
E�cient Software Model Checking
with

Block-Abstraction Memoization

Dissertation
an der Fakultät für Mathematik, Informatik und Statistik

der Ludwig-Maximilians-Universität München

eingereicht von
Karlheinz Friedberger

21.05.2021

1. Gutachter: Prof. Dr. Dirk Beyer

2. Gutachterin: Prof. Dr. Heike Wehrheim

3. Gutachter: Prof. Dr. Tomáš Vojnar

Tag der Disputation: 03. 11. 2021

Abstract

The increasing availability of information technology in today’s life is a challenge for users as
well as for engineers. The execution of a myriad of machine operations per second on each single
device as well as world-wide communication between applications in research, industry, and
personal domain require reliability and scalability of computer systems, both on hardware and
software level. Increasing complexity as well as a big potential for errors make it challenging to
develop and maintain such systems. This causes failures in applications, reaching from simple
blue screens on personal computers towards accidents in critical infrastructure, such as crashing
airplanes and invalid settings for medical equipment, a�ecting a large number of people.

To address this challenge, it becomes more and more important to use processes to avoid failures
in new software and �nd bugs in already exiting software. Prominent approaches used in quality
management of critical systems are formal methods like formal veri�cation and especially model
checking, which aims at proving whether a system meets a given speci�cation and ful�lls its
requirements. Researchers and developers use formal veri�cation for a wide area of applications,
including hardware-circuit designs, �ight-control systems, and even operating-system drivers
that run in everyone’s computer. In the last decades, the research community has made several
steps towards better usage, adaptation, and understanding of formal techniques. However, due to
their high demand of resources in both manpower as well as computational e�ort, formal methods
are still not as used in the standard software development process as plain testing, but almost
exclusively in critical applications, where a failure can get life-threatening or disproportionately
expensive.

To ful�ll the high demand and large-scale availability of quality management, formal veri�cation
needs to run automatically and with only small amount of manpower. With our research in this
context, we considered the following challenges:

• To enable smaller teams with larger software projects to use formal methods, we need
scalable and modular software-veri�cation approaches that not only aim for a lower amount
of required resources, but also use the available resources e�ciently and allow for caching
and reuse of partial analysis results.

• To analyze parallel running software systems with e. g. communicating components, we
need a simple formalism and veri�cation technique for parallel systems that works in a
domain-independent way, such that several already existing analyses can be applied easily.

• To allow software developers to use model-checking tools regularly, we need to improve
the usability and exported data of suchlike, e. g., with using a standardized �le format for
exchanging analysis results between tools.

4

• To support the development of new veri�cation approaches and other applications based
on formal theory, we need to improve the usability of often-used backend components
for solving constraints and analyzing formulas, such as providing simple interfaces and
ready-to-use libraries for SMT solvers.

The basis for our research is the open-source veri�cation framework CPAchecker, which pro-
vides a convenient context to declare program analyses, supports multiple abstract domains for
encoding program behavior, and already contains several approaches and algorithms for software
veri�cation.

Our studies on scalable and modular approaches show the potential of block-abstraction
memoization, which is a veri�cation technique based on a divide-and-conquer strategy that
leverages the internal structure of a program. Using an abstract domain like predicate abstraction,
value analysis, or combinations thereof, we evaluate the approach on a large and established
benchmark set to provide evidence for its competitive performance against other state-of-the-art
approaches and also to show that CPUs with multiple cores can be used to their full potential.

Our research on parallel systems enables interesting insights into multi-threaded veri�cation
tasks. We develop a theoretical approach to handle concurrency in a simple, but e�cient and
also domain-independent way, and provide the corresponding implementation in CPAchecker.
Additionally, the established standardized format for the representation of veri�cation witnesses
is extended with additional information about the concurrent context and thread scheduling
which are valuable artifacts from the veri�cation process.

Orthogonal to the theoretical concepts of software veri�cation, we work on simplifying the use
of SMT solvers, which are the basic foundation of several veri�cation approaches. By introducing
a common API layer written in Java with bindings towards several distinct SMT solvers, we make
it more convenient for the engineer of a veri�cation tool to interact with back-end solvers and
even switch between those provide di�erent features and strengths.

Zusammenfassung

Die zunehmende Verfügbarkeit von Informationstechnologie im Alltag fordert Nutzer und Her-
steller gleichermaßen heraus. Für die Ausführung einer Unzahl an Maschinenbefehlen pro Sekunde
in jedem einzelnen Gerät und die weltumspannende Kommunikation zwischen Anwendungen
in den Bereichen der Forschung, Industrie und Privatleben werden Zuverlässigkeit und Skalier-
barkeit von Computersystemen, sowohl auf Hardware- als auch auf Softwareebene, benötigt.
Wachsende Komplexität sowie ein großes Fehlerpotential erschweren es, solche Systeme zu en-
twickeln und dauerhaft zu warten. Dies führt typischerweise zu Fehlern in Anwendungen, von
einfachen Bluescreens auf PCs bis hin zu Unfällen in kritischer Infrastruktur, wie z. B. abstürzende
Flugzeuge und unpassende Einstellungen an medizinischen Geräten, wovon oftmals eine größere
Anzahl an Menschen betro�en ist.

Um dieser Herausforderung zu begegnen, wird es immer wichtiger Prozesse zu verwenden,
die Fehler in neuer Software vermeiden und in bereits vorhandener Software �nden. Bekannte
Ansätze für das Qualitätsmanagement kritischer Systeme sind formale Methoden wie formale
Veri�kation und insbesondere Model-Checking. Durch Letzteres soll nachgewiesen werden, ob ein
System eine gegebene Spezi�kation erfüllt und seinen Anforderungen gerecht wird. Forscher und
Entwickler setzen formale Veri�kation bereits für weite Anwendungsbereiche ein, von hardware-
nahen Schaltplänen und Flugsteuerungssystemen bis hin zu Komponenten von Betriebssystemen,
die auf unzähligen Computern ausgeführt werden. In den letzten Jahrzehnten hat die Forschungs-
gemeinschaft schrittweise Anwendung und Bedienung formaler Techniken verbessert und das
Verständnis dafür vertieft. Aufgrund ihres hohen Ressourcenbedarfs sowohl an Arbeitskräften als
auch an Rechenaufwand werden formale Methoden im Gegensatz zu einfachen Testverfahren
immer noch nicht regelmäßig im üblichen Softwareentwicklungsprozess verwendet, sondern fast
ausschließlich nur im Rahmen kritischer Anwendungen, in denen Fehler lebensbedrohlich oder
unverhältnismäßig teuer sind.

Um die Nachfrage nach Qualitätsmanagement zu erfüllen und die Verfügbarkeit in großem
Maßstab zu gewährleisten, muss formale Veri�kation weitestgehend automatisch und mit mini-
maler Nutzerinteraktion durchgeführt werden können. Im Rahmen unserer Forschung haben wir
in diesem Zusammenhang folgende Herausforderungen betrachtet:

• Um kleineren Teams die Anwendung formaler Methoden für größere Softwareprojekte zu
ermöglichen, brauchen wir skalierbare und modulare Ansätze zur Software-Veri�zierung,
die nicht nur auf einen geringeren Verbrauch an erforderlichen Ressourcen abzielen, son-
dern auch die verfügbaren Ressourcen e�zient nutzen und das Wiederverwenden von
Teilergebnissen der Analyse ermöglichen.

6

• Für die Analyse von parallel laufenden Softwaresystemen mit z. B. kommunizierenden
Komponenten sind ein einfacher Formalismus und eine Veri�kationstechnik für parallele
Systeme nötig, welche unabhängig von der jeweils eingesetzten Domäne funktionieren, so
dass bereits existierende Analysen einfach verwendet werden können.

• Damit Entwickler regelmäßig Model-Checking anwenden können, müssen wir die Benutzer-
freundlichkeit der entsprechenden Werkzeuge verbessern sowie beispielsweise Daten für
den Austausch von Analyseergebnissen zwischen derartigen Anwendungen in einem stan-
dardisierten Dateiformat bereitstellen.

• Um die Entwicklung neuer Veri�zierungsansätze und anderer Anwendungen auf Basis
von theoretischen Grundlagen zu vereinfachen, sind Benutzerfreundlichkeit und Hand-
habung häu�g verwendeter Backend-Komponenten zu verbessern, die eingesetzt werden,
um Gleichungssysteme zu lösen und Formeln zu analysieren, indem wir z. B. einfach zu
nutzende Schnittstellen und gebrauchsfertige Bibliotheken für SMT-Solver bereitstellen.

Die Basis für unsere Forschung ist das Open-Source-Projekt CPAchecker, welches ein vorgefer-
tigtes Framework für die De�nition von Programmanalysen bietet, mehrere abstrakte Domänen
zum Beschreiben von Programmverhalten unterstützt und bereits einige Ansätze und Algorithmen
zur Softwareveri�kation enthält.

Unsere Studien zu skalierbaren und modularen Ansätzen zeigen das Potenzial der Block-
Abstraction Memoization, einer Veri�kationstechnik aufbauend auf einer Divide-and-Conquer-
Strategie, die die interne Struktur eines Programms nutzt. Auf Basis einer abstrakten Domäne
wie Predicate-Abstraction, Value-Analysis oder einer Kombinationen davon bewerten wir diesen
Ansatz mit Hilfe einer großen, etablierten Menge an Benchmarks und zeigen seine Wettbewerbs-
fähigkeit gegenüber anderen Ansätzen auf dem aktuellen Stand der Technik und auch, dass
moderne CPUs mit mehreren Kernen voll ausgeschöpft werden können.

Unsere Forschung zu parallelen Systemen ermöglicht interessante Einblicke in die Veri�zierung
von nebenläu�gen Programmen. Wir entwickeln einen theoretischen Ansatz zur Handhabung
von Nebenläu�geit auf einfache, aber e�ziente und domänenunabhängige Weise und stellen die
entsprechende Implementierung in CPAchecker bereit. Zusätzlich wird das etablierte und stan-
dardisierte Austauschformat für Fehlerpfade und Beweise bei der Veri�zierung mit zusätzlichen
nützlichen Informationen aus der Analyse des parallelen Kontexts erweitert.

Unabhängig von den theoretischen Konzepten der Software-Veri�kation arbeiten wir daran, die
Verwendung von SMT-Solvern zu vereinfachen, welche die zu Grunde liegende Basis mehrerer
Veri�zierungsansätze sind. Durch die Einführung einer einheitlichen Java-basierten API-Schicht
und Anbindungen mehrerer unterschiedlicher SMT-Solver ist die Interaktion mit dem Solver
für die Entwickler eines Veri�zierungsansatzes bequemer und wir ermöglichen das Wechseln
zwischen Solvern für den Zugri� auf deren verschiedene Merkmale und Stärken.

Acknowledgments

This thesis would not exist without the support of many other people, that was provided during
and over that long time. I want to express my deep appreciation to all of them.

First of all, I would like to thank my supervisor Dirk Beyer, who guided me since my early
years at university and also throughout this project. He invoked my interest in the theoretical
foundations of program analysis and software veri�cation, provided a decent working environment
with lots of friendly and helpful colleagues, shared his knowledge, worked on several papers with
me, and always had an open ear for discussion.

I also want to thank Heike Wehrheim and Tomáš Vojnar, who have kindly agreed on reviewing
this thesis. Additionally, writing papers is not possible without the help of coauthors, which also
receive my acknowledgments. I enjoyed working with you, and I have learned a lot from you,
although for some of you, it might have been years since our last communication.

I have been working and researching in the middle of helpful colleagues, and I want to express
my gratitude to the groups from Passau and from Munich. Both groups provided a decent working
environment and it was always a pleasure working with you. Everyone across the o�ce corridor
– or lately in the chats, video conferences, and mailing lists – was open for answering questions
and fruitful discussions. My special thanks go to Philipp Wendler, who has actually always been
available since I started as a student assistant. Along our long common path, I learned a lot of
him in the areas of software development, teaching, theory of software veri�cation, executing
benchmarks and evaluations, and administrative procedures. Another noteworthy colleague
was Matthias Dangl, with whom I shared the o�ce in Passau and Munich and who provided a
helping hand and theoretical support whereever required. There are several more colleagues,
research and student assistants, older and younger people from university, secretaries, and system
administrators, that receive my appreciation.

Additionally, I thank my family, most importantly my parents, for organizational, emotional,
and �nancial support. They are not as deeply familiar with the theoretical concepts of my work –
I really tried to explain my topics several times – but provided a convenient and cozy environment
for living and working in the Bavarian forest, including space for home o�ce for the last year. Last
but not least, my grandmother Anneliese Stöger should be mentioned here, to whom I dedicate
this thesis.

Eidessta�liche Versicherung

Hiermit erkläre ich an Eidesstatt, dass die Dissertation von mir selbstständig, ohne unerlaubte
Beihilfe angefertigt ist, keine anderen als die angegebenen Quellen und Hilfsmittel benutzt sowie
Zitate und gedankliche Übernahmen kenntlich gemacht wurden.

München, 21.05.2021 Karlheinz Friedberger

Ort, Datum Unterschrift

Contents

1. Introduction 13

1.1. Motivation . 13
1.2. Structure of This Thesis . 15
1.3. Software Analysis and Software Model Checking 15
1.4. Frameworks and Tools . 16

1.4.1. CPAchecker . 16
1.4.2. JavaSMT . 17

1.5. Contributions . 17

2. Discussion of Manuscripts 19

2.1. Block-Abstraction Memoization . 21
2.1.1. Domain-Independent Multi-threaded Software Model Checking 21
2.1.2. In-Place vs. Copy-on-Write CEGAR Re�nement for Block Summarization

with Caching . 22
2.1.3. Domain-Independent Interprocedural Program Analysis using Block-

Abstraction Memoization . 23
2.2. Multi-Threaded Programs . 24

2.2.1. A Light-Weight Approach for Verifying Multi-Threaded Programs with
CPAchecker . 24

2.2.2. Violation Witnesses and Result Validation for Multi-Threaded Programs 24
2.3. JavaSMT . 26

2.3.1. JavaSMT 3: Interacting with SMT Solvers in Java 26

3. Conclusion and Future Research 29

3.1. Summary . 29
3.2. Future Work and Prospects in CPAchecker and JavaSMT 30

3.2.1. Block-Abstraction Memoization with More Domains and Further Algorithms 30
3.2.2. Extensions of the Concurrency Analysis 32
3.2.3. JavaSMT . 33

3.3. Usage of Veri�cation in Real-World Software Projects 33

12 Contents

Acronyms 37

Bibliography 39

A. Manuscripts 49

Domain-Independent Multi-threaded Software Model Checking 51
In-Place vs. Copy-on-Write CEGAR Re�nement for Block Summarization with Caching 63
Domain-Independent Interprocedural Program Analysis using Block-Abstraction Mem-

oization . 83
A Light-Weight Approach for Verifying Multi-Threaded Programs with CPAchecker . 97
Violation Witnesses and Result Validation for Multi-Threaded Programs 109
JavaSMT 3: Interacting with SMT Solvers in Java . 131

1. Introduction

1.1. Motivation

Communication retrieval and information exchange are an important part of modern society.
Within the last decades plenty of computer systems and applications have been developed and
are a�ecting everyone’s daily life, scaling from smartphones to computers and data centers and
reaching from simple devices to smart homes and industry 4.0. Each typical modern automobile
contains about 50 microprocessors, larger vehicles like airplanes or spaceships even multiples
of that. All these devices are driven by software and applications that are prone to bugs, which
cause, for example, simple bluescreens that can be solved by a reboot or more expensive failures
of larger systems like blocked production lines or critical accidents.

Thus, one of the primary goals of developing software is to avoid bugs, i. e., application engi-
neers aim to write non-defective code or to �nd and then remove bugs from existing software.
Testing [97] is the most well-known approach to detect bugs and is applied in private, educational,
and industrial software development, but it is not su�cient to detect all problems and to formally
prove their absence. Formal methods, such as software veri�cation and model checking, aim to
help here by applying manual [69, 78], semiautomated [92, 99], or even fully automated [58, 104]
approaches. With larger software systems using millions of lines of code, manual approaches for
software veri�cation can become expensive due to high e�ort and the need of experts for the
application domain. Thus, the more e�cient way to verify software projects is a fully automated
method, which requires less knowledge from the user about formal methods and applies the
strengths of available computing resources to solve the task.

The approach of software model checking has successfully been applied in security crit-
ical �elds, such as the veri�cation of a �ood control system [86], automotive control sys-
tems [15, 100, 117], avionic software [62], transmission protocols [112], device drivers of operating
systems [10, 11, 44, 88], and boot code in computers [60]. Even when compared to testing, formal
methods can be competitive in �nding bugs [40].

