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Abstract
Pretrained language models (PLMs) like BERT have been shown to encode rich
linguistic information and prolific world knowledge. Through transfer learning,
the PLMs significantly benefit a wide range of NLP tasks in diverse languages.
However, two notable disadvantages come with the performance gains. First, plain
transfer learning is parameter-inefficient, i.e., each downstream task requires a
saved checkpoint for inference. This is problematic as PLMs often contain hun-
dreds of millions of parameters and this amount is still fast growing. Second, plain
transfer learning is label-inefficient, i.e., thousands of labeled annotations are still
a crucial request of PLMs to perform well. This thesis thoroughly analyzes PLMs,
exploring parameter- and label-efficient transfer learning methods.

The first publication investigates a widely adopted tokenization method in
PLMs: Byte-Pair Encoding (BPE). We apply BPE in a language-agnostic way
to tokenize texts of more than one thousand languages, and then create an embed-
ding space accommodating them. We then transfer sentiment information from
English to other languages to create sentiment lexicons for them.

The second publication investigates the contextualization procedures of words
in BERT. We quantify the amount of contextualization by studying the extent to
which semantic classes of a word can be accurately inferred from contextualized
embeddings. Importantly, we show that pretrained knowledge about contextuali-
zation is still well preserved after finetuning BERT on downstream tasks.

Inspired by the second publication, we devise, in the third publication, an ef-
ficient method of transferring PLMs’ knowledge to downstream tasks. We learn
selective binary masks for pretrained weights in lieu of modifying them through
finetuning. The new method achieves comparable performance to finetuning yet
has a much smaller memory footprint when several tasks need to be inferred. Ana-
lyses of loss landscapes confirm the correctness of the new method.

The fourth publication investigates a label-efficient method, i.e., prompting,
for crosslingual transfer with multilingual PLMs. Prompting reformulates classi-
fication tasks into cloze-style queries, better matching the pretraining objective of
PLMs. We demonstrate that prompting outperforms finetuning in both few-shot
crosslingual transfer and in-language training scenarios.

The fifth publication highlights a fundamental risk of conducting crosslingual
transfer learning in few-shot scenarios: PLMs exhibit a high degree of sensitivity
to the selection of few shots. We provide sampled few shots as a step towards
standardizing few-shot crosslingual experiments.

The last publication exploits the utility of PLM-based few-shot learners. We
propose LMTurk, which leverages PLMs to annotate resources for training an
efficient model deployable in practical scenarios to solve a task. LMTurk is an
important step towards making effective use of PLM-based few-shot learners.
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Zusammenfassung
Es wurde gezeigt, dass vortrainierte Sprachmodelle (pretrained language models,
PLMs) wie BERT reichhaltige sprachliche Informationen und Weltwissen ko-
dieren können. Durch Transferlernen profitiert eine große Bandbreite von NLP-
Aufgaben in vielen unterschiedlichen Sprachen von diesen PLMs. Allerdings geht
diese Leistungssteigerung mit zwei wichtigen Nachteilen einher. Erstens ist ein-
faches Transferlernen parameter-ineffizient, d.h. jede Downstream-Aufgabe benö-
tigt einen gespeicherten Modellcheckpoint für die Inferenz. Dies ist problematisch,
da PLMs oft Millionen von Parametern haben und diese Zahl immer noch steil
ansteigt. Zweitens ist einfaches Transferlernen label-ineffizient, d.h. es werden
immer noch tausende annotierte Daten benötigt, damit das Modell gut funktionie-
ren kann. Diese Dissertation analysiert PLMs gründlich und beschreibt parameter-
und label-effiziente Methoden des Transferlernens. Die erste Veröffentlichung un-
tersucht eine weit verbreitete Tokenisierungsmethode in PLMs, das Byte-Pair-
Encoding (BPE). Wir wenden BPE in einer sprach-agnostischen Art an, um Texte
aus mehr als eintausend Sprachen zu tokenisieren, und erstellen einen Embedding-
raum für sie. Danach transferieren wir Sentiment-Information aus Englisch in die
anderen Sprachen, um ihre Sentimentlexika zu erstellen. Die zweite Veröffentli-
chung untersucht die Kontextualisierungsprozeduren von Wörtern in BERT. Wir
quantifizieren die Kontextualisierung, indem wir untersuchen, wie weit die seman-
tische Klasse eines Wortes aus dem kontextualisierten Embedding vorhergesagt
werden kann. Wir zeigen, dass Wissen aus dem Vortraining über die Kontextua-
lisierung auch nach dem Finetunen auf Downstream-Aufgaben noch gut erhalten
ist. Inspiriert von dieser Veröffentlichung entwickeln wir in der dritten Veroef-
fentlichung eine effiziente Methode, um das Wissen eines PLMs zu Downstream-
Tasks zu transferieren. Wir lernen selektive binäre Maskierungen für die vortrai-
nierten Gewichte, statt sie durch Finetuning zu modifizieren. Diese neue Methode
erzielt zu Finetuning vergleichbare Performanz, benötigt jedoch deutlich weniger
Speicherplatz, wenn mehrere Aufgaben bearbeitet werden müssen. Analysen der
Loss-Landscapes bestätigen die Korrektheit der neuen Methode. Die vierte Veröf-
fentlichung untersucht mit Prompting eine label-effiziente Methode für den cros-
slingualen Transfer mit mehrsprachlichen PLMs. Prompting formuliert Klassifi-
kationsaufgaben in cloze-style Anfragen um, damit sie besser zu den Vortrainings-
zielen von PLMs passen. Wir zeigen, dass Prompting sowohl in few-shot crosslin-
gualem Transfer als auch in innersprachlichen Trainingsszenarien besser funktio-
niert als Finetuning. Die fünfte Veröffentlichung hebt ein fundamentales Risiko
von crosslingualem Transferlernen in few-shot Szenarien hervor: PLMs weisen
eine hohe Sensitivität gegenüber der Auswahl der few shots auf. Wir stellen ge-
sampelte few shots als einen Schritt in Richtung der standartisierten few-shot cros-
slingualen Experimente vor. Die letzte Veröffentlichung benutzt die Nützlichkeit
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von auf PLMs basierenden few-shot Lernern. Wir stellen LMTurk vor, welches
PLMs benutzt, um Ressourcen für das Training eines effizienten Modells, wel-
ches in praxisnahen Szenarien für die Lösung einer Aufgabe eingesetzt werden
kann, zu annotieren. LMTurk ist ein wichtiger Schritt hin zu einer effektiven Ver-
wendung von PLM-basierten few-shot Lernern.
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Chapter 1

Introduction

Representing raw text data in a format that a computational model can work with
has always been a big challenge in machine learning.

The invention of large-scale pretrained language models (PLMs) such as GPT
(Radford et al., 2019b), BERT (Devlin et al., 2019), XLNet (Yang et al., 2019),
and T5 (Raffel et al., 2020) has largely advanced the field of natural language
processing (NLP) in the past few years.

Equipped with hundreds of millions of parameters and trained on massive
amounts of text corpora via self-supervised learning, PLMs effectively capture
syntactic, semantic, commonsense, and factual knowledge in languages, provid-
ing informative representations for downstream NLP tasks. The learned repre-
sentations are highly transferable: Straightforward transfer learning methods are
already capable of achieving state-of-the-art (StoA) performance on numerous
natural language understanding and generation tasks. It is almost a consensus that
most of the modern NLP systems are built upon the PLMs, instead of training
neural networks from scratch (Qiu et al., 2020; Bommasani et al., 2021).

Together with the outstanding task performances, energy consumption and
environmental impacts imposed by PLMs become increasingly significant and can
no longer be overlooked (Strubell et al., 2019; Schwartz et al., 2020). For instance,
self-supervised pretraining of the base version of BERT yields 1,438 lbs carbon
dioxide emissions, which is roughly equivalent to a trans-American flight (Strubell
et al., 2019). Similarly, transfer learning with PLMs is not efficient either. It
takes a large amount of disk memory to store the PLM checkpoints, e.g., the large
version of BERT has checkpoints taking 1.34GB of disk memory (Devlin et al.,
2019); T5-XXL (Raffel et al., 2020) checkpoints have size 41.5GB. In even worse
cases, this number can grow linearly with the number of downstream tasks to be
solved. One aspect of this dissertation studies the contextualization mechanisms
of PLMs and shows that transfer learning brings relatively small changes to the
pretrained weights. We then introduce a method addressing the memory efficiency



1.1 Distributed Representations 6

issue of applying transfer learning with PLMs.
The ultimate goal of artificial intelligence is to create human-like computa-

tional agents. One important aspect of human learning is few-shot learning: Un-
like current computational models, humans require only a handful of training ex-
amples to conduct a task reasonably well. In other words, humans are more label-
efficient than current computational models. Recently, it has been shown that
when scaling up the number of parameters in the PLMs to 175 billion or leverag-
ing gradient descent, PLMs can be converted to effective few-shot language learn-
ers when using priming (Brown et al., 2020) or prompting (Schick and Schütze,
2020). This dissertation reveals how label-efficient current PLMs are, by evaluat-
ing the few-shot learning ability of PLMs in a specific transfer learning scenario:
Few-shot crosslingual transfer. We show that prompting outperforms straightfor-
ward transfer learning methods like finetuning in few-shot crosslingual transfer
with natural language inference. Furthermore, we show that the performance of
few-shot crosslingual transfer with PLMs sees large variances, depending on the
choice of the few shots of training examples. Lastly, we discuss practical usages of
few-shot learners built upon PLMs. We propose to consider the few-shot learners
as crowdsourcing workers that annotate data for a downstream task. As a result,
small and efficient machine learning models can be trained to solve the task in
practical scenarios.

In this chapter, we briefly introduce representation learning for NLP and the
backbone neural architecture utilized in most state-of-the-art representation learn-
ers: Transformer (Vaswani et al., 2017). Next, we introduce two main transfer
learning schemes in NLP: Feature- and parameter-based transfer learning. After
that, we introduce more parameter- and label-efficient transfer learning methods.
We close this chapter by summarizing the contributions of this dissertation.

1.1 Distributed Representations
Building accurate machine learning models relies on abstract and informative data
representations. Indeed, learning high-quality representations is now a central
research topic of deep learning (Bengio et al., 2013).

The low-dimensional dense vectors learned from end-to-end training neural
networks often show better quality and generalization ability than features de-
signed manually according to human prior knowledge (LeCun et al., 2015). For
example in computer vision, modern object detection systems (Bochkovskiy et al.,
2020) largely rely on distributed representations extracted from ImageNet (Deng
et al., 2009) pretraining rather than the histogram of oriented gradients feature
(Dalal and Triggs, 2005).

In contrast to computer vision and speech processing (Purwins et al., 2019)
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happy car suit
glad vehicle suits

pleased cars lawsuit
ecstatic SUV Suit

overjoyed minivan lawsuits

Table 1.1: Nearest neighbors measured by cosine similarity of three querying words in the Google
News embedding space (Mikolov et al., 2013a).

in which data is expressed as real-valued signals, natural language is discrete and
symbolic (Goldberg, 2017) such that the text corpus cannot be leveraged as inputs
to neural networks directly. One straightforward method is to represent words in
the text corpus with one-hot vectors (Hinton, 1984; LeCun et al., 2015): w ∈ S|V|
where S = {0, 1}, wᵀ1 = 1, and |V| is the size of the corpus vocabulary V . We can
easily identify two immediate drawbacks: (i) ∀ wi,wj, i 6= j, we have wᵀ

i wj = 0;
(ii) |V| is a fixed large number, e.g., 1 million for the 6 billion Google News
Corpus (Mikolov et al., 2013a). Point (i) implies that all words in the text cor-
pus are orthogonal with each other, which is an undesirable property when work-
ing on languages. For example, we would like to have synonyms (e.g., “happy”
and “glad”) have high similarities while unrelated word pairs (e.g., “happy” and
“mass”) should be orthogonal. Point (ii) implies that directly processing such
high-dimensional vectors is inefficient; this method cannot properly handle new
words not shown in the corpus vocabulary V either.

Distributed representations are proposed to better capture the syntactic and se-
mantic regularities of languages (Deerwester et al., 1990; Schütze, 1992; Bengio
et al., 2003; Collobert et al., 2011a; Mikolov et al., 2013a; Pennington et al., 2014;
Baroni et al., 2014; Levy and Goldberg, 2014). In contrast to one-hot represen-
tations, each word is now associated with a low-dimensional real-valued vector
representation. The structure of these representations encodes desired linguistic
regularities of languages. For example, synonyms often have high cosine similar-
ity (cf., Table 1.1); syntactic information about the language can also be captured
(Andreas and Klein, 2014). In addition, these representations also show interest-
ing linear structural properties: w (“China”) − w (“Beijing”) + w (“Tokyo”) = w
(“Japan”) (Mikolov et al., 2013c). In Section 1.2.1, we describe in detail widely
adopted training algorithms to obtain these distributed representations.

Example “suit” in Table 1.1 is evidence that different senses of a polysemous
word are crammed into a single static vector. Though a single vector has sufficient
capacity to encode different meanings of a word (Yaghoobzadeh and Schütze,
2016), syntactic and semantic word uses can vary across different contexts (Peters
et al., 2018). Thus, we prefer representations sensitive to the contextual informa-
tion of words. In Section 1.2.2 we introduce state-of-the-art distributed represen-
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tation learners for NLP, which largely take the context into consideration when
creating and utilizing representations for languages.

1.1.1 Symbolic Unit
Compositionality is an evident property of languages. For example, characters
are composed into words which then form sentences. Though we use “word”
as the basic symbolic unit in Table 1.1 and in previous descriptions, there is no
canonical choice of the basic symbolic unit used for composing and representing
natural language in text corpora. Figure 1.1 presents some common choices for
English.

Despite its simplicity, using words as the basic symbolic unit has noticeable
drawbacks: (i) the instructive character-level information within words is lost,
e.g., the character sequence “region” in “Euroregion” and “regional”; (ii) for lan-
guages like Chinese and Japanese that do not explicitly mark boundaries of lin-
guistic units, “words” need to be firstly identified by language-specific segmen-
tation algorithms which could be brittle, e.g., in domain mismatch settings. It
has been shown that using other linguistic units such as subwords, characters, or
bytes also models language well, leading to high quality representations of texts.
For instance, Schütze (1992); Wieting et al. (2016); Schütze (2017); Dufter et al.
(2018a) learn distributed representations for character- or byte-ngrams. Al-Rfou
et al. (2019) build character-level language models with Transformers (Vaswani
et al., 2017), outperforming RNN (Werbos, 1990; Hochreiter and Schmidhuber,
1997) counterparts. Xue et al. (2021) create byte-level language models for more
than 100 languages for solving multilingual NLP tasks.

With the rise of large-scale PLMs, subwords become the ubiquitously used
basic symbolic unit for encoding texts. Devlin et al. (2019); Liu et al. (2020) use
wordpiece (Wu et al., 2016) subwords; Raffel et al. (2020); Conneau et al. (2020)
leverage sentencepiece (Kudo and Richardson, 2018) subwords. In Chapter 2, we
investigate the first subword method applied in NLP: Byte-pair encoding (BPE;
Sennrich et al. (2016)). We apply BPE in an language-agnostic way and transfer
sentiment information from English to more than one thousand languages.

Learning representations directly for larger symbolic units, such as phrases
(Yu and Dredze, 2015), sentences (Conneau et al., 2017; Le and Mikolov, 2014),
and documents (Le and Mikolov, 2014) is also widely explored. However, we
limit the scope of this dissertation to units smaller or equal to words.
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Euroregion Tyrol-South Tyrol-Trentino is formed by regional authorities in Austria and Italy.

“Euroregion” “Tyrol-South” “Tyrol-Trentino” “is” “formed” “by” “regional” “authorities” …

“Euro” “##re” “##gion” “Ty” “##rol” “-“ “South” “Ty” “##rol” “-“ “Trent” “##ino” “is” …

E u r o r e g i o n  T y r o l - S o u t h  T y r o l - T r e n t i n o  i s  f o r m e d  b y  r e g i …

69, 117, 114, 111, 114, 101, 103, 105, 111, 110, 32, 84, 121, 114, 111, 108, 45, 83, 111, 117 …

Sentence:

Words:

Subwords:

Characters:

Bytes:

Figure 1.1: Different basic symbolic units for representing an English sentence. For subword
tokenization we use the “bert-large-cased” tokenizer (Devlin et al., 2019). For bytes, we use UTF-
8 encoding.

1.2 Pretrained Language Representations
This section introduces several representative methods of learning distributed rep-
resentations for NLP. Two types of representations are covered: Static and con-
textualized representations. Static representation learners associate a single vector
to each word-type in the corpus vocabulary V; contextualized representations are
context-sensitive – each token in the corpus is associated with a vector represen-
tation.

1.2.1 Static Representations
Methods of learning static word1 representations can be categorized to count-
based and predict-based methods. The output of these methods is a real-valued
matrix E ∈ R|V|×d where |V| refers to the vocabulary size and d refers to the
embedding dimension size.

Count-based Methods

Motivated by the distributional hypothesis (Harris, 1954), count-based methods
for learning semantic representations have a long history in computational lin-
guistics. The central idea is to capture the co-occurrences between words in the
vocabulary V because “a word is characterized by the company it keeps” (Firth,
1957). The identification of word co-occurrence is often specified using the con-
text window of a given word wi, e.g., five words to its left and five words to its
right are considered as co-occurring with wi in the corpus. The co-occurrences
are often maintained in a |V| × |V| matrix C. C can be directly utilized as E, but
different transformations of the raw co-occurrence numbers such as point-wise
mutual information (PMI) weighting (Church and Hanks, 1990) are introduced

1In this section of discussing static representations, we use “word” as the example basic sym-
bolic unit for the simplicity of description.
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for better representations. Factorizing C using singular value decomposition also
produces representations encoding linguistic regularities (Schütze, 1992).

Predict-based Methods

Baroni et al. (2014) show that the predict-based methods (Bengio et al., 2003;
Collobert et al., 2011b; Mikolov et al., 2013a,b) generate representations better
capturing linguistic regularities than count-based methods. In contrast to count-
based methods, E in predict-based methods is derived from modeling natural lan-
guage using neural networks (Bengio et al., 2003) to maximize the likelihood of
the training corpus (w1, w2, w3, ..., wn) with objective:

P (w1, w2, w3, ..., wn) =
n∏

t=1
P (wt|w1, w2, ..., wt−1), (1.1)

where wt is the tth word in the corpus which contains n words in total. After
training, the weights in the embedding layer lookup table of the neural network
can be utilized as E.

The language modeling objective is computationally expensive due to the soft-
max operation over the |V| possibilities of wt; Bengio et al. (2003) invest a large
amount of efforts improving the training efficiency. Similarly, it takes two months
to train the SENNA embeddings (Collobert et al., 2011b). Mikolov et al. (2013a,b)
introduced the word2vec package enclosing two methods for computing word rep-
resentations efficiently: Continuous bag-of-words (CBOW) and Skip-gram. In-
stead of running the expensive language modeling objective, word2vec trains a
shallow neural network predicting words in context windows (as in count-based
methods). Considering a text corpus (w1, w2, ..., wt, ..., wn), Figure 1.2 visualizes
the two methods.

word2vec has stimulated a large wave of work on creating and analyzing rep-
resentations for NLP. We next introduce in detail the training process of Skip-gram
with negative sampling, the most well-known method for obtaining a static word
representations E.

Skip-gram with Negative Sampling

Recall that E ∈ R|V|×d where |V| is the corpus vocabulary size and d is the dimen-
tionality of the representation. Skip-gram with negative sampling firstly initializes
two weight matrices O,E ∈ R|V|×d. For each word wt in the training corpus, its
vector representations from E and O are denoted as wt,E ∈ Rd and wt,O ∈ Rd

respectively. The training objective is to maximize the following log likelihood:
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w(t-2)

w(t+1)

w(t-1)

w(t+2)

w(t)

SUM

       INPUT         PROJECTION         OUTPUT

w(t)

          INPUT         PROJECTION      OUTPUT

w(t-2)

w(t-1)

w(t+1)

w(t+2)

                   CBOW                                                   Skip-gram

Figure 1.2: The two representation learning methods in word2vec: CBOW and Skip-gram. The
figure is taken from (Mikolov et al., 2013a). In CBOW, the shallow neural network predicts the
current word wt based on the context. In Skip-gram, the network predicts context words given the
current word wt.

∑
wc∈C(wt)

log(σ(wᵀ
t,Ewc,O)) −

∑
wi∈N (wt)

log(σ(wᵀ
t,Ewi,O)), (1.2)

where C(wt) is the group of context words for wt, i.e., words within the context
window of wt; N (wt) is the group of non-context words of wt sampled from the
whole corpus. σ(·) is the sigmoid function σ(x) = 1/(1 + e−x). After training, E
is utilized as the word representations and O is discarded. Clearly, the objective
in Equation 1.2 is much more efficient than the objective of neural language mod-
eling Equation 1.1: There is no need to predict wt through the large softmax layer
that has large size |V| × d.

word2vec generates high quality representations efficiently, and it has been
widely adopted in NLP research. Several improved methods are also proposed.
For example, ordering information among (..., wt−2, wt−1, wt+1, wt+2, ...) in the
context window is not considered in CBOW and Skip-gram; Ling et al. (2015)
strengthen word2vec to be sensitive to word order.

In addition, the character-level information within each word wt is not lever-
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aged; this is sub-optimal for morphologically rich languages like Turkish and
Finnish: Low word frequency could lead to inferior representations for rare words
that have complex morphological inflections. fastText (Bojanowski et al., 2017)
enriches word representations with subword information, outperforming word2vec
in tasks like word similarity and analogy in different languages.

Prediction as Implicit Matrix Factorization

At first glance, count-based methods and predict-based methods seem to be two
completely different types of ways for learning word representations – they are
proposed and investigated in the computational linguistic community and the neu-
ral network community respectively. However, Levy and Goldberg (2014) attempt
to prove that Skip-gram with negative sampling is implicitly factorizing a word-
context matrix, connecting these two types of methods. Although the accuracy of
the proof has been questioned, this work establishes a clear connection between
the two approaches.

Overall, static distributed representations have a long track history in NLP; the
invention of word2vec has stimulated a large wave of research learning high qual-
ity representations for English (Pennington et al., 2014) and multiple languages
(Faruqui and Dyer, 2014; Xing et al., 2015; Artetxe et al., 2016; Ammar et al.,
2016; Dufter et al., 2018a,b). However, the drawback of static representations E
is clearly significant: They are not sensitive to the actual contextual information
of a word w when using its word representation w. We next introduce contextual-
ized representations that take contextual information into consideration and often
achieve state-of-the-art performance in numerous NLP tasks.

1.2.2 Contextualized Representations
The static word representations E are not context-sensitive. For instance, to rep-
resent the polysemous word “suit”, the same vector representation w ∈ Rd will
be used in the following diverse contexts:

- What time would suit you?

- A suit of armor.

- His lawyer filed a suit against Los Angeles city.

This is clearly sub-optimal because the contexts and usage of an ambiguous word
can vary significantly. Thus, it is crucial to take the context of a word occurrence
into consideration. An intuitive solution is the bag-of-word method. For example,
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ht-1

wt-1

ot-1

ht

wt

ot

ht+1

wt+1

ot+1

U U U

W W W

V V VV
… …

Figure 1.3: Recurrent neural network.

to represent the word “suit” in “A suit of armor.”, we can simply average the em-
bedding of all the words in the sentence. However, it has disadvantages: “armor”
will have the same embedding as “suit”, and averaging too many embeddings
results in a vector not specific to a particular word anymore.

Contextualized representation models such as CoVe (McCann et al., 2017),
context2vec (Melamud et al., 2016), ELMo (Embeddings from Language Mod-
els; Peters et al. (2018)), and BERT (Bidirectional Encoder Representations from
Transformers; Devlin et al. (2019)) are proposed to address this issue. Next, we
introduce two representative contextualized representation models: ELMo and
BERT. We also introduce Long Short-Term Memory (Hochreiter and Schmidhu-
ber, 1997) and Transformer which are the backbone neural network architectures
of ELMo and BERT.

Long Short-Term Memory

Long Short-Term Memory (LSTM) is a type of recurrent neural network (RNN;
(Rumelhart et al., 1986)) widely adopted for processing sequential data such as
text and speech. We show in Figure 1.3 an unfolded basic RNN. Given sequen-
tial data, e.g., a sentence (w1, w2, ..., wt, ..., wn), for each word at time step t, we
compute

at = b + Wht−1 + Uwt,

ht = tanh(at),
ot = c + Vht,

(1.3)

where b, c, V, W, and U are RNN trainable parameters. wt is the embedding
vector of wt. tanh is the hyperbolic tangent function. Basic RNN in practice suf-
fers from the gradient vanishing problem when modeling long sequences. In such
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. . . . . .

Figure 1.4: LSTM unit. Image from Wikipedia (Wikipedia contributors, 2021).

a case, LSTMs can be leveraged. For the sequence (w1, w2, w3, ..., wt, ..., wn), at
each time step an LSTM computes

ft = σ(Wfwt + Ufht−1 + bf ),
it = σ(Wiwt + Uiht−1 + bi),
ot = σ(Wowt + Uoht−1 + bo),
c̃t = σh(Wcwt + Ucht−1 + bc),
ct = ft ◦ ct−1 + it ◦ c̃t,

ht = ot ◦ σh(ct),

(1.4)

where ◦ refers to the Hadamard product. Initial cell state c0 and hidden state h0
are set to 0. Wx,Ux,bx, x ∈ {f, i, o} are the trainable weights and biases for the
forget, input, and output gates. wt is the word representation of word wt in the
embedding layer. σ(·) is the sigmoid function σ(x) = 1/(1+e−x) and σh(·) is the
hyperbolic tangent function σh(x) = (ex− e−x)/(ex + e−x). Figure 1.4 visualizes
the LSTM unit. Through the usage of gating mechanisms and cell state c at step
t, the LSTM unit decides the information that needs to be taken as input, and the
memory that needs to be forgotten. Thus, an LSTM can model the sequential
relations in particularly long sequences (Khandelwal et al., 2018).

Deep Contextualized Word Representations (ELMo)

ELMo (Peters et al., 2018) generates embedding vectors that are sensitive to the
word use. Its training objective is similar to predict-based representation learning
methods in Section 1.2.1: Modeling the languages with an LSTM. After train-
ing, the LSTM outputs, or a combination (e.g., a weighted sum) of outputs from
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different LSTM layers, are used to represent the text, instead of simply using the
embedding layer weights E as in methods like word2vec. ELMo outperforms
its static counterparts like GloVe in several tasks including question answering,
textual entailment, and sentiment analysis (Peters et al., 2018).

One limitation of ELMo is that its neural architecture is still very shallow:
Only two LSTM layers are utilized. However, it has been shown that neural net-
work depth is of crucial importance for learning high quality representations of
data (Simonyan and Zisserman, 2014; Szegedy et al., 2015). The LSTM architec-
ture is the bottleneck in ELMo. As can be observed in Equation 1.4, the amount of
forward pass computation at each time step t is significant; paralleling the compu-
tation on different GPUs is non-trivial due to the sequential dependency between
the time steps. These disadvantages pose difficulties to scaling up depth of neural
network architectures for learning high quality representations of texts.

Several RNN and LSTM variants like GRU and SRU are proposed to address
the efficiency issue (Cho et al., 2014; Lei et al., 2018), but the autoregressive prop-
erty when modeling sequences with an LSTM is still present. In contrast, Vaswani
et al. (2017) introduce the Transformer architecture which drops the inductive bias
of sequential order in languages, only relying on a self attention mechanism and
position encoding to model the sequential nature. We introduce in detail this ar-
chitecture because it has been widely adopted in state-of-the-art representation
learners for NLP (Devlin et al., 2019; Yang et al., 2019; Raffel et al., 2020; Brown
et al., 2020), computer vision (Dosovitskiy et al., 2020), and speech processing
(Dong et al., 2018; Baevski et al., 2020).

Transformer

Figure 1.5 left illustrates the Transformer architecture, which was firstly applied
in neural machine translation (NMT). We limit our scope to the encoder block
since it is the main focus of this dissertation. “Add” and “Norm” refer to the skip-
connection (He et al., 2016) and layer normalization (Ba et al., 2016) operation
respectively. In practice, the encoder block is repeated N times, e.g., N is set to 6
or 8 in (Vaswani et al., 2017), leading to very deep neural networks.

One prominent property of the Transformer architecture is that the encoder
processes the elements in a sentence in parallel, instead of in an autoregressive
manner as RNNs do. As a result, the Transformer needs to inject positional infor-
mation into each element in the sentence. Vaswani et al. (2017) use fixed position
encodings (Gehring et al., 2017) in the following form:

PE(pos,2i) = sin(pos/100002i/d),
PE(pos,2i+1) = cos(pos/100002i/d),

(1.5)
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Figure 1.5: The encoder architecture of the Transformer (left) and the self attention operation
(right). Figure taken from (Vaswani et al., 2017).

where PE ∈ RT×d, T is the maximum sequence length (512) and d refers to the
hidden dimension size. pos refers to the position in the sentence and i is the hidden
dimension index. So each dimension of the position encoding corresponds to a
sinusoid. It can be observed that Equation 1.5 only introduces absolute positional
information; Shaw et al. (2018) propose to enclose relative positional information,
further improving task performance of Transformers.

Figure 1.5 right demonstrates in detail the self attention mechanism conducted
in every “Multi-Head Attention” cell of each encoder block. Specifically, three
linear layers2 WK , WQ, WV for computing the self attention among input em-
beddings of the wordpieces (Wu et al., 2016) are firstly initialized. Next, for an
input sentence X ∈ RT×d where T is the maximum sentence length and d is the
hidden dimension size, WK , WQ, and WV are used to compute transformations
of X:

K = XWK ,Q = XWQ,V = XWV , (1.6)

and the self attention of X is then computed as (Figure 1.5 right):

Attention(K,Q,V) = softmax(QKᵀ
√
d

)V. (1.7)

2We omit the bias terms for brevity.
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Next, the attention is transformed by another linear layer and then fed forward to
the next encoder block.

Equation 1.7 implies that there are no explicit dependencies among the sub-
words in a sentence (w1, w2, w3, ..., wt, ..., wn). For example, w1 now can directly
observe and interact with the future wn during training. This is not feasible in
recurrent models like LSTMs due to their autoregressive nature. The Transformer
architecture has been widely integrated in current NLP systems: It is the top per-
former in NMT systems (Barrault et al., 2020); most state-of-the-art contextual-
ized representation learners also use it as the backbone (Devlin et al., 2019; Yang
et al., 2019; Raffel et al., 2020).

We next introduce in detail one of the most influential contextualized represen-
tation learners: BERT (Bidirectional Encoder Representations from Transformers;
Devlin et al. (2019)).

Bidirectional Encoder Representations from Transformers

BERT is the first Transformer-based pretrained language model providing high
quality contextualized text representations. The BERT encoder consists of 12 to
24 Transformer blocks containing 110 million to 340 million of floating point pa-
rameters. The pretraining data consists of ≈3300 million words, and is extracted
from the BooksCorpus (Zhu et al., 2015) and English Wikipedia. There are two
pretraining objectives: Masked language modeling (MLM) and next sentence pre-
diction (NSP).

MLM. Considering a WordPiece-tokenized corpus (w1, w2, w3, ..., wt, ..., wn)
in which each wi is a subword. MLM aims to reconstruct a corrupted version of
the corpus, (w1, w2, w3, ...,[MASK], ..., wn), to the original one. Concretely, the
corruption is conducted by randomly replacing 15% of the subwords in the cor-
pus with a special [MASK] token. The encoder then takes as input the corrupted
corpus (w1, w2, w3, ...,[MASK], ..., wn) to predict wt with cross-entropy loss. The
MLM objective is inherently different from standard language modeling object as
shown in Equation 1.1, because it leverages the bi-directional contextual informa-
tion of wt.

NSP. Many NLP tasks, e.g., natural language inference, require modeling the
relationship between sentence pairs. The NSP objective is utilized to capture this
information during pretraining BERT. Specifically, BERT takes a pair of sentences
and determines whether the two sentences occur in the corpus consecutively (i.e.,
next to each other) with the standard cross-entropy training objective.

For many NLP tasks, BERT significantly outperforms static text representa-
tions like word2vec, as well as contextualized representations derived from other
models like ELMo. The invention of BERT has stimulated the development of
various alternative models such as RoBERTa (Liu et al., 2020), XLNet (Yang
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et al., 2019), and T5 (Raffel et al., 2020).
Large-scale PLMs for multiple languages are also proposed, including mBERT

(Devlin et al., 2019), XLM (Conneau and Lample, 2019), and XLM-R (Conneau
et al., 2020). In this dissertation, we focus on BERT for English tasks and XLM-R
for multilingual tasks. Similar to BERT, XLM-R leverages the Transformer archi-
tecture and utilizes MLM as training objective. The training data for XLM-R is a
2.5TB text corpus containing 100 languages. Though there is no explicit supervi-
sion aligning different languages when pretraining XLM-R, it performs strongly
in crosslingual tasks like crosslingual natural language inference (Conneau et al.,
2018b, 2020).

1.2.3 Summary
This section reviews the development of representation learning for NLP: From
high-dimensional sparse vectors to low-dimensional dense distributed represen-
tations. Representative methods for learning static and contextualized text rep-
resentations – word2vec and BERT – are also introduced. We put emphasis on
contextualized representations because they encode richer syntactic and semantic
regularities of languages than their static counterparts, and achieve state-of-the-art
performance on NLP tasks. Properly transferring these informative features cap-
tured during pretraining to downstream NLP tasks is of vital importance and we
focus on transfer learning in the next section.

1.3 Transfer Learning
For an NLP task, traditional supervised learning assumes training and testing data
are drawn from the same data generation process. For task A, a common scenario
is to assume that there is sufficient labeled data for training a machine learning
model; the model is then evaluated on the test data. When a new task B arrives,
traditional supervised learning conducts identical procedures.

In contrast, discrepancies and mismatches among the data distributions are al-
lowed in transfer learning (Pan and Yang, 2010). Concretely, transfer learning is
defined as the ability of a system to recognize and apply knowledge and skills
learned in previous tasks to novel tasks (Pan and Yang, 2010). For example, trans-
fer learning could enable a classifier trained to distinguish positive and negative
product reviews to classify movie reviews with a reasonable accuracy.

Figure 1.6 compares traditional supervised learning and transfer learning. Tra-
ditional supervised learning trains a system for a task from scratch using the task
dataset. For tasks that have a sufficient amount of data, i.e., A and B, the sys-
tems often have high task performance. However, for tasks that have very limited
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Task A Task B Task C

System A System B System C

Task A Task B Task C

Source System System C

Traditional Supervised Learning Transfer Learning

Figure 1.6: Comparing traditional machine learning (left) and transfer learning (right). For each
task, traditional supervised learning trains a system with the task dataset only. The system may
have inferior performance when the amount of task data is small, i.e., task C. Transfer learning
leverages the knowledge from similar tasks, i.e., task A and B, to facilitate the data scarcity
problem of task C.

amount of data, i.e., taskC, the corresponding system may not perform well due to
data scarcity. Transfer learning leverages the knowledge obtained from previous
tasks to tackle the data scarcity issue hence better solves a new task, i.e., task C.
In this dissertation, we restrict our scope to sequential transfer learning (Ruder,
2019). That is, we focus on sequentially transferring the learned representations
from source tasks (A and B) to the target task (C).

Making effective use of the pretrained language representations introduced in
Section 1.2 is now a central topic in NLP. This problem falls within the range of
transfer learning. Concretely, the MLM and NSP objectives of pretraining BERT
can be considered as Task A and B shown in Figure 1.6, and the target of adapta-
tion, i.e., an NLP downstream task can be viewed as taskC. The large-scale PLMs
have been shown to encode syntactic (Goldberg, 2019), semantic (Tenney et al.,
2019), and factual knowledge (Petroni et al., 2019) in the languages; effective
and efficient methods of transferring this knowledge to various downstream NLP
tasks need to be devised. In addition, developing effective methods of transferring
knowledge from high resource languages like English to low resource languages is
also a crucial research question. We introduce commonly adopted transfer learn-
ing methods in the current NLP literature. Somehow surprisingly, these methods
are conceptually simple, evidencing that the informative features about languages
encoded in modern large-scale PLMs are highly transferable.
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1.3.1 Feature-Based Transfer
Feature-based transfer learning keeps the pretrained weights in language models
unchanged. When solving an NLP task, the task data texts are input fed to a
PLM; the output representations extracted by the PLM are then fed to task-specific
neural architectures for solving the task, e.g., a conditional random field layer for
named-entity recognition (Lafferty et al., 2001).

Feature-based transfer learning with PLMs has two major strengths. First,
because the PLM weights do not need to be updated, we can extract and save the
features of task data by running one single forward pass over the large PLM. This
largely reduces computational cost. Second, more flexibility is achieved because a
task-specific neural architecture can be integrated, instead of relying on the PLM
architecture.

One representative feature-based transfer learning scenario is the utilization of
ELMo (Peters et al., 2018) to downstream NLP tasks. Peters et al. (2019) show
that a linear combination of features extracted by different ELMo layers performs
strongly in tasks like MNLI (Williams et al., 2018) and semantic textual similarity
(Marelli et al., 2014).

Another representative usage of feature-based transfer learning is probing
(Conneau et al., 2018a; Rogers et al., 2020). Probing is a technique that has
been widely applied for understanding and interpreting NLP models. In probing,
diagnostic classifiers, e.g., linear classifiers, are trained to “probe” the represen-
tations for desired properties such as linguistic or structural information. Con-
cretely, simple classifiers, e.g., a logistic regression classifier, taking as input the
learned text representations, attempt to answer the question: Do the input rep-
resentations encode desired properties like syntactic information or not? If the
classifier achieves high performance, we could then conclude that rich features
about syntax are present in the learned representations. Because the PLM weights
remain unchanged, probing can be viewed as a feature-based transfer learning
method.

Two important requirements need to be satisfied for successful probing exper-
iments. First, dedicated datasets for training and evaluating the probing classifiers
need to be carefully constructed. Second, the probing classifier itself needs to have
low capacity, e.g., a linear classifier. Leveraging strong classifiers yields near per-
fect performance on the probing dataset, but the results confound contributions of
the classifier capacity and of the quality of the pretrained representations input to
the classifier (Hewitt and Liang, 2019).

In Chapter 3, we leverage probing to understand how BERT progressively
contextualizes words, from the non-contextualized embeddings in the lowest em-
bedding layer to the highest self attention layers. For an ambiguous word, we also
quantify the number of surrounding contextual words needed to accurately under-
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40001002 @Jesus:eng
40001002 @አብርሃም:amh
40001002 @òಗೂ:kan
40001002 @雅各:zho
66002003 བཟོད་བsrན་byས་:bod

· · · · · ·

Figure 1.7: Samples of sentenceID embedding training corpus. 40001002 and 66002003 are the
IDs of Bible verses. Language abbreviations are: amh: Amharic; kan: Kannada; zho: Chinese;
bod: Tibetan.

stand the ambiguous word. In addition, we show that the contextualization ability
of a PLM does not change significantly, after adapting the PLM to downstream
tasks. This inspires us to devise more efficient transfer learning methods, which
we discuss in Section 1.4.

