, t =∞, tr, τ) ≈ S(0)(p, t =∞, tr;Ap(t))+∆S(p+Ap(t), t =∞, tr;Aeff (t+τ)) (4.18)

The back-scattered electron wavepacket ψ
(0)
bs (tr) and the gate-free Volkov phase S(0) in the

integration of Eq. 4.14 can be merged to create a terminal electron wave ψ
(0)
tr (tr) under the

assumption that the back-scattered electron pulse is reasonably confined in time so that
the variation within the time window is small in the second term in Eq. 4.18.

χtr(p, τ) ≈ i

∫ ∞
−∞

dtrψ
(0)
bs (tr) exp[−iS(0)(p, t =∞, tr;Ap(t))] exp[−i∆S(p+ Ap(t), t =∞, tr;Aeff (t+ τ))]

≈ i

∫ ∞
−∞

dtrψ
(0)
tr (tr) exp[−iS(p, t =∞, tr;Aeff (t+ τ))]

(4.19)

Correspondingly, the HAS spectrogram (Eq. 4.17) can be now expressed in terms of the
terminal electron pulse as:

I(p, τ) = |χtr(p, τ)|2 ∝
∣∣∣∣ ∫ ∞
−∞

dtrψ
(0)
tr (tr) exp[−iS(p, t =∞, tr;Aeff (t+ τ))]

∣∣∣∣2 (4.20)

Compared to Eq. 4.17, the above equation provides a practical advantage in the recon-
struction of a HAS spectrogram (see next chapter), because the spectrum of the terminal
electron is directly accessible by a photoelectron spectral measurement, and therefore the
reconstruction problem can be reduced to a search for the corresponding spectral phase.

4.2.2 Relation between effective HAS and incident gate vector
potentials

As shown in Eq. 4.16, the effective HAS Aeff (t) and incident gate Ag(t) vector potentials
are closely linked by a time average. Now we interrogate the explicit relation between
them. The time averaged term (the second term in Eq. 4.16) can be best analyzed in the
Fourier space. Using the Fourier transform of the incident vector potential:

Ag(t) =

∫ ∞
−∞

dωÃg(ω)eiωt (4.21)

the effective HAS vector potential can be rewritten with the Fourier components of the
incident gate vector potential as:

Aeff (t+ τ) = 2

∫ ∞
−∞

dωÃg(ω)eiω(t+τ) − 1

|∆t|

∫ 0

∆t

dt′
∫ ∞
−∞

dωÃg(ω)eiω(t+t′+τ)

=

∫ ∞
−∞

dω Ãg(ω)

[
2− i

ω|∆t|
(eiω∆t − 1)

]
︸ ︷︷ ︸

=Ãeff (ω)

eiω(t+τ) (4.22)
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The Fourier components of the effective gate vector potential Ãeff (ω) can be linked to
those of the incident gate vector potential Ãg(ω):

Ãeff (ω) = Ãg(ω)

[
2− i

ω|∆t|
(eiω∆t − 1)

]
≡ Ãg(ω)m̃(ω) (4.23)

where the multiplier m̃(ω) (hereafter referred to as “gate multiplier”) connects Ãeff (ω) to
Ãg(ω), and it is defined as:

m̃(ω) =

[
2− i

ω|∆t|
(eiω∆t − 1)

]
(4.24)

The factor of 2 in the gate multiplier (first term in Eq. 4.24) corresponds to 2Ag(t+ τ) in

Eq. 4.16, while the exponent (second term) expresses Ā
(b)
g (t + τ) in the spectral domain.

If the time window for the average is appropriately chosen, the multiplier is a function of
the frequency regardless of the detailed waveform of the driving pulse. In order to verify
the concept of the effective HAS gate, a numerical calculation was conducted by using
the semiclassical three-step model. Since the numerical simulation is performed without
any a-priori assumptions about the HAS gate introduced in the analytical derivation, the
comparison of the gate in the derivation with one revealed in the simulation verifies the
validity of our assumptions.

Fig. 4.3 displays a semiclassical HAS simulation performed with single-cycle laser pulses
centered at 1.8 eV. The effective HAS vector potential (black curve) was directly evaluated
from the incident field using Eq. 4.23. For the time window, ∆t in the average, 0.85 of
the driving field period was chosen, since it is the excursion time of classical trajectory for
electron having more than half of the maximum back-scattering energy, where the electron
pulse is mostly confined to. As clearly shown in Fig. 4.3, the cutoff energy variation of
the simulated HAS spectrogram agrees with the calculated effective HAS vector potential
(black curve). This excellent agreement strongly supports the validity of the assumptions
used in the theoretical framework.

The effective HAS vector potential Aeff (t+τ) is very close to the double of the incident
vector potential 2Ag(t+ τ) (red dashed curve). However, a small discrepancy in waveform
can be observed behind the zero-delay as marked in green circles in Fig. 4.3 a. This
observation can be interpreted as that the gate vector potential at the ionization time
Ā

(b)
g (t + τ) contributes to the effective HAS vector potential, when the main half-cycle

of the vector potential is placed around the ionization time. This is also apparent by
the evaluation of the gate multiplier (Fig. 4.3 b). Its amplitude and phase are frequency
dependent functions of small oscillation centered at 2 and 0, respectively, which reflect that
2Ag(t + τ) dominantly contributes to Aeff (t + τ), while Ā

(b)
g (t + τ) results in a relatively

small discrepancy. The gate multiplier is independent from the phase of the incident vector
potential. This implies that the gate multiplier can be generally used regardless the phase
of the incident field, such as the carrier-envelope phase. This aspect was numerically
verified by simulations at different CEPs of the incident gate field (Fig. 4.3 a).
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Figure 4.3: The effective vector potential for the phase gate of HAS. a, A semiclas-
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Chapter 5

Measurement of attosecond electron
pulses in the optical field emission

Ein Nachmittag im Labor kann leicht eine Woche in der Bibliothek ersparen.
-Hartmut Schröder

The Homochromic attosecond streaking (HAS) methodology introduced in the previous
chapter holds promise for applications aiming at the measurement of strong field generated
electron pulses from nanostructured metals. In this chapter, I will present the experimental
implementation of the HAS technique and will discuss the retrieved temporal characteristics
of these pulses.

5.1 Experiments using the Homochromic Attosecond

Streaking technique (HAS)

5.1.1 Experimental implementation of HAS

The experimental implementation of HAS bears obvious analogies to ordinary EUV at-
tosecond streaking with the difference that the photoemission by an attosecond EUV is
replaced by that by an intense field (Fig. 5.1). Single-cycle electric pulses delivered from
the light field synthesizer at a central energy of 1.8 eV (red-colored laser beam in Fig.
5.1) were reflected off a nickel coated, dual concave mirror assembly. The incident laser
pulse is spatially divided into a strong inner and a weak outer beam (inset in Fig. 5.1).
The inner and outer beams play the role of the pump and gate fields, respectively as intro-
duced in the previous chapter. In other words, the pulse carried by the strong inner optical
beam generates and drives electron bursts, while the pulse of the weak outer beam gently
perturbs their phase. The inner mirror is attached onto a piezo-electric transitional stage
to manipulate the time delay with respect to the outer beam with attosecond precision.
Both optical beams were focused onto the sharp tungsten nanotip. The nanotip is oriented
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along the laser polarization direction and points towards the entrance of the time-of-flight
spectrometer. Just as in the experiments described in Chapter 3, the electric grounding of
the nanotip rapidly eliminated charges between consecutive pulses and thereby identical
electro-static conditions were ensured for each laser shot. Poorly grounded nanotips give
rise to charge accumulation on the tip which results in energy shifts of the recorded photo-
electron spectra. The time-of-flight electron spectrometer (TOF) was used once again, to
record photoelectron spectra as a function of the time delay between the pump and gate
pulses.

An essential first step in the path of utilizing the principles introduced in the previous
chapter is an experimental benchmarking of their validity. This is especially important in
the case that approximations are taken to simplify the mathematical formulation of these
principles. A potential way to do so is to contrast findings in HAS with the ones acquired
by an already established technique.

Delay

Piezo mounted 
inner mirror

Adjustable iris

Outer beam

Inner beam

Tungsten nanotip

Inner/outer mirror
assembly

Synthesized
single cycle pulse

Delay

e

e
e

e

Zr �lter

Ne streaking gas jet

Dual inner mirror
assemblyTime-of-�ight 

electron spectrometer

Ni

EUV

Figure 5.1: Experimental setup for Homochromic Attosecond Streaking (HAS).
The strong pump and weak gate optical fields were spatially divided by a nickel-coated
inner/outer concave (f=12.5 cm) mirror assembly (inset). For the implementation of HAS,
the intense inner beam serves as a pump which generates and drives the electron from
metallic nanotip, while the outer plays a role of a gate which alters the electron energy
distribution. A time delay between the pump and gate pulses was introduced by a piezo
controlled inner mirror. The dual inner mirror assembly provides the possibility to swap
between a Ni-coated and EUV multilayer inner mirrors. By controlling the motorized iris,
the strength of the gate pulse can be adjusted. The Zr-foil and the Ne gas jet are inserted
for the EUV attosecond streaking measurements.



5.1 Experiments using the Homochromic Attosecond Streaking technique
(HAS) 65

5.1.2 The phase gate of HAS and benchmarking with EUV at-
tosecond streaking

The theoretical study in the previous chapter has suggested that the energy variation of
the photoelectron imprinted in a HAS spectrogram is directly associated with the effective
HAS vector potential which is explicitly related to the incident weak gate vector potential
in the spectral domain as:

Ãeff (ω) = Ãg(ω)

[
2− i

ω|∆t|
(eiω∆t − 1)

]
︸ ︷︷ ︸

≡m̃(ω)

(5.1)

This relation suggests that the characterization of the effective HAS vector potential also
allows the measurement of the real vector potential of the incident gate near-field. As a
first step, a HAS measurement was performed with a pump pulse of a peak intensity of
∼ 25 TW/cm2. The cutoff energy of the electron spectrum reached approximately 140 eV.
A weak gate whose intensity was ∼ 6.3×10−3 lower than that of the pump pulse was used.
The HAS spectrogram was recorded as a function of the time delay between pump and
gate (Fig. 5.2 a).

The effective HAS vector potential A
(raw)
eff (t) can be directly extracted by the cutoff

energy variation (red dashed curves in Fig. 5.2 a and b). The gate multiplier m̃(ω) is
an evaluable function under the assumption of the effective excursion time of ∼ 0.85T,
where T the centroid optical period of the driving pulse as discussed in the section 4.2.2.
The spectral amplitude of the incident gate vector potential Ãg(ω) can be obtained by
multiplication of the inverse of the gate multiplier m̃(ω)−1 (Fig. 5.2 c) to the effective
HAS vector potential in the Fourier space (Fig. 5.2 d.), Ãg(ω) = Ãeff (ω)m̃(ω)−1. In
the Fourier analysis, zero-padding was used for interpolation of the intermediate points
within the measured time delay points, keeping the spectral and its corresponding temporal
properties of the waveform intact. Moreover, since the bandwidth of the laser pulse used
in the experiment is a-priori known, the frequency components outside this bandwidth,
which are primarily the result of experimental noise, can be safely filtered out by applying
a hyper-Gaussian filter (grey dashed curve in Fig 5.2 d). The noise filtered effective HAS
Aeff (t) and the incident gate Ag(t) vector potential are shown as red and blue solid curves
in Fig. 5.2 b, respectively.

In order to set the theoretical framework of HAS on a firm ground, an experimental
verification of the above conclusions is needed. Since EUV attosecond streaking is an
established technique for directly accessing the vector potential of a laser pulse [119], a
benchmarking of HAS with the EUV attosecond streaking can straightly verify (or disprove)
its validity. For the implementation of the EUV attosecond streaking the nickel inner mirror
was replaced by an EUV multilayer inner mirror of the same focal length.
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Figure 5.2: HAS spectrogram and phase gate. a, HAS measurement performed under
the incidence of a strong optical pump and a weak gate pulse. The peak intensity of the
pump pulse was ∼ 25 TW/cm2, and a gate/pump intensity ratio of ∼ 6.3×10−3 was used.
The evaluated cutoff energy variation is plotted as a red dashed curve. b, The red dashed,
and solid curves display the effective HAS vector potential that was directly sampled from
the spectrogram A

(raw)
eff (t) and the Fourier-analyzed one Aeff (t), respectively. The blue

curve shows the retrieved vector potential of the incident gate near-field Ag(t). c, The
inverse of the gate multiplier (m̃(ω)−1) was evaluated with an excursion time of 0.85 driving
field period. d, The spectral amplitude of the incident gate vector potential was evaluated
by multiplication of the inverse of the gate multiplier, i.e., Ãg(ω) = Ãeff (ω)m̃(ω)−1. Blue
and red curves show the spectral intensity of the effective HAS, |Ãeff (ω)|2 and incident
gate, |Ãg(ω)|2 vector potentials, respectively. To suppress the noise, a hyper-Gaussian
Fourier filter in the spectral area of laser bandwidth (grey dashed curve) was used.
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The process of the mirror replacement is completely automatized in this setup. In
practice, two inner mirrors, a Ni-coated and an EUV multilayer, are attached onto a
3D Piezo-electric transitional stage, and on experimental demand they can be instantly
swapped on site without any further modification of the experimental setup (Fig. 5.1). In
both measurements, the focal spot of the gate pulse was recorded by an 1-to-4 imaging
system. This allows one to accurately obtain the relative ratio of the gate pulse-intensities
used in HAS and EUV attosecond streaking measurements. The EUV attosecond streaking
was consecutively performed after the completion of the HAS measurement (left Fig. 5.3
a) under the identical experimental conditions (middle Fig. 5.3 a). The vector potential
waveforms evaluated by the two techniques are compared in Fig. 5.3 a (right).
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Figure 5.3: Comparison between HAS and EUV attosecond streaking. a, HAS
spectrogram recorded using a single-cycle, optical pump pulse of a peak intensity of ∼
25 TW/cm2 and a weak gate pulse whose intensity is ∼ 6.3× 10−3 times that of the pump
(left). The EUV attosecond streaking measurement of the field waveform was consecutively
conducted under the identical conditions (middle). The right panel displays the comparison
of waveforms evaluated from the cutoff energy variation in the HAS spectrogram (red curve)
and EUV attosecond streaking (blue curve). b, A second experiment for a different driving
pulse waveform at an incident peak intensity of ∼ 31 TW/cm2, and gate/pump ratio of
∼ 3.6× 10−3. Adapted from ref. [127]
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A potential metric to evaluate how close two waveforms are, is the degree of similarity
which can be defined as the normalized cross-correlation among the two waveforms as:

S =
1√
N

(f ? g)(τ) =
1√
N

∫ ∞
−∞

dtf(t)g(t+ τ) (5.2)

where N is the normalization factor, N = [(f ? f)(0) × (g ? g)(0)]. A perfect similarity
(identical waveforms) corresponds to a normalized cross correlation of 1. By comparing
the waveforms retrieved from HAS and EUV attosecond streaking, a value of S ∼ 0.95 was
obtained. A second set of measurements based on a different waveform is shown in Fig. 5.3
b. In this set the pump pulse intensity was ∼ 31 TW/cm2, and the gate/pump intensity
ratio was ∼ 3.6× 10−3. Once again, a good degree of similarity for the waveforms of S ∼
0.93 was obtained. The study in this section, therefore, offers first concrete experimental
evidence that the cutoff energy variation in a HAS spectrogram is directly associated to
vector potential of the gate pulse as discussed in the theoretical foundations of HAS in the
previous chapter. This fact suggests the feasibility of a direct and complete characterization
of the near-field of the light pulse. Furthermore, the precise measurement of the field
enhancement factor is also possible by evaluating the ratio between the retrieved and the
incident amplitudes of the gate pulse. A detailed discussion on this aspect of HAS is given
in section 5.2.

