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zusammenfassung

Im Zentrum unserer Galaxie befindet sich das supermassereiche Schwarze Loch
Sgr A* mit einer Masse von etwa vier Millionen Sonnenmassen. Es ist das
uns nächstgelegene supermassive Schwarze Loch, und erlaubt uns Schwarze
Löcher und ihren Einfluss auf die Umgebung zu studieren. Mehrere Dutzend
Sterne befinden sich auf gebundenen Bahnen um dieses Schwarze Loch. Diese
Sterne und ihre Bewegung um Sgr A* bieten die einzigartige Möglichkeit, die
Allgemeine Relativitätstheorie in einem extremen Gravitationspotential zu
untersuchen.

Diese Arbeit konzentriert sich auf die jüngsten Fortschritte in der astronomi-
schen Instrumentierung und wie sie sich auf die wissenschaftlichen Entdeckungen
aus dem galaktischen Zentrum ausgewirkt haben. Durch eine überarbeitete
Datenreduktion und Kalibrierung verbessern wir die gemessenen Radialge-
schwindigkeiten von Sternen. Außerdem verbessern wir die Messungen weiter,
indem wir die optischen Aberrationen im interferometrischen Instrument GRA-
VITY berücksichtigen. Der dadurch entstandenen Datensatz der Umlaufbahn
des Sterns S2 um Sgr A* ermöglicht uns die präziseste Entfernungsmessung
zum galaktischen Zentrum, die je durchgeführt wurde. Wir verwenden diesen
Datensatz auch um Abweichungen vom Einsteinschen Äquivalenzprinzips zu
messen. Wir stellen fest, dass wir Abweichungen ausschließen können, die grö-
ßer als 5% sind. Dies findet in einem Potential Bereich statt in dem solche
Messungen bisher unmöglich waren.

Im letzten Teil dieser Arbeit stellen wir Studien zur Verbesserung des GRAVITY-
Instruments vor, wodurch wir neue Beobachtungsmodi zur Verfügung stellen.
Wir zeigen eine umfangreiche Studie zur instrumentellen Polarisation in GRA-
VITY. Indem wir die instrumentellen Effekte kalibrieren, können wir GRAVITY
als polarimetrisches Instrument einsetzen. Dies ist für die Untersuchung von
Sgr A* von großer Bedeutung, da die Emission des Schwarzen Lochs stark pola-
risiert ist. In ähnlicher Weise kalibrieren wir einen weiteren Beobachtungsmodus,
der es uns ermöglicht, direkte Astrometrie zwischen zwei Quellen durchzufüh-
ren, die sich nicht im selben interferometrischen Sichtfeld befinden. Mit diesem
Verständnis systematischer Effekte und der Kalibrierung neuer Beobachtungs-
modi ermöglichen wir bessere Beobachtungen des galaktischen Zentrums mit
GRAVITY, da sie uns erlauben die Akkretionsprozesse um Sgr A* in Zukunft
besser untersuchen. Dies wird unser Verständnis von supermassiven schwarzen
Löchern und der Allgemeinen Relativitätstheorie weiter voran bringen.
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summary

At the center of our Galaxy lies the supermassive black hole Sgr A* with a
mass of around four million solar masses. It is the closest supermassive black
hole known and offers an excellent opportunity to study black holes and their
impact on their environment. Several tens of stars are on bound orbits around
this black hole. These stars and their motion around Sgr A* offer a unique
possibility to study General Relativity in an extreme gravitational potential.

This work presents recent improvements in astronomical instrumentation and
how they have impacted scientific discoveries from the Galactic Center. We
are able to significantly improve the measured radial velocities of stars by
improving data reduction and calibration of the spectrograph SINFONI. We
further improve the measurements by considering optical aberrations in the
interferometric beam combiner, GRAVITY. By modeling and calibrating these
aberrations, we refine the dataset of the orbit of the star S2 around Sgr A*.
With these improvements, we achieve the most precise distance measurement
to the Galactic Center to date. We subsequently use the dataset to constrain
violations of the Einstein Equivalence Principle. We can exclude violations
larger than 5% in a mass regime, for which no such test has been possible
before.

In the last part, we present work to improve the GRAVITY instrument and make
new observing modes available to better study the physics around supermassive
black holes. We show an extensive study of the instrumental polarization of
GRAVITY. By calibrating the instrumental polarization effects, we open up
the possibility of using GRAVITY as a polarimetric instrument. This is of
great importance for the studies of Sgr A* as the emission from the black
hole is highly polarized, and adding polarimetry to the unique sensitivity of
GRAVITY allows us to better study the accretion processes around Sgr A*.
Similarly, we calibrate another observing mode, which allows us to do direct
astrometry between two sources that are not in the same interferometric field
of view. The better understanding of systematic effects and the calibration of
new observing modes developed as part of this thesis will allow us to further
sharpen our understandings of supermassive black holes and General Relativity.
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Part I

setting the stage





scope of this thesis 1
The very center of our Galaxy is the home of a supermassive black hole inside
a dense cluster of stars. The black hole is called Sagittarius A*, is at a distance
of around 28 thousand light-years, and has a mass of four million solar masses.
It is the closest supermassive black hole and offers many possibilities to study
the black hole and the influence on its surroundings. The Galactic Center has
been studied for over forty years and has proven that black holes do indeed
exist. A primary driver for a better scientific understanding of Sagittarius A*
and its surroundings has been the improvement of existing instrumentation
and development of new instruments.

The work collected in this thesis shows how improvements in the understanding
of instrumental effects can lead to immense scientific progress. To demonstrate
this I divided the thesis into three main parts:

• This thesis starts with a brief introductory part about the Galactic Center
and the instruments that are discussed in the following: SINFONI and
GRAVITY (chapter 2 and chapter 3)

• The second part presents two examples of how instrumental progress
opens the possibility for new results. I show the improvements in radial
velocity measurements with SINFONI (chapter 4), which was an essential
factor for the precise measurement of the distance to Sagittarius A*
(chapter 5). This distance measurement is improved even further with the
correction of optical aberrations, as presented in chapter 6. The second
part is concluded with the test of the Equivalence Principle in chapter 7,
which was only possible due to the improvements in data reduction and
analysis.

• The third part of this work gives an outlook and shows how we can offer
new observation modes with GRAVITY by understanding systematic
effects. We study the instrumental polarization in chapter 8 to enable
polarized observations with GRAVITY. Chapter 9 outlines the calibration
of optical aberrations needed for a dual-beam astrometric measurement
with GRAVITY.
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the galactic center 2
The center of our Galaxy offers the possibility to study processes in galactic
nuclei and the effects a supermassive black hole has on its surroundings. The
Galactic Center hosts a dense star cluster, several different gas streams, and
the supermassive black hole Sagittarius A* (hereafter Sgr A*) in the very
center (Genzel et al., 2010). The most dominant gas feature is a bundle of
ionized gas streams, which orbit Sgr A* and is called the minispiral (see e.g.
Lo and Claussen, 1983; Paumard et al., 2004; Zhao et al., 2009; Tsuboi et al.,
2017). The minispiral is surrounded by the circum-nuclear disk, a dense ring of
molecular gas with a size of approximately 3 parsec (pc) (see e.g. Becklin et al.,
1982; Guesten et al., 1987; Christopher et al., 2005; Montero-Castaño et al.,
2009). Within that ring sits the nuclear star cluster (see Figure 2.1 and Genzel
et al., 2010). This cluster is composed of late-type giants and supergiants
but also contains a comparably large number of early-type stars. This was a
surprising finding as it is not clear whether the young stars formed around
the supermassive black hole or were brought in there by other processes. The
origin of the young stats is still an ongoing debate, labeled as the paradox of
youth. Several of these stars seem to be on an ordered rotation in a clockwise
disk around the black hole (Lu et al., 2006; Lu et al., 2009), but also other
disk features have been discovered (Bartko et al., 2009; Bartko et al., 2010;
Yelda et al., 2013). The dynamical structure is a result of the formation from
an infalling cloud of gas approximately six million years ago (Bonnell and
Rice, 2008; Hobbs and Nayakshin, 2009). Within the central arcsecond around
Sgr A* the stellar picture changes yet again as there are several tens of so-called
S-stars which are on close orbits around the black hole. They do not show
an ordered rotation but have isotropically distributed orbits (Gillessen et al.,
2009a; Gillessen et al., 2017). The connection of the different components of
gas and stars, the origin of the different populations of stars, and the influence
of Sgr A* on all the components is a rich research field in the Galactic Center
science.

For this work I focus predominately on the supermassive black hole itself and
on the S-stars around it. The central object was first discovered as a compact
radio source by Balick and Brown, 1974. During the following years, the size
of the emission region was constrained, by very long baseline interferometry
to around 40 µas (Krichbaum et al., 1993; Shen et al., 2005; Doeleman et al.,
2008; Bower et al., 2014; Issaoun et al., 2019). It was also found that the radio

5



6 chapter 2: the galactic center

source Sgr A* shows no intrinsic motion in comparison to extragalactic sources
(Reid and Brunthaler, 2004; Reid, 2009), which constrains the mass to above
4 · 105 solar masses.

At the end of the 1970s the group of Charles Townes started observing the
innermost parsec of the galaxy in the mid-infrared (see e.g. Wollman et al.,
1977; Lacy et al., 1980). They used spectroscopy to measure the velocity of
ionized gas components. Analyzing the gas motions in these observations, they
found that the core of the Milky Way must contain a mass of 3-4 million solar
masses. It was at that time concluded that this mass could be a central massive
black hole (Crawford et al., 1985), an idea developed earlier by Lynden-Bell
and Rees, 1971. Two groups later supported this conclusion with the help
of near-infrared imaging of the Galactic Center stars. Our group at MPE in
Germany, first used the 3.5m New Technology Telescope (NTT) and later the
8m Very Large Telescope (VLT) to determine proper motions of stars as close
as 0.1 arcseconds (as) to Sgr A* (Eckart and Genzel, 1996; Eckart and Genzel,
1997). We used speckle imaging for these first near-infrared observations, which
is a very short exposure imaging technique. Speckle imaging became available
at that time due to new developments in infrared detectors. A second group at
UCLA came to a similar conclusion using the 10m Keck telescope (Ghez et al.,
1998). Both groups concluded that there must be a massive central object of
several million solar masses, with the mass contained in a small region. This
mass coincidences with the emission of the radio source Sgr A* to the accuracy
of the coordinate system of 10mas (Reid and Brunthaler, 2004; Reid, 2009).
These findings of a massive central mass made any other explanation than a
supermassive black hole unlikely.

The next step by both groups was to determine individual stellar orbits close
to Sgr A*. With the implementation of adaptive optics (AO) at both the Keck
observatory (Wizinowich et al., 2000) and the VLT (Rousset et al., 2003), both
groups reached diffraction limited imaging. Even more substantial progress
was made with the use of AO-supported spectroscopy as it allowed radial
velocity measurements of the stars around Sgr A*. This is true for the long slit
spectroscopy in case of the UCLA group (Ghez et al., 2003a), but even more so
for the integral field spectroscopy, used by the MPE group (Eisenhauer et al.,
2003). In 2005 OSIRIS was commissioned on the Keck telescope, which allowed
the UCLA group to also use integral field spectroscopy in the Galactic Center.
With the combination of astrometry and spectroscopy, it soon became possible
to measure the orbits of individual stars around the central source. These very
first orbits led to the firm conclusion that Sgr A* is indeed a supermassive
black hole with a mass of around four million solar masses (Schödel et al., 2002;
Schödel et al., 2003; Ghez et al., 2003a; Ghez et al., 2005; Eisenhauer et al.,
2005).
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Figure 2.1: The inner region of the Galactic Center with the stellar star cluster.
The inset shows Sgr A* and the close S-stars. Credit: ESO/MPE/S. Gillessen
et al.

Figure 2.2: Orbits of the Galactic Center stars around Sgr A*. The left figure
shows the 17 closest stars of the ones with known orbits, from Gillessen et
al., 2017. The right figure shows the well known orbit of S2 from Gravity
Collaboration et al., 2020a
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The work of both groups has continued since. This led to the determination of
over 40 individual orbits by now (Gillessen et al., 2017; Boehle et al., 2016).
Figure 2.2 shows the orbits of the innermost stars. Another step forward in
the astrometric measurements was made with the implementation of the inter-
ferometric instrument GRAVITY at the Very Large Telescope Interferometer
(VLTI) (Gravity Collaboration et al., 2017). With the combination of the four
8m telescopes at the VLT, GRAVITY can regularly achieve an astrometric
precision of 50 µas, an improvement of roughly a factor of 10 in comparison
to the best results from AO supported single-dish astrometry. However, the
unique astrometric power of GRAVITY is not the only improvement. With
the sensitivity and resolution of GRAVITY, it is possible to disentangle Sgr A*
from other sources and observe emission from Sgr A* at almost all times
(Gravity Collaboration et al., 2020e). The improved resolution also reduces the
possibility of obtaining biased astrometric stellar positions due to confusion
with other sources, which leads to a better orbit determination of the observed
stars.

The best-known star in the central region is the star S2 (or S-02 in UCLA
nomenclature). S2 is a massive star with an apparent magnitude of 14.2 in
the astronomical K-Band (2.0 µm to 2.5 µm) (Martins et al., 2008). It orbits
the central source every 16 years and has been observed regularly for 28 years
(see right panel of Figure 2.2). S2 opens up the possibility to use the Galactic
Center as a laboratory to study fundamental physics around a supermassive
black hole. When we consider the star as a test particle in the extreme
gravitational potential, it allows us to study the effects of general relativity
on the stellar orbit. The first of those effects is the gravitational redshift,
which results in a deviation from the emission one would expect in a purely
Keplerian field. The redshift is in these experiments usually parameterized
as an f-factor, which is zero for a pure Keplerain measurement and one if the
measurement agrees with the redshift expected from general relativity. Both
teams discovered the gravitational redshift in the data of S2, where we measured
it as f = 0.90±0.09|stat±0.15|sys (Gravity Collaboration et al., 2018b) and the
UCLA team as f = 0.88± 0.17 (Do et al., 2019). With the addition of more
astrometric data-points from the GRAVITY interferometer we improved this
significance to 20σ in Gravity Collaboration et al., 2019. With the capabilities
of GRAVITY, it was also possible to measure another effect of general relativity,
the Schwarzschild precession, in the orbit of S2 (Gravity Collaboration et al.,
2020a). The gravitational redshift and the Schwarzschild precession follow the
predictions of general relativity and show that the Schwarzschild metric can
describe the orbits of the stars around the black hole.

The orbits of the stars around Sgr A* and the relativistic effect in the orbits
combined constitute the current best evidence of the existence of a supermassive
black hole. This research led to the awarding of the Nobel Prize in Physics



9

in 2020 to Reinhard Genzel and Andrea Ghez for “for the discovery of a
supermassive compact object at the centre of our galaxy”.

While the results from the Galactic Center over the last decades have been
spectacular, there are many discoveries still to come. With the current in-
terferometric observations from the VLTI, there is still a lot to study in the
Galactic Center. We are continuously pushing GRAVITY to new limits as we
understand the instrument better. With the improved understanding, we can
limit the uncertainties due to systematic effects. Furthermore, the Galactic
Center offers so many more possibilities to study general relativity and black
hole accretion.

In Gravity Collaboration et al., 2018a and Gravity Collaboration et al., 2020c we
have shown that we can measure orbital motions of matter at few gravitational
radii distance around Sgr A* with GRAVITY. These motions occur during the
flaring state of the black hole and probe the accretion flow close to the event
horizon. By analyzing those flares with orbital motions we can constrain the
properties of the accretion flow as well as the properties of the black hole itself.
An important tool for the analysis of the flares is the polarimetry, as shown in
Gravity Collaboration et al., 2018a and Gravity Collaboration et al., 2020b.
Polarimetry helps us to understand the observed data of Sgr A* as well as to
probe the magnetic field around Sgr A*, which is closely coupled to the accretion
processes. We developed a full calibration of the polarimetric observing mode
of GRAVITY, which will help us to better analyze the polarimetric data from
GRAVITY.

We are also discovering even fainter stars (Gravity Collaboration et al., 2021)
in the vicinity of Sgr A*. To study those faint stars on their orbits and to
better observe the Sgr A* flares, we need a new observing mode, which is
currently still dominated by systematic effects. With the calibration of the
known systematic effects it becomes possible to study stars further out and
reach the highest possible precision with GRAVITY.

With the results from the last years and the ongoing science projects, the Galac-
tic Center maintains its status as a unique laboratory for general relativity and
black hole accretion. It allows us to learn more about the closest supermassive
black to us and to study the effects of general relativity in stellar orbits. Over
the last 40 years, the progress in the Galactic Center science has been closely
coupled to the advancement in instrumentation and continues to do so. This
thesis shows how the two are coupled and what future possibilities we will have
with an increased understanding of the instruments used.





instruments 3
The work in this thesis is based to a large degree on improvements to
the instruments SINFONI and GRAVITY. SINFONI is an integral field
spectrograph with which we derived the radial velocities of the stars in the
Galactic Center. GRAVITY is an interferometric beam combiner used to
get the positions of the stars closest to the black hole in the Galactic Center.
The following section will shortly present both of those instruments, their
main working principle and the subsystems relevant to this work.
Apart from GRAVITY and SINFONI, much Galactic Center data was
taken with the near-infrared imager NACO at the VLT. NACO is not as
precise as GRAVITY but has a much larger field of view and was used
to get the positions of many stars over a large area. NACO was the first
instrument to observe the Galactic Center with adaptive optics. It was the
main instrument for astrometry (measuring positions for objects on sky)
for almost twenty years and played a crucial role in the determination of
stellar orbits around Sgr A*. As NACO is less relevant for this work, I will
focus on GRAVITY and SINFONI.

3.1 spectroscopy with sinfoni

The first instrument I introduce is SINFONI, the instrument we used to measure
the radial velocities of stars. SINFONI is a combination of an AO module
and the integral field spectrograph SPIFFI (Eisenhauer et al., 2003; Bonnet
et al., 2004). SPIFFI was installed at the Very Large Telescope (VLT) in 2003,
and the AO module was added a year later. SINFONI was decommissioned
in 2019, and SPIFFI is currently being upgraded to become a part of the new
instrument ERIS (Davies et al., 2018).

An integral field spectrograph produces 2D spatially resolved spectra of the
target region. For the Galactic Center this means that one can observe a field
of 0.8 x 0.8 arcseconds and gets a spectrum of each star in the field (for an
example of a typical Galactic Center observation with SINFONI see Figure 3.1).

The working principle of SINFONI as an integral field unit is illustrated in
Figure 3.2. SINFONI works with an image slicer consisting of 32 plane mirrors
(Tecza et al., 2000). Those mirrors cut the field into 32 slices and align them
next to each other to form a long slit. This sliced image is then spectrally

11
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Figure 3.1: Example of a Galactic Center observation with SINFONI. The field
of the integral field spectrograph is shown on top and the insert shows the
extracted spectrum for the star S2.

resolved with a grism. The result is then 32*64 individual spectra which are
measured with a detector. In the data processing, the individual spectra can
be extracted and transformed into a 3D cube with two spatial coordinates and
the third dimension containing the spectrum of each pixel in the image.

For the measurement of the velocity of a star, one selects the pixels in which
the star’s signal is present and averages them. For the background correction
on uses pixels without any stellar signal and subtracts them from the averaged
star signal. This gives a stellar spectrum as shown in Figure 3.1. The example
spectrum is of the star S2, which shows clear emission features from Hydrogen
and Helium. To get the velocity, one needs to measure the wavelength at which
the spectral features occur in the observed spectrum λ and compare them to
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Figure 3.2: Principle of an observation with SINFONI (from Bonnet et al.,
2004)

the rest wavelengths of the same features in a vacuum λ0. The radial velocity
is then calculated with the simple Doppler formula:

vr =
λ− λ0

λ0

· c (3.1)

The measurement of λ can be either done with a simple Gaussian fit or with
the comparison to a template spectrum (for more details, see chapter 4). The
Doppler formula used for the Galactic Center stars (Equation 3.1) does not
involve any relativistic effects, as they are part of the model of the orbit, which
is then fitted to the data (for more details, see Lindegren and Dravins, 2003 or
the discussion in the appendix of chapter 6).

Over the 15 years of its lifetime, SINFONI was a workhorse for Galactic Center
observations. For the target S2 alone, it produced 94 data points and was a
crucial part in the detection of the gravitational redshift on the orbit of S2
around Sgr A* (Gravity Collaboration et al., 2018b). Chapter 4 describes the
improvements we made to the SINFONI data reduction and the extraction
of velocities from the measured spectrum. This work ultimately brought the
SINFONI precision to the level needed for its data to play a role in the extremely
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precise distance measurement to the Galactic Center (chapter 5) and to enable
the first-ever test of the Einstein Equivalence principle close to a supermassive
black hole (chapter 7).

3.2 interferometry with gravity

To measure the position of sources on the sky (the astrometry), we use the
interferometric beam combiner GRAVITY. I start this section with a short
summary of the general concept of interferometry before discussing the proper-
ties of GRAVITY itself and how we use it to observe the stars and the black
hole in the Galactic Center.

3.2.1 principle of interferometry

The spatial resolution of a telescope corresponds to the smallest angular separa-
tion at which two objects can be distinguished from each other. The resolution
of a single telescope is limited by the size of the aperture. A telescope’s aperture
alters the incoming light wave, which directly relates to the resolution of a
telescope. For a single telescope the resolution is given by

∆Θ = 1.22 · λ
D
. (3.2)

This fundamental limit can be overcome by not using a single telescope but an
array of telescopes. The principle of such an interferometer is closely related to
the double-slit experiment by Thomas Young from the year 1802: If coherent
light from a point source passes two slits, an interference pattern will occur. This
effect was originally used to prove the wave nature of light, as the interference
pattern is due to two electromagnetic waves, propagating from the two slits and
reaching the screen with different relative path lengths. These different path
lengths then lead to constructive or destructive interference for the different
positions along the screen. The intensity distribution for the two slit of a single
point source is given by:

I ∝ (1 + cos(kαB)) (3.3)

where α is the angle between the straight line from the two slits and the
observed point at the screen. k is the wavenumber, and B the separation of
the slits. In the case of an astronomical interferometer the resolution of the
observation is given by the angle at which one moves half a fringe on the
detector. Following Equation 3.3 this is given by:

∆Θ =
λ

2B
(3.4)
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where B is the baseline, which is the distance between two telescopes. The
resolution of an interferometer is not dependent on the telescope’s diameter
but on the distance between the telescopes, which is usually much larger.
Interferometers overcome the fundamental resolution limit of single-dish tele-
scopes. The disadvantage is that an interferometer does not directly provide
images or spectra as a single dish telescope. The observable in the case of an
interferometer is the complex visibility.

The measured complex visibility of an interferometer is given by the Van Cittert-
Zernike theorem. It states that the intensity distribution of the source on sky
and the complex visibility as a function of the baseline are connected with a
Fourier transformation (For a full derivation of this theorem see e.g. Monnier,
2003; Glindemann, 2011; Thompson et al., 2017). For monochromatic star
light one can then write the interferometer response of a source in the source
plane as the complex visibility V (u, v), given by the Fourier transformation of
the brightness distribution I(x, y) on sky. The Van Cittert-Zernike theorem is
given by the following equation:

V (u, v) = |V |e−iϕ =

∫ ∫
dxdyI(x, y)e−i2π(xu+yv)∫ ∫

dxdyI(x, y)
(3.5)

The complex visibility V is usually measured in the (u,v)-plane which is parallel
to the sky plane (x,y) and contains the projected baseline. Each baseline and
spectral channel defines one point in the (u,v)-plane at which the interferometer
measures the complex visibility.

It follows that the visibility is a two-dimensional Fourier transformation of the
position on the sky, weighted with the intensity at this position. With the
measured visibility one can then either use model fitting to the data to infer
the source distribution on sky or use an inverse Fourier transformation to get
the image of the sky. The second approach is usually done in interferometric
imaging, but is difficult due to the the incomplete information in the (u,v)-plane
(Högbom, 1974; Monnier and Allen, 2013). For the work in this thesis only the
approach of model fitting to the observed data is used.

Observables in interferometry: The observed complex visibility can natu-
rally be divided into two observables. The first one is the visibility amplitude,
which carries the information about the fringe contrast. For a point source,
the visibility amplitude is constant at one, while it drops off towards longer
baselines for extended sources. In the work I present here, we often use model
fitting to the visibility amplitudes. For example, we calculate the expected
amplitude for a binary system and then fit the separation and brightness of
the two sources to the data.
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The second observable is the visibility phase, which is apart from the increased
resolution the second significant advantage of an interferometer. In contrast
to a single-dish telescope, it is possible to measure phase information with
an interferometer. The fringe phase includes information about the spatial
structure of the observed source, as well as information about the position of
the source on the sky. This allows us to do astrometry with an interferometer.
The main issue of phase measurements with an interferometer is that the
atmosphere and internal variations in the interferometer influence the measured
phase. There are usually two ways to overcome this limitation: either to phase
reference the observed phases to a known point source or to not use absolute
phase but the so-called closure phase.

The closure phase is the simpler way to measure accurate phases. It is calculated
for a triangle of three telescopes by adding up the phase measurement of three
baselines, which then form a triangle:

Φ1,2,3 = Φ1,2 + Φ2,3 + Φ3,1 (3.6)

The significant advantage of the closure phases is that all errors which occur
at one individual telescope drop out in Equation 3.6. The measurement is
insensitive to variations in the light path of one telescope or aberrations in the
atmosphere. In general, the closure phases of a symmetric source are zero and
become non-zero for asymmetric source distributions (for more information see
e.g. Monnier, 2003; Monnier and Allen, 2013). The disadvantages of the closure
phase measurements are that one only gets one measurement for each triangle
of telescopes and not for each baseline, as usual for the visibility measurements.
This decreases the number of measurements, especially for interferometers with
a small number of telescopes. The second significant disadvantage is that the
measurement is translation invariant. In the case of the VLTI one gets four
closure phase measurements from the six baselines. This means that we can
only do relative astrometry of sources that are observed in one beam at the
same time. For an astrometric measurement of a single source, we need to go
to phase referenced observations.

The second possibility to overcome the instrumental and atmospheric influences
on the phase is the phase-referenced observing (see e.g. Shao and Colavita, 1992).
In this mode, a point source is observed simultaneously with the science target,
and an internal metrology system monitors the changes in the optical path
between the two light paths. This is an ability that the GRAVITY instrument
offers. The phase referenced observing is the most complex observing mode for
GRAVITY.
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Figure 3.3: Schematic overview of the GRAVITY instrument with the working
principle illustrated for two telescopes. The light path of the three observed
object is shown in different colors: the science object in red, the phase reference
in blue, and the AO target in green. The different subsystems of GRAVITY
are shown in the blue shaded boxes and the used VLTI infrastructure in the
orange shaded boxes (from Gravity Collaboration et al., 2017)

.

3.2.2 gravity

GRAVITY is an interferometric beam combiner located at the Very Large
Telescope Interferometer (VLTI) in Paranal, Chile (Gravity Collaboration et al.,
2017). It operates in the astronomical K-Band between 2.0 µm and 2.5 µm.
GRAVITY can be used to combine either the light of the four 8.2m Unit
Telescopes (UTs) or the four 1.8m Auxiliary Telescopes (ATs). With baselines
up to 130m, the maximum spatial resolution of GRAVITY is on the order of
3mas as given by Equation 3.4. The goal of GRAVITY was to provide phased
referenced astrometry and imaging of targets fainter than 16 mK, much fainter
than for any other optical interferometer.

The basic principle of GRAVITY with all its subsystem is shown in Figure 3.3:
In a typical observation, three targets need to be specified. One has to select a
bright star for the adaptive optics (AO) system, a point source for the fringe-
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tracker (FT) to phase reference, and a science target. The light of the AO
target is separated from the science beam by the star separator at the telescope
level and then fed into an AO system. For the UTs, the AO is done either by
the MACAO system in the visible (Arsenault et al., 2003) or the CIAO system
in the near-infrared (Kendrew et al., 2012). Both systems are located in the
Coudé room below the UTs. In the case of the ATs, the AO system NAOMI is
used, which operates in the optical (Woillez et al., 2019).

The second light beam is brought to the VLTI delay lines. This light then
enters GRAVITY with a field of view of 2 as for the UTs and 4 as for the ATs.
At the GRAVITY beam combiner entrance is a K-mirror, which derotates the
field, followed by a half-wave plate that ensures a stable polarization input or
enables the possibility to do polarimetry with GRAVITY. In the fiber coupler,
the light of the science and FT targets is then split and coupled into individual
fibers (Pfuhl et al., 2014). Those run to the fiber control unit where rotators
align the polarization for maximum fringe contrast, and fibered delay lines
that can be stretched to compensate for differential optical delays between the
FT and science target. After that, the interference happens in an integrated
optics chip (Jocou et al., 2014; Perraut et al., 2018). The fringe-tracking light
is then brought to the fringe-tracking detector, which runs with a frequency
up to 1 kHz and measures the phase and group delay. The fringe-tracker is
used to measure the optical path difference (OPD) between two telescopes,
which is primarily due to atmospheric turbulence (Lacour et al., 2019). This
OPD is then compensated via the delay lines in the VLTI and piezo mirrors in
GRAVITY (labeled as OPD control in Figure 3.3). This compensation of the
OPD enables a stable fringe detection in GRAVITY and allows for arbitrarily
long integration times on the science target. The science light is measured with
a different detector. It can be used with three different grisms with a resolving
power of 22, 500, or 4500.

Several more subsystems are running in GRAVITY to allow for a full phase
referencing between the fringe-tracking and the science light. A pupil laser
is launched from the four spiders of each telescope and is detected by the
acquisition camera in GRAVITY (Amorim et al., 2012). With the help of a
2x2 Shack-Hartmann sensor, GRAVITY tracks the lateral and longitudinal
movement of the pupil. The pupil motion is then in real-time corrected by the
internal pupil actuators in the fiber coupler and by the curvature mirror in the
VLTI delay line. This enables a stable pupil position during an observation.

A second subsystem is the metrology system (Lippa et al., 2016). A laser at
1908 nm is launched in the fiber coupler and follows the light path of the science
and FT light backward. The interference pattern between the science and FT
part of the metrology laser is then measured by photodiodes on the spiders of
each UT. These measurements allow to measure the differential optical path
difference (dOPD) between the two beams and are crucial to phase reference
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Figure 3.4: Picture of the open GRAVITY beam combiner with an overview of
the different subsystems (from Gravity Collaboration et al., 2017)

.

the science light to the fringe-tracking measurement. A picture of the open
cryostat of GRAVITY with all its subsystems is shown in Figure 3.4.

GRAVITY had its first light in 2017 and has since been producing exceptional
results in several fields. In the Galactic Center, as well as for the observation
of exoplanets in the off-axis mode, where the science target is separate from
the fringe-tracker, GRAVITY can reach an astrometric precision of the order
of 30 µas. In terms of sensitivity, we could show that we can successfully detect
stars as faint as 19.8 mK (Gravity Collaboration et al., 2021).

3.2.3 gravity and the galactic center

For observations of the Galactic Center, the full potential of GRAVITY is used
by observing in the so-called off-axis mode. In this mode, we use a dedicated
fringe-tracking star and also a separate AO star, as shown in Figure 3.5. As
the AO target, we use IRS7, a 6.5 mK star. IRS7 is observed with the CIAO
adaptive optics system. We have several possible stars for the fringe-tracking
target but usually use IRS16C, a single star with a magnitude of 9.7 mK. With
this star, we are well above the fringe-tracker’s sensitivity limit, which ensures
stable fringe-tracking in good conditions. In the off-axis case, we then can point
to targets within a 2 as range from the fringe-tracker. This mode allows us to
directly observe the flux variable black hole Sgr A*.
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Figure 3.5: Explanation of the observing mode for GRAVITY in the Galactic
Center

With GRAVITY, we get different observables and can get astrometric measure-
ments in different ways. When there are several targets in the field of view of
the science fiber, we can use model fitting to find the distances between the
sources (see e.g. Gravity Collaboration et al., 2020e). This fitting is usually
done to the visibility amplitude and the closure phases. As these observations
use the entire field of view, they are affected by field-dependent aberrations
in the optical path. We demonstrate with the measurement of the distance to
the Galactic Center that we get reliable measurements when calibrating for
those effects. If there is only one source in the field of view, the closure phases
are zero, and the visibility amplitudes are one. Therefore, we cannot use those
quantities to get an astrometric measurement. In this case, we have to use
the visibility phases referenced to the fringe-tracking star. This referencing
is done with the help of the GRAVITY metrology system, which again can
be influenced by aberrations in the light path. In order to enable the phase
referenced astrometry as an individual observing mode, we, therefore, need
another set of calibration measurements (more details in chapter 9).
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To measure the orbit of a star in three dimensions, one needs information
about the astrometry and the velocity in the direction of the line of sight.
This velocity, called radial velocity, is extracted from the spectrum of the
star. A star has spectral lines, which shift according to the Doppler shift
when the star moves along the line of sight. They shift towards bluer
wavelengths if the star moves towards the observer or to redder wavelengths
if the star moves away from the observer. For the measurement of relativistic
effects in the orbits of stars around the supermassive black hole Sgr A*
it is, therefore, essential to get the best possible velocity from the stellar
spectrum. We changed some parts in our treatment of the SINFONI data
reduction and velocity extraction from the spectrum to achieve the best
velocity measurement. In the following, we outline the most significant
changes in the wavelength calibration and velocity extraction and the effect
of the changes on the measured velocities. As this work was done with the
pericenter of the bright star S2 upcoming, it is mostly based on spectra of
S2. However, all the techniques can be applied to all the other stars in the
Galactic Center.

4.1 wavelength calibration

The software package which we use to reduce SINFONI data is called spred
(Schreiber et al., 2004). We used spred as a starting point and made some
changes to improve the wavelength calibration. An essential step to measure
reliable velocities is to precisely calibrate the wavelength axis of an observed
spectrum of a star. The calibration is usually done in a two-step process. In
the first step, we use data from a calibration lamp that was taken during the
daytime. This lamp has strong emission lines. In our case, this is a Xenon
lamp within SINFONI. The lines in the observed spectrum are measured, and
a dispersion relation is fitted, using the measured positions on the detector
and the theoretical lines of the lamp. In the case of spred a polynomial of fifth
order is used. This dispersion relation gives a first wavelength calibration of
the pixels on the detector.

In the second step, the OH emission lines are used to create an improved
calibration. OH lines are produced by OH radicals in the upper atmosphere.
The radicals are created in a reaction between atomic hydrogen and ozone.

23
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Figure 4.1: Example sky spectrum taken with SINFONI. The gray background
lines show the OH lines which are used in the wavelength calibration.

The OH lines are strongest between 1 µm to 2.5 µm, and they are variable over
short timescales. Because of the variability, they are a nuisance in infrared
astronomy. Even if they can be removed from the final data, their variability
adds noise to the spectrum. Often some signal remains in the spectrum, as the
lines cannot be entirely removed (Osterbrock et al., 1996; Davies, 2007).

However, as the OH lines are strong lines at fixed wavelengths, one can use
them for wavelength calibration (Osterbrock et al., 1996; Rousselot et al., 2000).
In our case, we used the average over all sky frames, which shows strong OH
emission lines. The lines outshine any background signal in the sky frames.
For an example of a sky spectrum, see Figure 4.1. In this spectrum, one sees
the OH line on top of the black body spectrum of the sky. We then used a
selection of the lines to improve the wavelength calibration. Using the OH
lines atlas from Rousselot et al., 2000 we created the maximum set of lines,
which were clearly detectable as single lines. Many OH lines are doublets and
triplets, which we cannot resolve with the spectral resolution of SINFONI. By
only selecting the lines that were clear single lines, we reduced the number of
lines used in the original spred pipeline by removing five lines. After carefully
selecting the lines, there were 33 lines left, which we show as grey vertical lines
in Figure 4.1.