A veri�cation approach models program behavior with an abstract domain that, for example,
represents data information, dependencies, or assignments of variables, and reasons about it,
possibly by applying a �xed-point algorithm to explore the abstract state space within this abstract
domain. The performance of the analysis depends on the used abstract domain and the convergence
of the �xed-point algorithm. Popular choices for software-veri�cation approaches are explicit-
state model checking [41, 74, 79], SMT-based analyses [26, 39, 50, 94], or approaches based on more
specialized data representations like binary decision diagrams (BDDs) [1, 47, 52, 91] or memory
graphs [37, 64]. All those di�erent domains have distinct properties and make it challenging to

14 1. Introduction

develop approaches that work in domain-independent level. One successful approach for software
model checking is starting with a coarse precision and an abstract view on the program by
ignoring certain points of the underlying program, resulting in an imprecise analysis and a lower
resource usage. Based on spurious counterexample traces, the precision can then be re�ned up to
a concrete representation of the program [55, 56, 73, 111].

The application of software model checking for developers depends on several factors:

• Performance: How fast are analysis results delivered?

• Validity: Are the reported analysis results correct?

• Usability: How is the analysis result presented towards the user?

• Implementability: How simple is it to write an analysis or extend an existing one?

In an ideal scenario, the performance of an algorithm scales with the available hardware
resources, i. e., uses multiple computing units or more memory. For software model checking,
there exist divide-and-conquer approaches [53, 118] for splitting a larger problem into smaller
tasks, solving those separately, and merging the results. This thesis provides insights into the
design and implementation of a scalable domain-independent model checking approach based on
this idea and compares the analysis di�erent analysis con�gurations in CPAchecker against each
other and with distinct veri�cation tools.

Approaches for model checking for single-threaded programs are well-known and available
in several tools. The analysis of programs with multiple threads is more complex, because it
requires to take into account a potentially large number of thread interleavings. Veri�cation
approaches for those programs exist since several decades [71], however, most applications
were limited to specialized domains only, e. g. (symbolic) value analysis [14, 79] or SMT-based
analysis [3, 61, 66, 116, 121]. This thesis contains work on a simple domain-independent approach
for verifying multi-threaded programs.

Due to coarseness in program modeling, data representation through the used abstract domain,
or bugs in the model checking tool, an analysis result can be imprecise and, for example, report a
spurious counterexample or an invalid proof. This behavior is unwanted by the user and should
be avoided, of course. The user needs to have the possibility to validate all reported data to see
the quality of the executed veri�cation approach. This can be shown by validating the certi�cate
(denoted as witness [25]), which is automatically generated during the analysis and written in a
standardized format. A witness comes in form of either a correctness proof for a valid program
that ful�lls its speci�cation or a violation witness in case of counterexample traces. It can be
imprecise and model not only one concrete, but several program traces at once. A validator takes
the witness as input and provides evidence that the analysis result was correct or not. This thesis
takes a look at the witness format for exchanging invariants and counterexample traces when
applied in the context of multi-threaded programs.

The target user group of software analysis tools consists of developers that intend to write
new applications or maintain and extend existing code. One the one hand, developers want to
use �exible and e�cient tools that do their job without a larger need of con�guration. On the

1.2. Structure of This Thesis 15

other hand, they want to adapt existing algorithms or invent their own model checking approach
to ful�ll their requirements. Several aspects of model checking are modeled as constraints or
formulas that are given to a constraint-solving library in the backend. To improve the development
environment for developing and implementing a new idea, this thesis describes our ready-to-use
library for satis�ability modulo theories (SMT) solvers.

1.2. Structure of This Thesis

This thesis is a cumulative dissertation and consists of several individual manuscripts. The overall
structure is organized as follows:

In this �rst chapter (Chapter 1), we motivate our topic, provide an introduction to the thesis,
de�ne the necessary background, describe the tools, on which our solutions are based on, and
present an overview about our contributions.

In the second chapter (Chapter 2), the manuscripts of this cumulative thesis are discussed in
detail. We summarize each manuscript, show their connections and relevance in a broader context,
and describe the author’s contribution for each document.

In the third chapter (Chapter 3), the contributions of this thesis are summarized and future
applications and research directions are discussed.

The appendix (Appendix A) provides the published manuscripts in the same form and formatting
as they are published.

1.3. So�ware Analysis and So�ware Model Checking

In the following, a short background of automated software veri�cation is given to provide the
necessary foundation for the manuscripts in Appendix A and give insights in the formal de�nitions
of the topic.

The overall topic of this thesis is located in the area of static analysis of software systems, or
more concrete, software veri�cation. Static software analysis is the analysis of computer programs
without an actual program execution, in contrast to dynamic analysis, which performs the analysis
while the program is executing. Static software analysis aims for reasoning over software systems,
e. g., for computing additional data like type information or unreachable code, for �nding potential
bugs, memory leaks, or for detecting other unwanted behavior. It is also applied for proo�ng the
absence of errors by verifying software according to a speci�cation. Typically, the program to be
analyzed is available as source code and the analysis can directly access all required information
about variables, types, and the control �ow.

A subarea of static software analysis is software model checking, which is an approach to
check the validity of a program against a speci�cation. The speci�cation describes a liveness or
safety property of a system, such as reaching (or not reaching) a certain condition or statement.
For theoretical approaches, such as research-related properties, the speci�cation for valid or
invalid system behaviour can be given as as a formal description as CTL or LTL [80, 113] or
as an automaton, e. g., formalized in the Blast query language [23]. This allows for a �exible

16 1. Introduction

Model Checker

Source Code

Speci�cation

Unknown

True (+ Proof)

False (+ Counterexample)

Figure 1.3.1.: Overview of software model checking

and precise modeling of the property. Practical application provides and often uses prede�ned
properties, such as detecting failing assertions in the source code, invalid memory access in
low-level programming languages, null-pointer access in object-oriented software, or deadlocks in
concurrent software. The behavior of calling external functions and libraries, as well as the system
environment in general, can be modeled with a test harness that is part of the speci�cation and
which in general depends on the given application and its context. Several prede�ned properties
can be transformed into the corresponding formal description automatically. For more complex
cases, such as tracking an execution sequence of function calls, e. g., for locking and unlocking
mutexes, some manual e�ort is required to get a proper formal description.

Software model checking reports either a proof or, in case of a property violation, a counterex-
ample. The analysis of a software system is usually performed by automated tools without manual
intervention, due to the potential high e�ort and computational requirements for larger programs
consisting of thousands of lines of code. Figure 1.3.1 gives an overview of the control �ow for
software model checking. The veri�cation tool (often denoted as model checker) takes source
code and a speci�cation as input and computes the result, which is either true with a proof (if the
property is satis�ed), false with a counterexample (if the speci�cation is violated, e. g., a bug was
found), or unknown for cases like insu�cient resources.

1.4. Frameworks and Tools

All manuscripts of this thesis refer to an implementation and an evaluation of the described
theoretical concepts. Depending on the manuscript, the corresponding implementation is available
in the projects CPAchecker and JavaSMT, for which a short overview is given in the following,
including details about their history and development.

1.4.1. CPAchecker

CPAchecker [38] is an open-source project for program analysis and software veri�cation.1 The
highly versatile framework is based on the established concept of con�gurable program analy-
sis [36] and provides a rich set of algorithms and operators for various data representations, e. g.,
the predicate-based domain [24], explicit values [41], or grounded on specialized data structures
like BDD [1, 47, 52, 91] or SMG [64, 98]. The framework does not only support the veri�cation of

1https://cpachecker.sosy-lab.org

https://cpachecker.sosy-lab.org

1.5. Contributions 17

source code according to a given speci�cation automaton, but also provides an integrated witness
validator [25] and several useful features. The veri�cation platform comes with a frontend for C
code (which is mainly used), but also provides a frontend for Java and since lately LLVM code. This
makes it an ideal playground for the development of new approaches, because many components
are provided in a usable manner and can be combined into new analyses quickly and without
larger changes in the codebase. CPAchecker is mainly developed by members of Dirk Beyer’s
group from the Software and Computational Systems Lab 2, including the author of this thesis.
The group is currently settled at LMU Munich and previously was located at the University of
Passau. The framework is used and extended by researchers and associates from several institutes
and universities, including the Institute for System Programming of the Russian Academy of
Sciences, the Universities of Paderborn, Darmstadt and Vienna. Variations of CPAchecker regularly
participated successfully in the yearly competition on software veri�cation 3 that takes place
since 2012 [16, 21] and in the yearly competition on software testing 4 that takes place since
2019 [20, 22].

1.4.2. JavaSMT

JavaSMT [9, 85] is an open-source library providing a common Java-based application programming
interface (API) for several SMT solvers.5 The origins of JavaSMT are within CPAchecker, from where
the project was split o� in 2015 in order to be maintained as independent project. Over the years,
not only the list of features and supported backend SMT solvers has grown, but also the group
of users and applications based on JavaSMT was expanded. Several developers prefer using this
library over the native solver bindings, because of better documentation and easier integration
into existing projects.

1.5. Contributions

Our contribution consists of several connected topics in the area of software model checking:
This thesis focuses on making existing approaches for software model checking easier to use

for developers and scalable for larger systems consisting of multiple components. This is done by
modularizing the problem of software model checking into domain-dependent steps and domain-
independent operations and algorithms. The domain-dependent steps aim at the encoding and
re�ning of information in a certain theory, e. g., as SMT formulas or as plain mappings of values.
The common domain-independent operations and algorithms provide the possibility of handling
transfer relation, coverage and termination checks [36]. By separating algorithmic from domain-
speci�c analysis steps, we contribute the possibility of executing independent partial analyses for
parts of the program, applying abstraction, caching and reusing intermediate results [118], and
parallelization, all together formalized within one veri�cation approach. We contribute a domain-

2https://www.sosy-lab.org
3https://sv-comp.sosy-lab.org
4https://test-comp.sosy-lab.org
5https://github.com/sosy-lab/java-smt

https://www.sosy-lab.org
https://sv-comp.sosy-lab.org
https://test-comp.sosy-lab.org
https://github.com/sosy-lab/java-smt

18 1. Introduction

independent and interprocedural analysis of programs with (recursive) procedures and di�erent
ways for the re�nement approach in this context, in order to exploit caching and reusability.

The complexity of software does not only come from its size, but also from the interaction
of parallel running applications and their communication. There exist several approaches for
the veri�cation of parallel programs, e. g., checking thread- or process-level interleaving with
partial order reduction [5, 79], sequentialization [82], or thread abstractions [68, 76]. Our work
contributes an e�cient and domain-independent approach for the analysis of multi-threaded
programs.

A major point for the usability of automated tools is the availability of information about
the analysis, such as counterexamples consisting of input arguments and program traces [57],
proof witnesses with (loop) invariants [25], or other useful reusable artifacts [35, 42, 49]. The
interaction with other tools, e. g., so called witness validators, can be done via a standardized
witness exchange format based on GraphML, which is an XML-based �le format for representing
and exchanging graphs.6 We enhanced this format with the ability to model program traces of
concurrent applications, to extend the developer’s possibility to access the interleaving of threads
that leads to a bug in the program.

For the development of veri�cation approaches and applications based on formal methods, the
usage with backend libraries such as SMT solvers is a common solution. To support the developer
with a user-friendly interface and to simplify the process of setting up the necessary libraries, we
contribute an easy-to-use library JavaSMT for interacting with SMT solvers that includes language
bindings for several backend SMT libraries.

Overall, we substantiate the theoretical contributions in the following manuscripts with the
corresponding implementations and evaluations as part of the projects CPAchecker and JavaSMT.
Our corresponding artifacts are available for further inspection, functional for a replication of the
evaluation, and to a great extent reusable for other applications.

6https://github.com/sosy-lab/sv-witnesses

https://github.com/sosy-lab/sv-witnesses

2. Discussion of Manuscripts

This chapter provides information about the published research manuscripts from Appendix A.
Please note that the order of authors follows alphabetic scheme in most cases. We describe the
relation between the publications of the thesis author and we give the details on the contributions
of the thesis author for each of the manuscripts. The manuscripts are divided into three parts,
according to their direction of research.

First, the approach of block-abstraction memoization (BAM) [118] is discussed, which is a
divide-and-conquer strategy and aims for improving the performance of a program analysis in a
domain-independent way. Therefore, we use the following manuscripts:

• Domain-Independent Multi-threaded Software Model Checking [28]
Authors: Dirk Beyer and Karlheinz Friedberger
Publication: Proc. ASE 2018
Discussion: Sect. 2.1.1
Manuscript: Appendix A, pages 51–61

• In-Place vs Copy-on-Write CEGAR Re�nement for Block Summarization with Caching [29]
Authors: Dirk Beyer and Karlheinz Friedberger
Publication: Proc. ISoLA 2018
Discussion: Sect. 2.1.2
Manuscript: Appendix A, pages 63–81

• Domain-Independent Interprocedural Program Analysis using Block-Abstraction Memoiza-
tion [31]

Authors: Dirk Beyer and Karlheinz Friedberger
Publication: Proc. ESEC/FSE 2020
Discussion: Sect. 2.1.3
Manuscript: Appendix A, pages 83–95

Second, we take a look at our contributions for the veri�cation of multi-threaded programs.
Our approach follows a simple pattern and is also independent of the used domain for information
representation. Additionally, we extent an established format for violation-witness representa-
tion [25] with support for concurrent programs and provide the corresponding validator. The
following manuscripts have been published for this part of the thesis:

20 2. Discussion of Manuscripts

• A Light-Weight Approach for Verifying Multi-Threaded Programs with CPAchecker [27]
Authors: Dirk Beyer and Karlheinz Friedberger
Publication: Proc. MEMICS 2016
Discussion: Sect. 2.2.1
Manuscript: Appendix A, pages 97–107

• Violation Witnesses and Result Validation for Multi-Threaded Programs [34]
Authors: Dirk Beyer and Karlheinz Friedberger
Publication: Proc. ISoLA 2020
Discussion: Sect. 2.2.2
Manuscript: Appendix A, pages 109–130

Third, we do not only work on applying software model checking to programs and developing
approaches to do that e�ciently, but also take a look at a lower level, namely the interaction
between a model checking framework and the underlying SMT solver. We developed and maintain
an API to interact with several di�erent SMT solvers in the backend, based on a binary interface,
i. e., including direct operations for memory manipulation and formula transformation. The
description is available in the following manuscript:

• JavaSMT 3: Interacting with SMT Solvers in Java [9]
Authors: Daniel Baier, Dirk Beyer, and Karlheinz Friedberger
Publication: Proc. CAV 2021
Discussion: Sect. 2.3.1
Manuscript: Appendix A, pages 131–144

2.1. Block-Abstraction Memoization 21

2.1. Block-Abstraction Memoization

2.1.1. Domain-Independent Multi-threaded So�ware Model Checking

The article Domain-Independent Multi-threaded Software Model Checking, which is reprinted
in Appendix A, pages 51–61 of this dissertation, was authored by Dirk Beyer and Karlheinz
Friedberger, and published by ACM in the Proceedings of ASE ’18, pages 634–644 [28] with an
additional artifact [30] containing the corresponding software, benchmarks, and results.

The article describes an approach for program analysis that applies BAM [118] in a parallel
manner to leverage multi-core shared-memory machines.

BAM applies a divide-and-conquer strategy and splits a program into smaller components, such
as loop or function blocks. Each program block is then analyzed by a separate sub-analysis and
its resulting summary, denoted as block abstraction, is cached for later usage, such as embedding
it into the surrounding context. The framework CPAchecker allows to exchange the algorithm
for the sub-analysis and, for example, apply a plain reachability analysis or counterexample-
guided abstraction re�nement (CEGAR). The idea of the published article is an extension of this
approach with the intention to analyze those blocks in parallel and apply independent sub-analyses
asynchronously, in order to use all available resources on a multi-core machine. For this approach,
dependencies between program blocks need to be considered, such as connections based on
plain data �ow or function calls. The overall approach is independent of the underlying domain
and works for, e. g., value, interval, or predicate domain and even combinations thereof. The
experimental evaluation in the manuscript uses value analysis [41], shows no noticeable overhead
in runtime for veri�cation tasks that do not bene�t from a parallel analysis, and provides evidence
for performance improvement for several tasks where independent branches are explored during
the analysis.

The contribution of this article consists of two parts: First, the theoretical contribution is a
formal de�nition of the extended de�nition of BAM, i. e., with the ability to distribute its workload
across several threads. Second, the implementation into the framework CPAchecker allows to use
and evaluate the approach for a large set of benchmark tasks. The emphasis is on providing a
solution that follows the principle of separation of concerns: making a program analysis bene�t
from multiple processing units is orthogonal from the problem of designing and implementing
the abstract domain and components for the underlying program analysis.

Karlheinz Friedberger is the main author of the article and responsible for more than 70% of
the article’s contents. His contribution includes

1. the conception and description of the presented approach with a focus on reusing compo-
nents like the con�gurable program analysis (CPA) concept and existing algorithms,

2. the development of the presented implementation in the framework CPAchecker based on
the existing implementation of BAM and the CPA concept, and

3. the experiment execution and discussion of the evaluation.