5.1.3 Effect of the gate field strength on a HAS spectrogram:
identifying safe limits

HAS assumes that the gate pulse is weak such as to be considered a pure phase gate on
the released electron pulse waveform. The previous section showed that this notion is
supported by the experiments under the stated conditions. However, one can raise the
question: how can we identify a safe limit for which this assumption is correct in various
systems? One way to do so is theoretically. Yet this is only possible, if the ionization
mechanisms are well understood, which is not really the case for metals under intense laser
fields. Alternatively, a potential collapse of the pure phase gate assumption under a high
gate intensity can be experimentally investigated by the direct comparison of the gate
waveforms extracted from HAS and EUV attosecond streaking for various field strengths
of the gate. This is the aim of the study described in this section.

Fig. 5.4 displays HAS spectrograms measured at four different gate/pump pulse inten-
sity ratios ranging from ∼ 4.5× 10−3 to ∼ 1.4× 10−1. A first observation on these plots is
that the contrast of the amplitude variation along the time delay axis increases with the
gate intensity. This observation suggests that an intense gate pulse significantly affects the
ionization processes.
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Figure 5.4: Exploring the working range of HAS. HAS spectrograms recorded for
different ratios of gate/pulse intensity, 4.5× 10−3 (a), 8.3× 10−3 (b), 2.4× 10−2 (c), and
1.4× 10−1 (d). Bottom panels display the comparisons of gate pulse waveforms retrieved
from HAS (blue solid curves) and EUV attosecond streaking measurement (red dashed
curves). Adapted from ref. [127]

To take a more detailed look at the effects of a strong gate on the electron dynamics
and the deviation from the perfect phase gate, we compared the vector potential evaluated
from the HAS spectrogram of Fig. 5.4 with that of the waveform characterized by the
EUV attosecond streaking measurements. At a low gate/pump intensity ratio, < 10−2,
the vector potential evaluated in HAS (blue curves in bottom panels of Fig. 5.4 a and
b) is in good agreement with that evaluated from EUV attosecond streaking (red dashed
curve). In contrast, for higher gate/pump ratios the disagreement between the two is
gradually increasing (bottom panels of Fig. 5.4 c and d). This observation indicates that
an increasing ratio of gate/pump drives a HAS spectrogram towards ordinary, spectrally
resolved, autocorrelation of the two pulses. This set of experiments therefore offers a
guidance for identifying the appropriate gate/pulse ratio in experiments. The results of
Fig. 5.4 suggest us that HAS measurements should be performed at a gate/pump ratio
lower than 10−2.
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5.1.4 Relative timing of pump and gate pulses in HAS measure-
ments

Not only in HAS, but also in conventional EUV-based attosecond streaking as well as in
other ultrafast measurement techniques that are based on pump-probe schemes, a spectro-
gram is recorded on a time delay axis between the two pulses. This delay axis is arbitrarily
defined in the experiment. Of course, the absolute zero-delay between two waveforms can
be defined only if they are identical. Pump and gate pulses used in HAS are indeed iden-
tical in terms of the details of the waveforms, because they are spatially divided from the
same pulse beam.

Identifying the absolute delay between the pump and the gate pulses is important in
HAS. This is because the determination of an absolute time axis allows one to clock the
emission of photoelectrons under the waveform of the pump field. In other words, it can
allow us to say at which moment of time under the pump field waveform the electron pulse
is formed. This is also useful because the vector potential at the time of release determines
the momentum accumulation of the released electron following the back-scattering instance.
Therefore, it plays a vital role for accessing the temporal properties of the electron pulse
at the back-scattering. One way to identify the absolute delay between pump and gate
pulses is by utilizing a nonlinear autocorrelation scheme with pump and gate pulses of
commensurate peak intensities. However, at the zero-delay of an autocorrelation scheme,
the peak intensity resulting from the coherent superposition of two pulses can easily exceed
the damage threshold of the metallic specimen, and the damage can prevent subsequent
HAS measurements under identical experimental conditions.

Nonetheless, also in a HAS spectrogram itself it is possible to identify the zero-delay
of pump and gate pulses. This is because, despite the large contrast in pump and gate
pulse intensities, a weak variation of the total photoelectron yield versus time delay will
inevitably be present, and this is sufficient to identify the absolute timing between two
pulses with reasonable accuracy.

In a HAS spectrogram the variation of the total electron yield can be evaluated by
the spectral integration over the photoelectrons energy (Fig. 5.5). The delay offset which
represents the zero-delay on the experimental delay axis can now be identified as the delay
point at which the electron yield undergoes the maximum variation (red dashed line in
Fig. 5.5).

One may think that the accuracy of timing here is dictated by the step size of the delay
used in the experiment ∼ 200 as. Yet, the data of Fig. 5.5 does not represent a single
point measurement but an ensemble of different delay points. To take all measurements
into account one needs to switch to the Fourier domain, since the Fourier components
of the electron yield variation emerges from all sampled points in the time delay. In the
Fourier analysis, the zero-padding method at a size factor of 100 was used to determine
the delay offset value with an accuracy better than ∼ 2 as (inset in Fig. 5.5).
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Figure 5.5: Absolute timing between pump and gate pulses. A measured HAS
spectrogram (top) and the total electron yield variation versus time delay between pump
and gate (bottom). The red-dashed curve indicates the directly sampled electron yield
variation, while the blue curve denotes the Fourier-analyzed one. The red dashed vertical
line marks the delay at which the maximum count variation occurs and which indicates the
absolute zero-delay point on the experimental delay axis, while the blue dashed vertical
line denotes the zero of the experimental delay axis. The inset in the bottom panel displays
the delay offset evaluation as increasing the zero-padding size factor in the Fourier analysis.
The red horizontal dashed line marks the converged value of the delay offset.

5.2 Measurements of optical near-fields

5.2.1 Measurement of near-field using a HAS spectrogram

Based on the experimental verification presented in the previous section, the trace of
the cutoff energy variation in a HAS spectrogram provides a way to measure the vector
potential of the near-field of the gate pulse (blue curve in Fig. 5.6 a). The complete
characterization of the gate near-field can be obtained by the time derivative of the vector
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potential, Eg(t) = −dAg(t)/dt. Equivalently in the Fourier space, the spectral amplitude
of the near-field can be evaluated as Ẽg(ω) = −iωÃg(ω) as shown in Fig. 5.6 b.
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Figure 5.6: Near-field measurement based on the vector potential of the gate
pulse. a, The near-field of the gate pulse (red curve) was evaluated as the time derivative
of the gate vector potential (blue curve) extracted from the HAS spectrogram, Eg(t) =
−dAg(t)/dt. b, Spectral intensity of the near-field and vector potential are shown in red
and blue curves, respectively.

Field enhancement factor

The direct comparison of the retrieved near-field by HAS to the incident field characterized
by the EUV attosecond streaking provides a precise way to measure the field enhancement
factor in the vicinity of the tungsten nano-tip used in our experiment.

Note that a higher gate strength was used for the EUV attosecond streaking measure-
ment compared to HAS in order to sample the waveform in the gas target accurately. The
incident gate field strength for HAS was evaluated by scaling of intensity ratio measured
in the focal images of the optical gates used in both measurements. The peak field ra-
tio obtained is 3.74 ± 0.25 as shown in Fig. 5.7. In our study, we have obtained a field
enhancement factor in the range from 3.46 to 3.76. The deviation of the measured field en-
hancement factor and the discrepancy with the theoretically calculated value of ∼ 3.82 can
be attributed to the geometry of the nano-tip, which is difficult to be precisely controlled
in manufacturing.
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Figure 5.7: Measurement of the field enhancement factor. The enhanced near-field
of the gate pulse (red curve) was retrieved from the HAS spectrogram (fig. 5.2 a). The
blue curve shows the incident gate field characterized by the EUV attosecond streaking.
The ratio of peak field strengths between the two waveforms allows the evaluation of the
field enhancement factor of 3.74± 0.25.

Near-field strength of the pump pulse and the cutoff law

The electron cutoff energy is linearly related to the incident intensity of the pump pulse.
However, the so-called 10Up law is difficult to be verified without precise knowledge of
the pump near-field enhanced by the nanostructure. Yet, the near-field of the gate is a
measurable quantity by the method discussed in the previous sections, and one can also
obtain the intensity ratio between the pump and gate by comparing their peak intensities
by analyzing their focal images. In this way, one can finally gain access into the absolute
strength of pump near-field in a HAS measurement.

Once HAS is verified as an accurate method, the ratio of the pump and gate fields
can also be evaluated directly by the data of the HAS spectrogram without the need
of additional experimental data. Since the pump (Ep) and gate (Eg) fields have identical
waveforms but differ only in their strength (with a relative ratio, Eg/Ep = 1/r), at the zero-
time delay in the HAS spectrogram the spectrum can be considered as a result of a single
pump field whose intensity is multiplied by (1+1/r)2. Based on the zero-delay identification
method discussed earlier, the spectrum of the zero-delay can be easily identified in a HAS
spectrogram. In turn, it can be compared with the gate-free spectrum. Owing to the
linear relationship between the cutoff energy and the intensity, the cutoff energy difference
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lines indicate the cutoff energy evaluated in both cases. b, The spectrum at zero-delay
(red curve) is superimposed with the gate-free spectrum mapped in an energy axis scaled
by (1 + 1/r)2 (blue curve).

between gate-free and at-zero-delay spectra directly offers the relative ratio of gate and
pump field (Fig. 5.8 a). Similarly, it can also be verified by the excellent agreement of
the zero-delay spectrum with the gate-free spectrum mapped on an energy axis scaled
by a factor of (1 + 1/r)2 (Fig. 5.8 b). These findings suggest that HAS can serve as a
stand-alone metrology to characterize both pump and gate fields. Accurate knowledge
of the enhanced near-field of the pump pulse allows the evaluation of the multiplication
factor for the electron cutoff energy. The multiplication factor Ecutoff/U

(enh)
p was evaluated

to be 10.13 ± 0.22 and agrees well with the classical estimation in the single-electron
approximation. It also reflects that multi-electron effects which could influence the energy
scaling are negligible in this study.

5.2.2 Carrier-envelope phase (CEP) effects on HAS spectrograms

Up to this point we have seen that HAS is a field-sensitive technique which allows the
complete characterization of the gate field waveform. In other words, we anticipate that a
variation of field waveform, for instance, through a carrier-envelope phase (CEP) change
should be clearly imprinted in a HAS spectrogram. In order to experimentally explore if
this is indeed the case, HAS measurements were performed for three different CEP settings
of the driving field as shown in Fig. 5.9.

At each CEP setting, the cutoff energy variation versus the delay (white curves in
top panels), which is associated with the vector potential of the gate field as well as the
corresponding retrieved near-field (red curves in bottom panels) exhibits a significant phase
variation of their waveform under the envelope (red dashed curve). To better visualize the
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Figure 5.9: Homochromic attosecond streaking at various CEPs. HAS spectro-
grams recorded at three different CEP settings of the driving pulse, −0.5π (a), 0 (b) and
0.5π (c), respectively. The white solid lines superimposed on the spectrogram denote the
extracted vector potential from the cutoff energy trace (top). The near-fields retrieved by
the temporal-derivative of the vector potential are shown in red solid curves (bottom). The
yellow dashed curves display the waveforms calculated (anticipated) via a CEP variation
of the waveform of the shown in panel b.

fact that the experimentally retrieved gate waveforms are indeed compatible with the
corresponding CEP variation, the predicted waveforms were calculated by the addition of
a relative phase to the waveform extracted in panel b (∆ϕCEP = 0) and compared with the
individual case, as shown in bottom panels of Fig. 5.9. The comparison shows an excellent
matching between the experimentally measured (red solid) and calculated (yellow dashed)
waveforms, and hence, once again verifies the field sensitivity of the HAS technique and
its capacity to attain complete characterization of near-fields. Notably, one can observe
a delay-shift in the spectrogram at different CEPs. For example, the HAS spectrogram
at −0.5π (Fig. 5.9 a) is delay-shifted compared to the case of 0 (Fig. 5.9 b). This can
be attributed to the fact that the generation of the highest energetic photoelectrons is
one-cycle shifted in time due the variation of the CEP.
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5.3 Temporal characteristics of photoemission revealed

in a HAS spectrogram

The complete characterization of the near-fields of pump and gate pulses, including the
waveform and its amplitude provides the complete information required to perform a faith-
ful simulation of the dynamics. A theoretical simulation on HAS can offer a better un-
derstanding of the temporal properties of electron kinematics via the direct comparison
between experimental and theoretical spectrograms. Utilizing the semiclassical three-step
model as described in the previous chapter, a simulation of a HAS spectrogram was con-
ducted and compared with the experimental result as shown in Fig. 5.10. To mimic the
experimental conditions other than the field waveform, the parameters were used as close
as possible to the experimental: work-function of 4.55 eV for polycrystalline tungsten, apex
radius of 35 nm. The spatial field distribution was modeled as Eq. 3.1. For the ionization,
the Fowler-Nordheim equation (Eq. 1.4) was used to weight individual trajectories for
composing an electron spectrum.

One can notice that the modulation of the cutoff energy versus delay in the simulated
spectrogram excellently matches the effective HAS vector potential (black dashed curves
in Fig. 5.10 b). This fact, once again, is in support of the theoretical description of the
phase gate introduced in Eq. 4.14. It is also discernible that the simulated cutoff energy is
in good agreement with that in the recorded HAS spectrogram, reflecting that the method
of the near-field evaluation is accurate. Furthermore, one can observe that the same cutoff
modulation timing with respect to the zero-delay in both simulation and experiment. It
supports the identifying method of the zero-delay, since the theoretical simulation provides
absolute relative timing of streaking traces without any assumption.