The theoretical OH lines are used to create a synthetic spectrum, which is
then cross-correlated with the actual sky spectrum. The second step, therefore,
only adds a slight shift to the wavelength calibration. The primary dispersion
relation is taken from the calibration with the internal lamp. While the cross-
correlation process was already present in the original spred package, the
cross-correlation was poorly implemented, which added a negative bias to the
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Figure 4.2: Example for the improvement in calibration with the improved
pipeline. The left plot shows the calibration error for each spatial pixel for the
original reduction and the right plot for the modified reduction.
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Figure 4.3: Remaining calibration error for a typical SINFONI data-cube.
Each used OH line is fitted over the full data-cube and the deviation from the
theoretical line position is shown here.
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Figure 4.4: High signal-to-noise spectrum of the star S2 in the astronomical
K-Band. The spectrum has been produced by combining data from 12 years of
observations (adapted from Habibi et al., 2017).

final wavelength calibration. This negative bias can be nicely seen in Figure 4.2,
where we show the calibration error for each spatial pixel in a SINFONI cube.
For Figure 4.2 we took a combined and fully calibrated sky cube and measured
the position of the OH lines at each spatial pixel. The average deviation
from the nominal wavelength is shown in the figure. The average error in the
original spred implementation is on the order of −5 km s−1. With the better
cross-correlation and the improved OH line selection, the average error in the
improved reduction is 0.25 km s−1 which is very close to zero. This shows that
we can remove the bias due to the calibration with the new scheme. In terms of
uncertainty Figure 4.3 shows the measurement error in the OH line for a typical
sky cube. We see that there is still some uncertainty in the calibration but no
clear trend or bias anymore. For such a typical cube we estimate the calibration
uncertainty on the final measured velocities to be smaller than 2 km s−1.

4.2 velocity extraction

With the upcoming pericenter of the star S2 in mind (Gravity Collaboration
et al., 2018b) we also decided to improve the velocity extraction from the
spectrum. S2 has a magnitude of 14.2 and is one of the brightest stars in the
region close to Sgr A* (Martins et al., 2008). It has an orbital period of 16.05 yr
and had its closest encounter with Sgr A* in May 2018. S2 is an early type star,
which has two dominant absorption features in the K-band. The strongest line
is the Brγ line (hydrogen transition n = 7 - 4) with a vacuum wavelength of
2.1661 µm. The second feature is the helium line around 2.1125 µm. This line
is not a single feature but a blend of the He I triplet at 2.1120 µm (3p 3P0 – 4s
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Figure 4.5: Example for the fitting of the template spectrum to the SINFONI
data. The red spectrum is the one measured from SINFONI with the uncertainty
from the pixel extraction showing in light red. The grey spectrum is the
combined spectrum from Habibi et al., 2017 at zero velocity and the black one
is the same spectrum shifted to the fitted velocity of −1492 km s−1

.

3S) and the He I singlet at 2.1132 µm (3p 1P0 – 4s 1S). The weighting of the two
features depends on the atmospheric parameters and the rotational velocity of
the star (Habibi et al., 2017). In an individual spectrum at our resolution, they
appear as a single feature. In a typical observation of one hour, the helium and
hydrogen feature can be detected at > 5σ. A combined spectrum with a high
signal-to-noise ratio (SNR) from Habibi et al., 2017 is shown in Figure 4.4. On
the left shoulder of the hydrogen line is another helium line at 2.161 µm, which
is much weaker than the hydrogen line and in an individual dataset just above
the noise level.

Traditionally the velocity of S2 was measured by just fitting a Gaussian to the
Brγ to get the wavelength λ at which the line is measured and the radial velocity
is calculated with the doppler formula shown in Equation 3.1. However, the
Gaussian fit approach ignores the information from the Helium features in the
spectrum. In our new approach, we used the combined spectrum from Habibi
et al., 2017, shown in Figure 4.4, as a template and did a cross-correlation
with the measured spectrum. The cross-correlation has the advantage that the
fit takes the different features in the S2 spectrum and their distance to each
other into account. However, as the Doppler shift is not a simple shift of the
template spectrum, the approach is more complicated. We first obtain a guess
of the measured velocity from a traditional cross-correlation. We then shifted
the template spectrum to that velocity using the formula from Equation 3.1.
As this shift includes a regridding of the spectrum, we did this to the template
spectrum and not the measured one, as it introduces a small amount of noise.
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Figure 4.6: Typical extraction of a spectrum from the spatial axis of the integral
field unit. The green pixel show the selection for the object and the red ones
the selection for the background subtraction.

We then iteratively repeated these steps until the measured velocity was stable.
The total velocity by which the template spectrum needed to be shifted is then
the measured velocity of S2. An example for such a fit is shown in Figure 4.5.

In terms of uncertainty, there are three components to a velocity measurement
with an integral field spectograph: the uncertainty from the wavelength cali-
bration, the uncertainty from the selection of spatial pixels for the star and
background position, and the fit uncertainty. The error from the wavelength
calibration was set to 2 km s−1, as motivated by the previous section. The
selection of the pixels adds uncertainty as the galactic center is a very crowded
field with several stars and gas flows. Therefore, it is not always clear what
pixels have star flux in them and where to put the pixels for the background
subtraction without adding a signal from the gas flows. A typical extraction
for S2 is shown in Figure 4.6. To quantify the impact of different extractions,
we usually created eight spectra with different pixel selections and measured
the velocity for all of them. The standard deviation from the measurements
with different masks gives then the uncertainty from the pixel selection. For
the fit uncertainty, we determined the formal fit error σ, but also measured a
signal to noise (SNR) dependent uncertainty. The SNR is measured from the
depth of the Brγ line for the signal, and the noise is estimated from a part of
the spectra without emission lines. We fitted a power law to the dependence of
the fit error σ on the SNR and found a relation of σ ∝ S/N−0.92. The data and
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Figure 4.7: Relation of the SNR of the spectrum and the uncertainty from the
velocity fit. The red points are the datapoints and the black line the fitted
powerlaw with an exponential of -0.92

.

the fit are shown in Figure 4.7. The 1/(S/N) behavior is consistent with the
uncertainty of a centroid fit (Fritz et al., 2010).

However, the fit error, the S/N uncertainty, and the standard deviation over the
different masks are strongly correlated. Therefore, we used the largest of the
three as the fitting uncertainty. The calibration uncertainty is then added to
that value to get the full error on the measurement. This full procedure was used
from 2018 on, but we also re-reduced the full data-set of radial velocities taken
between October 2004 and the end of 2019 for the work presented in chapter 5.
In the re-reduction we got an uncertainty of ∼ 7 km s−1 for the very best
data-sets and a median uncertainty of 12.3 km s−1. This was an improvement
by 46% compared to the previous set of radial velocity data. The uncertainty
in the measurement is in comparison to other radial velocity measurements still
comparably big. With the newest high resolution spectrographs uncertainties
well below m s−1 are possible. For the spectrocopy of S2 we are limited by the
broad spectral lines and also by the fact that we only have two lines in the
K-Band. For old stars, where one sees a forest of thin metal lines in the K-Band
this measurement can still be significantly improved. Despite those limitations
the rederived radial velocities of S2 allowed us to better constrain the orbit of
S2, which ultimately led to a new and improved distance measurement to the
Galactic Center, presented in chapter 5, and to the first-ever test of the Einstein
Equivalence Principle around a supermassive black hole, which is presented in
chapter 7.
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Abstract: We present a 0.16% precise and 0.27% accurate determination
of R0, the distance to the Galactic Center. Our measurement uses the star
S2 on its 16-year orbit around the massive black hole Sgr A* that we followed
astrometrically and spectroscopically for 27 years. Since 2017, we added
near-infrared interferometry with the VLTI beam combiner GRAVITY,
yielding a direct measurement of the separation vector between S2 and
Sgr A* with an accuracy as good as 20µas in the best cases. S2 passed
the pericenter of its highly eccentric orbit in May 2018, and we followed
the passage with dense sampling throughout the year. Together with
our spectroscopy, in the best cases with an error of 7 km/s, this yields a
geometric distance estimate of R0 = 8178± 13stat. ± 22sys. pc. This work
updates our previous publication, in which we reported the first detection of
the gravitational redshift in the S2 data. The redshift term is now detected
with a significance level of 20σ with fredshift = 1.04± 0.05.

5.1 introduction

Measuring distances is a key challenge in astronomy. While many distance
estimators rely on secondary calibration methods, the basis for the whole
distance ladder is laid by a few methods. These methods all compare an
angular scale on sky with a size that is known in absolute terms. Foremost
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is of course the parallax method. It compares an observed reflex motion on
the sky, measured in angular units with the size of Earth’s orbit. Recently,
Gaia improved the number and quality of available parallaxes substantially
(Gaia collaboration 2018). However, Gaia works in the optical and at moderate
spatial resolution and does not provide any parallaxes toward the crowded and
highly dust-obscured center of the Milky Way. The extinction can be overcome
by observing at longer wavelengths, in the near-infrared (NIR, 1− 5µm). Very
large telescopes with adaptive optics (AO), and recently, interferometry between
large telescopes (GRAVITY collaboration 2017), overcome the stellar crowding.
This allowed us to determine the orbits of 40 stars around the central massive
black hole with periods between 13 and a few thousand years (Gillessen et al.
2017). These stars offer another direct method of determining a distance. The
distance to the Galactic Center (GC), R0, can be determined by comparing the
radial velocities (measured in km/s) of these stars with their proper motions
(measured in mas/yr). The measurement is direct because this can be done for
individual stellar orbits, as opposed to using a sample of stars together with a
dynamical model like in van de Ven et al., 2006 for the globular cluster ω Cen
or in Chatzopoulos et al., 2015 for the Milky Way nuclear cluster.

Most suitable for the orbit method is the star S2 on a 16-year orbit (the
second shortest period known so far, Meyer et al., 2012), with a semimajor axis
a ≈ 125mas. S2 has an apparent K-band magnitude of mK ≈ 14, which is bright
enough for spectroscopy. It is a massive, young main-sequence B star (Ghez et
al., 2003b; Martins et al., 2008; Habibi et al., 2017) that offers a few atmospheric
absorption lines in the observable parts of the spectrum. Several works used S2
to measure the distance to the GC. The first measurement was in Eisenhauer
et al., 2003, who reported R0 = 7940± 420 pc. Eisenhauer et al., 2005 updated
this value to R0 = 7620±320 pc. Ghez et al., 2008 reported R0 = 8400±400 pc,
and Gillessen et al., 2009a differed slightly with R0 = 8330 ± 350 pc. More
recently, Boehle et al., 2016 measured R0 = 7860± 140± 40 pc, and Gillessen
et al., 2017 obtained R0 = 8320±70±140 pc. Here and in what follows, the first
error is statistical, and the second error is systematic. All these measurements
rely on AO data. For general recent overviews of R0 determinations, see Genzel
et al., 2010 and Bland-Hawthorn and Gerhard, 2016.

The star S2 passed the pericenter of its orbit in May 2018, an event that we
followed in detail with astrometry and spectroscopy (Gravity Collaboration
et al., 2018b). The primary goal of these observational efforts was the detection
of relativistic effects in the orbital motion. However, the data also allow for
an unprecedentedly accurate measurement of R0 because of the large swing in
radial velocity (from +4000 to -2000 km/s) and the large orbital phase that was
covered in 2018. Gravity Collaboration et al., 2018b presented the detection of
the gravitational redshift from Sgr A* in the S2 spectra. Our previous analysis
included data up to end of June 2018. It addressed the question whether the
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gravitational redshift and Doppler terms are in agreement with the predictions
of Einstein’s theory of relativity. At the same time, our orbital solution also
included the most precise determination of R0 so far, R0 = 8122± 31 pc, where
the error is only statistical. Several authors studying the Milky Way structure
have used this result (McGaugh, 2018; Drimmel and Poggio, 2018; Mróz et al.,
2019; Eilers et al., 2019). Here, we update our value for R0, using data up to
the end of 2018, and we apply the relativistic corrections assuming General
Relativity is correct. This yields one fit parameter less. We also investigate the
systematic error on R0 from our measurement, which we did not consider in
Gravity Collaboration et al., 2018b.

5.2 data

Gravity Collaboration et al., 2018b used 45 AO-based astrometric points (after
down-sampling), 77 radial velocities, and 30 GRAVITY interferometric data
points. The present study adds ten epochs of radial velocity measurements
from late June 2018 to late September 2018, and ten epochs of GRAVITY
astrometry. Furthermore, we reanalyzed our radial velocity data from SINFONI
and the GRAVITY astrometry, implementing an improved understanding of the
respective systematic effects. This also led to a slightly different data selection
and different grouping of the observations.

For the SINFONI data we revisited the wavelength calibration, yielding an
improved wavelength dispersion solution. Where possible, we determined the
radial velocities by template fitting. The uncertainties are a combination of
formal fit error, wavelength error, and the error introduced by selecting a
certain extraction mask in the field of the integral field unit. For the details
see section 5.A.

For the GRAVITY data we replaced the manual frame selection with an objec-
tive outlier-rejection and included the (minor) effect of atmospheric differential
refraction. The data analysis includes data selection, binary fitting, correction
for atmospheric refraction, outlier rejection, nightly averaging, correction for
effective wavelength, adding systematic errors, and error scaling. We report
the details in section 5.B.

Overall, our new data set consists of 169 AO-based astrometry points between
1992 and 2019, 91 radial velocities between 2000 and 2019, and 41 GRAVITY-
based astrometry points in 2017 and 2018.

Our AO data set samples the on-sky motion of S2 at high cadence. The distance
between subsequent data points is typically smaller than the size of the point
spread function. Any confusion event with unrecognized faint stars thus might
affect several data points, leading to correlated measurements. As in Gravity
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Figure 5.1: Orbit of S2. Left: On-sky view of the astrometric data (red: AO
data, blue: GRAVITY data) in the down-sampled version with the best-fit orbit
(black ellipse). The black circle marks the position of Sgr A*. The locations of
previous AO-based flares agree with that position (gray crosses). Right top:
Radial velocity data of S2 together with the best-fit orbit. The blue data are
from the VLT, the red are earlier epochs from the Keck data set (Ghez et al.,
2008). Right bottom: Zoom into the on-sky orbit in 2017 and 2018, showing
the GRAVITY data that have error bars smaller than the symbol size.

Collaboration et al., 2018b, we therefore down-sampled the AO data set into
intervals of constant arc length on the sky, and we down-weighted these AO
data by a factor two in order to take the additional uncertainty due to unseen
confusion events into account. Furthermore, we omitted the 2018 data where
additional confusion with Sgr A* affects the data, leading to 48 AO-based
astrometric data points. We also developed a different approach for the same
problem, namely a noise model (see sec. 5.3). This gives a second data set, in
which we used all 169 AO-based astrometric points.

5.3 analysis

We used the same techniques as in Gravity Collaboration et al., 2018b and
Gillessen et al., 2017. The analysis essentially consists of one step: determining
the best-fit orbit for the data given, and the corresponding uncertainties. We
employed a χ2-minimization to determine the best-fit, and for the uncertainties,
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we used the standard error matrix approach, a Markov chain Monte Carlo
(MCMC) sampler and a bootstrapping technique. The latter bootstraps an
artificial data set by drawing from the original data separately for the AO
astrometry, the radial velocities, and the GRAVITY data. In order to avoid
problems that might arise because the AO points are correlated, we used the
down-sampled data set for the bootstrapping.

For a different approach with the AO data, we implemented a noise model
of the type presented in Plewa and Sari, 2018 for the AO-based astrometry.
Such a model has the advantage that it estimates the additional amount of
error and the correlation length from the data themselves, avoiding any prior
choices on how to treat the data. In our implementation, we exchanged the
temporal correlation length of Plewa and Sari, 2018 with a spatial one. The
underlying reason for a correlation between different data points is confusion
with unseen stars that can be described naturally by a length scale in the image
plane. Because S2 has a widely varying proper motion, a temporal correlation
length is less suited. This model adds two additional fit parameters: the spatial
correlation length and the typical confusion amplitude, which correspond to
the down-sampling and down-weighting in the other data set. We note that
fitting the noise model is feasible only when we also use the GRAVITY data,
otherwise, its parameters are too degenerate with the other 13 parameters.
We did not exclude all 2018 data for this data set, but only the epochs at
which Sgr A* apparently affected the position measurements, as visible in
an elongated source structure or excess flux of S2. We also analyzed a third
data set excluding all AO astrometry. Perhaps somewhat surprisingly, the two
years of GRAVITY data already are the much stronger constraint for the orbit
compared to the past 27 years of AO imaging data.

Compared to the analysis in Gravity Collaboration et al., 2018b, we included
in the calculation of the transverse Doppler effect the apparent proper motion
of Sgr A* to the southwest of (−3.151,−5.547)mas/yr, a reflex of the solar
motion around the Milky Way center (Reid and Brunthaler, 2004). This
corresponds to v⊙ ≈ 250 km/s, while S2 at pericenter reaches an on-sky motion
of vS2 ≈ 7320 km/s. Because in the Doppler formula a term of type (vS2+v⊙)

2 ≈
v2S2(1 + 2v⊙/vS2) occurs, the proper motion of Sgr A* leads to a small but
noticeable correction. We parameterized the strength of the combined redshift
and transverse Doppler effect with an artificial parameter fredshift such that
fredshift = 0 corresponds to classical physics, while fredshift = 1 corresponds to
the effects occurring as predicted by General Relativity. Including the proper
motion of Sgr A* induces a change of ∆fredshift = +0.038, and a change in
distance of ∆R0 = +6 pc.
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Figure 5.2: Selected posterior densities as obtained from the MCMC sampler
with N=200000, here for the noise model data set. The contour lines mark the
1, 2, and 3σ levels. We only show the diagrams with the strongest correlations.
All parameters are well determined (see section 5.D).

5.4 results

5.4.1 distance to the galactic center

If the fit has as few free parameters as possible, the estimate for R0 is the
most precise. We therefore assumed that General Relativity holds and fixed
the parameter fredshift = 1. We further used the Rømer delay and included the
first-order correction from the Schwarzschild metric. The coordinate system
parameters only apply to the AO astrometry because GRAVITY directly
measures the vector S2 - Sgr A*.

We list our best-fit results in Table 5.1 and show the best fit in Figure 5.1. The
error bars we report are the formal fit errors from the error matrix. The three
data sets yield completely consistent parameters within the formal uncertainties.
The reduced χ2 values by construction of the errors are close to 1 (section 5.A
and section 5.B).

The noise model has two additional free parameters, the noise amplitude
σ = 0.83 ± 0.15mas and the spatial correlation length λ = 21.2 ± 3.8mas.
These numbers define by how much a certain data point is expected to be off
from the model, given the other data. The correlation length is on the same
order of magnitude as the AO point spread function radius, and the amplitude
is reasonable. Our best-fit σ corresponds to a perturbing star of mK ≈ 17 at a
distance of our best-fit λ (Plewa and Sari, 2018).

Using the MCMC sampler, we obtained the full 13-dimensional posterior
distribution. All parameters are well constrained, and Figure 5.2 shows the
diagrams with the strongest parameter correlations: mass versus R0, semimajor
axis versus R0, and inclination versus R0. The most probable value agrees with
the best-fit value, and the 1σ uncertainty from the posterior is 13 pc, which
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Figure 5.3: Posterior distribution for R0 and mass from our bootstrap sample.
The contour lines mark the 1, 2, and 3σ levels.
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Figure 5.4: Histograms of the normalized residuals, the ratio of residual to
error for each data point. Top row: Individually for the three subsets of data.
Bottom: Combined data set.



Table 5.1: Best-fit parameters for our three data sets. The parameters x0, y0, vx0, and vy0 describe the location and motion
of the mass in the coordinate system of the AO data in R.A. and Dec. Because GRAVITY directly measures the separation
vector, we do not need to include such coordinate system offsets for the GRAVITY data. The third velocity vz0 is the
offset of the motion in the radial direction along the line of sight, the negative sign means a blueshift or a motion toward
the observer. The parameters (a, e, i, Ω,ω, tperi) are the classical orbital elements semimajor axis, eccentricity, inclination,
position angle of ascending node, longitude of pericenter, and the epoch of pericenter passage. The orbital elements are
defined as the osculating orbital elements at t = 2010.0, i.e., the conversion to position and velocity is done at that epoch
assuming a Kepler orbit.

Parameter down-sampled data noise model fit GRAVITY only
R0 [pc] 8179± 13 8178± 13 8175± 13
mass [106M⊙] 4.154± 0.014 4.152± 0.014 4.148± 0.014
x0 [mas] −1.04± 0.36 −0.65± 0.36 N.A.
y0 [mas] −0.47± 0.35 −0.73± 0.35 N.A.
vx0 [µas/yr] 68± 31 68± 32 N.A.
vy0 [µas/yr] 158± 31 108± 31 N.A.
vz0 [km/s] −3.3± 1.5 −3.0± 1.5 −2.8± 1.5
a [mas] 125.072± 0.084 125.066± 0.084 125.065± 0.086
e 0.884282± 0.000064 0.884293± 0.000064 0.884288± 0.000064
i [◦] 133.911± 0.052 133.904± 0.052 133.883± 0.053
Ω [◦] 228.067± 0.041 228.075± 0.041 228.091± 0.041
ω [◦] 66.250± 0.035 66.253± 0.035 66.257± 0.035
tperi [yr] - 2018 0.3790± 0.0014 0.3790± 0.0014 0.3789± 0.0014
UTC date 19.5.2018 09:53 19.5.2018 09:51 19.5.2018 09:47
red. χ2 0.82 1.10 1.00
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is fully consistent with the estimate from the error matrix. We furthermore
estimated our errors by bootstrapping (and refitting each artificial data set).
For this, we used the down-sampled data set because here the most important
correlation between data points is removed. Figure 5.3 shows the resulting
distribution for N = 20000 bootstraps. The most likely value agrees with the
best-fit value, and so do the error bars: R0 = 8178+13

−12 pc.

Figure 5.4 shows the normalized residual (residual divided by the error) distri-
butions for each of the three subsets of data and for the whole data set. The
distributions are well behaved and reasonably close to a Gaussian with mean 0
and width 1.

The size of the R0 error of 13/8178 ≈ 0.16% is comparable to what a simple
estimate yields. R0 is directly related to the ratio of proper motion (arc length
divided by time) and radial velocity. The most constraining part of the orbit is
the pericenter swing, which we followed with GRAVITY in 2017 and 2018.

• The arc length is ≈ 150mas, more than 1000× larger than the median
2D error of the 41 GRAVITY points1. The astrometric precision is thus
at the 0.01% level and does not contribute significantly to the statistical
error.

• The median error of the radial velocity data in 2017 and 2018 is 14.4 km/s,
and we have 35 data points. The mean absolute radial velocity of our
data in 2017 and 2018 is 2300 km/s. The spectroscopic precision is thus
at the 0.1% level. It dominates the measurement error, and it is of the
same magnitude as the actual statistical error on R0.

We conclude that R0 = 8178± 13stat. pc. However, we still lack an estimate for
the systematic error.

5.4.2 systematic errors

Our estimate for R0 is direct and as such does not depend on intermediate
calibration steps. Any systematic error is directly related to how accurately
we understand the instruments we use, that is, how accurate are the on-sky
positions we measure and how accurate are the radial velocities. Figure 5.2
shows the strongest parameter correlations for R0 from the posterior distribution

1The median 1D error of the 2018 GRAVITY data is 60µas, and for 2017 it is 145µas.
These numbers already take into account the scatter from night to night. The uncertainties
for individual data points within a single night are smaller (Gravity Collaboration et al.,
2018a). The difference in median error between 2017 and 2018 is caused by the improvement
in fiber positioning implemented for 2018. The median error over the whole data set of 41
points is 86µas 1D, or equivalently, 121µas 2D.



40 chapter 5: distance measurement to the galactic center

of the 13-dimensional fit. They are with mass, semimajor axis, and inclination.
These correlations can be understood qualitatively.

• R0 is inversely proportional to the semimajor axis a. A biased determi-
nation of a in angular units would bias R0 because the radial velocity
data determine a in absolute units; for S2, a ≈ 1023AU. The slope of the
correlation in Figure 5.2 (middle) confirms this, R0 × a ≈ 1023AU. The
instrumental reason why a could be biased is an error in the image scale.
A scale error of 1% would imply a distance error of ≈ 80 pc.

• The inclination i would be biased if the image scale were off in one
dimension only. The MCMC shows a sensitivity of R0 to i of 3.75◦/kpc.
At the inclination of S2, the sensitivity of the scale change to a change in
i amounts to 1.2%/ ◦.

• Kepler’s third law, GM = 4π2(a× R0)
3/P 2 (where the semimajor axis

a is measured in angular units), shows that our mass measurement is
equivalent to determining the period P because the nominator a × R0

is a constant, see above. The MCMC shows a sensitivity of R0 to M of
1.4× 103M⊙/pc at the best-fit R0, corresponding to ≈ 1day / pc for the
sensitivity to P . We note that the error we make in measuring the period
due to the uncertainty in the underlying data is captured in the statistical
error on R0. What matters here would be a systematic error in measuring
time, which we can exclude at the relevant level. The mass-distance
degeneracy is not a source of potential systematic error.

We conclude that if the parameter degeneracies were to introduce a systematic
error on R0, it would originate from an error in the astrometry. Furthermore,
we note that the GRAVITY data completely dominate our astrometry (see
Table 5.1), and that the AO + GRAVITY data sets yield the same result as
the GRAVITY-only fit. This means that the uncertainty in the GRAVITY
astrometry dominates the systematic error from the astrometry. In section 5.C
we show that we estimate this uncertainty to be 19 pc or 0.24%.

When we used the GRAVITY astrometry, we assumed that the near-infrared
(NIR) counterpart of Sgr A* is at the position of the center of mass. Gravity
Collaboration et al., 2018a reported that the flaring emission from Sgr A* moves
in a circular pattern with a radius of a few Schwarzschild radii, ≈ 50µas. The
flares are compact regions of transiently heated electrons that emit synchrotron
light, powered probably by magnetic reconnection events (Dodds-Eden et al.,
2009). They occur very close to the innermost stable circular orbit, and orbital
motion of a few 10µas has been proposed since their discovery (Genzel et al.,
2003; Broderick and Loeb, 2005; Hamaus et al., 2009). Observationally, the
center of motion matches the position of the mass to within ≈ 50µas. We
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Figure 5.5: Posterior distribution for R0 and the offset in radial velocity. The
contour lines mark the 1, 2, and 3σ levels.

used this as uncertainty on our assumption and estimated the effect on R0

by artificially displacing the mass by that amount. This yields changes in R0

of +8 pc, −8 pc, −6 pc, and +5 pc to the north, south, east, and west. We
include 6 pc in the systematic error for the assumption that GRAVITY directly
measures the separation vector between S2 and mass center.

With full coverage of the orbit, the measurement of R0 is no longer degenerate
with the offset vz0 in radial velocity (Figure 5.5, cf. Ghez et al., 2008). A
general offset in the radial velocity would be absorbed fully into vz0, but it
would not affect our measurement of R0. The zeroth order of the wavelength
calibration is thus not a source of systematic error. The leading order could
only be the first order, that is, the dispersion solution.

Our spectra are calibrated with a higher order polynomial, using multiple
atmospheric lines in the same spectra as calibration points. From the residuals of
our dispersion solution at these calibration points, we estimated the systematic
uncertainty in the wavelength axis to 2.5 km/s over the range relevant for S2.
Together with the mean absolute radial velocity in 2017 and 2018 (2300 km/s),
we obtain a systematic error of 0.11% or 9 pc.

Taken together, we thus estimate our systematic error on R0 to be 22 pc. Our
main result is

R0 = 8178± 13stat. ± 22sys. pc.

The statistical error is dominated by the measurement uncertainties of the
radial velocities, and the systematic error by the GRAVITY astrometry.



42 chapter 5: distance measurement to the galactic center

2005 2010 2015 2020

t [yr]

0

50

100

150

200

250

re
si

d
u
a
l

v
L

S
R

[k
m

/
s]

2017 2018 2019

t [yr]

Figure 5.6: Update of the posterior analysis of Gravity Collaboration et al.,
2018b. The panels show the residuals of the radial velocity data to the best-fit
orbit in which post-fit the redshift and transverse Doppler effect were turned
off (line at 0, fredshift = 0). The 2018 data show a highly significant excursion.
The red line gives the orbit with fredshift = 1. General relativity is an excellent
description for the residuals.

5.4.3 update on the gravitational redshift in s2

With the new data sets in hand, we repeated the posterior analysis of Gravity
Collaboration et al., 2018b to determine the combined effect of gravitational
redshift and transverse Doppler effect. Using an orbit model including the first-
order correction due to the Schwarzschild metric and including the Rømer delay,
we find fredshift = 1.047±0.052 for the noise model fit and fredshift = 1.036±0.052
when we use the down-sampled data set. Figure 5.6 shows the radial velocity
residuals to the classical part of the true best-fit orbit. For this we set fredshift = 0
without refitting after fitting with fredshift = 1. We compared these residuals to
the true model (i.e., with the effects turned on,fredshift = 1). We exclude that
purely Newtonian physics can describe our data at a significance level of 20σ.

5.4.4 distance estimate without radial velocities

Our GRAVITY measurement also provides the first direct distance measurement
from orbital motion without the need for radial velocities. The key for this is the
Rømer effect: The light travel time across the orbit causes astrometric points
to appear slightly ahead or lagging behind the orbit, depending on whether
S2 is in front of or behind Sgr A*. For a Keplerian orbit with astrometric
data only and no light-time travel effect, the distance cannot be determined.
The best-fit mass and distance are degenerate along a line M ∝ R3

0. Because
the light travel time across the orbit between 2017 and 2018 (where we have
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Figure 5.7: Posterior distributions for the data set without radial velocities. Left:
Using the correct orbit model. Right: Using an orbit model that neglects the
Rømer effect. In this plot we allowed negative distances (and correspondingly
negative masses) to avoid having a bound of the parameter space at 0, where
the actual maximum of the distribution falls.

GRAVITY data) is about three days and because we can detect the daily
motion of S2 in the GRAVITY data, our astrometry breaks the degeneracy.
Figure 5.7 (left) shows that this is indeed the case. The best-fit distance for this
case is R0 = 9.5± 1.5 kpc, consistent with our best estimate. To our knowledge,
Anglada-Escudé and Torra, 2006 were the first to propose this type of distance
measurement, but we are not aware of an application anywhere so far.

If we were to ignore the Rømer effect for the purely astrometric data set, we
would not obtain as a return a fully degenerate mass-distance relation. Instead,
the fit then tries to become as small a distance as possible (figure 6, right),
that is, in the sense of a limit, we obtain R0 → 0. This is where the light travel
time effect is minimal, as imposed by the wrong orbit model without Rømer
delay. This just shows in a different way that our astrometry requires a finite
speed of light and thus can estimate R0.

5.5 discussion

The best estimate for R0 from Bland-Hawthorn and Gerhard, 2016 using only
their set of ten independent best measurements that did not invoke Sgr A*
is R0 = 8210 ± 80 pc, in perfect agreement with our value. This means that
Sgr A* is indeed at the center of the Milky Way bulge.
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Our value of R0 together with the proper motion of Sgr A* of 6.379 ±
0.026mas/yr= 30.24 ± 0.12 km/s/kpc from Reid and Brunthaler, 2004 im-
plies Θ0 + V⊙ = 247.4± 1.4 km/s, where Θ0 is the rotation speed of the local
standard of rest (LSR) and V⊙ is the peculiar solar motion toward l = 90◦.
The error on Θ0 + V⊙ is composed roughly equally of the error in the proper
motion of Sgr A* and the uncertainty in R0. This constraint on Θ0 + V⊙ is
compatible with the recent determination from Hayes et al., 2018, who found
Θ0 + V⊙ = 253± 6 km/s from Gaia astrometry of the Sgr stream.

Bland-Hawthorn and Gerhard, 2016 estimate V⊙ = 11± 2 km/s, but to take
into account the radial variations in the median vϕ seen by Gaia Collaboration
et al., 2018, we used a total uncertainty of 4 km/s. Together with our estimate
for Θ0+V⊙ this implies Θ0 = 236.9± 4.2 km/s. From combining Gaia DR2 and
APOGEE data, Eilers et al., 2019 found Θ0 = 229± 6 km/s, where the error
is the reported systematic uncertainty. Wegg et al., 2019 used Gaia DR2 and
RR Lyrae stars to derive Θ0 = 217± 6 km/s. Using trigonometric parallaxes of
high-mass star-forming regions, Reid et al., 2014 find Θ0 = 240± 8 km/s.

Another remarkable result is the fact that the offset in the radial velocity, vz0,
is small and consistent with zero. The offset absorbs any possible systematic
offset in the radial velocity.

• The surface gravity of S2 contributes ∆vz0 = GMS2/rS2c = 1.6 km/s
(Lindegren and Dravins, 2003), where we used rS2, the radius of S2, and
MS2, its mass, from Habibi et al., 2017.

• The contribution of the Galactic potential can be approximated by ∆vz0 =
v2⊙/c ln(R0/RS2), where v⊙ is the Sun’s circular galactocentric speed and
RS2 is the galactocentric radius of S2 (Lindegren and Dravins, 2003). The
approximation surely does not hold inside the sphere of influence of Sgr A*
(≈ 3 pc), where the massive black hole dominates the potential. However,
because of the logarithm in the expression, the actual effective value
for RS2 does not matter strongly. With v⊙ ≈ 230 km/s and RS2 = 3pc,
we obtain ∆vz0 = 1.4 km/s, and when we use the apocenter distance
RS2 = 0.009 pc, the number is ∆vz0 = 2.4 km/s.

• Frame-dragging by a maximally spinning black hole might contribute an
average ≲ 0.2 km/s to the redshift (Angélil et al., 2010; Grould et al.,
2017).

• Light bending and Shapiro delay reach ≲ 4 km/s (Angélil et al., 2010)
but are highly peaked around pericenter and flip sign, so that they do
not induce a bias on vz0.

• Contributions from the solar system are around 3m/s, and thus negligible.
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A similarly sized offset in vz0 might arise from the uncertainty of the con-
struction of the LSR, which by its original definition should not include a
motion component in the radial direction, ULSR = 0. The LSR correction
applied to our data uses the values from Schönrich et al., 2010, who reported
U⊙ = 11.10+0.69

−0.75 km/s, where U⊙ is the solar motion in the direction of the GC.
In their review, Bland-Hawthorn and Gerhard, 2016 concluded that this was
U⊙ = 10.0 ± 1.0 km/s. The variations in the median radial velocity of stars
measured by Gaia Collaboration et al., 2018 in the nearby disk suggest that
ULSR is uncertain on the scale of several km/s.

Furthermore, an offset in vz0 could be due to the intrinsic motion of Sgr A*
with respect to the Milky Way. Reid and Brunthaler, 2004 measured the motion
of Sgr A* perpendicular to the Galactic plane to be 0.4± 0.9 km/s. For the
third dimension, the motion along the Galactic plane, Reid et al., 2009 reported
−7.2± 8.5 km/s, and the update in Reid et al., 2014 implies tighter constraints
around 2− 3 km/s. The expected "Brownian motion" of Sgr A* that is due to
scattering with stars in its vicinity is even slightly smaller than these limits
with 0.2 km/s (Chatterjee et al., 2002; Merritt et al., 2007).

The parameter vz0 is the sum of these offsets. Our fit results and the two
redshift terms yield a value of ≈ −6± 6 km/s. The uncertainty on this number
is larger than the fit error because of the systematic uncertainties, such as
the actual value for the Galactic potential that is used for S2, but also the
systematic uncertainties in the wavelength calibration. The most likely reason
why the sum is small is that the summands are small. Under this hypothesis,
we conclude that to within a few km/s, Sgr A* is at rest at the center of
the Milky Way and that the LSR is moving tangentially. The value is lower
than might be expected from the combined effect of Galactic bar and spiral
arms; however, their quantitative effect on the velocity streamlines at the solar
position is not well known.

Our data very strongly constrain the angular diameter of Sgr A*. Because
mass and R0 are correlated, the constraint is stronger than what simple error
propagation would yield. We find RS/R0 = 10.022± 0.020stat. ± 0.032|sys. µas.
The combined uncertainty corresponds to 50000 km at our R0. This sets a
strong prior for the analysis of data obtained from global millimeter very long
baseline interferometry that aims at resolving Sgr A* (Falcke et al., 2000;
Doeleman et al., 2009).

