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1 Abstract
Chronic pain diseases are characterized by a persistent, ongoing and fluctuating endogenous
pain experience with different levels of pain intensity. However, it still remains to be eluci-
dated how pain intensity and the dynamics of pain including rising as well as falling pain levels
are encoded in the brain of chronic pain patients. Additionally, the corresponding dynamics
of functional cortical connections have not yet been clarified and lack reliable investigations
across different chronic pain cohorts.

This thesis addresses this shortage by considering and analyzing the continuous oscillating
pain experience in two different pain cohorts of chronic back pain (CBP) and chronic migraine
(CM) patients. In four repeated functional magnetic resonance imaging (fMRI) sessions of
25 minutes patients were asked to continuously rate the intensity of their endogenous pain
without external stimuli. Particular focus included investigations of the group as well as of the
individual experience of pain patients. In three different analysis approaches, blood-oxygen-
level-dependent (BOLD) activations in brain areas, their dynamic functional co-activations
over time, as well as the stability of the patients’ pain indications were investigated to evaluate
the relationship between brain activity and the amplitude of chronic pain patients’ endogenous
pain.

In a first step, a voxelwise blood-oxygen-level-dependent signal analysis identified clusters of
voxels which showed increased or decreased brain activation upon high and low pain states as
well as rising or falling pain intensity. A sliding-window approach was applied which shifted
the pain rating data against the cortical data to account for timing differences in brain activa-
tions. Voxel-wise linear mixed effects (LME) models were used to disentangle cortical processes
related to pain intensity, pain intensity changes, as well as pure motor activity.

In a second approach, the functional dynamics of the brain activity were investigated based on
the acquired fMRI and pain data. Parcellation of the brain subdivided the whole brain into
408 regions, followed by a principal component analysis (PCA), from which the first principal
component (PC) was extracted. A ten second sliding-window connectivity analysis computed
the pair-wise and time-varying co-activation (functional connectivity (FC)) between all brain
regions across the entire recording period of 25 minutes. Linear mixed effects models were fitted
for each pair of connected brain regions to explore the relationship between cortical connec-
tivity and the indicated time course of the patients’ fluctuating endogenous pain. Functional
connectivity between two brain regions and the pain rating was evaluated based on a connec-
tivity scheme which focused on mostly positive or negative connections.

The third step aimed at assessing the stability of the pain ratings of the patients both within
and between fMRI sessions based on a supervised machine learning approach. A linear regres-
sion and XGBoost model were investigated to predict a constant relationship between brain
activity based on all parcellated regions and pain intensity level. Stability of the relationship
was investigated by cross-validation schemes using within- and between-session data i.e. if
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1 Abstract

the relationship learned in one fMRI session can be used to predict brain activity in a differ-
ent session. Both between- and within-session approaches were pursued on a group and single
subject-level separately leading to four different analysed settings. Performance of both models
were compared to a featureless model and evaluated based on the absolute performance metric
of the root mean squared error (RMSE) and the squared correlation coefficient R2 as a relative
measure.

In the first approach, at group-level, the intensity of pain in chronic back pain patients is
mainly encoded in the anterior insular cortex, the frontal operculum, and the pons; the change
of pain in chronic back pain and chronic migraine patients is mainly encoded in the anterior
insular cortex. At the individual level, a more complex picture was identified, where each pa-
tient exhibited their own signature of endogenous pain encoding.

Connectivity analysis revealed that periods of high pain as well as increasing pain were pre-
dominantly related to low cortical connectivity. For the chronic back pain cohort this applies
to the pain intensity-related connectivity for limbic and cingulate areas, and for the precuneus.
The change of pain intensity was encoded by connections in left parietal opercular regions,
right insular regions, as well as large parts of the parietal, cingular and motor cortices. The
change of pain intensity direction in chronic migraine was reflected by decreasing connectivity
between the anterior insular cortex and orbitofrontal areas, as well as between the posterior
cingulate cortex (PCC) and frontal and anterior cingulate cortex (ACC) regions. Positive and
negative relationships between pain perception correlated brain regions were revealed, but no
effect for anticorrelated (i.e. suppressing) brain regions was found.

Overall, in the third analysis step, the supervised machine learning models were not able
to predict the pain intensity based on the BOLD brain activity. Performance estimates were
poor for all four pursued variants for chronic back pain patients and chronic migraineurs, but
especially in CM patients. Still, the within-session approach achieved greater accuracy than
the between-session approach, and learning on single subject-level revealed better results than
learning on group-level for CBP patients. The maximum of R2 = 0.46 was obtained in the
subject-level within-session setting in the CBP cohort.

This is the first investigation of a sliding-window whole-brain BOLD and dynamic functional
connectivity approach with a continuous, stimuli-free pain rating fMRI paradigm both in CBP
and CM patient cohorts. With this more naturalistic fMRI design greater real-world relevance
is achieved enabled through methodological advances including the combination of a non-
binarised pain intensity rating, a sliding-window approach to resolve the unknown dynamics
of the functional connections, a dynamic functional connectivity analysis, linear mixed-effects
models and a correction for multiple comparisons with surrogate data. Additionally, special
attention was given to the implementation of the continous pain-level rating of the subjects as
well as on repeated and extended fMRI acquisitions for robust analysis.

The observed diversity of the individual cortical signatures of chronic pain encoding results
bridges between clinical observations and neuroimaging: Clinicians often encounter patients
with a unique composition of characteristics, personality traits, various combinations of symp-
toms, and therefore a wide range of individual responses to treatment. Machine learning
approaches to predict pain intensity levels solely based on BOLD activations cannot replace
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patients’ indications yet, but improved solutions may be introduced in the clinical setting in
the future in a complementary way. The obtained cortical signatures of chronic pain encoding
add to the understanding of chronic pain as a complex and multifaceted disease supporting
recent developments for a more personalized medicine.
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2 Zusammenfassung
Chronische Schmerzerkrankungen sind durch ein anhaltendes, kontinuierliches und fluktuie-
rendes endogenes Schmerzerleben mit unterschiedlicher Schmerzintensität gekennzeichnet. Wie
die Schmerzintensität und die Dynamik des Schmerzes, einschließlich steigender und fallender
Schmerzwerte, im Gehirn chronischer Schmerzpatienten verarbeitet werden, ist jedoch noch
nicht geklärt. Darüber hinaus ist der zeitliche Zusammenhang zwischen der Aktivität zweier
verschiedener Hirnareale während des Schmerzerlebens in chronischen Schmerzpatienten unzu-
reichend erforscht und es fehlt an zuverlässigen Studienergebnissen in verschiedenen chronischen
Schmerzkohorten.

Die vorliegende Arbeit adressiert diesen Mangel, indem sie das kontinuierlich oszillierende
Schmerzerleben in zwei verschiedenen Schmerzkohorten in wiederholten funktionellen Ma-
gnetresonanztomographie (fMRT)-Messungen von 25 Minuten Dauer betrachtet und analy-
siert. Während vier fMRT-Sitzungen wurden 20 Patienten mit chronischen Rückenschmerzen
(CBP) und 20 Patienten mit chronischer Migräne (CM) gebeten, die Intensität ihrer endoge-
nen Schmerzen ohne die Einwirkung äußerer Reize kontinuierlich zu bewerten. Ein besonde-
rer Fokus lag dabei auf der Untersuchung der Gruppen- sowie der individuellen Perspektive
von Schmerzpatienten. In drei verschiedenen Analyseansätzen wurden BOLD-Aktivierungen
(‘blood oxygenation level dependent’, also abhängig vom Blutsauerstoffgehalt) in Hirnarealen,
deren dynamische funktionelle Koaktivierungen, sowie die Stabilität der Schmerzangaben der
Patienten untersucht, um den Zusammenhang zwischen Hirnaktivität und der Amplitude des
endogenen Schmerzes chronischer Schmerzpatienten zu erforschen.

In einem ersten Schritt wurden in fMRT-Aufnahmen mit BOLD-Kontrast Voxelcluster iden-
tifiziert, die bei hohen und niedrigen Schmerzzuständen sowie bei steigender oder fallender
Schmerzintensität eine erhöhte oder verringerte neuronale Aktivität aufwiesen. Es wurde ein
‘Schiebefenster’-Verfahren (‘Sliding-Window’) angewandt, bei dem die Daten zur Schmerzbe-
wertung gegen die kortikalen Daten verschoben wurden, um zeitliche Unterschiede in den Hirn-
aktivierungen zu berücksichtigen. Voxelweise Modelle mit linearen gemischten Effekten wurden
verwendet, um kortikale Prozesse im Zusammenhang mit der Schmerzintensität, Änderungen
der Schmerzintensität und reiner motorischer Aktivität zu identifizieren.

In einem zweiten Ansatz wurde die funktionelle Dynamik der Hirnaktivität zwischen verschie-
denen Hirnregionen auf der Grundlage der gewonnenen fMRT- und Schmerzdaten untersucht.
Durch Parzellierung des Gehirns wurde das gesamte Gehirn in 408 Regionen unterteilt, gefolgt
von einer Hauptkomponentenanalyse, aus der die erste Hauptkomponente extrahiert wurde.
Eine ‘Sliding-Window’-Konnektivitätsanalyse mit zehnsekündigen Schiebefenstern berechnete
die paarweise und zeitlich variierende Koaktivierung zwischen allen Hirnregionen über die ge-
samte Aufzeichnungszeit von 25 Minuten. Lineare Modelle mit gemischten Effekten wurden für
jedes Paar verbundener Hirnregionen angepasst, um die Beziehung zwischen kortikaler Kon-
nektivität und dem angegebenen zeitlichen Verlauf der fluktuierenden endogenen Schmerzen
der Patienten zu untersuchen. Die funktionelle Konnektivität zwischen zwei Hirnregionen und
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der Schmerzbewertung wurde anhand eines Konnektivitätsschemas bewertet, welches sich auf
überwiegend positive oder negative Verbindungen konzentrierte.

Der dritte Schritt zielte darauf ab, die Stabilität der Schmerzbewertungen der Patienten sowohl
innerhalb als auch zwischen fMRT-Sitzungen auf der Grundlage eines überwachten maschinel-
len Lernansatzes zu bewerten. Es wurden ein lineares Regressions- und ein XGBoost-Modell
untersucht, um eine konstante Beziehung zwischen der Gehirnaktivität auf der Grundlage aller
parzellierten Regionen und der Schmerzintensität vorherzusagen. Die Stabilität der Beziehung
wurde durch Kreuzvalidierungsverfahren innerhalb und zwischen den Sitzungen untersucht,
d.h. ob die in einer fMRT-Sitzung gelernte Beziehung zur Vorhersage der Hirnaktivität in ei-
ner anderen Sitzung verwendet werden kann. Sowohl der Lernansatz zwischen den Sitzungen
(‘between-session’) als auch innerhalb einer Sitzung (‘within-session’) wurden auf Gruppen-
und Einzelsubjektebene getrennt betrachtet, was zusammen zu vier verschiedenen analysierten
Varianten führte. Die Leistungsschätzungen beider Modelle wurde mit einem Null-Modell ver-
glichen und anhand der absoluten Leistungsmetrik des mittleren quadratischen Fehlers (Root
Mean Squared Error, RMSE) und des quadrierten Korrelationskoeffizienten R2 als relatives
Maß bewertet.

Im ersten voxelbasierten Ansatz auf Gruppenebene wird die Schmerzintensität bei chroni-
schen Rückenschmerzpatienten im anterioren insulären Kortex, im frontalen Operculum und
im Pons kodiert; die Veränderung des Schmerzes bei chronischen Rückenschmerzen und chro-
nischer Migräne wird hauptsächlich im anterioren insulären Kortex kodiert. Auf individueller
Ebene wurde ein komplexeres Muster identifiziert, bei dem jeder Patient seine eigene Signatur
der endogenen Schmerzverarbeitung aufwies.

Die Konnektivitätsanalyse ergab, dass Zeitintervalle mit starken wie auch mit zunehmende
Schmerzen überwiegend mit einer niedrigen kortikalen Konnektivität verbunden waren. Für
die Kohorte der chronischen Rückenschmerzen gilt dies für die schmerzintensitätsbezogene
Konnektivität für limbische und zinguläre Areale sowie für den Precuneus. Die Änderung der
Schmerzintensität wurde durch Verbindungen in linken parietalen operculären Regionen, rech-
ten insulären Regionen sowie großen Teilen des parietalen, cingulären und motorischen Kortex
kodiert. Die Intensitätsänderung des Schmerzes bei Patienten mit chronischer Migräne spie-
gelte sich in einer abnehmenden Konnektivität zwischen dem anterioren insulären Kortex und
orbitofrontalen Bereichen sowie zwischen dem posterioren cingulären Kortex (PCC) und fron-
talen und anterioren cingulären Kortexregionen (ACC) wider. Es wurden positive und negative
Beziehungen zwischen der Schmerzwahrnehmung und korrelierten Hirnaktivitäten aufgedeckt,
aber kein Effekt für antikorrelierte (d.h. unterdrückende) Hirnregionen gefunden.

Insgesamt waren die überwachten maschinellen Lernmodelle im dritten Analyseschritt nicht in
der Lage, die Schmerzintensität auf der Grundlage der BOLD-Gehirnaktivität vorherzusagen.
Die Leistungsschätzungen der beiden untersuchten Regressionsmodelle waren für alle vier unter-
suchten Varianten bei chronischen Rückenschmerzpatienten und chronischen Migränepatienten,
insbesondere aber bei CM-Patienten, schlecht. Dennoch erreichte der ‘within-session’-Ansatz
eine höhere Genauigkeit als der ‘between-session’-Ansatz, und das Lernen auf Einzelpersone-
nebene zeigte bessere Ergebnisse als das Lernen auf Gruppenebene für CBP-Patienten. Das
Maximum von R2 = 0.46 wurde in der CBP-Kohorte auf Subjektebene innerhalb einer Sitzung
erzielt.
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Dies ist die erste Studie eines kombinierten Sliding-Window-BOLD- und dynamischen funk-
tionellen Konnektivitätsansatzes mit einem kontinuierlichen, reizfreien fMRT-Paradigma zur
Schmerzbewertung sowohl bei chronischen Rückenschmerz- als auch bei chronischen Migrä-
nepatienten. Mit diesem naturalistischerem fMRT-Design wird eine größere Alltagsrelevanz
erreicht, die durch methodische Fortschritte ermöglicht wird, einschließlich der Kombination ei-
ner nicht-binarisierten Schmerzintensitätsbewertung, eines Sliding-Window-Ansatzes zur Auflö-
sung der unbekannten Dynamik der neuronalen Prozesse, einer dynamischen funktionellen Kon-
nektivitätsanalyse, linearer Mixed-Effects-Modelle und einer Korrektur für Mehrfachvergleiche
mit Surrogat-Daten. Darüber hinaus wurde besonderes Augenmerk auf die Ausführung der
Schmerzbewertung der Probanden sowie auf wiederholte und erweiterte fMRT-Akquisitionen
zur robusten Analyse gelegt.

Die beobachtete Vielfalt der individuellen kortikalen Signaturen der chronischen Schmerzko-
dierung deckt sich mit klinischen Beobachtungen: Ärzte haben es oft mit Patienten zu tun,
die eine einzigartige Zusammensetzung von Charakteristiken, Persönlichkeitsmerkmalen und
verschiedenen Kombinationen von Symptomen aufweisen und daher sehr unterschiedlich auf
eine Behandlung reagieren. Ansätze des maschinellen Lernens zur Vorhersage der Schmerzin-
tensität allein auf der Grundlage von BOLD-Aktivierungen können die persönlichen Angaben
der Patienten noch nicht ersetzen, aber verbesserte Lösungen könnten in Zukunft ergänzend in
den klinischen Bereich eingeführt werden. Die gewonnenen kortikalen Signaturen der chroni-
schen Schmerzkodierung tragen zum Verständnis des chronischen Schmerzes als komplexe und
vielschichtige Erkrankung bei und unterstützen die jüngsten Entwicklungen für eine stärker
personalisierte Medizin.
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3 Introduction
Medical imaging methods such as functional magnetic resonance imaging (fMRI) as well as
electroencephalography (EEG) or magnetoencephalography (MEG) allow for a non-invasive
investigation of the human brain structure [216]. fMRI is sensitive to changes in blood-oxygen-
level-dependent (BOLD) signal, which is indicative of neuronal activation. Activity changes in
response to internal or external stimuli as well as tasks can therefore be detected and assigned
to specific brain regions or functional networks. Patterns of coherent brain activity, referred
to as functional connectivity (FC), are investigated to probe the large-scale connections and
networks of brain activity. Over the last few decades, fMRI alongside structural imaging, has
thus been seen as a general mapping tool to explore brain function and organization [50, 161,
183, 198, 237, 302].

Neuroimaging provides the possibility to identify the basis of brain metabolism, the neuronal
processing, as well as alterations due to diseases and e.g. pain disorders. Studies investigating
the neuronal underpinnings of pain primarily focus on brain activity related to external stim-
ulation and the identification of changes within specific pain conditions compared to healthy
controls. Although brain regions associated with pain have been investigated since the late
1970s the exact pathophysiology has not been elucidated yet. One of the reasons may be
that pain is predominantly considered as a symptom and not as a disease itself. Especially
for chronic pain diseases which manifest in altered functional processing as well as structural
changes in brain areas, the chronification process as well as the cause and neuronal mecha-
nisms of the maladaptive cortical processing are all still unknown [90]. This despite the fact
that chronic pain is one of the largest medical health problems in the world which affects
approximately 20 % of the adult population [284]. While the management and treatment of
acute pain is reasonably good, the needs for chronic pain patients are largely unmet, creating
an enormous burden on the individual and the society. It is estimated that in Europe 200
billion euro are spent on chronic pain per year. A huge step forward has been the classification
of chronic pain as a disease itself by the International Classification of Diseases (ICD) in 2018,
but improvements in the individual diagnostic, assessment and treatment are still needed [285].
Additionally, as pain is a subjective experience by nature, several factors shape the “brain in
pain” for each individual, incorporating personal experience, learned strategies to deal or avoid
pain and external influences. This diversity complicates the search for a universal neuronal
representation of pain leading to interindividual variability in treatment outcome for patients.
Only by combining different methodological approaches which measure BOLD activation as
well as functional communication across several brain regions in brain networks, the neuronal
basis and its alterations can be understood [207, 252].

In addition to hypothesis-driven statistical approaches, many machine learning (ML) appli-
cations have been applied to neuroimaging in recent years to decode different aspects of the
diseased brain. ML methods are especially useful, when different patterns of multiple brain
regions distributed over the whole brain are involved in the cortical processing as e.g. in the
pain experience. Imaging combined with ML algorithms could provide a direct, objective mea-
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sure of pain intensity without the need of self-report. Patterns of neuronal activity thus could
serve as potential objective biomarkers to detect disorders or subtypes of diseases for clinical
practice [74, 198, 295].

The purpose of this thesis is the investigation of the continuous, real-time, endogenous pain
experience and its neuronal representation within the brain in two chronic pain cohorts with
fMRI. Although the fluctuating pain intensity represents an important daily life experience of
chronic pain patients, this phenomenon is barely investigated. The functional underpinnings
of patients with chronic migraine (CM) and chronic back pain (CBP) are investigated in a
whole-brain analysis in three consecutive steps: first with BOLD activity analysis to identify
active regions during the pain rating task. Subsequently, the interaction patterns between these
regions are analyzed with a FC analysis and finally, the stability of pain ratings as well as the
potential to predict pain intensity levels based on BOLD activity are tested with a supervised
ML approach.

Following a short introduction into the neuroscience of pain (Chapter 4) an overview of the
current state of the literature is given in subsection 4.3.2. The principles of magnetic resonance
imaging (MRI) (Section 5.1) as basis for functional magnetic resonance imaging (Section 5.2)
and preprocessing techniques (Section 5.3) are then covered. The statistical (Chapter 6) and
machine learning (Chapter 7) basics conclude the first part of this thesis with theoretical and
methodological foundations and the state of the literature. The objectives alongside the hy-
potheses of this work are given in Chapter 8 before the three consecutive studies are presented
in Chapter 9. The joint materials and methods of the three different analysis approaches are
covered in Sections 9.1 and 9.2, followed by the individual specific analyses and results of the
BOLD (Section 9.3), connectivity (Section 9.4) and machine learning approach (Section 9.5).
An overall summary with a future outlook concludes this thesis (Chapter 10).
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This chapter gives an introductory overview of the most relevant processes involved in the
human pain experience. Pain is considered an adaptive response, alerting the organism to avoid
potential harmful situations or actual sources of pain. Generally, pain is divided into several
subtypes depending on involved symptoms and mechanisms [313]. A simplified description
from nociception to two chronic pain disorders, which are topics of further detail in this work,
are given; more detailed information on the medical background and general brain structures,
including, e.g. the neurochemistry of brain signal transduction, can be obtained in Schmidt et
al. [249] or Schneider et al. [250]. An overview of the current state of the literature concludes
this chapter before the foundations of fMRI are covered in chapter 5.

4.1 Nociception and pain pathways

The encoding of actual or potential painful stimuli is referred to as human nociception and
includes, e.g., mechanical or thermal stimuli and its resulting signal transmission to the brain
[301]. Nociceptors are for example found on the skin and are part of peripheral sensory neu-
rons. In the human brain, approximately 86 billion connected neurons process and transmit
information through electrical and chemical signals [22]. When these so-called (afferent) noci-
ceptors are activated by the detection of a potential noxious input, the signal is first relayed
to the dorsal horn (DH) in the spinal cord via the myelinated Aδ-fibers with comparably fast
conduction velocity (30 m/s) and unmyelinated, and therefore slow conducting (2 µm/s), C-
fibers. From there, the signals are transmissioned to the brain by the central nervous system
(CNS). In this way, the combined integrated signals of neurons and their coordinated activity
carry the signal from the peripheral source to the spinal cord and further to the brain which
then leads to a sensation of pain [129, 313].

Ascending and descending pathways
Two major general directions of pathways have been identified for signal transmissions: ascend-
ing and descending pathways. Ascending signals originating from the DH primarily project to
the thalamus and then further to the somatosensory cortex mostly via the spinothalamic tract.
Ascending pathways and several brain regions (see below and Figure 4.1) are activated by
nociceptive input and participate in the processing of pain. Although the spinothalamic tract
is responsible for most transmissions, no ‘hard-wired’ path between the original (peripheral)
nociceptive neurons and the final cortical representation of input has been identified – instead,
multiple ascending (bottom-up) as well as descending (top-down) modulatory circuits, with
enhancing or diminishing effects on the signal at numerous regions, constitute the ultimate
experience of pain [46].

Besides the main ascending pathway via the spinothalamic tract, there are also direct con-
nections to the medulla (part of the midbrain) and brain stem via the spinoreticular and
spinomesencephalic tracts as well as to the hypothalamus via the spinohypothalamic tract.
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Thus, ascending information also integrates the periaqueductal gray (PAG) and rostral ventral
medulla (RVM) in the descending feedback systems, in order to modulate the output signal
from the spinal cord. The existence of a descending pain modulatory system was postulated in
1911 [122] and improved later with the gate control theory in 1965 [192] and 1976 [186] with the
concept of a descending analgesic system. The descending pain modulatory pathway is a highly
organized network that enables top-down regulation of afferent nociceptive information. Brain
regions associated with the descending pain modulatory pathway include the hypothalamus,
ACC, insula, amygdala, and the frontal lobe. These regions then project to the PAG where
top-down projections from higher brain centers as well as bottom-up nociceptive input from the
dorsal horn are processed. The core hub of the descending pathway is the RVM, serving as the
prime output node, communicating with the PAG and DH. The exact number and extent of
involvement of specific brain regions are variable and controversial across neuroimaging studies.
A simplified depiction of the pathways is given in Figure 4.1 [1, 231, 264, 285, 301, 315].

Nociception vs Pain
Pain is not simply an expression of nociception but comprises a multidimensional experience
that can be modulated by, e.g., negative emotions, anxiety, depression, attentional focus or
anticipation, affecting the perception of pain or pain intensity. Hence, pain and nociception
often occur in conjunction, one leading to the other with a bi-directional influence, but are not
exclusively bound to one another and must be differentiated. Pain is defined by the Interna-
tional Association for the Study of Pain as “an unpleasant sensory and emotional experience
associated with actual or potential tissue damage, or described in terms of such damage” [193].
This definition implies the involvement of not only sensory-discriminative features (intensity,
quality, location), but also cognitive and emotional factors (memory, motivation, attention)
contributing to the processing of pain perception [42, 53, 74, 285]. Therefore, pain is con-
sidered a complex, multifactorial and subjective experience, which results from a combination
of both peripheral and CNS interactions, involving several brain systems for which simple
subjective self-report is currently the gold standard for assessment [15, 42, 53, 198, 260, 267,
285].

4.2 Pain in the brain

The representation of the complexity of the multifactorial, subjective experience of pain in the
brain is distributed over neuronal networks of brain regions that include a multitude of cortical
and subcortical areas which all encode some distinct aspects of pain. In the past, this network
structure of pain regions has been referred to as the “pain matrix” or “neuromatrix of pain”
[133, 191]. Nowadays, it is more appropriately referred to as “pain connectome” [152]. Rather
than looking for activity in one specific cortical area or dedicated “pain centers” within the
brain, pain is associated with activity in many brain areas that belong to different functional
brain systems and the interactions between all these regions sum up to a net result of perceived
pain [1].

Neuroimaging studies have most consistently revealed the following cortical areas associated
with the perception of pain: primary and secondary somatosensory cortices (S1 and S2), in-
sular cortex (IC), anterior cingulate cortex, thalamus (Th), and prefrontal cortex (PFC) [28].
Further subcortical areas include the cerebellum, amygdala, nucleus accumbens and periaque-
ductal gray commonly reported in pain studies. Based on the projection sites from the thalamic
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Figure 4.1: Pain pathways: ascending (blue) and descending (black) pathways from noxious
stimuli; adapted from [313].
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Figure 4.2: Brain regions involved in the pain connectome include the primary (S1) and sec-
ondary somatosensory (S2) cortices, the thalamus, insula, anterior cingulate cortex
(ACC) and prefrontal cortex (PFC) as well as the amygdala (AMY), basal ganglia
(BG), parabrachial nucleus (PB), periaqueductal gray (PAG) and the cerebellum;
adapted from [53].

structures to the cortex, these structures can be simplified into two systems with regard to their
primary role within the processing of nociceptive information: the medial and lateral pain sys-
tem. The lateral pain system foremost encodes the sensory-discriminative features of pain in
somatosensory regions and parts of the thalamus as well as of the cerebellum. Contrary, the
medial pain system encodes the affective-motivational aspects of pain, mainly located in the
cingulate, prefrontal areas and the insula [15, 53]. Even subdivisions of the individual regions
with their contributions to pain experience have been found, e.g., activations in the posterior
IC are more related to sensory aspects of pain, whereas the anterior IC may be more important
in emotional, cognitive, and memory-related aspects of pain perception [285].

None of the described features or depicted regions in Figure 4.2 are pain-specific or pain ex-
clusive, but participate in various other sensory and emotional states. Nociceptive stimuli can
trigger a variety of processes not specific to pain but which are, nonetheless, part of the multi-
dimensional nature which determines the pain experience. For instance, a previous study [295]
included regions of the visual system (occipital lobe, fusiform gyrus) in their investigation of
a brain signature (“neurological pain signature” (NPS)) specific to (thermal) pain [15, 42, 53,
74, 198, 285].
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4.3 Chronic pain
Pain is foremost a survival mechanism and acts as a warning system for threats to the organism.
However, in chronic pain conditions, pain persists even in the absence of acute tissue damage.
When pain persists longer than three to six months, it is referred to as chronic pain. It is
defined as “pain that is present every day for more than 3 months (or is present on ≥ 50 % of
days for six months) or beyond the expected period of healing and does not have the warning
function anymore that acute pain does” [286]. Chronic pain is considered as a disorder of the
central nervous system (CNS) as it encompasses various brain networks, involving behavioral,
cognitive, emotional and sensory components to produce the pain experience. Patients often
suffer from an enormous reduction of life quality, as they experience steady or fluctuating,
spontaneous, ongoing, stimulus-independent pain on a daily basis [74, 315].

Functional as well as anatomical changes with disrupted large-scale properties have been ob-
served across several chronic pain disorders, including fibromyalgia [151], migraine [143] or
chronic regional pain syndrome (CRPS) [32], but the exact underlying pathophysiology of
chronic pain remains poorly understood. It is seen as a complex multidimensional disease,
affecting the CNS and modifying several potential brain pathways involved in endogenous pain
control. Compared to acute pain, chronic pain patients have reported distinct, abnormal acti-
vation patterns in pain regulation regions when external pain stimuli were applied, indicating
that chronic pain alters the functional connections in the processing of pain. Several brain
regions, e.g. the thalamus, cingulate cortex, dorsolateral and medial prefrontal cortices, as
well as regions in the limbic system, have been assigned a significant role in the chronic pain
experience (Figure 4.3). However, disease-related alterations are often specific to the chronic
pain condition and most likely to the investigated population or even individual and do not
generalize well to other ones [12, 13].

On the biological level, a central sensitization [310] with an increased activity of pain pathways
or lack of inhibition/excitation at the cortical level, as well as an impaired functioning of the
descending modulatory pain system, is thought to be at the center of chronic pain [217, 227].
Thus, pathways involved in endogenous pain control are thought to be modified in chronic
pain, making self-regulation of pain challenging [183]. The nature of abnormal cerebral pain
processing in chronic pain conditions is far from established but the findings suggest a pro-
found alteration due to long-lasting pain in the brain – whether these changes are the cause or
the consequence of the disease is still unclear as well [15, 42, 53, 74, 90, 130, 198, 231, 267, 285].

Two of the most common chronic pain conditions are chronic back pain (CBP) and chronic
migraine (CM), which are investigated in this thesis and therefore mostly focused on from here
on.

4.3.1 Chronic back pain and chronic migraine

Chronic back pain (CBP) is defined by the IASP criteria (The International Association for
the Study of Pain [194]), which includes a disease duration of more than six months. CBP is
one of the most common health problems around the world today with far-reaching social and
economic consequences and severely impacting the lives of the individuals who suffer from it
[48]. The population prevalence of chronic back pain in Germany is 15.5 % and is significantly
higher in women (18.5 %) than in men (12.4 %) [166].
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Figure 4.3: Brain regions involved in the chronic pain network: Regions that most consistently
show changes in chronic pain diseases are the anterior cingulate cortex (ACC), pre-
frontal cortex (PFC) and insula (red outlined frame). Grey arrows show ascending
pain pathways. Attention and emotion alter pain via different descending modu-
latory systems. Emotions activate circuitry involving the anterior cingulate cortex
(ACC), prefrontal cortex (PFC) and periaqueductal grey (PAG) (shown in green),
whereas attention activates circuitry involving projections from the superior pari-
etal lobe (SPL) to the primary somatosensory cortex (S1) and insula (shown in
blue). Grey regions show parts of the ascending pain pathways: amygdala (AMY),
basal ganglia (BG), parabrachial nucleus (PB), rostroventral medulla (RVM) and
secondary somatosensory cortex (S2); adapted from [53].