The HAS spectrogram offers direct information on the time-structure of the photoemis-
sion. Based on the comparison between experiment and theory, we can conclude that the
highest cutoff energy trace is isolated within the energy from ∼ 60 to ∼ 140 eV, whereas
the lower energy region below 50 eV consists of two major contributions: one from direct
electron released around t =0.3 fs (green in Fig. 5.10 c) and another from back-scattered
electron released around t =2.5 fs (purple Fig. 5.10 c). Both the electron bursts overlap
spectrally, and thus the spectrogram in the low energy can be seen as a hybridized trace
with two different timings (purple and green dashed curves in Fig. 5.10 b). Therefore, the
waveform evaluated from the low energy cutoff trace does not match that from the highest
energy cutoff trace as well as that characterized by EUV attosecond streaking. There is
one more electron burst anticipated by the simulation in the intermediate energy range
around ∼ 60 eV. However, its amplitude is negligibly small, ∼ 2 orders of magnitude lower
than the other electron bursts, because the ionization yield at the leading half-cycle of the
pump pulse is low. Therefore, it does not notably contribute to the spectrum and dynamics
imprinted in the HAS spectrogram.
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Figure 5.10: Comparison between experimental and simulated HAS spectro-
grams. a and b, HAS spectrogram measured (a) and simulated semiclassically (b) under
the pump and gate pulses of the experiments. The white and black dashed curves super-
imposed on the spectrograms are effective HAS vector potential Aeff (t). c, The gate-free
terminal energy was calculated with the experimental pump field (red curves) and is plot-
ted on the back-scattering time. The color code of the curves represents the ionization
probability (in logarithmic scale) as calculated by the Fowler-Nordheim equation. The
purple and green colors indicate back-scattered and direct electrons, respectively. Adapted
from ref. [127].

5.4 Attosecond measurement of strong-field emitted

photoelectron pulses

The HAS spectrogram embodies both the temporal and spectral properties of back-scattered
electron pulse. As suggested in the analytical description in Chapter 4, these characteris-
tics can now become accessible by a reconstruction of a HAS spectrogram with precisely
retrieved gate and pump fields and the timing between the pump pulse and terminal elec-
tron pulse. In this section, the reconstruction strategy will be presented step by step and
at the end of the chapter, the retrieved characteristics of the back-scattered electron pulse
will be evaluated.

5.4.1 A quick comparison between HAS and EUV attosecond
streaking spectrogram

Like other techniques that are based on frequency resolved gating methods, a reconstruction
algorithm is essential to retrieve the spectral and temporal properties of the electron pulse
from a HAS spectrogram. Although a HAS spectrogram has the form of a frequency
resolved optical gating (FROG) trace, there are a few aspects in which hinder the direct
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application of conventional FROG reconstruction algorithms such as PCGPA [123, 124],
LSGPA [125]. To address the reconstruction of the spectrogram of the new technique
and relevant algorithms, first I stress the differences between HAS and the conventional
streaking technique.

1. Incompleteness of spectral isolation. In contrasts to an EUV attosecond streak-
ing spectrogram, an isolated spectrum of low and high energies is not present in a
HAS spectrogram. We cannot filter a part of the photoelectrons to characterize them
as we do in EUV streaking with ordinary thin metal foils. Therefore, one has to find
ways to accurately reconstruct specific energy ranges of the HAS spectrogram.

2. Coexistence of pump and gate fields after the back-scattering event of the
electron wavepacket. In the HAS measurement, both pump and gate fields are
acting on the back-scattered electron wavepacket. This is different from the ordinary
EUV attosecond streaking, where only the gate is acting on the electrons liberated
by EUV. Therefore, a separation of the roles of the two fields is needed.

Reconstruction strategy

The complete characterization of the pump and gate pulses based only on the cutoff energy
variation analysis and the absolute timing from total yield variation dramatically reduce
the number of free variables for a HAS spectrogram reconstruction. In other words, the
gate is known in advance, and this simplifies the reconstruction problem to finding only
the properties of the electron pulse. The spectral amplitude of the terminal electron can
be directly obtained by the gate-free spectrum. This implies that the reconstruction of the
terminal electron wavepacket requires only the retrieval of the spectral phase rather than
both amplitude and phase. This fact leads us to consider a reconstruction of the terminal
electron pulse as the first step towards the retrieval of the back-scattered electron pulse.
The contribution of pump pulse to the photoelectron spectrum after the back-scattering
event is already part of the terminal electron wavepacket as described in Eq. 4.19. Hence,
only the gate will be needed for the reconstruction of the spectrogram. This fact allows
overcoming the “coexistence problem” of the pump and gate pulses. In this stage, one can
set a spectral interested area in a HAS spectrogram to address the issue of the spectral
isolation. The back-scattered electron is linked by Volkov phase introduced by the pump
pulse (Volkov propagation), and the Volkov basis can be constructed with the precisely
measured pump pulse on the back-scattering time axis. Therefore, in the next step, we
can consider the inverse Volkov propagation of the terminal electron pulse to obtain the
back-scattered electron pulse.
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5.4.2 Retrieval of the terminal electron pulse in HAS

In this section, the reconstruction of the terminal electron pulse is primarily discussed. At
this stage, it is worth to highlight, how a HAS spectrogram directly reveals the presence
of chirp of the terminal electron pulse.

Manifestation of atto-chirp of terminal electron pulse in a HAS spectrogram

In the EUV attosecond streaking technique, the atto-chirp is manifested as spectral broad-
ening and narrowing of the spectrum at the time delays, especially when the electron
wavepacket is released close to an extreme (maximum or minimum) of the gate field. This
bandwidth modulation by the gate field in EUV attosecond streaking is a result of the
time-shift of the different spectral components in an isolated spectrum. Differently from
the conventional EUV attosecond streaking, the HAS spectrogram has a wide bandwidth
and does not exhibit clear spectral isolation. Therefore, the bandwidth variation of electron
spectrum is not directly applicable to observe the atto-chirp in HAS. This fact calls upon a
new “eye” to examine the atto-chirp. To better understand this with a clear visualization,
HAS spectrograms were simulated utilizing Eq. 4.20 with different kinds of dispersion,
zero-chirp, GDD of 2× 103 as2 and TOD of 5× 104 as3 of the terminal electron wavpacket
(top panels in Fig. 5.11). As shown in the simulation, the chirp of the terminal electron
wavepacket is manifested in a HAS spectrogram as a modulation of the spectral intensity
versus delay. In the case of a positive GDD (Fig. 5.11 b), the high energetic component
of the spectrogram is linearly shifted to a negative delay (white dashed line). This can be
intuitively attributed to the linear group delay among the different energy constituents of
the electron wavepacket. The direction of the shift is defined by the sign of chirp, i.e., for
a negative GDD the direction of the spectral intensity shift is opposite to that shown in
Fig. 5.11 b. In the case of TOD (Fig. 5.11 c), the shift exhibits a quadratic curve which
indicates a quadratic group delay in energy (white dashed curve). In order to increase the
visibility of such spectral intensity shift in time delay, we can evaluate the differential map
D(E, τ) of the spectrogram S(E, τ) (bottom panels in Fig. 5.11). The differential map is
evaluated by consecutively taking a partial derivative and integration along the time delay
(τ) at each energy point (E).

D(E, τ) =

∫
dτ
∂S(E, τ)

∂τ
(5.3)

In such a way, the unmodulated spectrum along with the delay axis is eliminated by
the derivative, and only the spectral variation clearly appears in the integration at each
energy component of the terminal electron wavepacket. The modulations visible in the
differential map are periodic and oscillate with the central frequency of the gate pulse.
As in the interferometric methods, the amount of the delay shift in the differential map
can be evaluated by tracing the phase of the principal frequency component in the Fourier
space along the energy axis. This phase extraction intuitively offers information about
the direction and the type of chirp of the terminal electron pulse (white curves in bottom



80 5. Measurement of attosecond electron pulses in the optical field emission

panels, Fig. 5.11). Although it does not provide a direct evaluation of the chirp of the
electron pulse, it vividly offers distinct features of the spectral phase of electron pulse which
can be helpful in the final reconstruction.
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Figure 5.11: Simulated HAS spectrogram with different chirps of the termi-
nal electron wavepacket. HAS spectrograms were simulated with a terminal electron
wavepacket of atto-chirp, zero-chirp (a), GDD of 2× 103 as2 (b) and TOD of 5× 104 as3

(c), respectively. Bottom panels display the differential maps derived from the spectro-
grams shown in the top panels. The phase of the differential map was evaluated by the
interferometric method (white dashed curves).

Retrieval of the terminal electron wavepacket

For the reconstruction of the terminal electron wavepacket, we select a part of the gate-free
spectrum (HAS-AOI) around the cutoff energy as shown in Fig. 5.12 (marked in red). The
bandwidth is chosen such that the lower edge of the back-scattered electron pulse is higher
than 20 eV. The purpose to set the lower edge at 20 eV is dictated by future applications
of the electron diffraction experiments. However, since the lower edge of the spectrogram
in HAS-AOI is in influences of up-streaked electrons at even lower energy, the gate-free
spectrum in a wider range (marked in yellow) was used to generate a signal matrix of the
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spectrogram in the reconstruction, such that the up-streaked spectral components can be
well captured in the HAS-AOI (Fig. 5.12).
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Figure 5.12: Spectral selection in a HAS reconstruction. Portion of gate-free spec-
trum as well as HAS spectrogram selected for the reconstruction is marked by the spectral
area of interest (AOI, red colored area). The portion of the spectrogram is selected by
a hyper-Gaussian filter covering the AOI. For the signal matrix of the spectrogram, the
gate-free spectrum was selected in a wider window than the AOI, such that the up-streaked
spectral components can be properly considered in the AOI (yellow colored area).

Since the gate-free spectrum provides the spectral amplitude |χ(AOI)
tr (ω)|, the terminal

electron pulse associated with the spectral components in the AOI is given in the energy
domain (ω = p2/2 and dω = pdp) as:

ψ
(AOI)
tr (t) =

∫ ∞
−∞

dω|χ(AOI)
tr (ω)|e−iϕ(ω)eiωt (5.4)

where ϕ(ω) is the spectral phase. In this reconstruction problem, the unknown variable
is the spectral phase in the bandwidth of the AOI. The phase of the terminal electron
wavepacket is important for the reconstruction, because it contains the spectral phase of
the back-scattered electron together with the Volkov phase introduced by the pump pulse
after the back-scattering moment, as discussed in Chapter 4.
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Figure 5.13: Reconstruction of the terminal electron wavepacket. a and b, Mea-
sured (a) and reconstructed (b) HAS spectrograms in the spectral area of interest from 80
to 230 eV. c and d, Differential maps evaluated from the measured (c) and reconstructed
(d) spectrograms. e, Phase shifts in the experimental and reconstructed HAS spectrograms
along the energy axis are shown in blue and red, respectively. f and g, Retrieved electron
pulse in spectral (f) and temporal (g) domains. Intensity and phase are displayed in purple
and red, respectively. Adapted from ref. [127].
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The reconstruction is based on a least-square fitting algorithm. The spectral phase
ϕ(ω) is modeled as a polynomial series composing up to the 6th order:

ϕ(ω) =
6∑
n

Dn(ω − ωc)n (5.5)

where Dn denotes the nth order dispersion, and ωc is the central angular frequency in the
spectral area of interest (cyan dashed line in Fig. 5.12). We observed that terms higher
than the 6th order do not yield any difference in the reconstruction of the spectrogram.
Since the differential map embodies (indirect) information of the group-delay with a large
contrast, the fitting target includes the original HAS spectrogram as well as the phase
extracted from the differential map. Both are normalized to their maximum value and are
equally weighted for the reconstruction.

Since at energies above 200 eV the spectral intensity is low, the phase extracted from the
differential map is not accurate. Hence, the phase information provided by the differential
map at energies above 200 eV was not used in the reconstruction (marked as dashed curve
in Fig. 5.13 e). The HAS spectrogram used for the reconstruction is the one presented
in Fig. 5.2 a, and the pump and gate pulse were evaluated from the cutoff analysis as
shown in Fig. 5.6. As an initial gauss, a zero-chirped (chirp-free) pulse was used. The
reconstruction algorithm converged iteratively to the result shown in Fig. 5.13 b.

5.4.3 Temporal characteristics of the electron pulse at the back-
scattering instance

The reconstruction of a HAS spectrogram retrieves the terminal electron pulse wavepacket
in the spectral area of interest (Fig. 5.13). The terminal electron wavepacket is linked to
the back-scattered electron pulse via the Volkov basis (Eq. 4.1). Now the Volkov basis can
be constructed by the well characterized pump field and the absolute timing of the electron
pulse with respect to it. Therefore, the back-scattered electron pulse can be obtained by
the inverse Volkov propagation of the terminal electron wavepacket,

ψ
(AOI)
bs (t) =

∫ ∞
−∞

dpχ
(AOI)
tr (p) exp[iS(0)(p,∞, t;Ap(t))] (5.6)

Fig. 5.14 a and b show the back-scattered electron wavepacket as retrieved by the back-
propagation of the Volkov phase in both spectral and time domains, respectively. The
spectrum of the back-scattered electron pulse spans from ∼ 20 to ∼ 80 eV, and the spec-
tral phase exhibits a little amount of positive 2nd and 3rd order chirp. Correspondingly, the
duration of the pulse is ∼ 53± 5 as measured at the full width half maximum. This result
is very close to the Fourier-limited duration associated with the corresponding spectrum,
∼ 52 as. This negligible degree of chirp can be understood on the basis of the recollision
model at near cutoff energies as discussed later.
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Figure 5.14: Retrieved back-scattered electron pulse in the optical field emission.
Retrieved back-scattered electron pulse in spectral (a) and temporal (b) domains. The
shaded purple curves are the intensities, and the red curves show the phase in both domains.
Adapted from ref. [127].

Fig. 5.15 a elaborates on the relative timing of the pump pulse waveform and the release
of the back-scattered electron pulse. One can observe that the release of the electron pulse
occurs ∼ 0.1 fs earlier than the zero-crossing of the driving electric field. This fact and
along with a positive 2nd order chirp implies that the back-scattering process is slightly
more weighted on the short-trajectories than the long-trajectories. A similar behavior has
been also observed in high harmonic generation in atoms, which is attributed to the spatial
and temporal broadening of the wavepacket during the propagation, resulting in reduction
of the scattering cross-section of long trajectories.

To better visualize the time-structure of the electron pulse, a time-frequency analysis
(Gabor transform) was performed. A Gaussian temporal window whose full width half
maximum is 200 as was used in the analysis (Fig. 5.15 b). The width of the window
was chosen such that at least one cycle of the lowest energy component, ∼ 20 eV, can be
captured by the Gaussian gate, i.e., h/20 eV ∼ 200 as such as to avoid numerical artifacts
in the Fourier transform. The instantaneous energy of the back-scattered electron pulse in
the time-frequency analysis (black curve in Fig. 5.15 b) shows a good agreement with that
calculated by the semiclassical model (red dashed curve). This result supports once again
the validity of the recollision picture in the study of ultrafast phenomena in photoemission.
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Figure 5.15: Time-frequency analysis of the retrieved electron pulse. a, Tim-
ing of the retrieved back-scattered electron pulse (purple) and the pump field (red). b,
Time-frequency analysis of the retrieved back-scattered electron pulse. The black curve
represents the group delay of the retrieved pulse, while the red dashed curve stands for
semiclassically calculated group delay based on the recollision model. Adapted from ref.
[127].