A potential caveat of our analysis might be that the physical model of the orbit
is too simple. So far, S2 did not reveal any signs of binarity. For GRAVITY,
S2 is an unresolved point source (Gravity Collaboration et al., 2017). The
resolution of GRAVITY in GC observations is about 2.2mas×4.7mas, excluding
a source extension larger than or a companion farther away than ≈ 1mas. Chu
et al., 2018 used the radial velocity data of S2 and reported an upper limit of
Mcompanion sin i ≤ 1.6M⊙ for periods between 1 and 150 days. Longer periods
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would not be stable against tidal break-up. Furthermore, the motion of either
S2 or Sgr A* could be affected by as yet unknown massive objects in the
GC. To some extent, such a perturbation can always be absorbed into the
orbital elements (Gualandris et al., 2010), resulting in biased estimates for the
parameters. According to our current knowledge, S2 is a suitable probe for
R0. It is an ordinary massive main-sequence star of type B0 - B3 (Ghez et al.,
2003b; Martins et al., 2008; Habibi et al., 2017). The atmospheric absorption
lines we used are expected to be fair tracers of the motion of the star, together
with its (unresolved) photocenter.

The value from Boehle et al., 2016, R0 = 7.86± 0.14± 0.04 kpc, disagrees with
our result. However, it comes from a combined fit of the stars S2 and S38.
The S2-only result of these authors is R0 = 8.02 ± 0.36 ± 0.04 kpc, which is
completely consistent with our result. Furthermore, we note that combining
different stars in the orbit fit tends to change the parameter mass and R0 by
rather large amounts (Gillessen et al., 2017) because small inconsistencies in
the data sets are amplified by the fact that in the mass-R0 plane two narrow,
curved posterior distributions are combined. The statistical error of a combined
fit does not catch this and could thus miss part of the true uncertainties.

Overall, we used accurate radial velocities from SINFONI and proper motions
from GRAVITY of the star S2 as it orbits Sgr A* to set the absolute size of
the orbit and determine the distance to the GC with unprecedented accuracy
to R0 = 8178 pc. The statistical error is only 13 pc and is dominated by the
measurement errors of the radial velocities. The systematic error of 22 pc is
dominated by the calibration uncertainties of the astrometry. Our analysis
also demonstrates that the relative velocity of the LSR along the line of sight
to Sgr A* is consistent with zero to within a few km/s, implying that Sgr A*
is at rest in the GC and the LSR is moving tangentially. The addition of
further SINFONI and GRAVITY data taken in 2018 also allowed us to increase
the significance of the previously published measurement of the gravitational
redshift caused by Sgr A* to 20σ.
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appendix

5.a radial velocities from sinfoni

For the SINFONI data we improved the wavelength calibration. Explicitly, we
modified our atmospheric line list that serves as reference for the wavelength
calibration by excluding double lines or lines with a low signal-to-noise ratio
(S/N) following the line atlas of Rousselot et al., 2000. We also improved the
fine-tuning of the spectrum to the OH lines, leading to an improved wavelength
dispersion solution. With these changes, we typically achieved a calibration
error of below 2 km/s, measured by the residuals of the OH lines. With the
improved data reduction, we re-reduced all available data since October 2004.
The earlier data (two epochs in 2004 and one in 2003) were obtained during
commissioning time and need a dedicated calibration procedure, which we did
not repeat. We combined data from different nights when the expected velocity
change was smaller than the calibration error. We omitted one measurement
from 2008 with low S/N (from a single ten-minute exposure) and included one
more epoch from 2009 and 2015 each and two more from 2010 and 2011 each.
We split up data that previously were combined into one cube into two epochs
in two occasions, in 2013 and 2015.

For spectra in which both the He-I line (2.112µm) and Brackett-γ (2.166µm)
lines are unaffected by atmospheric residuals, we used template fitting to
determine the radial velocities. For this we fit the long-time average S2
spectrum (Habibi et al., 2017) to the data. For spectra with sufficient S/N
and no artifacts (e.g., from imperfect atmosphere correction), template fitting
yields more accurate velocities. When either of the lines showed artifacts, we
fit a double-Voigt profile to the other unaffected line.

The errors are a combination of fit error and wavelength calibration uncertainty.
The fit error is obtained from the formal fit error σ, the S/N, and by varying
the pixel selection. For the S/N-related error we established a relation between
σ and S/N of σ ∝ S/N−0.92. The 1 / S/N behavior is consistent with the
uncertainty of a centroid fit (Fritz et al., 2010). To assess the impact of
different background subtractions and extraction regions, we extracted eight
spectra for each observation and determined the standard deviation of the
radial velocities from the different masks. Because these three error estimates
are strongly correlated, we used the largest of the three as fit error. We
linearly added the wavelength calibration error to obtain a preliminary error.
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These preliminary errors establish the relative weight of the different radial
velocities. Using these, we obtained a preliminary orbit fit, which showed that
we overestimated the errors because the residuals around the best preliminary
fit are on average 76.8% of the errors. Thus we rescaled the errors by that
factor.

With this improvement of the SINFONI analysis, we reach an error of ≈ 7 km/s
for the best data. The median error is 12.3 km/s, which is an improvement by
46% compared to the previous set of radial velocity data.

5.b astrometry from gravity data

5.b.1 data selection

We started from all observations of Sgr A* or S2 (793 exposures, each 30×10s =
5min on source, i.e., a total of 66 hours on source), regardless of observing
conditions and instrument performance.

In 2017, S2 was still at a distance of 54 − 67mas from Sgr A*, which is
comparable to the photometric field of view (FWHM≈ 65mas), and too little
flux from Sgr A* was injected into the fibres of the exposure pointing on S2
for a reliable interferometric binary signature (Perrin and Woillez, 2019). We
therefore only considered the observations centered on Sgr A* (261 exposures).
We furthermore rejected all Sgr A* observations for which the instrument
internal pupil control (Gravity Collaboration et al., 2017) reported an error
> 6 cm for any of the telescopes (12 exposures) or for which the pointing of
any telescope was too far from Sgr A* (83 exposures). We used a box spanning
∆R.A.= −45 ...10mas, ∆Dec.= −30 ...30mas around Sgr A*, which especially
avoided pointings toward the opposite side of S2. This selection keeps 166
exposures in 2017.

For 2018, we had 373 exposures on Sgr A*. Again, we rejected exposures
with pupil errors > 6 cm (18 exposures). Because of a newly introduced laser-
metrology guiding with substantially improved pointing accuracy, we rejected
exposures already when the estimated pointing error for any telescope was
outside ∆ R.A. / ∆ Dec.= −10 ...10mas around Sgr A* (35 frames). Because
S2 was always closer than 23mas to Sgr A* during our March - June 2018
observing campaigns, both sources were well within the photometric field of
view. We also used the 43 exposures centered on S2 that were obtained during
this period. Out of these observations, we rejected three exposures because of
a pupil error > 6 cm, and five exposures because of a pointing error larger ∆
R.A. / ∆ Dec.= −10 ...10mas. This yields a total of 355 exposures in 2018.
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5.b.2 binary fitting and correction for atmospheric
refraction

In a second step, three independent subgroups fit the individual exposures with
a binary model as described in Gravity Collaboration et al., 2018b; Gravity
Collaboration et al., 2018a, using three different codes ("Waisberg (W)", "Pfuhl
(P)", "Rodriguez-Coira (R)"). The codes differ in detail in the relative weighting
of closure-phases, visibilities, and square visibilities, the free fit parameters (e.g.,
color of Sgr A* or flux ratio per telescope), and the numerical implementation
(e.g., least-squares minimization or MCMC), but give overall consistent results
for the binary separations.

We furthermore corrected each binary fit for the differential atmospheric refrac-
tion between the comparably "blue" S2 and "red" Sgr A* (see Appendix A7.4 of
Gravity Collaboration et al., 2018a). Because Sgr A* was in its faint quiescent
state for most of our observations, we used the redder low-flux spectral index
Sν ∝ ν−1.6 from Witzel et al., 2018 for the subsequent analysis. With Sν ∝ ν2

for S2, and for the given effective spectral resolution of 127 nm (low-resolution
mode of GRAVITY), the difference in effective wavelength between S2 and
Sgr A* is ∆λ = 2.2 nm, and the resulting atmospheric differential refraction is
∆R = 45µas / nm ×∆λ tan z = 99µas tan z, where z is the zenith distance.
Because we typically observed the GC close to zenith, the atmospheric dif-
ferential refraction was on average only 30µas, and often with opposite signs
during a night, which resulted in a mean correction of ∆R.A. = −1µas and
∆Dec.= −5µas.

5.b.3 outlier rejection and nightly averaging

For each of the three sets of binary fits we determined a preliminary orbit
for error scaling and outlier rejection. We rejected observations for which the
residuals were outside the 80% quantile constructed in the 2D error-normalized
position residual plane2. The final data set contains 818 (W), 795 (P), and
737 (R) binary fits, corresponding to about 400 exposures of five minutes each,
that is, about 33 hours on source. We combined these and derived nightly
(error-weighted) mean and standard errors (with variance weights). Only in
the few cases when we had fewer than ten binary-fits per night (26/27 March
2017, 28/29 March 2017, 10/11/12 July 2017) did we combine several nights
to one average. The statistical 1D astrometric error of these combined nightly
averages is between 10− 110µas.

2The 80% quantile area was constructed using the Mathematica-based quantile regres-
sion package https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/
master/QuantileRegression.m, Version 1.1, written by Anton Antonov.
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5.b.4 correction for effective wavelength, systematic error,
and final error scaling

In a last step we corrected the nightly average separation for the effective
wavelength shift of 2.3 nm (0.1%) between the wavelength calibration with our
2800K calibration lamp and the very red highly dust obscured S2/Sgr A* data
(see Appendix A7.2 in Gravity Collaboration et al., 2018a).

To account for the systematic error in the wavelength calibration, which we
estimate to be 1/20 detector pixel, or equivalently, 2.5 nm, we added in square
the corresponding scale error of 0.11%. This error in the effective wavelength
translated into an astrometric error of about 10µas for the time around peri-
passage, and up to ∆R.A. = 66µas and ∆Dec. = 33µas for March 2017, when
the S2-Sgr A* distance was largest in our observations.

Finally, to account for unknown additional errors, we scaled the GRAVITY
astrometric errors by a factor 2.2 to match the residuals of a best-fitting
preliminary orbit. The resulting astrometric errors around the S2 peri-passage
in our data from 24 April - 27 June 2018 are ∆R.A. = 22− 101µas and ∆Dec.
= 38− 112µas, with a mean of 51µas and 60µas, respectively.

5.c systematic error of the gravity astrometry

We obtained the GRAVITY astrometry in the single-field mode. S2 and Sgr A*
were close enough in 2017 and 2018 to be fed into the interferometer by a single
fiber, the acceptance aperture of which was matched to the telescope point
spread function of ≈ 65mas. The two sources appear as an interferometric
binary to GRAVITY, which means that none of the more complex dual-
beam aspects of the instrument (Gravity Collaboration et al., 2017) enter the
measurement. The standard equation of interferometric astrometry ∆OPD =
s⃗ × B⃗ sets the effective image scale, where B⃗ is the baseline and s⃗ is the
separation vector that is to be measured. The accuracy of the interferometric
baselines and how well we can measure the OPD thus set the accuracy of s⃗.

The value for the baseline length to use is the so-called "imaging baseline" in
the sense of Woillez and Lacour, 2013 and Lacour et al., 2014. The telescope
position is then defined by the photocenter of the entrance pupil plane appodized
by the fiber mode in the pupil plane. While the telescope geometry is known
to the millimeter level, the active mirrors controlling the fiber mode to pupil
overlap are more critical and actually limit the baseline accuracy. A systematic
error occurs from how well the fiber mode is aligned with the reference point
of the pupil tracker. A vignetting of the pupil would also bias the baselines.
For an error estimate we used the stability of the pupil position, assuming that
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the alignment uncertainties overall are at that level. It amounts to 4 cm in the
primary mirror space. For the mean baseline length of 81.2m, an error of 4 cm
corresponds to 0.05% or 4 pc on R0.

The wavelength accuracy of the effective wavelengths sets the accuracy of the
OPD. From the standard calibrations of GRAVITY, we estimate that the
wavelength accuracy of the interferogram pixels is 0.11% or 9 pc on R0. This is
owing to the faintness of S2 (for interferometric standards), which dictates that
we need to observe S2 in low-resolution mode with R ≈ 22, which corresponds
to a wavelength sampling of 50 nm/pixel.

When the results from the three subgroups and fitting codes are analyzed
separately, the standard deviation in the best estimate R0 is 16 pc. This takes
care of the uncertainty in the binary model fit to the GRAVITY data. The
difference between the objective outlier rejection and the manual frame selection
of GRAVITY collaboration (2018a) results in a difference in R0 of 15 pc. For
this estimate, we carried forward the analysis of Gravity Collaboration et al.,
2018b with the new data up to the end of 2018 and included the atmospheric
refraction effects. This error, however, is not independent of the error from the
fitting by subgroups, and we include the larger of the two (16 pc).

The color difference of S2 and Sgr A* is not known very well, and we include
the difference in R0 determined with and without correction of the atmospheric
differential dispersion in our error. It amounts to 5 pc. Adding the different
contributions in quadrature, we conclude that the total systematic error on the
astrometry is 19 pc, which corresponds to 0.24%.

5.d full posterior density

In Figure 5.8 we show the full set of posterior densities as obtained from the
MCMC sampler with N=200000 for the down-sampled data set. All parameters
are well determined.



52 chapter 5: distance measurement to the galactic center

Figure 5.8: Full set of posterior densities as obtained from the MCMC sampler
with N=200000, here for the down-sampled data set. The contour lines mark
the 1, 2, and 3σ levels.
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Abstract: The GRAVITY instrument on the ESO VLTI pioneers the
field of high-precision near-infrared interferometry by providing astrometry
at the 10 − 100µas level. Measurements at such high precision crucially
depend on the control of systematic effects. Here, we investigate how
aberrations introduced by small optical imperfections along the path from
the telescope to the detector affect the astrometry. We develop an analytical
model that describes the impact of such aberrations on the measurement
of complex visibilities. Our formalism accounts for pupil-plane and focal-
plane aberrations, as well as for the interplay between static and turbulent
aberrations, and successfully reproduces calibration measurements of a
binary star. The Galactic Center observations with GRAVITY in 2017
and 2018, when both Sgr A* and the star S2 were targeted in a single
fiber pointing, are affected by these aberrations at a level of less than 0.5
mas. Removal of these effects brings the measurement in harmony with the
dual beam observations of 2019 and 2020, which are not affected by these
aberrations. This also resolves the small systematic discrepancies between
the derived distance R0 to the Galactic Center reported previously.
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6.1 introduction

The distance to the Galactic Center (GC), R0, can be measured directly from
stellar orbits around Sgr A*, the radio source associated with the GC massive
black hole (MBH) (see e.g. Genzel et al., 2010; Bland-Hawthorn and Gerhard,
2016, for a recent overview of alternative methods). To this end, the star’s
proper motion, given in angle per unit time, is compared to its radial velocity,
obtained in absolute length per units time from spectroscopic observations.
The GC distance then follows directly as a scaling parameter between the
two measurements. Most suited to measure R0 is S2, a massive young main
sequence B-star on a 16-year orbit with semi-major axis a ≃ 125mas and
apparent K-band magnitude mk ≃ 14 (Ghez et al., 2003b; Eisenhauer et al.,
2005; Martins et al., 2008; Gillessen et al., 2009b; Gillessen et al., 2017; Habibi
et al., 2017). During its pericenter passage in 2018, S2 was closely monitored
in astrometry and spectroscopy (Gravity Collaboration et al., 2018b; Do et
al., 2019). In particular, the GRAVITY instrument (Gravity Collaboration
et al., 2017) directly measured the distance between S2 and Sgr A* during
the fly-by at high angular resolution of around 30µas. The combination of
ultra-high astrometric precision from near-infrared interferometry and the
spectroscopic precision of ≲ 10 km/s allowed to determine the GC distance at
the unprecedented precision of < 1% (Gravity Collaboration et al., 2019).

Operating in the K-band, GRAVITY combines the light from either the four
Unit Telescopes (UTs) or Auxiliary Telescopes (AT) of the ESO Very Large
Telescope Interferometer (VLTI). Fringe tracking on a bright reference object
allows for minute-long integration times on the fainter science target and for the
measurement of differential complex visibilities. The instrument’s extremely
high angular resolution of ≃ 3mas results in very accurate astrometry with
error bars between 10µas and 100µas (Gravity Collaboration et al., 2017).
However, the latest R0 measurement in Gravity Collaboration et al., 2020a
indicates a possible systematic difference with earlier determinations (Gravity
Collaboration et al., 2018b; Gravity Collaboration et al., 2019). While the shift
is small, of O (1%) only, it is nevertheless significant due to the high precision
of the measurement.

The difference in the measured GC distance coincides with a change in the
observing mode. GRAVITY observes the Galactic Center with two different
methods, depending on the separation between Sgr A* and S2. Close to
pericenter passage, i.e. in 2017 and 2018, the sources are detected simultaneously
in a single fiber pointing in the so-called single-beam mode. In later epochs,
their separation exceeds the fiber’s field of view (FOV), and S2 and Sgr A* are
targeted individually. This is referred to as dual-beam mode.

In single-beam mode, it is not possible to align the two sources with the fiber
center. Hence, to further improve the GRAVITY astrometry, we conducted an
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analysis of how optical aberrations affect the visibility measurement across the
full field of view. A similar concept of field-dependent errors already exist in
radio interferometry, where it is known as direction dependent effects (DDEs)
(see e.g. Bhatnagar et al., 2008; Smirnov, 2011; Smirnov and Tasse, 2015;
Tasse et al., 2018, and references there in). The DDEs can arise either at
the instrument level from the antenna beam pattern or at the atmospheric
level such as from the ionosphere. In particular for the latest generation of
interferometers (e.g. VLA, Meerkat, LOFAR) with a wide FOV and a large
fractional bandwidth DDEs cannot be neglected. However, to our knowledge
there is no equivalent discussion in the context of optical/near-IR interferometry.

Indeed, our analysis shows that small optical imperfections in the beam combiner
induce field-dependent phase errors that reflect in the inferred binary separation.
We developed an analytical model to describe this effect, and verified it by
application to a dedicated test-case observation. Applied to the GC observations,
the model induces a shift in the S2 relative position of order 0.1− 0.2mas in
2018 and ∼ 0.5mas in 2017 in both right ascension (R.A.) and declination
(Dec.). Despite being small, the change is non-negligible at the high astrometric
accuracy achieved by GRAVITY. We can show that the corrected 2017 and 2018
data is in harmony with the dual-beam observations of 2019 and 2020. Further,
when retroactively applying the correction to the data sets used in Gravity
Collaboration et al., 2018b; Gravity Collaboration et al., 2019, the ensuing GC
distance is fully consistent with the latest result (Gravity Collaboration et al.,
2020a).

We introduce the analytical model in section 6.2 and compare it to calibration
measurements in section 6.3. Verification from the binary test-case and the
improved S2 position are presented in Sec. section 6.4, while we discuss
the implications for the GC distance in section 6.5. Finally, we conclude in
section 6.6.

6.2 formal description of static aberrations

Formal description of static aberrations and their impact on visibility mea-
surements Static aberrations along the instrument’s optical path affect the
measured visibilities by introducing a complex, field-dependent factor for each
telescope. We express this gain in its polar representation and decompose
it into a phase map ϕi (α⃗) and an amplitude map Ai (α⃗). Here, the index i
labels the telescope and α⃗ denotes positions in the image plane. Phase and
amplitude maps lead to a modification of the observed complex visibilities V obs
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from the well-known van Cittert-Zernike theorem (c.f. Equation 6.23). As we
demonstrate in the following, they are given by

V obs =

∫
dα⃗ Ai (α⃗)Aj (α⃗)O (α⃗) e−2πi α⃗·⃗bi,j/λ+i(ϕi(α⃗)−ϕj(α⃗))√∫

dα⃗ A2
i (α⃗)O (α⃗)

∫
dα⃗ A2

j (α⃗)O (α⃗)
, (6.1)

where b⃗i,j is the baseline vector between the two telescopes and O (α⃗) denotes
the intensity distribution of the observed astronomical object.

In this section, we show how the phase- and amplitude-maps follow from optical
aberrations. To this end, we start from the overlap integral, which determines
the electromagnetic field from a single telescope arriving at the beam combiner.
Subsequently, we propagate the effect of static aberrations from the overlap
integral to the measured complex visibility to arrive at a rigorous derivation of
Equation 6.1. Finally, we account for the superposition of static and turbulent
aberrations, to obtain a formalism which is applicable in realistic observation
scenarios.

6.2.1 static, field-dependent aberrations at fiber injection

Single mode fibers transport the light collected by each telescope Etel to the
beam combiner instrument. The overlap integral between light and the fiber
mode Efib then determines the transmitted electric field (Neumann, 1988),

E
(
β⃗
)
= Efib

(
β⃗
)
× η = Efib ×

∫
dξ⃗ Etel

(
ξ⃗
)
E∗

fib

(
ξ⃗
)
. (6.2)

Here, we assume a normalized fiber mode
∫
dξ⃗
∣∣∣Efib

(
ξ⃗
)∣∣∣2 = 1 and express

image-plane positions by two-dimensional vectors, ξ⃗ and β⃗. Following the
description of Perrin and Woillez, 2019, the overlap integral is converted to the
pupil plane by the Parseval-Plancharel theorem,

η =

∫
du⃗ F−1 [Eobj]P (u⃗) F−1 [E∗

fib] (u⃗) , (6.3)

where F−1 denotes the inverse Fourier transform, i.e. transformation from the
image to the pupil plane, and Eobj the light emitted by the astronomical object.
The latter is connected to F−1 (Etel) by multiplication with the pupil function
P (u⃗), corresponding to a convolution in the image plane. In the most simple
case of a single point source located at α⃗0, the light is described by a pure phase
F−1[Eps

obj] = exp (−2πi u⃗ · α⃗0). The pupil- and image-plane coordinates, ξ⃗ and u⃗
respectively, are Fourier-conjugate to each other and chosen to be dimensionless.
That is, any length scale in the pupil plane is given by λu where λ refers to the
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wavelength and u = |u⃗|. For discussion, we convert the dimensionless image
plane coordinates ξ⃗ to the corresponding angular separation in UT observations.
In an aberration-free scenario, the pupil function of a spherical telescope with
diameter 2rtel and central obscuration 2rcent simply is

P̃ (u⃗) =


0 if u ≤ rcent/λ

1 if rcent < u ≤ rtel/λ

0 if u > rtel/λ

. (6.4)

Optical aberrations multiply the pupil function by a position-dependent, com-
plex phase, and we here consider the case of purely static aberrations. These
are characterized by an optical path difference (OPD) dpup (u⃗) in the pupil
plane that can be expanded in terms of Zernike polynomials Zm

n ,

dpup (u⃗) =
nmax∑
n=0

n∑
m=−n

Am
n Zm

n (λu⃗/rtel) . (6.5)

We adopt the convention that Zm
n is dimensionless and the coefficient Am

n

corresponds to the term’s root mean square over the unit circle. Defining the
turbulence-free complex fiber mode apodised by the pupil function as

Π⊚ = e2πi dpup(u⃗)/λ P̃ (u⃗) F−1 [E∗
fib] (u⃗) , (6.6)

the overlap integral reads

η =

∫
du⃗ F−1 [Eobj] (u⃗) Π⊚ (u⃗) . (6.7)

The overlap integral obviously depends on the fiber profile which, for a perfectly
aligned ideal single-mode fiber, is

F−1
[
Ẽ∗

fib

]
= exp

(
−λ2u2

2σ2
fib

)
. (6.8)

GRAVITY was designed for optimal fiber injection (Pfuhl et al., 2014), which is
obtained for σfib = 2rtel

√
2 ln 2/ (πϵ) (Wallner et al., 2002). Here, the parameter

ϵ is of order unity and describes the pupil shape.

From comparison between model predictions and the calibration measurements
in subsection 6.3.2, we find that pupil-plane distortions alone are not sufficient
to describe the observed aberration pattern. We also need to account for optical
errors in the focal plane. Misalignment of the optical fiber, as well as higher
order aberrations at fiber injection, introduce a complex phase to Equation 6.8
and can distort the amplitude of the fiber profile.
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To illustrate the effect of focal plane aberrations, we first consider the three types
of misalignment depicted in Figure 6.1: (A) Lateral misplacement of the fiber
by (δx, δy), which in the pupil plane produces a phase slope ξ⃗fib = (δx/f , δy/f),
with f being the focal length. (B) Fiber tilt by an angle φ⃗fib = (φ1,φ2) with
respect to the optical axis of the system which shifts the back-propagated fiber
mode by u⃗fib = φ⃗ · f/λ. And (C), a defocus or axial fiber misplacement by δz
that introduces an additional phase curvature exp [π iδzλ/f 2 u2]. Taking all
three effects into account, the generalized fiber profile, projected to the pupil,
is (Wallner et al., 2002)

F−1 [E∗
fib] = F−1

[
Ẽ∗

fib

]
(u⃗− u⃗fib) (6.9)

× exp

{
−2π i

[
πδz

2f 2
(u⃗− u⃗fib)

2 − ξ⃗fib · (u⃗− u⃗fib)

]}
.

By rearranging the phase term in the pupil plane, one can decompose it into a
piston, tip-tilt and defocus

dpistonfib (u⃗) = −λ

(
δzλ

f 2
u⃗fib + ξ⃗fib

)
· u⃗fib −

δz

4f 2
, (6.10)

dtip−tilt
fib (u⃗) = λ

(
δzλ

f 2
u⃗fib + ξ⃗fib

)
· u⃗ , (6.11)

ddefocusfib (u⃗) = − δz

4f 2

(
2λ2u⃗2 − 1

)
. (6.12)

The phase terms in Equation 6.10 to 6.12 thus affects the overlap integral in the
same way as the lowest-order aberrations in dpup (u⃗). For the coordinate shift
of the Gaussian profile, on the other hand, there is no such correspondence, and
it alters the way in which the optical fiber scans the pupil-plane aberrations.

During GRAVITY observations, the misplacement term (A) depends on the
performance of the fiber tracker but also on the uncertainty of the source
position. In particular for exoplanet observations, the latter can be sizable.
Fiber tilt (B) is controlled by the GRAVITY pupil tracker, and the adaptive
optics calibration is one example that impacts the defocus (C).

While lateral misplacement (A) and defocus (C) describe the misplacement of a
point-like fiber entrance, fiber tilt (B) accounts for the alignment of the fiber’s
surface. This surface can exhibit irregularities beyond a simple tilt, which
lead to a position-dependent OPD in the focal plane, dfoc (x⃗), as illustrated
in Figure 6.1. Generally, aberrations from optical elements not conjugated to
the pupil are field-dependent and known as Seidel aberrations. In this context,
dfoc (x⃗) arising in the focal plane constitutes an extreme example. Still, it
is possible to decompose the focal plane distortions into a series of Zernike
polynomials, in analogy to Equation 6.5. In this representation, axial fiber
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Figure 6.1: Schematic depiction of the pupil and focal plane aberrations which
enter the overlap integral. Both effects in combination are required to describe
the aberration patterns observed in calibration measurements. The lowest-order
aberrations in the pupil function are shown explicitly, which are (A) lateral fiber
misplacement, (B) fiber tilt and (C) defocus. Their effect is further explained
in the text.

offset (C) and fiber tilt (B) simply correspond to the lowest-order coefficients,
and higher-order terms amount to a generalization of Wallner et al., 2002.
Again, the phase terms introduced in F−1

[
Ẽ∗

fib

]
by higher order aberrations

are degenerate with dpup (u⃗), but the amplitude distortions need to be modeled
explicitly by themselves.

Finally, for a single point source, located at α⃗0 in the image plane, the overlap
integral averaged over a time scale much longer than the source’s coherence
time ⟨...⟩obj is

⟨ηps⟩obj ∝
∫

du⃗ e−2πi u⃗·α⃗0Π⊚ (u⃗) = F [Π⊚] (α⃗0) . (6.13)

Evaluation of the Fourier transform as function of α⃗0 results in a two-dimensional
complex map. We show several examples of such maps in Figure 6.2, assuming
different Zernike coefficients to determine dpup (u⃗). The perfect Airy pattern,
obtained in the limit of zero aberrations, exhibits zero phase in the central
part and a phase jump by 180◦ at |α⃗| ≃ 1.22λ/ (2rtel). Anti-symmetric terms,
such as tilt, coma and trefoil (not shown), only alter the location and shape
of the phase jump, while defocus (not shown), astigmatism and higher order
terms produce smooth phase gradients. For a general choice of dpup (u⃗) and in
the absence of focal-plane aberrations, there is a saddle point where the phase
maps average to zero, but significant phase shifts are encountered at larger
radii.
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Figure 6.2: Example phase screens (top) and amplitude maps (bottom) in the
image plane induced by low-order Zernike aberrations in the pupil plane at
a wavelength of λ0 = 2.2µm. From left to right the considered aberrations
are: perfect Airy pattern, vertical tilt of 0.4µm RMS, vertical astigmatism of
0.2µm RMS, vertical coma of 0.2µm RMS, and combination of astigmatism,
coma and trefoil (with RMS 0.2µm, 0.2µm, and 0.1µm, respectively). The
rightmost panel also considers an additional fiber tilt with 0.2µm RMS.

Focal-plane aberrations break the radial symmetry of the fiber profile. Still,
if the perturbations are small enough, the phase maps show a saddle point,
but its value differs from zero and its location may be shifted. In any case,
the transmitted amplitude is deformed and/or misplaced from the perfect Airy
case. Pupil-plane aberrations typically widen the amplitude, while image-plane
aberrations have the opposite effect. They lead to a widening of the fiber in the
pupil plane and correspondingly to a narrower image-plane profile. The exact
scaling relation for the position of the Airy ring remains true only approximately
in the presence of higher-order aberrations such that maps at two different
wavelengths, λ1 and λ2, can be related by

⟨ηps⟩obj (α0,λ1) ≃ ⟨ηps⟩obj
(
α0

λ2

λ1

, λ2

)
. (6.14)
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6.2.2 effect on visibility measurements and astrometry

The overlap integral defines the electromagnetic wave transmitted to the beam
combiner from each of the four telescopes. After pairwise beam combination,
the complex visibilities are obtained from the inference pattern Ii,j,

Ii,j =

∫
dβ⃗

〈∣∣∣Ei

(
β⃗
)
+ Ej

(
β⃗
)∣∣∣2〉

obj

(6.15)

=
〈
|ηi|2

〉
obj

+
〈
|ηj|2

〉
obj

+ 2ℜ
〈
ηiη

∗
j

〉
obj

, (6.16)

where i and j denote the telescopes involved in the measurement and I is the
intensity. The complex pupil function enters each of these terms. Focusing on
the single-telescope component first, we find from Equation 6.7〈

|ηi|2
〉
obj

=

∫
dα⃗ F [Π⊚,i ⊗ Π⊚,i] (α⃗) O (α⃗)

=

∫
dα⃗ |F [Π⊚,i] (α⃗)|2O (α⃗) , (6.17)

where the ⊗-operator denotes auto-correlation, and O (α⃗) = |Eobj (α⃗)|2 is the
brightness distribution of the observed astronomical object which obeys〈

F−1 [Eobj] (u⃗) F−1 [Eobj]
∗ (v⃗)

〉
obj

= F−1 [O (α⃗)] (u⃗− v⃗) . (6.18)

Similarly, the inference term is given by〈
ηiη

∗
j

〉
obj

=

∫
dα⃗ F [Π⊚,i ⊗ Π⊚,j] (α⃗) O (α⃗) e−2πi α·⃗bi,j/λ

=

∫
dα⃗ F [Π⊚,i] (α⃗) F [Π⊚,j]

∗ (α⃗)O (α⃗) e−2πi α·⃗bi,j/λ , (6.19)

where b⃗i,j is the baseline vector.

All optical aberrations discussed previously are encoded in the back-projected
apodized pupil, which is a complex field-dependent function. Expressing the
pupil function in its polar representation,

F [Π⊚,i] = Ai (α⃗) e
iϕi(α⃗) , (6.20)

we refer to Ai as the telescope-dependent "amplitude map" and to ϕi as the
"phase map". Note that these quantities are closely related to the photometric
and the interferometric lobes, Li (α⃗) = A2

i (α⃗) and

Li,j (α⃗) = Ai (α⃗) e
iϕi(α⃗)Aj (α⃗) e

−iϕj(α⃗) , (6.21)
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respectively.

From the measured inference pattern, the complex visibilities are obtained as

V obs
(⃗
bi,j/λ

)
=
〈
ηiη

∗
j

〉
obj

/√〈
|ηi|2

〉
obj

〈
|ηj|2

〉
obj

. (6.22)

By contrast, in an ideal, aberration-free setting, the van-Cittert-Zernike theorem
relates the complex visibilities to the object’s brightness distribution

V mod
(⃗
bi,j/λ

)
=

∫
dα⃗ O (α⃗) e−2πi α·⃗bi,j/λ∫

dα⃗ O (α⃗)
. (6.23)

Comparison of Equation 6.22 and Equation 6.23 readily suggests that static
aberrations at fiber injection distort both the measured visibility phases and
amplitudes. We thus need to adapt the interferometric equation accordingly.
To make this effect even more explicit, we first consider the case of a single,
unresolved object at position α⃗0,

V obs
ps

(⃗
bi,j/λ

)
=

Li,j (α⃗0)√
Li (α⃗0)Lj (α⃗0)

e−2πiα⃗0 ·⃗bi,j/λ . (6.24)

In the aberration-free case, the phase and amplitude maps of either telescope
are given by the perfect Airy pattern shown in the very left panel of Figure 6.2,
and ϕi/j (α⃗0) equals zero or 2π. The presence of static aberrations introduces a
phase shift by ϕi (α⃗0)− ϕj (α⃗0). For an interferometric binary with positions
α⃗1, α⃗2 and flux ratio fbin the measured visibility becomes

V obs
bin =

Li,j (α⃗1) e
−2πiα⃗1 ·⃗bi,j/λ + fbinLi,j (α⃗2) e

−2πiα⃗2 ·⃗bi,j/λ√
[Li (α⃗1) + fbinLi (α⃗2)] [Lj (α⃗1) + fbinLj (α⃗2)]

. (6.25)

Finally, for a generic extended object with an intensity distribution O (α⃗)
the van-Cittert-Zernike theorem generalizes to the expression stated at the
beginning of this section, in Equation 6.1

V obs =

∫
dα⃗ Li,j (α⃗)O (α⃗) e−2πi vecα·⃗bi,j/λ√∫
dα⃗ Li (α⃗)O (α⃗)

∫
dα⃗ Lj (α⃗)O (α⃗)

.

Single point sources typically are observed at the fiber center, where fiber
injection is highest and the phase distortions are close to zero. In situations
where a very precise alignment is not possible, like for example in exoplanet
observations, the visibilities can pick up some small contribution from the
phase maps. For binaries with a separation comparable to the fiber width, a
configuration in which the phase and amplitude maps are irrelevant cannot be
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obtained in principle. In this case, the effect of static aberrations needs to be
modeled and corrected for in the data analysis.