Chronic migraine is defined by the ICHD-3 (Headache Classification Committee of the Interna-
tional Headache Society (IHS) 2018), as a “headache occurring on at least 15 days per month
for more than three months, which, on at least eight days per month, has the features of mi-
graine headache” [215]. CM usually develops from episodic migraine (EM) (2.5 %), which is
one of the most prevalent neurological disorders [139]. In a survey of 2020, a total of 57.5 %
of women and 44.4 % of men in Germany reported that they had at least one headache in the
last twelve months – 14.8 % of women and 6.0 % of men were affected by migraine. 1.2 % of
participants had CM and 9.6 % had EM [228]. Migraine is an episodic, recurrent, genetically
determined dysfunction of brain excitability that leads to an activation and sensitization of the
trigeminovascular pain pathway, with the exact origin or migraine “generator” still unknown
[88]. Migraine is characterized by episodic headaches associated with nausea, vomiting, hy-
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persensitivities to somatosensory as well as visual or auditory stimuli and cutaneous allodynia
(CA) [258], defined as “pain due to a stimulus that does not normally provoke pain” [159, 263].

To investigate chronic pain diseases, mainly fMRI designs with different methodological strate-
gies and approaches, involving resting-state investigations as well as e.g. arterial spin label-
ing (ASL) or structural diffusion-tensor-imaging (DTI) measurements have been pursued to
elucidate the different consequences and manifestations of the diseases, both functional and
structural in nature. The following sections give an overview of the state of the art of chronic
pain disease research.

4.3.2 State of the current literature
The majority of neuroimaging studies have applied noxious stimuli to chronic pain patients
in order to investigate functional processing alterations. Functional neurological changes have
been reported across several individual brain regions, whereas varying paradigms reveal differ-
ent abnormalities, dependent on the investigated tasks, regions and patient populations.

Functional imaging of regional changes with experimental pain and resting-state
designs in patients with chronic pain
External noxious stimuli are mostly applied through heat, i.e. thermal stimulation, or me-
chanically induced pain, as well as chemical or electric stimulation. Through experimental
application of various exogenous pain stimuli, cortical regions involved in acute pain processing
were found to mainly coincide with regions found to be active in the processing of chronic pain
(i.e. S1, S2, Th, IC, CE, and ACC) [15, 25, 88, 101, 107, 177, 288].

Although activation of many regions overlap with the processing of acute pain, several key
regions were consistently found to show functional activity alterations in chronic pain states.
Altered pain intensity processing was attributed to changes in the posterior insula and primary
somatosensory cortex in e.g. patients with chronic back pain and fibromyalgia [291]. As these
regions are typically associated with the encoding of pain intensity, changes in these regions
suggest altered intensity processing in chronic pain. Additionally, regions within the PFC,
as well as within the parietal cortex (precuneus, PCC, temporoparietal junction (TPJ)) show
functional changes. The PFC regions were found to mediate the relationship between cogni-
tive processes and chronic pain, whereas the parietal cortex includes regions which are mainly
associated with introspection as well as self centering thoughts and may reflect the increase in
contemplation and rumination around the chronic pain disease. Emotional processing regions
such as hippocampus and amygdala show abnormal functional involvement in different chronic
pain states, representing the psychological facet often accompanying the underlying disorder
[17, 153].

Overall, the evaluation of brain responses to experimental pain have suggested that the accom-
panied sensitivity to noxious stimuli reported by chronic pain patients is effectively accompanied
by enhanced brain responses [110] and impaired functioning of the descending modulatory pain
system. These studies therefore indicate that the augmentation of central processing of pain,
disruption in the pain modulatory system, and/or an “overload” of the latter due to the ongo-
ing chronic pain are all plausible and possible mechanisms underlying the pathophysiology of
chronic pain.
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However, as the neuronal response to pain is greatly dependent on the specific characteristics
of the subject, unique activation patterns of brain regions are assumed to shape the experience
of pain [152, 285]. The intensity of the perceived pain is suggested to depend on the individual
as well as neuronal responses to pain, changing more to one’s perception than to the absolute
value of external stimuli [198, 255]. Externally applied pain to chronic pain patients thus may
not be able to accurately capture the natural behavior of individual chronic pain patients.

The exact opposite to external noxious stimuli designs are resting-state approaches. Resting-
state fMRI designs investigate the brain at rest or explicitly without the performance/execution
of a specific task during the fMRI scan.
Resting-state studies identified increased activation in specific individual brain areas, i.e. the
mPFC [25, 120], cingulate cortex [148], amygdala [26], and insula [277] in chronic back pain
patients. Decreased activity was also reported in the PAG, indicating disrupted regulatory
control of the pain experience [182].
In the search for a migraine “generator”, specific individual regions have been investigated,
e.g., the hypothalamus (part of the descending pain modulating network) and the pons, which
are suggested to be a driving force of migraine attacks [159]. Functional imaging studies re-
ported increased activity as well as altered functional coupling of the hypothalamus during
the preictal phase [253]. Even different subparts of the hypothalamus have been distinguished
to play a part in migraine attacks as well as the chronification process of migraine; e.g., the
anterior hypothalamus is crucially involved in the abnormal functional physiology of chronic
migraine [66], whereas the posterior hypothalamus was distinctly related to the acute state
of a migraine attack [88, 252]. Similarly, the dorsal pons showed increased activations during
spontaneous migraine attacks as well as during and outside the headache phases in CM. Thus
the pons has been attributed a central role both in the generation of migraine attacks as well
as the transition from acute towards chronic pain [88].

Imaging Brain Connectivity in Patients with chronic pain
In addition to individual brain region alterations, changes in larger scale networks with func-
tional or structural connected brain areas have been investigated with external stimuli, visual
tasks, but mainly with resting-state approaches. A large number of studies have demonstrated
that the presence of chronic pain affects the functional connectivity among interacting brain
regions.

Network specific alterations have been found across several chronic pain states and systems,
e.g., the sensory-motor system (including S1, S2 and M1) [147, 148, 298], the attention network
[163] and the salience network [74]. Different studies have investigated the brain structures as-
sociated with the emotional aspects of pain and showed changes in the connections of the
reward system, including the mPFC and nucleus accumbens, as well as FC changes between
the PAG and ACC [25, 26, 120]. The majority of resting-state investigations so far have focused
on the default mode network (DMN), which is active during rest and internal self-reflection [26,
108, 288]. The DMN, including the medial prefrontal, posterior cingulate and lateral temporal
cortices, the hippocampal formation, and inferior parietal lobule, which are frequently observed
as deactivated during attention-demanding tasks and have extensive overlap with regions that
are thought to be involved in self-referential cognitive processing, were foremost reported to
show an intrinsic whole-network disruption in chronic pain patients, especially with higher pain
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intensities. Higher pain intensities were also related to greater connectivity between the DMN
and the insular cortex [150, 169, 277]. This leads to a consensus assumption that the “chronic
pain brain” is never truly at rest and that with increased pain (intensity) a greater disruption
of a “resting brain” takes place, hindering the patient’s daily life.

More specifically, studies have shown alterations in DMN connectivity in patients with CBP
[26, 169] and fibromyalgia (FM) [206]. One study [206] demonstrated that FM patients exhibit
greater connectivity between DMN and IC and S2 and that the strength of connectivity between
DMN and insula predicted spontaneous pain. Interestingly, a very similar association between
DMN-insula connectivity and clinical pain has also been found in patients with chronic low
back pain, using imaging [169]. The observation that a common neuroimaging metric appears
to encode clinical pain in different patient populations raises the intriguing possibility that such
measures may reflect a general feature of chronic pain, which can be used to identify the disease.

In particular, CBP patients, compared to healthy subjects, showed increased FC in regions
including S1 and S2, lateral orbitofrontal cortex, inferior parietal lobe, and the cerebellum
[100, 101] as well as in the PCC and insula [146]. During thermal stimulation, a negative
correlation between mPFC and DLPFC for high pain states and a strong connectivity between
nucleus accumbens and mPFC cortex was found [31].
CM-patient-specific altered functional activation of combined brain structures include the
salience network, the DMN, regions involved in the sensory-discriminative and affective as-
pects of pain (insula, anterior cingulate, prefrontal, and somatosensory cortex) as well as the
executive control, and dorsal-attention network. Overall, this points towards a central sensi-
tization with impaired facilitatory and inhibitory network activity, where patients with CM
exhibit lower pain thresholds to external stimuli and altered attentional processing of non-
painful or painful situations [9, 10, 21, 39, 70, 88].

Structural changes
In addition to changes in brain activity and functional coupling between specific brain regions,
structural changes in the brain of chronic pain patients have been observed. The first study [14]
reporting structural alterations in the brain of a chronic pain condition observed a reduction in
grey matter density in the prefrontal cortex and thalamus in a cohort of patients with chronic
back pain. Since then, several other studies have reported morphological changes in cortical
thickness for an abundance of chronic pain disorders, including FM [151], migraine [143] or
CRPS [32] but with diverse results. While many studies suggest the presence of structural
changes, the specific brain regions associated with such changes and even the direction of these
changes vary between studies.

Structural changes include grey matter density reduction in several pain related regions, e.g.,
in the DLPFC and mPFC, the ACC, the IC or the primary somatosensory cortex, as well as
in the hippocampus and amygdala for e.g., chronic back pain [14, 27]. Several other brain
areas are reported to have changed global grey matter volume, though very inconsistent results
are reported. Both increased as well as decreased volume was found for the following regions:
putamen, caudate nucleus, thalamus, pons, S2, and cerebellum. These conflicting results in
both directions of volume changes indicate a fundamental change in the brain structure of
chronic back pain patients most likely due to the long-term exposure to pain, but further re-
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search needs to clarify the exact changes. Additionally, linear relationships between structural
brain changes and behavioral parameters, e.g. the duration of chronic pain, have been found
indicating that extended changes happen over time [14, 27, 184].

Specifically for CM, some studies [40, 71, 208, 259] compared healthy controls to chronic mi-
graine patients and reported structural changes across various brain regions which are known
to take part in the diverse aspects of pain modulation and processing: Both increases in grey
matter volume as well as a reduction in grey matter volume were found in the amygdala, basal
ganglia, brainstem, cerebellum, frontal, temporal, and occipital areas [88].

However, results from a study investigating the cortical thickness before and after success-
ful treatment of CBP patients indicate increased cortical thickness in e.g. the DLPFC after
compared to before treatment [265]. These findings suggest that both altered brain function
and structure may be reversible leading to the intriguing possibility that through proper feed-
back training a redirection of maladaptive brain communications to that of a healthy brain can
be achieved.

Investigations of clinical pain
The great majority of imaging studies investigating the underpinnings of the pain experience
have focused on evaluating the response to controlled stimulation from externally applied pain.
In contrast, very few studies have attempted to evaluate the neuronal correlates of clinical pain,
specifically, spontaneous pain in the absence of external stimuli [28, 118, 119, 185]. Although
this is at the center of every chronic pain patient’s daily life, it has been barely investigated as
such [159, 177]. Methodological difficulties hinder the unraveling of the true underlying neu-
ronal processes of chronic pain, as, unlike experimental pain, chronic pain is fluctuating over
different timescales and thus can not be shaped into a balanced experimental design with “on”
and “off” states, making the investigations of chronic pain diseases as such more complicated.

The majority of the few studies mentioned above have utilized an experimental approach of con-
tinuously evaluating the spontaneously fluctuating pain without external stimulation in CBP
patients. They reported higher activity in the medial prefrontal cortex for high pain compared
to low pain intensity. When periods of increasing pain were contrasted to periods of stable
or decreasing pain, effects in the right anterior and posterior insula, S1 and S2, the middle
cingulate cortex, and the cerebellum were reported [28]. Similarly, looking at other imaging
modalities, higher pain intensities were related to larger amplitudes of neuronal gamma oscil-
lations at frontocentral electrode sites in EEG measurements [185]. Clearly, there is a lack
of investigations into the underpinnings of clinical pain without the additional application of
external noxious stimuli of any kind, investigating the true underlying processing of the chronic
pain experience.

All in all, for CBP, the exact underlying pathophysiological mechanisms as well as the ex-
act chronification process are still unclear, although regions involved in processing emotions
have been associated with the chronification of pain. Previous studies found the amygdala,
the mPFC, and the nucleus accumbens to be important in the transition from subacute to
chronic back pain [120, 176]. Due to the huge variety of disease manifestations alongside sev-
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eral comorbidities (e.g., depression, anxiety), approaches (e.g., resting-state, noxious stimuli)
and methods (e.g., BOLD activity, structural imaging), the investigation of chronic pain lacks
a ground-truth and many contradicting results can be found in the literature. Nevertheless, a
majority of neuroimaging studies indicate that a deactivation in pain-related regions, as occurs
in healthy controls, is not exhibited in patients with CBP, most likely related to the widespread
changes in the brain due to long-lasting pain [24, 267, 282].

The same applies to CM where the neuronal or pathophysiological mechanisms responsible
for migraine chronification have not been fully elucidated yet. The few imaging studies so far
which have investigated chronic migraine patients have used resting-state fMRI designs and
external applied stimuli as well as structural imaging and compared their findings with healthy
control groups to investigate functional and structural alterations. Whether structural changes
and functional reconnections pose a predisposition for the transition from acute to chronic pain
or are part of the brain’s coping mechanism and are the consequence of the prolonged suffering
from pain has not yet been elucidated. Some studies attribute the hypothalamus a differenti-
ating role between episodic and chronic migraineurs [252]. Comparisons between episodic and
chronic migraine patients show more psychiatric comorbidities in the chronic migraine cohort
which make the disentanglement of the specific underlying cause even more challenging [52].
Difficulties in interpreting the findings additionally result from the variety of timepoints in the
migraine cycle of each patient in which they were measured, i.e. with or without headache
during the examination, with or without migrainous features, interictal or ictal phase when
compared to episodic migraineurs [88]. Although multiple factors promoting migraine chronifi-
cation, such as, e.g. medication overuse have been identified [240], one of the biggest challenges
remains the identification of the brain circuitry sub-serving and encoding the clinical percep-
tion of pain in this highly disabling disorder of brain function [159, 263].

Overall, patients diagnosed with CBP and CM have shown to have altered activation patterns
as well as functional connectivity and fundamental structural changes in the brain compared
to healthy controls. Although several brain regions and networks contributing to the pain ex-
perience were investigated and have shown alterations compared to healthy subjects, so far no
clear pattern representing the pain encoding with its several modulatory processes of increasing
or decreasing pain in CBP and CM has been identified [25, 146, 277].

31





5 Functional magnetic resonance imaging
This chapter starts with the basic theoretical foundations on the most important properties
and processes of magnetic resonance imaging in section 5.1, followed by the basic principles of
fMRI and, the BOLD effect in section 5.2. The background on the preprocessing pipeline of
fMRI data is given in section 5.3. More detailed information can be found in Callaghan et al.
[56] or Haacke et al. [114].

5.1 Magnetic resonance imaging (MRI) basics
5.1.1 MRI physics
An atomic nucleus with an odd number of protons and/or neutrons possesses a non-vanishing
angular momentum I in its ground state, which is also referred to as nuclear spin. The nuclear
spin of an atomic nucleus results from the vector sum of the intrinsic and orbital angular
momenta of its constituent nucleons (protons and neutrons). The value I of the spin thus
depends on both the mass and atomic number and is quantised, taking only zero, discrete
positive integer or half-integer values. The net spin angular momentum is always associated
with a magnetic moment µ which provides the foundation of MRI. The relationship between
the nuclear magnetic moment µ and the nuclear spin I is given by

µ = γI (5.1)

where the constant of proportionality γ is known as gyromagnetic ratio and is nucleus-specific.
In clinical practice the nucleus of the hydrogen atom 1H (spin quantum number of I = 1/2 and
γ = 2.675× 108 rad T−1s−1) is almost exclusively used [116, 236, 275].

5.1.2 Nucleus in a magnetic field and macroscopic magnetization
If no magnetic field is present, all magnetic moments in a macroscopic sample are randomly
oriented due to their thermal motion. In contrast, if the magnetic moments are exposed to
an external magnetic field B0, they tend to align parallel to the external magnetic field to
minimize the potential energy of the system. However, if a sample magnet (such as an atomic
nucleus) possesses an angular momentum, it cannot align parallel to the external field due to
the conservation law of angular momentum. In this case, it experiences a torque

τ = µ × B0 (5.2)

which is perpendicular to both the direction of the magnetic field B0 and the angular momen-
tum I. This results in a precession of the magnet on a cone about the direction of the external
B0 field [236].
Looking at the change of angular momentum over time, dI/dt, one obtains with equation 5.1,
the fundamental equation of motion for the magnetic moment in the presence of an external
field B0

dµ

dt
= γµ × B0. (5.3)
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Solving this equation for a static magnetic field B0, one finds that the magnetic moment is
precessing around the field direction with the Larmor frequency ω0 being proportional to the
strength of the magnetic field B0

ω0 = γB0. (5.4)

Typical field strengths in clinical settings range from 1.5 – 3 T corresponding to a Larmor
frequency of 64 – 128 MHz [236].

Volume elements (voxels) acquired in MR imaging are large enough to contain huge amounts
of protons, each having its own spin and associated magnetic moment. In each voxel, a dy-
namic equilibrium exists in which the proton spins can be regarded to occupy different possible
energy states, characterized by the quantum number m. The slightly different population of
these (2I + 1) levels (for a system with spin quantum number I) is given by the Boltzmann
statistic (with Boltzmann constant k) and results in a macroscopic magnetization

M = Nγℏ
V

·

m=+I∑
m=−I

m · exp(γℏmB0/kT )

m=+I∑
m=−I

exp(γℏmB0/kT )
(5.5)

with N nuclear spins in a volume V . Due to the little difference in occupation numbers of the
spin states a magnetic moment along the direction of the B0 field is obtained. The summation
of a large number of nuclear magnetic moments per unit volume V then leads to a macroscopic
magnetization M with its magnitude in thermal equilibrium approximated by

|M | = M = 1
V

N∑
i=1

(µz)i = N

V
· γ2ℏ2I(I + 1)B0

3kT
(5.6)

where N is the total number of nuclei in the sample, T the absolute temperature of the sample,
and ρ = N/V the so-called spin density.
Replacing the magnetic moment µ with the net macroscopic magnetization M , equation 5.3
now becomes

dM

dt
= γM × B0 (5.7)

and describes the time evolution of the net macroscopic magnetization in an external magnetic
field B0 [56, 117, 213, 236, 275].

5.1.3 Radiofrequency excitation
The initial dynamic equilibrium of the spin system, where M is aligned with the static B0-
field, can be perturbed by a magnetic radiofrequency (RF) field B1(t) with a frequency ωrf
equal to the Larmor frequency ω0, which influences the angle between M and B0. The B1(t)
field is given by

B1(t) = B1 cos(ωrf t)̂i − B1 sin(ωrf t)ĵ (5.8)

where î, ĵ, k̂ are unit vectors along the x-,y-, and z-axes, respectively. The net magnetization
vector now precesses about B1 described by

dM(t)
dt

= γM(t) × (B1(t) + B0) = γM(t) × (B1(cos(ωrf t)̂i − sin(ωrf t)ĵ) + B0k̂). (5.9)
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After transformation in the rotating frame of reference (x′ = x cos(ωrf t) + y sin(ωrf t), y′ =
−x sin(ωrf t) + y cos(ωrf t), z′ = z), the above equation becomes

dM(t)
dt

= γM(t) × (B1î′ + (B0 − ωrf

γ
)k̂) (5.10)

which simplifies to
dM(t)

dt
= γM(t) × B1î′ (5.11)

when the resonance condition, ωrf = ω0, is met.
For the three components the equations and solutions for the initial condition M(t) = M0k̂,
are given with ω1 = γB1 by:

dMx

dt
= γ[MyB0 + MzB1 sin(ω0t)] Mx(t) = M0 sin(ω1t) sin(ω0t)

dMy

dt
= γ[MzB1 cos(ω0t) − MxB0] My(t) = M0 sin(ω1t) cos(ω0t)

dMz

dt
= γ[−MxB1 sin(ω0t) − MyB1 cos(ω0t)] Mz(t) = M0 cos(ω1t)

(5.12)

This shows that the magnetization simultaneously precesses about B0 at the Larmor frequency
ω0 and about the RF field B1 at ω1.
Depending on the duration ∆t of the RF field (RF-pulse), the magnetization can be rotated by
an arbitrary angle (flip angle α = γB1∆t) away from the longitudinal direction. An important
example is the 90◦ pulse, which rotates the complete magnetization into the transverse plane
[56, 114, 236, 275].

5.1.4 Relaxation

After the excitation RF-pulse has rotated the magnetization into the transverse plane, it will
relax back until its equilibrium state M0, along the direction of the static B0-field, is restored.
Here, one distinguishes between two different relaxation processes:
(1) The relaxation of the longitudinal magnetization Mz, which is characterized by the lon-
gitudinal or spin-lattice relaxation time T1: To restore the equilibrium of M0 directed along
the longitudinal B0-field, the magnetic moments constantly try to align with the external field
through the exchange of energy with the surroundings, mostly by transferring energy to the
object. This process is described as

dMz

dt
= M0 − Mz

T1
(5.13)

The solution to this equation is:

Mz(t) = M0 + (Mz(0) − M0) exp(−t/T1) (5.14)

(2) The relaxation of the transverse magnetization Mxy, which is characterized by the transverse
or spin-spin relaxation time T2: All excited spins of the transverse magnetization Mxy point
toward the same direction right after the excitation. Afterwards, however, some spin packets
precess faster than others around the direction of the B0-field, because interactions between
spins induce additional local fluctuating magnetic fields, which ultimately lead to a loss of
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phase coherence, resulting in a decay of the transverse magnetization. The characterization of
the overall rate of reduction in transverse magnetization is given by

dMxy

dt
= −Mxy

T2
(5.15)

with solution
Mxy(t) = Mxy(0) exp(−t/T2). (5.16)

In practice, magnetic field inhomogeneities due to technical deficiencies of the external field B0
also contribute to the process of transverse relaxation. This leads to an additional dephasing
of the magnetization, characterized by a different decay time T ′

2. The overall relaxation time
T ∗

2 , considering all dephasing effects, is then always equal to or shorter than the real transverse
relaxation time T2 and given by

1
T ∗

2
= 1

T2
+ 1

T ′
2
. (5.17)

The loss of transverse magnetization due to T ′
2 is recoverable. The intrinsic T2 losses are not

recoverable as they are related to local, random, time-dependent field variations [56, 114, 236,
275].

5.1.5 Bloch equations

The Bloch equation, describing the evolution of the magnetization in the presence of a magnetic
field, is obtained by combining the previous equations 5.7, 5.13 and 5.15:

dM(t)
dt

= γM(t) × Bext + 1
T1

(M0 − Mz) − 1
T2

Mxy (5.18)

The complete set of solutions for the three components is given by:

Mx(t) = exp(−t/T2) (Mx(0) cos(ω0t) + My(0) sin(ω0t))
My(t) = exp(−t/T2) (My(0) cos(ω0t) + Mx(0) sin(ω0t))
Mz(t) = M0 + (Mz(0) − M0) exp(−t/T1)

(5.19)

The equilibrium solutions for each component of the magnetization are given for t → ∞ by
Mx(∞) = My(∞) = 0 and Mz(∞) = M0. The sinusoidal terms in the general solutions
correspond to the precessional motion, previously explained in section 5.1.2; the prefactor
characterizing the transverse relaxation effect is described in the section above [114, 236].

5.1.6 Spin echo and gradient echo sequences

In an MR experiment, the RF signal that is eventually measured comes from the transverse
magnetization Mxy(t). As it precesses in the magnetic field, it induces a signal which is mea-
sured in the receiver coils and ultimately forms a tomographic image. The observed oscillatory
signal is called ‘free induction decay’ (FID), describing the decay of the transverse magnetiza-
tion. Different MR experiments vary in the way the system is excited and prepared by means of
RF pulses before the signal is read. A defined sequence of RF pulses is called a pulse sequence,
which is usually repeated many times during the experiment [236].
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Spin Echo

The classical spin-echo pulse sequence (Figure 5.1 left) utilizes the fact that the dephasing of
the transverse magnetization Mxy(t) caused by B0 inhomogeneities is reversible, whereas the
influence of the fluctuating local magnetic fields is irreversible: Immediately after the 90◦ pulse,
all components of the transverse magnetization Mxy(t) point along the y-axis. Afterwards, dif-
ferent components precess faster or slower around the direction of the B0 field. In this way
the initial phase coherence is lost [236].

Figure 5.1: Schematic spin echo and gradient echo sequence: Left: Spin echo sequence with
a pulse sequence of 90◦ − 180◦ − ACQ. Right: Gradient echo sequence with a
pulse sequence of 90◦ − G − ACQ. GS , GP , GF represent the slice-, phase-, and
frequency-encoding gradient, respectively; adapted from [174].

When looking at this situation from a rotating frame, the different components of the mag-
netization fan out. If a 180◦ pulse is applied after a time delay T E

2 along the x-axis, the
magnetization components will be mirrored with respect to the x-axis: the rotational direction
of the components stays the same, but due to the inversion, faster components now follow slower
ones. At a time TE = 2 · T E

2 , all magnetization components again point in the same direction.
The important effect of the 180◦-RF-pulse is thus a rephasing of the dephased transverse mag-
netization, which causes the MR signal to increase and to generate eventually a spin echo [236].

Gradient Echo

Images in which the acquired signal is directly the FID signal are often referred to as gradient
echo (GRE) images [54]. In contrast to spin echo, only one RF pulse is used and the FID signal
is manipulated by a magnetic field

∆B(x) = Gx, (5.20)

which is superimposed onto the static magnetic field for the generation of a gradient echo. This
gradient causes a calibrated change in local magnetic fields and hence alters the precession
frequencies across the subject, resulting in an accelerated dephasing. A rephasing gradient is
applied with the same strength but opposite polarity to the dephasing gradient, reversing the
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phase scramble and generating a gradient echo. The gradient reversal refocuses only those
spins that have been dephased by action of the gradient itself, i.e. phase shifts resulting from
local magnetic field inhomogeneities or static tissue susceptibility gradients are not refocused
and lead to signal decay governed by T ∗

2 . Thus, GRE images are generally more prone to
artifacts. However, T ∗

2 -sensitivity of GRE imaging can also be beneficial and used to generate
T ∗

2 -contrast used in functional MRI (fMRI) where changes in blood oxygenation, which lead to
alterations in T ∗

2 , are used to analyze brain activation (see section 5.2) [180, 275].
GRE echo-planar-imaging (EPI) sequences in the single-shot mode are one of the most used
sequences to acquire T ∗

2 -weighted images of functional changes in brain activity. A schematic
depiction of a gradient echo sequence with the EPI readout is given in Figure 5.2. After the RF-
pulse, the frequency-encoding gradient is applied with negative polarity, leading to dephasing
of the spins, followed by the same gradient with opposite polarity. This reverses the dephasing
and the spins get rephased again, leading to an echo formation. In EPI readout, the polarity of
the frequency-encoding gradient is continuously alternated for the readout of the signal. With
EPI sequences the total information required to reconstruct a 2D image can be sampled in the
order of 50 ms, making it particularly suitable for imaging brain dynamics indicated by BOLD
changes [56].

Figure 5.2: Schematic echo planar imaging (EPI) with the EPI-readout train in the frequency-
encoding gradient; adapted from [174].

5.1.7 Imaging

The task of MR imaging now is to allocate the single signal contribution from the overall
detected signal to each small volume element of the imaged object and present it in form of
sectional images, referred to as tomograms. This is usually done with the help of additional
magnetic gradient fields which are superimposed onto the homogeneous magnetic field B0. For
spatial encoding these magnetic fields show a well-defined dependence on the spatial position.
For selective excitation of the nuclear spins in a partial volume of interest, a slice selection
gradient is applied. For position encoding within this slice two gradients in the other two
directions have to be present so that the exact position of the image can be obtained in all
three directions in space. This can be achieved by frequency and phase encoding of the MR
signal. In this way, the Larmor frequency of the MR signal becomes a function of space and the
spatial images can be collected to reconstruct the final image. Typical values for the magnitude
of the imaging gradients are between 1 and 50 mT/m.
The concepts of spatial encoding techniques and image reconstruction for MRI can be found
in e.g. Callaghan et al. [56].
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5.2 The BOLD hemodynamic response
5.2.1 BOLD effect basics
The underlying effects of the BOLD signal generation involves several physiological quantities
but depend primarily on the changes in local deoxyhemoglobin (Hb) concentration, changes of
cerebral blood flow (CBF) and volume (CBV) as well as the cerebral metabolic rate of oxy-
gen (CMRO2). The BOLD signal generation is a complex interaction of different effects on
the physiological level and the involved physics [214]. Therefore, the BOLD signal is only an
indirect measure of the neuronal response conveyed by the hemodynamic response and conse-
quently, only indirect conclusions about the underlying neuronal activation can be drawn from
fMRI measurements [54, 63, 214].

For the brain to function, an uninterrupted supply of oxygen and glucose must be provided,
which is ensured by a consistent CBF. When a specific brain region is active, the increased
neuronal activity leads to an increased glucose and oxygen demand. As a result, the correlated
blood flow and volume increase as well to satisfy the needs of the metabolism. Most oxygen in
the blood is bound to the hemoglobin molecule which carries the oxygen (HbO2).
Depending on the CBF through tissue and the amount of extracted and metabolized oxygen,
the oxygenation state of blood changes. At rest, an equilibrium between the CBF and the
fraction of extracted oxygen is established in the brain, which is disturbed upon activation.
The net oxygen extraction fraction (OEF) describes the balance between oxygen supply (CBF
of arterial O2, [O2]art) and demand (CMRO2) is defined as follows,

OEF = rate of consumption

rate of delivery
= CMRO2

CBF [O2]art
(5.21)

With increased neuronal activity, the metabolic rate of oxygen in the brain region increases as
well, resulting in a local increase in CBF, which is referred to as the hemodynamic response.
For reasons not fully understood yet, oxygen supply exceeds demand, which results in a net
increase in local oxygenation for several seconds: As an overall result, when the blood flow
increases, the OEF (equation 5.21) decreases. Increased blood oxygenation in areas of brain
activation as a final net result then arises from the imbalance of an increased amount of oxygen
distributed by the blood flow while less oxygen is extracted.