Error analysis

The error shown in Fig. 5.14 were derived based on the discrepancy in the intensity of the
reconstructed and experimental spectrograms. A measured spectrogram can be considered
as a statistical ensemble of individually measured spectra but at different delay points
[22, 148], and the final result of the retrieved complex spectral amplitude is the principal
value of this ensemble. The discrepancy in the spectral intensity between the experiment
and reconstruction, which is inevitable due to the absence of an intensity projection process
in the algorithm, was transferred to the spectral phase error in the retrieved electron pulse.

In order to evaluate the error, the reconstructed amplitudes (modulus of the complex
amplitude) at each time delay was substituted by that of the experimental spectrogram,
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and then an inverse Volkov propagation was performed to obtain a set of spectral complex
amplitudes of the back-scattered electron pulse for all delay points as displayed in the
curves of Fig. 5.16 a. The error bar shown in Fig. 5.14 is the standard error from the
principal value. The error in phase is high at the low spectral intensity regions, in energies
below ∼ 20 eV and above 60 eV due to the low statistics in these areas. The temporal
intensity computed from the individual complex amplitude at each delay point is shown in
Fig. 5.16 b. The standard deviation of the pulse duration of the ensemble is ∼ 5 as.
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Figure 5.16: Error analysis in the retrieval of the back-scattered electron pulse.
a, The phase of each delay point in the reconstructed spectrogram. b, The temporal
intensity of the electron pulse calculated from the individual complex amplitudes shown in
the panel a. The duration of the pulse has a standard deviation of ∼ 5 as with respect to
the principal value.



Chapter 6

Scattering perspective of high
harmonic generation in bulk solids

It’s beyond imagination until you actually get up and see it and experience it and feel it.
-William C. McCool

In strong field atomic and molecular physics, electrons are liberated via tunneling to
vacuum states (continuum states). In the framework of a quasi-free electron the dynamics
are primarily dictated by the laser field and less by the binding potential of the system. This
perspective has not only allowed an intuitive way for describing high harmonic generation in
gases but also supported the development of new methodologies for probing the electronic
orbitals of molecules via observing high harmonics scattered from them [56, 58].

One could imagine the extension of this idea to condensed matter. However, in terms
of the most popular understanding of high harmonic generation in solids, namely via inter-
band and intraband transitions, a coupling between bound and free states is not apparent.
Here I present first steps that open the way to such an understanding.

6.1 Scattering perspective of high harmonic genera-

tion in solids

6.1.1 Potential suppression: interpretation based on the Floquet-
Bloch theory

It has long been discussed that an intense electric field modifies the potential electrons
experience in atoms, molecules and crystal lattices. In atomic and molecular physics,
the phenomenon of atomic stabilization is best described in the language of a bounding
atomic potential suppressed by an intense electric field [149, 150, 151]. With the potential
suppressed, the electron motion is fully dominated by the driving field. Also in solid-state
physics, at least in theory, it has been predicted that the band gap of semiconductors
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and dielectrics can collapse under a periodic intense field [152, 153]. As a result, one can
anticipate that the field-free band structure will be severely affected, if the fields are strong
enough. Such modifications can be best described within the concept of the Floquet-
Bloch theory which provides solutions based on dressed states including both the spatial
periodicity of the potential and the temporal periodicity of the external driving electric
field [154, 155, 156, 157]. Using the Floquet method, Tzoar and Gersten in 1975 [154]
have explicitly shown that the band structure of a crystalline solid will be modified by an
intense laser field. In this section, we will follow that work in order to understand how
strong fields relevant to modern high harmonic generation experiments in solids alter the
band structure and how the modified band can provide clues for the applicability of a
scattering approximation for describing high harmonics.

The electronic motion in a periodic potential and under a periodic electric field can be
described by the time-dependent Schrödinger equation. In this section the atomic units
(e = h̄ = 1) are used for the sake of simplicity.

i
∂ψ(t)

∂t
= Ĥ(t)ψ(t) (6.1)

The laser field, EL(t) = −E0 sin(ωLt), is linearly polarized and satisfies the periodic condi-
tion, EL(t+ T ) = EL(t), where T is its period. The potential satisfies the spatial periodic
condition, V (r + d) = V (r), where d represents the lattice constant of the crystal. The
Hamiltonian of the electronic system can be written on the basis of the canonical momen-
tum p+ A(t) as,

Ĥ =
1

2
[p+ A(t)]2 + V (r) (6.2)

where A(t) denotes the vector potential of the field which is also periodic, A(t+T ) = A(t).
A canonical transformation to the reference frame of the moving electron driven by the
applied field allows one to simply the Schrödinger equation by inserting the Volkov phase,

ψ = exp
(
− i
∫
dtp · A(t)− i

∫
dtA(t)2

2

)
φ,(

p2

2
+ U(r, t)

)
φ = i

∂φ

∂t
(6.3)

where the spatio-temporally periodic and field-coupled potential, U(r, t) can be expressed
as:

U(r, t) = V

(
r +

∫
dtA(t)

)
(6.4)

The periodic potential V (r) can be expanded as a Fourier series, V (r) =
∑

G VGe
iG·r, with

discrete reciprocal vectors G = mG0, where G0 is the unit vector G0 = 2π/d and m is
an integer. The vector potential of the driving field is given by A(t) = −E0/ωL cos(ωLt).
Using these facts, the spatio-temporally periodic potential (eq 6.4) can be expressed as
harmonics of the driving field whose amplitude takes the form of the Bessel functions of
the first kind. Essential laser parameters appear in the argument of the Bessel function.

U(r, t) =
∑
n,G

VGJn

(
GE0

ω2
L

)
ei(G·r−nωLt) (6.5)
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By taking a close look at Eq. 6.5 we observe that the field-coupled potential can be
divided into two major terms, the time-independent zeroth-order where n = 0, U0(r) =∑

G VGJ0

(
GE0

ω2
L

)
eiG·r, referred to as effective crystal potential and the rest time-dependent

terms containing harmonics of the driving field, Un(r, t) =
∑

n6=0,G VGJn
(
GE0

ω2
L

)
ei(G·r−nωLt).

U(r, t) =
∑
G

VGJ0

(
GE0

ω2
L

)
eiG·r︸ ︷︷ ︸

=U0(r)

+
∑
n6=0,G

VGJn

(
GE0

ω2
L

)
ei(G·r−nωLt)

︸ ︷︷ ︸
=Un(r,t)

(6.6)

The above implies that the Hamiltonian can be also expressed as the sum of two terms
according to their time-dependence:

Hc = Hc0 +Hcn,where Hc0 =
p2

2
+ U0(r) and Hcn = Un(r, t) (6.7)

The studies of Shirley [158], Tzoar and Gersten [154] have suggested a Floquet theory based
solution of the Hamiltonian which can be expressed as a multiplication of a spatio-temporal
periodic function, u(r, t) and a plane wave, ei(kr−εt),

φ(r, t) = ei(kr−εt)u(r, t) =
∑
n,G

cn,Ge
i[(G+k)r−(ε+nω)t] (6.8)

One can easily notice that the above solution is another form of the Bloch solution with
the addition of the dimension of time. Inserting the Eq. 6.8 into the new Hamiltonian,
Eq. 6.7 leads us to an eigenvalue problem written as a secular equation as following:

(ε+ nωL)cn,G =

[
1

2
(k +G)2

]
cn,G +

∑
G′

VG−G′J0

(
(G−G′)E0

ω2
L

)
cn,G′︸ ︷︷ ︸

Hc0

+
∑
n′,G′

VG−G′Jn−n′

(
(G−G′)E0

ω2
L

)
cn′,G′︸ ︷︷ ︸

Hcn

(6.9)
A Floquet state φ is written in two independent spaces represented by n and G which
are reciprocal space of time and real-space, respectively. The Floquet state consists of
sub-space vectors [χn], where the index of n denotes the number of photons dressed with
the sub-state. In a vector form, φ can be expressed as:

φ =


...

[χ−1]
[χ0]
[χ1]

...

 and sub space [χn] =


...

cn,−1

cn,0
cn,1

...

 (6.10)

where the nth row element represents the sub-space vector [χn]. The secular equation (Eq.
6.9) can be more intuitively understood in the matrix form with the basis of [χn]. The
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Hamiltonian matrix is given by a block matrix,

Hc0 =


. . .

...
...

...
...

· · · [T−1] 0 0 · · ·
· · · 0 [T0] 0 · · ·
· · · 0 0 [T1] · · ·

...
...

...
...

. . .


︸ ︷︷ ︸

p2/2

+


. . .

...
...

...
...

· · · [U0] 0 0 · · ·
· · · 0 [U0] 0 · · ·
· · · 0 0 [U0] · · ·

...
...

...
...

. . .


︸ ︷︷ ︸

U0

and Hcn =


. . .

...
...

...
...

· · · 0 [U1] [U2] · · ·
· · · [U−1] 0 [U1] · · ·
· · · [U−2] [U−1] 0 · · ·

...
...

...
...

. . .


︸ ︷︷ ︸

Un

(6.11)
where the sub-matrices Tn and Un denote the kinetic energy operator, [Tn]ij = δij

[
1
2
(k−(i−

j)G0)2
]

and the potential energy operator, [Un]ij = Vi−jJn
( (i−j)G0E0

ω2
L

)
, respectively. These

sub-matrices are written in the space of the reciprocal vector G with indices of i and j. The
time-independent Hamiltonian (Hc0) is a diagonal matrix, and the electrostatic states of
the system can be completely described by its eigen Floquet states. Hence, the off-diagonal
Hamiltonian (Hcn) can be understood as the matrix responsible for the transitions among
the eigen Floquet states of Hc0 with absorption or emission of harmonic photons of the
driving laser. Because the eigenstates of Hc0 are dictated by the effective crystal potential
U0, the electronic motion induced by the laser can be understood in the framework of
U0. The effective crystal potential is identical in form to the so-called “cycle-averaged” or
“Kramers-Henneberger” (KH) potential [159, 150, 151]. Importantly, a compelling point of
the above equation is that the strength of the effective potential depends on the 0th order
Bessel function with the argument of laser field parameters, field strength and frequency.
In other words, the applied field modifies the strength and shape of the effective potential,
and therefore the band structure of the system is altered with laser parameters. This
means that by observing how the band structure is modified, we can gain an insight into
the relevance of quasi-free scattering concept under strong field conditions.

6.1.2 The band structure of the field-suppressed valence poten-
tial

A first step for getting the relevant insight is by investigating the band structure ε0(k)
associated with the effective potential U0. For a clear visualization of the field-dependent
effective crystal potential, we consider a potential with the dominant Fourier component
V1 at G = G0 = 2π/d, i.e., V (r) = 2V1 cos(G0r) giving the effective potential of U0(r) =
2V1J0

(
G0E0

ω2
L

)
cos(G0r). Recalling the Hamiltonian Hc0, the band structure can be found by

solving the secular equation like a standard diagonalization problem in the Bloch theorem,[
1

2
(k +G)2 − ε0(k)

]
c0,G +

∑
G′

VG−G′J0

(
(G−G′)E0

ω2
L

)
c0,G′ = 0 (6.12)

One can notice that at a specific field strength Ec for a given laser frequency the 0th order
Bessel function has a zero value J0

(
G0Ec

ω2
L

)
= 0, and the secular equation has a trivial

solution of ε0(k) as a free electron dispersion, the parabolic band structure. This finding
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suggests that the onset of quasi-free electron motion will take place nearby field strengths
and frequencies for which the above condition is met.

A calculation of the effective potential and the associated band structure with increasing
field strength is shown in Fig. 6.1 a and b, respectively. For this calculation, a lattice
constant of 4.65 Å and a central laser energy of 2 eV were used to mimic MgF2 crystal and
the experimental conditions reported in ref. [67]. At a weak field (0.1V/Å), the effective
valence potential (magenta in Fig. 6.1 a) is marginally changed from the original bare
potential (black curve in Fig. 6.1 a) and therefore the band structure is virtually identical
to the original one (magenta in Fig. 6.1 b). As the potential is further suppressed by
increasing field strength, the band dispersion is getting closer to the parabolic dispersion
of the free electron. Importantly, around the critical field (E0 ≈ 0.94V/Å) the 0th order
Bessel function becomes zero and results in the complete suppression of the crystal potential
(yellow curve in Fig. 6.1 a). The band dispersion becomes totally parabolic and the
bandgap collapses as predicted by previous studies [152, 153] (yellow curve in Fig. 6.1 b).
A further increase of the field beyond the critical point (between 1st and 2nd roots of the 0th

order Bessel function), the crystal potential as well as the bandgap and the band structure
are restored toward the original in accordance with the oscillatory behavior of the Bessel
function, as shown in the case of 1.4 V/Å in Fig. 6.1 a, b. Such effects are however difficult
to be observed in experiments as materials damage at fields slightly higher than 1 V/Å.

To illustrate the above findings better, it is useful to relate those with the effective

mass, [m∗i (k)]−1 = d2εi(k)
dk2

, where i represents the index of a band. When the electron is
simultaneously occupying several bands, the reduced effective mass defined as a harmonic
mean of the effective masses, is a more appropriate metric to quantify the effects of the
strong field on the band structure.

µ(k) = N

[∑
i

1

m∗i (k)

]−1

(6.13)

The reduced effective mass represents a ratio of the expectation value of total electron
velocity in a crystal with respect to that of free electrons. In our simulations, the re-
duced masses were evaluated by taking the two highest valence bands and the two lowest
conduction bands shown in Fig. 6.1 b for each field strength (Fig. 6.1 c.).

At a low field strength (0.1 V/Å), the effective mass remains virtually unaffected
(dashed line). However, in the vicinity of the critical field, ∼ 0.95 V/Å the value of
the reduced effective mass nears that of the free electron (µ ∼ 1) over the entire k-space.
Beyond the critical field, the effective mass gradually revives. The sharp peaks of the
reduced effective mass around the zone boundary represent the restoration of the Bragg
reflection condition. Based on the effective mass shown in the Fig. 6.1 c, the velocity ratio
of crystal electron to that of free electron was evaluated in the presence of a Gaussian
electric pulse with a pulse duration of 5.5 fs and a carrier frequency of 2 eV (Fig. 6.1 d).
For this calculation it is assumed that the initial momentum distribution is a Gaussian
centered at k = 0 with momentum bandwidth of π/5d (FWHM). This assumption is not
quantitatively accurate, however good enough to capture the essential features of this pic-
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ture. At the low field strength, the velocity ratio asymptotically converges to the relative
effective mass, while it approaches to unity around the critical field strength. Beyond the
critical field strength, the velocity ratio rapidly reduces. This can be attributed to the
restoration of the Bragg reflection at these fields.