6.2.3 interplay with turbulent aberrations

To this point, we have not considered the effect of time varying phase aberrations.
These are introduced by atmospheric turbulence or time-varying imperfections
in the optical system such as tip-tilt jitter from the adaptive optics. Their
effect is to multiply the static pupil function by another, time dependent phase

P⊚ = Π⊚ eiϕ
turb(u⃗,t) . (6.26)

To see how time-dependent aberrations affect the visibility measurement, we
briefly recap the arguments of Perrin and Woillez, 2019. Assuming that the
detector integration time by far exceeds the coherence time of phase fluctuations,
the long-time average ⟨...⟩turb over the telescope lobes is

⟨Li (α⃗)⟩turb =
〈
|F [P⊚,i] (α⃗)|2

〉
=

= F
[
(Π⊚,i ⊗ Π⊚,i) (u⃗) e

− 1
2
Dϕ(u⃗)

]
, (6.27)

⟨Li,j (α⃗)⟩turb = ⟨F [P⊚,i] (α⃗)⟩turb⟨F [P⊚,j] (α⃗)⟩∗turb
= F

[
(Π⊚,i ⊗ Π⊚,j) (u⃗) e

−σϕ
]
, (6.28)

where Dϕ (u⃗) is the structure function of the turbulent phase (Roddier, 1981),
which saturates to 2σϕ on large scales. Two assumptions underlie these expres-
sions, first that the fluctuations are stationary and second that the baseline
between the telescopes is long enough for the respective apertures to become
uncorrelated. As in Perrin and Woillez, 2019, we assume both to be fulfilled.

In the case of GRAVITY observations, atmospheric phase variations across
the telescope apertures are corrected by the adaptive optics system and the
turbulent aberrations are dominated by tip-tilt jitter. Thus, the turbulent
phase is

ϕturb
i = 2π t⃗i(t) · u⃗ , (6.29)

where the two directions of t⃗i(t) are independent and follow a Gaussian distri-
bution with zero mean and variance σ2

t . The structure function then becomes
Dt (u⃗) = (2πσtu)

2, and the photometric lobe is given by

⟨Li (α⃗)⟩turb = |F [Π⊚,i] (α⃗)|2 ⊛ exp

(
− α2

2σ2
t

)
, (6.30)
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where ⊛ denotes convolution. In case of the interferometric lobe, we further
assume that the jitter is uncorrelated between telescopes which yields

⟨Li,j (α⃗)⟩turb =

(
F [Π⊚,i]⊛ e

− α2

2σ2
t

)∗(
F [Π⊚,j]⊛ e

− α2

2σ2
t

)
. (6.31)

These turbulent lobes replace the static expressions of the previous sections in
the prediction of the observed visibility, i.e. in Equation 6.1, Equation 6.24 and
Equation 6.25. The tip-tilt jitter acts like a Gaussian convolution kernel on
the static maps, which is applied to the amplitude map squared in case of the
photometric lobe but to the full complex map in the case of the interferometric
lobe.

6.3 characterization of the gravity beam combiner

Measurement and characterization of aberrations for the GRAVITY beam
combiner GRAVITY observes the Galactic Center in its so-called dual-field
mode, which requires the presence of a bright reference target (IRS 16C) within
2” of the actual science targets, Sgr A* and S2. The field at each telescope is
split, and reference and science source are separately injected into the fringe
tracking (FT) and science channel (SC) fibers. Short detector integration
times on the FT allow for the optical path delay to be constantly adjusted
for atmospheric turbulence in order to maintain a high fringe contrast. The
science channel then measures a differential visibility phase with respect to the
fringe tracker on each baseline.

Phase and amplitude maps are inherently single-field effects in the sense that
they individually affect the fringe tracker and the science channel for each
telescope separately. Based on the optical layout of the fiber coupler (Pfuhl
et al., 2014), there is no reason to expect equal aberrations on the SC and
FT. However, the fringe tracking object is a bright, unresolved source which
is actively tracked by the fiber center in closed loop, such that the phase
distortions introduced from static aberrations are small. Moreover, any possible
phase distortion from the fringe tracker cancels in the analysis of closure phases
or induces a global shift without affecting the binary separation in the analysis
of visibility phases. However, a description of the SC phase and amplitude
maps is essential to robustly measure a binary separation in the science channel.

Here we report on measurements with the GRAVITY Calibration Unit (Blind
et al., 2014a) and on our subsequent analysis to extract SC phase and amplitude
maps. We then fit the static-aberration model from subsection 6.2.1 to those
maps in order to demonstrate its validity and to obtain compressed representa-
tion of the aberrations in form of a small number of Zernike coefficients.
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Figure 6.3: Examples of the scanning pattern applied in the Calibration Unit
measurements. SC aberration maps where obtained with a slow modulation
frequency (left). For the corresponding FT measurement, a faster scanning was
used, and the right panel only shows a single iteration of in- and out-spiral.

6.3.1 phase map measurements with the calibration unit

The GRAVITY Calibration Unit, which we use for the measurement of static
aberrations, is directly attached to the beam combiner and creates the light
of an artificial science and fringe tracker star. By modulating the voltage on
GRAVITY’s positioning mirror, the position of that star relative to the fiber
can be changed. We scan the FOV out to ∼ 70mas in a pattern of in- and
out-spiral, which is applied simultaneously to the FT and SC on one single
telescope at a time, see Figure 6.3.

In normal observation mode, GRAVITY controls the differential OPD between
science channel and fringe tracker by its laser metrology and the common
path to the telescopes by fringe tracking. During the phase map calibration
measurement, however, fringe tracking is not possible because the fringes are
lost at the margins of the scanning region. Instead, the common path from
the telescope to the instrument drifts in time. Thus the determination of
the aberration pattern from the absolute FT and SC phase requires a drift
correction. On the FT, the short detector integration time with maximum
sampling frequency of 1 kHz allows one to resolve fast modulation of the source
position and the full FOV can be scanned within ∼ 15 s. Over this short time
span, the drift is well described by a constant velocity, which we fit and subtract
from the data. On the SC, in contrast, the minimum detector integration time
is 0.13 s and a full scan of the FOV takes 2 − 3minutes, too long to model
the drift by a simple polynomial fit. Instead, we obtain the science channel
aberrations via a detour and first analyze the differential, drift-free SC-FT
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Figure 6.4: Science channel phase maps reconstructed by the procedure of
subsection 6.3.1 from the Calibration Unit measurement on 03/03/20 for all
four GRAVITY beams.

phase. The pure science channel aberrations then follow from knowledge of the
absolute fringe tracker phase.

The data are reduced by the standard GRAVITY pipeline and we obtain the
correlated flux in six FT spectral channels (ranging from 1.99−2.38µm) and in
medium resolution for the SC (233 wavelength bins in the range 1.97−2.48µm).
With the chosen setup, where the source position is varied on only one of the
two beams forming a baseline, the measured correlated flux is given by〈

ηpsi (α⃗0)
(
ηpsj

(
0⃗
))∗〉

obj
= Ai (α⃗0) e

iϕi(α⃗0) Aj

(
0⃗
)
e−iϕj(0⃗) . (6.32)

Thus, the measurement directly scans the phase and amplitude maps on the
modulated channel. Potential offsets in the accompanying non-modulated
beam, ϕj

(
0⃗
)
̸= 0, can only cause a global phase shift, which we fit and remove

in the subsequent analysis. Finally, we consider the amplitude maps normalized
to their maximum value, such that Aj

(
0⃗
)

has no impact on our result.
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In summary we apply the following analysis steps to obtain the FT and the
differential SC-FT phase and amplitude maps.

1. We fit and subtract a linear time drift from the phases measured in each
spectral channel and on each baseline.

2. Phases and amplitudes are binned on a spatial grid with resolution 1mas
and averaged over all periods of in- and out-spiral available.

3. The image plane coordinates do not align perfectly with the amplitude
maximum, i.e. the source position for which the coupling to the fiber is
most efficient. We correct for this effect by fitting a Gaussian profile and
shifting the coordinate origin to its maximum.

4. Interpolation over the gridded data gives one phase and amplitude map
per spectral channel and baseline.

5. All spectral channels are combined into a single map at reference wave-
length λ0 = 2.2µm, by applying the approximate coordinate scaling from
Equation 6.14. Here, we verified that the individual maps are consistent
over the full spectral range. Cross-validation with simulated maps shows
that the error introduced by the approximate scaling relation is small,
apart from the very margins of the map. It further cancels between
channels above and below λ0 to a very good degree.

6. From consideration of all baselines, three maps are available for each
telescope. We again verify their consistency and average them into a
single phase and amplitude map.

This method results in a FT and a differential SC-FT map for each telescope.
Subtracting the former from the latter, we finally arrive at the desired SC
phase map, which is shown in Figure 6.4. The amplitude map on the SC, on
the other hand, is measured directly.

The Calibration Unit measurement was performed twice with a four month
break, in late-2019 and early-2020, and we use the data to construct two
independent sets of maps. These agree very well in the qualitative features
and structures displayed. On the quantitative level the maps display moderate
differences of the order of ∼ 10◦, which are smaller at the center and increase
towards the map’s margins.

6.3.2 representation in the pupil plane

Analyzing the Calibration Unit measurement as described in the previous
subsection, we obtain the phase and amplitude maps on a grid discretizing
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the image plane. We use this result to infer the underlying pupil-plane and
fiber aberrations, dpup (u⃗) and dfoc (u⃗), in their Zernike representation. To
this end, we developed a simulation tool that creates complex maps of image-
plane distortions from a set of Zernike coefficients according to Equation 6.5,
Equation 6.6 and Equation 6.13.

For the fit we consider the two Calibration Unit measurements from 2019 and
2020 separately and combine the phase and amplitude maps for each telescope
into a complex map. We then minimize the square absolute difference to the
model prediction summed over all pixels with respect to the input coefficients.
Due to the nature of the approximate coordinate scaling (step 5 of the analysis
pipeline), at a map’s edge only the smallest wavelengths contribute. We limit
the radius to which the data is considered in the fit to αmax × λlow/λhigh. With
αmax being the size of the full map and λlow and λhigh the wavelength of the
lowest and highest channel, respectively. This choice ensures equal participation
of all channels in the fit.

The optical layout of observations with the Calibration Unit has some important
differences with the on-sky situation, for which the phase maps will be applied
later. Namely, the lack of a central obscuration and an enlarged outer stop
rGCU = 9.6m/2 alter the shape of the pupil defined in Equation 6.4. As a
consequence, the Calibration Unit pupil illuminates image-plane aberrations
out to a slightly larger radius. We choose to normalize the Zernike polynomials
by rtel = 8.0/2m, i.e. the telescope area covered by the secondary mirror, to
optimize our parameterization for the on-sky case. Image plane distortions,
on the other hand, are normalized over the image-plane fiber width at λ0,
σ̃fib = ϵλ0/

(
4rtel

√
ln 2
)
, i.e.

dfoc (α⃗) =
nmax∑
n=0

m∑
m=−n

Bm
n Zm

n (α⃗/σ̃fib) . (6.33)

Of the different types of maps constructed, the fringe tracker provides the
cleanest system and thus gives an important benchmark point for the agreement
between model and data. We thus use the FT-maps to determine the order
nmax to which Zernike polynomials in the pupil- and focal-plane aberrations
are considered. Successively increasing the fit order, we find that pupil-plane
aberrations with nmax = 6 and focal-plane aberrations with nmax = 2 provide
satisfactory model consistency, while still allowing for manageable convergence
times. Increasing the Zernike order in the pupil plane is especially important
to reduce phase residuals at larger radii, while the central part of the maps
can also be described by polynomials of lower order. Fits without focal-plane
aberrations manage to reproduce the phase structure to a satisfactory degree,
but show poor consistency between the phase and the amplitude data. Finally,
an additional parameter accounts for the overall amplitude scaling between
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Figure 6.5: Science channel phase maps obtained from fits to the differential
SC-FT maps, measured on 03/03/20 for all four GRAVITY beams.

measured and predicted maps, such that each fit constrains at least 34 degrees
of freedom. The phase RMS achieved for the fringe tracker fits is of order ∼ 1◦

for all beams and data sets; extrapolation of the fit result to the full map radius
yields an RMS of a few degrees.

In principle, it is possible to directly fit the SC maps by the same procedure
employed for the FT. However, by further refining the analysis we can remove
additional systematic effects from the SC maps. Creating the maps, we corrected
for misalignment of the image plane coordinates with the amplitude maximum
(step 3 in the analysis pipeline). This shift, however, is not guaranteed to be
identical on SC and FT, and as a result there can be a small offset between
the FT phase entering the differential SC-FT measurement. To describe this
effect, we fit a differential map, predicted from two sets of Zernike coefficients,
to the SC-FT maps. The latter of this two sets of parameters is largely fixed to
the previously obtained FT coefficients, and only the tip-tilt terms are allowed
to vary. The SC parameters, on the other hand, are all free, such that the
fit eventually determines the desired SC maps and the offset between the two
channels.
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Figure 6.6: Phase residuals of the fit to the differential SC-FT map measured on
03/03/20 for all four GRAVITY beams. Only the data within the dashed circle
is considered in the fit; at larger radii the cancellation of wavelength-dependent
scaling errors is not guaranteed.

From the best-fit coefficients of the differential SC-FT fit, which we summarize
in section 6.A, we reconstruct a complex SC map. Its phase is displayed in
Figure 6.5. As expected, the structure agrees very well with the maps obtained
by direct evaluation of the Calibration Unit measurement in Figure 6.4. Resid-
uals between measured and fitted SC-FT map, shown in Figure 6.6, are low
over the full radius considered for the fit. We obtain a best-fit RMS of 1◦ − 2◦

for most beams and data sets and two slightly worse results with RMS ∼ 3◦

and ∼ 5◦. Going to larger radii, the disagreement between fit and data starts
to increase. This can be caused either by wavelength-dependent errors or by
higher-order aberrations, beyond those considered for the fit. Indeed, in opti-
mizing nmax, we noted that every increase improved the extrapolation to large
separations. However, at such large off-axis distances, fiber damping becomes
very significant, resulting in a poor signal-to-noise ratio. Thus, we consider the
Zernike decomposition up to 6th order sufficient for our applications.
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6.4 application to gravity observations

Static, field-dependent aberrations affect the visibility measurement whenever
the size of an observed object is comparable to the fiber FOV. Here, we apply the
formalism developed in section 6.2 alongside the characterization of aberrations
from section 6.3 to observations of two different binary systems. First, as a
proof of concept, we consider a test-case binary observed with the Auxiliary
Telescopes (ATs), where the system’s position in the FOV was systematically
varied and thus screened over the phase and amplitude maps. Second, we apply
the aberration-correction to GC observations with the UTs from 2017 and 2018.
During those epochs, close to pericenter passage, S2 and Sgr A* where observed
simultaneously in a single fiber pointing.

The data considered in either analysis consists of visibility amplitudes, squared
visibilities and closure phases with a relative weighting of (1:1:2). To infer the
sources’ separation, we fit a binary model based on Equation 6.25, which we ex-
tend to account for the effect of finite spectral resolution and for a homogeneous
background with flux ratio fbkg relative to the first binary component,

V obs
bin

(
b⃗i,j
λ

)
=
(
Ãi (α⃗1) Ãj (α⃗1)Vλ

[(⃗
bi,j · α⃗1 − d⃗i,j (α⃗1)

)
, ν1

]
+ Ãi (α⃗2) Ãj (α⃗2)Vλ

[(⃗
bi,j · α⃗2 − d⃗i,j (α⃗2)

)
, ν2

])
·

∏
x=i,j

[
L̃x (α⃗1)Vλ

(
0⃗, ν1

)
+ fbinL̃x (α⃗2)Vλ

(
0⃗, ν2

)
+ fbkgVλ

(
0⃗, νbkg

)])− 1
2

(6.34)

Phase distortions enter this expression via the OPD correction di,j =
(
ϕ̃i − ϕ̃j

)
×

λ/2π. Further, the point-source visibility averaged over a spectral channel is

Vλ

(
d⃗, ν
)
=

∫
dλP (λ)

(
λ

2.2µm

)−1−ν

e−2πi d/λ . (6.35)

The spectral bandpass P (λ) is given by a top hat function. The source positions
α⃗1 and α⃗2, the flux ratios fbin and fbkg as well as the spectral index of the
central component (ν1) and the background flux (νbkg) are free fit parameters,
while the companion’s spectral slope is fixed to ν2 = 3.

Finally, Ãi/j , ϕ̃i/j and L̃i/j in Equation 6.34 refer to the phase maps, amplitude
maps and the photometric lobes as they are encountered in on-sky observations.
Those have two important differences with the Calibration Unit measurement.
Firstly, while the pupil-plane representation of the aberrations is the same for
both settings, the presence of a central obscuration and the smaller outer stop



72 chapter 6: improved gravity astrometric accuracy

200

0

200

O
ff

se
t [

m
as

]

AT 1 AT 2

200 0 200
Offset [mas]

200

0

200

O
ff

se
t [

m
as

]

AT 3

200 0 200
Offset [mas]

AT 4

Figure 6.7: Illustration of the AT binary test observations, showing the position
of the two binary components (circles and diamonds, respectively) relative to
the fiber profile (gray shading). Color gradients are chosen in accordance with
Figure 6.8. For this test, the fiber position was varied on AT2 only, but kept
fixed on the other three telescopes.

affects the realization of the maps in the image plane. This is conveniently
captured by using the Zernike coefficients found in subsection 6.3.2 to create
a new set of maps with adjusted pupil configuration. Secondly, the maps are
subject to turbulent smoothing according to Equation 6.30 and Equation 6.30.

6.4.1 verification for a binary test-case

The test-case observations, carried out with the ATs in astrometric configuration,
targeted HIP 41426, a binary with K-band magnitude mK ≃ 5.393 at R.A. =
8:26:57.75 h, Dec. = −52:42:17.8 (Cutri et al., 2003). The system has an
approximate separation of 200 mas. Its position relative to the GRAVITY
fiber was kept fixed for three of the four telescopes and varied in 24 steps
between ±400mas on AT2. At each offset, ten frames with a 6 s integration
time were taken. The setup is illustrated in Figure 6.7, which shows both binary
components relative to the fiber profile on all four telescopes. The shift was
applied along the x-axis in the frame of the GRAVITY pupil, whose rotation
with respect to the field results in a diagonal movement on the sky.
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Figure 6.8: Binary separation inferred for a varying fiber offset on AT2 with
(right panel) and without (left panel) application of the phase and amplitude
maps. Each data point shows the average over two polarization states, and the
range of offsets corresponds to ±200mas, approximately.

We use the Zernike coefficients obtained for the SC in subsection 6.3.2 to
produce phase and amplitude maps tailored to observations with the ATs.
In this case, the pupil, c.f. Equation 6.4, is defined by rtel = 1.82m/2 and
rcent = 0.14m/2. After beam collimation, ATs and UTs illuminate the same
section on the GRAVITY mirrors, such that the pupil-plane phase screen can
simply be scaled to the AT radius, i.e. rtel = 1.82m/2 also applies in the
Zernike decomposition of Equation 6.5. To authenticate the impact of correct
aberration modeling, we compare our results to a second, no-map analysis. In
this latter scenario, we set all phase maps to zero and all amplitude maps to
one, i.e. ϕ̃i/j = 0, Ãi/j = 1.

For too large fiber offsets, the signal-to-noise ratio on AT2 is poor due to large
fiber damping and we consequently discard these data. The remaining pointings
are shown in Figure 6.7, and the corresponding separation, measured from a
binary fit to the data according to Equation 6.34, is given in Figure 6.8.

The AT binary test-case clearly validates our aberration corrections. Different
configurations yield consistent results only if phase and amplitude maps are
considered in the analysis. Including the correct aberration model in the
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analysis clearly shifts the result and reduces the scatter. Even more importantly,
however, the separation found in the no-map analysis systematically depends
on the fiber position; it is largest for positive fiber-offsets and smallest for
offsets in the negative direction. With application of the aberration-correction,
this systematic is largely removed.

We consider the binary test-case observations primarily as a proof of concept and
therefore forgo a full analysis of the measurement’s systematic error as carried
out for the GC. Such uncertainties arise from the accuracy to which the phase
maps can be determined and from the uncertainty of the atmospheric smoothing
kernel. Further, there can be minor differences in the phase and amplitude
maps between AT und UT observations, and our treatment is optimized to the
UT scenario.

As the shift in its central value indicates, the binary separation is large enough
that even at perfect fiber pointing at least one source lies in a region of the FOV
where aberration-induced phase errors are significant. Accurate astrometry
thus is not a question of precise fiber alignment but is only possible with a
consistent treatment of the pupil-plane distortions in the analysis.

6.4.2 the separation between s2 and sgra*

Having verified our approach to correct for aberration-induced systematic errors,
we also apply it to Galactic Center observations with GRAVITY. During 2017
and 2018, i.e. close to pericenter passage, S2 and Sgr A* where observed
simultaneously in a single fiber pointing. In particular during 2017, when
the off-axis distance of S2 was larger, the aberration correction improves the
inferred binary separation. In 2019, in contrast, the Sgr A*-S2 separation
exceeds the single telescope beam size of about 60mas, and GRAVITY observes
both sources separately in so called dual-beam mode. Their separation is then
obtained by calibrating Sgr A* with S2 and fitting a point source model to
its visibilities (see Gravity Collaboration et al., 2020a for details). In this
configuration, each source can be well aligned with the fiber center, such that
field-dependent aberrations do not impact the measurement.

To derive the aberration-induced shift of the S2 position, we examine a subset of
the GRAVITY data used in Gravity Collaboration et al., 2019. In particular, we
apply stricter quality cuts and demand a high signal-to-noise ratio. Phase and
amplitude maps are generated from the coefficients obtained in subsection 6.3.2
by accounting for the specific geometry of UT-observations, i.e. rtel = 8.0m/2
and rcent = 0.96m/2. The residual turbulent tip-tilt is between 10mas and
15mas per axis (Perrin and Woillez, 2019). In total, we consider four different
realizations of the aberration maps which are given by the independent analysis
of the two calibration measurements in 2019 and 2020 each convolved with the
minimum and maximum smoothing assumption. A representative example for



6.4. application to gravity observations 75

Figure 6.9: The orbit of S2 relative to the phase maps as applied for the GC
analysis (measurement from 03/03/20, σt = 10mas). Dots indicate the position
of S2 on 2017.2, 2017.6, 2018.2 and 2018.7, respectively, while the cross marks
Sgr A*.

the phase maps applied in the GC analysis is shown in Figure 6.9 in relation
to the orbit of S2.

Our main result, the difference in S2 position with and without aberration-
corrections averaged per month, is shown in Figure 6.10. As expected, the
correction is largest in early-2017 and smallest around peri-center passage
in May 2018. Further, the mean corrections per epoch obtained with the
four different realizations of the aberration maps are consistent over the full
observational period.

As the orbit of S2 smoothly scans over the phase and amplitude maps (see
Figure 6.9), we also expect a smooth variation in the position-correction.
Indeed, the time-dependence in Figure 6.10 is well described by a second-order
polynomial fit

∆R.A. =
(
−0.44 τ 2 + 0.11 τ + 0.04

)
mas , (6.36)

∆Dec. =
(
0.41 τ 2 − 0.47 τ − 0.06

)
mas , (6.37)
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Figure 6.10: The difference in S2 position obtained from an analysis with and
without application of the aberration corrections. Colored dots indicate the
epoch-wise mean for different realizations of the phase and amplitude maps,
gray dots the results for individual observations. From these, we determine a
mean position-correction as function of time with a corresponding upper and
lower limit as indicated by the black solid line and the gray band. The thin
dashed line, finally, represents the correction applied in Gravity Collaboration
et al., 2019.

where τ = t/years− 2018.4 refers to the shifted observation date in years.

In addition to the mean correction per epoch, Figure 6.10 also shows the
individual file-by-file results as gray dots. These give some insight into the
uncertainty of the aberration-correction. When we fit the orbit of S2, any such
uncertainty must to be propagated as source of systematic error. We construct
a upper and a lower estimate of the correction, containing 67% of the files per
epoch. This is shown in Figure 6.10 as a gray band.

Apart from the systematic error, we also need to account for the statistical
uncertainty of the S2 position. That is, as the phase and amplitude error changes
when the S2 position is varied within its errorbars, we need to propagate this
effect to the final correction. To this end, we take the position error of the
original, un-corrected data point from which we draw 100 realizations and shift
the aberration maps by it. We then derive the correction from each realization
independently and use their scatter to estimate the statistical error of the S2
position correction. The resulting mean statistical uncertainty per epoch is
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small, between 10µas and 30µas, but we nevertheless also account for it in the
orbit fitting.

A further check is to ask the question, what correction makes the 2017 and
2018 GRAVITY positions optimally match to the rest of the S2 data. To this
end, we included a scaling factor fcorr in the correction we apply, such that
fcorr = 1 is our best correction and fcorr = 0 is no correction. This parameter
we can then include in the orbit fit (see subsection 6.5.1). The best fit yields
fcorr = 0.99± 0.06, i.e. identical to the correction we have derived purely from
calibration data. This gives an independent confirmation of our concept and
the resulting aberration correction: Our correction yields the most consistent
S2 orbit.

The aberration correction presented here constitutes a further refinement of
the analysis in Gravity Collaboration et al., 2020a. There, we applied the
measured aberration maps as shown in Figure 6.4 directly, rather than the
fitted decomposition in terms of pupil-plane Zernike polynomials. To account
for the widening of the maps, which occurs when projecting from the enlarged
stop on the Calibration Unit to the telescope pupil, in addition to the effect of
turbulence, we applied a smoothing kernel of σt = (19± 5) mas. The resulting
best-estimate for the correction is depicted in Figure 6.10 as dashed line. Both
methods give consistent results, affirming the robustness of the approach. The
only sizable deviation is in 2017.2, when S2 was observed at a separation
comparable to the maximum radius for which we obtained the calibration
measurement (see Figure 6.9). This case shows the strength of the Zernike
decomposition, which allows for a well-defined extrapolation.

6.5 results

6.5.1 determination of the s2 orbit

In the following we evaluate the effect of the aberration correction on the S2
orbit. The data used is similar to Gravity Collaboration et al., 2020a and
described in detail in section 6.B. We employ the same fitting procedure as in
Gravity Collaboration et al., 2020a, using a 13-parameter, Post-Newtonian orbit
model. Six of those parameters describe the Kepler orbit (a, e, i, ω, Ω, tperi),
and another six describe the reference frame relative to the AO spectroscopy
and assumed Local Standard of Rest (LSR) correction, (x0, y0, R0, ẋ0, ẏ0, ż0).
Here, R0 is the distance to the GC, the prime focus of this work, and M• the
central mass. The best-fit parameters are given in Table 6.2.

For determining the systematic uncertainty, we follow the approach in Gravity
Collaboration et al., 2019 of varying our assumptions and tracing the associated
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misalignment between mass and IR-emission 12 pc

wavelength calibration of SINFONI 9 pc

GRAVITY astrometry 29 pc

baseline accuracy 4 pc

wavelength accuracy 9 pc

model & data selection 9 pc

atmospheric differential dispersion 5 pc

aberration-correction 23 pc

metrology correction 10 pc

Table 6.1: Contribution to the systematic errors affecting the measurement of
R0, for details see Gravity Collaboration et al., 2019. Adding all contributions
quadratically, we find a total systematic uncertainty of 33 pc.

changes in R0. Compared to our earlier work, we also include the uncertainty
due to the aberration correction, as given by the gray band in Figure 6.10. The
individual contributions are given in Table 6.1. It turns out that the aberration
correction is the dominant contributor to the systematic error. The total
systematic uncertainty is 33 pc when adding the contributions quadratically.

Our best estimate of the Galactic Center distance thus is

R0 = 8275± 9|stat. ± 33|sys. pc . (6.38)

6.5.2 comparison to previous results

Our previous determinations of the GC distance in Gravity Collaboration
et al., 2018b, Gravity Collaboration et al., 2019 and Gravity Collaboration
et al., 2020a were biased by the field-dependent aberrations. Taking them into
account brings all our measurements into agreement as shown in Figure 6.11
and Table 6.3. We further note the following:

• In contrast to Gravity Collaboration et al., 2020a, we also apply a
correction for the 2018 data, where S2 and Sgr A* were close to each
other and close to the field center. Yet, the small aberration corrections
lead to a small upward correction of R0 of around 30 pc, comparable to
the systematic error.
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parameter value

a [mas] 124.982± 0.034

e 0.884215± 0.000058

i [deg] 134.685± 0.029

ω [deg] 66.259± 0.030

Ω [deg] 227.175± 0.029

P [yr] 16.0458± 0.0013

tperi [yr] 2018.378990± 0.000082

x0 [mas] −0.79± 0.10

y0 [mas] 0.00± 0.11

ẋ0 [mas/yr] 0.0780± 0.0091

ẏ0 [mas/yr] 0.0342± 0.0094

ż0 [mas/yr] −2.6± 1.4

M• [106M⊙] 4.297± 0.013

R0 [pc] 8274.9± 9.3

Table 6.2: Orbital parameters of S2 with their statistical uncertainties.

Phasemaps None 2017 only 2017 and 2018
GRAV. coll 2018 8122± 31 8231± 16± 24
GRAV. coll. 2019 8178± 13± 22 8275± 13± 31
GRAV. coll. 2020 8249± 9± 45 8275± 9± 33
this work 8246± 9± 33 8275± 9± 33

Table 6.3: Published values of R0 (bold) and the corresponding values if the
aberrations are taken into account (right column). All values in pc.



80 chapter 6: improved gravity astrometric accuracy

G
ill
es
se
n
et
al
.2
00
9a

G
ill
es
se
n
et
al
.2
00
9b

G
ill
es
se
n
et
al
.2
01
7

G
R
A
V
IT
Y
co
ll.
20
18

G
R
A
V
IT
Y
co
ll.
20
19

G
R
A
V
IT
Y
co
ll.
20
20
a

G
R
A
V
IT
Y
co
ll.
20
20
b

G
he
z
et
al
.2
00
8

B
oe
hl
e
et
al
.2
01
6

D
o
et
al
.2
01
9

2008 2010 2012 2014 2016 2018 2020
7.6

7.8

8.0

8.2

8.4

8.6

8.8

Year

R
0
[k
pc

]

Figure 6.11: Measurements of the Galactic Center distance over time with a
focus on studies of the S2 orbit. Blue points show results obtained with the
SINFONI, NACO and GRAVITY data with (dark blue) and without (light
blue) application of the aberration corrections. Gray R0 determinations are
based on data from the Keck observatory. For comparison, we show in black
results based on the statistical parallax of the nuclear star cluster (Chatzopoulos
et al., 2015) and from modeling the Milky Way dynamics based on observations
of molecular masers (Reid et al., 2019). Bland-Hawthorn and Gerhard, 2016,
finally, give the GC distance based on a combination of various methods.

• The orbit is particularly sensitive to the pericenter data. This leads to
the effect that the statistical uncertainty decreases strongly with time,
while the systematic uncertainty even increases slightly during this time
frame, since varying the assumptions then leads to stronger variations in
the fit result.

6.5.3 comparison with further s2-based results

We estimate that the accuracy of our VLT-based result is at the 40 pc level.
However, it deviates significantly from the Keck-based value reported in Do
et al., 2019, with the difference being at the 300 pc level. Since both works use
the orbit of S2 around Sgr A* for the determination of R0, it is important to
investigate where the discrepancy is arising, and we address this in section 6.C.
Overall, we conclude that the combination of

• a difference in the radial velocity data and

• a modest offset of the Keck coordinate system in the declination direction
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Figure 6.12: Detailed view of the S2 orbit in 2017. Dual-beam points do not
suffer from aberration-related systematic errors and agree very well with our
corrected data points.

might explain the discrepancy. Both effects contribute roughly 50%.

About 20% of the radial velocity difference can be attributed to the Doppler
formula in StarKit used implicitly by Do et al., 2019. The remaining 80% are
unexplained and could be in either the Keck or the VLT data.

The origin of the coordinate system offset is unclear as well. Trying to explain
the offset with a shift of the VLT coordinate systems is much harder than
imposing a shift of the Keck one due to the high precision of the GRAVITY
data.

6.6 conclusions

GRAVITY delivers high-resolution astrometry which, in combination with
spectroscopic data, allows for a very precise determination of the Galactic Center
distance. The values inferred from different epochs (Gravity Collaboration et al.,
2018b; Gravity Collaboration et al., 2019; Gravity Collaboration et al., 2020a)
show a small discrepancy at the 1% level, which nevertheless is significant due
to the high precision of the measurement.
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We were able to relate this shift to optical aberrations introduced in the
instrument, which lead to a field-dependent distortion of the visibility phase.
Their effect is the stronger, the further off-axis an object lies within the FOV.
In particular Galactic Center observations close to the S2 pericenter passage
are affected, where S2 and Sgr A* are detected simultaneously in a single
fiber pointing but at a separation comparable to the FOV. In earlier and later
epochs, in contrast, we employed the so-called dual-beam method and targeted
each source individually. In this case, as for most other GRAVITY science
observable, each source can be well centered and aberration corrections become
irrelevant. The dual-beam observation mode was also assumed to derive the
astrometric error budget in Lacour et al., 2014, which did not include the effect
of phase maps for this precise reason.

The full analytical description which we developed here allows us to propagate
the effect of optical aberrations at fiber injection to the measured visibilities.
Fitting this model to dedicated calibration measurements confirms its validity
and enables us to account for the effect in the data analysis. We further verify
the approach with dedicated test-case observations.

The formalism which we developed is applicable beyond GRAVITY to any
optical/near-IR interferometer where aberrations are introduced in the pupil or
the focal plane. There have been several cases in the literature with more than
one object lying in the interferometer’s FOV, for example some Keck (Colavita et
al., 2013), CHARA (Brummelaar et al., 2005) or NPOI (Armstrong et al., 1998)
results on binary stars. How severely aberrations affect an observation, however,
depends not only on their strength for a particular instrument but also on the
off-axis distance considered and on the statistical noise in the measurement.
In the example of GRAVITY on the UTs, the mean phase error introduced at
20mas separation is 4−5 degrees per telescope and increases to 14−20 degrees
at 50mas. While a binary test case as presented in subsection 6.4.1 can serve
as a general strategy to diagnose whether aberration-induced systematics are
an issue, dedicated calibration measurement are required for their correction in
the analysis for each individual instrument.

With the results from the GRAVITY Calibration Unit measurements and our
refined analysis scheme, we are able to further improve the separation between
S2 and Sgr A* in 2017 and 2018, introducing shifts up to 0.5mas caused by
the phase aberrations. In Figure 6.12, we show a detailed view of the S2 orbit
in 2017, where we have also included two dual-beam measurements that do not
suffer from phase aberrations. Indeed, the improved data agrees very well with
these positions.

Of all orbital parameters, the distance to the Galactic Center R0 is most strongly
affected by the change in the S2 position. This can be easily understood if one
views R0 as the scaling factor between angular and proper velocity. As such,
the field-dependent phase errors discussed in this work fully explain the shift
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between earlier R0 measurements with GRAVITY data. Applying the analysis
scheme developed here lifts any such discrepancies (see subsection 6.5.2). In
particular Figure 6.11 demonstrates that belatedly corrected data sets of earlier
publications give fully consistent results whose accuracy increases with time.

appendix

6.a list of zernike coefficients

The Zernike coefficients obtained by fitting the Calibration Unit measurements
from late-2019 and early-2020 are summarized in Table 6.4 and Table 6.5,
respectively. We provide the science channel results for all for GRAVITY beams
(GV1 to GV4) in units of µm according to the definitions in Equation 6.5 and
Equation 6.33, where Am

n labels pupil-plane aberrations and Bm
n those in the

focal plane.

6.b data

We use the data set presented in Gravity Collaboration et al., 2020a with the
following changes:

• Each single-beam astrometric position is corrected according to Equa-
tion 6.37, and we add the statistical error of this correction in quadrature,
which increases the individual uncertainties by around 15µas.

• We corrected the radial velocity of the epoch 2018.1277, which was
13 km/s too high in the previous data set.

• Further, we are able to add one interferometric position measurement
of S2 from early March 2020. Like in 2019, the separation between
S2 and Sgr A* exceeds the fiber field of view, and hence a dual-beam
measurement needed to be employed.