22 2. Discussion of Manuscripts

2.1.2. In-Place vs. Copy-on-Write CEGAR Refinement for Block Summarization
with Caching

The article In-Place vs. Copy-on-Write CEGAR Re�nement for Block Summarization with Caching,
which is reprinted in Appendix A, pages 63–81 of this dissertation, was authored by Dirk Beyer
and Karlheinz Friedberger, and published by Springer in the Proceedings of ISoLA ’18, pages 197–
215 [29].

The article compares two di�erent re�nement strategies that can be applied in the context of
BAM [118]. Whenever CEGAR instructs the program analysis to re�ne the abstraction along a
program path, several block summaries are a�ected and need to be updated with the re�nement
information. The analysis can choose between either a destructive in-place strategy that modi�es
existing block abstractions or a constructive copy-on-write approach where existing data remains
unchanged.

BAM applies a divide-and-conquer strategy and splits a program into smaller components, such
as loop or function blocks, in order to compute summaries, denoted as block abstractions. For
performance, BAM aims to apply the same block abstraction at multiple program locations, e. g.,
if the same function call appears several times in the program, its summary can be used for each
of the call locations. A program path typically traverses several blocks. When applying CEGAR
in the analysis, the re�nement step needs to remove those parts of the abstract reachability
graph (ARG) that contain imprecise information and updates the corresponding abstract states
accordingly. Deleting an existing block abstraction removes the corresponding abstract states at
all program locations, where this block abstraction was applied. This is denoted as destructive
in-place re�nement and it might also a�ect unrelated parts of the state space, which need to be
re-computed in the later analysis. The alternative approach uses a constructive copy-on-write
re�nement, where only the (minimal) local part of the ARG is modi�ed and existing unrelated parts
remain untouched. The evaluation in the manuscript compares both strategies using predicate
analysis [39] and value analysis [41] as underlying domains. For a large set of benchmark tasks,
the results show no noticeable di�erence. However, in case of the new copy-on-write re�nement,
the exported data for the user, such as proof information and violation witness, is always available,
whereas this kind of information can be incomplete when using the in-place strategy.

The contribution of this article consists of three parts: First, the theoretical contribution is a
formal de�nition of the copy-on-write re�nement step in BAM. Second, the implementation into
the framework CPAchecker allows to use and evaluate the approach for a large set of benchmark
tasks. Third, the evaluation compares the existing in-place and the new copy-on-write approach
on a large set of benchmarks.

Karlheinz Friedberger is the main author of the article and responsible for more than 70% of
the article’s contents. His contributions were

1. the de�nition and description of the presented approach
2. the implementation of the presented re�nement in the framework CPAchecker based on the

existing implementation of BAM, CEGAR and the CPA concept, and
3. the comparison of the re�nement approaches and discussion of the experimental evaluation.

2.1. Block-Abstraction Memoization 23

2.1.3. Domain-Independent Interprocedural Program Analysis using
Block-Abstraction Memoization

The article Domain-Independent Interprocedural Program Analysis using Block-Abstraction Mem-
oization, which is reprinted in Appendix A, pages 83–95 of this dissertation, was authored by
Dirk Beyer and Karlheinz Friedberger, and published by ACM in the Proceedings of ESEC/FSE ’20,
pages 50–62 [31] with an additional artifact [33] containing the corresponding software, bench-
marks, and results.

The article describes an interprocedural program analysis based on BAM [118], which applies
procedure summarization to analyze programs with procedure calls. The focus is the analysis of
recursive programs, which can not be analyzed by conventional interprocedural analyses and
require special attention due to the potentially endless unrolling of recursive procedures and
potential naming collision when encoding program variables.

The interprocedural analysis splits a program into procedure blocks and computes procedure
summaries for them, which aligns with the de�nition of function blocks and block abstractions
in BAM. Every procedure block is analyzed independently and the corresponding abstraction
is then applied in the surrounding context. For recursive programs, a �xed-point algorithm
terminates the recursion if every procedure is su�ciently unrolled. The article gives detailed
insights for this approach, including a de�nition of the necessary changes towards BAM itself,
such as the �xed-point algorithm to terminate recursion in a sound manner and modi�cations to
operators to avoid colliding names in the encoding of program variables from di�erent scopes.
The algorithm is independent of the underlying domain and works for, e. g., value, interval, or
predicate domain and their combinations. The manuscript contains an experimental evaluation
using several domains and shows that the analysis of recursive tasks is performing well when
compared to other participants of SV-COMP ’20 [19].

The contribution of this article consists of two parts: First, the theoretical contribution contains
a formal de�nition of the extended de�nition of BAM, including the �xed-point algorithm and
operators to work with recursive procedure calls. Second, the implementation into the framework
CPAchecker allows to apply the approach for a large set of to real-world benchmark tasks. The
approach follows the principle of separation of concerns: it makes interprocedural program
analysis independent of the underlying domain by de�ning common algorithms and operators.

Karlheinz Friedberger is the main author of the article and responsible for more than 70% of
the article’s contents. His contributions are

1. the conception and description of the presented approach with a focus on reusing compo-
nents like the CPA concept and existing algorithms,

2. the development of the presented implementation in the framework CPAchecker based on
the existing implementation of BAM, and

3. the execution of experiments and the discussion of the evaluation.

24 2. Discussion of Manuscripts

2.2. Multi-Threaded Programs

2.2.1. A Light-Weight Approach for Verifying Multi-Threaded Programs with
CPAchecker

The article A Light-Weight Approach for Verifying Multi-Threaded Programs with CPAchecker,
which is reprinted in Appendix A, pages 97–107 of this dissertation, was authored by Dirk
Beyer and Karlheinz Friedberger, and published by EPTCS in the Proceedings of MEMICS ’16,
pages 61–71 [27].

The article describes a simple and e�cient approach for verifying multi-threaded programs
that is implemented in the framework CPAchecker and is purely based on the CPA concept.

This article extends the reachability algorithm of CPAchecker with a new and simple CPA for
tracking multiple program locations per abstract state based on multiple threads in a program task.
The program analysis is orthogonal to the existing data-�ow analysis and works on a domain-
independent level. Thus, it can be applied with, e. g., a BDD-based, interval, value, or predicate
analysis, or combinations thereof. The approach features several possibilities for optimization and
was intended as a playground for developers and researchers. The article provides an evaluation
for di�erent domains and also other comparable tools, such as Cbmc and Vvt.

The contribution of this article consists of the following parts: First, the theoretical contribution
is a formal de�nition of a program analysis for multi-threaded programs within the CPA context,
i. e., a description of the required operators and components of the framework that can be combined
with this approach. Second, the implementation into CPAchecker allows to easily use, extend, and
evaluate the approach, and it provides a stable foundation for research.

A follow-up research project was the development of a validator for violation witnesses coming
from multi-threaded programs, as discussed in Sect. 2.2.2 and described in the corresponding
manuscript in Appendix A. The absence of eager optimization in our approach allows the validation
of violation witnesses from other tools like Cbmc, Divine, Esbmc, or Lazy-CSeq without interfering or
con�icting with their own optimization strategies.

Karlheinz Friedberger is the main author of the article and responsible for more than 70% of
the article’s contents. He contributed

1. the conception and description of the presented approach with a focus on reusing compo-
nents like the CPA concept, search strategies, and existing algorithms,

2. the implementation in the framework CPAchecker using existing components like the CPA
concept or the algorithm for state-space exploration, and

3. the experimental evaluation of the approach using di�erent abstract domains and against
other tools.

2.2.2. Violation Witnesses and Result Validation for Multi-Threaded Programs

The article Violation Witnesses and Result Validation for Multi-Threaded Programs, which is
reprinted in Appendix A, pages 109–130 of this dissertation, was authored by Dirk Beyer and Karl-

2.2. Multi-Threaded Programs 25

heinz Friedberger, and published by Springer in the Proceedings of ISoLA ’20, pages 449–470 [34]
with an additional artifact [32] containing the corresponding software, benchmarks, and results.

Validating results from a previous veri�cation run is an important topic in the research com-
munity in order to gain trust in veri�cation results and concretize reported counterexample
information. The article describes an extension of the existing GraphML-based format for veri�-
cation witnesses [25] to include the validation of error traces in multi-threaded programs. The
reference implementation is available in the framework CPAchecker.

The existing GraphML-based format was invented to exchange proof and violation informa-
tion [17, 35] such as invariants, state space guards, or variable assignments between veri�cation
tools. The extension was implemented and applied in CPAchecker for SV-COMP ’17 [17], where
developers of several other tools agreed on the usefulness 1 and adopted their tools accordingly.
The formal de�nition was published in our manuscript [34]. The article de�nes an extension for
the format by introducing information about the interleaving of multiple threads of a program,
which is essential for validating error traces from violation witnesses with decent performance,
e. g., instead of requiring the exploration of a potentially large state space of the program. We
identi�ed the following information as key points and de�ned them for the standard: the creation
point of a new thread and the currently active thread for each statement along a program trace.
The reference implementation of the witness validator was evaluated on the violation witnesses
from the SV-COMP ’20 2.

The contribution of this article consists of the following parts: First, the GraphML-based format
for witnesses is extended by the required thread-related information. Second, the reference imple-
mentation into CPAchecker gives the possibility to evaluate the approach. Third, the experimental
evaluation showed that several veri�cation tools already provide the necessary information in
their witnesses and that the performance of the validation of violation witnesses is improved by
the available thread information.

Karlheinz Friedberger is the main author of the article and responsible for more than 70% of
the article’s contents. He contributed

1. the overall conception and description of the presented approach with a focus on keeping
changes to the GraphML-based format minimal,

2. the implementation in the framework CPAchecker that is not using any eager optimization
like partial order reduction and allows to validate multiple violation witnesses from other
tools, and

3. the experimental evaluation of the approach using di�erent abstract domains and against
other tools.

The initial design decisions came from Matthias Dangl, who gave not only hints on the required
information, but also helped with developing and debugging the initial validation executions.

1https://github.com/sosy-lab/sv-witnesses
2https://sv-comp.sosy-lab.org/2020

https://github.com/sosy-lab/sv-witnesses
https://sv-comp.sosy-lab.org/2020

26 2. Discussion of Manuscripts

2.3. JavaSMT

2.3.1. JavaSMT 3: Interacting with SMT Solvers in Java

The article JavaSMT 3: Interacting with SMT Solvers in Java, which is reprinted in Ap-
pendix A, pages 131–144 of this dissertation, was authored by Daniel Baier, Dirk Beyer, and
Karlheinz Friedberger, and published by Springer in the Proceedings of CAV ’21, pages 195–
208 [9]. The additional artifact [8] contains the corresponding software, benchmarks, and results.

Theorem provers and SMT solvers are more and more integrated in applications like software
veri�cation. The article is an updated version of a previous article [85] from 2016 and is about a
common Java API for several SMT solvers, which acts as an intermediate layer in the software
architecture between the user application and the backend SMT solver. It aims to avoid the lock-in
on a speci�c SMT solver. The library includes the Java native interface (JNI) bindings for several
solvers written in a low-level language like C. The corresponding project JavaSMT 3 is based on
code extracted from CPAchecker and has been actively developed and extended over the last years.

The interaction with an SMT solver can be done in two ways: either via the String-based
SMTLIB standard [12] or via a binary API using native solver bindings. From runtime and
usability perspective, the interaction with backend libraries via a binary API is often preferred
by developers. Additionally, it provides type-safe usage (in Java this is checked at compile time)
and proper error handling, e. g., via exceptions. If an application uses the API of a speci�c SMT
solver directly, there is a lock-in e�ect and switching to a di�erent SMT solver in the future can
be di�cult and error-prone. Switching the SMT solver can be required if an SMT solver does not
(or no longer) contain a required feature or SMT theory, or if another SMT solver performs better
in runtime or memory consumption. JavaSMT provides not only common methods to create, but
also to manipulate formulas for several SMT solvers. This includes traversing formulas e�ciently
using the visitor design pattern.

Several SMT solvers already serve bindings for some programming languages, like the language
they are implemented in. Most SMT solvers are written in C/C++, so interaction in this low-level
language is often the simplest way. The support for higher-level languages is sparse. A common
language binding for several SMT solvers is Python, as it directly allows the access to C code
and avoids automated memory management operations like asynchronous garbage collection.
Bindings for Java are available for some SMT solvers, such as Z3 and MathSAT5, but missing,
unsupported, or unmaintained for others, such as CVC4 and Boolector. There exist similar APIs
like PySMT [70], Smt-Switch [93], metaSMT [106], ScalaSMT [54], and Scala SMT-LIB [51]. They are
based on di�erent programming languages and o�er a di�erent set of features.

A former article about JavaSMT was published in 2016 [85] and describes an older state of
this project with the initial design and features. For 2021, this old article contains already
outdated information, and thus an updated article was published, which is reprinted in Ap-
pendix A, pages 131–144. The new article contains the SMT theories and features for each SMT
solver integrated in JavaSMT. The development over several years also brought changes, for exam-

3https://github.com/sosy-lab/java-smt

https://github.com/sosy-lab/java-smt

2.3. JavaSMT 27

ple, JavaSMT got support for more SMT solvers, such that now Boolector 4, CVC4 5, and Yices 6 can
directly be used, too.

The contribution of this article consists of two parts: First, the architecture and implementation
of JavaSMT is presented. The basic structure of the application is divided into formula managers for
building formulas in various theories and prover environments for querying the SMT solver, e. g.,
for satis�ability checks, models, interpolants, and unsat cores. Second, an experimental evaluation
provides data about di�erent runtime behavior of three veri�cation algorithms (bounded model
checking (BMC), k-Induction, and predicate abstraction) implemented in CPAchecker when using
distinct SMT solvers via JavaSMT. Overall, there is a noticeable di�erence between several SMT
solvers in performance, i. e., as a consequence of maturity and optimization of the solvers, but
also depending on the SMT query based on the program under analysis.

Karlheinz Friedberger is a co-author of the article and responsible for about 50% of the article’s
contents. He contributed

1. the implementation of the solver bindings towards Princess, SMTInterpol, and Z3,
2. large parts of the integration of JavaSMT into CPAchecker, and
3. the documentation of solvers, their supported theories, and their features.

Daniel Baier contributed to the codebase of JavaSMT, e. g., the integration of Boolector [7]. He is
responsible for about 30% of the article’s contents, including the data and design of tables and
�gures in the manuscript. The initial design decisions for JavaSMT came from Philipp Wendler, who
guided the initial development, provided support for the depending components in the framework
CPAchecker and the infrastructure for releasing JavaSMT as a library. The further development of
the project was organized by Karlheinz Friedberger, who initiated the integration of more SMT
solvers 7, as well as support for a broader range of build frameworks and operating systems.

4https://boolector.github.io
5https://cvc4.github.io
6https://yices.csl.sri.com
7The SMT solvers Boolector and Yices 2 were integrated into JavaSMT as part of bachelor theses at the LMU Mu-

nich [7, 101]

https://boolector.github.io
https://cvc4.github.io
https://yices.csl.sri.com

3. Conclusion and Future Research

In the following, we summarize the conclusions that can be deduced from the manuscripts, where
we have investigated several approaches for making software model checking more modular and
scalable for larger systems or easier to use and extend for developers.

3.1. Summary

Overall, the conclusions is split into three topics, in the same manner as previous parts of this
thesis.

First, we have taken a deeper look on BAM, which provides a domain-independent approach
for software analysis based on a divide-and-conquer strategy and caching. Our research shows
several points for improvements and bene�cial changes. We extend the modular approach with a
fully interprocedural analysis and demonstrate a bene�t when verifying recursive procedures.
With the default re�nement strategy su�ering from several smaller issues (such as not being
able to report complete proofs for several program tasks), we present an alternative re�nement
strategy of block abstractions based on a copy-on-write strategy that comes with no additional
performance costs. Applying parallel computation e�ort (such as multiple CPU cores) gives
performance improvements for a wide range of benchmark tasks, while this does not add an
overhead for tasks that are not a�ected by this extension. Overall, our research shows that BAM
can improve the scalability of software analysis and is a good foundation for further extensions.

Second, our contribution contains the analysis and veri�cation of multi-threaded programs in
CPAchecker and the GraphML-based exchange format for violation witnesses for multi-threaded
programs. Our lightweight approach can be combined with several domain-speci�c analyses
and is applied in the context of program veri�cation and witness validation. From a user’s point
of view, the speci�cation and availability of violation witnesses for multi-threaded programs is
already a bene�t, but the support for their validation is (up to now) unique for CPAchecker. The
only available witness validator for multi-threaded programs is CPAchecker (or an application that
is based on it [45]) and it was regularly applied in SV-COMP 1 since 2018 [18, 19, 21]. The given
manuscripts show the competitive performance of our veri�cation approach against other model
checking tools, such as Cbmc and Vvt.