In the above discussion the velocity ratio was used for the comparison of crystal elec-
tron motion with that of a free electron, since the velocity is more adequate to describe
the picture intuitively. However, the amplitude of the harmonic radiation is proportion-
ally related to the acceleration of the electric motion in a crystal rather than the velocity.
Therefore, the comparison of acceleration is more relevant for the harmonic generation. As
considered before, the quantum mechanical description can be linked to classical observ-
ables via the Ehrenfest theorem. The expectation value of acceleration can be expressed as
〈a〉 = eEL/m

∗, where m∗ is the effective mass, and EL is the field. Therefore, a comparison
between the acceleration of a crystal electron and that of a free electron is equivalent to
the ratio of effective mass m∗ to bare electron mass me.

acry
afree

=
me

m∗
(6.14)

Similarly to the acceleration, the velocity can be written with the momentum given by the
field, which is in turn the vector potential A,

〈v〉 =
A

m∗
=

EL
ω2
Lm
∗ (6.15)

The expectation value of the velocity additionally has a frequency dependency compared
to the acceleration. However, the dynamics of the crystal electron is dictated by the laser
field, and the nonlinear motion introduced by the crystal potential can be considered as
a small perturbation. Therefore, it can be safely assumed that the harmonic signal is
negligible compared to the fundamental, and this allows one to approximate the velocity
ratio as the ratio of the effective mass to the bare electron mass:

vcry
vfree

≈ me

m∗
=

acry
afree

(6.16)

Therefore, we can conclude here that the velocity ratio also represents a comparison be-
tween crystal electron motion and free-electron motion.
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Figure 6.1: Effective band structure and electron dynamics in a crystal exposed
to a strong optical field. a, Effective valence potential (lattice constant of 4.65 Å) in
the presence of optical fields at E0 = 0.1 (pink), 0.55 (cyan), 0.75(blue), 0.95(yellow), and
1.4 V/Å(green) with a carrier energy of h̄ωL = 2 eV. The black curve denotes the valence
potential in the absence of an optical field. b, The band-structure associated with the
suppressed valence potential at different field strengths denoted by the same color as in
panel (a). The grey dashed curves in (b) represent the free electron dispersion. The black
curve is the unmodified band structure in the absence of an optical field. c, The ratio
of effective mass to the bare electron mass calculated from the band dispersion shown in
panel (b). The grey dashed horizontal line represents the unitary value. d, The ratio of the
maximum velocity of the crystal electron based on the above calculated band dispersion
to that of the free electron. Adapted from ref. [67]
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6.1.3 Ab initio simulation: Time-dependent density functional
theory

Ab initio simulations employing the time-dependent density functional theory (TDDFT)
performed by our collaborators, S. Hu and S. Meng at Chinese Academy of Science in
China, support the above picture. The simulations were conducted assuming a linearly
polarized few-cycle laser pulse (∼5.5 fs pulse duration) carried at ∼2 eV. The system of
choice was crystalline MgF2 (bandgap of Eg = 12 eV and lattice constant of d = 4.65
Å). The laser polarization vector was aligned with the [100] direction of the crystal. The
velocity of the total electron motion inside the crystal was computed from the current
density operator, v̂(t) = V −1

cell

∑
l,G,k,σ Im[〈ψ(t)|∇|ψ(t)〉]. Further details on the TDDFT

calculation can be found in ‘method’ section in ref. [67].
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Figure 6.2: Electron dynamics calculated in TDDFT. a-c, Crystal (blue solid curve)
and free-electron (red dashed curve) velocities along [100] direction of crystalline MgF2

were calculated by TDDFT in the presence of a laser field with a strength of 0.1 (a), 0.9
(b) and 2.0 V/Å(c) and a carrier energy of h̄ωL = 2 eV. d, The ratio of maximum of crystal
velocity to free-electron velocity is plotted as a function of the field strength of the driving
laser pulse. Figure adapted from ref. [67]
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Like the results obtained under the field-suppressed band structure, at a low field
strength (E0 = 0.1 V/Å, Fig. 6.2 a), the crystal velocity (blue curve) is lower compared
to the free electron velocity (red dashed curve) which can be attributed to the presence of
the effective mass, µ/me ∼ 0.95. Near the critical field strength, E0 = 0.9 V/Å the crystal
velocity is virtually identical to the free-electron velocity (Fig. 6.2 b). At the higher field
(E0 = 2 V/Å, Fig. 6.2 c), the velocity drops again. The ratio of the maximum velocity
in the crystal and that of the free electron motion is plotted as a function of the peak
field strength of the driving field in Fig. 6.2 d. Once again in the TDDFT simulation,
it is verified that a quasi-free electron motion can be anticipated around the critical field
strength.

6.2 Linking high harmonic radiation to the valence

potential of solids

6.2.1 Crystal potential scattering model

The description of electron dynamics on the basis of a quasi-free electron leads to a pos-
sible treatment of high harmonic generation within the framework of scattering. In the
scattering perspective, the emission of harmonics stems from the perturbation of the elec-
tron acceleration, i.e., temporal variation of current arising from the scattering of a driven
electron by the valence potential as depicted in Fig. 6.3. Because the potential can be
expressed as a superposition of its spatial Fourier components, V (r) =

∑
G VGe

iGr, the
electron motion is sensitive to each Fourier component VG, and the accompanying harmon-
ics are consequently linked to each other as illustrated in Fig. 6.3 b and c. In other words,
measurement of a harmonic implies simultaneous probing of several Fourier components.
Under an intense laser field, EL(t) = E0 sin(ωLt)e‖ with a polarization direction denoted
by e‖, the temporal variation of current can be written in the form of an equation of motion
(in SI units).

∂J

∂t
∝ e∇V (r)− eEL(t) (6.17)

The first term on the right-hand side of the equation expresses the acceleration or decel-
eration by the valence potential, and the second term describes those by the laser field.
Since motion is driven by the laser field, the second term gives rise to a linear response
to the field at the fundamental frequency only. The high harmonic response of the system
stems from the valence potential. In the semiclassical limit [160], the expectation value
can be expressed as:

〈−e∇V (r(t))〉 = −e∇V (〈r(t)〉) (6.18)

Once again, just as in the previous treatment we can change the reference frame by inserting
〈r(t)〉 = eE0

(meω2
L)

sin(ωLt)e‖ into the above equation. For simplicity, here we consider a

symmetric potential, V (r) =
∑

G VG cos(G · r). Using the derivative of the potential



96 6. Scattering perspective of high harmonic generation in bulk solids

Figure 6.3: Illustration of scattering in real space. a, A crystal (here for example
MgF2) is illuminated with a strong laser field EL(t) with its carrier frequency ωL. b,
The electron wavepacket experiences contour of potential (1D slice) along the polarization
direction of the field, and the electron current leads to radiation of high harmonics in the
EUV range. c, The 1D slice potential can be decomposed into Fourier series with spatial
frequency components VG. Scattering of the Fourier components of the potential gives rise
to coherent EUV radiation.

(force) which is given by the Fourier series, ∇V (r) = −
∑

G GVG sin(G · r), the Eq. 6.17
can be rewritten as:

∂J

∂t
∝ −

∑
G

(G · e‖)e‖VG sin

(
G · e‖

eE0

meω2
L

sin(ωLt)

)
︸ ︷︷ ︸

=
∂J‖
∂t

−
∑
G

(G · e⊥)e⊥VG sin

(
G · e‖

eE0

meω2
L

sin(ωLt)

)
︸ ︷︷ ︸

=
∂J⊥
∂t

(6.19)

The current variation in time consists of two directional components, parallel
∂J‖
∂t

and

perpendicular ∂J⊥
∂t

to the laser polarization vector. Since our experimental studies in ref.
[67] are limited to radiation polarized along the laser polarization axis, we will closely
scrutinize the parallel components only. A detailed derivation and a further discussion of
high harmonic generation in the general case including asymmetric potentials as well as the
response of the perpendicular component of the harmonics can be found in the Appendix
C.
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By applying the Jacobi-Anger expansion, the sinusoidal term can be decomposed into a
superposition of odd harmonics of the driving laser field with their corresponding amplitude
as the 1st kind Bessel function with the laser parameters and spatial Fourier components
of the potential,

∂J‖
∂t
∝
∑
G

∑
N

G · e‖VGJN
(

G · e‖
eE0

meω2
L

)
sin
(
NωLt

)
(6.20)

where N denotes odd harmonic orders. Note that even harmonic generation is possible
only in asymmetric potentials. Because the coherent radiation emerging from the system
is proportional to the acceleration, the harmonic spectrum can be expressed through the

Fourier transformation of the current variation
∂J‖
∂t

.

IN(E0, ωL, e‖) ∝
∣∣∣∣∑

G

G · e‖VGJN
(

G · e‖
eE0

meω2
L

)∣∣∣∣2 (6.21)

By summing over the perpendicular direction of the reciprocal vector, Eq. 6.21 can be
rewritten with the concept of the projection of VG, and it is simplified to a problem in 1D
projected space as:

IN(E0, ωL, e‖) ∝
∣∣∣∣∑
G‖

G‖VprojJN

(
G‖

eE0

meω2
L

)∣∣∣∣2 (6.22)

where Vproj =
∑

G⊥
VG are the Fourier components of the potential projected along polar-

ization vector of the electric field. The projected Fourier component Vproj is directly linked
to a slice of the potential in the real space, according to the Fourier slice theorem [161] as
illustrated in Fig. 6.4 a. The Nth harmonic is dictated by the Nth order of the Bessel func-
tion. Therefore, in order to interrogate the relationship between harmonic yields and the
Fourier components, understanding the behavior of the Bessel function is essential. Fig.
6.4 b displays different order Bessel functions JN

(
G eE0

meω2
L

)
in the reciprocal space of G.

Differently from the sinusoidal functions, the amplitude of the Bessel function decreases,
and the first half-cycle has the highest amplitude. The dominant oscillating cycle of the
Bessel function is acting on the Fourier components and plays a role of a “gate” in G-space.
As shown in Fig. 6.4 b, a higher order Bessel function reaches its maximum further in the
G-space compared to the lower orders. This implies that the higher harmonics have more
sensitivity to the higher Fourier components of the potential. This behavior is physically
logical in the sense that in a unit time, electrons experience fast potential modulations
from the high spatial frequency components of the potential.

The harmonic yields are not only sensitive to the amplitude of the Fourier components
of the potential but also their relative phase. This is because each harmonic is produced
by a range of Fourier components under the dominant cycle of Bessel function in reciprocal
space. A variation in either the amplitude or the phase of the Fourier components of the
potential gives rise to a variation of the harmonic signals. This characteristic provides a
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Figure 6.4: High harmonic generation in solids. a, The potential landscape in a plane
of MgF2 probed by the laser field (left) and its Fourier components in the reciprocal space
(right). A linear slice of the potential along the laser polarization vector at an angle (θ)
is linked to the 1D Fourier transformation of the projected Fourier components along the
same direction (Fourier slice theorem). d and G denote the lattice constant and reciprocal
vector, respectively. b, Behavior of different order (from 3rd to 11th) of Bessel function at
a field strength of 0.6 V/Å. Each color represents a different harmonic order. c, 5th order
Bessel function at different field strengths from 0.4 to 0.7 V/Å. d, Orientation dependence
of high harmonic yields calculated at different field strengths (blue for 0.5 V/Å, red for
0.55 V/Å, and yellow for 0.6 V/Å), with the potential shown in panel a. e, Field strength
dependence of harmonic yields at θ = 45◦. The same color code is used as in panel b.

great advantage in accessing the phase relation among Fourier components of the valence
potential, in contrast to conventional X-ray diffraction techniques where the probing signal
is the absolute-square of the individual Fourier components, thereby loosing the phase
information [162].

The dependence of high harmonics on the driving field strength can now be intuitively
understood by the overlap of the Bessel function on the Fourier components of the potential
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in the reciprocal space. With increasing driving field strength, the Bessel function is
compressed to low Fourier components in the reciprocal space as shown in Fig. 6.4 c.
Typical Fourier components of a crystal potential undergo an exponential drop with the
reciprocal vector G. As a result, a higher harmonic yield is expected when the Bessel
function is mostly overlapped with the lower order of Fourier components, implying the
obvious result that higher harmonic intensity is generated at higher driving field strengths.
Fig. 6.4 e shows the intensity of various harmonics as varying the driving field strength.
By a variation of the orientation, the electrons experience a different potential landscape
resulting in the angle-dependent harmonic yields as shown in Fig. 6.4 d.

6.2.2 Characteristics of high harmonic emission in the scattering
model

Cutoff energy of high harmonics

One of the experimentally observed distinct characteristics of harmonics from solids is the
linear dependence of the cutoff energy to the peak strength of the driving field. The high
harmonic cutoff energy can be deduced from the Eq. 6.22. The highest energy of the
harmonics can be expected when the Bessel function is applied on the highest order of the
significant Fourier component of the valence potential at Gm. From the approximation that
the Bessel function is maximized when its argument is approaching its order, the maximum
harmonic order Nmax can be estimated as Nmax ≈ GmeE0

meω2
L

. Then the cutoff energy is given

by

Ecutoff = Nmaxh̄ωL = h̄
GmeE0

meωL
(6.23)

The scattering model exhibits a linear dependence of the cutoff energy to the peak strength
of the driving field as previously reported in many experimental observations [60, 62, 65,
103]. One compelling contrast with other models such as the intraband model is the
wavelength dependence in the cutoff energy. This difference is a good benchmarking point
of two models for future studies.

Phase variation of high harmonics with varying intensity and CEP of the driver

To investigate the temporal properties of harmonics in the scattering picture, the phase
variation of the harmonics under the variation of the intensity and the carrier-envelope
phase (CEP) of the driving pulse was considered. This is important for benchmarking
with other HHG mechanisms previously developed, mainly based on the interpretation of
the dynamics on the band structure.

As described by Eq. 6.20, the time structure of high harmonics is directly imprinted
by the current variation in time. By inserting a CEP into the driving field, EL(t) =
E0 sin(ωLt + ϕCEP ), the individual harmonic components (Nth order) in Eq. 6.20 can be
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rewritten as,

EHN(t) = −
∑
G‖

G‖VprojJN

(
G · e‖

eE0

meω2
L

)
sin
(
N(ωLt+ ϕCEP )

)
(6.24)

The above equation suggests that the field strength acts only on the amplitude of the in-
dividual harmonic through the Bessel function, but does not affect the temporal phase of
emitted harmonics. In other words, the relative amplitudes of the harmonics are manipu-
lated by the variation of the driving field strength, but the time structure of the harmonics
is independent from the field strength. Furthermore, one can notice that the temporal
phase of the harmonics is dictated by the CEP, but in a synchronized manner, i.e., the
timing of the harmonics is shifted by ϕCEP/ωL, implying a synchronization with the peak
of the driving field. This synchronization effect also appears in the intraband interpreta-
tion of HHG in solids, but is a distinct contrast to the HHG in atoms and the interband
interpretation in solids. Detailed experimental observations of the relative phase of the
harmonics in solids will be covered in the next chapter.