The blood oxygenation is determined by the ratio of the oxygen carrying oxyhemoglobin [HbO2]
and deoxygenated hemoglobin [dHb] from which the oxygen was extracted:

[dHb] = OEF · [Hb] (5.22)

The BOLD contrast, measured in fMRI, depends on the total amount of deoxygenated hemo-
globin present in a brain region. Oxyhemoglobin has no unpaired electrons, is therefore weakly
diamagnetic and indistinguishable from brain tissue. When hemoglobin transits to deoxyhe-
moglobin, which has four unpaired electrons exposed at each iron center, it becomes strongly
paramagnetic, changing the susceptibility χ of blood,

∆χ ∝ [dHb] (5.23)

which in turn induces local gradients ∆B in the magnetic field whose strength depends on the
susceptibility changes induced by the deoxygenated hemoglobin concentration [104]:

∆B ∝ ∆χ · B0 (5.24)
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This has the effect of dephasing the signal, causing destructive interference in the observed MR
signal: relaxation times T2 and T2* decrease as the fraction of deoxyhemoglobin increases.
The BOLD signal is seen as an increase in the MR signal that corresponds to a decrease in
the concentration of deoxyhemoglobin. Consequently, T2- or T2*-weighted MRI sequences are
able to capture the BOLD contrast and thereby indirectly visualize neuronal activity driven by
the hemodynamic response [54, 63, 104, 129, 225]. Since changes in the vascular susceptibility
modify 1/T ′

2 but not 1/T2, activation induced changes in T ∗
2 are the primary nuclear magnetic

resonance effect of blood oxygenation and can be entirely expressed by changes in 1/T ′
2,

∆R∗
2 = ∆R′

2 (5.25)
with R∗

2 and R′
2 being the reciprocal of the relaxation times, the relaxation rates [54, 104].

Susceptibility differences between blood vessels and the surrounding tissue create local mag-
netic field distortions, which in turn modulate the signal of intravascular as well as extravascular
compartments. Thus, BOLD contrast induced by [dHb] arises jointly from both components
in and around blood vessels [63].
Looking at extravascular spins in the absence of spin diffusion, this causes intravoxel dephasing
and is most prominent near larger veins. These effects scale linearly with the magnitude of the
field perturbations ∆B [63],

∆R′
2 = k · V · ∆B (5.26)

where k is a proportionality constant and V is the vascular volume fraction CBV. If spin
diffusion is present, the simple dependency of R′

2 changes to

∆R′
2 = k · V · (∆B)β (5.27)

where β = 1.5 is accounting for a mixture between static dephasing (β = 1) and diffusing spins
(β = 2). The proportionality constant k is now dependent on the tissue structure, vessel sizes
inside and the geometry [23, 63].

5.2.2 BOLD model by Davis
In 1998, Davis et al. [75] introduced a model for the BOLD effect that relates the underlying
physiological variables to the observed signal change. Let

S = S0 · e−T E · R∗
2 (5.28)

be the modeled MR signal with R∗
2 being the transverse relaxation rate and let the subscripts ‘a’

and ‘b’ describe the activated and baseline conditions, respectively. Assuming that, compared
to baseline (Sb), with activation (Sa) equation 5.25 holds, i.e. ∆R∗

2 = ∆R′
2, the BOLD signal

change can be written as
∆S

Sb
= Sa − Sb

Sb
= e−∆R′

2 · T E − 1 ≈ −∆R′
2 · TE (5.29)

Combining all previous effects, the BOLD signal can be modeled in one single equation,
∆S

Sb
≈ −k · TE(Va · [B0 · OEFa]β − Vb · [B0 · OEFb]β) =

= K

[
1 − Va

Vb
·
(

OEFa

OEFb

)β
]

with K = k · TE · Vb · [B0 · OEFb]β

(5.30)

describing the signal change due to the neuronal activation.
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5.2.3 Properties of the hemodynamic response function (HRF)

A typical course of a hemodynamic response to a brief stimulus is displayed in Figure 5.3 and
follows a distinct series of phases: The first phase (not shown in Figure 5.3) is called the ‘initial
dip’ or ‘pre-undershoot’ and is of 1–2 s duration resulting in a negative observed BOLD response
which has been attributed to an initial increase in the amount of deoxygenated hemoglobin.
In fMRI analysis this is usually ignored when modeling the HRF. After 1–2 s an increased
inflow of oxygenated blood accompanied by the overcompensation in blood flow dilutes the
deoxyhemoglobin concentration and shifts the balance towards oxyhemoglobin rising to a peak
in BOLD signal at about 5 s after a stimulus. After its peak, the BOLD signal decreases in
amplitude below the baseline level. This ‘post stimulus-undershoot’ can last as long as 30 s
and arises due to a combination of biophysical and metabolic effects.
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Figure 5.3: Typical shape of an HRF with a peak at about 5 s.

Intrinsic properties of the hemodynamic response, and therefore also of the BOLD signal, in-
clude the following features: First, as can be seen in Figure 5.3, the hemodynamic response
is rather sluggish and therefore acts as a low pass filter. Whereas neuronal activity may only
last milliseconds, the increase in blood flow that follows this activity takes about 5 s to reach
its maximum. The temporal resolution of fMRI is therefore ultimately limited by the hemo-
dynamic response time, blurring the temporal profiles of the underlying processes. Whereas
neuronal responses occur within tens of milliseconds after a sensory stimulus, the hemody-
namic response always lags the event. Second, the overall magnitude of the signal change is
very small, i.e. 0.1–5 %. Third, to a first approximation, the hemodynamic response can be
characterized by a linear, time-invariant system with the following three properties: Scaling
(amplitude changes are proportional to the (presumed) amplitude changes of neuronal activ-
ity), superposition (the responses to two individual stimuli applied together will be sum of
the individual responses) and time-invariance (if a stimulus is shifted by an time τ , then the
response must also be shifted by exactly τ) [128, 211].

To create an estimated time course of hemodynamic signals which would be expected given
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some particular experimental time course of neuronal activity, the stimulus function s(t) must
be convolved with the HRF. This estimated response is then later used in the analysis pipeline
as a task-related regressor in the design matrix of the statistical model (see Chapter 6). Var-
ious models for the hemodynamic response function have been proposed, e.g., gamma-variate
functions, ‘Volterra’ kernels, ‘Balloon’ model or ‘Windkessel’-based models [95]. Most com-
monly in fMRI analysis, the hemodynamic response h(t) is taken as a canonical hemodynamic
response function (Figure 5.3) modeled by a gamma-variate [63, 81, 165, 219, 239]. Therefore,
the relationship between the stimulus and BOLD response is given as follows, where the signal
y(t) at time t, is modeled as the convolution of two functions, i.e., a stimulus function s(t) and
the hemodynamic response h(t),

y(t) = s(t) ∗ h(t) (5.31)
with h(t) often being a linear combination of two Gamma functions,

h(t) = A

(
tα1−1βα1

1 e−β1t

Γ(α1) − c
tα2−1βα2

2 e−β2t

Γ(α2)

)
(5.32)

where α1 = 6, α2 = 16, β1 = β2 = 1 and c = 1/6 are parameters shaping the specific form
of the HRF, e.g., broader peak, no undershoot etc. Here Γ represents the gamma function,
which acts as a normalizing parameter, and the only unknown parameter in the model is the
amplitude A [104, 129, 144, 211, 225, 234, 241].

Departures from the linearity assumption have been observed when the stimuli occur extremely
rapidly, i.e., the interstimulus interval (ISI) is smaller than 2–5 s. Then the hemodynamic re-
sponse has an overall lower amplitude and its peak is shifted, occurring slightly after the typical
5–6 s, compared to a single, isolated stimulus [49, 128, 211, 294]. Nonlinearity in BOLD re-
sponses can come from a number of sources which are still incompletely understood today. The
two presumed dominant sources of nonlinearity include the intrinsic vascular properties of the
blood vessels as well as neuronal processes, such as the adaptive behavior of neuronal activity.
Adaptive mechanisms such as effects of habituation and sensitization can occur at the single
neuron level as well as on psychological level, learning e.g. strategies to shift the attention
away from painful stimuli [49][294]. At the single neuron level, the firing in response to stim-
ulation varies over time and is usually not a linear or time-invariant function of the stimulus
intensity, so the relation between neuronal response and stimulus/task parameters is not linear.
Several studies have pointed out that nonlinear effects may also differ among brain regions [294].

Results from several fMRI datasets have revealed extensive variations in the HRF across scan-
ning sessions, tasks, physiological modulations and populations. Whereas the hemodynamic
response seems to be reasonably stable within subjects, the greatest variability is seen in the
delay of the response across different brain regions in the order of seconds. This relatively wide
range of response delays has been attributed to the vasculature of different regions and asso-
ciated delayed flow of oxygenated blood through e.g. large veins draining the sites of neuronal
activation. The exact sources of variance in hemodynamic response timing is presently unclear
and research is still ongoing. Due to insufficient knowledge of the exact processes of hemody-
namic coupling there is currently no gold standard for human brain activation. Determining
the exact relationship between neuronal activity and fMRI activation, however, is complicated
by the different dynamics of the neuronal activity involved and the properties of diverse stimuli
[49, 85, 128, 129, 165, 219, 239, 241]. Several practical approaches taking possible deviations
from linearity or vascular responses into account have been developed, e.g., the Volterra series
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[94] or the balloon model [55]. These methods require fitting a large amount of parameters and
therefore may not be practical for commonly performed fMRI experiments [211].

5.3 fMRI Preprocessing

fMRI is only an indirect measure of the underlying neuronal metabolic oxygen consumption,
modeled through the hemodynamic response. Inevitably, several non-neuronal confounding
sources of noise interfere with the measured signal, complicating the detection of the true
underlying processes. The multiple sources of noise include the hardware (MRI scanner and
associated hardware instability), gross subject movement (of the head), respiratory activity,
heart beat or variations in baseline neuronal metabolism. As a result, uncorrected fMRI time
series can show activity produced solely by spurious noise patterns which can lead to false
conclusions. To remedy these shortcomings, a collectively termed ‘preprocessing pipeline’ has
been proposed. This pipeline consists of several steps, each step removing or reducing struc-
tured noise to extract a signal which faithfully represents the underlying neuronal activity for
further analysis. The majority of preprocessing steps are automatically performed within fMRI
software packages, i.e. FSL, SPM or AFNI [63, 81, 104, 230, 281].

The next section briefly describes the most frequently employed steps of the preprocessing
pipeline.

5.3.1 Distortion and slice timing correction

fMRI acquisitions may predominantly suffer from artifacts like signal loss especially near re-
gions where air and tissue meet (most commonly regions in the anterior PFC and orbitofrontal
cortex). These artifacts are due to inhomogeneities of B0 caused by the susceptibility difference
between two interfaces with different physical composition. Additionally, geometric distortions
can occur. When gradients are applied to encode the spatial information in MRI, these in-
homogeneities result in error in the location of structures in the resulting images and make
it difficult to align functional with structural images. To correct for such arising distortions,
hardware shimming and the additional acquisition of field maps, characterizing the B0 field
inhomogeneity, can be used. By obtaining complex-valued MR images at two different echo
times, the difference in phase between the two images can be used to compute the local field
inhomogeneity. These values can in turn be used to create a map quantifying the distance that
each voxel has been shifted. By inverting this map, one can determine the original location of
the data in each voxel [63, 131, 225].

Slice timing correction addresses the mismatch between the acquisition timing of different
slices. fMRI data are usually obtained by using a 2D MRI acquisition technique which images
one slice at a time. Slices are acquired in ascending/descending order or with an interleaved
acquisition (e.g. 1,3,5...,2,4,6) design. Here, first the e.g. odd slices are acquired, followed
by the even slices. As a result, different brain slices are acquired at systematically different
times, depending on the TR. Correction for the difference in timing is usually done by tempo-
ral interpolation: The signal amplitude of each slice at a reference point is interpolated from
neighboring TRs. A reference slice is chosen and the data in all other slices are interpolated to
match the timing of the reference slice [63, 104, 225].
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5.3.2 Motion correction

Especially with longer acquisition times and in patient populations (as opposed to healthy
volunteers), motion is a common problem in clinical MRI. Although head immobilization tech-
niques with foams and tapes try to prevent or diminish head movements during the scan in
the first place, motion artifacts are mostly present, resulting in an unwanted mixing of signals
from neighboring voxels. After each scan, the time series of motion parameters have to be
visually inspected for drifts, displacement or rotation of the acquired image and data corrected
accordingly or even discarded from further analysis if necessary [218].

Three core connected aspects are at the basis of the changes in the observed signal and therefore
occurrence of motion-related artifacts. First, as the signal is proportional to the magnetiza-
tion of the tissue, position changes due to e.g. head motion, alters the tissue composition
and therefore the net magnetization at a specific location leading to an incorrect signal ampli-
tude. Second, associated with the first issue, head movement changes the timing of different
successive excited spins, leading to wrongly activated voxels over a period beyond the actual
movement. Lastly, movements induce local magnetic field inhomogeneities which change local
magnetic susceptibility gradients and lead to various artifacts such as image distortions or sig-
nal dropout, especially in regions at e.g. tissue surfaces [316].

To correct for subject motion that occurred during the scan, ‘motion correction’ is applied,
which usually refers to the estimation of the rigid body movement parameters and the subse-
quent application of the estimated motion transformations to realign the time series of brain
images, by using e.g., the ‘MCFLIRT’ tool, integrated in the FSL software package [135]. At
each volume of the data the position of the head in space is estimated and all volumes are
realigned to a reference image (usually first or middle one of the time series) using rigid body
transformations. Rigid body transforms are given by the six parameters R = [X, Y, Z, pitch,
yaw, roll], including three translational and three rotational parameters, to characterize the
position of the head at each time point. Images are then resliced and voxel intensities are
determined from an interpolation scheme using neighboring voxel values. The realignment
parameters can then be condensed into a single summary estimate to indicate overall head
displacement during the scan. Residual motion-related fluctuations in the data are then re-
moved by a multiple linear regression with the six head motion parameters estimated from the
rigid-body realignment as confound regressors. Additionally, their temporal derivatives as well
as the squared versions of these are often included. Commonly used motion correction tools,
beside MCFLIRT, include AIR [309] or statistical parametric mapping (SPM [96]) [67, 137,
230].

However, it has been shown [230, 246] that even with perfect correction, these approaches
are often not capable of entirely removing the effects of motion. Additional techniques to cor-
rect for motion include temporal censoring operations, like spike regression or scrubbing, where
contaminated volumes are excluded from the time series prior to further data analysis [68, 112,
230, 289]. Volumes are often identified as motion outliers by thresholding certain motion mea-
surements based on the rigid-body parameters or signal change, e.g., framewise displacement
(FD) [230] or DVARS [270]. ‘DVARS’ (where ‘D’ is referring to temporal derivative of time
courses and ‘VARS’ referring to root-mean-square of the variance over voxels) and FD, are
metrics defined to provide a single estimated head motion parameter for each time point [270].
FD indicates the position changes from frame to frame and is derived from the rigid-body
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realignment parameters. The value of FD is defined as follows,

FDi = |∆dix| + |∆diy| + |∆diz| + |∆αi| + |∆βi| + |∆γi| (5.33)

where the derivative is given by e.g. ∆dix = d(i−1)x − dix and similarly for all other rigid body
parameters [dix, diy, diz, αi, βi, γi]. A sphere with radius r = 50 mm is used to calculate the
rotational displacements on its surface to convert from degrees to millimeters [230, 267].
DVARS is defined as the root mean square of the temporal change of the fMRI voxel-wise
signal at each time point [270]. It is calculated by first differentiating the measured fMRI time
series (by backwards difference) and then calculating the RMS signal change over the whole
brain. Comparisons to previous timepoints then indicate the intensity change from one brain
image to the next (in contrast to the global signal, which is the average value of a brain image
at a timepoint). Values of 0.5 for FD and 0.5 % ∆ BOLD for DVARS are often used, but are
dependent on the data set. To clean the data from the identified confounding spikes, regres-
sors with non-zero values at each identified time point as well as its preceding and following
timepoint are created and regressed out [230, 246, 316].

Combining motion regression and scrubbing approaches was shown to have the most consider-
able reduction in motion-related artifacts, although the ideal number of nuisance regressors is
not known and dependent on each individual obtained dataset. Despite all correction methods,
residual components of motion-related artifacts often still remain in the data. Hutchison et al.
[130] noted, that residual nuisance effects “inevitably remain” in the BOLD time series and
must therefore always be considered as contributor of unwanted signal in the reporting and
interpretation of the results [67, 68, 81, 83, 104, 137, 149, 205, 218, 230, 289, 314, 316].

5.3.3 Registration and spatial normalization
The goal of spatial registration or normalization is to normalize each individual brain to a
template (e.g., Talairach [278] or Montreal Neurological Institute (MNI) [84]) in order to gen-
eralize across individual brains and reduce variability between them to allow for meaningful
group analysis. Normalization is implemented as a multistep method, first co-registering func-
tional and structural images and then registering the high-resolution image to a high-resolution
template. Preprocessing of the anatomical images prior to normalization in turn include bias
field correction, brain extraction (BET) or skull stripping and tissue segmentation which vary
between different software packages. Spatial normalization can be e.g. volume, landmark or
surface-based, though surface-based registration gives a slightly more accurate result than low-
dimensional volume-based registration [89]. Normalization and co-registration steps are largely
automated in the i.e. FreeSurfer software package [63, 99, 145, 225].

5.3.4 Spatial and temporal filtering
Spatial and temporal preprocessing techniques involve the application of different filters to
the images to foremost remove noisy frequencies to improve the signal-to-noise ratio (SNR)
in the datasets. The most common approach to spatial smoothing is the convolution of the
three-dimensional image with a three-dimensional Gaussian filter. The amount of smoothing
imposed by a Gaussian kernel is determined by the width of the distribution, the full width at
half-maximum (FWHM). The larger the FWHM, the greater the smoothing. A range of 4 mm
to 8 mm kernel size is commonly applied.
The application of temporal filtering include low-, band-, or high-pass filters to reduce the
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contributions of unwanted, noisy frequency ranges to improve the SNR. A standard type of
applied temporal filtering in most fMRI analysis is e.g. the so called ‘detrending’. Here, a
high-pass filter removes the slow linear signal increase which is usually caused by the scanner
drift due to hardware instability [63, 81, 104, 225].

5.3.5 Physiological noise correction: Independent component analysis (ICA) and
principal component analysis (PCA)

A significant part of artifacts in fMRI result from cardiac and respiratory-related physiological
processes, which are especially difficult to correct for retrospectively [81]. Blind signal separa-
tion techniques, such as e.g., ICA, have been found to effectively identify non-neuronal sources
of variability and were first used for fMRI data by McKeown et al. [190].
The basic assumption of ICA is, that the data is a linear superposition of statistically indepen-
dent processes and can therefore be modeled as

Xjt =
K∑

k=1
MjkCkt (5.34)

where X is the measured fMRI signal space-time matrix of j = {1, ..., J} voxels and t =
{1, ..., T} time samples. M is the so-called mixing matrix and C contains the K independent
components. Iteratively, the ICA algorithm finds the so-called unmixing matrix W to calculate
the individual components,

Ctj =
K∑

k=1
WtkXkj (5.35)

with which the data X ′ can then be reconstructed from the independent components by

X ′
jt =

K∑
k=1

W −1
tk Ckj . (5.36)

ICA returns a set of components along with an unmixing matrix that denotes the contribution
of each spatial pattern to the observed signal at each timepoint. Ideally, some components then
purely reflect BOLD signals, others artifactual processes. Once a set of artifactual components
is identified, based on both the spatial and temporal characteristics, those components can be
removed from the data, creating a “cleaned” dataset. Automatic ICA-based denoising tech-
niques have been developed, e.g. FMRIB’s ICA-based X-noiseifier (FIX), which once trained,
(semi-) automatically identifies artifacts and removes the artifactual components in the dataset
[63, 112, 142, 189, 225, 230, 237, 281].

Most neuroimaging studies either use ICA or PCA, or often a combination of both, for dimen-
sionality and variation reduction of fMRI data. PCA is based on singular value decomposition
(SVD) for a matrix X given in matrix notation by

X = USV T (5.37)

with U being a orthogonal matrix, V being unitary and S containing real, nonnegative diagonal
elements. The matrices satisfy the following equations, MMT = US2UT and MTM =
V S2V T and are hermitian. The diagonal elements of S2 are the eigenvalues with U and V
being the corresponding matrices of eigenvectors for MMT and MTM . The matrix P, which
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contains the principal components, is then obtained by postmultiplying U by S. PCA finds a
set of components (eigenimages) that are orthogonal to one another in multidimensional space.
In contrast to ICA, for PCA there is inherent order of the components, i.e. the principal
components (PC) are generated in order of decreasing variance explained. The first principal
component therefore captures the greatest amount of variance and each successive component
the greatest amount of residual variance, corresponding to non-systematic structures, e.g. noise,
in the last components of the analysis. PCA thus transforms the data to a new coordinate
system defined by the directions of largest variance of the data [7, 63, 142, 218, 225, 242, 243,
281, 319].
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This chapter defines the concept of functional connectivity along with the metric with which it
is measured (section 6.1), followed by the description of the sliding-window approach applied
to dynamic functional connectivity investigations in section 6.2. Next, a short overview of the
statistical analysis employed in fMRI analysis is given: from the general linear model (GLM) to
more advanced linear mixed effects models (LME) in section 6.3. A more detailed description
of the theoretical background on the statistical analysis can be found in Bernal et al. [37] and
Witkovsky et al. [307].

6.1 Functional connectivity
To identify ‘communications’ between individual brain regions, correlations between the BOLD
signal time series of brain regions are measured. This is referred to as ‘functional connectivity’
(FC). FC examines the functional co-activation between two or more spatially or anatomically
distinct regions of the brain, i.e. whether activation in those regions correlates over time.
Compared to ‘effective connectivity’, FC does not indicate any causal relationships, nor does
it indicate any structural or physical connections. Several different metrics have been investi-
gated to quantify the statistical dependence among BOLD time series of different brain regions,
including covariance, mutual information, transfer entropy or Granger causality. The most
common metric to indicate FC is the Pearson correlation coefficient, which is a non-directed
measure of interaction, measuring the linear relationship between two random variables [6, 33,
207, 225, 297].

If two regions are functionally connected, they show similarly varying levels of activity, i.e.
temporal synchrony between their time series. For two simultaneously obtained time series
x = (x1, ..., xN ) and y = (y1, ..., yN ) with i = 1, ..., N timepoints the Pearson correlation
coefficient is calculated as

r =

N∑
i=1

(xi − x̄)(yi − ȳ)√
N∑

i=1
(xi − x̄)2

N∑
i=1

(yi − ȳ)2
(6.1)

where x̄ and ȳ denote the means of the two time series x and y, respectively. Hence, r is defined
over the interval [-1,1], where r = −1 corresponds to a perfect anti-correlation, r = 0 indicates
no correlation between the two variables and r = 1 implies a perfect positive correlation [126,
233, 237, 269].

Conventional seed-based or resting-state functional connectivity approaches most commonly
derive connectivity information from the whole length of the BOLD time series which results
in a stationary, time-averaged representation of the functional coupling between brain voxels
or areas. However, dynamic changes of brain network activity occur at many temporal scales,
from milliseconds to seconds, and other strategies have been used to take full advantage of
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the temporal information contained in the FC data. Since functional coupling between brain
regions is non-stationary over time within individuals, the most common approach to assess
dynamic FC changes over a period is the so-called sliding-window analysis [126, 130, 161, 207].

6.2 Sliding-window analysis
In a sliding-window approach, a predefined time window of fixed length is selected, and the
correlation coefficient between the two signals (BOLD fMRI time series, indicated by t1 and t2
in Figure 6.1) of interest within that window is computed. The window is then ‘slided’ forward
in time by some offset (with possible overlap) and the process is repeated over consecutive
windowed segments until the end of the time series is reached. In this way, the time-varying
behavior of the chosen metric (e.g. Pearson correlation coefficient) is quantified over the du-
ration of the fMRI scan by a time series of FC correlation values. This method is rather
computationally expensive and is sensitive to the chosen window parameters, such as window
length, offset and overlap [33, 50, 60, 92, 115, 126, 130, 161, 242].

Figure 6.1: Schematic illustration of a sliding-window approach with two time series t1 and
t2 of size N shifted against each other with window length ws = 4 and minimal
overlap o = 1. Correlation calculations are calculated between the shown grey
window of time series t1 and each single blue window (seven in total) of time series
t2, before the grey window in time series t1 would be shifted further along. The
obtained matrix of time series is then of size N×7, corresponding to one correlation
time series for each of the seven overlaps; adapted from [132].

The biggest challenge in sliding-window analysis is the identification of an appropriate size of
the window, as it has a substantial effect on the amount of time series variability captured
by the sliding-window. As there is no ground truth in the fMRI data, the exact dynamics,
timings of events and number of states are all unknown. The average duration of a real brain
‘state’ is not known and the BOLD response maximum lies delayed somewhere between five
and seven seconds [165]. Finding the ‘optimal’ window length to capture the relevant neu-
rological processes is a challenging task and no study has convincingly identified the optimal
window length for dynamic FC analysis – or determined if there even is one. The ‘optimal’
window length depends on different external and internal factors, including the temporal res-
olution of the fMRI scanning sequence, the performed cognitive task during the experiment,
as well as the physiological processing on cerebral level [242]. In principle for FC analysis, the
size of the sliding-window should be able to resolve the lowest frequencies of interest in the
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measured signal, as well as detect more rapid transitions between states on smaller timescales,
i.e. capture both discrete and smoothly varying changes in the connectivity, without giving a
time-averaged value over a long time period, suppressing potential interesting dynamics [242].
If only a small number of data points is included in the computation of the FC estimation,
the signal-to-noise ratio (SNR) decreases, as few time points are available for the calculation
and higher frequencies of the signal dominate the estimate. On the other hand, smaller win-
dow lengths offer higher temporal resolution and are more sensitive in capturing the dynamic
changes in the FC of the time series. To avoid spurious variability in the FC estimate due to
non-neuronal signal, a robust window length for resting-state fMRI analysis of 30 s is often
used [63, 130, 161, 207, 232, 266].

An additional challenge is the variability of the FC measurements in and between-sessions,
which is further complicated by non-stationary noise of the fMRI acquisitions. It has been
shown that FC measurements vary within one subject, between different sessions as well as
within single fMRI sessions [290]. Observed differences hereby include FC changes in strength
and directionality, increasing the difficulty to analyse and interpret temporal variations in FC
metrics happening on different timescales over fMRI time series [115]. Despite thorough prepro-
cessing techniques trying to reduce or eliminate the introduced confounding factors, residuals
from non-stationary noise may still remain in the data. The appropriate preprocessing, the neu-
ronally relevant frequencies and the appropriate time scale for studying connectivity changes
are presently open questions of research [4, 60, 130, 161, 205].

6.3 Linear mixed effects model (LME)
The typical statistical analysis of functional MRI studies include the comparison of the mea-
sured fMRI data against a hypothesized model based upon the known cognitive task that is
performed during the scan. Voxel, cluster or region based inference can be drawn and the
formulated hypotheses accepted or rejected based on the statistical threshold of significance.
In this way, brain voxels responding to different conditions of a task, e.g., high pain states
versus low pain states, are identified and assigned to individual activity maps. Hence, for each
condition a corresponding brain map with significant condition-associated voxels is created and
can be further analyzed and interpreted [63].

GLM

Since the introduction of the GLM to the neuroimaging community in 1995, the GLM analysis
has established itself as the standard statistical model for fMRI analysis to examine the tempo-
ral synchrony between experimental observations and the predicted responses [96]. The GLM
aims to explain the variation of a dependent, or response variable (measured fMRI data matrix)
in terms of a weighted sum of several predictors (corresponding to the different experimental
conditions) in order to detect task-related brain activity.

The GLM can be written in matrix notation as

Y = Xβ + ϵ with ϵ ∼ N(0, σ2I) (6.2)

where Y is the fMRI data matrix, X is the so-called design-matrix, β the model parameter
matrix and ϵ the matrix of error terms given by a normal distribution N(0, σ2I) with mean
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µ = 0 and variance σ2. By first left-multiplying both sides by XT the normal equations are
obtained,

XTY = XTXβ (6.3)

and the best approximation β̂ can be obtained from the least squares solution

β̂ = (XTX)−1XTY (6.4)

minimizing the sum-of-squares of the residual errors ϵ = Y −Ŷ , given by the difference between
Y and the estimated signal Ŷ = Xβ̂. The β̂-weight of a condition predictor thus quantifies the
contribution of its time course in explaining the voxel time course. The exact interpretation
of β-values depends on the design matrix X, where a large positive (negative) beta weight
typically indicates that the voxel exhibits strong activation (deactivation) during the modeled
experimental condition. All beta values together characterize a voxels ‘preference’ for one of
more experimental conditions [34, 105, 136, 225, 226].

Mixed and random effects analysis

In order for group-level inference to generalize across the small population included in a study,
results from individual subjects must be combined. Two common statistical approaches include
fixed effects analysis and random effects analysis [97]. In a fixed effects analysis, all measured
data points of each of the subjects are combined into a one analysis and single subject-level
analysis is performed. The underlying assumption of this approach is that the experiment in-
fluences all subjects in the same manner and that therefore inter-subject variation is zero. The
major drawback of this analysis is that conclusions are restricted to the investigated subjects
and do not generalize across population. Random effects analysis is therefore more commonly
applied in fMRI analysis. It accounts for the fact, that subjects are randomly drawn from
a larger population of subjects and the investigated experiment or task leads to different re-
sponses for each individual. Typically, random effects analysis is carried out in two stages:
first the subject-level, then the group-level. On stage one, first single subject statistics are cal-
culated independently, followed by a significance testing of the individual summary statistics
on the second- or group-level afterwards. The automatic analysis steps are available within
various fMRI statistical toolboxes [63, 196, 200].

In current fMRI practice, most analyses treat the experimental manipulation as having fixed
effects within individual but random effects across individual analyses, which leads to what is
called a mixed-effects analysis [225]. The standard approach is then to include a mixture of
within-subject or session fixed effects and across-subject or session random effects. Instead of
using a two-level approach, an ‘all-in-one’ model can be used. This model directly estimates
the parameter estimates β̂ at group-level from the full time series of all subjects conjointly,
taking into account all fixed and random effects variance components. This is a major ad-
vantage compared to two-level models, as it can take differences in subject-specific parameter
variances on group-level into account. A disadvantage can be the very large datasets, which
are computationally challenging [62, 93, 201].

Linear mixed effects models are expressed by

Y = Xβ + Zu + ϵ, (6.5)
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where Y is the n×1 response vector of observations, X is the n×p design matrix for the fixed
effects β, Z is the n×q design matrix for the random effects u and ϵ is the n×1 vector of error.
It is assumed that u and ϵ follow a normal distribution[

u
ϵ

]
∼ N

([
0
0

]
,

[
G 0
0 R

])
, (6.6)

with mean 0 and G and R being the variance covariance matrices for u and ϵ, respectively.
Hence

Y ∼ N(Xβ, ZGZT + R) (6.7)

and
V ar(Y ) = V = V ar(Zu) + V ar(ϵ) = ZGZT + R (6.8)

where R is often assumed R = σ2In.

The central mixed model equations (MME) or Hendersons’s equations [123][
XTR−1X XTR−1Z
ZTR−1X ZTR−1Z + G−1

] [
β̂
ũ

]
=
[
XTR−1y
ZTR−1y

]
(6.9)

are obtained by the (β̂, ũ) that jointly maximize the log-density function of the joint distribu-
tion of y and u given by

l = −1
2 log |R| − 1

2(y − Xβ − Zu)TR−1(y − Xβ − Zu) − 1
2 log|G| − uTG−1u + const.,

(6.10)
assuming R and G are known. This gives the best linear unbiased estimate for β̂ and best
linear unbiased predictor for ũ, analogous to the GLM:

β̂ = (XTV −1X)−1XTV −1y

ũ = GZTV −1(y − Xβ̂).
(6.11)

The equations for calculating maximum likelihood estimators of variance components for fMRI
data have to be solved with numerical iterative approaches, e.g., with the expectation maxi-
mization (EM) algorithm currently implemented in most statistical software (R, Python, Julia)
[37, 97, 307].

Significance testing and correction for multiple testing

Statistical inference on fMRI data is usually done on voxel- or cluster-level. Hence, the chosen
test statistic, e.g., t-statistic (given below) is evaluated either at each individual voxel or on
certain clusters. Spatially continuous activated voxels are first defined as clusters, then the
significance of each cluster is determined by measuring its size and then compared to some
critical cluster size threshold, e.g., α = 0.01 or α = 0.05. If a certain statistical threshold
calculated from the t-statistic is exceeded, the voxel or cluster is said to be significant [225].
The t-statistic

t = cβ̂√
c(XTX)−1cTσ̂2

(6.12)
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with specified contrasts c, ‘contrasting’ the β̂-estimates, and variance σ2, is often used in
fMRI analysis to carry out hypothesis testing and determine the significance of single voxels
or clusters. As a result, a statistical parameter map is obtained indicating significance or
non-significance for specific contrasts on a single voxel basis. From the t-statistics a p-value
can then be obtained. For small p-values (high t-values) the null hypothesis H0 (no effect of
interest in the data) is usually rejected and the alternative hypothesis H1 is accepted [175].

The so-called ‘multiple-testing-’ or ‘comparison-problem’ arises when a high number of sta-
tistical tests are simultaneously performed. In fMRI analysis, the statistical model is typically
fit to each of the hundreds of thousands of voxels. To correct for false positive errors induced
by multiple comparisons, several methods have been proposed e.g., the Familywise Error Rate
(FWE, mostly controlled by Bonferroni correction) or False Discovery Rate (FDR). Other ap-
proaches, such as (non-)parametric permutation methods can also be applied to control for the
FWE, but are computationally expensive [209]. For example, permutation approaches used
in this work repeatedly resample the data sets under the null hypothesis and calculate the
statistics from which the maximum across all voxels is extracted. In this way, an empirical null
distribution for the maximum statistic is obtained and the percentile of interest (100(1-α)) is
used to provide a statistical threshold which controls for multiple testing. Through random
re-labeling of the data under the null hypothesis, the entire images can then be investigated
for the quantity of interest [63, 164, 304, 305].
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This chapter gives a basic introduction to the theoretical background of machine learning meth-
ods with respect to the fMRI applications in Chapter 9.5. Two regression models are briefly
introduced in section 7.1, followed by cross-validation schemes (section 7.2) and the perfor-
mance measures (section 7.3) used in this work.

Machine learning is a data-driven technique that uses statistical methods to find complex
patterns in large amounts of data. Applications to fMRI data are motivated by the ability of
such methods to detect brain activity without a predefined model and use these cortical activ-
ity patterns to aid in diagnostic decisions, elucidate related brain activity to different cognitive
states and identify pathologically related patterns to develop potential biomarkers for specific
disorders [2].

The process of applying ML techniques to fMRI data can be divided into a general analysis
pipeline of three major steps [2, 91, 142]: First, the relevant brain activity has to be extracted
from the acquired BOLD fMRI time series and transformed to relevant features which enter
the machine learning analysis. Second, using a subset of the data, one or several ML models
are trained and the optimal parameters are obtained with respect to a predefined performance
metric. Third, the performance of the ML model is tested on a new or not used (sub)data
set to evaluate the generalisation accuracy, specified by some performance metric. The main
advantage of ML methods applied to fMRI data is that they can offer higher sensitivity than
their counterparts based on standard univariate statistics, due to being able to learn the likely
complex manifestations of brain disorders in neuroimaging data. A major drawback of fMRI
data when combined with ML approaches include the often obtained small sample size with a
large number of noisy fMRI features [2, 173].

Machine learning approaches are typically divided into the two main subtypes of supervised and
unsupervised learning. Supervised learning builds a model that predicts outputs from input
data (e.g. classification and regression analysis), whereas unsupervised learning is concerned
with finding structure in the data (e.g. clustering) [102]. In this work supervised models are
used and therefore focused on in the following. Supervised machine learning refers to the subset
of machine learning methods which derive models in the form of input-output relationships.
The goal is to identify the mapping between labelled input variables and output variables on
the basis of provided input features with corresponding target labels to generalize to unseen
data with unknown labels.

Two commonly used supervised learning algorithms are linear/logistic regression and decision
trees.
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7.1 Regression models
7.1.1 Regularized linear models
A large class of supervised learning algorithms are based on regularized linear regression models.
Compared to classical linear regression models (Equation 6.2), regularization (or “shrinkage”)
techniques add a penalty term in order to constrain or ‘regularize’ the coefficients which are
estimated. In this way sensitivity to outliers, and hence the variance of the model, is reduced,
leading to an improved prediction accuracy [102].
One of the most common regularization methods besides ridge regression is LASSO (Least
Absolute Shrinkage and Selection Operator) [283]. Adding a penalty term Ω(λ, β) to the
classic model leads to a penalized least squares (PLS) equation,

PLS(λ, β) = (y − Xβ)T (y − Xβ) + Ω(λ, β) (7.1)

with λ being a tuning parameter. If the tuning parameter λ is set to 0, λ = 0, then the ordinary
least squares estimate is obtained. For LASSO the L1 norm is imposed on the coefficients, i.e.
the sum of the absolute values of the coefficients is restricted. The LASSO coefficients β̂LASSO

are then obtained from

β̂LASSO = argmin
β

n∑
i=1

(yi −
p∑

j=1
xijβj)2 + λ

p∑
j=1

|βj |, λ ≥ 0 (7.2)

7.1.2 Tree based models
In 1984 tree-based methods both for classification and regression analysis were introduced, as
‘Classification and Regression Trees’ (CART) [44]. For the prediction of a numerical value,
regression trees are used and for categorical values classification trees are used [98].
A ‘tree’ is the visual representation of many binary ‘if-then’ decisions in the algorithm and is
usually ‘grown’ upside down, from top to bottom. Starting with all observations in one so-called
‘root’ node, the trees grow downward, branching out, until in the endings one observation is
left, in a so-called ‘leaf’ or terminal node. From the root node observations are placed into one
of two descendant nodes (branches with ‘child nodes’), using a split on a single input variable.
At each split, every possible split on every feature is considered and the predictor and split
combination giving the “best” value according to a certain metric is then used to partition
the node. At each child node, the algorithm will decide whether to continue dividing. If it
stops, the node is called a leaf node and it contains the final decision [121]. The most common
splitting metric for regression trees is the sum of squared error (SSE) . If the data S is divided
into two groups S1 and S2 for which the selection minimizes the sum of squared errors

SSE =
∑
i∈S1

(yi − ȳ1)2 +
∑
i∈S2

(yi − ȳ2)2
(7.3)

where ȳ1 and ȳ2 are the average of the samples in S1 and S2. The same procedure is applied
to all successive descendant nodes, which is also referred to as recursive partitioning: In a top-
down ‘greedy’ fashion, the algorithm splits nodes at each step into two branches and chooses
the best split at that particular step, rather than looking ahead and picking a split that leads
to a better tree in general [142]. To remove sections that have little predictive power, ‘pruning’
is applied. The most common methods for pruning include setting a maximum tree depth or
minimum number of samples per leaf. The trees then grow until one of the stopping criteria is
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met, for example, all nodes contain fewer than some fixed number of cases, and then ‘pruned’
back to prevent overfitting. Once a tree is finished, it will have some non-partitioned nodes
called terminal nodes. Predicted values in terminal nodes are obtained by averaging the re-
sponse for regression problems [73].

Single decision tree models will generally suffer from high variance and low accuracy. To
yield better prediction performances, an improved model is obtained by combining many trees,
which is called ensembling. By incorporating the predictions of many different trees, an aggre-
gated prediction generally yields an improved prediction accuracy compared to individual trees.
The most common ensemble of trees methods are random forest and boosting machines [73].
Boosting is referred to as the combination of many weak learners (i.e. a single decision tree)
to “boost” their performance in order to build a stronger model. Sequentially, as the first tree
is split on the most predictive feature, weights are created to ensure that the subsequent tree
splits on the feature that allows it to correctly classify the data points that were misclassified in
the initial tree and so forth. Increased weights are then assigned to misclassified observations,
while decreased weights are given to repeatedly correctly classified observations. In this way
each model in the sequence is built to address the deficiencies of the previous models in the
sequence. The final boosted predictions are then usually obtained as a weighted sum of all
individual predictions. Gradient boosting is the most popular extension of boosting and uses
the gradient descent algorithm for optimization [73, 98, 293].

The eXtreme gradient boosting (XGB), also known as ‘regularized boosting’, machine learning
algorithm is a fast implementation of gradient boosted trees developed by Chen and Guestrin
[64]. The goal of the learner is to make an accurate prediction ŷi = θ(xi) given xi based on the
data set [(x1, y1), ..., (xm, ym)]. The regularized objective function O(θ) is minimized to learn
the set of functions fk which are used to predict the outcome in the model and is given by

O(θ) =
∑

i

l(ŷi, yi) +
∑

k

Ω(fk) (7.4)

with l describing the difference between the prediction ŷi of the model and the true value yi

and

Ω(f) = γT + 1
2λ

T∑
j=1

w2
j (7.5)

being the regularization term which constrains the complexity of the model by introducing the
regularization parameter λ on the learned weights wj . T is the total number of leaves and γ is
another weighting parameter.
The minimization of the objective function to find the optimal set of split values and leaf values
for each tree is done in an additive, sequential manner. When t − 1 trees have been optimized
and the prediction ŷi

t at tree t is next, one adds the ft which maps xi onto the right leaf and
most improves the model ŷi

t = ŷi
t−1 + ft(xi) [64, 141, 155, 293].

To obtain a simplified objective at step t, the objective function can then be transformed from
a sum over the training set to a sum over the leaves set

Õt ≈
T∑

j=1
[(
∑
i∈It

j

gi)wj + 1
2(
∑
i∈It

j

hi + λ)w2
j ] + γT (7.6)

with Ij = {i|f(xi = wj)} mapping xi to leaf j and gi and hi are the first and second order
derivatives of the loss function.
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From equation 7.6, the optimal weight w∗
j of leaf j and the corresponding best objective value

can be calculated by

Õ∗(w∗
j ) = −1

2

T∑
j=1

G2
j

Hj + λ
+ γT (7.7)

with Gj =
∑

i∈Ij
gi and Hj =

∑
i∈Ij

hi. The best tree structure is then found by sequentially
splitting the features space, with each split loss reduction given by

Osplit = 1
2

(
G2

L

HL + λ
+ G2

R

HR + λ
− G2

R + G2
L

HR + HLλ

)
− γ (7.8)

with L and R indicating left or right node splits, respectively. In this way split candidates
for the best split can be evaluated by the measure of fit improvement which is the difference
between the scores of the new leaves after the split and the score of the previous leaf [293].
Full details of the exact derivatives of the algorithm can be found in the original publication
of Chen et al. [64].

7.2 Cross-validation and resampling
To evaluate the accuracy of a predictive model which was trained on labeled, known data, its
performance has to be measured on unknown data, to get an unbiased estimate. This is done
by calculating the out-of sample error in order to evaluate the generalisability of the model to
unseen, out-of sample data [160]. In a simple holdout strategy, the whole data set is divided
into two different sets: the training and test set. The training set is generally then further
split in two disjoint subsets, the training or learning set and the validation set. The training
set is now solely used for fitting the model, i.e. to estimate the model (hyper-)parameters.
Subsequently, the second subset is exclusively used for the purpose of assessing the estimated
model performance or compare different models on an independent data set, hence validation
set, before the most optimal model is chosen to be tested on the held-out test set [142].

However, when the learning sample is very small, subdividing the data further will yield an
unreliable estimate. Additionally, the estimated generalisation error depends on the specific
split and mostly the size of the subsets used for training, validation and testing. If too many
data points are put in the validation set, few data points actually remain in the training set
for the model to learn and hence will lack accuracy. On the other hand, if many observations
are left in the training set with only few in the validation set, the model’s variance of the
estimated model error increases. With small data sets for example, more complex models may
possibly better adjust to details in the data than simpler models, and will tend to overfit, i.e.,
will rather fit to the noise than to the underlying relationship of interest. As a result, while it
perfectly performs in-sample, its out-of-sample performance is deteriorated and the model is
said to have low bias, but high variance [160].
Both variance and bias should be minimal in a model. The main approach to handle the
tradeoff between bias and variance is to adapt the complexity of the hypothesis space to the
problem under consideration. By estimating the prediction error using cross-validation, meta-
parameters controlling the complexity of the hypothesis space are selected, and especially if
data are scarce, can provide good estimates for the generalisability of the model [287].

The most commonly applied resampling procedure in neuroimaging is k-fold cross-validation
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(CV). It utilizes all data points for both training and validation through repeated holdout,
yielding error estimates with much less variance than classic holdout. Explicitly, k-fold CV
first splits the learning sample into k disjoint subsets of equal size (see Figure 7.1 for an
schematic example for k = 5). Then, a model is inferred by the learning algorithm from each
sample, trained k times, and its performance is determined on the held out sample. The aver-
age error of all k obtained single estimated model errors then represents the final performance
estimate. When k is equal to the number of objects in the learning sample, this method is called
leave-one-out cross-validation [98]. Typically, cross-validation schemes offer generalisation error
estimates with relatively low bias, but with significant variability. Common recommendations
to attain a good balance between bias and variance include 5-fold or 10-fold CV [121, 160].

Figure 7.1: Schematic 5-fold cross-validation scheme: the data is split into five folds in the
outer loop, of which four are constituting the training set and one the test set for
each iteration. In the inner loop, training and validation sets are created from each
outer training set, to tune hyperparameters. The errors of the five iterations are
averaged to obtain the final performance estimation; adapted from [172].

7.3 Measuring performance
Common performance measurement metrics for regression models include the (Root) Mean
Squared Error (RMSE/MSE) as an absolute measure,

RMSE =
√

MSE =

√√√√ 1
n

n∑
i=1

(yi − ȳi)2 (7.9)

and as a relative one the coefficient of determination or ‘R-squared’ (R2),

R2 = 1 − SSres

SStot
= 1 −

∑n
i=1(yi − ŷi)2∑n
i=1(yi − ȳ)2 (7.10)
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with ȳ corresponding to the mean of the n datapoints yi and ŷi to the predicted value from
the model. The MSE measures the average of the squares of the errors – that is, the average
squared difference between the estimated values and the actual value. R2 compares the sum
of squared residuals obtained from the model (SSres) to the sum of squared residuals obtained
from a horizontal line fit (SStot), which represents the null hypothesis. In the best case, R2 = 1,
a baseline model has R2 = 0 and if R2 < 0 the model fits worse than the horizontal line or
mean of the data [155].
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This chapter introduces the ten hypotheses investigated in this thesis. All hypotheses are
given separately at the end of each of the sections representing the three different analyses
approaches pursued. A short motivating overview of the most important literature and the
pursued methodological approaches are given in this section. A detailed description of each of
the three analyses are given in chapter 9.

8.1 fMRI BOLD analysis

The perception of pain is a subjective and multidimensional experience that has a profound
impact on the physiological and psychological state of an individual [28, 197]. Chronic pain
states are characterized by a hypersensitisation of nociceptive neurons [106], a reduced endoge-
nous inhibition of the nociceptive system [82, 124, 274], and by maladaptive cortical processes
[222, 231]. The cortical regions that are involved in the processing of chronic pain have pri-
marily been investigated with experimentally-applied exogenous pain, i.e. thermal [31, 107,
262, 288], electrical [57, 78, 167], mechanical [101, 110, 113, 146], or chemical stimulation [252,
273]. These studies found increased activity in chronic pain patients in regions also involved
in the encoding of acute pain, such as the primary and secondary somatosensory cortices (S1,
S2), sections of the insular and cingulate cortices, the cerebellum, and the thalamus [15, 28,
88, 177, 231].

However, applying additional experimental pain to chronic patients already experiencing pain
and investigating their response may reveal cortical processes that are not necessarily at the
core of the chronic pain disease. First and foremost should be the unravelling of the underlying
processing of the chronic pain experience, independent of external tasks or stimulations. What
matters most to the individual are the dynamics of their endogenous pain experience, which
fluctuates over time and consists of periods of increasing, stable, and decreasing pain intensity.
Based on previous approaches [25, 185], investigations of pain intensity coding should therefore
include all intensity levels and dynamics in the pain experience and not be restricted to periods
of increasing pain. It is thus important to preserve the naturally evolving cortical trajectory
of the patients’ endogenous pain as much as possible with a continuous and event-free study
design. This study thus complies with a more naturalistic paradigm to capture the individual
endogenous pain experience for each subject as naturally as possible. Only by identifying the
functional underpinnings of the connections of pain encoding, a treatment can target maladap-
tive developments and possibly redirect functional connections back to a healthy processing
brain.

In four repeated fMRI sessions, 20 chronic back pain patients and 20 chronic migraineurs
were asked to continuously rate the intensity of their endogenous pain. Cortical activity was
therefore recorded simultaneously to the subjects’ individual pain ratings during 25 minutes of
one fMRI session without external stimulation. Linear mixed effects models were then used to
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relate brain activity to the pain rating data to disentangle cortical processes related to pain
intensity and to changes in pain intensity, i.e. increasing or decreasing pain. A detailed descrip-
tion of the experimental setup and applied methods are given in the following sections 9.2 – 9.3.

With respect to the following three hypotheses, a detailed analysis and discussion of the BOLD
analysis is given in chapter 9.3:

(1) At group-level, the involvement of cortical regions that are known to contribute to the
processing of pain, i.e. subregions of the insular and cingulate cortices, the primary and sec-
ondary somatosensory cortices, the thalamus, and the PAG is hypothesized for both pain
cohorts.
(2) Different brain regions are hypothesized to show activation for the encoding of pain inten-
sity and the encoding of the change in pain intensity.
(3) At subject-level, for each pain cohort, the processing of pain intensity and the change of
pain intensity in chronic pain patients is hypothesized to yield a variety of individual patterns,
i.e. the encoding of pain in chronic pain patients is subject-specific rather than generalisable
across chronic pain disease.

8.2 fMRI functional connectivity analysis

Functional connectivity has become essential at exploring the functional network structure of
both healthy and diseased brains [6, 237, 282, 319]. Alterations in functional connectivity pat-
terns due to neurological or psychiatric disorders, as well as changes due to long-lasting chronic
pain conditions have been reported [138, 183, 242]. Chronic pain conditions have been studied
by analysing intrinsic cortical networks as well as computing seed-based correlations of one or
a few predefined brain regions.

In a complex whole-brain connectivity study using cortical parcellation, multiple changes for
chronic back pain (CBP) patients particularly for connections involving the frontal cortex and
the ACC were found [24]. CBP patients were additionally found to exhibit a general reorgan-
isation of the DMN, with increased connectivity of the DMN to the medial prefrontal cortex,
ACC and left anterior insula and decreased connectivity of mPFC with the precuneus [30,
277]. A further study investigated CBP patients in high and low pain conditions. Compared to
controls, patients had greater connectivity in the left fusiform, occipital, right posterior cingu-
late and inferior parietal cortices [147]. High back pain intensity was associated with stronger
FC of the primary somatosensory (S1) and motor (M1) cortices and the left superior frontal
cortex. In addition, CBP has been found to alter the connectivity between primary sensory
networks compared to controls [267]. The authors reported e.g. increased connectivity between
the primary visual network and S1 as well as decreased connectivity between the primary vi-
sual network and the left angular gyrus/lateral occipital cortex; the connectivity strength was
further negatively correlated with the disease duration.

Specifically for CM patients compared to episodic migraineurs, a study revealed greater con-
nectivity within an intrinsic network consisting of the ACC, the anterior insula, the thalamus,
the dorsolateral prefrontal cortex, the precuneus, the supramarginal gyrus, and the cerebellum.
In addition, the authors found a greater connectivity between this network and the hypothala-
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mus as well as the dorsal raphe nuclei [159]. A further study reported decreased connectivity
between the executive control network and the left dorsal attention system in CM compared to
healthy controls [70]. Additionally for chronic migraineurs, a disrupted functional connectivity
between the DMN and the executive control network, but increased functional connectivity be-
tween the DMN and the left dorsal attention system has been reported [70]. Furthermore CM
patients showed stronger connectivity of the amygdalae with regions in the inferior temporal,
prefrontal, cingulate, as well as the pre- and postcentral cortices compared to EM. In contrast,
weaker connectivity was found between the right amygdala and occipital regions in CM com-
pared to healthy subjects [65]. Similar results were obtained by [260], who were identifying
atypical resting-state functional connectivity e.g. of the anterior insula, amygdala, thalamus
and the PAG in CM compared to controls. In addition, the disease duration correlated with
the strength of connectivity between the anterior insula and thalamic nuclei as well as the
PAG. In this study, CM patients showed positive correlations between the left anterior insula
and negative correlation between right amygdala and left occipital. CM patients were also
found to show decreased connectivity within a central executive network between the right
ventrolateral prefrontal cortex (PFC) and the thalamus as well as between the left dorsal PFC
and the dorsomedial PFC compared to controls [9].

There are a number of challenges that hamper the formation of a unified framework for the
understanding of the cortical underpinnings of chronic pain disease and might be the reason
for the often contradicting findings across the FC-literature. First, findings from resting-state
studies do not necessarily represent pain-specific networks that are at the very core of the dis-
ease. As a major disadvantage, analyses on stationary cortical maps can not take the ongoing
functional dynamics of the subjective experience of pain into account. In addition, the cause
of the common fluctuation of BOLD activity, which gives rise to distinct intrinsic networks, is
not entirely understood yet. The BOLD fluctuations, consisting of peaks and troughs, might
be caused by the continuously changing pain intensity, but this has not been sufficiently tested
so far and network fluctuations that are unrelated to the ongoing experience of pain would be
difficult to interpret. Second, most of the studies in the neuroimaging literature lack reliable
cortical data with repeated measurements for reproducible and longitudinal observations [183,
221], which may explain the heterogeneity e.g. of the DMN findings. Therefore, extended and
repeated recordings are mandatory in order to disentangle a subject’s stable signature from
random momentary fluctuations of brain activity that are valid only for a single measurement.

In a whole-brain connectivity analysis of 408 brain areas, FC between pairs of brain regions
with respect to the acquired pain ratings were investigated in this thesis. With a sliding-window
approach, the time-varying connectivity between all brain regions was determined across the
entire recording period and linear mixed effects models were fitted to explore the relationship
between cortical activity and the observed trajectory of the patients’ fluctuating endogenous
pain.

With respect to the now following four hypotheses, a detailed analysis and discussion of the
whole-brain functional connectivity approach to identify coherent brain connectivity patterns
of chronic pain encoding is given in chapter 9.4:

(4) Functional connectivity patterns describing the neuronal response to pain, are hypothesized
to show increased connectivity for higher pain perception and lower functional connectivity for
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lower perceived pain.
(5) Qualitative different patterns for the encoding of pain intensity and the encoding of change
in pain intensity for both chronic pain cohorts are hypothesized.
(6) On group-level, mostly functional connections involved in pain processing, i.e. functional
connections between insular/frontal opercular, ACC, PCC and frontal regions are hypothe-
sized.
(7) On single subject-level, specific individual alterations in the cortical pattern between sub-
jects due to their long lasting pain are hypothesized, arguing against one biomarker for chronic
back pain or chronic migraine.

8.3 Supervised machine learning analysis

In recent years, data-driven methods such as machine or deep learning techniques have gained
increased attention and have become progressively popular to harvest novel, undetected infor-
mation of the brain’s dynamics. Classifying disorders or predicting pathological development
based on a subject’s spatial brain structure or activity obtained with MRI is an intriguing
possibility to develop biomarkers for specific diseases. Most studies so far have focused on
diagnosis to identify brain signatures that discriminate healthy control subjects from patients
involving several diseases and disorders, i.e., Alzheimer’s disease, mental health and pain disor-
ders [80, 181, 245, 308]. fMRI neuroimaging datasets contain a wealth of information, however,
extracting useful information from raw scan data still remains challenging and the results often
only represent a collection of independent effects. While common univariate analysis of fMRI
data is informative in revealing various correlates of the BOLD signal, it is insufficient for in-
vestigating the interactions of systems responsible for the localized activations found from the
univariate analysis approach. Therefore, ML algorithms, which try to identify brain patterns
in the data to make predictions for unobserved data, flip the typical direction of fMRI analysis
[238]: In order to allow for an accurate prediction to data with unknown label, task events
are treated as dependent variables and observed fMRI data as independent variables to find
the best model parameters describing the underlying processes. All available brain activity in-
formation is integrated and multiple interacting, dependent brain networks are included [235].
In this way, complex intrinsic variations of spatial and temporal dependencies within fMRI
data can be detected, which seems particularly well suited for the investigation of the diverse
networks of brain areas involved in the encoding and processing of the pain experience.

Since the first application of ML algorithms to the field of pain research in 2010 [181], sev-
eral different investigations have been made to assess structural [27, 287] as well as functional
changes. Chronic low back pain patients for example were distinguished from healthy indi-
viduals on structural changes in Ung et al. [287]. The most common ones use classification
methods based on support vector algorithms with an experimental design of external thermal
stimuli to assess pain thresholds and pain sensitivity [245, 254]. Several studies showed the
ML algorithms were able to discriminate painful from non painful externally applied stimuli
[45, 47, 295]. In a previous study [295], the Neurologic Pain Signature (NPS) was developed,
a model to predict pain ratings in participants of four levels of thermal stimuli. The evolution
of magnitude perception were investigated by Cecchi et al. [59] on subject-level and in Brown
et al. [47] a certain stability of BOLD activations was encountered across individuals, both
spatially and magnitude wise. This indicates that at least for applied exogenous noxious stim-
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uli, patterns of BOLD activity are consistent enough to potentially develop a physiology-based
classifier for pain, which most importantly for clinical applicability, generalizes well to other
subjects. Additionally, they found that improved predictions were obtained, when pain was
assessed on the whole-brain activity pattern in contrast to only a few individual brain regions.

So far, however, only self-report and questionnaire-based tools are the standard evaluation
method for the pain experience and classify the foremost subjective experience, which can fail
certain vulnerable populations, such as e.g., patients with dementia [47]. Especially in chronic
pain, an objective measure for diagnosing and evaluating the fluctuating persistent pain ex-
perience is missing [235]. The approach chosen in the present work therefore investigates the
possibility of a BOLD signal based marker for different pain intensity levels which then can
predict the pain intensity of unknown brain states. Brain based objective measures of pain
may augment and facilitate diagnosis, treatment, and promote better understanding of the
underlying cause of different types of brain [57, 282].

Based on the BOLD activations during the four repeated measurements of the pain rating
experiment, a supervised ML approach was investigated to test the possibility of predicting
the pain intensity levels based on cortical activations. Two regression models were compared
in their performance. A group-level and subject-level approach was investigated separately, i.e.
learning on all data of one chronic pain cohort vs learning the model on subject specific data.
To investigate the stability of the fMRI sessions acquired relationship between cortical activity
and pain rating, a between-session and within-session approach were pursued.

With respect to the now following three hypotheses, a detailed analysis and discussion of
the machine learning approach is given in chapter 9.5:

(8) Supervised ML approaches are hypothesized to predict pain intensity for chronic pain
patients based on fMRI BOLD activity patterns.
(9) Comparing subject-level with group-level, learning on single subject-level data is hypothe-
sized to yield better performance compared to learning on group-level data.
(10) The relationship between brain activity and pain intensity level is hypothesized to be
constant over time, i.e. if the relationship is learned in one fMRI session it can be used to
predict brain activity in a different session.
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9 Whole-brain fMRI analysis in chronic back
pain and chronic migraine patients

This chapter presents the methods and results for all three analysis approaches, i.e., BOLD
analysis, connectivity analysis, and a machine learning approach. A detailed description of
the study and experimental procedure common to all three analysis approaches is presented in
sections 9.1 and 9.2. BOLD-specific analysis methods and results are presented and discussed
in section 9.3, connectivity-specific analysis methods with results are presented and discussed
in section 9.4 and ML-specific analysis methods and results are presented and discussed in
section 9.5.

The work presented in chapters 9.3 and 9.4 have been drafted into two manuscripts that
were submitted to scientific journals. By the time of submission of this thesis, the papers have
not yet been peer-reviewed. However, preprint versions of the manuscripts have already been
published on bioRxiv, a free online archive and distribution service for complete but unpub-
lished manuscripts (preprints) in the life and health sciences, operated by Cold Spring Harbor
Laboratory, as a not-for-profit research and educational institution. In this chapter, several
paragraphs are taken verbatim or slightly modified from these preprint manuscripts for which
the citation for the preprint for the BOLD analysis (chapter 9.3) will be referred to by reference
[187] and for the preprint of the connectivity analysis (chapter 9.4) by reference [188].

9.1 Patients and questionnaire

In total 40 patients were included in the analysis: 20 patients diagnosed with chronic back pain
(CBP - 16 female; aged 44 ± 13 years) and 20 patients with chronic migraine (CM - 18 female;
aged 34 ± 13 years). CBP patients were diagnosed according to the IASP criteria (The Inter-
national Association for the Study of Pain; [194]) and CM patients were diagnosed according to
the ICHD-3 (Headache Classification Committee of the International Headache Society (IHS)
2018). All patients were permitted to continue their pharmacological treatment at a stable
dose (see Appendix chapter 11 for patient characteristics Tables 11.7–11.9). The patients did
not report any other neurological or psychiatric disorders, or had contraindications for an MRI
examination; patients with any additional pain were excluded from the study. For all patients,
a fluctuating pain (in contrast to a constant pain at the same intensity level) was a prerequisite
for inclusion. All participants gave written informed consent. The study was approved by the
Ethics Committee of the Medical Department of the Ludwig-Maximilians-Universität München
and conducted in conformity with the Declaration of Helsinki.
Patients were characterized using the German Pain Questionnaire (Deutscher Schmerzfrage-
bogen; [58]) and the German version of the Pain Catastrophizing Scale (PCS; [276]). The
pain intensity describes the average pain in the last four weeks from zero to ten with zero
representing no pain and ten indicating maximum imaginable pain (see small excerpt in Table
9.1). The German version of the Depression, Anxiety and Stress Scale (DASS) was used to
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rate depressive, anxiety, and stress symptoms (Appendix Tables 11.7 – 11.9) over the past week
[170].
In total nine initially screened patients were excluded: two patients developed additional pain
during the study, the pain ratings of five patients were constantly increasing or decreasing
throughout the pain rating experiment, and two patients were unable to comply with study
requests. In total, 36 patients were recorded four times across six weeks with a gap G of at
least two days (median (IQR): GCBP = 5(5.5) days, GCM = 7(8) days) between sessions. Four
patients (two CBP and two CM) only completed 3 of 4 sessions.

CBP CM
pain intensity [0-10] 5 ± 2 5 ± 1

pain duration in years 10 ± 7 15 ± 12
PCS [0-52] 17 ± 10 21 ± 10

depression [0-21] 4 ± 3 3 ± 3
anxiety [0-21] 3 ± 2 3 ± 4
stress [0-21] 7 ± 4 6 ± 4

Table 9.1: Example of six characteristics (mean ± standard deviation) evaluated in the ques-
tionnaires; scores given in brackets indicate the possible range of values of the vari-
able. See Appendix Tables 11.7 – 11.9 for detailed patient characteristics and ques-
tionnaire data.

9.2 Experimental setup and data acquisition
Altogether, four fMRI sessions of 25 minutes duration with simultaneous subjective pain rat-
ing recordings were acquired from two chronic pain cohorts, CBP and CM. During the fourth
session, following the pain rating task, one additional measurement of 25 minutes of a visual
control condition (see section 9.2.2) was recorded for all patients.

9.2.1 fMRI acquisition parameters
fMRI data were recorded on a clinical 3T MRI scanner (Magnetom Skyra, Siemens Healthi-
neers, Erlangen, Germany) using a 64-channel head coil. A T2*-weighted BOLD gradient echo
sequence with echo-planar image acquisition and a multiband factor of 2 was used with the
following parameters: number of slices = 46; repetition time/echo time = 1550/30 ms; flip
angle = 71◦; slice thickness = 3 mm; voxel size = 3×3×3 mm3; field of view = 210×210 mm2.
1000 volumes were recorded in 1550 s resulting in a temporal resolution of 1.55 s per volume.
Field maps were acquired in each session to control for B0-effects.
For each patient, T1- and T2-weighted anatomical MRI images were acquired using the fol-
lowing parameters for the T1 MPRAGE sequence: repetition time/echo time = 2060/2.17 ms;
inversion time = 1040 s; flip angle = 12◦; number of slices = 256; slice thickness = 0.75 mm;
voxel size = 0.75×0.75×0.75 mm3; field of view = 240×240 mm2, and for the 3D TSE T2
SPACE sequence: repetition time/echo time = 3200/560 ms; flip angle = 120◦; number of
slices = 256; slice thickness = 0.75 mm; voxel size = 0.75×0.75×0.75 mm3; field of view =
240×240 mm2.
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9.2.2 Pain rating recording

During the fMRI acquisitions, patients rated the intensity of their ongoing pain for 25 minutes
using an MRI-compatible potentiometer slider [256] (Figure 9.1 a). The scale ranged from 0 to
100 in steps of five with 0 representing no pain and 100 representing the highest experienced
pain. On a light grey screen a moving red cursor on a dark grey bar (visual analogue scale, VAS)
and a number above (numeric analogue scale, NAS) were shown during the entire functional
MRI session (Figure 9.1 b). The screen was visible through a mirror mounted on top of the
MRI head coil. Patients were asked to look only at the screen, focus on the pain with an
emphasis on the fluctuating nature of their pain experience. The intensity and the changes of
perceived pain had to be indicated as quickly and accurately as possible. To minimize head
movement, foam pads were placed around the head and patients were instructed to lie as still
as possible throughout the entire scanning session.

(a) potentiometer slider (b) pain rating of 50

(c) visual rating of 15 (d) visual rating of 80

Figure 9.1: Experimental setup: The patients indicated their pain experience with the MRI-
compatible potentiometer slider (a) during the fMRI acquisitions and saw the ac-
cording curser movement on the visual and numeric analogue scale on the screen
(b). For the visual control condition, the changing background brightness (two
different brightnesses (c) and (d)) was to be rated.

To control for visual-motor performance and decision-making activity during the pain rating
session, a visual control experiment was carried out during the last visit. Patients were asked to
continuously rate the changing background brightness of the screen as accurately and quickly
as possible. The same feedback in the form of a red bar (VAS) and a number (NAS) was given
on the same screen as for the pain-rating experiment (Figure 9.1 c and d). Unbeknownst to the
patient, the control condition was a composition of parts of the previous pain rating sessions
to match with range and frequency of the pain rating. Pain ratings between 0 and 100 in steps
of 5 were converted to 21 shades of grey, 0 indicating black ([RGB: 0 0 0]) and 100 indicating
white ([RGB: 255 255 255]).
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9.2.3 Pain rating data preprocessing
The pain rating time courses for all individual patients in each session are shown in the Ap-
pendix in Figures 11.2 and 11.3 for CBP and CM patients, respectively. The average pain
ratings were variable between recording sessions. For CBP and CM, an average rating of
39 ± 14 and 40 ± 15 was found, respectively. The pain ratings within each of the 78 sessions
were fluctuating substantially, as reflected by a high variance over the 25 minutes of each
recording: σ2 = 109.3 ± 126.6 for CBP and σ2 = 93.3 ± 62.8 for CM, given as the mean and
standard deviation of the mean individual variances over all 78 sessions for each patient cohort,
separately. The average rating did not exhibit any systematic change over the time course of
one experimental session. A linear fit to the rating revealed a minor positive slope of 0.13±0.41
1/min (mean change of rating unit per minute) for CBP and of −0.05 ± 0.37 1/min for CM
(all mean ± standard deviation) was found.

Figure 9.2: Accepted and rejected pain ratings based on the PR parameter with individual
range (rng: min-max), standard deviation (SD) and parameter PR for each rating:
Rating A1 represents an excellent rating with a very low PR value of 0.01, indicating
high variance and no overall drift throughout the experiment. Rating A2 represents
a pain rating with a moderate PR value of 0.15, whereas X1 represents an excluded
rating with a PR slightly higher than the set threshold PR ≥ 0.25. X2 was excluded
due to a steady increase in the pain ratings over the course of the experiment. X3
was excluded due to very low variability in ratings after high-pass filtering. Ratings
A1 and A2 were accepted, whereas recordings X1, X2 and X3 were excluded from
the analysis. Figure and legend taken from [187].

The rating time courses were required to fluctuate at a relatively constant level, in order to
mitigate potential effects of order (e.g. in case of continuously rising pain). To ensure that the
behavioural task performance of the patients fulfilled this criterion, the ratings of each patient’s
pain was quickly evaluated based on a constructed parameter PR after each fMRI recording
session (see Figure 9.2 for examples of accepted and rejected pain rating time courses). The
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ratings of each patient’s pain were measured with the parameter PR defined as

PR = ∆pud/∆t

σfd
(9.1)

with the numerator ∆pud/∆t being the slope of the regression line of the unfiltered data (ud)
and σfd being the sample standard deviation of the filtered data (fd). The parameter PR is
constructed in a way that its minimisation is desirable. The numerator describes how much
the prerequisite is violated by fitting a least squares line across the rating time course. This
violation can be compensated if the variance of pain ratings is considerably higher than the
slope of the regression of the least squares line across the entire time course of the pain ratings.
The standard deviation of the filtered data expressed in the denominator gives a measure of
the (desired) fluctuations of the pain ratings but is stripped from a potential trend throughout
the experiment. A minimisation of the quotient is given either by minimising the numerator
corresponding to a small increase of the overall pain ratings over the whole experiment (small
slope), or by maximising the denominator corresponding to a large variability in pain ratings
across the rating task. Minor overall rising in pain intensity over the whole time of the experi-
ment could be compensated by a greater variance of ratings; small fluctuation of pain intensity
would only be accepted in cases of minor pain rating trends across the entire experiment.
Recordings showing values of PR ≥ 0.25 were rejected from the analysis or repeated if possible.
Five participants were excluded and three sessions were repeated. Figure 9.2 shows examples
of accepted and rejected ratings based on the PR value. The threshold of the PR value was
chosen based on the following considerations: First, cortical processes that would progress
linearly over the time course of the fMRI acquisition, would be filtered out through temporal
data filtering as part of the preprocessing. Second, to avoid effects of order of e.g. steadily
increasing pain intensity in CBP patients due to laying in the scanner for an extended period of
time, linearly increasing or decreasing pain ratings were limited through the chosen threshold
of the PR value. Finally, careful inspection of the pain rating data after each recording, de-
termination of the the number of slider movements and overall trend of the rating throughout
the 25 minutes of each session motivated the PR threshold.

Two additional variables were introduced to separate the distinct activity and patterns of
pain intensity encoding from brain processes related to the sensing of rising and falling pain,
as well as from motor activity and decision making. An exemplary illustration of all three
variables is shown in Figure 9.3. First, to disentangle the distinct aspects of pain intensity
(AMP - amplitude) from cortical processes related to the sensing of rising and falling pain, the
ongoing rate of change (SLP - slope, encoded as 1, -1, and 0) in the pain ratings was calculated
as the slope of the least squares regression line across a 3 s time window of the 10 Hz pain
rating data. Increasing pain is represented by a positive slope; decreasing pain by a negative
slope. Periods with SLP = 0 indicate time frames of constant pain. Second, a vector of the
absolute slope value of pain ratings (aSLP - absolute slope, encoded as 0 and 1) corresponds to
the modulus of the SLP variable and represents periods of motor activity (slider movement),
changes of visual input (each slider movement changes the screen), and decision-making (each
slider movement prerequisites a decision to move). This variable does not account for the di-
rection of the movement or the direction of the pain intensity change. Periods with aSLP = 0
indicate time frames of constant pain without the need to move the slider.
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Figure 9.3: Exemplary pain rating variables AMP, SLP, aSLP over 500 datapoints correspond-
ing to approximately half of one fMRI session. Pain intensity (AMP) rating range
from 0 to 100, the SLP variable distinguishes rising (1), constant (0) and falling
(-1) pain periods and aSLP encodes the motor activity of the slider movement (1)
versus periods of rest (0).

These processes (SLP, aSLP) occur concomitant to the encoding of pain intensity (AMP) but
are functionally, temporally and statistically independent, indicated by the low correlations of
the three entities (AMP, SLP, aSLP): The mean (± standard deviation) correlation coefficients
(Fisher-z transformed) for all CBP/CM subjects for each of the variable pairs were: r(AMP,
SLP) = 0.007 ± 0.04 / 0.02 ± 0.04; r(SLP, aSLP) = 0.06 ± 0.2 / 0.01 ± 0.12; r(AMP, aSLP) =
0.002 ± 0.08 / −0.004 ± 0.09.

9.2.4 Preprocessing
fMRI data were standard preprocessed using the Functional Magnetic Resonance Imaging of
the Brain (FMRIB) Expert Analysis Tool (FEAT) in FSL (Version 5.0.10; [134]). The prepro-
cessing for each subject included in the following order: slice time correction for interleaved
acquisition, motion correction using MCFLIRT (motion correction using FMRIB’s Linear Im-
age Registration Tool) and B0 unwarping, non-brain removal (using BET brain extraction),
spatial smoothing using a Gaussian kernel with a FWHM (full width at half maximum) of 6
mm, a nonlinear high-pass temporal filtering with a cutoff of 400 s (lowest frequency 1/400
Hz) and spatial registration to the Standard Montreal Neurological Institute (MNI) template
(FSL’s MNI 152, T1: 2 × 2 × 2 mm).
The rating data were continuously recorded and offline downsampled to 10 Hz. To remove the
same filtering effects from the behavioural data as from the imaging data, a 400 s high-pass
filter was applied.

Independent component analysis (ICA) was run with MELODIC ((Multivariate Exploratory
Linear Optimized Decomposition into Independent Components) Module, Version 5.0.10, part
of FSL) to minimize confounding factors i.e. respiration and cardiac cycles. Preprocessed data
were projected into a 100-dimensional subspace and components were semi-automatically la-
belled by FIX (FMRIB’s ICA-based Xnoiseifier, Version 1.06). Here, the BOLD signals are
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separated into statistically independent components, representing either components of interest
(BOLD signal) or noise-related (e.g. breathing) components. According to the components’
spatial or temporal profile, artifact-related components were removed from the data following
the recommendations in the literature [112], [140], [243]. The average number of artifact com-
ponents for CM was 40 ± 6 and for CBP 49 ± 8.

The pain rating time courses (AMP, SLP and aSLP variables) of each patient were convolved
with a hemodynamic response function (HRF) implemented in SPM12 [219] with the follow-
ing parameters: HRF = spmhrf(0.1, [6, 16, 1, 1, 100, 0, 32]). The post-stimulus undershoot was
minimized by the ratio of response to undershoot and motivated by the continuous and event-
free fMRI study design. For the statistical analysis, the resulting filtered time course was
transferred to Matlab (Mathworks, USA; version R2018a) and downsampled to the sampling
frequency of the imaging data (1/1.55 Hz).
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9.3 BOLD fMRI analysis in chronic back pain and chronic migraine
patients

9.3.1 Sliding-window and statistical analysis for BOLD

A sliding-window approach was applied to investigate the timing of the different cortical pro-
cesses. To allow for some variability in the HRF, responses between pathological populations
(two different conditions), as well as between different tasks (encoding of pain intensity changes
and encoding of motor activity), systematic shifting of the rating vector and BOLD response
between -15 s and 20 s in steps of 1 s (36 steps) was applied. These shifts account for the un-
known timing of cortical processing in reference to the rating: some ongoing cortical processes
may influence later changes in pain ratings, other processes are directly related to the rating
behaviour, or are influenced by the rating process and are occurring afterwards. The shifts
were permitted to vary for different brain areas.

Figure 9.4: Exemplary pain ratings and BOLD signal in one voxel in the insula for two subjects
in different sessions.

Voxel-wise linear mixed effects models (LME; MixedModels.jl package in Julia [38]) were com-
puted to identify the brain regions in which the cortical activity changed during the experiment
with respect to the amplitude of the pain rating (amplitude - AMP), as well as to rising or
falling pain (slope - SLP). Illustrative exemplary obtained BOLD signals in one voxel in com-
parison to the pain rating are visualised in Figure 9.4. Each change of pain rating, irrespective
of direction, is accompanied by motor activity, decision-making processes, and the perception
of visual change on the monitor (absolute slope - aSLP). Respective time courses of AMP, SLP
and aSLP were related to the time courses of brain activity in order to obtain a statistical
estimate of the cortical underpinnings of these independent processes. The fluctuating BOLD
activity of a particular brain voxel is modelled through the time course of the three variables
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with the following model, expressed in Wilkinson notation [303]:

intensity ∼ 1 + AMP + SLP + aSLP +
+ (AMP − 1|session) + (SLP − 1|session) + (aSLP − 1|session)

(9.2)

The included four fixed effects (represented by the four terms in the first line of equation 9.2)
describe the following four properties: the magnitudes of the population common intercept (‘1’)
and the population common slopes for the relationship between cortical data and the intercept
and these three variables (‘AMP, SLP, aSLP’). The 3 · 78 = 234 random effects (represented
by the three terms in the second line of equation 9.2) model specific intercept differences for
each recording session, which accounts for session specific differences in pain levels, for the three
variables AMP, SLP and aSLP for each of the 78 (18 subjects × 4 sessions + 2 subjects × 3
sessions) recorded sessions. T-values of the fixed-effects parameters quantify the relationships
which is of main interest in the analysis, i.e. identifying significant relationships of BOLD sig-
nal intensity for different pain levels (AMP), distinguishing rising and falling pain (SLP), and
motor activity from rest (aSLP). Whereas AMP is represented by the continuous levels of pain
intensity, the values for SLP (-1, 0 1) and aSLP are binned but numerical. This means that
the interpretation of the statistics for SLP resembles a paired t-test between the conditions
positive slope (‘1’) and negative slope (‘-1’). The model was calculated 36 times for each of
the shifts of the sliding-window approach, which results in 36 t-values for each variable (AMP,
SLP, aSLP) and voxel of which the highest t-values were extracted. The model was separately
calculated for CM and CBP.

For the direct contrast with the visual control experiment, the following model was computed
with conditions pain vs. visual:

intensity ∼ 1 + AMP · condition + SLP · condition + aSLP · condition +
+ (0 + AMP |session) + (0 + SLP |session) + (0 + aSLP |session)

(9.3)

All voxel-wise statistical tests were corrected for multiple comparisons and autocorrelation in
the behavioural data in the following way: 500 surrogate time courses were created from the
rating data (Iterative Amplitude Adjusted Fourier Transform (IAAFT) algorithm [251, 279]),
which were uncorrelated to the original rating data but had the same autocorrelation struc-
ture as the original data. The LME analysis was repeated 500 times with the surrogate data,
resulting in 500 whole-brain statistical maps for AMP, SLP and aSLP. The highest absolute
t-values from each map and repetition across the whole volume was extracted, which resulted
in a right-skewed distribution of 500 values for each condition [256]. Based on the obtained
distribution, the statistical threshold was determined using the Permutation Analysis of Linear
Models (PALM) tool from Winkler et al. [305], also implemented in FSL [304]. The obtained
statistical thresholds for the group and single subject analysis are given in Table 9.2.

In addition, the resemblance of the topography of the amplitude encoding (AMP) to the topog-
raphy of the neurological signature of applied physical pain (Neurologic Pain Signature, NPS;
[295]) was tested. By thresholding the NPS weights map at 0.005 and the AMP map at t > 2
both maps were ‘normalised’ with the following procedure: the pre-selected absolute t-values
were ranked and equidistant numbers between 1 and 1000 were given to each included voxel.
Voxels with negative t-values were given back their negative sign. Spatial correlations using
Kendall’s τ coefficients were computed for the common superthreshold voxels (4900 voxels for
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CBP CM
subject AMP SLP aSLP subject AMP SLP aSLP

1 7.40 8.66 5.04 1 10.23 4.92 4.34
2 7.61 6.52 4.24 2 7.85 5.34 5.14
3 7.34 6.88 4.21 3 8.30 7.09 5.62
4 6.51 5.59 5.32 4 5.94 6.32 5.44
5 7.53 7.02 5.48 5 6.05 6.66 4.78
6 7.03 8.05 4.61 6 7.50 5.68 4.65
7 6.03 6.64 5.35 7 7.64 5.47 4.68
8 9.16 4.96 4.31 8 6.16 5.98 4.37
9 6.53 6.52 7.74 9 7.47 4.96 5.02
10 7.15 7.92 4.53 10 8.06 4.80 4.81
11 6.83 6.97 4.79 11 7.80 7.41 6.18
12 9.15 5.46 5.89 12 5.79 5.99 5.38
13 6.53 5.50 5.00 13 6.82 5.86 6.24
14 6.04 5.72 4.54 14 7.92 6.06 5.96
15 6.41 5.06 4.46 15 7.18 5.54 5.21
16 11.82 5.89 4.49 16 8.81 6.76 4.21
17 5.74 5.81 5.19 17 6.66 6.27 4.69
18 6.73 5.72 6.42 18 7.31 7.78 5.88
19 4.96 4.96 5.19 19 6.43 5.09 6.01
20 5.73 5.74 4.00 20 7.45 5.61 6.28

group 2.98 4.33 3.91 group 2.85 4.92 3.88

Table 9.2: Statistical thresholds for BOLD analysis: t-values for CBP and CM patients as
determined by PALM [305] for single subject and group analysis.

CM; 1966 voxels for CBP) of the NPS map and the group activity map.

The individual maps of endogenous pain encoding were also investigated separately for each
participant across all recordings. To assess whether the pattern of activity resembles the map
of the group statistics, the activity of the group maps were correlated with the activity of the
single-patient maps. The data were restricted to the voxels of group statistics and subject
statistics with an absolute t-value t > 2. Group- and single-subject maps were ‘normalised’
as given above. Separately for each patient, spatial correlations using Kendall’s τ coefficients
were computed for each patient’s activity map with the group activity map for the common
superthreshold voxels.

9.3.2 BOLD: Chronic back pain (CBP)

BOLD: Encoding of pain intensity across all CBP patients (AMP)

The subjective intensity of endogenous pain is encoded in the anterior insular cortex (AIC),
the frontal operculum, and the pons (see Table 11.1 in Appendix for exact MNI coordinates).
Regions that exhibit decreased activity with higher pain intensities were the following: the pos-
terior cingulate cortex (PCC), the precuneus, the pregenual anterior cingulate cortex (pACC),
and the hippocampus (Figure 9.5 A). These findings persist when computing the statistical
contrast (Equation 9.3) between the pain and the visual condition, i.e. there is a significant

76



9.3 BOLD fMRI analysis in chronic back pain and chronic migraine patients

Figure 9.5: BOLD CBP: Visual representation of A pain intensity encoding (AMP), B change
of pain intensity (SLP) and C motor activity encoding (aSLP) on the left; the right
displays the time courses for a few individual regions across the sliding-window
approach (36 time shifts on the x-axis), showing different peak times across regions
and for the three variables AMP, SLP and aSLP; time courses in blue show a
negative t-value. Figure and legend taken from [187].

difference in activations for the pain rating task compared to the control task. A spatial
correlation between AMP and the NPS map [295] of 0.31 (p < 0.001) was found.

BOLD: Encoding of the change of pain intensity across all CBP patients (SLP)

The cortical processes that reflect the change of pain intensity are located in the AIC, in
various regions in the frontal lobe (frontal orbital cortex, frontal operculum, middle frontal
gyrus), as well as in the pACC, PCC and parahippocampal gyrus (Table 11.2 in Appendix).
Brain regions that exhibit decreased activity during increasing pain comprise regions in the
occipital lobe (occipital pole, lateral occipital cortex), the precuneus, the pACC and PCC,
the paracingulate gyrus and the brainstem (Figure 9.5 B). The direct statistical comparison
between the pain condition and the visual control condition (Equation 9.3) confirms the findings
for the bilateral AIC and for the frontal lobe, i.e. the results persist in these regions, when the
direct contrast between visual and pain condition is calculated (see section 9.3.4). The time
courses given in Figure 9.5 B for the different regions exhibit a different temporal profile with
a maximum peak before the regions in Figure 9.5 A for encoding the pain intensity.

BOLD: Processing of motor activity and decision making across all CBP patients (aSLP)

For the processing of motor activity, decision-making, and changes of visual input, an increased
activity in the parietal lobe (superior parietal lobe, supramarginal gyrus), but also in the pre-
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and postcentral gyrus (M1/S1), the middle frontal gyrus, the cerebellum, the thalamus, and
the PCC was found (see Table 11.3 in Appendix). Decreased activity was located mainly in the
hippocampus, the parahippocampal gyrus, the superior temporal gyrus, the lateral occipital
gyrus, and the precuneus (Figure 9.5C). To separate the largely overlapping clusters and to
disentangle the contribution of the brain regions, an increased threshold above the threshold
of the randomisation statistics was used (see colourbar range in Figure 9.5 C).

BOLD: Individual activity maps for CBP

Activation maps for intensity encoding (AMP) for all single patients are shown in Figure
9.6. A considerable variety of activation patterns was found: while some patients exhibit
a similar activity map as the maps from the group statistics, other patients show a rather
weak correlation with the activity pattern of the group statistics, indicated by the correlation
coefficient (Kendall’s τ) given in the left top corner of each subject in Figure 9.6.

9.3.3 BOLD: Chronic migraine (CM)

BOLD: Encoding of pain intensity across all CM patients (AMP)

For CM, mainly the cerebellum is positively related to the intensity of endogenous pain, as well
as the frontal orbital cortex and the temporal fusiform cortex (see Table 11.4 in Appendix).
Areas negatively related to pain intensity were found in the PCC, the pACC and the subcallosal
cortex, but also in the amygdala, and the thalamus (Figure 9.7 A). There was no difference
for the direct comparison between the pain condition and the visual condition i.e. no specific
effect was found for either the visual or the pain rating task. A spatial correlation between
AMP and the NPS map of -0.08 (p < 0.001) was found.

BOLD: Encoding of the change of pain intensity across all CM patients (SLP)

The processes that contribute to the change of pain intensity only activate the cerebellum
and the AIC (Table 11.5 in Appendix). Brain regions that exhibit decreased activity during
increasing pain comprise various regions in the occipital lobe (occipital pole, lateral occipital
cortex), as well as the angular gyrus, the precuneus, and the superior frontal gyrus (Figure
9.7 B). There was no difference for the direct comparison between the pain condition and the
visual condition.

BOLD: Processing of motor activity and decision making across all CM patients (aSLP)

The processing of motor activity, decision making, and changes of visual input shows areas of
increased activity mainly in the insular cortex, the thalamus, the pallidum, the parietal lobe
(superior parietal lobule, parietal operculum, supramarginal gyrus) and the cerebellum (Table
11.6 in Appendix). Decreased activity was found in the precuneus, the hippocampus, the lateral
occipital cortex, the superior frontal and superior temporal gyrus and the cerebellum (Figure
9.7 C). To separate the large overlapping clusters and to disentangle the contributions of the
brain regions, the cluster threshold was increased above the threshold of the randomisation
statistics (see colourbar range in Figure 9.7 C).
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Figure 9.6: BOLD: CBP individual pain intensity (AMP) encoding with the numerical values
at the top left of each subject denoting Kendall’s τ coefficient of correlation with
the group results. Figure and legend taken from [187].
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Figure 9.7: BOLD CM: Visual representation of A pain intensity encoding (AMP), B change
of pain intensity (SLP) and C motor activity encoding (aSLP) on the left; the right
displays the time courses for a few individual regions across the sliding-window
approach (36 time shifts on the x-axis); time courses in blue show a negative t-
value. Figure and legend taken from [187].

BOLD: Individual activity maps CM

Individual activity maps for the encoding of pain intensity are given in Figure 9.8 together
with the individual correlation coefficient (Kendall’s τ) indicating their similarity to the group
results.

9.3.4 Visual control experiment

In the control experiment, predominantly occipital areas (occipital pole, lateral occipital cortex
and occipital fusiform gyrus) of the brain were activated for the CBP patient group only (Table
9.3).

9.3.5 Discussion of BOLD fMRI results in CBP and CM

This approach aimed to investigate how the intensity and the intensity change of endogenous
pain is encoded in the brain of chronic pain patients. In repeated fMRI sessions, 20 CBP and
20 CM patients rated their endogenous pain experience. The experimental design resembles
the everyday experience of chronic pain patients, which is characterized by naturally fluctu-
ating pain and consists of phases of relatively low and phases of relatively high pain. Linear
mixed effects models were used to disentangle the cortical processes related to the different
phases of pain intensity. At group level, the intensity of pain in CBP patients was found to be
encoded in the AIC, the frontal operculum, and the pons; the change of pain in CBP and CM

80



9.3 BOLD fMRI analysis in chronic back pain and chronic migraine patients

Figure 9.8: BOLD: CM individual pain intensity encoding with the numerical values at the top
left of each subject denoting Kendall’s τ coefficient of correlation with the group
results. Figure and legend taken from [187].
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anatomical structure cluster size t-value x y z
AMP

inferior frontal gyrus 225 16.2 35 32 6
frontal pole 216 -30 -33 52 24

paracingulate gyrus 141 -16.6 -2 53 -3
frontal pole 113 -16.2 -39 59 -3
frontal pole 99 -20.2 36 62 -8

anterior insular cortex 99 15 -31 16 7
inferior frontal gyrus 62 14.8 -33 31 4
paracingulate gyrus 56 -15 10 44 -4

SLP
frontal operculum cortex,

anterior insular cortex 484 15.8 -33 23 5
frontal orbital cortex 154 14.6 35 28 -1
precentral gyrus (M1) 41 12.4 -55 6 4

Table 9.3: Active brain areas for the direct contrast between the pain condition and the visual
control condition for AMP and SLP in CBP; MNI coordinates are given for the
center of the number of active voxels (cluster). Table and legend taken from [187].

patients was found to be mainly encoded in the AIC. At the individual level, a more complex
picture was found where each patient exhibited their own signature of endogenous pain encod-
ing. In the following, the present findings are mainly discussed in light of previous approaches
to investigate endogenous and fluctuating chronic pain. To the best of knowledge, this is the
first approach to investigate continuous pain intensity encoding in combination with a sliding
window and LME analysis.

Methodological advances
By using a continuous, stimuli-free design, the entire time course of the data could be taken
into account and the trajectory of cortical processes was related to the fluctuating intensity
of pain. This more ‘naturalistic’ fMRI design is intended to exhibit greater real-world rele-
vance, as task-based fMRI paradigms often do not resemble natural encountered stimuli and
resting-state studies are difficult to control with patients trying not to think of anything. Both,
stimuli-driven and resting-state paradigms can therefore not necessarily reveal the complex pat-
tern of the chronic pain experience and identify the true underlying brain processes. Previous
continuous endogenous pain recording studies were investigated mainly in the group of Baliki
[28] and Apkarian [16], with the most similar one investigating continuous pain ratings over
ten minutes in a longitudinal setting, comparing sub-acute back pain and CBP patients [120].
The approach in this thesis builds on the basics of a continuous rating fMRI design with several
methodological improvements and further developments.
A particular focus was put on a fluctuating as well as balanced time course of pain ratings. This
was classified by the PR parameter to ensure the capture of balanced epochs of multiple pain
intensity levels as well as non-steady increasing or decreasing pain. In previous studies with
similar designs [28, 185], subjects with continuously increasing pain throughout the experiment
were included in the statistical analysis, which therefore e.g. do not take effects of order of the
acquired time series into account. The PR parameter was a first attempt of a performance met-
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ric of the continuous rating design, as there can be nothing comparable found in the literature.
Additionally, as a particular focus was put on a fluctuating time course of pain ratings, brain
regions that encode transient states of increasing and decreasing pain were detected. Previous
pain rating studies investigated strictly binarised pain ratings to detect low or high pain states
[28, 118]. These approaches lack the resolution of several different pain states between these
two extremes in addition to a questionable definition of ‘high’ vs ‘low’ pain states for each
individual. Compared to previous continuous pain rating designs [16, 29], the presented work
here is therefore the first study to investigate the encoding of more than three different pain
intensity levels with a continuous pain rating in combination with a sliding-window approach
in CBP and CM patients.
Repeated, as well as extended sessions are necessary to obtain stable, robust and reliable re-
sults, especially for the relatively low signal-to-noise BOLD fMRI acquisition compared to e.g.
structural MR images. The extended duration of the experiment guaranteed balanced phases
of increasing, stable, and decreasing pain, which disentangled the processes related to pain
intensity from aspects of pain intensity changes in all patients. The duration of typical fMRI
resting-state designs is approximately five to ten minutes and include most of the time only one
session for each subject [290]. Recommendations for a robust fMRI analysis include increasing
the total acquisition time to improve reliability and similarity in the results obtained up to
∼ 16 minutes for resting-state acquisitions [41] and guidelines for more naturalistic paradigms
include even larger acquisition times up to hours [3, 8]. To detect reproducible cortical ac-
tivations, 4 sessions of 25 minutes were acquired for each subject. Thereby, 100 minutes of
fMRI and pain rating data for 40 subjects provides an exceptional dataset suitable for reliable,
individual analyses.
Investigations into reproducibility of fMRI results are scarce. In Amann et al. [6] repeated,
longitudinal, task-based FC in two subjects were investigated with several statistical models
but due to the low number of subjects, a generalisability is not given. Reproducibility of the
BOLD activations in combination with the pain ratings of the four repetitions needs different
statistical models than pursued in this approach and was not separately assessed. Therefore a
different methodology was chosen and reproducibility was assessed with a ML approach (see
section 9.5).

The pursued statistical approach differs from the current standard two-level GLM approach in
common available fMRI analysis tools such as SPM or FSL. Instead of dividing the analysis
into two stages of single-subject analysis on the first level and group analysis on the second
one, the presented statistical analysis combines both levels and represents a dedicated model
suitable for the pursued approach of repeated measurements, which is scarce in the fMRI neuro-
science literature [200, 201]. In this way session-specific effects are accounted for and statistical
parameters are estimated in one combined model which contains all BOLD time series and
pain rating data. With the standard two-level approach, group results mark the ‘final’ analysis
results, which might be the reason for the low number of reported subject-level results in fMRI
literature. Emphasis must be put on the importance of a more patient-centered approach in
neuroscience by repeatedly recording and analysing single patients [6]. The continuous suffer-
ing from pain for many years revealed that each patient shows an unique pattern of cortical
pain encoding, which can be considered as an individual signature of chronic pain processing.
The correction for multiple comparisons with surrogate data has the advantage of keeping the
naturally evolving data structure intact. Instead of using a potential healthy control group or a
resting-state recording with random pain ratings, the surrogate data were uncorrelated to the
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original data, but had the same autocorrelation structure, amplitudes, and variance. In this
way the main features of the data were preserved but the timing of the rating was randomised,
i.e. the main features of the behavioural data were unrelated to the time course of the imaging
data. This approach has been previously utilised for the analysis of time series data but is
utilized here for the first time for a continuous pain-rating fMRI design [115, 271].

AMP across both patient groups
Across all CBP patients and sessions the intensity of pain is mainly encoded in the AIC, the
frontal operculum, and the pons. These regions exhibit a positive relationship between cortical
activity and the amplitude of continuous pain ratings: higher intensities of pain are accompa-
nied by higher cortical activity. Additionally, higher intensities of endogenous pain in CBP are
related to decreased activity in the PCC, pACC, the precuneus, the hippocampus, and several
frontal and occipital regions. This network of brain regions is largely overlapping with the
NPS [295], but contradicts findings from previous work that located the encoding of endoge-
nous chronic lower back pain predominantly in frontal regions [28, 118, 119].

For the encoding of the pain intensity in CM, a positive relationship between pain inten-
sity and cortical activity was found predominantly in the cerebellum, as well as in the frontal
orbital cortex and in the fusiform cortex. Similar to the CBP patients, negative relationships
between pain intensity and brain activity in the PCC, pACC and the precuneus, as well as
in the amygdala and the subcallosal cortex were found. No cortical regions within the NPS
network were found [295]. The absence of any single NPS region that codes for pain inten-
sity in CM underlines the complex pathophysiology of the disease [51, 79]. In line with the
initial hypothesis, a patient-specific pattern of the cortical intensity coding of CM, which is
not reflected in the group statistics was observed; this is echoed in the individual profiles of
endogenous pain processing in each CBP patient. In other words, there are a number of regions
that encode the pain intensity in chronic migraine; these regions are, however, specific for an
individual and not commonly shared by all patients.

Most imaging studies so far apply external (trigeminal) stimuli to elicit additional pain [272,
273] – the results are therefore not directly comparable with the here obtained results. Addi-
tionally, most of these studies investigated episodic migraine patients. In contrast, this study
investigated patients suffering from chronic migraine who were examined during attack-free
phases. Patients were continuously evaluating different levels of their daily endogenous pain
without any external nociceptive input. The few fMRI studies on chronic migraine suggest
functional, structural, and neurochemical alterations of cortical and subcortical regions [162,
210, 223, 252] and networks [10, 11, 70] compared to episodic migraineurs or healthy controls.
In line with these findings, the results presented here may point to a neuronal reorganisation
in chronic migraine patients which is specific for each individual.

SLP across both patient groups
The processing of pain intensity changes of endogenous pain in CBP patients is mainly located
in the AIC and in frontal regions. Regions that show increased activity during falling pain
were found in the occipital lobe (occipital pole, lateral occipital cortex) the PCC, pACC and
precuneus. For CM patients, positive relations were located in the AIC and the cerebellum.
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Besides occipital regions, negative relations were found in the precuneus and the angular gyrus.

Baliki and colleagues reported similarly increased activity in the right AIC and the cerebellum,
but showed additional activity in the posterior insula, S2, multiple portions of the middle cingu-
late cortex, and S1 [28]. However, these findings apply to periods of increasing pain contrasted
to both periods of stable and decreasing pain. As a result of not distinguishing between, what
is referred to in this work as SLP and aSLP , the analyzed periods of increasing pain are more
influenced by pain-unspecific effects of motor activity and decision-making. These aspects of
motor activity and decision-making were specifically controlled for in this study by including
the contrast between time periods of rising and falling pain. Periods of rising and falling pain
share the motor activity of regulating the slider to indicate the change in pain intensity, which
therefore vanishes in the direct contrast of these time intervals. The analysis of pain changes
can be considered as independent from the analysis of pain amplitude: increasing pain can oc-
cur at both high and low levels of pain. The regions that encode the change of pain experience
could have an impact on the emotional well-being of pain patients and would be a valuable
target for therapeutic interventions such as neurofeedback.

The role of the anterior insula for the processing of chronic pain
For both pain diseases, the largest cortical effect for pain direction encoding (SLP) was found
in the AIC; rising endogenous pain is accompanied by increasing insular activity. Interestingly,
for CBP the AIC is processing the intensity (AMP) and the change of pain intensity (SLP).
However, the encoding of intensity exhibits a different temporal profile and has its peak after
the processing change detection. Therefore, the activity of the AIC for amplitude and change of
amplitude is overlapping and is determined by a summation of the activity for the current pain
intensity and the transient activity for rising (plus) or falling (minus) pain. The results of the
present investigation, in particular the contribution of the AIC, does not exclude that chronic
pain patients suffer from emotional problems [28, 120], but militates against opinions that the
transitions to chronic pain might be reflected by a shift from insular processes to frontal areas.
These findings argue against suggestions that chronic pain may have become decoupled from
the sensory aspects but are purely emotional.

Individual patterns of pain intensity encoding in single patients
A main focus of this investigation is the assessment of individual (patient-specific) profiles of
pain processing. In order to disentangle unique activation patterns of pain processing, each
pain patient was recorded four times. As a result, the individual maps differ remarkably from
each other and a substantial variation for the correlation of single patient signatures with the
activity pattern from the groups statistics was found. For CBP, the activity of the prominent
regions of the group statistics may have been driven by the few patients who exhibit strong
effects in the AIC and the pACC. The importance of assessing individual patterns of brain
structure and activity has been suggested previously [183]. In a similar vein, it was shown in
EEG measurements that, although group statistics suggest otherwise, individual parameters of
gamma oscillations in tonic and chronic pain are not encoded by gamma activity in all study
participants [185, 255]. The enormous variability of the individual pain signatures indicates
qualitative rather than quantitative differences between patients [317].
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9 Whole-brain fMRI analysis in chronic back pain and chronic migraine patients

Indeed, the different pain signatures in the present study depicts a complex picture: even
if all patients had a marginal (and positively correlated) contribution of the e.g. insular cortex
(which they do not have), one must assume that the major weight for the encoding of pain
for most patients relies on the processing in different brain regions. The variety of cortical
processing is in line with the clinical picture of pain diseases, in which each individual exhibits
a complex composite of specific characteristics [268]. The lack of significant and consistent
positively correlated insular activity in most patients is suggested to be caused by qualitative
rather than gradual differences between patients and would make the interpretation of quanti-
tative effects challenging. The question is whether it is possible and plausible that the encoding
of pain in the insula (or any other region) can be modulated (e.g. by parameters like depres-
sion) in a way that some patients have a positive correlation between pain and brain activity
while some other patients would have negative relationships between brain activity and pain.
The same applies for the pACC, which is considered to be a main hub of the descending pain
control system. The group results suggest a negative relationship, but some individuals exhibit
a positive relationship between the pACC and pain intensity, which would turn this region into
a pain facilitation region rather than a pain inhibition hub. It remains to be verified if some
factors reverse the relationship between cortical activity and pain intensity. The plausibility of
this potential phenomenon decides whether a correlation or modulation of any factor with the
present variety of cortical maps is justified.

Limitations and Conclusion
This investigation included a large sample of patients with repeated recordings and although
the entire data amounts to more than 100 minutes of pain encoding data for each single patient,
the following limitations need to be considered.
The majority of patients were on different types of prescribed medication which could have
had an effect on the BOLD fluctuations. In addition, even the four fMRI recordings for each
patient might not be enough to assess the stable and invariant pain signature of an individ-
ual. Similarly, the statistics on single patients might have been driven by a subset of the four
recordings. The temporal stability of the individual pattern of pain-related cortical activity
across four recordings was not investigated separately, as different statistical approaches and
methodologies would be required. Repeated measurements were mainly acquired to extend the
amount of fMRI data to increase robustness of the fMRI measurements. A supervised machine
learning approach was applied (see section 9.5) to investigate the stability of the fMRI pain
ratings and accompanied BOLD activations.
The present study expands the knowledge on the cortical underpinnings of chronic pain by
showing that individuals exhibit their own signature of cortical processing of chronic pain, in
chronic back pain as well as chronic migraine subjects. Further studies are needed to explore
whether the current findings on individual pain signatures can be utilized for interventions that
aim to directly modulate brain activity, e.g. neurofeedback [61].
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9.4 Connectivity analysis in chronic back pain and chronic migraine patients

9.4 Connectivity analysis in chronic back pain and chronic migraine
patients

9.4.1 ROI analysis and additional preprocessing for connectivity analysis

In contrast to the BOLD analysis in the previous section 9.3, connectivity analysis was not
based on voxel-wise analysis but on the parcellation of brain regions. Brain parcellations
combine all voxels into several distinct homogeneous brain areas, which allows for a more
robust and reproducible analysis. Additionally, compared to a voxel-based analysis, brain
parcellations reduce the dimensionality of the data and increase signal-to-noise ratio [50, 63,
103]. Several brain parcellations are available (e.g., [248, 280]), the most extensive one by
the human connectome project by Glasser [103]. Here, the brain is subdivided into 360 brain
regions, 180 for each hemisphere, based on a multi-modal dataset using architecture, function,
connectivity and topography to define individual brain regions. For the present study, 21
additional subcortical areas were added for a more detailed analysis (Table 9.4). To investigate
the role of involvement of the cerebellum in pain processing, 27 regions in the cerebellum (Table
9.5) were added to the analysis as well. A principal component analysis (PCA) was applied
to each of the 408 individual regions and the first principal component was taken for further
analysis [225].

Structure x y z
accumbens L/R -7/8 9/11 -8
amygdala L/R -23/24 -5/-4 -20

brainstem 0 -30 -30
hippocampus L/R -25/26 -23/-22 -14

pallidum L/R -19/20 -4 -2
thalamus L/R -11/12 -19/-18 6

hypothalamus ASL 6 0 -12
hypothalamus sphere 6 -6 -12

LC bilat. 3 -38 -23
caudate L/R -13/14 9/10 10/11
putamen L/R -25/26 0/2 1/0

PAG 1 -34 -8
pons sphere2 4 -20 -20
spinal sphere 6 -40 -46

Table 9.4: Additional subcortical structures with MNI coordinates (left L/right R) of the center
of the structure. Table and legend taken from [188].

For connectivity analysis, additional scrubbing and censoring was applied to minimize changes
in connectivity related to motion. Outliers in the fMRI data were labelled as such, based on the
definition of framewise displacement (FD) and DVARS introduced in section 5.3.2. A volume
is defined as an outlier if it exceeds one of the following thresholds: FD ≥ 0.2 mm or DVARS
≥ (the 75th percentile + 1.5 times the interquartile range)[86]. Outliers are marked for each
subject and then included in the regression as a vector of zeros (non-outlier) and ones (outlier).
Each ‘window’ in the sliding-window analysis (see section 9.4.2) was additionally scrubbed for
outliers using Grubbs’s test at significance level α = 0.05; windows with more than two outliers
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were excluded from further analysis, including the preceding and following one. Windows with
a correlation coefficient r > 0.99 were omitted because these high correlations were mainly
driven by outliers. The average percentage of scrubbed timepoints for all region pairs was 0.3
± 0.6 % for CBP and 0.3 ± 0.4 % for CM.
MCFLIRT motion parameters as well as their squares and temporal derivatives with squares
(total of 24 regressors) were included as motion regressors. The pain rating vector, the rate
of change vector, and the absolute value of the rate of change vector were convolved with
the hemodynamic response function given in section 9.2.4 and also included as regressors. A
schematic illustration of different time courses involved in the preprocessing is given in Figure
9.9.

Figure 9.9: Schematic illustration of the different time courses of the pain rating, the MCFLIRT
movement parameters (x, y, z, roll, yaw, pitch), the framewise displacement (FD),
the DVARS, the identified outliers, the raw BOLD signal as a mean over the region
and the ‘cleaned’ preprocessed time course.
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9.4 Connectivity analysis in chronic back pain and chronic migraine patients

Structure x y z
I-IV L/R -7/10 -44/-43 -17/-18
V L/R -13/14 -50/-51 -19
VI L/R -23/24 -59/-58 -25

Vermis VI 1 -71 -21
Crus I L/R -36/38 -68 -32
Crus II L/R -26/26 -75/-76 -42/-41

Vermis Crus II 0 -75 -31
VIIb L/R -26/28 -66/-65 -51/-50

Vermis VIIb 0 -68 -31
VIIIa L/R -24/26 -57/-58 -53

Vermis VIIIa 0 -67 -38
VIIIb L/R -17/18 -50/-51 -55

Vermis VIIIb 0 -63 -42
IX L/R -7/7 -53 -48

Vermis IX 0 -56 -37
X L/R -21/22 -37 -45/-46

Vermis X 22 -37 -46

Table 9.5: Cerebellum subregions with MNI coordinates (left L/right R) of the center of the
structure. Table and legend taken from [188].

9.4.2 Sliding-window and statistical analysis for connectivity
A whole-brain exploratory approach was applied, computing correlations between all extracted
time courses (i.e., between the first PCA components of the signal) from all pairs of 408 regions.
A visualisation of a schematic overview of the following description of the sliding-window ap-
proach is given in Figure 9.10.
The coherence of the time courses between two regions (Figure 9.10 A) was determined by
Pearson’s (full) correlation coefficient R over sliding windows of window length = 10 data
points (t = TR · 10 = 15 s) from -4 to 4 data points and an offset of one data point (see
section 6.2). This resulted in nine correlations for each of the 950 data points (Figure 9.10 B).
For the relationship between the correlation strength of two regions and the pain ratings (Fig-
ure 9.10 C), the rating vector was shifted in the same manner as described above (section 9.3.1),
between -15 s and 20 s with offsets of 1 s (36 total correlations) against the correlation time
course. The whole sliding-window approach thus generated 9 × 36 × 950 dynamical functional
connectivity matrices of dimensions 408 × 408 for each subject and session (Figure 9.10 D).
Fisher’s z-transformation was used for the normalisation of the correlation coefficients. The
same steps were applied to the corresponding rate of change and absolute rate of change vec-
tors.
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9.4 Connectivity analysis in chronic back pain and chronic migraine patients

Using Linear Mixed Effects models (LME; MixedModels.jl package in Julia; [38]), the relation-
ship between fluctuating pain intensity and the fluctuating cortical connectivity was determined
separately for each pair of brain regions. The fluctuating connectivity of a particular pair is
modelled through the time course of the three variables (AMP, SLP, aSLP) derived from the
pain ratings. The statistical model is given by

connectivity ∼ 1 + AMP + SLP + aSLP +
+ (AMP − 1|session) + (SLP − 1|session) + (aSLP − 1|session)

(9.4)

All statistical tests were corrected for multiple testing (connections, time shifts, rating shifts)
and autocorrelation in the behavioural data: 1000 surrogate time courses were created using the
IAAFT algorithm (Iterative Amplitude Adjusted Fourier Transform) from the original rating
data, which were uncorrelated to the original rating data but had the same autocorrelation
structure as the original data [251]. Using the surrogate data, the entire LME analysis was

CBP CM
subject AMP SLP aSLP subject AMP SLP aSLP

1 10.83 9.26 9.22 1 12.27 9.98 8.90
2 11.06 9.33 8.55 2 11.26 9.40 8.93
3 10.63 7.91 8.21 3 11.05 9.19 8.68
4 10.85 8.88 8.45 4 11.39 9.17 9.11
5 11.65 9.37 8.26 5 11.18 9.09 8.36
6 10.62 7.56 8.40 6 10.20 8.92 7.28
7 9.83 7.61 9.03 7 11.15 8.79 8.34
8 11.18 9.29 8.53 8 11.26 9.04 8.73
9 9.06 9.77 7.09 9 10.73 9.48 8.30
10 11.00 8.11 8.47 10 11.36 9.20 8.41
11 11.82 9.50 8.29 11 11.67 8.85 9.10
12 10.85 9.00 8.37 12 12.45 9.63 8.53
13 11.45 8.20 9.49 13 11.20 9.60 8.82
14 10.19 9.63 8.03 14 10.84 8.52 8.33
15 10.62 9.50 9.68 15 10.96 6.08 7.92
16 11.49 9.73 8.87 16 11.32 8.34 8.95
17 11.01 9.70 8.72 17 11.21 8.49 9.01
18 10.61 9.87 7.46 18 10.70 7.97 8.59
19 10.42 8.36 7.98 19 10.95 7.90 8.30
20 10.59 5.54 7.31 20 11.10 9.42 8.61

group 4.77 6.97 6.98 group 4.81 7.27 7.18

Table 9.6: Statistical thresholds for connectivity analysis: t-values for CBP and CM patients
as determined by PALM [305] for single subject and group analysis.

repeated 1000 times for the vectors (AMP, SLP, aSLP) with zero shift, resulting in 1000
statistical maps for AMP, SLP and aSLP, respectively. From each map the highest absolute
t-values of each repetition across the whole volume was extracted, which resulted in a right-
skewed distribution of 1000 values for each condition [256]. Based on the distributions of 1000
values (for AMP, SLP, aSLP), the statistical thresholds were determined using PALM [304,
305]. The statistical thresholds for the group and single subject analysis are given in Table 9.6.
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9 Whole-brain fMRI analysis in chronic back pain and chronic migraine patients

9.4.3 Connectivity schemata

For the analysis, positive and negative relationships between functional connectivity and pain
intensity ratings were considered as follows (see Figure 9.11 A–C). After the calculation of
the correlation between the BOLD timeseries of two brain regions with the sliding window
approach, the resulting time course of correlations can be considered in three ways: as mostly
consisting of negative (Figure 9.11 A), mixed (Figure 9.11 B) or positive (Figure 9.11 C)
coefficients r. A correlation coefficient of r = 0 is indicated by a vertical dashed line in Figure
9.11.
The resulting time course of ‘connectivity’ correlations (corresponding to the green time courses
in Figure 9.10) was then correlated with the pain intensity ratings (corresponding to the blue
time courses in Figure 9.10) of the patients, which can be divided into a positive (solid lines in
Figure 9.11) or negative (dashed lines in Figure 9.11) relationship.

Figure 9.11: Connectivity schemata: Ratings of different pain intensity levels on the y-axis are
plotted against the correlation coefficient r between two ROIs. Whereas mostly
positive (A) or negative (C) pain-related connectivity was considered, a mixture of
positive and negative correlations (B) was not considered in the analysis. Figure
and legend taken from [188].

In a first case (Figure 9.11 A), pain-related effects may occur for pairs of brain regions that are
largely anti-correlated, which is reflected as a negative correlation coefficient r on the x-axis.
A positive relationship (solid line) with pain intensity would imply a drop of anti-correlation
for high pain. Here, low pain states are likely related to suppression effects. This might be the
case for “cognitive” brain regions that suppress pain-related insular activity; less activity in
these regions and a subsequent disruption of suppression and collapsing anti-correlation would
increase pain. For negative pain-related relationships (dashed line) high pain is bound to highly
anti-correlated connections; high pain is related to a strong anti-correlation and a suppression
effect between brain regions. Higher pain intensities may inhibit frontal brain regions which in
turn control behaviour that is involved in the maintenance of pain, e.g. pain-related rumination
and hypervigilance on pain. However, no significant effects for anti-correlated brain regions
were found.

In a second case (Figure 9.11 B), data would cross the boundary between positive and negative
correlation coefficients. These cases were found as non-interpretable, particularly the absence
of cortical connectivity for mid-range pain intensities.

In a third case (Figure 9.11 C), the relationship between pain intensity and functional connec-
tivity occurs for brain regions that are largely correlated, reflected by a positive correlation
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9.4 Connectivity analysis in chronic back pain and chronic migraine patients

coefficient r on the x-axis. For positive relationships with pain intensity (solid line), high-pain
states are bound to higher connectivities. The perception of pain may require a crosstalk
between two brain regions. A disruption of the crosstalk would lower the intensity of pain.
For negative pain-related relationships (dashed line), high pain states are associated with an
decrease of cortical connections. This may occur when one brain region suppresses the pro-
cesses of the other brain region, e.g. the top-down modulation of the pACC on the PAG. Due
to potential noise in the data, an overlap of 20 % towards sections of the data with negative
correlation coefficients was allowed.

9.4.4 Connectivity: Chronic back pain (CBP)
In total, 83 connections were found to be significant for the encoding of pain intensity, 94 for
the encoding of the change of pain intensity and 3696 for the encoding of the slider movement.
No anticorrelations (connectivity schemata 9.11 A) were found and the following results focus
on the positive correlations between the two corresponding brain areas and positive (connec-
tivity schemata 9.11 C+, solid line) and negative (connectivity schemata 9.11 C–, dashed line)
relationships to the pain rating. Connectivity confusion matrices for AMP and SLP are given
in Figure 9.12.

Figure 9.12: Connectivity confusion matrices for the encoding of pain intensity (AMP) and the
change in pain intensity (SLP) for CBP patients for all 408 region pairs given in t-
values: 1-180: left hemisphere, 181-360: right hemisphere; 361-381: R: additional
regions; 382-408: C: cerebellum. AMP shows 70 % negative and 30 % positive
significant t-values; the confusion matrix for SLP shows even more negative (74
%) than positive (26 %) ones. Figure and legend taken from [188].

Connectivity: Encoding of pain intensity across all CBP patients (AMP)

Across all subjects and sessions, two connections were found to be positively related to the
intensity of the endogenous pain (Figure 9.13); these pairs of brain regions, consisting of con-
nections between cerebellar and parietal brain regions, showed a higher connectivity with higher
levels of pain intensity. In addition 42 pairs of brain regions that exhibited a negative relation-
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# of connections area description area name hemisphere
4 medial area 7P 7Pm L
4 area lateral occipital 2 LO2 L
4 area lateral occipital 2 LO2 R
3 area 31pd 31pd L
3 medial superior temporal Area MST R
3 area lateral occipital 3 LO3 R
3 middle temporal area MT R
3 area V4t V4t R
2 area 7m 7m R
2 dorsal transitional visual area DVT L
2 lateral area 7P 7PL L
2 medial area 7A 7Am R
2 area lateral intraparietal ventral LIPv L
2 premotor eye field PEF R
2 parahippocampal area 1 PHA1 R
2 parahippocampal area 3 PHA3 R
2 auditory 5 complex A5 R
2 seventh visual area V7 L
2 area V4t V4t L
2 area V6A V6A R

Table 9.7: Connectivity: CBP AMP brain regions with more than two connections. Table and
legend taken from [188].

ship between cortical connectivity and pain intensity were found. These pairs showed a lower
connectivity with higher levels of experienced pain. One pattern of connectivity is related to
the occipital cortex, where an overall disconnection within the lobe for higher pain states can
be observed. Further disruptions of connectivity have been observed in limbic (hippocampal,
parahippocampal), precuneus (BA7), and cingulate areas (BA23 and BA31). All 44 significant
connections exhibited pain-related connectivity changes for positively correlated brain regions,
i.e. the sliding-window approach resulted in a time series of mostly positive correlation co-
efficients. There was no significant effect for connections that relied on anti-correlated brain
regions. Regions with more than one connection are listed in Table 9.7.

Connectivity: Encoding of the change of pain intensity across all CBP patients (SLP)

Across all subjects and sessions, nine connections were found to be positively related to the
direction of change of the endogenous pain intensity (Figure 9.14). These pairs of brain regions
showed increasing connectivity with rising pain intensity and include interhemispheric and left-
lateralized intrahemispheric occipital connections as well as connections between right angular
and somatosensory regions. However, the majority of the significantly connected brain regions
exhibited a negative relationship between cortical connectivity and change of pain intensity.
These 35 pairs showed decreasing connectivity with increasing levels of experienced pain. In
other words, increasing pain is predominantly bound to a progressive loss of connectivity. This
applies to connections that involve left parietal opercular regions, right insular regions, as well
as large parts of the parietal, cingular and motor cortices. Again, the entire statistics largely
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Figure 9.13: CBP Connectivity pain intensity (AMP) encoding: Dashed lines indicate negative
relationships with pain intensity; solid lines indicate positive relationships with
pain intensity. Figure and legend taken from [188].

95



9 Whole-brain fMRI analysis in chronic back pain and chronic migraine patients

relied on a time course of positive correlation coefficients between brain regions. There was
no significant effect for connections that relied on anti-correlated brain regions. Regions with
more than one connection are listed in Table 9.8.

# of connections area description area name hemisphere
3 area 6m anterior 6ma R
3 area 6 anterior 6a R
3 area V6A V6A R
3 area V6A V6A L
2 area 1 (primary somatosensory cortex) 1 R
2 primary motor cortex 4 R
2 middle temporal area MT L
2 posterior inferotemporal PIT L
2 area OP1/SII OP1 L
2 area OP2-3/VS OP2-3 L
2 area OP4/PV OP4 L
2 area temporo parieto occipital junction 3 TPOJ3 R
2 lateral belt complex LBelt R
2 area PH PH L
2 area lateral intraparietal ventral LIPv R
2 area lateral intraparietal ventral LIPv L
2 anterior intraparietal area AIP R
2 area 7PC 7PC R
2 area 46 46 R

Table 9.8: Connectivity: CBP SLP brain regions with more than two connections. Table and
legend taken from [188].

Connectivity: Processing of motor activity and decision making across all CBP patients
(aSLP)

For the encoding of motor activity and decision making the regions with the most connections
are given in Table 9.9. The most connected regions shown in Table 9.9 have more than or equal
to 83 connections and are mainly found in the frontal cortex.

9.4.5 Connectivity: Chronic migraine (CM)

In total 12 connections were found to be significant for the encoding of pain intensity, 79
for the encoding of the change of pain intensity and 12707 for the encoding of the slider
movement. No anticorrelations (connectivity schemata 9.11 A) were found and the following
results focus on the positive correlations between the two corresponding brain areas and positive
(connectivity schemata 9.11 C+, solid line) and negative (connectivity schema 9.11 C–, dashed
line) relationships to the pain rating. Connectivity confusion matrices for AMP and SLP are
given in Figure 9.15.
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Figure 9.14: CBP connectivity change of pain (SLP) encoding: Dashed lines indicate negative
relationships with pain intensity; solid lines indicate positive relationships with
pain intensity. Figure and legend taken from [188].
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# of connections area description area name hemisphere
114 supplementary and cingulate eye field SCEF L
108 posterior inferotemporal complex PIT R
103 dorsal area 6 6d L
100 area lateral occipital 2 LO2 L
100 frontal opercular area 4 FOP4 R
92 fusiform face complex FFC R
88 premotor eye field PEF R
86 posterior inferotemporal complex PIT L
85 supplementary and cingulate eye field SCEF R
83 frontal opercular area 4 FOP4 L

Table 9.9: Top 10 (corresponds to 70 %) of all significant regions with the most connections
for the encoding of motor activity and decision making (aSLP) in CBP. Table and
legend taken from [188].

Figure 9.15: Confusion matrices for AMP and SLP for all 408 region pairs given in t-values:
1-180: left hemisphere, 181-360: right hemisphere; 361-381: additional regions
(R); 382-408: cerebellum (C). The confusion matrix for AMP shows 25 % positive
significant t-values, and 75 % negative ones, compared to SLP which shows more
positive (58 %) than negative (42 %) ones. Figure and legend taken from [188].

Connectivity: Encoding of pain intensity across all CM patients (AMP)

For CM, only two connections (Figure 9.16) that exhibit a significant effect for the encoding of
pain intensity were found: Decreasing connectivity for left motor regions (6d and 43) and in-
creasing connectivity between the anterior insula and the orbitofrontal cortex (AVI and pOFC)
indicate high pain intensity of CM.
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Figure 9.16: Connectivity: CM pain intensity encoding: The dashed line indicate a negative
relationship with pain intensity; the solid line indicate a positive relationship with
pain intensity. Figure and legend taken from [188].

Connectivity: Encoding of the change of pain intensity across all CM patients (SLP)

Across all subjects and sessions, four connections were found to be positively related to the
change of intensity of the endogenous pain (Figure 9.17); these pairs of brain regions, e.g.
consisting of connections between temporal regions with the left posterior insular and the hip-
pocampus, showed increasing connectivity with increasing levels of pain intensity. In addition,
42 pairs of brain regions that exhibited a negative relationship between cortical connectivity
and the change of pain intensity were found. These pairs showed decreasing connectivity with
decreasing levels of experienced pain.

Connectivity: Processing of motor activity and decision making across all CM patients
(aSLP)

The top ten most connected regions for the encoding of motor activity and decision making
are given in Table 9.10. The most connected regions shown in Table 9.10 have more than or
equal to 183 connections and are mainly found in the frontal and parietal cortex.

9.4.6 Individual connectivity results for CBP and CM
Single subject circle plots for the encoding of pain intensity (AMP) for all subjects and possible
408 regions are shown in Figures 9.18 and 9.19 for CBP and CM, respectively. The number of
significant connections visualised in these circle plots for each individual subject for both patient
groups are given in Table 9.11. The correlation between individual maps and the group results
were calculated with Kendall’s τ and are given in Table 9.12. The mean correlation between
individual AMP maps and group AMP map for CBP/CM is τ = 0.09/0.07, τ = 0.03/0.05 for
the SLP variable and τ = 0.09/0.10 for the aSLP variable.
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Figure 9.17: CM connectivity: change of pain encoding. Dashed lines indicate negative rela-
tionships with change of pain intensity; solid lines indicate positive relationships
with change of pain intensity. Figure and legend taken from [188].
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Figure 9.18: CBP individual circle plots patterns: The encoding of pain intensity (AMP) is
shown for each of the 20 subjects individually for all 408 possible regions. Figure
and legend taken from [188].
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Figure 9.19: CM individual circle plots patterns: The encoding of pain intensity (AMP) is
shown for each of the 20 subjects individually for all 408 possible regions. Figure
and legend taken from [188].
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# of connections area description area name hemisphere
196 supplementary and cingulate eye field SCEF R
194 area anterior 32 prime a32pr R
192 area p32 prime p32pr R
190 area PFt PFt R
188 area PFt PFt L
188 premotor eye field PEF R
188 rostral area 6 6r R
184 area PF opercular PFop R
183 area lateral occipital 2 LO2 R
183 area PH PH R

Table 9.10: Top 10 (corresponds to 93 %) of all significant regions with the most connections
for the encoding of motor activity and decision making (aSLP) in CM. Table and
legend taken from [188].

CBP CM
subject AMP SLP aSLP subject AMP SLP aSLP

1 106 106 10 1 11 7 8402
2 65 13 475 2 70 29 10793
3 44 188 305 3 24 29 1369
4 1240 55 86 4 20 33 333
5 54 5 722 5 59 10 6596
6 109 462 167 6 41 1 37837
7 95 2284 1 7 24 59 4746
8 15 26 5026 8 255 460 5281
9 131 0 2775 9 36 2 856
10 20 55 62 10 52 14 148
11 2 4 4019 11 4 52 75
12 3 4 7015 12 39 163 1186
13 158 2716 58 13 128 32 8188
14 78 8 958 14 17 17 716
15 704 1437 33 15 12 5889 0
16 7 19 1187 16 5 66 8529
17 164 4 202 17 197 371 379
18 14 0 33564 18 151 2888 10
19 92 65 2528 19 112 583 172
20 26 5857 581 20 508 73 578

Table 9.11: Number of significant connections for every single subject for CBP and CM for the
encoding of AMP, SLP and aSLP. Table and legend taken from [188].

9.4.7 Discussion of connectivity fMRI results in CBP and CM

Changes of cortical connectivity in relation to complementary aspects of the perception of on-
going chronic pain were investigated. A ten second sliding-window connectivity analysis was
computed for the pair-wise and time-varying connectivity between all 408 parcellated brain re-
gions across the entire fMRI recording period. Linear mixed effects models were fitted for each
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9 Whole-brain fMRI analysis in chronic back pain and chronic migraine patients

CBP CM
subject AMP SLP aSLP subject AMP SLP aSLP

1 0.053 0.065 0.095 1 0.12 0.070 0.20
2 0.20 0.027 0.081 2 0.093 0.061 0.27
3 0.055 0.030 0.097 3 0.017 0.0072 -0.050
4 0.10 0.0044 -0.0084 4 0.022 0.050 0.12
5 0.043 -0.018 -0.027 5 0.076 0.0052 0.12
6 0.12 -0.00032 0.22 6 0.071 0.099 0.0046
7 0.085 0.072 0.075 7 0.12 0.063 0.084
8 0.14 0.027 0.14 8 0.096 0.0064 0.069
9 0.039 0.0024 0.080 9 0.058 0.052 0.11
10 0.13 0.047 0.075 10 0.080 0.036 -0.026
11 0.086 0.051 0.22 11 0.085 0.073 0.079
12 0.12 0.0015 0.084 12 0.15 0.050 0.16
13 0.068 0.11 0.061 13 0.040 0.027 0.13
14 0.099 0.034 0.082 14 0.16 0.098 0.089
15 -0.0079 0.12 0.022 15 0.033 0.054 0.076
16 0.089 0.0027 0.13 16 0.095 -0.012 0.19
17 0.0036 0.034 0.022 17 0.053 0.085 0.14
18 0.10 -0.020 0.072 18 0.036 0.087 0.12
19 0.052 -0.019 0.16 19 0.016 0.0085 0.075
20 0.14 0.068 0.040 20 0.056 0.035 -0.052

Table 9.12: Correlation between individual maps and group maps indicated by Kendall’s τ .
Table and legend taken from [188].

pair of brain regions to explore the relationship between cortical connectivity and the observed
time course of the patients’ fluctuating endogenous pain. Two pain processing entities were
taken into account: different pain intensity levels and the direction of pain intensity changes
(rising vs. falling pain). Positive and negative relationships between pain perception and posi-
tively correlated brain regions were revealed, but no effect for anticorrelated (i.e. suppressing)
brain regions was found. As a result, distinct patterns of pain-related connectivity for CBP
and CM for the encoding of the magnitude of pain intensity as well as for the encoding of the
(directional, i.e. signed) change of pain intensity were revealed. Periods of high and increasing
pain were predominantly related to low cortical connectivity. For CBP this applies to the pain
intensity-related connectivity for limbic and cingulate areas, and for the precuneus. The change
of pain intensity was encoded by connections in left parietal opercular regions, right insular
regions, as well as large parts of the parietal, cingular and motor cortices. The change of pain
intensity direction in CM was reflected by decreasing connectivity between the anterior insular
cortex and orbitofrontal areas, as well as between the PCC and frontal and ACC regions.
Overall, the results resemble recent findings of reduced cortical connectivity for higher pain
states as in Schulz et al. [257]. The analysis of the repeated single-subject connectivity maps
suggests a more complex picture, indicating a unique pattern of pain-related cortical processing
for each patient. The group findings will be discussed in a traditional fashion but the single
subject analysis suggests that none of the group findings apply to the cortical processing of a
single subject. The findings suggest rather qualitative than gradual differences between indi-
vidual pain patients.
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9.4 Connectivity analysis in chronic back pain and chronic migraine patients

Methodological advances
The underlying principle of this part of this work, namely the combination of a continuous,
event-free fMRI design with a whole-brain sliding-window dynamic FC approach has not been
investigated before. This design enabled the investigation of the functional dynamics changes
in communications between multiple pairs of brain regions, as well as their relationship with the
pain rating in chronic pain patients. In contrast to resting-state designs, where static, averaged
FC throughout the fMRI sessions are considered, the introduction of a two-stage sliding-window
analysis enabled the extraction of maximally resolved information of the different underlying
pain encoding processes. This approach raised the necessity for a new identification and charac-
terisation of the functional connectivity identified with the presented connectivity scheme. This
innovative approach in between resting-state and task-based design with such combination of
analysis steps needed new methodological configurations and considerations for preprocessing
and analysis discussed in the following.

Typical connectivity analyses usually select a seed-based correlation approach with 5 to 10
different ROIs modeled as spheres with different radius (∼ 3–5 mm) around a chosen center of
mass. These ROIs are specific and predefined to the investigated task, often based on expected
results or previous investigations. Comparisons of results are therefore not straightforward as
different centers of mass for the same brain region are often reported or definition of nodes for
ROIs differ, i.e. if determined by structural or functional brain-atlases. Moreover with a lim-
ited number of ROIs in a seed-based approach the analysis can not incorporate all information
present during the encoding task and is therefore not representable. Additional communica-
tions between e.g. two brain regions through an excluded third one, cannot be adequately
reflected in the results. In contrast, the present work here was aimed at an exploratory anal-
ysis of the interconnections of all 408 brain regions of one of the more detailed brain atlases
developed by the Human Connectome Project [103], seldom pursued due to the computational
expense. The use of a predefined atlas additionally improves accuracy and reproducibility of
the obtained results.
A combination of an ICA preprocessing approach and a PCA for each region was applied to
extract the signal which most faithfully represents brain activity. PCA for fMRI analysis was
investigated by e.g., Zhong et al. [319], who found increased SNR compared to calculating
the mean over the voxels contained in one region in resting-state fMRI. Different principal
components were investigated for several sample regions at an early stage of this work to
ensure representative reflection of the task. Due to the preceding ICA, which included the
time-consuming selection of noise components for each individual subject, signal fluctuations
from physiological noise were already reduced and the first PC was chosen for further anal-
ysis. Future investigations may include several or different PCs to investigate their distinct
contribution to the data as well as their neurological interpretation. Instead of region-specific
analysis a data-driven approach with IC or PC could be investigated in the future to identify
co-activation on a more functional network-base.

For the motion correction preprocessing and removal of outliers, recommendations for resting-
state as well as task-based fMRI designs were combined to adequately fit the new requirements
of the somewhat intermediate approach of the continuous pain rating. The inclusion of 24 move-
ment parameters was motivated by previous investigations [67] to obtain nearly movement-free
fMRI data which then was set in relationship to the pain intensity rating. No subtraction of
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9 Whole-brain fMRI analysis in chronic back pain and chronic migraine patients

the global mean signal was applied, as there are no standardized recommendations in the liter-
ature and this is still a highly discussed and active field of research [229, 246]. Both advantages
in global signal removal, as well as e.g. the introduction of artificial negative correlations in
seed-based connectivity analysis [203] have been reported. A potential limitation of the ap-
plied scrubbing approach to minimize confounding motion artifacts is the variation in length
of the different remaining time series for each individual subject [314]. This is a fundamental
problem for experimental designs with short acquisition times, however the reported amount
of scrubbed data indicate a negligible amount for this work with its extended time period of
acquisition of 25 minutes per fMRI session.

Pearson full correlation coefficient was chosen due to the simple and effective application in com-
bination with a high number of ROIs and the systematic sliding-window approach, which led
to extensive computational calculations. The Pearson correlation coefficient is a non-directed
model-based metric to quantify interactions and makes the assumption of linearity with re-
spect to the kinds of interactions that may take place between two signals. By combining this
metric with the applied sliding-window approach, where two time series are shifted against
each other, a cross-correlation function is obtained which accounts for the temporal structure
in the data. However, the interpretation of the obtained connectivity correlations is complex
as neuronal activations and communications can be considered bi-directional between two in-
terconnected brain regions and can occur on various timescales [33]. Future investigations may
include different metrics to quantify the relationship e.g. Granger causality or partial correla-
tions to even further investigate the communication between several groups of brain areas to
overcome the limitation of nonlinearity or directed interactions. Several different metrics have
been investigated including ones to quantify causal relationships i.e. effective connectivity [297].

The sliding-window statistical approach with adjustable shifts between cortical processes and
pain ratings allowed one to take into account the temporal dynamics of the continuous de-
sign. The variable shifts incorporate, on the one hand, individual variations of the HRF and,
on the other hand, the individual cascade of cortical processes that precede and succeed the
transient intensity of pain which is a major advantage compared to fixed time-series. Although
no gold-standard recommendations are available on the sliding-window parameters, resting-
state fMRI designs have found robust FC results for window-lengths of approximately 30 s,
whereas task-based sliding-window parameters are inherently dependent on the experimen-
tal fMRI task-design [161]. Additionally, different unknown timescales, on which changes in
functional connections may vary have to be taken into consideration [207]. Therefore, sliding
window parameters were chosen to capture the variable frequencies of the pain ratings of all
patients to resolve the timing of the different pain encoding processes as accurately as possible.
The high-resolution offsets of 1 s between the wide range between -15 and 20 s allowed for a
determination of a hemodynamic response curve for the majority of the ROIs BOLD response
with a good resolution to detect an increase, peak activation and decrease of the signal. Future
analysis could include a detailed investigation of regional-specific timescales of BOLD activa-
tions in individual brain regions as well as systematically changing window parameters such
as windowlength or shape. Alternative solutions to include considerations of different timings,
could be the generation of optimal basis sets for use in the HRF convolution (e.g. FLOBS in
FSL) [311].

The proposed connectivity schemata identified statistical significant brain regions which repre-
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sented the encoding of pain intensity as well as the change in pain intensity in a more intuitive
way. Significant brain regions, identified by the statistical analysis, were thresholded at 80 %
to mostly represent a positive or negative relationship with the pain ratings, i.e. positive cor-
relations or anticorrelations. Brain regions which were e.g. significantly positively correlated
to high pain ratings in the first half of the fMRI rating design but negatively in the second
half were excluded from analysis (see Figure 9.11 B). On the one hand, this certainly limits
the analysis to some extent but interpretability of the results are otherwise difficult and rather
non-intuitive. On the other hand, this separation may not even be distinguishable in shorter ac-
quisition approaches and was only possible due to the extended acquisition time. Nevertheless,
interpretations of positive connectivity as well as negative connectivity, i.e. anticorrelations,
are still highly debated [50, 232]. Importantly, no anticorrelations have been found in this
analysis.

Connectivity pattern encoding pain perception in CBP
Overall, predominantly a negative relationship between cortical connectivity and high as well
as rising pain was found in CBP. These findings are considered to reflect the severe impact
of chronic pain on perception and cognitive functioning and are supportive of previous stud-
ies showing how the experience of pain suppresses, inhibits, and impairs cortical processes
[53]. The findings on intra-occipital pain intensity related disruptions are in line with the ob-
servations of suppressed occipital activity through applied pain [224, 295] and the finding of
disrupted visual network connectivity in chronic pain [267]. Similar to the obtained results,
disrupted connectivity between the PCC and parietal regions was previously reported for acute
tonic and chronic orofacial pain [5]. Furthermore, impaired parahippocampal and hippocampal
functioning as observed in chronic back pain has been discussed in the context of depression
[87, 195], biased memory [36, 220], pain memory [244], and the transition from episodic to
chronic pain [178, 204].

Besides disrupted connectivity, a positive relationship for cerebellar and parietal connectiv-
ity with high levels of pain was found. The contribution of the cerebellum to the cortical
processing of pain has been discussed in various contexts [69], including emotion, cognition,
and motor functions, and has been suggested to integrate the multi-faceted aspects of pain
experience[199]. Consequently, the suffering from long-lasting pain may have caused structural
changes in the cerebellum. For CBP, alterations of the cerebellar grey matter density were ob-
served compared to healthy subjects in [171, 287]. Both, cerebellum and the connected parietal
regions have been associated with a top-down attentional direction of pain intensity features
[168].

For the investigation of the change of pain intensity, periods of rising pain were contrasted
with periods of falling pain in the statistical model. This contrast controls for motor-related
connectivity and decision making processes, as these processes equally occur independent of
rising and falling pain. As a result, a wide-spread disruption of cortical circuits with rising
pain was observed; the connectivity was significantly higher during falling pain for a number
of cortical connections. This applied to the connectivity between brain regions commonly as-
sociated with pain perception, i.e. insular cortex to pACC [285]. Similar results were reported
previously, where increased cortical connectivity was observed for decreases in pain intensity
for regions that are known to be involved in the encoding of pain [257].
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In addition, a disruption within the parietal and the cingulate cortices was found. The parietal
disruption may reflect the deviant processing within the default mode network, which has been
previously reported [5, 30, 169].

Connectivity pattern encoding pain perception in CM
For CM, the group statistics showed only two connections that represent the encoding of pain
intensity. Among these connections an increasing connectivity with higher pain intensities
between the right anterior insular and the left orbitofrontal cortex was found. Orbitofrontal
cortex [19, 306] and anterior insular cortex [295] have been consistently found to be involved in
pain processing. The comparably low number of connections may represent the complexity of
the cortical processing in chronic migraine [51, 79]. Indeed, most patients who were included in
the present study exhibited individually unique patterns of pain-related cortical connectivity
that do not match the overall pattern of the group statistics.

There are a number of connections that represent the rising and falling pain in CM. An in-
volvement of the right anterior insula was found which is connected to orbitofrontal areas;
one of these frontal regions has been previously related to migraine attacks [77] and placebo
modulation [296]. The pain-modulated connectivity between the anterior and the posterior
cingulate cortex can be considered to reflect the activity of the DMN [5, 30, 72]. Superior
temporal regions were found to be positively connected to the insula and have been shown
to be affected in episodic migraine [261] and pain memory [127]. This may also apply to the
connection between the hippocampus and an inferior temporal area. Again, the majority of
the regions exhibit a disrupted connectivity with rising pain.

However, the findings are not directly comparable to previous studies as the nonstationary
aspects of the cortical network were assessed. Here, the pain-dependent within-subject dy-
namic fluctuations irrespective of the general amplitude of the BOLD oscillations was inves-
tigated. This perspective on the data considers and contrasts only the rising and falling periods.

Individual patterns of pain intensity encoding in single patients
A major aspect of the investigation is the assessment of a single patient’s profile of pain pro-
cessing. In order to describe the unique patterns of pain-related connectivity, each pain patient
was repeatedly recorded in order to obtain sufficient and reliable data. Individual connectivity
maps were created for each patient which varied significantly from the group results in the num-
ber of connections as well as in the overall connections. For these reasons no direct comparison
of pain-related connectivity changes between CM and CBP patient groups was calculated, as
variability between subjects in one chronic pain cohort is already tremendous.

Individual variations may reflect pain processing, the experience of pain or even the indi-
vidual coping strategies of the patient, all of which may influence the success of chronic pain
treatments. Only a few studies have addressed the importance of single patient effects in their
analysis and have reported variability [109, 111, 179]. However, the possibility that variables
such as pain duration and intensity, current medication, or indeed psychological parameters
and subtypes of chronic pain diseases may modulate some aspects for specific individuals, can
not be excluded.

Limitations and Conclusion
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Methodological limitations of this approach include the use of a predefined atlas, in which
function as well as structure of a different set of individuals were used to predefine the cortical
regions. This classification might not adequately reflect the functional characteristics for each
individual in this specific cohort and task-free fMRI design.
As dynamic functional connectivity is only an indirect measure, it’s interpretation is complex
and not necessarily straightforward. Depending on the pairwise correlation values, negative
correlations or “anticorrelations” are theoretically possible, but are particularly difficult to
interpret and are still highly debated in the field of neuroimaging [232]. In this work no “an-
ticorrelations” were found in the connectivity results, therefore only the positive connections
found were described according to the chosen connectivity schemata. Future investigations
may include a more sophisticated connectivity metric, i.e. partial correlations or graph-based
analysis including several nodes to characterize functional connections between single brain
regions and their temporal dynamics among themselves [130, 207].

The experimental setup aimed to reflect the dynamically evolving cortical connectivities re-
lated to the subjective experience of pain. However, none of the single subject connectivity
patterns, assessed in repeated sessions, resembled the patterns obtained by group statistics.
The results suggest that individual chronic pain patients exhibit qualitatively distinct signa-
tures of cortical connectivity; this applies to chronic back pain as well as to chronic migraine.
Consequently, the present findings argue against a common biomarker for the subjective expe-
rience of chronic pain that is based on dynamic connections. This is in line with the experience
of clinicians; each patient can be characterized by a unique personality, various combinations of
symptoms, and a broad range of treatment success. The findings support recent developments
for a more personalized medicine.
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9.5 Stability of pain ratings in chronic back pain and chronic
migraine patients

The following section describes the supervised ML approach pursued to investigate the hypothe-
ses introduced in the objectives chapter 8.3. These include the investigation of the stability of
the pain ratings across the four repeated fMRI sessions and the possibility of predicting the
pain intensity levels based on learned brain activity from previous sessions. Sections 9.5.1 and
9.5.2 describe the extracted features from the underlying BOLD fMRI and pain rating mea-
surements and the applied supervised ML regression models before the results are presented in
section 9.5.3 and discussed in section 9.5.4.

9.5.1 Features
The measured BOLD signal intensity from all voxels belonging to each of the 408 parcellated
brain regions (see section 9.4.1) were extracted and averaged. The obtained 408 BOLD signal
time series (t = 950 time points) were standardized by subtracting the mean and dividing by
the standard deviation of the time series (z-scores), and served as predictor variables/features.
Hence, the data is represented as a matrix of dimensions 408×950 for each subject and session.
Subjects with missing values or sessions were excluded. A total of 17/18 CBP/CM patients
were analyzed. The endogenous pain level (amplitude - AMP) as indicated by the subject
during the rating task is the target variable. Based on the distribution of shifting vectors
(Appendix figure 11.1) obtained from the BOLD analysis, the rating vector at time t = −6 s
was used for CBP and t = −5 s for CM.

9.5.2 Models and resampling
An eXtreme gradient boosting (XGB) algorithm (see section 7.1.2) was compared to a base-
line linear regression model with LASSO regularization (see section 7.1.1) over the following
two resampling schemes: cross-validation between-session and cross-validation within-session.
These two resampling-schemes were chosen to investigate the stability of the pain ratings as
follows: the between-session approach evaluated if the relationship between pain level ratings
and BOLD activity learned in one fMRI session can be used to predict the brain activity in
a different session. The within-session assessed if the relationship between pain level ratings
and BOLD activity learned in one part of the fMRI session can be used to predict the brain
activity in a different part of the session.

Figure 9.20: Cross-validation between-session: 4-fold cross-validation with three sessions in the
training (grey) and one session in the test set (blue). One session consists of 950
datapoints. The cross-validation scheme is shown for the single-subject approach;
for the group-level approach the corresponding folds for training and test sets were
concatenated across all 17/18 CBP/CM subjects.
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Both cross-validation schemes were separately applied to a single-subject and a group-based
approach to compare subject- with group-level learning of the models, resulting in four different
settings: Group-level between-session, group-level within-session, subject-level between-session
and subject-level within-session. For the group-based approach the model is trained on all 17
subjects for CBP and all 18 subjects for CM, whereas in the single subject approach, the model
is trained only on individual subject data. The resampling schemes for the single subject based
approach for between- and within-sessions are shown in Figure 9.20 and 9.21, respectively.
Group based resampling schemes were then obtained by concatenating the respective folds
across all subjects.

Figure 9.21: Cross-validation within-session: 7-fold rolling-window / walk forward cross-
validation scheme in one measurement with an initial window size of 500 (training
set) and a horizon of 50 datapoints (test set). The cross-validation scheme is shown
exemplary for one session of the single-subject approach; for the group-level ap-
proach the corresponding folds for training and test sets were concatenated across
all 17/18 CBP/CM subjects.

A so-called ‘rolling window’ or ‘walk forward’ cross-validation scheme with predefined folds
(time slices, caret package [154]), which moves the training and test sets in time was applied
as a resampling strategy for the within-session analysis approach. This accounts for the tem-
poral order and non-independence of collected data points within a time series. The following
parameters were chosen for the rolling window CV scheme: The initial window length, i.e. the
number of consecutive values in each training subset was set to 500 (initial_window = 500)
and the number of values in the test set at horizon = 50. The training set always starts at
the first sample, varying its size over the data splits whereas the size of the test set remains
fixed (fixedWindow = FALSE) which is skipped (skip = 49) for every window to ensure strict
splitting of training and test set. Each single session containing 950 observations is thus divided
into seven folds which are subsequently used for training and testing until all data are included.
A 4-fold cross-validation scheme was applied between-sessions such that three of the sessions
were used for training and one for testing.

An inner resampling loop was used for hyperparameter tuning for the XGB and LASSO
model. For the between-session approach, hyperparameters were tuned over an inner 3-fold
cross-validation resampling and over a 4-fold rolling-window cross-validation scheme for the
within-session setting. The best found set of parameter configuration was then set as hyperpa-
rameters for the outer loop. The following four hyperparameters of the XGB were tuned over
the following parameter space: maximum number of boosting iterations (nrounds, 50 − 500),
subsample ratio of columns when constructing each tree (colsample_bytree = 0.05−0.1), min-
imum sum of instance weight needed in a child node (min_child_weight = 1 − 10), minimum
loss reduction required to make a further partition on a leaf node of the tree (γ = 0−10) [312].
For the LASSO model the regularization parameter λ = ln(0.01) − ln(20) was tuned.
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Evaluation of the models was based on the root mean squared error RMSEi as performance
metric, with the subscript i = {l, x} differentiating between the LASSO (RMSEl) and XGB
(RMSEx) model. R2

i values are plotted in the corresponding figures.

All analyses were implemented in R (Version 4.0.2) using the mlr3 package [157]. The fol-
lowing additional software packages were used: mlr3learners [158], caret [154], ggplot2 [299],
purrr [125], furrr [292], future [35], dplyr [300], mlr3viz [156], gridExtra [20] and zoo [318].
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9.5.3 Machine learning results
Between-session setting

RMSE and R2 values were calculated to measure the performance of the two regression models
(LASSO and XGB) and a featureless model for comparisons. As the MSE measures the average
squared difference between the estimated values of the model and the actual value, the RMSE
indicate the root of the MSE and is an absolute performance measure in the units of the pain
ratings.

The RMSE values for the models of the group results for the between-sessions analysis for CBP
and for CM are given in Table 9.13. The corresponding R2 values are given as follows and are
shown in Figure 9.22 for all iterations for both CBP and CM. For the LASSO model the mean
R2 values are R2

l = 0.041±6.6×10−3 for CBP and R2
l = −4.2×10−5±8.3×10−5 for CM. For the

XGB model the mean R2 values are R2
x = 0.048±4.5×10−3 and R2

x = −2.8×10−4 ±2.5×10−4

for CBP and CM, respectively. The mean and standard deviations are given over the four
resampling iterations. Both models show very low overall performance. In contrast to CM,
the performance of both models for CBP is better than the featureless model. Both models
perform better on the CBP dataset than on the CM one.

The subject-level between-session results are shown in Figure 9.23 and Figure 9.24 for CBP
and CM, respectively. The mean RMSE over all subjects and resampling iterations are given
in Table 9.13 below. The mean R2 over all CBP subjects and resampling iterations is R2

l =
−1.7 × 10−4 ± 0.015 for the LASSO and R2

x = 0.015 ± 0.026 for the XGB model. The mean
over all CM subjects and resampling iterations is R2

l = −2.3×10−4 ±9.0×10−4 for the LASSO
and R2

x = −7.6 × 10−3 ± 0.013 for the XGB model. All models therefore show low performance
comparable to or worse than the featureless model which is predicting the mean value. Only
the XGB model on the CBP dataset performs better than the featureless model.

Figure 9.22: CBP and CM group-level between-session: R2 values obtained from both the
LASSO model and the XGB, are shown for CBP on the left and for CM on the
right. The R2 of the featureless model is indicated by the dashed line at 0.
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RMSE
featureless LASSO XGB

CBP group 8.89 ± 0.15 8.71 ± 0.142 8.68 ± 0.153
CM group 8.12 ± 0.20 8.12 ± 0.203 8.12 ± 0.20

CBP subject 8.87 ± 0.67 8.87 ± 0.658 8.80 ± 0.658
CM subject 7.52 ± 3.08 7.52 ± 3.08 7.54 ± 3.08

Table 9.13: Mean and standard deviations of the RMSE values for the between-session setting
for both group- and subject-level in CBP and CM for the featureless, LASSO and
XGB model.

Within-session setting

The group-level within-session results are shown for each of the four sessions separately and
models in the boxplots in Figure 9.25 for CBP and in Figure 9.26 for CM. The mean R2 over
all seven folds for CBP are given as follows for each of the four resamplings for both models
(LASSO/XGB): R2

1 = 0.036±8.4×10−3/−5.9×10−3±0.025, R2
2 = 0.050±0.016/−0.010±0.030,

R2
3 = 0.038 ± 0.012/0.018 ± 0.056 and R2

4 = 0.063 ± 0.014/ − 5.1 × 10−4 ± 0.042. The overall
performance of both models on the CBP dataset is similar throughout the four sessions, with
the LASSO model showing better results than the XGB model.

Figure 9.25: CBP group-level within-session: For each session the R2 values of the LASSO /
XGB model are shown over all seven folds.

The mean R2 over all seven folds for CM are given as follows for each of the four resamplings
for both models (LASSO/XGB): R2

1 = −9.2 × 10−4 ± 1.6 × 10−3/ − 0.13 ± 0.056, R2
2 =

4.3 × 10−4 ± 1.2 × 10−3/ − 0.14 ± 0.035, R2
3 = 2.6 × 10−4 ± 9.5 × 10−4/ − 0.11 ± 0.029 and

R2
4 = 5.3 × 10−4 ± 1.4 × 10−3/ − 0.14 ± 0.028. In all four sessions for CM the XGB performs

worse than the LASSO and featureless model. The LASSO model performs better than the
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Figure 9.26: CM group-level within-session: For each session the R2 values of the LASSO /
XGB model are shown for all seven folds

featureless model on the CBP dataset, but equally to the featureless model on the CM dataset.
The XGB model shows more variability than the LASSO model for all settings and models,
but is better on the CBP dataset than on the CM dataset. The LASSO and XGB model mean
RMSE values over all seven resampling iterations for each of the four sessions in CBP and CM
are listed in Table 9.14.

RMSE
CBP group featureless LASSO XGB

session 1 8.54 ± 0.20 8.38 ± 0.20 8.56 ± 0.20
session 2 9.04 ± 0.20 8.81 ± 0.22 9.08 ± 0.20
session 3 8.85 ± 0.21 8.69 ± 0.19 8.77 ± 0.29
session 4 8.92 ± 0.29 8.64 ± 0.28 8.92 ± 0.17

CM group
session 1 8.05 ± 0.73 8.05 ± 0.70 8.57 ± 0.66
session 2 7.91 ± 0.73 7.92 ± 0.73 8.45 ± 0.72
session 3 8.56 ± 0.75 8.56 ± 0.75 9.02 ± 0.72
session 4 8.42 ± 0.74 8.42 ± 0.74 8.97 ± 0.77

Table 9.14: Mean and standard deviations of the RMSE values for the within-session setting
for group-level.

The subject-level within-session results are shown in the boxplot of Figure 9.27 for CBP and
in the boxplot of Figure 9.28 for CM. The mean RMSE values over all CBP subjects for each
of the model is RMSEl = 8.19 ± 1.20 and RMSEx = 8.27 ± 1.23. The minimum is obtained
in subject 1, session 3 with RMSEl = 4.94. The mean RMSE values over all CM subjects for
each of the model is RMSEl = 7.48 ± 4.15 and RMSEx = 8.25 ± 4.28 and the minimum is
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obtained in subject 13, session 3 (RMSEl = 0.42).

Figure 9.27: CBP subject-level within-session: For each subject, the LASSO and XGB model
R2 values are shown over seven folds for each session separately. The maximum
is obtained in subject 12 session 1 with R2

l = 0.46.
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9 Whole-brain fMRI analysis in chronic back pain and chronic migraine patients

Figure 9.28: CM subject-level within-session: For each subject, the LASSO and XGB model
R2 values are shown over seven folds for each session separately. The maximum
is obtained in subject 4 session 3 with R2

l = 0.39. For visualization purpose
only, three outliers are not shown in the boxplots: in session 3 subject 13 for
LASSO/XGB R2 = -6.0/-92 and in session 2 subject 7 for XGB R2 = -11.
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For CBP the mean R2 values over the seven folds for each session separately are: R2
1 =

0.10 ± 0.14/0.056 ± 0.15, R2
2 = 0.12 ± 0.13/0.12 ± 0.14, R2

3 = 0.098 ± 0.13/0.089 ± 0.15, R2
4 =

0.12 ± 0.19/0.093 ± 0.14. Both models consistently perform better than the featureless model
with the mean R2 over all subjects and sessions for both models given by: R2

l = 0.10 ± 0.15
and R2

x = 0.089 ± 0.14. Session 2 showed the best performance for both the LASSO and the
XGB model.

For CM the mean R2 values over the seven folds for each session separately are given as follows:
R2

l = −0.047±0.13/−0.37±0.58, R2
2 = −0.065±0.25/−0.53±1.1, R2

3 = −0.11±0.66/−1.1±8.2,
R2

4 = −0.048 ± 0.21/ − 0.39 ± 0.49. Therefore, similar results to the group-level within-session
analysis were obtained in the subject-level within-session setting: whereas the LASSO model
performs comparably to the featureless model throughout all sessions and subjects, the XGB
model performs worse than the featureless model with additional higher variability over the
seven folds. The mean R2 over all subjects and sessions for both models is R2

l = −0.067 ± 0.37
and R2

x = −0.60 ± 4.1.
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9 Whole-brain fMRI analysis in chronic back pain and chronic migraine patients

9.5.4 Discussion of machine learning results

The possibility of predicting the pain intensity based on fMRI BOLD brain activity alone
was investigated and the stability of acquired pain ratings during four fMRI acquisitions was
tested, i.e., if pain intensity levels can be predicted in a different session by a model trained
on only one session. Diverse results were obtained depending on the four variants pursued.
Overall, compared to the intercept model, the CBP data set yielded better results than the
CM data set for both models across all four variants, but the overall performance was low. This
leads to the conclusion that with the currently pursued approach, the pain intensity level in
CBP and CM patients cannot be predicted solely on the BOLD signal of each region. All fol-
lowing observations and comparisons are therefore made on an overall low level of performance.

For the between-session variant on group-level, both models yielded better results on the CBP
data set than the CM set. For both the CBP and CM cohort, the XGB model performed
slightly better than the LASSO model. On subject-level, comparing both patient cohorts, the
model fit on the CBP data set yielded better results than on the CM dataset. Comparing
both models in each patient group separately, the XGBoost consistently performed better than
the LASSO model on the majority of CBP subjects, in contrast to the CM data set, where
the XGB model suffers from overfitting leading to negative R2 values. The overall obtained
maximum in both datasets is R2

x = 0.077 in the chronic back pain cohort (subject 11, session4).

Looking at the performance values to answer hypotheses (9) and (10), the models performed
better on group-level than on subject-level for CBP but better on subject-level than group-
level in CM in the between-session setting. This is in line with previous observations of highly
individual patterns of BOLD brain activity in chronic migraine patient cohort and a more ho-
mogeneous, although still variable, cortical activity in chronic back pain patient cohort in this
dataset. Acquiring more data from different chronic back pain patients might therefore increase
the prediction accuracy, whereas for chronic migraine more data for each individual subject
may be more effective. The stability of the pain ratings and its underlying brain activity is
therefore more given in CBP patients than in CM patients based on the obtained observations.

Within-session group-level analysis showed better results of the models compared to the in-
tercept model on the CBP dataset, but negative R2 values for almost all CM sessions and
iterations. Overall, comparing both models, the LASSO model performed better than the
XGB one, although both performances were very low. For CBP all four sessions yielded fairly
similar results, with the third session showing the greatest variability in the XGB model.
On subject-level, the CBP cohort showed the best results, with a maximum of R2 = 0.46 ob-
tained in one iteration, indicating almost 50 % of the pain intensity can be explained by the
corresponding brain activity in distributed regions. Here, the mean LASSO model slightly out-
performed the XGBoost over all four sessions. For CM, the mean over all subjects and sessions
showed a negative R2 value, indicating both models perform worse than the intercept model.
The XGB model constantly overfitted the data yielding negative R2 values, whereas through
the penalization in the LASSO model, the R2 values were close to the featureless model at
zero. High negative values for R2 are generated by the high discrepancy between the predicted
value and the true one given in equation 7.10.

Comparing now subject- with group-level, the models yielded better performances on subject-
level than on group-level in CBP whereas in CM both settings yielded very low performance.
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In general, the linear model fit showed improved performance over the XGB model for both
group and single subject-level in CBP and CM. Overall, this suggests that stability over a
shorter period of time of one session is given within individual CBP subjects, but not CM
subjects. Further interpretations of the results with the obtained low performance does not
seem justifiable.

Several limitations can be the reason for the obtained results, which can be divided into three
categories, concerning the data set itself, the methodological approach and the underlying neu-
rological processes involved.

First, the fMRI data set, although properly preprocessed according to recommended pre-
processing pipelines, still contains residual noise, and changes due to BOLD activations are
inherently low. On the other hand, preprocessing steps which smooth the data and spatially
align the images to standard templates may remove distinct signals and hence may not guar-
antee fully accurate inter-subject functional consistency. Additionally, the data includes all
three variables, pain intensity, the change of pain intensity and the encoding of motor activity.
Encoding of motor activity yielded huge clusters of significant voxels in the BOLD analysis.
This activity may confound the more subtle encoding of pain intensity encoding.
A feature space of 408 different features, corresponding to all parcellated individual brain re-
gions, involves brain regions containing mostly noise or regions irrelevant to the task which
introduces variance to the model [47]. Although both models, LASSO and XGB, inherently
contain a feature selection property by imposing sparsity constraints [121], feature selection
using prior knowledge of specific features (e.g. pain regions) could yield improved results, also
in combination with dimensionality reduction techniques such as ICA or PCA. If, however, a
mask with preselected, potentially informative features is used, it should be selected a priori
on separate data, but this seems inappropriate at this point for a whole-brain multivariate
approach.

Second, from a methodological point of view, the common problem of overfitting with sparse
sample sizes in neuroimaging data was minimized by the applied regularization and resampling
schemes with several cross-validation iterations to ensure good generalisability [245, 287]. Still,
the relatively small sample size is one of the most limiting factors in neuroimaging machine
learning approaches [18]. To improve the performance of the models, an increased number of
iterations for the hyperparameter tuning could be used in the future. Further, modelling of
subject specific effects on group-level could be included to allow for subject specific variations.
Special focus was put on the walk forward cross-validation scheme to account for the resampling
in time series analysis. However, the prediction could be additionally improved by exploiting
the properties of the time series itself, i.e. by incorporating time series features into the model
to account for e.g. periodicity of the pain ratings. The focus of this work though, was to
purposely only include brain activity to predict the pain intensity. So far, no adjustment or
inclusion of modelling of the autocorrelation present in the data was attempted. One way to
include autocorrelation into the ML models would be to include lagged features of the pain
level and/or time with a time series model, e.g. ARIMA [43]. With the implementation of the
walk forward scheme in the presented exploratory analysis, future models can thus be easily
compared against autoregressive models.
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Third, the timing of the underlying neurological processes are still unknown. The HRF is
slow and only an indirect measure of the cortical activity. Incorporating the timing results
from the BOLD analysis, the pain rating vector with the shift corresponding to the maximum
of the most regions was used. This certainly is a first approach to account for the variabil-
ity between all 408 brain regions but may not reflect the actual timing of events in many
regions. As can be seen from the BOLD and connectivity results, the encoding of especially
the pain intensity is difficult to resolve, in particular for CM patients, and the SLP rather
than the AMP variable leads to more meaningful results. Possibly these processes cannot be
distinctly separated with the pursued ML approach and the value of pain intensity has no clear,
separable neuronal representation, detached from the pain experience as a whole. The assump-
tions of a linear relationship between high-dimensional fMRI signal and pain ratings instead of
a complex nonlinear one may also not be representable of the underlying cortical processes [59].

The majority of neuroimaging studies in the past have used classification-based approaches,
as prediction compared to classification is harder but would be more promising for clinical
utility, e.g. for disease prognosis and treatment progress [18]. An increasing number of studies
nowadays focus on prediction of continuous variables such as individual cognitive scores or
behavioral performance using fMRI data [18]. The intersubject variability between fMRI ses-
sions is a general problem of functional magnetic resonance imaging and a ML-based biomarker
would have to take subject-specific effects into account as well as fulfill several other properties,
such as practical issues like independence of acquisition site and scanner type [238]. Further
investigation into the possible applications of ML algorithms to fMRI and pain neuroimaging
are necessary to harvest the objectivity a ML approach can offer on the pain experience and
pathology [2, 142, 235]. Future approaches, involving multi-voxel pattern [238] analysis and
deep learning strategies, e.g., neuronal networks, may be more capable of data-driven automatic
feature learning, removing the subjectivity in selecting relevant features and disentangling the
underlying complicated data patterns. Such models in combination with even larger data sets
as acquired in this work are needed to potentially provide useful and robust brain measures
and new disorder categories that will help treatments of the patients [47].
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In conclusion, the presented work describes investigations to understand the neuronal under-
pinnings of the natural fluctuations of spontaneous pain based on data acquired in repeated
acquisitions of fMRI of two chronic pain disease cohorts: chronic back pain and chronic mi-
graine. During four repeated fMRI sessions of 25 minutes, 20 CBP and 20 CM patients indi-
cated their continuous, endogenous fluctuating pain intensity without application of external
stimuli. The analysis of continuous pain assessment, which best captures the natural, sponta-
neous and unique fluctuations of chronic pain patients is hardly pursued in a field that relies
mostly on the application of exogenous pain to chronic pain patients. Only one group has in-
vestigated continuous pain rating paradigms for fMRI [16, 28, 120] and one study applied it to
EEG measurements [185]. To the best of the author’s knowledge, this is the first investigation
of a sliding-window whole-brain BOLD and dynamic functional connectivity approach with
a continuous, stimuli-free pain rating fMRI paradigm both in CBP and CM patient cohorts.
Therefore the presented study here contains the most thorough analysis of the natural pain
experience in two chronic pain cohorts, adding new aspects to the understanding of the core
of chronic pain disease, especially in chronic migraine where data is scarce. Three different
analysis approaches were pursued to investigate the naturally evolving trajectory of pain: an
fMRI BOLD activity approach, a dynamic functional connectivity approach to assess func-
tional coupling between brain regions, and a ML approach to test for stability over several
fMRI sessions as well as prediction of pain intensity levels based on BOLD activations.

Methodological considerations
The presented concept of a continuous fMRI design in combination with the sliding-window
and LME analysis helps the identification of the true underlying chronic pain disease and
must be further investigated especially in patient populations where additional stimuli seem
unwarranted. This approach emphasizes the importance of adjusting the fMRI experimental
paradigms to the true underlying, investigated neuronal processes. In contrast to block-design
studies where the experimental task is set in advance, special attention must be given to the
performance of the continuous performance of subjects, and repeated or extended fMRI acqui-
sitions are needed for robust results.
The applied sliding-window approach, both in the BOLD and FC analysis, allowed accounting
for unknown timings of different cortical processes, variability in the HRF for each individual
ROI and variability in two pathological populations. Such combined use of methodologies has
not been reported in the literature and showed a simple but effective technique to resolve the
dynamics of the functional connections. However, certain weaknesses still need to be assessed
in future systematic analysis, such as the fact that results depend on the chosen sliding-window
parameters, especially the window-length.
Additionally, as dFC gained more popularity in recent years because functional connections
are not being seen as constant over the acquisition of a resting-state acquisition anymore, the
interest grows in a more complex, biologically motivated dFC metric. The presented approach
identified the cortical processes involved with a connectivity scheme to better capture and
visualize the complex dynamics, but interpretation with a simple descriptive measure is lim-
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ited. Overall, new suggestions and directions for future continuous, naturalistic approaches
are presented in this work adding to the neuroimaging community, which lacks standardized
preprocessing, analysis and statistical approaches in particular for continuous and spontaneous
fluctuating fMRI designs.

Processing of pain in chronic pain patients
The results of this study further underlines the importance of the insula cortex, as a major
contributor for the experience of pain in chronic pain patients. BOLD activations indicate a
significant involvement of the insula in both processes of pain intensity encoding as well as the
change of pain intensity encoding. The involvement of the pACC as main hub of the descending
pain control system further indicates a disruption of the inhibitory control system of chronic
pain patients. For both the BOLD activity as well as the connectivity analysis, significant
results were obtained in the cerebellum indicating an altered relationship of sensory-motor and
emotional processing in the presence of chronic pain. Alterations in the thalamus and brain
stem (pons) further suggest impaired brain circuits and modulation of nociceptive informa-
tion. Overall, a reduced cortical connectivity for higher pain states and increased connectivity
for low pain states were identified and speak for a general disruption of brain communication
supporting the idea that chronic pain patients, suffering from pain over a long period of time,
undergo changes in many brain regions of cortical pain processing.

Subject Variability
One of the challenges in chronic pain imaging is the variability within and between patients,
as well as the fact that chronic pain has not yet been linked to alterations in single brain re-
gions or networks alone. Through unique combinations of several sensory, cognitive, emotional
and motivational processes, each person experiences pain differently, leading to a tremendous
individual variability [74]. BOLD activations, as well as functional connectivity patterns vary
in both, CBP and CM, patient groups, stating the importance of an assessment of an individ-
ual pain signature. This work adds to the functional coupling of brain regions altered in the
brain of chronic back pain and chronic migraine patients to enhance and promote individually
tailored treatments in medicine [202]. Individual results have so far only been included in
a minority of fMRI studies, which all have reported considerable variability [109, 111, 179].
Further investigations are needed to explore whether the current findings on individual pain
signatures can be utilized for interventions that aim to directly modulate brain activity, e.g.
with a neurofeedback approach [61, 183]. Increased data sets such as collected in this study
and larger cohorts can be expected to support the concept that inter-individual variance within
patient cohorts needs to be disentangled to better model the diseases, with various patients
at different stages of disease progression showing different activation and involvement of brain
areas. However, collection of larger cohort sizes is difficult for fMRI data, as different technical
equipment and protocols complicate the merging of smaller datasets collected at various scan-
ning sites.

Bigger datasets need to be acquired to increase reproducibility and include ML
approaches for objective measures
Even larger amounts of fMRI data than acquired in this study (with four recordings for each
patient amounting to a total of more than 100 minutes of pain processing) are needed to identify
the true underlying patterns and distinguish them from random fluctuations of neuronal or non-
neuronal signals with ML approaches. Although the applied ML algorithms in this work were
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not able to accurately predict pain intensity solely based on BOLD activations, first ML studies
were mostly able to differentiate between healthy and chronic pain patients [287], as well as
between painful and non-painful stimuli [295]. The work presented here lays a methodological
groundwork for similar continuous designs [76] to potentially achieve a model-free evaluation
of pain intensity levels based on brain activity, but different approaches such as multi-voxel
pattern analysis (MVPA)-based on the identification of spatial activity patterns might be bet-
ter suited for future studies [212]. Without the need to self-report pain intensities an objective
measure could be introduced into clinical practice to aid diagnosis and treatment. However,
for an involvement of multivoxel pattern analysis or machine/deep learning approaches in a
clinical setting, limitations such as the missing knowledge about the exact relationship between
fMRI signals, physiological changes modulating the BOLD effect and neuronal activity need
to be overcome [50]. Additionally, with such approaches, even larger cohort sizes are needed
to provide a robust estimate of the generalisability of the models. The presented work of the
ML approach will continue in this direction by additionally analysing EEG recorded data and
investigating different ML approaches to increase the prediction accuracy.

Pain areas were identified for future neurofeedback
fMRI methods allow researchers to noninvasively probe the brain during a variety of different
tasks and states during the scan, including the brain in pain. In the last few years studies have
been emerging which also directly include fMRI for treatment approaches such as real-time
fMRI-based neurofeedback [183]. Here, patients are trained with a so-called neurofeedback
approach to up- or down-regulate the BOLD response to directly influence the activation of
a target brain area. These approaches have shown potential in treating chronic pain patients
[61]. Although great variability was found, the presented work here lays early groundwork for
such approaches, identifying brain regions corresponding to high/low and increasing/decreasing
pain intensities during the spontaneous pain experience, which then can be further targeted in
a treatment approach to reduce pain intensity. So far, only pain intensity encoding restricted
to periods of increasing pain were investigated in previous studies [25, 185]. Additionally, the
interpretation of positive and negative correlations, or ‘anticorrelations’, in the connectivity
analysis must be addressed and clarified in future research, before stable and reliable treat-
ment approaches can be investigated to target specific brain areas or connections. Based on the
intra- and inter-individual findings of pain encoding in this study, only an individually tailored
neurofeedback approach seems reasonable and future studies must address foremost the stabil-
ity and reproducibility of pain encoding patterns. The ultimate goal should be a combination
of real-time neurofeedback and ML approaches to allow for the identification and targeting of
individual pain facilitating processes [183]. Additionally, further research is needed to resolve
the involved dynamics of rising and falling pain as well as the overlap between two adjacent
events and their influence on each other [211, 241]. Future studies may overcome the lack of
temporal resolution of fMRI with combined EEG and MRI techniques to harvest the best of
both imaging modalities [207]. As a first step to include multimodal imaging data for a more
complete analysis, complementary to this fMRI approach, EEG measurements were taken with
the same methodological approach and patient cohorts after or before the fMRI sessions and
are currently analysed.

All in all, the comparison with literature as discussed demonstrates that there is still an urgent
need for a better understanding of chronic pain diseases - from the transition from acute to
the chronic condition, as well as its manifestations and their consequences in the individual
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brain. Without the right diagnosis and treatment, the majority of the population diagnosed
with a chronic pain disease will endure prolonged suffering with severe financial, social and
economic implications. As this work tried to emphasize, individualized medicine, as well as
individualized research, appears to be the most promising future direction. Group statistics
reported in most manuscripts will only represent the minority or even single individuals.

Overall, the data presented in this thesis added new aspects of chronic pain diseases to the neu-
roscience research field by demonstrating how brain regions in chronic back pain and chronic
migraine patients activate and communicate with respect to different pain intensity levels and
rising and falling pain. The powerful combination of a continuous fMRI design, whole-brain
analysis plus sliding-window approach in combination with improved machine learning ap-
proaches will aid the ongoing research efforts to better understand chronic pain to improve
patient healthcare.
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11 Appendix

11.1 Sliding-window shift distributions

This section shows the distribution of sliding-window shift vectors for both BOLD (A) and
connectivity (B) analysis in sections 9.3 and 9.4, respectively.

Figure 11.1: Distribution of sliding-window shift vectors for the CBP (blue) and CM (red) group
results for AMP, SLP and aSLP; please note the different number of significant
voxels for each variable AMP, SLP and aSLP. The maximum between -10 and 15
s is given as a vertical dashed line for each condition. A: BOLD analysis: The
maximum for CBP/CM is at -6.3 s/-4.8 s, 7.7 s/3.5 s and 2.7 s/3.0 s for AMP, SLP
and aSLP, respectively. B: connectivity analysis: The maximum for CBP/CM is
at 7.8 s/-3.8 s, 3.8 s/-2.7 s and 7.9 s/6.0 s for AMP, SLP and aSLP, respectively.

127



11 Appendix

11.2 BOLD analysis additional results
This section contains the detailed BOLD analysis results with Tables 11.1 - 11.6 showing the
exact significant anatomical structures (displayed in sections 9.3.2 and 9.3.3), the pain ratings
in Figure 11.2 and 11.3 for CBP patients and CM patients, respectively, as well as the patients
characteristics and questionnaires in Tables 11.7 - 11.9.

anatomical structure cluster size t-value MNI
x y z

posterior cingulate cortex, precuneus cortex 3712 -5.5 -1 -54 26
anterior insular cortex, frontal operculum cortex 1862 5.78 -36 15 4

occipital pole 906 -4.22 -2 -86 5
anterior cingulate cortex, paracingulate gyrus 877 -5.23 0 43 -3

lateral occipital cortex 434 -4.34 52 -61 27
pons 403 4.23 -4 -21 -35

frontal orbital cortex, frontal operculum cortex 327 4.23 38 25 0
lateral occipital cortex 318 -4.02 -41 -64 30

hippocampus, parahippocampal gyrus 225 -4.59 27 -27 -15
cerebellum (right VIIb) 170 3.95 31 -62 -49

superior frontal gyrus, middle frontal gyrus 117 -3.51 -27 19 58
inferior frontal gyrus, precentral gyrus (M1) 115 3.97 55 10 4

frontal pole 86 -3.58 -15 42 50
middle temporal gyrus 69 -4.41 -60 -14 -11

cerebellum (left IX) 51 -3.76 -9 -50 -41
occipital fusiform gyrus, lingual gyrus 51 -3.75 24 -70 -6

frontal pole 46 -3.93 -41 57 2
subcallosal cortex 44 -4.02 0 6 -6

superior frontal gyrus 43 -3.34 24 31 50
cerebellum (right IX) 41 -3.01 6 -54 -35

right pallidum 39 3.62 16 -3 7
amygdala 33 -3.71 -11 -10 -14

superior frontal gyrus, middle frontal gyrus 28 -3.51 -23 1 52
frontal pole 24 -3.44 38 61 -5

middle frontal gyrus 23 -3.4 -40 2 49
frontal orbital cortex 18 3.62 -41 25 -21

posterior cingulate cortex 17 -3.57 9 -38 11
parahippocampal gyrus 16 3.22 -23 -32 -28

middle frontal gyrus 13 -3.51 -51 25 25
anterior cingulate cortex 11 3.62 0 20 18

superior frontal gyrus 11 -3 -7 17 67
superior temporal gyrus 11 -2.9 53 -9 -12

Table 11.1: Active brain areas that encode the pain intensity (AMP) across all CBP patients
for the BOLD analysis in section 9.3. The size of the active cluster of voxels, the
significant t-value and the MNI coordinates of the center of the cluster are given
for each anatomical structure.
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anatomical structure cluster size t-value MNI
x y z

frontal operculum cortex, anterior insular cortex 1738 7.74 -38 27 8
precuneus cortex, posterior cingulate cortex 1511 -6.86 4 -56 25

paracingulate gyrus, anterior cingulate cortex 878 -6.43 0 44 -3
frontal operculum cortex, anterior insular cortex 259 5.74 35 28 2

lateral occipital cortex 236 -5.78 49 -59 29
occipital pole 232 -5.93 15 -94 14
occipital pole 176 -5.84 -5 -90 18

parahippocampal gyrus 173 -5.45 -24 -40 -10
brain stem 163 -5.57 4 -26 -41

lateral occipital cortex 144 -6.32 -45 -72 6
parahippocampal gyrus 134 5.35 -30 -42 3
anterior cingulate cortex 132 5.22 0 21 26

subcallosal cortex 103 -6.16 0 8 -4
hippocampus 96 -5.01 29 -23 -17
occipital pole 92 -5.03 -20 -98 0
left caudate 90 4.96 -7 4 7
frontal pole 85 -5.69 23 40 44

posterior cingulate cortex 83 4.64 -1 -26 22
cerebellum (left IX) 82 -6.01 -8 -51 -47
middle frontal gyrus 75 4.95 -36 34 35

subcallosal cortex, anterior cingulate cortex 63 6.28 1 27 1
occipital fusiform gyrus 61 4.96 28 -79 -20

frontal pole 61 4.96 38 61 -7
posterior cingulate cortex 43 4.87 -11 -39 16

lingual gyrus 36 -5.02 -11 -70 -6
precuneus cortex 33 4.84 -10 -72 48

lingual gyrus, occipital pole 31 -4.63 -8 -90 -6
occipital pole 28 -5.21 -28 -93 11

middle temporal gyrus 26 -4.62 -60 -21 -7
brain stem 26 4.45 -8 -20 -41

cerebellum (left IX) 24 4.73 -10 -50 -38
angular gyrus, superior parietal lobule 24 4.57 -38 -52 42

paracingulate gyrus 21 3.55 17 36 -5
supramarginal gyrus 18 4 -54 -42 31
superior frontal gyrus 17 -4.17 24 23 61

occipital pole 16 4.06 17 -94 -7
precuneus cortex 16 -3.79 -18 -51 6

temporal fusiform gyrus 14 3.95 -37 -35 -9
anterior cingulate cortex 13 3.91 -13 34 -5
cerebellum (right VIIb) 13 3.74 25 -73 -49

brain stem 13 3.58 -15 -23 -13
thalamus 13 3.46 18 -6 7

temporal pole, middle temporal gyrus 13 -3.45 -48 2 -31
brain stem 12 4.43 -11 -9 -35

parietal operculum cortex 12 -3.67 -50 -25 15
angular gyrus 11 3.81 -32 -58 23
hippocampus 11 3.42 36 -33 -5

Table 11.2: Active brain areas that encode the change of pain intensity (SLP) across all CBP
patients for the BOLD analysis in section 9.3. The size of the active cluster of
voxels, the significant t-value and the MNI coordinates of the center of the cluster
are given for each anatomical structure.
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anatomical structure cluster size t-value MNI
x y z

supramarginal gyrus 21 -45 -37 43
superior parietal lobule 19.7 -43 -41 48
thalamus, insular cortex 21942 19.4 -10 -18 8
precentral gyrus (M1) 18.8 51 8 23
postcentral gyrus (S1) 18.2 -56 -18 23

occipital pole, 19.7 30 -69 -19
cerebellum (right VI) 4830 18.7 30 -63 -21

superior parietal lobule 4127 19 44 -43 44
occipital pole 20.1 -34 -73 -14

cerebellum (left VI) 3845 17.5 -30 -70 -23
middle frontal gyrus 981 16.2 38 39 27
middle frontal gyrus 772 14.5 -34 39 27

posterior cingulate cortex 512 15.4 -3 -26 32
cerebellum (left VIIb) 432 14.2 -27 -64 -48

parahippocampal gyrus 426 -15.4 -27 -33 -13
hippocampus 370 -13.5 29 -25 -15

precuneus 369 -14.6 -8 -59 20
superior temporal gyrus 285 -14.3 -56 -12 -8
lateral occipital cortex 238 -13.3 -45 -71 33

precuneus 90 -12.2 8 -57 22
posterior cingulate cortex 78 13.2 13 -31 43
superior temporal gyrus 69 -12.6 59 -8 -8
lateral occipital cortex 68 -13.7 52 -67 31
cerebellum (vermis IX) 67 13.7 1 -57 -33

thalamus 62 12.9 24 -26 0
paracingulate gyrus 46 -11.6 -4 48 0
cerebellum (left X) 28 12.3 -21 -38 -41

cerebellum (left crus II) 14 11.8 -7 -75 -39

Table 11.3: Active brain areas that encode processing of motor activity, decision making, and
visual change (aSLP) across all CBP patients for the BOLD analysis in section
9.3. The size of the active cluster of voxels, the significant t-value and the MNI
coordinates of the center of the cluster are given for each anatomical structure.
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11.2 BOLD analysis additional results

anatomical structure cluster size t-value MNI
x y z

posterior cingulate cortex, precuneus cortex 4995 -4.76 -4 -52 21
anterior cingulate cortex 920 -4.03 -3 34 4

amygdala 674 -3.99 -26 -5 -21
amygdala, hippocampus 375 -3.7 21 -17 -12
superior frontal gyrus 322 -3.19 25 -2 59

subcallosal cortex 306 -3.8 -1 13 -7
cerebellum (right VIIIa) 302 3.52 20 -65 -51

occipital pole 279 -3.5 14 -94 17
frontal pole 254 -3.79 -15 62 16
frontal pole 226 -4.59 22 60 20

frontal orbital cortex 175 3.77 47 20 -8
thalamus 174 -4.2 13 -28 6

temporal fusiform cortex 174 4.05 43 -51 -18
middle temporal gyrus 171 3.42 53 -41 5

cerebellum (right crus I) 103 3.37 49 -63 -42
frontal pole 102 -3.51 34 59 3

lateral occipital cortex 102 -3.34 42 -76 27
cerebellum (left IX) 95 3.31 -8 -57 -51

postcentral gyrus (S1), superior parietal lobule 62 -3.16 25 -40 73
middle temporal gyrus 56 3.44 67 -43 -4
precentral gyrus (M1) 49 -3.03 30 -21 69
middle temporal gyrus 47 -3.44 -58 -55 1

occipital pole 43 -3.5 -3 -98 17
supramarginal gyrus 43 -3.3 36 -49 8

precentral gyrus (M1) 41 3.4 61 6 7
cerebellum (left VIIIa, VIIIb) 40 3.39 -27 -66 -55

middle temporal gyrus 30 3.45 65 -20 -8
parahippocampal gyrus 30 3.3 22 -5 -37

temporal fusiform cortex 27 3.07 -28 -11 -39
temporal fusiform cortex 25 -3.19 -38 -49 -2
lateral occipital cortex 21 -3.08 22 -71 57
intracalcarine cortex 19 -3.03 -6 -83 11

lateral occipital cortex 18 -3.21 52 -65 20
precuneus cortex 18 -2.98 -27 -54 11

precentral gyrus (M1), posterior cingulate cortex 16 -2.94 -4 -30 48
posterior insular cortex 14 -3.12 37 -8 5
middle temporal gyrus 12 3.15 58 -19 -17

occipital pole 11 -2.99 29 -93 13
left caudate 11 -2.96 -16 -15 28

Table 11.4: Active brain areas that encode the pain intensity (AMP) across all CM patients
for the BOLD analysis in section 9.3. The size of the active cluster of voxels, the
significant t-value and the MNI coordinates of the center of the cluster are given
for each anatomical structure.
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anatomical structure cluster size t-value MNI
x y z

lateral occipital cortex 187 -5.77 39 -77 32
occipital pole 148 -5.89 -17 -97 -11

lateral occipital cortex 116 -5.63 12 -80 48
precuneus cortex 79 -6.09 17 -62 24

superior frontal gyrus 71 -5.57 24 4 58
cerebellum (right crus I) 38 5.19 39 -70 -30

angular gyrus, middle temporal gyrus 28 -5.44 55 -55 14
frontal orbital cortex, anterior insular cortex 25 5.28 -37 24 -2

cerebellum (right crus I) 19 4.95 34 -78 -34

Table 11.5: Active brain areas that encode the change of pain intensity (SLP) across all CM
patients for the BOLD analysis in section 9.3. The size of the active cluster of
voxels, the significant t-value and the MNI coordinates of the center of the cluster
are given for each anatomical structure.
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11.2 BOLD analysis additional results

anatomical structure cluster size t-value MNI
x y z

anterior insular cortex 19.7 40 12 2
thalamus 15531 19.3 9 -12 2
pallidum 18.0 -16 -4 1

cerebellum (left crus II, VIIb) 4729 17.2 -12 -63 -31
superior parietal lobule 2455 15.6 47 -39 44

precuneus 1173 -17.7 -4 -56 24
frontal pole 1167 17.1 36 43 24

hippocampus 793 -17.9 -26 -26 -15
paracingulate gyrus 614 -15.1 -2 55 4

cerebellum (right VIIIa, VIIIb) 535 14.7 27 -58 -50
lateral occipital cortex 493 -16.8 -42 -73 34
superior parietal lobule 479 14.7 -36 -44 46

occipital pole 475 15.4 29 -94 -5
hippocampus 461 -16.1 27 -20 -15

posterior cingulate cortex 345 15.3 2 -27 27
middle temporal gyrus 306 13.3 58 -50 4
precentral gyrus (M1) 282 12.9 -33 -9 55
superior frontal gyrus 180 -13.7 -18 34 48

subcallosal cortex 139 -14.7 0 12 -7
occipital pole 125 14 -23 -99 -9

lateral occipital cortex 119 -13.9 49 -64 31
superior temporal gyrus 117 -13.8 -58 -7 -11

precuneus 109 13.8 13 -74 41
precentral gyrus (M1) 95 12.9 -48 1 39

frontal pole 63 12.1 -28 46 21
superior temporal gyrus 57 -13 61 -2 -13

parietal operculum cortex 52 11.9 -51 -24 18
cerebellum (left X) 39 12.6 -23 -41 -40

posterior cingulate cortex 34 11.8 12 -27 40
cerebellum (right crus I,II) 22 -12.1 30 -80 -36

cerebellum (right IX) 19 -13.2 5 -50 -46
supramarginal gyrus 19 11.5 -58 -40 32

precuneus 12 11.5 8 -71 57
intracalcarine cortex 11 11.7 8 -76 13

cerebellum (vermis VIIIa,VIIIb,IX) 11 12.1 0 -58 -35
superior temporal gyrus 10 -12 -48 -35 2
lateral occipital cortex 10 11.7 47 -68 15

Table 11.6: Active brain areas that encode processing of motor activity, decision making, and
visual change (aSLP) across all CM patients for the BOLD analysis in section
9.3. The size of the active cluster of voxels, the significant t-value and the MNI
coordinates of the center of the cluster are given for each anatomical structure.
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