Third, the design and the development of our Java-based API for SMT solvers results in the
project JavaSMT, which is the basis of all SMT-based analyses in CPAchecker. In contrast to a plain
SMT-LIB-based interaction with the SMT solver, it provides a type-safe and user-friendly way to
create and analyze queries for several included backend solvers. This not only shows a deep

1https://sv-comp.sosy-lab.org

https://sv-comp.sosy-lab.org

30 3. Conclusion and Future Research

understanding of the application domain, but has also attracted several developers that prefer to
use our library interface over the SMT-LIB-based solver interaction. Currently, there exist several
applications and research publications based on our library [81, 84, 110].

3.2. Future Work and Prospects in CPAchecker and JavaSMT

Our contribution consists of several steps towards the improvement of software veri�cation in
terms of scalability, modularity, and user-friendliness. However, a broad application and acceptance
of formal methods in industry still needs some more e�ort, because the required domain-speci�c
knowledge for users is still high, and simpler approaches for quality assurance like testing can
be applied much faster. Depending on our projects, as well as independently of them, we need
to look for possibilities to make the objective of software veri�cation approachable to a broader
audience. As the team around CPAchecker and JavaSMT is growing, more opportunities evolve,
new ideas appear, and the group of developers and users is expanding. In the following, we will
discuss several topics that appear to be most important for further research related to the area of
this thesis.

3.2.1. Block-Abstraction Memoization with More Domains and Further
Algorithms

The provided manuscripts de�ne the operators of BAM for several abstract domains (such as
predicate, interval, and explicit value domain) and algorithms (mainly the application of the CPA
algorithm within a CEGAR loop). This de�nition is of course not conclusive and can be extended.

3.2.1.1. Domains

There are more abstract domains, such as symbolic memory graph (SMG) [64] or octagon [96],
that can bene�t from memoization and a reduction operation for abstract states, to make their
application scalable for larger programs. The reduction and expansion technique for SMG can be
similar to the approach used for the explicit value domain, i. e., by removing assignments (and
heap-related data) from program scopes that are currently hidden by a more local scope. The
octagon domain tracks relations between variables, such that any reduction approach needs to
take dependencies between variables into account.

Additionally, instead of using a homogeneous domain for all blocks of a program, combining
di�erent domains in di�erent block abstractions might bring new insights about a program. The
possibility to choose the right domain per block might lead to another direction of scalability, such
that, e. g., smaller blocks are analyzed with a more concrete domain, loop blocks are summarized
with a domain specialized for loops, and larger blocks are considered by a domain that allows to
abstract from a concrete and expensive state space representation.

Translating information between di�erent abstract domains is still an unsolved di�culty,
because of a potential information loss and incompatibility of data representations. To name an
example, the translation from explicit value domain into predicate domain is straight-forward and

3.2. Future Work and Prospects in CPAchecker and JavaSMT 31

can be done by encoding all assignments of variables to their value as equalities in a conjunctive
formula. The way back, i. e., from an arbitrary formula to a simple mapping of variables and
their values, causes a loss of information in general. The reason for this asymmetry lies in the
expressiveness of the domains, where the predicate domain can apply all Boolean operations and
explicit values just use equalities.

3.2.1.2. Algorithms

The concept of BAM is domain-independent in general. We will now take a look on existing
domain-independent approaches that it can be combined with, such that the complete analysis
might bene�t.

The concepts of CEGAR and CPA are available, and (seen from the view of the analysis) CEGAR
always wraps the complete analysis. Whenever a re�nement is required, the nested analysis, e. g.,
an instance of the CPA algorithm, needs to interrupt, such that a counterexample trace from the
program root towards the recently found program location of property violation can be re�ned.
Aiming at a strategy for even lazier re�nement, more locality and an improved modularity of
the involved components, a deeper integration of CEGAR into this approach could be proposed,
e. g., such that re�nements are already applied within the local block instead of global level. This
would align with the idea of re�nement selection [43], but considers only the su�x of a possible
counterexample trace to be involved in the re�nement. Within a framework like CPAchecker, even
a combination of distinct algorithms like k-Induction and predicate analysis in block-wise manner
could be possible.

The idea of having multiple threads computing parts of the same program analysis [118, 120]
can be extended to distribute the workload onto separate processes, maybe even on distinct
hosts [79] or in a cloud-based environment. The biggest complexity lies in the fact that there is
no shared memory in such architectures and that the analysis needs to perform communication
between separate instances. During the development of the manuscript Appendix A, pages 51–61,
there was already a prototype [105] for such a system, based on the Akka framework for workload
distribution 2, which did not yet meet the expectations of a fast and scalable veri�cation technique,
due to the expensive usage of network communication. However, perhaps this idea can be targeted
again in the future.

There are several SMT-based algorithms available [26], and for some of them, an interaction
with BAM might be possible. The tool Whale [2] extended Impact [48, 95] into an intra-procedural
analysis. Additionally, HiFrog [4] uses SMT-based procedure summaries and interpolation. The
integration of such an approach into BAM could show the di�erences to plain block abstraction,
and a further comparison with predicate abstraction [39] would be possible.

A modular software-analysis approach requires several axes of scalability for exploring the
abstract state space:

• horizontal scaling
divides the frontier of the exploration algorithm onto several computation units.

2https://akka.io

https://akka.io

32 3. Conclusion and Future Research

• vertical scaling
allows to analyze intermediate parts of the state space without the current context.

• domain-speci�c scaling
aims for abstraction and can reduce the number of explored states in general.

Domain-independent approaches target for horizontal and vertical scalability by dividing the
analysis into separate parts. This aligns with the design and implementation of BAM, where the
exploration of program blocks and computing block abstractions is however bounded due to
dependencies between program blocks. We provide evidence for horizontal scaling with BAM in
manuscript Appendix A, pages 51–61, where a multi-threaded approach is described that computes
independent block abstractions separately. With the work on manuscript Appendix A, pages 83–95
we provide the �rst step for analyzing blocks without their context, which aims towards vertical
scaling. The approach still su�ers from some remaining dependencies between blocks, when
it comes to data-�ow analysis. We presented an improved interpolation strategy using tree
interpolants [75] that allows to independently analyze procedures in a modular way. Similar
strategies could be developed for other domains, but some data-�ow dependencies will still
remain. Domain-speci�c scaling is de�ned by the usage of the domain. In the context of CEGAR,
the precision enables good control over the granularity of the analysis. In general, SMT-based
approaches tend to have a more compact representation of the state space than, e. g., an explicit-
value domain. The performance of solving SMT queries competes with the memory usage for a
larger state-space representation. CPAchecker supports the combination of abstract domains to
bene�t from their strengths [115]. Further research in that direction might choose the precision
and abstract domains depending on the program block to be analyzed.

3.2.2. Extensions of the Concurrency Analysis

Verifying concurrent programs has been a topic of research since many years, e. g., with the devel-
opment of partial order reduction [5, 67], decomposition techniques [6, 65] and sequentialization
strategies [66, 90, 103]. The approach presented in Appendix A, pages 97–107 is lightweight and
does not apply a fully �edged partial order reduction technique, but only a minimal strategy to
gain acceptable performance without losing precision. The extension with some form of partial
order reduction technique [71], such as computing either stubborn sets, ample sets, or persistent
sets, is an obvious �rst choice for further development for the veri�cation approach. The witness
validation of property violations in multi-threaded programs needs to stay as general as possible,
in order to accept witnesses from di�erent tools. Here an eager optimization like partial order
reduction or limiting the potential state space through an extension of the analysis itself is riskful,
because it is not obvious which strategy was applied for producing a given witness by another
model checker. A potential performance overhead or – worst case – an unsound analysis that
delivers a wrong answer must be avoided.

An open research topic are correctness witnesses for multi-threaded programs. The main issues
thereby are a potentially unbounded number of threads and the speci�cation of invariants for
cross-thread data dependencies. The �rst issue comes from the bounded nature of the witness

3.3. Usage of Veri�cation in Real-World Software Projects 33

automaton, that can model loops, but not a potentially in�nite number of concurrent contexts.
The second issue is related to the encoding of program variables and might be solvable with
an additional �ag per variable that denotes the corresponding thread context. Additionally, the
representation of invariants and assumptions as expression in the language C is not suited, e. g., for
specifying quanti�ed constraints. This expressiveness is available in other veri�cation frameworks,
such as Frama-C [13].

Our veri�cation approach is not limited to analyze the reachability of function calls or error
labels in the code, so more advanced safety properties can be speci�ed, for example, to verify
the reachability of deadlocks and race conditions. The analysis of liveness properties with our
lightweight approach for state-space exploration also remains an open topic.

The manuscript Appendix A, pages 97–107 describes an approach that is independent of
the underlying domain and applies a BDD-based domain and explicit values in the evaluation.
Over the years, CPAchecker was enriched with support for SMT-based analysis of multi-threaded
programs [89], such that BMC as well as predicate analysis can be used for the veri�cation
of concurrent programs. Prospective work might include further domains, such as SMG-based
analysis, for analyzing memory-related properties, including features like weak and strong mem-
ory modeling, di�erent machine architectures, or explicit communication between threads in a
channel-like manner.

3.2.3. JavaSMT

Since the �rst public release of JavaSMT in 2015, the project was extended with more SMT solvers,
theories, and support for more architectures and build systems. In the future, new features could
be requested, like the update for an existing SMT solver, and the support of a new one or a
currently unsupported theory required by a user. As this project serves as a library that performs
its work in the background of other applications, such as CPAchecker, we do not expect larger
steps in its development, but aim to a stable and well-maintained API that remains usable and
stable over several years of development and stays up-to-date with further research in the area of
SMT solvers.

3.3. Usage of Verification in Real-World So�ware Projects

The previously given description of prospects is mainly about existing projects and their perspec-
tive. This section considers a broader audience, gives an outlook on the di�culties for software
veri�cation applied to real-world projects, and possible steps (also as a result of this thesis) towards
a solution, such that software veri�cation becomes a standard process in the development of
larger computer and communication systems.

Up to now, mostly specialized (research) teams in certain branches of industry apply software
veri�cation, in cases where applications are critical regarding security, reliability, and trustwor-
thiness. Aside of specialized projects for avionic or automotive software [15, 62, 100, 112, 117],
further prominent examples for such undertakings are the Linux Driver Veri�cation (LDV)

34 3. Conclusion and Future Research

project 3 [44, 88] (where CPAchecker is applied successfully to verify Linux kernel drivers), the
Static Driver Veri�er (SDV) project 4 [11] (analyzing kernel-mode drivers in Microsoft Windows),
or projects for secure communication software 5 (focused on the HTTPS ecosystem and TLS
protocol) and veri�ed boot code software [60] (CBMC applied for software in AWS data centers).
Overall, companies applying formal methods are mostly targeting large and existing code bases
and a way to minimize interruptions for the developer [102].

Additionally, veri�cation tools tend to report a quantity of false alarms, when applied for
large existing code bases that have not yet been formally analyzed before. Ideas like incremental
veri�cation [53, 77, 107, 109] help with detecting errors in code that was modi�ed recently, while
not reporting potential bugs for unchanged existing code. With applying an incremental approach,
the developer does not need to take a look at bug reports for untouched parts of the program
under analysis, and thus, is not further interrupted in his work�ow. The basic idea behind
incremental veri�cation is a modular analysis, e. g., such that information like constraints or
partial analysis results can be cached, stored in a database, and reused in the further veri�cation
process [35, 49, 83, 114, 119]. An example for such an analysis is the described approach of BAM,
where abstractions of program blocks (like loops or functions [31]) are reused whenever a program
block depending on some program context needs to be analyzed multiple times. This allows for a
parallel application of the analysis [28] and brings additional performance. Overall, scalability
and a quick response time for the developer are a main goal of our work.

One of the largest inhibition thresholds of applying software veri�cation in industry and
research comes from the high initial costs and domain-speci�c knowledge for getting started,
the required manpower and computational resources for successfully analyzing larger software
projects, and possibly the rapid changes in software, both in the applications to be veri�ed and in
the veri�cation engines themselves. With the research on witnesses [25, 34] we presented a simple
standardized exchange format for proofs and counterexample traces in software. The standardized
format is still �exible enough for smaller changes and (backwards-compatible) extensions, such as
our extension for multi-threaded software. This exchange format is a solution for storing analysis
results in a tool-independent way with the possibility of reusing and validating them whenever a
software component is touched.

Getting a test harness and an environment model for programs still requires manual e�ort and
is an open research question. It depends on the system context, used framework, libraries and
even build tools to get a well-de�ned harness for applying an automated veri�cation approach.
The community-driven development of a central repository of benchmark tasks for software
veri�cation 6 aims at providing standardized test and evaluation data for veri�cation and testing
tools [21, 22] to lower the burden for developers of new veri�cation approaches. In general, it is
hard to have a user-friendly software veri�cation tool that is also precise and sound. Software

3http://linuxtesting.org/project/ldv
4https://docs.microsoft.com/en-us/windows-hardware/drivers/devtest/static-driver-veri�er
5https://project-everest.github.io
6https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks

http://linuxtesting.org/project/ldv
https://docs.microsoft.com/en-us/windows-hardware/drivers/devtest/static-driver-verifier
https://project-everest.github.io
https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks

3.3. Usage of Veri�cation in Real-World Software Projects 35

analyzers like Infer 7 or Frama-C 8 include support for automatically analyzing complete project
structures with only minimal preparation from user-side, making it easy for the developer to get
a �rst impression of the software under test. However, depending on the applied analysis, there
is evidence that those tools lack support for correctly solving several simple tasks with speci�c
veri�cation properties [46, 87], e. g., the applied analysis is not completely sound and misses parts
of the harness or property speci�cation. Thus, additional e�ort is required for preparing such an
analyzer for a project to get valid results or to compare it against other tools in research context.

To increase the usability of model checking and veri�cation techniques in software development,
the interaction with analysis tools needs to become as simple as possible. Developers and also
users do not want to perform larger steps on their own or read lots of documentation, before
e�ectively running their �rst veri�cation algorithm and see the results. The entry step must be
as low as possible, with the possibility to incrementally and iteratively optimize and adapt the
analysis approach to the given problem.

For the developer, this can be done in several, potentially orthogonal ways. The �rst step is
to reduce the initial burden for verifying a program, aiming towards a broader acceptance of
formal methods in the area of software development. This can be done by integrating veri�cation
approaches into common build tools (like GNU Make 9, Apache Maven 10, Apache Ant 11, and many
more) or integrated development environments (IDEs) (like Eclipse IDE 12, IntelliJ IDEA 13, Visual
Studio Code 14), just like it has been done for compilers, style checkers, and testing frameworks,
which are already applied in development every day. The combination of testing and veri�cation
seems a bene�cial goal, leveraging the best part from two worlds [72, 122], i. e., performance from
testing parts of a program that are simpler to analyze in control-�ow or data�ow when searching
for bugs and precision from formal methods analyzing the rest of the program and generating a
proof for the absence of bugs.

The next step is an automation of software veri�cation, not only during the analysis itself, i. e.,
where automated software veri�cation stands as a complementation to a manual one, but also
as part of continuous integration, such that the developer is automatically informed about new
bugs in his code without the need of running any veri�cation tool locally. Such steps are already
applied in larger corporations, like Google [108] or Facebook [63], as part of their commonly used
tool chains, but not yet habitual for the development process in smaller companies.

The last step is the reduction of the round-trip time from starting a veri�cation process to
displaying the result towards the user. The user might want to wait a few seconds up to a few
minutes after changing a smaller part of his code, and a complete check of the software should be
possible overnight. There are already performance-wise comparisons of di�erent approaches, both,
di�erent algorithms within one framework [26] as well as distinct model checking approaches

7https://fbinfer.com/
8https://frama-c.com/
9https://www.gnu.org/software/make

10https://maven.apache.org
11https://ant.apache.org
12https://www.eclipse.org/ide
13https://www.jetbrains.com/idea
14https://code.visualstudio.com

https://fbinfer.com/
https://frama-c.com/
https://www.gnu.org/software/make
https://maven.apache.org
https://ant.apache.org
https://www.eclipse.org/ide
https://www.jetbrains.com/idea
https://code.visualstudio.com

36 3. Conclusion and Future Research

across multiple tools [16, 21]. There is evidence that caching and reusing data within a single
analysis [118] and across a sequence of (incremental) veri�cation runs is bene�cial [42, 49].
Currently, the evaluation is limited to a certain kind of smaller benchmark task with up to a few
thousands of lines of code. Program tasks with millions of lines of code are only partially available
for analysis. For researchers, the required knowledge about an arbitrary application is simply not
available, and larger companies take a deeper formal look only into speci�c properties or features,
such as the APIs for public components [10, 59].

We are proud of CPAchecker and its related projects, which are actively applied and extended
by practitioners and researchers, as part of the university studies, research, or in industry. Having
further industrial partners would allow us to obtain more insights about software quality man-
agement in general, adapt or optimize the concepts, and apply our ideas as well. Overall, with
the theoretical foundation in this thesis and the corresponding literature in mind, we can tackle
the development and application of a user-friendly and easy-to-use, but also e�cient and precise
software-veri�cation approach for the main-stream developer in the software industry.