Our data set consists of 128 AO-based astrometric points, 58 GRAVITY-based
astrometric points and 97 radial velocities, of which the first three before 2003
are from Do et al., 2019.
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GV1 GV2 GV3 GV4
A0

0 −0.005 −0.028 −0.019 -0.014
A−1

1 0.000 0.008 0.062 -0.014
A1

1 0.021 −0.030 0.053 0.022
A−2

2 0.009 −0.009 0.028 0.010
A2

2 −0.010 −0.012 0.015 -0.035
A0

2 −0.034 −0.012 −0.016 -0.002
A−1

3 0.032 −0.042 0.028 0.065
A1

3 0.032 0.071 0.081 0.013
A−3

3 −0.056 0.011 0.032 0.021
A3

3 0.013 −0.017 −0.026 0.054
A−2

4 −0.005 −0.020 −0.036 -0.016
A2

4 −0.049 −0.014 −0.046 -0.034
A−4

4 0.011 −0.005 0.049 0.002
A4

4 −0.005 −0.006 −0.029 -0.012
A0

4 −0.039 −0.001 −0.023 -0.019
A−1

5 0.011 0.030 0.013 0.014
A1

5 −0.003 −0.026 0.032 -0.032
A−3

5 0.018 −0.026 −0.015 -0.013
A3

5 −0.020 0.002 −0.026 -0.030
A−5

5 0.013 −0.018 0.008 -0.027
A5

5 0.003 −0.003 0.047 -0.002
A−6

6 −0.003 0.009 0.018 -0.001
A6

6 −0.009 0.013 −0.019 0.015
A−4

6 −0.002 0.004 −0.017 0.002
A4

6 0.021 0.000 0.018 0.018
A−2

6 0.001 −0.001 0.002 -0.000
A2

6 0.003 0.002 0.003 0.002
A0

6 0.024 0.001 0.024 0.007
B−1

1 0.010 0.113 0.065 0.033
B1

1 0.035 −0.043 0.062 0.042
B0

2 −0.006 −0.011 0.005 0.007
B−2

2 −0.045 0.053 −0.086 0.024
B2

2 0.011 0.033 −0.004 0.031

Table 6.4: Zernike coefficients for science channel aberrations fitted to the
calibration measurement on 03/11/19. All coefficient are given in units of µm.
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GV1 GV2 GV3 GV4
A0

0 −0.009 −0.059 −0.019 -0.027
A−1

1 −0.018 0.034 0.066 -0.003
A1

1 0.008 0.016 0.045 0.043
A−2

2 0.008 −0.005 0.047 0.006
A2

2 −0.012 −0.010 0.019 -0.023
A0

2 −0.043 −0.012 −0.024 0.012
A−1

3 0.020 −0.039 0.038 0.075
A1

3 0.042 0.079 0.063 0.026
A−3

3 −0.031 0.009 0.029 0.023
A3

3 −0.001 −0.006 0.022 0.032
A−2

4 −0.028 −0.049 −0.042 -0.014
A2

4 −0.030 −0.052 −0.019 -0.017
A−4

4 0.014 −0.014 0.023 -0.014
A4

4 −0.004 −0.001 −0.016 -0.016
A0

4 −0.049 −0.027 0.001 -0.023
A−1

5 0.022 0.026 −0.000 -0.000
A1

5 −0.014 −0.031 0.034 -0.041
A−3

5 0.005 −0.027 −0.011 -0.017
A3

5 −0.007 −0.005 −0.025 -0.017
A−5

5 0.004 −0.015 0.008 -0.007
A5

5 −0.008 0.001 0.058 0.004
A−6

6 −0.006 0.018 0.040 0.014
A6

6 0.001 0.008 −0.002 0.008
A−4

6 0.013 0.017 −0.005 0.001
A4

6 0.012 0.021 0.014 0.015
A−2

6 −0.001 0.002 0.003 0.001
A2

6 −0.001 −0.001 0.006 0.004
A0

6 0.030 0.007 0.016 0.009
B−1

1 0.002 0.115 0.036 0.023
B1

1 0.068 −0.032 0.086 0.035
B0

2 −0.004 −0.000 0.004 0.015
B−2

2 −0.027 0.035 −0.076 0.012
B2

2 0.043 0.065 −0.040 0.008

Table 6.5: Zernike coefficients for science channel aberrations fitted to the
calibration measurement on 03/03/20. All coefficient are given in units of µm.
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6.b.1 dual-beam measurement in 2020

Due to the limited observability of the GC in early March and expecting
observations in the following months, we did not attempt to observe Sgr A*
in March 2020, but only pointed to S2 and to our usual calibrator star R2,
with the aim of testing the stability of the GRAVITY astrometry. Pointings to
Sgr A* were planned for later in the year. They had to be canceled due to the
pandemic-related closure of the VLT(I) from mid-March on. To still determine
the S2 – Sgr A* separation vector from this observation, we need to proceed
in two steps and first measure the S2 – R2 distance, then we reference R2 to
Sgr A*.

The distance between S2 and R2 is measured with the dual-beam method
(subsection 6.4.2), where we calibrate the S2 files with R2. In addition to the
2020 measurement, this separation is also available for 56 epochs in the years
2017, 2018 and 2019. It can be measured very precisely due to the brightness
of the two stars. Since the S2 – Sgr A* vectors have already been determined
in Gravity Collaboration et al., 2020a, we can also refer R2 to Sgr A* in those
earlier epochs. We then fit a simple quadratic function for the time evolution of
the R2 coordinates relative to Sgr A* and extrapolate it to March 2020. Given
the large number of data and the small time range to extrapolate for, the extra
uncertainty introduced is well below the 100µas level.

We derive the S2 position in 2020 from the four scientifically usable exposures
as their mean. We assign an error of 150µas to each coordinate for this data
point, reflecting both the smaller number of files compared to what we typically
had available in 2019 and the extra uncertainty due to the additional step of
referencing via R2. The new data point falls well onto the expected orbit, but
its error bar is too large to have a significant impact on the fitted parameters.

6.c analysis of the difference between distance
determinations from keck and vlt data sets

While we believe our determination of R0 is accurate to the 40 pc level, we note
that the value published in Do et al., 2019 is discrepant at the 300 pc level.
Both teams use the orbit of the star S2 around Sgr A* for the R0 determination,
and hence it is natural to ask where the differences are.

6.c.1 data

Beyond our ("VLT") data set (section 6.B), we use the Keck data set published
in Do et al., 2019. We apply the NIRC2 radial velocity offset of +80 km/s



6.c. analysis of the difference between distance determinations 87

as determined in Do et al., 2019 to the NIRC2 data, i.e. we add 80 km/s to
these radial velocities. Unlike Do et al., 2019, we then don’t fit for this offset.
Further, we drop the last astrometric data point (epoch 2018.67148268), as
suggested by the authors in a private communication. The data set consists of
45 astrometric points and 116 radial velocities, of which 41 are actually from
the VLT data set between 2003 and 2016. The published table also includes
one radial velocity from the epoch 2019.3567, which possibly was not part of
the data set actually used in Do et al., 2019.

6.c.2 the difference in R0

We fit the orbit with a simple, 13-parameter model: The six orbital elements of
the star (corresponding to the initial conditions of the star in phase space), six
parameters for the position and velocity of the MBH, and the mass of the MBH.
The fits are done using the relativistic corrections as in Gravity Collaboration
et al., 2020a, i.e. we fix fRS = fSP = 1. For this non-Keplerian motion, the
meaning of the orbital elements is that they are osculating at a reference epoch,
for which we choose T=2010.35, close to the apocenter passage time of S2.

For fitting the VLT data set, we use the same approach as in Gravity Collabo-
ration et al., 2020a: For the GRAVITY data, we assume that the astrometry
directly refers the S2 positions to the mass center, as we directly measure the
separation vector between the two objects interferometrically. For the NACO
(AO-imaging based) data, we allow for a coordinate system offset, on which
we set priors following the work from Plewa et al., 2015, and we include the
NACO flare positions as an additional constraint for locating the mass. This
fit yields

R0 = 8274.9± 9.3 pc

a = 124.982± 0.034mas

i = 134.685± 0.029◦

Ω = 227.175± 0.029◦, (6.39)

where a is the semi-major axis, i the inclination and Ω the position angle of
ascending node of the S2 orbit, and the errors are the statistical fit uncertainties.
The VLT astrometry is dominated by the GRAVITY points, as illustrated by
dropping all AO data points, which results in R0 = 8276± 10 pc.
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Fitting the Keck data set with the same 13-parameter model as used for
Equation 6.39 yields

R0 = 7935± 44 pc

a = 126.64± 0.27mas

i = 133.78± 0.15◦

Ω = 227.66± 0.13◦. (6.40)

This is not the exact same number as in Do et al., 2019, where R0 = 7959±59 pc
is reported. The small (and statistically insignificant) difference is most likely
due to the noise model which Do et al., 2019 include in their analysis, which
we do not have readily available. Applying the noise model at hand (Plewa
and Sari, 2018; Gravity Collaboration et al., 2019) yields R0 = 7965± 56 pc.
Hence, the value reported by Do et al., 2019 lies between the two numbers we
get by re-fitting their data. In the following, we will use for simplicity, and for
equal treatment of the data, the value and approach as in Equation 6.40. We
have thus a difference of ∆R0 = 340± 45 pc.

6.c.3 comparing, combining & adjusting the astrometry

Already, Gillessen et al., 2009a noticed that a simple attempt to compare
the astrometric data sets by plotting them on top of each other fails. One
needs to allow for an offset and a drift between the two coordinate systems
(i.e. four parameters ∆x, ∆y, ∆vx, ∆vy). This yields thus a 17-parameter fit.
Comparing the best-fitting parameters in Equation 6.39 and Equation 6.40
shows that they differ in Ω significantly. This parameter is fully degenerate
with the angular orientation (called β here) of the coordinate system. Hence,
the difference in Ω suggests that the two astrometric data sets are rotated with
respect to each other.

Therefore we extend the combination scheme by an additional, fifth parameter,
∆β, resulting in a 18-parameter fit. With this we fitted both data sets simulta-
neously, omitting the 41 VLT radial velocities from the Keck data set, whist
dropping also the three Keck ones in the VLT data set. This fit matches the
two coordinate systems ideally onto each other and results in

R0 = 8260± 9 pc

a = 125.00± 0.03mas

i = 134.66± 0.03◦

Ω = 228.16± 0.03◦

∆β = 0.32± 0.05◦, (6.41)
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Note that the value of ∆β matches the difference ∆Ω. We conclude that indeed
the Keck and VLT data are rotated with respect to each other. The other
parameters are very similar to Equation 6.39, which is due to the considerably
smaller astrometric uncertainties of the GRAVITY data compared to the
adaptive optics data.

With the best-fit coordinate system difference in hand, we can transform the
Keck astrometric data into the VLT coordinate system and vice versa. We
choose to do the former, since the VLT data set is more directly calibrated by
the interferometric data. After applying the coordinate system difference to
the Keck data, we can fit them again with a 13-parameter model. This yields
the exact same best-fit parameters as in Equation 6.40 (with the exception of
Ω, of course). Hence, transforming the astrometry does not change the more
fundamental differences between the two orbits, while a direct comparison is
now feasible. The value of Ω can be omitted in the following.

6.c.4 discrepancy in the radial velocity data

Chu et al., 2018 have investigated the consistency of the radial velocity data
between the Keck and VLT data sets for the years 2000 to 2016, and they
concluded that the data are in agreement with each other. We have repeated
the exercise, now also extending into the time of the pericenter passage in 2018
(Figure 6.13). To our surprise, the radial velocities differ systematically from
≈ 2011 on, and the difference gets larger as the radial velocity increases ever
more. The difference reaches ≈ 50 km/s in 2018, just before the star swung
through pericenter 1.

Hence, it is an obvious question to ask what influence the radial velocities have
on R0? For this, we swapped the radial velocities between the two data sets.
Using the VLT-set together with the Keck astrometry yields

R0 = 8094± 32 pc

a = 126.08± 0.21mas

i = 134.0± 0.13◦ (6.42)

Vice versa, using the Keck radial velocities together with the VLT astrometry
yields R0 = 8214 ± 14 pc. Given that the Keck radial velocity set contains
35% VLT radial velocities, the fit in Equation 6.42 is the cleaner test. We thus
explain roughly half of the difference in R0 with the radial velocity data, i.e.
159 pc.

1Also, there is one obvious outlier in the Keck data, the earliest 2018 point. We have
checked that dropping this measurement does not change the Keck-fit result in any significant
way.
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Figure 6.13: Comparison of the radial velocity data sets. Blue points are data
from the VLT data set, red from the Keck data set. Top left: Radial velocity as
a function of time for the VLT fit (Equation 6.39). Top right: Yearly averages of
the residua of the two data sets to the fit from Equation 6.39. By construction
the VLT data thus scatter around 0. The Keck data deviate systematically from
2011 on, and the discrepancy increases in the later years. Bottom left: The
same as the left panel, but zooming in to the period 2015 - 2020, and showing all
individual data points. The best fit Keck orbit corresponding to Equation 6.40
is the red line. Apparently, the difference is largest, when the radial velocity
gets largest (in the year 2018 at pericenter passage). Bottom Right: Both data
sets show a clear peak in radial velocity in 2018 when comparing with the
Keplerian part of the VLT fit (Equation 6.39), i.e. both data sets clearly detect
the redshift term.

Why do the radial velocities differ? So far, we can only offer an explanation
for ≈ 20% of the radial velocity difference: We applied the stellar atmosphere
model-based fitting with the StarKit package used in Do et al., 2019 also
to the VLT spectroscopy. We found a significant difference for large radial
velocities, which we were able to trace down to the Doppler formula used by
the StarKit package. While both Do et al., 2019 and Gravity Collaboration
et al., 2020a state that the spectroscopic observable is vr = z c, i.e. the redshift
of a given spectrum, the StarKit package actually applies a Doppler formula
which includes the longitudinal, relativistic correction: λ′ = λ0

√
1+vr/c
1−vr/c

. In
this form, the Doppler formula ignores the (significant) tangential motion vt
of S2. In order to apply a relativistic correction one needs to use the full
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Figure 6.14: Comparison of the astrometric residual after forcing an offset in
declination such that the fit to Keck data set matches the VLT one (left) and
such that the fit to VLT data set matches the Keck one (right). Lighter blue
corresponds to AO data from the VLT data set, darker blue to the GRAVITY
data.

Doppler formula 1 + z = 1+vr/c√
1−(v2r+v2t )/c

2
(Lindegren and Dravins, 2003). For

this correction, however, the spectroscopic information is not sufficient. One
cannot, in general, Doppler-correct a spectrum in a relativistic way without
knowing the other motion component. Further, even if one would apply the
full correction, one would in the following of course not be able to fit for the
relativistic redshift anymore.

The difference between the two formulae is small at velocities much smaller
than the speed of light, but becomes important close to peri-center, when S2
reaches a velocity of nearly 8000 km/s. Still, it amounts to ≈ 25 km/s at most
and thus is smaller than the observed difference in Figure 6.13. This difference
is also visible in Fig. 1 of Do et al., 2019: The plotted model spectra are slightly
more redshifted than what the underlying data suggest. Changing the Keck
radial velocities accordingly yields a fit with R0 = 7972± 44 pc, i.e. accounting
for 37 pc of the 159 pc.

Further checks did not yield any clues why there remains a significant difference
in the radial velocities. We note:

• We checked whether the time stamps are assigned consistently between
the two data sets, and did not find a difference.

• Figure 6.13 bottom right shows that both data sets clearly show the
redshift peak around pericenter.

6.c.5 discrepancy in the astrometry

Comparing the fits in Equation 6.39 and Equation 6.40 shows that they not
only differ in R0, but also in the size of the semi-major axis a. We find
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∆a/a = 1.28± 0.22%. The same is not true for the semi-minor axis though,
∆b/b is consistent with 0. Interestingly, the projected ellipses as given by
the astrometric data in the plane of sky agree in both semi-major and semi-
minor axes to within 0.17%. Hence, the inclinations i need to differ, which
Equation 6.39 and Equation 6.40 confirm. We find in accordance with the
above 1 − sin(iVLT)/ sin(iKeck) ≈ 1.3%.

The inclination of the ellipse determines where the projected center of mass is
located. Given the orientation of the S2 orbit and the disagreement in a but
not in b hints towards an offset of the center of mass in the declination direction.
Indeed, we can show that introducing an offset to either y or vy (the mass
position and velocity in declination) can explain the remaining discrepancy.
Starting from the fit of the transformed Keck data set, we fix vy to its best fit
value of −0.15mas/yr. All other parameters are left free again for a subsequent
fit. Additionally using the VLTI velocities in this fit instead of the Keck ones
yields:

R0 = 8277± 28 pc

a = 124.76± 0.16mas

i = 134.63± 0.11◦ . (6.43)

This fit yields thus from the Keck astrometry the same value for R0 as the
VLT fit. Also note, that indeed semi-major axis a and inclination i have moved
to the VLT values by forcing vy to have an offset. Since the mass position is
parametrized with a time origin at T=2000.0, the best fit y also changes, from
−0.972mas to 1.234mas. The systematic uncertainty on y and vy estimated
by Do et al., 2019 are 1.16mas and 0.066mas/yr respectively. Hence, the
difference one needs to enforce is within ≈ 2σ of the systematic uncertainty,
and the residuals in Figure 6.14 (left) appear to be acceptable. Essentially the
same can be achieved by forcing an offset to y and leaving vy free instead.

Can one can turn the argument around and apply a similar offset to the VLT
data in order to lower the VLT-based value of R0? In a first attempt we applied
the same offset to the VLT AO data. However, even an offset 10 x larger (i.e.
1.2mas/yr), changes R0 only by ≈ 30 pc. This is not surprising, since the VLT
astrometry is completely dominated by the GRAVITY data. Thus, we instead
tried varying vy and y for the GRAVITY data, giving up the assumption that
the GRAVITY source directly is the mass center. Also, we exchanged the
VLT radial velocities for the Keck ones. We find that we need to change vy by
−1.4mas/yr in order to get a distance similar to the Keck value:

R0 = 7928± 16 pc

a = 126.89± 0.05mas

i = 133.51± 0.03◦ . (6.44)
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The fit achieves the lower R0 by tilting the orbit similar to the fit from
Equation 6.40. The enforced change of vy is unrealistically large (12× larger
than what was needed for the Keck data), Also, the GRAVITY data show very
strong and systematic residuals of up to 0.5mas (Figure 6.14 right), and the
reduced χ2 of the fit increased from 1.50 to 2.63.
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Abstract: During its orbit around the four million solar mass black hole
Sagittarius A* the star S2 experiences significant changes in gravitational
potential. We use this change of potential to test one part of the Einstein
equivalence principle: the local position invariance (LPI). We study the
dependency of different atomic transitions on the gravitational potential
to give an upper limit on violations of the LPI. This is done by separately
measuring the redshift from hydrogen and helium absorption lines in the
stellar spectrum during its closest approach to the black hole. For this
measurement we use radial velocity data from 2015 to 2018 and combine it
with the gravitational potential at the position of S2, which is calculated
from the precisely known orbit of S2 around the black hole. This results
in a limit on a violation of the LPI of |βHe − βH | = (2.4 ± 5.1) · 10−2.
The variation in potential that we probe with this measurement is six
magnitudes larger than possible for measurements on Earth, and a factor
ten larger than in experiments using white dwarfs. We are therefore testing
the LPI in a regime where it has not been tested before.

7.1 introduction

Since its publication in 1915 general relativity (GR) has been tested frequently
and has so far passed all experimental tests (Will, 2014). Recently there has
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been an additional experiment in a new mass regime: For the first time it was
possible to detect both the gravitational redshift and the transverse Doppler
shift of a star moving on an elliptical orbit through the extreme gradient of the
gravitational potential near a supermassive black hole (Gravity Collaboration
et al., 2018b). This was possible by monitoring the orbit of the star S2 around
the supermassive black hole Sagittarius A* (Sgr A*) over the last 26 years (see
e.g. Ghez et al., 2008; Gillessen et al., 2009a; Gillessen et al., 2017). So far all
data taken for this experiment show excellent agreement with the predictions
from GR. This work expands the previous tests of this experiment by testing
the Einstein equivalence principle (EEP). The EEP states the universality
of the coupling of gravity to matter and energy. Tests of the EEP are of
great importance as many alternative theories of gravity and theories unifying
gravity with other interactions predict violations of the EEP at high energies
(Damour, 1996; Flambaum and Shuryak, 2008). The EEP consists of three
main principles: the weak equivalence principle (WEP), the local position
invariance (LPI), and the local Lorentz invariance (Will, 1993; Will, 2014).
From those three principles the local Lorentz invariance is best constrained, as
no violations have been found down to c20/c

2 − 1 < 10−20 (Chupp et al., 1989;
Will, 2014). It is therefore assumed to be valid for this work, while the the
LPI is discussed in the following. The WEP or universality of free fall is not
straight forward to test with our current approach (Angélil and Saha, 2011),
which is discussed in more detail in the outlook.

7.2 galactic center experiment

Located at the very center of our galaxy is the bright radio source Sgr A*.
The nuclear star cluster around it has been observed with high-resolution
near-infrared (NIR) speckle and adaptive optics (AO) assisted imaging and
spectroscopy over the past 26 years. This led to orbit determinations for ≈ 45
individual stars (Schödel et al., 2002; Schödel et al., 2009; Ghez et al., 2003a;
Ghez et al., 2008; Eisenhauer et al., 2005; Gillessen et al., 2009a; Gillessen
et al., 2017; Meyer et al., 2012; Boehle et al., 2016; Fritz et al., 2016). These
observations have demonstrated that the gravitational potential is dominated
by a compact object at the center of the cluster. The mass of the object was
measured by Gravity Collaboration et al., 2018b to be (4.10 ± 0.03 ) x 106 M⊙.

The radio source Sgr A* is coincident with the center of mass to < 1mas
(Plewa et al., 2015), and is itself very compact, with an upper limit on the
radius of 18 µas, based on very long baseline interferometry at a wavelength
of 1.3mm (Krichbaum et al., 1998; Doeleman et al., 2008; Johnson et al.,
2017). In addition, Sgr A* shows, in comparison to extragalactic sources,
no intrinsic motion (Reid and Brunthaler, 2004; Reid, 2009). This supports
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the interpretation that the compact radio source is coincident with the mass.
Orbital motion of the centroids of the SgrA*’s near-infrared emission during
bright ’flare states’ suggest that the same mass inferred from the S2 orbit is
also contained within 60 to 90 µas of the mean-position, or near the innermost
stable orbit of a 4 million solar mass black hole (Gravity Collaboration et al.,
2018a). This all leads to the conclusion that Sgr A* is indeed a supermassive
black hole (Ghez et al., 2008; Genzel et al., 2010; Falcke and Markoff, 2013).

Of all the stars in the central cluster, the main-sequence B-star S2 is of special
interest. With a near-infrared K-band magnitude of 14.2, S2 is one of the
brightest stars in the innermost region around the black hole. It has an orbital
period of 16.05 years and has its closest encounter with Sgr A* at a distance
of 16.28 light hours or 14.45mas. S2 also appears to be a single star (Martins
et al., 2008; Habibi et al., 2017; Chu et al., 2018). The close encounter with
Sgr A* and the comparatively short period make it the best available probe for
post-Newtonian effects in the potential of the supermassive black hole (Gravity
Collaboration et al., 2018b). One thing one might have to consider, is that
S2 could come so close to the black hole that the star’s properties change.
However, the tidal disruption radius (Hills, 1975) of the star S2, based on its
stellar parameters (Habibi et al., 2017), is 100 times smaller than the star’s
periapsis distance. Therefore, we do not expect any strong tidal interactions
between the star and the black hole.

The GRAVITY Collaboration (Gravity Collaboration et al., 2018b) showed
that the data from S2 fulfills the predictions of general relativity when the
gravitational redshift and the relativistic Doppler effect are taken into account.
In Gravity Collaboration et al., 2018b a scaling factor f for the first order
parameterized post-Newtonian corrections (gravitational redshift and Doppler
shift) is introduced, where f is zero for purely Newtonian physics and unity for
GR. The measured f-factor of f = 0.90± 0.09|stat ± 0.15|sys is significantly
inconsistent with pure Newtonian dynamics. The resulting f-value is getting
more robust with more data added to the dataset. The same analysis as in
Gravity Collaboration et al., 2018b, but with additional data taken between
June and September 2018, reduced the uncertainties in the f-value to f =
0.97± 0.05|stat ± 0.05|sys (Gravity Collaboration et al., 2019).

7.3 local position invariance

The main part of this work focuses on the LPI, which states that local non-
gravitational measurements are independent of their location in spacetime.
To test this we use the star S2 as it moves on its eccentric orbit through the
gravitational potential of Sgr A*. A violation of the LPI would imply a coupling
of fundamental atomic constants, such as the fine structure constant, to the
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gravitational potential. LPI experiments can therefore be used to constrain cou-
pling constants of different atomic properties (Flambaum, 2007; Flambaum and
Shuryak, 2008). As such couplings are expected to be nonlinear it is especially
important to perform such experiments with strong changes in potential.

According to the LPI, the gravitational redshift of a clock moving through
a weak gravitational field (Φ/c2 ≪ 1) with a varying potential ∆Φ, depends
only on the change of the potential: ∆ν/ν = ∆Φ/c2, where ν is the clock
frequency and ∆ν the shift due to the gravitational potential. The formula
implies that the shift in frequency does not depend on the internal structure of
the clock, which is another way to formulate the LPI. To test this assumption
one introduces a violation to the formula, commonly parametrized as β:

∆ν

ν
= (1 + β)

∆Φ

c2
(7.1)

To test the LPI with a single type of clock one needs to compare two identical
clocks in different gravitational potentials. Alternatively one can measure the
frequency change of two non-identical clocks moving through a time-dependent
potential Φ(t) = Φ0 +∆Φ(t). In this case a violation of the LPI would again
be visible in the fractional frequency difference:

∆

(
∆ν

ν

)
=

∆ν2
ν2

− ∆ν1
ν1

= (β2 − β1)
∆Φ(t)

c2
= ∆β

∆Φ

c2
(7.2)

By measuring the frequency change of two clocks moving through a potential
one can therefore constrain ∆β. Such null redshift experiments are regularly
done on Earth using the gravitational potential of the Sun, which varies over
the timescale of a year, due to Earth’s eccentric orbit (see e.g. Ashby et al.,
2007; Agachev et al., 2011; Peil et al., 2013; Dzuba and Flambaum, 2017). The
annual potential variation due to this eccentric motion is ∆Φ/c2 = 3.3 · 10−10.
The most stringent limit on a violation of the LPI so far is given by Ref. (Peil
et al., 2013), from a comparison of hydrogen masers with rubidium clocks.
From this measurement a value of |βH − βRb| = (2.7± 4.9) · 10−7 is measured.
To get to such a low limit it is necessary to measure the frequency change of
atomic transitions with a precision on the order of ∆ν/ν ≈ 10−17. The most
stringent astronomical tests of the LPI were done by a comparison of measured
wavelength shift in white dwarf spectra directly to laboratory wavelengths, to
get a constraint on variations of the fine structure constant Berengut et al.,
2013; Ong et al., 2013; Bainbridge et al., 2017. In the experiments with white
dwarfs a potential difference of approximately 10−5 is reached, which is much
higher than that possible for earthbound experiments. However, it is still
roughly an order of magnitude lower than the potential difference observed for
S2 orbiting around Sgr A*.
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7.3.1 measurement

The data for the Galactic center experiment were mainly taken with the Euro-
pean Southern Observatory’s Very Large Telescope and Very Large Telescope
Interferometer, using the three instruments NACO (Lenzen et al., 1998; Rousset
et al., 1998), SINFONI (Eisenhauer et al., 2003; Bonnet et al., 2004), and
GRAVITY (Gravity Collaboration et al., 2017). The NACO images provided
the time-dependent 2D projected positions of the stars in the nuclear star
cluster. Those positions are then calibrated relative to the radio frame of the
Galactic center (Reid et al., 2007). The unique astrometric precision of ∼
50 µas obtained with GRAVITY directly adds the 2D projected separation of S2
and Sgr A* to the data set. SINFONI then adds spectroscopic measurements
of the stars in order to measure their line-of-sight velocity (for more details
on the data and the data analysis see Gravity Collaboration et al., 2018b).
The combination of the data is then used to fit the full orbit of S2 around
the central black hole (Gillessen et al., 2009a; Gravity Collaboration et al.,
2018b). For this work we use the S2 orbit (Gravity Collaboration et al., 2018b)
to calculate the gravitational potential at the position of S2. This is done
by calculating the Newtonian potential for the separation d(t) between S2
and Sgr A*: Φ(t) = GM/d(t), with M being the mass of the black hole. For
this calculation we can neglect all other stars in the area, as their masses are
negligible in comparison to Sgr A*. Furthermore we can use a Newtonian
description for the potential, as the first relativistic correction term would be
from the Schwarzschild metric, which is so small that it is not yet relevant
for the orbit fit Alexander, 2005; Gillessen et al., 2009a. In the three years
leading up to the pericenter passage of S2 around the super massive black
hole Sgr A*, the gravitational potential experienced by the star changes by
∆Φ/c2 = 3.2 · 10−4.

In addition to the gravitational potential Gravity Collaboration et al., 2018b the
data used for this work are the K-Band (2.0 to 2.5µm) spectra of S2 obtained
with SINFONI. These spectra are used to measure the line-of-sight velocity of
S2. In the K-band S2 has two dominant absorption features: The strongest line
is the Brγ line (hydrogen transition n = 7 - 4) with a vacuum wavelength of
2.1661 µm. The second feature is the helium line around 2.1125 µm. This line
is not a single feature but a blend of the He I triplet at 2.1120 µm (3p 3P0 – 4s
3S) and the He I singlet at 2.1132 µm (3p 1P0 – 4s 1S). The weighting of the
two features depends on the atmospheric parameters and the rotational velocity
of the star (Habibi et al., 2017). In an individual spectrum at our resolution
they appear as a single feature. In a typical observation of 1 hour the helium
and hydrogen feature can be detected at > 5σ. A combined spectrum with
a high signal-to-noise ratio (SNR) from Ref. Habibi et al., 2017 is shown in
Figure 7.1. On the left shoulder of the hydrogen line is another helium line at
2.161 µm, which is much weaker than the hydrogen line (flux ratio of 1 to 4 in
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Figure 7.1: High signal-to-noise spectrum of the star S2 in the astronomical
K-Band. The spectrum has been produced by combining data from 12 years of
observations (adapted from Habibi et al., 2017).

the high SNR spectrum). In an individual dataset this line is just above the
noise level. It is therefore not a dominant feature and does not influence the
velocity measurement from the hydrogen line.

After extracting the spectrum of S2 from the SINFONI data, we usually
measure the star’s velocity with a combination of a fit to the Brγ line and a
cross correlation of the whole K-band with the high SNR spectrum shown in
Figure 7.1 (for more details see Gravity Collaboration et al., 2018b). For this
work we use a slightly different approach. We divide the spectrum into two
parts, one containing the He feature and the other one the Brγ line. Both
parts are individually cross correlated with their corresponding part of the
high SNR spectrum. By doing this we get two velocities for each spectrum:
one from the helium line and one from the hydrogen line. In other words, we
have a helium and a hydrogen clock moving through the varying gravitational
potential during the pericenter passage of S2. By measuring the difference in
frequency change for both clocks we are able to give an upper limit on the LPI
violation during the pericenter passage. The values for the velocity difference
(vHe − vH)/c = ∆νHe/νHe −∆νH/νH are shown in Figure 7.2, together with
the gravitational potential at the position of S2.

The uncertainty of the datapoints in Figure 7.2 is calculated from several
contributions. The first is the calibration error of the wavelength. During
the data reduction the wavelength calibration of each individual data frame is
fine-tuned by a set of OH lines in the K-Band. The scatter of the line position
from their expected velocity after the fine tuning is below 5 km s−1, which is
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then used as the uncertainty for the measured wavelength. This is calculated
for each spectrum individually by fitting the atmospheric OH lines. A second
contribution is the uncertainty of the cross correlation, determined from the
uncertainty of the cross-correlation peak position. A third error originates from
the extraction of the spectrum. As SINFONI is an integral field spectrograph
the final result of the data reduction is a 3D cube, where two dimensions are
the image axes and the third is the spectrum for each pixel. To get a spectrum
of a star one has to select the source and background pixels in the image
plane. This is the source of a third uncertainty as different masks can lead to
slightly different results in the velocity. We account for this by calculating the
velocity from different reasonable masks and use the scatter in the result as
an estimate of uncertainty. The uncertainty of one velocity measurement is
then the quadratic sum of these three contributions. This is done for Brγ and
He I individually. The final value used in this analysis is then the difference
of the two velocities with the quadratic sum of the uncertainties. This might
slightly overestimate the error as the calibration error should be the same for
both measurements, but is accounted for twice. However, this does not have a
big influence as it is the least dominant error source.

To get an upper limit on the LPI violation we use Equation 7.2 to fit the
potential to the data points shown in Figure 7.2. In the fit ∆β = βHe − βH is
left as a free parameter. The fitted value of ∆β is:

∆β = |βHe − βH | = (2.4± 5.1) · 10−2 (7.3)

Where the given error is the 1 σ confidence interval of the fit. We can place an
upper limit on the violation of the LPI in the strong gravitational field of the
supermassive black hole of ∆β ≤ 5 · 10−2. The result is consistent with ∆β =
0. The fit is shown together with the data in Figure 7.2. The χ2 analysis of the
fit shows a reduced χ2 of 0.91. In comparison, β = 0 results in a χ2

red of 0.89.
Under the assumption that the χ2 distribution is approximately Gaussian it has
a variance of σ =

√
2/N = 0.22. Therefore both values for χ2

red lie within the
one sigma range of χ2

red = 1 and the χ2
red values cannot be used to distinguish

between the models.

While our result is not competitive with current experiments on earth, the
change in gravitational potential experienced by S2 on its orbit from early 2015
to its pericenter passage in May 2018 is ∆Φ/c2 = 3.2 · 10−4. This is a regime
which has not been reached by any other experiment and we therefore test the
LPI at a potential difference which has not been tested before this work (see
Figure 7.3) (Will, 2014).

As mentioned in the introduction, a violation of the LPI would imply a coupling
of fundamental atomic constants to the gravitational potential. Atomic clock
measurements are therefore used to constrain coupling constants of different
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Figure 7.2: Difference in frequency change for the helium and the hydrogen line
as red dots. The dimensionless gravitational potential is shown as a dashed
black line. The solid black line shows ∆β ·∆Φ/c2, where ∆β is fitted to the
data. The gray area shows the 3 sigma values from the fit.

atomic properties (Flambaum and Shuryak, 2008). This can for example be
done for the coupling of the fine structure constant α (Dzuba and Flambaum,
2017) or for the electron-to-proton mass ratio me/mp and the ratio of the light
quark mass to the quantum chromodynamics length scale Peil et al., 2013. In
principle one could also use our measurement of β to constrain these coupling
constants. However, a single measurement of ∆β is not sufficient for that. One
can overcome this by combining different measurements from different atomic
species (Peil et al., 2013), or by using computational techniques to calculate
the relativistic perturbation of the energy levels for the observed transitions
(Dzuba and Flambaum, 2017). In the present case, the S2 helium absorption
line is a doublet and the transitions are not isolated enough that a specific
model of the transition would yield further information. We therefore cannot
make any further statements than the pure limit on the violation of the LPI.

7.4 outlook

This measurement demonstrates that the data from stars orbiting a black hole
can be used for testing the LPI. Looking forward this also opens possibilities for
the next pericenter passage of S2 in 2034. At that point the Extremely Large
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Figure 7.3: Comparison of selected tests of the LPI with gravitational redshift.
Plotted is the variation in potential, which is tested against the measured
limit on a violation. The different symbols mark the Pound-Rebka-Snider
experiments (Pound and Rebka, 1959; Pound and Snider, 1965), tests from
solar spectral lines (Brault, 1962; Snider, 1972; Lopresto et al., 1991), tests
on rockets and spacecrafts (Jenkins, 1969; Vessot and Levine, 1979; Krisher
et al., 1990), and null redshift experiments (Turneaure et al., 1983; Godone
et al., 1995; Bauch and Weyers, 2002; Ashby et al., 2007; Peil et al., 2013)
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Telescope (ELT) will be fully operational. With a telescope diameter of more
than four times the one from the VLT, the ELT will collect more than twenty
times more light. The first light instrument MICADO (Davies et al., 2016)
will include a slit spectrograph with a resolving power of R ≥ 10000. This is
more than six times higher than what we currently achieve with SINFONI (R
= 1500 in the used mode). One can therefore use the ELT to measure S2’s
spectrum with higher resolution and with higher SNR. This would allow a
velocity measurement of S2 in the H-Band, which currently has a too low SNR
for velocity measurements from individual data frames. In the H-Band there is
a narrow helium line (He I at 1.7002 µm) as well as a series of hydrogen lines
(Habibi et al., 2017), which can be used to significantly improve the velocity
measurement. Unlike hydrogen, the He lines are not sensitive to the stellar
pressure broadening, providing sharper atomic lines to measure the velocity
with high accuracies.