6.2.3 Scattering model and pulse driving fields

So far, we considered monochromatic continuous waves (CW) for investigating the scat-
tering model. However in the laboratory, pulsed laser fields are generally used. To con-
sider a pulsed field as the driving field, which is mathematically expressed as EL(t) =∫∞
−∞ dωẼ(ω)eiωt, the Eq. 6.20 is modified by substituting the electron excursion with:

r(t) =

∫ ∞
−∞

dω
eẼ(ω)

meω2
eiωt (6.25)

The harmonics of the current arising from the scattering now can be rewritten as:

∂JH

∂t
∝
∑
G

VGiG exp

(
iG

∫ ∞
−∞

dω
eẼ(ω)

meω2
eiωt
)

(6.26)

and its spectrum is obtained via the Fourier transformation,

I(E,ω) ∝
∣∣∣∣ ∫ ∞
−∞

dte−iωt
∑
G

VGiG exp

(
iG

∫ ∞
−∞

dω
eẼ(ω)

meω2
eiωt
)∣∣∣∣2 (6.27)

Scattering model and TDDFT: a quantitative comparison

The validation of the scattering model can be again studied via a comparison of its pre-
dictions with these in ab initio TDDFT calculations. Fig. 6.5 a shows the high harmonic
spectra in crystalline MgF2 along the [100] direction calculated by the scattering model
(Eq. 6.27). The same potential and pulse (5.5 fs FWHM duration and central energy of
h̄ωL = 2 eV) were used to perform a set of full 3D TDDFT simulations. In the TDDFT
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study (Fig. 6.2), the high harmonic spectra were calculated by the Fourier transform of
time variation of the current, i.e., the acceleration (Fig. 6.5 b). In Fig. 6.5 c, the spectra
from the scattering model (blue curves) are in excellent agreement with those calculated in
TDDFT (red curves) under the identical conditions within a broad range of field strengths.
These findings offer a strong support to the scattering model.
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Figure 6.5: High harmonic spectra from the scattering model and TDDFT. a,
HHG spectra from crystalline MgF2 calculated by the scattering model with linearly po-
larized electric pulse (central energy of h̄ωL = 2 eV and 5.5 fs FWHM duration) within
a broad range of field strengths from 0.4 to 1.2V/Å. The polarization of the driving field
is aligned along the [100] crystal orientation direction. b, HHG spectra from the TDDFT
calculation under the identical conditions as in panel a. c, The comparison between high
harmonic spectra from the scattering model (blue) and TDDFT (red) at different field
strengths.
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Chapter 7

Phase of EUV radiation in high
bandgap dielectrics

Artmaking is making the invisible, visible.
-Marcel Duchamp

The characteristics of high harmonic radiation (HH) emitted from bulk solids show a
range of distinct characteristics significantly different from those from atoms or molecules
in the gas phase, for example, dependence of cutoff energy to the peak field strength
[60, 62, 65, 103] and response of harmonic yield to the ellipticity of field [163, 66]. However,
the temporal properties such as the phase and timing of harmonics radiated from solids
and its underlying mechanism are still subjects under debate [63, 106, 61, 42, 104]. One
way to get a deeper insight into the emission process is to study the phase of the radiated
harmonics. The phase information is in general invisible in the spectral or time-integrated
measurements. However, interferometric methods can help making the invisible, visible,
where spectral phase is concerned. In this chapter, we will explore the emission phase
characteristics of the harmonics arising from solids and their variation with respect to the
intensity and carrier-envelope phase (CEP) of the driving laser field utilizing photoelectron
interferometry.

7.1 Phase of harmonics from various models

7.1.1 Recollision model in gases

The mechanism of high harmonic generation in gaseous media is well described by the
recollision model [18, 89]. In this model, the temporal characteristics of high harmonics
can be explained by considering the quantum phase of electron trajectories under a driving
field. The quantum phase that an electron accumulates from the moment of its ionization
(tb) to the moment of the recollision (tr) (also discussed in chapter 1) is dictated by the
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parameters of the driving laser field, EL(t) = E0 cos (ωLt+ ϕCEP ) in the form of the Volkov
phase:

φ(p = 0) =

∫ tr

tb

dtA(t)2 =
E2

0

ω2
L

∫ tr

tb

dt sin2(ωLt+ ϕCEP ) (7.1)

where ωL and ϕCEP denote the laser frequency and CEP, respectively. The integration
can be re-cast as a phase parameter α(E,ϕCEP ), which depends on the energy (E) of the
harmonic emitted and the CEP of the driving field (ϕCEP ). In this context, the phase of
a harmonic φHH(E,ϕCEP ) can be expressed in a simple form [164, 165, 166] given by

φHH(E,ϕCEP ) ∼ −α(E,ϕCEP )
I

4ω3
L

(7.2)

This relation shows that the emission phase of the harmonics scales linearly with the
intensity of the driving laser field. Moreover, it depends on the CEP of the driving field,
which is embodied in the phase parameter α determined by the quantum trajectories.
These characteristics of the phase of the high harmonics have been intensively studied over
the last decades both theoretically [167, 168] and experimentally [169, 170, 164].

7.1.2 Interband and intraband picture in bulk solids

Interband high harmonic generation

The relationship between the phase of the high harmonics arising from the interband motion
of electrons/holes and the driving laser parameters is in general difficult to be explicitly
expressed in an analytical form. However, we can qualitatively interrogate the relationship
by examining the semiconductor Bloch equation (SBE) introduced earlier in this thesis.

We consider again the interband polarization described by the SBE in Eq. 1.21,

ih̄
∂

∂t
pk =

[
ελk + ελ

′

k − i
1

Td

]
pk − dkE(t)(1− fλk − fλ

′

k ) + ieE(t)∇kpk (7.3)

We can see that its temporal variation intrinsically involves a transition described by the
dipole element (the second term in Eq. 7.3), which is responsible for the electron-hole pair
creation and annihilation (recombination of electron and hole). In the interband polar-
ization, the radiation of high harmonics originates from the electron-hole recombination,
and the phase is naturally introduced by the dipole element and the field strength. Fur-
thermore, since the polarization is translated by the driving field in the momentum space,
k → k+A(t) as described by the last term in Eq. 7.3, the electron-hole recombination also
occurs at different k points during the time-evolution. Due to the band dispersion ελk − ελ

′

k ,
the recombination results in the radiation of different energies at different moments in time
during the interaction with the laser field. Therefore, the interband harmonics will result
in a chirped high harmonic emission as reported by many different works [63, 106, 171].
In other words, the quantum-phase accumulated in the propagation of the electron-hole
pair from the creation to the recombination (the first term in Eq. 7.3) is imprinted onto
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the absolute phase of interband based harmonics. All the aforementioned processes within
the interband polarization involve a driving field in a form of the field itself or the vector
potential. Hence, the phase of the interband based harmonics inherently depends on the
strength and the CEP of the driving field.

Intraband high harmonic generation

By recalling the description of the intraband motion in the semiclassical model introduced
in Chapter 1 (Eq. 1.28), the induced intraband current can be expressed as a function
of the driving field with a CEP, EL(t) = E0 cos (ωLt+ ϕCEP ) by replacing the temporal
phase ωLt with ωLt+ ϕCEP :

J(t) ∝ 2
∑
m

mdεi,m
∑
n

J2n−1

(
m
eE0d

h̄ωL

)
sin[(2n− 1)(ωLt+ ϕCEP )] (7.4)

The parameter of the driving laser intensity can be found only in the argument of the
Bessel function which modulates only the amplitude of an individual harmonic without
any effect on its phase. Therefore, the harmonic phase is immune to a change in the
intensity of the driving laser. Moreover, the phase of the laser induced intraband is not
sensitive to the variation of the CEP of the driving field other than the linear shift in time,
∆t = ϕCEP/ωL. This temporal shift is universal for all harmonic components, implying
the synchronization of the emitted harmonics with respect to the peak of the driving field,
i.e., all the harmonic components are in phase with the driving field. From this fact, the
harmonic bursts emerging from the intraband motion exhibit no chirp in contrast to the
interband based high harmonics [61, 42, 104]. Hence, we can summarize: the intraband
based harmonics exhibit invariance of their absolute phase under the variation of both the
intensity and CEP of the driving laser pulse in contrast to the interpretation in interband
motion of electrons and holes.

Crystal potential scattering model

The phase properties of the harmonic radiation within this concept have been highlighted
in the previous chapter and particularly in Eq. 6.24. In fact, the harmonic phase in
the crystal scattering model shows precisely the same characteristics as in the intraband
model. This similarity can be attributed to the fact that both models are founded on the
“scattering” of electrons even though from a different scattering source, band dispersion
(intraband model) and valence potential (potential scattering model).

7.2 Photoelectron interferometry

Here we are interested to understand how the phase of high harmonics varies under the
variation of laser parameters, intensity and CEP, and therewith to attempt a more firm
connection between the experiments and the above models. One of the most profound
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methods to access the relative phase variation of different parts of a spectrum is inter-
ferometry. By interfering an unknown source with a reference source (whose properties
remain invariable), the relative phase of the spectral components of the source is directly
imprinted on a spectral interference pattern upon variation of a critical parameter that
modifies the properties of the unknown source.

We employed a photoelectron based interferometry to study the properties of the high
harmonics from solids. The harmonic radiation as will be shown below was spectrally con-
fined to the VUV-EUV range (up to ∼30 eV), where the photon energy is high enough to
ionize noble gases such as argon (Ip =∼ 15.7 eV) and to create photoelectrons. The EUV
instantaneously ionizes an atom via a single photon process, and the temporal informa-
tion/structure of the EUV is directly transferred to the photoelectron wavepacket as also
discussed along with the concepts of the EUV attosecond streaking technique. Interferome-
try always requires a stable reference wave (or pulse) which must be spectrally overlapped
with the pulse we desire to probe. Here, photoelectrons generated by above-threshold
ionization (ATI) in atoms by a strong field were employed as the reference source.

Let us now discuss the key idea in more detail. A coherent superposition of photo-
electron wavepackets released by EUV and ATI gives rise to an interference pattern which
embodies the temporal phase difference between EUV and ATI photoelectrons at each
energy point. The interference spectrum can be mathematically expressed by a phase
difference between them as:

IEUV−ATI(E, I, ϕCEP ) = IATI+IEUV +2
√
IATI

√
IEUV cos(∆φATI−EUV (E, I, ϕCEP )) (7.5)

where IATI and IEUV are the spectral intensities of the ATI and EUV photoelectrons re-
spectively. The relative spectral phase difference between the ATI and EUV photoelectrons
can be expressed as

∆φATI−EUV = ∆φATI −∆φEUV (7.6)

Technically speaking, the relative phase variation is directly extractable by tracing the
shift of the interference fringes as illustrated in Fig. 7.1. The spectral interference pattern
is recorded via the variation of the relevant quantity (intensity or CEP of the driving field,
hereafter it will be referred to as “controlled variables x” for generality) as shown in Fig.
7.1 a.

The spectral spacing of fringes ∆η0 is stemming from the temporal separation, i.e.,
the group delay (∆T ) between the two electron pulses, ∆η0 = h/∆T , where h denotes
the Planck constant. The relative phase variation introduced by the control variable is
represented by the fringe shift (black dashed lines in Fig. 7.1 b) with respect to the
reference fringe (cyan color in Fig. 7.1 b). Since one cycle shift of an interference fringe
∆η0 corresponds to a 2π phase shift, the phase variation can be evaluated by its proportion:

∆φATI−EUV (E, I, ϕCEP ) = 2π
∆η(E)

∆η0

(7.7)

At each point of the control variable xn, the extraction of the spectral phase (Eq. 7.7)
permits the mapping of the total spectral phase as a function of the control variable as
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Figure 7.1: Phase extraction from an interferogram. a, The spectral fringe variation
as a function of energy and a controlled variable x (intensity or the CEP of the driving
laser field). White lines superimposed on the 2D spectra denote the shifting trend of the
fringe. b, Trace of the fringe shift with respect to the reference (cyan) permits access to
the phase variation under a controlled variable. The red vertical lines indicate the fringe
maxima of the reference, while the black dotted sloped lines denote the tracing of the fringe
shifts. c, The spectral phase plotted as a function of energy at each value of the variable
carefully controlled in an experiment.

denoted by ∆φATI−EUV (x,E) in Fig. 7.1 c. The relative phase variation ∆φATI−EUV can
be expressed as a polynomial series (Eq. 7.8), and its different orders of the phase involving
the CEP and spectral chirp can be evaluated through a fitting of the phase with respect
to the central energy h̄ωc as,

∆φATI−EUV (x, ω) = ∆φ
(0)
ATI−EUV +∆φ′ATI−EUV (ω−ωc)+

1

2!
∆φ′′ATI−EUV (ω−ωc)2+· · · (7.8)

7.3 Experiment and results

7.3.1 Experimental implementation

Single-cycle optical driving pulses delivered from the light field synthesizer (central energy
of ∼1.7 eV and pulse duration of ∼2.8 fs; see technology in Chapter 2) were shone onto an
ultra-thin (∼1 µm) free standing α-quartz crystal or an argon-filled gas cell (∼100 mbar
at ∼ 10−2 mbar of backing pressure) to generate coherent EUV radiation as shown in Fig.
7.2.

The position of the solid and gas HHG targets was switchable at the focal spot of the
driving field using a precision transitional stage. The orientation (Γ-M) of the quartz sam-
ple was aligned with the laser polarization vector to maximize the yield of high harmonics.
The generated EUV and driving optical pulses were focused onto an argon gas jet to gen-
erate photoelectrons as shown in Fig. 7.2. The photoelectrons spectra were recorded by
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Figure 7.2: Schematic illustration of the experimental setup for photoelectron
interferometry. Intense single-cycle optical pulses are focused onto an ultrathin (∼1 µm)
α-quartz sample or an Ar-filled gas cell to generate coherent EUV radiation. EUV and
optical driving field collinearly propagate and are focused onto a second Ar gas jet by a
gold coated concave mirror with a focal length of ∼12.5 cm. EUV and optical driving field
release EUV (linear photoionization) and ATI photoelectrons from Ar, respectively. The
spectra of photoelectrons are recorded by a time-of-flight electron spectrometer (TOF).
Figure adapted from ref. [107].

a time-of-flight (TOF) electron spectrometer whose entrance was located a few mm above
the argon gas jet. The pressure of the gas jet was kept constant to avoid any additional
effects from gas density variations.