Acronyms

API application programming interface

ARG abstract reachability graph

BAM block-abstraction memoization

BDD binary decision diagram

BMC bounded model checking

CEGAR counterexample-guided abstraction re�nement

CPA con�gurable program analysis

CPU central processing unit

CTL computation tree logic

IDE integrated development environment

JNI Java native interface

LTL linear temporal logic

SMT satis�ability modulo theories

SMG symbolic memory graph

Bibliography

[1] S. B. Akers. Binary decision diagrams. IEEE Trans. Computers, 27(6):509–516, 1978, https://
doi.org/10.1109/TC.1978.1675141.

[2] A. Albarghouthi, A. Gur�nkel, and M. Chechik. Whale: An interpolation-based algorithm
for inter-procedural veri�cation. In Proc. VMCAI, LNCS 7148, pages 39–55. Springer, 2012,
https://doi.org/10.1007/978-3-642-27940-9_4.

[3] J. Alglave, D. Kröning, and M. Tautschnig. Partial orders for e�cient bounded model
checking of concurrent software. In Proc. CAV, LNCS 8044, pages 141–157. Springer, 2013,
https://doi.org/10.1007/978-3-642-39799-8_9.

[4] L. Alt, S. Asadi, H. Chockler, K. Even-Mendoza, G. Fedyukovich, A. E. J. Hyvärinen, and
N. Sharygina. HiFrog: SMT-based function summarization for software veri�cation. In Proc.
TACAS, LNCS 10206, pages 207–213, 2017, https://doi.org/10.1007/978-3-662-54580-5_12.

[5] R. Alur, R. K. Brayton, T. A. Henzinger, S. Qadeer, and S. K. Rajamani. Partial-order reduction
in symbolic state-space exploration. In Proc. CAV, LNCS 1254, pages 340–351. Springer,
1997, https://doi.org/10.1007/3-540-63166-6_34.

[6] P. S. Andrianov and V. S. Mutilin. Scalable thread-modular approach for data race detection.
In Proc. FISEE, LNCS 12271, pages 371–385. Springer, 2019, https://doi.org/10.1007/978-3-
030-57663-9_24.

[7] D. Baier. Integration des SMT-Solvers Boolector in das Framework JavaSMT und
Evaluation mit CPAchecker. Bachelor’s Thesis, LMU Munich, Software Systems Lab,
2019, https://www.sosy-lab.org/research/bsc/2019.Baier.Integration_des_SMT-Solvers_-
Boolector_in_das_Framework_JavaSMT_und_Evaluation_mit_CPAchecker.pdf.

[8] D. Baier, D. Beyer, and K. Friedberger. Reproduction package (VM) for article ‘JavaSMT 3:
Interacting with SMT solvers in Java’. Zenodo, 2021, https://doi.org/10.5281/zenodo.4708050.

[9] D. Baier, D. Beyer, and K. Friedberger. JavaSMT 3: Interacting with SMT solvers in Java. In
Proc. CAV, LNCS 12760, pages 195–208. Springer, 2021, https://doi.org/10.1007/978-3-030-
81688-9_9.

[10] T. Ball, E. Bounimova, R. Kumar, and V. Levin. SLAM2: Static driver veri�cation with
under 4 % false alarms. In Proc. FMCAD, pages 35–42. IEEE, 2010, http://ieeexplore.ieee.org/
document/5770931/.

[11] T. Ball and S. K. Rajamani. The Slam project: Debugging system software via static analysis.
In Proc. POPL, pages 1–3. ACM, 2002, https://doi.org/10.1145/503272.503274.

[12] C. Barrett, A. Stump, and C. Tinelli. The SMT-LIB Standard: Version 2.0. In Proc. SMT, 2010,
http://smtlib.cs.uiowa.edu/language.shtml.

https://doi.org/10.1109/TC.1978.1675141
https://doi.org/10.1109/TC.1978.1675141
https://doi.org/10.1007/978-3-642-27940-9_4
https://doi.org/10.1007/978-3-642-39799-8_9
https://doi.org/10.1007/978-3-662-54580-5_12
https://doi.org/10.1007/3-540-63166-6_34
https://doi.org/10.1007/978-3-030-57663-9_24
https://doi.org/10.1007/978-3-030-57663-9_24
https://www.sosy-lab.org/research/bsc/2019.Baier.Integration_des_SMT-Solvers_Boolector_in_das_Framework_JavaSMT_und_Evaluation_mit_CPAchecker.pdf
https://www.sosy-lab.org/research/bsc/2019.Baier.Integration_des_SMT-Solvers_Boolector_in_das_Framework_JavaSMT_und_Evaluation_mit_CPAchecker.pdf
https://doi.org/10.5281/zenodo.4708050
https://doi.org/10.1007/978-3-030-81688-9_9
https://doi.org/10.1007/978-3-030-81688-9_9
http://ieeexplore.ieee.org/document/5770931/
http://ieeexplore.ieee.org/document/5770931/
https://doi.org/10.1145/503272.503274
http://smtlib.cs.uiowa.edu/language.shtml

40 Bibliography

[13] P. Baudin, P. Cuoq, J.-C. Filliâtre, C. Marché, B. Monate, Y. Moy, and V. Prevosto. ACSL:
ANSI/ISO C speci�cation language version 1.17, 2021, https://frama-c.com/download/acsl-1.
17.pdf.

[14] T. Bergan, D. Grossman, and L. Ceze. Symbolic execution of multithreaded programs from
arbitrary program contexts. In Proc. OOPSLA, pages 491–506. ACM, 2014, https://doi.org/
10.1145/2660193.2660200.

[15] P. Berger, J.-P. Katoen, E. Ábrahám, M. T. B. Waez, and T. Rambow. Verifying auto-generated
C code from Simulink - an experience report in the automotive domain. In Proc. FM 2018,
LNCS 10951, pages 312–328. Springer, 2018, https://doi.org/10.1007/978-3-319-95582-7_18.

[16] D. Beyer. Competition on software veri�cation (SV-COMP). In Proc. TACAS, LNCS 7214,
pages 504–524. Springer, 2012, https://doi.org/10.1007/978-3-642-28756-5_38.

[17] D. Beyer. Software veri�cation with validation of results (Report on SV-COMP 2017). In
Proc. TACAS, LNCS 10206, pages 331–349. Springer, 2017, https://doi.org/10.1007/978-3-662-
54580-5_20.

[18] D. Beyer. Automatic veri�cation of C and Java programs: SV-COMP 2019. In Proc. TACAS (3),
LNCS 11429, pages 133–155. Springer, 2019, https://doi.org/10.1007/978-3-030-17502-3_9.

[19] D. Beyer. Advances in automatic software veri�cation: SV-COMP 2020. In Proc. TACAS (2),
LNCS 12079, pages 347–367. Springer, 2020, https://doi.org/10.1007/978-3-030-45237-7_21.

[20] D. Beyer. First international competition on software testing (Test-Comp 2019). Int. J. Softw.
Tools Technol. Transf., 23(6):833–846, December 2021, https://doi.org/10.1007/s10009-021-
00613-3.

[21] D. Beyer. Software veri�cation: 10th comparative evaluation (SV-COMP 2021). In Proc.
TACAS (2), LNCS 12652, pages 401–422. Springer, 2021, https://doi.org/10.1007/978-3-030-
72013-1_24.

[22] D. Beyer. Status report on software testing: Test-Comp 2021. In Proc. FASE, LNCS 12649,
pages 341–357. Springer, 2021, https://doi.org/10.1007/978-3-030-71500-7_17.

[23] D. Beyer, A. J. Chlipala, T. A. Henzinger, R. Jhala, and R. Majumdar. The Blast query
language for software veri�cation. In Proc. SAS, LNCS 3148, pages 2–18. Springer, 2004,
https://doi.org/10.1007/978-3-540-27864-1_2.

[24] D. Beyer and M. Dangl. SMT-based software model checking: An experimental comparison
of four algorithms. In Proc. VSTTE, LNCS 9971, pages 181–198. Springer, 2016, https://doi.
org/10.1007/978-3-319-48869-1_14.

[25] D. Beyer, M. Dangl, D. Dietsch, M. Heizmann, and A. Stahlbauer. Witness validation and
stepwise testi�cation across software veri�ers. In Proc. FSE, pages 721–733. ACM, 2015,
https://doi.org/10.1145/2786805.2786867.

[26] D. Beyer, M. Dangl, and P. Wendler. A unifying view on SMT-based software veri�cation.
J. Autom. Reasoning, 60(3):299–335, 2018, https://doi.org/10.1007/s10817-017-9432-6.

[27] D. Beyer and K. Friedberger. A light-weight approach for verifying multi-threaded programs
with CPAchecker. In Proc. MEMICS, volume 233, pages 61–71. EPTCS, 2016, https://doi.
org/10.4204/EPTCS.233.6.

[28] D. Beyer and K. Friedberger. Domain-independent multi-threaded software model checking.
In Proc. ASE, pages 634–644. ACM, 2018, https://doi.org/10.1145/3238147.3238195.

https://frama-c.com/download/acsl-1.17.pdf
https://frama-c.com/download/acsl-1.17.pdf
https://doi.org/10.1145/2660193.2660200
https://doi.org/10.1145/2660193.2660200
https://doi.org/10.1007/978-3-319-95582-7_18
https://doi.org/10.1007/978-3-642-28756-5_38
https://doi.org/10.1007/978-3-662-54580-5_20
https://doi.org/10.1007/978-3-662-54580-5_20
https://doi.org/10.1007/978-3-030-17502-3_9
https://doi.org/10.1007/978-3-030-45237-7_21
https://doi.org/10.1007/s10009-021-00613-3
https://doi.org/10.1007/s10009-021-00613-3
https://doi.org/10.1007/978-3-030-72013-1_24
https://doi.org/10.1007/978-3-030-72013-1_24
https://doi.org/10.1007/978-3-030-71500-7_17
https://doi.org/10.1007/978-3-540-27864-1_2
https://doi.org/10.1007/978-3-319-48869-1_14
https://doi.org/10.1007/978-3-319-48869-1_14
https://doi.org/10.1145/2786805.2786867
https://doi.org/10.1007/s10817-017-9432-6
https://doi.org/10.4204/EPTCS.233.6
https://doi.org/10.4204/EPTCS.233.6
https://doi.org/10.1145/3238147.3238195

Bibliography 41

[29] D. Beyer and K. Friedberger. In-place vs. copy-on-write cegar re�nement for block summa-
rization with caching. In Proc. ISoLA, LNCS 11245, pages 197–215. Springer, 2018, https://
doi.org/10.1007/978-3-030-03421-4_14.

[30] D. Beyer and K. Friedberger. Reproduction package for article ‘Domain-independent multi-
threaded software model checking’ in Proc. ASE ’18. Zenodo, 2018, https://doi.org/10.5281/
zenodo.1322090.

[31] D. Beyer and K. Friedberger. Domain-independent interprocedural program analysis using
block-abstraction memoization. In Proc. ESEC/FSE, pages 50–62. ACM, 2020, https://doi.
org/10.1145/3368089.3409718.

[32] D. Beyer and K. Friedberger. Reproduction package for article ‘Violation witnesses and
result validation for multi-threaded programs’. Zenodo, 2020, https://doi.org/10.5281/
zenodo.3885694.

[33] D. Beyer and K. Friedberger. Reproduction package for ESEC/FSE 2020 article ‘Domain-
independent interprocedural program analysis using block-abstraction memoization’. Zen-
odo, 2020, https://doi.org/10.5281/zenodo.4024268.

[34] D. Beyer and K. Friedberger. Violation witnesses and result validation for multi-threaded
programs. In Proc. ISoLA (1), LNCS 12476, pages 449–470. Springer, 2020, https://doi.org/10.
1007/978-3-030-61362-4_26.

[35] D. Beyer, T. A. Henzinger, M. E. Keremoglu, and P. Wendler. Conditional model checking: A
technique to pass information between veri�ers. In Proc. FSE, pages 11. ACM, 2012, https://
doi.org/10.1145/2393596.2393664.

[36] D. Beyer, T. A. Henzinger, and G. Théoduloz. Con�gurable software veri�cation: Concretiz-
ing the convergence of model checking and program analysis. In Proc. CAV, LNCS 4590,
pages 504–518. Springer, 2007, https://doi.org/10.1007/978-3-540-73368-3_51.

[37] D. Beyer, T. A. Henzinger, G. Théoduloz, and D. Zu�erey. Shape re�nement through explicit
heap analysis. In Proc. FASE, LNCS 6013, pages 263–277. Springer, 2010, https://doi.org/10.
1007/978-3-642-12029-9_19.

[38] D. Beyer and M. E. Keremoglu. CPAchecker: A tool for con�gurable software veri�cation.
In Proc. CAV, LNCS 6806, pages 184–190. Springer, 2011, https://doi.org/10.1007/978-3-642-
22110-1_16.

[39] D. Beyer, M. E. Keremoglu, and P. Wendler. Predicate abstraction with adjustable-block en-
coding. In Proc. FMCAD, pages 189–197. FMCAD, 2010, https://www.sosy-lab.org/research/
pub/2010-FMCAD.Predicate_Abstraction_with_Adjustable-Block_Encoding.pdf.

[40] D. Beyer and T. Lemberger. Software veri�cation: Testing vs. model checking. In Proc. HVC,
LNCS 10629, pages 99–114. Springer, 2017, https://doi.org/10.1007/978-3-319-70389-3_7.

[41] D. Beyer and S. Löwe. Explicit-state software model checking based on CEGAR and
interpolation. In Proc. FASE, LNCS 7793, pages 146–162. Springer, 2013, https://doi.org/10.
1007/978-3-642-37057-1_11.

[42] D. Beyer, S. Löwe, E. Novikov, A. Stahlbauer, and P. Wendler. Precision reuse for e�cient
regression veri�cation. In Proc. FSE, pages 389–399. ACM, 2013, https://doi.org/10.1145/
2491411.2491429.

[43] D. Beyer, S. Löwe, and P. Wendler. Re�nement selection. In Proc. SPIN, LNCS 9232, pages
20–38. Springer, 2015, https://doi.org/10.1007/978-3-319-23404-5_3.

https://doi.org/10.1007/978-3-030-03421-4_14
https://doi.org/10.1007/978-3-030-03421-4_14
https://doi.org/10.5281/zenodo.1322090
https://doi.org/10.5281/zenodo.1322090
https://doi.org/10.1145/3368089.3409718
https://doi.org/10.1145/3368089.3409718
https://doi.org/10.5281/zenodo.3885694
https://doi.org/10.5281/zenodo.3885694
https://doi.org/10.5281/zenodo.4024268
https://doi.org/10.1007/978-3-030-61362-4_26
https://doi.org/10.1007/978-3-030-61362-4_26
https://doi.org/10.1145/2393596.2393664
https://doi.org/10.1145/2393596.2393664
https://doi.org/10.1007/978-3-540-73368-3_51
https://doi.org/10.1007/978-3-642-12029-9_19
https://doi.org/10.1007/978-3-642-12029-9_19
https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/10.1007/978-3-642-22110-1_16
https://www.sosy-lab.org/research/pub/2010-FMCAD.Predicate_Abstraction_with_Adjustable-Block_Encoding.pdf
https://www.sosy-lab.org/research/pub/2010-FMCAD.Predicate_Abstraction_with_Adjustable-Block_Encoding.pdf
https://doi.org/10.1007/978-3-319-70389-3_7
https://doi.org/10.1007/978-3-642-37057-1_11
https://doi.org/10.1007/978-3-642-37057-1_11
https://doi.org/10.1145/2491411.2491429
https://doi.org/10.1145/2491411.2491429
https://doi.org/10.1007/978-3-319-23404-5_3

42 Bibliography

[44] D. Beyer and A. K. Petrenko. Linux driver veri�cation. In Proc. ISoLA, LNCS 7610, pages
1–6. Springer, 2012, https://doi.org/10.1007/978-3-642-34032-1_1.

[45] D. Beyer and M. Spiessl. MetaVal: Witness validation via veri�cation. In Proc. CAV,
LNCS 12225, pages 165–177. Springer, 2020, https://doi.org/10.1007/978-3-030-53291-8_10.

[46] D. Beyer and M. Spiessl. The static analyzer Frama-C in SV-COMP (competition contribu-
tion). In Proc. TACAS (2), LNCS 13244. Springer, 2022.

[47] D. Beyer and A. Stahlbauer. BDD-based software veri�cation: Applications to event-
condition-action systems. Int. J. Softw. Tools Technol. Transfer, 16(5):507–518, 2014, https://
doi.org/10.1007/s10009-014-0334-1.

[48] D. Beyer and P. Wendler. Algorithms for software model checking: Predicate abstraction
vs. Impact. In Proc. FMCAD, pages 106–113. FMCAD, 2012, ISBN: 978-1-4673-4831-7.

[49] D. Beyer and P. Wendler. Reuse of veri�cation results: Conditional model checking, precision
reuse, and veri�cation witnesses. In Proc. SPIN, LNCS 7976, pages 1–17. Springer, 2013,
https://doi.org/10.1007/978-3-642-39176-7_1.