With the high sensitivity of the ELT it is also possible to make the same
measurement for fainter late type (K & M type) stars. The infrared spectrum
of these stars shows several sharp metal lines, including different isotopes, as
well as series of rotational–vibrational bands of CO molecule (Wallace and
Hinkle, 1997). With a high resolution spectrograph such as the planned HIRES
(Marconi et al., 2016), with a resolving power of R = 130000 and a very high
calibration accuracy a velocity measurement of the order of m s−1 would be
possible. This would allow a measurement of ∆ν

ν
in the order of 10−8. For a star

on a similar orbit as S2 this would translate in a factor of 104 more restrictive
limit on the LPI and velocities from different atoms could be used to directly
constrain coupling parameters. Interesting stars for this are for example S21
or S38 which are both in a comparably short orbit around SgrA* (37 and 19
years, see Gillessen et al., 2017), or even fainter stars in closer orbits which
might be discovered with the ELT.

This would also open the possibility to test the third part of the EEP, the WEP,
also known as universality of free fall. It states that inertial and gravitational
mass are equivalent. In principle, one can use a gravitational redshift experiment
to test the WEP, under the assumption that special relativity is fully valid Schiff,
1960. However, in order to do so one has to precisely know the gravitational
field, as otherwise a violation could be absorbed as a constant factor in the
gravitational potential. A solution for this could be to use different stars around
Sgr A*. In this case one star can be used to test the WEP and the others
to measure the mass of Sgr A* separately Angélil and Saha, 2011. At the
moment this would be a rather imprecise measurement, as the current best
mass measurement of Sgr A* is from S2 itself. This is a problem which is very
likely to be solved with future observations and facilities. One solution would
be the discovery of a star in closer orbit around SgrA*, either with GRAVITY
Waisberg et al., 2018 or the ELT. The combination of S2 and a closer star can
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then be used to measure the mass of SgrA* and test the WEP individually.
However, even without a star on a very close orbit, the ELT will allow more
precise measurements of the already observed orbits of S-stars. With better
orbit measurement of other close S-stars, such as S38, one can then test the
WEP.

7.5 conclusion

With this paper we continued the analysis of the data presented by the GRAV-
ITY Collaboration (Gravity Collaboration et al., 2018b) to give constraints on
the LPI. We used the helium and hydrogen transitions in the spectrum of S2 as
individual clocks, to give a constraint on a violation of the LPI. The results are
consistent with the LPI and give an upper limit to a violation of 5 · 10−2. This
limit is in absolute numbers less stringent than the current most precise tests
(Peil et al., 2013). Our experiment however tests the LPI close to a central
black hole with 4 million solar masses, in a potential which is 106 times larger
than accessible to terrestrial experiments. It is currently the most extreme test
of the LPI and is fully consistent with it.
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polarization model of the vlti and
gravity 8

The goal of this chapter is to characterize the polarization effects of the
VLTI and the GRAVITY beam combiner instrument. This is useful for two
reasons: to understand and correct the instrumental effects on polarimet-
ric observations with GRAVITY, and to understand the systematic error
introduced to the astrometry due to birefringence when observing targets
with a significant intrinsic polarization. By using a model of the VLTI
light path and its mirrors and combining this with dedicated experiments
data we construct a full polarization model of the VLTI Unit Telescopes
(UTs) as well as of GRAVITY. We first characterize all telescopes together,
to construct a universal UT calibration model for polarized targets with
the VLTI. In a second step we expand the model to study the differential
birefringence between the four unit telescopes. With this we can constrain
the systematic errors and the contrast loss for highly polarized targets.
We show that there is no significant fringe loss, even if the science and
fringe-tracker target have a significantly different polarization. Finally, we
determine that the astrometric phase error in such an observation is smaller
than 1°, even in the worst case. We also demonstrate that we can measure
reliable polarization properties of astrophysical targets with GRAVITY,
using observations of the galactic center star IRS 16C.
We show that it is possible to measure the intrinsic polarization of astro-
physical sources with GRAVITY. For the galactic center star IRS 16C
we are able to constrain the polarization degree to within 0.6% and the
polarization angle within 5°, while being consistent with the literature
values. With this work we enable the use of the polarimetric mode with
GRAVITY for the community and outline the steps necessary to observe
and calibrate polarized targets with GRAVITY.

8.1 introduction

Polarization is an important part of the information contained in electromag-
netic radiation of astronomical sources. The use of polarimetric observations
enables a better understanding of the source of radiation as well as its environ-
ment. Polarimetric observations are nowadays used over a very broad range of
science cases and more and more instruments are equipped with a polarimetric
mode (see e.g. Witzel et al., 2011; Dorn et al., 2014; Norris et al., 2015; van
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Holstein et al., 2020). With the enormous success of the VLTI beam combiner
instrument GRAVITY over the last years in various science fields, interest in
polarimetric observations with GRAVITY and the VLTI has also grown. The
fundamental capabilities of GRAVITY to make polarimetric observations have
already been shown by observing the polarization of flares from the supermassive
black hole SgrA* (Gravity Collaboration et al., 2018a; Gravity Collaboration
et al., 2020b). With the help of the polarization data it was possible to constrain
the magnetic fields around SgrA*. Similarly the EHT collaboration has studied
the magnetic fields around the black hole M87* with their recently released
polarimetric image (Event Horizon Telescope Collaboration et al., 2021). But
not only the study of magnetic field is enabled by polarimetry, but also many
other research areas profit from the availability of polarization measurements.
For example disks around young stellar objects can be studied with the help
of polarimetry (Hunziker et al., 2021), or measurements of dust properties of
evolved stars benefit from a polarization measurements (Ireland et al., 2005;
Norris et al., 2012b; Haubois et al., 2019). For a more complete overview see
Elias et al., 2008 and Trippe, 2014. To combine polarimetric measurements
with the unique angular resolution of GRAVITY we want to characterize the
polarization properties of GRAVITY and the VLTI.

Ideally, a telescope and its instrument would not alter the polarization of
incoming light. In reality however, the optical train of a telescope introduces
polarization signal. This can mean that a polarization signal is produced
by the instrument or that the instrument alters the incoming polarization
by introducing crosstalk, which mixes the incoming polarization states. In
order to get rid of these effects, the telescope and its instrument must be
carefully calibrated for their effect on the measured polarization signal. In
this work we show the results of a series of measurements to calibrate the
polarimetric properties of the VLTI. This includes the characterization of the
amount of crosstalk between different polarization states as well as polarization
introduced by the VLTI itself. In the case of an interferometer, this is a bit
more difficult than for a single-telescope instrument, as there are a significantly
higher number of reflections, and one also has to account for both of the
rotations of the telescope, in elevation as well as in azimuth. For this reason
polarimetric observations with optical interferometers are not common yet,
but the foundations were laid in the erly 2000s (Elias, 2001; Elias, 2004) and
first steps were done soon after (Ireland et al., 2005; Rousselet-Perraut et al.,
2006) to study variable stars and circumstellar environments, and later also in
aperture masking (Norris et al., 2012a; Norris et al., 2015). Today, similar to
GRAVITY at the VLTI, also MIRC-X at CHARA is having its first polarimetric
observations (Setterholm et al., 2020).

While the modelling is a bit more complicated for an interferometer than for a
single telescope, there is no fundamental difference in the calibration model for
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the absolute polarization. We can use similar calibration models to those used
in solar physics (see e.g. Beck et al., 2005; Harrington et al., 2019) and for the
NACO and SPHERE instruments at the VLT (Witzel et al., 2011; van Holstein
et al., 2020). We then use our test data to adapt the model and constrain the
polarimetric properties of the VLTI. With this approach we construct a full
calibration model to correct polarimetric observations.

Apart from the absolute effect the VLTI has on the polarization measurement,
there is an additional effect which has to be considered for interferometers. If
the light paths of the individual telescopes have different polarimetric properties,
this can introduce differential birefringence between the different telescopes.
The VLTI has been built with great care to make sure that the different light
paths and reflections within are as similar as possible, but of course cannot be
ideal, as there are imperfections in the trains, as well as individual upgrades
such as the adaptive M2 mirror at UT4. These differential effects are important
to understand, as differential birefringence leads to a loss of fringe contrast and
therefore limits the sensitivity of an interferometer (Beckers, 1990; Rousselet-
Perraut et al., 1996). Furthermore, differential effects can also introduce errors
to the visibility phase and therefore limit the astrometric accuracy for polarized
targets. This was already explored for a part of the VLTI by Lazareff et al.,
2014b (hereafterL14) and is continued with this work.

While most of the light path and the reflections are similar for the Unit
Telescopes (UTs) and the Auxiliary Telescopes (ATs), we focus solely on UT
observations in this work. The derotation of the field is done in the ATs
themselves, which adds more complexity to the polarization measurement.
Furthermore, the ATs are not fixed in place, but can be repositioned. This
could effect the polarization, especially if the telescopes are located on different
sides of the delay line. Taking this into account as well as the scientific
importance of the UTs, we decided to limit this study to the UTs.

First, we will recap the polarization conventions in section 8.2, before we discuss
the instrumental polarization of the VLTI with the telescope model and the
calibration measurements in sections 8.3 and 8.4. We then investigate the
differential effects of the VLTI in section 8.5 and the polarization effects of
GRAVITY itself in section 8.6.

8.2 conventions

There are two different conventions for the description of polarization (Tin-
bergen, 2005). One is the Stokes formalism (with Stokes vectors and Mueller
matrices) and the other the Jones formalism (with Jones vectors and Jones
matrices). The Stokes formalism is often used to describe instrumental polar-
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ization effects, as the components of the Stokes vector directly relate to the
measurable intensities. It can also describe partial polarization and has simple
formulas to measure and calculate the fundamental properties of polarized light.
The Stokes values are also easily measured using a half- and a quarter-wave
plate. One disadvantage is that the Stokes formalism does not include phase
information. We will therefore mostly use the Stokes formalism in this work,
and only switch to the Jones formalism when the phase information is needed
for the interferometric quantities.

8.2.1 stokes formalism

In the Stokes formalism the light and its polarization is described by a Stokes
vector. For an electric field which is described by

E⃗(z, t) =

(
Ex

Ey

)
ei(kz−ωt) =

(
Ax · eiϕx

Ay · eiϕy

)
ei(kz−ωt), (8.1)

the Stokes vector is defined as

s =


I
q
u
v

 =


⟨E2

x + E2
y⟩

⟨E2
x − E2

y⟩
⟨2ExEy cos δ⟩
⟨2ExEy sin δ⟩

 =


A2

x + A2
y

A2
x − A2

y

2AxAy cos δ
2AxAy sin δ

 , (8.2)

with δ = ϕx−ϕy. As the absolute intensity is not important for the polarization
properties we will in the following only consider normalized Stokes vectors:

S =
s

I
=


1
Q
U
V

 . (8.3)

The first parameter is the intensity in the non-normalized Stokes vector and
is one in the normalized Stokes vector. The second and third parameters, Q
and U, represent linear polarization. Positive Q shows linear polarization in
horizontal direction and negative Q in vertical direction. U is 45° rotated in
counterclockwise direction with respect to Q, when looking into the beam
of light. V describes circular polarization with positive V being right handed
and negative V being left handed. In the normalizes Stokes vector Q, U and
V range from -1 to 1.

The change of polarization for any optical system is described by a 4x4 real
matrix, the Mueller matrix. For an input state Sin the output state Sout is
calculated as follows:

Sout = M · Sin. (8.4)
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One of the advantages of the Stokes parametrization is that it is very easy to
calculate the essential polarization properties. From the Stokes parameters one
can calculate the degree of polarization (DOP), the degree of linear polarization
(DOLP) and the polarization angle (Θpol) as follows:

DOP =
√

Q2 + U2 + V 2 (8.5)

DOLP =
√

Q2 + U2 (8.6)

Θpol =
1

2
arctan

(
U

Q

)
+ nπ

2
(8.7)

where n is 1 for Q < 0 and otherwise 0.

8.2.2 jones formalism

For the analysis of differential effects between the telescopes we need a de-
scription of the propagated phase (see section 8.5), which is not possible with
the Stokes formalism. For this case we will use the Jones formalism. In this
formalism the state of polarization of an electric field is described by a complex
Jones vector:

j =

(
Ex

Ey

)
=

(
Ax · eiϕx

Ay · eiϕy

)
. (8.8)

A change in radiation is again described by a matrix, the 2x2 complex Jones
matrix:

jout = J · jin, (8.9)

with the input Jones vector jin and the output vector jout. One of the main
disadvantages of the Jones formalism is that Jones vectors always represent
fully polarized light. To be able to deal with partially polarized light one has
to use the coherence matrix of Jones vectors:

C =

(
⟨ExE

∗
x⟩ ⟨ExE

∗
y⟩

⟨EyE
∗
x⟩ ⟨EyE

∗
y⟩

)
(8.10)

They propagate as follows:

Cout = J · Cin · J∗ (8.11)

The degree of polarization of a state described by a Jones coherence matrix is
(Gil, 2004):

DOP =

√
2 · Tr(C2)

Tr(C)2
− 1, (8.12)
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with the trace of the coherence matrix Tr(C).

Similar to the approach of L14, we use the coherence matrix of the observed
source to model the interferometric response. For this we assume that we have
a system, as it is for example present in GRAVITY, where the light is split
in two orthogonal linear polarizations. The interferometric combination then
happens for the light in both directions individually.

The response of an interferometer to an electromagnetic signal e⃗ depends on
the instrumental polarization of the two telescopes in each baseline. For two
telescopes m and n this response is given by (see e.g. Hamaker, 2000; Smirnov,
2011):

Vm,n = 2 ⟨Jm · E (Jn · E)H⟩

= 2 Jm ·
(

⟨ExE
∗
x⟩ ⟨ExE

∗
y⟩

⟨EyE
∗
x⟩ ⟨EyE

∗
y⟩

)
· JH

n

= 2 Jm · Cin · JH
n

(8.13)

This quantity Vm,n has different names across literature. Defined as coherency
matrix by Hamaker, 2000, visibility matrix by Smirnov, 2011 or cross-coherence
matrix in L14, it is nothing other than the complex visibility in a matrix
representation. Taking this into account, one can get the interferometric
quantities by extracting the matrix quantities along a specific axis, as was
already done in L14. The correlated flux F, the photometric flux I, the fringe
contrast ν and the fringe phase Φ are calculated in the following way:

F x
m,n =

∣∣V x
m,n

∣∣
Ixm,n =

1

2

(
V x
m,m + V x

n,n

)
νx
m,n = |V x

m,n|/Ixm,n

Φx
m,n = Arg(V x

m,n)

(8.14)

With this concept we have everything in hand to calculate the interferometric
response to polarized targets, taking into account the instrumental polarization
of the individual telescopes. We will use this in section 8.5 to determine the
differential birefringence and phase loss of the VLTI.

8.3 vlti model

In order to build up a calibration model for the VLTI we first model the
light path with all its mirrors. This is done only once and not for all Unit
Telescopes (UTs) individually, as the light paths of the four UTs are almost
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Unit Telescope (UT)

Pa

El

Az

Delay Line GRAVITY

Fiber control
unit

Integrated
optics

Spectrometer

Derotator HWP

Fiber control
unit

Beam 
Compressor

GRAVITY 
Feeding Optics

Star Separator

Figure 8.1: Schematic model of the VLTI light path. The light path is shown
for two UTs in red and blue including GRAVITY. The rounded arrows indicate
the possible rotations in the VLTI (for change in Azimuth (Az), Elevation (El)
and paralactic angle (Pa)) and in GRAVITY (at the field derotator and the
half-wave plate (HWP)). The straight arrows indicate the movement of the
delay lines. The location of the star separator is only shown for the blue beam,
but is in the same place for both telescopes. The fiber optics and elements
within the GRAVITY beam combiner are only indicated here and further
explained in section 8.6.

identical. The only differences are the distances between some mirrors and the
directions of some 45° reflections in the delay line, both of which have no effect
on the propagation of polarization. This assumption is later supported by our
measurements. The overall model is based on what was previously developed
by L14 (for more details see also: Lazareff et al., 2014a).

8.3.1 vlti light path

The light path for two telescopes is shown in Figure 8.1. After the telescope
itself, the light is sent to the Nasmyth platform by M3. It then travels to the
center below the telescopes, where it is guided into the Coudé room. In the
Coudé room it travels through the star separator where some of the light is
directed into the adaptive optics system. As the the adaptive optics system
is not sensitive to polarization and the light is not fed back, it is not relevant
for the purpose of instrumental polarization. From there all light beams are
sent to the delay lines. Here the positions of the mirrors change slightly
for each telescope, but as the distances only differ in the direction of light
propagation and all the reflections are identical, these differences do not affect
the polarization. From the delay lines the light enters the VLTI lab, where
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it reaches the beam compressor, which adapts the beam size to fit the beam
size required by GRAVITY. After the beam compressor the light continues to
the VLTI switchyard, where it can be sent to the individual instruments. For
GRAVITY there is one more reflection to feed the light into the instrument.
In the instrument the light is derotated by a K-Mirror and a half-wave plate,
before it is fed into the fiber coupler. More details on the exact components of
GRAVITY are given in section 8.6.

8.3.2 modelling

An electromagnetic wave incident on a mirror can be decomposed into a compo-
nent parallel (p-component) and a component perpendicular (s-component) to
the plane of incidence. Reflections on a metallic mirror can introduce a linear
polarization if the reflectivity of the two components is different, or a circular
polarization when there is a different phase shift for the two components. The
Mueller matrix which describes such a reflection is given by (see e.g. Collett,
1992):

M =
1

2


r2s + r2p r2s − r2p 0 0
r2s − r2p r2s + r2p 0 0

0 0 2rsrp cos(δ) 2rsrp sin(δ)
0 0 −2rsrp sin(δ) 2rsrp cos(δ)

 (8.15)

where r is the reflection coefficient of each component and δ the relative
retardation: δ = ϕs − ϕp. r and δ can be directly calculated from the Fresnel
formula:

sinΘi = n sinΘr, (8.16)

where Θi and Θr are the incident and reflection angles and n the material
dependent refractive index. While this is the original Fresnel formula the
refractive index for metals is a complex number and therefore also the reflection
angle Θr is complex and is not a regular angle anymore. With the incident
angle and the complex Θr one can now calculate the reflectance:

Rs = −sin(Θi −Θr)

sin(Θi −Θr)
= rs exp(iϕs), (8.17)

Rp =
tan(Θi −Θr)

tan(Θi −Θr)
= rp exp(iϕp), (8.18)

With the information of n and Θi one can therefore calculate the Mueller matrix
for the reflection of a mirror.

For the model we use the positions of the individual mirrors as given by Michel,
2000. We show the notation for the mirrors, which we use in the following,
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Figure 8.2: Simplified version of the VLTI light path from Figure 8.1 to show
the modeling and the experimental setup. The black squares show the location
where the laser is launched and where the polarimeter is mounted. The names
of the mirrors used in the text are given. The color of the mirror number shows
the grouping which was used for the fitting. Grey mirrors are not fitted in our
calibration model.

in Figure 8.2. From the positions we can calculate the light path and the
incident angle at each mirror. Together with the material of the mirrors this
is enough to set up the VLTI model. However we implemented the following
simplifications:

• We do not model M1 and M2 as the incidences are near normal and we
can ignore their contribution.

• The star separator (see Figure 8.1) is not implemented as a special
element in our model. As it is not rotating we instead approximated it
with the initial positions of M10 and M11 from the VLTI setup before
the implementation of the star separator, as given by Michel, 2000 (see
also Figure 8.2).

• The reflection in delay line is done with cats-eye retroreflector. In our
model we simplify this to three mirrors.

• The beam compressor is modeled as just one mirror, as all the incidences
are almost normal.



118 chapter 8: polarization model of the vlti and gravity

The refractive indices of the mirrors are taken from the initial model from L14,
as given in an online database 1. For the three materials used here, they are:

• Gold: n = 0.99 + 13.81i

• Silver: n = 0.77 + 13.41i

• Aluminum: n = 2.75 + 22.28i

With this we can calculate the Mueller matrix for each individual mirror. To
combine several Mueller matrices one can just take the product of them to get
the combined Mueller matrix:

M = MnMn−1 · · ·M2M1 (8.19)

Our model starts at M3 and goes all the way down into the VLTI lab until the
GRAVITY feeding optics.

8.3.3 field rotation

One additional issue one needs to take into account is that there are several
fixed and varying field rotations in the path of the VLTI. These occur at the
following points (see Figure 8.2):

• Between M3 and M4 there is a rotation due to the telescope movement
in elevation (El). The rotation is ϕ = 90◦ − El, as an elevation of 0◦
corresponds to a zenith angle of 90◦.

• Between M8 and M9 there is a rotation depending on the telescope’s
position in azimuth (Az). The rotation is given by ϕ = −(Az + 18.98◦) +
6.02◦. The 18.98◦ comes from the fact that the VLTI baselines are rotated
by −18.98◦ compared to the east-west direction. As the zero position
of the UTs is towards the south this introduces an offset in the azimuth
position. The 6.02◦ comes from the mirror positions in the path.

All these rotations are identical for the light paths of the four UTs.

This leads to a rotation of the field in the light path by:

Φ = (90◦ − El)− (Az + 18.98◦) + 6.02◦

= −El − Az + 77.04◦
(8.20)

These rotations are directly taken into account in our calibration model. In
order to derotate the actual data, one also has to correct for the paralactic

1https://refractiveindex.info/

https://refractiveindex.info/
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angle (Pa) and another 90◦ rotation due to a change of the reference system
from the VLTI platform to the VLTI lab. This leads to a full field rotation Θ
from the sky to the VLTI lab of:

Θ = 90◦ + Pa + Φ

= Pa − El − Az + 167.04◦
(8.21)

This is also what is stated in Gitton and Wilhelm, 2003, with the only difference
being the sign of the azimuth angle. This is due to the fact that the angle
is defined as East of South in Gitton and Wilhelm, 2003, while we use the
convention of the ESO ISS system, which is East of North (Perraut and Berger,
2010).

A rotated optical element would usually be implemented by multiplying the
Mueller matrix of the element with a rotation matrix R:

R(Θ) =


1 0 0 0
0 cos 2Θ sin 2Θ 0
0 − sin 2Θ cos 2Θ 0
0 0 0 1

 (8.22)

A rotated element is then traditionally described by MΘ = R(−Θ) ·M ·R(Θ).
We do this in a slightly different way. At each rotation we rotate our coordinate
system accordingly. This way the field rotation as given in Equation 8.20
is automatically included in the final calibration Mueller matrix, which then
depends on the telescope position. One must take into account that each
metallic mirror introduces a 180° phase shift, which is equivalent to a change
of coordinate system for a Stokes vector (Keller, 2002). One must then take
into account that due to this change in coordinate system, rotations after an
odd number of mirrors go into the total field rotation in the opposite direction.
The full Mueller matrix of the VLTI, including all necessary rotations is then
given by:

MV LTI = R (90◦ + Pa) ·MM18 · · · MM9

·R (−(Az + 18.98◦) + 6.02◦) ·MM8 · · · MM4

·R (90◦ − El) ·MM3

(8.23)

8.4 calibration measurement

In order to verify and calibrate our model we took calibration data at the VLTI.
As light source we used a high power Thulium Laser from IPG photonics with
a laser wavelength of 1908 nm. The instrumental polarization is expected to
change with the wavelength. That is why we used a laser at 1908 nm, in order
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Figure 8.3: Visualization of the reference measurement of the six input states.
Ideally the four linear states would lie on the equator, while the circular states
are on the poles. The small deviations from that come from imperfect optics
when setting up the input states.

to be as close as possible to the science wavelength of GRAVITY (between
2000 and 2500 nm). The differences over 500 nm should be small, as changes
in the refractive index for the three materials are on the order of ±(0.1 + 2i)
over this wavelength range. We can later use calibration observations on sky to
verify that it is not a limiting factor. The polarization measurements were done
with a PAX polarimeter from Thorlabs. This is a rotating-waveplate-based
polarimeter which was customized by Thorlabs to work at NIR wavelengths.
In order to have the full light path of the VLTI, we launched the laser in the
VLTI lab, from the reference plates just in front of the GRAVITY feeding
optics. With a linear polarizer, a half-wave and a quarter-wave plate we could
modify the polarization of the laser and set it to arbitrary input states. The
measurement head of the polarimeter was mounted onto a spider arm of one UT.
This allowed us to measure the full light path at different telescope positions.
For a sketch of the experimental setup see Figure 8.2.

In order to get the full polarization information the goal was to measure the
Mueller matrix of the light path at different telescope positions. As a Mueller
matrix has 16 free parameters, we needed at least four input states to determine
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the full matrix. As shown in Layden et al., 2012; Sabatke et al., 2000; Reddy
et al., 2014, it is best to equally space the input states over the Poincaré sphere,
which minimizes the error from the matrix inversion. The Poincaré sphere is
a way to visualize polarization states (for an example see Figure 8.3, see also
Collett, 1992). Fully polarized states lie on the sphere and partially polarized
states are shifted towards the center of it. Fully linearly polarized states are
shown on the equator and fully circular states on the two poles.

In order to keep our input states as simple as possible we used six different
input states with equal distribution over the Poincaré sphere. The input states
were four linearly polarized states with a distance of 45 degrees to each other
and two fully circularly polarized states (left and right). The linear states were
intentionally chosen to not coincide with the geometric axis of the light path
(i.e. not 0°, 45°, ...). The six input states we used are the following:

• linear polarized at 75°

• linear polarized at 30°

• linear polarized at −15°

• linear polarized at −60°

• circular polarized, left handed

• circular polarized, right handed

The measured input states are also shown in Figure 8.3. The measurement
was done for all four UTs with an average of 12 different telescope positions in
altitude and azimuth. In order to test how well we can measure the polarization
and how reproducible the input states are we did several test measurements.
From those we conclude that the uncertainty on the polarization angle is on
the order of 0.5° and 0.2% for the degree of polarization. Those uncertainties
are added to the error derived from the temporal scatter of each measurement.

8.4.1 first results

The first test we did is if the degree of polarization is maintained or if we have
significant depolarization in the light path of the VLTI. Overall we measure
a degree of polarization of (98.1±0.4)% and therefore a polarization loss of
around 2%. Such a small amount of depolarization is expected from scattering
on dust in the optical train.

More interesting is the effect of instrumental polarization on the polarization
angle and birefringence on the degree of linear polarization. For the polarization
angle we look at the four linear input states, 100% linearly polarized at 75°,
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Figure 8.5: Measured degree of linear polarization for the different input states.
Left: linear input states where the input degree of linear polarization is 100%.
Right: circular states, where the input is fully circularly polarized, so 0% linear
polarization.
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-60°, -15°, and 30°. This measurement must be corrected for the field rotation,
according to Equation 8.20, with an additional correction for the fact the
polarimeter measurement head was mounted on the telescope spider, which is
at an angle of 5.5° from the main axis.

The measured polarization angles as a function of azimuth position are shown in
Figure 8.4. These data were taken at an elevation of 50° and 70°. As the change
in elevation is not the dominant factor, the data is shown together. While
the measured values lie around the input values, there is some modulation of
around 15°. This is the instrumental polarization by the mirror train, which
clearly depends on the telescope position. With the data we also show the
prediction of the polarization angle by the polarization model from section 8.3.
This illustrates that the data roughly follows the model and the amount of
instrumental polarization we measure is nicely predicted by the model. The
data from all telescopes is shown in one plot to illustrate that the telescopes
behave very similar. The differences between the UTs will be discussed in
section 8.5.

The third effect we can investigate is how much cross talk there is between the
linear and circular polarization states, i.e. how elliptic the input states become.
The result is shown in terms of degree of linear polarization in Figure 8.5. Here
we see that the linear states, which should have 100% linear polarization, have
much lower values, going down to below 60%, again depending on the telescope
position. The inverse effect is clearly shown for the circular states, which reach
very high values in degree of linear polarization with a maximum of 90%.

From the calibration data one can conclude that the UTs behave very similarly
and do not show significant depolarization. However we clearly see instrumental
polarization, which would modify a polarization angle measurement by up to
15°. There is also strong crosstalk between linear and circular states, which
could decrease the measured linear polarization degree by up to 40%. Both
effects are dependent on the telescope position.

8.4.2 fitting the calibration model

From the comparison of model and data in Figure 8.4 we conclude that the
model roughly predicts the measurement, but that there is still some discrepancy.
To reach a full calibration model we improve the purely analytic VLTI model
by fitting it to the obtained calibration data. The model includes 18 mirrors
with two input values for the refractive indices and several rotations in the
train. This proved to be almost impossible to fit to our sparse data. In order
to overcome this, we group together all mirrors which have no rotation between
them. These are the following:

• M3
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Figure 8.6: Test data calibrated with the fitted polarization model. The data
are the same as in Figure 8.4 and Figure 8.5 but now calibrated. In both plots
the data is shown as dots and the input states as dashed lines. The different
colors show the different input states. The left plot shows the polarization
angle and the right plot the degree of linear polarization.

• M4 to M8

• M9

• VLTI lab and delay lines (M10 to M18)

The groups of mirrors are also indicated in Figure 8.2 by different colors in the
mirror notation. The groups rotate then with a change of elevation between
M3 and M4, a change in azimuth between M8 and M9 and a constant field
rotation after M9:

MV LTI =MLab ·R(90◦) ·MM9 ·R (−(Az + 18.98◦) + 6.02◦)

·MM4−8 ·R(90◦ − El) ·MM3

. (8.24)

The advantage of this approach is that the form of the Mueller matrix for a
group of reflections stays the same as for a single reflection (see Equation 8.15).
As the values in this matrix do not correspond to the values from a single
Fresnel equation anymore we can modify the Mueller matrix to a simpler version
(For the derivation see Harrington et al., 2019):

M =
rp
2


1 +X2 1−X2 0 0
1−X2 1 +X2 0 0

0 0 2X cos(δ) 2X sin(δ)
0 0 −2X sin(δ) 2X cos(δ)

 , (8.25)

where X is calculated from the reflection coefficients: X = rs/rp. The values
for M9 were measured by L14, which leaves us with only six values to fit.
Furthermore, the fitted matrices do not include rotations, which makes it
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Table 8.1: Fitted values for X and δ. The given uncertainty is the one sigma
confident interval of the fit. The vues for M9 are not fitted and therefore have
no fitting uncertainty.

X δ [◦]
M3 1.000 ± 0.006 170.1 ± 0.4

M4-M8 0.998 ± 0.006 144.4 ± 0.3
M9 0.944 165.0

M10-M18 0.917 ± 0.005 142.3 ± 0.3

possible to apply the model for each telescope position and in both propagation
directions.

With the fitted values we therefore have a polarization model which calculates
a Mueller matrix for the whole VLTI light path and depends on the telescope
position. For an ideal mirror we assume X = 1 and δ = 180◦. The values we
derived from the fit are given in Table 8.1. With the fitted calibration model
we calibrated the test data set, shown in Figure 8.6. For the calibrated data the
polarization angle of the input states is recovered well and the degree of linear
polarization is 100% for the linear input states and very low for the circular
states, which matches the input states. If one compares the calibrated data
with the original in Figure 8.4 and 8.5, this is a very clear improvement. This
excellent result of the fitted model also validated the simplifications made in
the model (see subsection 8.3.2).

With the fitted values the calibration model is a simple function of telescope
position. We obtain a Mueller matrix for each telescope position, which
describes the instrumental polarization of the VLTI. The sky polarization can
be calculated from the measured Stokes vector and the Mueller matrix of
the VLTI by applying Equation 8.4. In order to make this available to the
community we put the calibration model into a small python package, which is
available as VLTIpol at github2.

8.5 differential effects

Apart from the absolute calibration of instrumental polarization, another im-
portant question is whether the differential birefringence between the telescopes
causes errors in astrometric measurements. This topic was originally addressed
by L14, however in their analysis they used small random perturbations of the
telescopes in order to estimate the phase error and get the best alignment of
the optical components in GRAVITY. We can now extend their analysis, as we

2https://github.com/widmannf/VLTIpol

https://github.com/widmannf/VLTIpol
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do not have to work with random perturbations but have the measurements of
the instrumental polarization for the four UTs. For this section we will switch
to the Jones algorithm as this ultimately allows us to estimate the phase errors
introduced by differential birefringence.

8.5.1 fitting individual telescopes

Similar to the approach in subsection 8.3.2, we again fit the model to the
calibration data. But this time we treat each telescope individually. The
main principle of the model does not change: we reuse the model described
in Equation 8.24. In this case, however we exchange the Mueller matrix with
a Jones matrix. Using Fresnel calculus, the Jones matrix that describes the
linear retardation as well as the reflection can be written as follows:

J =
rp
2

(
rs · exp(iδ) 0

0 rp

)
(8.26)

All our measurements are of normalized Stokes vectors. One can convert them
into Jones vectors with the following formula:

j =
1√
2

( √
1 +Q√

1−Q · exp (i arg(U + iV ))

)
=

(
Ax

Ay · eiδ
)

(8.27)

As we do not have the full phase information in such a vector we have to allow
for an additional phase for each input state. In the end, we fit

jout = J ·
(
eiϕ · jin

)
, (8.28)

where ϕ is an arbitrary phase factor which we ignore. For the Jones description
of a mirror we must go back to three parameters per mirror group, instead of
the two parameters from Equation 8.25. So for each of the three mirror groups
we individually fit a reflection coefficient in the p and s directions as well as a
phase difference between the two reflections. Furthermore, we split our data
set into the individual telescopes, which divides the amount of available data
for each fit by four.

The first result for the individual fits is shown in Figure 8.7, where the reflectivity
in s and p direction, as well as the phase difference between s and p is shown.
From this first look we can conclude, that in general all the values are similar.
This confirms the initial assumption that the birefringence in the individual
telescopes is on the same order. We see, however, some scatter in the reflection
coefficients of the different telescopes. This means that we have some degree of
differential attenuation in the VLTI, which leads to some loss in fringe contrast.
The phase difference, however, is very stable over all telescopes. This is a good
sign, as it indicates that we have very little differential retardance, which would
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Figure 8.7: Comparison of the fitting values for the individual telescopes. The
three plots show the reflectivity in the s and p directions, as well as the phase
difference for each group of mirrors. The horizontal lines show the values from
a fit to all telescopes at once. rs, rp and δ are defined in Equation 8.26.

show up as a phase error in the observations. We will look into both effects in
more detail in the following.

While the errorbars on each of these values increase with the individual telescope
fits we see a slightly improved Chi-squared for the values from the individual
fits in comparison to the values from the four-telescope fit. We conclude that
the fits are reliable despite the fewer data points going into them.

8.5.2 fringe contrast

With the response of each individual telescope we can ask the question how
much the different instrumental polarization in each light path influences the
interferometric observations. For this we use the matrix representation of the
visibilities (subsection 8.2.2). First we look at the loss in fringe contrast. We



128 chapter 8: polarization model of the vlti and gravity

0

50

El
 [d

eg
]

UT 43 UT 42

0

50

El
 [d

eg
]

UT 41 UT 32

0 50 100 150
Az [deg]

0

50

El
 [d

eg
]

UT 31
0 50 100 150

Az [deg]

UT 21

0.980 0.985 0.990 0.995 1.000
Fringe Contrast [%]

Figure 8.8: Fringe contrast in the six baselines shown for all possible telescope
positions

assume that our fringe-tracking object is unpolarized. Nevertheless, instrumen-
tal polarization may introduce a small degree of polarization in the incoming
light. As shown in Equation 8.14 one can calculate the fringe contrast by the
quotient of correlated and total flux, basically asking the question how much
of the total incoming light interferes. As the instrumental polarization depends
on the position of the telescope we calculate the fringe contrast for a grid of
telescope positions. This grid reaches from 0 to 90 ° in elevation and 0 to 180 °
in azimuth. In azimuth the telescopes can rotate between 0 and 360 °, but the
polarization signal repeats after 180° so it is sufficient to calculate the values in
this range.