The ATI photoelectron generation process is well understood under the recollisional
model. As a result, an amplitude variation of the driving field results in a pronounced phase
change of the ATI photoelectron spectra. To ensure a stable referencing in the experiments,
maintaining a constant intensity for ATI generation while varying that for EUV generation
is crucial and technically demanding. To this end, we used a long focal length mirror for
the EUV generation at the solid-source and a pair of adjustable apertures to control the
intensity (Fig. 7.2). The intensity of the pulses generating the EUV harmonics from
the quartz sample was controlled by the first adjustable aperture in front of the EUV
source. Since the second iris clips only the outer rim of the optical field, regardless of the
opening of the first iris, the intensity for the generation of ATI photoelectrons can be kept
invariant while the intensity for EUV generation in the HHG chamber (see also Fig. 2.5)
can be controlled by the opening of the first iris. Importantly, the intensity of the portion
of the pulse that was generating the ATI electron spectra was carefully and continuously
recorded during the measurement using a power meter and an imaging system that allowed
the visualization of the focus of the beam in the experimental set-up. Owing to the much
lower divergence of the EUV beam in comparison to the optical beam, the EUV radiation
generated in the quartz sample could pass through the second iris without any significant
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clipping.
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Figure 7.3: Photoelectron interferometric measurement. a, Photoelectron spectra
generated by ATI (green curve), EUV (blue curve), and their interference (red-curve) were
recorded by a time-of-flight (TOF) electron spectrometer. b, Spectral envelope removed
spectrum shows a clear contrast of the interference pattern of the photoelectrons. Figure
adapted from ref. [107]

Photoelectron spectra recorded by the TOF spectrometer are shown in Fig. 7.3. ATI
electrons measured in the absence of EUV are denoted by the green curve. Note that prior
to the EUV photoemission, the EUV pulse (blue curves) was filtered from its fundamental
by a high-pass filter (150 nm thin aluminum). Yet, the interferometric measurement was
carried out in the absence of the Al-filter, so that a spectral overlap is possible also at
lower energies. The coexistence of ATI and EUV photoelectrons gives rise to interference
in their common spectral range (red curves in Fig. 7.3 a). The subtraction of the spectral
envelopes permits a clear visualization of the fringe pattern (Fig. 7.3 b). The spectral
separation of the interference fringes is ∼2.2 eV, which is compatible with a recollision
time of ∼1.8 fs of ATI electrons.

7.3.2 Intensity dependence of high harmonic phase in solids

As a first investigation of the phase of high harmonic radiation, the dependence of the phase
of EUV emanating from quartz on the intensity of the driving laser pulse was studied
and contrasted with that of EUV pulses generated in argon. ATI-EUV photoelectron
interference spectra with the quartz sample were recorded as a function of the peak intensity
of the driving optical pulse responsible for EUV generation, while the optical intensity for
the ATI was kept constant during the measurement. The experiments were conducted
within the intensity range of ∼ 10 TW/cm2 up to ∼ 22 TW/cm2 to avoid irreversible
optical damage of the sample. As both the intensity and CEP of the optical driving
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Figure 7.4: Interferometric measurements with variation of driving optical field
intensity for EUV generation. a and b, The interference pattern between the ATI
photoelectrons and the photoelectrons released by EUV emerging from quartz (a) and
argon gas (b) with variation of the driving field intensity for EUV. The superimposed white
curves are guides to the eye to trace the fringe shift, while the dashed vertical white line
indicates the reference fringe position. c and d, The phase variation of EUV ∆φEUV (E, I)
as extracted from the data in panel (a) and (b) for quartz and argon gas, respectively. The
color codes denote different intensity values used in the experiment. Figure adapted from
ref. [107]

field for ATI generation were constant, the phase of the ATI photoelectrons served as a
rigid reference. This ensures that the phase variation in ATI-EUV interference is purely
originating from the phase variation of the EUV photoelectrons, ∆φATI−EUV = −∆φEUV .
As shown in Fig. 7.4 a, a nearly invariable interference pattern of photoelectrons released
by the ATI and EUV emerging in quartz was observed versus intensity.

At this stage, it is useful to contrast these findings in solids with those in gases. Our
experimental setup offers directly this capability, and we therefore do not need to resort to
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other experimental works. To this end, the same measurement was performed with argon
gas as a source of high harmonics under the identical conditions as in the quartz case. With
argon as the high harmonic nonlinear medium, a clear variation of the interference pattern
versus intensity of the driving field (∼ 10 TW/cm2 to ∼ 35 TW/cm2) was observed (Fig.
7.4 b). This phase observation agrees well with the predictions of the three-step model
which as alluded to earlier in this chapter, predicts a linear variation of the high harmonic
phase versus the peak intensity as expressed in Eq. 7.2. This comparison evidently points
to a major difference in the mechanism of EUV generation in solids and gaseous media.

As an additional investigation, the total EUV phase variation was evaluated. Since the
interference fringes were spaced by ∼2.2 eV, i.e., ∆η0 = 2.2 eV, a tracing of the fringe shift
in energy ∆η(E) allows evaluating the spectral phase variation of the EUV pulses ∆φEUV
as a function of laser intensity I with respect to the phase of EUV at the lowest intensity
(Fig. 7.4 c and d).

∆φEUV (E, I) = 2π
∆η(E, I)

2.2eV
(7.9)

 

|D
F

EU
V|

 (
p

 ra
d)

0

0.2

0.4

0.6

0.8

1

0

100

300

500

700

900

Ar

Quartz

Ar

Quartz

|D
F

EU
V|
(a

s2 )
''

10 15 20 25 30 35
Intensity ( TW/cm2)

(0
)

10 15 20 25 30 35
Intensity ( TW/cm2)

a. b.

Figure 7.5: CEP and GDD variation of the radiated EUV pulses with increasing
intensity of the driving field. Variation of CEP (a) and GDD (b) of EUV emerging from
quartz (blue curve) and Ar gas (red curve), respectively extracted from the interference
measured with increasing intensity of the driving field. Figure adapted from ref. [107]

The extracted phases can be fitted to a polynomial expansion around the central energy
of the EUV emission (∼23 eV and ∼34 eV for quartz and Ar, respectively) in the spectral

domain for each laser intensity such to evaluate the intensity dependent CEP ∆φ
(0)
EUV (I),

group delay dispersion (GDD) ∆φ′′EUV (I) and even higher order dispersion of the EUV
(Fig. 7.5). The EUV pulses emerging from the quartz samples exhibit negligible variation
of their CEP and GDD versus the intensity of the driving field (blue curves in Fig. 7.5),
while those from Ar gas undergo a significant change (red curves in Fig. 7.5) as indicated
by a slope of ∼ 5× 10−2π (TW/cm2)−1 for CEP and ∼ 30 as2(TW/cm2)−1 for GDD.
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The above experiment clearly demonstrates that the phase of EUV emission from the
quartz is virtually immune to the variation of the driving field intensity. This experimental
observation is in good agreement with both the intraband and potential scattering models
but not with the interband or the recollison picture.

Effect of the sample thickness on the spectral phase of the irradiated EUV

Due to the linear absorption of EUV light in most optically transparent materials, the
high harmonic emission in the EUV range primarily takes place within few nanometers
near the exit of a sample. However, the intense driving pulse undergoes a phase shift due
to the Kerr nonlinearities before reaching the exit of the sample. This phase shift of the
driving field acting on HHG will give an additional and undesirable phase shift to the
interferometric measurement discussed above. In other words, the phase variation of EUV
cannot be treated as a result of the intensity variation of the driving field only but also
as a result of the intensity dependent phase variation of the driving pulse propagating in
the medium. This fact suggests that a solid sample has to be properly chosen (in terms of
thickness) to avoid such effects. In fact, these effects can lead to conclusions that would
favor other pictures. How can we be sure that in the above experiments we are in a “safe
regime”?

To explore this idea, the same intensity-dependence experiment was conducted using
thicker samples, ∼10 µm and ∼20 µm. Fig. 7.6 shows significant differences in the recorded
phase.

The accumulated Kerr phase variation of the driving field in the sample can be reason-
ably estimated by the B-integral,

B =
2π

λ

∫
dzn2I(z) (7.10)

where λ, I(z) and n2 are the central wavelength of the driver pulse, the intensity and the
nonlinear refractive index of optical medium, respectively. z is the propagation length. The
intensity is strictly a propagation dependent quantity which is varied by linear dispersion
and self-focusing effect due to the Kerr nonlinearity. Here, given that the samples we
study are rather thin, we assumed that the intensity of the beam remains constant for the
entire propagation length. A simulated ATI-EUV phase variation involving the induced
Kerr phase shows a reasonable agreement with the measured phase variation with thick
samples (Fig. 7.6 b and c). Because of the normal incidence of light on the sample, the
Fresnel reflection was taken into account for avoiding an overestimation of the intensity
inside the medium. The phase shift originated by the Kerr effect amounted to ∼ 0.02π
radian in the case of a 1 µm thick quartz at the highest intensity (∼ 22 TW/cm2) used
in the experiment. Therefore, under the experimental conditions (1 µm quartz, intensity
range from 10 to 22 TW/cm2), the Kerr effect is negligible.
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Figure 7.6: Effect of sample thickness on the spectral phase of the emitted EUV
radiation. a, Interference pattern of ATI and EUV photoelectrons when the EUV is
generated in a 20 µm thick quartz sample was recorded as a function of the driving field
intensity. The white lines are guides for the eye and represent fringe shifts, while the white
dashed vertical line indicates the reference fringe position. b and c, Measured (b) and
simulated (c) ATI-EUV phase variation versus driving field intensity. The three different
colors of the lines indicate different thicknesses (1, 10 and 20 µm). Figure adapted from
ref. [107]

7.3.3 CEP dependence of high harmonic phase in solids

In analogy to the first set of experiments, the phase variation of EUV was also studied by
varying the CEP of the driving field. Under the same experimental configuration as in the
previous study, the CEP was varied, while the driving field intensity for both EUV and ATI
was kept constant. The recorded ATI-EUV interference fringes as a function of the CEP of
the driving field for quartz are shown in Fig. 7.7 a. Note however that in this experiment,
the CEP of the driving pulse used for the ATI photoelectrons is also varied. This is due to
the collinear geometry of our experiment setup. As a consequence, the ATI photoelectrons
cannot anymore provide a rigid reference, as the ATI photoelectron phase ∆φATI(E,ϕCEP )
is sensitive to CEP. Therefore, it is essential to characterize the CEP dependence of ATI
phase in advance. To this end, the phase variation of ATI photoelectrons was separately
measured under the identical conditions (Fig 7.7 b). For the extraction of phase variation
of ATI, the concept of interferometry was applied in the same manner as before. The ATI
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photoelectron pulses comprise a few isolated photoelectron bursts (∼3 for a∼1.2 cycle pulse
used in the experiment) with a relative time delay of one cycle of the optical driving field.
This fact was manifested by an interference pattern in the overlapping energy area. The
peaks in the ATI spectra were separated by the carrier photon energy (∆η0 =∼ 1.7 eV).
Correspondingly, the phase of the ATI photoelectrons can be evaluated by the proportion
of energy spacing between the spectral peaks as:

∆φATI(E,ϕCEP ) = 2π
∆ηATI(E,ϕCEP )

1.7eV
(7.11)

To isolate the EUV phase variation versus CEP (Fig. 7.7 e) was possible by subtracting
the ATI phase variation (Fig. 7.7 d) from the ATI-EUV phase (Fig. 7.7 c) according to
Eq. 7.6. Note that since the sampled energy points were different between the ATI-EUV
and ATI interference measurement, a data interpolation was necessary for the accurate
evaluation of EUV phase variation.

As one can easily notice by comparison of the measurements in Fig. 7.7 a and b, the
fringe shift in the ATT-EUV interference is mainly originated from the ATI phase variation,
when the EUV source is the quartz sample. The evaluated EUV phase ∆φEUV (E,ϕCEP )
shows a clear invariance of the high harmonic phase under the variation of laser CEP (Fig.
7.7 e).

In order to further contrast to the recollision based harmonic generation in gaseous
media, the experiment was repeated under the same conditions but with Ar gas as a
harmonic source (Fig. 7.8). By contrasting Fig. 7.8 a with b, ATI-EUV relative phase
shows more rapid fringe shifts (Fig. 7.8 c) than ATI interference change (Fig. 7.8 d),
indicating an EUV phase variation under the changes of the driving pulse CEP (Fig. 7.8
e) in the case of Ar gas as the EUV source.

Similarly as in the previous set of experiments, the driving field CEP-dependent CEP
∆φ

(0)
EUV (ϕCEP ) and GDD ∆φ′′EUV (ϕCEP ) variation of harmonic was evaluated by the poly-

nomial fitting for the case of quartz (blue curve) and Ar gas (red curve) as shown in Fig.
7.9. In the quartz case, the invariance of CEP and GDD was clearly observed, while there
was a substantial change in those in EUV from Ar gas with slope of ∼ 1.4π for CEP and
6200 as2 for GDD within a π shift of the driving field CEP.

The above experiments and their analysis reveal that the phase of high harmonics
emitted from dielectric materials is rather insensitive to both the intensity and CEP of the
driving field. The immunity of the high harmonic phase is well captured and explained
by the scattering based models (intraband and potential scattering model) but not by
the recollision models that dominate atomic strong field physics. The phase robustness of
solid state high harmonics against the intensity and CEP variation lends high harmonic
generation in solids as a stable EUV source for phase sensitive applications including EUV
frequency combs.
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Figure 7.7: Interferometric measurement of ATI-EUV spectra with variation of
the CEP of the driving optical field in quartz. a and b, The interference fringes
of photoelectrons emitted by ATI and EUV emerging from quartz (a) and ATI fringes in
the absence of the EUV (b) with variation of the CEP of the driving field from 0 to π
rad. The white lines superimposed on the spectra are guides to indicate the fringe shift,
while the white dashed vertical lines denote reference fringe position. c, The variation of
ATI-EUV phase ∆φATI−EUV (E,ϕCEP ) extracted from the data (a). d, The ATI phase
variation ∆φATI(E,ϕCEP ) extracted from the data (b). e, EUV phase variation under
varying the CEP of driving field ∆φEUV (E,ϕCEP ) was retrieved by the subtraction of the
ATI phase variation from ATI-EUV relative phase. The color codes denote different CEP
values used in the experiment. Figure adapted from ref. [107].
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Figure 7.8: Interferometric measurement of ATI-EUV spectra with variation of
the CEP of the driving optical field in Ar. a and b, The interference fringes of
photoelectrons induced by ATI and EUV emerging from Ar (a) and ATI fringes in the
absence of the EUV (b) with varying the CEP of the driving pulse from 0 to π rad.
The white lines indicate the trace of fringe shift, while the white dashed vertical lines are
guides for the eye to indicate the reference. c and d, The phase variation of ATI-EUV
∆φATI−EUV (E,ϕCEP ) extracted from the data (a) and that of ATI ∆φATI(E,ϕCEP ) from
the data (b). e, By the subtraction of the ATI phase from the ATI-EUV, the EUV phase
variation can be evaluated. Figure adapted from ref. [107]
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Conclusions and outlook

The important thing is not to stop questioning. Curiosity has its own reason for existing.
-Albert Einstein

In this thesis, I present experimental studies on the strong field electron emission from
metallic nanotips in the single-cycle pulse limit as well as studies of high harmonic emission
from bulk solids.

When single-cycle pulses are shone on nanotips, the high energy spectral emission is
confined to a fraction of a half field cycle. We have seen that the energetic properties
of the photoelectrons liberated from the tungsten nanotip comply with the predictions
of semiclassical theories in atoms opening up new opportunities for generating ultrashort
electron pulses.