1.3.2 Finetuning
Proposed by Devlin et al. (2019), finetuning is another major method transfer-
ring the pretrained representations into downstream NLP tasks. In contrast to the
feature-based transfer learning method that preserves PLM parameters, finetuning
considers the pretrained PLM parameters as an initialization, and then updates
them with gradient descent during the adaptation to downstream tasks. Compared
with feature-based transfer learning, finetuning has clear disadvantages. For ex-
ample, it is more computationally expensive because the large amount of PLM
parameters, e.g., 110M in BERT-base, need to be updated. This disadvantage be-
comes even worse when there are several tasks to be solved – we need to train
and save several large model checkpoints respectively. In addition, it is difficult to
incorporate extra task-specific neural network architectures, because the number
of PLM parameters is already large.

Despite these two disadvantages, finetuning is still by far the most common
way of conducting transfer learning with PLMs due to its superior task perfor-
mance (Howard and Ruder, 2018). For example, Peters et al. (2019) show that
finetuning BERT outperforms ELMo with feature-based transfer learning when
source and target tasks are similar. In Chapter 5, 6, and 7, we conduct transfer
learning with finetuning. In Chapter 4, we introduce masking, a more parameter-
efficient alternative to plain finetuning for transfer learning.
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1.3.3 Crosslingual Transfer
Crosslingual transfer can be viewed as a special case of transfer learning: A, B,
and C in Figure 1.6 now refer to different languages when solving the same task
like sentiment analysis. C is commonly a low resource language which does
not have sufficient data for training a high quality machine learning model. The
goal of crosslingual transfer is to improve task performance in language C, by
successfully transferring the knowledge and representations learned from A and
B, which have sufficient task data.

Crosslingual transfer is critical for NLP because most of the≈7000 languages
in the world are low-resource; the fast development of language technologies only
focuses on a few of them like English and Chinese (Joshi et al., 2020). A high
quality semantic space accommodating different languages is one of the important
building blocks for successful crosslingual transfer (Ruder et al., 2019).

In this section, we introduce sentenceID (Levy et al., 2017) as a method of
training static multilingual embeddings. Next, we introduce the process of training
contextualized multilingual representation models, which achieve state-of-the-art
performance on crosslingual tasks.

• sentenceID. When creating static multilingual embeddings, sentenceID as-
sumes a sentence-aligned parallel corpus such as Europarl (Koehn, 2005)
and the Parallel Bible Corpus (PBC; Mayer and Cysouw (2014)). Next, sen-
tenceID reformulates the sentence-aligned corpus by counting co-occurrences
between the ID of a sentence and the sentence’s words in all languages.
In Figure 1.7 we show samples of the reformulated corpus with PBC. Af-
ter that, the corpus is fed to word2vec to obtain a multilingual embedding
space.

Despite its simplicity, sentenceID is a strong baseline generating high qual-
ity multilingual embeddings, performing strongly in word alignment and
dictionary induction (Levy et al., 2017). We leverage sentenceID in Chapter
2 to transfer sentiment information from English to more than one thousand
languages.

• Multilingual BERT. Somehow surprisingly, creating contextualized multi-
lingual representation models that achieve state-of-the-art performance on
crosslingual transfer is conceptually simple. For example, the training pro-
cedures of multilingual BERT (mBERT) are similar to that of the English
BERT (Devlin et al., 2019). Concretely, we train a large Transformer ar-
chitecture on a large amount of text data using masked language modeling
and next sentence prediction objectives (c.f., Section 1.2.2). There are two
main differences. First, the training data for mBERT is a concatenation of
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Wikipedia dumps in 104 languages. Second, subwords in the vocabulary
are shared across different languages. For example, chat is used in both En-
glish context and French (cat) contexts. Other contextualized multilingual
representation models like XLM-R follow similar training configurations.

Despite the fact that there is no explicit supervision for aligning differ-
ent languages, these models are state-of-the-art multilingual representation
learners for crosslingual transfer. Understanding rationales behind the ef-
fectiveness of contextualized multilingual models is a central topic in multi-
lingual NLP (Dufter and Schütze, 2020; Artetxe et al., 2020; K et al., 2020).

• Crosslingual Transfer Evaluation. The next step is to improve task perfor-
mance of a low-resource target language C, by transferring task knowledge
learned from one or more source languages; the multilingual embeddings
act as an intermediate supporting the transfer. In this dissertation, we em-
ploy a single language – typically English due to its abundant resource status
– as our source language, and evaluate task performance of the target lan-
guage C in two scenarios (see below). Note that in both scenarios we use
finetuning as our transfer learning method.

• Zero-shot transfer. Proposed by Pires et al. (2019), zero-shot transfer has
been widely adopted to evaluate representation learning models for crosslin-
gual transfer learning. In zero-shot transfer, the model is first finetuned
with task-specific supervised training data from the source language (En-
glish); the task is then directly evaluated with data in the target language
(C). Zero-shot crosslingual transfer enables us to observe how the model
performs and generalizes across different languages.

In Chapter 5, we leverage zero-shot transfer to investigate the effectiveness
of prompting (c.f., Section 1.4.2) on crosslingual natural language infer-
ence.

• Few-shot transfer is a recently proposed crosslingual transfer learning paradigm
that relaxes the constraint that no training data is available for the target lan-
guage C as in zero-shot transfer. It assumes the availability of a few shots
of data in C, such that practitioners can continue finetune the model ob-
tained during the source-training stage using the small amount of data in C.
Lauscher et al. (2020) show that, despite its small size, the few-shot data in
C significantly improve performance of C in tasks like dependency parsing
and named-entity recognition. Few-shot transfer is more practical and re-
alistic than zero-shot transfer, because annotating a handful of examples is
actually not expensive: Garrette and Baldridge (2013) show that it is possi-
ble to collect ≈100 part-of-speech-tagged sentences in two hours even for
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Figure 1.8: Number of parameters (million) of PLMs3 and their pretraining dataset size (GB). The
number of parameters in PLMs keeps growing. Image is from Han et al. (2021).

low-resource languages such as Malagasy.

In Chapter 6 we investigate few-shot crosslingual transfer with extensive
experiments, showing that its strength over the zero-shot counterpart largely
depends on the choice of the few-shot data in C.

1.3.4 Summary
This section briefly introduces the basic transfer learning paradigm, with an em-
phasis on sequential transfer learning. We introduce two widely adopted strate-
gies of transferring knowledge from a source task to a target task when using
PLMs: Feature-based transfer and finetuning. We also describe zero- and few-shot
crosslingual transfer; multilingual representations play a central role in these sce-
narios. Next, we introduce methods of improving parameter- and label-efficiency
of plain transfer learning.

1.4 Efficient Transfer Learning
This section introduces several strategies improving plain transfer learning from
two perspectives: Parameter-efficiency and label-efficiency, which are the main
focus of this dissertation.
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Figure 1.9: An adapter layer consists of a small amount of trainable parameters (left); it is inserted
into the Transformer layer. Images are from Houlsby et al. (2019).

1.4.1 Parameter-Efficient Transfer
The scale of PLMs has increased dramatically in the past few years, and the num-
ber continues to grow. In Figure 1.8 we visualize the number of parameters and
pretraining dataset size of an array of PLMs.

The large amount of parameters poses a challenge when carrying out transfer
learning with PLMs. For example, each of the target tasks or languages requires
saving a large model checkpoint, e.g., 41.5GB when using T5-XXL (Raffel et al.,
2020). This becomes even worse when more than one target task or language
need to be processed because the cost increases linearly. To address this issue,
several parameter-efficiency methods of conducting transfer learning with PLMs
are devised; we briefly review two methods.

Adapter. Pioneered by Rebuffi et al. (2017) and extended by Houlsby et al.
(2019) and Stickland and Murray (2019), the adapter has been widely used in NLP.
An adapter layer consists of a small amount of trainable parameters as shown in
Figure 1.9; it is inserted into a standard Transformer layer. When adapting the
PLM into a target task, we only update the parameters in adapter layers. As a
result, high parameter-efficiency is achieved because the large PLM is frozen dur-

3The PLMs are GPT (Radford et al., 2018), BERT (Devlin et al., 2019), GPT2 (Radford et al.,
2019a), RoBERTa (Liu et al., 2020), T5 (Raffel et al., 2020), GPT3 (Brown et al., 2020), and
Switch Transformers (Fedus et al., 2021).
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ing training such that it can be reused across different tasks; the only parameters
that need to be saved are the parameters in the adapter layer. Adapter-based tuning
achieves comparable performance to plain finetuning on different natural language
understanding and generation tasks (Houlsby et al., 2019; Stickland and Murray,
2019).

Prefix/Prompt tuning. Li and Liang (2021) introduce prefix-tuning, a method
that is more parameter-efficient than plain finetuning for transfer learning with
large PLMs. Similar to adapter-based tuning, prefix-tuning also freezes PLM pa-
rameters. During training, a small amount of task-specific trainable vectors are
prepended to the input sequence in all Transformer layers; they are the only train-
able parameters. The model is then trained on data of the downstream task. Li
and Liang (2021) show that prefix-tuning achieves comparable performance to
plain finetuning in tasks like table-to-text generation and summarization. Prompt-
tuning (Lester et al., 2021) is a variant of prefix-tuning that only adds the pseudo
tokens in the embedding layer; it achieves comparable performance to plain fine-
tuning when scaling up the number of parameters in PLMs.

In Chapter 4, we introduce masking which is a parameter-efficient alterna-
tive to plain finetuning. Masking learns selective binary masks for the PLM pa-
rameters in lieu of modifying them as plain finetuning does. Masking achieves
comparable performance to plain finetuning but is much more parameter-efficient
because we only need to save a set of binary masks for each of the downstream
tasks.

1.4.2 Label-Efficient Transfer
Unlike human learning, current computational models still require a large amount
of annotated data to conduct an NLP task (Yin et al., 2020). Methods of converting
PLMs into few-shot learners, i.e., models that require only a handful of annota-
tions, are also devised; we introduce priming (Brown et al., 2020) and prompting
(Schick and Schütze, 2020; Gao et al., 2020; Liu et al., 2021).

Priming (or in-context learning) is a method of utilizing GPT3 (Brown et al.,
2020), a PLM that contains 175 billion parameters. To process an NLP task with
GPT-3, priming prepends a few examples (i.e., the few shots) demonstrating the
task before the actual data input, and then converts the data into a cloze-style
query. Next, the reformulated text is input to the large PLM to get a prediction.
Taking sentiment analysis as an example, the sentence

Great movie. sentiment: positive. You’ll probably love it. sentiment:
positive. Allen’s funniest and most likeable movie in years. sentiment:

.



1.5 Summary and Dissertation Outline 27

is input to GPT-3 and the model tries to fill the blank with an answer. Note that
the parameters in GPT-3 remain unchanged during the whole process.4 Surpris-
ingly, GPT-3 achieves strong performance with the few shots of training data. For
example, it achieves performance comparable to state-of-the-art systems on the
COPA (Choice Of Plausible Alternatives) task (Roemmele et al., 2011) with only
32 training examples.

Prompting is another few-shot transfer learning method with PLMs. Sim-
ilar to priming, prompting also reformulates task data into cloze-style queries.
In contrast to priming, which does not change PLM parameters, prompting allows
practitioners to update the model parameters with gradient descent using few shots
of data (Schick and Schütze, 2020; Gao et al., 2020; Liu et al., 2021). As a re-
sult, small PLMs (small with respect to GPT3) also perform strongly in few-shot
learning scenarios.

In Chapter 5, we investigate the effectiveness of prompting in crosslingual
transfer. We show that prompting is more parameter-efficient than plain finetuning
in crosslingual transfer; prompting can also be conducted for non-English.

1.5 Summary and Dissertation Outline
This chapter introduces two basic topics relevant to this dissertation: Representa-
tion learning for Natural Language Processing and transfer learning. We describe
methods of obtaining static and contextualized, monolingual and multilingual rep-
resentations for Natural Language Processing. We also introduce transfer learning
strategies from pretraining to downstream tasks, and from source languages to tar-
get languages. Furthermore, we review state-of-the-art transfer learning methods
that are parameter- and label-efficient.

In Chapter 2, we leverage the sentenceID method to transfer sentiments from
English to more than one thousand languages. In Chapter 3, we carry out a prob-
ing analysis demonstrating how BERT contextualizes words. We also show that
finetuning does not significantly change the contextualization of BERT. Inspired
by the results in Chapter 3, Chapter 4 proposes masking, an alternative trans-
fer learning method that achieves comparable performance to finetuning, but is
much more parameter-efficient. In Chapter 5, we investigate the effectiveness of
prompting in crosslingual transfer, and show that it is label-efficient: Prompting
outperforms finetuning with the same small number of training examples. Chap-
ter 6 takes a closer look at the recently introduced few-shot crosslingual transfer
paradigm; We show that crosslingual transfer results largely depend on the choices
of the few shots of data. Lastly in Chapter 7, we explore a crucial question: What

4Priming can also be viewed as a parameter-efficient transfer learning method. However, prim-
ing gives inferior task performance when the underlying PLM is small (Brown et al., 2020).
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is the practical utility of the large-scale pretrained-language-models? We propose
LMTurk, which considers pretrained-language-model-based few-shot learners as
crowdsourcing workers; we show that they are capable of annotating datasets for
training small and deployable models that can be used in practical scenarios.



Chapter 2

A Multilingual BPE Embedding
Space for Universal Sentiment
Lexicon Induction



A Multilingual BPE Embedding Space
for Universal Sentiment Lexicon Induction

Mengjie Zhao and Hinrich Schütze
CIS, LMU Munich, Germany
mzhao@cis.lmu.de

Abstract

We present a new method for sentiment lex-
icon induction that is designed to be appli-
cable to the entire range of typological di-
versity of the world’s languages. We eval-
uate our method on Parallel Bible Corpus+
(PBC+), a parallel corpus of 1593 languages.
The key idea is to use Byte Pair Encodings
(BPEs) as basic units for multilingual em-
beddings. Through zero-shot transfer from
English sentiment, we learn a seed lexicon
for each language in the domain of PBC+.
Through domain adaptation, we then gener-
alize the domain-specific lexicon to a general
one. We show – across typologically diverse
languages in PBC+ – good quality of seed and
general-domain sentiment lexicons by intrin-
sic and extrinsic and by automatic and human
evaluation. We make freely available our code,
seed sentiment lexicons for all 1593 languages
and induced general-domain sentiment lexi-
cons for 200 languages.1

1 Introduction

Lexicons play an important role in sentiment anal-
ysis. Sentiment lexicons are available for high-
resource languages like English (Pang et al., 2008;
Baccianella et al., 2010; Mohammad and Tur-
ney, 2013), but not for many low-resource lan-
guages. Researchers are trying to fill this gap by
inducing lexicons monolingually (Badaro et al.,
2014; Eskander and Rambow, 2015; Rouces et al.,
2018) as well as multilingually (Chen and Skiena,
2014), often by transfer from high-resource to
low-resource languages.

The world’s languages are heterogeneous – of
particular relevance for us is heterogeneity with
respect to morphology and with respect to mark-
ing token boundaries. This heterogeneity poses
difficulties when designing a universal approach

1cistern.cis.lmu.de

to lexicon induction that works for all languages
– implementing a high quality tokenizer and mor-
phological analyzer for each language is not fea-
sible short-term. Given the small number of
native speakers in low-resource languages (Gold-
hahn et al., 2016), crowdsourcing cannot easily be
carried out either.

To overcome this heterogeneity and provide
sentiment resources for low-resource languages,
we present a new approach to sentiment lexicon
induction that is universal – that is, it is appli-
cable to the full range of typologically different
languages – and apply it to 1593 languages. Our
method first takes a parallel corpus as input and
applies BPE (Gage, 1994) segmentation to it. We
then create a multilingual BPE embedding space,
from which a ZS (zero-shot) lexicon for each lan-
guage L is extracted by zero-shot transfer from
English sentiment to L. We use PBC+, an ex-
pansion of the Parallel Bible Corpus (Mayer and
Cysouw, 2014), as our parallel corpus. The ZS
lexicons show high quality, but are specific to the
domain of PBC+ (the Bible). We then adapt them
to the general domain. For brevity, we also use
generic to refer to general-domain.

Our method is universal and language-agnostic
– it does not require language-dependent prepro-
cessing. We carry out intrinsic and extrinsic, au-
tomatic and human evaluations on 95 languages.
Intrinsic evaluation shows that our approach pro-
duces word ratings that strongly correlate with
gold standard lexicons and human judgments. Ex-
trinsic evaluation on Twitter sentiment classifica-
tion demonstrates that our lexicons perform com-
parably or better than existing lexicons derived in
multilingual settings.

We chose an approach to sentiment analysis
based on lexicons in this paper because it is trans-
parent and meets high standards of explainabil-
ity. A classification decision can easily be traced
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back to the lexicon entries in the document that are
responsible. Many more complex methods, e.g.,
many deep learning approaches, do not meet this
standard. Transparency is of particular importance
for low-resource languages because error analysis
and verification are paramount when working with
small and noisy resources that are typical of low-
resource languages.

Our contributions: (i) We propose a new
method for inducing sentiment lexicons for a
broad range of typologically diverse languages.
We use BPEs as basic units and show that they
work well across languages. (ii) We carry out ex-
tensive evaluation to confirm correctness and high
quality of the created lexicons. (iii) We make our
code, the 1593 ZS seed sentiment lexicons and 200
generic sentiment lexicons freely available to the
community. This is the up-to-now largest senti-
ment resource in terms of language coverage that
has been published.

2 Related Work

Monolingual Lexicon Induction. Sentiment lex-
icons for many languages have been induced.
Eskander and Rambow (2015), Wang and Ku
(2016), and Rouces et al. (2018) create Arabic,
Chinese, and Swedish sentiment lexicons, respec-
tively. Monolingually induced sentiment lexicons
for specific domains like Twitter and finance are
also devised (Mohammad et al., 2013; Hamil-
ton et al., 2016). These methods are special-
ized such that applying them to other languages is
non-trivial. For example, Eskander and Rambow
(2015) link AraMorph (Buckwalter, 2004) with
SentiWordNet by additionally considering part-of-
speech information, which may not be available
in lexical resources in other languages. Inducing
Chinese sentiment lexicons (Wang and Ku, 2016)
needs properly tokenized corpora, which is not a
hard requirement in Swedish. In contrast, we aim
to design a method applicable to typologically di-
verse languages and we apply it to 1500+ lan-
guages.

Bi/Multi-Lingual Lexicon Induction. Gao
et al. (2015) propose a graph based method for
learning sentiment lexicons in target language by
leveraging English sentiment lexicons. They rely
on a high-quality word alignment, which is diffi-
cult to produce if languages are typologically di-
verse and the size of the parallel corpus is small.
Chen and Skiena (2014) devise a knowledge graph

eng The book of the history of Jesus Christ ,
son of David , son of Abraham :

fra Le livre de l’histoire de Jésus Christ ,
fils de David , fils d’Abraham :

jpn アブラハムの子，ダビデの子，
イエス･キリストについての歴史の書 :

Table 1: PBC+ verse 40001001 in three languages

based method to build sentiment lexicons for 136
major languages. Several linguistic resources such
as Google Translate and Wiktionary are used to
link words across languages. In contrast, our ap-
proach uses BPE embeddings to extract alignment
signals from the parallel corpus, an approach that
is better applicable across diverse languages. We
do not require resources like Wiktionary. We cover
more languages than Chen and Skiena (2014) and
more words (e.g., 300K for Amharic).

Language-Agnostic NLP. Language-agnostic
NLP has demonstrated strong performance in ar-
eas such as neural machine translation (NMT)
and universal representation learning. A partic-
ular difficulty is languages that do not mark to-
ken boundaries by whitespace such as Japanese.
We refer to them as non-segmented languages.
Sennrich et al. (2016) show the strength of
BPE in translating rare words. Kudo (2018)
introduces subword regularization that utilizes
multiple subword sequences to improve the ro-
bustness of NMT models. Sennrich et al.
(2016)’s subword-nmt2 requires preprocessing
(specifically, tokenization) for non-segmented lan-
guages, however, sentencepiece3 (Kudo and
Richardson, 2018) used by Kudo (2018) requires
no preprocessing even for non-segmented lan-
guages. This research indicates the potential of
language-agnostic NMT.

Effective representations of words (Schütze,
1993), e.g., word embeddings (Mikolov et al.,
2013; Pennington et al., 2014), have been ex-
tended to be bilingual (Ruder, 2017; Artetxe et al.,
2017) or multilingual (Dufter et al., 2018), with
(Artetxe et al., 2018) and without (Conneau et al.,
2017) supervision. Artetxe and Schwenk (2018)
train a language-agnostic BiLSTM encoder creat-
ing universal sentence representations of 93 lan-
guages, and performing strongly in crosslingual
tasks. Lample and Conneau (2019) show that
pretraining the encoders with a crosslingual lan-
guage model objective helps in achieving state-

2github.com/rsennrich/subword-nmt
3github.com/google/sentencepiece
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of-the-art results in crosslingual classification and
NMT. This research demonstrates the strength
of language-agnostic methods for representation
learning in NLP. Language-agnostic NLP mod-
els can generalize across languages without re-
quiring language-dependent preprocessing. These
advantages motivate us to design a universal ap-
proach for sentiment lexicon induction for 1500+
languages.

3 Method

Figure 1 shows the four steps of our method: (i)
BPE segmentation. (ii) Multilingual embedding
space creation. (iii) ZS lexicon induction. (iv) Do-
main adaptation to the general domain. We work
with the parallel corpus PBC+. PBC+ extends the
Parallel Bible Corpus by adding4 500 translations
of the New Testament in 334 languages, resulting
in a sentence-aligned parallel corpus containing
New Testament verses in 2164 translations of 1593
languages. Many languages have several transla-
tions of the New Testament in PBC+. We use the
term “edition” to refer to a single translation. Ta-
ble 1 shows a verse in three languages. As shown,
the Japanese (jpn) verse is not tokenized.

3.1 BPE Segmentation

Given the linguistic heterogeneity of the world’s
languages, it is crucial to first decide which type
of linguistic unit to use to represent a language L
in the multilingual space. The word, the linguis-
tic unit typically generated from whitespace tok-
enization, is not ideal for universal approaches be-
cause non-segmented languages require carefully
designed tokenizers. Character (or byte) n-gram
is an alternative unit (Wieting et al., 2016; Gillick
et al., 2016; Schütze, 2017; Dufter et al., 2018),
but the optimum length n varies across languages,
e.g., n = 2 may be suitable for Chinese (Foo and
Li, 2004), but clearly not for English.

In our desire to design a universal approach, we
use sentencepiece to segment PBC+ editions
in all 1593 languages into sequences of BPE seg-
ments. We will show that this segmentation works
across languages.

The widely used BPE segmentation algo-
rithm subword-nmt only considers BPE seg-
ments within words (Sennrich et al., 2016) and
some frequent BPEs are essentially valid words.

4We use github.com/ehsanasgari/1000Langs

sentencepiece adopts this setting for seg-
mented languages like English (Kudo, 2018). But
for non-segmented languages, sentencepiece
does not require any language-dependent prepro-
cessing – it learns a data-driven “tokenizer” on-
the-fly from raw text. Hence, sentencepiece
BPE segments can be larger linguistic units than
say, English words, e.g., phrases. Examples for
Japanese BPE segments in PBC+ are: “愛のうち
に” (in love) and “何と言えばよいでしょうか”
(what should I say).

We will use the term “BPE” to refer to all
BPE segments produced by sentencepiece,
including subwords, words and cross-token units
like phrases. Figure 1 (a) shows some sample
units. As shown, the English segments can be
words or subwords (underlined). Dominant con-
texts of shown subwords – insp: inspiration, in-
spired; crim: crime, criminals; blasphe: blas-
phemy, blasphemed; hest: highest, richest.

3.2 Multilingual Space Creation
We next create the multilingual space hosting
BPEs in 1593 languages of PBC+. We use the
Sentence ID (S-ID) method (Levy et al. (2017),
cf. also Le and Mikolov (2014)), a strong baseline
in multilingual embedding learning.

Given a sentence-aligned parallel corpus, the S-
ID method first creates an embedding training cor-
pus by recording co-occurrences between the sen-
tence ID and the sentence’s words (the New Tes-
tament verse ID and BPEs in our case) in all lan-
guages. Figure 2 shows examples from the train-
ing corpus; each BPE is associated with a 3-digit
ISO 639-3 language code. After that, an em-
bedding learner is applied to the created corpus to
learn the multilingual space. We use word2vec-
skipgram (Mikolov et al., 2013) as our embedding
learner.

3.3 Zero-Shot Transfer of English Sentiment
Embeddings encode sentiment information (Pen-
nington et al., 2014; Tang et al., 2014; Amir et al.,
2015; Rothe et al., 2016). We exploit this for
zero-shot transfer of English sentiment to the other
1592 languages. We train two linear SVMs to
classify sentiment of English BPE embeddings as
positive vs. non-positive (POS) and as negative vs.
non-negative (NEG).

We use this setup – as opposed to binary classi-
fication positive vs. negative – to address the fact
that some long BPE segments in non-segmented
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Generic Embeddings of LPBC+ ZS lexicon of L
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enliven smiles . . . misfortune kill

素敵 楽しみ . . . 異臭 苦し紛れ

atout décoration . . . odieux répugner

(a) PBC+ ZS (zero-shot) lexicons:
Created by zero-shot crosslingual transfer

(b) Generic DA (domain-adapted) lexicons:
Created by PBC-to-general-domain adaptation

Figure 1: Universal sentiment lexicon induction. (a): S-ID multilingual space of BPEs and sentiment classification
hyperplanes (only the positive vs. non-positive plane is shown) learned from English. Underlined units are English
BPEs with strong sentiment. (b): Creating generic DA lexicons using PBC+ ZS lexicons and generic embeddings.

languages may encode both sentiments. Using
two SVMs allows us to identify then filter out seg-
ments with compositional sentiments during zero-
shot transfer. This setup also enables direct com-
parison with Dufter et al. (2018) in Table 2.

The two SVMs are then applied to all embed-
ding vectors in the multilingual space to yield a
ZS lexicon for each of the 1593 languages.

3.4 PBC+ to General Domain Adaptation

Our ZS lexicons show high quality (see §5.2), but
are specific to the PBC+ domain, i.e., the Bible.
We adapt them to the general domain by obtaining
generic embeddings and using ZS lexicon BPEs
as labels to predict the sentiment of each generic
embedding.

We assume that we have access to generic em-
beddings or, alternatively, that we can learn them
from a generic corpus. We now describe how
we predict the sentiment of generic embeddings.
Given the PBC+ ZS lexicon B and the generic em-

40001002 @Jesus:eng
40001002 @አብርሃም:amh
40001002 @òಗೂ:kan
40001002 @雅各:zho
66002003 བཟོད་བsrན་byས་:bod

· · · · · ·

Figure 2: Samples of S-ID embedding training cor-
pus. 40001002 and 66002003: S-ID, i.e., IDs of
New Testament verses. amh=Amharic, kan=Kannada,
zho=Chinese, bod=Tibetan.

bedding matrix ML ∈ Rn×d of language L, we
train a matrix QL ∈ Rd×d such that BPE pairs
with same sentiment (Gs ⊂ B × B) have small
l2 distance while BPE pairs with different senti-
ment (Gd ⊂ B × B) have large l2 distance, i.e.,
∀w, v ∈ B, w 6= v:

argmin
QL

∑

(w,v)∈Gd

−α‖PQL(ew − ev)‖2 +

∑

(w,v)∈Gs

(1− α)‖PQL(ew − ev)‖2 +
λ

2
‖PQL‖2F

where ew, ev ∈ Rd are embeddings of BPEs w, v.
d is embedding dimension. n is vocabulary size.
α ∈ [0, 1] is the hyperparameter balancing the
two sub-objectives. λ is a regularization weight.
P ∈ Rd×d is an identity matrix in the first dimen-
sion, i.e., a selector. This objective concentrates
sentiment information in an embedding vector to a
1-dimensional ultradense sentiment space, result-
ing in a real-valued generic sentiment score. We
minimize the objective using stochastic gradient
descent (SGD).

After training, the generic sentiment score of
BPE w in language L is computed as sw =
PQLew. We refer to this method as REG and
we call a lexicon computed by REG a generic DA
(domain-adapted) lexicon since we always adapt
from the Bible to the general domain in this paper.

REG is inspired by Densifier (Rothe et al.,
2016), which is state of the art on SemEval2015
10E (Rosenthal et al., 2015) – determining
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strength of association of Twitter terms with sen-
timent. Rothe et al. (2016) show that Densifier
induces high quality and coverage sentiment lex-
icons in a domain adaptation setup. Densifier
forces QL to be orthogonal to preserve the struc-
ture of the embedding space. As we are only
interested in accurate sentiment prediction, we
replace the orthogonality with l2 regularization:
λ
2‖PQL‖2F . The orthogonal constraint in Densi-
fier – computing an SVD after each batch update –
is expensive (O(d3)) and requires non-trivial train-
ing regime (Rothe et al., 2016). We will show that
our formalization delivers comparable results.

In our experiments, we can use the generic word
embeddings provided by Bojanowski et al. (2017)
for 157 languages. Additionally, Heinzerling and
Strube (2018) create generic BPE embeddings for
257 languages by segmenting Wikipedia articles
using sentencepiece then running GloVe on
the segmented corpora. As discussed above (§3.1),
some BPEs in the PBC+ ZS lexicons are words,
some are subwords – so we can utilize both sets.

4 Experiments

4.1 Datasets and Settings

We use the 7958 New Testament verses in PBC+
that were also used by Dufter et al. (2018) to create
the multilingual BPE embedding space. To cover
as many BPEs as we can, we segment each PBC+
edition three times with vocabulary sizes 2000,
4000 and 8000 using sentencepiece. S-ID
generates a 31GB embedding training corpus in-
cluding 7,414,810 BPEs in 1593 languages.

English training set. We employ VADER, a
simple but widely used rule-based model for gen-
eral sentiment analysis (Hutto and Gilbert, 2014),
to create sentiment labels for English BPEs. We
consider BPEs with sentiment score > +0.1 (resp.
6 -0.1) as positive (resp. negative). BPEs with
score 0 are treated as neutral. As a result, we
have 851 positive, 906 negative and 13,861 neu-
tral training BPEs in English. We uniformly sam-
ple 878 = floor((851 + 906)/2) neutral BPEs to
speed up training.

Zero-shot transfer. The two SVMs for POS
and NEG (§3.3) are trained on English training
set (see above), then applied to all vectors in the
multilingual BPE embedding space to create ZS
lexicons for 1593 languages. We only keep high-
confidence BPEs – those with a predicted proba-
bility for either POS or NEG of ≥ 0.7 (Platt et al.,

1999) – to ensure ZS lexicons encode clear senti-
ment signals. The PBC+ ZS lexicon of language
L is then the set of all high-confidence sentiment-
bearing BPEs from L.

Evaluation. Following Abdaoui et al. (2017),
Bar-Haim et al. (2017), Rouces et al. (2018), we
evaluate the quality of PBC+ ZS lexicons based on
gold sentiment lexicons in Japanese (JA) (concate-
nation of Kobayashi et al. (2005); Higashiyama
et al. (2008)), Czech (CZ) (Veselovská and Bo-
jar, 2013), German (DE) (Waltinger, 2010), Span-
ish (ES) (Perez-Rosas et al., 2012), French (FR)
(Abdaoui et al., 2017) and English (EN) (WHM
lexicon, the concatenation of Wilson et al. (2005),
Hu and Liu (2004) and Mohammad and Turney
(2013), created by Rothe et al. (2016)). F1 is eval-
uation metric. We always compute F1 on the inter-
section of our and gold lexicon. Gold lexicons are
also used in intrinsic evaluation of generic DA lex-
icons (Table 6). Additionally, the English WHM
lexicon is also used in the evaluation of the uni-
versality of our approach (Table 8).

For intrinsic evaluation of generic DA lexicons,
we compare our results with Densifier. Rothe et al.
(2016) provide embeddings and train/validation
splits of gold standard lexicons in CZ, DE, ES,
FR and EN – we also use them in our experi-
ments. We show (i) using GEN (the same training
words as Densifier), REG (§3.4) induces generic
lexicons in comparable quality; (ii) using PBC+
ZS lexicons, the induced generic DA lexicons are
also in high quality. Kendall’s τ (Kendall, 1938)
is evaluation metric. As Densifier is implemented
in MATLAB, we implement our model in NumPy
(Oliphant, 2006) which is more accessible to the
community.

For extrinsic evaluation of generic DA lexicons,
we carry out Twitter sentiment classification in
13 languages. For each language, we retrieve
≈12,000 tweets from the human annotated dataset
devised by Mozetič et al. (2016), and sample bal-
anced number of positive and negative tweets (for
clearer comparisons and descriptions) which are
then randomly split 80/20 into train/test. We com-
pare our lexicons with Chen and Skiena (2014)’s
work. Two classification models are used (§5.3) –
COUNT (count-based, Chen and Skiena (2014))
and ML (machine-learning-based, Eskander and
Rambow (2015)). Accuracy is evaluation metric.
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4.2 Hyperparameter Tuning
We train the multilingual BPE embedding space
using word2vec-skipgram with default parameters
except: 25 negative samples, 10−4 occurrence
threshold, 200 dimensions and 10 iterations.

We tune the two linear SVMs for POS and NEG
by 5-fold cross validation on English training set.

Following Rothe et al. (2016), when inducing
generic DA lexicons, we run a grid search on their
train/validation sets to find α and λ. With the
same settings, we additionally conduct an experi-
ment on Japanese (JA Wiki), a non-segmented lan-
guage, to show the universality of our approach.
For EN Twitter (SemEval2015 10E), we tune our
model on the trial (dev) set and report results
on the test set. In all experiments, we search
α ∈ {0.3, 0.4, 0.5, 0.6, 0.7}, λ ∈ {0.01, 0.1, 1}.
Learning rate is 0.1, batch size 100, and the maxi-
mum number of updating steps 30,000.

Following Eskander and Rambow (2015), in
machine-learning-based Twitter sentiment classi-
fication for each of the 13 languages, we find the
optimum SVM (positive vs. negative tweet) hyper-
parameters (C and kernel) by running 5-fold cross
validation on the training set.

5 Results and Discussion

5.1 Multilingual BPE Space Evaluation
We first evaluate the multilingual BPE space by
carrying out the crosslingual verse sentiment clas-
sification experiment in Dufter et al. (2018). Two
linear SVMs are trained on 2147 English train-
ing verses to classify the verse sentiment (posi-
tive vs. non-positive, i.e., POS, and negative vs.
non-negative, i.e., NEG). A verse is represented as
the TF-IDF weighted sum of the embeddings of its
BPEs. We then conduct the crosslingual verse sen-
timent analysis – using the SVMs to classify 476
test verses of Dufter et al. (2018)’s 1664 editions
in 1259 languages. Table 2 gives results averaged
over 1664 editions. Word and Char are two multi-
lingual spaces created by Dufter et al. (2018). For
Word, whitespace tokenization is used to segment
all editions. For Char, all editions are segmented
to sequences of overlapping byte-ngrams (length n
varies across languages, see Dufter et al. (2018)).
Next, the S-ID method is utilized to create the two
multilingual spaces.

The S-ID BPE space outperforms both S-ID
Word and S-ID Char spaces. This observa-
tion meets our expectation – the data-driven BPE

Word Char BPE
POS NEG POS NEG POS NEG

S-ID .79 .88 .65 .86 .81 .89

Table 2: F1 for verse sentiment classification. Bold:
our results. Word/Char are from Dufter et al. (2018).

ISO B W ∆ ISO B W ∆
lzh1 .82 .04 +.78 eng1 .88 .84 +.04
jpn1 .86 .19 +.67 fra1 .85 .85 -.00
khm2 .87 .21 +.66 deu1 .84 .83 +.01
khm3 .86 .25 +.61 spa1 .85 .85 +.00
ksw0 .86 .32 +.54 por1 .84 .87 -.03

Table 3: The most improved (left) editions when using
S-ID BPE (B) compared with S-ID Word (W). B and
W perform similarly on segmented languages (right)
like English (eng), French (fra), German (deu), Spanish
(spa) and Portuguese (por). Numbers are in F1.

segmentation is superior to splitting on whites-
pace (Word) or overlapping byte-ngram segmen-
tation (Char), for non-segmented languages like
Japanese whose PBC+ editions are not tokenized.

For the more challenging subtask POS, we
find the biggest improvement of S-ID BPE over
Word is for non-segmented languages like Clas-
sical Chinese (lzh), Japanese (jpn), Khmer (khm)
and S’gaw Karen (ksw) as shown in Table 3 (left).
For segmented languages, S-ID BPE delivers sim-
ilar performance as S-ID Word as shown in Table
3 (right). This observation also meets our expec-
tation – lots of BPEs in segmented languages are
essentially valid words.

These observations show the universality of
our approach. The sentiment information derived
from English is successfully transferred to hetero-
geneous languages without language-dependent
preprocessing – even for non-segmented lan-
guages.

5.2 PBC+ ZS (Zero-Shot) Lexicon Evaluation

Sample entries in the English ZS lexicon are
shown in Table 4 (left) as a qualitative evalu-
ation. Table 5 shows the high consistency be-
tween the PBC+ ZS lexicons and gold lexicons
in six languages. These results indicate that the

positive negative positive negative
magnificent fought #blessedbeyondbelief shats

privilege blamed alhamduillah #worstpain
enjoyed debauchery #365daysofgratitude theiving
salvation adulter #excellence #stuffynose
rejoices gloomy co-create sorethroat

Table 4: Sample entries in English ZS lexicon (left) and
DA lexicon with Twitter embeddings (right).
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two SVMs trained on English BPE embeddings
perform strongly in a zero-shot crosslingual set-
ting, and the resulting PBC+ ZS lexicons in dif-
ficult (morphologically rich, e.g., Czech; non-
segmented, e.g., Japanese) languages encode clear
sentiment information.

5.3 Generic DA (Domain-Adapted) Lexicon
Evaluation

Table 4 (right) qualitatively shows the most
sentiment-bearing words of the DA lexicon in-
duced with English ZS lexicon and Twitter embed-
dings (EN Twitter). Lots of top ranked words are
strong sentiment-bearing hashtags that never oc-
cur in the ZS lexicon domain, illustrating that our
approach functions well in the domain adaptation
setup. This observation is consistent with Densi-
fier (Rothe et al., 2016).

Intrinsic evaluation: ranking correlation.
We compute ranking correlation between our
generic DA lexicons and gold standard lexicons.
There are overlapping words between our PBC+
ZS lexicon BPEs and the validation/test sets used
by Rothe et al. (2016) – we discard these training
words for a clean comparison.

Columns (i) and (ii) of Table 6 show that REG
(§3.4) delivers results comparable to Densifier
(ORTH) when using the same set of generic train-
ing words (GEN) in lexicon induction. However,
our method is more efficient – no need to compute
the expensive SVD after every batch update.

Comparing columns (ii) and (iii), we see a
marginal decrease of τ between .020 and .057
when GEN is replaced by PBC+ ZS lexicons.
Note that PBC+ ZS lexicons have much fewer
training BPEs than GEN (e.g., 343 vs. 4298 in JA
Wiki) – this may contribute to the decrease. These
comparable results also reflect the correctness of
PBC+ ZS lexicons.

We also use α = 0.4 and λ = 0.01, the opti-
mal hyperparameter values found on the trial set
of EN Twitter, to induce generic DA lexicons for
the other languages. This is the common setting

JA CZ DE ES FR EN
F1 .883 .914 .903 .963 .916 .939
∩ size 120 141 788 63 407 1145
|PBC+| 728 1793 2827 1766 2193 2563

Table 5: High consistency between PBC+ ZS lexicons
and generic gold lexicons in JA and five languages
used in Rothe et al. (2016). ∩ size: intersection size.
|PBC+|: ZS lexicon size.