[50] A. Biere, A. Cimatti, E. M. Clarke, O. Strichman, and Y. Zhu. Bounded model checking.
Advances in Computers, 58:117–148, 2003, https://doi.org/10.1016/S0065-2458(03)58003-2.

[51] R. Blanc. Scala SMT-LIB. online, 2016, https://archive.softwareheritage.org/
swh:1:snp:15684�18c89d8ddb79ce78b7b33e4c8dd944916;origin=https://github.com/
regb/scala-smtlib.

[52] R. E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE Trans.
Computers, 35(8):677–691, 1986, https://doi.org/10.1109/TC.1986.1676819.

[53] C. Calcagno, D. Distefano, J. Dubreil, D. Gabi, P. Hooimeijer, M. Luca, P. W. O’Hearn,
I. Papakonstantinou, J. Purbrick, and D. Rodriguez. Moving fast with software veri�cation.
In Proc. NFM, LNCS 9058, pages 3–11. Springer, 2015, https://doi.org/10.1007/978-3-319-
17524-9_1.

[54] F. Cassez and A. M. Sloane. ScalaSMT: Satis�ability modulo theory in Scala (tool paper).
In Proc. SCALA, pages 51–55. ACM, 2017, https://doi.org/10.1145/3136000.3136004.

[55] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-guided abstraction
re�nement. In Proc. CAV, LNCS 1855, pages 154–169. Springer, 2000, https://doi.org/10.
1007/10722167_15.

[56] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-guided abstraction
re�nement for symbolic model checking. J. ACM, 50(5):752–794, 2003, https://doi.org/10.
1145/876638.876643.

[57] E. M. Clarke, O. Grumberg, K. L. McMillan, and X. Zhao. E�cient generation of counterex-
amples and witnesses in symbolic model checking. In Proc. DAC, pages 427–432. ACM,
1995, https://doi.org/10.1145/217474.217565.

[58] E. M. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 1999, ISBN: 978-0-
262-03270-4.

[59] B. Cook. Formal reasoning about the security of Amazon web services. In Proc. CAV (2),
LNCS 10981, pages 38–47. Springer, 2018, https://doi.org/10.1007/978-3-319-96145-3_3.

https://doi.org/10.1007/978-3-642-34032-1_1
https://doi.org/10.1007/978-3-030-53291-8_10
https://doi.org/10.1007/s10009-014-0334-1
https://doi.org/10.1007/s10009-014-0334-1
https://www.worldcat.org/isbn/978-1-4673-4831-7
https://doi.org/10.1007/978-3-642-39176-7_1
https://doi.org/10.1016/S0065-2458(03)58003-2
https://archive.softwareheritage.org/swh:1:snp:15684ff18c89d8ddb79ce78b7b33e4c8dd944916;origin=https://github.com/regb/scala-smtlib
https://archive.softwareheritage.org/swh:1:snp:15684ff18c89d8ddb79ce78b7b33e4c8dd944916;origin=https://github.com/regb/scala-smtlib
https://archive.softwareheritage.org/swh:1:snp:15684ff18c89d8ddb79ce78b7b33e4c8dd944916;origin=https://github.com/regb/scala-smtlib
https://doi.org/10.1109/TC.1986.1676819
https://doi.org/10.1007/978-3-319-17524-9_1
https://doi.org/10.1007/978-3-319-17524-9_1
https://doi.org/10.1145/3136000.3136004
https://doi.org/10.1007/10722167_15
https://doi.org/10.1007/10722167_15
https://doi.org/10.1145/876638.876643
https://doi.org/10.1145/876638.876643
https://doi.org/10.1145/217474.217565
https://www.worldcat.org/isbn/978-0-262-03270-4
https://www.worldcat.org/isbn/978-0-262-03270-4
https://doi.org/10.1007/978-3-319-96145-3_3

Bibliography 43

[60] B. Cook, K. Khazem, D. Kröning, S. Tasiran, M. Tautschnig, and M. R. Tuttle. Model checking
boot code from AWS data centers. In Proc. CAV, LNCS 10982, pages 467–486. Springer, 2018,
https://doi.org/10.1007/978-3-319-96142-2_28.

[61] L. C. Cordeiro and B. Fischer. Verifying multi-threaded software using SMT-based context-
bounded model checking. In Proc. ICSE, pages 331–340. ACM, 2011, https://doi.org/10.1145/
1985793.1985839.

[62] D. Delmas and J. Souyris. Astrée: From research to industry. In Proc. SAS, LNCS 4634, pages
437–451. Springer, 2007, https://doi.org/10.1007/978-3-540-74061-2_27.

[63] D. Distefano, M. Fähndrich, F. Logozzo, and P. W. O’Hearn. Scaling static analyses at
Facebook. Commun. ACM, 62(8):62–70, 2019, https://doi.org/10.1145/3338112.

[64] K. Dudka, P. Peringer, and T. Vojnar. Byte-precise veri�cation of low-level list manipulation.
In Proc. SAS, LNCS 7935, pages 215–237. Springer, 2013, https://doi.org/10.1007/978-3-642-
38856-9_13.

[65] T. Elrad and N. Francez. Decomposition of distributed programs into communication-
closed layers. Sci. Comput. Program., 2(3):155–173, 1982, https://doi.org/10.1016/0167-
6423(83)90013-8.

[66] B. Fischer, O. Inverso, and G. Parlato. CSeq: A sequentialization tool for C (competition
contribution). In Proc. TACAS, LNCS 7795, pages 616–618. Springer, 2013, https://doi.org/
10.1007/978-3-642-36742-7_46.

[67] C. Flanagan and P. Godefroid. Dynamic partial-order reduction for model checking software.
In Proc. POPL, pages 110–121. ACM, 2005, https://doi.org/10.1145/1040305.1040315.

[68] C. Flanagan and S. Qadeer. Thread-modular model checking. In Proc. SPIN, LNCS 2648,
pages 213–224. Springer, 2003, https://doi.org/10.1007/3-540-44829-2_14.

[69] R. W. Floyd. Assigning meanings to programs. In Mathematical Aspects of Computer Science,
pages 19–32. AMS, 1967, https://doi.org/10.1007/978-94-011-1793-7_4.

[70] M. Gario and A. Micheli. PySMT: A solver-agnostic library for fast prototyping
of SMT-based algorithms. In Proc. SMT, 2015, https://archive.softwareheritage.org/
swh:1:snp:cda89e1178b881f2d4e57978b791f5d2d7f37fd5;origin=https://github.com/pysmt/
pysmt.

[71] P. Godefroid. Partial-Order Methods for the Veri�cation of Concurrent Systems - An Approach
to the State-Explosion Problem. LNCS 1032. Springer, 1996, https://doi.org/10.1007/3-540-
60761-7.

[72] B. S. Gulavani, T. A. Henzinger, Y. Kannan, A. V. Nori, and S. K. Rajamani. Synergy: A new
algorithm for property checking. In Proc. FSE, pages 117–127. ACM, 2006, https://doi.org/
10.1145/1181775.1181790.

[73] Á. Hajdu and Z. Micskei. E�cient strategies for CEGAR-based model checking. J. Autom.
Reasoning, 64(6):1051–1091, 2020, https://doi.org/10.1007/s10817-019-09535-x.

[74] K. Havelund and T. Pressburger. Model checking Java programs using Java PathFinder. Int.
J. Softw. Tools Technol. Transfer, 2(4):366–381, 2000, https://doi.org/10.1007/s100090050043.

[75] M. Heizmann, J. Hoenicke, and A. Podelski. Nested interpolants. In Proc. POPL, pages
471–482. ACM, 2010, https://doi.org/10.1145/1706299.1706353.

https://doi.org/10.1007/978-3-319-96142-2_28
https://doi.org/10.1145/1985793.1985839
https://doi.org/10.1145/1985793.1985839
https://doi.org/10.1007/978-3-540-74061-2_27
https://doi.org/10.1145/3338112
https://doi.org/10.1007/978-3-642-38856-9_13
https://doi.org/10.1007/978-3-642-38856-9_13
https://doi.org/10.1016/0167-6423(83)90013-8
https://doi.org/10.1016/0167-6423(83)90013-8
https://doi.org/10.1007/978-3-642-36742-7_46
https://doi.org/10.1007/978-3-642-36742-7_46
https://doi.org/10.1145/1040305.1040315
https://doi.org/10.1007/3-540-44829-2_14
https://doi.org/10.1007/978-94-011-1793-7_4
https://archive.softwareheritage.org/swh:1:snp:cda89e1178b881f2d4e57978b791f5d2d7f37fd5;origin=https://github.com/pysmt/pysmt
https://archive.softwareheritage.org/swh:1:snp:cda89e1178b881f2d4e57978b791f5d2d7f37fd5;origin=https://github.com/pysmt/pysmt
https://archive.softwareheritage.org/swh:1:snp:cda89e1178b881f2d4e57978b791f5d2d7f37fd5;origin=https://github.com/pysmt/pysmt
https://doi.org/10.1007/3-540-60761-7
https://doi.org/10.1007/3-540-60761-7
https://doi.org/10.1145/1181775.1181790
https://doi.org/10.1145/1181775.1181790
https://doi.org/10.1007/s10817-019-09535-x
https://doi.org/10.1007/s100090050043
https://doi.org/10.1145/1706299.1706353

44 Bibliography

[76] T. A. Henzinger, R. Jhala, R. Majumdar, and S. Qadeer. Thread-modular abstraction re�ne-
ment. In Proc. CAV, LNCS 2725, pages 262–274. Springer, 2003, https://doi.org/10.1007/
978-3-540-45069-6_27.

[77] T. A. Henzinger, R. Jhala, R. Majumdar, and M. A. A. Sanvido. Extreme model checking.
In Veri�cation: Theory and Practice, pages 332–358. Springer, 2003, https://doi.org/10.1007/
978-3-540-39910-0_16.

[78] C. A. R. Hoare. An axiomatic basis for computer programming. Commun. ACM, 12(10):576–
580, 1969, https://doi.org/10.1145/363235.363259.

[79] G. J. Holzmann. The model checker SPIN. IEEE Trans. Softw. Eng., 23(5):279–295, 1997,
https://doi.org/10.1109/32.588521.

[80] M. Huth and M. D. Ryan. Logic in computer science - modelling and reasoning about systems
(2. Edition). Cambridge University Press, 2004.

[81] H. Ibrhim, S. Khattab, K. Elsayed, A. Badr, and E. Nabil. A formal methods-based rule
veri�cation framework for end-user programming in campus building automation systems.
Building and Environment, 181:106983, 2020, https://doi.org/10.1016/j.buildenv.2020.106983.

[82] O. Inverso, E. Tomasco, B. Fischer, S. La Torre, and G. Parlato. Bounded model checking
of multi-threaded C programs via lazy sequentialization. In Proc. CAV, LNCS 8559, pages
585–602. Springer, 2014, https://doi.org/10.1007/978-3-319-08867-9_39.

[83] X. Jia, C. Ghezzi, and S. Ying. Enhancing reuse of constraint solutions to improve symbolic
execution. In Proc. ISSTA, pages 177–187. ACM, 2015, https://doi.org/10.1145/2771783.
2771806.

[84] R. Joshaghani, S. Black, E. Sherman, and H. Mehrpouyan. Formal speci�cation and ver-
i�cation of user-centric privacy policies for ubiquitous systems. In Proc. IDEAS, pages
31:1–31:10. ACM, 2019, https://doi.org/10.1145/3331076.3331105.

[85] E. G. Karpenkov, K. Friedberger, and D. Beyer. JavaSMT: A uni�ed interface for SMT solvers
in Java. In Proc. VSTTE, LNCS 9971, pages 139–148. Springer, 2016, https://doi.org/10.1007/
978-3-319-48869-1_11.

[86] P. Kars. The application of PROMELA and SPIN in the BOS project. In Proc. DIMACS
Workshop, volume 32 of DIMACS Series in Discrete Mathematics and Theoretical Computer
Science, pages 51–63. DIMACS/AMS, 1996, https://doi.org/10.1090/dimacs/032/05.

[87] M. Kettl and T. Lemberger. The static analyzer Infer in SV-COMP (competition contribu-
tion). In Proc. TACAS (2), LNCS 13244. Springer, 2022.

[88] A. V. Khoroshilov, V. S. Mutilin, A. K. Petrenko, and V. Zakharov. Establishing Linux
driver veri�cation process. In Proc. Ershov Memorial Conference, LNCS 5947, pages 165–176.
Springer, 2009, https://doi.org/10.1007/978-3-642-11486-1_14.

[89] V. Kolesnykov. SMT-based model checking of concurrent programs. Bachelor’s Thesis,
LMU Munich, Software Systems Lab, 2020, https://www.sosy-lab.org/research/bsc/2020.
Kolesnykov.SMT-based_Model_Checking_of_Concurrent_Programs.pdf.

[90] B. Kragl, C. Enea, T. A. Henzinger, S. O. Mutluergil, and S. Qadeer. Inductive sequentializa-
tion of asynchronous programs. In Proc. PLDI, pages 227–242. ACM, 2020, https://doi.org/
10.1145/3385412.3385980.

https://doi.org/10.1007/978-3-540-45069-6_27
https://doi.org/10.1007/978-3-540-45069-6_27
https://doi.org/10.1007/978-3-540-39910-0_16
https://doi.org/10.1007/978-3-540-39910-0_16
https://doi.org/10.1145/363235.363259
https://doi.org/10.1109/32.588521
https://doi.org/10.1016/j.buildenv.2020.106983
https://doi.org/10.1007/978-3-319-08867-9_39
https://doi.org/10.1145/2771783.2771806
https://doi.org/10.1145/2771783.2771806
https://doi.org/10.1145/3331076.3331105
https://doi.org/10.1007/978-3-319-48869-1_11
https://doi.org/10.1007/978-3-319-48869-1_11
https://doi.org/10.1090/dimacs/032/05
https://doi.org/10.1007/978-3-642-11486-1_14
https://www.sosy-lab.org/research/bsc/2020.Kolesnykov.SMT-based_Model_Checking_of_Concurrent_Programs.pdf
https://www.sosy-lab.org/research/bsc/2020.Kolesnykov.SMT-based_Model_Checking_of_Concurrent_Programs.pdf
https://doi.org/10.1145/3385412.3385980
https://doi.org/10.1145/3385412.3385980

Bibliography 45

[91] C. Y. Lee. Representation of switching circuits by binary-decision programs. Bell Syst. Tech.
J., 38(4):985–999, July 1959, https://doi.org/10.1002/j.1538-7305.1959.tb01585.x.

[92] K. R. M. Leino. Dafny: An automatic program veri�er for functional correctness. In Proc.
LPAR, LNCS 6355, pages 348–370. Springer, 2010, https://doi.org/10.1007/978-3-642-17511-
4_20.

[93] M. Mann, A. Wilson, C. Tinelli, and C. W. Barrett. SMT-Switch: A solver-agnostic C++
API for SMT solving. arXiv/CoRR, 2007(01374), July 2020, https://arxiv.org/abs/2007.01374.

[94] K. L. McMillan. Interpolation and SAT-based model checking. In Proc. CAV, LNCS 2725,
pages 1–13. Springer, 2003, https://doi.org/10.1007/978-3-540-45069-6_1.

[95] K. L. McMillan. Lazy abstraction with interpolants. In Proc. CAV, LNCS 4144, pages 123–136.
Springer, 2006, https://doi.org/10.1007/11817963_14.

[96] A. Miné. The octagon abstract domain. Higher-Order and Symbolic Computation, 19(1):31–
100, 2006, https://doi.org/10.1007/s10990-006-8609-1.

[97] G. J. Myers, C. Sandler, and T. Badgett. The Art of Software Testing. Wiley, 3rd edition, 2011,
ISBN: 9781118031964.

[98] P. Müller and T. Vojnar. CPAlien: Shape analyzer for CPAchecker (competition contribu-
tion). In Proc. TACAS, LNCS 8413, pages 395–397. Springer, 2014, https://doi.org/10.1007/
978-3-642-54862-8_28.

[99] T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL: A Proof Assistant for Higher-Order
Logic. LNCS 2283. Springer, 2002, https://doi.org/10.1007/3-540-45949-9.

[100] M. Nyberg, D. Gurov, C. Lidström, A. Rasmusson, and J. Westman. Formal veri�cation in
automotive industry: Enablers and obstacles. In Proc. ISoLA, LNCS 11247, pages 139–158.
Springer, 2018, https://doi.org/10.1007/978-3-030-03427-6_14.

[101] M. Obermeier. Extending the framework JavaSMT with the SMT solver Yices2. Bachelor’s
Thesis, LMU Munich, Software Systems Lab, 2020, https://www.sosy-lab.org/research/bsc/
2020.Obermeier.Extending_the_Framework_JavaSMT_with_the_SMT_Solver_Yices2.pdf.

[102] P. W. O’Hearn. Continuous reasoning: Scaling the impact of formal methods. In Proc. LICS,
pages 13–25. ACM, 2018, https://doi.org/10.1145/3209108.3209109.