To investigate the temporal characteristics of the generated attosecond electron pulses,
I introduced a new approach, namely Homochromic attosecond streaking (HAS). There, a
strong optical driving pulse (pump) generates and drives the photoelectron emission, and a
weak ( 10-2 in intensity) replica of the same pulse probes the released photoelectron pulse
in time. We have shown theoretically that a variation of the delay between pump and
gate allows the composition of spectrograms which contain critical information about the
attosecond electron pulse and the locally enhanced single-cycle field.

We used this method practically to measure attosecond electron pulses as short as
53 ± 5 as. The temporal confinement of the attosecond electron pulse emerging from
metallic nanostructures driven by single-cycle pulses is anticipated to inspire a broad range
of electron-based spectroscopy applications. First of all, the sufficient electron energy
at the back-scattering (20 eV-80 eV) will allow applications of these pulses in electron
based microscopy of solids. For instance, one can consider a pump-probe scheme of low
energy electron diffraction (LEED) using the back-scattered electron characterized in a
HAS on the same sample. Time-resolved measurements in the LEED could provide a
deeper understanding of dynamic structural phenomena in solids. The generated electron
pulses can be used at its full temporal resolution, if the sample that is used to create the
electron pulse is also probed by the recolliding attosecond bursts. A sample in the close
vicinity of the tip, typically implemented in STM could also allow probing another system
without a big loss of temporal resolution. We can anticipate applications of our technique
also in lightwave electronics. The field controllability of the attosecond current emitted
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from the nanotip provides a possible root to the attosecond light electronics in structured
metals. More specifically, PHz electron transport at the interface among different nanotips
can be precisely controlled by the pump field, while its temporal characteristics could be
accessed by HAS.

Strong field induced electron motion in wide band-gap materials and associated high
harmonic generation were also studied. I have taken the first steps towards laying the
foundation of the scattering model using the Floquet approach. Although not complete,
the approach can provide an insight as to how a strong field can lead to a strong suppression
of the effective valence potential and therefore, a quasi-free electron motion along with the
strong driving field emerges. A potential dramatic implication of the interaction could
open new ways to probing solids. The first step in this direction was the first all optical
probing of the valence potential of solids [67]. Experimentally I have also focused on
studies about high harmonic generation that aim at the direct measurement of phase
effects on high harmonics [107]. The phase of harmonics emerging from SiO2 was studied
by utilizing photoelectron interferometry emerging from above-threshold ionization and
EUV pulses originally generated from solids. We found that in contrast to the prediction
of the recollision model in gases or ordinary interband models in solids, the phase of the
emission appears rather insensitive to the peak field strength and CEP of the driving pulses.
This observation strongly supports the scattering based models in both potential and band
space.



Appendix A

Time-dependent Schrödinger
equation (TDSE)

The light-electron interaction in 1D space is described by the Schrödinger equation (in
atomic units),

i
∂ψ(x, t)

∂t
= Ĥψ(x, t) (A.1)

where the Hamiltonian Ĥ is given by the potential V̂ (x) and the laser-electron dipolar
interaction –E(t)x in the length gauge,

Ĥ = Ĥ0 + Ĥint = −1

2

∂2

∂x2
+ V̂ (x)− E(t)x (A.2)

To model the atomic potential, a modified Coulombic potential (soft-core potential) is
widely used to avoid the singularity of the Coulomb potential at 0 [87, 85].

V̂ (x) = − 1√
x2 + a2

(A.3)

where a is a parameter for the core size, which is chosen to fit the ionization energy of the
considered system. For instance, atomic potential of argon can be modeled with a = 1.19
AU to fit its ionization energy, 15.7 eV.

Computation of ground state through diagonalization of Hamiltonian

The ground state of the Hamiltonian is considered as the initial state of the system. The
ground state can be found by imaginary-time propagation method or diagonalization of
the Hamiltonian [85, 86]. The diagonalization is computationally more expensive than
the imaginary-time propagation method. However, it has the advantage of accessing all
eigenstates and eigenenergies, while the imaginary propagation provides only the ground
state. Here we consider only the latter.
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In the finite difference approach, the second derivative in the Hamiltonian can be ap-
proximated to

∂2ψ(x, t)

∂x2
=
ψ(x+ ∆x, t)− 2ψ(x, t) + ψ(x−∆x, t)

∆x2
(A.4)

then one can easily cast the Hamiltonian into a matrix form as,

Ĥ0 =
1

2∆x2


−2 1 0 · · · 0
1 −2 1 · · · 0
...

. . . . . . . . .
...

0 · · · 1 −2 1
0 · · · 0 1 −2

+


V (x1) 0 0 · · · 0

0 V (x2) 0 · · · 0
...

. . . . . . . . .
...

0 · · · 0 V (xn−1) 0
0 · · · 0 0 V (xn)

 (A.5)

The diagonalization of the above matrix gives both eigenstates and corresponding eigensene-
gies. The ground state is the one with the lowest energy in the set of the eigenstates.

Time propagation of wavepacket

Solving the TDSE analytically is generally difficult because it is an inhomogeneous differ-
ential equation in both time and space. However, the problem can be numerically solved
by real-time propagation employing the split-step Fourier method, also known as the split-
operator method [88]. From the fact that wavepacket propagation by kinetic and potential
energy operator can be directly evaluated in reciprocal and real space, respectively, i.e.,
i∂tψ̃(k, t) = −k2ψ̃(k, t) for kinetic energy operator and i∂tψ(x, t) = V̂eff (x, t)ψ(x, t) for

potential energy operator, where V̂eff (x, t) = V (x) − E(t)x, alternative calculations in
real and reciprocal spaces enable the complete time evolution of the wavepacket. The
calculation sequence is as following:

1. At an instance of time (t), the propagation of wavefunction ψ(x, t) in the time step
of ∆t/2 is performed in real space only with the potential operator V̂eff (x, t),

ψ(x, t+ ∆t/2) = ψ(x, t) exp[−iV̂eff (x, t)∆t/2] (A.6)

2. To solve the differential equation with kinetic operator, the propagation from t to
t+ ∆t is performed in the reciprocal space,

ψ̃(k, t+ ∆t) = ψ̃(k, t+ ∆t/2) exp[−ik2∆t], (A.7)

where ψ̃(k, t) is the Fourier transformed wavepacket.

3. Back to the real space by inverse Fourier transform, the propagation from t to ∆t is
completed by evaluation of additional real space propagation with time step of ∆t/2,

ψ(x, t+ ∆t) = ψ(x, t) exp[−iV̂eff (x, t)∆t/2]. (A.8)



Appendix B

Analysis of experimentally measured
photoelectron spectra

B.1 Renormalization of spectra measured by time-of-

flight spectrometer

The time-of-flight electron spectrometer (TOF) basically records the arriving time of the
photoelectron to the detector in a uniformly spaced time axis. Due to the nonlinear
relationship of energy (E) with the arriving time (ta), the transform of the arrival time to
the corresponding kinetic energy domain results in an uneven spaced energy axis, where
the binning spacing is nonlinearly increasing with the energy. In other words, at a higher
energy point, the photoelectron yield is counted in a broader range of energy, and it gives
a rise of overestimation of high energetic spectral intensity. The spectra in two different
domains must fulfill the condition,∫

dtaI(ta) =

∫
dEI(E) (B.1)

Therefore, the Jacobian (dt/dE) must be used to renormalize the spectral intensity in the
energy domain,

I(E) = I(ta)
dta
dE

(B.2)

B.2 Reduction of noise in measured photoelectron spec-

tra

The photoelectron signal captured by the TOF is delicate enough to be easily contaminated
by the noise from the measuring instruments, for instance noise from electronic resonance
in the cables and interference inside the oscilloscope.

Fig. B.1 a shows noise in the domain of arrival time, measured in the absence of
photoelectrons. Noise covering the energy range of our interest from ∼10 eV (red vertical
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Figure B.1: Reduction of noise in measured photoelectron spectra. a, Signal-free
noise originating from measuring instruments was measured in the absence of photoelec-
trons and plotted in the arrival time domain of the TOF. The inset displays the noise in the
converted energy domain. The vertical dashed lines show the energy range of interest and
its corresponding arrival time. b, Fourier transform of the noise provides its characteristic
spectrum in the frequency of the arrival time. c, The signal in the frequency domain of the
arrival time (blue) is filtered by a hyper-Gaussian low-pass filter (yellow) to eliminate the
characteristic frequency components of the noise (> 0.1 GHz). d, The frequency filtered
signal (red in panel c) is converted to a noise-reduced signal in the energy domain (blue).
The red curve shows unprocessed signal.

line) to 300 eV (purple vertical line) is discernible. Moreover, it was observed that such
noise was also amplified accordingly to the level of the signal of the photoelectrons. The
noise contaminates the signal in the arrival time domain of the TOF and results in an
uneven spaced oscillatory noise, which is difficult to eliminate in the energy domain (inset
in Fig. B.1 a). Therefore, in order to acquire a meaningful signal of photoelectrons, the
TOF signal needs to be essentially filtered in the TOF time domain before converting
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to the energy domain. The signal-free noise can be used to identify its frequency for the
Fourier filtering. Since the noise of our system exhibits harmonics of 0.1 GHz (blue vertical
lines in Fig. B.1 b), and the bandwidth of photoelectron signal in the frequency domain
is less than 0.2 GHz centered at zero (Fig. B.1 c), the noise can be safely eliminated by a
hyper-Gaussian low-pass filter with its corresponding bandwidth (yellow curve in Fig. B.1
c). Through the filtering process, noise-reduced photoelectron spectrum can be obtained
as shown in Fig. B.1 d.
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Appendix C

Crystal potential scattering model

The general form of potential including both symmetric and asymmetric components reads,

V (r) = Re
[∑

G

ṼG exp(iG · r)
]

=
∑
G

V
(r)
G cos(G · r)︸ ︷︷ ︸
symmetric

−
∑
G

V
(i)
G sin(G · r)︸ ︷︷ ︸

asymmetric

(C.1)

where the complex spatial Fourier amplitude ṼG consists of real V
(r)
G and imaginary V

(i)
G

parts, ṼG = V
(r)
G + iV

(i)
G . The symmetric and asymmetric components of the potential are

dictated by the real and imaginary components of complex Fourier amplitude, respectively.
In the presence of a strong field, EL(t) = E0 sin(ωLt)e‖, the time derivative of electron
current is then given by dJ/dt ∝ −∇V (r)|r=〈r(t)〉,

dJ

dt
∝
∑
G

GV
(r)
G sin(G · 〈r(t)〉) +

∑
G

GV
(i)
G cos(G · 〈r(t)〉) (C.2)

High harmonics in the parallel direction of laser polarization

The current parallel to the laser polarization in Eq. C.2 is given by

dJ‖
dt
∝
∑
G

G‖V
(r)
G sin(G · 〈r(t)〉) +

∑
G

G‖V
(i)
G cos(G · 〈r(t)〉) (C.3)

where G‖ indicates the reciprocal vector parallel to the laser polarization, i.e., G‖ =
(G · e‖)e‖. The expectation value of the electron excursion reads 〈r(t)〉 = eE0

meω2
L

sin(ωLt)e‖,

and Eq. C.3 can be rewritten as,

dJ‖
dt
∝
∑
G

G‖V
(r)
G sin

(
G · e‖

eE0

meω2
L

sin(ωLt)

)
+
∑
G

G‖V
(i)
G cos

(
G · e‖

eE0

meω2
L

sin(ωLt)

)
(C.4)
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Using the Jacobi-Anger expansion,

cos(z sin(θ)) = J0(z) + 2
∞∑
n=1

J2n(z) cos(2nθ)

sin(z sin(θ)) = 2
∞∑
n=1

J2n−1(z) sin[(2n− 1)θ]

(C.5)

the current variation is expanded with terms of laser harmonics,

dJ‖
dt
∝
∑
G

∑
n

G‖V
(r)
G J2n−1

(
G‖

eE0

meω2
L

)
sin((2n− 1)ωLt)︸ ︷︷ ︸

Odd Harmonics

+
∑
G

∑
n

G‖V
(i)
G J2n

(
G‖

eE0

meω2
L

)
cos(2nωLt)︸ ︷︷ ︸

Even harmonics

+
∑
G

G‖V
(r)
G J0

(
G‖

eE0

meω2
L

) (C.6)

As one can find in the Eq. C.6, the even harmonics are induced by the imaginary part of
the potential which is responsible to the asymmetricity of the potential, linking the broken
inverse symmetry to the even harmonics. The odd and even harmonic intensities are then
given by

I2n−1(E0, ωL, e‖) ∝
∣∣∣∣∑

G

G‖V
(r)
G J2n−1

(
G‖

eE0

meω2
L

)∣∣∣∣2 =

∣∣∣∣∑
G‖

G‖V
(r)
projJ2n−1

(
G‖

eE0

meω2
L

)∣∣∣∣2

I2n(E0, ωL, e‖) ∝
∣∣∣∣∑

G

G‖V
(i)
G J2n

(
G‖

eE0

meω2
L

)∣∣∣∣2 =

∣∣∣∣∑
G‖

G‖V
(i)
projJ2n

(
G‖

eE0

meω2
L

)∣∣∣∣2
(C.7)

where Vproj refers to the projected Fourier amplitude, Vproj =
∑

G⊥
VG .

High harmonics in the perpendicular direction of laser polarization

Similarly the current whose direction is perpendicular to the laser polarization can be
simply derived from Eq. C.2 as,

dJ⊥
dt
∝
∑
G

∑
n

G⊥V
(r)
G J2n−1

(
G‖

eE0

meω2
L

)
sin((2n− 1)ωLt)︸ ︷︷ ︸

Odd Harmonics

+
∑
G

∑
n

G⊥V
(i)
G J2n

(
G‖

eE0

meω2
L

)
cos(2nωLt)︸ ︷︷ ︸

Even harmonics

+
∑
G

G⊥V
(r)
G J0

(
G‖

eE0

meω2
L

) (C.8)
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where G⊥ denotes the reciprocal vector perpendicular to the laser polarization, G⊥ =
G−G‖. The intensity of perpendicular harmonics is then given by

I2n−1(E0, ωL, e⊥) ∝
∣∣∣∣∑

G

G⊥V
(r)
G J2n−1

(
G‖

eE0

meω2
L

)∣∣∣∣2
I2n(E0, ωL, e⊥) ∝

∣∣∣∣∑
G

G⊥V
(i)
G J2n

(
G‖

eE0

meω2
L

)∣∣∣∣2
(C.9)
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[104] T. J. Hammond, S. Monchocé, C. Zhang, G. Vampa, D. Klug, A. Y. Naumov, D. M.
Villeneuve, and P. B. Corkum, “Integrating solids and gases for attosecond pulse
generation,” Nature Photonics, vol. 11, pp. 594–599, Sep 2017.

[105] Y. S. You, Y. Yin, Y. Wu, A. Chew, X. Ren, F. Zhuang, S. Gholam-Mirzaei, M. Chini,
Z. Chang, and S. Ghimire, “High-harmonic generation in amorphous solids,” Nature
Communications, vol. 8, no. 1, p. 724, 2017.
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