(i) (ii) (iii) (iv)
ORTH REG
GEN GEN PBC+/T PBC+/NT

CZ web .580 .576 .529 .524
DE web .654 .654 .634 .634
ES web .563 .568 .524 .514
FR web .544 .540 .514 .474
EN Tw. .654 .629 .583 .583
EN Ne. .622 .582 .562 .557
JA Wiki n/a .628 .571 .558

Table 6: Correlation (τ ) of generic DA lexicons with
gold standard lexicons. ORTH results are from Rothe
et al. (2016). The other columns use REG (§3.4).
Training words for lexicon induction are from Rothe
et al. (2016) (GEN) and from PBC+ ZS lexicons.

Algorithm 1 Creating tweet representation

1: procedure REPTWEET(String: Tweet, Dict: Lexicon)
2: words = Tweet.split(“ ”)
3: vec = [0.0, 0.0]
4: for w ∈ words do
5: val = Lexicon.get(w)
6: if val > 0 then
7: vec[0] = vec[0] + val
8: else if val < 0 then
9: vec[1] = vec[1] + val

10: else
11: continue
12: return vec

Figure 3: Creating the representation of a tweet in Twit-
ter sentiment classification using ML.

in real applications – other languages most likely
do not have validation sets available. Results are
shown in column (iv). Compared with tuned re-
sults (PBC+/T), performance slightly drops as the
hyperparameters are not tuned (PBC+/NT) for lan-
guages other than EN Twitter.

Overall, the performance differences between
GEN (based on generic gold standard lexicons)
and PBC+ (based on PBC+ ZS lexicons) are small
and τ correlations are high. The high quality of
generic DA lexicons in these six diverse (mor-
phologically rich and non-segmented) languages
shows the universality of our approach again – no
language-dependent preprocessing is needed.

Extrinsic evaluation: Twitter sentiment clas-
sification. Based on the subset of frequent words
only,5 we use the top 10% most positive and most
negative words for this evaluation. We compare
with the closest work – lexicons from Chen and
Skiena (2014).

Two classification models are used – word-
count-based model COUNT (Chen and Skiena,

5In all discussions, we consider words that are top 50%
frequent in the embedding vocabulary as “frequent” words.
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sqi bul hrv deu hun pol por rus srp slk slv spa swe x̄

COUNT C&S .55 .57 .57 .61 .61 .55 .57 .54 .51 .55 .64 .54 .57 .57
Ours .50 .60 .60 .56 .64 .62 .53 .65 .50 .61 .57 .55 .63 .58

ML C&S .58 .59 .60 .62 .64 .56 .54 .56 .51 .57 .66 .53 .59 .58
Ours .54 .65 .65 .64 .66 .66 .54 .67 .51 .64 .59 .57 .64 .61

Table 7: Accuracy of Twitter sentiment classification in Albanian (sqi), Bulgarian (bul), Croatian (hrv), German
(deu), Hungarian (hun), Polish (pol), Portuguese (por), Russian (rus), Serbian (srp), Slovak (slk), Slovenian (slv),
Spanish (spa) and Swedish (swe). Baseline of all experiments: 0.5.

2014), and machine-learning-based model ML
(Eskander and Rambow, 2015). COUNT labels a
tweet with the sentiment that has more word oc-
currences in the tweet (positive in case of ties).
COUNT does not require training and the results
are from all tweets for each language. In ML, the
vector representation of a tweet is created accord-
ing to Figure 3. Our generic DA lexicons support
computing real-valued vectors in this way. Chen
and Skiena (2014)’s lexicons are discrete (1/-1);
we use these discrete values when applying ML to
their lexicons. Finally, for each language, an SVM
is trained on the 2-dimensional vectors.

Table 7 shows results. The baseline accuracy is
0.5 for all experiments as our dataset is balanced.
Rows Ours and C&S show results using our and
Chen and Skiena (2014)’s lexicons respectively.
As shown, the two sets of lexicons give compara-
ble results in COUNT. But ML generally performs
better than COUNT, and our lexicons give better
classification results – our real-valued representa-
tion of tweets is superior to the discrete one com-
puted with Chen and Skiena (2014)’s lexicons.

Overall, intrinsic and extrinsic evaluations on
diverse languages demonstrate the high quality of
our generic DA lexicons.

5.4 Evaluation of Universality
We further conduct automatic and human evalua-
tions on 95 diverse languages to show the univer-
sality of our approach. We focus on intrinsic eval-
uation – verifying the correctness of PBC+ ZS lex-
icons with F1, and assessing the quality of generic
DA lexicons using τ . The extrinsic evaluation,
i.e., Twitter sentiment classification, is not feasi-
ble here due to missing human annotated Twitter
datasets in low-resource languages.

Automatic evaluation. Similar to Chen and
Skiena (2014); Abdaoui et al. (2017), we use
Google Translate (GT) for automatic evaluation –
given a non-English language L, we translate its
PBC+ ZS lexicon and generic DA lexicon into En-
glish. Translated English lexicons are then evalu-

ated against the gold English lexicon WHM.

GT supports 102 non-English languages. We
omit ten languages that (i) are not covered by
PBC+ (Corsican, Galician, Pashto, Yiddish); (ii)
are covered in PBC+, but not in the alphabet used
by GT (Malayalam); (iii) do not have public pre-
trained embeddings (Filipino, Hmong, Kyrgyz,
Sesotho); or (iv) are very close to another language
(we keep Croatian, but do not include Bosnian).
We conduct separate experiments for Bokmål and
Nynorsk, which are not distinguished by GT.
Thus, we evaluate on 93 languages. When trans-
lating words to English, we discard entries where
GT fails (i.e., output is identical to input). As GT
requires the uploaded file to be small (6 1MB), we
do the evaluation on uniformly sampled 600 top
1% positive and negative words that are frequent.
For ten languages (Chichewa, Hausa, Hawaiian,
Igbo, Lao, Maori, Samoan, Shona, Xhosa, Zulu)
that have very small embedding training corpora
(<5MB Wikipedia pages and articles) and vocab-
ulary sizes (e.g., 5000 for Hausa), we sample 200
words at 10%.

Table 8 shows results. We see that PBC+ ZS
lexicons show high consistency with gold labels
across all 93 languages (F1 columns), includ-
ing morphologically rich languages like Czech
and Turkish, and non-segmented languages like
Japanese and Khmer. The generic DA lexi-
cons show high correlation with gold labels (τ
columns) – with two exceptions. First, some
languages have low-quality embeddings due to
small embedding training corpora (e.g., Hawaiian:
998 KB; Igbo: 1014 KB) or because the train-
ing corpora apparently have low quality – e.g., the
Luxembourgish embedding vocabulary contains a
large amount of French and German words, sug-
gesting that it was trained on mixed text and that
the genuine Luxembourgish part is small. Second,
GT does not perform well for some of the lan-
guages, again this is the case for Luxembourgish
and also for Frisian. To give an example from Lux-
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Language F1 τ Language F1 τ Language F1 τ Language F1 τ Language F1 τ
Afrikaans .909 .508 Esperanto .933 .361 Italian .924 .591 Mongolian .840 .222 Sundanese .912 .409
Albanian .916 .570 Estonian .889 .606 Japanese .901 .411 Myanmar .916 .534 Shona .885 .223
Amharic .870 .418 Finnish .932 .584 Javanese .904 .398 Nepali .862 .491 Swedish .936 .621
Arabic .905 .509 French .919 .600 Kannada .921 .447 Nynorsk .853 .434 Sinhala .880 .540

Armenian .848 .524 Frisian .885 .065 Kazakh .893 .421 Punjabi .927 .506 Tajik .876 .436
Azerbaijani .768 .401 Georgian .908 .540 Khmer .906 .474 Persian .903 .390 Tamil .911 .513

Basque .898 .477 German .898 .548 Korean .897 .481 Polish .923 .530 Telugu .934 .297
Belarusian .915 .597 Greek .912 .570 Kurdish .925 .258 Portuguese .913 .574 Thai .867 .357

Bengali .910 .389 Gujarati .896 .479 Latin .927 .336 Romanian .917 .644 Turkish .897 .607
Bokmål .927 .625 Haitian .891 .238 Lao .834 .222 Russian .910 .596 Ukrainian .909 .612

Bulgarian .911 .511 Hausa .905 .184 Latvian .919 .538 Scots .848 .385 Urdu .825 .258
Catalan .937 .453 Hawaiian .951 .078 Lithuanian .922 .491 Serbian .957 .559 Uzbek .900 .361
Cebuano .917 .390 Hebrew .833 .522 Luxemb’gish .834 .031 Sindhi .845 .169 Vietnamese .840 .403
Chichewa .872 .061 Hindi .878 .447 Macedonian .918 .425 Slovak .942 .515 Welsh .879 .560
Chinese .889 .486 Hungarian .910 .502 Malagasy .923 .417 Samoan .857 .116 Xhosa .892 .057
Croatian .926 .519 Igbo .791 .088 Malay .892 .494 Swahili .842 .403 Yoruba .873 .188
Czech .915 .545 Icelandic .947 .417 Maori .836 .015 Slovenian .957 .483 Zulu .889 .226
Danish .936 .359 Indonesian .898 .498 Maltese .938 .488 Somali .954 .335
Dutch .906 .553 Irish .902 .476 Marathi .942 .479 Spanish .943 .428

Table 8: Intrinsic evaluation of our PBC+ ZS and generic DA lexicons in 93 languages. We see high consistency
(F1) between PBC+ ZS lexicons and gold labels across languages. The generic DA lexicons are strongly correlated
(τ ) with gold labels in most languages.

Hiligaynon Tibetan
τ size τ size

2-way .474 103 .542 64
3-way .357 188 .361 148

Table 9: Human evaluation of generic DA lexicons in
Hiligaynon and Tibetan. 2-way: positive, negative. 3-
way: positive, neutral, negative.

embourgish for both problems: “vergloust” and its
first nearest neighbor “verglousten” are translated
by GT as “glowed” and “forget about it”. We rec-
ommend to use the higher quality PBC+ ZS lexi-
con for these languages.

Apart from above exceptions, both F1 and τ are
reasonably high, evidencing that our universal ap-
proach is applicable to a broad range of typologi-
cally diverse languages.

We do human evaluation for Hiligaynon and
Tibetan, languages not supported by GT.

There are no public pretrained embeddings for
Hiligaynon. We train embeddings on a concate-
nation of texts from project Palito (Dita et al.,
2009) and Jehovah’s Witnesses e-books (www.
jw.org). From the generic DA Hiligaynon and
Tibetan lexicons, we uniformly sample 199 from
the top 10% positive and negative frequent BPEs.

Two Tibetan scholars and three Hiligaynon
speakers annotated these BPEs as positive, nega-
tive, neutral, unclear where the last category refers
to cases where the intended word is not apparent
from the BPE. We omit entries labeled as unclear
and compute τ . Table 9 shows τ averaged over an-
notators. We see that our lexicons have consistent
positive correlation with the human annotation in
both languages.

6 Conclusion

We proposed a universal approach for sentiment
lexicon induction. By creating a multilingual BPE
embedding space for 1500+ languages, we suc-
cessfully transfer sentiment to each language with-
out language-dependent preprocessing. We cre-
ated 1593 ZS (zero-shot) sentiment lexicons and
showed for a subset that they are highly consistent
with gold lexicons. To address the fact that the
small-size ZS lexicons are specific to PBC+’s do-
main, we conduct domain adaptation and induce
large-size generic DA (domain-adapted) lexicons
for 200 languages. Extensive intrinsic and extrin-
sic, automatic and human evaluations on 95 lan-
guages confirm the correctness and good quality
of our lexicons. We make our code and lexicons
freely available to the community.

To induce generic lexicons, our approach re-
quires generic embeddings, which are not always
available for low-resource languages. Solving this
problem is non-trivial as many low-resource lan-
guages have a limited amount of written text in
electronic form (and in any form). In such cases,
the PBC+ ZS lexicons can be utilized because they
also have high quality.
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Abstract

Pretrained language models achieve state-of-
the-art results on many NLP tasks, but there
are still many open questions about how and
why they work so well. We investigate the con-
textualization of words in BERT. We quantify
the amount of contextualization, i.e., how well
words are interpreted in context, by studying
the extent to which semantic classes of a word
can be inferred from its contextualized em-
bedding. Quantifying contextualization helps
in understanding and utilizing pretrained lan-
guage models. We show that the top layer rep-
resentations support highly accurate inference
of semantic classes; that the strongest contex-
tualization effects occur in the lower layers;
that local context is mostly sufficient for con-
textualizing words; and that top layer repre-
sentations are more task-specific after finetun-
ing while lower layer representations are more
transferable. Finetuning uncovers task-related
features, but pretrained knowledge about con-
textualization is still well preserved.

1 Introduction

Pretrained language models like ELMo (Peters
et al., 2018a), BERT (Devlin et al., 2019), and XL-
Net (Yang et al., 2019) are top performers in NLP
because they learn contextualized representations,
i.e., representations that reflect the interpretation of
a word in context as opposed to its general mean-
ing, which is less helpful in solving NLP tasks. As
stated, pretrained language models contextualize
words, is clear qualitatively; there has been lit-
tle work on investigating contextualization, i.e., to
which extent a word can be interpreted in context,
quantitatively.

We use BERT (Devlin et al., 2019) as our pre-
trained language model and quantify contextual-
ization by investigating how well BERT infers se-
mantic classes (s-classes) of a word in context,
e.g., the s-class organization for “Apple" in “Apple

stock rises" vs. the s-class food in “Apple juice is
healthy". We use s-class inference as a proxy for
contextualization since accurate s-class inference
reflects a successful contextualization of a word:
an effective interpretation of the word in context.

We adopt the methodology of probing (Adi
et al., 2016; Shi et al., 2016; Belinkov et al.,
2017; Liu et al., 2019; Tenney et al., 2019b; Be-
linkov and Glass, 2019; Hewitt and Liang, 2019;
Yaghoobzadeh et al., 2019): diagnostic classifiers
are applied to pretrained language model embed-
dings to determine whether they encode desired
syntactic or semantic features.

By probing for s-classes we quantify directly
where and how contextualization happens in BERT.
E.g., we find that the strongest contextual inter-
pretation effects occur in the lower layers and that
the top two layers contribute little to contextual-
ization. We also investigate how the amount of
context available affects contextualization.

In addition, since pretrained language models
in practice need to be finetuned on downstream
tasks (Devlin et al., 2019; Peters et al., 2019), we
further investigate the interactions between fine-
tuning and contextualization. We show that the
pretrained knowledge about contextualization is
well preserved in finetuned models.

We make the following contributions: (i) We
investigate how accurately BERT interprets words
in context. We find that BERT’s performance is
high (almost 85% F1), but that there is still room
for improvement. (ii) We quantify how much each
additional layer in BERT contributes to contextual-
ization. We find that the strongest contextual inter-
pretation effects occur in the lower layers. The top
two layers seem to be optimized only for the pre-
training objective of predicting masked words (De-
vlin et al., 2019) and only add small increments to
contextualization. (iii) We investigate the amount
of context BERT needs to exploit for interpreting a
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GloVe BERT
suits suits

lawsuit suited
filed lawsuit

lawsuits ##suit
sued lawsuits

complaint slacks
jacket 47th

Table 1: Nearest neighbors of “suit” in GloVe and in
BERT (BERT-base-uncased) wordpiece embeddings

word and find that BERT effectively integrates local
context up to five words to the left and to the right
(a 10-word context window). (iv) We investigate
the dynamics of BERT’s representations in fine-
tuning. We find that finetuning has little effect on
lower layers, suggesting that they are more easily
transferable across tasks. Higher layers are strongly
changed for word-level tasks like part-of-speech
tagging, but less noticeably for sentence-level tasks
like paraphrase classification. Finetuning uncovers
task-related features, but the knowledge captured
in pretraining is well preserved. We quantify these
effects by s-class inference performance.

2 Motivation and Methodology

The key benefit of pretrained language models (Mc-
Cann et al., 2017; Peters et al., 2018a; Radford
et al., 2019; Devlin et al., 2019) is that they pro-
duce contextualized embeddings that are useful in
NLP. The top layer contextualized word representa-
tions from pretrained language models are widely
utilized; however, the fact that pretrained language
models implement a process of contextualization –
starting with a completely uncontextualized layer
of wordpieces at the bottom – is not well studied.
Table 1 gives an example: BERT’s wordpiece em-
bedding of “suit” is not contextualized: it contains
several meanings of the word, including “to suit”
(“be convenient”), lawsuit, and garment (“slacks”).
Thus, there is no difference in this respect between
BERT’s wordpiece embeddings and uncontextu-
alized word embeddings like GloVe (Pennington
et al., 2014). Pretrained language models start out
with an uncontextualized representation at the low-
est layer, then gradually contextualize it. This is
the process we analyze in this paper.

For investigating the contextualization process,
one possibility is to use word senses and to tap re-
sources like the WordNet (WN) (Fellbaum, 1998)
based word sense disambiguation benchmarks of
the Senseval series (Edmonds and Cotton, 2001;

words comb’s contexts
train 35,399 62,184 2,178,895
dev 8,850 15,437 542,938
test 44,250 77,706 2,722,893

Table 2: Number of words, word-s-class combinations,
and contexts per split in our probing dataset. Appendix
§A.6 shows the 34 s-classes and statistics per class.

Snyder and Palmer, 2004; Raganato et al., 2017).
However, the abstraction level in WN sense in-
ventories has been criticized as too fine-grained
(Izquierdo et al., 2009), providing limited infor-
mation to applications requiring higher level ab-
straction. Various levels of granularity of abstrac-
tion have been explored such as WN domains
(Magnini and Cavaglià, 2000), supersenses (Cia-
ramita and Johnson, 2003; Levine et al., 2019) and
basic level concepts (Beviá et al., 2007). In this pa-
per, we use semantic classes (s-classes) (Yarowsky,
1992; Resnik, 1993; Kohomban and Lee, 2005;
Yaghoobzadeh et al., 2019) as the proxy for the
meaning contents of words to study the contextual-
ization capability of BERT. Specifically, we use the
Wikipedia-based resource for Probing Semantics
in Word Embeddings (Wiki-PSE) (Yaghoobzadeh
et al., 2019) which is detailed in §3.1.

3 Probing Dataset and Task

3.1 Probing dataset

For s-class probing, we use the s-class labeled cor-
pus Wiki-PSE (Yaghoobzadeh et al., 2019). It
consists of a set of 34 s-classes, an inventory of
word→s-class mappings and an English Wikipedia
text corpus in which words in context are labeled
with the 34 s-classes. For example, contexts of
“Apple” that refer to the company are labeled with
“organization”. We refer to a word labeled with
an s-class as a word-s-class combination, e.g.,
“@apple@-organization”.1

The Wiki-PSE text corpus contains >550 mil-
lion tokens, >17 million of which are annotated
with an s-class. Working on the entire Wiki-PSE
with BERT is not feasible, e.g., the word-s-class
combination “@france@-location” has 98,582 con-
texts. Processing all these contexts by BERT con-
sumes significant amounts of energy (Strubell et al.,
2019; Schwartz et al., 2019) and time. Hence for
each word-s-class combination, we sample a maxi-
mum of 100 contexts to speed up our experiments.

1In Wiki-PSE, s-class-labeled occurrences are enclosed
with “@”, e.g., “@apple@”.
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Algorithm 1 Train a classifier with type-level embeddings

1: procedure TYPESCLSTRAINER(Dict: word2vec, Dict:
word2sclass, sclass: S, List: TrainWords):

2: PosVecs, NegVecs = [], []
3: for word ∈ TrainWords do
4: vector = word2vec.get(word)
5: sclasses = word2sclass.get(word)
6: if S ∈ sclasses then
7: PosVecs.append(vector)
8: else
9: NegVecs.append(vector)

10: classifier = Classifier()
11: classifier.train(PosVecs, NegVecs)
12: return classifier

Figure 1: Training a diagnostic classifier with uncon-
textualized word representations for an s-class S.

Wiki-PSE provides a balanced train/test split; we
use 20% of the training set as our development set.
Table 2 gives statistics of our dataset.

3.2 Probing for semantic classes

For each of the 34 s-classes in Wiki-PSE, we train a
binary classifier to diagnose if an input embedding
encodes information for inferring the s-class.

3.2.1 Probing uncontextualized embeddings
We make a distinction in this paper between two
different factors that contribute to BERT’s perfor-
mance: (i) a powerful learning architecture that
gives rise to high-quality representations and (ii)
contextualization in applications, i.e., words are
represented as contextualized embeddings for solv-
ing NLP tasks. Here, we adopt Schuster et al.
(2019)’s method of computing uncontextualized
BERT embeddings (AVG-BERT-`, see §4.2.1) and
show that (i) alone already has a strong positive
effect on performance when compared to other un-
contextualized embeddings. So BERT’s representa-
tion learning yields high performance, even when
used in a completely uncontextualized setting.

We adopt the setup in Yaghoobzadeh et al. (2019)
to probe uncontextualized embeddings – for each
of the 34 s-classes, we train a binary classifier as
shown in Figure 1. Table 2, column words shows
the sizes of train/dev/test. The evaluation measure
is micro F1 over all decisions of the 34 binary
classifiers.

3.2.2 Probing contextualized embeddings
We probe BERT with the same setup: a binary
classifier is trained for each of the 34 s-classes;
each BERT layer is probed individually.

For uncontextualized embeddings, a word has

Probing Uncontextualized Embeddings

Probing Contextualized Embeddings

eunc. (“airheads”) = .
.

MLPfood

MLPart

MLPevent

…

1

1
0

prediction gold label
1

1
0

one vector per word

econt. (“she eats airheads.”) = .
.

MLPfood

MLPart

MLPevent

…

1
0

0

prediction gold label

1
0

0
one vector per context

Figure 2: Setups for probing uncontextualized and con-
textualized embeddings. For BERT, we input a context
sentence to extract the contextualized embedding of a
word, e.g., “airheads”; “food” is the correct s-class la-
bel for this context.

a single vector, which is either a positive or neg-
ative example for an s-class. For contextualized
embeddings, the contexts of a word will typically
be mixed; for example, “food” contexts (a candy)
of “@airheads@” are positive but “art” contexts
(a film) of “@airheads@” are negative examples
for the classifier of “food”. Table 2, column con-
texts shows the sizes of train/dev/test when probing
BERT. Figure 2 compares our two probing setups.

In evaluation, we weight frequent word-s-class
combinations (those having 100 contexts in our
dataset) and the much larger number of less fre-
quent word-s-class combinations equally. To this
end, we aggregate the decisions for the contexts
of a word-s-class combination. We stipulate that
at least half of the contexts must be correctly clas-
sified. For example, “@airheads@-art” occurs 47
times, so we evaluate the “art” classifier as accu-
rate for “@airheads@-art” if it classifies at least 24
contexts correctly. The final evaluation measure is
micro F1 over all 15,437 (for dev) and 77,706 (for
test) decisions (see Table 2) of the 34 classifiers for
the word-s-class combinations.

4 Experiments and Results

4.1 Data preprocessing

BERT uses wordpieces (Wu et al., 2016) to rep-
resent text and infrequent words are tokenized to
several wordpieces. For example, “infrequent” is
tokenized to “in”, “##fr”, “##e”, and “##quent”.
Following He and Choi (2020), we average word-
piece embeddings to get a single vector representa-
tion of a word.2

2Some “words” in Wiki-PSE are in reality multiword
phrases. Again, we average in these cases to get a single
vector representation.
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We limit the maximum sequence length of the
context sentence input to BERT to 128. Consistent
with the probing literature, we use a simple probing
classifier: a 1-layer multilayer perceptron (MLP)
with 1024 hidden dimensions and ReLU.

4.2 Quantifying contextualization
4.2.1 Representation learners
Six uncontextualized embedding spaces are eval-
uated: (i) PSE. A 300-dimensional embedding
space computed by running skipgram with neg-
ative sampling (Mikolov et al., 2013) on the Wiki-
PSE text corpus. Yaghoobzadeh et al. (2019) show
that PSE outperforms other embedding spaces. (ii)
Rand. An embedding space with the same vocabu-
lary and dimension size as PSE. Vectors are drawn
from N (0, I300). Rand is used to confirm that
word representations indeed encode valid mean-
ing contents that can be identified by diagnos-
tic MLPs rather than random weights. (iii) The
300-dimensional fastText (Bojanowski et al., 2017)
embeddings. (iv) GloVe. The 300-dimensional
space trained on 6 billion tokens (Pennington et al.,
2014). Out-of-vocabulary (OOV) words are as-
sociated with vectors drawn from N (0, I300). (v)
BERTw. The 768-dimensional wordpiece embed-
dings in BERT. We tokenize a word with the BERT
tokenizer then average its wordpiece embeddings.
(vi) AVG-BERT-`.3 For an annotated word in Wiki-
PSE, we average all of its contextualized embed-
dings from BERT layer ` in the Wiki-PSE text cor-
pus. Comparing AVG-BERT-` with others brings
a new insight: to which extent does this “uncon-
textualized” variant of BERT outperform others in
encoding different s-classes of a word?

Four contextualized embedding models are
considered: (i) BERT. We use the PyTorch (Paszke
et al., 2019; Wolf et al., 2019) implementation of
the 12-layer BERT-base-uncased model (Wiki-PSE
is uncased). (ii) P-BERT. A bag-of-word model
that “contextualizes” the wordpiece embedding of
an annotated word by averaging the embeddings of
wordpieces of the sentence it occurs in. Comparing
BERT with P-BERT reveals to which extent the
self attention mechanism outperforms an average
pooling practice when contextualizing words. (iii)
P-fastText. Similar to P-BERT, but we use fast-
Text word embeddings. Comparing BERT with

3BERTw and AVG-BERT-` have more dimensions. But
Yaghoobzadeh et al. (2019) showed that different dimension-
alities have a negligible impact on relative performance when
probing for s-classes using MLPs as diagnostic classifiers.
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Figure 3: S-class probing results for uncontextualized
embeddings. Results are micro F1 on Wiki-PSE test
set. Numerical values are in Table 5 in Appendix.

P-fastText indicates to which extent BERT outper-
forms uncontextualized embedding spaces when
they also have access to contextual information.
(iv) P-Rand. Similar to P-BERT, but we draw word
embeddings from N (0, I300). Wieting and Kiela
(2019) show that a random baseline has good per-
formance in tasks like sentence classification.

4.2.2 S-class inference results

Figure 3 shows uncontextualized embedding
probing results. Comparing with random weights,
all embedding spaces encode informative features
helping s-class inference. BERTw delivers results
similar to GloVe and fastText, demonstrating our
earlier point (cf. the qualitative example in Table 1)
that the lowest embedding layer of BERT is un-
contextualized; several meanings of a word are
conflated into a single vector.

PSE performs strongly, consistent with observa-
tions in Yaghoobzadeh et al. (2019). AVG-BERT-
10 performs best among all spaces. Thus for a
given word, averaging its contextualized embed-
dings from BERT yields a high quality type-level
embedding vector, similar to “anchor words” in
cross-lingual alignment (Schuster et al., 2019).

As expected, the top AVG-BERT layers outper-
form lower layers, given the deep architecture of
BERT. Additionally, AVG-BERT-0 significantly
outperforms BERTw, evidencing the importance of
position embeddings and the self attention mech-
anism (Vaswani et al., 2017) when composing the
wordpieces of a word.

Figure 4 shows contextualized embedding
probing results. Comparing BERT layers, a clear
trend can be identified: s-class inference perfor-
mance increases monotonically with higher lay-
ers. This increase levels off in the top layers.
Thus, the features from deeper layers improve word
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Figure 4: S-class probing results for contextualized
embedding models. Results are micro F1 on Wiki-PSE
test set. Numerical values are in Table 6 in Appendix.

contextualization, advancing s-class inference. It
also verifies previous findings: semantic tasks are
mainly solved at higher layers (Liu et al., 2019;
Tenney et al., 2019a). We can also observe that the
strongest contextualization occurs early at lower
layers – going up to layer 1 from layer 0 brings a
4% (absolute) improvement.

The very limited contextualization improvement
brought by the top two layers may explain why
representations from the top layers of BERT can
deliver suboptimal performance on NLP tasks (Liu
et al., 2019): the top layers are optimized for the
pretraining objective, i.e., predicting masked words
(Voita et al., 2019), not for the contextualization of
words that is helpful for NLP tasks.

BERT layer 0 performs slightly worse than P-
BERT, which may be due to the fact that some
attention heads in lower layers of BERT attend
broadly in the sentence, producing “bag-of-vector-
like” representations (Clark et al., 2019), which
is in fact close to the setup of P-BERT. However,
starting from layer 1, BERT gradually improves
and surpasses P-BERT, achieving a maximum gain
of 0.16 in F1 in layer 11. Thus, BERT knows
how to better interpret the word in context, i.e.,
contextualize the word, when progressively going
to deeper (higher) layers.

P-Rand performs strongly, but is noticeably
worse than P-fastText and P-BERT. P-fastText out-
performs P-BERT and BERT layers 0 and 1. We
hypothesize that this may be due to the fact that
fastText learns embeddings directly for words; P-
BERT and BERT have to compose subwords to
understand the meaning of a word, which is more
challenging. Starting from layer 2, BERT outper-
forms P-fastText and P-BERT, illustrating the ef-
fectiveness of self attention in better integrating the
information from the context into contextualized

word embeddings than the average pooling practice
in bag-of-word models.

Figure 3 and Figure 4 jointly illustrate the high
quality of word representations computed by BERT.
The BERT-derived uncontextualized AVG-BERT-
` representations – modeled as Schuster et al.
(2019)’s anchor words – show superior capabil-
ity in inferring s-classes of a word, performing best
among all uncontextualized embeddings. This sug-
gests that BERT’s powerful learning architecture
may be the main reason for BERT’s high perfor-
mance, not contextualization proper, i.e., the repre-
sentation of words as contextualized embeddings
on the highest layer when BERT is applied to NLP
tasks. This offers intriguing possibility for creating
(or distilling) strongly performing uncontextualized
BERT-derived models that are more compact and
more efficiently deployable.

4.2.3 Qualitative analysis
§4.2.2 quantitatively shows that BERT performs
strongly in contextualizing words, thanks to its
deep integration of information from the entire in-
put sentence in each contextualized embedding.
But there are scenarios where BERT fails. We
identify two such cases in which the contextual
information does not help s-class inference.

(i) Tokenization. In some domains, the anno-
tated word and/or its context words are tokenized
into several wordpieces due to their low frequency
in the pretraining corpora. As a result, BERT may
not be able to derive the correct composed meaning.
Then the MLPs cannot identify the correct s-class
from the noisy input. Consider the tokenized re-
sults of “@glutamate@-biology” and one of its
contexts:

“three ne ##uro ##tra ##ns ##mit ##ters that
play important roles in adolescent brain develop-
ment are g ##lu ##tama ##te . . . ”

Though “brain development” hints at a context
related to “biology”, this signal could be swamped
by the noise in embeddings of other – especially
short – wordpieces. Schick and Schütze (2020)
propose a mimicking approach (Pinter et al., 2017)
to help BERT understand rare words.

(ii) Uninformative contexts. Some contexts do
not provide sufficient information related to the s-
class. For example, according to probing results on
BERTw, the wordpiece embedding of “goodfellas”
does not encode the meaning of s-class “art” (i.e.,
movies); the context “Chase also said he wanted
Imperioli because he had been in Goodfellas” of
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Figure 5: Probing results on the dev set with different
context sizes. For BERT, performance increases with
context size. Large context sizes like 16 and 32 slightly
hurt performance of P-BERT.

word-s-class combination “@goodfellas@-art” is
not informative enough for inferring an “art” con-
text, yielding incorrect predictions in higher layers.

4.3 Context size

We now quantify the amount of context required
by BERT for properly contextualizing words to
produce accurate s-class inference results.

When probing for the s-class of word w, we de-
fine context size as the number of words surround-
ing w (left and right) in a sentence before word-
piece tokenization. For example, a context size
of 5 means 5 words left, 5 words right. The con-
text size seems to be picked heuristically in other
work. Yarowsky (1992) and Gale et al. (1992) use
50 while Black (1988) uses 3–6. We experiment
with a range of context sizes then compare s-class
inference results. We also enclose P-BERT for
comparison. Note that this experiment is different
from edge probing (Tenney et al., 2019b), which
takes the full sentence as input. We only make in-
put words within the context window available to
BERT and P-BERT.

4.3.1 Probing results
We report micro F1 on Wiki-PSE dev, with context
size ∈ {0, 2, 4, 8, 16, 32}. Context size 0 means
that the input consists only of the wordpiece em-
beddings of the input word. Figure 5 shows results.

Comparing context sizes. Larger context sizes
have higher performance for all BERT layers. Im-
provements are most prominent for small context
sizes, e.g., 2 and 4, meaning that often local fea-
tures are sufficient to contextualize words and infer
s-classes, supporting Black (1988)’s design choice
of 3–6. Further increasing the context size im-

proves contextualization only marginally.
A qualitative example showing informative lo-

cal features is “The Azande speak Zande, which
they call Pa-Zande.” In this context, the gold s-
class of “Zande” is “language” (instead of “people-
ethnicity”, i.e., the Zande people). The MLPs for
BERTw and for context size 0 for BERT fail to
identify s-class “language”. But the BERT MLP for
context size 2 predicts “language” correctly since
it includes the strong signal “speak”. This context
is a case of selectional restrictions (Resnik, 1993;
Jurafsky and Martin, 2009), in this case possible
objects of “speak”.

As small context sizes already contain noticeable
information contextualizing the words, we hypoth-
esize that it may not be necessary to exploit the full
context in cases where the quadratic complexity of
full-sentence self attention is problematic, e.g., on
edge devices. Initial results on part-of-speech tag-
ging with the Penn Treebank (Marcus et al., 1993)
in Appendix §C confirm our hypothesis. We leave
more experiments to future work.

P-BERT shows a similar pattern when varying
the context sizes. However, large context sizes such
as 16 and 32 hurt contextualization, meaning that
averaging too many embeddings results in a bag of
words not specific to a particular token.

Comparing BERT layers. Higher layers of
BERT yield better contextualized word embed-
dings. This phenomenon is more noticeable for
large context sizes such as 8, 16 and 32. However
for small context sizes, e.g., 0, embeddings from
all layers perform similarly and badly. This means
that without context information, simply passing
the wordpiece embedding of a word through BERT
layers does not help, suggesting that contextualiza-
tion is the key ability of BERT yielding impressive
performance across NLP tasks.

Again, P-BERT only outperforms layer 0 of
BERT with most context sizes, suggesting that
BERT layers, especially the top layers, contextual-
ize words with abstract and informative representa-
tions, instead of naively aggregating all information
within the context sentence.

4.4 Probing finetuned embeddings

We have done “classical” probing: extracting fea-
tures from pretrained BERT and feeding them to
diagnostic classifiers. However, pretrained BERT
needs to be adapted, i.e., finetuned, for good per-
formance on tasks (Devlin et al., 2019; Peters et al.,
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POS SST2 MRPC NER
Ours .977 .928 .853 .946

Devlin et al. (2019) n/a .927 .867 .964

Table 3: Dev set performance of finetuning BERT (bert-
base-uncased). For NER, we report micro F1. For other
tasks, we report accuracy.

2019). Thus, it is necessary to investigate how
finetuning BERT affects the contextualization of
words and analyze how the pretrained knowledge
and probed features change.

4.4.1 Finetuning tasks
We finetune BERT on four tasks: part-of-speech
(POS) tagging on the Penn Treebank (Marcus
et al., 1993), named-entity recognition (NER) on
the CoNLL-2003 Shared Task (Tjong Kim Sang
and De Meulder, 2003), binary sentiment clas-
sification on the Stanford Sentiment Treebank
(SST2) (Socher et al., 2013) and paraphrase detec-
tion on the Microsoft Research Paraphrase Corpus
(MRPC) (Dolan and Brockett, 2005). For SST2
and MRPC, we use the GLUE train and dev sets
(Wang et al., 2018). For POS, sections 0-18 of WSJ
are train and sections 19-21 are dev (Collins, 2002).
For NER, we use the official data splits.

Following Devlin et al. (2019), we put a linear
layer on top of the pretrained BERT, then finetune
all parameters. We use Adam (Kingma and Ba,
2014) with learning rate 5e-5 for 5 epochs. We
save the model from the step that performs best on
dev (of MRPC/SST2/POS/NER), extract represen-
tations from Wiki-PSE using this model and then
report results on Wiki-PSE dev.

Table 3 reports the finetuning results. Our fine-
tuned models perform comparably to Devlin et al.
(2019) on SST2 and MRPC. Our NER result is
slightly worse, this may due to the fact that De-
vlin et al. (2019) use “maximal document context”
while we use sentence-level context of 128 max
sequence length. More finetuning details are avail-
able in Appendix §B.

4.4.2 Probing results
We now quantify the contextualization of word rep-
resentations from finetuned BERT models. Two
setups are considered: (a) directly apply the MLPs
in §4.2 (trained with pretrained embeddings) to
finetuned BERT embeddings; (b) train and eval-
uate a new set of MLPs on the finetuned BERT
embeddings.

Comparing (a) with probing results on pretrained
BERT (§4.2) gives us an intuition about how many
changes occurred to the knowledge captured dur-
ing pretraining. Comparing (b) with §4.2 reveals
whether or not the pretrained knowledge about con-
textualization is still preserved in finetuned models.

Figure 6 shows s-class probing results of fine-
tuned BERT with setup (a) and (b). For example in
(ii), layer 11 s-class inference performance of the
POS-finetuned BERT decreases by 0.763 (0.835
→ 0.072, from “Pretrained” to “POS-(a)”) when
using the MLPs from §4.2.

Comparing setup (a) and “Pretrained”, we
see that finetuning brings significant changes to the
word representations. Finetuning on POS and NER
introduces more obvious probing accuracy drops
than finetuning on SST2 and MRPC. This may be
due to the fact that the training objective of SST2
and MRPC takes as input only the [CLS] token
while all words in a sentence are involved in the
training objective of POS and NER.

Comparing setup (b) and “Pretrained”. Fine-
tuning BERT on MRPC introduces small but con-
sistent improvements on s-class inference. For
SST2 and NER, very small s-class inference ac-
curacy drops are observed. Finetuning on POS
brings more noticeable changes. Solving POS re-
quires more syntactic information than the other
tasks, inducing BERT to “propagate” the syntac-
tic information that is represented in lower layers
to the upper layers; due to their limited capacity,
the fixed-size vectors from the upper layers may
lose some semantic information, yielding a more
noticeable performance drop on s-class inference.

Comparing (a) and (b), we see that the knowl-
edge about contextualizing words captured during
pretraining is still well preserved after finetuning.
For example, the MLPs trained with layer 11 em-
beddings computed by the POS-finetuned BERT
still achieve a reasonably good score of 0.735 (a
0.100 drop compared with “Pretrained” – compare
black and green dotted lines in Figure 6 (ii)). Thus,
the semantic information needed for inferring s-
classes is still present to a large extent.

Finetuning may introduce large changes (setup
(a)) to the representations – similar to the projec-
tion utilized to uncover divergent information in
uncontextualized word embeddings (Artetxe et al.,
2018) – but relatively little information about con-
textualization is lost as the good performance of the
newly trained MLPs shows (setup (b)). Similarly,
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Figure 6: Comparing s-class inference results of pretrained BERT and BERT finetuned on MRPC, SST2, POS,
and NER. “Pretrained”: probing results on weight-frozen pretrained BERT in §4.2. For (a), we directly apply the
MLPs in §4.2 (trained with pretrained embeddings) to finetuned BERT embeddings; for (b), we train and evaluate
a new set of MLPs on the finetuned BERT embeddings.
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Figure 7: Cosine similarity of flattened self attention
weights. X-axis: index of the 12 self attention heads;
y-axis: layer index. Darker colors: smaller similarities,
i.e., larger changes brought by finetuning.