The fringe contrast for all telescope positions is shown in Figure 8.8. For all
baselines except UT 43 the fringe loss is always well below 1%. Only for UT
43 the fringe loss reaches a maximum of 1.5%. This is most likely caused by
the fact that both reflectivities in s and p direction are different for UTs 4 and
3, while for all other combinations of telescopes the values are more similar (see
Figure 8.7). However, also a contrast loss of < 1.5% is not really worrisome
as we still reach a fringe contrast of 0.985 in the worst case. We can therefore
conclude that we do not lose significant fringe contrast due to instrumental
polarization.
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8.5.3 eigenvectors

Following L14, we use polarization eigenvectors to describe the polarization
properties of the mirror train. A polarization eigenvector is defined as a linear
input polarization which results in a linear output polarization. L14 have shown
that each Jones matrix describing the VLTI has two distinct eigenvectors. They
are generally not orthogonal to each other, but close to orthogonal. With the
now measured Jones matrices for each telescope we confirm both findings. In
order to minimize the phase error it was suggested by L14 that one should align
one of the detector polarizations orthogonal to one of the output eigenvectors.

The effect of phase errors due to the differential birefringence depends on the
direction of the detector in the instrument. We will therefore use GRAVITY
as an example for now, but the findings are applicable to all instruments.

The two polarizations on the GRAVITY detector are horizontal and vertical.
In GRAVITY there are fiber polarization rotators, which are set up in a way
that a horizontal polarization in the VLTI lab corresponds to a horizontal
polarization at the detector. We can therefore assume that there is no rotation
of polarization in the GRAVITY light path, while there still might be additional
birefringence, as we will discuss section 8.6.

By initial instrument alignment we can therefore assume that the two detector
polarizations correspond to the same directions in the VLTI lab. As shown in
Figure 8.12 there is an additional degree of freedom to adjust the polarization
direction. In the fiber coupler of GRAVITY, just downstream of the K-Mirror, is
a half wave plate, which could be used to overlay one of the output eigenvectors
with the detector polarization. Currently the half wave plate rotates with the
K-Mirror. This is done in order to reduce polarization effects on the metrology
laser, which propagates backwards through the light beam. However, while
this set-up reduces polarization effects for the metrology measurement, it is
not ideal to minimize astrometric phase errors. In the following we will look
into these phase errors and estimate how much they could be reduced with the
optimal alignment.

8.5.4 phase errors

The measured visibility phase is referenced to the fringe-tracking object. This
can either be the same as the science target, or a nearby star. As discussed in
L14 this can lead to a measurement error if the fringe-tracking and the science
target have a different polarization state. In the case of two different targets
the fringe-tracking object will most likely be a star and therefore unpolarized.
In some cases the fringe-tracking source could be slightly polarized, due to
foreground dust (see for example Buchholz et al., 2013) or intrinsic polarisation
of for example a dusty giant (Haubois et al., 2019). However, this should only
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Figure 8.9: Error in the visbility phases due to differential birefringence for all
telescope positions. The left two columns show the error for the first polarization
P1 and the right two for the second polarization P2.
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Figure 8.10: Same representation as in Figure 8.9, but this time the phase
error if the GRAVITY half wave plates track the eigenvector of the individual
telescopes.
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Figure 8.11: Eigenvector as applied in Figure 8.10 to minimize the phase errors.

be a few percent and is not relevant here as the science target can have a much
higher polarization. In the case of an (almost) unpolarized fringe-tracking target
and a highly polarized science target the polarimetric response of the mirror
train is different for the two targets. This different instrumental polarization
will therefore introduce a phase error, as the science phases are referenced to
the fringe-tracking phases.

For the following tests we assumed a science target with a linear polarization
of 30%. This value is chosen, as it is a likely value for the Galactic Center
super massive black hole Sgr A* in its flaring state (see e.g. Genzel et al., 2010),
which is one of the most extreme levels of NIR polarization known in celestial
bodies. Such a polarization state is represented by the following coherence
matrix (see Equation 8.10):

C =

(
0.65 0
0 0.35

)
(8.29)

As shown in Equation 8.14 the measured phase of a target is just the argument
of the visibility matrix. We calculate this for the unpolarized fringe-tracking
object as well as for the slightly polarized science object and subtract the two
phases from each other to take the phase referencing into account. As for the
fringe contrast we again calculate this for each baseline and each telescope
position and show the results in Figure 8.9. Theoretically there is another
degree of freedom, which is the orientation of the polarization vector on sky.
This is given by the intrinsic polarization of the source as well as the parallactic
angle. However, as this is just a rotation it is redundant with the telescope
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azimuth and would just shift the pattern in Figure 8.9 to the left or right. We
therefore ignore this for now.

As shown in Figure 8.9 there is a small phase error which depends on the
telescope position. On average the error is of the order of 0.3°, with maximal
values of 1.1°. However, the two polarizations show a somehow opposite pattern.
If one averages the two polarizations, as one would probably do it for astrometry
measurements anyway to increase the SNR, the phase error reduces. For the
average value the mean phase error is 0.2°, with a maximum value of 0.8°. In
the simplest case, a single point source, the phases relate to the position on
sky with the following formula:

Φ = 2πs⃗ · B⃗/λ (8.30)

where Φ is the measured phase, s⃗ the measured position on sky and B⃗ the
baseline length. Inverting this formula and using a baseline length of 100m
and a wavelength of 2.2 µm a phase error of 0.8° corresponds to an astrometric
error of 10µas.

It was already shown by L14 that this error can be improved if the output
eigenvector of the telescope is aligned with the axis of the polarization measure-
ment on the detector. We can confirm these previous results that each telescope
always has two eigenvectors, which are roughly, but not exactly 90° apart. If
one aligns one detector polarization with one eigenvector, the astrometric error
of this measurement drops to 0. However, the second polarization still shows a
significant phase error. From simulating all different options, we found that
the lowest overall phase error can be achieved if one uses the average of the
two eigenvectors angles:

ϕ̄EV =
1

2

(
ϕEV 1 + ϕEV 2 − π

2

)
(8.31)

We can align the detector polarization with this vector by rotating the half-wave
plate (HWP) by this angle. If we do so for each telescope individually we reach
the phase errors as shown in Figure 8.10. One can see that the phase error
has improved in comparison without the HWP rotation in Figure 8.9. The
mean phase error in this case is significantly decreased to 0.1° with maximum
values up to 0.9°. Again we can further improve this by averaging the two
polarizations to mean values below 0.1° and a maximum error of 0.7°. We
therefore see that while such an alignment improves the situation, it is only a
small improvement if we work with the mean phase. In Figure 8.10 the biggest
values can be seen in all baselines with UT3. This is due to the fact that for
UT3 the two eigenvectors are less orthogonal than for the other telescopes. By
averaging the two eigenvector angles this adds a slightly higher phase error
than for the other baselines. In conclusion we find that one does not need to
align the detector with the eigenvectors, as long as one uses the mean phase
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Figure 8.12: Schematic side and front view of the optical design of the GRAVITY
fiber coupler. From Gravity Collaboration et al., 2017.

for the highest resolution astrometry, but the individual polarizations for the
polarization measurement and the imaging.

However, it is also possible to implement an alignment with the direction of
the eigenvalues. Figure 8.11 shows the angles used for the data in Figure 8.10,
calculated from Equation 8.31. This angle is a pure telescope property and
therefore does not depend on the polarization on sky or the parallactic angle. It
could be implemented as a look-up table based on the derived values. However,
as one can see in Figure 8.11 the angles are very similar for the four telescopes,
but not identical. This means that one needs to aligns each telescope individually
to get the smallest phase error. This might not be desired as then each telescope
would have a different orientation of the polarization axis on the detector.

8.6 instrumental polarization of gravity

So far the results have been mostly independent of the interferometric instrument
and generally valid for VLTI observations in the near infrared. However, in
order to actually calibrate polarized observations, the instrument has to be
taken into account as well. Here we discuss the instrumental polarization of the
GRAVITY beam combiner. For a full overview about GRAVITY see Gravity
Collaboration et al., 2017.

8.6.1 gravity light path

In GRAVITY the light first passes the fiber coupler (Pfuhl et al., 2014). Part
of the fiber coupler is a K-Mirror to derotate the field, a HWP and then some
mirrors with tip-tilt, piston and pupil control. Behind that the light is split
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Figure 8.13: Optical design of the GRAVITY spectrometer. Most important
for the polarimetric mode is the Wollston prism which can be moved in or out
of the light path. From Gravity Collaboration et al., 2017.

into science and fringe-tracker and fed into optical fibers (Figure 8.12). The
K-Mirror as well as the HWP rotate in a fixed way during the observation: The
K-mirror is used as derotator and moves according to the field rotation described
in Equation 8.20. With the derotation of the field it also derotates the sky
polarization. However, in order to keep the light path of the backpropagating
metrology system stable, the HWP rotates together with the K-mirror. This
reverts the derotation of the polarization and the rotation correction described
in subsection 8.3.3 and Equation 8.20 still has to be applied to a polarization
measurement. The light is then fed into single-mode fibers and passes the
fiber control unit, before it is fed into the integrated optics system (Jocou
et al., 2014; Perraut et al., 2018) and then finally passed into the spectrometers
(Straubmeier et al., 2014). In the spectrometers there are Wollaston prisms,
which can be put into the light path to allow for a polarimetric measurement
(see Figure 8.13) and split up the light into two polarizations (P1 and P2), with
a 90° polarization angle between them.

There are some field rotations in the light path of GRAVITY. However, they do
not have to be taken into account as the polarization angle on the spectrometer
is calibrated with polarized light from the calibration unit. For this calibration a
linear polarizer in the calibration unit is used. With the linearly polarized light
from the calibration unit the Fibered Polarization Rotators in the fiber control
unit of GRAVITY are then optimized to get a fully illuminated P2 spectrum
on the detector. The polarization P1 is therefore horizontally polarized in the
VLTI lab frame, or aligned with V, in the VLTI (V,W) coordinates.
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Figure 8.14: Measurement of the half-wave plate (left) and the K-Mirror (right)
of GRAVITY. The points show the data points for Stokes Q (red) and Stokes
U (black). The lines show the corresponding values for a ideal optical element.
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Figure 8.15: Fit of the K-Mirror Mueller matrix to the data. The dots show
the data for Stokes Q (red) and Stokes U (black) the colored lines correspond
to the fitted model and the grey lines to a ideal optical element.

For polarimetric measurements the instrumental polarization of some, or all of
the components in GRAVITY has to be taken into account. This depends on
the actual observation mode, as discussed in the following.

8.6.2 measurements of instrumental polarization

In order to measure the instrumental polarization of GRAVITY we performed
two individual experiments. The first one was done with the same polarimeter
as the VLTI measurements. We put the polarimeter in front of one of the beams
and used the metrology laser as a light source. In that setup we then rotated
the half-wave plate as well as the K-Mirror individually. The measured Stokes
Q and U values for both tests are shown in Figure 8.14. This measurement has
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a couple of disadvantages. First of all it mainly measures the carrier beam of
the metrology: The light from the metrology laser is split into three beams
before entering the GRAVITY light path. Less than 1 % of the light goes into
the science and fringe-tracking beam and the rest into the carrier beam. It is
therefore the main light source we used for this measurement. The disadvantage
of this beam is that its polarization is not controlled and we only know about
the orientation of the polarization from the installation phase of the instrument.
The beam also does only enter the GRAVITY light path in the beam combiner,
and we therefore do not get information about the other GRAVITY components
from this measurement. However, we get a very good understanding of the
rotated elements, namely the HWP and the K-Mirror. In Figure 8.14 one
can see the data points and the response of an ideal HWP/K-Mirror under
rotation. While the HWP shows very little birefringence, the K-Mirror shows
clear deviations from an ideal derotator. We therefore assume that the HWP
does not alter the polarization, apart from rotating it, while the K-Mirror
does. With the data available it is possible to fit the full Mueller matrix of the
K-Mirror while leaving the input polarization free. The free input polarization
is important here, as we use the metrology laser as a light source, of which
we do not know the exact polarization state. We therefore get a measurement
of MKM from this experiment. However, the derotators in GRAVITY show a
small angle-dependent birefringence, which can lead to a loss in the degree of
linear polarization of up to 20%. We took this into account by allowing for
an angle dependent loss in linear polarization. The fit result for the Mueller
matrix with the angle-dependent birefrigence is shown in Figure 8.15.

With the results of this experiment we have all information in hand for a
second measurement. In this second approach we used the light from the
calibration unit of GRAVITY with its own linear polarizer. From this we get
a constant and linearly polarized input source from the calibration unit. We
then rotated the K-Mirrors of each beam from its initial position to 360°. At
each location of the K-Mirror we took detector frames with the HWP at 0 as
well as at 22.5°, to get a full polarization measurement (as will be described
in more detail in the next section). With this experiment we can measure the
output polarization of GRAVITY for a linear input polarization with rotating
polarization angle, shown in Figure 8.16. With the measurement of MKM from
the previous experiment the polarization state after the HWP and the K-Mirror
is well known. The remaining parts of GRAVITY do not have any rotating
parts and we can therefore fit them with a single Mueller matrix: MGR. As
shown in Figure 8.16 the fit worked well and the instrument is well described.
Interestingly the data is not too far of from an ideal response, showing that
polarization is mostly preserved in GRAVITY.
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Figure 8.16: Measured polarization with GRAVITY for different rotations of
the input vector. The points show the data points for Stokes Q (orange) and
Stokes U (black). The colored lines show the corresponding values from the
fitted Mueller matrix. The grey lines correspond to an ideal response of the
instrument without instrumental polarization.

8.6.3 full calibration

With the results of the GRAVITY measurement we have all information in hand
to calculate the full polarimetric response for an observation with GRAVITY and
the VLTI. From the work presented in section 8.4 and especially Equation 8.24
we obtain the Mueller matrix of the VLTI, which depends on the elevation and
azimuth of the telescope. Together with the Mueller matrix of the K-Mirror
and the rest of GRAVITY this gives the full response:

MALL =MGR ·R(ΘHWP ) ·MHWP ·R(−ΘHWP )·
R(ΘKM) ·MKM ·R(−ΘKM) ·MV LTI(Az,El)

(8.32)

Where R is the usual rotation matrix (Equation 8.22) with the position of the
HWP (ΘHWP ) and K-Mirror (ΘKM). For the half-wave plate we assume an
ideal Mueller matrix:

M =


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

 . (8.33)

Together with the VLTI model this is included in our calibration python package
VLTIpol, which can be used to get the full Mueller matrix of the VLTI and
GRAVITY.
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8.7 polarimetric measurements with gravity

To observe with GRAVITY in a polarimetric mode one has to put the Wollaston
prism into the light path. This gives measurements in two polarizations, P1
and P2. P1 is aligned with the horizontal axis in the VLTI lab (V axis in VLT
definition) and P2 is 90° rotated from it. From the interferometric signal one
can calculate the measured intensity and the first linear Stokes parameter Q:

I = IP1 + IP2, Q = IP1 − IP2 (8.34)

To retrieve U one has to rotate the HWP 22.5°, which rotates the polarization
axis by 45°. Here one has to take into account that the GRAVITY HWP
rotates in opposite direction than how the Stokes parameters are defined, which
introduces a sign change:

U = −I22.5P1 + I22.5P2 (8.35)

In order to reduce the effects of instrumental polarization one can measure
the Stokes parameters as a double difference (Tinbergen, 1996; Canovas et al.,
2011; de Boer et al., 2020). In this case both Q and U are measured twice,
both for two HWP angles: Q with 0° and 45° and U with 22.5° and 67.5°. For
the second measurement the sign of the Stokes component changes, but the
instrumental polarization (IP) stays constant. The Stokes parameters are then
calculated as:

Q =
1

2

[
(I0P1 − I0P2)− (I45P1 − I45P2)

]
=

1

2

(
Q+ −Q−) (8.36)

U =
1

2

[
(I22.5P2 − I22.5P1 )− (I67.5P2 − I67.5P1 )

]
=

1

2

(
U+ − U−) (8.37)

This way all the IP downstream of the HWP is removed (van Holstein et al.,
2020). However, the double difference has the disadvantage that one needs
four exposures to get one data point. For some special cases, where one has a
quickly changing polarization state, this might not be usable (e.g. in Gravity
Collaboration et al., 2018a). In this case one can still use Equations 8.34 and
8.35, but has to consider the full polarization effects of the optics after the
HWP.

In the case of the double difference, one has to ignore the first term in Equa-
tion 8.32, but apart from that the effects are the same. With the calibration
matrix from Equation 8.32 the measured polarization can then be calibrated:

Ssky = M−1
ALL · SGRAV ITY . (8.38)

GRAVITY is not able to measure circular polarization. Therefore one has to
assume V=0 for SGRAV ITY . As we have seen a significant birefringence from
the VLTI, this would mean that some of the linear polarization is lost in this
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Table 8.2: Polarization of degree (P) and angle (Θ) for IRS 16C

P [%] Θ [◦]
Ott et al., 1999 4.0 ± 1.6 35 ± 19

Witzel et al., 2011 4.6 17.8
Buchholz et al., 2013 4.3 ± 0.6 25 ± 5

This work:
2018-07-28 3.7 ± 0.6 19.2 ± 4.7

Average over all nights 3.7 ± 0.4 16.7 ± 3.0

analysis. Since this is strongly telescope dependent the importance of this
effect has to be modeled for an individual observation to get an appropriate
uncertainty on the results. However, under the assumption that the observed
source emits only linear polarization one can use iterative approaches such as
the one developed by Witzel et al., 2011 to recover the full amount of linear
polarization. Another solution is to forward model the polarimetric property of
the source (Gravity Collaboration et al., 2020b) to recover the full polarization
information.

8.8 application to data

To test the polarization model described before we used the same data as
presented in Gravity Collaboration et al., 2018a; Gravity Collaboration et al.,
2020b. However, as shown in those papers the science target Sgr A* is not a
good test target as it has a variable polarization state. During the observations
of Sgr A* we used the star IRS 16C as the fringe-tracking target. IRS 16C has
a brightness of mK = 9.55 and is well known to be slightly polarized. It was for
example observed in Ott et al., 1999; Witzel et al., 2011; Buchholz et al., 2013
and the studies found a consistent polarization of 4% (see Table 8.2), most
likely due to foreground polarization of the dust.

While the goal of the measurement was to measure the polarization of Sgr A*,
the rotation of the HWP affects the fringe-tracking target in exactly the same
way as it does the science target. We can therefore apply the full analysis to the
measured fluxes of the fringe-tracking star, in order to measure its polarization.
From the analysis described in this work we measure a polarization degree of
(3.7 ± 0.6)% at an angle of (19.2 ± 4.7)° for the night 2018-07-28. These values
are in perfect agreement with the other values from Table 8.2.

As IRS 16C is the usual fringe-tracking target for Galactic Center observations,
there are several more data sets with polarization observations of the star.
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Figure 8.17: Polarization measurements of IRS 16C between 2018 and 2021.
The top panel shows the polarization angle for each individual night and the
bottom panel the polarization degree.

Figure 8.17 shows the polarization angle and polarization degree for eight
nights between 2018 and 2021. The polarization state in each night is well
measured with an average scatter of the polarization angle of 6° and 0.7% for
the polarization degree per night. This shows that the polarization calibration
works well for different telescope orientations and that we are able to measure
reliable polarization states with GRAVITY.

The fact that we can well measure the expected polarization of the fringe-
tracking star clearly verifies our model and the polarimetric capabilities of
GRAVITY. It also confirms the results from Gravity Collaboration et al., 2020b,
where we already used the presented calibration model and could show clear
and varying signal in the polarization of Sgr A*.
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8.9 conclusion

In this work we have presented the first full polarization study of the VLTI and
GRAVITY. As expected, both the observatory as well as the instrument itself
show effects of instrumental polarization. In both cases we characterized the
effects and build up a calibration model to calibrate for the instrumental effects
in observations. We have outlined the necessary steps in observation, data
reduction and calibration to execute polarimetric measurements with GRAVITY.
The capabilities were then demonstrated by remeasuring the polarization
properties of the galactic center star IRS 16C, which is in excellent agreement
with the literature.

We have also shown that differential birefringence between the light paths of
the VLTI UTs is not a dominant error source, as the four lightpaths were
constructed with great care in order to minimize differential birefringence. For
a typical observation of a calibrated source our studies have shown a phase error
due to differential birefringence of below 1°. Even for the extreme case with
a 30% polarized science target this results in only around 10mas astrometric
error. This error can be further reduced when using the average of the two
polarizations for astrometry and the individual signal for poalrimetry. The
fringe contrast in such a case is only reduced by around 1%, which is not in a
relevant regime.

We therefore demonstrated that observations with GRAVITY do not suffer
from strong effects due to birefringence and that GRAVITY can be used for
polarimetric observations. This can be done in very different ways. With
IRS 16C we showed that GRAVITY can measure the polarization quantities of
even slightly polarized targets with very good precision. One can also studying
the temporal evolution of polarized targets, as it was done in Gravity Collab-
oration et al., 2018a; Gravity Collaboration et al., 2020b for a bright Sgr A*
flare. Furthermore, the polarization information can not only be extracted for
the full intensity, but also for the measured intensity in each spectral channel.
One can therefore even map polarization changes over the spectral range of
GRAVITY. As all of this comes together with the unprecedented resolution of
GRAVITY this opens up a wide new range of possibilities to do polarimetry in
the near-infrared.





gravity dual-beam astrometry 9
The majority of the GRAVITY observations are done within a single science
pointing. This can be astrometry between several sources in the field of
view or imaging and studying the structure of extended objects. However,
GRAVITY also offers astrometry between different science pointings or even
between the fringe-tracking and the science target. For this so-called "dual-
beam astrometry" one needs all subsystems which are included in GRAVITY.
The metrology system is especially needed to measure differential optical
path differences between the two targets. Dual-beam astrometry is a mode
that GRAVITY offers, but some systematic effects must be considered
due to its complexity. This section outlines the work done to analyze and
characterize these systematic effects, which then fully enables dual-beam
astrometry on short time scales.

9.1 dual-beam observations

GRAVITY can perform astrometric measurements in between two different
pointings of the science fiber. Such measurements are possible as all the
measured visibility phases are referenced to the phases of the fringe-tracking
target. This observing mode is usually called dual-beam or narrow-angle
astrometry and requires a precise metrology system. This has been of big
interest for the optical interferometry community for a long time (see e.g. Shao
and Colavita, 1992). The technologies implemented in GRAVITY for the
dual-beam astrometry and the metrology benefited greatly from earlier work
for example at the Palomar Testbed Interferometer (Colavita et al., 1999), the
Keck interferometer (Hrynevych et al., 2004) and the Navy Prototype Optical
Interferometer (Hutter and Elias, 2003).

A good explanation of how the dual-beam observing mode works and why
it is needed is shown with the Galactic Center science case as an example.
GRAVITY has been engaged in a regular observing campaign to measure the
distance vector between the star S2 and Sgr A* since its commissioning in 2016
(Gravity Collaboration et al., 2018b; Gravity Collaboration et al., 2019; Gravity
Collaboration et al., 2020a). Before 2019, GRAVITY could detect both objects
simultaneously with a single pointing. In this case, the visibility amplitude is
not constant, and the closure phases are non-zero. Thus, all observables, such as
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Figure 9.1: Illustration of the difference in observing strategy in 2017 & 2018
(left) compared to the 2019 observing strategy (right). In 2019, the S2 has
moved to the edge of the interferometric field of view, which results in minimal
flux coupling of the star if the GRAVITY fiber is pointed at Sgr A*. In
consequence, in 2019, we: 1. point at the star S2 and take an exposure, 2. move
the fiber to the Sgr A* location, and 3. do an exposure on Sgr A*. This way
we can measure the distance between the two targets in consecutive exposures.

the distance vector and the flux of Sgr A*, can be inferred from interferometric
binary model fitting (Gravity Collaboration et al., 2018b). It allows for direct
measurement of the distance between the two sources, utilizing the advantages
of the closure phase where scalar telescope-based systematic effects cancel out
(see e.g. Monnier, 2003).

However, since the pericenter passage of S2 in 2018, this distance vector between
S2 and Sgr A* has constantly been increasing. In 2019 S2 had moved so far out
of the interferometric field of view (IFOV) that the residual flux injected during
an observation is not enough to see a reliable binary signature in the data. We,
therefore, adopted a new observing strategy in 2019, as illustrated in Figure 9.1.
In this new mode, we first observe only S2 and afterward only Sgr A*. In order
to measure the distance vector between the two sources, we derive the relative
phase offset between them from the measured visibility phases. This is done by
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Figure 9.2: Principle of the phase referencing interferometry, adapted from
Glindemann, 2011. The detected fringe packages show a phase shift d, from
which the separation of the targets can be measured.

referencing the phases of the observed object to the phases of the fringe-tracker
star.

Phase referencing means that we measure the phase difference of the fringe
packets coming from the two stars (see Figure 9.2). With the knowledge that
the fringe-tracking star is a point source and is well centered in the fringe-
tracking fiber (which is made sure by GRAVITY control loops), we know that
the phases of the fringe-tracking star are zero. This means that the difference
of the measured phases is the phase of the science target, referenced to the
fringe-tracker:

Φ = ΦSC − ΦFT (9.1)

This phase referencing is only possible if two objects are observed simultaneously,
as many of the effects are time dependent.

However, a differential optical path difference (dOPD) between the fringe-
tracker and the science target adds to the measured phase difference from
Equation 9.1:

Φ = ΦSC − ΦFT + dOPD (9.2)

There are two main contributions to the dOPD between the two targets. The
first one is due to the different sky position of the targets, as illustrated in
Figure 9.2, which contains the separation of the two targets:

dOPD = S⃗ · B⃗, (9.3)

with the separation between the two targets S⃗ and the baseline B⃗. This is
the dominant dOPD in the phases. As S⃗ is on the order of milliarcseconds,
the measured phases would not be usable as they would be larger than the
coherence length of the light. This is why there is a subsystem in GRAVITY,
which corrects for the dOPD introduced by the sky rotation. This correction is
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done with the fibered differential delay lines (FDDLs) in GRAVITY, which can
introduce an optical path difference between the fringe-tracking and science
sources. The FDDLs follow a calculated trajectory as given by Equation 9.3,
to modulate how the dOPD changes due to sky rotation.

However, there is a second contribution to the dOPD, which is coming from
instrumental effects. Two individual units detect the fringe-tracking light and
the science light in GRAVITY. When those units are not perfectly identical,
it will introduce an optical path difference between the two beams. This
instrumental dOPD needs to be controlled to make reliable phase measurements
with GRAVITY. This happens with the internal metrology system.

9.1.1 the gravity metrology system

The metrology system in GRAVITY is responsible for measuring instrumental
dOPDs between the fringe-tracker and the science channel. In order to reach
the desired astrometric precision of GRAVITY of 10 µas, this has to be done
with a nanometer precision (Gillessen et al., 2012; Blind et al., 2014b).

The simple description of the metrology system is that a laser is launched
backward through the entire GRAVITY and VLTI lightpath (for an overview,
see Figure 9.3). This laser has a wavelength of 1908 nm to not interfere with
the science light. Before entering the light path, the laser is split up with a
fixed phase relation. One part is then fed into the science channel of each
telescope and one part into the fringe-tracking channel. The two laser beams
follow up the entire light path. After the reflection on the primary beam of the
telescopes, they are measured with metrology diodes. The diodes are mounted
at the spiders of each telescope. Each telescope has four diodes, and their signal
is averaged to get a measurement at the center of the pupil plane. Ideally,
one would make this measurement directly in the center, but the center of the
telescope is obscured by the secondary mirror.

The metrology light beams from the science and the fringe-tracking channel
interfere in the pupil plane of the telescope. This fringe pattern is then
temporally sampled by the four diodes in the telescope spiders. From this
measurement, the change in phase difference is extracted, which corresponds to
a movement of the fringe pattern in the pupil plane. The changes in the phase
then correspond directly to changes in the dOPD between the two light paths.
Therefore, the absolute dOPD cannot be measured, but only changes of the
dOPD.

The measurement at the telescope is usually referred to as telescope metrology
and measures the full light path. There is another measurement at the entrance
of the GRAVITY fiber coupler. In Figure 9.3 this measurement is shown as
Metrology Calibration Sensor, but it is usually referred to as fiber coupler
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Figure 9.3: Overview of GRAVITY’s metrology system, from Lippa et al.,
2016. The principle of the metrology is system is shown for two telescopes. At
the bottom the metrology laser is fed into the two beam combiner (BC) for
the fringe-tracker and science channel. It then follows the light path of each
telescope until it is measured in the pupil of the telescopes.
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metrology. This measurement only covers GRAVITY itself, but due to the
smaller beam size at the measurement point, it has a higher SNR and is used
to run control loops in GRAVITY.

The final implementation of the metrology has not only two beams but three
in total: one bright one, which is not going through the optical fibers, and two
faint ones, which go through the entire light path. The scheme was implemented
to reduce the noise from laser backscattering in the fibers and is discussed
in detail in Lippa et al., 2016 and Lippa et al., 2018. In terms of the final
measurement of the dOPD this three-beam scheme is not different, and we will
not discuss it in further detail.

9.1.2 imaging phase

With the help of the metrology measurement we can now define the measured
phase, starting from Equation 9.3. The final referenced phase is usually referred
to as imaging phase. As defined in Equation 9.3, the main dOPD comes from
the sky rotation. This is compensated by the FDDLs, which are hold in closed
loop with the fiber coupler metrology, to make sure that the dOPD introduced
by the FDDLs matches exactly the introduced dOPD:

dOPDFDDL = S⃗ · B⃗. (9.4)

By adding the FDDL movement, the dOPD from the separation of the target
is no longer part of the measurement. The dOPD introduced by instrumental
effects are still contained in the measurement of the phase. These are measured
by the metrology system and by subtracting the metrology measurement one
gets rid of the instrumental effects. The metrology measurement also sees the
dOPD, which is introduced by the stretching of the fibers with the FDDLs,
as the metrology light passes through these fibers together with the science
light. To take this into account one has to subtract the dOPDFDDL from the
metrology signal before calculating the final imaging phase:

Φimag = ΦSC − ΦFT − (dOPDMET − dOPDFDDL). (9.5)

Taking Equation 9.4 into account this converts to the normally used equation
for the imaging phase:

Φimag = ΦSC − ΦFT − dOPDMET + S⃗ · B⃗. (9.6)

With ΦSC and ΦFT being the phase measured directly on the detectors and
OPDMET the dOPD measured by the metrology signal. As before S⃗ is the
separation of science and fringe tracking target and B⃗ the baseline.
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With the corrections of the different dOPD this means that if a point source is
observed with the science beam and the point source is perfectly centered, the
measured imaging phases are zero. Any deviation from zero shows an inaccuracy
in the used separation vector or a more complicated source structure. In practice,
more effects have to be taken into account, such as the dispersion of the fibers
as the science and metrology wavelengths are not identical. However, the main
principle of the imaging phase is the one given in Equation 9.6.

9.1.3 dual-beam in the galactic center

In the Galactic Center, we do not measure the distance between the fringe-
tracker star and the science target, but we measure the vector between two
separate science targets. This measurement is done by first observing S2 and
then Sgr A*. We then calibrate all our phases with the phases of S2. As the
phases are phase referenced to the fringe-tracker, they should be constant and
zero if a point source is at the same position in the fiber as S2. This is ensured
by the calibration with S2, which also solves the problem that the GRAVITY
metrology system does not give the absolute dOPD directly. We do not do the
full dual-beam astrometry with this observing scheme, but we still need the
metrology system in the same way as we need continuously phase referenced
measurements to do this measurement.

By calibrating the visibility phases of Sgr A* with the ones of S2, we create
a phase center coordinate system anchored at the used separation vector. In
other words, if the given vector, which is the amount by which we stretch the
fibers from S2 to Sgr A*, would be perfect, we would measure zero OPD offsets,
and the visibility phases would all be zero. However, if Sgr A* is slightly shifted,
with respect to the pointing position, this introduces an OPD, and we measure
non-zero phases, according to the simple formula:

Φ = 2πs⃗PC · B⃗/λ (9.7)

where s⃗PC is the position on sky which we fit and B⃗ the baseline vector. Fitting
the S2-calibrated phases of Sgr A* with a point source model then gives the
deviation of the phase center from the assumed orbit position. By combining
this phase center offset with the assumed prior orbit, we get the absolute
separation between S2 and Sgr A*:

s⃗S2−SgrA∗ = s⃗fibershift + s⃗PC (9.8)

Where s⃗S2−SgrA∗ is the separation of the two targets, we want to measure.
s⃗fibershift is the separation vector which was applied to the FDDL with moving
from S2 to the predicted position of Sgr A*. s⃗PC the fitted phase-center offset of
Sgr A* from the predicted position. s⃗PC corresponds to the difference between
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the best fit separation between FT and SC and the assumed separation which
is used for the FDDL control.

Be aware that in the observing mode we describe here, we find two different
object separations. The first one is the distance from the fringe-tracking target
to the science target (in our case from IRS16C to S2) which will be labeled
with a capital S⃗. The second one is the separation from the calibration target
observed with the science fiber (here S2) and the real science object (here
Sgr A*). The separation between those two targets is marked with a small
s⃗. In the observing mode of GRAVITY in the Galactic Center, we keep the
fringe-tracking fiber on IRS16C and iterate the science fiber between S2 and
Sgr A* to measure s⃗. As discussed before, it is also possible to measure the
separation between fringe-tracking and science star (S⃗) with GRAVITY, but in
this case, an additional measurement has to be used as the metrology zero point
is unknown. This can be a swap between two bright targets, the observation
of a known binary or also a longer time sequence of data from the observed
object. Apart from this additional data, the systematic effects discussed in the
following stay the same and are applicable in the same way to measuring S⃗
and s⃗.

In the dual-beam observing mode, we are more prone to systematic effects
than in a measurement within a single pointing, as we cannot use the visibil-
ity amplitude information and must use absolute phases rather than closure
phases. Absolute phases in the dual-beam mode are challenging to measure
in interferometry, which is why most observations depend on closure phases
and visibility amplitudes. However, with the metrology system of GRAVITY,
it is possible to measure phase-referenced visibility phases. If the phases are
well calibrated and the systematic effects are controlled, the determination of
the position is simple since the many-parameter binary fit reduces to a simple
two-parameter centroid fit.

9.2 systematic effects

In order to get the position of a single point source in an interferometric
pointing, one can fit the calibrated data with the simple point source model
given in Equation 9.7. However, to use the visibility phase, we have to rely
on the capability of GRAVITY to produce fully phase-referenced dual-beam
measurements. This means that the metrology measurement is now needed to
calculate the science phase, in contrast to earlier binary observations. This has
revealed additional systematic effects. We discuss these new effects and their
correction in the following.
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9.2.1 separation vector correction

As detailed before, dual-beam astrometric observations require a prior estimate
of the separation of the science target and the fringe-tracking star. Using this
separation prior, we can compute the OPD corresponding to the difference in
phase between the two objects. This OPD value is the physical value at which
the FDDLs of GRAVITY are stabilized. Once such a value is chosen, the phase
center coordinate system is fixed, and the deviation from the input separation
can be measured. However, any deviation from the true separation leads to a
systematic effect on the science phase. The differential delay lines compensate
the OPD induced by the rotation of the earth, as given by Equation 9.3. How-
ever, any deviation ∆⃗S from the prior assumption of S⃗ leads to an incorrectly
calculated compensation phase:

∆Φ⃗ = ∆⃗S · B⃗ (9.9)

Since the baseline separation B⃗ changes with earth rotation, the error on
the compensation phase ∆Φ⃗ correspondingly also changes with time. This
introduces a drift on the phase and, therefore, on the astrometry.