[103] S. Qadeer and D. Wu. KISS: keep it simple and sequential. In Proc. PLDI, pages 14–24. ACM,
2004, https://doi.org/10.1145/996841.996845.

[104] J.-P. Queille and J. Sifakis. Speci�cation and veri�cation of concurrent systems in CESAR.
In Proc. Symposium on Programming, LNCS 137, pages 337–351. Springer, 1982, https://doi.
org/10.1007/3-540-11494-7_22.

[105] A. Ried. Design and implementation of a cluster-based approach for software veri�cation.
Bachelor’s Thesis, LMU Munich, Software Systems Lab, 2020, https://www.sosy-lab.org/
research/bsc/2020.Ried.Design_and_Implementation_of_a_Cluster_Based_Approach_-
for_Software_Veri�cation.pdf.

[106] H. Riener, F. Haedicke, S. Frehse, M. Soeken, D. Große, R. Drechsler, and G. Fey. metaSMT:
Focus on your application and not on solver integration. Int. J. Softw. Tools Technol. Transf.,
19(5):605–621, 2017, https://doi.org/10.1007/s10009-016-0426-1.

https://doi.org/10.1002/j.1538-7305.1959.tb01585.x
https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1007/978-3-642-17511-4_20
https://arxiv.org/abs/2007.01374
https://doi.org/10.1007/978-3-540-45069-6_1
https://doi.org/10.1007/11817963_14
https://doi.org/10.1007/s10990-006-8609-1
https://www.worldcat.org/isbn/9781118031964
https://doi.org/10.1007/978-3-642-54862-8_28
https://doi.org/10.1007/978-3-642-54862-8_28
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1007/978-3-030-03427-6_14
https://www.sosy-lab.org/research/bsc/2020.Obermeier.Extending_the_Framework_JavaSMT_with_the_SMT_Solver_Yices2.pdf
https://www.sosy-lab.org/research/bsc/2020.Obermeier.Extending_the_Framework_JavaSMT_with_the_SMT_Solver_Yices2.pdf
https://doi.org/10.1145/3209108.3209109
https://doi.org/10.1145/996841.996845
https://doi.org/10.1007/3-540-11494-7_22
https://doi.org/10.1007/3-540-11494-7_22
https://www.sosy-lab.org/research/bsc/2020.Ried.Design_and_Implementation_of_a_Cluster_Based_Approach_for_Software_Verification.pdf
https://www.sosy-lab.org/research/bsc/2020.Ried.Design_and_Implementation_of_a_Cluster_Based_Approach_for_Software_Verification.pdf
https://www.sosy-lab.org/research/bsc/2020.Ried.Design_and_Implementation_of_a_Cluster_Based_Approach_for_Software_Verification.pdf
https://doi.org/10.1007/s10009-016-0426-1

46 Bibliography

[107] B. Rothenberg, D. Dietsch, and M. Heizmann. Incremental veri�cation using trace abstrac-
tion. In Proc. SAS, LNCS 11002, pages 364–382. Springer, 2018, https://doi.org/10.1007/
978-3-319-99725-4_22.

[108] C. Sadowski, E. Aftandilian, A. Eagle, L. Miller-Cushon, and C. Jaspan. Lessons from
building static analysis tools at Google. Commun. ACM, 61(4):58–66, 2018, https://doi.org/
10.1145/3188720.

[109] O. Sery, G. Fedyukovich, and N. Sharygina. Incremental upgrade checking by means of
interpolation-based function summaries. In Proc. FMCAD, pages 114–121. FMCAD Inc.,
2012, http://ieeexplore.ieee.org/document/6462563/.

[110] J. Sprey, C. Sundermann, S. Krieter, M. Nieke, J. Mauro, T. Thüm, and I. Schaefer. SMT-based
variability analyses in FeatureIDE. In Proc. VaMoS, pages 6:1–6:9. ACM, 2020, https://doi.
org/10.1145/3377024.3377036.

[111] C. Tian, Z. Duan, and Z. Duan. Making CEGAR more e�cient in software model checking.
IEEE Trans. Softw. Eng., 40(12):1206–1223, 2014, https://doi.org/10.1109/TSE.2014.2357442.

[112] I. v. Langevelde, J. Romijn, and N. Goga. Founding FireWire bridges through PROMELA
prototyping. In Proc. IPDPS, page 239. IEEE, 2003, https://doi.org/10.1109/IPDPS.2003.
1213434.

[113] M. Y. Vardi. An automata-theoretic approach to linear temporal logic. In Logics for Con-
currency - Structure versus Automata (Proc. Ban�’95), LNCS 1043, pages 238–266. Springer,
1996.

[114] W. Visser, J. Geldenhuys, and M. B. Dwyer. Green: Reducing, reusing, and recycling
constraints in program analysis. In Proc. FSE, pages 58:1–58:11. ACM, 2012, https://doi.org/
10.1145/2393596.2393665.

[115] A. Volkov and M. U. Mandrykin. Predicate abstractions memory modeling method with
separation into disjoint regions. In Proc. SYRCoSE, pages 69–73. Institute for System
Programming of the Russian Academy of Sciences (ISPRAS), 2017, http://syrcose.ispras.ru/
2017/SYRCoSE2017_Proceedings.pdf.

[116] B. Wachter, D. Kröning, and J. Ouaknine. Verifying multi-threaded software with Impact.
In Proc. FMCAD, pages 210–217. IEEE, 2013, http://ieeexplore.ieee.org/document/6679412/.

[117] L. Westhofen, P. Berger, and J.-P. Katoen. Benchmarking software model checkers on
automotive code. In Proc. NFM, LNCS 12229, pages 133–150. Springer, 2020, https://doi.org/
10.1007/978-3-030-55754-6_8.

[118] D. Wonisch and H. Wehrheim. Predicate analysis with block-abstraction memoization. In
Proc. ICFEM, LNCS 7635, pages 332–347. Springer, 2012, https://doi.org/10.1007/978-3-642-
34281-3_24.

[119] G. Yang, C. S. Păsăreanu, and S. Khurshid. Memoized symbolic execution. In Proc. ISSTA,
pages 144–154. ACM, 2012, https://doi.org/10.1145/2338965.2336771.

[120] G. Yang, R. Qiu, S. Khurshid, C. S. Pasareanu, and J. Wen. A synergistic approach to
improving symbolic execution using test ranges. Innov. Syst. Softw. Eng., 15(3-4):325–342,
2019, https://doi.org/10.1007/s11334-019-00331-9.

[121] L. Yin, W. Dong, W. Liu, and J. Wang. Scheduling constraint based abstraction re�nement
for multi-threaded program veri�cation. CoRR, abs/1708.08323, 2017, http://arxiv.org/abs/
1708.08323.

https://doi.org/10.1007/978-3-319-99725-4_22
https://doi.org/10.1007/978-3-319-99725-4_22
https://doi.org/10.1145/3188720
https://doi.org/10.1145/3188720
http://ieeexplore.ieee.org/document/6462563/
https://doi.org/10.1145/3377024.3377036
https://doi.org/10.1145/3377024.3377036
https://doi.org/10.1109/TSE.2014.2357442
https://doi.org/10.1109/IPDPS.2003.1213434
https://doi.org/10.1109/IPDPS.2003.1213434
https://doi.org/10.1145/2393596.2393665
https://doi.org/10.1145/2393596.2393665
http://syrcose.ispras.ru/2017/SYRCoSE2017_Proceedings.pdf
http://syrcose.ispras.ru/2017/SYRCoSE2017_Proceedings.pdf
http://ieeexplore.ieee.org/document/6679412/
https://doi.org/10.1007/978-3-030-55754-6_8
https://doi.org/10.1007/978-3-030-55754-6_8
https://doi.org/10.1007/978-3-642-34281-3_24
https://doi.org/10.1007/978-3-642-34281-3_24
https://doi.org/10.1145/2338965.2336771
https://doi.org/10.1007/s11334-019-00331-9
http://arxiv.org/abs/1708.08323
http://arxiv.org/abs/1708.08323

Bibliography 47

[122] Z. Zhu, L. Jiao, and X. Xu. Combining search-based testing and dynamic symbolic execution
by evolvability metric. In Proc. ICSME, pages 59–68. IEEE, 2018, https://doi.org/10.1109/
ICSME.2018.00015.

https://doi.org/10.1109/ICSME.2018.00015
https://doi.org/10.1109/ICSME.2018.00015

A. Manuscripts

This chapter provides the published research manuscripts as discussed in Chapter 2. The following
manuscripts are ordered corresponding to the objectives and tasks from Chapter 1, i. e., the
manuscripts are ordered and grouped semantically rather than chronologically.

Please note that the order of authors follows alphabetic scheme in most cases. The following
pages contain the original manuscripts as provided by the publisher, including their own page
titles, page numbers and references.

Domain-Independent
Multi-threaded Software Model Checking

Dirk Beyer
LMU Munich
Germany

Karlheinz Friedberger
LMU Munich
Germany

ABSTRACT
Recent development of software aims at massively parallel execu-
tion, because of the trend to increase the number of processing
units per CPU socket. But many approaches for program analy-
sis are not designed to benefit from a multi-threaded execution
and lack support to utilize multi-core computers. Rewriting exist-
ing algorithms is difficult and error-prone, and the design of new
parallel algorithms also has limitations. An orthogonal problem is
the granularity: computing each successor state in parallel seems
too fine-grained, so the open question is to find the right struc-
tural level for parallel execution. We propose an elegant solution to
these problems: Block summaries should be computed in parallel.
Many successful approaches to software verification are based on
summaries of control-flow blocks, large blocks, or function bodies.
Block-abstraction memoization is a successful domain-independent
approach for summary-based program analysis. We redesigned the
verification approach of block-abstraction memoization starting
from its original recursive definition, such that it can run in a paral-
lel manner for utilizing the available computation resources without
losing its advantages of being independent from a certain abstract
domain. We present an implementation of our new approach for
multi-core shared-memory machines. The experimental evaluation
shows that our summary-based approach has no significant over-
head compared to the existing sequential approach and that it has
a significant speedup when using multi-threading.

CCS CONCEPTS
· Software and its engineering → Formal software verifica-
tion; · Theory of computation → Parallel algorithms;

KEYWORDS
Program Analysis, Software Verification, Parallel Algorithm, Multi-
threading, Block-Abstraction Memoization
ACM Reference Format:
Dirk Beyer and Karlheinz Friedberger. 2018. Domain-Independent Multi-
threaded SoftwareModel Checking. In Proceedings of the 2018 33rd ACM/IEEE
International Conference on Automated Software Engineering (ASE ’18), Sep-
tember 3ś7, 2018, Montpellier, France. ACM, New York, NY, USA, 11 pages.
https://doi.org/10.1145/3238147.3238195

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ASE ’18, September 3ś7, 2018, Montpellier, France
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5937-5/18/09. . . $15.00
https://doi.org/10.1145/3238147.3238195

1 INTRODUCTION
Program verification has been applied successfully to find errors
in applications or to prove their correctness. Recent hardware de-
velopment aims towards parallel execution of programs either on
multi-core machines or shared across several machines in a com-
puting cluster. For large-scale program verification, we do not only
need efficient algorithms, but also make use of available hardware
resources up to their limits. There are some approaches to leverage
such systems, but most recent algorithms for program verification
and model checking are not designed to work in parallel man-
ner and utilize only a small part of available resources. There are
several reasons for this: Either the verification algorithms have
dependencies between intermediate results, such that only a se-
quential execution is useful, or the amount of parallelism is bound
by a small number, e.g., only two analyses are executed in paral-
lel and communicate information, effectively using only a small
number of CPU cores. The main question is whether and how we
can (re-)design existing verification techniques such that they can
be executed on parallel computer architectures.

We contribute the idea to use summaries as the objects to com-
pute in parallel, instead of inventing new parallel state-space itera-
tion algorithms. Block-abstraction memoization (BAM) [31] is a par-
ticularly nice method to summarize blocks of program statements,
because it is independent from a particular analysis Ð it wraps
an existing analysis without much interference and stores block
summaries in a cache. We use this concept to develop a domain-
independent analysis that distributes a verification problem across
multiple processing units without changes to the analysis technique.
Our analysis is based on a standard state-space exploration using a
control-flow automaton that represents the program. The approach
is orthogonal to other data-flow-based analyses, and thus, it can be
combined with analyses based on different abstract domains like
BDDs, explicit values, intervals, or predicates.

The value of our approach is its level of separation of concerns: it
separates the concern of making an analysis multi-threaded from
the concern of designing and implementing an abstract domain
and its operators. We base our approach on BAM and use most of
its data structures, such that most parts of the (wrapped) analysis
(and its implementation) remain unchanged. We redesigned the
algorithm such that we can efficiently execute it across several
processing units. The parallelism of the analysis is only bound
by the structure of the program to be analyzed and the amount of
work found during the analysis. Our work includes a transformation
of the existing algorithm of BAM from a sequential, recursively
defined algorithm into a parallel approach. Additionally, we benefit
from the existing infrastructure of BAM, i.e., we also use a cache
for block abstractions and apply the operators reduce and expand
to increase the cache hit rate. The analysis is sound, implemented

634

Domain-Independent Multi-threaded Software Model Checking 51

https://www.acm.org/publications/policies/artifact-review-badging
https://doi.org/10.1145/3238147.3238195
https://doi.org/10.1145/3238147.3238195

ASE ’18, September 3ś7, 2018, Montpellier, France Dirk Beyer and Karlheinz Friedberger

in the open-source verification framework CPAchecker, and can be
combined with existing components of the framework, including
CEGAR [20] or witness export [5, 6].

Contributions. We make the following contributions:
• We introduce a new technique for parallelization of verifica-
tion algorithms that is independent from particular abstract
domains because it is based on a flexible and configurable block
summarization.
• We implemented the technique in the open-source verification
framework CPAchecker. Our implementation and all experimen-
tal data are available to other researchers and practitioners for
replication via our artifact [9] and supplementary website.1
• We evaluated our new technique on a large set of benchmarks
and show (1) that the parallel version of BAM (if using only one
CPU core) behaves similar to the sequential version (i.e., there
is no significant overhead for parallelization) and (2) that the
parallel version of BAM significantly improves the response
time of the verification process for programs that are large
enough to benefit from multi-threading.

Related Work. The idea to use parallel algorithms in software
verification is not new. There exist several approaches reaching
from plain parallel execution of different algorithms (until the first
analysis succeeds) via one-way communication between (some)
analyses (one analysis provides additional information for another
one) to fully parallel analyses (dividing the state space into par-
titions that are explored separately).
Portfolio Approaches. A simple, but effective approach is to run
a portfolio analysis [24], i.e., a fixed number of predefined anal-
yses in parallel to leverage the available CPU cores on a single
machine, such that the verifier terminates with the first succeeding
analysis (e.g. [22, 26]). This strategy is applied either to separately
explore the state space, e.g., with different domains, or in a way
that one analysis provides information for another one, for exam-
ple to enrich it with additional invariants [7]. Such approaches
for parallel software verification are not scalable due to its fixed
number of different analyses, and they suffer from the problem
that each single analysis only uses a small fraction of the available
resources. If all but one analysis fail to determine a verification
result (because of unsupported features in the task, or impreci-
sion of the analysis), the remaining work is sometimes limited to
a single analysis and thus a single core.
Multi-Threading Approaches. SPIN [23] and Divine [3, 29] are based
on pure explicit model checking and use a central hash table to
check for existing (already analyzed) states. LTSmin [18] either per-
forms explicit state-space search in a parallel manner or uses a
BDD-based approach using the BDD-library Sylvan [30] that inter-
nally parallelizes its operations. Other approaches divide a given
problem into smaller components that are verified separately, be-
fore joining the results to get a proof for a whole program [21, 25].
An example implementation for such a technique is the tool Soft-
Ver that uses BDDs and predicates.

Structurally-defined conditional analysis [28] is an approach that
splits a program according to conditions as in conditional model
checking [11], that is, given a program P and a condition ψ , two
1https://www.sosy-lab.org/research/bam-parallel/

analysis instances can be created, one conditional analysis of P
and ψ and one conditional analysis of P and ¬ψ . The two anal-
ysis instances are completely independent and can be executed
in parallel. The approach can scale up to an arbitrary number of
splits. The elegance of this approach is that it does not depend
on a specific implementation but can be built on top of existing,
off-the-shelf tool components.
Multi-Machine Approaches. State-space exploration can be dis-
tributed across several machines by partitioning the possible state-
space. Tools like SPIN [23], CSeq-Swarm [27], or the SPARK Analysis
Tools [19] divide the verification problem after a short pre-analysis
of the program, and split the potential state space and the verifi-
cation condition according to given time and memory limitations,
available processing units, or other criteria. This approach is po-
tentially problematic due to the unknown nature of the program
to be analyzed, e.g., it might not match the pre-defined schedul-
ing. For degenerated state spaces, the parallel analysis might be
imbalanced between different threads/processes. Other tools like
LTSmin [18] or Divine [3, 29] circumvent such imbalances by a dy-
namic scheduling approach. The approach of structurally-defined
conditional analysis [28] can also be extended to benefit from
multi-machine environments.