Merchant et al. (2020) show that finetuned BERT
still well preserves the probed “linguistic features”
in pretrained BERT.

Comparing BERT layers. Contextualized em-
beddings from BERT’s top layers are strongly af-
fected by finetuning, especially for setup (a). In
contrast, lower layers are more invariant and show
s-class inference results similar to the pretrained
model. Hao et al. (2019), Lee et al. (2019), Koval-
eva et al. (2019) make similar observations: lower
layer representations are more transferable across
different tasks and top layer representations are
more task-specific after finetuning.

Figure 7 shows the cosine similarity of the
flattened self attention weights computed by pre-
trained, POS-, and MRPC-finetuned BERT using
the dev set examples. We see that top layers are
more sensitive to finetuning (darker color) while
lower layers are barely changed (lighter color). Top
layers have more changes for POS than for MRPC,
in line with probing results in Figure 6.

5 Related Work

Interpreting deep networks. Pretrained language
models (McCann et al., 2017; Peters et al., 2018a;
Radford et al., 2019; Devlin et al., 2019) advance
NLP by contextualized representations of words.
A key goal of current research is to understand
how these models work and what they represent on
different layers.

Probing is a recent strand of work that inves-
tigates – via diagnostic classifiers – desired syn-
tactic and semantic features encoded in pretrained
language model representations. Shi et al. (2016)
show that string-based RNNs encode syntactic
information. Belinkov et al. (2017) investigate
word representations at different layers in NMT.
Linzen et al. (2016) assess the syntactic ability of
LSTM (Hochreiter and Schmidhuber, 1997) en-
coders and Goldberg (2019) of BERT. Tenney et al.
(2019a) find that information on POS tagging, pars-
ing, NER, semantic roles, and coreference is rep-
resented on increasingly higher layers of BERT.
Yaghoobzadeh et al. (2019) assess the disambigua-
tion properties of type-level word representations.
Liu et al. (2019) and Lin et al. (2019) investigate
the linguistic knowledge encoded in BERT. Adi
et al. (2016), Conneau et al. (2018), and Wieting
and Kiela (2019) study sentence embedding prop-
erties via probing. Peters et al. (2018b) probe how
the network architecture affects the learned vectors.

In all of these studies, probing serves to analyze
representations and reveal their properties. We em-
ploy probing to investigate the contextualization of
words in pretrained language models quantitatively.
In addition, we exploit how finetuning affects word
contextualization.
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Ethayarajh (2019) quantitatively investigates
contextualized embeddings, using unsupervised
cosine-similarity-based evaluation. Inferring s-
classes, we address a complementary set of ques-
tions because we can quantify contextualization
with a uniform set of semantic classes. Brunner
et al. (2020) employ token identifiability to com-
pute the deviation of a contextualized embedding
from the uncontextualized embedding. Voita et al.
(2019) address this from the mutual information
perspective, e.g., low mutual information between
an uncontextualized embedding and its contextu-
alized embedding can be viewed as a reflection
of more contextualization. Similar observations
are made: higher layer embeddings are more con-
textualized while lower layer embeddings are less
contextualized. In contrast, we draw the obser-
vations from the perspective of s-class inference.
The higher layer embeddings perform better when
evaluating the semantic classes – they are better
contextualized and have higher fitness to the con-
text than the lower layer embeddings.

Two-stage NLP paradigm. Recent work (Dai
and Le, 2015; Howard and Ruder, 2018; Devlin
et al., 2019) introduces a “two-stage paradigm”
in NLP: pretrain a language encoder on a large
amount of unlabeled data via self-supervised learn-
ing, then finetune the encoder on task-specific
benchmarks like GLUE (Wang et al., 2018, 2019).
This transfer-learning pipeline yields good and
robust results compared to models trained from
scratch (Hao et al., 2019).

In this work, we shed light on how BERT’s pre-
trained knowledge about contextualization changes
during finetuning by comparing s-class inference
ability of pretrained and finetuned models. Mer-
chant et al. (2020) analyze BERT models finetuned
on different downstream tasks with the edge prob-
ing suite (Tenney et al., 2019b) and make similar
observations as us. They focus on “linguistic fea-
tures” while we focus on the contextualization of
words.

6 Conclusion

We presented a quantitative study of the contextual-
ization of words in BERT by investigating BERT’s
semantic class inference capabilities. We focused
on two key factors for successful contextualization
by BERT: layer index and context size. By compar-
ing pretrained and finetuned models, we showed
that word-level tasks like part-of-speech tagging

bring more noticeable changes than sentence-level
tasks like paraphrase classification; and top layers
of BERT are more sensitive to the finetuning objec-
tive than lower layers. We also found that BERT’s
pretrained knowledge about contextualizing words
is still well retained after finetuning.

We showed that exploiting the full context may
be unnecessary in applications where the quadratic
complexity of full-sentence attention is problem-
atic. Future work may evaluate this phenomenon
on more datasets and downstream tasks.
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A Reproducibility Checklist

A.1 Computing infrastructure

All experiments are conducted on GeForce GTX
1080 Ti and GeForce GTX 1080.

A.2 Number of parameters

We use a set of 34 binary MLPs to conduct our
probing task. Each MLP has input dimension
768, hidden dimension 1024 and output dimension
2. As a result, the total number of parameters is
26,843,204. For finetuning, we use the BERT-base-
uncased model containing about 110 million param-
eters (https://github.com/google-research/
bert).

A.3 Validation performance

Following Table 5 and Table 6 report the valida-
tion performance of probing uncontextualized and
contextualized embeddings.

A.4 Evaluation metric

Our evaluation is the micro F1 over all decisions
of the 34 probing classifiers. More details are avail-
able in §3.2 of the main paper.

A.5 Hyperparameter search

For probing tasks, we do not conduct hyperparam-
eter search since our goal is to analyze the con-
textualization. The probing classifiers are trained
with learning rate 1e-3 and 400 epochs. For fine-
tuning BERT, we do not search hyperparameters
but directly adopt the setup in Devlin et al. (2019)
as shown in Table 4.

A.6 Datasets

List of the 34 semantic classes (s-classes), num-
ber of word-s-class combinations and contexts per
s-class in the sampled Wiki-PSE (Yaghoobzadeh
et al., 2019) are listed in Table 8. Some annotated
contexts in Wiki-PSE are also displayed in Table 9.
The Wiki-PSE developed by Yaghoobzadeh et al.
(2019) is publicly available at https://github.
com/yyaghoobzadeh/WIKI-PSE.

When finetuning BERT, we use the GLUE
(Wang et al., 2018) splits of MRPC and SST2 from
https://gluebenchmark.com/. Our POS dataset
is from the linguistic data consortium (LDC). For
NER (Tjong Kim Sang and De Meulder, 2003),
we use the official shared task dataset: https:

//www.clips.uantwerpen.be/conll2003/ner/.

POS SST2 MRPC NER
batch size 150 200 350 32

learning rate 5e-5 5e-5 5e-5 5e-5
max epoch 5 5 5 5

max sequence length 128 128 128 128

Table 4: Hyperparameters for finetuning.

B Finetuning Details

Hyperparameters in Table 4 are used when we fine-
tune BERT on POS, NER, SST2, and MRPC. For
SST2 and MRPC, we use the embedding of [CLS]
as the representation of the sentence (pair). For
POS and NER, we use the embedding of the last
wordpiece of the word as Liu et al. (2019).

A plain Adam (Kingma and Ba, 2014) optimizer
is used and we did not use strategies like learning
rate warmup and layer-wise learning rate (Howard
and Ruder, 2018) during finetuning to avoid po-
tential side effects to ensure a clear comparison of
different BERT layers.

C Context Sizes in POS

We investigate how the findings from §4.3 in the
main paper transfer to downstream tasks. To this
end we perform standard finetuning of BERT for
different tasks, but we prune the attention matrix
to a context size of length k. That is we apply a
mask on the attention matrix such that each word
can only attend to k left and k right words. This
has great benefits as it reduces the memory and
computation requirements from O(n2) to O(nk)
where n is the sequence length. We only consider
part-of-speech tagging as for sentence pair classifi-
cation tasks such as SST2 and MRPC this is not a
sensible approach.

Table 7 confirms that small context windows
are sufficient to achieve full performance for POS-
tagging. This indicates that the finding from the
main paper (i.e., local context is sufficient for
BERT to achieve a high degree of contextualiza-
tion) is to some degree applicable to a downstream
tasks, as well. Note that the median sentence length
in the Penn Treebank dataset is 25 words (the num-
ber of wordpieces even higher). Thus masking the
context to the next 4 or 8 words does indeed reduce
the available context words. In future work we plan
to investigate this effect not only during finetuning
but also during pretraining.
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Standard Embeddings AVG-BERT-`

Rand BERTw fastText GloVe PSE 0 1 2 3 4 5 6 7 8 9 10 11

dev .269 .653 .625 .681 .790 .746 .759 .764 .775 .786 .791 .794 .805 .811 .812 .813 .809
test .267 .652 .626 .680 .787 .744 .756 .762 .773 .783 .788 .790 .802 .806 .809 .808 .806

Table 5: S-class probing results for uncontextualized embeddings. Numbers are micro F1 on Wiki-PSE. Our
result (0.787 on PSE-test) is consistent with Yaghoobzadeh et al. (2019). Additionally, for the top 6 layers {6, 7,
8, 9, 10, 11} of AVG-BERT, we repeat the experiments 5 times with random seed in {1, 2, 3, 4, 5}. Mean and
standard deviation on test per layer are: {.791±.001, .801±.001, .807±.001, .808±.001, .808±.001, .805±.001}.

Bag-of-word context BERT Layer

P-Rand P-fastText P-BERT 0 1 2 3 4 5 6 7 8 9 10 11

dev .637 .707 .672 .649 .692 .711 .739 .771 .782 .795 .813 .826 .832 .836 .835
test .630 .707 .670 .645 .688 .708 .737 .766 .777 .790 .810 .824 .828 .830 .831

Table 6: S-class probing results for contextualized embedding models. Numbers are micro F1 on Wiki-PSE.

Context size POS
0 .886
2 .973
4 .975
8 .976
16 .977
32 .977
All .977

Table 7: POS accuracy on dev for different context sizes.
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train dev test
semantic classes comb’s contexts comb’s contexts comb’s contexts

location 13,474 618,932 3,408 152,470 16,859 776,848
person 15,423 617,270 3,744 151,005 19,212 765,655

organization 9,556 332,063 2,496 88,682 11,915 411,716
art 7,428 201,529 1,854 52,295 9,192 247,481

event 3,515 87,735 900 21,566 4,404 108,963
broadcast-program 2,287 67,261 530 15,062 2,828 84,343

title 1,429 43,041 311 9,646 1,792 56,333
product 3,121 49,076 766 13,438 3,808 61,585

living-thing 1,302 35,595 320 9,035 1,702 46,040
people-ethnicity 754 27,573 181 6,699 951 35,332

language 671 14,842 145 3,147 824 20,308
broadcast-network 325 12,392 80 3,036 362 13,006

time 157 7,765 39 1,997 192 9,984
religion-religion 192 6,461 45 1,760 265 9,719

award 251 7,589 61 1,776 301 8,877
internet-website 88 2,466 21 645 141 3,851

god 246 7,306 52 1,998 340 11,810
education-educational-degree 97 3,282 24 901 142 4,833

food 381 7,805 112 2,003 480 9,514
computer-programming-language 105 2,739 29 402 123 2,677

metropolitan-transit-transit-line 285 5,603 76 1,259 382 6,948
transit 135 3,781 26 628 186 4,305

finance-currency 127 3,107 30 548 166 3,388
disease 163 2,619 33 381 260 4,385

chemistry 170 3,350 43 1,254 195 3,858
body-part 135 1,901 31 415 156 2,591

finance-stock-exchange 27 617 3 5 51 795
law 23 474 6 54 27 535

medicine-medical-treatment 77 886 7 124 106 1,803
medicine-drug 50 1,023 7 54 72 1,157

broadcast-tv-channel 45 564 14 210 74 1,264
medicine-symptom 55 752 15 97 72 1,172

biology 49 485 15 118 63 911
visual-art-color 41 1,011 13 228 63 906

total 62,184 2,178,895 15,437 542,938 77,706 2,722,893

Table 8: Number of word-s-class combinations and contexts for each of the 34 semantic classes in Wiki-PSE.

word word-s-class combination contexts

roberta

@roberta@-art this recording is also available on cd paired with @roberta@-art .
... to star as huckleberry haines in the jerome kern / dorothy fields musical @roberta@-art .

@roberta@-location there are also learning centers in eatonton , forsyth , gray , jeffersonville , and @roberta@-location .
... the concurrency curves to a nearly due north routing and enters @roberta@-location .

@roberta@-person ken williams : along with wife @roberta@-person , founded on-line systems after working at ibm
mystery house is an adventure game released in 7 by @roberta@-person and ken williams for the apple ii .

larch
@larch@-comp-prog-lang wing has been a leading member of the formal methods community , especially in the area of @larch@-comp-prog-lang .

a major contribution was his involvement with the @larch@-comp-prog-lang approach to formal specification with ...

@larch@-living-thing the more recent plantings include @larch@-living-thing and pine .
these consist mainly of oak , alder , @larch@-living-thing and corsican pine .

Table 9: Example contexts of the annotated word “roberta” and “larch”.
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Abstract

We present an efficient method of utilizing pre-
trained language models, where we learn selec-
tive binary masks for pretrained weights in lieu
of modifying them through finetuning. Exten-
sive evaluations of masking BERT, RoBERTa,
and DistilBERT on eleven diverse NLP tasks
show that our masking scheme yields perfor-
mance comparable to finetuning, yet has a
much smaller memory footprint when several
tasks need to be inferred. Intrinsic evaluations
show that representations computed by our bi-
nary masked language models encode informa-
tion necessary for solving downstream tasks.
Analyzing the loss landscape, we show that
masking and finetuning produce models that
reside in minima that can be connected by a
line segment with nearly constant test accu-
racy. This confirms that masking can be uti-
lized as an efficient alternative to finetuning.

1 Introduction

Finetuning a large pretrained language model like
BERT (Devlin et al., 2019), RoBERTa (Liu et al.,
2019b), and XLNet (Yang et al., 2019) often yields
competitive or even state-of-the-art results on NLP
benchmarks (Wang et al., 2018, 2019). Given an
NLP task, standard finetuning stacks a linear layer
on top of the pretrained language model and then
updates all parameters using mini-batch SGD. Vari-
ous aspects like brittleness (Dodge et al., 2020) and
adaptiveness (Peters et al., 2019) of this two-stage
transfer learning NLP paradigm (Dai and Le, 2015;
Howard and Ruder, 2018) have been studied.

Despite the simplicity and impressive perfor-
mance of finetuning, the prohibitively large number
of parameters to be finetuned, e.g., 340 million in
BERT-large, is a major obstacle to wider deploy-
ment of these models. The large memory foot-
print of finetuned models becomes more prominent

* Equal contribution.

when multiple tasks need to be solved – several
copies of the millions of finetuned parameters have
to be saved for inference.

Recent work (Gaier and Ha, 2019; Zhou et al.,
2019) points out the potential of searching neural
architectures within a fixed model, as an alternative
to optimizing the model weights for downstream
tasks. Inspired by these results, we present mask-
ing, a simple yet efficient scheme for utilizing pre-
trained language models. Instead of directly updat-
ing the pretrained parameters, we propose to select
weights important to downstream NLP tasks while
discarding irrelevant ones. The selection mecha-
nism consists of a set of binary masks, one learned
per downstream task through end-to-end training.

We show that masking, when being applied to
pretrained language models like BERT, RoBERTa,
and DistilBERT (Sanh et al., 2019), achieves per-
formance comparable to finetuning in tasks like
part-of-speech tagging, named-entity recognition,
sequence classification, and reading comprehen-
sion. This is surprising in that a simple subselec-
tion mechanism that does not change any weights
is competitive with a training regime – finetuning
– that can change the value of every single weight.
We conduct detailed analyses revealing important
factors and possible reasons for the desirable per-
formance of masking.

Masking is parameter-efficient: only a set of 1-
bit binary masks needs to be saved per task after
training, instead of all 32-bit float parameters in
finetuning. This small memory footprint enables
deploying pretrained language models for solving
multiple tasks on edge devices. The compactness of
masking also naturally allows parameter-efficient
ensembles of pretrained language models.

Our contributions: (i) We introduce masking,
a new scheme for utilizing pretrained language
models by learning selective masks for pretrained
weights, as an efficient alternative to finetuning.
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We show that masking is applicable to models like
BERT/RoBERTa/DistilBERT, and produces perfor-
mance on par with finetuning. (ii) We carry out
extensive empirical analysis of masking, shedding
light on factors critical for achieving good perfor-
mance on eleven diverse NLP tasks. (iii) We study
the binary masked language models’ loss landscape
and language representations, revealing potential
reasons why masking has task performance compa-
rable to finetuning.

2 Related Work

Two-stage NLP paradigm. Pretrained language
models (Peters et al., 2018; Devlin et al., 2019; Liu
et al., 2019b; Yang et al., 2019; Radford et al.,
2019) advance NLP with contextualized repre-
sentation of words. Finetuning a pretrained lan-
guage model (Dai and Le, 2015; Howard and
Ruder, 2018) often delivers competitive perfor-
mance partly because pretraining leads to a bet-
ter initialization across various downstream tasks
than training from scratch (Hao et al., 2019). How-
ever, finetuning on individual NLP tasks is not
parameter-efficient. Each finetuned model, typi-
cally consisting of hundreds of millions of floating
point parameters, needs to be saved individually.
Stickland and Murray (2019) use projected atten-
tion layers with multi-task learning to improve effi-
ciency of finetuning BERT. Houlsby et al. (2019)
insert adapter modules to BERT to improve mem-
ory efficiency. The inserted modules alter the for-
ward pass of BERT, hence need to be carefully
initialized to be close to identity.

We propose to directly pick parameters appro-
priate to a downstream task, by learning selective
binary masks via end-to-end training. Keeping the
pretrained parameters untouched, we solve several
downstream NLP tasks with minimal overhead.

Binary networks and network pruning. Bi-
nary masks can be trained using the “straight-
through estimator” (Bengio et al., 2013; Hinton,
2012). Hubara et al. (2016), Rastegari et al. (2016),
Hubara et al. (2017), inter alia, apply this tech-
nique to train efficient binarized neural networks.
We use this estimator to train selective masks for
pretrained language model parameters.

Investigating the lottery ticket hypothesis (Fran-
kle and Carbin, 2018) of network pruning (Han
et al., 2015a; He et al., 2018; Liu et al., 2019c; Lee
et al., 2019; Lin et al., 2020), Zhou et al. (2019)
find that applying binary masks to a neural network

is a form of training the network. Gaier and Ha
(2019) propose to search neural architectures for re-
inforcement learning and image classification tasks,
without any explicit weight training. This work
inspires our masking scheme (which can be inter-
preted as implicit neural architecture search (Liu
et al., 2019c)): applying the masks to a pretrained
language model is similar to finetuning, yet is much
more parameter-efficient.

Perhaps the closest work, Mallya et al. (2018)
apply binary masks to CNNs and achieve good per-
formance in computer vision. We learn selective
binary masks for pretrained language models in
NLP and shed light on factors important for ob-
taining good performance. Mallya et al. (2018)
explicitly update weights in a task-specific classi-
fier layer. In contrast, we show that end-to-end
learning of selective masks, consistently for both
the pretrained language model and a randomly ini-
tialized classifier layer, achieves good performance.
Radiya-Dixit and Wang (2020) investigate finetun-
ing of BERT by employing a number of techniques,
including what they call sparsification, a method
similar to masking. Their focus is analysis of fine-
tuning BERT whereas our goal is to provide an
efficient alternative to finetuning.

3 Method

3.1 Background on Transformer and
finetuning

The encoder of the Transformer architecture
(Vaswani et al., 2017) is ubiquitously used when
pretraining large language models. We briefly re-
view its architecture and then present our masking
scheme. Taking BERT-base as an example, each
one of the 12 transformer blocks consists of (i)
four linear layers1 WK , WQ, WV , and WAO for
computing and outputting the self attention among
input wordpieces (Wu et al., 2016). (ii) two lin-
ear layers WI and WO feeding forward the word
representations to the next transformer block.

More concretely, consider an input sentence X ∈
RN×d where N is the maximum sentence length
and d is the hidden dimension size. WK , WQ, and
WV are used to compute transformations of X:

K = XWK ,Q = XWQ,V = XWV ,

1We omit the bias terms for brevity.
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and the self attention of X is computed as:

Attention(K,Q,V) = softmax(
QKT

√
d

)V.

The attention is then transformed by WAO, and
subsequently fed forward by WI and WO to the
next transformer block.

When finetuning on a downstream task like se-
quence classification, a linear classifier layer WT ,
projecting from the hidden dimension to the output
dimension, is randomly initialized. Next, WT is
stacked on top of a pretrained linear layer WP (the
pooler layer). All parameters are then updated to
minimize the task loss such as cross-entropy.

3.2 Learning the mask

Given a pretrained language model, we do not
finetune, i.e., we do not update the pretrained
parameters. Instead, we select a subset of the
pretrained parameters that is critical to a down-
stream task while discarding irrelevant ones with
binary masks. We associate each linear layer Wl

∈ {Wl
K ,W

l
Q,W

l
V ,W

l
AO,W

l
I ,W

l
O} of the l-th

transformer block with a real-valued matrix Ml

that is randomly initialized from a uniform distri-
bution and has the same size as Wl. We then pass
Ml through an element-wise thresholding function
(Hubara et al., 2016; Mallya et al., 2018), i.e., a
binarizer, to obtain a binary mask Ml

bin for Wl:

(ml
bin)i,j =

{
1 if ml

i,j ≥ τ
0 otherwise

, (1)

where ml
i,j ∈Ml, i, j indicate the coordinates of

the 2-D linear layer and τ is a global thresholding
hyperparameter.

In each forward pass of training, the binary mask
Ml

bin (derived from Ml via Eq. 1) selects weights in
a pretrained linear layer Wl by Hadamard product:

Ŵl := Wl �Ml
bin .

In the corresponding backward pass of training,
with the associated loss functionL, we cannot back-
propagate through the binarizer, since Eq. 1 is a
hard thresholding operation and the gradient with
respect to Ml is zero almost everywhere. Similar
to the treatment2 in Bengio et al. (2013); Hubara

2Bengio et al. (2013); Hubara et al. (2016) describe it as
the “straight-through estimator”, and Lin et al. (2020) provide
convergence guarantee with error feedback interpretation.

et al. (2016); Lin et al. (2020), we use ∂L(Ŵl)

∂Ml
bin

as a

noisy estimator of ∂L(Ŵ
l)

∂Ml to update Ml, i.e.:

Ml ←Ml − η ∂L(Ŵl)

∂Ml
bin

, (2)

where η refers to the step size. Hence, the whole
structure can be trained end-to-end.

We learn a set of binary masks for an NLP task
as follows. Recall that each linear layer Wl is
associated with a Ml to obtain a masked linear
layer Ŵl through Eq. 1. We randomly initialize an
additional linear layer with an associated Ml and
stack it on top of the pretrained language model.
We then update each Ml through Eq. 2 with the
task objective during training.

After training, we pass each Ml through the
binarizer to obtain Ml

bin, which is then saved for
future inference. Since Ml

bin is binary, it takes only
≈ 3% of the memory compared to saving the 32-
bit float parameters in a finetuned model. Also,
we will show that many layers – in particular the
embedding layer – do not have to be masked. This
further reduces memory consumption of masking.

3.3 Configuration of masking

Our masking scheme is motivated by the obser-
vation: the pretrained weights form a good ini-
tialization (Hao et al., 2019), yet a few steps of
adaptation are still needed to produce competitive
performance for a specific task. However, not every
pretrained parameter is necessary for achieving rea-
sonable performance, as suggested by the field of
neural network pruning (LeCun et al., 1990; Has-
sibi and Stork, 1993; Han et al., 2015b). We now
investigate two configuration choices that affect
how many parameters are “eligible” for masking.

Initial sparsity of Ml
bin. As we randomly initial-

ize our masks from uniform distributions, the spar-
sity of the binary mask Ml

bin in the mask initializa-
tion phase controls how many pretrained parame-
ters in a layer Wl are assumed to be irrelevant to
the downstream task. Different initial sparsity rates
entail different optimization behaviors.

It is crucial to better understand how the initial
sparsity of a mask impacts the training dynamics
and final model performance, so as to generalize
our masking scheme to broader domains and tasks.
In §5.1, we investigate this aspect in detail. In prac-
tice, we fix τ in Eq. 1 while adjusting the uniform
distribution to achieve a target initial sparsity.
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Which layers to mask. Different layers of pre-
trained language models capture distinct aspects of
a language during pretraining, e.g., Tenney et al.
(2019) find that information on part-of-speech tag-
ging, parsing, named-entity recognition, semantic
roles, and coreference is encoded on progressively
higher layers of BERT. It is hard to know a priori
which types of NLP tasks have to be addressed in
the future, making it non-trivial to decide layers to
mask. We study this factor in §5.2.

We do not learn a mask for the lowest embed-
ding layer, i.e., the uncontextualized wordpiece em-
beddings are completely “selected”, for all tasks.
The motivation is two-fold. (i) The embedding
layer weights take up a large part, e.g., almost 21%
(23m/109m) in BERT-base-uncased, of the total
number of parameters. Not having to learn a se-
lective mask for this layer reduces memory con-
sumption. (ii) Pretraining has effectively encoded
context-independent general meanings of words in
the embedding layer (Zhao et al., 2020). Hence,
learning a selective mask for this layer is unnec-
essary. Also, we do not learn masks for biases
and layer normalization parameters as we did not
observe a positive effect on performance.

4 Datasets and Setup

Datasets. We present results for masking BERT,
RoBERTa, and DistilBERT in part-of-speech tag-
ging, named-entity recognition, sequence classifi-
cation, and reading comprehension.

We experiment with part-of-speech tagging
(POS) on Penn Treebank (Marcus et al., 1993),
using Collins (2002)’s train/dev/test split. For
named-entity recognition (NER), we conduct ex-
periments on the CoNLL-2003 NER shared task
(Tjong Kim Sang and De Meulder, 2003).

For sequence classification, the following
GLUE tasks (Wang et al., 2018) are evaluated:
Stanford Sentiment Treebank (SST2) (Socher et al.,
2013), Microsoft Research Paraphrase Corpus
(MRPC) (Dolan and Brockett, 2005), Corpus of
Linguistic Acceptability (CoLA) (Warstadt et al.,
2019), Recognizing Textual Entailment (RTE) (Da-
gan et al., 2005), and Question Natural Language
Inference (QNLI) (Rajpurkar et al., 2016).

In addition, we experiment on sequence classifi-
cation datasets that have publicly available test sets:
the 6-class question classification dataset TREC
(Voorhees and Tice, 2000), the 4-class news classi-
fication dataset AG News (AG) (Zhang et al., 2015),

and the binary Twitter sentiment classification task
SemEval-2016 4B (SEM) (Nakov et al., 2016).

We experiment with reading comprehension
on SWAG (Zellers et al., 2018) using the official
data splits. We report Matthew’s correlation coef-
ficient (MCC) for CoLA, micro-F1 for NER, and
accuracy for the other tasks.

Setup. Due to resource limitations and in the
spirit of environmental responsibility (Strubell
et al., 2019; Schwartz et al., 2019), we conduct
our experiments on the base models: BERT-base-
uncased, RoBERTa-base, and DistilBERT-base-
uncased. Thus, the BERT/RoBERTa models we use
have 12 transformer blocks (0–11 indexed) produc-
ing 768-dimension vectors; the DistilBERT model
we use has the same dimension but contains 6 trans-
former blocks (0–5 indexed). We implement our
models in PyTorch (Paszke et al., 2019) with the
HuggingFace framework (Wolf et al., 2019).

Throughout all experiments, we limit the max-
imum length of a sentence (pair) to be 128 after
wordpiece tokenization. Following Devlin et al.
(2019), we use the Adam (Kingma and Ba, 2014)
optimizer of which the learning rate is a hyperpa-
rameter while the other parameters remain default.
We carefully tune the learning rate for each setup:
the tuning procedure ensures that the best learn-
ing rate does not lie on the border of our search
grid, otherwise we extend the grid accordingly. The
initial grid is {1e-5, 3e-5, 5e-5, 7e-5, 9e-5}.

For sequence classification and reading compre-
hension, we use [CLS] as the representation of the
sentence (pair). Following Devlin et al. (2019), we
formulate NER as a tagging task and use a linear
output layer, instead of a conditional random field
layer. For POS and NER experiments, the represen-
tation of a tokenized word is its last wordpiece (Liu
et al., 2019a; He and Choi, 2020). Note that a 128
maximum length of a sentence for POS and NER
means that some word-tag annotations need to be
excluded. Appendix §A shows our reproducibil-
ity checklist containing more implementation and
preprocessing details.

5 Experiments

5.1 Initial sparsity of binary masks

We first investigate how initial sparsity percentage
(i.e., fraction of zeros) of the binary mask Ml

bin in-
fluences performance of a binary masked language
model on downstream tasks. We experiment on
four tasks, with initial sparsities in {1%, 3%, 5%,
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Figure 1: Dev set performance of masking BERT when
selecting different amounts of pretrained parameters.

10%, 15%, 20%, . . . , 95%}. All other hyperparam-
eters are controlled: learning rate is fixed to 5e-5;
batch size is 32 for relatively small datasets (RTE,
MRPC, and CoLA) and 128 for SST2. Each exper-
iment is repeated four times with different random
seeds {1, 2, 3, 4}. In this experiment, all trans-
former blocks, the pooler layer, and the classifier
layer are masked.

Figure 1 shows that masking achieves decent per-
formance without hyperparameter search. Specif-
ically, (i) a large initial sparsity removing most
pretrained parameters, e.g., 95%, leads to bad per-
formance for the four tasks. This is due to the
fact that the pretrained knowledge is largely dis-
carded. (ii) Gradually decreasing the initial sparsity
improves task performance. Generally, an initial
sparsity in 3% ∼ 10% yields reasonable results
across tasks. Large datasets like SST2 are less sen-
sitive than small datasets like RTE. (iii) Selecting
almost all pretrained parameters, e.g., 1% sparsity,
hurts task performance. Recall that a pretrained
model needs to be adapted to a downstream task;
masking achieves adaptation by learning selective
masks – preserving too many pretrained parameters
in initialization impedes the optimization.

5.2 Layer-wise behaviors

Neural network layers present heterogeneous char-
acteristics (Zhang et al., 2019) when being applied
to tasks. For example, syntactic information is
better represented at lower layers while semantic
information is captured at higher layers in ELMo
(Peters et al., 2018). As a result, simply masking
all transformer blocks (as in §5.1) may not be ideal.

We investigate the task performance when apply-
ing the masks to different BERT layers. Figure 2
presents the optimal task performance when mask-
ing only a subset of BERT’s transformer blocks on
MRPC, CoLA, and RTE. Different amounts and

indices of transformer blocks are masked: “bottom-
up” and “top-down” indicate to mask the targeted
amount of transformer blocks, either from bottom
or top of BERT.

We can observe that (i) in most cases, top-down
masking outperforms bottom-up masking when ini-
tial sparsity and the number of masked layers are
fixed. Thus, it is reasonable to select all pretrained
weights in lower layers, since they capture gen-
eral information helpful and transferable to various
tasks (Liu et al., 2019a; Howard and Ruder, 2018).
(ii) For bottom-up masking, increasing the number
of masked layers gradually improves performance.
This observation illustrates dependencies between
BERT layers and the learning dynamics of masking:
provided with selected pretrained weights in lower
layers, higher layers need to be given flexibility to
select pretrained weights accordingly to achieve
good task performance. (iii) In top-down mask-
ing, CoLA performance increases when masking a
growing number of layers while MRPC and RTE
are not sensitive. Recall that CoLA tests linguistic
acceptability that typically requires both syntactic
and semantic information3. All of BERT layers are
involved in representing this information, hence
allowing more layers to change should improve
performance.

5.3 Comparing finetuning and masking

We have investigated two factors – initial sparsity
(§5.1) and layer-wise behaviors (§5.2) – that are
important in masking pretrained language models.
Here, we compare the performance and memory
consumption of masking and finetuning.

Based on observations in §5.1 and §5.2, we
use 5% initial sparsity when applying masking to
BERT, RoBERTa, and DistilBERT. We mask the
transformer blocks 2–11 in BERT/RoBERTa and 2–
5 in DistilBERT. WP and WT are always masked.
Note that this global setup is surely suboptimal for
some model-task combinations, but our goal is to
illustrate the effectiveness and the generalization
ability of masking. Hence, conducting extensive
hyperparameter search is unnecessary.

For AG and QNLI, we use batch size 128. For
the other tasks we use batch size 32. We search the
optimal learning rate per task as described in §4,

3For example, to distinguish acceptable caused-motion
constructions (e.g., “the professor talked us into a stupor”)
from inacceptable ones (e.g., “water talked it into red”), both
syntactic and semantic information need to be considered
(Goldberg, 1995).
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Figure 2: The impact of masking different transformer blocks of BERT for MRPC (left), CoLA (middle), and
RTE (right). The number of masked blocks is shown on the x-axis; that number is either masked “bottom-up” or
“top-down”. More precisely, a bottom-up setup (red) masking 4 blocks means we mask the transformer blocks
{0, 1, 2, 3}; a top-down setup (blue) masking 4 blocks means we mask the transformer blocks {8, 9, 10, 11}. WP

and WT are always masked.

MRPC SST2 CoLA RTE QNLI SEM TREC AG POS NER SWAG
3.5k 67k 8.5k 2.5k 108k 4.3k 4.9k 96k 38k 15k 113k

BERT
Finetuning 86.1 ± 0.8 93.3 ± 0.2 59.6 ± 0.8 69.2 ± 2.7 91.0 ± 0.6 86.6 ± 0.3 96.4 ± 0.2 94.4 ± 0.1 97.7 ± 0.0 94.6 ± 0.2 80.9 ± 1.7
Masking 86.8 ± 1.1 93.2 ± 0.5 59.5 ± 0.1 69.5 ± 3.0 91.3 ± 0.4 85.9 ± 0.5 96.0 ± 0.4 94.2 ± 0.0 97.7 ± 0.0 94.5 ± 0.1 80.3 ± 0.1

RoBERTa
Finetuning 89.8 ± 0.5 95.0 ± 0.3 62.1 ± 1.7 78.2 ± 1.1 92.9 ± 0.2 90.2 ± 0.5 96.2 ± 0.4 94.7 ± 0.0 98.1 ± 0.0 94.9 ± 0.1 83.4 ± 0.8
Masking 88.5 ± 1.1 94.5 ± 0.3 60.3 ± 1.3 69.2 ± 2.1 92.4 ± 0.1 90.1 ± 0.1 95.9 ± 0.5 94.5 ± 0.1 98.0 ± 0.0 93.9 ± 0.1 82.1 ± 0.2

DistilBERT
Finetuning 85.4 ± 0.5 91.6 ± 0.4 55.1 ± 0.3 62.2 ± 3.0 89.0 ± 0.8 85.9 ± 0.2 95.7 ± 0.6 94.2 ± 0.1 97.6 ± 0.0 94.1 ± 0.1 72.5 ± 0.2
Masking 86.0 ± 0.3 91.3 ± 0.3 53.1 ± 0.7 61.6 ± 1.5 89.2 ± 0.2 86.6 ± 0.6 95.9 ± 0.6 94.2 ± 0.1 97.6 ± 0.0 94.1 ± 0.2 71.0 ± 0.0

Table 1: Dev set task performances (%) of masking and finetuning. Each experiment is repeated four times with
different random seeds and we report mean and standard deviation. Numbers below dataset name (second row) are
the size of training set. For POS and NER, we report the number of sentences.

and they are shown in Appendix §A.4.

Performance comparison. Table 1 reports per-
formance of masking and finetuning on the dev
set for the eleven NLP tasks. We observe that ap-
plying masking to BERT/RoBERTa/DistilBERT
yields performance comparable to finetuning. We
observe a performance drop4 on RoBERTa-RTE.
RTE has the smallest dataset size (train: 2.5k; dev:
0.3k) among all tasks – this may contribute to the
imperfect results and large variances.

Our BERT-NER results are slightly worse than
Devlin et al. (2019). This may be due to the fact
that “maximal document context” is used by Devlin
et al. (2019) while we use sentence-level context
of 128 maximum sequence length5.

Rows “Single” in Table 2 compare performance
of masking and finetuning BERT on the test set of
SEM, TREC, AG, POS, and NER. The same setup
and hyperparameter searching as Table 1 are used,
the best hyperparameters are picked on the dev set.
Results from Sun et al. (2019); Palogiannidi et al.
(2016) are included as a reference. Sun et al. (2019)

4Similar observations were made: DistilBERT has a 10%
accuracy drop on RTE compared to BERT-base (Sanh et al.,
2019); Sajjad et al. (2020) report unstableness on MRPC and
RTE when applying their model reduction strategies.

5Similar observations were made: https://github.
com/huggingface/transformers/issues/64
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Figure 3: The accumulated number of parameters and
memory required by finetuning and masking to solve
an increasing number of tasks.

employ optimizations like layer-wise learning rate,
producing slightly better performance than ours.
Palogiannidi et al. (2016) is the best performing
system on task SEM (Nakov et al., 2016). Again,
masking yields results comparable to finetuning.

Memory comparison. Having shown that task
performance of masking and finetuning is compa-
rable, we next demonstrate one key strength of
masking: memory efficiency. We take BERT-base-
uncased as our example. Figure 3 shows the ac-
cumulated number of parameters in million and
memory in megabytes (MB) required when an in-
creasing number of downstream tasks need to be
solved using finetuning and masking. Masking re-
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SEM TREC AG POS NER Memory (MB)

Masking
Single 12.03 3.30 5.62 2.34 9.85 447
Ensem. 11.52 3.20 5.28 2.12 9.19 474

Finetun.
Single 11.87 3.80 5.66 2.34 9.85 438
Ensem. 11.73 2.80 5.17 2.29 9.23 1752

Sun et al. (2019) n/a 2.80 5.25 n/a n/a n/a

Palogiannidi et al. (2016) 13.80 n/a n/a n/a n/a n/a

Table 2: Error rate (%) on test set and model size com-
parison. Single: the averaged performance of four mod-
els with different random seeds. Ensem.: ensemble of
the four models.

quires a small overhead when solving a single task
but is much more efficient than finetuning when
several tasks need to be inferred. Masking saves a
single copy of a pretrained language model contain-
ing 32-bit float parameters for all the eleven tasks
and a set of 1-bit binary masks for each task. In
contrast, finetuning saves every finetuned model so
the memory consumption grows linearly.

Masking naturally allows light ensembles of
models. Rows “Ensem.” in Table 2 compare ensem-
bled results and model size. We consider the en-
semble of predicted (i) labels; (ii) logits; (iii) proba-
bilities. The best ensemble method is picked on dev
and then evaluated on test. Masking only consumes
474MB of memory – much smaller than 1752MB
required by finetuning – and achieves comparable
performance. Thus, masking is also much more
memory-efficient than finetuning in an ensemble
setting.

6 Discussion

6.1 Intrinsic evaluations

§5 demonstrates that masking is an efficient alter-
native to finetuning. Now we analyze properties
of the representations computed by binary masked
language models with intrinsic evaluation.

One intriguing property of finetuning, i.e., stack-
ing a classifier layer on top of a pretrained language
model then update all parameters, is that a linear
classifier layer suffices to conduct reasonably ac-
curate classification. This observation implies that
the configuration of data points, e.g., sentences
with positive or negative sentiment in SST2, should
be close to linearly separable in the hidden space.
Like finetuning, masking also uses a linear classi-
fier layer. Hence, we hypothesize that upper layers
in binary masked language models, even without
explicit weight updating, also create a hidden space
in which data points are close to linearly separable.

Figure 4 uses t-SNE (Maaten and Hinton, 2008)
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Figure 4: t-SNE visualization of the representation of
[CLS] computed by the topmost transformer block in
pretrained (left), finetuned (top right), and masked (bot-
tom right) BERT/RoBERTa. We use scikit-learn
(Pedregosa et al., 2011) and default t-SNE parameters.

SST2 SEM
SST2 41.8 -13.4
SEM 20.0 11.5

(a) Masking

SST2 SEM
SST2 41.8 -10.1
SEM 18.9 12.2

(b) Finetuning

Table 3: Generalization on dev (%) of binary masked
and finetuned BERT. Row: training dataset; Column:
evaluating dataset. Numbers are improvements against
the majority-vote baseline: 50.9 for SST2 and 74.4 for
SEM. Results are averaged across four random seeds.

to visualize the representation of [CLS] computed
by the topmost transformer block in pretrained,
finetuned, and masked BERT/RoBERTa, using the
dev set examples of SST2. The pretrained mod-
els’ representations (left) are clearly not separable
since the model needs to be adapted to downstream
tasks. The sentence representations computed by
the finetuned (top right) and the binary masked
(bottom right) encoder are almost linearly separa-
ble and consistent with the gold labels. Thus, a lin-
ear classifier is expected to yield reasonably good
classification accuracy. This intrinsic evaluation
illustrates that binary masked models extract good
representations from the data for the downstream
NLP task.

6.2 Properties of the binary masked models

Do binary masked models generalize? Fig-
ure 4 shows that a binary masked language model
produces proper representations for the classifier
layer and hence performs as well as a finetuned
model. Here, we are interested in verifying that
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Figure 5: Scores s of two sets of masks, trained with
two different tasks, of layer WO in transformer blocks
2 (left) and 11 (right) in BERT. A large s means that
the two masks are dissimilar.

the binary masked model does indeed solve down-
stream tasks by learning meaningful representa-
tions – instead of exploiting spurious correlations
that generalize poorly (Niven and Kao, 2019; Mc-
Coy et al., 2019). To this end, we test if the binary
masked mode is generalizable to other datasets of
the same type of downstream task. We use the two
sentiment classification datasets: SST2 and SEM.
We simply evaluate the model masked or finetuned
on SST2 against the dev set of SEM and vice versa.
Table 3 reports the results against the majority-vote
baseline. The finetuned and binary masked models
of SEM generalize well on SST2, showing ≈ 20%
improvement against the majority-vote baseline.

On the other hand, we observe that the knowl-
edge learned on SST2 does not generalize to SEM,
for both finetuning and masking. We hypothesize
that this is because the Twitter domain (SEM) is
much more specific than movie reviews (SST2).
For example, some Emojis or symbols like “:)” re-
flecting strong sentiment do not occur in SST2, re-
sulting in unsuccessful generalization. To test our
hypothesis, we take another movie review dataset
IMDB (Maas et al., 2011), and directly apply the
SST2-finetuned- and SST2-binary-masked- mod-
els on it. Masking and finetuning achieve accuracy
84.79% and 85.25%, which are comparable and
both outperform the baseline 50%, demonstrating
successful knowledge transfer.

Thus, finetuning and masking yield models with
similar generalization ability. The binary masked
models indeed create representations that contain
valid information for downstream tasks.

Analyzing masks. We study the dissimilarity be-
tween masks learned by different BERT layers and
downstream tasks. For the initial and trained binary
masks Mt,init

bin and Mt,trained
bin of a layer trained on

task t ∈ {t1, t2}. We compute:

s =

∥∥∥Mt1,trained
bin −Mt2,trained

bin

∥∥∥
1∥∥∥Mt1,trained

bin −Mt1,init
bin

∥∥∥
1
+
∥∥∥Mt2,trained

bin −Mt2,init
bin

∥∥∥
1

,

where ‖W‖1 =
∑m

i=1

∑n
j=1 |wi,j |. Note that for

the same random seed, Mt1,init
bin and Mt2,init

bin are
the same. The dissimilarity s measures the differ-
ence between two masks as a fraction of all changes
brought about by training. Figure 5 shows that, af-
ter training, the dissimilarities of masks of higher
BERT layers are larger than those of lower BERT
layers. Similar observations are made for finetun-
ing: top layer weights in finetuned BERT are more
task-specific (Kovaleva et al., 2019). The figure
also shows that the learned masks for downstream
tasks tend to be dissimilar to each other, even for
similar tasks. For a given task, there exist differ-
ent sets of masks (initialized with different random
seeds) yielding similar performance. This observa-
tion is similar to the results of evaluating the lottery
ticket hypothesis on BERT (Prasanna et al., 2020;
Chen et al., 2020): a number of subnetworks exist
in BERT achieving similar task performance.

6.3 Loss landscape

Training complex neural networks can be viewed
as searching for good minima in the highly non-
convex landscape defined by the loss function (Li
et al., 2018). Good minima are typically depicted
as points at the bottom of different locally convex
valleys (Keskar et al., 2016; Draxler et al., 2018),
achieving similar performance. In this section, we
study the relationship between the two minima ob-
tained by masking and finetuning.

Recent work analyzing the loss landscape sug-
gests that the local minima in the loss landscape
reached by standard training algorithms can be con-
nected by a simple path (Garipov et al., 2018; Got-
mare et al., 2018), e.g., a Bézier curve, with low
task loss (or high task accuracy) along the path. We
are interested in testing if the two minima found by
finetuning and masking can be easily connected in
the loss landscape. To start with, we verify the task
performance of an interpolated model W(γ) on
the line segment between a finetuned model W0

and a binary masked model W1:

W(γ) = W0 + γ(W1 −W0), 0 ≤ γ ≤ 1 .

We conduct experiments on MRPC and SST2
with the best-performing BERT and RoBERTa
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Figure 6: Mode connectivity results on MRPC (left)
and SST2 (right). Top images: dev set accuracy of an
interpolated model between the two minima found by
finetuning (γ=0) and masking (γ=1). Bottom images:
accuracy of an interpolated model between pretrained
(γ=0) and finetuned/masked (γ=1) BERT.

models obtained in Table 1 (same seed and training
epochs); Figure 6 (top) shows the results of mode
connectivity, i.e., the evolution of the task accuracy
along a line connecting the two candidate minima.

Surprisingly, the interpolated models on the
line segment connecting a finetuned and a binary
masked model form a high accuracy path, indicat-
ing the extremely well-connected loss landscape.
Thus, masking finds minima on the same connected
low-loss manifold as finetuning, confirming the ef-
fectiveness of our method. Also, we show in Fig-
ure 6 (bottom) for the line segment between the
pretrained BERT and a finetuned/masked BERT,
that mode connectivity is not solely due to an over-
parameterized pretrained language model. Bézier
curves experiments show similar results, cf. Ap-
pendix §B.

7 Conclusion

We have presented masking, an efficient alternative
to finetuning for utilizing pretrained language mod-
els like BERT/RoBERTa/DistilBERT. Instead of
updating the pretrained parameters, we only train
one set of binary masks per task to select criti-
cal parameters. Extensive experiments show that
masking yields performance comparable to fine-
tuning on a series of NLP tasks. Leaving the pre-
trained parameters unchanged, masking is much
more memory efficient when several tasks need
to be solved. Intrinsic evaluations show that bi-
nary masked models extract valid and generaliz-
able representations for downstream tasks. More-
over, we demonstrate that the minima obtained by

finetuning and masking can be easily connected
by a line segment, confirming the effectiveness of
applying masking to pretrained language models.
Our code is available at: https://github.com/

ptlmasking/maskbert.
Future work may explore the possibility of ap-

plying masking to the pretrained multilingual en-
coders like mBERT (Devlin et al., 2019) and XLM
(Conneau and Lample, 2019). Also, the binary
masks learned by our method have low sparsity
such that inference speed is not improved. De-
veloping methods improving both memory and in-
ference efficiency without sacrificing task perfor-
mance can open the possibility of widely deploying
the powerful pretrained language models to more
NLP applications.
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A Reproducibility Checklist

A.1 Computing infrastructure
All experiments are conducted on following GPU
models: Tesla V100, GeForce GTX 1080 Ti, and
GeForce GTX 1080. We use per-GPU batch size
32. Thus, experiments comparing masking and
finetuning on QNLI and AG take 4 GPUs and all
the other tasks use a single GPU.

A.2 Number of parameters
In §5.3 we thoroughly compare the number of pa-
rameters and memory consumption of finetuning
and masking. Numerical values are in Table 8.

A.3 Validation performance
The dev set performance of Table 2 is covered in
Table 1. We report Matthew’s correlation coeffi-
cient (MCC) for CoLA, micro-F1 for NER, and
accuracy for the other tasks. We use the evalu-
ation functions in scikit-learn (Pedregosa
et al., 2011) and seqeval (https://github.
com/chakki-works/seqeval).

A.4 Hyperparameter search
The only hyperparameter we searched is learning
rate, for both masking and finetuning, according to
the setup discussion in §4. The optimal values are
in Table 4.

A.5 Datasets
For GLUE tasks, we use the official datasets
from the benchmark https://gluebenchmark.

com/. For TREC and AG, we download the
datasets developed by Zhang et al. (2015), which
are available at here. Note that this link is pro-
vided by Zhang et al. (2015) and also used by
Sun et al. (2019). For SEM, we obtain the
dataset from the official SemEval website: http://
alt.qcri.org/semeval2016/task4/. For NER,
we use the official dataset: https://www.clips.

uantwerpen.be/conll2003/ner/. We obtain
our POS dataset from the linguistic data con-
sortium (LDC). We use the official dataset of
SWAG (Zellers et al., 2018): https://github.

com/rowanz/swagaf/tree/master/data.
For POS, sections 0-18 of WSJ are train, sections

19-21 are dev, and sections 22-24 are test (Collins,
2002). We use the official train/dev/test splits of all
the other datasets.

To preprocess the datasets, we use the tokenizers
provided by the Transformers package (Wolf

et al., 2019) to convert the raw dataset to the
formats required by BERT/RoBERTa/DistilBERT.
Since wordpiece tokenization is used, there is no
out-of-vocabulary words.

Since we use a maximum sequence length of
128, our preprocessing steps exclude some word-
tag annotations in POS and NER. For POS, after
wordpiece tokenization, we see 1 sentence in dev
and 2 sentences in test have more than 126 (the
[CLS] and [SEP] need to be considered) word-
pieces. As a result, we exclude 5 annotated words
in dev and 87 annotated words in test. Similarly,
for NER (which is also formulated as a tagging task
following Devlin et al. (2019)), we see 3 sentences
in dev and 1 sentence in test have more than 126
wordpieces. As a result, we exclude 27 annotated
words in dev and 8 annotated words in test.

The number of examples in dev and test per task
is shown in following Table 5.

B More on Mode Connectivity

Following the mode connectivity framework pro-
posed in Garipov et al. (2018), we parameter-
ize the path joining two minima using a Bézier
curve. Let w0 and wn+1 be the parameters of
the models trained from finetuning and masking.
Then, an n-bend Bézier curve connecting w0 and
wn+1, with n trainable intermediate models θ =
{w1, . . . ,wn}, can be represented by φθ(t), such
that φθ(0) = w0 and φθ(1) = wn+1, and

φθ(t) =

n+1∑

i=0

(
n+ 1

i

)
(1− t)n+1−itiwi .

We train a 3-bend Bézier curve by minimizing
the loss Et∼U [0,1]L (φθ(t)), where U [0, 1] is the
uniform distribution in the interval [0, 1]. Monte
Carlo method is used to estimate the gradient of
this expectation-based function and gradient-based
optimization is used for the minimization. The re-
sults are illustrated in Figure 7. Masking implicitly
performs gradient descent, analogy to the weights
update achieved by finetuning; the observations
complement our arguments in the main text.

C More Empirical Results

Ensemble results of RoBERTa and DistilBERT.
Following Table 6 shows the single and ensemble
results of RoBERTa and DistilBERT on the test set
of SEM, TREC, AG, POS, and NER.
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MRPC SST2 CoLA RTE QNLI POS NER SWAG SEM TREC AG

BERT
Finetuning 5e-5 1e-5 3e-5 5e-5 3e-5 3e-5 3e-5 7e-5 1e-5 3e-5 3e-5
Masking 1e-3 5e-4 9e-4 1e-3 7e-4 5e-4 7e-4 1e-4 7e-5 1e-4 5e-4

RoBERTa
Finetuning 3e-5 1e-5 1e-5 7e-6 1e-5 9e-6 3e-5 1e-5 7e-6 9e-6 3e-5
Masking 3e-4 9e-5 3e-4 3e-4 1e-4 3e-4 3e-4 1e-4 3e-4 5e-4 5e-4

DistilBERT
Finetuning 3e-5 7e-5 3e-5 3e-5 3e-5 3e-5 1e-5 7e-6 1e-5 3e-5 3e-5
Masking 9e-4 7e-4 9e-4 9e-4 1e-3 7e-4 7e-4 3e-4 3e-4 9e-4 1e-3

Table 4: The optimal learning rate on different tasks for BERT/RoBERTa/DistilBERT. We perform finetun-
ing/masking on all tasks for 10 epochs with early stopping of 2 epochs.
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Figure 7: The accuracy on MRPC dev set, as a function of the point on the curves φθ(γ), connecting the two
minima found by finetuning (left, γ=0) and masking (right, γ=1).

Dev Test

MRPC 408 n/a
SST2 872 n/a
CoLA 1,042 n/a
RTE 277 n/a

QNLI 5,732 n/a
SEM 1,325 10,551
TREC 548 500

AG 24,000 7,600
POS 135,105 133,082
NER 51,341 46,425

SWAG 20,006 n/a

Table 5: Number of examples in dev and test per task.
For POS and NER, we report the number of words.

D Numerical Values of Plots

D.1 Layer-wise behaviors

Table 7 details the numerical values of Figure 2.

SEM TREC AG POS NER

RoBERTa
Masking

Single 11.12 3.15 5.06 2.11 11.03
Ensem. 10.54 2.40 4.55 2.11 10.57

Finetun.
Single 10.74 3.00 5.10 2.00 10.43
Ensem. 10.74 2.60 4.50 1.96 9.54

DistilBERT
Masking

Single 11.89 3.70 5.71 2.39 10.40
Ensem. 11.60 3.00 5.29 2.54 9.86

Finetun.
Single 11.94 3.30 5.42 2.39 10.18
Ensem. 11.48 3.00 4.84 2.29 9.74

Table 6: Error rate (%) on test set of tasks by RoBERTa
and DistilBERT. Single: the averaged performance of
four models with different random seeds. Ensem.: en-
semble of the four models.

D.2 Memory consumption
Table 8 details the numerical values of Figure 3.
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MRPC RTE CoLA

Finetuning (BERT + classifier) 0.861± 0.008 0.692± 0.027 0.596± 0.015

Masking (BERT 00-11 + classifier, initial sparsity 5%) 0.862± 0.015 0.673± 0.036 0.592± 0.004
Masking (BERT 00-11 + classifier, initial sparsity 15%) 0.825± 0.039 0.626± 0.040 0.522± 0.027

Masking (BERT 02-11 + classifier, initial sparsity 5%) 0.868± 0.011 0.695± 0.030 0.595± 0.010
Masking (BERT 02-11 + classifier, initial sparsity 15%) 0.844± 0.024 0.662± 0.021 0.556± 0.012

Masking (BERT 04-11 + classifier, initial sparsity 5%) 0.861± 0.004 0.705± 0.037 0.583± 0.005
Masking (BERT 04-11 + classifier, initial sparsity 15%) 0.861± 0.009 0.669± 0.014 0.553± 0.014

Masking (BERT 06-11 + classifier, initial sparsity 5%) 0.862± 0.004 0.696± 0.027 0.551± 0.006
Masking (BERT 06-11 + classifier, initial sparsity 15%) 0.868± 0.008 0.691± 0.033 0.534± 0.016

Masking (BERT 08-11 + classifier, initial sparsity 5%) 0.848± 0.016 0.675± 0.034 0.538± 0.014
Masking (BERT 08-11 + classifier, initial sparsity 15%) 0.851± 0.009 0.688± 0.022 0.545± 0.005

Masking (BERT 00-09 + classifier, initial sparsity 5%) 0.859± 0.012 0.683± 0.031 0.589± 0.011
Masking (BERT 00-09 + classifier, initial sparsity 15%) 0.820± 0.052 0.604± 0.021 0.514± 0.016

Masking (BERT 00-07 + classifier, initial sparsity 5%) 0.829± 0.032 0.649± 0.053 0.574± 0.012
Masking (BERT 00-07 + classifier, initial sparsity 15%) 0.807± 0.042 0.600± 0.027 0.509± 0.004

Masking (BERT 00-05 + classifier, initial sparsity 5%) 0.814± 0.033 0.632± 0.058 0.565± 0.027
Masking (BERT 00-05 + classifier, initial sparsity 15%) 0.781± 0.032 0.567± 0.030 0.510± 0.025

Masking (BERT 00-03 + classifier, initial sparsity 5%) 0.791± 0.026 0.606± 0.027 0.535± 0.034
Masking (BERT 00-03 + classifier, initial sparsity 15%) 0.776± 0.035 0.600± 0.019 0.527± 0.014

Table 7: Numerical value of the layer-wise behavior experiment. We train for 10 epochs with mini-batch size 32.
The learning rate is finetuned using the mean results on four different random seeds.

Number of Parameters Memory Usage (Kilobytes)

Finetuning Masking Finetuning Masking

Pretrained 109,482,240 437,928.96

MRPC + 1,536 + 1,536 + 71,368,704 + 1,536 + 6.144 + 6.144 + 8,921.088 + 0.192

SST2 + 1,536 + 109,482,240 + 71,368,704 + 1,536 + 6.144 + 437,928.96 + 8,921.088 + 0.192

CoLA + 1,536 + 109,482,240 + 71,368,704 + 1,536 + 6.144 + 437,928.96 + 8,921.088 + 0.192

RTE + 1,536 + 109,482,240 + 71,368,704 + 1,536 + 6.144 + 437,928.96 + 8,921.088 + 0.192

QNLI + 1,536 + 109,482,240 + 71,368,704 + 1,536 + 6.144 + 437,928.96 + 8,921.088 + 0.192

SEM + 1,536 + 109,482,240 + 71,368,704 + 1,536 + 6.144 + 437,928.96 + 8,921.088 + 0.192

TREC + 4,608 + 109,482,240 + 4,608 + 71,368,704 + 4,608 + 18.432 + 437,928.96 + 18.432 + 8,921.088 + 0.576

AG + 3,072 + 109,482,240 + 3,072 + 71,368,704 + 3,072 + 12.288 + 437,928.96 + 12.288 + 8,921.088 + 0.384

POS + 37,632 + 109,482,240 + 37,632 + 71,368,704 + 37,632 + 150.528 + 437,928.96 + 150.528 + 8,921.088 + 4.704

NER + 6,912 + 109,482,240 + 6,912 + 71,368,704 + 6,912 + 27.648 + 437,928.96 + 27.648 + 8,921.088 + 0.864

SWAG + 768 + 109,482,240 + 768 + 71,368,704 + 768 + 3.072 + 437,928.96 + 3.072 + 8,921.088 + 0.096

Table 8: Model size comparison when applying masking and finetuning. Numbers are based on BERT-base-
uncased. Note that our masking scheme enables sharing parameters across tasks: tasks with the same number of
output dimension can use the same classifier layer.
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Abstract

It has been shown for English that discrete
and soft prompting perform strongly in few-
shot learning with pretrained language mod-
els (PLMs). In this paper, we show that dis-
crete and soft prompting perform better than
finetuning in multilingual cases: Crosslingual
transfer and in-language training of multilin-
gual natural language inference. For exam-
ple, with 48 English training examples, fine-
tuning obtains 33.74% accuracy in crosslin-
gual transfer, barely surpassing the majority
baseline (33.33%). In contrast, discrete and
soft prompting outperform finetuning, achiev-
ing 36.43% and 38.79%. We also demonstrate
good performance of prompting with training
data in multiple languages other than English.

1 Introduction

Prompting strongly outperforms finetuning (Devlin
et al., 2019) when adapting pretrained language
models (PLMs; Devlin et al. (2019); Conneau et al.
(2020)) to downstream tasks in the low-resource
regime (Brown et al., 2020; Schick and Schütze,
2021; Gao et al., 2020; Tam et al., 2021; Le Scao
and Rush, 2021), i.e., few-shot learning, a more
realistic scenario than having tens of thousands of
annotations, even for English (Yu et al., 2018; Yin
et al., 2020; Ram et al., 2021).

In contrast to finetuning, which learns discrim-
inative classifiers for tasks like natural language
inference (NLI; Dagan et al. (2006); Bowman et al.
(2015)), prompting reformulates the classification
task to generative text-to-text (Raffel et al., 2020)
or cloze-style (McCann et al., 2018; Brown et al.,
2020) queries which are given to a PLM to answer.
For example, the NLI task of assigning premise
“They whinnied, eyes wide” and hypothesis “Their
eyes were open wide” to class “entailment” can be
reformulated as:

They whinnied, eyes wide . Question: Their eyes

were open wide ? Answer: .

The PLM is requested to fill in, for the blank ( ),
the word “yes”, which is mapped to “entailment”.

Prompting makes a human description of the
task available in learning. Also, “filling in the
blank” is well aligned with the pretraining objec-
tive (masked/autoregressive language modelling
(Devlin et al., 2019; Radford et al., 2019; Yang
et al., 2019)), likely to deliver better performance
in few-shot learning (Ram et al., 2021).

In this paper, we investigate the effectiveness of
prompting in multilingual tasks, which – despite
the success of prompting in English – is largely
unexplored. We address two main research ques-
tions: (RQ1) Does the strong few-shot performance
of prompting transfer to other languages from En-
glish? (RQ2) As the cost of few-shot non-English
annotations is affordable (Garrette and Baldridge,
2013; Lauscher et al., 2020; Zhao et al., 2021), can
we directly prompt PLMs in languages other than
English or do we have to go through the (generally
best resourced) intermediary of English?

In this work, we systematically compare two
popular prompting methods – discrete and soft
prompting – with finetuning in the few-shot mul-
tilingual NLI task and show that prompting is su-
perior: (i) The strong few-shot learning perfor-
mance of prompting transfers to other languages
from English: It outperforms finetuning in crosslin-
gual transfer (RQ1; §5.1). (ii) Directly querying
the multilingual PLM with few-shot non-English
prompts achieves competitive performance, with-
out relying on crosslingual transfer from English
(RQ2; §5.2).

2 Related Work

GPT3 (Brown et al., 2020) succeeds in few-shot
NLU tasks with “in-context learning”: A natu-
ral language prompt describing the NLU task is
prepended to an input example; GPT3 is then ca-
pable of making accurate predictions without up-
dating its parameters. However, the number of
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parameters in GPT3 is prohibitively large (175B).
Integrating gradient descent into prompting,

smaller (w.r.t. GPT3) PLMs also achieve good few-
shot performance. Like GPT3, discrete prompt-
ing uses natural language to describe NLU tasks.
Schick and Schütze (2021), Tam et al. (2021),
Le Scao and Rush (2021) use human-designed
prompts. Gao et al. (2020) leverage T5 (Raffel
et al., 2020) to generate prompts. Shin et al. (2020)
use extra training data to search tokens for con-
structing the prompts. Discrete prompting naturally
inherits interpretability from the task descriptions.

Soft prompting relaxes the constraint that a
prompt needs to be composed of discrete tokens.
Instead, it learns the prompt in the continuous space
with SGD. Qin and Eisner (2021) and Zhong et al.
(2021) learn soft prompts eliciting more knowl-
edge (Petroni et al., 2019) from PLMs than discrete
prompts. Similar to soft prompting but with the
PLM being frozen, Li and Liang (2021) propose
prefix-tuning to encourage PLMs to solve genera-
tion tasks with high parameter-efficiency (Houlsby
et al., 2019; Zhao et al., 2020). Lester et al. (2021)
demonstrate that soft prompting benefits from scal-
ing up the number of PLM parameters. Liu et al.
(2021) show that GPT (Radford et al., 2019) can
solve NLU tasks (Wang et al., 2019) with soft
prompting.

All of this work focuses on English. We show
that discrete and soft prompting perform better
than finetuning in few-shot crosslingual natural lan-
guage inference (XNLI; Conneau et al. (2018))
with multilingual PLMs (XLM-RoBERTa; Con-
neau et al. (2020)). We conduct experiments on
NLI because it is one of the most representative and
challenging NLU tasks (Dagan et al., 2006; Bow-
man et al., 2015), and has been commonly used in
prior work on prompting.

3 Method

3.1 Finetuning

We follow the standard finetuning method (Devlin
et al., 2019): A linear classifier layer is initialized
and stacked on top of the PLM; the whole model is
then trained on the few-shot NLI dataset (§4).

3.2 Prompting

Discrete prompting (DP). Following Schick and
Schütze (2021), Le Scao and Rush (2021), we re-
formulate the NLI examples (cf. example in §1)
into cloze-style questions using a human-designed

prompt. Specifically, we ask the PLM to fill in the
blank ( ) in sentence:

Premise . Question: Hypothesis ? Answer: .

Premise and Hypothesis are a pair of sentences
from the NLI dataset. The gold labels are
mapped to words in the PLM vocabulary. Con-
cretely, we use following mapping (verbalizer;
Schick and Schütze (2021)): “entailment”→ “yes”;
“contradiction”→ “no”; “neutral”→ “maybe”. The
optimization objective is to minimize the cross-
entropy loss between the predicted and the gold
words representing the three classes.

Soft prompting (SP; Li and Liang (2021); Qin
and Eisner (2021); Zhong et al. (2021); Liu et al.
(2021)) leverages prompts containing “pseudo to-
kens” that are not part of the PLM vocabulary. In
this work, we ask a PLM to fill in the blank ( ) in
sentence:

Premise . Hypothesis ? <v1><v2><v3><v4> .

where each <vi>, i ∈ {1, 2, 3, 4} is associated
with a randomly initialized trainable vector (in the
PLM’s lowest embedding layer) vi ∈ Rd, where
d is the hidden dimension size of the embedding
layer. Directly using vi yields sub-optimal task
performance: Li and Liang (2021) reparameter-
ize vi with another trainable matrix and then feed
it forward through an MLP. Here, we adopt Liu
et al. (2021)’s approach. They feed [v1,v2,v3,v4]
through an LSTM (Hochreiter and Schmidhuber,
1997) and use the outputs. PLM parameters, LSTM
parameters, and vi are jointly trained. Our SP and
DP have the same training objective and verbalizer.

Mixed prompting (MP). We also experiment
with a simple combination of DP and SP, by asking
the PLM to fill in the blank ( ) in sentence:

Premise . Question: Hypothesis ? <v1><v2><v3><v4>

Answer: .

MP includes human descriptions of NLI as in DP
and learns “soft prompts” as in SP.

3.3 Non-English prompting

We also explore the results of prompting the PLM
with languages other than English, of which the
few-shot annotation cost is affordable (Garrette and
Baldridge, 2013; Lauscher et al., 2020; Zhao et al.,
2021).

For a non-English language L like Turkish,
we translate1 the English prompting words (§3.2)

1We use Google Translate due to the simplicity of our
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Prompt Verbalizer

EN
DP Premise . Question: Hypothesis ? Answer: . Entailment → yes
SP Premise . Hypothesis ? <v1>...<v4> . Contradict → no
MP Premise . Question: Hypothesis ? <v1>...<v4> Answer: . Neutral → maybe

TR
DP Premise . Soru: Hypothesis ? Cevap: . Entailment → Evet
SP Premise . Hypothesis ? <v1>...<v4> . Contradict → hiçbir
MP Premise . Soru: Hypothesis ? <v1>...<v4> Cevap: . Neutral → belki

Table 1: Prompts and verbalizers in English (EN) and Turkish (TR). “<v1>...<v4>”=“<v1><v2><v3><v4>”. Ap-
pendix §B shows translated prompts/verbalizers of the languages used in our experiments.

“Question” and “Answer” into L, e.g., “Soru” and
“Cevap” in Turkish. Correspondingly, the verbalizer
maps gold labels into L: “entailment”→ “Evet”;
“contradiction”→ “hiçbir”; “neutral”→ “belki”. Ta-
ble 1 presents example prompts and verbalizers.

4 Dataset and Setup

Dataset. We conduct our experiments on natu-
ral language inference datasets MNLI and XNLI
(Williams et al., 2018; Conneau et al., 2018).
MNLI provides multi-genre English NLI sentence
pairs. XNLI provides development and test splits
of human-translated parallel NLI sentence pairs in
15 languages2 and the machine-translated MNLI
training sets in 14 languages.

For constructing the few-shot training set, we
randomly sample without replacement K ∈ {1, 2, 4,
8, 16, 32, 64, 128, 256} shots per class from the EN
MNLI training split. Then we retrieve translations
of this EN training set from XNLI to create the
few-shot training sets in the other languages.

To simulate a realistic low-resource regime
(Kann et al., 2019; Perez et al., 2021), we use few-
shot development sets. For EN, we sample the same
number of shots (as training) from the XNLI de-
velopment split. As a result, a 2-shot experiment
uses 2 training and 2 development shots per class.
For other languages, we retrieve the translations of
the English development set from XNLI. Follow-
ing Conneau et al. (2018), we report accuracy on
XNLI test.

Setup. We conduct all experiments using the
pretrained XLM-RoBERTa-base model (Conneau
et al., 2020) containing 270M parameters trained
on 2.5 TB CommonCrawl data in 100 languages.
We use PyTorch (Paszke et al., 2019) and the Hug-

prompt. Specialized bilingual dictionaries can also be used.
2The languages are English (EN), French (FR), Spanish

(ES), German (DE), Greek (EL), Bulgarian (BG), Russian
(RU), Turkish (TR), Arabic (AR), Vietnamese (VI), Thai (TH),
Chinese (ZH), Hindi (HI), Swahili (SW), and Urdu (UR).

gingFace framework (Wolf et al., 2020).3

We use batch size 32 for finetuning and 24 for
prompting methods due to resource limitations.
Following Le Scao and Rush (2021), we use learn-
ing rate 1e-5 for both finetuning and prompting.
Following the suggestions of Mosbach et al. (2021),
Zhang et al. (2021), we train the model with a large
number of epochs (50) and select the checkpoint
that performs best on the development set. We re-
peat each experiment 5 times with different random
seeds ({1, 2, 3, 4, 5}) and report mean and variance.
Appendix §A shows our reproducibility checklist.

5 Experiments

5.1 Zero-shot crosslingual transfer

We first compare prompting with finetuning in zero-
shot crosslingual transfer (Pires et al., 2019; Con-
neau et al., 2020; Artetxe and Schwenk, 2019; Hu
et al., 2020): The PLM is trained on the EN few-
shot dataset and then directly evaluated on the test
set of all languages. Table 2 reports the results.

EN results. From column EN we observe that:
(i) As expected, all four methods benefit from more
shots. (ii) Prompting methods (DP/SP/MP) clearly
outperform finetuning especially in low-resource
regimes. For example, in the 4-shot experiment,
SP outperforms finetuning by ≈8 (41.84-33.90) ac-
curacy points. Table 3 displays some examples for
which SP outperforms finetuning. The improve-
ments become less significant when more shots
are available, e.g., 256. (iii) SP outperforms DP
for most choices of shots (except 128), evidenc-
ing the strength of relaxing the “discrete token”
constraint in DP (Liu et al., 2021; Qin and Eisner,
2021; Zhong et al., 2021). But we give up the inter-
pretability of DP for this better performance. (iv)
Performance of MP – the combination of DP and
SP – is decent, but not stellar. Future work may
explore advanced prompting methods succeeding

3Resources are available at https://github.com/
mprompting/xlmrprompt
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Shots Method AR BG DE EL EN ES FR HI RU SW TH TR UR VI ZH X

- MAJ 33.33 33.33 33.33 33.33 33.33 33.33 33.33 33.33 33.33 33.33 33.33 33.33 33.33 33.33 33.33 33.33

1

FT 32.53 32.63 32.94 32.53 32.91 32.61 32.65 32.87 32.67 32.77 33.11 32.68 32.87 32.69 32.77 32.75
DP 32.08 33.23 32.97 33.24 33.15 33.78 34.08 33.41 33.78 33.45 33.00 34.01 31.99 32.83 33.64 33.24
SP 34.84 36.50 36.87 37.49 36.65 38.29 38.57 36.43 37.56 34.52 35.71 34.76 35.54 35.06 37.61 36.43
MP 32.31 32.32 33.03 32.14 33.29 34.02 33.74 34.12 33.03 32.86 32.18 34.59 32.65 32.82 33.35 33.10

2

FT 33.16 33.35 33.82 33.24 33.43 33.31 33.30 33.24 33.29 33.19 33.40 33.04 33.20 33.03 33.29 33.29
DP 32.90 35.11 34.44 34.69 35.41 35.43 34.77 34.11 34.93 32.97 35.43 35.19 32.75 33.28 36.46 34.52
SP 35.91 38.08 38.15 38.42 37.97 38.23 38.62 36.32 39.22 34.35 37.20 34.75 35.52 36.67 37.71 37.14
MP 32.76 34.25 34.10 33.26 34.59 33.81 34.33 33.75 34.01 33.88 34.55 34.51 32.59 33.83 35.39 33.97

4

FT 33.86 33.89 33.73 33.63 33.90 33.58 33.55 33.86 33.58 33.75 33.71 33.79 33.67 33.85 33.78 33.74
DP 35.42 37.64 38.85 37.67 39.50 38.91 38.26 36.43 37.54 34.72 37.76 37.23 35.92 36.02 38.74 37.37
SP 38.04 40.46 40.08 40.79 41.84 39.78 41.10 37.55 41.72 35.81 39.23 35.88 37.66 37.86 39.48 39.15
MP 33.14 33.79 35.16 33.95 36.26 35.52 35.44 34.63 34.21 33.53 35.96 35.62 33.51 34.06 37.10 34.79

8

FT 32.85 32.75 33.05 32.59 33.06 32.58 32.80 32.89 32.88 32.75 33.14 32.69 33.05 32.83 32.65 32.84
DP 32.73 34.78 34.79 34.82 36.39 34.97 35.17 33.00 34.59 32.91 35.14 34.13 33.14 33.66 35.56 34.39
SP 36.30 38.84 38.22 38.68 39.02 38.16 38.82 35.86 39.73 34.50 37.90 35.11 35.61 37.41 37.17 37.42
MP 32.67 33.24 34.81 33.18 34.78 34.66 34.77 34.76 33.81 33.07 34.46 35.12 32.69 33.57 36.34 34.13

16

FT 33.72 34.09 34.28 33.49 34.73 33.82 33.81 33.08 34.06 33.69 33.06 33.57 33.22 34.01 33.46 33.74
DP 35.07 37.07 37.51 37.43 38.24 36.91 36.61 35.85 36.51 33.84 37.21 35.74 34.86 35.77 37.86 36.43
SP 38.88 40.60 40.21 40.44 39.45 39.37 40.90 36.86 40.61 37.11 39.45 36.26 35.88 38.46 37.35 38.79
MP 32.46 33.02 33.98 32.59 33.20 34.54 34.39 34.30 33.90 33.28 33.47 34.69 32.67 33.28 35.68 33.70

32

FT 35.84 36.28 36.00 36.11 36.64 36.02 36.47 35.41 35.68 35.33 35.71 35.90 34.81 36.10 36.20 35.90
DP 41.80 43.51 43.49 42.50 43.65 42.83 43.90 39.30 42.39 37.51 40.51 42.01 39.77 41.91 39.94 41.67
SP 40.30 43.38 42.08 42.27 44.72 42.32 42.34 38.91 43.76 37.54 39.97 38.79 38.83 42.09 39.56 41.12
MP 40.95 42.16 42.61 42.31 45.52 41.22 44.67 40.17 42.18 36.52 40.16 41.21 40.48 41.74 40.89 41.52

64

FT 40.16 39.56 40.10 39.87 41.68 40.34 39.47 39.53 38.34 39.64 39.18 39.50 39.23 40.85 39.63 39.81
DP 45.64 47.64 48.05 46.94 48.89 44.95 47.97 41.61 44.85 40.98 45.65 45.67 43.37 47.30 45.24 45.65
SP 43.48 43.81 45.99 43.70 49.04 45.79 46.11 40.86 44.51 40.49 44.68 41.91 40.09 45.25 44.17 43.99
MP 43.86 46.01 48.22 46.79 51.84 46.61 48.31 40.11 44.75 37.84 45.01 44.82 43.95 48.28 43.03 45.30

128

FT 43.50 45.52 45.60 44.38 46.94 45.75 46.00 42.96 44.94 41.43 43.27 43.67 41.78 44.81 44.79 44.36
DP 46.23 50.49 50.99 47.39 53.68 48.53 49.28 44.77 46.93 42.03 47.95 49.56 44.21 48.92 49.56 48.03
SP 44.78 46.24 45.30 46.31 49.45 45.80 46.37 43.29 44.95 41.21 45.64 41.93 41.18 44.99 45.73 44.88
MP 46.48 47.98 49.04 49.09 52.55 49.66 50.34 47.03 46.40 42.89 48.08 48.45 44.04 48.15 50.47 48.04

256
FT 52.13 54.57 54.43 54.00 57.79 55.89 55.39 50.65 52.90 50.00 51.22 52.31 48.57 54.16 52.10 53.07
DP 53.23 55.59 55.39 55.05 60.14 50.64 54.43 46.10 51.35 45.26 53.42 50.83 48.42 55.14 52.72 52.51
SP 52.26 56.04 53.02 53.12 60.58 54.80 55.79 49.43 52.49 47.33 54.52 52.08 48.48 54.54 54.59 53.27
MP 52.77 53.98 50.71 54.63 60.13 51.64 55.32 49.58 53.50 45.27 53.37 51.28 47.16 52.34 53.80 52.37

Table 2: Zero-shot crosslingual transfer results in accuracy (%). Each number is the mean performance of 5 runs,
when using finetuning (FT), discrete prompting (DP), soft prompting (SP), and mixed prompting (MP). “MAJ”:
majority baseline; X: macro average across 15 languages. Please see Appendix Table 7 for variances.

Premise/Hypothesis Prediction
This was the temper of the times.

“no” (Contradict)
This wasn’t the temper of the times.
We would go in there.

“maybe” (Neutral)
We would enter there at 8pm.
I hope to hear from you soon.

“yes” (Entailment)
I hope we talk soon.

Table 3: Qualitative examples for which prompting out-
performs finetuning.

in both task performance and interpretability. We
focus on DP and SP in following experiments.

Crosslingual transfer results closely follow
the trends of EN results: Prompting outperforms
finetuning when looking at the macro average
X . One intriguing finding is that DP success-
fully transfers the learned knowledge to target lan-
guages, better than SP in some languages, using the
code-switched prompt: “ Premise . Question:
Hypothesis ? Answer: . ” where Premise
and Hypothesis are non-English. Thus, DP is able
to leverage the strong crosslingual ability of the

multilingual PLM. Like finetuning, prompting does
not uniformly benefit the 14 non-English languages.
For example, the crosslingual transfer performance
of HI/SW/UR is notably inferior compared with
other languages.

Overall, prompting outperforms finetuning in
zero-shot crosslingual transfer of NLI in the low-
resource regimes.

5.2 In-language prompting

We next compare prompting with finetuning when
using non-English few-shot datasets. Taking Turk-
ish as an example, recall that we can use the Turkish
prompts (§3.3) and few-shot datasets from XNLI
(§4) to finetune/prompt the PLM directly.

Table 4 shows results of in-language experi-
ments of Turkish, Urdu, Swahili, and Chinese. We
make two main observations: (i) Prompting still
outperforms finetuning, though the non-English
prompts and verbalizers are translated from EN
simply using Google Translate. (ii) In-language
results are slightly worse but competitive to trans-
fer learning results (Table 2). We conjecture that
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Shots Method TR UR SW ZH

8
FT 32.71 32.83 32.80 33.31
DP 38.02 39.33 33.84 37.46
SP 35.41 34.59 33.47 34.39

16
FT 33.00 33.78 33.46 33.56
DP 39.39 40.58 34.48 42.24
SP 40.22 35.47 33.99 35.64

32
FT 37.15 34.23 34.52 35.38
DP 48.79 41.67 37.52 38.04
SP 43.62 39.18 36.00 35.13

64
FT 38.87 35.90 36.37 42.14
DP 48.97 42.34 37.72 44.73
SP 47.26 39.12 37.98 40.75

128
FT 40.84 36.23 36.81 43.16
DP 49.73 45.22 41.26 49.24
SP 47.68 40.96 40.42 47.17

256
FT 49.41 40.12 42.17 48.98
DP 52.61 46.10 47.69 53.11
SP 51.21 44.60 46.89 52.76

Table 4: In-language results in accuracy (%). Prompt-
ing (DP/SP) outperforms finetuning (FT). Please see
Appendix Table 6 for variances.

two factors result in the second observation. First,
some languages have a small amount of pretraining
data. For example, Swahili has 1.6GB pretrain-
ing data while English has 300GB (Conneau et al.,
2020). Thus, the PLM may not be well pretrained
for solving tasks in Swahili directly. Second, the
few-shot training data for non-English languages
is machine-translated (§4). With better few-shot
translations and in-language expertise, prompting
possibly could achieve even better results.

Overall, the experimental results show that di-
rectly prompting PLMs with non-English lan-
guages is also an effective way of solving NLU
tasks in low-resource regimes.

6 Conclusion

We showed that prompting performs better than
finetuning in few-shot crosslingual transfer and in-
language training of multilingual natural language
inference. We hope our results will encourage more
research about prompting multilingual tasks and
models.

Future work may explore using text-to-text mod-
els like T5 (Raffel et al., 2020) or other autoregres-
sive PLMs (Lewis et al., 2020). Investigating PLMs
containing even more parameters is also promising
as shown by Lester et al. (2021).
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A Reproducibility Checklist

A.1 Model architecture and number of
parameters

We use the xlm-roberta-base model (Con-
neau et al., 2020). It contains 12 Transformer
blocks with 768 hidden dimensions. Each block
has 12 attention heads. Vocabulary size is 250K.
Overall the model has 270M parameters and was
pretrained on the on 2.5 TB of newly created clean
CommonCrawl data in 100 languages.

Following Liu et al. (2021), we employ a bidirec-
tional LSTM in SP and MP. The hidden dimension
is also 768 so the number of LSTM parameters is
2 × 4 × (768 × 768 + 768 × 768 + 768) ≈10M.
Another MLP is used to project the concatina-
tion of LSTM states back to 768-dimension which
has (768 × 2 × 768 + 768) ≈1.2M. SP and MP
also have four learnable vectors vi resulting in
768× 4 = 3072 parameters.

A.2 Computing infrastructure

All experiments are conducted on GeForce GTX
1080Ti. For finetuning, we use batch size 32 and
4 GPUs. Because prompting uses the masked lan-
guage model objective so we use a maximum batch
size 24. A single GPU is used for 1-shot experi-
ments. Two and three GPUs are used for 2- and 4-
shot experiments. Other experiments use 6 GPUs.

A.3 Evaluation metrics

Our code is available at https://github.
com/mprompting/xlmrprompt. We use
the standard evaluation metric accuracy as Con-
neau et al. (2018). For finetuning, evaluation
script path is ./finetuning/utils/eval_
meters.py. For DP, evaluation script path
is ./pet/pet/trainers/meters.py. For
SP/MP, evaluation script path is ./sptuning/
pet/trainers/meters.py.

A.4 Hyperparameter search

We use the same learning rate (1e-5) as Le Scao
and Rush (2021) who compare prompting and fine-
tuning in English NLU tasks. No learning rate
scheduling is used for clear comparisons. For both
finetuning and prompting, the model is trained for
50 epochs and the checkpoint that performs best
on development set is selected for performance
evaluation.

Prompt Verbalizer

TR
DP P . Soru: H ? Cevap: . Entailment → Evet
SP P . H ? <v1>...<v4> . Contradict → hiçbir
MP P . Soru: H ? <v1>...<v4> Cevap: . Neutral → belki

SW
DP P . Swali: H ? Jibu: . Entailment → ndio
SP P . H ? <v1>...<v4> . Contradict → hasi
MP P . Swali: H ? <v1>...<v4> Jibu: . Neutral → labda

ZH
DP P . 问题： H ? 答案： . Entailment →是

SP P . H ? <v1>...<v4> . Contradict →否

MP P . 问题： H ? <v1>...<v4>答案： . Neutral →也许

Table 5: Prompts and verbalizers in Turkish (TR),
Swahili (SW), and Chinese (ZH).

Shots Method TR UR SW ZH

8
FT 32.71±0.61 32.83±0.29 32.80±0.56 33.31±0.27
DP 38.02±1.14 39.33±0.58 33.84±0.44 37.46±0.62
SP 35.41±0.30 34.59±0.26 33.47±0.34 34.39±0.25

16
FT 33.00±0.93 33.78±0.58 33.46±0.91 33.56±0.50
DP 39.39±0.81 40.58±0.67 34.48±0.86 42.24±2.66
SP 40.22±0.50 35.47±0.61 33.99±0.17 35.64±1.03

32
FT 37.15±1.78 34.23±0.85 34.52±1.20 35.38±0.47
DP 48.79±0.40 41.67±1.39 37.52±1.08 38.04±1.00
SP 43.62±0.67 39.18±1.09 36.00±1.23 35.13±0.75

64
FT 38.87±0.99 35.90±1.26 36.37±1.13 42.14±1.22
DP 48.97±0.56 42.34±0.91 37.72±0.81 44.73±0.86
SP 47.26±0.77 39.12±1.36 37.98±1.48 40.75±1.90

128
FT 40.84±1.45 36.23±0.19 36.81±1.85 43.16±0.95
DP 49.73±0.73 45.22±0.57 41.26±1.48 49.24±0.89
SP 47.68±0.68 40.96±1.23 40.42±1.53 47.17±0.54

256
FT 49.41±2.03 40.12±1.77 42.17±1.77 48.98±3.12
DP 52.61±1.34 46.10±0.40 47.69±1.12 53.11±0.61
SP 51.21±0.30 44.60±0.91 46.89±0.81 52.76±0.29

Table 6: In-language results in accuracy (%). Prompt-
ing (DP/SP) outperforms finetuning (FT). We report
mean and variance of 5 runs.

A.5 Datasets and preprocessing
We retrieve the MNLI and XNLI datasets from the
official websites: cims.nyu.edu/~sbowman/
multinli and cims.nyu.edu/~sbowman/
xnli. We use the tokenizer in the HuggingFace
framework (Wolf et al., 2020) to preprocess the
texts. In all experiments, the max sequence length
is 256.

B Translated Prompts

Table 5 shows the prompts and verbalizers used in
in-language experiments. We use Google Trans-
late but more specialized bilingual dictionaries can
also be used. For Urdu, we show the prompt and
verbalizer in the code repository.

C More Results

Table 6 and Table 7 show performances with vari-
ances.
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Abstract

Few-shot crosslingual transfer has been shown
to outperform its zero-shot counterpart with
pretrained encoders like multilingual BERT.
Despite its growing popularity, little to no at-
tention has been paid to standardizing and an-
alyzing the design of few-shot experiments.
In this work, we highlight a fundamental risk
posed by this shortcoming, illustrating that the
model exhibits a high degree of sensitivity to
the selection of few shots. We conduct a large-
scale experimental study on 40 sets of sampled
few shots for six diverse NLP tasks across up
to 40 languages. We provide an analysis of
success and failure cases of few-shot transfer,
which highlights the role of lexical features.
Additionally, we show that a straightforward
full model finetuning approach is quite effec-
tive for few-shot transfer, outperforming sev-
eral state-of-the-art few-shot approaches. As
a step towards standardizing few-shot crosslin-
gual experimental designs, we make our sam-
pled few shots publicly available.1

1 Introduction

Multilingual pretrained encoders like multilingual
BERT (mBERT; Devlin et al. (2019)) and XLM-
R (Conneau et al., 2020) are the top performers
in crosslingual tasks such as natural language in-
ference (Conneau et al., 2018), document clas-
sification (Schwenk and Li, 2018; Artetxe and
Schwenk, 2019), and argument mining (Toledo-
Ronen et al., 2020). They enable transfer learn-
ing through language-agnostic representations in
crosslingual setups (Hu et al., 2020).

A widely explored transfer scenario is zero-shot
crosslingual transfer (Pires et al., 2019; Conneau
and Lample, 2019; Artetxe and Schwenk, 2019),

* Equal contribution.
1Code and resources are available at https://github.

com/fsxlt

where a pretrained encoder is finetuned on abun-
dant task data in the source language (e.g., English)
and then directly evaluated on target-language test
data, achieving surprisingly good performance (Wu
and Dredze, 2019; Hu et al., 2020). However, there
is evidence that zero-shot performance reported in
the literature has large variance and is often not re-
producible (Keung et al., 2020a; Rios et al., 2020);
the results in languages distant from English fall far
short of those similar to English (Hu et al., 2020;
Liang et al., 2020).

Lauscher et al. (2020) stress the importance of
few-shot crosslingual transfer instead, where the
encoder is first finetuned on a source language
and then further finetuned with a small amount
(10–100) of examples (few shots) of the target lan-
guage. The few shots substantially improve model
performance of the target language with negligi-
ble annotation costs (Garrette and Baldridge, 2013;
Hedderich et al., 2020).

In this work, however, we demonstrate that the
gains from few-shot transfer exhibit a high degree
of sensitivity to the selection of few shots. For
example, different choices for the few shots can
yield a performance variance of over 10% accuracy
in a standard document classification task. Mo-
tivated by this, we propose to fix the few shots
for fair comparisons between different crosslingual
transfer methods, and provide a benchmark resem-
bling the standard “N -wayK-shot” few-shot learn-
ing configuration (Fei-Fei et al., 2006; Koch et al.,
2015). We also evaluate and compare several state-
of-the-art (SotA) few-shot finetuning techniques,
in order to understand their performance and sus-
ceptibility to the variance related to few shots.

We also demonstrate that the effectiveness of
few-shot crosslingual transfer depends on the type
of downstream task. For syntactic tasks such as
named-entity recognition, the few shots can im-
prove results by up to ≈20 F1 points. For chal-
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lenging tasks like adversarial paraphrase identifica-
tion, the few shots do not help and even sometimes
lead to worse performance than zero-shot transfer.
To understand these phenomena, we conduct addi-
tional in-depth analyses, and find that the models
tend to utilize shallow lexical hints (Geirhos et al.,
2020) in the target language, rather than leverag-
ing abstract crosslingual semantic features learned
from the source language.

Our contributions: 1) We show that few-shot
crosslingual transfer is prone to large variations in
task performance; this property hinders unbiased
assessments of the effectiveness of different few-
shot methods. 2) To remedy this issue, we publish
fixed and standardized few shots to support fair
comparisons and reproducibility. 3) We empiri-
cally verify that few-shot crosslingual transfer has
different performance impact on structurally differ-
ent tasks; we provide in-depth analyses concerning
the source of performance gains. 4) We analyze
several SotA few-shot learning methods, and show
that they underperform simple full model finetun-
ing. We hope that our work will shed new light
on the potential and current difficulties of few-shot
learning in crosslingual setups.

2 Background and Related Work

Zero-/Few-Shot Crosslingual Transfer. Multi-
lingual pretrained encoders show strong zero-shot
crosslingual transfer (ZS-XLT) ability in various
NLP tasks (Pires et al., 2019; Hsu et al., 2019;
Artetxe and Schwenk, 2019). In order to guide
and measure the progress, standardized bench-
marks like XTREME (Hu et al., 2020) and XGLUE
(Liang et al., 2020) have been developed.

Recently, Lauscher et al. (2020) and Hedderich
et al. (2020) extended the focus on few-shot
crosslingual transfer (FS-XLT): They assume the
availability of a handful of labeled examples in a
target language,2 which are used to further finetune
a source-trained model. The extra few shots bring
large performance gains at low annotation cost. In
this work, we systematically analyze this recent
FS-XLT scenario.

FS-XLT resembles the intermediate-task trans-
fer (STILT) approach (Phang et al., 2018; Pruk-
sachatkun et al., 2020). In STILT, a pretrained
encoder is finetuned on a resource-rich intermedi-

2According to Garrette and Baldridge (2013), it is possible
to collect ≈100 POS-annotated sentences in two hours even
for low-resource languages such as Malagasy.

ate task, and then finetuned on a (resource-lean)
target task. Likewise, FS-XLT focuses on transfer-
ring knowledge and general linguistic intelligence
(Yogatama et al., 2019), although such transfer is
between languages in the same task instead of be-
tween different tasks.

Few-shot learning was first explored in com-
puter vision (Miller et al., 2000; Fei-Fei et al., 2006;
Koch et al., 2015); the aim there is to learn new
concepts with only few images. Methods like pro-
totypical networks (Snell et al., 2017) and model-
agnostic meta-learning (MAML; Finn et al. (2017))
have also been applied to many monolingual (typi-
cally English) NLP tasks such as relation classifi-
cation (Han et al., 2018; Gao et al., 2019), named-
entity recognition (Hou et al., 2020a), word sense
disambiguation (Holla et al., 2020), and text clas-
sification (Yu et al., 2018; Yin, 2020; Yin et al.,
2020; Bansal et al., 2020; Gupta et al., 2020). How-
ever, recent few-shot learning methods in computer
vision consisting of two simple finetuning stages,
first on base-class images and then on new-class
few shots, have been shown to outperform MAML
and achieve SotA scores (Wang et al., 2020; Chen
et al., 2020; Tian et al., 2020; Dhillon et al., 2020).
Inspired by this work, we compare various few-
shot finetuning methods from computer vision in
the context of FS-XLT.

Task Performance Variance. Deep neural net-
works’ performance on NLP tasks is bound to ex-
hibit large variance. Reimers and Gurevych (2017)
and Dror et al. (2019) stress the importance of re-
porting score distributions instead of a single score
for fair(er) comparisons. Dodge et al. (2020), Mos-
bach et al. (2021), and Zhang et al. (2021) show
that finetuning pretrained encoders with different
random seeds yields performance with large vari-
ance. In this work, we examine a specific source
of variance: We show that the choice of the few
shots in crosslingual transfer learning also intro-
duces large variance in performance; consequently,
we offer standardized few shots for more controlled
and fair comparisons.

3 Method

Following Lauscher et al. (2020) and Hedderich
et al. (2020), our FS-XLT method comprises two
stages. First, we conduct source-training: The
pretrained mBERT is finetuned with abundant an-
notated data in the source language. Similar to
Hu et al. (2020), Liang et al. (2020) and due to
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Name Metric Task |T | TS # of lang.
XNLI Acc. Natural language inference 3 No 15

PAWSX Acc. Paraphrase identification 2 No 7
MLDoc Acc. News article classification 4 Yes 8
MARC Acc. Amazon reviews 5 Yes 6

POS F1 Part-of-speech tagging 17 Yes 29
NER F1 Named-entity recognition 7 Yes 40

Table 1: Evaluation datasets. |T |: Number of classes
(classification tasks) and label set size (POS and NER).
TS: availability of a training split in the target language.

the abundant labeled data for many NLP tasks, we
choose English as the source in our experiments.
Directly evaluating the source-trained model af-
ter this stage corresponds to the widely studied
ZS-XLT scenario. The second stage is target-
adapting: The source-trained model from previ-
ous stage is adapted to a target language using few
shots. We discuss details of sampling the few shots
in §4. The development set of the target language
is used for model selection in this stage.

4 Experimental Setup

We consider three types of tasks requiring vary-
ing degrees of semantic and syntactic knowledge
transfer: Sequence classification (CLS), named-
entity recognition (NER), and part-of-speech tag-
ging (POS) in up to 40 typologically diverse lan-
guages (cf., Appendix §B).

4.1 Datasets and Selection of Few Shots

For the CLS tasks, we sample few shots from
four multilingual datasets: News article classifi-
cation (MLDoc; Schwenk and Li (2018)); Ama-
zon review classification (MARC; Keung et al.
(2020b)); natural language inference (XNLI; Con-
neau et al. (2018); Williams et al. (2018)); and
crosslingual paraphrase adversaries from word
scrambling (PAWSX; Zhang et al. (2019); Yang
et al. (2019)). We use treebanks in Universal
Dependencies (Nivre et al., 2020) for POS, and
WikiANN dataset (Pan et al., 2017; Rahimi et al.,
2019) for NER. Table 1 reports key information
about the datasets.

We adopt the conventional few-shot sampling
strategy (Fei-Fei et al., 2006; Koch et al., 2015;
Snell et al., 2017), and conduct “N -way K-shot”
sampling from the datasets; N is the number of
classes and K refers to the number of shots per
class. A group of N -way K-shot data is referred
to as a bucket. We set N equal to the number of
labels |T |. Following Wang et al. (2020), we sam-
ple 40 buckets for each target (i.e., non-English)

language of a task to get a reliable estimation of
model performance.

CLS Tasks. For MLDoc and MARC, each lan-
guage has a train/dev/test split. We sample the
buckets without replacement from the training set
of each target language, so that buckets are dis-
joint from each other. Target languages in XNLI
and PAWSX only have dev/test splits. We sam-
ple the buckets from the dev set; the remaining
data serves as a single new dev set for model selec-
tion during target-adapting. For all tasks, we use
K ∈ {1, 2, 4, 8}.

POS and NER. For the two structured predic-
tion tasks, “N -way K-shot” is not well-defined be-
cause each sentence contains one or more labeled
tokens. We use a similar sampling principle as with
CLS, where N is the size of the label set for each
language and task, but K is set to the minimum
number of occurrences for each label. In particu-
lar, we utilize the Minimum-Including Algorithm
(Hou et al., 2020b,a) to satisfy the following criteria
when sampling a bucket: 1) each label appears at
least K times, and 2) at least one label will appear
less than K times if any sentence is removed from
the bucket. Appendix §C gives sampling details.
In contrast to sampling for CLS, we do not enforce
samples from different buckets to be disjoint due
to the small amount of data in some low-resource
languages. We only use K ∈ {1, 2, 4} and ex-
clude K = 8, as 8-shot buckets already have lots
of labeled tokens, and thus (arguably) might not be
considered few-shot.

4.2 Training Setup

We use the pretrained cased mBERT model (Devlin
et al., 2019), and rely on the PyTorch-based (Paszke
et al., 2019) HuggingFace Transformers repository
(Wolf et al., 2019) in all experiments.

For source-training, we finetune the pretrained
encoder for 10 epochs with batch size 32. For
target-adapting to every target language, the few-
shot data is a sampled bucket in this language,
and we finetune on the bucket for 50 epochs with
early-stopping of 10 epochs. The batch size is
set to the number of shots in the bucket. Each
target-adapting experiment is repeated 40 times us-
ing the 40 buckets. We use the Adam optimizer
(Kingma and Ba, 2015) with default parameters
in both stages with learning rates searched over
{1e−5, 3e−5, 5e−5, 7e−5}. For CLS tasks, we
use mBERT’s [CLS] token as the final represen-
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Figure 1: Histograms of dev set accuracies. Top: 40
runs with different random seeds. Bottom: 40 runs with
different 1-shot buckets. Left: DE MARC. Right: ES
MLDoc. The variance due to buckets is larger.

tation. For NER and POS, following Devlin et al.
(2019), we use a linear classifier layer on top of the
representation of each tokenized word, which is its
last wordpiece (He and Choi, 2020).

We set the maximum sequence length to 128
after wordpiece tokenization (Wu et al., 2016), in
all experiments. Further implementation details
are shown in our Reproducibility Checklist in Ap-
pendix §A.

5 Results and Discussion

5.1 Source-Training Results

The ZS-XLT performance from English (EN) to
target languages of the four CLS tasks are shown in
the K = 0 column in Table 2. For NER and POS,
the results are shown in Figure 2.

For XTREME tasks (XNLI, PAWSX, NER,
POS), our implementation delivers results compa-
rable to Hu et al. (2020). For MLDoc, our results
are comparable to (Dong and de Melo, 2019; Wu
and Dredze, 2019; Eisenschlos et al., 2019). It is
worth noting that reproducing the exact results is
challenging, as suggested by Keung et al. (2020a).
For MARC, our zero-shot results are worse than
Keung et al. (2020b)’s who use the dev set of each
target language for model selection while we use
EN dev, following the common true ZS-XLT setup.

5.2 Target-Adapting Results

Variance of Few-Shot Transfer. We hypothesize
that FS-XLT suffers from large variance (Dodge
et al., 2020) due to the large model complexity
and small amount of data in a bucket. To test this
empirically, we first conduct two experiments on
MLDoc and MARC. First, for a fixed random seed,
we repeat 1-shot target-adapting 40 times using dif-
ferent 1-shot buckets in German (DE) and Spanish
(ES). Second, for a fixed 1-shot bucket, we repeat
the same experiment 40 times using random seeds

in {0 . . . 39}. Figure 1 presents the dev set perfor-
mance distribution of the 40 runs with 40 random
seeds (top) and 40 1-shot buckets (bottom).

With exactly the same training data, using differ-
ent random seeds yields a 1–2 accuracy difference
of FS-XLT (Figure 1 top). A similar phenomenon
has been observed in finetuning monolingual en-
coders (Dodge et al., 2020) and multilingual en-
coders with ZS-XLT (Keung et al., 2020a; Wu and
Dredze, 2020b; Xia et al., 2020); we show this ob-
servation also holds for FS-XLT. The key takeaway
is that varying the buckets is a more severe problem.
It causes much larger variance (Figure 1 bottom):
The maximum accuracy difference is ≈6 for DE
MARC and ≈10 for ES MLDoc. This can be due
to the fact that difficulty of individual examples
varies in a dataset (Swayamdipta et al., 2020), re-
sulting in different amounts of information encoded
in buckets.

This large variance could be an issue when com-
paring different few-shot learning algorithms. The
bucket choice is a strong confounding factor that
may obscure the strength of a promising few-shot
technique. Therefore, for fair comparison, it is nec-
essary to work with a fixed set of few shots. We
propose to fix the sampled buckets for unbiased
comparison of different FS-XLT methods. We pub-
lish the sampled buckets from the six multilingual
datasets as a fixed and standardized few-shot evalu-
ation benchmark.

In what follows, each FS-XLT experiment is re-
peated 40 times using 40 different buckets with
the same fixed random seed; we report mean and
standard deviation. As noted, the variance due to
random seeds is smaller (cf., Figure 1) and has
been well studied before (Reimers and Gurevych,
2017; Dodge et al., 2020). In this work, we thus fo-
cus our attention and limited computing resources
on understanding the impact of buckets, the newly
detected source of variance. However, we encour-
age practitioners to report results with both factors
considered in the future.

Different Numbers of Shots. A comparison
concerning the number of shots (K), based on the
few-shot results in Table 2 and Figure 2, reveals that
the buckets largely improve model performance on
a majority of tasks (MLDoc, MARC, POS, NER)
over zero-shot results. This is in line with prior
work (Lauscher et al., 2020; Hedderich et al., 2020)
and follows the success of work on using boot-
strapped data (Chaudhary et al., 2019; Sherborne
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K=0 K=1 K=2 K=4 K=8

M
L

D
oc

EN 96.88 - - - -
DE 88.30 90.36± 1.48 90.77± 0.87 91.85± 0.83 91.98± 0.82
FR 83.05 88.94± 2.46 89.71± 1.68 90.80± 0.88 91.01± 0.94
ES 81.90 83.99± 2.35 85.65± 1.60 86.30± 1.85 88.46± 1.90
IT 74.13 74.97± 2.04 75.29± 1.57 76.43± 1.41 78.12± 1.25
RU 72.33 77.40± 4.27 80.57± 1.37 81.33± 1.33 81.91± 1.21
ZH 84.38 87.18± 1.45 87.31± 1.53 88.33± 1.11 88.72± 1.05
JA 74.58 76.23± 1.59 76.71± 2.12 78.60± 2.43 81.17± 1.72

M
A

R
C

EN 64.52 - - - -
DE 49.62 51.50± 1.58 52.76± 0.87 52.78± 1.00 53.32± 0.59
FR 47.30 49.32± 1.34 49.70± 1.43 50.64± 0.94 51.23± 0.76
ES 48.44 49.72± 1.24 49.96± 1.12 50.45± 1.22 51.25± 0.93
ZH 40.40 43.19± 1.76 44.45± 1.36 45.40± 1.26 46.40± 0.93
JA 38.84 41.95± 2.09 43.63± 1.30 43.98± 0.89 44.44± 0.69

X
N

L
I

EN 82.67 - - - -
DE 70.32 70.58± 0.36 70.60± 0.34 70.61± 0.39 70.70± 0.50
FR 73.57 73.41± 0.48 73.74± 0.46 73.57± 0.49 73.77± 0.44
ES 73.71 73.84± 0.40 73.87± 0.44 73.74± 0.48 73.87± 0.46
RU 68.70 68.81± 0.52 68.76± 0.54 68.87± 0.55 68.81± 0.77
ZH 69.32 69.73± 0.94 69.75± 0.94 70.56± 0.76 70.62± 0.86
AR 64.97 64.75± 0.36 64.82± 0.23 64.82± 0.23 64.94± 0.37
BG 67.58 68.15± 0.69 68.19± 0.75 68.55± 0.67 68.32± 0.70
EL 65.67 65.64± 0.40 65.73± 0.36 65.80± 0.41 66.00± 0.53
HI 56.57 56.94± 0.82 57.07± 0.82 57.21± 1.14 57.82± 1.18
SW 48.08 50.33± 1.08 50.28± 1.24 51.08± 0.62 51.01± 0.79
TH 46.17 49.43± 2.60 50.08± 2.42 51.32± 2.07 52.16± 2.43
TR 60.40 61.02± 0.68 61.20± 0.61 61.35± 0.49 61.31± 0.56
UR 57.05 57.56± 0.85 57.83± 0.91 58.20± 0.93 58.67± 1.03
VI 69.82 70.04± 0.59 70.14± 0.75 70.23± 0.63 70.41± 0.70

PA
W

SX

EN 93.90 - - - -
DE 83.80 84.14± 0.40 84.08± 0.42 84.04± 0.47 84.23± 0.66
FR 86.90 87.07± 0.27 87.06± 0.37 87.03± 0.31 86.94± 0.41
ES 88.25 87.90± 0.54 87.80± 0.56 87.84± 0.53 87.85± 0.75
ZH 77.75 77.71± 0.37 77.63± 0.47 77.68± 0.51 77.82± 0.64
JA 73.30 73.78± 0.75 73.71± 1.04 73.48± 0.69 73.79± 1.28
KO 72.05 73.75± 1.30 73.11± 1.05 73.79± 0.92 73.31± 0.61

Table 2: Zero-shot (column K = 0) and few-shot
(columns K > 0) results (Acc. in %) on the test set
for CLS tasks. Green [red]: few-shot transfer outper-
forms [underperforms] zero-shot transfer.

et al., 2020).
In general, we observe that: 1) 1-shot buckets

bring the largest relative performance improvement
over ZS-XLT; 2) the gains follow the increase ofK,
but with diminishing returns; 3) the performance
variance across the 40 buckets decreases as K in-
creases. These observations are more pronounced
for POS and NER; e.g., 1-shot EN to Urdu (UR)
POS transfer shows gains of ≈22 F1 points (52.40
with zero-shot, 74.95 with 1-shot).

For individual runs, we observe that models in
FS-XLT tend to overfit the buckets quickly at small
K values. For example, in around 32% of NER 1-
shot buckets, the model achieves the best dev score
right after the first epoch; continuing the training
only degrades performance. Similar observations
hold for semantic tasks like MARC, where in 10
out of 40 DE 1-shot buckets, the dev set perfor-
mance peaks at epoch 1 (cf. learning curve in Ap-
pendix §D Figure 6). This suggests the necessity of
running the target-adapting experiments on multi-
ple buckets if reliable conclusions are to be drawn.

Different Downstream Tasks. The models for
different tasks present various levels of sensitiv-

ity to FS-XLT. Among the CLS tasks that require
semantic reasoning, FS-XLT benefits MLDoc the
most. This is not surprising given the fact that key-
word matching can largely solve MLDoc (Artetxe
et al., 2020a,b): A few examples related to target
language keywords are expected to significantly
improve performance. FS-XLT also yields promi-
nent gains on the Amazon review classification
dataset MARC. Similar to MLDoc, we hypothe-
size that just matching a few important opinion and
sentiment words (Liu, 2012) in the target language
brings large gains already. We provide further qual-
itative analyses in §5.4.

XNLI and PAWSX behave differently from
MLDoc and MARC. XNLI requires higher level
semantic reasoning on pairs of sentences. FS-
XLT performance improves modestly (XNLI) or
even decreases (PAWSX-ES) compared to ZS-
XLT, even with large K. PAWSX requires a
model to distinguish adversarially designed non-
paraphrase sentence pairs with large lexical over-
lap like “Flights from New York to Florida” and
“Flights from Florida to New York” (Zhang et al.,
2019). This poses a challenge for FS-XLT, given
the small amount of target language information
in the buckets. Therefore, when buckets are small
(e.g., K = 1) and for challenging semantic tasks
like PAWSX, the buckets do not substantially help.
Annotating more shots in the target language is an
intuitive solution. Designing task-specific pretrain-
ing/finetuning objectives could also be promising
(Klein and Nabi, 2020; Ram et al., 2021).

Unlike CLS tasks, POS and NER benefit from
FS-XLT substantially. We speculate that there are
two reasons: 1) Both tasks often require little to no
high-level semantic understanding or reasoning; 2)
due to i.i.d. sampling, train/dev/test splits are likely
to have overlapping vocabulary, and the labels in
the buckets can easily propagate to dev and test.
We delve deeper into these conjectures in §5.4.

Different Languages. For languages that are
more distant from EN, e.g., with different scripts,
small lexical overlap, or fewer common typological
features (Pires et al., 2019; Wu and Dredze, 2020a),
FS-XLT introduces crucial lexical and structural
information to guide the update of embedding and
transformer layers in mBERT.

We present several findings based on the NER
and POS results for a typologically diverse lan-
guage sample. Figure 2 shows that for languages
with non-Latin scripts (different from EN), despite
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Figure 2: Improvement in F1 (mean and standard deviation) of FS-XLT over ZS-XLT (numbers shown on x-
axis beneath each language) for NER (top) and POS (bottom) for three different bucket sizes. See Appendix §D
(Tables 12 and 13) for absolute numerical values.

Task Factor S P

NER
lexical overlap -0.34 -0.35

# of common linguistic features -0.37 -0.10

POS
lexical overlap -0.63 -0.50

# of common linguistic features -0.57 -0.54

Table 3: Correlations between FS-XLT F1 score gains
and the two factors (lexical overlap and the number of
common linguistic features with EN) when considered
independently for POS and NER: S/R denotes Spear-
man’s/Pearson’s ρ. See Footnotes 3, 4 for information
on the two factors.

their small to non-existent lexical overlap3 and di-
verging typological features (see Appendix §D Ta-
bles 9 and 14), the performance boosts are gen-
erally larger than those in the same-script target
languages: 6.2 vs. 3.0 average gain in NER and
11.4 vs. 5.4 in POS for K = 1. This clearly man-
ifests the large information discrepancy between
target-language buckets and source-language data.
EN data is less relevant to these languages, so
they obtain very limited gain from source-training,
reflected by their low ZS-XLT scores. With a
small amount of target-language knowledge in the
buckets, the performance is improved dramatically,
highlighting the effectiveness of FS-XLT.

Table 3 shows that, besides script form, lexical
overlap and the number of linguistic features com-

3We define lexical overlap as |V |L∩|V |EN

|V |EN
where V denotes

vocabulary. |V |L is computed with the 40 buckets of a target
language L.

mon with EN4 also contribute directly to FS-XLT
performance difference among languages: There is
a moderate negative correlation between F1 score
gains vs. the two factors when considered indepen-
dently for both syntactic tasks: The fewer over-
laps/features a target language shares with EN, the
larger the gain FS-XLT achieves.

This again stresses the importance of buckets –
they contain target-language-specific knowledge
about a task that cannot be obtained by ZS-XLT,
which solely relies on language similarity. Interest-
ingly, Pearson’s ρ indicates that common linguistic
features are much less linearly correlated with FS-
XLT gains in NER than in POS.

5.3 Importance of Source-Training

Table 4 reports the performance drop when directly
carrying out target-adapting, without any prior
source-training of mBERT. We show the scores
for MLDoc and PAWSX as a simple and a chal-
lenging CLS task, respectively. For NER and POS,
we select two high- (Russian (RU), ES), mid- (Viet-
namese (VI), Turkish (TR)), and low-resource lan-
guages (Tamil (TA), Marathi (MR)) each.5

The results clearly indicate that omitting the

4Following Pires et al. (2019), we use six WALS features:
81A (Order of Subject, Object and Verb), 85A (Order of Ad-
position and Noun), 86A (Order of Genitive and Noun), 87A
(Order of Adjective and Noun), 88A (Order of Demonstrative
and Noun), and 89A (Order of Numeral and Noun).

5The categorization based on resource availability is ac-
cording to WikiSize (Wu and Dredze, 2020a).
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MLDoc PAWSX POS NER
K=1 K=8 K=1 K=8 K=1 K=4 K=1 K=4

DE -37.73 -7.67 -31.11 -30.82 RU -15.89 -3.20 -48.19 -35.77
FR -38.14 -13.21 -33.02 -32.34 ES -9.51 -0.93 -63.98 -41.53
ES -33.69 -14.38 -33.76 -33.97 VI -7.82 -0.36 -54.41 -41.45
IT -33.63 -12.62 - - TR -15.05 -8.08 -54.35 -34.52
RU -30.66 -11.08 - - TA -13.72 -4.40 -34.70 -24.81
ZH -37.31 -12.57 -23.74 -23.65 MR -11.34 -3.63 -40.10 -25.68
JA -29.82 -14.32 -20.97 -20.82 - - - - -
KO - - -19.83 -19.68 - - - - -

Table 4: Performance drop when conducting target-
adapting without source-training.
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Figure 3: Normalized (with softmax) Jaccard index
(%) of a bucket (row) and the improved predictions
achieved with 10 buckets (column).

source-training stage yields large performance
drops. Even larger variance is also observed in
this scenario (cf. Appendix §D Table 11). There-
fore, the model indeed learns, when trained on the
source language, some transferable crosslingual
features that are beneficial to target languages, both
for semantic and syntactic tasks.

5.4 Importance of Lexical Features

We now investigate the sources of gains brought by
FS-XLT over ZS-XLT.

For syntactic tasks, we take Persian (FA) POS as
an example. Figure 3 visualizes the lexical overlap,
measured by the Jaccard index, of 10 1-shot buck-
ets (rows) and the improved word-label predictions
introduced by target-adapting on each of the buck-
ets (columns). In more detail, for column c, we
collect the set (denoted as Cc) of all test set words
whose label is incorrectly predicted by the zero-
shot model, but correctly predicted by the model
trained on the c-th bucket. For row i, we denote
with Bi the set of words occurring in bucket i. The
figure shows in cell (i, k) the Jaccard index of Bi

and Ck. The bright color (i.e., higher lexical over-
lap) on the diagonal reflects that the improvements
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Figure 4: Improvement of word-label predictions intro-
duced by a bucket (x-axis) in FA (top), UR (mid), and
HI (bottom), in relation to the words’ presence in the
bucket (True or False).
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Figure 5: MARC (5 classes) test set prediction confu-
sion matrices. Top: DE. Bottom: ZH. Left: zero-shot
models. Right: 1-shot models. Colorbar numbers rep-
resent the number of instances in that cell.

introduced by a bucket are mainly6 those word-
label predictions that are lexically more similar to
the bucket than to other buckets.

We also investigate the question: How many
word-label predictions that are improved after FS-
XLT occur in the bucket, i.e., in the training data?
Figure 4 plots this for the 40 1-shot buckets in FA,
UR, and Hindi (HI). We see that many test words
do occur in the bucket (shown in orange), in line
with recent findings (Lewis et al., 2021; Elangovan
et al., 2021). These analyses shed light on why
the buckets benefit NER/POS – which heavily rely
on lexical information – more than higher level
semantic tasks.

For the CLS task MARC, which requires un-

6Note that the sampled buckets for POS are not completely
disjoint (cf. sampling strategy in §4).
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token [SEP] . nicht ! Die sehr
∆Attn +4.13 +2.91 +1.84 -1.75 -0.92 -0.81

Table 5: Tokens with the highest attention change from
[CLS], comparing zero-shot with a 1-shot DE bucket.

derstanding product reviews, Figure 5 visualizes
the confusion matrices of test set predictions for
DE and Chinese (ZH) zero- and 1-shot models;
axis ticks are review scores in {1, 2, 3, 4, 5}. The
squares on the diagonals in the two left heatmaps
show that parameter initialization on EN is a good
basis for well-performing ZS-XLT: This is particu-
larly true for DE, which is linguistically closer to
EN. Two extreme review scores – 1 (for DE) and
5 (for ZH) – have the largest confusions. The two
right heatmaps show that improvements brought
by the 1-shot buckets are mainly achieved by cor-
rectly predicting more cases of the two extreme
review scores: 2→ 1 (DE) and 4→ 5 (ZH). But
the more challenging cases (reviews with scores 2,
3, 4), which require non-trivial reasoning, are not
significantly improved, or even become worse.

We inspect examples that are incorrectly pre-
dicted by the few-shot model (predicting 1), but are
correctly predicted by the zero-shot model (predict-
ing 2). Specifically, we compute the difference of
where [CLS] attends to, before and after adapting
the model on a 1-shot DE bucket. We extract and
average attentions computed by the 12 heads from
the topmost transformer layer.

Table 5 shows that “nicht” (“not”) draws high
attention change from [CLS]. “Nicht” (i.e., nega-
tion) by itself is not a reliable indicator of senti-
ment, so giving the lowest score to reviews solely
because they contain “nicht” is not a good strategy.
The following review is classified as 1 by the 1-shot
model, but 2 is the gold label (as the review is not
entirely negative):

“Die Uhr ging nicht einmal eine Minute ... Op-
tisch allerdings sehr schön.” (“The clock didn’t even

work one minute ... Visually, however, very nice.”)

Pretrained multilingual encoders are shown to
learn and store “language-agnostic” features (Pires
et al., 2019; Zhao et al., 2020); §5.3 shows that
source-training mBERT on EN substantially ben-
efits other languages, even for difficult semantic
tasks like PAWSX. Conditioning on such language-
agnostic features, we expect that the buckets should
lead to good understanding and reasoning capabili-
ties for a target language. However, plain few-shot
finetuning still relies heavily on unintended shallow

lexical cues and shortcuts (Niven and Kao, 2019;
Geirhos et al., 2020) that generalize poorly. Other
open research questions for future work arise: How
do we overcome this excessive reliance on lexical
features? How can we leverage language-agnostic
features with few shots? Our standardized buckets,
baseline results, and analyses are the initial step to-
wards researching and answering these questions.

5.5 Target-Adapting Methods
SotA few-shot learning methods (Chen et al., 2019;
Wang et al., 2020; Tian et al., 2020; Dhillon et al.,
2020) from computer vision consist of two stages:
1) training on base-class images, and 2) few-shot
finetuning using new-class images. Source-training
and target-adapting stages of FS-XLT, albeit among
languages, follow an approach very similar to these
methods. Therefore, we test their effectiveness
for crosslingual transfer. These methods are built
upon cosine similarity that imparts inductive bias
about distance and is more effective than a fully-
connected classifier layer (FC) with smallK (Wang
et al., 2020). Following (Chen et al., 2019; Wang
et al., 2020; Tian et al., 2020), we freeze the em-
bedding and transformer layers of mBERT, and
explore four variants of the target-adapting stage
using MARC.

COS+Pooler. We randomly initialize a train-
able weight matrix W ∈ Rh×c where h is the hid-
den dimension size and c is the number of classes.
Rewriting W as [w1, . . . ,wi, . . . ,wc], we com-
pute the logits of an input sentence representation
x ∈ Rh (from mBERT) belonging to class i as

α · xᵀwi

‖x‖2 · ‖wi‖2
,

where α is a scaling hyperparameter, set to 10 in
all experiments. During training, W and mBERT’s
pooler layer containing a linear layer and a tanh
non-linearity are updated.

FC+Pooler. During training, we update the lin-
ear classifier layer and mBERT’s pooler layer.

FC only. During training, we only update the
linear classifier layer. This variant largely reduces
model complexity and exhibit lower variance when
K is small.

FC(reset)+Pooler. Similar to FC+Pooler, but
the source-trained linear classifier layer is randomly
re-initialized before training.

Table 6 shows the performance of these methods
along with full model finetuning (without freez-
ing). FC+Pooler performs the best among the

94



Full-Model Finetuning FC only FC + Pooler COS + Pooler FC (reset) + Pooler
K=0 K=1 K=8 K=1 K=8 K=1 K=8 K=1 K=8 K=1 K=8

DE 49.62 51.50± 1.58 53.32± 0.59 50.82± 1.17 52.58± 0.63 51.18± 1.13 53.17± 0.58 37.98± 5.53 45.85± 2.14 38.52± 6.64 49.46± 2.21
FR 47.30 49.32± 1.34 51.23± 0.76 48.19± 0.78 49.05± 0.93 48.60± 1.02 49.97± 0.77 39.93± 3.50 44.41± 1.95 40.12± 5.04 47.77± 2.00
ES 48.44 49.72± 1.24 51.25± 0.93 49.03± 0.73 49.69± 0.57 49.28± 0.85 50.21± 0.63 40.01± 4.33 45.35± 2.37 40.89± 4.96 47.73± 2.33
ZH 40.40 43.19± 1.76 46.40± 0.93 41.90± 1.15 43.34± 0.88 42.30± 1.37 44.42± 0.65 33.10± 5.48 38.31± 1.87 31.83± 7.00 42.07± 2.19
JA 38.84 41.95± 2.09 44.44± 0.69 40.76± 1.76 43.14± 0.76 41.40± 1.74 43.81± 0.56 34.36± 4.19 38.95± 1.80 32.80± 5.17 41.18± 1.68

Table 6: Accuracy (%) on MARC when varying classifier head configurations. Full-Model Finetuning updates
all parameters during training; the other four methods only update a subset as described in §5.5. The best results
(excluding Full-Model Finetuning) are in bold.

four for both K = 1 and K = 8 in all lan-
guages. However, it underperforms the full model
finetuning, especially when K = 8. FC only is
sub-optimal; yet the decrease in comparison to
FC+Pooler is small, highlighting that EN-trained
mBERT is a strong feature extractor. COS+Pooler
and FC(reset)+Pooler perform considerably worse
than the other two methods and zero-shot transfer –
presumably because their new parameters need to
be trained from scratch with few shots.

We leave further exploration of other possibil-
ities of exploiting crosslingual features through
collapse-preventing regularization (Aghajanyan
et al., 2021) or contrastive learning (Gunel et al.,
2021) to future work. Integrating prompting
(Brown et al., 2020; Schick and Schütze, 2020;
Gao et al., 2020; Liu et al., 2021) – a strong per-
forming few-shot learning methodology for NLP
– into the crosslingual transfer learning pipeline is
also a promising direction.

6 Conclusion and Future Work

We have presented an extensive study of few-shot
crosslingual transfer. The focus of the study has
been on an empirically detected performance vari-
ance in few-shot scenarios: The models exhibit a
high level of sensitivity to the choice of few shots.
We analyzed and discussed the major causes of
this variance across six diverse tasks for up to 40
languages. Our results show that large language
models tend to overfit to few shots quickly and
mostly rely on shallow lexical features present
in the few shots, though they have been trained
with abundant data in English. Moreover, we have
empirically validated that state-of-the-art few-shot
learning methods in computer vision do not outper-
form a conceptually simple alternative: Full model
finetuning.

Our study calls for more rigor and accurate re-
porting of the results of few-shot crosslingual trans-
fer experiments. They should include score distri-
butions over standardized and fixed few shots. To

aid this goal, we have created and provided such
fixed few shots as a standardized benchmark for six
multilingual datasets.

Few-shot learning is promising for crosslingual
transfer, because it mirrors how people acquire new
languages, and that the few-shot data annotation is
feasible. In future work, we will investigate more
sophisticated techniques and extend the work to
more NLP tasks.
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A Reproducibility Checklist

A.1 mBERT Architecture and Number of
Parameters

We use the “bert-base-multilingual-cased” model7.
It contains 12 Transformer blocks with 768 hidden
dimensions. Each block has 12 self attention heads.
The model is pretrained on the concatenation of the
Wikipedia dump of 104 languages.

There are about 179 million parameters in
mBERT. For all the tasks, we use a linear output
layer. Denoting the output dimension of a task as
m, e.g., m = 2 for PAWSX. Then we have in total
179 million + 768×m + m parameters for the task.

A.2 Computing Infrastructure

All experiments are conducted on GeForce GTX
1080Ti. In the source-training stage, we use 4
GPUs with per-GPU batch size 32. In the target-
adapting stage, we use a single GPU and the batch
size is equal to the number of examples in a bucket.

A.3 Evaluation Metrics and Validation
Performance

We follow the standard evaluation metrics
used in XTREME (Hu et al., 2020) and
they are shown in Table 1; evaluation func-
tions in scikit-learn (Pedregosa et al.,
2011) and seqeval (https://github.com/
chakki-works/seqeval) are used. Link to code:
code/utils/eval meters.py.

The validation performance of the English-
trained models are shown in the first row of Table 7;
the optimal learning rate for each task is shown in
the second row.

MLDoc MARC XNLI PAWSX POS NER
98.1 65.1 83.5 94.5 95.6 84.3
1e-5 1e-5 3e-5 1e-5 1e-5 1e-5

Table 7: Source-training validation performance (%)
and the optimal learning rate.

For all the FS-XLT experiments, we enclosed the
validation scores in https://github.com/fsxlt/

running-logs.

A.4 Hyperparameter Search

For both source-training and target-adapting, the
only hyperparameter we search is learning rate
(from {1e− 5, 3e− 5, 5e− 5, 7e− 5}) to reduce

7https://github.com/google-research/
bert/blob/master/multilingual.md

Algorithm 1: Minimum-including
Require: # of shot K, language data D, label set LD
1: Initialize a bucket S = {}, Count`j = 0 (∀`j ∈ LD)
2: for ` in LD do

while Count` < K do
From D, randomly sample a

(x(i),y(i)) pair that y(i) includes `
Add (x(i),y(i)) to S
Update all Count`j (∀`j ∈ LD)

3: for each (x(i),y(i)) in S do
Remove (x(i),y(i)) from S
Update all Count`j (∀`j ∈ LD)
if any Count`j < K then

Put (x(i),y(i)) back to S
Update all Count`j (∀`j ∈ LD)

4: Return S

the sensitivity of our results to hyperparameter se-
lection.

A.5 Datasets and Preprocessing
For tasks (XNLI, PAWSX, POS, NER) covered
in XTREME (Hu et al., 2020), we utilize the
provided preprocessed datasets. Our MLDoc
dataset is obtained from https://github.com/

facebookresearch/MLDoc. We retrieve MARC
from docs.opendata.aws/amazon-reviews-ml/

readme.html. Table 8 shows example entries of
the datasets. It is worth noting that MARC is a
single sentence review classification task, however,
we put the “review title” and “product category” in
the “Text B” field, following Keung et al. (2020b).

We utilize the tokenizer in the HuggingFace
Transformers package (Wolf et al., 2019) to
preprocess all the texts. In all experiments, we use
128 maximum sequence length and truncate from
the end of a sentence if its length exceeds the limit.

B Languages

We work on 40 languages in total. They are shown
in Table 9, together with their ISO 639-1 codes,
writing script, and language features from WALs
(https://wals.info/) used in our experiments.

C Minimum-Including Algorithm

We utilize the Minimum-including Algorithm from
Hou et al. (2020a,b) for sampling the buckets of
POS and NER which have several labels in a sen-
tence. Denoting as x a sentence that consists of an
array of words (x1, . . . , xn), and the array y that
consists of a series of labels (y1, . . . , yn). We sam-
ple the buckets by using Algorithm 1. Note that we
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MARC
Text A Très mignons et de bonne qualité. La figurine est assez imposante mais conforme à la taille indiquée dans le descriptif.
Text B Jolis détails . home

XNLI
Text A Ich musste anfagen Seminare zu belegen .
Text B Ich brauchte keine Vorbereitung .

PAWSX
Text A Lo entrenó John Velázquez y en sus carreras más importantes lo montó el jinete Dale Romans.
Text B Lo entrenó John Velázquez, y el jinete Dale Romans lo montó en las carreras más importantes.

POS Text A (Lo,PRON), (sanno,VERB), (oramai,ADV), (quasi,ADV), (tutti,PRON), (che,SCONJ), (un,DET), (respiro,NOUN), (affannoso,ADJ) ...
NER Text A (Sempat,O), (pindah,O), (ke,O), (HJK,B-ORG), (dan,O), (1899,B-ORG), (Hoffenheim,I-ORG), (yang,O), (meminjamkannya,O), (ke,O) ...

Table 8: Example entries of the datasets. We convert the raw text to the mBERT format “Text A” and “Text B”
(Devlin et al., 2019). For POS and NER, we list (word, tag) pairs in the sentence. Following Schwenk and Li
(2018), we provide document indices of MLDoc for retrieving the documents from RCV1 and RCV2.

Language Writing Script
81A 85A 86A 87A 88A 89A

Order of Subject, Object and Verb Order of adposition and noun Order of genitive and noun Order of adjective and noun Order of demonstrative and noun Order of numeral and noun
English (EN) Latin SVO Prepositions No dominant order Adjective-noun Demonstrative-noun Numeral-noun

Afrikaans (AF) Latin - - - - - -
Arabic (AR) Arabic VSO Prepositions Noun-genetive Noun-adjective Demonstrative-noun Numeral-noun

Bulgarian (BG) Cyrillic SVO Prepositions No dominant order Adjective-noun Demonstrative-noun Numeral-noun
Bengali (BN) Brahmic SOV - - - - -
German (DE) Latin No dominant order Prepositions Noun-genetive Adjective-noun Demonstrative-noun Numeral-noun
Greek (EL) Greek No dominant order Prepositions Noun-genetive Adjective-noun Demonstrative-noun Numeral-noun

Spanish (ES) Latin SVO Prepositions Noun-genetive Noun-adjective Demonstrative-noun Numeral-noun
Estonian (ET) Latin SVO Postpositions Genetive-noun Adjective-noun Demonstrative-noun Numeral-noun
Basque (EU) Latin SOV Postpositions Genetive-noun Noun-adjective Noun-demonstrative Numeral-noun
Persian (FA) Perso-Arabic SOV Prepositions Noun-genetive Noun-adjective Demonstrative-noun Numeral-noun
Finnish (FI) Latin SVO Postpositions Genetive-noun Adjective-noun Demonstrative-noun Numeral-noun
French (FR) Latin SVO Prepositions Noun-genetive Noun-adjective Demonstrative-noun Numeral-noun
Hebrew (HE) Hebrew SVO Prepositions Noun-genetive Noun-adjective Noun-demonstrative Numeral-noun

Hindi (HI) Devanagari SOV Postpositions Genetive-noun Adjective-noun Demonstrative-noun Numeral-noun
Hungarian (HU) Latin No dominant order Postpositions Genetive-noun Adjective-noun Demonstrative-noun Numeral-noun
Indonesian (ID) Latin SVO Prepositions Noun-genetive Noun-adjective Noun-demonstrative Numeral-noun

Italian (IT) Latin SVO Prepositions Noun-genetive Noun-adjective Demonstrative-noun Numeral-noun
Japanese (JA) Ideograms SOV Postpositions Genetive-noun Adjective-noun Demonstrative-noun Numeral-noun
Javanese (JV) Latin - - - - - -
Georgian (KA) Georgian SOV Postpositions Genetive-noun Adjective-noun Demonstrative-noun Numeral-noun
Kazakh (KK) Cyrillic - - - - - -
Korean (KO) Hangul SOV Postpositions Genetive-noun Adjective-noun Demonstrative-noun Numeral-noun

Malayalam (ML) Brahmic SOV - Genetive-noun Adjective-noun Demonstrative-noun Numeral-noun
Marathi (MR) Devanagari SOV Postpositions Genetive-noun Adjective-noun Demonstrative-noun Numeral-noun
Malay (MS) Latin - - - - - -

Burmese (MY) Brahmic SOV Postpositions Genetive-noun Noun-adjective Demonstrative-noun Noun-numeral
Dutch (NL) Latin No dominant order Prepositions Noun-genetive Adjective-noun Demonstrative-noun Numeral-noun

Portuguese (PT) Latin SVO Prepositions Noun-genetive Noun-adjective Demonstrative-noun -
Russian (RU) Cyrillic SVO Prepositions Noun-genetive Adjective-noun Demonstrative-noun Numeral-noun
Swahili (SW) Latin SVO Prepositions Noun-genetive Noun-adjective Noun-demonstrative Noun-numeral
Tamil (TA) Brahmic SOV Postpositions Genetive-noun Adjective-noun Demonstrative-noun Numeral-noun
Telugu (TE) Brahmic SOV Postpositions Genetive-noun Adjective-noun Demonstrative-noun Numeral-noun
Thai (TH) Brahmic SVO Prepositions Noun-genetive Noun-adjective Noun-demonstrative Noun-numeral

Tagalog (TL) Latin VSO - Noun-genetive No dominant order Mixed Numeral-noun
Turkish (TR) Latin SOV Postpositions Genetive-noun Adjective-noun Demonstrative-noun Numeral-noun
Urdu (UR) Perso-Arabic SOV Postpositions Genetive-noun Adjective-noun Demonstrative-noun Numeral-noun

Vietnamese (VI) Latin SVO Prepositions Noun-genetive Noun-adjective Noun-demonstrative Numeral-noun
Yoruba (YO) Latin SVO Prepositions Noun-genetive Noun-adjective Noun-demonstrative Noun-numeral
Chinese (ZH) Chinese ideograms SVO No dominant order Genetive-noun Adjective-noun Demonstrative-noun Numeral-noun

Table 9: All languages for the experiments along with their ISO 639-1 codes, writing script, and linguistic features.
“-” denotes lacking feature information from WALS.

sample with replacement for POS and NER.

D Additional Results

D.1 Learning Curve
Figure 6 visualizes the averaged learning curve
of 10 out of 40 German 1-shot MARC buckets
for which the best dev performance is obtained at
epoch 1.

D.2 Numerical Values
The numerical values of the POS and NER FS-XLT
results are shown in Table 13 and Table 12. The
absolute performances of few-shot transfer without
English source-training are shown in Table 11. The
lexical overlap of target languages with EN for
NER and POS is shown in Table 14.

292 584 78 27 19 526 361 43 31 40
45 630 250 64 11 176 554 162 80 28
24 259 497 196 24 65 298 369 218 50
4 69 237 525 165 22 87 176 471 244
6 25 75 357 537 16 27 42 245 670

599 316 36 33 16 570 262 45 56 67
255 543 112 70 20 269 416 126 125 65
136 401 266 174 23 143 284 219 270 84
60 262 283 322 73 63 163 190 395 189
38 83 127 462 290 32 39 59 314 555

Table 10: Numerical value of the confusion matrices
in Figure 5. For 1-shot confusion matrices (right), we
average results of 5 buckets and then round to integers.
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MLDoc PAWSX POS NER
K=1 K=8 K=1 K=8 K=1 K=4 K=1 K=4

DE 52.63± 8.98 84.31± 3.60 53.03± 1.67 53.41± 1.47 RU 73.18± 4.42 86.65± 1.32 19.11± 6.94 35.57± 6.23
FR 50.80± 8.50 77.80± 4.44 54.05± 1.33 54.60± 0.97 ES 80.54± 4.17 90.26± 0.99 15.21± 5.98 39.37± 5.33
ES 50.30± 8.30 74.08± 6.48 54.14± 1.53 53.88± 1.72 VI 56.97± 5.16 72.00± 1.99 14.36± 4.28 29.63± 5.55
IT 41.34± 6.82 65.50± 4.21 - - TR 48.96± 3.15 59.65± 1.83 15.02± 5.58 37.81± 5.63
RU 46.74± 9.48 70.83± 5.63 - - TA 49.12± 4.67 64.96± 2.16 13.11± 4.55 27.42± 4.82
ZH 49.87± 10.44 76.15± 5.10 53.97± 1.79 54.17± 1.38 MR 60.26± 5.72 73.58± 2.39 15.68± 7.09 33.50± 6.02
JA 46.41± 6.59 66.85± 6.54 52.81± 0.96 52.97± 1.15 - - - - -
KO - - 53.92± 0.78 53.63± 0.99 - - - - -

Table 11: Target-adapting results without source-training. Numbers are mean and standard deviation of 40 runs.

K=0 K=1 K=2 K=4
EN 95.39 - - -
AF 86.60 91.10± 1.11 92.12± 1.15 93.50± 0.56
AR 66.55 75.64± 1.09 77.01± 0.84 78.52± 0.67
BG 87.02 91.01± 0.97 91.97± 0.90 93.18± 0.56
DE 86.38 89.38± 0.90 90.21± 0.50 91.32± 0.43
EL 81.89 89.69± 1.05 90.53± 0.89 91.58± 0.72
ES 86.64 90.05± 1.01 91.19± 0.74 92.31± 0.52
ET 79.17 81.69± 1.09 83.05± 0.98 84.39± 0.56
EU 49.51 68.44± 2.47 71.94± 1.78 75.89± 1.20
FA 65.73 80.82± 2.14 82.81± 1.79 84.95± 1.16
FI 74.49 78.25± 1.22 79.65± 0.85 81.32± 0.82
FR 82.54 89.55± 1.08 90.84± 0.64 91.66± 0.60
HE 76.79 80.40± 1.42 82.42± 1.06 83.98± 0.83
HI 64.29 78.87± 1.26 80.80± 0.80 81.97± 0.92
HU 75.10 84.44± 1.40 86.31± 0.90 88.61± 0.67
ID 70.80 72.68± 1.08 73.64± 0.78 74.34± 0.75
IT 85.97 88.77± 0.87 89.93± 0.50 90.77± 0.59
JA 47.60 75.84± 1.68 78.46± 1.31 80.42± 0.98
KO 42.29 57.43± 1.36 59.92± 1.18 62.37± 1.22
MR 58.70 71.60± 2.52 74.89± 1.95 77.21± 1.77
NL 88.35 88.97± 0.73 89.55± 0.79 90.83± 0.54
PT 86.45 88.18± 0.70 88.98± 0.66 89.78± 0.38
RU 86.36 89.07± 0.76 89.85± 0.57 91.13± 0.51
TA 53.51 62.84± 2.69 66.30± 1.56 69.36± 1.13
TE 67.48 71.46± 2.58 75.72± 1.94 78.84± 1.44
TR 57.58 64.01± 1.53 66.02± 1.28 67.73± 0.82
UR 52.40 74.95± 2.15 78.53± 1.38 79.57± 1.24
VI 54.96 64.79± 2.33 69.39± 1.73 72.36± 1.51
ZH 63.01 74.15± 1.96 76.62± 1.39 79.42± 0.83

Table 12: Zero- (column K=0) and few- (columns
K>0) shot cross-lingual transfer results (%) on POS
test set.

K=0 K=1 K=2 K=4
EN 83.65 - - -
AF 78.36 79.07± 1.47 79.69± 1.40 80.24± 1.16
AR 39.91 54.44± 6.74 60.51± 4.30 63.61± 2.65
BG 78.59 78.65± 0.38 78.70± 0.39 78.87± 0.48
BN 64.17 66.37± 1.69 66.66± 1.57 65.98± 2.11
DE 79.00 79.33± 0.71 79.61± 0.76 79.74± 0.73
EL 75.20 74.93± 0.79 75.18± 0.95 75.40± 0.93
ES 77.16 79.19± 1.97 80.28± 1.71 80.90± 1.94
ET 71.88 72.58± 1.17 73.60± 1.65 74.60± 1.59
EU 55.35 59.60± 3.32 61.59± 3.84 64.68± 2.96
FA 40.73 59.20± 5.34 68.55± 4.04 71.13± 3.45
FI 68.43 71.43± 2.61 73.92± 2.44 75.81± 2.15
FR 80.38 80.54± 0.93 81.08± 0.85 81.22± 0.93
HE 56.36 58.24± 2.25 59.43± 2.29 60.27± 2.43
HI 65.84 67.16± 1.61 67.56± 2.18 68.29± 1.76
HU 71.28 72.23± 1.33 73.03± 1.44 74.14± 1.61
ID 60.10 77.87± 6.31 78.57± 4.14 81.07± 1.50
IT 80.30 80.68± 0.79 81.00± 0.92 80.90± 1.12
JA 7.16 20.71± 7.07 28.23± 5.32 32.93± 6.03
JV 61.18 67.80± 4.72 69.79± 3.37 72.12± 3.34
KA 61.26 61.62± 1.09 62.25± 1.56 63.68± 1.66
KK 40.29 50.42± 5.49 54.97± 6.81 62.94± 4.55
KO 46.50 47.25± 1.36 48.69± 1.82 51.76± 2.30
ML 46.77 47.83± 2.30 49.51± 3.01 51.41± 3.31
MR 54.70 55.78± 2.54 57.22± 2.43 59.18± 3.13
MS 68.61 71.04± 3.07 74.51± 4.28 76.25± 3.04
MY 42.45 43.55± 3.88 46.03± 4.48 47.81± 4.28
NL 82.77 82.73± 0.43 82.83± 0.54 82.82± 0.46
PT 79.28 79.89± 0.99 80.39± 0.98 80.49± 0.95
RU 65.20 67.30± 2.38 68.78± 2.73 71.34± 2.82
SW 68.36 71.07± 4.28 70.08± 3.15 74.33± 5.25
TA 46.12 47.81± 1.81 49.86± 2.99 52.23± 2.63
TE 50.02 52.57± 1.91 54.02± 2.65 55.75± 2.72
TH 1.53 4.56± 4.87 6.08± 4.88 5.87± 4.14
TL 69.23 72.34± 2.25 72.63± 2.43 73.55± 2.25
TR 65.78 69.37± 2.24 69.53± 2.07 72.33± 2.85
UR 40.77 58.48± 6.51 63.38± 4.88 66.49± 4.64
VI 64.67 68.77± 3.54 69.64± 3.63 71.08± 3.28
YO 35.48 53.55± 6.19 58.22± 5.47 65.46± 7.10
ZH 13.95 32.84± 7.10 40.34± 5.32 48.49± 4.30

Table 13: Zero- (column K=0) and few- (columns
K>0) shot cross-lingual transfer results (%) on NER
test set.
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Figure 6: Early stopped 1-shot transfer (EN → DE)
learning curve. The English-trained model overfits the
1-shot bucket quickly, showing decreasing dev perfor-
mance during training.

NER POS

K=1 K=2 K=4 K=1 K=2 K=4
AF 4.54 8.75 13.44 4.97 6.11 7.90
AR 0.65 0.95 1.57 3.51 4.49 5.30
BG 0.98 2.19 3.23 - - -
BN 0.39 0.77 0.80 - - -
DE 8.75 13.20 20.61 9.36 15.33 21.48
EL 1.45 1.84 3.59 1.96 2.87 3.04
ES 6.29 10.59 19.66 10.00 17.53 22.63
ET 4.80 5.96 11.24 5.81 9.22 13.17
EU 3.77 5.55 12.31 2.60 3.45 4.69
FA 0.27 0.44 1.01 0.37 0.37 0.41
FI 5.61 9.05 15.66 4.59 7.03 8.78
FR 6.26 10.83 19.01 15.60 25.23 37.39
HE 0.86 1.90 3.23 1.22 1.93 2.26
HI 0.95 1.16 1.99 0.44 0.27 0.51
HU 5.07 9.19 14.35 3.18 3.92 4.15
ID 5.34 9.82 16.94 9.39 13.78 21.75
IT 7.89 10.94 21.27 11.99 16.15 21.35
JA 1.75 2.02 2.14 2.60 3.68 5.00
JV 2.49 3.05 3.44 - - -
KA 1.99 4.00 5.78 - - -
KK 0.89 1.22 2.11 - - -
KO 1.48 1.54 3.32 2.33 3.85 5.67
ML 0.36 1.04 1.30 - - -
MR 0.53 0.56 0.71 0.24 0.24 0.24
MS 4.86 7.44 13.70 - - -
MY 0.21 0.36 0.42 - - -
NL 7.18 10.65 20.14 7.94 11.42 16.79
PT 6.29 11.00 19.13 8.88 13.38 20.13
RU 1.60 2.34 3.77 4.15 6.11 9.32
SW 5.90 8.10 12.37 - - -
TA 0.65 1.54 2.08 1.32 1.28 1.62
TE 0.77 0.80 1.19 0.20 0.20 0.20
TH 1.63 1.87 2.08 - - -
TL 4.83 8.96 14.98 - - -
TR 4.89 8.48 16.43 2.09 2.26 3.01
UR 0.30 0.27 0.68 0.74 1.35 2.16
VI 4.33 8.39 13.41 1.62 2.16 2.90
YO 1.90 2.58 2.88 - - -
ZH 1.81 1.99 2.14 3.04 4.86 7.33

Table 14: Lexical overlap (per-mille) of target lan-
guages with EN for NER and POS using different K-
shot buckets.
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Abstract

Vast efforts have been devoted to creating high-
performance few-shot learners, i.e., large-scale
pretrained language models (PLMs) that per-
form well with little downstream task train-
ing data. Training PLMs has incurred signif-
icant cost, but utilizing the few-shot learners
is still challenging due to their enormous size.
This work focuses on a crucial question: How
to make effective use of these few-shot learn-
ers? We propose LMTurk, a novel approach
that treats few-shot learners as crowdsourcing
workers. The rationale is that crowdsourcing
workers are in fact few-shot learners: They
are shown a few illustrative examples to learn
about a task and then start annotating. LMTurk
employs few-shot learners built upon PLMs as
workers. We show that the resulting annota-
tions can be utilized to train models that solve
the task well and are small enough to be deploy-
able in practical scenarios. Active learning is
integrated into LMTurk to reduce the amount of
queries made to PLMs, minimizing the compu-
tational cost of running PLM inference passes.
Altogether, LMTurk is an important step to-
wards making effective use of current PLMs.1

1 Introduction

Equipped with prolific linguistic features (Liu et al.,
2019; Tenney et al., 2019; Belinkov and Glass,
2019; Rogers et al., 2020) and rich world knowl-
edge (Petroni et al., 2019; Poerner et al., 2020;
Kassner et al., 2021), large-scale pretrained lan-
guage models (PLMs) have been shown to be ver-
satile: They are now basic building blocks (Bom-
masani et al., 2021) of systems solving diverse NLP
tasks in many languages (Wang et al., 2018, 2019;
Hu et al., 2020; Xu et al., 2020; Khashabi et al.,
2021; Park et al., 2021; Adelani et al., 2021).

Recent work shows that PLMs are effective
few-shot learners (Brown et al., 2020; Schick and
Schütze, 2021b; Gao et al., 2021; Tam et al., 2021)

1Resources are available at: github.com/lmturk
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Small model S predicts unlabelled data U.
Select data D from U with active learning.
LMTurkers A annotate and aggregate labels of D.
Training a new small model S.

Converting a PLM to LMTurker with few-shot gold data G of task T.

G

Figure 1: LMTurk overview; best viewed in color. We
few-shot adapt PLMs to task T (left) and then use them
as crowdsourcing workers in active learning. We show
that these PLM workers are effective in training a small
model S through a customized active learning loop
(right). LMTurk is a novel way to take advantage of
large-scale PLMs: It creates models small enough to be
deployed in resource-limited real-world settings.

through priming (Brown et al., 2020; Tsimpoukelli
et al., 2021) or prompting (Li and Liang, 2021; Liu
et al., 2021b; Lester et al., 2021; Zhao and Schütze,
2021). Developing few-shot learners is crucial be-
cause current NLP systems require much more data
than humans (Yin et al., 2020). Few-shot learners
tend to perform well; however, they still fall behind
systems trained with abundant data. Furthermore,
the enormous size of PLMs hinders their deploy-
ment in practice. For example, it is challenging
to fit the 11 billion T5-XXL (Raffel et al., 2020)
model on a single regular GPU.

Our goal in this paper is to devise methods that
make more effective use of current few-shot learn-
ers. This is crucial because an increasing number
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of gigantic few-shot learners are trained; how to use
them effectively is thus an important question. In
particular, we want an alternative to hard-to-deploy
huge models. At the same time, we want to take
full advantage of the PLMs’ strengths: Their versa-
tility ensures wide applicability across tasks; their
vast store of knowledge about language and the
world (learned in pretraining) manifests in the data
efficiency of few-shot learners, reducing labor and
time consumption in data annotation.

In this work, we propose LMTurk, Language
Model as mechanical Turk. Our basic idea (see
Figure 1) is that, for an NLP task T, we treat few-
shot learners as non-expert workers, resembling
crowdsourcing workers that annotate resources for
human language technology. We are inspired by the
fact that we can view a crowdsourcing worker as a
type of few-shot learner: A few examples demon-
strating T teach her enough about T to conduct ef-
fective annotation. For example, Snow et al. (2008)
train workers with a few examples of annotating
emotion; He et al. (2015) conduct short training
sessions for workers before annotation; Lee et al.
(2021) train workers with learning curricula.

Snow et al. (2008) pioneered crowdsourcing in
NLP (Howe et al., 2006; Howe, 2008), motivated
by the high cost of TreeBank annotation (Marcus
et al., 1993; Miller et al., 1993). Crowdsourcing
organizes human workers over the Web to annotate
data. Workers need not be experts to be effective,
resulting in reduced per-label cost. Active learning
(Hachey et al., 2005; Felder and Brent, 2009) can
be incorporated (Laws et al., 2011) to further de-
crease annotation cost, by lowering the number of
labels to be annotated. LMTurk treats PLM-based
few-shot learners as non-expert workers that pro-
duce training sets, which are then used to train a
small machine learning model S specialized for
T. This scenario is analogous to active learning.
We achieve two benefits: (i) low annotation cost
because humans only need to annotate a few shots
of data; (ii) solving practical NLP tasks with small
models that are more real-world deployable.

LMTurk resonates with Laws et al. (2011)’s ear-
lier idea of combining crowdsourcing and active
learning. They consider human workers as “noisy
annotators” while we explore the utilization of mod-
ern NLP few-shot learners (built upon machine
learning models) as workers – which have the ad-
vantage of being free, instantly interactive, fast,
responsive, and non-stopping.

Our contributions: (i) We propose LMTurk, a
method that uses few-shot learners as crowdsourc-
ing workers. Figure 1 shows the overview of LM-
Turk. (ii) We vary an array of important design
choices, identifying strengths and weaknesses of
LMTurk. (iii) Unlike much work on active learning
in a synthetic oracle setting, we develop methods
for handling the varying quality of annotation that
does not come from an oracle. (iv) We extensively
evaluate LMTurk on five datasets, showing that
LMTurk can guide a small model S to progres-
sively improve on T. S can then be deployed in
practical scenarios. (v) This is the first work show-
ing that few-shot learners give rise to effective NLP
models through crowdsourcing and active learning
– with the benefits of low annotation cost and prac-
tical deployability.

2 Related Work

Few-shot learners in NLP. Significant progress
has been made in developing (Devlin et al., 2019;
Peters et al., 2018; Yang et al., 2019; Brown
et al., 2020), understanding (Liu et al., 2019; Ten-
ney et al., 2019; Belinkov and Glass, 2019; He-
witt and Liang, 2019; Hewitt and Manning, 2019;
Zhao et al., 2020a; Rogers et al., 2020), and uti-
lizing (Houlsby et al., 2019; Zhao et al., 2020b;
Brown et al., 2020; Li and Liang, 2021; Schick
and Schütze, 2021a; Lester et al., 2021; Mi et al.,
2021a) PLMs. Brown et al. (2020), Schick and
Schütze (2021a), and Liu et al. (2021b) show that
PLMs can serve as data-efficient few-shot learners,
through priming or prompting (Liu et al., 2021a).
For example, GPT3 achieves near state-of-the-art
performance on COPA (Roemmele et al., 2011)
with only 32 annotated data.

However, little to no work discusses or explores
the actual practical utility of these few-shot learn-
ers. We aim to develop effective methods of utiliz-
ing them in practical scenarios.

Crowdsourcing has a long history in human
language technology (Alonso et al., 2008; Callison-
Burch, 2009; Trautmann et al., 2020); specialized
workshops were organized (Callison-Burch and
Dredze, 2010; Paun and Hovy, 2019). It has numer-
ous applications (Yuen et al., 2011), but we focus
on its application as voting systems. To reduce per-
label cost, crowdsourcing organizes non-expert hu-
man workers distributed across the Web for annota-
tion, instead of employing linguistic experts (Jami-
son and Gurevych, 2015; Bhardwaj et al., 2019;
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Nangia et al., 2021). Snow et al. (2008) show
that averaging ten crowdsourced labels matches
an expert-level label for recognizing textual entail-
ment (Dagan et al., 2006). Paun et al. (2018) show
that incorporating structure in annotation models is
important. Measuring label disagreements is also
crucial (Dumitrache et al., 2021).

LMTurk utilizes NLP few-shot learners as non-
expert workers. The few-shot training data can be
viewed as the examples shown to humans before
annotating. The process is free, fast, responsive,
and non-stopping.

Active learning (AL; Cohn et al. (1996); Settles
(2009)) strives to reduce the number of examples
to be annotated via identifying informative exam-
ples with acquisition functions. Settles and Craven
(2008) evaluate AL algorithms for sequence label-
ing. Zhang et al. (2017); Shen et al. (2017); Sid-
dhant and Lipton (2018) apply AL to deep neural
networks. Simpson and Gurevych (2018) devise
a scalable Bayesian preference learning method
for identifying convincing arguments. Lee et al.
(2020) propose to consider user feedback in AL
systems. Ein-Dor et al. (2020) explore AL for
BERT. Schröder and Niekler (2020) review text
classification with AL. Liang et al. (2020); Mar-
gatina et al. (2021) integrate contrastive learning
into AL. Zhang and Plank (2021) identify examples
with datamap (Swayamdipta et al., 2020).

We incorporate AL in LMTurk to reduce the
amount of examples to be annotated by PLMs, re-
ducing the computational cost of running several in-
ference passes. This contributes to a more environ-
mentally friendly (Strubell et al., 2019; Schwartz
et al., 2020; Patterson et al., 2021) scenario.

Perhaps closest to our work, Yoo et al. (2021)
conduct data augmentation via priming GPT3
and Wang et al. (2021) mix human- and GPT3-
annotated data, focusing on cost analysis. GPT3
is utilized in a Language-Model-as-a-Service form
by OpenAI, which is not free.2 Also, strategies
of priming GPT3 may not generalize well to other
PLMs. For example, priming strategies have to
adapt to GPT3’s maximum sequence length. How-
ever, maximum sequence length – as a hyperpa-
rameter – could vary across PLMs. In this work,
we prompt publicly available free PLMs. This also
makes the process more flexible; for example, the
PLM can be updated with gradient descent.

2https://beta.openai.com/pricing

3 LMTurk

3.1 Training few-shot learners
We first adapt a PLM to task T with a few-shot
human-labeled gold dataset G = {Gtrain;Gdev} of
T. This procedure mimics one of the initial but
crucial steps in crowdsourcing: A few example an-
notations are shown to the workers, demonstrating
T; workers learn about the task and then start anno-
tating (Snow et al., 2008; He et al., 2015; Roit et al.,
2020; Trautmann et al., 2020; Lee et al., 2021).

We achieve this adaptation through P-Tuning
(Liu et al., 2021b). Taking movie review classi-
fication as an example, the goal is to associate a
binary label y from {-1, +1} to an input sentence
x = (x1, ..., xn) where xi refers to a token. Un-
like finetuning and its variants (Devlin et al., 2019;
Houlsby et al., 2019; Zhao et al., 2020b) that train
a classifier head, P-Tuning reformulates a sentence
into a cloze-style query; the PLM is then requested
to respond to the query with an answer selected
from a list of candidates. Concretely, an input pair

(x, y) = (“watching it leaves you giddy.”, -1)

is reformulated to:

“[v] watching it leaves you giddy. It is [MASK] .”

in which the underlined tokens are prompting
words that give the model a hint about T. “[v]” –
whose trainable embedding vector is randomly ini-
tialized – is a prompting token injecting extra free
parameters. The PLM is then requested to pick a
word from {“bad”, “good”} to fill in the position of
“[MASK]”. A mapping {“bad”→ -1, “good”→ +1}
is used to transform the selected answer to a label
such that standard evaluation measures like accu-
racy can be computed. Prompting has been shown
to effectively adapt a PLM to T with only a few
annotations; see (Liu et al., 2021a) for a compre-
hensive review of prompting. We refer to a PLM
adapted to T as an LMTurker A.

We select prompting words and mappings based
on the small development set Gdev. §4.2 provides
details on prompting and datasets.

3.2 Aggregating annotations
Individual workers are subject to annotation bi-
ases (Snow et al., 2008); therefore, crowdsourcing
often collects labels from several workers (Yuen
et al., 2011) for an example x and then aggregates
them for quality control (Alonso et al., 2008). It
is straightforward to obtain a group of LMTurkers
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A = {A1, ..., Ak}, by adapting the PLM to T with
k different prompts. A querying sentence x is then
annotated by every LMTurker, resulting in a list
of labels y = [y1, ..., yk]. We evaluate different
methods aggregating y to a single label ŷ.

BestWorker. Among the k LMTurkers, we pick
the one performing best on the dev set Gdev.

MajorityVoting. We select the most frequent
label in y = [y1, ..., yk] as ŷ.

To estimate an LMTurker’s confidence on label
yi, we compare the logits3 computed by the PLM:

yi = argmax(logit(y1),..., logit(yN )),

where N refers to the label set size, e.g., N=2 for
y from {-1, +1}. We then can evaluate several
methods of aggregating annotations according to
PLM logits.

LogitVoting. We average the logits from all k
LMTurkers {A1, ..., Ak} to compute ŷ:

ŷ = argmax( 1
k

∑k
i=1 logit(y1i ),...,

1
k

∑k
i=1 logit(yNi )).

WeightedLogitVoting. We use LMTurkers’ per-
formance on Gdev to weight their logits and then
aggregate the predictions:

ŷ = argmax(
∑k

i=1 wilogit(y1i ),...,
∑k

i=1 wilogit(yNi ))

wi = f(Ai,Gdev)/
∑k

i=1 f(Ai,Gdev)

where f(Ai,Gdev) is the performance of the ith
LMTurker Ai on Gdev.

We collect and aggregate annotations from five
LMTurkers, i.e., we use k=5 in our experiments.

3.3 Training a small model S
After adapting LMTurkers to T through prompting
with the few-shot gold dataset G, we next train
a small model S specialized to solve T. Though
large PLMs are versatile and strong performers,
training and inference are faster and more efficient
for small models: They are more deployable in
resource-restricted scenarios, e.g., on edge devices
(Jiao et al., 2020).

We mimic pool-based active learning (AL; Set-
tles (2009)) to train S. The motivation is to avoid
frequent querying of LMTurkers A because energy
and time consumption of PLM inference is costly
when the number of queries and |A| are large.

Concretely, pool-based AL assumes a large col-
lection of unlabeled data U = {x1, ...,xM} for T.

3Calibration can be conducted to further improve the esti-
mation (Guo et al., 2017). We leave this to future work.

S is first trained with G = {Gtrain;Gdev}. After
that, a group of examples B from U is sampled
(c.f. §3.3.1), which LMTurkers annotate. Next, the
annotated and aggregated examples B′ are concate-
nated with G to train S . The procedure is repeated
iteratively, such that the training data for S keeps
expanding. We denote as Sj the model trained af-
ter the jth iteration. Note that S is trained from
scratch in each iteration (Cohn et al., 1994).

3.3.1 AL acquisition function

At the beginning of the jth iteration, a straightfor-
ward strategy of sampling B from U is random
sampling. AL promises to select a more informa-
tive B such that the trained Sj performs better, un-
der the same budget. These strategies – or acquisi-
tion functions – rely on Sj−1, i.e., S from the previ-
ous iteration: Sj−1 is employed to infer U to obtain
labels and logits Pj−1 = {(y1, c1), ..., (yM , cM )};
each ci contains the logits of the N labels; yi =
argmax(ci). We explore two common AL acquisi-
tion functions: Entropy (Roy and McCallum, 2001)
and LeastConfident (Lewis and Gale, 1994).

Entropy selects from Pj−1 examples with the
largest prediction entropy, computed using c. Large
entropy of an example x implies that Sj−1 is un-
sure about which label to select; x is then a query
made to LMTurkers to obtain its label ŷ. (x, ŷ) is
subsequently added to Gtrain for training Sj .

LeastConfident selects from Pj−1 examples for
which the maximum logit in c is the smallest. Se-
lected examples are then annotated and added to
Gtrain for training Sj .

Our AL setup is fairly standard, both in terms of
acquisition functions and iterative enlargement by
new sampled data B at iteration j labeled by Sj−1.

3.3.2 Considering annotation quality

As in any realistic AL scenario, annotations are not
perfect: LMTurkers do not score perfectly on T.
As a result, annotation quality of LMTurkers needs
to be taken into consideration before training Sj .
Denoting the training data of Sj as Dj , we explore
a strategy of processing Dj , based on LMTurker
logits l.

InstanceTresholding. We preserve examples
(x, ŷ, l) ∈ Dj for which entropy computed on l is
smallest. Gtrain is always preserved because it is
human-labeled gold data. Note that this is different
from the strategy of sampling B, where we select
from Pj−1 examples to which Sj−1 is most unsure
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(computed with c). We evaluate4 the effectiveness
of processing Dj before training Sj in §5.6.

3.4 Summary of LMTurk
LMTurk can be viewed as intermediate between
self training (Yarowsky, 1995; Abney, 2004; Lee
et al., 2013; Mi et al., 2021b) and AL. Unlike self
training, LMTurk employs external models provide
labels to S . Different from the artificial setup used
in many AL experiments, the provided labels do
not have oracle quality; so S must use the annota-
tions more carefully. We next conduct experiments
investigating the effectiveness of LMTurk.

4 Datasets and Setup

4.1 Dataset
We evaluate LMTurk on five datasets: Binary
(SST2) and fine-grained (five classes) sentiment
classification (SST5) with the Stanford Sentiment
TreeBank (Socher et al., 2013); news article topic
classification with the AG’s News Corpus (AG-
News; Zhang et al. (2015)); recognizing textual en-
tailment (RTE; Dagan et al. (2006)); assessing lin-
guistic acceptability (CoLA; Warstadt et al. (2019)).
Appendix §A reports dataset statistics. SST2/SST5
and AGNews are widely used in crowdsourcing
and AL (Laws et al., 2011; Ein-Dor et al., 2020;
Margatina et al., 2021; Zhang and Plank, 2021).
RTE and CoLA assess the models’ ability to un-
derstand textual entailment and linguistic phenom-
ena – as opposed to text categorization. We report
Matthew’s correlation coefficient for CoLA and
accuracy for the others (Wang et al., 2018).

Few-shot datasets. Recall LMTurk uses a small
human-annotated dataset G = {Gtrain;Gdev}. De-
noting n as the number of shots per class, we sam-
ple Gntrain and Gndev for each of n ∈ {8, 16, 32}.
For SST2, RTE, and CoLA, we use the train and
dev sets of GLUE (Wang et al., 2018); Gntrain and
Gndev are sampled from the train set; the dev set is
used as the test set. For SST5 and AGNews, we
use the official datasets; Gntrain (Gndev) is sampled
from the train (dev) set; we report performance on
the test set. We repeat the sampling process with
three random seeds.

4.2 Training setup
Brown et al. (2020) show that large model size is

4Motivated by Wang et al. (2017), we also investigate the
effectiveness of weighting training examples. However, we
do not observe noticeable improvements of task performance.
We list more details in Appendix §E.

Schick and Schütze (2021a,b) Gao et al. (2021) Ours

SST2 n/a 93.0±0.6 93.08±0.62
SST5 n/a 49.5±1.7 46.70±0.93
RTE 69.8 71.1±5.3 70.88±1.70

AGN. 86.3±0.0 n/a 87.71±0.07
CoLA n/a 21.8±15.9 19.71±1.89

Table 1: LMTurkers achieve comparable few-shot per-
formance with the literature. We refer to PET results
in Schick and Schütze (2021a,b) and results of Prompt-
based FT (auto) + demonstrations in Gao et al. (2021).

necessary for strong few-shot performance. We
use ALBERT-XXLarge-v2 (Lan et al., 2020) – of
size 223M parameters – as our large PLM, which is
adapted to be an LMTurkerA of T with G. With pa-
rameter reuse, ALBERT-XXLarge-v2 outperforms
larger models like the 334M BERT-large (Devlin
et al., 2019). In contrast, S must be small to be de-
ployable in practical scenarios. We use TinyBERT-
General-4L-312D (Jiao et al., 2020), which has
14.5M parameters.

We train – with prompting – the large PLM with
G for 100 batch steps using batch size 16, AdamW
(Loshchilov and Hutter, 2019) and learning rate
5e-4 with linear decay. We prompt the large PLM
five times to obtain five LMTurkers; Appendix §C
shows prompting details. At each iteration, we fine-
tune S for 20 epochs using batch size 32, Adam
(Kingma and Ba, 2015) and learning rate 5e-5.
Each experiment is run with three different ran-
dom seeds. We use PyTorch (Paszke et al., 2019)
and HuggingFace (Wolf et al., 2020).

5 Experiment

5.1 Few-shot performance (non-iterative)
We compare few-shot performance of LMTurkers
and the small model S when only G is used. LM-
Turker performance is comparable to prior work
(Schick and Schütze, 2021a,b; Gao et al., 2021) as
shown in Table 1.

Figure 2 compares performance of LMTurkers
and S. Appendix §B Table 3 reports numeric val-
ues. LMTurkers perform clearly better than S on
CoLA, SST5, AGNews, and SST2; e.g., for SST2,
for train/dev size 16, LMTurker accuracy is 93.08%
vs. 75.83% for S. LMTurkers’ superiority over S
on RTE is modest. As an inference task, RTE
is more challenging than classification (e.g., AG-
News). We hypothesize that current few-shot learn-
ers require more data than G32 to process difficult
tasks better than S . Scaling up to even larger PLMs
is also a promising direction (Brown et al., 2020;
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Figure 2: Few-shot test set performance of LMTurkers
and S . We use the few-shot gold datasets G8 (top), G16
(middle), and G32 (bottom).

Lester et al., 2021).
Overall, LMTurkers outperform S with clear

margins, evidencing that their annotations can
serve as supervisions for training S. We next con-
duct iterative training to improve performance of
S on T with supervisions from LMTurkers.

5.2 Iterative training
We investigate the effectiveness of LMTurk by sim-
ulating scenarios analogous to active learning. Con-
cretely, we compare three schemes of annotating
the sampled data B at each annotation iteration j:

• Active learning (AL). We use B’s gold labels
to show how S performs with expert annota-
tions. Gold labels are ideal, but costly because
expert annotators need to be employed.

• Self training (ST). We use Sj−1, the model
trained in the previous iteration, to annotate
B (Yarowsky, 1995; Abney, 2004; Lee et al.,

Figure 3: Improving S with active learning (blue), self
training (orange), and LMTurk (green). Free markers
at step zero show LMTurker performances; colors dis-
tinguish random seeds. Three acquisition functions are:
Entropy (•), LeastConfident (�), random sampling
($). At iteration j, each experiment is repeated
three times; we show mean and standard deviation.
Appendix Figure 9 visualizes more results.

2013). ST trades supervision quality for an-
notation cost; no extra cost is introduced. Be-
cause there is no external supervision, ST is
expected to be a baseline.

• LMTurk. We query the LMTurkers to anno-
tate B. LMTurkers are machine learning mod-
els, so there is no human labor. Based on the
findings in Figure 2, LMTurker supervisions
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are expected to have better quality than those
of ST. Yet LMTurk could fall behind AL be-
cause LMTurker labels are not gold labels.

When sampling B from U at each iteration j,
we consider the strategies described in §3.3. We
employ Random for all three schemes and En-
tropy/LeastConfident for AL/LMTurk. Entropy
and LeastConfident rely on Sj−1. Regarding the
number of sampled examples, we experiment with
|B|=100 and |B|=400 for SST2, SST5, AGNews,
CoLA. Due to RTE’s small size, we use |B|=20
and |B|=100. We run for 15 iterations of improv-
ing S. To aggregate annotations from LMTurkers,
we use MajorityVoting (§3.2), which is widely used
in crowdsourcing. See §5.3 for a comparison of
various aggregation methods.

Figure 3 compares AL, ST, and LMTurk. ST
(orange) noticeably helps S to perform progres-
sively better on AGNews, e.g., when comparing
S15 to S0 shown in the first row, especially when
|B|=400. However, we do not identify clear im-
provements when looking at other tasks. Except for
RTE-G8, ST clearly falls behind AL and LMTurk.
This inferior performance meets our expectation
because there is no external supervision assisting
S to perform better on T. In what follows, we omit
ST for clearer visualization and discussion.

AL (blue) performs the best in most experiments.
However, this comes with extra costs that are not
negligible: At each iteration, human annotators
need to annotate 100–400 sentences.

LMTurk (green) holds a position between AL
and ST on AGNews, SST2, SST5, and CoLA.
Somehow surprisingly, LMTurk performs almost
comparably to AL on SST2. Unlike AL, LMTurk
requires very little human labor; the only human
annotation throughout the entire process is the few-
shot gold dataset G. In contrast, AL has high human
annotation cost, e.g., 1000–4000 examples by iter-
ation ten. LMTurk also shows clear performance
improvements over ST.

Results on RTE are noisy; we conjecture this
is due to its very small test set (277 examples).
We do not observe performance improvement of
S along the iterations in experiment RTE-G32-
|B|=100, likely due to saturated task performance:
TinyBERT-General-4L-312D (S) achieves 66.6%
on RTE for the full train set (Jiao et al., 2020).

Comparing sampling strategies. Entropy (•)
and LeastConfident (�) outperform random sam-
pling ($) in AGNews and SST2 with noticeable

Figure 4: Comparing strategies of aggregating LM-
Turker annotations. We compare LMTurk (green) with
AL (blue). Strategies: LogitVoting ($), MajorityVot-
ing (�), WeightedLogitVoting (�), BestWorker (:).
AL uses gold labels without aggregation (•).

margins – for both AL and LMTurk, especially
when |B|=400. They also surpass random sam-
pling when using LMTurk for SST5 and CoLA
with G8. In other words, Entropy and LeastCon-
fident assist LMTurk to achieve the same perfor-
mance as of using random sampling, but with fewer
annotations. For example in AGNews-G8-|B|=100,
LeastConfident at iteration six already achieves
comparable performance as random sampling at
iteration eleven. This is economically and environ-
mentally beneficial because the number of queries
made to LMTurkers, i.e., the cost of running infer-
ence passes on the array of large PLMs, is signifi-
cantly reduced.

Overall, we show that LMTurk can be used to
create datasets for training a specialized model S of
solving T in practical scenarios. To reduce compu-
tational cost, we use only Entropy in what follows.

5.3 Design choice 1: Aggregation strategies

Figure 4 compares effectiveness of different strate-
gies of aggregating LMTurker annotations (§3.2).
Looking at SST5 and AGNews results (top two
images), we observe that committee-style aggre-
gation (LogitVoting ($), MajorityVoting (�), and
WeightedLogitVoting (�)) generally outperforms
BestWorker (:), which simply relies on the LM-
Turker performing best on Gdev. LMTurkers per-
form well on these two datasets as shown by the
free markers at iteration zero; ensembling their pre-
dictions results in higher-quality datasets.
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Figure 5: Running more iterations of improving S with
AL and LMTurk. Sampling strategy Entropy is used for
both methods; WeightedLogitVoting is used for aggre-
gating LMTurker annotations.

In contrast, BestWorker (:) has stellar per-
formance on RTE (bottom-left), outperforming
committee-style aggregation. Note that even the
LMTurkers do not perform really well in this ex-
periment, as shown by the free markers at itera-
tion zero – some LMTurkers even perform worse
than S. Ensembling these low-quality annotations
seems a worse option than simply relying on the
best LMTurker. For CoLA, we observe comparable
performance of different aggregation strategies.

5.4 Design choice 2: More iterations

We hypothesize that AL performance is an upper
bound for performance when S is trained with LM-
Turker annotations – recall that the AL annotations
are gold labels. Figure 5 compares AL and LM-
Turk when running 100 iterations of improving
S on AGNews and 500 iterations on SST2. As
expected, AL outperforms LMTurk because the
pool of human-annotated data expands. The per-
formance of S progressively approaches that of the
LMTurkers; LMTurk performs comparably to AL
in SST2, however, no human labor is required.

5.5 Design choice 3: Distilling logits

We can view LMTurk as a kind of distillation (Hin-
ton et al., 2015): The ability of LMTurkers to solve
T is progressively transferred to S. In this sec-
tion, we explore the utility of distillation: We train
S with predicted logits5 instead of discrete labels
from LMTurkers. Concretely, we train S by re-
ducing the KL divergence between its predicted
probability distribution (over the label set) and the
probability distribution from LMTurkers.

5Distilling with intermediate activations likely to further
improve performance of S. However, note that PLM inter-
mediate activations are not always available in a Language-
Model-as-a-Service framework.

Figure 6: Performance of AL and LMTurk with discrete
labels (•) vs. with KL divergence ($). Entropy is used
as the sampling strategy and WeightedLogitVoting
is used to aggregate worker annotations.

Figure 6 shows that training S with KL diver-
gence noticeably improves over discrete labels on
AGNews and SST5. This is expected: AGNews
and SST5 have larger label set size (four and five)
such that the probability distribution over the la-
bel set is more informative than that of the binary
classification tasks SST2 and RTE.

5.6 Design choice 4: Quality-based filtering

One key difference between AL and LMTurk is
that LMTurkers are not oracles: Their labels are
not perfect. Hence, it is reasonable to consider
processing the training data, denoted as Dj , for Sj ,
instead of using it indiscriminately as in AL.

InstanceTresholding (§3.3.2) preserves annota-
tions in Dj for which LMTurkers have the smallest
prediction entropy. Concretely, we rank all anno-
tations (x, ŷ, l) ∈ Dj by entropy(l) and then keep
the τ percent smallest. Note that we always pre-
serve the human-labeled few-shot data Gtrain. We
experiment with τ ∈ {10%, . . . , 90%, 100%}.

Figure 7 left shows the performance of S; Fig-
ure 7 right tracks the status of Dj . To measure
quality, we compute the accuracy of LMTurker an-
notations on Dj (compared to gold labels); see the
lineplots and the left y-axis. We also report the size
of Dj as scatter plots (right y-axis).

We observe that τ=10%, i.e., keeping only the
10% most certain examples, gives the worst perfor-
mance. This is most obvious at iteration three for
SST2: The performance drops to near the majority
baseline (≈50%). This is because D3 is small and

112



0 2 4 6 8 10 12 14
Iteration

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

SST2; 8; | | = 100
Exp.
AL
LMTurk
PreseR.
0.1
0.8
0.9
1.0

0 2 4 6 8 10 12 14
Iteration

0.80

0.83

0.85

0.88

0.90

0.93

0.95

0.98

1.00

D
at

as
et

 Q
ua

lit
y

SST2; 8; | | = 100

0

200

400

600

800

1000

1200

1400

D
at

as
et

 S
iz

e

0.1
0.8
0.9
1.0

0 2 4 6 8 10 12 14
Iteration

0.28

0.30

0.33

0.35

0.38

0.40

0.43

0.45

SST5; 8; | | = 100
Exp.
AL
LMTurk
PreseR.
0.1
0.8
0.9
1.0

0 2 4 6 8 10 12 14
Iteration

0.40

0.50

0.60

0.70

0.80

0.90

1.00
D

at
as

et
 Q

ua
lit

y

SST5; 8; | | = 100

0

200

400

600

800

1000

1200

1400

1600

D
at

as
et

 S
iz

e

0.1
0.8
0.9
1.0

0 2 4 6 8 10 12 14
Iteration

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90
AGNews; 8; | | = 100

Exp.
AL
LMTurk
PreseR.
0.1
0.8
0.9
1.0

0 2 4 6 8 10 12 14
Iteration

0.70

0.75

0.80

0.85

0.90

0.95

1.00

D
at

as
et

 Q
ua

lit
y

AGNews; 8; | | = 100

0

200

400

600

800

1000

1200

1400

1600

D
at

as
et

 S
iz

e

0.1
0.8
0.9
1.0

Figure 7: Training S with examples for which LMTurk-
ers have low entropy. We report performance of S (left),
number and quality (measured by accuracy) of the pre-
served examples (right) at each iteration.

unbalanced: It has eight negative (from Gtrain) and
38 positive examples. However, using all the LM-
Turker annotations (τ=100%) may not be optimal
either. This is noticeable when looking at SST5:
τ=90% and τ=80% are better options.

We see that there is a trade-off between Dj’s
quality and size from Figure 7 right. Being con-
servative, i.e., preserving only a handful of anno-
tations from LMTurkers, results in a small, but
high-quality Dj ; using all the annotations indis-
criminately leads to a large Dj with low quality.
This experiment highlights a key difference be-
tween LMTurk and AL: LMTurker annotations are
not perfect and taking the annotation quality into
consideration when training S is crucial.

6 Conclusion

In this work, our focus is the research question:
How to make effective use of current few-shot learn-
ers? We propose LMTurk, a simple yet effective
method that considers PLM-based few-shot learn-
ers as non-expert annotators in crowdsourcing; ac-
tive learning strategies are incorporated to reduce
the cost of annotation. We further show that pro-
cessing the annotations from LMTurkers can be
beneficial.

Future work may combine LMTurker annota-
tions with human annotators in a human-in-the-
loop setup (Monarch, 2021) to increase the overall
utility of invested resources (Bai et al., 2021). Scal-
ing up to even larger PLMs likely to further boost
model performances (Kaplan et al., 2020; Brown
et al., 2020) Applying LMTurk to multilingual few-
shot learners (Zhao et al., 2021; Winata et al., 2021;
Lin et al., 2021) is also promising.
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A Reproducibility Checklist

A.1 Computing infrastructure
We use four Tesla V100 GPUs to prompt each of
the LMTurkers, and a single Tesla V100 GPU is
used when finetuning the small model S.

A.2 Datasets
For SST2, CoLA, and RTE, we use the
official datasets available on the benchmark
website gluebenchmark.com. We down-
load SST5 dataset from nlp.stanford.edu/
sentiment and AGNews from the link provided
by Zhang et al. (2015).

The number of testing examples of each dataset
is shown in Table 2. Note that for SST2, CoLA,
and RTE, Gdev is sampled from the training set,
and the dev set is used as the test set.

CoLA SST5 RTE AGNews SST2
1042 2210 277 7600 872

Table 2: Number of testing examples.

B Numerical Results

Table 3 reports the numerical value of Figure 2.

C Prompting Details

For each task, we list the five prompts employed to
adapt a PLM to a LMTurker. “[v]” is a prompting
token whose trainable embedding vector is ran-
domly initialized.

For SST5, we use following prompts:

• “[v] x It is [MASK].”

• “[v] x Such a [MASK] movie.”

• “x [v] It is pretty [MASK].”

• “It is [MASK] because x [v]”

• “x So it is [MASK]. [v]”

and the PLM picks a word from {“crap”, “bad”,
“normal”, “good”, “perfect”}. to fill the position of
“[MASK]”. The mapping {“crap”→ 1, “bad”→ 2,
“normal”→ 3, “good”→ 4, “perfect”→ 5 } is used
to convert model predictions to numerical values.

For SST2, we use following prompts:

• “[v] x It is [MASK].”

• “[v] x Such a [MASK] movie.”

• “x [v] It is pretty [MASK].”

• “It is [MASK] because x [v]”

• “x So it is [MASK]. [v]”

and the PLM picks a word from {“bad”, “good”}
to fill the position of “[MASK]”. The mapping
{“bad”→ 0, “good”→ 1} is used.

For AGNews, we use following prompts:

• “[v] x It is about [MASK].”

• “x [v] Topic: [MASK].”

• “x [v] The text is about [MASK].”

• “x Topic: [MASK]. [v]”

• “x [v] [MASK].”

and the PLM picks a word from {“world”,
“sports”, “economy”, “technology”} to fill the po-
sition of “[MASK]”. The mapping {“world”→ 1,
“sports”→ 2, “economy”→ 3, “technology”→ 4 }
is used.

For CoLA, we use following prompts:

• “[v] x It sounds [MASK].”

• “[v] x The sentence is [MASK].”

• “[v] x It is a [MASK] sentence.”

• “x [v] [MASK].”

• “[v] x [MASK].”

and the PLM picks a word from {“wrong”, “ok”}
to fill the position of “[MASK]”. The mapping
{“wrong”→ 0, “okay”→ 1} is used.

For RTE, we use following prompts:

• “p Question: h? [v] Answer: [MASK].”

• “p [SEP] h? [MASK]. [v]”

• “p [SEP] h? [v] answer: [MASK].”

• “p [SEP] In short h. [MASK]. [v]”

• “[v] p [SEP] In short h. [MASK].”

where p and h refer to premise and hypothesis. The
PLM picks a word from {“No”, “Yes”} to fill the
position of “[MASK]”. The mapping {“No”→ 0,
“Yes”→ 1} is used.
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G8 G16 G32

Workers S Workers S Workers S
91.13±0.52 91.93±1.09 91.97±0.83
91.63±0.68 93.08±0.62 91.70±1.78

SST2 90.18±1.00 67.63±8.01 91.74±1.04 75.83±1.35 91.21±1.83 76.37±3.16
90.83±0.58 90.79±0.47 91.13±0.24
90.52±1.84 91.67±1.36 93.23±0.37
41.37±1.55 45.16±2.13 45.91±0.96
42.32±2.04 45.96±2.12 48.64±0.59

SST5 40.57±2.70 28.47±1.61 46.70±0.93 34.97±1.51 50.53±0.94 33.47±2.79
37.69±1.34 42.53±2.43 43.32±3.42
38.05±2.60 42.96±0.69 45.72±1.43
68.95±1.47 68.35±2.29 71.72±1.96
54.99±3.76 57.64±3.23 58.48±3.59

RTE 62.70±1.33 57.30±1.79 70.88±1.70 61.50±0.78 68.47±1.19 62.93±0.74
50.42±2.07 58.60±1.62 59.33±4.72
51.99±4.45 57.88±2.83 60.41±2.47
75.39±5.25 83.06±0.83 84.92±0.28
85.40±1.43 87.71±0.07 87.79±1.08

AGNews 78.83±4.77 66.37±2.95 83.59±2.96 69.40±0.93 87.39±1.29 76.53±0.41
85.07±1.09 87.69±0.04 87.17±0.67
79.95±0.86 80.15±3.38 83.32±0.59
0.14±1.43 11.81±7.82 19.88±3.30
2.42±4.84 15.23±7.07 22.51±0.96

CoLA 7.40±8.12 0.97±4.40 19.71±1.89 4.27±3.26 26.34±1.54 2.50±2.41
9.91±7.98 17.14±2.48 18.15±0.63

15.33±2.15 19.66±0.48 27.58±7.09

Table 3: Few-shot performance of the five LMTurkers and the small model S. Each experiment is repeated three
times and we report mean and standard deviation.

Figure 8: Weighting the training instances from LM-
Turkers.

D More Visualizations

Figure 9 visualizes the performance of S when
different |G| and |B| are used.

E Instance Weighting

Following Wang et al. (2017), we associate each
example (x, ŷ, l) ∈ Dj with weight 1-entropy(l)
when computing the loss during training Sj . We
can interpret this weight as a measure of the cer-
tainty of the LMTurkers ensemble.

Figure 8 reports the performance of S when us-
ing instance weighting, however, the impacts are
less noticeable.
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Figure 9: Improving S with active learning (blue), self training (orange), and LMTurk (green). Free markers at step
zero show LMTurker performances; colors distinguish random seeds. Three acquisition functions are: Entropy (•),
LeastConfident (�), random sampling ($). At iteration j, each experiment is repeated three times; we show
mean and standard deviation. We evaluate different |G| and |B|.

122



Bibliography 123

Bibliography
Rami Al-Rfou, Dokook Choe, Noah Constant, Mandy Guo, and Llion Jones.

2019. Character-level language modeling with deeper self-attention. Proceed-
ings of the AAAI Conference on Artificial Intelligence, 33(01):3159–3166.

Waleed Ammar, George Mulcaire, Yulia Tsvetkov, Guillaume Lample, Chris
Dyer, and Noah A Smith. 2016. Massively multilingual word embeddings.
arXiv preprint arXiv:1602.01925.

Jacob Andreas and Dan Klein. 2014. How much do word embeddings encode
about syntax? In Proceedings of the 52nd Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 2: Short Papers), pages 822–827,
Baltimore, Maryland. Association for Computational Linguistics.

Mikel Artetxe, Gorka Labaka, and Eneko Agirre. 2016. Learning principled bilin-
gual mappings of word embeddings while preserving monolingual invariance.
In Proceedings of the 2016 Conference on Empirical Methods in Natural Lan-
guage Processing, pages 2289–2294, Austin, Texas. Association for Compu-
tational Linguistics.

Mikel Artetxe, Sebastian Ruder, and Dani Yogatama. 2020. On the cross-lingual
transferability of monolingual representations. In Proceedings of the 58th An-
nual Meeting of the Association for Computational Linguistics, pages 4623–
4637, Online. Association for Computational Linguistics.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. 2016. Layer normal-
ization. arXiv preprint arXiv:1607.06450.

Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, and Michael Auli. 2020.
wav2vec 2.0: A framework for self-supervised learning of speech representa-
tions. arXiv preprint arXiv:2006.11477.

Marco Baroni, Georgiana Dinu, and Germán Kruszewski. 2014. Don’t count,
predict! a systematic comparison of context-counting vs. context-predicting
semantic vectors. In Proceedings of the 52nd Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long Papers), pages 238–247,
Baltimore, Maryland. Association for Computational Linguistics.

Loïc Barrault, Magdalena Biesialska, Ondřej Bojar, Marta R. Costa-jussà,
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Sebastian Ruder, Ivan Vulić, and Anders Søgaard. 2019. A survey of cross-lingual
word embedding models. Journal of Artificial Intelligence Research, 65:569–
631.

David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. 1986. Learning
representations by back-propagating errors. nature, 323(6088):533–536.

Timo Schick and Hinrich Schütze. 2020. It’s not just size that matters: Small
language models are also few-shot learners. arXiv preprint arXiv:2009.07118.

Hinrich Schütze. 1992. Word space. In Advances in neural information process-
ing systems, pages 895–902.

http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://proceedings.neurips.cc/paper/2017/file/e7b24b112a44fdd9ee93bdf998c6ca0e-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/e7b24b112a44fdd9ee93bdf998c6ca0e-Paper.pdf
https://doi.org/10.1162/tacl_a_00349
https://doi.org/10.1162/tacl_a_00349


Bibliography 133

Hinrich Schütze. 2017. Nonsymbolic text representation. In Proceedings of the
15th Conference of the European Chapter of the Association for Computa-
tional Linguistics: Volume 1, Long Papers, pages 785–796, Valencia, Spain.
Association for Computational Linguistics.

Roy Schwartz, Jesse Dodge, Noah A Smith, and Oren Etzioni. 2020. Green ai.
Communications of the ACM, 63(12):54–63.

Rico Sennrich, Barry Haddow, and Alexandra Birch. 2016. Neural machine trans-
lation of rare words with subword units. In Proceedings of the 54th Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), pages 1715–1725, Berlin, Germany. Association for Computational
Linguistics.

Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani. 2018. Self-attention with rel-
ative position representations. In Proceedings of the 2018 Conference of the
North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, Volume 2 (Short Papers), pages 464–468,
New Orleans, Louisiana. Association for Computational Linguistics.

Karen Simonyan and Andrew Zisserman. 2014. Very deep convolutional net-
works for large-scale image recognition. arXiv preprint arXiv:1409.1556.

Asa Cooper Stickland and Iain Murray. 2019. BERT and PALs: Projected atten-
tion layers for efficient adaptation in multi-task learning. In Proceedings of
the 36th International Conference on Machine Learning, volume 97 of Pro-
ceedings of Machine Learning Research, pages 5986–5995. PMLR.

Emma Strubell, Ananya Ganesh, and Andrew McCallum. 2019. Energy and pol-
icy considerations for deep learning in NLP. In Proceedings of the 57th An-
nual Meeting of the Association for Computational Linguistics, pages 3645–
3650, Florence, Italy. Association for Computational Linguistics.

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir
Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich.
2015. Going deeper with convolutions. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pages 1–9.

Ian Tenney, Patrick Xia, Berlin Chen, Alex Wang, Adam Poliak, R Thomas Mc-
Coy, Najoung Kim, Benjamin Van Durme, Sam Bowman, Dipanjan Das, and
Ellie Pavlick. 2019. What do you learn from context? probing for sentence
structure in contextualized word representations. In International Conference
on Learning Representations.

https://aclanthology.org/E17-1074
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/N18-2074
https://doi.org/10.18653/v1/N18-2074
https://proceedings.mlr.press/v97/stickland19a.html
https://proceedings.mlr.press/v97/stickland19a.html
https://doi.org/10.18653/v1/P19-1355
https://doi.org/10.18653/v1/P19-1355
https://openreview.net/forum?id=SJzSgnRcKX
https://openreview.net/forum?id=SJzSgnRcKX


Bibliography 134

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is
all you need. In Advances in neural information processing systems, pages
5998–6008.

Paul J Werbos. 1990. Backpropagation through time: what it does and how to do
it. Proceedings of the IEEE, 78(10):1550–1560.

John Wieting, Mohit Bansal, Kevin Gimpel, and Karen Livescu. 2016. Chara-
gram: Embedding words and sentences via character n-grams. In Proceedings
of the 2016 Conference on Empirical Methods in Natural Language Process-
ing, pages 1504–1515, Austin, Texas. Association for Computational Linguis-
tics.

Wikipedia contributors. 2021. Recurrent neural network. [Online; accessed 22-
December-2021].

Adina Williams, Nikita Nangia, and Samuel Bowman. 2018. A broad-coverage
challenge corpus for sentence understanding through inference. In Proceed-
ings of the 2018 Conference of the North American Chapter of the Associa-
tion for Computational Linguistics: Human Language Technologies, Volume
1 (Long Papers), pages 1112–1122, New Orleans, Louisiana. Association for
Computational Linguistics.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le, Mohammad Norouzi,
Wolfgang Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey,
et al. 2016. Google’s neural machine translation system: Bridging the gap
between human and machine translation. arXiv preprint arXiv:1609.08144.

Chao Xing, Dong Wang, Chao Liu, and Yiye Lin. 2015. Normalized word embed-
ding and orthogonal transform for bilingual word translation. In Proceedings
of the 2015 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, pages 1006–
1011, Denver, Colorado. Association for Computational Linguistics.

Linting Xue, Aditya Barua, Noah Constant, Rami Al-Rfou, Sharan Narang, Mihir
Kale, Adam Roberts, and Colin Raffel. 2021. Byt5: Towards a token-free fu-
ture with pre-trained byte-to-byte models. arXiv preprint arXiv:2105.13626.

Yadollah Yaghoobzadeh and Hinrich Schütze. 2016. Intrinsic subspace evaluation
of word embedding representations. In Proceedings of the 54th Annual Meet-
ing of the Association for Computational Linguistics (Volume 1: Long Papers),
pages 236–246, Berlin, Germany. Association for Computational Linguistics.

https://doi.org/10.18653/v1/D16-1157
https://doi.org/10.18653/v1/D16-1157
https://en.wikipedia.org/wiki/Recurrent_neural_network
https://doi.org/10.18653/v1/N18-1101
https://doi.org/10.18653/v1/N18-1101
http://www.aclweb.org/anthology/N15-1104
http://www.aclweb.org/anthology/N15-1104
https://doi.org/10.18653/v1/P16-1023
https://doi.org/10.18653/v1/P16-1023


135

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Russ R Salakhutdinov,
and Quoc V Le. 2019. Xlnet: Generalized autoregressive pretraining for lan-
guage understanding. In Advances in Neural Information Processing Systems,
volume 32. Curran Associates, Inc.

Wenpeng Yin, Nazneen Fatema Rajani, Dragomir Radev, Richard Socher, and
Caiming Xiong. 2020. Universal natural language processing with limited
annotations: Try few-shot textual entailment as a start. In Proceedings of
the 2020 Conference on Empirical Methods in Natural Language Processing
(EMNLP), pages 8229–8239, Online. Association for Computational Linguis-
tics.

Mo Yu and Mark Dredze. 2015. Learning composition models for phrase embed-
dings. Transactions of the Association for Computational Linguistics, 3:227–
242.

Yukun Zhu, Ryan Kiros, Rich Zemel, Ruslan Salakhutdinov, Raquel Urtasun, An-
tonio Torralba, and Sanja Fidler. 2015. Aligning books and movies: Towards
story-like visual explanations by watching movies and reading books. In 2015
IEEE International Conference on Computer Vision (ICCV), pages 19–27.

https://proceedings.neurips.cc/paper/2019/file/dc6a7e655d7e5840e66733e9ee67cc69-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/dc6a7e655d7e5840e66733e9ee67cc69-Paper.pdf
https://doi.org/10.18653/v1/2020.emnlp-main.660
https://doi.org/10.18653/v1/2020.emnlp-main.660
https://doi.org/10.1162/tacl_a_00135
https://doi.org/10.1162/tacl_a_00135
https://doi.org/10.1109/ICCV.2015.11
https://doi.org/10.1109/ICCV.2015.11

	Abstract
	Zusammenfassung
	Acknowledgement
	Introduction
	Distributed Representations
	Symbolic Unit

	Pretrained Language Representations
	Static Representations
	Contextualized Representations
	Summary

	Transfer Learning
	Feature-Based Transfer
	Finetuning
	Crosslingual Transfer
	Summary

	Efficient Transfer Learning
	Parameter-Efficient Transfer
	Label-Efficient Transfer

	Summary and Dissertation Outline

	A Multilingual BPE Embedding Space for Universal Sentiment Lexicon Induction
	Introduction
	Related Work
	Method
	BPE Segmentation
	Multilingual Space Creation
	Zero-Shot Transfer of English Sentiment
	PBC+ to General Domain Adaptation

	Experiment
	Datasets and Settings
	Hyperparameter Tuning

	Results and Discussion
	Multilingual BPE Space Evaluation
	PBC+ ZS (Zero-Shot) Lexicon Evaluation
	Generic DA (Domain-Adapted) Lexicon Evaluation
	Evaluation of Universality

	Conclusion

	Quantifying the Contextualization of Word Representations with Semantic Class Probing
	Introduction
	Motivation and Methodology
	Probing Dataset and Task
	Probing Dataset
	Probing for Semantic Classes

	Experiments and Results
	Data Preprocessing

	Quantifying Contextualization
	Context Size
	Probing Finetuned Embeddings

	Related Work
	Conclusion

	Masking as an Efficient Alternative to Finetuning for Pretrained Language Models
	Introduction
	Related Work
	Method
	Background on Transformer and Finetuning
	Learning the Mask
	Configuration of Masking

	Datasets and Setup
	Experiments
	Initial Sparsity of Binary Masks
	Layer-Wise Behaviors
	Comparing Finetuning and Masking

	Discussion
	Properties of the Binary Masked Models
	Loss Landscape

	Conclusion

	Discrete and Soft Prompting for Multilingual Models
	Introduction
	Related Work
	Method
	Finetuning
	Prompting
	Non-English Prompting

	Dataset and Setup
	Experiments
	Zero-Shot Crosslingual Transfer
	In-Language Prompting

	Conclusion

	A Closer Look at Few-Shot Crosslingual Transfer: The Choice of Shots Matters
	Introduction
	Background and Related Work
	Method
	Experimental Setup
	Datasets and Selection of Few Shots
	Training Setup

	Results and Discussion
	Source-Training Results
	Target-Adapting Results
	Importance of Source-Training
	Importance of Lexical Features
	Target-Adapting Methods

	Conclusion and Future Work

	LMTurk: Few-Shot Learners as Crowdsourcing Workers in a Language-Model-as-a-Service Framework
	Introduction
	Related Work
	LMTurk
	Training Few-Shot Learners
	Aggregating Annotations
	Training A Small Model S
	Summary of LMTurk

	Datasets and Setup
	Dataset
	Training Setup

	Experiment
	Few-Shot Performance
	Iterative Training
	Design Choice 1: Aggregation Strategies
	Design Choice 2: More Iterations
	Design Choice 3: Distilling Logits
	Design Choice 4: Quality-Based Filtering

	Conclusion

	Bibliography