This effect can be calibrated out in the observing scheme, where we measure the
distance between two different science targets. We regularly iterate between the
target we calibrate with and the second one. If there are no systematic effects,
the phases of the calibration target should stay zero. In practice, they drift
due to the outlined effect. In Gravity Collaboration et al., 2020a we showed
that we can correct the separation vector S⃗ by deriving ∆Φ⃗(t) from the S2
exposures. We parameterize the science phase as a function of ∆Φ⃗(t) and fit
for the correction ∆⃗S which best removes this drift. This correction is added
to S⃗, and the science phases are recomputed. Since ∆Φ⃗(t) is derived only from
exposures centered on S2, this procedure cannot introduce a bias on our Sgr A*
astrometry.

9.2.2 metrology systematics

For phase-referenced dual-beam astrometry, the phase of the science target is
measured with reference to the fringe-tracker. For this, it is necessary to measure
the dOPD between the light paths of the science and fringe-tracking targets
with the metrology system. Under the assumption that the metrology traces
variations in the light path, which the starlight would see, the measured dOPD
is directly subtracted from the science phases (see Equation 9.6). However,
this also means that any systematic effect of the metrology measurement is
directly added to the science phase. Since the metrology signal is measured for
each telescope individually, any systematic effect introduces a telescope-based
error that will propagate to the baselines containing the respective telescope.
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Figure 9.4: Phases of an observed point source from three consecutive exposures.
The six colors show the different baseline. For each baseline three data sets are
shown with decreasing color intensity over time.

Telescope-based errors are traditionally removed by using the closure phase
instead of the visibility phase (Gravity Collaboration et al., 2018b; Gravity
Collaboration et al., 2018a). However, as discussed in the previous section, this
is not possible for phase-referenced observations in the dual-beam mode. For
this reason, control of any metrology systematic is essential.

In order to verify this mode, we did test observations of known binary stars.
In such a case one star is observed with the fringe-tracker and the other one
with the science channel. In a perfect case we would assume that the visibility
phases of the science target stay constant or maybe show a linear drift due to
effects discussed in subsection 9.2.1.

Analyzing a lot of test observations indeed revealed that the visibility phase is
affected by telescope-like systematic effects. Two effects are apparent:

1. A slow drift of the visibility phase as a function of time. This is shown
in Figure 9.4, where the data from three consecutive exposures is shown,
which is very obviously not stable over time. This can be introduced by
the wrong separation vector, but even after fitting the separation vector
there are drifts remaining. These drifts are therefore inconsistent with an
offset point source and are true systematic effects.

2. Baseline inconsistencies for point sources. For an example see Figure 9.5,
where a fit to one exposure is shown. The data is very clearly not described
by a point source, despite that all other observables show no sign of an
extended source structure.
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Figure 9.5: Point source fit to the data of the first exposure in Figure 9.4. The
data for the six baselines is shown in color and the fit as a black line.

Both of these effects can be explained by introducing a single, varying systematic
dOPD for each of the four telescopes. We find that the introduced systematic
dOPD repeats over different nights. Furthermore, we find that the metrology
signal shows the same systematic effects as the visibility phase. The metrology
signal we look at here is the difference between the telescope and the fiber coupler
metrology. This has the advantage that the strong drifts in the metrology,
which are due to the stretching of the fibers in the FDDLs, is not seen in the
signal. The systematic effects in phases and metrology can be nicely seen in the
two consecutive nights of our test data set in Figure 9.6, where the metrology
signal, as well as the science phase of one baseline for two nights, is shown.
The data sets are shown as a function of the local stellar time (LST), as this
means that for the same LST and the same target, the telescope positions
are very similar. One can see that the signal repeats over both nights and
is very similar in visibility and metrology phase. As the metrology signal is
directly added to the measured visibility phase during the data reduction,
we conclude that the systematic effect we observe comes from the metrology
measurement. We deduce that the observed systematic effect can be explained
by a previously known but unaccounted-for effect, the so-called metrology
beam-walk systematic (as introduced in Shao and Colavita, 1992; Lacour et al.,
2014).

The metrology beam-walk systematic

Similar to the bias introduced by optical aberrations in the measurement of
the S2-Sgr A* separation (see chapter 6), we can trace this metrology error to
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Figure 9.6: Comparison of the metrology phase and the visibility phase for two
nights. The metrology phase is the metrology from UT3 minus the metrology
from UT2, where we use the difference between telescope and fiber coupler
metrology for both. The visibility phase is directly from the baseline UT 3-2.
The red data shows the first night, and the black data the second night.

Figure 9.7: Schematic illustration of the introduced aberrations. The back-
ground shows an example mirror with scratches from the production, which
are seen by the metrology diodes shown in red. The left figure shows the initial
measurement and the right one how the metrology measurement rotates with
the telescope and therefore samples the aberrations in the mirror.
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imperfections in the optical train. Some optical aberration in the light path
of the metrology beam can introduce a measurement error by introducing an
OPD. Ideally, one would measure the metrology signal at the center of the
telescope beam to be as close to the light path of the science light as possible.
However, the center of the telescope is of course obscured by M2. Therefore the
current scheme was chosen, where four receivers are mounted to the telescope
spiders, and the used signal is the average of the four. Due to this set up,
a spatially varying optical aberration can introduce different OPDs for the
four receivers. The receivers are mounted so that any symmetric aberration
(i.e. all low order Zernike polynomials such as astigmatism) is canceled out
by the average. However, if there are asymmetric aberrations or symmetric
aberrations on a small scale, the system is sensitive to them. As shown in
chapter 6 the optical system of GRAVITY is affected by aberrations of higher
order. Furthermore, imperfections in the production process of some of the
mirrors may introduce asymmetric aberrations on small scales, which may
also affect the measurement. Therefore, the conclusion is that we have field-
dependent aberrations in some mirrors, which are measured by the metrology
receivers. These optical aberrations appear as an error with beam motions
and a different footprint between the starlight and the metrology. which is the
beam-walk systematic (Lacour et al., 2014).

When we subtract the metrology signal from the science light, the beam-walk
systematic introduces an error, as the footprint of the four receivers is in a
different position on those mirrors than the science light and therefore sees
different aberrations. The here discussed metrology error is therefore the
difference between the Gaussian mode weighted phases of the FT and SC light
and the sampling of the wavefront by the metrology receivers.

This would not be a problem for a static system, as one could just calibrate
the effect. During an observation, however, the telescope rotates following the
path of the source on the sky. This implies a rotation of the telescope spiders,
and correspondingly the metrology receivers. Consequently, the aberration-
induced OPD changes with time. An illustration of the aberrations and how
the metrology diodes sample them is shown in Figure 9.7. This error is a
time-varying telescope-based error that repeats if the telescope rotation is
repeated on different nights. It explains the signal that we see: an OPD added
to each telescope, which is time-varying and repeats over several nights. For
an in-depth explanation as well as a mathematical treatment of how such
aberrations affect the measurement, see Lacour et al., 2014.

Correction of metrology beam-walk:

Ideally, we need to run an extensive calibration program, where we map the
mirrors’ aberrations to correct them. Possibilities of how such a calibration
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Figure 9.8: Combined metrology measurement for all the Galactic Center data
of 2019. The four plots correspond to the four UTs. The individual data,
binned to 0.1 deg is shown in black and the mean of all data in red.

could look are discussed in the next section. For now, we are using available
data to achieve the best possible correction.

In order to correct this effect, we use the telfc-corr metrology, the signal
measured at the telescope receivers and referenced to the metrology signal
measured at the fiber coupler inside the instrument. This includes the full
telescope metrology, but it is already corrected for the dOPD introduced in
the fiber coupler, for example, by the differential delay lines. The telfc-corr
metrology is a 2π-wrap-free quantity, which is easy to handle. In the following,
I refer to telfc-corr to as "the metrology" to ease the understanding.

We construct our correction by combining the metrology measurement of all
Galactic Center observations of 2019. These are data taken over 28 nights,
with a total on-source time of 25.6 h. While the metrology error changes as
a function of time, its time-dependence is introduced by the rotation of the
telescope or, more correctly, by the rotation of the instrument’s pupil plane.
In order to correct the effect, we bin the metrology data of all nights as a
function of the angle Φref by which the pupil is rotated. This reference angle
is determined according to the following formula:

Φref = − tan−1

(
sx
sy

)
− DROTOFF + p+ 315◦ (9.10)
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where (sx, sy) is the separation vector between the fringe-tracking and science
targets on sky; DROTOFF is the offset angle of the K-mirror in GRAVITY,
which depends on the observing mode; and p is the parallactic angle. This
reference angle is defined so that it describes the rotation of the metrology
pattern in GRAVITY. Meaning that at the same reference angle, the metrology
pattern is the same in GRAVITY.

To remove constant offsets between the different nights, which depend on the
metrology calibration, we allowed for an offset of the mean and adapted the
offset such as that the combined data fits together. Figure 9.8 shows the raw
metrology data of 2019 for each telescope as well as the median value binned
by the reference angle. This figure is a strong evidence for us that we indeed
have systematic effects that repeat at a given reference angle. The metrology
signal is of course expected to measure a dOPD introduced by instrumental
effects, which is then also seen in the phase and has to be corrected. However,
we do not expect to see effects which repeat at a given reference angle and
Figure 9.8 shows this behavior clearly. We therefore conclude that we have
systematic effects in the metrology, which are directly propagated in our phase
measurement. Using the reference angle here is based on the assumption that
the aberrations are within GRAVITY, as the field rotation is different outside
the instrument. Given that we see a clear correlation with the reference angle
this assumption seems to be valid and we continue to consider aberrations
within the GRAVITY instrument.

Averaging data over a significant fraction of a night leads to a cancellation of
this effect (e.g. as in Gravity Collaboration et al., 2019) and only increases the
uncertainty of the measurement. In the case of observations of time-variable
sources, however, we want to use data from single exposures and must therefore
take this effect into account.

Estimation of residual uncertainty

Due to the limited amount of metrology data available, we cannot perfectly
correct the systematic metrology error. Any residual telescope error causes
an error in the measured visibility phases and, therefore, a shift in the fitted
centroid position. This position shift cannot be disentangled from a true source
movement when we fit the visibility phases. Consequently, it is essential to esti-
mate the residual systematic metrology error to derive a reliable measurement
of the centroid motion.

If a white noise model describes the metrology error, the scatter of the fitted
centroid position would also correspond to white noise. However, in the case of
correlated noise (with respect to the reference angle), the motion of the phase
centroid can appear correlated and systematic, mimicking an actual motion of
the source on the sky.



158 chapter 9: gravity dual-beam astrometry

Unfortunately, we cannot expect white noise since the metrology measurement
is strongly correlated over time on any single night. If the number of data
sets going into the averaged correction (as shown in Figure 9.8) is large, the
mean will not be dominated by the trends of any individual night, and the
remaining noise in the correction should be white. For the 2019 data set as
shown in Figure 9.8 we have at most 12 overlapping observations at a given
reference angle. When averaging this small number of data points, we must
expect that some correlation remains between neighboring reference angles.
This correlated error in the metrology correction would then be attributed to
a physical motion of the source. This correlation is solely due to the small
number of available metrology data sets and will decrease with the addition of
more data sets. There is no technical limitation on the number of metrology
data sets we can combine and thus on the quality of the correction of this
systematic. The quality of the correction should improve with an increasing
amount of observations.

In order to obtain an estimate of the residual systematic effect due to the
uncertainty on the median metrology correction, we bootstrap 100 realizations
of the metrology data and derive 100 realizations of the corrected phases of
each data-set. We do this in an end-to-end fashion, using the bootstrapped
metrology realizations to correct the phases and the correction of the measured
astrometry.

9.3 correction of affected data

In this section, we pick one data-set to show how the astrometric result improves
when we take into account the systematic effects described in the previous
section. For this analysis, we pick a data set from the Galactic Center observa-
tions of 2019. The data were taken on the night of the 20th of June 2019. We
picked this night as it is a comparably long observation of Sgr A*, where we
observed the black hole for a little more than two hours. We did not have any
technical issues and good weather, making this data set a good one to illustrate
the discussed effects. We discussed earlier that in dual beam astrometry, one
simply has to fit a centroid model to the observed visibility phases. However,
the Galactic Center is a very crowded field, so we usually have to take into
account that there might be other stars in the field of view. We will shortly
discuss the effect of those other stars before moving on to the data of Sgr A*.

9.3.1 influence of nearby stars

In 2019 Sgr A* is not the only source in our interferometric field of view: S2
and S62 are observed as well (Gillessen et al., 2017; Gravity Collaboration
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Figure 9.9: Image of the Galactic Center data from 2019-06-20. The image
shows the three sources in the field: Sgr A*, S2 and S62. The off-center sources
are damped by the fiber coupling profile, which is taken into account in the
image. The image is produced with a newly developed imaging technique based
on information field theory (Gravity Collaboration et al., 2021, in prep.)

et al., 2021). An image of the used data set is shown in Figure 9.9. The flux
of S2 and S62 is highly damped by the fiber coupling profile and thus their
contribution is small. Nevertheless, we take their pull on the image centroid
into account.

In order to include these two additional sources we calculated the complex
visibilities V with a three-source model:

V =
ISgrA∗ + fS2 · IS2 + fS62 · IS62
I0SgrA∗ + fS2 · I0S2 + fS62 · I0S62

(9.11)

In this equation fi is the flux ratio of each source with respect to Sgr A*:
fi = f(i)/f(Sgr A∗ ). I is the interferometric signal from the individual source,
integrated over a bandpass P (λ) for each pixel:

I(α,OPD) =

∫
∆λ

P (λ) ·
(

λ

2.2µm

)−1−α

· exp
(
−2πi

OPD

λ

)
dλ (9.12)
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and I0 is the same value with the OPD set to zero, which is needed for the
correct normalization:

I0(α) =

∫
∆λ

P (λ) ·
(

λ

2.2µm

)−1−α

dλ (9.13)

The OPD for a point source is the product of the source position s⃗ and the
baseline B⃗:

OPD = s⃗ · B⃗ (9.14)

For a full deviation of these formulas see Waisberg, 2019.

The flux ratios fS2 and fS62 are given relative to the SgrA* brightness and
corrected for the fiber damping (see chapter 6). Finally α is the spectral slope
of the source. We used α = 0.5 for SgrA* and α = 3 for S2 and S62. In
order to keep the fit as simple as possible, we do not fit the flux ratios and
positions of S2 and S62 as free parameters, but take their values from Gravity
Collaboration et al., 2020e; Gravity Collaboration et al., 2021. The number of
free parameters in our model is therefore still two, but the fit to the data is
much improved. We show an example of the fit with and without the metrology
correction and the contributions of S2 and S62 in Figure 9.10.

9.3.2 corrected data

The data presented here are taken in the usual scheme, where we predominantly
observe with the fiber centered on Sgr A* and occasionally observe S2 as a
calibrator. The goal is to measure the distance vector between the two sources.
To correct the data for the various effects, we need to follow a couple of steps
after the initial data reduction with the GRAVITY pipeline:

• First, the inaccurate separation vector needs to be corrected. For this,
we fit for the ∆⃗S, which removes the expected drift from the S2 data.
This ∆⃗S is then added to the separation vector. We then recalculate the
Sgr A* phases with the corrected separation vector.

• In the next step, we correct for the beam-walk systematic. For this
correction, we calculate the reference angle for each integration. We then
read out the metrology correction, which we derived from the combined
data of 2019, as shown in Figure 9.8. As the correction is derived for each
telescope, we need to get a baseline quantity by just using the correction
from the two involved telescopes. This correction is then added as an
OPD to the phases of this baseline. For an example on how it improves
the phases, see Figure 9.10.

• To get the final astrometry of the measurement, we then fit a three source
fit to Sgr A*, S2, and S62.



9.3. correction of affected data 161

60

40

20

0

20

40

60

un
co

rr
ec

te
d 

 v
is

ib
ili

ty
 p

ha
se

 [d
eg

]

red. 2: 2.64

UT4-3
UT4-2
UT4-1

UT3-2
UT3-1
UT2-1

60

40

20

0

20

40

60

co
rr

ec
te

d 
 v

is
ib

ili
ty

 p
ha

se
 [d

eg
]

red. 2: 2.76

100 125 150 175 200 225 250 275
spatial frequency [1/arcsec]

60

40

20

0

20

40

60

co
rr

ec
te

d 
 v

is
ib

ili
ty

 p
ha

se
 [d

eg
]

red. 2: 1.67

Figure 9.10: Example fit to uncorrected data and corrected data. The top panel
shows a single source centroid fit to the data affected by metrology systematics.
The beam-walk systematic effect leads to inconsistency of the data with a point
source. This is visible when comparing fit lines with the data: systematically
affected baselines are shifted w.r.t. the best fit point source. In the depicted
case, baselines containing UT3 are affected the most (black 4-3, blue 3-2 and
red 3-1). The middle plot shows the fit after the metrology systematic have
been corrected. The data is now consistent with a point source, the center
of weight of the phases matches that of the fit. The bottom panel shows the
three-source centroid fit, which includes the phase signature of S2 and S62.
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Figure 9.11: Astrometry of Sgr A* in the night 2019-06-20. The left plot shows
the astrometry without any correction for systematic effects. In the center plot
only the separation vector is corrected. The data in the right plot include the
correction for the separation vector as well as for the beam-walk systematics.
As we are interested in the relative movement of the source we removed the
mean of each data set.

• The last two steps are repeated 100 times with different realizations
of the bootstrapped metrology correction to get the errorbar on the
measurement. The uncertainty from the metrology correction is added
in a squared sum to the other contributions but is usually the dominant
one.

The measured astrometric position of Sgr A* is shown in Figure 9.11, once
without the corrections, with the separation correction and the fully corrected
dataset. From this figure, one sees two main effects. Firstly in the uncorrected
data, there is a strong drift in the astrometry. This is due to the slightly
incorrect separation vector, which is then removed in the corrected data set
in the middle. Secondly, the uncorrected data shows much more scatter than
the corrected one, which is the dominant error in this case. This is due to
the beam-walk systematics, which adds the scatter on short time scales. The
right data also show bigger errorbars as the uncertainty estimated from the
bootstrapping over the correction is added.

The data shown in Figure 9.11 is the astrometry of the black hole Sgr A*. From
previous observations in single-beam mode we know that we expect motions on
the order of 100 µas (Gravity Collaboration et al., 2018a; Gravity Collaboration
et al., 2020c). The motions we see in the uncorrected data in Figure 9.11 are
significantly bigger than this and cannot be physically explained, as they would
exceed the speed of light. We can conclude that the corrections done to the data
certainly improve the data-set. The corrected data show a believable motion.
However, due to the comparably large errorbar, we cannot detect significant
motions in the emission of Sgr A* in this case. The error bars can be reduced
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by adding more data to the correction shown in Figure 9.8. Another way to
reduce them would be to start a dedicated calibration program, as discussed in
the following.

With the correction of the data as shown in Figure 9.10 and Figure 9.11 we
demonstrate that we can significantly improve our data by taking the discussed
systematic effects into account. With the corrections applied we can reach
an astrometric uncertainty of below 50 µas with the dual-beam observation.
However, we are still limited by how well we know the corrections we need to
apply to reach better uncertainties over short timescale.

9.4 calibration of metrology systematic

The described systematic effects are currently our limiting factor for the dual-
beam astrometry. GRAVITY was built to reach astrometric accuracies on the
order of 10 µas. Currently an accuracy on the order of 50 µas is achievable for
dual beam astrometry (see e.g. Gravity Collaboration et al., 2020a; Gravity
Collaboration et al., 2020d). The 50 µas are possible, as the systematic effects of
the metrology average out over time, especially with long observing sequences.
The long observing sequences usually have a significant telescope rotation and
therefore cover a large range in reference angle, which means that the errors
introduced by the metrology measurement average out. Over short timescales
we can already reach a similar accuracy by correcting for the systematic effects
as discussed before.

The effects become more problematic when we want to do reach the highest
possible accuracy in dual-beam astrometry on short time scales. The science
case for this is, for example, the orbital motions in the emission of the super-
massive black hole Sgr A*. The first observations of orbital motions in Gravity
Collaboration et al., 2018a were done in single beam mode, as S2 was at this
point very close to Sgr A*. Ideally, we want to repeat such a measurement
with dual-beam astrometry, which means that we need to reach an accuracy
of a few 10 µas on timescales of a few minutes. To reach such a measurement
accuracy, we need to even better calibrate the discussed effects. For the very
best accuracy the corrections we have shown before are not sufficient, and we
present the ongoing work towards a better calibration in the following.

The main problem is shown in Figure 9.7: the footprint of the metrology diodes
samples inaccuracies on different mirrors. Considering only this picture, it
would be enough to measure the metrology signal with a 360° scan and apply
this measurement as a correction to each metrology measurement. This idea
describes the first possibility of a calibration measurement: We can use the
telescopes in an arbitrary state as long as the metrology laser is propagated from
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GRAVITY to the diodes in the telescopes. We then rotate the internal K-mirror
in GRAVITY, which has exactly the desired effect as it rotates the metrology
footprint in the pupil plane. The rotation will be the same as indicated in
Figure 9.7, except that we rotate the pattern regularly by using the K-mirror,
instead of getting the rotation from the telescope position over the night. We
can calculate the reference angle by taking the actual K-mirror position into
account and get the full calibration. This scanning mode is theoretically the
simplest way to get to a calibration measurement. However, there are several
issues that complicate the problem:

• The K-mirror is used to align the field so that it can be split up into
the science and fringe-tracking field and that the light is fed into the
two fibers. By rotating the K-mirror, it is therefore impossible to keep
the targets at the positions of the fringe-tracking and science fibers. We
cannot get any science light to analyze in this scanning mode. The only
observable is then the metrology signal.

• The SNR of the metrology measurement is relatively low. This is done by
design, as the metrology laser shows some backscattering into the science
wavelengths. The low SNR complicates any calibration measurement, as
one probably has to scan several times (similar to the data in Figure 9.8).

• Lateral movements of the pupil plane shift the spots in Figure 9.7 accord-
ingly, and the metrology signal measures slightly different aberrations.
The pupil plane is controlled in GRAVITY in real-time, but small move-
ments do still occur.

• The fiber separation is adjusted for each observation, depending on the
separation of fringe-tracking and science target. While this should not
change the overall picture, there still might be a slight change in the
illumination of the metrology light, which modifies the measured effects.

We can adjust for the fourth problem in the scanning mode by using the same
fiber separation as for a normal Galactic Center observation. For the other
three points, we do not have a solution, except to do many scans and average
out the effects.

There is, however, a second possibility. When we observe a point source on sky,
we know that the phases should be zero. Any significant deviation from zero
is expected to be from the beam-walk effect. Therefore, the second idea for
a calibration is to observe a point source on sky and follow it through zenith.
During the zenith passage of the target, the telescopes rotate a lot, and we
get a good coverage in reference angle in a short period of time. We can fill
the entire space in reference angle by adding several of those measurements
and get a full calibration. In this mode, the big difficulties are the opposite
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ones than for the scanning mode: we do not suffer from SNR problems as we
can use the visibility phase, which has for bright stars a much better SNR
than the metrology signal. However, we need to have stars with the exact
proper separation, as we otherwise might measure different aberrations. If the
separation is indeed a real problem is not clear to us and has to be established
in experiments.

9.4.1 on-axis scan

There is one mode where we can combine the advantages of both calibration
approaches, which is the on-axis mode of GRAVITY. GRAVITY can be operated
in two different modes: on-axis or off-axis. In on-axis mode, the fringe-tracking
and the science target are the same object, while they are two separate objects
in the off-axis mode. The on-axis mode is used when the science target is bright
enough to fringe track or no close stars suitable to fringe tracking are available.
As the fringe-tracking and the science object are the same in this case, there is
no need for a phase-referencing between the two, and the metrology signal is
normally not needed in the on-axis mode.

By using the on-axis mode, we can rotate the K-Mirror, while staying with the
fibers on the target. The field does not have to be spatially split up into the
science and fringe-tracking field in this mode. The splitting of the light is done
with a beam-splitter, which does not depend on the K-mirror position.

We did this experiment in the beginning of 2021, where we pointed at a single
star in on-axis mode and rotated the K-Mirror. In total, we did three rotations,
where we recorded the metrology data as well as the science and fringe-tracking
data. The metrology data for UT2 is shown in Figure 9.12. In this case, we
do not plot the averaged quantity but the signal from each diode individually.
The diodes are separated by approximately 90°, so if there is an aberration in a
mirror, it should show up at each diode with a 90° shift. In Figure 9.12 we can
see that each diode shows an area with a strong high-frequency signal, which
repeats at the next diode with a 90° shift. This repeated signal is a strong
indication that our theory of aberrations in the mirrors is right, causing the
systematic effects we see in the phases. In Figure 9.12 one also sees a strong
low-frequency signal. This signal is from a tip in the metrology light, which
is removed when the four diodes are averaged. We only show UT2 here as it
shows the clearest effects, but the other three telescopes show a similar picture.

While this test shows that we indeed have aberrations in the mirrors, which
are then sampled by the metrology and add an OPD to the measured phases,
it is not directly applicable to the off-axis data. As mentioned before, the light
is split with a beam splitter in the on-axis case, while a roof prism is used in
the off-axis mode. This different element in the light path and the different
positioning of the fibers makes for a different illumination of the metrology light,
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Figure 9.12: Measurement of the metrology scan for UT2. The four plots show
the signal measured by each individual telescope diode.

which is propagated backward through the instrument. We, therefore, conclude
this on-axis test as very helpful to show that we understand our problem, but
not the final step to get to a calibration measurement.

9.4.2 off-axis calibration

The final calibration for the dual-beam observation has to be done in off-
axis mode. We plan to make a two-fold approach to reach the best possible
calibration. The first part will be a blind rotation, similar to what we have
done in the on-axis mode. Due to the discussed problems in the off-axis mode,
we will not have a phase measurement in this experiment, as the science fiber
will be pointed into the sky. It will then rotate around the star, which we use
as the fringe tracking star. This test could theoretically be done in an entirely
blind mode (and even with closed telescopes during daytime), but many control
loops in GRAVITY only function if there is light in the fringe-tracker. To
ensure the best possible stability in GRAVITY we plan to do this test with
the fringe-tracker active on a star and the majority of the control loops closed.
This approach also ensures that the instrument is as close as possible to the
state it would be in for regular observations.

The second experiment we plan to do is with starlight in the science fiber to get
the high SNR phase measurement in addition to the metrology measurement. In
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Figure 9.13: Example for a selection of binary stars to be observed to measure
the off-axis metrology. The red line shows the track in reference-angle for
Sgr A* as observed with the usual fringe-tracking star IRS 16C. The black
curves show the reference angle curves for different binary stars, picked from
the WDS catalog. Each track is shown for a two hour observation around the
zenith passage of the target.

this case, we can not freely rotate the field but have to wait for the telescopes to
rotate due to the target’s motion on sky. This motion is fast around the zenith
passage of the target and relatively slow otherwise. To only use the fast rotation,
we plan to observe several stars and always only observe during their zenith
passage. During the zenith passage, a two-hour observation of a target will
give us up to 130° of reference angle, depending on the target’s zenith distance.
By adding several of such two-hour blocks, we will fill the full range of possible
reference angles with a handful of observations and put together a complete
calibration measurement from this. An example of reference-angle coverage for
several targets is shown in Figure 9.13. The shown targets are known binary
stars from the WDS catalog (The Washington Double Star Catalog1). We
picked binary systems, which have a similar separation as Sgr A* and IRS 16C,
to not bias the measurement with different fiber positions. From the figure,
one can see that with a handful of targets and two hours of observation on
each, we will be able to fill the entire reference angle space rather quickly and
get to a complete calibration measurement from those stars.

1http://www.astro.gsu.edu/wds/

http://www.astro.gsu.edu/wds/
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In theory, the two approaches measure the same thing: the aberrations in the
mirrors, as seen by the metrology. Therefore, the approach of two different
experiments will also convince us that our model of the systematic effects is
correct if they fit nicely together. The time for these experiments was already
granted to us from ESO. Due to the challenging situation over the last one and
a half years, they were not fully executed yet.

9.5 conclusion

We have presented the dual-beam observation mode and the systematic effects
which currently limit it in this section. For the Galactic Center observations
(Gravity Collaboration et al., 2020a) and the astrometry of exoplanets (Gravity
Collaboration et al., 2020d) the dual-beam astrometry is already used. In those
cases, we depend on longer observing sequences to average out the systematic
effects, which currently limit the fully phase referenced astrometry. By using a
night average, we can achieve astrometric results with an accuracy on the order
of 50 µas, which is already an astonishing improvement to what is possible with
single-dish observations of 10m class telescopes. Nevertheless, to reach the
goal of 10 µas accuracy over the timescale of five to ten minutes, we need to
correct for the mentioned systematic effects. With the work we have presented
in this section, we found the dominant effect, currently limiting our astrometry.
By understanding the effect, we already did the first important step. We then
outlined the calibration program, which we are currently running to correct for
the systematic effects.

From what we know about the optical aberrations, we think that they mostly
come from mirrors in the fiber coupler of GRAVITY. As they show up in the
difference between the fringe-tracker and the science light, they have to be
mirrors that are not seen by both beams or where the beams are not in focus.
There is, therefore, only a small number of mirrors, which are most likely the
reason for the strong aberrations. It is consequently even worth a thought to
replace those mirrors with better ones, and we are currently looking into it
as part of the significant upgrade of GRAVITY and VLTI under the project
GRAVITY+. However, until then, our best chance is to fully understand the
effects that we see and calibrate them. The majority of this was done as we
have outlined. With the work presented here, we are one big and essential
step closer to unleashing GRAVITY’s full astrometric potential in the fully
phase-referenced dual-beam mode.
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In this thesis, I present our work to improve the available instrumentation to
study the Galactic Center and the supermassive black hole at its center. I show
how a better understanding of the instrument opens up new observing modes
and the possibility of new exciting science in the near future.

The first part of the work shows the improvements to existing data, both
for the SINFONI and the GRAVITY instrument. I present several different
improvements, which helped to reach new science results with the Galacitc
Center stars:

• The part starts with the developments in the reduction and analysis of
SINFONI data in chapter 4. We improved the reduction by tweaking the
reduction algorithms and the calibration scheme. We implemented a cross-
correlation-based approach to extract the velocities from the measured
spectrum. The cross-correlation led to a significant improvement in
accuracy, as it takes into account all available spectral features and not
just one spectral line. With the improved methods, we can significantly
improve the uncertainty in the radial velocities of the star S2. This allows
to better constrain its orbit around the supermassive black hole Sgr A*.
The revisited radial velocities helped us to improve the complete S2 data-
set and to reach better scientific results. The results of these improvements
are not limited to the work presented in this thesis. But it also contributed
to other results, such as the detection of the Schwarzschild Presession
in the orbit of S2 (Gravity Collaboration et al., 2020a). SINFONI
was decommissioned in 2019. It is currently being upgraded to a new
instrument that combines integral field spectroscopy and imaging into
one: ERIS (Davies et al., 2018). ERIS will return to the VLT in 2022 and
again be a workhorse for observations of the stars in the Galactic Center.
The approaches presented in this thesis will be directly applicable to ERIS
and will give us a great base to achieve the best possible measurements
as soon as ERIS is available.

• The improvements in the SINFONI reduction played a vital part in the
next part of this work presented in chapter 5. This chapter addresses
one of the most fundamental challenges in astronomy: measuring the
distances to astronomical objects. The data of the star S2, which orbits
Sgr A*, offer the possibility to measure the distance to the Galactic

169
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Center, as the distance is a parameter of the fit to the data. We measured
the distance to the Galactic Center with unprecedented accuracy in the
S2 orbit fit. With the renewed SINFONI results, more GRAVITY data
points, and a slightly improved data analysis, we were able to significantly
reduce the uncertainty on the distance in comparison to the previous
result in Gravity Collaboration et al., 2018b.

• A further improvement to the analysis was done by taking field-dependent
optical aberrations in GRAVITY into account. In chapter 6, we discuss
the implications of these aberrations and how we can correct them. We
find that especially the GRAVITY results in 2017 were affected by the
optical aberrations and that they caused a slight inconsistency in the
measured distance to the Galactic Center. With the correction for the
field-dependent aberrations, we bring all the distance measurements in
agreement and remove inconsistencies in the data. Therefore, this work
not only studies the optical aberrations, but also further improves the
distance measurement to the Galactic Center. This property can be used
in many other fields as it helps to constrain the structure of the Milky
Way.

• With the results from GRAVITY, we have measured the orbit of S2 better
than ever before. Together with the improved radial velocity this opens a
unique opportunity to test a prediction of General relativity, the Einstein
Equivalence Principle. In chapter 7, we study whether the Hydrogen and
Helium lines in the S2 spectrum couple differently to the potential of
the supermassive black hole. A different coupling to the potential would
violate the Local Position Invariance and hint towards inconsistencies in
General Relativity. This work shows the first-ever test of the equivalence
principle in the surroundings of a supermassive black hole. With this
first experiment around Sgr A* we overcome the limitations of earlier
measurements outside of the solar system and show that tests of the
Equivalence Principle around the supermassive black hole are possible.
Therefore, the Galactic Center offers a unique chance to test General
Relativity in the future when larger telescopes can do this experiment
with much higher precision.

While the first part of this thesis focuses on the improvements done to the
available data and the science results reached with the increased understanding
of GRAVITY and SINFONI, the second part develops new techniques and
calibration methods for so far impossible science programs. There are two new
modes discussed in this part:

• In chapter 8, we build up a calibration model for the instrumental po-
larization of the VLTI and GRAVITY. Polarization measurements are
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an established part of astronomy. However, for optical interferometry,
they remain a very unusual topic. The lack of polarimetry is due to the
need for a difficult calibration of the high number of mirrors in an optical
interferometer. First polarimetric observations with an interferometer
were done by Ireland et al., 2005, but until today it is not an established
observing mode. The work presented in this thesis combines the unique
capabilities of GRAVITY with an end-to-end calibration model. With this
work we add polarimetry to the many possibilities of observations with
GRAVITY. The outstanding precision of GRAVITY and its astrometric
capabilities together with polarimetric measurements will allow us to
continue the studies of the accretion processes of Sgr A* on the smallest
scales around the black hole. With these studies we will be able to further
constrain the magnetic field surrounding Sgr A*, as shown in Gravity
Collaboration et al., 2020b. However, polarimetry with GRAVITY is
not only interesting for the Galactic Center science. Many other fields,
such as the study of young stellar objects and the disks around them,
will benefit significantly from the unveiling of the polarimetric mode of
GRAVITY.

• The second new mode is the dual-beam observing in chapter 9. This
mode is already available but is currently limited by systematic effects.
We explore where these effects come from and how we might be able
to remove them. Similar to the effects in chapter 6, they are caused by
optical aberrations but mainly affect the phase referencing in the dual-
beam observation. To overcome the currently limiting systematic effects,
we propose two solutions: The first one is to collect the average metrology
measurement from the existing data and use it as a measurement of
the systematic effect. We showed that this solution works and vastly
improves the data. However, it still has considerable uncertainty. The
second solution is a dedicated calibration scheme which we are currently
implementing with the Paranal Observatory.

This second part of the thesis paves the way into the very near future with
GRAVITY. Both the polarimetric mode and the dual-beam observation with the
highest possible accuracy were planned from the beginning of the instrument,
but, as lined out in this work, both need significant calibration schemes to
become available. With the work presented here, we unlock both observing
modes, making GRAVITY an even more versatile instrument than it already is.
The new modes are especially interesting for the Galactic Center observations:
With the fully calibrated dual-beam observing mode, we can observe the
supermassive black-hole at all times, independent of the surrounding stars.
This will allow us to study the black hole and its accretion mechanisms better
than ever before. When we combine these observations with the newly available
polarimetric mode, we can also study the magnetic field around Sgr A* and
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the influence of it on the supermassive black hole. This combination will
push GRAVITY even further and reinforce its position as the best available
instrument for studies of the Galactic Center. The new observing modes will
add new possibilities for many other astronomical studies and open up new
science cases with GRAVITY.
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