Our contribution is a more general parallel technique for pro-
gram analysis and can be applied to an arbitrary domain and even
combinations of several domains. Thus, explicit-value analysis,
BDD-based analysis, as well as predicate analysis can benefit from
our approach. The parallelism of the approach presented in this
paper is based on the internal structure of the program, i.e., an auto-
matic partitioning of the control flow, and tries to use all available
processing units, only depending on the dynamic behavior of the
program analysis, i.e., the unfolding of the abstract state space.

2 BACKGROUND
The following section provides an overview of basic concepts and
definitions that our approach is based on. We describe the pro-
gram representation, configurable program analysis, the details of
block-abstraction memoization, and how we advanced it towards
an efficient parallel algorithm for program analysis (for more de-
tail see the original articles [12, 31]).

2.1 Program Representation
We restrict the presentation to a simple imperative programming
language, where all operations are either assignment or assume
operations. A program is represented by a control-flow automaton
(CFA) A = (L, l0,G), which is a directed graph consisting of a set
L of program locations (modeling the program counter), a set G ⊆
L ×Ops × L of control-flow edges (modeling the computation steps
from one location to the next: assignment or assume operations),
and an initial program location l0 (entry point of the program).

2.2 CPA and CPA Algorithm
A configurable program analysis (CPA) [12] is specified by an ab-
stract domain for a program analysis and operators to model the
behavior of the program analysis: A CPA D = (D,{,merge, stop)
consists of

635

52 A. Manuscripts

https://www.sosy-lab.org/research/bam-parallel/

Domain-Independent Multi-threaded Software Model Checking ASE ’18, September 3ś7, 2018, Montpellier, France

(1) an abstract domain D = (C, E, [[·]]) that consists of a set C of
concrete states, a lattice E = (E,⊑) over a set E of abstract-
domain elements (i.e., abstract states) and a partial order ⊑, and
a concretization function [[·]] that maps each abstract-domain
element to the represented set of concrete states.

(2) a transfer relation{⊆ E×E that yields successors of an abstract
state.

(3) a merge operator merge ⊆ E × E → E that determines how to
merge two abstract states when control flow meets).

(4) a termination check stop ⊆ E × 2E → B that specifies whether
an abstract state is covered by a set of abstract states.
Algorithm 1 CPAalg performs a state-space exploration. It com-

putes an overapproximation of the reachable states by constructing
abstract states for the program based on a given CPA and an initial
abstract state. The algorithm is a fixed-point iteration andmaintains
a set waitlist of abstract states that still have to be explored, and
a set reached of already explored abstract states. In each iteration,
the algorithm takes an abstract state from waitlist (line 2) and com-
putes its successors (line 3). The algorithm checks whether a new
state can be merged with an existing state, and updates the work
sets accordingly (lines 5ś8). The operator stop ensures that the new
abstract state is only added to the work sets if the abstract state is
not already covered by any of the existing states in reached (lines 9ś
11). The algorithm terminates if either the set waitlist is empty or
there is another reason to abort early, e. g., a property violation.

We use a simplified version of algorithm CPAalg [8] in order
to shorten the presentation. The precision and precision adjust-
ment, which determine the granularity of the analysis within a
CEGAR loop, are neglected in this description, but fully available
and supported in our implementation.

Different aspects of a program are analyzed by different CPAs,
and compositions of CPAs allow more advanced analyses. CPAs

Algorithm 1 CPAalg(D, reached, waitlist), taken from [8]
Input: a CPA D = (D,{,merge, stop),

where E denotes the set of elements of the lattice of D,
a set reached ⊆ E of abstract states,
a set waitlist ⊆ reached of frontier abstract states,
a function abort : E → B that defines whether the algorithm
should abort early

Output: the updated sets reached and waitlist
1: while waitlist , ∅ do
2: pop(e) from waitlist
3: for each e ′ with e { e ′ do
4: for all e ′′ ∈ reached do
5: enew := merge(e ′, e ′′)
6: if enew , e ′′ then
7: reached := reached ∪ {enew } \ {e ′′}
8: waitlist := waitlist ∪ {enew } \ {e ′′}
9: if ¬stop(e ′, reached) then
10: reached := reached ∪ {e ′}
11: waitlist := waitlist ∪ {e ′}
12: if abort(e ′) then
13: return (reached, waitlist)
14: return (reached, waitlist)

have been defined for many abstract domains, such as BDD-based
analysis [17], (explicit or symbolic) value analysis [14, 15], predicate
analysis [8, 10, 13], or combination thereof [2]. Also the tracking
of the program counter and of the call stack for procedures are
defined as CPAs. We will not go into detail for all their definitions
and descriptions here, because our approach works on an abstract
level and is independent from a specific domain. For our evalua-
tion later, we use a value analysis that tracks variables and their
values explicitly, e.g., an abstract state is a (partial) function that
maps program variables to values.

2.3 BAM
Block-abstraction memoization (BAM) [31] is a modular approach
for reachability analysis of abstract state graphs (such as abstract
models of programs). Therefore, it treats a large program as a set
of blocks, and analyzes the blocks separately. The result of a block
analysis (the block abstraction) of a nested block is embedded in
the surrounding block’s analysis. Block abstractions are also stored
in a cache for later reuse in order to avoid repeated computation
of the same block abstraction, to speed up the analysis. BAM de-
fines the two operators reduce and expand that aim at a higher
cache hit rate. For simplicity we will neglect both operators in
the further description. They are orthogonal to the approach of
parallel analysis that we present here.

The components of BAM are defined in detail in the following:

2.3.1 Blocks. The basic components of BAM are blocks, which
are formally defined as parts of a program: A block B = (L′,G ′)
of a CFA A = (L, l0,G) consists of a set L′ ⊆ L of connected
program locations and a set G ′ = {(l1,op, l2) ∈ G | l1, l2 ∈ L′}
of control-flow edges. Two different blocks B1 = (L′1,G

′
1) and

B2 = (L′2,G
′
2) are either disjoint (L′1 ∩ L′2 = ∅) or one block

is completely nested in the other block (L′1 ⊂ L′2). Each block
B = (L′,G ′) has entry and exit locations, which are defined as
In(B) =

{
l ∈ L′ | (∃(l ′,op, l) ∈ G ∧ l ′ < L′) ∨ ∄(l ′,op, l) ∈ G} and

Out (B) =
{
l ∈ L′ | (∃(l ,op, l ′) ∈ G ∧ l ′ < L′) ∨ ∄(l ,op, l ′) ∈ G}, re-

spectively. In general, the block size can be freely chosen in BAM.
In most cases, functions and loops are used as block size, because
they represent the logical structure of a program and lead to nat-
ural block abstractions.

Figure 1 shows a schematic example of a CFA and how it could be
divided into blocks. It does not show any operations; we omit details
for ease of presentation. The largest block (denoted as BA) consists
of all locations and represents the whole CFA of the program. The
other blocks (denoted as BB to BF) are smaller and consists of
fewer locations. Block BF is nested in block BE , which in turn is
nested in block BA. Location 3 is the entry location of block BB , i.e.,
In(BB) = {3}, and location 4 is its exit location, i.e., Out (BB) = {4}.
2.3.2 BAM-CPA. The basis of CPAchecker is the idea of config-
urable program analysis. Thus, BAM is formalized as a CPABAM =
(DBAM,{BAM,mergeBAM, stopBAM). BAM works on an abstract,
domain-independent level and uses an abstract-domain-dependent
wrapped analysis (like the BDD-based, explicit value, interval, or
predicate analysis) to track variables and values. This wrapped anal-
ysis is also given as CPAW = (DW,{W,mergeW, stopW), based
on which we now formalize BAM:

636

Domain-Independent Multi-threaded Software Model Checking 53

ASE ’18, September 3ś7, 2018, Montpellier, France Dirk Beyer and Karlheinz Friedberger

1

2

5

8

11

12

13

17

18

19

20

21

22

3

4

14

6

7

15

9

10

16

BA

BB

BC

BD

BE

BF

Figure 1: Schematic control-flow automaton with blocks

(1) The domain DBAM wraps the domain DW.
(2) The transfer relation {BAM for a block B has a transfer

s {BAM s ′ for two abstract states s and s ′ if

s ′ ∈

{s ′′ | s Bsub{BAM s ′′} if l ∈ In(Bsub) // apply BAM to Bsub
{s ′′ | s {W s ′′} if l < Out (B) // delegate toW

where l is the program location of s .
Depending on the currently analyzed program location l , the
transfer relation chooses between two possible steps: For an
entry location of a block Bsub , the operation

Bsub{BAM represents
the block abstraction for the block Bsub and the block-entry
abstract state s . The block abstraction is computed by a call
CPAalg(DBAM, {s}, {s}). For exit locations of blocks, there is no
succeeding abstract state (in the analysis of the current block
B). For other program locations, the wrapped transfer relation
{W is applied.

(3) The merge operatormergeBAM = mergeW and the termination
check stopBAM = stopW correspond to the wrapped analysis.
The performance of BAM can easily be increased by a cache

cache ⊆ (Blocks×E) → (2E×2E), which maps a block and an entry
abstract state of the block to the set of reached abstract states and
the set of frontier states. The cache is optional for the application
of BAM, but the memoization of block abstractions improves the
performance. Additionally, the operators reduce and expand can be
applied for a higher cache hit rate. We ignore them for simplicity.

2.4 Towards Parallel BAM
A simple state-space exploration that enumerates all reach-
able abstract states and only checks whether they were al-
ready part of the set reached can be done with the operators
mergesep and stopsep (defined as mergesep (e, e

′) := e and
stopsep (e,R) := ∃e ′ ∈ R : e ⊑ e ′, or even with a simpler form

stopsep (e,R) := ∃e ′ ∈ R : e = e ′). Well-known techniques for
explicit-state model checking [3, 23] use such an approach to an-
alyze the state space. This approach can be parallelized easily by
synchronizing the access to the existing abstract states in the sets
reached and waitlist and applying the operators{,mergesep , and
stopsep concurrently. With lock-free implementations of the set
data structures for reached and waitlist there is only minimal syn-
chronization necessary for an efficient analysis. However, when
using more general (and possibly more expensive) operator in-
stances, the complete sets reached and waitlist (and also larger
parts of the CPA algorithm) would need to be locked to ensure
single-thread access, which prevents an efficient parallel appli-
cation of the algorithm.

To circumvent this problem, our new approach does not intro-
duce parallelism within the CPAalg algorithm, but applies several
independent CPAalg instances in parallel. Each CPAalg invoca-
tion is executed in a separate thread on its own part of the state
space, i.e., with its own sets reached and waitlist of abstract states,
such that there is only minimal communication between the algo-
rithm instances. The necessary infrastructure for such an approach
is based on BAM. The previously given basic definition of BAM
leaves room for several implementation details, such that both (the
sequential and the parallel) implementation match the given spec-
ification. The computation and application of block abstractions
can be done in sequential or parallel manner.

3 PARALLEL BAM
Our contribution is a scalable parallelization of the sequential algo-
rithm of BAM. Block abstractions are independent from each other
and also from the surrounding context. Thus, they can be computed
in parallel, as soon as the initial abstract state of a block abstraction
is known. The sequential version of BAM, which was defined by
Wonisch and Wehrheim [31], recursively calls another CPA algo-
rithm for each newly entered block, waits for its termination and
directly uses the result as a block abstraction of the entered block.
In contrast to that, our parallel version schedules the computation
of a nested block abstraction in another thread and continues with
the analysis of further abstract states from the set waitlist.

Each block abstraction is computed by a separate instance of
the CPAalg algorithm (in own thread), with own instances of the
sets reached and waitlist, and a thread-safe instance of the transfer
relation{ and the operators merge and stop. The operators are
stateless, and thus can be used in parallel from several threads.
There is no need to lock the data structures of a CPAalg instance.
In parallel algorithms, a critical point is the number of synchro-
nizations. Block abstractions are large enough to avoid expensive
synchronization for single steps during the computation. Synchro-
nization is only needed when entering or leaving a block, i.e., when
starting or terminating a block’s analysis instance. Additionally, the
communication only happens between dependent block abstrac-
tions, such that no global locking is required in the algorithm.

3.1 Jobs as Components with Dependencies
Our technique is based on the parallel execution of components
named jobs. A job job = (D, reached,waitlist,B) consists of

637

54 A. Manuscripts

Domain-Independent Multi-threaded Software Model Checking ASE ’18, September 3ś7, 2018, Montpellier, France

• a CPA D = (D,{,merge, stop) that determines the analysis
(in our case we always set D = BAM),
• a set reached and a set waitlist of abstract states to be analyzed,
and
• a block B = (L′,G ′) representing the partition of the program’s
CFA to be analyzed.
A job is executed by applying Alg. 1 CPAalg with the given

CPA D on the sets reached and waitlist. Note that there can be
several jobs for the same block B, but each set reached and each set
waitlist are assigned to exactly one job. There are no shared data
based on abstract states for different jobs. This allows us to execute
jobs in parallel, because the job executions are independent from
each other. If a block has nested blocks, the corresponding block
abstraction depends on the block abstractions of those nested blocks.
In the sequential implementation of BAM, the dependencies of block
abstractions on nested-block abstractions are implicitly solved by
calling algorithm CPAalg recursively, i.e., the analysis of an outer
block waits until a nested block abstraction is computed completely,
and then continues. In the parallel approach we explicitly maintain
such dependencies between (analyses of) block abstractions. A
relation deps ∈ jobs ×E× jobs tracks at which abstract state a block
abstraction needs to be computed and applied. This relation needs to
be globally visible, shared across all threads, and modifications are
applied atomically. As dependencies are only modified when a job is
started or terminated, the overhead for synchronization is negligible.
Our implementation does currently not support recursive tasks and
thus there are no cyclic dependencies between block abstractions.

3.2 Scheduling and Job Execution
The parallel execution of analyses needs a scheduling algorithm
that distributes the parallel running analyses onto the available
processing units. In our case we chose a simple task queue from
the Java Concurrency API, where we insert our jobs, and let the
framework do the scheduling. We can set the number of running
threads to the available hardware by using the default Java thread
pool. For simplicity of Alg. 3, the actual scheduling is hidden in
the call schedule that (asynchronously) executes the given job with
the given data.2 This solution has only small overhead (for run
time and for developers) and is performant enough for the analysis,
even when applied to a larger scale of computing resources. We
have nearly linear speedup when using multiple cores (see Sect. 4),
thus we assume that the build-in scheduling is efficient enough
for our currently available hardware.

The basic idea of a parallel implementation is given in Algs. 2
and 3. The function abort of Alg. 1 CPAalg terminates the analysis
as soon as a nested block abstraction needs to be computed. In
this case, we determine the necessary data to compute the block
abstraction in our scheduling algorithm and schedule a new analy-
sis to compute the nested-block abstraction asynchronously. The
abstract state before entering the block is removed from the current
set waitlist and stored as a part of the dependency relation deps.
After the computation of the nested-block abstraction is finished,
the dependency is removed from deps and the state is re-added into

2The pseudo code omits some scheduling-related code, as this would be too much
detail for this description and can be looked up in our reference implementation.

Algorithm 2 ParallelBAM(D, reached, waitlist): Initial step for
parallel BAM
Input: a CPA D = (D,{,merge, stop),

where E denotes the set of elements of the lattice of D,
a set reached ⊆ E of abstract states,
a set waitlist ⊆ reached of frontier abstract states,
a global relation deps ⊆ jobs × E × jobs to track computations
of block abstractions

Output: a set of reachable abstract states,
a subset of frontier abstract states

1: deps := ∅
2: mainJob := (D, reached, waitlist, mainBlock)
3: JobExecutor(mainJob, deps, ∅)
4: return (mainJob.reached, mainJob.waitlist)

Algorithm 3 JobExecutor(job, deps, statesToAdd): Job execution
for parallel BAM
Input: a job = (D, reached,waitlist,B),

a global relation deps ⊆ jobs × E × jobs to track computations
of block abstractions,
a set statesToAdd ⊆ E of abstract states to be added before
starting the analysis

1: job.waitlist := job.waitlist ∪ statesToAdd
2: deps := deps \

{
(job, e, ·) ∈ deps | e ∈ statesToAdd

}
3: job.reached, job.waitlist :=

CPAalg(D, job.reached, job.waitlist)
4: missinдBAs := {e ∈ reached |hasMissinдBA(e)}
5: if missinдBAs , ∅ then // nested BA needed
6: for e ∈missinдBAs do
7: job.waitlist := job.waitlist \ {e}
8: childJob := (C, {e}, {e}, getBlock(e))
9: deps := deps ∪ {(job, e, childJob)}
10: schedule(childJob, deps, ∅)
11: schedule(job, deps, ∅)
12: else
13: f inished := job.waitlist = ∅ ