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Zusammenfassung

Irreversibilität ist dem Leben inhärent und charakteristisch für alle Nichtgleichgewicht-
sprozesse. Aus physikalischer Perspektive gesehen, steht diese Irreversibilität in einer en-
gen Verbindung mit der Entropieproduktion, der Energiedissipation und der Struktur der
Nichtgleichgewichtsfluktuationen. Wir sind jedoch immer noch dabei herauszufinden wie
die Leistungsfähigkeit biologischer Prozesse von deren Energieverbrauch abhängt. Ebenso
ist es rätselhaft, wie die aus der Energiedissipation auf einem mikroskopischen Niveau
entstehende Irreversibilität durch alle Längenskalen bis hin zur Makrowelt propagiert.
Wegen ihrer wichtigen Rolle haben Irreversibilität und die Dissipation ein großes wis-
senschaftliches Interesse erregt und es wurden vielfältige Messmethoden und mathematis-
che Maße entwickelt um sie zu erkennen und zu quantifizieren.

In dieser Dissertation entwickeln wir Methoden zur Berechnung verschiedener Irre-
versibilitätsmaße in linearen Systemen mit externer Antreibung in der Form eines dy-
namischen Rauschens oder einer nicht-konservativen Kraft. Diese Maße charakterisieren
die Irreversibilität auf unterschiedenen Detailebenen. Vom zellulären Cytoskelett und von
Biomembranen inspiriert, wenden wir unsere Methoden auf viskoelastische Netzwerke an.
Wir diskutieren, ob eine Messung einfacher Irreversibilitätsmaße in solch einem Netzwerk
die Eigenschaften der zugrundeliegenden externen Antreibung wie Amplitude, Momente
oder Korrelationszeit enthüllen kann. Gleichzeitich sagen wir vorher, dass die gemessene
Irreversibilität von einem im Netzwerk eingebettet Tracer-Paars im Durchschnitt schnell
mit der Distanz zwischen den beiden Tracern abnimmt. Der Zusammenhang der Irre-
versibilität von der Distanz der beiden Tracer folgt dabei einem Potenzgesetz.

Abschließend zeigen wir, dass ein grobes Irreversibilitätsmaß, das komprimierte In-
formation über die Struktur des Wahrscheinlichkeitsstroms enthält, die irreversibelsten
Komponenten der Dynamik identifizieren kann. Diese Komponenten könnten dann poten-
ziell zur Rekonstruktion von charakteristischen Moden der irreversiblen Dynamik ver-
wendet werden. Zum Ende wenden wir diese Methoden dann als ersten Schritt einer
unüberwachten Analyse von Zeitraffermikroskopie-Daten an.
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Summary

Irreversibility is inherent to life and all nonequilibrium processes. From a physical perspec-
tive this irreversibility has been proved to be tightly related to the entropy production,
energy dissipation, and the structure of nonequilibrium fluctuations. However, we are still
building our understanding of how the performance of the vital biological processes hinges
upon the level of energy consumption. Similarly, it is a puzzle how the irreversibility gen-
erated by energy dissipation at the microscopic level propagates across different length
scales, all the way up to our macroscopic world. Given their important role, irreversibility
and dissipation have been sought after and multiple techniques and measures have been
introduced to detect and quantify them.

In this dissertation we develop a framework for calculating various measures of ir-
reversibility in linear systems with external driving in form of dynamical noise or non-
conservative forces. These measures reflect the irreversible behaviour at varying level of
detail. We apply our framework in the context of driven viscoelastic networks inspired by
the cytoskeleton, or biological membranes. We discuss whether a measurement of simple
irreversibility metrics in such a network could reveal properties of the underlying driving,
such as the amplitudes, the moment (monopoles vs. dipoles), or the correlation times of
the active forces. At the same time we predict that the irreversibility displayed by a couple
of tracers embedded in the network should on average decay rapidly as a power law in
function of the distance between the tracers.

Finally, we demonstrate that a coarse grained measure of irreversibility that encodes
simplified information about the structure of the probability currents could be used to
identify the most irreversible components of the dynamics. These components could then
potentially be used to reconstruct stereotypical irreversible modes of the dynamics. We
then use this framework as a first step in an inference method for unsupervised analysis of
time-lapse microscopy data.
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Chapter 1

Introduction

Nothing can ever happen twice.
In consequence, the sorry fact is
that we arrive here improvised

and leave without the chance to practice.
- Wis lawa Szymborska

While the poet surely refers to something way deeper than the subject of this thesis, let
us use our readers’ rights to make our own interpretation. ”Nothing can ever happen twice”
– indeed, any process in nature is subject to fluctuations, and no two realisations of what
we would classify as ”the same process” will ever really be the same. Typically, the smaller
the scale we look at, the larger the role of fluctuations. Take a ball and try throwing it at a
target – after a bit of practice, as long as you throw the ball with roughly the same velocity
in roughly the same direction, it will always hit the target. Now, go down the scale by 8
orders of magnitude and imagine you’re responsible for delivering a cargo from the centre of
a cell to its peripheries. First, your motion is strongly damped by the surrounding medium.
Second, you’re constantly being pushed back and forth by thermal fluctuations. In order
to maintain a directed motion you must continuously consume energy. The more directed
and regular you want your motion to be, the more energy you need to spend to counteract
the random fluctuations. This and many other vital tasks are unceasingly performed inside
our cells with a stunning precision, even though ”we arrive here improvised”. Indeed we
do – the improvisation has continued for over 4 billion years, during which we, our building
blocks, and surrounding forms of life evolved to efficiently turn energy into order and time-
directed processes. This directionality, or ”irreversibility”, is typical of life and in general of
processes that involve dissipation and transfer of energy. The degree of irreversibility and
its explicitness depends on the process and on the scale at which we observe it. Our own
life is manifestly irreversible when viewed on the time scale from ”arriving” to ”leaving”.
Even on a microscopic scale the dynamics can be clearly irreversible, as it is for a kinesin
motor that under natural conditions never takes a step back. However, as soon as thermal
fluctuations become strong enough, the time asymmetry of a process becomes less evident
and the question of detecting and quantifying irreversibility gains relevance.
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In this thesis we mathematically analyse such irreversible processes modelled as linear
stochastic systems driven by dynamical noise with certain characteristics. The noise con-
tains the inevitable thermal component and an active part that can produce irreversible
dynamics. We derive formulas for a family of measures of irreversibility, relating the po-
tential outcomes of a measurement to the properties of the underlying driving. We also
develop a framework for inferring the irreversibility of the dynamics from time-lapse mi-
croscopy data. As a byproduct, we find a way to identify the most irreversible components
of the dynamics, which could potentially reveal the stereotypical irreversible behaviour.

The thesis is structured as follows: in the introduction we first superficially discuss
the origin of irreversibility based on a mechanical toy model. Then, in section 1.2 we
review the established relations between the structure of fluctuations, irreversibility and
heat dissipation, and discuss how these relations can be used to detect nonequilibrium
behaviour and estimate the rate of energy consumption. The significance of the heat
dissipation for the performance of biological processes is then discussed in section 1.3.

In chapter 2 we introduce the principal mathematical frameworks used to describe
stochastic processes. We present a set of measures of irreversibility that characterize the
irreversibility at various levels of detail. Finally, in chapter 3 we review our main results.
The first set of the results concerns a model of actively driven viscoelastic network. We
predict a scaling behaviour of certain measures of irreversibility as a function of distance.
The specific functional form depends on the dimensionality of the system and the properties
of the active driving. The second result is a dimensionality reduction scheme, designed to
select the components of the dynamics that exhibit the strongest irreversibility. This
reduction scheme was employed as the first step of the framework for analysing time-
irreversibility of time-lapse microscopy data. The last chapter is a compilation of the
publications representative of the work performed during my doctoral study and discussed
in this thesis.

1 The origin of irreversibility

Time irreversibility is something equally common and unexpected in the world we live in.
It definitely is common - otherwise, we probably wouldn’t be using two different words,
”past” and ”future”, when talking about ”not now”. Standard empirical examples of
irreversibility in daily life include cells dividing, but never merging into one, glass breaking
into pieces, but never spontaneously self-assembling back into one piece, or rain always
falling down. These standard observations must be confronted with the fact that the
equations of motion, at least the classical ones describing the world at our scales, are time
reversible. This means that for any process that satisfies the equations of motion its time
reversed counterpart also satisfies the equations of motion. In other words, there’s nothing
in the dynamics that would fundamentally disallow a broken glass to come together back
into one piece.

The origin of this irreversibility is not fully understood and we won’t attempt a pro-
found explanation either. One of the explanations makes reference to some special initial
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conditions of the universe, but without specifying what these initial conditions should be
like and why they would ever be so, it’s difficult to consider this explanation satisfactory.
Another explanation is based on the concept of entropy, first developed phenomenologically
by Clausius and later redefined by Boltzmann, who gave a statistical meaning to it. The
statistical meaning refers to the number of microstates that correspond to a considered
macrostate, or equivalently the amount of information about the system that is missing.
The second law of thermodynamics states that the entropy of an isolated system cannot
decrease, therefore specifying the direction of the ”arrow of time”.

The word ”irreversible” may suggests that during the process the system changes qual-
itatively, as in the standard example in which a wall dividing a container is removed and
all the gas molecules initially confined to the left half spread over the entire container.
However, there is a wide class of systems which exhibit irreversible dynamics despite not
changing over time in a statistical sense. These are called non-equilibrium steady states
and are precisely the class of systems we study in this thesis. The notion of ”steady state”
itself has a strong potential for leading to a confusion. Namely, the ”steady state” refers
to the state of our knowledge about the system and not the state of the system itself. A
system at a steady state keeps transitioning through the configuration space and can be in
any configuration at any time. The irreversibility then manifests itself in a typical order
in which the system transitions between the states. What is ”steady” is our knowledge
about the system expressed in terms of the probability (density) p(x) for the system being
in configuration x. The steady state is reached when the correlations between the current
state of the system and its initial conditions vanish.

Let us now consider a toy model that well illustrates the idea of non-equilibrium steady
states. Our toy model consists of two harmonically coupled beads immersed in a viscous
fluid. As common in biophysical applications, we assume the Reynolds number to be
very small and the motion of the beads to be overdamped. The beads are coupled to a
thermal bath at temperature T that keeps them fluctuating around their average position.
The motion of the beads is completely reversible - when presented with a time trajectory
of the beads and its time-mirrored copy, one can’t guess which one is the original one
with probability higher than 0.5. Now, on top of the thermal motion someone applies
an external force to one of the beads. The force has a constant amplitude f and at a
certain rate τ−1 randomly flips the direction between left and right. The system is no
longer in thermal equilibrium. The randomly flipping force keeps changing the potential
landscape, performing work on the driven bead. The motion of the beads is no longer
time-reversible. The driven bead is now more motile and the passive bead tends to follow
the displacements of the driven one. This leads to an on average counterclockwise motion
through the configuration space. With this in mind, given a sample trajectory, one can now
distinguish with a higher probability between the original dynamics and the time-mirrored
ones. Of course, there’s still some probability of guessing incorrectly - whatever trend we
see, it can be just a misleading coincidence of the thermal fluctuations, but the longer the
analysed trajectory, the less likely it is for such a coincidence to occur.

As the next step consider a limit in which the force flips very fast compared to the
relaxation times of the beads. One can construct such a limit mathematically by simulta-
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neously increasing the force amplitude and the flipping rate (for details see Sec. 4.C ). In
this limit one obtains a driving in form of a Gaussian white noise, which is mathematically
equivalent to the driven bead being coupled to a heat bath at an effective temperature
T + dT . It can be anticipated and shown that the irreversible cycling behaviour prevails
in the white noise limit. The higher the temperature difference, the more pronounced the
irreversible dynamics. Moreover, treating the driving as an effective temperature offers an
interpretation of the irreversibility in terms of a heat flow. The driven bead extracts heat
from the warmer heat bath and transfers it to the other bead, which then dissipates the
heat into the cooler heat bath [1, 2]. In fact, analogous models have been considered in
the past to study the heat flow in a harmonic crystal [3, 4, 5].

In both cases, with the random external force and with a temperature difference, the
system reaches a steady state - the probability for finding the beads at certain positions
converges to a fixed distribution. At the same time the beads’ positions exhibit irreversible
dynamics that reflect the non-equilibrium nature of the system. The degree of irreversibility
is tightly related to the heat flow and the amount of dissipated heat. This relation will be
the topic of the following section.
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2 Irreversibility-dissipation relations and measurements

Using a term like nonlinear science
is like referring to the bulk of zoology
as the study of non-elephant animals.

- Stanis law Ulam

An analogous quote about nonequilibrium physics is attributed John von Neumann.
Both statements point at the awkwardness of using a name like ”non-special” for something
standard and diverse. Nonlinear systems are standard and diverse, and so are nonequilib-
rium dynamics. To start with, fairly all that’s related to life is out of thermal equilibrium
and it is the nonequilibrium together with nonlinearity that give rise to the observed rich-
ness of the life phenomena.

Given this richness, it may seem hopeless to search for universal principles [6] that
would guide or constrain all the nonequilibrium processes, just as it would be hopeless, if
not ridiculous, to look for common features shared by all the non-elephant animals. This
task, however, becomes less absurd when we restrict ourselves to a subclass of non-elephant
animals, such as birds, reptiles, or insects. Similarly, when considering certain subclasses
of nonequilibrium systems it becomes easier to recognize the structure hidden underneath
the details of the dynamics. In fact, over the last century the search for such universal
principles in nonequilibrium systems has lead to uncovering a multitude of rules, relations
and bounds with various ranges of applicability. The field has flourished over the last
decades, the results are constantly extended to ever wider classes of systems and further
development can be expected in the following years. Here, we briefly review the existing
results, with special emphasis on those relating the statistics of the fluctuations, dissipated
heat and irreversibility of the dynamics.

Linear regime
Naturally, the first relations putting constraints on the nonequilibrium processes were dis-
covered for the case of weakly driven systems, for which the response of the system is linear
in the driving forces. First of the results concerns structure of the Onsager coefficients Lij
that describe the linear relations between thermodynamic forces and corresponding fluxes.
Onsager demonstrated [7, 8] that the time reversibility of equilibrium dynamics imposes
certain symmetries on the coefficients Lij, known as Onsager reciprocal relations.

Another classical result, called the Fluctuation-Dissipation theorem [9], relates the
spectrum of equilibrium fluctuations of a system with its temporal response to a weak
external driving:

Sx(ω) =
2kBT

ω
Im[χx(ω)]. (1.1)

Here Sx(ω) is the power spectrum of position trajectories, T is the temperature and
χx(ω) the position response function in frequency space. Experimentally observed de-
viations from this relation have been used as a litmus paper for nonequilibrium activity
[10, 11, 12, 13, 14, 15]. Apart from just detecting nonequilibrium, the degree and structure
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of such deviations can deliver information about the properties of the active forces and
about heat dissipation [16, 17, 18, 19], as will be discussed later on.

Beyond linear response
The end of the last century was marked by the discovery of fluctuation theorems that
directly pointed at the stochastic nature of thermodynamic quantities, such as work, for
small systems. One of the pioneering results, the Jarzynski equality [20], provides a relation
between the free energy difference between two equilibrium states ∆F and the statistics of
the work W done when moving the system between these states:

exp(−∆F/kBT ) = 〈exp(−W/kBT )〉, (1.2)

from which the classical inequality ∆F < 〈W 〉 follows. Importantly, this result did not re-
quire any assumptions about the external driving being weak. Apart from offering a useful
tool for measuring the free energy landscape [21, 22, 23, 24], this result gave momentum to
the development of Stochastic Thermodynamics [25, 26] and paved the way for the discov-
ery of a family of fluctuation theorems. These theorems, initiated by Evans’ et al. studies
of the entropy production distribution [27] and then continued by others [28, 29, 30, 26],
go a step further than Jarzynski equality and put constraints on the structure of the fluc-
tuations of thermodynamic quantities. (For a review including experimental verifications
see [31, 32, 26].) One of the most impactful theorems, the Crooks fluctuation theorem
[33, 34], relates the entropy production, and so the dissipated heat, with the irreversibil-
ity of the dynamics. In it’s most general form that originates directly from the principle
of microscopic reversibility [33] the Crooks theorem relates the probability of observing a

time reversed trajectory P̃ [X̃(t)] with the entropy produced along the forward trajectory
s[X(t)].

ln

(
P [X(t)]

P̃ [X̃(t)]

)
= s[X(t)] (1.3)

To obtain the average entropy production, or entropy production rate, one simply has
to average the left hand side of Eq. (1.3) with respect to P [x(t)]. This gives an expression
reminiscent of the Kullback-Leibler divergence, which allows to interpret this measure of
irreversibility in terms of how easy it is to distinguish a forward trajectory from a reversed
one [35]. Not surprisingly, if X(t) does not include all the relevant degrees of freedom,
the available information is reduced, the distinction between forward and backward more
difficult, and Eq. (1.3) provides only a lower bound to the total entropy production.

The entropy production rate, expressed in terms of trajectory probabilities, as in
Eq. (1.3), is considered to be the most general measure of irreversibility. Methods for
estimating steady state entropy production that derive directly from Eq. (1.3) have been
developed and applied to systems with discrete [36, 37, 38] and continuous [39, 40] state
space, as well as for nonequilibrium dynamics of fields [41, 42]. The most recent variants
of these methods employ artificial neural networks [43].

Alternative ways to estimate dissipation are based on expressing the entropy production
rate as ṡ ∼ 〈force × velocity / temperature〉, which in terms of a Fokker-Planck-like
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description can be rewritten in a form ṡ ∼ j2D−1, with j the probability current and D
the diffusion constant (for details see Sec. 2.3). While equivalent to the expression based
on Eq. (1.3) for Markovian systems with all degrees of freedom available, a difference can
be seen in case of dynamics with hidden degrees of freedom. In [38] it is demonstrated
how positive entropy production can be inferred despite vanishing probability currents.
Nevertheless, the formula based on the probability currents can also be successfully applied
to infer entropy production [44, 45], especially when reinforced with smart inference of the
force, velocity and diffusion fields [46, 47].

Finally, there exist an method for quantifying the dissipation rate, that does not make
any direct use of irreversibility. It employs the Harada-Sasa relation [16, 17] which remark-
ably binds the dissipated heat to the deviations from the Fluctuation-Dissipation theorem
(Eq. (1.1)). This relation has been verified experimentally [48] and applied to study simple
biological systems such as molecular motors [18, 19]. The applicability of this method is
limited by the necessity to measure the linear response function for a range of frequencies,
in contrast to the aforementioned non-invasive methods.

The relations between the structure of the fluctuations, irreversibility and entropy pro-
duction rate offer a set of ways to experimentally quantify the amount of heat dissipated
in a driven mezoscopic system. This energy dissipation is crucial for maintaining processes
in living system, but the way these processes hinge upon the level of energy consumption
turns out to be a multifaceted problem.

3 Dissipation setting bounds for biological processes

Vital biological processes that break the time-reversal symmetry setting the direction of
the arrow of time inevitably requite constant supply of energy. The necessity to dissipate
heat is obvious for example in case of a molecular motor like kinesin that drags a cargo
through a viscous medium. The directed motion with an average velocity v results in a
heat dissipation proportional to v2, due to counteracting the drag force [49]. Because of
their manifest non-equilibrium dynamics, relative simplicity and the possibility to exper-
imentally investigate isolated single motor molecules, molecular motors became a model
system for studying active dynamics [50, 51]. The analogy between molecular machines
and classical engines [26] raised questions about the efficiency of molecular motors, which
was studied at maximal power [52], as a function of the applied load [53], and considering
different definitions of the efficiency [49]. An experimental study of a rotary molecular mo-
tor F1-ATPase revealed that the free energy coming from ATP hydrolysis is almost entirely
transferred to the rotational motion of the motor [18]. This estimate was made based on
application of the Harada-Sasa relation [16, 17]. In contrast, similar approach applied to
kinesin-1 suggested that around 80% of the consumed energy is dissipated internally by
the motor [19].

In fact, it turns out to be a more general rule that the energy is not simply invested
in completing a task, but also in achieving certain speed or accuracy. A classical example
is that of kinetic proof reading [54]. This mechanism, first suggested by Hopfield, aims
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to explain the exceptionally low error rates observed in protein synthesis (∼ 10−4) or
DNA replication (∼ 10−9) [54]. Similar models of kinetic proof reading were considered
in context of a trade-off between error, speed and dissipation [55]. Such models are based
on a reaction network with reaction rates biased by an external energy source. Of course
the pure dissipation would not be enough, if not accompanied by clever architecture of the
reaction network. The reaction networks behind crucial biological processes are believed to
be designed in a way that makes the performance robust to changes in the concentrations
of the substrates [56].

Dissipation and robustness also plays a central role in reaction networks responsible
for chemical sensing, making a biological device sensitive to changes in concentration of
chemicals over a wide range. Studies on chemical sensing, pioneered by Berg and Purcell
[57], showed that such cellular computation hinges upon the energy consumption [58], and
revealed trade-offs between energetic costs, speed and accuracy of sensory adaptation [59].
The principles behind chemical sensing were further connected to cell signaling [60], or the
kinetic proofreading [61].

Perhaps one of the most extravagant examples of how dissipation bounds biological
processes is that presented in [62]. There the relation between dissipation and irreversibility
was employed to estimate the amount of energy needed for bacterial replication. Those
results suggest that the actual energy budget of E. coli is only at most 6 times larger than
the minimal energy required to maintain and replicate bacteria at the rate observed in
nature.

Finally, results were obtained for how energy consumption is related to the precision
of biochemical oscillations [63, 64] and so called Brownian clocks [65] - cyclic reaction net-
works capable of measuring time. I was shown that in such systems the necessary rate of
energy input diverges with decreasing target precision, which relates to a series of theorems
discovered in the recent past.

Thermodynamic uncertainty relations

Recent years have witnessed the advent of a family of relations that bound the fluc-
tuations of a generalized accumulated current by the amount of produced entropy [66].
The generalized accumulated currents can represent diverse quantities such as the distance
travelled by a kinesin molecular motor, the number of produced molecules, or the entropy
itself. These thermodynamic uncertainty relations, first proposed in [67] and subsequently
proven [68] and generalized to finite times [69, 70], typically take the following form:

Var[jτ ]

〈jτ 〉2
≥ 2kB

sτ
, (1.4)

where jτ is a generic current integrated over time τ , and sτ the total entropy produced in
the time interval τ . The origin of the uncertainty is twofold: it comes partially from the
fluctuations of the direction in which the steps of a process are made, and partially from
the distribution of waiting times between the steps. [66]. While the unidirectionality of a
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process can be augmented by increasing the energy input, the fluctuations due to random
waiting times cannot be tempered this way [71].

It has been quickly recognized that apart from setting general theoretical bounds for
precision the thermodynamics uncertainty relations can be used as a tool for inference. For
example, it allows one to put an estimate on the efficiency of a molecular motor based on
it kinetics only [72]. Furthermore, a comparison between current fluctuations and its mean
offers a lower bound to the dissipated heat [2]. This idea was further refined by noting that
the inequality in Eq. (1.4) can be improved for short [69] and saturated for infinitesimal
times [73]. The most recent variants of this method employ machine learning techniques
[74] also in case of time dependent dynamics [75].

From a biological perspective it is relevant to ask how constraining these thermody-
namic uncertainty relations are in practice. For example, it is estimated that molecular
motors consume 2.5-10 times more energy than the necessary minimum implied by the
uncertainty relations [76, 77]. While this could at first sight suggest that the performance
of such motors is far from optimal, one should keep in mind that correct operation of a
motor is just one out of countless tasks that a living cell needs to take care of. In fact, given
two generalized currents, they cannot simultaneously saturate their corresponding bounds
of type Eq. (1.4) [78]. To address the fact that nature typically needs to simultaneously
optimize several, somewhat correlated processes, a multidimensional variant of the ther-
modynamic uncertainty relation was developed [79, 78]. These advances combined with
recent work [77] show that accounting for the correlations in the considered currents yields
improved thermodynamic bounds on the entropy production. With this in mind, given
the complexity of biological systems, it may turn out tricky in many cases to disprove or
argue for optimality of a certain mechanism. Nevertheless, the domain of thermodynamic
uncertainty relations keeps developing in a way similar to how the fluctuation theorems
were evolving in the past, and one can expect tighter bounds and more widely applicable
relations to appear in the near future.
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Chapter 2

Mathematical framework

In this chapter we first present a classification of stochastic processes based on the struc-
ture of the state space and the way in which a system transitions between the states.
Next, we restrict the discussion to systems with continuous state space and briefly review
three mathematical frameworks employed to describe the stochastic dynamics of such sys-
tems. Finally, we give expressions for different measures of irreversibility derived using the
aforementioned frameworks.

1 Classification of random processes

Before we proceed to classifying the stochastic processes that can describe a physical sys-
tem, let us emphasise that associating a physical system with a certain class is relative and
really depends on the level of description we use. To begin with, within classical physics
no process is truly random and all the stochasticity originates from our ignorance of the
initial conditions, or the dynamics of some ”hidden” degrees of freedom that couple to
the observed subsystem. The canonical example here would be the random motion of a
Brownian particle resulting from the collisions with invisible water molecules.

Based on the structure of the phase space and the way in which the system transitions
between the states we can classify random processes as follows.

State space

discrete continuous

Dynamics

Markovian non-Markovian

colored noise hidden states

From a fundamental point of view, physical processes represent continuous motion
through space in continuous time, which naturally suggests the use of a continuous state
space. However, it often happens that the dynamics consist of series of fast transitions
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between which the system spends a long time dwelling in limited subregions of the state
space. It can be, that while the system keeps transitioning within a subregion, for us –
subjective observers – it stays fixed in a macrostate defined by our idea of what’s relevant.
Such a discretised perspective is applied, for example, to the motion of a kinesin motor,
where depending on our level of description, the transitions can represent consecutive
steps of the motor, or more detailed conformational changes of the molecule. This way of
describing the dynamics as transitions within a network of states was the starting point
for many entropy inference methods and thermodynamic uncertainty relations discussed
in Secs. 1.2, 1.3.

Sometimes the use of state space other that discrete may even seem ridiculous, as in
the case of population dynamics, where we are interested in the number of individuals of
certain species. Amusingly, in this case further coarse graining may lead us again to a
continuous state space description, when considering the dynamics of large populations.

Regarding the way the system transitions between the states, the key criterion seems
to be the Markovianity. A system is called Markovian, or memoryless, if the present
state gives us the best possible information about the future and our predictions can’t be
improved by any information about the past. Slightly more formally, if x is the state of the
system and p(x) the probability distribution, then p(xfuture | xnow,xpast) = p(xfuture | xnow).
Non-Markovianity typically results from lack of access to degrees of freedom that form an
important part of the dynamics. A silly, yet transparent example could be an underdamped
Brownian motion, where we only track the position of a particle. Knowing just the present
position of the particle, there’s little we can say about its future. However, knowing where
the particle was a while ago, we can estimate its velocity and make a better guess for where
it’s going to go further. A more practical example would be the dynamics of a particle
diffusing in a viscoelastic medium, such as a polymer network. There, the motion of the
particle is coupled to the dynamics of the network, and eliminating the network from our
description leads to an effective equation with a memory kernel and with thermal noise
correlated in time.

In this thesis we will focus exclusively on dynamics in continuous state space. The
mathematical frameworks used to describe such systems are reviewed in the following
section 2.2. We will face two types of non-Markovian effects. In Secs. A, B and D the
non-Markovianity results from tracking only a few nodes, or a part of a full network. In
Sec. C we will be dealing with more intrinsically non-Markovian systems – we will consider
random external driving in form of a time-correlated dynamical noise. We should note
that this distinction between origin of non-Markovianity is rather subjective, since one can
also view the dynamics of the noise as a hidden degree of freedom.
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2 Descriptions for continuous state-space dynamics

You can never understand one language
until you understand at least two.

- Geoffrey Willans

In the realm of stochastic processes various languages are used to talk about the un-
predictable. And even though all these languages describe the same dynamics with its
uncertainties and statistics, each of them takes a different perspective and opens up a dif-
ferent way of thinking about a problem. However, learning a set of languages offers more
than just a deeper understanding of stochastic processes. Typically, the choice of particular
language in a given context is not so much a matter of taste, but rather of convenience – a
certain result may be trivial to obtain within one description, while seemingly inaccessible
within another. This suitability of different languages for approaching different classes of
problems explains why multiple equivalent descriptions remain in use and why the follow-
ing subsections are dedicated to discussing them in detail. Specifically, we present the
three most commonly employed frameworks in their basic form with possible extensions:

• Langevin framework - using a random variable for the driving force in the equation
of motion

• Fokker-Planck or Smoluchowski framework - focusing on the dynamics of the proba-
bility density

• Path integral framework - assigning probability to every possible realisation of the
dynamics

All three frameworks are used in deriving the expressions for various measures of irre-
versibility presented in section 2.3. For a comprehensive overview of these frameworks in
the setting of Brownian motion we refer the reader to [80, 81].

2 .1 Langevin equation

The framework pioneered by Paul Langevin is the oldest of the three presented here. In his
1908 paper [82, 83] Langevin first briefly discusses the successful explanation of Brownian
motion and derivation of the diffusion coefficient by Einstein [84] and Smoluchowski [85].
He then claims to have corrected Smoluchowski’s result which now coincided with the one
obtained by Einstein, and finally proceeds to what he himself refers to as ”an infinitely more
simple demonstration by means of an entirely different method”. Nowadays we can identify
the core of his ”entirely different method” as the first stochastic differential equation ever
written down, which later served as a cornerstone for an entire new branch of science. Once
again the pursuit of simplicity paid off.

In its basic version the Langevin equation takes the following form:

ẋ(t) = f(x) +
√

2Dξ(t). (2.1)
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Here, x(t) is the position in phase space at time t, which for a mechanical system can
represent velocity (as in Langevin’s paper), position (in overdamped case), or both. In
general, however, it can represent other quantities varying randomly in time, such as
voltage, temperature or stock price. The term f(x) is the deterministic driving experienced
by the system at state x(t). For Langevin this deterministic force was the drag force
proportional to the velocity of the Brownian particle. Finally,

√
2Dξ(t) represents the

random force, also called the dynamical noise, satisfying

〈ξi(t)ξj(t′)〉 = δijG(t− t′). (2.2)

The matrix D encodes the amplitudes and correlations between the random forces acting
on different degrees of freedom. In case of Brownian motion D has the interpretation of a
diffusion matrix. The function G(t) represents the temporal correlations in the noise, which
in case of the thermal noise are often assumed to be delta-peaked, that is G(t−t′) = δ(t−t′).
Such an assumption was also implicitly present in Langevin’s demonstration, where he
argued that 〈x(t)fᵀ(t)〉 = 0. In general the time correlations can of course be long lived
and the functional form may differ for different degrees of freedom, requiring us to specify
Gij(t− t′) for all pairs of degrees of freedom i, j separately. In any case one should keep in
mind that D and G alone do not uniquely define the dynamics of the noise, as discussed
in Sec. C.

Before reviewing the possible extensions of Eq. (2.1), let us ponder a bit upon the phi-
losophy behind the Langevin approach. In this approach the random dynamics is defined
through an ordinarily looking equation of motion with a time-dependent driving force ξ(t).
Although the force ξ(t) is defined to be a random variable, at the level of the equation of
motion it can be treated as an ordinary deterministic function. This aspect makes Langevin
approach perfectly suited for numerical simulations, where an ensemble of randomly gen-
erated force protocols {ξ(t)} can be used to create an ensemble of trajectories {x(t)}, from
which the desired statistics can be obtained. Another advantage of the Langevin approach
is the ease with which formal calculations can be performed. For linear Langevin equations
one can write write the formal solution for x(t) in terms of the noise protocol ξ(t) and
then calculate moments and correlations of x referring to the statistics of ξ. We shall use
this strategy extensively in section 2.3.

In the Langevin framework all the difficulties and peculiarities of the stochastic process
are hidden under the hood. In fact, a student with no experience in stochastic processes
would typically feel comfortable about Langevin-like explanation of the Brownian motion.
Of course the same student can easily get confused, when confronted with the fact that the
white noise used as the random force is zero on average, but has an infinite amplitude at all
times – enough to be called a ”mathematical freak” [86]. This and other peculiarities had
to wait 15 years for Norbert Wiener to give them more mathematical rigour [87, 88], and
another 20 years for Kiyosi Ito and later Ruslan Stratonovich to build proper stochastic
calculus as we know it [89]. From a physical perspective the white noise becomes much
more intuitive, when viewed as a limit of random functions with decreasing, but finite time
correlations.
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Below we list possible extensions and generalizations of the Langevin equation.

Multiplicative noise
The diffusion matrix can in general be a function of the position in phase space, D(x).
A noise defined in this way is then called ”multiplicative” as opposed to ”additive’ for
D(x) = const. Such a scenario would be realised for instance in case of a particle diffusing
in a temperature gradient. Allowing for multiplicative noise leads to additional subtlety in
case of the white noise - the Langevin equation is no longer unambiguous and one needs to
additionally specify the integration convention. We refer the reader to [89] for more details.

Memory kernel
The deterministic force term can include a dependence on the values of x in the past and
not only the instantaneous value. Up to linear order such deterministic force takes the
form

∫ t
−∞ Γ(t − t′)x(t′)dt′ as in the generalized Langevin equation derived by Mori [90].

Γ(t) is called the memory kernel and can be used to describe the retarded response of the
medium in case of diffusion in a complex medium.

Dynamics of fields
The Langevin framework can be naturally extended to describe the dynamics of fields.
Then the noise function gains dependence on the position in space, ξ(x, t), and one needs
to specify both temporal and spatial correlations. This generalisation is commonly used
in the theory of interfacial growth [91], for example in the form of Edwards-Wilkinson or
KPZ equations. The Edwards-Wilkinson equation could be of special interest to us – with
some adjustments of the noise correlator it could represent a continuous limit of the models
considered in Secs. A, B and C.

2 .2 Fokker-Planck equation

The central object in the Fokker-Planck language is the conditional probability density
p(x, t|x0, t0) of finding the system in state x at time t, given it’s initial state x0 at time
t0. This is radically different from the Langevin approach, which specified the equation for
random trajectories. In the Fokker-Planck approach there are no trajectories. Moreover,
while the dynamics of the system itself is stochastic, the time evolution of the probability
density is fully deterministic. Specifically, for a system that evolves according to a Langevin
equation Eq. (2.1) with white noise, the time evolution of the probability is given by

∂tp(x, t) = −∂i[fi(x)p(x, t))] + ∂i∂jDijp(x, t), (2.3)

where we omitted the initial condition to simplify the notation. This equation, called the
Fokker-Planck equation, bears striking resemblance to the diffusion equation. In fact it
was this similarity that allowed Smoluchowski to write down an equation for the evolution
of the probability density in case of an overdamped particle in a potential [92]. He noticed
that the probability density for the position of a single diffusing particle should follow the
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same dynamics as particle density field, leading to the diffusive term ∂i∂jDijp(x, t). The
remaining term, −∂i[fi(x)p(x, t))], corresponds to particles being convected by a determin-
istic velocity field fi(x).1 Although these original arguments make direct reference to the
described system - a particle diffusing in a potential, the equivalence between Eq. (2.1)
and Eq. (2.3) can be proved rigorously in general as long as the dynamical noise is white.
The equivalence persists in the case of spatially varying diffusion tensor - when replacing
D with D(x), Eq. (2.3) is equivalent to Eq. (2.1) interpreted in the Ito convention. In case
of colored noise the dynamics is not Markovian and the evolution of the probability density
can no longer be described by Eq. (2.3). Under certain assumptions it is possible, how-
ever, to formulate a generalized Fokker-Planck equation that captures the non-markovian
effects. For a thorough review, we refer the reader to [93].

As can be anticipated from the relation to the diffusion equation, the Fokker-Planck
equation can be interpreted as a continuity equation for the probability density. Defining
j(x, t) as the probability current, Eq. (2.3) can be rewritten as

∂tp(x, t) = −∇j(x, t), with j(x, t) = f(x)p(x, t)−∇ᵀDp(x, t). (2.4)

The ratio j(x, t)/p(x, t) can be identified with the mean phase space velocity v(x, t).

The great advantage of the Fokker-Planck approach is that it offers access to the full
time dependent probability density, from which other statistics such as correlations and
moments of the distribution can be calculated. Of course, the access to p(x, t) requires
solving a partial differential equation (Eq. (2.3)), which can in general be a challenging
task, if one aims for an analytical solution. A profound treatment of the Fokker-Planck
equation and review of methods to solve it can be found in [94].

We close this subsection, by mentioning an interesting correspondence between the
Fokker-Planck approach and quantum mechanics. The characteristic diffusive-like term
∂2
x[· · · ] appears also in the Schrödinger equation, and consequently operator methods for

solving the Schrödinger equation can be adapted to solve the Fokker-Planck equation. In
fact, the correspondence between Fokker-Planck and Langevin approaches can be compared
to that between quantum mechanics and Bohmian mechanics [95]. Within each pair of
frameworks the latter gives a recipe for calculating the trajectories, while the former stays
at the level of probability density. Curiously, there also exists a ”classical” version of
quantum mechanics by Nelson, where a type of Brownian motion of the particles is assumed
to form a fundamental part of the dynamics [96].

2 .3 Path integral formalism

The last approach we present, based on path integrals, originates from the efforts to find
a mathematically rigorous grounds for the Langevin equation. The idea of this approach
initiated by Wiener [87, 88] and further developed by Onsager and Machlup [86, 97] is to

1Note, this does not mean that fi(x) is the mean velocity at point x. This will become clear in Sec. 2.3
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assign a probability weight to every possible trajectory of the system. We will now present
this idea in a plain setup.

For simplicity let us consider a one-dimensional system driven by Gaussian white noise:
ẋ(t) = f(x)+ξ(t), with 〈ξ(t)ξ(t′)〉 = 2Tδ(t−t′) (we set kB and mobility equal to 1). Before

assigning probability to the trajectories of x(t) let us consider the probability P [{ξ(t)}tfti ]

of a certain realisation of the noise {ξ(t)}tfti . Since the noise is Gaussian and uncorrelated
in time, we can easily calculate this probability as

P [{ξ(t)}tfti ] = Nξ exp

[
−
∫ tf

ti

ξ2(t′)

4T
dt′
]
, (2.5)

where Nξ is a normalisation constant. However, what we are actually interested in is the

probability P [{x(t)}tfti ] for a certain trajectory of the observed variable {x(t)}tfti . This can
be obtained by noting that the random variable x(t) is in fact a function (or rather a
functional) of another random variable ξ(t) allowing us to apply the standard rules for
transformation of probability densities: P (ξ) = P (x[ξ])|∂x

∂ξ
|, where |∂x

∂ξ
| is the Jacobian of

the transformation. We then obtain:

P [{x(t)}tfti ] = Nx exp

{
−
∫ tf

ti

[ẋ(t′)− f(x(t′))]2

4T
dt′ −

∫ tf

ti

1

2
∂xf(x(t′))dt′

}
, (2.6)

where the second integral in the exponential function comes from the Jacobian of the
transformation calculated using the Stratonovich convention. For a guidebook on switching
between conventions and doing calculus in the path integral framework see [98]. The
calculation of the Jacobian requires a discretisation of the trajectory into infinitesimal
pieces and a limiting procedure, which reduce the problem of dealing with functionals to
standard multivariable calculus.

One of the great advantages of the path integral formalism is that it allows as to
prove statements about probabilities of trajectories such as Eq. (1.3), which compares the
probabilities of forward vs. inverse trajectories. Using Eq. (2.6) we can calculate

ln

(
P [{x(t)}]
P̃ [{x̃(t)}]

)
= −

∫ tf

ti

[ẋ(t′)− f(x(t′))]2

4T
+

∫ tf

ti

[−ẋ(t′)− f(x(t′))]2

4T
dt′ (2.7)

=

∫ tf

ti

ẋ(t′)f(x(t′))

T
=
Q

T
, (2.8)

which confirms that the ratio of probabilities of forward and time reversed trajectories
equals to the change of the entropy of the medium. Here we used the fact that the velocity
ẋ is odd under time reversal. Analogous calculation can be found in [26]. Let us clarify that
Eq. (2.6) only defines the probability of observing a specific series of transitions conditioned

on starting at position xi = x(ti). The probability of observing a trajectory {x(t)}tfti can

be calculated as p(xi, ti)P [{x(t)}tfti ]. As a cross check, assuming that f(x) derives from a
potential and that p(x) ∼ exp(−F (x)/T ), one can verify that x(t) satisfies the condition of
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microscopic reversibility. Equipped with the expression for the probability of a trajectory
one can then calculate, or at least write formal expressions for averages of any observable
being a function of x(t).

While here we considered the simplest case of Gaussian white noise, similar expressions
for the probability of observing a specific trajectory can be derived for systems with colored
noise [99, 100]. In these approaches one accounts for the correlations in the noise essentially
by including an inverse of the time correlation of the noise in an analogue of Eq. (2.5).

3 Measures of irreversibility

Having introduced the three principal frameworks for describing stochastic dynamics in a
continuous phase space, we will now demonstrate how they can be used to define mea-
sures of irreversibility, which capture the irreversibility at different levels of detail. The
analytical expressions will be given for systems in which the deterministic driving is a
linear function of the position in phase space: f(x) = Ax. Whenever possible, apart
from considering the white noise scenario (G(s) = δ(s)), we will show how the formulas
generalize to the colored noise case. A more detailed overview can be found in Secs. A, B, C.

Entropy production rate

In section 1.2 we described the entropy production rate as the most general measure of
irreversibility – it can be defined in terms of distinguishability of forward vs. time reversed
dynamics (see Eq. (1.3)). This means that any sort of irreversibility, even if not manifest in
form of probability currents, must necessarily reveal itself in the entropy production rate.
For a system described by a Fokker-Planck equation, or equivalently a Langevin equation
with white noise, the steady state entropy production rate can be expressed as [101, 26]

Ṡ =

∫
jᵀ(x)D−1j(x)

p(x)
dx. (2.9)

This steady state entropy production rate can be interpreted in terms of the rate at which
heat Q is dissipated to the surrounding medium at temperature T , namely Ṡ = 〈Q̇〉/T .
This can be roughly seen in the structure of formula (2.9):

Ṡ ∼
∫
j2D−1/p ∼ 〈v2D−1〉 ∼ 〈v f/T 〉 ∼ 〈Q̇/T 〉. (2.10)

In general, beyond the steady state, the increase of the entropy of the medium represented
by Eq. (2.9) is accompanied by a term corresponding to the dynamics of the probability
distribution [101, 26]. We ought to note that when writing Ṡ we actually meant the
mean value of the entropy production rate. The produced entropy itself is a stochastic
quantity, as substantiated by the fluctuation theorems described in Sec. 1.2. In fact, since
the produced entropy is a function of the trajectory x(t), it itself evolves according to a
drift-diffusion Langevin equation [102].
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In what follows we shall see that for linear systems the entropy production rate can be
expressed in terms of other, coarse grained measures of irreversibility.

Probability currents and mean velocity field

One of the standard indicators of non-equilibrium and irreversibility is the principle of
detailed balance, which states that for a system at thermal equilibrium transitions between
any two states statistically balance each other. For overdamped dynamics an immediate
consequence is that the probability currents and the mean velocity fields must vanish for
a system at thermal equilibrium. For a white-noise linear system (f(x) = Ax) the mean
velocity field v(x) is a linear function of the position in phase space [103]:

v(x) = Ωx, with Ω = A + DC−1, (2.11)

where C = 〈xxT 〉 is the covariance matrix. The covariance itself can be obtained from
the Lyapunov equation AC + CAᵀ = −2D. A modified Lyapunov equation can be used
to find the time dependent auto-covariance function, also for systems with colored noise
(see Sec. C).

The expression for the mean velocity field (Eq.(2.11)) can be read out directly from the
Fokker-Planck equation viewed as a continuity equation for the probability, using the fact
that the steady state probability distribution is Gaussian (fully determined by C) and that
j(x) = v(x)p(x) (the probability is advected by the velocity field). Alternatively, the mean
velocity can be obtained within the Langevin picture in terms of a conditional average:
v(x) = lim∆t→0〈[x(t + ∆t) − x(t − ∆t)]/(2∆t) | x(t) = x〉 [26]. Note the importance of
the symmetrized, Stratonovich-like form of the infinitesimal difference. Calculating the
derivative in a different way gives lim∆t→0〈[x(t + ∆t) − x(t)]/∆t | x(t) = x〉 = f(x).
Of course, this distinction is of relevance only if the dynamical noise has a white-noise
component. For systems driven by colored noise, however, the velocity v(x) is in general
not simply linear in x. Such a linear dependence persists in case of the Ornstein-Uhlenbeck
kind of noise (Gaussian and exponentially correlated in time), as discussed in Sec. C.

For white-noise driven systems the linear relation between v(x) and x allows us to
rewrite the formula for the steady state entropy production rate (Eq. (2.9)) in a simplified
form:

Ṡ = Tr(ΩCΩᵀD−1), (2.12)

which after an appropriate change of coordinates can help finding the most irreversible
components of the dynamics (Sec. 3.2).

Experimentally, the mean velocity field can be obtained by a simple binning procedure
[104], or more efficiently by inferring the expansion of the velocity field in a set of basis
functions [46]. Since the inference of the full velocity field is difficult with limited data,
one may consider using different, coarse grained measures of irreversibility.
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Cycling frequencies and area enclosing rates

Given the conservation of probability, non-vanishing currents can only exist if they form
closed cycles in phase space. The structure of these cycles is particularly plain for linear
systems, as implied by Eq. (2.11). Instead of measuring the full velocity field one can then
measure the frequency of such circulation [104]. This leads to the definition of the cycling
frequencies ωij, which measure the mean angular velocity in a 2-dimensional subspace of
a pair of degrees of freedom {i, j}. Not surprisingly, for white-noise linear systems the
cycling frequencies are related to the matrix Ω. In coordinates for which C = 1, we simply
have Ωij = ωij. In general, however, the relation is more complex: derivation of ωij requires
projecting the mean velocity field onto the 2-dimensional subspace, eventually leading to
(see Secs. A, B):

ωij =
(AC−CAᵀ)ij

2
√
CiiCjj − C2

ij

. (2.13)

A related metric for irreversibility, the area enclosing rate, is defined as:

A =
1

2
〈ẋxᵀ − xẋᵀ〉. (2.14)

They were considered already by Mori and Kubo [90, 9] in the derivation of the Generalised
Langevin equation. The area enclosing rates combine the frequency of circulation with the
size and correlations of fluctuations, as quantified by the relation:

A = ΩC (2.15)

whenever v(x) = Ωx. In general A carries the same information as a projection of the
mean velocity field on the subspace of linear functions of x [46]. The area enclosing rates are
considerably easier to deal with than the cycling frequencies: to start with, they transform
in a simpler way, since

A =
1

2
(AC−CAᵀ). (2.16)

Comparing this formula with Eq. (2.13) reveals that the cycling frequencies can be calcu-
lated as the area enclosing rates normalized by the average area enclosed during a single
revolution around the origin. Moreover, unlike the cycling frequencies, the area enclosing
rates can be calculated for systems driven by colored noise with given time correlation
function G(t) using

A =
1

2
(BAC−CAᵀBᵀ), (2.17)

where B(t) = 2
∫∞

0
eAtG(t)dt. Apart from mathematical convenience, A is probably easier

to measure in practice, since it doesn’t depend on the position of the origin. On the
contrary, the measured number of full revolutions, or the mean angular velocity may be
strongly affected by small changes in origin’s position.

The coarse grained measures of irreversibility have been used to detect nonequilibrium
dynamics in biological systems [104] and some of the mentioned formulas were verified
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experimentally [105] for the dynamics of RC circuits. Moreover, these coarse grained mea-
sures have been considered as tools of studying the properties of driven polymer networks.
First, it has been suggested to measure the cycling frequencies for the bending modes of
embedded filamentous probes [106, 107]. Second, we proposed a method inspired by the
two-point microrheology, which relates the properties of the active driving in the network to
a scaling behaviour predicted for ω’s and A [108, 109, 110, 111]. This potential application
will be discussed in detail in Sec. 3.1.
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Chapter 3

Interpreting Irreversibility

We know already that the irreversibility of dynamics can be quantified by the entropy
production rate. We also know how the irreversibility and heat dissipation are related
and how both can be measured, as discussed in Sec. 1.2 . In Sec. 1.3 we then explained
how the rate of heat dissipation resulting from energy consumption not only maintains
nonequilibrium processes, but also controls their speed or accuracy. It can therefore be of
interest to quantify the irreversibility, or the rate of heat dissipation in a biological process,
first, to learn to what extent it is actively driven, and second, to find out how close to
optimal a process is, given the fundamental theoretical limits. These kinds of studies are
feasible for small, well controlled systems such as an isolated molecular motor. However,
even in such a relatively simple system the measurement of the entropy production rate may
pose a challenge. Every missing information about the state of the system can decrease the
inferred entropy production. In particular, transitions between internal states of a motor
that can’t be resolved within the applied measurement technique may contribute to an
entropy production higher than the one estimated experimentally.

The situation only gets worse when instead of an isolated molecular motor one considers
a complex system such as a cell membrane, or cytoskeletal network driven by hundreds or
thousands of molecular motors. To start with, it is not clear what one could actually learn
from the inferred entropy production rate in this case. One could in principle measure the
dissipation under different conditions, for instance at varying levels of ATP, but since the
inferred entropy production offers only a lower bound to the true value, no fair comparison
between the values inferred at different conditions is really be possible. Second, the study
of entropy production, mechanical properties of the system, or properties of the driving
must always be based on an analysis of time trajectories of the system. This in turn
requires a choice of a set of degrees of freedom for which the trajectories are recorded.
The problem with a system such as a filament network is that there are extremely many
degrees of freedom (in principle a continuum) and it is not clear how to choose the most
informative variables.

A conventional approach in such systems is to use tracers - small objects embedded
in the investigated medium. These can either occur naturally in the medium [112, 113],
for example in form of lipid granules or small organelles, or can be introduced artificially.
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The most commonly introduced tracers are synthetic beads [11, 114, 115] or filaments [116,
117, 118]. The beads can be simply tracked, or manipulated to measure the mechanical
response of the medium [14, 119]. In case of tracer filaments one can register the dynamics
of the bending modes resulting from the active forces. The features of the dynamics and of
the mechanical response often take the form of a scaling law as a function of time difference
or frequency. These scaling laws can reveal the properties of both the medium the driving
activity. In the following section 3.1 we explain that similar scaling laws that encode the
properties of the system and the active driving can in principle be observed for some coarse
grained measured of irreversibility defined in Sec. 2.3.

An alternative to these conventional approaches would be to employ a method that
automatically selects the most informative degrees of freedom in an unsupervised way.
Here, the exact meaning of ”the most informative” depends on the posed problem. In
Sec. 3.2 we present such a framework that identifies the most irreversible modes of the
dynamics [45]. This framework could be applied to infer the dynamics and the entropy
production rate directly from time-lapse microscopy images.

1 Scaling laws in driven networks

Polymer networks constitute a fundamental building material of living matter. The cy-
toskeleton spanning the interior of cells is in essence a mesh of filaments of varying length
and stiffness held together by crosslinkers, often in form of motors, that apart from bind-
ing the filaments can exert active forces on them [120, 121, 122]. This complex scaffolding
must on one hand allow the cell to maintain its shape, but on the other permit defor-
mations and motion – rather demanding requirements for the mechanical response. The
mechanical behaviour may be different on different time scales, but the cell might also
be able to tune its mechanical properties. Indeed, it has been shown that changes in the
dynamics of the crosslinkers alone can qualitatively change the cell behaviour [123, 124].
Given the complexity of the actual cytoskeleton it is remarkable that a vast range of me-
chanical behaviours is observed also for reconstituted cytoskeletal networks composed just
of a few ingredients [121]. Varying the concentrations and properties of the filaments and
crosslinkers one can drastically change the network properties: relatively small changes in
crosslinker’s concentration can increase the stiffness by orders of magnitude [125]. The role
of motors for mechanical properties is very subtle: they can either fluidize [126] or stiffen
the network [11, 127, 128]. The complex role of crosslinkers, motors, and their binding
times on the mechanical properties was confirmed by theoretical models [129, 130, 131].

To study the mechanics of such networks, both in vivo and in vitro a series of ex-
perimental techniques called microrheology has been developed. These methods rely on
tracking the dynamics of microscopic probes such as beads embedded in the medium and
aim to quantify the mechanical properties of the medium in terms of the complex shear
modulus G∗(ω). Additionally, such measurements can reveal the spectrum of thermal and
active forces present in the network. The functional forms of the complex shear modulus
G∗(ω), the mean square displacement of the probes ∆x2(t) or the internal force spectrum
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f 2(ω) often take form of power laws with different exponents in different time and fre-
quency regimes. The corresponding exponents can then be used to classify the behaviour
of the medium at a given time scale, for example by comparing the exponents to those of
a purely viscous or purely elastic medium. The points at which the exponent changes can
reveal the typical time scales of the active processes [132]. Varying the size of the tracers
beads allows to probe the mechanical properties at different length scales [133].

The first microrheology method, called active microrheology [134, 133], measures the
response of the embedded tracers to force applied with magnetic field or optical tweezers.
The measured response function is then translated to the complex shear modulus using the
Generalized Stokes relation. A follow-up, non-invasive method, the passive microrheology,
bypasses the necessity of directly measuring the response function, by relating it to the
spontaneous fluctuations of the tracers via Fluctuation-Dissipation theorem [135, 114].
Naturally, the Fluctuation-Dissipation theorem only applies to systems at equilibrium,
which excludes the use of passive microrheology alone to study actively driven networks.
However, a combination of active and passive microrheology can still give insightful results
through force spectrum microscopy. If the complex shear modulus is known, for example
from an active microrheology experiment, the measurement of spontaneous fluctuations of
the probe give access to the spectrum of forces in the network, both thermal and active
ones [112, 136, 132]. Finally, to measure the bulk properties of the material, and not
the local ones (possibly affected by the presence of the probe) one can use the two-point
microrheology [137, 114, 112], which in contrast to the aforementioned methods uses the
cross-correlations in displacements of pairs of tracers.

Inspired by the two-point microrheology, in Secs. A, B, C and in [110] we ask whether a
non-invasive measurement of the irreversibility of probes’ dynamics can deliver information
about the network and the features of the active driving. Specifically, we propose measuring
the cycling frequencies, or the area enclosing rates (see Sec. 2.3) for pairs of tracer beads
at distance r from each other. To make a prediction for what such a measurement would
yield we considered a simplified model of d-dimensional spring network embedded in a
viscous fluid. The tracer particles are present at all the nodes of the network and obey
overdamped dynamics. On top of the thermal noise experienced by all the beads we
model the nonequilibrium activity as random monopole or dipole forces [110]. These active
random forces are primarily modeled with Gaussian white noise. We analyze the effects of
time correlations in the driving in Sec. C. We consider various types of activity distribution:
single active agent, and a uniform distribution of active agents with randomly chosen force
amplitudes. The case of spatially correlated activity amplitudes is treated in [110]. The
behaviour of the cycling frequencies in an actively stressed isostatic network [138] was
studied in [139].

We predict that the cycling frequencies and the area enclosing rates follow a power
law as a function of distance between the probes. Overall, the values of the irreversibility
measures are proportional to the standard deviation of the active force amplitudes, but
independent of specific probability distribution of the amplitudes. The exponent of the
power law depends on the dimensionality of the system (network, membrane, or a stretched
polymer), but not on the exact geometry of the network. Importantly, the exponent
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strongly depends on the moment of the active forces: dipoles (as for a contractile motor)
vs. monopoles (as for an ion pump in a membrane [140]). This is not straightforward –
fitting a model to experimental data is not necessarily conclusive about the moment of the
forces [14].

The predictions described above are derived based on the formulas presented in Sec. 2.3
and exploit a mapping between the Lyapunov equation for the covariance matrix and Pois-
son equation in a 2d-dimensional space. The predicted exponents surely inherit from the
exponents describing deformations of an elastic medium, but those don’t explain every-
thing. First, the scaling behaviour is observed also for the cycling frequencies, which
quantify the mean angular velocity and as such are independent of the size of fluctuations.
Second, the exponents are different for a single active agent and for a random distribution
of forces.

The framework presented in Sec. C allowed us to account for temporal correlations
in the active noise, which are known to be present for example in the contractile forces
generated by myosin filaments. We found that the scaling behaviour remains unchanged
for large distances between the tracers, for which the relaxtion times of the network are
large compared to the correlation times of the active forces. At such large distances the
active noise can indeed be effectively described as white. At shorter distances, however,
the behaviour of the area enclosing rates as a function of distance is no longer monotonic
and displays a maximum at distance r ∼ τ 1/2, where τ is the correlation time of the active
forces. Such measurements of irreversibility could therefore give access to the processivity
times of the motors driving the network. Here we should however note that there are
arguably simpler ways of estimating the processivity time, such as concluding it from the
active force spectrum and mean the square displacements [132], or by directly observing the
local deformations of the network [117]. Recent studies suggest that the processivity times
can be obtained from a simplistic caging model, which assumes that a tracer is confined
to a harmonic trap driven by a single colored noise process [115, 13, 141]. Finally, the
correlation times of the active forces were reflected in a very recent experiment designed
to identify the time scales relevant to dissipation [142]. There, the authors measured the
irreversibility of time series of consecutive displacements of the tracer particles for varying
lag times.

The τ -dependent position of the maximum of the area enclosing rates may therefore
be rather of theoretical than practical interest. Still, it is recognised that the correlation
times of the driving force can have crucial effects on active processes. The way in which
the time correlations affect the irreversibility may once prove important in some biological
context, given the connections between irreversibility, dissipation, work and precision (see
Sec. 1.2 ). The original results discussed above show how the irreversibility originating
from microscopic driving propagates across different length scales. However, the relevance
of this phenomenon to biological processes remains an open question.
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2 Finding the most irreversible components

We discussed how various types of tracers are used to study the dynamics of mezoscopic
driven systems. However, introducing tracers without perturbing the investigated system
may not always be possible. Instead of using artificial tracers one can try tracking objects
already present in the medium, but what if no such clearly distinguishable, discrete objects
appear in the experimental image? Let us, nevertheless, be optimistic for a second and
assume we managed to insert and track a hundred of beads. How should we analyse
their trajectories now? Should we look at the beads one by one, or rather in pairs, as
in the aforementioned two-point methods? And what if it’s actually beneficial to look at
some linear combination of the displacements of multiple beads? This could for example
represent a Fourier mode of the network.

It is not obvious in general what degrees of freedom to choose. In general, there may
not even be an obvious set of degrees of freedom to choose from. This choice, however,
though not straightforward, can be decisive for what and how much we learn from an
observation. The optimal choice may depend on the context and on our objective, that is
on what we want to learn. In [45] (Sec. D) we took up the challenge of identifying and
inferring the irreversible dynamics, and estimating the entropy production rate of a driven
elastic network directly from a manufactured experimental movie. Given this objective, we
developed a framework for identifying the most irreversible components of the dynamics,
which we briefly present below (a detailed explanation can be bound in Sec. D).

Our idea there was to refrain from making any biased choice for what to track and
instead to treat the entire experimental movie as the input. That is, the data we work
on is the time trajectory of pixel intensities, while we are ignorant of what the images
actually represent. By analysing the movie as a whole, we are sure not to miss out on
anything, but run into a different problem. The framework for stochastic force inference
[46] that we eventually want to apply to our data suffers from high dimensionality of the
phase space, which is a common limitation of inference schemes in general. In our case
the dimensionality is equal to the number of pixels in a frame, which in principle can even
exceed the actual number of the physical degrees of freedom. We therefore need to reduce
the number of the degrees of freedom, keeping only the most informative ones, in our case
the ones displaying high irreversibility.

To this end we resort to the properties of the covariance matrix C, the area enclosing
rate matrix A, and a particular formula for the entropy production rate valid for linear
systems:

Ṡ = Tr(AC−1AD−1), (3.1)

with D being the diffusion matrix. This relation follows directly from Eqs. (2.12), (2.15).
The matrix A (see Sec. 2.3 ) in essence encodes the covariance of pairs of degrees of
freedom and their circulation rate. The properties of C and A imply existence of a linear
transformation which simultaneously brings these matrices into a favourable, simplified
form. Specifically, in these special coordinates C = 1 and A becomes block diagonal
with blocks of the form {{0,−ω2i−1,2i}, {ω2i−1,2i, 0}}. We used the symbol ω, since in these
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coordinates the non-zero elements of A are actually equal to the cycling frequencies (again,
assuming linear dynamics). The entropy production rate then takes the form

Ṡ =
∑

i

ω2
2i−1,2i[(D

−1)2i−1,2i−1 + (D−1)2i,2i], (3.2)

where D is to be taken in the special coordinates. The advantage of using this basis is
that now the total entropy production rate splits into a sum of independent contributions
corresponding to pairs of basis vectors {dcai ,dcbi}. The elements of A can be calculated
from the trajectories and D estimated from short time mean squared displacements. We
can then use these estimated values to calculate the expected contributions to the entropy
production rate in Eq. (3.2) and arrange them in decreasing order. Applying the same
ordering to the corresponding pairs of basis vectors allows us to identify the components
of the movie that display the most irreversible dynamics.

The reasoning behind our dissipative component analysis (DCA) can be illustrated by
comparing it to the commonly applied principal component analysis (PCA), as visualised
in the figure below.

pc1

pc2

dca1dca2dcb1

dcb2

dca1 dcb1 dca2 dcb2
−

−

pc2pc1

PCA DCA

In the PCA one diagonalizes the covariance matrix to find a reduced number of com-
ponents that account for most of the variance in the data. In DCA we instead bring the
area enclosing rate matrix A to a block diagonal form. In these special coordinates the
probability currents are disentangled, allowing us to independently assess the irreversibil-
ity for pairs of the basis vectors and only keep the most irreversible ones. Note that the
irreversibility is not only set by the circulation rate ω2 – the weights ∼ D−1 account for
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the fact that with larger dynamical noise an observed time directionality is more likely to
be just a result of a fluctuation (compare with Eq. (2.6)).

Having found a set of most irreversible modes we can feed them to the stochastic
force inference framework and obtain an improved estimate of the entropy production
rate. However, it feels unsatisfactory to confine our findings to a single scalar number -
the entropy production rate, given all the information about the irreversible dynamics we
obtained on the way. Wouldn’t it be possible to use the information about the inferred mean
velocity fields of corresponding modes to reconstruct the typical irreversible dynamics? We
can think of the stereotypical irreversible dynamics as following the integral curves of the
mean velocity field. For a linear system, in the special coordinates the integral curves are
just circles and the stereotypical image dynamics I i(t) could be represented as

I i(t) = dcai cos(ω2i−1,2it) + dcbi sin(ω2i−1,2it). (3.3)

Note that the dissipative components {dcai ,dcbi} correspond to a set of pixel intensities in
a frame, so a superposition, as in Eq. (3.3) can really be used to construct a movie and
visualise what the most irreversible dynamics actually represent.

The presented dimansionality reduction scheme relies on the assumption that the dy-
namics is linear, which is unlikely to be the case in practice. With nonlinearities a rigorous
decomposition of the entropy production is no longer possible and applying Eq. (3.2) to
sort the inferred modes is just an educated guess. Similarly, the integral curves of the veloc-
ity field are no longer simple circles, which complicates the reconstruction of stereotypical
irreversible dynamics. Nevertheless, for the nonlinear example studied in Sec. D) the DCA
still performs visibly better than the standard PCA. Possible directions for dealing with
nonlinearities and interpreting the inferred image dynamics will be further discussed in the
following Outlook chapter.
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Chapter 4

Outlook

In this thesis we looked at irreversibility as a distinctive feature of nonequilibrium dynam-
ics, that can not only unveil the presence of active processes, but also deliver quantitative
information about them. In the introduction we discussed the connections between irre-
versibility, entropy production and the structure of fluctuations. These connections are
expressed in terms of a series of fluctuation theorems that put constraints on the possible
course of nonequilibrium processes. We discussed how the speed and precision of a process
are generally bounded by the amount of consumed energy. Further we reviewed a class
of thermodynamic uncertainty relations. This continually improved family of inequalities
defines the minimal entropic costs of suppressing generalized current fluctuations at var-
ious time scales. Apart from setting theoretical bounds for precision, these relations can
themselves be used to infer the entropy production rate. Measuring the produced entropy
in alternative ways, for example in terms of irreversibility of the trajectories, can then be
used to assess the degree of optimality of a biological process, or efficiency of a molecular
motor.

This modus of investigation, while insightful for small, isolated systems, seems less
promising in case of complex systems with many degrees of freedom, many of which may not
even be accessible experimentally. In such a system the identification of relevant degrees of
freedom may pose a problem of its own. Given this limited accessibility and informativeness
of the entropy production rate, in Sec. 3.1 we reflected on whether some coarse grained
measures of irreversibility (area enclosing rates and cycling frequencies) could instead reveal
some features of the active driving. Within a simplistic model of a driven viscoelastic
network we showed that a measurement akin to two-point microrheology could in principle
deliver such information. We expect the measures of irreversibility to decrease on average
as a power low in function of distance between the tracers. The exponents and regimes
of the power law encode features of the active driving such a the moment of the active
forces, or their correlation times. Here we should note that our predictions for the results
of the suggested measurement implicitly assume a certain complex shear modulus of the
medium. It would be interesting to investigate how the predicted nonequilibrium scaling
behaviour is modified in media with different complex shear moduli, for example when
memory effects come into play. Further modifications could account for the hydrodynamic
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interactions in the network. For this purpose the two-fluid model [143, 129, 144] could
be a useful tool. Our preliminary numerical study for a lattice of harmonically trapped
and hydrodynamically interacting beads suggested presence of similar power laws but with
reduced exponents. There we approximated the hydrodynamic interactions by a constant
Oseen tensor, as in [145, 146].

If the proposed measurement were to be performed, it is relevant to ask how difficult
it would be to actually measure the cycling frequencies, or the area enclosing rates. These
and related quantities have been measured experimentally for simple electronic circuits
[105] and even for the dynamics of a beating flagella, or primary cilium [104]. However, to
our knowledge, no such measurement was ever successfully performed for a driven network,
or similar system. Indeed, the power law behaviour we predict suggests that the quantities
to be measured decay very fast with increasing distance r between the tracers, making it
increasingly difficult to bring the signal beyond the noise level. Specifically, if the cycling
frequency scales as ω(r) ∼ r−α then the time required to measure it would be t ∼ r2α.
Another potential problem here is the limited measurement time. The cycling frequency
for a certain pair of tracers is a steady state entity set by the specific distribution of the
active agents. If the spatial distribution of the active forces changes, so does the steady
state value of the cycling frequency. The maximal measurement time is therefore limited
by the time it takes for the active agents to rearrange.

Although the scaling behaviour of the irreversibility metrics may be difficult to ob-
serve experimentally, it tells us that irreversibility generated locally by active forces decays
quickly as we move to larger scales. Persistent irreversibility of the dynamics can in gen-
eral be used to extract work – imagine coupling the irreversible degrees of freedom to a
mechanism like a spinning reel. Our results seem to suggest that such work could not be
efficiently extracted at a large scale when powered by uncorrelated local forces. Spatial
correlations between active force amplitudes and temporal correlations between the active
agents could change things qualitatively.

Even if the area enclosing rates or the cycling frequencies can never be measured for
internally driven networks, it does not yet rule out the use of irreversibility metrics for
studying such systems - some other measures of irreversibility may turn out to be more
practical. In fact, in a very recent study of actomyosin cortex [142] the authors measure
the irreversibility of trajectories of single tracers. Specifically, they take the trajectories of
consecutive displacements of the tracer for varying time resolution. They argue that the
time resolution at which the measured irreversibility is maximized reveals the time scales
of the active agent, in that case myosin. While this approach cannot be considered an
established method yet, the successful measurement of irreversibility for a complex driven
network is already a great progress.

The characteristic time scales of the active agents appear to play a significant role in
the dynamics of driven systems. We already mentioned the example where the dissociation
times of the crosslinkers control the mechanical properties of the network [123]. It is also
known that the active dynamics of the molecular motors in the cytoskeleton can substan-
tially increase the effective diffusivity [147, 132, 144], and may therefore play a side role
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in the undirected cellular transport. However, it has not been studied how the correlation
times of the motors affect this diffusivity. Based on simple arguments we expect that for
a fixed amplitude of the active forces the effective diffusivity may be maximized for inter-
mediate values of the correlation times.

Automatized analysis of active systems

The available methods for studying active biological systems typically require the use
of tracers in form of small particles or filaments. In the optimistic scenario one can use
some constituents of the system as tracers - in case of the cytoskeleton these could be
small organelles, or lipid granules. Otherwise, the tracers have to be inserted manually,
which may not be simple without disturbing the scrutinized system. Moreover, many
approaches require measuring the response function by actively manipulating the inserted
probes, which brings further hazard of spoiling the object of investigation. In any case, the
particular choice of tracers is dictated by convenience or necessity rather than by asking
what would be the most informative set of variables.

In Sec. D we presented what is meant to be the first, humble step in the quest of
the holy grail - a framework for non-invasive, system independent analysis of time-lapse
microscopy data, that would reveal the deterministic and stochastic parts of the dynamics,
their irreversible components and the energy dissipation. Of course there is a long way to
go. In the presented framework instead of arbitrarily deciding on what degrees of freedom
to track, we treat the entire movie, that is the time dependent pixel intensities, as a
dynamical system. Since the existing methods for dynamical inference [46, 47] are only
efficient for systems with limited dimensionality (definitely smaller than the number of
pixels in a frame), we precede the inference by an educated dimensionality reduction. For
this purpose we developed Dissipative Component Analysis aimed at selecting the most
irreversible components of the system. While this reduction scheme is fully legitimate only
for linear dynamics, it turns out to outperform the standard Principal Component Analysis
also for nonlinear systems.

The identification of the most irreversible components of the dynamics may be of use
on its own. It could be used at the early stage of investigation of a biological system as a
proxy for the most active spots. Such spots could then be studied with special attention
as potentially the most interesting ones. This seems to be the lowest-hanging fruit on
the way to the ”holy grail”. The next step would be combining the selected components
with the inferred mean phase space velocity field to visualise the stereotypical irreversible
dynamics. The suggested reduction scheme was irreversibility oriented, since one of our
main goals was inferring the entropy production rate. However, one can imagine that such
reduction schemes could be modified and adjusted depending on the ultimate objective of
the inference.

Having decided on the dimensionality reduction scheme optimal for our purpose, the
remaining challenge is interpreting the inferred velocity and force fields. The problem is
that the inferred forces describe the dynamics of the pixel intensities. It is not obvious
how to transform this information into something more intuitive. One option would be to
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somehow translate the force fields into how the objects or shapes visible in the image move
on average.

At this point, along with the limited amount of data, the nonlinearities seem to be
the major challenge in unsupervised analysis of experimental movies. The current version
of the dissipative component analysis relies on a linear transformation and choosing an
appropriate subset of basis vectors. The way this subset is chosen relies on the assumption
of linear dynamics. This may easily become an issue – note that even if the underlying
dynamics is linear in the physical space, the corresponding dynamics of pixel intensities may
be highly nonlinear, especially for large displacements of objects in the movie. Furthermore,
while the stochastic force inference in not limited to linear systems, the more complex the
dynamics, the more difficult it is to infer the force, diffusion and velocity fields with all their
details. A way to deal with nonlinearities could be to employ a neural network that would
effectively invert the mapping from physical to image space. A machine learning approach
was recently applied to infer the entropy produciton and irreversible components from an
experimental movie [43, 148], however, the results are not convincing yet. Nevertheless, it
may just be a matter of time for such unsupervised methods to become a standard tool
for studying complex driven systems at mezoscopic scale, as it was the case with the study
of stereotypical animal behaviour [149, 150, 151, 152]. If not by providing direct answers,
such approaches could still guide the researchers by allowing them to see through the noise
and find patterns in limited data.
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ical assemblies

Reference
Nonequilibrium scaling behavior in driven soft biological assemblies
Federica Mura∗, Grzegorz Gradziuk∗, and Chase P. Broedersz
Physical Review Letters 121, 038002 (2018)

Author contributions
F.M. and C.P.B. conceived the project. G.G. developed the mathematical background.
F.M. and G.G. performed numerical calculations. F.M., G.G. and C.P.B. wrote the paper.

Abstract
Measuring and quantifying nonequilibrium dynamics in active biological systems is a major
challenge because of their intrinsic stochastic nature and the limited number of variables
accessible in any real experiment. We investigate what nonequilibrium information can be
extracted from noninvasive measurements using a stochastic model of soft elastic networks
with a heterogeneous distribution of activities, representing enzymatic force generation. In
particular, we use this model to study how the nonequilibrium activity, detected by tracking
two probes in the network, scales as a function of the distance between the probes. We
quantify the nonequilibrium dynamics through the cycling frequencies, a simple measure of
circulating currents in the phase space of the probes. We find that these cycling frequencies
exhibit power-law scaling behavior with the distance between probes. In addition, we show
that this scaling behavior governs the entropy production rate that can be recovered from
the two traced probes. Our results provide insight into how internal enzymatic driving
generates nonequilibrium dynamics on different scales in soft biological assemblies.

Key results

• We propose a novel noninvasive measurement allowing to probe the nonequilibrium
behaviour in actively driven soft networks. The measurement consists in tracking
the positions of pairs of tracer particles and measuring the on average cyclic motion
in the 2-dimensional position space.

• Using a simple model of an actively driven network, we show numerically that the
proposed measure of irreversibility called cycling frequency, follows a power law as a
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function of distance between the tracer beads. We verify that the scaling behaviour
persists for various geometries of the network in various dimensions. The scaling
exponent depends on the dimension, but not on the details of the network.

• We confirm the power-law decay analytically, by relating the cycling frequencies to
the structure of the covariance matrix. The covariance matrix itself is obtained
by exploiting an analogy between a class of Lyapunov equations and the diffusion
equation.

• The cycling frequencies can be used to calculate a lower bound for the entropy pro-
duction rate. This lower bound is shown to also follow a power law as a function of
distance between the tracer beads.
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Reference
Scaling behavior of nonequilibrium measures in internally driven elastic assemblies
Grzegorz Gradziuk, Federica Mura, and Chase P. Broedersz
Physical Review E 99, 052406 (2019)

Author contributions
G.G., F.M. and C.P.B. conceived the project. G.G. developed the mathematical back-
ground. F.M. and G.G. performed numerical calculations. G.G., F.M. and C.P.B. wrote
the paper.

Abstract
Detecting and quantifying nonequilibrium activity is essential for studying internally driven
assemblies, including synthetic active matter and complex living systems such as cells or
tissue. We discuss a noninvasive approach of measuring nonequilibrium behavior based on
the breaking of detailed balance. We focus on “cycling frequencies”—the average frequency
with which the trajectories of pairs of degrees of freedom revolve in phase space—and
explain their connection with other nonequilibrium measures, including the area enclosing
rate and the entropy production rate. We test our approach on simple toy models composed
of elastic networks immersed in a viscous fluid with site-dependent internal driving. We
prove both numerically and analytically that the cycling frequencies obey a power law as
a function of distance between the tracked degrees of freedom. Importantly, the behavior
of the cycling frequencies contains information about the dimensionality of the system and
the amplitude of active noise. The mapping we use in our analytical approach thus offers
a convenient framework for predicting the behavior of two-point nonequilibrium measures
for a given activity distribution in the network.

Key results
In this publication we present in more detail and extend the results published in Physical
Review Letters 121, 038002 (2018).

• We study how measures of irreversibility defined for pairs of tracer beads embedded
in a driven viscoelastic network depend on the distance between the beads. Apart
from the cycling frequencies we consider a different measure called area enclosing
rates and show how these two measures are related in general.
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• For both of the measures we demonstrate analytically that they follow a power-law
decay as a function of the distance between the tracer beads. We predict theoreti-
cally how the exponent of the power law depends on the dimensionality of the system.
This prediction agrees with the previously obtained numerical results.

• In the limit of weak driving the cycling frequencies are proportional to the amplitude
of the active driving and inversely proportional to the temperature of the bath. The
area enclosing rates are proportional to the amplitude of the active driving even
beyond the limit of weak driving, as long as the dynamics of the network can be
treated as linear.

• We discuss how the mapping between the Lyapunov equation and the diffusion equa-
tion that we employ in our analytical derivations could be generalised to networks of
different geometry.
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Reference
Irreversibility in linear systems with colored noise
Grzegorz Gradziuk, Gabriel Torregrosa, and Chase P. Broedersz
Physical Review E 105, 024118 (2022)

Author contributions
G.G. and C.P.B. conceived the project. G.G. and G.T. developed the mathematical frame-
work. G.G. and C.P.B. wrote the paper. Part of this work was presented in the Master
thesis by G. Torregrosa, supervised by C. P. Broedersz and co-supervised by G. Gradziuk.

Abstract
Time-irreversibility is a distinctive feature of non-equilibrium dynamics and several mea-
sures of irreversibility have been introduced to assess the distance from thermal equilib-
rium of a stochastically driven system. While the dynamical noise is often approximated
as white, in many real applications the time correlations of the random forces can ac-
tually be significantly long-lived compared to the relaxation times of the driven system.
We analyze the effects of temporal correlations in the noise on commonly used measures
of irreversibility and demonstrate how the theoretical framework for white noise driven
systems naturally generalizes to the case of colored noise. Specifically, we express the
auto-correlation function, the area enclosing rates, and mean phase space velocity in terms
of solutions of a Lyapunov equation and in terms of their white noise limit values.

Key results

• We develop a framework for calculating various measures of irreversibility such as
the autocovariance function, or the area enclosing rates for linear systems driven by
colored noise. The results are exact for arbitrary correlations of the dynamical noise
and not only close to the white-noise limit.

• We find that the considered measures of irreversibility depend only on the second
order correlations of the dynamical noise, meaning that two qualitatively different
types of driving can result in exactly the same measurement for the autocorrelation,
or area enclosing rates, while also producing qualitatively different dynamics.
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• We identify an object called spreading matrix, which encodes the temporal correla-
tions of the dynamical noise combined with the way forces are transmitted in the
system. The spreading matrix allows for easily transforming the white noise limit
results into results for the corresponding colored noise problem.

• For the specific case of Ornstein-Uhlenbeck noise, often employed to model persistent
motion, we find the full probability distribution and expressions for the mean velocity
field.

• We revisit the problem of scaling behaviour of nonequilibrium measures in driven
viscoelastic networks studies in [108, 109, 110], where the active noise was assumed
to be white. We show that accounting for the time correlations in the driving quali-
tatively changes the scaling behaviour at short distances, giving rise to an emergent
length. At larger distances, at which the relaxation times are large compared to the
correlation times of the noise, the white noise behaviour is recovered.
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Reference
Learning the non-equilibrium dynamics of Brownian movies
Federico S. Gnesotto, Grzegorz Gradziuk, Pierre Ronceray, and Chase P. Broedersz
Nature Communications 11, 5378 (2020)

Author contributions
P.R. and C.P.B. conceived the project. F.S.G. wrote the new codes developed in this
manuscript and performed all simulations and Brownian movies analysis. P.R. provided
support for the Stochastic Force Inference analysis and G.G. largely developed the deriva-
tions underlying the Dissipative Component Analysis (DCA). All authors contributed con-
ceptually to developing the Brownian movie analysis and DCA frameworks, interpreting
the results, and writing the paper.

Abstract
Time-lapse microscopy imaging provides direct access to the dynamics of soft and living
systems. At mesoscopic scales, such microscopy experiments reveal intrinsic thermal and
non-equilibrium fluctuations. These fluctuations, together with measurement noise, pose
a challenge for the dynamical analysis of these Brownian movies. Traditionally, methods
to analyze such experimental data rely on tracking embedded or endogenous probes. How-
ever, it is in general unclear, especially in complex many-body systems, which degrees of
freedom are the most informative about their non-equilibrium nature. Here, we introduce
an alternative, tracking-free approach that overcomes these difficulties via an unsupervised
analysis of the Brownian movie. We develop a dimensional reduction scheme selecting a
basis of modes based on dissipation. Subsequently, we learn the non-equilibrium dynam-
ics, thereby estimating the entropy production rate and time-resolved force maps. After
benchmarking our method against a minimal model, we illustrate its broader applicability
with an example inspired by active biopolymer gels.

Key results

• We develop a novel tool for unsupervised analysis of time-lapse microscopy data. The
presented framework allows for inferring the dynamics and estimating its irreversibil-
ity by treating the series of images as a noisy dynamical system.
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• Before inferring the image dynamics, we employ a novel dimensionality reduction
scheme aimed at selecting the modes of the dynamics that exhibit the strongest ir-
reversibility. The reduction scheme relies on diagonalizing the area enclosing rates
matrix.

• The inference scheme gives us access to configuration dependent deterministic force
fields and diffusion tensor.

• We test our framework on a computer generated series of images imitating the dy-
namics of a driven cytoskeletal assembly. Within this example, the performance of
our framework is robust to measurement noise and limited image resolution.
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Nonequilibrium Scaling Behavior in Driven Soft Biological Assemblies

Federica Mura, Grzegorz Gradziuk, and Chase P. Broedersz*

Arnold-Sommerfeld-Center for Theoretical Physics and Center for NanoScience,
Ludwig-Maximilians-Universität München, D-80333 München, Germany

(Received 30 January 2018; revised manuscript received 13 April 2018; published 18 July 2018)

Measuring and quantifying nonequilibrium dynamics in active biological systems is a major challenge
because of their intrinsic stochastic nature and the limited number of variables accessible in any real
experiment. We investigate what nonequilibrium information can be extracted from noninvasive
measurements using a stochastic model of soft elastic networks with a heterogeneous distribution of
activities, representing enzymatic force generation. In particular, we use this model to study how the
nonequilibrium activity, detected by tracking two probes in the network, scales as a function of the distance
between the probes. We quantify the nonequilibrium dynamics through the cycling frequencies, a simple
measure of circulating currents in the phase space of the probes. We find that these cycling frequencies
exhibit power-law scaling behavior with the distance between probes. In addition, we show that this scaling
behavior governs the entropy production rate that can be recovered from the two traced probes. Our results
provide insight into how internal enzymatic driving generates nonequilibrium dynamics on different scales
in soft biological assemblies.

DOI: 10.1103/PhysRevLett.121.038002

Cells and tissue constitute a class of nonequilibrium
many-body systems [1–5]. Indeed, nonequilibrium activity
has been observed in various biological systems, including
membranes [6,7], chromosomes [8], and the cytoplasm
[9–11]. A distinguishing physical feature of such biological
assemblies is that they are driven out of equilibrium
collectively by internal enzymatic processes that break
the detailed balance at the molecular scale. The active
nature of living matter on larger scales can be determined
noninvasively by observing the steady-state stochastic
dynamics of mesoscopic degrees of freedom using time-
lapse microscopy experiments: the nonequilibrium dynam-
ics of these systems can manifest as circulating probability
currents in a phase space of mesoscopic coordinates [2,
12–14]. However, it remains unclear how such nonequili-
brium measures depend on the spatial scale on which the
measurement is performed. A theoretical understanding of
the spatial scaling behavior of broken detailed balance in
internally driven biologically assemblies may reveal how to
extract quantitative information from measurable phase
space currents to characterize the active nature of the system.
Here we consider a simple, yet general model for an

internally driven elastic assembly to study nonequilibrium
scaling behavior. This assembly is driven out of equilibrium
by heterogeneously distributed stochastic forces, represent-
ing internal enzymatic activity (Fig. 1). We quantify the
nonequilibrium dynamics of such an assembly by the
cycling frequencies associated with steady-state circulating
currents in phase space [13,14]. To study how broken
detailed balance manifests on different scales in a given
system, we investigate how the cycling frequency of a pair

of tracer probes depends on the spatial distance between
these probes. Interestingly, the cycling frequencies in our
model exhibit a power-law scaling with the distance
between probes with an exponent that depends on the
dimensionality of the system. To provide a conceptual
understanding of this scaling behavior, we develop an
analytical calculation of these exponents. Furthermore, we
show that the exponent associated with the power law of the
cycling frequencies also underlies the scaling behavior of
the entropy production rate that can be recovered from
measured trajectories. Therefore, we provide a framework
to study the spatial scaling behavior of nonequilibrium
measures in soft elastic assemblies.
Our model consists of a d-dimensional elastic network

of N beads, immersed in a simple Newtonian liquid at
temperature T [15–18]. We assume a lattice structure where
each bead is connected to its nearest neighbours by springs
of elastic constant k, as illustrated in Fig. 1. For simplicity,
we model internal enzymatic activity by a Gaussian white
noise with variance αi at bead i. By assuming white noise,
we effectively consider the dynamics of biological systems
on timescales much longer than the characteristic time-
scales of the active processes [13,19,20]. Importantly, these
activity amplitudes, αi ≥ 0, are spatially heterogeneous,
reflecting a spatial distribution of active processes in the
system. These activity amplitudes are drawn independently
from a distribution pα with mean ᾱ < ∞ and standard
deviation σα < ∞ for each realization of the system. This
description of a heterogeneously driven assembly is similar
to bead-spring models in which the beads are coupled to
distinct heat baths at different temperatures [21–23].
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The temporal evolution of the probability distribution
pðx; tÞ of the beads’ displacements x, relative to their rest
positions, is governed by a Fokker-Planck equation

∂pðx; tÞ
∂t ¼ −∇ · ½Axpðx; tÞ� þ ∇ · D∇pðx; tÞ;

¼ −∇ · jðx; tÞ; ð1Þ

where jðx; tÞ ¼ Axpðx; tÞ − D∇pðx; tÞ is the probability
current. Here, A is the elastic interaction matrix, incorpo-
rating all nearest neighbor spring interactions between
beads; the mobility matrix is assumed to be diagonal to
exclude hydrodynamic interactions between the beads and
is absorbed in A. The diffusion matrix D is diagonal with
elements dij ¼ δij½kBðT þ αiÞ=γ�, where γ is the damping
coefficient describing the viscous interaction between a
bead and the immersing liquid. The steady-state dynamics
of this active network is described by

pðxÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2πÞdN detC

p e−
1
2
xTC−1x; ð2Þ

where C ¼ hx ⊗ xi is the covariance matrix, which can be
obtained by solving the Lyapunov equation ACþCAT ¼
−2D [24]. In the simplest limit, the activities are spatially
homogeneous: αi ¼ α∀ i, resulting in effectively equilib-
rium dynamics, with pðxÞ given by the Boltzmann distri-
bution [C−1 ¼ −A=ðT þ αÞ] and j ¼ 0. By contrast, in

heterogeneously driven systems with nonidentical αi’s, we
obtain nonequilibrium steady-state dynamicswith j ≠ 0 [24].
If we were able to observe the stochastic motion of all

beads in the network, we could directly measure the full
probability current jðxÞ and extract information about
the complete nonequilibrium dynamics of the system.
However, in an actual experiment, typically only a small
subset of the degrees of freedom can be tracked [Fig. 2(a)].
What information on the nonequilibrium dynamics of the
system can be extracted from such limited observations?
To address this question, we investigate a scenario where
only a few degrees of freedom are accessible.
We start by reducing our description to the marginal

distribution, prðxrÞ ¼
R
dxk∉½r�pðx1; x2;…; xdNÞ, of a sub-

set [r] of n tracked degrees of freedom xr. By integrating
out the subset [l] of m unobserved degrees of freedom xl
on both sides of Eq. (1) and taking the steady-state limit,
we obtain (see Supplemental Material [25])

0 ¼ −∇ · ½AeffxrprðxrÞ� þ ∇ ·D½r;r�∇prðxrÞ; ð3Þ

where the subindex ½r; r� of a matrix indicates the submatrix
corresponding to the reduced set of observed variables.
In addition, we introduce the effective linear interaction
[Fig. 2(b)], which can be written as Aeffxr, with Aeff ¼
A½r;r� þA½r;l�C½l;r�C−1

½r;r�. Here, A½r;l� and C½l;r� are rectangular
matrices of sizes ½n ×m� and ½m × n�, given by the

FIG. 2. Reduced system of tracked probed. (a) Schematic of two
fluorescently labeled probe beads in a larger system. (b) Elastic
force acting onbead j obtained at different time steps of a simulation
of the Langevin dynamics of the full system (blue points) and the
effective linear forceAeffxr from analytical calculations (light blue
plane). (c) Probability density (color map) and probability current
(white arrows) calculated analytically from the effective 2D system,
together with results from simulating the full system in the inset.
(d) The nonconservative part of the effective force field, ½ðAeff −
AT

effÞ=2�xr (black arrows), can contribute to the rotation in phase
space in nonequilibrium systems. Note, for αi ¼ α∀ i (effective
equilibrium scenario), Aeff becomes symmetric.

FIG. 1. Schematic illustrating soft viscoelastic networks with
heterogeneous driving for various types of cellular systems.
(a) Chromosome, (b) red blood cell membrane, (c) cytoskeletal
network with (d)–(f) associated bead-spring models with hetero-
geneous active driving. The color of the bead indicates the
intensity of activity, representing the variance (increasing from
blue to red) of the associated active noise process.
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elements of indices ½r; l� of A and ½l; r� of C, respectively.
Thus, we obtain an effective stationary Fokker-Planck
equation for the reduced system (3). From this, we obtain
the exact steady-state reduced probability distribution
prðxrÞ and probability current density:

jrðxrÞ ¼ AeffxrprðxrÞ þ D½r;r�C−1
½r;r�xrprðxrÞ; ð4Þ

which can, in principle, be measured from the trajectories
of the observed degrees of freedom [Fig. 2(c)].
We can use this reduced description to investigate how

broken detailed balance manifests at different scales in
the network. In particular, we consider the simplest case of
a reduced system of only two tracked beads in a larger
system, as illustrated in Fig. 2(a). It is convenient to
quantify the probability currents in the 2D phase space
of these two tracer beads by a pseudoscalar quantity: the
average cycling frequency around the origin [13,14,26].
For linear systems, we can express the reduced probability
current as jrðxrÞ ¼ ΩrxrprðxrÞ, where Ωr is a 2D matrix
with purely imaginary eigenvalues λ ¼ �iω, with ω
representing the cycling frequency.
This cycling frequency can be measured experimentally

for a pair of degrees of freedom; e.g. the displacements in a
certain direction of two probe beads at a distance r. This
frequency will depend on the specific configuration of all
activity amplitudes αi. We aim to compute how this cycling
frequency depends on r after averaging over all activity
configurations. Since ω is expected to be distributed
symmetrically around zero, we calculate

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hω2ðrÞiα

p
for

pairs of beads separated by a distance r. Here, the average
h� � �iα is taken over an ensemble of activities fαig drawn
from the distribution pα. Intuitively, the magnitude of the
circulation of currents in phase space typically decreases
with the distance between the probes, as shown in Fig. 3(a).
This reduction of the circulation is reflected by a decrease
of the cycling frequency ω with distance. Remarkably,ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hω2ðrÞiα

p
appears to depend on the distance between the

tracer beads r as a power law,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hω2ðrÞiα

p
∝ r−μ, with μ ≈

1.9 for a 1D chain with a folded Gaussian or an exponential
distribution of activities, as depicted in Fig. 3(b).
To investigate how the architecture of the system

affects the scaling behavior of the cycling frequencies,
we considered different network structures, including
square, triangular, and cubic lattices. In particular, we
determined the ensemble average h� � �iα by performing
a spatial average for computational convenience (see
Supplemental Material [25]). Interestingly, we find that
the characteristic exponent μ appears to depend strongly on
the dimensionality of the lattice, but not on its geometry,
as shown in Figs. 3(b) and 3(c). These results suggest that
the distance dependence of the cycling frequency is
determined in part by the long wavelength elastic properties
of the system. Importantly, however, the scaling of cycling
frequency is sensitive to the spatial structure of the

activities. For example, in the simple case of a δ-distributed
(single-source) activity on a 1D chain, we find μsingle ≈ 2.4
[Fig. 3(b)] in contrast to the value 1.9 obtained above for
spatially distributed activities.
To obtain more insight into the scaling behavior of the

cycling frequencies, we derive an analytical expression for
the cycling frequency as a function of the distance between
the observed beads ωðrÞ. In general, it can be shown that,
for a linear system described by a Fokker-Planck equation,
the cycling frequencies are given by (see Supplemental
Material [25])

ωij ¼
1

2γ

hτijiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detC½r;r�

p ; ð5Þ

where τij ≔ xr × frðxÞ ¼ xifjðxÞ − xjfiðxÞ is a general-
ized phase space torque in the xi-xj plane, with fiðxÞ
denoting the deterministic force acting on the ith bead. This
result is intuitive: for an overdamped system, the mean
angular velocity is proportional to the mean torque and the
factor 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detC½r;r�

p
ensures coordinate invariance. For the

1D chain of beads [Fig. 1(d)], Eq. (5) reduces to

FIG. 3. Spatial scaling behavior of cycling frequencies.
(a) Steady-state current cycles in phase space of the displace-
ments (along the lattice direction) of two tracer beads for a nearby
pair of probes (left) and distant pair of probes (right). (b) Scaling
behavior of the cycling frequencies

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hω2ðrÞi

p
of a pair of probes

beads as a function of their spatial distances, obtained for a 1D
chain and different activity distributions, as indicated in the
legend. Black dashed line is obtained from Eq. (10). (c) Scaling
behavior of the cycling frequencies

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hω2ðrÞi=hω2ð1Þi

p
, obtained

for different lattices and a folded Gaussian activity distribution.
Triangular and square markers represent triangular and square or
cubic lattices, respectively. Light (dark) blue triangles represent
triangular networks with zero (finite) rest length springs. In both
(b) and (c), we used ᾱ=T ¼ 0.15.
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ωij ¼
k
γ

∂̃2
2cijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

detC½r;r�
p ; ð6Þ

where cij is the ith, jth element of the covariance matrix C,
with the discrete second derivative across rows denoted as
∂̃2
2cij ¼ ci;jþ1 − 2ci;j þ ci;j−1. Thereby, we have reduced

the problem of calculating ωðrÞ to finding the covariance
matrix of the system.
The structure ofD suggests a natural decomposition of the

covariance matrix C into equilibrium (C̄) and nonequili-
brium (C�) contributions: C ¼ ðkBT=kÞC̄þ ðkBᾱ=kÞC�,
such that C̄ and C� are dimensionless. Both C̄ and C�
can be found by solving the Lyapunov equation, which for
the 1D chain is given by

∂̃2
1c̄ij þ ∂̃2

2c̄ij ¼ −2δij; ð7Þ

∂̃2
1c�ij þ ∂̃2

2c�ij ¼ −2δij
αi
ᾱ
; ð8Þ

where ∂̃2
1 indicates the discrete second derivative across

columns. These equations represent discrete stationary
diffusion equations, with sources of divergence given by
δij and δijðαi=ᾱÞ, respectively. This result prescribes how a
spatial distribution of activities structures the covariance
matrix.
We can make further progress by noting that the principle

of detailed balance imposes ωij ¼ 0 at thermal equilibrium,
which together with Eq. (6) implies ∂̃2

2c̄ij ¼ 0. We can,
therefore, substitute ∂̃2

2cij in Eq. (6) by ∂̃2
2c�ij, and then

expand this equation up to linear order in ᾱ=T to obtain

ωij ¼
k
γ

ᾱ

T

∂̃2
2c�ijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

det C̄½r;r�
q : ð9Þ

We proceed by calculating C� for a given distribution of
activities fαig. Because of the linearity of Eq. (8), C� is a
superposition of steady-state solutions to single-source prob-
lem, i.e., a δ-distribution for which all but one of the activities
would be set to zero. Denoting the element ofC� at a distance
r from the single activity source by c�ðrÞ, we obtain the
“covariance current” ∂rc�ðrÞ ∼ 1=r. Here we employed a
continuous approximation of the discrete diffusion problem
in Eqs. (7) and (8). Thus, c�ðrÞ ¼ −a lnðrÞ þ b for a single-
source problem, with integration constants a and b, repre-
senting the Green’s function for our problem. Using this
expression for c�ðrÞ together with Eq. (9), we obtain for
the single-source case ω2

singleðrÞ¼ ðk2=γ2Þðα2=T2Þða2=r4Þ
f1=detC̄½r;r�ðrÞg, where α is the source’s activity.
Next, we use a superposition of single-source solutions

for c�ðrÞ to obtain the nonequilibrium contribution of the
covariance matrix C� for a specific configuration of many
activity sources fαig. Using this result in conjunction with
Eq. (9) and performing an ensemble average over the

distribution of activity realizations, we arrive at the central
result

hω2ðrÞiα ¼
k2

γ2
σ2α
T2

πa2

2r3
1

det C̄½r;r�ðrÞ
: ð10Þ

Finally, we note that the elements of the equilibrium
covariance matrix are given by c̄i;j¼minði;jÞ−ij=ðNþ1Þ
and find that, for r ≪ N, det C̄½r;r�ðrÞ exhibits a power-law
behavior det C̄½r;r�ðrÞ ∼ Nr. Therefore, from this analysis,
we find for a 1D chain with heterogenous activities μ ¼ 2,
independent of the activity distribution pα. Furthermore,
we find μsingle ¼ 2.5 for a single-source activity, in accord
with our numerical result [see Fig. 3(b)]. This calculation
provides insight into how a combination of features of
the equilibrium and nonequilibrium contributions to the
covariance matrix determine the spatial scaling behavior of
cycling frequencies.
Nonzero cycling frequencies directly reflect broken

detailed balance, suggesting a connection between ω and
measures of the internal driving, including the rate of
entropy production. For a Markovian system described by a
Fokker-Planck equation, the total entropy production rate
under steady-state conditions is given by [27]

Πtot ¼ kB

Z
dx

jTðxÞD−1jðxÞ
pðxÞ ; ð11Þ

where kB is Boltzmann’s constant. The validity of this
result relies on the equivalence between the Fokker-Planck
and Langevin descriptions. However, the marginal prob-
ability density of the reduced system is described by a
Fokker-Planck equation only at steady state [see Eq. (3)
and Supplemental Material [25] ], reflecting the loss of
Markovianity after coarse graining. Even if the real
dynamics of the reduced system are non-Markovian, we
can define an effective Markovian dynamics through the
Langevin equation

dxrðtÞ
dt

¼ AeffxrðtÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffi
2D½r;r�

q
ξrðtÞ; ð12Þ

with Gaussian white noise ξrðtÞ. This equation of motion
results in the exact steady-state probability and current
densities, but with an approximate stochastic dynamics.
In particular, the effective interaction matrix Aeff [see
Eq. (3)] captures only the average interaction between the
traced variables, as illustrated in Fig. 2(b). Furthermore,
in contrast to the full deterministic forces (Ax), these
effective interactions [Fig. 2(c)] need not derive from a
potential and thus may contain a nonconservative compo-
nent [Fig. 2(d)].
The entropy production rate associated with the effective

Markovian dynamics in Eq. (12) is given by
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Πr ¼ kB

Z
dxr

jTr ðxrÞD−1
½r;r�jrðxrÞ

prðxrÞ
≤ Πtot; ð13Þ

where jrðxrÞ is defined in Eq. (4). Note, estimating Πr by
using the Markovian formalism allows us to set a lower
bound for the total entropy production rate Πtot (see
Supplemental Material [25]), similar to what has already
been shown for discrete systems [28]. In the n ¼ 2 case
with two traced degrees of freedom that we consider here,
Eq. (13) reduces to (see Supplemental Material [25])

Πð2Þ
r ¼ kBω2TrðC½r;r�D−1

½r;r�Þ: ð14Þ

This result provides an explicit relation between the partial
entropy production rate and the cycling frequency ω. Note,

all quantities in the expression for Πð2Þ
r can be observed in

an experiment, providing a direct way to noninvasively
determine the reduced rate of entropy production for a set
of traced degrees of freedom. Since TrðC½r;r�D−1

½r;r�Þ depends
only weakly on r, as long as 1 ≪ r ≪ N, we expect a

scaling behavior hΠð2Þ
r i ∼ r−2μ. This result shows that the

spatial scaling behavior of the cycling frequencies directly
determines the spatial scaling behavior of the entropy
production rate [see Fig. 4].
In summary, we here demonstrate theoretically how

experimental measures of nonequilibrium activity in inter-
nally driven linear networks are affected by the length scale
at which the system is observed. Specifically, we developed
a general framework to predict the scaling behavior of
cycling frequencies and the entropy production rate that
can be inferred by tracing pairs of degrees of freedom. We
showed that the exponent μ that governs this behavior for a
system with heterogeneous random activities is insensitive
to the details of distribution of activities. However,

this exponent depends sensitively on the dimensionality
of the system. The predicted scaling behavior can be tested,
for instance, by analyzing the fluctuations of pairs of
tracer particles embedded in biological [9–11,29,30] and
artificial [31–36] systems under nonequilibrium steady-state
conditions.
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DERIVATION OF EQ. (3)

Here, we derive Eq. (3), which describes the steady state distribution of traced variables. Integrating out the unob-
served degrees of freedom on both sides of the Fokker-Plank equation (Eq. (1)), and using the Einstein notation for
summing over repeated indexes, we obtain:

(I)
∫
dxl∂tp(x) = −

(II)
∫
dxl∂i[aijxjp(x, t)] +

(III)
∫
dxldij∂i∂jp(x, t) (S1)

where aij and dij are the elements of the interaction matrix A and the diffusion matrix D, respectively. Rewriting
the probability as p(x, t) = p(xl|xr, t)pr(xr, t), we can separately calculate each term in Eq.(S1). The first term (I)
gives:

∫
dxl∂tpr(xr, t)p(xl|xr, t) = ∂tpr(xr, t)

∫
dxlp(xl|xr, t) = ∂tpr(xr, t) (S2)

For the second term (II ), we obtain
∫
dxl∂i[pr(xr, t)p(xl|xr, t)aijxj ] = δi,[r]∂i[pr(xr, t)

∫
dxlp(xl|xr, t)aijxj ]

= δi,[r]∂i[pr(xr, t)aij 〈xj |xr, t〉]
(S3)

where δi,[r] = 1 if xi is one of the observed coordinates and zero otherwise. In the first line we use that the probability
density vanishes at infinity faster than 1/x. Similarly, the third term (III ) can be written as

∫
dxldij∂i∂j [pr(xr, t)p(xl|xr, t)] = δi,[r]δj,[r]dij∂i∂j [pr(xr, t)

∫
dxlp(xl|xr, t)]

= δi,[r]δj,[r]dij∂i∂jpr(xr, t)

(S4)

We seek a description for the stochastic dynamics, which only depends on the observed degrees of freedom. This
can be achieved by taking the steady-state limit. In this case, the conditional average appearing in Eq.(S3) yields
〈xl|xr〉 = C[l,r]C

−1
[r,r]xr [S1]. We substitute Eqs. (S2)-(S4) in Eq. (S1) to obtain Eq. (3), which therefore holds only at

steady-state.

DERIVATION OF EQ. (5)

Here we derive the expression in Eq. (5) for the cycling frequencies. To this end, we first show that the right hand
side of this equation is invariant under orientation preserving linear transformations restricted to the 2-dimensional
reduced subspace. Let us consider such a transformation: x′r = Bxr, f ′r = Bfr, and denote by C′[r,r] the reduced
covariance matrix in the transformed coordinates.

BC[r,r]B
T = C′[r,r] =⇒ det B =

√
det C′[r,r]
det C[r,r]

(S5)

Using this result together with the transformation properties of the vector product, we obtain

〈τij〉√
det C[r,r]

=
〈xr × fr(x)〉√

det C[r,r]

=
〈x′r × f ′r(x

′)〉√
det C[r,r]

1

det B
=

〈
τ ′ij
〉

√
det C′[r,r]

. (S6)
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The coordinate invariance of this term allows us to specifically consider the convenient coordinates in which C[r,r] = I:

1

γ
〈τij〉 =

1

γ
〈xr × fr(x)〉 =

1

γ

∫
dxr 〈xr × fr(x)|xr〉 pr(xr) =

1

γ

∫
dxr xr × 〈fr(x)|xr〉 pr(xr) (S7)

We can further expand this expression by using Ωr = Aeff + D[r,r]C
−1
[r,r]. (The expression for Ωr follows immediately

from Eq. (4), since we require jr(xr) = Ωrxrpr(xr).)

1

γ
〈fr(x)|xr〉 = Aeffxr = Ωrxr −D[r,r]C

−1
[r,r]xr. (S8)

Combining this result with Eq. (S7), we arrive at

1

γ
〈τij〉 =

∫
dxr xr × (Ωrxr)pr(xr)−

∫
dxr xr × (D[r,r]C

−1
[r,r]xr)pr(xr). (S9)

Using the explicit form of Ωr (see Eq. (S15)), we evaluate the first term in this expression,

∫
dxr xr × (Ωrxr)pr(xr) =

∫
dxr ωij(x

2
i + x2

j )pr(xr) = ωij(cii + cjj) = 2ωij . (S10)

In addition, we confirm by direct calculation, that, as expected, the second term in Eq. (S9) vanishes:

−
∫
dxr xr × (D[r,r]xr)pr(xr) =

∫
dxr (−xj , xi)

(
dii dij
dij djj

)(
xi
xj

)
pr(xr)

=

∫
dxr [−diixixj − dijx2

j + dijx
2
i + djjxixj ]pr(xr)

= cij︸︷︷︸
0

(djj − dii) + dij (cii − cjj)︸ ︷︷ ︸
0

= 0 (S11)

Altogether, this gives us the desired result:

1

2γ

〈τij〉√
det C[r,r]

= ωij (S12)

DERIVATION OF EQ. (13)

Here we show that Πtot ≥ Πr.

Πtot −Πr

kB
=

∫
dx

jT (x)D−1j(x)

p(x)
−
∫
dxr

jTr (xr)D
−1
[r,r]jr(xr)

p(xr)

=
γ

kB

∑

j∈[l]

∫
dx

v2
j (x)

(T + αj)
p(x) +

γ

kB

∑

i∈[r]

[(∫
dx

v2
i (x)

(T + αi)
p(x)

)
−
∫
dxr
〈vi(x)|xr〉2
(T + αi)

p(xr)

]

=
γ

kB




∑

j∈[l]

∫
dx

v2
j (x)

(T + αj)
p(x) +

∑

i∈[r]

∫
dxr

[(∫
dxl

v2
i (x)

(T + αi)
p(xl|xr)p(xr)

)
− 〈vi(x)|xr〉2

(T + αi)
p(xr)

]


=
γ

kB



∑

j∈[l]

〈v2
j (x)〉

(T + αj)
+
∑

i∈[r]

∫
dxr

(
〈v2
i (x)|xr〉 − 〈vi(x)|xr〉2

)
︸ ︷︷ ︸

≥0

p(xr)

(T + αi)


 ≥ 0

(S13)

where in the second line we use that D is diagonal, v(x) = j(x)/p(x), and jr(xr) = p(xr)
∫
dxl vr(x)p(xl|xr) =

p(xr) 〈vr(x)|xr〉, which follows from the derivation of Eq. (3).
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DERIVATION OF EQ. (14)

Here we derive the expression for the partial entropy production rate in terms of the cycling frequencies (see Eq. (14)).
It is convenient to substitute the current field j = Ωxp(x) in Eq. (11), which gives

Π = kB

∫
dx(Ωx)TD−1(Ωx)p(x) = kB

∫
dxxiΩ

T
ij(D

−1)jlΩlmxmp(x)

= kBΩTij(D
−1)jlΩlmcmi = kB Tr (ΩTD−1ΩC).

(S14)

Since the entropy production is invariant under coordinate transformations, we can use a more suitable coordinate
system. In particular, we choose a set of coordinates such that C = I. In this set of coordinates, the entries of the
matrix Ωij correspond to the cycling frequencies in the coordinates space of the ith and jth coordinates [S2]. Thus,
in the 2D case Ωr is given by

Ωr =

(
0 ω
−ω 0

)
(S15)

Furthermore, in this coordinate system C[r,r] and Ωr commute, yielding

Π(2)
r = kBω

2 Tr (C[r,r]D
−1
[r,r]) (S16)

Note, this expression is invariant under coordinate transformations.

SYSTEM SIZE AND SPATIAL AVERAGE

We determined the scaling of cycling frequencies for a range of system sizes (Fig. S1A). By properly rescaling both
axes (see Eq.(10)), we can collapse all data on a mastercurve, which is consistent with a power-law over at least two
decades (Fig. S1B). This analysis suggests a universal behavior, which is not dependent on the size of the system.
These results provides additional numerical evidence for a power law scaling.

To determine ensemble averages of the cycling frequencies in Fig.(3) and Fig.(4) we employ spatial averages. For
an infinite heterogeneous system, the ensemble average is equivalent to a spatial average. In a finite system, we need
to be careful when using spatial averages because of edge effects. We investigated this aspect in a 1D chain, for which
edge effects will be stronger than in higher dimensional systems. We performed a spatial average over all the different
beads at distance r in the system, where we excluded data from beads at distances < 10 from the edge of system.
Using this procedure, we find results that are consistent with those obtained with the ensemble average. (Fig. S2)

FIG. S1. Spatial scaling behavior of cycling frequencies. A) Scaling behavior of the frequency for different system sizes in the
1D chain (other parameters as in Fig. 3). B) Data collapse obtained by properly rescaling both axes.
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FIG. S2. Comparison between spatial and ensemble averages of the cycling frequencies for a 1D chain of size N=1501 (other
parameters as in Fig. 3).
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Detecting and quantifying nonequilibrium activity is essential for studying internally driven assemblies,
including synthetic active matter and complex living systems such as cells or tissue. We discuss a noninvasive
approach of measuring nonequilibrium behavior based on the breaking of detailed balance. We focus on “cycling
frequencies”—the average frequency with which the trajectories of pairs of degrees of freedom revolve in phase
space—and explain their connection with other nonequilibrium measures, including the area enclosing rate
and the entropy production rate. We test our approach on simple toy models composed of elastic networks
immersed in a viscous fluid with site-dependent internal driving. We prove both numerically and analytically
that the cycling frequencies obey a power law as a function of distance between the tracked degrees of freedom.
Importantly, the behavior of the cycling frequencies contains information about the dimensionality of the system
and the amplitude of active noise. The mapping we use in our analytical approach thus offers a convenient
framework for predicting the behavior of two-point nonequilibrium measures for a given activity distribution in
the network.

DOI: 10.1103/PhysRevE.99.052406

I. INTRODUCTION

The field of active matter has developed over recent
decades to provide a physical description of classical many-
body systems operating far from thermodynamic equilibrium
[1–3]. A prominent class of such active matter are living
systems: Schools of fish [4], flocks of birds [5], and colonies
of bacteria [6,7] can all exhibit collective dynamics that are
manifestly out of equilibrium. However, the non equilibrium
activity of biological assemblies at smaller subcelluar scales is
not always straightforward to discern [8,9]. Examples include
the stochastic fluctuations of biological assemblies such as
chromosomes [10], the cytoskeleton [2,11–14], and cellular
membranes [15–17]. Indeed, while these fluctuations can at
first sight appear indistinguishable from thermal Brownian
motion, they are in many cases driven by energy-consuming
processes at molecular scales [1,2,8,9,18,19]. This molecular-
scale activity can propagate to mesoscopic scales, giving
rise to nonequilibrium dynamics that breaks detailed balance
[9,20–25] or that violates the fluctuation dissipation theorem
[12,15,16,26–28]. Soft-driven assemblies can also be realized
in synthetic systems, including chemical fueled synthetic
fibers [29], crystals of active colloidal particles [30], and artifi-
cial lipid membranes [31,32]. Numerous experimental studies
showed how molecular nonequilibrium processes affect the
mesoscopic mechanical properties of in vivo biological assem-
blies [2,11–13], in vitro reconstituted cytoskeletal networks
[33–35], and synthetic materials [36]. It still remains unclear,
however, how to characterize the nonequilibrium fluctuations
of soft-driven assemblies.

*C.broedersz@lmu.de

To make further progress on characterizing active systems,
various candidates for a reliable and informative nonequilib-
rium measure have been proposed. A natural and commonly
used measure of the time-irreversibility of a process is the
entropy production rate. In some cases, this measure is related
to the energy dissipation in a system [37]. Recent studies
made significant progress in inferring the entropy production
rate from the observed trajectories [25,38,39]. In general,
for complex systems it is unclear how to interpret measures
of the partial entropy production rate or how to relate the
measured quantities to the real entropy production rate of the
full system. It is possible, however, to set a lower bound to
the total entropy production from the observation of a few
mesoscopic degrees of freedom [23,40–43]. An alternative
approach of using area enclosing rates (AER) of stochastic
trajectories in phase space as a metric for the breaking of de-
tailed balance was presented in Refs. [44] and [45]. A closely
related concept—the cycling frequencies of the stochastic
trajectory—was used to analyze the nonequilibrium behavior
emerging in the mode-space trajectories of a probe filament in
an active gel [21,22] or the dynamics of a driven disordered
elastic network near its isostatic point [24].

Despite the multitude of available nonequilibrium mea-
sures, it is still unclear how to use them to extract useful
information about the nature of active driving in a system. The
cycling frequencies can be used to investigate the nonequilib-
rium dynamics emerging on different lengthscales in driven
elastic networks [23]. In particular, the cycling frequencies
measured from trajectories of two probe particles in an in-
ternally driven elastic network display a power-law behavior
as function of the distance between the particles, with an
exponent that depends on the dimensionality of the system;
the prefactor of this scaling law depends on the statistical
properties of the internal driving. Thus, these experimentally

2470-0045/2019/99(5)/052406(12) 052406-1 ©2019 American Physical Society
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FIG. 1. (a) One-dimensional elastic chain of beads at tempera-
ture T with spatially varying white-noise driving intensity αi, and
the corresponding diffusion matrix D. The tracked pair of beads is
indicated in green. (b) Two-dimensional and (c) three-dimensional
elastic networks investigated in Sec. V A.

accessible cycling frequencies and their associated scaling
behavior provide a promising candidate for a nonequilibrium
measure that may provide access to properties of the internal
driving.

In this work we present a detailed derivation of the scaling
behavior of cycling frequencies for d-dimensional elastic
networks with internal driving. Thus, we derive a theoretical
framework that allows us to relate the cycling frequency to
the lengthscale of the observation and to the properties of the
network and of the active noise. Furthermore, we clarify the
relation between the cycling frequencies and other nonequilib-
rium measures such as the area enclosing rate and the entropy
production rate.

II. DRIVEN ELASTIC NETWORKS

We use overdamped networks of elastically coupled beads
suspended in a viscous fluid (see Fig. 1) as a simple model
for soft subcellular assemblies, such as a chromosome, a cell
membrane, or the cytoskeleton [46–49]. For simplicity we
choose units in which the elastic spring constant, the damping
coefficient of the beads, and the Boltzmann constant kB equal
1. The fluid is assumed to be at thermal equilibrium and the
resulting thermal fluctuations in the system are thus modeled
as Gaussian white noise processes acting independently on
all the beads with the same amplitude T . Additional active
force fluctuations, which in a biological system would be
generated by enzymatic activity, drive the system out of
thermal equilibrium. In real systems, the binding kinetics
of enzymes such as molecular motors may depend on local
structural properties of the network. Consequently, we expect
the variance of the stochastic forces that these enzymes gen-
erate to depend on local features. We account for this possible
spatial heterogeneity implicitly by implementing the active
forces as independent Gaussian white noise processes with
site-dependent amplitudes αi. Here we shall only focus on the
case of spatially uncorrelated intensities of the noise, but the
theoretical framework we present in this paper can also be
applied in other scenarios.

By modeling the active forces as “white,” we essentially
restrict our model to systems in which the correlation times
of the active driving are shorter than the intrinsic relaxation
times of the network. This model is mathematically equivalent
to embedding the beads in local thermal baths at temperatures
T + αi [50].

This simplified description allows us to study the dynamics
of the system using a Fokker-Planck equation:

∂t p(x, t ) = −∇ · (Ax − D∇)p(x, t ) := −∇ · j(x, t ), (1)

where x represents the displacements of the beads relative
to their equilibrium positions, and p(x, t ) is the probability
distribution of x at time t . We also assume that the forces are
linear in x, i.e., f (x) = Ax with a symmetric matrix A, and
D = diag{T + α1, . . . , T + αN } is the diffusion matrix. The
right-hand side of Eq. (1) can be interpreted as the divergence
of the probability current density j(x, t ) = (Ax − D∇)p(x, t ).
At steady state, the nonvanishing dissipative probability cur-
rents constitute a measure of nonequilibrium dynamics in a
system and thus play the key role in our approach.

III. CYCLING FREQUENCIES AND
PHASE SPACE TORQUE

The steady-state probability currents, j(x), are mathemat-
ical objects that capture the presence of nonequilibrium ac-
tivity by revealing time-irreversibility of the dynamics at the
level of the Fokker-Planck equation. This time-irreversibility
manifests through the emergence of a mean velocity field
v(x) in the coordinate space, which is related to the proba-
bility current through j(x) = v(x)p(x) [51]. Therefore, from
an experimental perspective, an ideal way to quantify the
nonequilibrium dynamics of a system would be to measure
such a velocity field v(x). However, inferring the full v(x)
field is a challenge on its own. The most straightforward
approaches require a discretization of the phase space. Such
a measurement would require tracking many degrees of free-
dom for long time periods, which is difficult in practice.

Instead of inferring v(x) in full detail, one can alterna-
tively measure some coarse-grained quantities related to v(x),
which still retain key information about the nonequilibrium
dynamics of the system. For instance, we could track a pair of
degrees of freedom xr = {xi, x j} and measure the time average
of the angular velocity 〈β̇i j〉, or equivalently, the rate at which
the trajectory revolves around the origin in this reduced two-
dimensional subspace (Fig. 2). This simple measurement does
not require any discretization of phase space or inference of
the force field. We shall refer to 〈β̇i j〉 as the cycling frequency.

In general, 〈β̇i j〉 may contain only limited information
about v(x). For linear systems, however, the mean phase space
velocity can be written as [52]

v(x) = �x, � = A + DC−1, (2)

where C = 〈x ⊗ x〉 is the steady-state covariance matrix
obeying the Lyapunov equation

AC + CAT = −2D. (3)

Equation (2) sets strong constraints on the structure of v(x):
for dynamics projected on any two-dimensional subspace
{xi, x j} the probability currents have an elliptical structure.

052406-2
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FIG. 2. Schematic trajectory in the coordinate space [xi, x j] of
two tracer beads. The light blue area enclosed in the triangle
represents xr × fr (x)/2 appearing in Eq. (6), which gives the area
enclosing rate upon averaging over phase space.

The remaining information about the amplitude of the currents
is set by the cycling frequencies 〈β̇i j〉.

To show this, we denote the velocity of the system in the
reduced i j-subspace by vr (x) = {vi(x), v j (x)}. Note, what we
observe while looking at the xr-subspace only is a conditional
mean 〈vr (x)|xr〉. Similar to Eq. (2), we find that 〈vr (x)|xr〉 =
�rxr , with �r = Aeff + D[r,r]C−1

[r,r] [23]. Here Aeff is a matrix
such that 〈fr (x)|xr〉 = 〈{ fi(x), f j (x)}|xr〉 = Aeffxr; note, C[r,r]

and D[r,r] are matrices of size [2 × 2], given by C[r,r] =
{{cii, ci j}, {c ji, c j j}} and D[r,r] = {{dii, di j}, {d ji, d j j}}.

Next, we show that the eigenvalues of �r coincide with
the cycling frequencies 〈β̇i j〉. First, note that 〈β̇i j〉 is invariant
under orientation preserving linear transformations of the re-
duced subspace. We can therefore work in covariance identity
coordinates, yr , such that C[r,r] = I. In this basis, �r takes a
particularly simple form [52]

�r =
(

0 ωi j

−ωi j 0

)
, (4)

with the imaginary parts of its eigenvalues on the antidiagonal.
This form of �r implies that for C[r,r] = I, the probability
current field has a circular structure. Using Eq. (4), we find
that

〈β̇i j |yr〉 =
〈

yr × ẏr

|yr|2
∣∣∣∣yr

〉
= y2〈ẏ1|yr〉 − y1〈ẏ2|yr〉

y2
1 + y2

2

= y2〈v1(y)|yr〉 − y1〈v2(y)|yr〉
y2

1 + y2
2

= ωi j . (5)

This means that the conditional average of the angular veloc-
ity 〈β̇i j |yr〉 is yr-independent and equals ωi j at all points in
the reduced phase space. Hence, averaging over yr leads to
〈β̇i j〉 = ωi j , with ω2

i j = det �r.
Recently, new approaches have been developed to infer

current fields in nonlinear systems by considering an expan-
sion of the inferred force field [38]. Up to first order these
methods reduce to calculating area enclosing rates, which
are indeed closely related to the cycling frequencies, as we
discuss further below.

One of our central objectives is to derive a relation between
the observed currents and the properties of the system and the
active driving. Given that the cycling frequencies are set by
ωi j—the imaginary parts of the eigenvalues of �r—we can
make further progress by showing that for a general linear
system [23]

ωi j = 1

2

〈xr × fr (x)〉√
det Cr

, (6)

where 〈xr × fr (x)〉 = 〈xi f j (x) − x j fi(x)〉 = (CAT − AC)i j is
the mean phase space torque (Fig. 2). Intuitively, Eq. (6)
implies that for an overdamped linear system the mean phase
space angular velocity is proportional to the mean phase
space torque. A detailed derivation is presented in Ref. [23].
Moreover, in covariance identity coordinates Eq. (6) reduces
to ωi j = 1

2 (AT − A)i j = �i j , in accord with previous studies
[21,22,52]. One can equivalently identify (CAT − AC)i j with
mean area enclosing rates in the i j-subspace, as considered
in [44]. Here, we focus on the cycling frequencies, since
they are more directly related to the probability currents,
which constitute the basis of our work. In some instances,
however, the area enclosing rates turn out to be particularly
advantageous to work with. In these cases we shall briefly
discuss how switching to the area enclosing rates simplifies
the analysis (see Sec. IV).

Since the cycling frequencies contain information about
the amplitudes of the phase space probability currents, they
can be related to the entropy production rate. For linear
systems, in covariance identity coordinates, the full entropy
production rate can be expressed as a weighted sum of the
cycling frequencies squared: � =∑n

i−odd ω2
i,i+1[(D−1)i,i +

(D−1)i+1,i+1]. However, in many experimental contexts it
is typically impossible to track all the degrees of freedom
or to resolve all steps of a process. This practical lim-
itation motivated the introduction of various measures of
reduced/apparent entropy production rate [23,40–43]. For
the case of a two-point measurement, as the ones discussed
in this paper, one can consider a reduced entropy produc-
tion rate directly related to the cycling frequency: �(2)

r =
ω2

i jTr(C[r,r]D−1
[r,r] ), which gives a lower bound on the full

contribution to the total entropy production rate from the
observed pair of degrees of freedom [23].

IV. ONE-DIMENSIONAL CHAIN AND
DIFFUSION EQUATION

While Eq. (6) sets a relation between the cycling fre-
quencies observable in an experiment and the properties of
both the network and the active noise distribution, it is not
straightforward to explicitly derive these properties from the
cycling frequencies. In the following sections, we use Eq. (6)
to build a framework for extracting specific information about
the system from the behavior of the cycling frequencies ωi j .

We first consider the simplest case of a one-dimensional
chain of 2N − 1 beads coupled by harmonic springs. This
example will help us build intuition for more complex lattices.
To obtain insight into how nonequilibrium behavior manifests
at different length scales, we consider a two-point nonequi-
librium measure. Specifically, we study how the cycling
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frequency in the subspace of displacements of two chosen
beads {xi, xi+r} depends on the distance r between these
beads. Note that the distance r is expressed in the units of
the lattice constant. We study the behavior of the cycling
frequencies for two scenarios:

(i) Active noise present only at single site,
(ii) Random spatial distribution of activities {αi}.

In case (i) we plot the cycling frequency, ωsingle(r), between
the active bead and another bead at distance r. In case (ii)
we consider an ensemble of active noise distributions {αi},
in which the amplitude of the active noise at each site is
drawn randomly from a probability distribution pα , with
mean ᾱ and variance σ 2

α . The amplitudes αi are spatially
uncorrelated. We then calculate 〈ω2(r)〉—the squared cycling
frequency between two beads at distance r averaged over the
activity distributions αi. The first observation is that in both
scenarios the cycling frequencies follow a power law as a
function of distance, as shown in Fig. 3. The exponent in the
random distribution scenario is independent of the probability
distribution pα of the intensities, but different from the single
activity case.

To understand the origin of the power-law behavior and
to calculate the exponents, we use Eq. (6) to derive analyt-
ical expressions for ωsingle(r) and 〈ω(r)2〉. In the case of a
one-dimensional chain with spatially uncorrelated noise, the
expression for the cycling frequency [Eq. (6)] reduces to

ωi j = ∂̃2
2 ci j√

det C[r,r]
, (7)

where ci j indicates the elements of the covariance ma-
trix, and ∂̃2

2 ci j denotes the discrete second derivative across
rows: ∂̃2

2 ci j = ci, j+1 − 2ci, j + ci, j−1. Thus, this result reduces
the problem of calculating ωi j to finding the covariance
matrix C.

Motivated by the structure of D, we decompose C =
T C + ᾱC∗ into equilibrium (C) and nonequilibrium (C∗)
parts [Fig. 4(a)]. For the one-dimensional chain, the Lyapunov
equation [see Eq. (3)] is equivalent to

∂̃2
1 ci j + ∂̃2

2 ci j = −2δi j, (8)

∂̃2
1 c∗

i j + ∂̃2
2 c∗

i j = −2δi j
αi

ᾱ
. (9)

At equilibrium detailed balance is preserved, which im-
plies ∂̃2

2 ci j = 0 ∀i �= j [see Eq. (7)]. We can therefore replace
∂̃2

2 ci j with ∂̃2
2 c∗

i j in Eq. (7). Then, expanding the expression for
the cycling frequency in powers of (ᾱ/T ), we get

ωi j = ᾱ

T

∂̃2
2 c∗

i j√
det C[r,r]

+ O
(

ᾱ2

T 2

)
. (10)

Up to linear order in (ᾱ/T ) the contributions from C and
C∗ separate; consequently, ωi j becomes linear in {αi}. This
linearity appearing in the limit of weak activity will later allow
us to calculate cycling frequencies averaged over different
realizations of the activity {αi}. Note, if instead of ωi j , we
consider the area enclosing rates (AER = ᾱ∂̃2

2 c∗
i j), the factor√

det C[r,r] does not enter, implying that the expression for

FIG. 3. (a) Scaling behavior of the cycling frequencies as a
function of distance between the beads, obtained for a 1D chain with
a single activity (blue stars) and with spatial distribution of activities
with amplitudes drawn randomly from exponential (green diamonds)
and folded Gaussian (red circles) distributions. (b) Comparison
between the cycling frequencies (lower blue) and the Area Enclosing
Rates (AER) (upper orange) above the weak noise limit (ᾱ/T = 4).
All data points correspond to results obtained by numerically solving
Lyapunov equation.

the area enclosing rates is linear in {αi} irrespective of the
magnitude of ᾱ.

A. Activity at a single site

To obtain insight into what determines the cycling fre-
quencies in a concrete example, we first find the solution to
Eq. (9) for the case of activity appearing only at a single site
in the center of the chain. Later, we will use this solution to
construct C∗ for a more general case. For now, let us assume
that αi = αδiN and ᾱ = α.

We can think of Eq. (9) as a discretized stationary diffusion
equation with a single source with a divergence of 2 in the
middle of the C∗ matrix, and with absorbing boundary condi-
tions at the edges. The absorbing boundaries in the diffusion
equation reflect the fixed boundary conditions for the elastic
chain. We denote by r =

√
(i − N )2 + ( j − N )2 the distance
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FIG. 4. (a) Profiles of the matrices C and C∗ in the single
activity case. For visual purposes, the discrete data points have been
interpolated to a 2D surface. ci j is linear in both indices, resulting
in ωi j = 0 for αi = 0. (b) Values of c∗

i j versus the distance from the

center of the matrix r = √(i − N )2 + ( j − N )2. Large orange points
correspond to the entries at positions (i, N ). The inset depicts the
same plot in log-linear scale.

from the center of C∗. If we consider a continuous analog
of our discrete problem and neglect the boundary conditions,
then we can assume a rotational symmetry of the solution
c∗(r). The corresponding continuous diffusion equation takes
the form: 1

r ∂rr∂rc∗(r) = 0. Consequently, r∂rc∗(r) = −a and
c∗(r) = −a ln(r) + b.

One could also argue for ∂rc∗(r) ∼ 1/r scaling of the
“covariance current,” by demanding that the total “covariance
flux” through a circle of radius r, centered at 0 is independent
of r and equals 2—the divergence of the source. This also
allows us to identify a = 1/π . The integration constant b
is system-size dependent and has to be set such that the
covariance vanishes at the edge of the covariance matrix.

The functional form that we obtain from this approximate
analysis accurately describes the actual numerically obtained
values of c∗

i j far from the boundaries [see Fig. 4(b)]. Note,
the deviations that appear close to the boundaries are due to
neglecting the absorbing boundary conditions and not due to
the discrete nature of the problem. We can also consider a con-
tinuous limit of the problem, in which the chain is replaced by
a string, by taking the limit N → ∞, k → ∞, while keeping
k/N = const. In this limit the discrete diffusion equation is
replaced by a continuous one, but the boundary effects still
play the same role. We shall return to the continuous limit in
Sec. V B, where we discuss more complex networks.

We can use the approximate form of c∗(r) together with
Eq. (10) to calculate ωsingle(r). For large N , we can replace

FIG. 5. (a) Scaling behavior of ωsingle(r) as a function of the
distance between the beads and comparison with the analytical
prediction (dashed line) in Eq. (11). Below, the behavior of the (b)
equilibrium and (c) nonequilibrium contributions to ωsingle(r). The
contribution presented in (c) coincides with the area enclosing rates.
All data points correspond to results obtained by numerically solving
Lyapunov equation.

∂̃2
2 c∗

N,N+r with ∂2
r c∗(r), to arrive at

ωsingle(r) = α

T

1

πr2

1√
det C[r,r](r)

+ O
(

α2

T 2

)
. (11)

Interestingly, it turns out that b, which is in general unknown,
does not enter the equation for ω(r).

To find the equilibrium part C, we make the follow-
ing observation. At equilibrium all cycling frequencies ωi j

must vanish, which combined with Eq. (7) gives: ∂̃2
2 ci j =

0 ∀i �= j . Using Eq. (8) at point (i, i) and the symmetry of C
we find ∂̃2

2 cii = −1. In general, we can therefore write the
equation for C as ∂̃2

2 ci j = −δi j . Note that this condition is
equivalent to a discrete stationary diffusion equation in one
dimension, with a single source at site i and with absorb-
ing boundary conditions. This implies that ci j is linear in
both indices and one can easily verify that ci j = min(i, j) −
i j/(2N ) satisfies Eq. (8). Using this solution, we find that
[det C[r,r](r)]−

1
2 = [ 1

2 r(N − r)]−
1
2 ∼ r− 1

2 for r � N . There-

fore, ωsingle(r) ∼ r− 5
2 , as shown together with the numerical

results in Fig. 5. The good agreement between the numerical
and analytical results allows us to conclude that the scaling
exponent is determined by the ln(r)-like profile of C∗, which
in turn is set by the dimensionality of the system. One could
in principle find an analytical solution for c∗(r) that accounts
for the boundary conditions, but the ln(r) scaling captures the
essential features.
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FIG. 6. Profile of C∗ in the case of spatially correlated ampli-
tudes of the active noise, together with the lines {(i, j, c∗

i j )} j=i,...,2N−1

for i = 10, 17, 23. The color of a line indicates the sign of its
curvature. The red (blue) points in the plots of |ωi, j | correspond to
positive (negative) cycling frequencies. Here, the profile of C∗ is
presented for activities {αi − ᾱ}. This transformation of activities is
justified in Appendix A.

B. Spatially varying activity

Equipped with the results from the previous section, we
now consider a system with spatially varying activity. First,
we will further clarify the connection between calculating
cycling frequencies and solving a discretized steady-state
diffusion equation for the covariance function. To this end, we
consider a generic activity distribution {αi} and plot the corre-
sponding active part of the covariance matrix C∗ obtained by
solving Eq. (9) (see Fig. 6). From the form of Eq. (7), we see

that the cycling frequencies {ωi j} j=1,...,2N−1 are proportional
to the curvature of the line {(i, j, c∗

i j )} j=1,...,2N−1, as illustrated
by the plots in Fig. 6. The connection with the steady-state
diffusion equation [see Eq. (9)] allows us to understand how a
given distribution of activities translates to a particular profile
of the C∗ matrix and how this in turn determines the behavior
of the cycling frequencies.

In general, the amplitudes of the active noise may be
spatially correlated. Here, however, we restrict ourselves ex-
clusively to the case of spatially uncorrelated activities, which
is valid in the limit of distances larger than the correlation
length of the amplitudes. To the “ith” bead we assign a ran-
domly sampled amplitude αi. We assume all αi to be pairwise
independent and identically distributed with distribution p(α).
For simplicity we index the beads so that the bead in the center
of the system has index 0. To calculate ω(2r) = ω−r,r , we
need to determine ∂̃2

2 c∗
−r,r . For a given activity distribution

{αi} we can exploit the linearity of Eq. (9) to obtain the
corresponding C∗({αi}) as a superposition of single-source
solutions. Thus, we can write

∂̃2
2 c∗

−r,r ({αi}) =
∑

z

∂̃2
2 c∗

−r,r ({αiδiz}). (12)

For beads far enough from the boundary, we approximate
C∗({αiδi j}) by a logarithmic decay centered at ( j, j) to obtain

∂̃2
2 c∗

−r,r ({αiδiz}) = 1

π

αz

ᾱ

(r + z)2 − (r − z)2

[(r + z)2 + (r − z)2]2

= 1

π

αz

ᾱ

rz

(r2 + z2)2
. (13)

Combining Eqs. (12) and (13), we calculate 〈[̃∂2
2 c∗

−r,r ({αi})]2〉,
which is the main factor in the expression for 〈ω2(2r)〉.

(πᾱ)2〈[̃∂2
2 c∗

−r,r ({αi})
]2〉 =

〈[∑
z

rzαz

(r2 + z2)2

][∑
z′

rz′αz′

(r2 + z′2)2

]〉
=
∑

z

r2z2
〈
α2

z

〉
(r2 + z2)4

+
∑

z

rz〈αz〉
(r2 + z2)2

∑
z′ �=z

rz′〈αz′ 〉
(r2 + z′2)2

=
∑

z

r2z2
(〈
α2

z

〉− 〈αz〉2
)

(r2 + z2)4
≈ σ 2

α

∫ ∞

−∞

r2z2dz

(r2 + z2)4
= πσ 2

α

16r3
. (14)

In the second line of this result, we used that
∑

z′ �=z
rz′

(r2+z′2 )2 =
− rz

(r2+z2 )2 and approximated the sum by an integral. Evaluating
the integral and rescaling 2r → r, we arrive at the final result:

〈ω2(r)〉α = σ 2
α

T 2

1

2πr3

1

det C[r,r](r)
. (15)

Given the asymptotic behavior 1/ det C[r,r](r) ∼ r−1 for r �
N we conclude that in the limit of weak activity

√
〈ω2(r)〉 ∼

r−2 (see Fig. 3). Importantly, apart from reproducing the
observed exponent of the power law, our result gives a correct
prediction for the prefactor, which contains information about
the variance of the active forces.

V. d-DIMENSIONAL LATTICES

A. Cubic lattice

To explain the origin of the scaling behavior of ω(r) for
multidimensional networks we now focus on the simplest
possible case of a d-dimensional cubic lattice. Importantly, the
calculation presented for this case also provides us with intu-
ition for more complex lattices. Let us denote the bead indices
corresponding to d independent directions with n1, . . . , nd .
We will denote the elements of the covariance matrix C
as cn1,...,nd ;n̄1,...,n̄d := cn,n̄. We assume zero-restlength for the
springs, so that the degrees of freedom corresponding to
different directions decouple. Therefore, by C we actually
mean the covariance matrix of only these degrees of freedom
that correspond to a single chosen direction, for instance the
one corresponding to the index n1.
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For this particular network, the Lyapunov equation is
equivalent to (

d∑
i=1

∂̃2
ni

+
d∑

i=1

∂̃2
n̄i

)
cn,n̄ = −2dn,n̄. (16)

Similar to the one-dimensional case, here we recognize a
discretized stationary diffusion equation in 2d dimensions,
with the divergence of the sources given by the elements of
D. For convenience we index the beads such that the one in
the middle of the lattice is (0, . . . , 0).

Our goal is to calculate the cycling frequency
ωr,...,r;−r,...,−r = ω(2

√
dr). Here we consider a particular

case of relative position of the beads with respect to the
principal directions of the lattice. It turns out, however, that
the final result depends only on the distance between the
beads. From Eq. (6), we find that

ωr,...,r;−r,...,−r ≈ (ᾱ/T )√
det C[r,r]

d∑
i=1

∂̃2
ni

c∗
n,n̄

∣∣
r,...,r;−r,...,−r

. (17)

Following the procedure used for the one-dimensional chain,
we begin with finding the solution to a single source problem
with one active bead at site (0, . . . , 0). As before, we will
then use this solution as a Green’s function for our diffusion
problem with a generic activity distribution.

Taking a continuous limit of the diffusion equation and
neglecting the boundary conditions, we expect that ∂rc(r) ∼
1/r2d−1 and consequently c(r) ∼ 1/r2d−2, where r is the
distance from the center of the 2d-dimensional covariance
matrix. Therefore, for a single active bead at site (0, . . . , 0),
we obtain

c∗
n,n̄ = ad

(
d∑

i=1

n2
i +

d∑
i=1

n̄2
i

)−(d−1)

= ad (n2 + n̄2)−(d−1). (18)

The constant ad = (d − 2)!/(2πd ) can be obtained from the
divergence theorem, as we did in the one-dimensional case.

The contribution to ωn,n̄ from a single activity at site
(0, . . . , 0) is then given by (Appendix A)

d∑
i=1

∂2
ni

c∗
n,n̄ = 2d (d − 1)ad

n2 − n̄2

(n2 + n̄2)d+1
. (19)

Performing calculations analogous to those for the one-
dimensional chain, we arrive at (Appendix A)

〈
ω2

d=2(r)
〉
α

= σ 2
α

T 2

8

5π3r6

1

det C[r,r]
, (20)

〈
ω2

d=3(r)
〉
α

= σ 2
α

T 2

27

8π4r9

1

det C[r,r]
. (21)

Importantly, we obtain exactly the same results when con-
sidering different directions across the lattice, such as
ω(r,0,...,0),(−r,0,...,0). In general, for a d-dimensional lattice we
expect

∂2
r c(r) ∼ r−2d , (22)

ω2
single,d (r) ∼ r−4d/ det C[r,r](r), (23)

〈ω2
d (r)〉α ∼ r−3d/ det C[r,r](r). (24)

For completeness we investigate the behavior of
det C[r,r](r) for different dimensions. At equilibrium all
cycling frequencies vanish, leading to

d∑
i=1

∂̃2
ni

cn,n̄ = 0 ∀n �=n̄. (25)

For all points on the diagonal of the covariance matrix
(n, n) = (n1, . . . , nd ; n1, . . . , nd ) the diffusion equation [see
Eq. (16)] reads

d∑
i=1

∂̃2
ni

cn,n +
d∑

i=1

∂̃2
n̄i

cn,n = −2. (26)

Using the symmetry of the system, we conclude that the two
sums in Eq. (26) are equal, which together with Eq. (25) imply
that (

d∑
i=1

∂̃2
ni

)
cn,n̄ = −δn,n̄ (27)

for all points (n, n̄). This result can be interpreted in the
following way: for a given (n̄1, . . . , n̄d ), cn,n̄ as a function
of (n1, . . . , nd ) is a solution to a d-dimensional discretized
stationary diffusion equation with a single source at position
(n̄1, . . . , n̄d ), and with absorbing boundary conditions. Note,
there is an interesting symmetry of the diffusion equation
implied by the symmetry cn,n̄ = cn̄,n: the solution at point n
from a source at point n̄ is equal to the solution at point n̄
from a source at point n. While this property of the diffusion
equation would be obvious in an infinite space, it surprisingly
holds also in the presence of absorbing boundaries.

It can further be shown that

cn,n̄ ∼ ln[(n1 − n̄1)2 + (n2 − n̄2)2] for d = 2,

cn,n̄ ∼
[

d∑
i=1

(ni − n̄i )
2

]−( d−2
2 )

for d > 2. (28)

This result can also be understood using a simple dimension-
ality argument: A diffusion problem in d dimensions with a
source forming a ds-dimensional plane can be mapped to a
(d − ds)-dimensional diffusion problem with a point source.
In our case we are dealing with a diffusion problem in a 2d-
dimensional space, with a d-dimensional source. Reducing
the 2d-dimensional problem to a point source problem in d
dimensions, we arrive exactly at Eq. (28). From this equation
we conclude that for dimensions d � 2, the diagonal terms
of C[r,r](r) strongly dominate over the off-diagonal ones. In
fact one can verify that for dimensions d � 2 and for systems
large enough det C[r,r](r) depends on r only weakly and does
not influence the scaling behavior of ω2(r) anymore (see
Fig. 7). This is a consequence of the shorter range of elastic
interactions in higher dimensions.

It is important to note here that, as discussed after intro-
ducing Eq. (10), the area enclosing rates do not depend on
det C[r,r]. This allows us to perform calculations analogous to
the ones presented in this section, without assuming the limit
of weak activities. As a result we predict a scaling σαr−3d/2
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FIG. 7. Scaling behavior of the cycling frequencies as function
of the distance between the beads. The results are obtained for
different lattices and a folded Gaussian activity distribution [23].
Triangles, big squares, and small squares represent triangular, square,
and cubic lattices, respectively. Light (dark) blue triangles represent
triangular networks with zero (finite) rest length springs. In all cases
we used ᾱ

T = 0.15. For computational convenience we determined
the ensemble average by performing a spatial average. All data points
correspond to results obtained by numerically solving Lyapunov
equation.

for the area enclosing rates even for high amplitudes of the
active noise.

B. Generic lattices

In Sec. V A we investigated the simplest possible case of
a d-dimensional zero-rest length cubic lattice Ld . For such
systems the Lyapunov equation for the covariance matrix
could be viewed as a discretized steady-state diffusion equa-
tion defined on a space Ld × Ld ∼ L2d . For instance, for
a two-dimensional square lattice we had to solve a diffusion
equation in a four-dimensional cube. A natural question is
how general the connection is between the Lyapunov equation
and diffusion equations. It turns out that for many zero-rest
length lattices there is simple procedure for translating a par-
ticular lattice structure to a corresponding diffusion equation
for the covariance. The condition which allows us to identify
the terms appearing in the Lyapunov equation with second
derivatives, as in Eq. (9), is that at all sites of the lattice a
spring pointing in one direction is accompanied by a spring
pointing in the opposite direction. If this is the case, then we
can directly read out the diffusion equation from the structure
of the lattice, as illustrated in Fig. 8. Each such pair of springs
gives rise to diffusive terms in the corresponding directions,
with diffusion constant proportional to the spring constant.

In the case of finite rest length elastic networks with
linearized forces, the same condition allows us to write the
Lyapunov equation as a discretized second order partial differ-
ential equation for the covariance. Importantly, the displace-
ments in x and y directions are no longer decoupled and one
has to solve a differential equation for three different covari-
ances: cxx, cxy, cyy. An example of such an equation for a
two-dimensional triangular lattice is included in Appendix B.
Importantly, the structure of the network determines not only
the equation for the covariance matrix but also the cycling
frequencies according to Eq. (6).

For a wide range of networks, including randomly diluted
networks [24], the condition given above is not satisfied and

FIG. 8. An exemplary lattice for which the Lyapunov equation
can be interpreted as a diffusion equation with nonisotropic diffusion.
The presented lattice is equivalent to the triangular lattice, if we
consider them in the zero-rest length case.

there is no straightforward way of translating the Lyapunov
equation to a continuous diffusionlike equation for the co-
variance. Nevertheless, for a given network G, which can be
thought of as a graph, we can still interpret the Lyapunov
equation as a Poisson equation on a graph G × G and relate
the cycling frequency between a pair of degrees of freedom to
the covariance flux through a corresponding vertex of G × G.
The theory of graph Laplacians, introduced by Kirchhoff in
his study of the properties of resistor networks, has found
applications in elasticity theory, graph theory, and computer
science [53–56].

Our numerical calculations reveal that the exponents of the
power laws for the cycling frequencies observed for various
lattices are set by the dimensionality of the system and are in-
dependent of the detailed structure of the lattice [23]. Heuris-
tically, this can be understood as follows: any d-dimensional
rigid network, with a given average coordination number can
be seen as an approximation to a continuous d-dimensional
elastic medium. For such an elastic medium, a continuous
diffusion equation, as the one we used to study d-dimensional
cubic lattices, would be an exact equation for the covariance
field, and we conjecture that the cycling frequencies for a
continuous medium can be obtained by taking appropriate
limits of our results for a discrete system. Note that a study
of the cycling frequencies directly at the level of a continuous
system would require introducing the Fokker-Planck equation
for fields and make the analysis considerably more difficult.
Since our results presented for the d-dimensional cubic lat-
tice should coincide with the results for a d-dimensional
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continuous medium, we argue that our analytical calculation
captures the essential origins of the power-law phenomenon
for all lattices that approximate a continuous medium well.

VI. CONCLUSIONS

Here we considered a simple model of an internally
driven elastic assembly. Using this model, we investigated
the properties of cycling frequencies—a two-point measure of
nonequilibrium dynamics, which can be used in experimental
and theoretical studies of active systems. We discussed how
to relate the cycling frequencies to other commonly used
nonequilibrium measures, such as the area enclosing rates or
the reduced entropy production rate. Furthermore, based on
our analytical approach, reinforced with numerical results, we
predict that the cycling frequencies follow a power law as
a function of distance between the two probes in an elastic
network. The exponent of the power law depends on the
dimensionality of the system, but not on the detailed structure
of the network. In the case of a random spatial distribution
of activities, we showed that the mean cycling frequencies√

〈ω2(r)〉 are proportional to the standard deviation of the
intensities of the active noise σα . Interestingly, the case of a
single-site activity gives a different exponent than the one with
randomly distributed activities.

For more complex activity distributions, the connection
between the Lyapunov equation and a diffusion equation, that
we presented in Secs. IV and V B, provides some intuition
for how the cycling frequencies in a system depend on the
structure of the active noise. Since the diffusive terms in

the Lyapunov equation originate solely from the structure
of the lattice, we expect that a similar framework can be
used to study the behavior of the cycling frequencies for
more complex distributions of the active noise, which include
spatial correlations [57].

The analytical approach we developed aims at finding
a mapping between the properties of the active noise and
two-point nonequilibrium measures. Based on the results we
obtained and their robustness to the detailed structure of a
network, we argue that the cycling frequencies and the area
enclosing rates are promising tools for studying the nature of
the stochastic driving in an active elastic assembly. Examples
of numerical studies of actively driven elastic assemblies in
which the nonequilibrium measures presented in our work
could be applied include [58–61]. Experimentally our ap-
proach can be tested on reconstituted actomyosin networks
[33–35] and other noise-driven biological [10,15,16] or syn-
thetic systems [29–32,36], which can be well approximated
by an elastic assembly at steady state. Such experiments could
be performed in chromosomes, membranes, or tissues, using
embedded colloidal particles or fluorescently tagged cellular
organelles.
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APPENDIX A: CALCULATION FOR A D-DIMENSIONAL ZERO-RESTLENGTH CUBIC LATTICE

First we find the profile of the C∗ matrix for the case of a single activity at site (0, . . . , 0). Neglecting the boundary conditions
and assuming a rotational symmetry of the solution we find

c∗
n,n̄ = ad

(
d∑

i=1

n2
i +

d∑
i=1

n̄2
i

)−(d−1)

, with ad = (d − 2)!

2πd
, (A1)

∂ni c
∗
n,n̄ = −(d − 1)ad

2ni(
n2

1 + . . . + n̄2
d

)d , (A2)

∂2
ni

c∗
n,n̄ = d (d − 1)ad

4n2
i(

n2
1 + . . . + n̄2

d

)d+1 − (d − 1)ad
2(

n2
1 + . . . + n̄2

d

)d (A3)

= 2(d − 1)ad(
n2

1 + . . . + n̄2
d

)d+1

[
2dn2

i − (n2
1 + . . . + n̄2

d

)]
. (A4)

Adding contributions from the all the second derivatives appearing in Eq. (17) we get

d∑
i=1

∂2
ni

c∗
n,n̄ = 2d (d − 1)ad

[(
n2

1 + . . . + n2
d

)− (n̄2
1 + . . . + n̄2

d

)](
n2

1 + . . . + n̄2
d

)d+1 = 2d (d − 1)ad
n2 − n̄2

(n2 + n̄2)d+1
. (A5)

To get an expression for
∑d

i=1 ∂2
xi

c in the case of one active bead at site (z1, . . . , zd ), one simply has to substitute ni → (ni −
zi ), n̄i → (n̄i − zi ) in Eq. (A5). Therefore, the contribution to ω from an activity αz1,...,zd at site (z1, . . . , zd ) reads

d∑
i=1

∂2
ni

cr,...,r;−r,...,−r = 2d (d − 1)ad

∑d
i=1(r − zi )2 −∑d

i=1(−r − zi )2(∑d
i=1(r − zi )2 +∑d

i=1(−r − zi )2
)d+1 αz1,...,zd (A6)
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= 2d (d − 1)ad

∑d
i=1(−4rzi )(

2r2d + 2
∑d

i=1 z2
i

)d+1 αz1,...,zd (A7)

= −d (d − 1)ad

2d−2

∑d
i=1 rzi(

r2d +∑d
i=1 z2

i

)d+1 αz1,...,zd . (A8)

Finally, we can proceed to calculating 〈ω2(2
√

d r)〉:

〈⎛⎜⎝ ∑
z1,...,zd

(∑d
i=1 rzi

)
αz1,...,zd(

r2d +∑d
i=1 z2

i

)d+1

⎞⎟⎠
⎛⎜⎝ ∑

z̃1,...,z̃d

(∑d
i=1 rz̃i

)
αz̃1,...,z̃d(

r2d +∑d
i=1 z̃2

i

)d+1

⎞⎟⎠〉 (A9)

(1)=
∑

z1,...,zd

(∑d
i=1 rzi

)2
σ 2

α(
r2d +∑d

i=1 z2
i

)2d+2

(2)=
∑

z1,...,zd

∑d
i=1 r2z2

i σ
2
α(

r2d +∑d
i=1 z2

i

)2d+2 (A10)

cont.≈
∫

z1,...,zd

∑d
i=1 r2z2

i σ
2
α(

r2d +∑d
i=1 z2

i

)2d+2 . (A11)

Step (1) follows from 〈αz1,...,zd αz̃1,...,z̃d 〉 = σ 2
α δz1,z̃1 · · · δzd ,z̃d . Thereby we have assumed that ᾱ = 0. This can be achieved by

replacing the noise amplitudes αi with αi − ᾱ. This transformation is justified, because any shift of the active noise amplitudes
by a constant value does not affect ∂̃2c∗

i j (compare with ∂̃2ci j = 0 ∀i �= j). Note that αi − ᾱ are introduced just for convenience
and one should not think of them as of any noise amplitudes. Step (2) results from the fact that the terms odd in zi sum up to 0.
In the last step we approximated the sum by an integral.

APPENDIX B: CALCULATION FOR FINITE RESTLENGTH TRIANGULAR LATTICE

Here we derive equation for the covariance matrix for the case of a finite restlength triangular lattice. We index the beads in
the lattice as shown in Fig. 9. Let us denote by f x

i j and f y
i j the x and y components of the force acting on bead (i, j), and by

xi j, yi j the x and y displacements of bead (i, j). Expanding the force up to linear order in displacements we find

f x
i j = α(xi−1, j−1 + xi+1, j+1 − 2xi, j + xi−1, j + xi+1, j − 2xi, j ) + (xi, j−1 + xi, j+1 − 2xi, j )

−β(yi−1, j−1 + yi+1, j+1 − 2yi, j ) + β(yi−1, j + yi+1, j − 2yi, j ),

f y
i j = γ (yi−1, j−1 + yi+1, j+1 − 2yi, j + yi−1, j + yi+1, j − 2yi, j )

− δ(xi−1, j−1 + xi+1, j+1 − 2xi, j ) + δ(xi−1, j + xi+1, j − 2xi, j ),

with α = 1/4, β = √
3/4, γ = 3/4, δ = √

3/4. It is convenient to rewrite the Lyapunov equation in the following way:

−2D = AC + CA = 〈AxxT + x(Ax)T 〉 = 〈fxT + xfT 〉. (B1)

FIG. 9. Triangular lattice and indexing of beads.
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Let us denote the elements of the covariance matrix by: 〈xi jxkl〉 = cxx
i j;kl , 〈xi jykl〉 = cxy

i j;kl , 〈yi jykl〉 = cyy
i j;kl and introduce the

discrete derivative operators:

∂̃2
1 ci j;kl = ci−1, j;k,l − 2ci, j;k,l + ci+1, j;k,l ,

∂̃2
2 ci j;kl = ci, j−1;k,l − 2ci, j;k,l + ci, j+1;k,l ,

∂̃2
3 ci j;kl = ci−1, j−1;k,l − 2ci, j;k,l + ci+1, j+1;k,l ,

∂̃2
1̄ ci j;kl = ci, j;k−1,l − 2ci, j;k,l + ci, j;k+1,l ,

∂̃2
2̄ ci j;kl = ci, j;k,l−1 − 2ci, j;k,l + ci, j;k,l+1,

∂̃2
3̄ ci j;kl = ci, j;k−1,l−1 − 2ci, j;k,l + ci, j;k+1,l+1.

Then, the Lyapunov equation translates to〈
f x
i jxkl + xi j f x

kl

〉 = [α(∂̃2
3 + ∂̃2

1

)+ ∂̃2
2

]
cxx

i j;kl − β
(
∂̃2

3 − ∂̃2
1

)
cyx

i j;kl + [α(∂̃2
3̄ + ∂̃2

1̄

)+ ∂̃2
2̄

]
cxx

i j;kl − β
(
∂̃2

3̄ − ∂̃2
1̄

)
cxy

i j;kl = −2δ(i j),(kl )di j,

(B2)〈
f x
i jykl + xi j f y

kl

〉 = [α(∂̃2
3 + ∂̃2

1

)+ ∂̃2
2

]
cxy

i j;kl − β
(
∂̃2

3 − ∂̃2
1

)
cyy

i j;kl + γ
(
∂̃2

3̄ + ∂̃2
1̄

)
cxy

i j;kl − δ
(
∂̃2

3̄ − ∂̃2
1̄

)
cxx

i j;kl = 0, (B3)〈
f x
i jykl + xi j f y

kl

〉 = [α(∂̃2
3̄ + ∂̃2

1̄

)+ ∂̃2
2̄

]
cyx

i j;kl − β
(
∂̃2

3̄ − ∂̃2
1̄

)
cyy

i j;kl + γ
(
∂̃2

3 + ∂̃2
1

)
cyx

i j;kl − δ
(
∂̃2

3 − ∂̃2
1

)
cxx

i j;kl = 0, (B4)〈
f y
i jykl + yi j f y

kl

〉 = γ
(
∂̃2

3 + ∂̃2
1

)
cyy

i j;kl − δ
(
∂̃2

3 − ∂̃2
1

)
cxy

i j;kl + γ
(
∂̃2

3̄ + ∂̃2
1̄

)
cyy

i j;kl − δ
(
∂̃2

3̄ − ∂̃2
1̄

)
cyx

i j;kl = −2δ(i j),(kl )di j . (B5)

If we want to move to a continuous picture, then we replace ∂̃2
1 → ∂2

1 , ∂̃2
2 → ∂2

2 , ∂̃2
3 → (∂1 + ∂2)2. In this picture

cxx, cxy, cyx, cyy should be seen as functions on a four-dimensional cube.
One can also write down equations for the cycling frequencies using

ωxi j ,ykl =
〈
f x
i jykl − xi j f y

kl

〉
2
√

det C[r,r]

D−diag.=
〈
f x
i jykl

〉√
det C[r,r]

. (B6)

In the last step we used the Lyapunov equation together with the fact that D is a diagonal matrix.
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Time-irreversibility is a distinctive feature of non-equilibrium dynamics and several measures of ir-
reversibility have been introduced to assess the distance from thermal equilibrium of a stochastically
driven system. While the dynamical noise is often approximated as white, in many real applications
the time correlations of the random forces can actually be significantly long-lived compared to the
relaxation times of the driven system. We analyze the effects of temporal correlations in the noise
on commonly used measures of irreversibility and demonstrate how the theoretical framework for
white noise driven systems naturally generalizes to the case of colored noise. Specifically, we express
the auto-correlation function, the area enclosing rates, and mean phase space velocity in terms of
solutions of a Lyapunov equation and in terms of their white noise limit values.

I. INTRODUCTION

The Langevin equation, first introduced to simplify the
description of Brownian motion [1, 2], has become a stan-
dard tool for studying stochastic systems in fields ranging
from physics, chemistry and electronics [3] to climate [4]
and population dynamics [5]. In the original context the
random force, or the dynamical noise, was assumed to
be delta-correlated in time, owing to the time scale sep-
aration between the dynamics of the Brownian particle
and the dynamics of fluid molecules. This assumption
was later lifted to account for possible time-correlations
in the noise and memory effects, leading to the formu-
lation of a generalized Langevin equation [6, 7]. Subse-
quently, the area of investigation expanded to systems
out of thermal equilibrium, both synthetic [8–10] and
natural ones [11–16], setting up the challenge of quanti-
fying the irreversibility of the dynamics and linking this
irreversibility to heat dissipation and entropy produc-
tion rate [17, 18]. To tackle this problem of measuring
the ”distance from thermal equilibrium” experimental-
ists have employed a combination of optical and mag-
netic tweezers-based microrheology combined with time-
lapse microscopy [8, 13, 14, 19–21]. These and other
experiments revealed deviations from the Fluctuation-
Dissipation theorem that allowed estimating the energy
dissipation rates in certain biological systems [22–24]. Si-
multaneous work on the theoretical side resulted in the
foundation of stochastic thermodynamics and discovery
of a multitude of fluctuation theorems, exposing the con-
nections between dissipation and irreversibility [17, 25].
Such connections have recently been investigated also in
case of time-correlated dynamical noise [26, 27].

∗ c.p.broedersz@vu.nl

Despite the spectacular success of the white noise ap-
proximation at modelling the stochastic nature of both
equilibrium and non-equilibrium processes, a more com-
plex description is indeed needed when the correlation
time of the noise becomes significant, as compared to
the natural relaxation times of the analyzed system. In
fact, temporal correlations in the noise can qualitatively
change the dynamics, e.g., they can lead to stochastic
resonance [28] and induce phase transitions in the sta-
tionary probability distributions [29].

While increasing the range of applicability and
the abundance of phenomena, accounting for time-
correlations in the noise largely complicates the math-
ematical treatment of the dynamics. The loss of Marko-
vianity precludes a straightforward mapping to a Fokker-
Planck formalism, in which the time evolution of the
probability density and resulting correlations between
the degrees of freedom could be calculated. To circum-
vent this obstacle, numerous approximation schemes and
perturbative approaches have been developed for specific
regimes of the correlation time of the noise [30–33]. Fur-
thermore, it has been shown, that in certain cases, de-
spite the non-Markovianity of the dynamics, an exact,
generalized Fokker-Planck equation with an effective dif-
fusion matrix can be formulated under certain assump-
tions about the initial preparation of the system, statis-
tics of the noise, or linearity of the dynamics [32, 34]. For
a comprehensive review of the topic we refer the reader
to [32].

Here, we abstain from calculating the full probability
distribution and instead take a perspective focused on
the time-irreversibility of the dynamics. The most funda-
mental, or direct measures of irreversibility compare the
probabilities of observing a forward vs. backward trajec-
tory. Here, we focus on a set of indirect, but commonly
used measures of irreversibility based on the probability
currents and temporal correlations of the trajectory. We
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FIG. 1. A) Schematics of the two-bead model with bead 1
driven by a colored noise with correlation time τ . B) Sam-
ple trajectories of bead displacements x1 (blue) and x2 (or-
ange) for bead 1 driven with OU noise (upper plot) and tele-
graph noise (lower plot), with τ = 0.25. C) Probability
density plots for (x1, x2), with OU noise (upper row) and
telegraph noise (lower row) for increasing correlation time
of the noise. The white arrows represent the mean velocity
field. D) Off-diagonal elements of the auto-covariance func-
tion Cij(s) = 〈xi(t)xj(t + s)〉 for OU noise (stars) and tele-
graph noise (pentagons). For the diagonal elements of C(s)
see Appendix.

show how such measures depend on the correlations of
the driving noise, in particular its correlation time. We
first introduce a class of linear systems for which analyti-
cal solutions can be obtained. Then, we demonstrate how
the formulas for the irreversibility measures known for
white noise driven systems [35–37] naturally generalize
to the colored noise case and discuss the physical mech-
anism behind this generalization. Finally, we present an
example application of the new formulas to a model sys-
tem of a driven soft biological network [37], that in the
context of irreversibility has up to now only been studied
within the white noise approximation.

II. LINEAR SYSTEMS WITH COLORED NOISE

Linear analysis lies at the heart of physics. To re-
duce the complexity one commonly considers small fluc-
tuations around a fixed point of the deterministic dy-
namics, for which the restoring force is approximately
a linear function of the displacements. In relation to
non-equilibrium dynamics and measures of irreversibility,
such linear analysis has been applied in diverse contexts:
driven biological assemblies [37–39], population dynamics
[40], climate oscillations [4, 41, 42], or electronic circuits
[36, 43].

As in these works, we consider an overdamped system
for which the deterministic force is a linear function of the
instantaneous position in phase space x(t) at time t. The
deterministic velocity can thus be written as Ax, where

A includes a constant mobility tensor. The existence of
a steady state requires the real parts of all the eigen-
values of A to be negative. Here, we do not require A
to be symmetric, therefore allowing for non-conservative
forces. The Langevin equation then takes the form

ẋ(t) = Ax(t) +
√

2Dαηα(t) (1)

with possibly colored noise ηα characterized by a time-
correlation function Gα:

〈ηα(t)〉 = 0, 〈ηα(t)ηᵀ
β(t′)〉 = 1δα,βGα(t− t′). (2)

Here, α indexes the pairwise independent sources of the
dynamical noise and summation over repeating indices is
assumed. The matrix Dα is an equivalent of the diffusion
matrix and describes the amplitude and correlations of
the noise acting on different degrees of freedom. These
correlations encoded in Dα can be thought of as spa-
tial correlations of the random forces, if x(t) = {xi(t)}
describes the dynamics of components of a spatially ex-
tended system. We allow in general for a set of pairwise
independent noise terms {√2Dαηα} with corresponding
correlations {Dα}, {Gα}. However, due to the linearity
of the system one can always analyse the contributions
from each statistically independent noise term separately
and then superpose the results. Thereby, for simplicity
we consider from now on a single, non-indexed noise term√

2Dη(t).
It is crucial to note that G(t) and D together with

Eq. (2) do not define the noise uniquely – they restrict
the noise correlations only up to second order, leaving
the higher order moments unconstrained. In fact, two
noises characterized by exactly the same G(t) and D can
lead to qualitatively different dynamics and steady state
statistics, as illustrated in Fig. 1. On the contrary, the
irreversibility measures discussed in this paper, as well as
any other two-point correlation function, are indeed fully
determined by G(t) and D, as we shall see later. Given
the linear dynamics, two systems sharing equal G(t) and
D can only differ in higher order correlations of x(t).
To illustrate the above points, we present two commonly
employed examples of colored noise that share the same
time-correlation function.

One of the most common implementations of colored
noise defines the dynamics of the noise via an Ornstein-
Uhlenbeck (OU) process:

η̇(t) = −1

τ
η(t) +

1

τ
ξ(t) (3)

〈ξi(t)ξj(t′)〉 = δijδ(t− t′), (4)

where ξ(t) is vector of normalized Gaussian white noises.
The time-correlations of η(t) decay exponentially:

G(s) =
1

2τ
e−|s|/τ , (5)

which allows to identify τ as the correlation time. A clear
advantage of the OU noise is that after including the dy-
namics of the noise (Eq. (3)) in the description, one ar-
rives at a Markovian system driven by a Gaussian white
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noise. This largely simplifies the analysis and for a linear
system implies in particular that the conditional proba-
bility density p(x, t|x0, t0) is Gaussian, independently of
the value of τ (see Fig. 1). Owing to its simplicity, OU
noise is widely employed to model the persistent motion
of active Brownian particles [33, 44–46].

The assumption about the noise being Gaussian is of-
ten legitimate: it is the case, for example, when the
random force effectively describes an aggregate action
of a large number of factors (such as the collisions of
fluid molecules with a Brownian particle), as rational-
ized by the Central Limit Theorem. In other contexts,
however, the noise statistics can drastically differ from
Gaussian. As a glaring example, consider a random force
that switches between a discrete set of values. Similar
stochastic dynamics is exhibited in nature by myosin mo-
tors [8, 14, 47, 48] exerting step-like contractile forces on
the cytoskeleton. In such systems the noise may be more
adequately modelled with a telegraph process [49]:

ηi(t) =
(−1)ni(t)√

2τ
, (6)

where {ni(t)} are pairwise independent Poisson processes
with transition rate 1/(2τ). The time correlation func-
tion G(s) for the telegraph noise, as defined by Eq. (6),
is an exponential decay, identical to the one associated
to the OU noise (Eq. (5)). Even though these two types
of noise give rise to very different trajectories and steady
state probability distributions, they result in identical
auto-covariance functions (see Fig. 1), which will be dis-
cussed in detail in the following section.

Finally, let us remark that we use a convention in which
the time correlation function of the noise is normalized
to 1, namely:

∫∞
−∞ G(t)dt = 1, corresponding to noise

of power 1. This choice, implying that G(t)
τ→0−−−→ δ(t),

allows us to study the effects of transition from white
to time-correlated noise, while keeping the power of the
noise fixed.

III. AUTO-COVARIANCE FUNCTION

The auto-covariance function is a standard quantity
used in the analysis of time series and in particular
the time-irreversibility of the dynamics. Comparing
the auto-covariance with the response function can re-
veal deviations from the Fluctuation-Dissipation theorem
[8, 12, 16, 50], which can be further connected to the
heat dissipation rate through the Harada-Sasa relation
[51, 52]. The auto-covariance is defined as

C(t, t+ s) = 〈x(t)xᵀ(t+ s)〉. (7)

Under steady state conditions, the covariance function
becomes translation invariant in time and we can write
C(t, t+s) := C(s). By definition, the covariance function
fulfils Cᵀ(s) = C(−s). For the purpose of calculations,

this property allows us to assume without loss of gener-
ality that s > 0, since the covariance for negative time
differences −s can be obtained by transposition of C(s).
Time reversibility additionally requires C(s) = C(−s),
implying that C(s) must be a symmetric matrix. Note,
however, to fulfill C(s) = Cᵀ(s) does not in general re-
quire the system to be at equilibrium. In fact, any time
correlations of the noise in Eq. (1) not accompanied by a
corresponding memory kernel in the deterministic term
inevitably violate the Fluctuation-Dissipation Theorem
[7].

To derive an equation for C(s) note that for a linear
system one can write a formal solution for the time tra-
jectory:

x(t) =

∫ t

−∞
eA(t−t′)√2Dη(t′)dt′ (8)

and for the associated covariance matrix

C(t, t+s) =

∫ t

−∞
dt′
∫ t+s

−∞
dt′′eA(t−t′)2DG(t′−t′′)eAᵀ(t+s−t′′).

(9)
While mathematically correct, Eq. (9) does not provide a
simple interpretation of how the time correlations in the
noise affect the covariance function. A more insightful
relation is obtained by using the steady state assumption
and time translation invariance. Eq. (9) combined with
the steady state property ∂tC(t, t + s) = 0 leads to (see
Appendix):

AC(s) + C(s)Aᵀ = −[B(s)D + DBᵀ(−s)], (10)

where B(s) is defined as

B(s) = 2

∫ ∞

0

dteAtG(t+ s) ∀s∈R. (11)

For reasons that will become clear later, we refer to B as
the spreading matrix. First, let us consider a few limiting
cases. In the limit of white noise (τ → 0) the equal-time
covariance matrix Cw(s = 0) := Cw fulfils

ACw + CwAᵀ = −2D, (12)

which is the well known Lyapunov equation [41]. The
product ACw can be identified with the matrix of On-
sager coefficients L and the Lyapunov equation itself with
L + Lᵀ = −2D [53]. Comparing Eq. (10) with Eq. (12)
leads to a key observation: the covariance C(s) can be
calculated by solving a Lyapunov equation with an ef-
fective diffusion matrix. This modified diffusion matrix
D̃(s) is set by the spreading matrix B(s) via

D̃(s) =
1

2
[B(s)D + DBᵀ(−s)]. (13)

Note that for time irreversible dynamics and s 6= 0

the effective diffusion matrix D̃(s) can in general be
non-symmetric, resulting in a covariance function non-
symmetric in time. The non-symmetricity of the effective
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diffusion matrix does not allow for identifying D̃(s) as a
covariance matrix of some effective white noise. Con-
versely, when considering the equal-time covariance (set-
ting s = 0), we find a symmetric effective diffusion matrix

D̃ =
1

2
[BD + DBᵀ], (14)

which can indeed be interpreted as a covariance matrix
of an effective noise. Therefore, the equal-time covari-
ance C(s = 0) := C for a system with time correlated
noise and diffusion matrix D remains unchanged, if one
replaces the colored noise with a white noise with an ap-

propriate effective diffusion matrix D̃. In this sense, for
linear systems the temporal and spatial correlations in
the noise are equivalent at the level of covariance matrix.
This is of particular importance for the case of Gaus-
sian colored noise (e.g. Ornstein-Uhlenbeck noise), for
which the stationary probability density is known to be
Gaussian. In this case the covariance matrix C calcu-
lated for the system with the effective white noise de-
fines the exact stationary probability distribution of a
colored noise system: p(x) ∼ exp[−xᵀC−1x/2]. This
special case of Gaussian noise was solved in [32], where a
generalized Fokker-Planck equation for p(x, t) is derived.
In the long time limit the diffusion matrix of the gener-
alized Fokker-Planck equation converges to our effective

diffusion matrix D̃ defined as in Eq. (14). Importantly,
even though with Gaussian noise the stationary proba-
bility densities are identical in the coloured- and effective
white-noise systems, the actual dynamics can be very dif-
ferent. Moreover, non-Gaussian noise can result in p(x)
qualitatively different from Gaussian (see Fig. 1), while,
remarkably, the covariance matrix C is the same as for
the effective white-noise system.

Having presented the partial correspondence between
temporal and spatial correlations in the noise for linear
systems, let us now discuss the physical origin of this
connection. Consider two degrees of freedom xi and xj
that are coupled in some way, directly or indirectly. That
is a displacement in xi results in a displacement of xj ,
with a magnitude and time dependence encoded by A.
When a persistent force is exerted on the ith degree of
freedom, it is followed by a displacement in xj , which
leads to correlations in the force instantaneously experi-
enced by i and j. The way these correlations enter in

the effective diffusion matrix D̃ is specified by Eq. (14)
and the spreading matrix B. The multiplication by B
results in spreading of the elements of D, as exempli-
fied in Fig. 2. The directions of spreading are set by the
A matrix, while the range of spreading is controlled by
the correlation time τ , or more generally, by the width
of G(t). These two key quantities define B in terms of
an integral, but an explicit expression can be found in
certain cases. For the ubiquitous case of exponentially
decaying time-correlations, as in Eq. (5), one finds

B = (1− τA)−1. (15)

The derivation and expressions for B(s) are presented in

solving  
white noise 

Lyapunov equation

solving modified 
Lyapunov equation

white noise colored noise

spreading  

spreading  

FIG. 2. Schematic procedure of obtaining the auto-covariance
matrix C(s) in the colored noise case. Here shown for s =
0, for a 1-dimensional chain of harmonically coupled beads,
with each bead driven by independent noise with correlations
decaying exponentially in time. The two possible sequences
of steps marked by the arrows lead to equal results for C(s).
These two alternative ways include ”spreading” either D, or
Cw using the B matrix.

the Supplementary Information. Notably, Eq. (10) and
the derived expressions for B(s) are exact and make no
assumptions on the noise correlation time τ being small
or large.

We close this section by noting that instead of first
calculating the effective diffusion matrix and solving the

Lyapunov equation with D̃(s), one can equivalently first
find the equal-time white-noise covariance matrix Cw (by
replacing G(s) with δ(s) in the original problem and solv-
ing Eq. (12)) and calculate the covariance function C(s)
as

C(s) =
1

2
[B(s)Cw + CwBᵀ(−s)]. (16)

The equivalence of the two approaches is visualised in
Fig. 2 for a specific system comprised of a chain of har-
monically coupled overdamped beads, with s = 0. A
proof based on simple algebra and AB = BA is pre-
sented in the appendix.

IV. MEAN VELOCITY AND AREA
ENCLOSING RATES

In the previous section we considered two point time
covariance functions as indicators of time irreversible dy-
namics. However, already mean values of instantaneous
quantities can reveal time-irreversibility. Consider the in-
stantaneous velocity v(t) and its mean value at a certain
point in phase space 〈v(x)〉 := 〈v(t)|x(t) = x〉. Upon
time reversal the velocity changes sign, and therefore
time-reversibility requires 〈v(x)〉 = 0. This fact has been
used to define a class of measures of equilibrium based
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on non-vanishing probability fluxes [15, 36, 38, 39]. For a
linear system driven by white noise the mean phase space
velocity is known to be a linear function of x [41]:

〈v(x)〉 = Ωwx, Ωw = (A + DC−1w ) (17)

Note that since for overdamped systems with white noise
the velocities are not well defined in terms of the time
derivative of the position, one defines 〈v(x)〉 through
〈v(x)〉 = j(x)/p(x), where j(x) is the probability cur-
rent. To avoid the difficulty of measuring the average
velocity 〈v(x)〉 at every point in phase space, one can
define a more coarse grained measure of irreversibility
known as the area enclosing rate [54]:

A =
1

2
〈ẋxᵀ − xẋᵀ〉. (18)

This entity can be traced back to the works of Mori
and Kubo [6, 7], where it was used in the derivation of
the Generalised Langevin Equation. Recently A has re-
ceived renewed attention as a measure of irreversibility
[36, 37, 42, 43, 55], it has been connected to the entropy
production rate, and applied in an irreversibility-oriented
dimensionality reduction scheme [56]. Measuring A is in
fact equivalent to finding a linear expansion of the mean
velocity field 〈v(x)〉 [57]. It has been demonstrated that
for a white noise-driven linear system A can be expressed
in terms of the covariance matrix as

Aw =
1

2
[ACw −CwAᵀ]. (19)

Moreover, in this specific case the mean velocity field and
area enclosing rates are related via

Ωw = AwC−1w . (20)

Hitherto, to our knowledge, the computation of v(x)
and A was mostly limited to systems driven by white
noise. Following the same line of thought as for the auto-
covariance function, we would like to investigate how the
mean phase space velocity and the area enclosing rates
change as the correlation time of the noise increases and
becomes comparable with the relaxation times of the sys-
tem, or larger.

Let us begin by considering a linear system driven by
an Ornstein-Uhlenbeck noise. In this simple case, the
complete dynamics, that include the time evolution of
the noise, constitute a white noise linear system. Hence,
the probability distribution is Gaussian and consequently
the conditional average 〈v|x〉 is also a linear function of
x. More specifically, we show that (see Appendix):

〈v(x)〉 = ΩOUx, with ΩOU = (1 + τDC−1w )−1Ωw.
(21)

This expression shows explicitly how the mean velocity
〈v(x)〉 departs from the white noise values as the correla-
tion time of the noise τ increases. Alternatively, ΩOU can
be expressed in a way equivalent to Eq. (20), as demon-
strated in the appendix, where we also give an exact ex-
pression for the joint probability p(x,v).

For other types of noise 〈v(x)〉 does not in general
show a simple linear dependence on x. Nevertheless, a
compact formula can still be found for the area enclosing
rates. This is obtained by substituting the formal solu-
tion (Eq. (8)) into Eq. (18) (for details see the Appendix).
One then finds

A =
1

2
[BACw −CwAᵀBᵀ], (22)

that only depends on the correlation function of the noise
G(s) (encoded in B) and on D (encoded in Cw). This im-
plies, in particular, that two qualitatively different noises
(such as OU and telegraph) will yield exactly the same
A, if their two-point correlations given by D and G(s)
coincide. This property is a direct consequence of the
linearity of the dynamics and A being a second order
correlation. Eq. (22) differs from the white noise formula
by A being replaced with an effective force matrix BA
(see Fig. 3).

At this point it is important to emphasise that the
results in Eq. (21) and Eq. (22) are not perturbative and
hold for arbitrarily large values of the correlation time τ .
Therefore, they allow us to study not only the departure
from the white noise behavior, but the full τ -dependence.

Finally, let us demonstrate a relationship between the
area enclosing rates A and the auto-covariance function
C(s) discussed in the preceding section. As discussed in
[36], when dealing with a discrete-time signal with time
resolution 1/∆t, one has to approximate the velocity in
Eq. (18) with a finite difference, leading to:

Aij =
1

2∆t
〈[xi(t+ ∆t)− xi(t)]xj(t)
− xi(t)[xj(t+ ∆t)− xj(t)]〉

=
1

2∆t
(Cij(∆t)− Cij(−∆t)). (23)

For systems driven by time correlated noise only, for
which the auto-covariance function is differentiable, we
can conclude that A = d

dsC(s)|s=0. Consistently, for
time reversible dynamics, C(s) is an even function with
derivative 0 at s = 0. When the dynamics includes a
white noise component, C(s) is no longer differentiable
at s = 0, yet the symmetrized difference in Eq. (23) con-
verges to a finite value in the limit of ∆t→ 0.

V. EXAMPLE APPLICATION AND
EMERGENT LENGTH-SCALE

In this last section we show how the framework devel-
oped in this article can be applied to a physical problem
and offer insights inaccessible within a white noise ap-
proximation. As a working example we use a toy-model
that was recently employed to study the non-equilibrium
behavior across length scales in active biological assem-
blies [37, 39, 55]. There, the viscoelastic medium mim-
icking the cytoskeleton was modelled as a lattice of over-
damped beads connected by springs and embedded in a



6

τ

xi

xi+r

xi

xi+r

xi

xi+r

r

A BA
τ

A) B)

C)

D)

FIG. 3. Area enclosing rates for the 1-dimensional chain of
harmonically coupled beads, with only the central bead ”m”
driven (Dij = δimδjm). A) Plots of the area enclosing rate
matrices for the white noise (top) and the colored noise (bot-
tom) scenarios. The blue and red lines are the same as in
panel C). B) The deterministic force matrix A and the ef-
fective force matrix AB, which enters in Eq. (22). C) Plots
of the area enclosing rate for the driven bead and a bead at
distance r, for white (red) and colored (blue) noise. D) Phase
space trajectories of the displacements of bead i, driven by
a deterministic periodically switching force, and a bead at
distance r, for increasing values of r.

viscous fluid. The activity of molecular motors was im-
plemented as a collection of dipole forces delta-correlated
in time. Here we revisit this model, lift the assump-
tion about white noise activity and discuss the resulting
changes in the non-equilibrium behavior. For simplicity
we focus on a 1-dimensional version of this model - a
chain of beads.

In the previous works it has been shown that with a
single activity in the chain, the area enclosing rate mea-
sured for two degrees of freedom: the agitated bead xi
and a bead at distance r, xi+r, displays a power law as a
function of the distance r. Importantly, with a collection
of active agents in the chain, a similar scaling behav-
ior is observed for the mean squared area enclosing rate
〈A2(r)〉 := 〈A2

i,i+r〉i measured for pairs of beads at dis-
tance r from each other (see Fig. 4). Note, while each
Ai,i+r itself is a temporal average, 〈· · · 〉i denotes a spa-
tial average, or equivalently an average over an ensemble
of activity distributions. Both results assumed the active
forces to be delta-correlated in time, or in our formulation
G(t) = δ(t), and were essentially derived using Eq. (19).

Now, equipped with the colored noise formula
(Eq. (22)) we can study the effects of the time corre-
lations of the active forces. We assume force correlations
to decay exponentially with time, as in Eq. (5), which
among others can represent a telegraph process. The re-
sults presented in Fig. 3 (single activity) and in Fig. 4
(distribution of activities) show a qualitative change in
both cases. The functional dependence of Ai,i+r and

〈A2(r)〉 on the distance r is no longer monotonic. At
a certain distance the area enclosing rates reach a pro-
nounced maximum followed by a power law decay at large
distances. In fact, the behavior for large r (power law de-
cay with exponent −7) coincides with the one predicted
theoretically for white noise activity in [37]. Heuristi-
cally, for large distances the relaxation times become
much larger than the correlation time of active forces and
it is justified to treat the active noise as ”white”. The
origin of the maximum can be qualitatively explained in
the single activity case with the stereotypical trajecto-
ries sketched in Fig. 3D). For short distances from the
activity both beads experience a large displacement, but
since the passive bead reacts almost immediately to the
displacement of the driven one, the loops enclosed by
the trajectory are very narrow, leading to small A. At
large distances the displacements of the passive bead are
small and A starts decreasing. A trade-off between the
size of displacements and the delay between them gives
rise to a maximum at moderate values of r. The exact
position of the maximum turns out to scale as

√
τ , as

confirmed by the collapse in Fig. 4. We suspect this spe-
cific scaling, rmax ∼

√
τ , to be related to the distance up

to which displacements propagate when applying a point
force persistently over time τ . Despite the specificity of
the considered system, the simple qualitative explanation
of the origin of the maximum suggests that analogous be-
havior can be expected in other scenarios. Although it’s
difficult to argue for a biological relevance of A reaching
a maximum at a certain distance, the fact itself that a
time scale τ gives rise to a specific length scale is rather
remarkable.

VI. CONCLUSIONS

In this paper we showed how temporal correlations in
the noise can affect the irreversibility of a systems’ linear
dynamics. To this end, we considered a class of linear
systems described by a Langevin equation and driven by
colored noise classified by its auto-covariance, which en-
codes both temporal and spatial correlations. We demon-
strated that the formulas commonly employed to calcu-
late standard measures of irreversibility, such as the auto-
covariance or the area enclosing rates, naturally general-
ize to the case of colored noise. The expressions we derive
are exact and valid for arbitrary correlations of the noise,
allowing to study the full dependence of the irreversibil-
ity measures on the correlation time of the noise, and not
only the departure from the white noise limit.

We discussed how noise scenarios that share the same
two-point correlations can lead to drastically different dy-
namics and steady state probability distribution, while
yielding equal results for certain measures of irreversibil-
ity. We also showed that for any colored noise model
there exists a corresponding white noise model with ap-
propriately modified spatial correlations, which lead to
the same covariance matrix. In practice, when modelling
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FIG. 4. Plots of the mean squared area enclosing rate for
pairs of beads at distance r. The chain of beads is driven
by homogeneously distributed and statistically independent
force dipoles acting on pairs of neighboring beads (i, i + 1)
with randomly chosen amplitudes

√
αi. Specifically, Dij =

δij(αi + αi−1) − δi−1,jαi−1 − δi,j−1αi, where
√
αi are drawn

independently from a distribution (here a folded Gaussian
distribution, however, only the variance of the distribution
matters). For each dipole the force correlations decay ex-
ponentially in time with correlation time τ , as for the tele-
graph noise. The black markers (τ = 0) correspond to white
noise. Inset: collapse of the appropriately rescaled curves
from the main plot in a linear-log scale. Only the curves for
τ = {102, 103, 105}, for which the maximum appears at a dis-
tance larger than the lattice spacing, are plotted.

a noisy or driven system, the detailed statistics of the

noise at play are unknown and one has to model the
noise just based on its primary features. In such cases it
is crucial to know how robust the results are to changes
in the specific implementation of the noise. For the case
of Ornstein-Uhlenbeck noise, customarily employed to
model persistent forces, we find exact expressions for the
probability distribution and mean phase space velocity
in terms of solutions for the white noise limit.

Finally, we presented an example application of the de-
rived formulas and revisited a model for irreversible dy-
namics in driven biological network, which up to now was
only analyzed within the white noise approximation. We
now allowed for time correlations in the active driving,
leading to a qualitative change of behavior of the irre-
versibility measures at moderate distances. The intro-
duced time correlations in the noise give rise to a specific
length scale marked by a maximum of the irreversibility
measures. The significance of this and analogous length
scales potentially emerging in other non-equilibrium con-
texts remains an open question.
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Appendices
A. DERIVATION OF AUTO-COVARIANCE FUNCTION

Consider a linear system with a time-correlated driving force described with the following equation of motion:

ẋ(t) = Ax(t) +
√

2Dη(t), with 〈η(t)〉 = 0, 〈η(t)ηᵀ(t′)〉 = 1G(t− t′) (24)

The formal solution can be written as

x(t) =

∫ t

−∞
eA(t−t′)√2Dη(t′)dt′ (25)

Similarly, we can formally express the auto-covariance function as

C(t, t+ s) = 〈x(t)xᵀ(t+ s)〉 =

∫ t

−∞
dt′
∫ t+s

−∞
dt′′eA(t−t′)2DG(t′ − t′′)eAᵀ(t+s−t′′) (26)

Note that by the definition, at the steady state the auto-covariance function C(s) := C(t, t + s) has the property
C(−s) = Cᵀ(s), so in the following we can assume without loss of generality that s > 0, unless specified otherwise.
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Using the following lemma for differentiation:

∂t

∫ t

−∞
dt′
∫ t+s

−∞
dt′′f(t, t′, t′′) =

∫ t

−∞
dt′
∫ t+s

−∞
dt′′∂tf(t, t′, t′′) +

∫ t+s

−∞
dt′′f(t, t, t′′) +

∫ t

−∞
dt′f(t, t′, t+ s) (27)

and using the fact that at the stationary state ∂tC(s) = 0, we derive an equation for the auto-covariance:

∂tC(t, t+ s) = 0 = AC(s) + C(s)Aᵀ +

∫ t+s

−∞
dt′′2DeA

ᵀ(t+s−t′′)G(t− t′′) +

∫ t

−∞
dt′eA(t−t′)2DG(t′ − t− s) (28)

0 = AC(s) + C(s)Aᵀ + D

∫ t

−∞
dt′2eA

ᵀ(t−t′)G(t− t′ − s)
︸ ︷︷ ︸

Bᵀ(−s)

+

∫ t

−∞
dt′2eA(t−t′)G(t− t′ + s)

︸ ︷︷ ︸
B(s)

D (29)

AC(s) + C(s)Aᵀ = −[DBᵀ(−s) + B(s)D] (30)

Where we have used the time symmetry of the time correlation function of the noise G(t) = G(−t) and defined the
’spreading matrix’ B(s):

B(s) =

∫ ∞

0

dt′2eAt
′G(t′ + s) for all s ∈ R (31)

It is instructive to consider a set of limiting cases for Eq. (30).

1. Calculating the covariance matrix C := C(0) for time-correlated noise:

AC + CAᵀ = −(DBᵀ + BD) with B := B(0) = 2

∫ ∞

0

dt′eAt
′G(t′). (32)

2. Calculating the auto-covariance function Cw(s) for white noise (G(t) = δ(t)):

ACw(s) + Cw(s)Aᵀ = −2DeA
ᵀs (33)

3. Calculating the covariance matrix Cw for white noise:

ACw + CwAᵀ = −2D (34)

which reduces to solving the standard Lyapunov equation.

There is an interesting relation between case 3 and Eq. (30). Substituting the expression for D from Eq. (34) into
Eq. (30) one obtains

AC(s) + C(s)Aᵀ =
1

2
[B(s)ACw + B(s)CwAᵀ + ACwBᵀ(−s) + CwAᵀBᵀ(−s)] (35)

= A

[
1

2
(B(s)Cw + CwBᵀ(−s))

]
+

[
1

2
(B(s)Cw + CwBᵀ(−s))

]
Aᵀ (36)

and using the uniqueness of the solution of the Lyapunov equation we conclude that

C(s) =
1

2
[B(s)Cw + CwBᵀ(−s)] (37)

For an exponentially correlated noise, with G(t) = 1
2τ e
−|t|/τ , such that G(t)

τ→0−−−→ δ(t), both Bᵀ(−s) and B(s) can
be calculated analytically.

Bᵀ(−s) =

∫ ∞

0

2eA
ᵀt′G(t′ − s)dt′ =

1

τ

∫ s

0

eA
ᵀt′e−

s−t′
τ dt′

︸ ︷︷ ︸
(I)

+
1

τ

∫ ∞

s

eA
ᵀt′e−

t′−s
τ dt′

︸ ︷︷ ︸
(II)

(38)
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We calculate terms (I) and (II) separately:

(I) =
1

τ

∫ s

0

eA
ᵀ(s−t′)e−

t′
τ dt′ =

1

τ
eA

ᵀs
∫ s

0

e−(A
ᵀ+ 1

τ )t
′
dt′ =

1

τ
eA

ᵀs

[
−
(

Aᵀ +
1
τ

)−1
e−(Aᵀ+ 1

τ )t′
]s

0

(39)

=
1

τ
eA

ᵀs
(

Aᵀ +
1
τ

)−1 (
1− e−(Aᵀ+ 1

τ )s
)

= eA
ᵀs s

τ

1− e−(1+τAᵀ) sτ

(1 + τAᵀ) sτ
(40)

Since the matrix (1 + τAᵀ) may in general be non-invertible the result above should be interpreted in terms of

evaluating the analytic function f(x) = 1−e−x
x for a matrix argument (1 + τAᵀ) sτ .

(II) =
1

τ

∫ ∞

0

eA
ᵀ(t′+s)e−

t′
τ dt′ =

1

τ
eA

ᵀs
∫ ∞

0

e(Aᵀ− 1
τ )t′dt′ = −1

τ
eA

ᵀs
(

Aᵀ − 1
τ

)−1
= eA

ᵀs(1− τAᵀ)−1 (41)

Similarly, we calculate B(s):

B(s) =

∫ ∞

0

2eAt
′G(t′ + s)dt′ =

1

τ
eAt

′
e−
|t′+s|
τ = e−

s
τ

1

τ

∫ ∞

0

e(A− 1
τ )t′dt′ = e−

s
τ (1− τA)−1 (42)

Altogether, the equation for the auto-covariance function reads

AC(s) + C(s)Aᵀ = −DeA
ᵀs
[
(1− τAᵀ)−1 +

1− e−(1+τAᵀ) sτ

1 + τAᵀ

]
− e− sτ (1− τA)−1D (43)

and in the case s = 0 the equation reduces to

AC + CAᵀ = −[D(1− τAᵀ)−1 + (1− τA)−1D]. (44)

B. EXAMPLE PLOTS OF THE AUTO-COVARIANCE FUNCTION

A)

τ = 0.25

B)

τ = 1.00

FIG. 5. Plots of the auto-covariance function for a simple two-bead system, as in Fig. 1 of the main text, obtained for the same
set of parameters: k = 1, γ = 1, Dij = 8δi,1δj,1. The correlation times of the driving are τ = 0.25 (panel A) and τ = 1.00
(panel B). The solid lines are the theoretical curves. The data points represent values inferred from a simulation with OU noise
(stars) and telegraph noise (pentagons).

C. DERIVATION OF THE FORMULA FOR A

The area enclosing rates are defined as

A =
1

2
〈ẋxᵀ − xẋᵀ〉. (45)
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This antisymmetrized form is used only to make the expression independent of the integration convention in the case
of white noise. For colored noise, where no ambiguity in terms of integration occurs, it is enough to calculate 〈ẋxᵀ〉.
We will confirm this by showing that 〈ẋxᵀ〉 itself is antisymmetric. Taking the expression for ẋ from Eq. (1) we get

〈ẋxᵀ〉 = A 〈xxᵀ〉︸ ︷︷ ︸
C

+
√

2D〈η(t)xᵀ(t)〉. (46)

Substituting the formal solution for x(t) we evaluate the second term:

√
2D〈η(t)xᵀ(t)〉 =

∫ t

−∞

√
2D〈η(t)ηᵀ(t′)〉

√
2DeA

ᵀ(t−t′)dt′ =

∫ t

−∞
2DeA

ᵀ(t−t′)G(t− t′)dt′ = DBᵀ (47)

Combining it with the first term we get

A = AC + DBᵀ =
1

2
(AC−CAᵀ) +

1

2
(DBᵀ −BD). (48)

As mentioned before, this expression is already antisymmetric. The first term is identical to the white noise expression,
with Cw replaced by C. The correction term (DBᵀ −BD) contributes to Aij only if the degrees of freedom xi, xj
are coupled (directly or indirectly) and if the active noise acts directly on at least one of them. The above expression
can be rewritten in an alternative form after making use of 2C = BCw + CwBᵀ (Eq. (37)) and 2D = ACw + CwAᵀ

(Eq. (34)), and the fact that matrices A and B commute:

A =
1

4

[
ABCw + ACwBᵀ −BCwAᵀ −CwBᵀAᵀ −ACwBᵀ −CwATBᵀ + BACw + BCwAᵀ] (49)

=
1

2
[BACw −CwAᵀBᵀ] . (50)

D. MEAN VELOCITY FIELD WITH OU NOISE

Consider a linear system driven by OU noise, described by the Langevin equation
(

ẋ
η̇

)
=

(
A
√

2D
0 −1/τ

)(
ẋ
η̇

)
+

1

τ

(
0
ξ

)
, (51)

where ξ(t) is Gaussian white noise satisfying 〈ξ(t)ξᵀ(t′)〉 = 1δ(t− t′). The instantaneous velocity can be then written

as v = Ax +
√

2Dη. The covariance matrix for the whole system {x,η} including the noise dynamics satisfies the
Lyapunov equation:

(
A
√

2D
0 −1/τ

)(
Cxx Cxη

Cηx Cηη

)
+

(
Cxx Cxη

Cηx Cηη

)(
Aᵀ 0√
2D −1/τ

)
=

(
0 0
0 −1/τ2

)
. (52)

This equation can be splited into three equations for {Cxx,Cηx,Cηη}. One of them is

−1

τ
Cηη −

1

τ
Cηη = − 1

τ2
=⇒ Cηη =

1
2τ
. (53)

Another equation, allowing us to find Cηx is

−1

τ
Cηx + CηxAᵀ + Cηη

√
2D = 0. (54)

Substituting the derived expression for Cηη and rearranging the terms we find

Cηx =

√
D

2
(1− τAᵀ)−1 =

√
D

2
Bᵀ. (55)

Because the joint probability distribution p(x,η) has to be multivariate normal, the mean value of the OU noise η
conditioned on the position x can be calculated as

〈η|x〉 = 〈η〉︸︷︷︸
0

+Cηx(Cxx)−1x. (56)
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Consistently with the notation of the main text we will write Cxx := C. The mean velocity v(x) is then obtained as

v(x) = 〈v|x〉 = Ax +
√

2D〈η|x〉 = (A +
√

2DCηx(Cxx)−1)x = (A + DBTC−1)︸ ︷︷ ︸
ΩOU

x. (57)

Comparing with Eq. (48), we conclude that with the Ornstein-Uhlenbeck noise the mean velocity can be written as
〈v|x〉 = ΩOUx, where ΩOUx = AC−1, just as for a white noise driven system.

An alternative expression for ΩOU in case of the OU noise can be found by first calculating the exact probability
distribution p(x,v) and expressing it in terms of the white noise covariance matrix Cw. To this end we followed

a perturbative scheme based on a expansion in powers of τ
1
2 that was presented in [33], employing the identity

ACw +CwAᵀ = −2D. With linear forces, as in our case, the expansion terminates at order n = 4 leading to an exact
expression:

p(x,v) = N exp

{
−1

2

(
xᵀ vᵀ

)(C−1w + τAᵀD−1A −τ(C−1w + AᵀD−1)
−τ(C−1w + D−1A) τD−1 + τ2C−1w

)(
x
v

)}
(58)

:= N exp

{
−1

2

(
xᵀ vᵀ

)(Cxx Cxv

Cvx Cvv

)−1(
x
v

)}
, (59)

where N is a normalization constant. Additionally, the decomposition of the full covariance matrix using Schur
complement gives:

[(C−1)vv]−1(C−1)vx = −Cvx(Cxx)−1. (60)

Equipped with these results, we can calculate the conditioned mean velocity as:

〈v|x〉 = Cvx(Cxx)−1x = −[(C−1)vv]−1(C−1)vxx = (τD−1 + τ2C−1w )−1τ(C−1w + D−1A)x (61)

= (1 + τDC−1w )−1(A + DC−1w )x = (1 + τDC−1w )−1Ωwx. (62)

From this we conclude that for a linear system driven by OU noise

〈v(x)〉 = ΩOUx, with ΩOU = (1 + τDC−1w )−1Ωw. (63)
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Abstract: Time-lapse microscopy imaging provides direct access to the dynamics of soft and
living systems. At mesoscopic scales, such microscopy experiments reveal intrinsic thermal and
non-equilibrium fluctuations. These fluctuations, together with measurement noise, pose a chal-
lenge for the dynamical analysis of these Brownian movies. Traditionally, methods to analyze such
experimental data rely on tracking embedded or endogenous probes. However, it is in general un-
clear, especially in complex many-body systems, which degrees of freedom are the most informative
about their non-equilibrium nature. Here, we introduce an alternative, tracking-free approach that
overcomes these difficulties via an unsupervised analysis of the Brownian movie. We develop a di-
mensional reduction scheme selecting a basis of modes based on dissipation. Subsequently, we learn
the non-equilibrium dynamics, thereby estimating the entropy production rate and time-resolved
force maps. After benchmarking our method against a minimal model, we illustrate its broader
applicability with an example inspired by active biopolymer gels.

INTRODUCTION

Over the last two centuries, fundamental insights have
been gleaned about the physical properties of biological
and soft matter systems by using microscopes to image
their dynamics [1, 2]. At the micrometer scale and below,
however, this dynamics is inherently stochastic, as ever-
present thermally driven Brownian fluctuations give rise
to short-time displacements [3–6]. This random motion
makes such “Brownian movies” appear jiggly and erratic;
this randomness is further exacerbated by measurement
noise and limited resolution intrinsic to, e.g., fluorescence
microscopy [7]. In light of all these sources of uncertainty,
how can one best make use of measured Brownian movies
of a systems dynamics, to learn the underlying physics of
the fluctuating and persistent forces?

In addition to thermal effects, active processes can
strongly impact the stochastic dynamics of a system [8–
12]. Recently, there has been a growing interest in quan-
tifying and characterizing the non-equilibrium nature of
the stochastic dynamics in active soft and living sys-
tems [13–25]. In cells, molecular-scale activity, powered
for instance by ATP hydrolysis, controls mesoscale non-
equilibrium processes in assemblies such as cilia [26, 27],
flagella [28], chromosomes [29], protein droplets [30] or
cytoskeletal networks [31–34]. The irreversible nature
of such non-equilibrium processes can lead to measur-
able dissipative currents in a phase space of mesoscopic
degrees of freedom [9, 17, 18, 35–38]. Such dissipative
currents can be quantified by the entropy production
rate [39], which is a measure of the irreversibility of the
dynamics [40]. New approaches have been developed to
measure this rate in real systems [22, 24], shedding light

∗ ronceray@princeton.edu, c.broedersz@lmu.de

onto the structure of dissipative processes [19] and their
impact on the dynamics of living matter [20]. However, it
remains an outstanding challenge to accurately infer the
entropy production rate by analyzing Brownian movies
of such systems.

Traditional approaches to measure microscopic forces
and analyze time-lapse microscopy data typically rely on
tracking the position or shape of well-defined probes such
as tracer beads, fluorescent proteins and filaments, or
simply on exploiting the natural contrast of the intracel-
lular medium to obtain such tracks [14–17, 29, 31, 34, 41–
44]. The tracer trajectories can be studied through
stochastic analysis techniques to extract an effective
model for their dynamics and infer quantities like the
entropy production rate [19, 20, 22, 24, 45–48]. There
are, however, many cases in which tracking is impracti-
cal [49, 50], due to limited resolution or simply because
there are no recognizable objects to use as tracers. An-
other, more fundamental limitation of tracking is that
one then mostly learns about the dynamics of the tracked
object—not of the system as a whole. Indeed, the dis-
sipative power in a system might not couple directly to
the tracked variables, and a priori, it might not be clear
which coordinates will be most informative about such
dissipation. This raises the question how one can iden-
tify which degrees of freedom best encode the forces and
non-equilibrium dissipation in a given system.

Here we propose an alternative to tracking: learn-
ing the dynamics and inferring the entropy production
rate directly from the unsupervised analysis of Brown-
ian movies. We first decompose the movie into generic
principal modes of motion, and predict which ones are
the most likely to encode useful information through a
“Dissipative Component Analysis” (DCA). This allows
us to perform a dimensional reduction, leading to a rep-
resentation of the movie as a stochastic trajectory in this
component space. Finally, we employ a recently intro-
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FIG. 1. Schematic illustration of our approach to learn non-equilibrium dynamics from a Brownian movie.
a) Sketch of a network of biopolymers (black) with embedded fluorescent filaments and beads (green). b) Image-frames of
the fluorescent components in panel a) at three successive time points. c) The time trajectories of the projection coefficients
c1(t), c2(t), · · · : the coefficients and respective trajectories discarded by the dimensional reduction are faded. Sketch of the the
inferred velocity v(c) (d) and of the force field F(c) (e) in the space {c1, c2}.

duced method, Stochastic Force Inference (SFI) [24], to
analyze such trajectories. Our approach not only yields
an estimate of the entropy production rate of a Brownian
movie, which is a controlled lower bound to the system’s
total entropy production rate, but also important dy-
namical information such as a time-resolved force map
of the imaged system. Thus, our approach may provide
an alternative to methods that use microcopic force sen-
sors [43, 44, 51, 52]. In this article, we first present the
method in its generality, then benchmark it on a simple
two-beads model. Finally, we demonstrate the potential
of our approach on simulated semi-realistic fluorescence
microscopy movies of out-of-equilibrium biopolymer net-
works.

RESULTS

Principle of the method

We begin by describing a tracking-free method to infer
the dynamical equations of a system from raw image se-
quences. This approach allows us to determine a bound
on the dissipation of a system, as well as the force-field
in image space.

Our starting point is the assumption that the physi-
cal system we observe (Fig. 1a)—such as a cytoskeletal
network or a fluctuating membrane—can be described
by a configurational state vector x(t) at time t, under-
going steady-state Brownian dynamics in an unspecified
d-dimensional phase space:

dx

dt
= Φ(x) +

√
2D(x)ξ(t), (1)

where Φ(x) is the drift field, D(x) is the diffusion ten-
sor field, and throughout this article ξ(t) is a Gaus-
sian white noise vector (〈ξ(t)〉 = 0 and 〈ξi(t)ξj(s)〉 =
δijδ(t−s)). Note that when diffusion is state-dependent,

√
2D(x)ξ(t) is a multiplicative noise term: we employ

the Itô convention for the drift, i.e. Φ(x) = F(x) +∇ ·
D(x), where F(x) is the product of the mobility ma-
trix and the physical force in the absence of Brownian
noise [53, 54].

Our goal is to learn as much as possible about the
process described by Eq. (1) from an experimental ob-
servation. In particular, we aim to measure if, and how
far, the system is out-of-equilibrium by determining the
irreversible nature of its dynamics. This irreversibility is
quantified by the system’s entropy production rate [39]

Ṡtotal =
〈
v(x)D−1(x)v(x)

〉
, (2)

where 〈·〉 denotes a steady-state average, throughout
this article we set Boltzmann’s constant kB = 1, and
v(x) is the mean phase space velocity field quantifying
the presence of irreversible currents. Specifically, using
the steady-state Fokker-Planck equation one can write
v(x) = F(x)−D(x)∇ logP (x), where P (x) is the steady-
state probability density function, and flux balance im-
poses that ∇ · (Pv) = 0.

The input of our method consists of a discrete time-
series of microscopy images of the physical system
{I(t0), . . .I(tN )}—a “Brownian movie” (Fig. 1b). Each
image I(t) is an imperfect representation of the state
x(t) of the physical system as a bitmap, i.e. a L ×W
array of real-valued pixel intensities [55]. Specifically, we
model the imaging apparatus as a noisy nonlinear map
I(t) = Ī(x(t)) + N (t), where N is a temporally un-
correlated random array representing measurement noise
(such as the fluctuations in registered fluorescence inten-
sities), and Ī(x) is the “ideal image” returned on average
by the microscope when the system’s state is x. We as-
sume that the map x 7→ Ī(x) is time-independent (i.e.
that the microscope settings are fixed and stable).

Importantly, if no information is lost by the imaging
process, the ideal image Ī(t) undergoes a Brownian dy-
namics equation determined by the nonlinear transfor-
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mation of Eq. (1) through the map x 7→ Ī(x), as pre-
scribed by Itô’s lemma [56]. In general, however, there
is information loss and this map is not invertible: due
to finite optical resolution or because some elements are
simply not visible, the imaging may not capture the full
high-dimensional state of the system. For this reason,
the dynamics in image space are not uniquely specified
by the ideal image value Ī; they also depend on “hidden”
degrees of freedom xh not captured by the image. In this
case, a Markovian dynamical equation for Ī alone does
not exist, but by including the dynamics of xh, we can
write

d

dt
(Ī,xh) = ϕ(Ī,xh) +

√
2D(Ī,xh)ξ(t). (3)

Here (Ī,xh) is a column vector composed of pixel in-
tensities Ī and hidden degrees of freedom xh, ϕ(Ī,xh)
and D(Ī,xh) are the drift field and diffusion tensor, re-
spectively, in the combined space of pixel intensities and
hidden variables. Our Brownian movie analysis allows us
to infer the mean image drift ϕ(Ī) :=

〈
ϕI(Ī,xh)|Ī〉 and

mean image diffusion tensor D(Ī) :=
〈DI(Ī,xh)|Ī〉, av-

eraged over the degrees of freedom xh lost in the imaging
process. From drift and diffusion fields we can directly
obtain the mean image force field F(Ī) = ϕ(Ī) − ∇ ·
D(Ī). Similar to force and diffusion fields, the phase
space velocity field v(x) in the d-dimensional physical
phase space, transforms into a velocity field V(Ī) in the
L × W -dimensional image space—again, averaged over
unobserved degrees of freedom. The corresponding cur-
rents result in an apparent entropy production rate asso-
ciated to the image dynamics [57],

Ṡapparent =
〈V(Ī)D−1(Ī)V(Ī)

〉
. (4)

Importantly, Ṡapparent ≤ Ṡtotal: the apparent entropy
production rate is a lower bound to the total one. In-
deed, all transformations involved in the analysis process
– imaging through the nonlinear map x 7→ Ī(x), masking
the hidden degrees of freedom, and averaging over their
value – have nonincreasing effects on the entropy produc-
tion rate (see Supplementary Note 8). The measure of

Ṡapparent thus provides direct insight into the dissipative
processes in the physical system.

The goal of our method is to reconstruct the mean
image-space dynamics (F(Ī),D(Ī)), and in particular
the corresponding entropy production rate (Eq. (4)).
However, doing so in the high-dimensional image space
is unpractical and would require unrealistic amounts of
data. We therefore need to reduce the dimensionality of
our system to a tractable number of relevant degrees of
freedom.

Because each image represents a physical state of the
system, we expect that the ideal images Ī(t) all share
similar structural features. Consequently, the Brownian
movie occupies only a smaller subspace in the space of all
configurations of pixel intensities. To restrict ourselves
to the manifold of images representing the physical states

and to reduce the noise, we first perform a standard di-
mensionality reduction procedure: for simplicity, we em-
ploy Principal Component Analysis (PCA). As we shall
see later, this standard procedure can be reinforced with
an analysis that provides an additional basis transforma-
tion to select the most dissipative components. The idea
behind this approach is to find an appropriate basis, in
which pairs of components can be hierarchically ordered
according to how much they are expected to contribute to
the total entropy production rate. It then becomes pos-
sible to truncate the basis and reduce the dimensionality
of the problem, while retaining maximum information
about the system’s irreversible dynamics.

We truncate the basis of components according to two
criteria: 1) Noise floor—due to the finite amount of
data and the measurement noise present in the Brow-
nian movie, some modes are indistinguishable from the
measurement noise. We only keep modes that rise above
this noise floor. 2) Time resolution of the dynamics—we
only consider the components whose statistical properties
are consistent with Brownian dynamics, i.e. such that
the short-time diffusive behavior can be resolved through
the noise. In low-dimensional systems, these criteria can
be extended with an additional restriction based on es-
timating the dimensionality of the set of images in the
Brownian movie.

Our task is now reduced to inferring the mean dynam-
ics in component space,

Φ(c) := 〈Φc(c,xh)|c〉 , D(c) := 〈Dc(c,xh)|c〉 (5)

where c(t) = (c1(t), c2(t), · · · , cn(t)) are the components
obtained after a linear transformation of the images (see
Fig. 1c), Dc is the restriction of the diffusion tensor to
the c-space, and the hidden degrees of freedom xh now
also include those present in the image, but left out after
the components’ truncation. This procedure has reduced
the system’s dynamics to that of a smaller number of
components, making it possible to learn Φ(c) and D(c).

To this end, we employ a recently introduced method,
Stochastic Force Inference [24] (SFI), for the inverse
Brownian dynamics problem. Briefly, this procedure is
based on a least-squares approximation of the diffusion
and drift fields using a basis of known functions (such as
polynomials). This method is data-efficient, not limited
to low-dimensional signals or equilibrium systems, robust
against measurement noise, and provides estimates of the
inference error, making it well suited for our purpose. In
practice, we use SFI in two ways: 1) we infer the ve-
locity field v(c) (Fig. 1d) and the diffusion field D(c),
which we use to measure the entropy production rate.
2) We infer the drift field Φ(c), compute the image force
F(c) = Φ(c)−∇·D(c) (Fig. 1e), and thus reconstruct the
dynamics of the components. To render this determin-
istic dynamics more intelligible, we can transform F(c)
back into image space by inverting the I 7→ c linear
transformation: this results in a pixel force-map, which
indicates at each time step which pixel intensities tend to
increase or decrease. This provides, we argue, a way to
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gain insight into the dynamics of Brownian systems and
disentangle deterministic forces from Brownian motion
without tracking.

Our analysis framework can thus be schematically
summarized as: imaging→ component analysis→ model
inference (Fig. 1). This procedure allows the inference of
entropy production rate and reconstruction of the dy-
namical equations from image sequences of a Brownian
system.

A minimal example: two-beads Brownian movies

Next, we test the performance of our procedure on a
simple non-equilibrium model: two coupled beads mov-
ing in one dimension. The beads are coupled by Hookean
springs with stiffness k and experience Stokes drag
with friction coefficient γ, due to the surrounding fluid
(Fig. 2a). In this two-bead model, the time-evolution of
the bead displacements x(t) = (x1(t), x2(t)) obeys the
overdamped Langevin Eq. (1), with F(x) = Kx and
Kij = (1− 3δij)kγ

−1. The system is driven out of ther-
modynamic equilibrium by imposing different tempera-
tures on the two beads: Dij = δijkBTiγ

−1 [9, 22, 58–60].
First, we obtain position trajectories for the two beads
by discretizing their stochastic dynamics using an Euler
integration scheme (see Supplementary Note 1). Then,
we use these position trajectories to construct a noisy
Brownian movie (Fig. 2b) (cf. Supplementary Note 2 and
Supplementary Movie 1). Note that by construction, the
steady-state dynamics of the two-beads system in image
space is governed by a non-linear Langevin equation with
multiplicative noise.

We seek to reduce the dimensionality of the data
and to filter out measurement noise by finding rele-
vant components. To this end, we employ Principal
Component Analysis (PCA) [61] and determine the ba-
sis of n principal components pc1,pc2, · · · ,pcn to ex-
pand each image around the time-averaged image 〈I〉:
I(t) = 〈I〉 +

∑n
i=1 ci(t)pci. The dynamics of the pro-

jection coefficients are on average governed by the drift
field Φ(c) and diffusion tensor D(c) (see Eq. (5)).

In the simulated data of the two-bead model, the first
four principal components satisfy criteria 1) and 2) in-
troduced above (Fig. 2c). Interestingly, pc1 and pc2 re-
semble the in-phase and out-of-phase motion of the two
beads, respectively, and should suffice to reproduce the
dynamics of (x1(t), x2(t)). The components pc3 and pc4
appear to mostly represent the isolated fluctuations of the
hot and cold beads and mainly account for the nonlinear
details of the image representation. Together, the first
four components allow for an adequate reconstruction of
the original images (Fig. 2d, Supplementary Figure 1).

From the recorded trajectories in pc1 × pc2 space we
can already infer key features of the system’s dynamics
using SFI. Specifically, we infer the force and diffusion
fields (Fig. 2e). In the phase space spanned by the first
two principal components, we identify a stable fixed point

at (0, 0) (Fig. 2e). As may be expected in this case, the
pc1-direction (in-phase motion) is less stiff than the pc2
direction (out-of-phase motion).

The temperature difference between the two beads re-
sults in phase-space circulation, as revealed by the in-
ferred mean velocity field (Fig. 2f). To quantitatively
assess the irreversibility associated with the presence of
such phase space currents, we estimate the entropy pro-

duction rate of the system ̂̇S, which converges for long
enough measurement time (Fig. 2g-inset). Strikingly, al-
ready with two principal components we find good agree-
ment between the inferred and the exact entropy produc-
tion rate, capturing from 78 ± 25% at TcT

−1
h = 0.5) to

88 ± 7% of the entropy production rate at TcT
−1
h = 0.2

(Fig. 2g). Furthermore, the difference between the ex-
act and inferred entropy production rate is consistent
with the typical inference error predicted by SFI. As ex-
pected, the estimate of the entropy production rate in-
creases with the number of included components. Note
that including more modes than the dimension of the
physical phase space (in this case 2) can lead to an over-

estimate of Ṡ (Fig. 2g). In such low-dimensional systems,
one can further restrict the number of included compo-
nents based on estimating the dimensionality of the set
of images in the Brownian movie.

We can also use the information contained in the
first four principal components to quantitatively in-

fer forces in image-space via the relation F̂(I(t)) =∑4
i=1 F̂i(c(t))pci. Note that while two modes were suffi-

cient to infer ̂̇S, more modes are needed to reconstruct the
full images and image-force fields as a linear combination
of modes. When inferring forces we always subtract from
the drift the spurious force∇·D(c) arising in overdamped
Itô stochastic differential equations with multiplicative
noise [53, 54]. For comparison purposes, the exact image
force field is obtained directly from the simulated data

as: F̂ex(t) = {Ī[x(t) + F(x(t))∆t] − Ī(x(t))}∆t−1. Re-
markably, we find good qualitative agreement between
inferred and exact image force fields for specific realiza-
tions of the system, as shown in the kymographs in Fig. 2i
(see also Supplementary Movies 2 and 3). Moreover, we
find a strong correlation (Pearson correlation coefficient
ρ = 0.93) between inferred and exact image-forces. To
further quantify the performance of force inference, we
compute the relative squared error on the inferred image

force field σ2
F̂ =

∑
t‖F̂(t) − F̂ex(t)‖2

(∑
t‖F̂(t)‖2

)−1
,

which in this case is modest, σ2
F̂ = 0.14 (Fig. 2h).

Thus, with sufficient information, we can use our ap-
proach to accurately predict at any instant of time the
physical force fields in image space from the Brownian
movie, even if the system is out of equilibrium. More-
over, the results for this simple two-bead system demon-
strate the validity of our approach: we reliably infer the
non-equilibrium dynamics of this system. Arguably, di-
rect tracking of the two beads is, in this case, a more
straightforward approach. However, this changes when
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FIG. 2. Benchmarking the Brownian movie learning approach with a simple toy model a) Schematic of the two-bead
model. The temperature of the hot bead Th = 1 is fixed and the temperature of the cold bead Tc ≤ 1 is varied. b) 40 × 20
Frames of the noisy (10% noise) Brownian movie for the two bead-model at successive time-points c) The first 4 principal
components (in arbitrary units) with time-traces of respective projection coefficients. The color map displays negative values
in black and positive values in red. d) Snapshot Irec of the reconstructed movie, reconstructed with the first four principal
components, and snapshot I of the original movie (right), together with associated kymographs. Pixel intensity ranges from
0 (black) to 1 (bright green). We compare pixel intensities along the superimposed horizontal dashed line. Force field (e) and
mean phase space velocity (f) in the space of the first two principal components {c1, c2}. Arrows are scaled for visualization

purposes. Inset e): trace of diffusion tensor Tr(D) with the same axis scaling. g) Inferred entropy production rate ̂̇S for

varying temperature ratio TcT
−1
h and number of included principal components. Inset: ̂̇S as a function of trajectory length

for a fixed TcT
−1
h = 0.5. The error bars represent an estimate of the root-mean-square deviation between the true apparent

entropy production rate and the inferred value (see Methods). h) Scatter plot of the elements of the exact image force field

Fex vs. the inferred image force field F̂ for different pixels and time points (data has been binned for visualization purposes).

Results are obtained using the first four principal components. i) Comparison of inferred F̂ and exact F̂ex image-space force
fields, together with associated kymographs.

considering more general soft assemblies comprised of
many degrees of freedom.

Dissipative Component Analysis

To expand the scope of our approach, we next con-
sider a more complex scenario inspired by cytoskeletal

assemblies: a network of elastic filaments (Fig. 3a). The
filaments are modeled as Hookean springs represented
as bonds connecting neighboring nodes of a triangular
network. We randomly remove bonds to introduce spa-
tial disorder in the system. The state of the network as
a whole, represented by the set {xi} of two-dimensional
displacement of each node i, undergoes Langevin dynam-
ics (Eq. (1)). In this case, the force acting on node i is
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Fi(x) = −∑j∼i
kij
γ (‖xi,j(t)‖ − `0)x̂i,j , where kij = k if

the bond is present, kij = 0 if it is not, xi,j = xi−xj , x̂i,j
is the corresponding unit vector, and the sum runs over
the nearest-neighbor nodes j of node i. Rigid boundary
conditions are imposed to avoid rotations and diffusion
of the system as a whole. Finally, we drive the system
out of equilibrium by randomly setting a fraction of the
network nodes at an elevated temperature, as illustrated
in Fig. 3a.

To study an experimentally relevant scenario, we gen-
erate a Brownian movie of a random filamentous network
(Supplementary Note 2), which is only partially imaged
(black frame in Fig. 3a) with measurement noise and at
a limited optical resolution (Supplementary Note 6, 7).
To simulate limited optical resolution, we blur the image-
frames of the movie with a Gaussian filter (Fig. 3b and
Supplementary Movie 4). In this spatially extended sys-
tem, generated from an underlying dynamics with 800 de-
grees of freedom, it is not obvious based on the recorded
Brownian movie (80×80 pixels) how to select and analyze
the relevant degrees of freedom.

We start our movie-based analysis by employing PCA
to reduce the dimensionality of the image data (Fig. 3c).
For this set of simulation data, our truncation criteria
indicate that the maximum number of retainable compo-
nents is roughly 200 (Supplementary Note 5 and Supple-
mentary Figure 3). Although we greatly reduced dimen-
sionality of the image data using this truncation, it is still
intractable to infer dynamics in a 200-dimensional space
due to limited statistics. However, even a subset of these
modes may suffice to glean useful information about the
system’s non-equilibrium dynamics. Therefore, as a first
attempt, we infer the dynamics in increasingly larger PC-
space via SFI. This allows us to infer the retained per-

centage of entropy production rate ̂̇S/Ṡex in the observed
region (See Supplementary Note 2) as a function of the
number of principal components considered (Fig. 3e). In
contrast to the two-beads case, we observe that in this
more realistic scenario we recover less than 4% of the en-
tropy production rate of the observed system with the
first 30 PCs. Indeed, PCA is designed to find modes
that capture the most variance in the image data, and
large variance does not necessarily imply large dissipa-
tion. Thus, in this case, PCA fails at selecting compo-
nents that capture a substantial fraction of the entropy
production rate.

Our goal is to infer the system’s non-equilibrium dy-
namics. We thus propose an alternative way of reducing
data dimensionality that spotlights the time-irreversible
contributions to the dynamics, which we term Dissipative
Component Analysis (DCA). DCA represents a princi-
pled approach to determine the most dissipative pairs of
modes for a linear system with state-independent noise
(see Supplementary Note 3). For such a linear system,
there exists a set of component pairs for which the en-
tropy production rate can be expressed as a sum of in-
dependent positive-definite contributions, which can be
ranked by magnitude. After a suitable truncation, this

basis ensures that the components with the largest en-
tropy production rate are selected. While the approach is
only rigorous for a linear system with state-independent
noise, we demonstrate below that this method also per-
forms well for more general scenarios.

DCA relies on the measurement of an intuitive
trajectory-based non-equilibrium quantity: the area en-
closing rate (AER) matrix Ȧ associated to a general set
of coordinates y. The elements of the AER matrix, in
Itô convention, are defined by [24, 38, 62–64]

Ȧij =
1

2
〈yj ẏi − yiẏj〉, (6)

where yi denotes the i-th coordinate centered around its
mean value and 〈·〉 a time average. This non-equilibrium
measure quantifies the average area enclosed by the tra-
jectory in phase space per unit time. Importantly, the
AER is tightly linked to the entropy production rate.
Specifically, for a linear system Ṡ = Tr(ȦC−1ȦTD−1)
where the covariance matrix Cij = 〈yiyj〉. DCA iden-
tifies a basis of vector pairs {(dc1,dc2); (dc3,dc4); . . .}
that simultaneously transforms C to the identity and di-
agonalizes ȦȦT (see Supplementary Note 3). By doing
so, DCA naturally separates the entropy production rate
into independent contributions that can be readily or-
dered by magnitude, i.e. Ṡ = Ṡdc1,dc2

+ Ṡdc3,dc4
+ · · ·

with Ṡdc1,dc2
> Ṡdc3,dc4

> · · · . Truncating the ba-
sis of dissipative components using the aforementioned
criteria, allows us to identify a limited number of com-
ponents that are assured to maximally contribute to the
dissipation of the system. This is analogous to PCA,
where the diagonalization of the covariance matrix C al-
lows one to select the components which capture most of
the variance.

To test the performance of DCA, we revisit the net-
work simulations. We first perform PCA to reduce noise
and dimensionality. Subsequently, we perform DCA with
the first 200 principal component coefficients as input.
The dissipative components exhibit a different spatial
structure than the principal components, as they aim to
maximize different quantities (Fig. 3d). Strikingly, DCA
allows us to recover a larger portion of the entropy pro-
duction rate of the observed region (almost 10% with
30 components), performing consistently better than the
PCA-based approach, as shown in Fig. 3e. Finally, we
note that the performance of our approach improves sub-
stantially in systems with smaller fluctuations in which
the image-space dynamics is closer to linear (Fig. 3e and
Supplementary Movie 8).

In non-equilibrium systems our DCA-based method in-
fers non-zero entropy production rates, even with poor
optical resolution (Fig. 3f, Supplementary Note 6, and
Supplementary Figure 4) and with strong measurement
noise (Supplementary Note 7 and Supplementary Fig-
ure 5). At the same time we measure no dissipation
in equilibrium systems. Thus, this example illustrates
the potential applicability of our approach to real exper-
iments on biological assemblies.
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FIG. 3. Learning the non-equilibrium dynamics of Brownian movies of simulated filamentous networks a) The
20×20 filamentous network generated in the Brownian dynamics simulation with 20% random bond removal and heterogeneous
temperatures: node temperatures are randomly set to Thot with probability 0.2, or else to Tcold = 0.2Thot. The black frame
indicates the observed region of the system which is analyzed with our movie-based method. b) Three time frames of the
Brownian movie of the observed region of the system (80× 80 pixels, Thot = 0.25). c-d) Trajectory of the projection coefficient
ci in arbitrary units together with associated image-component for PCA (c) and DCA (d) for the observed region defined in

panel a). Scale bar applies to all image-components. e) The recovered entropy production rate ̂̇S/Ṡex for the observed region
as a function of the number of components included in the analysis. For the high and low temperature cases Thot = 0.25
and Thot = 0.05, respectively. See Supplementary Note 5 and Supplementary Figure 2 for additional data at equilibrium and

convergence of the estimates with total time. f): The recovered entropy production rate ̂̇S/Ṡex as a function of the blurring
parameter σ for 30 retained PCs and DCs. We show a corresponding blurred frame above every x-axis tick. The error bars
in panels e,f) represent an estimate of the root-mean-square deviation between the true apparent entropy production rate and

the inferred value (see Methods). g,h) Comparison of the exact image-force Fex to the inferred one F̂ at a selected instant of
time for the region of interest in the white frame in panel b) for the high (g) and low (h) temperature cases. The underlying
network structure is drawn in grey as a guide to the eye.

Our inference approach reveals additional information
about the dynamics in the system, such as force field es-
timates. These force fields provide insight into the spa-
tial structure of the instantaneous deterministic forces
in the system at a given configuration. In image space,
these forces describe the dynamics of the pixel: posi-
tive and negative image forces represent a deterministic
force acting to respectively raise and lower pixel values,

which reflect the forces acting on the position and shape
of the objects being imaged. To investigate to what ex-
tent our movie-based learning approach reconstructs the
elastic forces exerted by the network’s filaments, we ex-
ploit the short range of the interactions in the system to
facilitate extracting information about local forces from
local dynamics in image space. We consider a small re-
gion of interest (white frame in Fig. 3b, Supplementary



8

Movie 5) and compare the inferred force field in image
space to the exact one. For this purpose, we employ
PCA in our dimensional reduction scheme, which can
be used both in and out of equilibrium. Inferring im-
age force fields with high accuracy for this complex ex-
ample is challenging (Pearson correlation coefficient be-
tween exact and inferred images force ρ = 0.37 for the
high temperature case and ρ = 0.56 for the low temper-
ature case). Nonetheless, despite the network disorder,
large fluctuations, many hidden degrees of freedom, lim-
ited optical resolution, and measurement noise, we find
that the inferred force field in image space can capture
the basic features of the exact force field, as shown in
Fig. 3g,h (Supplementary Movies 6-11). Finally, we em-
phasize that our approach is scalable: force inference on
a small spatial region of interest can be applied to ar-
bitrarily large systems, as long as the interactions are
local.

DISCUSSION

We considered the dynamics of movies of time-lapse mi-
croscopy data. Under the assumptions outlined in the
first section of the Results, these movies undergo Brow-
nian dynamics in image space: the image-field obeys an
overdamped Langevin equation of the form of Eq. (3).
Rather than tracking selected degrees of freedom, we pro-
pose to analyze the Brownian movie as a whole.

Our approach is based on constructing a reduced set of
relevant degrees of freedom to reduce dimensionality, by
combining PCA with a new method that we term Dissi-
pative Component Analysis (DCA). In the limit of a lin-
ear system with state-independent noise, DCA provides a
principled way of constructing and ranking independent
dissipative modes. The order at which we truncate is an
important trade-off parameter of this method: on the one
hand we wish to significantly reduce the dimensionality
of the data, on the other hand we need to include enough
components to retain the information necessary to infer
the system’s dynamics. After the dimensional reduction,
we infer the stochastic dynamics of the system, reveal-
ing the force field, phase space currents, and the entropy
production rate in this basis. This information can then
be mapped back to image-space to provide estimators for
the stochastic dynamics of the Brownian movie. We il-
lustrated our approach on simulated data of a minimal
two-beads model and on complex filamentous networks
in both equilibrium and non-equilibrium settings, and
showed that it is robust in the presence of measurement
noise and with limited optical resolution. Beyond provid-
ing controlled lower bounds of the entropy production
rates directly from the Brownian movie, our approach
yields estimates of the force-fields in image space for an
instantaneous snapshot of the system and we demon-
strated that this approach can be scaled up to large sys-
tems. Thus, we provide in principle an alternative to mi-
croscopic force and stress sensing methods [43, 44, 51, 52].

We focused here on a class of soft matter systems
termed “active viscoelastic solids” [9, 65]. Such systems
include active biological materials such as cytoskeletal as-
semblies [31, 33, 34, 66], membranes [16, 67, 68], chromo-
somes [29], protein droplets [30], as well as active turbu-
lent solids [69] and colloidal systems [10]. Although these
structures are constantly fluctuating both due to energy-
consuming processes (e.g. rapid contractions generated
by molecular motors) and thermal motion, they do not
exhibit macroscopic flow. Useful insights into the prop-
erties of such systems have been obtained via different
non-invasive techniques. Typically, these techniques em-
ploy time traces of tracked objects to extract information
about the active processes governing the non-equilibrium
behavior [16–20, 60, 67]. Often, however, it is not a pri-
ori obvious which physical degrees of freedom should be
tracked, how tracking can be performed in fragile envi-
ronments, and to what extent the dynamical informa-
tion about the system of interest is encoded in the mea-
sured trajectories [49]. While tracking-free approaches
have been proposed to obtain rheological information of
a system under equilibrium conditions [50], our approach
offers an alternative to tracking that can provide infor-
mation on dissipative modes and the instantaneous force
fields of a fluctuating non-equilibrium system.

In summary, we presented a viable alternative to
traditional analysis techniques of high-resolution video-
microscopy of soft living assemblies. Indeed, we envision
experimental scenarios where our approach may serve as
a guide, providing insights by disentangling the deter-
ministic and stochastic components of the dynamics, and
by helping to identify the source of thermal and active
forces as well as the dissipation in the system. Overall,
our movie-based approach constitutes an adaptable tool
that paves the road for a systematic, non-invasive and
tracking-free analysis of time-lapse data of soft and
living systems.

METHODS

Parameters for Fig. 2: We use k = 2, γ = 1, kB = 1.
Panels c)-d)-e)-f)-h)-i) have been obtained with TcT

−1
h =

0.5 and for a trajectory of length ttot = 105∆t, ∆t = 0.01.
Panel g) with ttot = 5×104∆t. We employed a first order
polynomial basis for the inference of forces and diffusion
fields using SFI. The noise-corrected estimator was used
to infer the diffusion fields [24].

Parameters for Fig. 3: All results have been obtained
with a trajectory of 106 time steps, ∆t = 0.005 and
80 × 80-pixels frames for the observed region of the full
network. We employed a first order polynomial basis for
the inference of forces and diffusion fields using Stochastic
Force Inference, and noise-corrected diffusion estimates.
The high temperature case is shown in g) using 50 PCs
and the low temperature case is shown in h) using 20
PCs.
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The error bars on the entropy production rates in
Figs. 2, 3 are obtained as a self-consistent estimate of

〈(Ṡapparent−̂̇S)2〉0.5, where 〈·〉 represents the average over
the realizations of the noise. For details see [24].
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a) b)

Supplementary Figure 1. Two-beads Brownian movie: Comparison between reconstructed and exact
images Here we compare the exact two-beads images I to the reconstructed images Irec using PCA (see main text
Fig. 2d). We do so with a scatter plot of the pixel values at different time points and with a kymograph of the difference
between exact and reconstructed images, as shown in Supplementary Figure 1. Overall, we find that the first four
PCA modes allow for an accurate reconstruction of the images in the Brownian movie for this two-beads model. a)
Scatter plot of reconstructed (with 4 principle components) image-pixel values Irec and exact image-pixel values I
using PCA. The Pearson correlation coefficient ρ and the relative squared error σ2

I (see main text for definition) are
shown. Data is the same as in Fig. 2d of the main text. b) Kymograph of the difference between reconstructed (with
4 principle components) and exact pixel values along the horizontal line shown in Fig. 2d of the main text.
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Supplementary Figure 2. Dependence of Entropy Production Rates on the trajectory length a): Schematic
of the training/test set splitting procedure: the full trajectory (length N) is split into a training set (length m)
and into a test set (length n). b) Decay to zero of the entropy production rate bias (estimated with 18 principled
components (pc)-blue dots and 18 principled components (pc)-orange triangles) as a function of the trajectory length
at equilibrium. c) Convergence of the entropy production rate (estimated with 18 pc-orange triangles and 18 dc-
green squares) as a function of the trajectory length. The error bars in panels b,c) represent an estimate of the
root-mean-square deviation between the true apparent entropy production rate and the inferred value (see Methods).
The parameters of the simulations and noise level are the same as in Fig. 3 of the main text. Equilibrium is obtained
by setting all temperatures equal to T0 = 0.05.
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a) b)

c) d)

Supplementary Figure 3. Detecting the noise floor a-b): Eigenvalues λi of the covariance matrix for the data X
(blue markers) together with the noise floor (largest eigenvalue of Xshuffled-orange line) for the two-beads model (a)
and the focus-region of the 20 × 20 network analyzed in Fig. 3 of the main text (b). In panel (a) the noise level on
the image is 10%, in panel (b) α = 0.1. c-d): Decrease (absolute value) of the autocorrelation function of principal
component coefficients after one time-step at different noise levels for the two-bead model (c) and the focus-region
of the filamentous network (d). The solid line indicates the 25% level used in our criterion. Panels a,c (Panels b,d):
same simulation parameters as Fig. 2 (Fig. 3) of the main text.
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σ = 2
a)

b) c)

σ = 4 σ = 6 σ = 8 σ = 10σ = 0

Supplementary Figure 4. Inferring entropy production rates of Brownian movies with image blurring a)
Image-frames (80 × 80) of the analyzed patch for different values of the blurring parameter σ. b-c) Percentage of

recovered entropy production rate ̂̇S/Ṡex vs retained modes with PCA (b) and DCA (c) for varying σ. The error bars
represent an estimate of the root-mean-square deviation between the true apparent entropy production rate and the
inferred value (see Methods). All results have been obtained for a trajectory of 106 time steps, ∆t = 0.005 and 80×80
frames. DCA was performed on the first 200 principle components for σ = 2, on the first 100 principle components
for σ = 4, on the first 50 principle components for σ = 6, on the first 40 principle components for σ = 8 , and on the
first 34 principle components for σ = 10. Stochastic Force Inference was used with a first order polynomial basis for
the inference of the diffusion tensor and of the force field. The noise-corrected diffusion estimator was employed.
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α = 0 α = 0.1 α = 0.2 α = 0.3a)

b) c)

shot noiseα = 0.4

Supplementary Figure 5. Inferring entropy production rates of Brownian movies with imaging noise a)
Image-frames (80×80) of the analyzed patch for different values of the white gaussian noise parameter α and for shot
noise. The built-in python-numpy functions for generation of normal and poisson distributed numbers are employed

to generate the noise. b-c) Percentage of recovered entropy production rate ̂̇S/Ṡex vs retained modes with PCA
(b) and DCA (c) for varying α and for shot noise. The error bars represent an estimate of the root-mean-square
deviation between the true apparent entropy production rate and the inferred value (see Methods). All results have
been obtained for a trajectory of 106 time steps, ∆t = 0.005 and 80 × 80 frames. DCA was performed on the first
200 principle components for α = 0, 0.1 and for the shot noise case, on the first 150 principle components for α = 0.2,
on the first 100 principle components for α = 0.3, on the first 50 principle components for α = 0.4. Stochastic Force
Inference was used with a first order polynomial basis for the inference of the diffusion tensor and the force field. The
noise-corrected diffusion estimator was employed.
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SUPPLEMENTARY NOTE 1
NUMERICALLY INTEGRATING THE BROWNIAN DYNAMICS

We simulate the stochastic dynamics of the two-beads model by numerically integrating the overdamped
Langevin equation for the beads’ displacements x = (x1, x2) (Eq. 1 main text), with F(x) = Kx, Kij =
(1−3δij)k/γ, Dij = δijkBTi/γ. We discretize the equation of motion for the two beads using an Euler scheme
with discretization step ∆t. Thus, the discretized equation of motion after n time steps for the i-th bead
reads: xi((n+1)∆t) = xi(n∆t)+

∑
j=1,2Kijxj(n∆t)∆t+

∑
j=1,2

√
2Dij∆tξj , where ξj is a random number

drawn from a normal distribution with mean zero and variance one. We initialize the simulation with the
beads in their rest state and we only record the positions of the beads after an equilibration time teq = 105∆t
to allow the dynamics to reach steady state. The parameters for the results of Fig. 2 of the main text are:
∆t = 0.01, k = 2, γ = 1, kB = 1, T1 = 1 and 0.2 < T2 ≤ 1.

The dynamics of the 20 × 20 spring network is generated in a similar way. In this case, we discretize the
overdamped Langevin equation for the nodes’ positions x with time step ∆t = 0.005. For the network the

elastic force acting on node i reads: Fi(x) = −∑j∼i
kij
γ (‖xi,j(t)‖ − `0)x̂i,j , where kij = k if the bond is

present, kij = 0 if it is not, xi,j = xi − xj is the unit vector between nodes i and j, the sum runs over
nearest-neighbor nodes j of i, k = 4, and `0 = γ = kB = 1. In Fig. 3 of the main text, we randomly choose
1/5 of the nodes to have higher temperature Thot = 0.25, while the rest has a lower temperature Tcold = 0.05
(Thot = 0.05 and Tcold = 0.01 in the low temperature case). Additionally, we randomly dilute the bonds of
the network with probability 1/5. The simulation is initialized with the network in its rest state and we wait
an equilibration time teq = 105∆t before recording trajectories.

SUPPLEMENTARY NOTE 2
GENERATING THE BROWNIAN MOVIES

We first outline the procedure to generate a Brownian movie for the two-beads model (see Fig. 2 of the
main text). The input consists of the numerically generated position trajectories of the two beads. We
then transform the trajectories from position space to image space into pixel units (we used a 40× 20 pixel
grid). Specifically, we set the image pixel intensities at a given time point by centering a radially symmetric
Gaussian function centered at the bead’s position, with amplitude 1 and variance 9 pixels. Finally, to simulate
measurement noise in a simple way, we add uncorrelated white noise sampled uniformly from [0, a] (a = 0.1,
i.e. in Fig. 2 of the main text) independently at each pixel. As in real imaging devices, pixels are saturated
at intensity 1.

Next, we briefly detail how we generate a movie for a region inside a 20 × 20 network. The N × 800-
dimensional position array (N is the number of recorded time steps), which is the output of the numerical
integration of the Langevin equation, is transferred to a custom Python routine that, at each time step,
directly plots all the lines connecting neighboring nodes within the selected smaller region (grey frame of
Fig. 3a of the main text) onto a 80× 80 pixel grid. In this routine, pixel intensities decay with the distance
from each such line as a Gaussian function with amplitude 0.8 and a variance of 2 pixels. Additionally, to
simulate limited optical resolution of the imaging device, we blur the images as described in Supplementary
Note 6. To simulate measurement noise, we add white gaussian noise as described in Supplementary Note 7.
Note, from our Brownian dynamics simulation we can compute the exact entropy production rate (in natural

units with kB = 1) Ṡtot = 786 of the full 20× 20 network. To estimate the exact entropy production rate Ṡex

of the observed region in the Brownian movie, we assume the spatial density of entropy production rate to
be approximately uniform throughout the whole 20× 20 network. The exact entropy production rate for the
observed region is then Ṡex ≈ ṠtotAobs/Atot, where Atot = 381.5 is the area of the full network measured in

natural units, and Aobs = 24.5 the area of the observed region. From this we obtain Ṡex = 786×24.5/381.5 ≈
50.5 for the network, which is the value we employ throughout the manuscript.

SUPPLEMENTARY NOTE 3
INFERRING THE DISSIPATIVE MODES: DISSIPATIVE COMPONENT ANALYSIS

The aim of Dissipative Component Analysis (DCA) is to infer a set of modes that maximize dissipation or,
more precisely, the entropy production rate. This method is a principled approach only for a linear dynamical



8

system with constant diffusion. However, as we demonstrate in the main text, this method can be successfully
employed in high-dimensional situations when dealing with image-data, when the dynamics is close to linear
(close to the stable fixed points of the system). In such cases DCA can reduce the dimensionality by exploiting
the non-equilibrium character of the system, as outlined below.

We consider a generic linear system described by an n-dimensional column-vector of coordinates y that
obeys the Langevin equation

dy(t)

dt
= Ky(t) +

√
2Dξ(t) , (1)

where K is the interaction matrix and D the diffusion matrix. Note that D and K may in general not
satisfy detailed balance and the system may thus be out of equilibrium.

As a preliminary step we perform principal component analysis (PCA) on data obtained simulating
the time-evolution described by Eq. 1 for N time-steps: we first compute the covariance matrix C =
1
N

∑N
t=1(y(t) − 〈y〉) · (yT (t) − 〈y〉T ), where 〈y〉 = 1

N

∑N
t=1y(t). We then retain the first m < n eigen-

vectors of C (see Supplementary Note 5 for details on the truncation criteria), ordered by magnitude of the
associated eigenvalues, and use them to construct the m × n transformation matrix E. The time evolution
of the system projected onto the PC-coordinates is then ypca(t) = ETy(t). In this basis, the covariance
matrix Cpca is diagonal with the ordered eigenvalues as diagonal entries. This preliminary step is useful for
two reasons: it reduces dimensionality and it conveniently filters out measurement noise from the images.
Next, we transform the data into covariance identity coordinates (cic), in which the covariance matrix is the

identity. This is accomplished by ycic(t) = C
−1/2
pca ETy(t).

In the next step, we focus on the non-equilibrium character of the system and compute the area-enclosing-
rate matrix (AER) Ȧ in CIC coordinates [1–3]:

Ȧcic,ij =
1

2ttot

N∑

t=1

[ycic,i(t)∆ycic,j(t)− ycic,j(t)∆ycic,i(t)], (2)

where ttot = N∆t is the total simulation time and ∆yi denotes the displacement of the i-th coordinate
between two successive time-steps. Each element Ȧij of the AER matrix corresponds to the area that the
trajectory encloses on average in the plane (yi, yj) per unit time. This area enclosing rate quantifies broken
detailed balance in the system and is zero in thermal equilibrium. Having defined the AER allows us to
conveniently write the total entropy production of the system as [2, 4]:

Ṡ = Tr(ȦcicȦ
T
cicD

−1
cic ), (3)

whereDcic := 1
2ttot

∑
t ∆ycic(t)∆yTcic(t). It is now key to observe that the matrix product ȦcicȦ

T
cic, appearing

in the expression for the entropy production rate Eq. 3, is real and symmetric and thus admits a real
orthonormal basis of eigenvectors. Moreover, since Ȧcic is antisymmetric, all non-zero eigenvalues of ȦcicȦ

T
cic

are two-fold degenerate. Furthermore, note that the orthonormal basis of ȦcicȦ
T
cic is unique up to rotations

in the two-dimensional eigenspaces that correspond to the same eigenvalue. Importantly, in these special
covariance identity coordinates (scic), the total entropy production rate reads

Ṡ =
∑

i∈odd
λi[(D

−1
scic)ii + (D−1

scic)i+1 i+1], (4)

with λi being the eigenvalues of ȦcicȦ
T
cic. We refer to the corresponding eigenvectors as the dissipative

components.

SUPPLEMENTARY NOTE 4
DEPENDENCE OF ENTROPY PRODUCTION RATES ON THE TRAJECTORY LENGTH

The entropy production rate is a semi-positive definite quantity: at steady state Ṡ ≥ 0. Given finite-length
data, the estimate of the entropy production rate will be biased. While this bias can be computed analytically
for homogeneous diffusion coefficients [5], this may be difficult for space-dependent diffusion coefficients and
in the presence of measurement noise. Given that we are here concerned with finite-size data of systems
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with multiplicative noise partially corrupted by measurement noise, we use the following approach to reduce
the bias of the entropy production rate and, correspondingly, to avoid overfitting: We separate our data
set of length N into two independent and successive sets, a training set of length m and a test set of
length n = N − m. The results in Fig. 3 of the main text are obtained with m = N/10. We first infer
relevant components using the training set, and we then project the test set onto these components and
infer the corresponding entropy production rate, as shown in Supplementary Figure 2a . Although entropy
production rate estimates remain weakly positively biased for short trajectories, the bias approaches zero for
long trajectories, as shown in Supplementary Figure 2b for the analyzed region of the 20× 20 spring network
with uniform temperatures (equilibrium). Note, however that our error bar estimates always intersect zero
for all trajectory lengths (Supplementary Figure 2b). When the network is out of equilibrium, the entropy
production rate estimates converge to non-zero values for long trajectories, as shown in

SUPPLEMENTARY NOTE 5
DIMENSIONAL REDUCTION: TRUNCATION CRITERIA

For the Brownian-movie learning procedure it is important to reduce the dimensionality of image data to a
more tractable number of components. Therefore, we require criteria to decide on the maximum number of
components that we consider in our analysis of the stochastic dynamics. Two main limiting effects arise due
to the finite length of trajectories and measurement noise.

1) Noise floor

We start by asking what is the maximum number of components that we can distinguish from a noise
floor set by the imaging noise and the finite length of the data. Our image data is a matrix X of ttot (total
simulation time) rows and L × W (total number of pixels in a single image) columns. We first estimate
the principal components — the normalized eigenvectors of the covariance matrix of image data — and sort
these components according to the magnitude of the corresponding eigenvalues. To determine the noise floor,
we eliminate temporal correlations in the image data by shuffling the values of X separately along each of
its columns [6]. What we obtain is a shuffled data set Xshuffled for which we can also compute principal
components and eigenvalues. The largest eigenvalue of the covariance matrix of Xshuffled yields the noise
floor. Thus, we truncate the basis of principal components to exclude components with eigenvalues below
this noise floor. To illustrate this procedure, a plot of the eigenvalues for X together with the noise threshold
is shown in Supplementary Figure 3 a-b for the two beads model and for the filamentous network.

2) Resolution of the dynamics

Criterion 1) ensures that the components are distinguishable from imaging noise, which is a static property
of the data. The Brownian-movie analysis is concerned with the dynamics. We thus want to make sure that
we can resolve the dynamics of the components selected with criterion 1). This is a necessary condition to
infer force and diffusion fields in image-space. A criterion for selecting components whose dynamics can be
resolved using SFI is based on computing the autocorrelation function of the projection coefficients (c in the
main text) centered around their average value (ci(t)→ ci(t)− 〈ci〉):

Ci(n∆t) =

∑N−n∆t
t=1 ci(t+ n∆t)ci(t)∑N

t=1 c
2
i (t)

. (5)

We are only able to resolve the dynamics if ci(t) does not decorrelate too fast, i.e. if Ci(n∆t) does not decay
to zero in a time comparable to the time-step ∆t. We therefore employ the following criterion: we only retain
components for which |Ci(∆t) − Ci(0)| < 0.25. We applied criterion 2) to the two-beads data and to the
network data and plot the results in Supplementary Figure 3 c-d. Criterion 2) is clearly sensitive both to the
time resolution ∆t and to the signal to noise ratio in the trajectories.
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SUPPLEMENTARY NOTE 6
ENTROPY PRODUCTION RATE INFERENCE FOR INCREASING IMAGE-BLURRING

The imaging of a physical system will be subject to a finite resolution, which will induce image blurring. Here,
we test the performance of our inference method as we increase the blurring of the object of interest in the
Brownian movie, as shown in Supplementary Figure 4a. Blurring of the original image (σ=0) is obtained by
applying the standard gaussian filter of the scikit-image python library. The blurring parameter σ corresponds
to the standard deviation of the gaussian kernel. Our estimates of the recovered entropy production rates
are affected by high levels of blurring of the structure of interest, as shown in Supplementary Figure 4b-c.
Interestingly, when blurring is modest (σ = 2, 4) our method recovers more entropy production rate than
without any blurring (σ = 0), possibly because the image-space dynamics is expected to become more linear
with a slightly blurred system. If blurring is further increased and objects in the movie start to overlap

(σ > 4), the ̂̇S/Ṡex estimates start to decline. Remarkably however, both PCA and DCA still yield non-

zero estimates of ̂̇S with very strong blurring σ = 10, if a sufficient number of modes (& 10) are retained.
Furthermore, for this example DCA outperforms PCA, also for blurred Brownian movies.

SUPPLEMENTARY NOTE 7
ENTROPY PRODUCTION RATE INFERENCE FOR INCREASING NOISE LEVEL

In this section, we test the robustness of our entropy production inference method to increasing levels of
measurement noise in the image-frames. To simulate imaging noise, we consider two different white-noise
contributions: we include an intensity-dependent contribution NI , and a white gaussian noise N0, which is
independent of the intensity at each pixel. Thus, the intensity of each frame I(t) is given by:

I(t) = Ī(t) + NI(t) + N0(t), (6)

where Ī is the ideal image, and the intensity-dependent white noise NI is drawn from a normal distribution

of zero mean and standard deviation α
√

Ī(t) + N0(t) (negative values of Ī(t) + N0(t) are truncated at
zero), where N0(t) the background white noise term drawn independently at each time step from a normal
distribution of zero mean and standard deviation α/10. Negative pixel intensities are truncated at zero.
Additionally, to simulate the case of shot noise in the imaging apparatus, we also consider additive Poisson-
distributed noise with a mean and variance equal to the intensity at each pixel Ī(t).

Examples of noisy image frames are shown in Supplementary Figure 5a. The estimated entropy production
rate via DCA and PCA are robust to modest levels of white gaussian noise in the image (α = 0.1, 0.2, 0.3),
as well as to shot noise, as shown in Supplementary Figure 5b-c. For α = 0.4 we are probing the limit of our
inference method (our truncation criteria allows us to perform DCA only with the first 50 principle compo-
nents) and, although we are still able estimate a significant amount of entropy production, the performance
decreases.

SUPPLEMENTARY NOTE 8
PROOF OF LOWER BOUND ON THE ENTROPY PRODUCTION RATE

A common problem in the inference of the entropy production rate is that we only observe a part of the
system, which typically makes it impossible to infer the exact value of the total entropy production rate.
However, even with hidden degrees of freedom one can still find a non-trivial lower bound to the total entropy
production rate. Here we offer a proof to demonstrate this for a class of systems described by a Langevin
equation with multiplicative Gaussian white noise.
Let us denote by D(x) the diffusion matrix. We split the system into observed part ”o” and hidden part
”h”, such that the diffusion matrix has the form

D =

(
Doo Doh

Dho Dhh

)
(7)

Denoting by v(x) = (vo(x),vh(x)) the mean phase space velocity, by ṽo(xo) = 〈vo(x)|xo〉 the apparent

mean phase space velocity, and by D̃oo(xo) = 〈Doo(x)|xo〉 the apparent diffusion matrix of the observed
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subsystem, we define the apparent entropy production rate as

Ṡapp = 〈ṽo(D̃oo)−1ṽo〉 (8)

The total entropy production rate of the system is calculated as

Ṡ = 〈vD−1v〉 (9)

We aim to show that Ṡapp ≤ Ṡ. The proof follows in two steps. First, given that the function π(D,v) =
vD−1v restricted to positive definite matrices D is multivariate convex (Lemma 1), the Jensen inequality
implies:

Ṡapp = 〈ṽo(D̃oo)−1ṽo〉 ≤ 〈vo(Doo)−1vo〉 (10)

Second, we demonstrate that (Lemma 2):

∀v∈Rn vo(Doo)−1vo ≤ vD−1v (11)

Put together, Lemma’s 1 and 2 imply:

Ṡapp = 〈ṽo(D̃oo)−1ṽo〉 ≤ 〈vD−1v〉 = Ṡ (12)

Proof of Lemma 1

Let v ∈ Rn and D ∈ Rn2

. The function π : Rn × Rn2 → R is defined by π(v,D) = vD−1v = vµD
−1
µν vν ,

using the Einstein summation convention. Let Hπ[v,D] denote the Hessian of π at point (v,D). Let us
also denote by Sn the space of symmetric matrices of size n × n and by S+

n the subset of positive definite

matrices. Note that Sn is a linear subspace of Rn2

and that S+
n is a convex set.

We need to prove that π|Rn×S+
n

is a convex function. Because Sn is a linear subspace of Rn2

, it is enough to

prove that at every point (v,D) ∈ Rn ×S+
n the Hessian Hπ[v,D] is positive semi-definite on Rn ×Sn, that

is:

∀(v,D)∈Rn×S+
n
∀(w,P )∈Rn×Sn (w,P )Hπ[v,D](w,P ) ≥ 0 (13)

In order to verify this condition we first calculate the full Hessian Hπ defined as:

Hπ =

(
∂2π
∂v∂v

∂2π
∂v∂D

∂2π
∂D∂v

∂2π
∂D∂D

)
:=

(
A B
Bᵀ C

)
(14)

Let us calculate the first derivatives of π(D,v):

∂π

∂va
= D−1

aν vν +D−1
νa vν (15)

∂π

∂Dij
= −vµD−1

µi D
−1
jν vν (16)

and the elements of the Hessian:

Aab =
∂2π

∂va∂vb
= 2D−1

ab (17)

Ba,ij =
∂2π

∂va∂Dij
= −[D−1

ai D
−1
jν +D−1

νi D
−1
ja ]vν (18)

Cij,kl =
∂2π

∂Dij∂Dkl
= vµvν [D−1

µkD
−1
li D

−1
jν +D−1

µi D
−1
jk D

−1
lν ] (19)
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We can now proceed by verifying the condition expressed in Eq. (13).

(w,P )Hπ[v,D](w,P ) = 2waD
−1
ab wb − 2Pijwa[D−1

ai D
−1
jν +D−1

νi D
−1
ja ]vν

+ PijPklvµvν [D−1
µkD

−1
li D

−1
jν +D−1

µi D
−1
jk D

−1
lν ] (20)

= 2wD−1w − 2wD−1PD−1v − 2wD−1P ᵀD−1v

+ 2vD−1PD−1PD−1v (21)

Using that P ∈ Sn, meaning that we only consider directions within the subspace of symmetric matrices,
and renaming x := PD−1v, we simplify the above expression to

2[wD−1w − 2wD−1x + xD−1x] = 2(w − x)D−1(w − x) ≥ 0 (22)

which holds due to D being positive definite. �

Proof of Lemma 2

First, let us note that the inequality vo(Doo)−1vo ≤ vD−1v ∀v∈Rn is equivalent to

(
(D−1)oo − (Doo)−1 (D−1)oh

(D−1)ho (D−1)hh

)
� 0 (23)

To simplify the notation let us introduce Q := D−1. Since D is positive definite, we also have Q � 0 and in
particular Qhh � 0. Rewriting the above condition in terms of Q we get:

(
Qoo − [(Q−1)oo]−1 Qoh

Qho Qhh

)
� 0 (24)

Using Schur’s decomposition, we can write (Q−1)oo = (Qoo −Qoh(Qhh)−1Qho)−1. Substituting this in the
equation above we get:

(
Qoh(Qhh)−1Qho Qoh

Qho Qhh

)
� 0 (25)

To check the positive semi-definiteness of this matrix we can apply it to an arbitrary vector v = (vo,vh).
The matrix in Eq. (25) is positive semi-definite if and only if

voQoh(Qhh)−1Qhovo + 2voQohvh + vhQhhvh ≥ 0 (26)

To simplify this expression let us substitute wh = Qhovo. This gives us:

wh(Qhh)−1wh + 2wh · vh + vhQhhvh ≥ 0 (27)

Finally we substitute wh = Qhhx, vh = y, to get:

xQhhx + 2xQhhy + yQhhy ≥ 0⇐⇒ (28)

(x + y)Qhh(x + y) ≥ 0 (29)

which holds, due to Qhh being positive definite. �
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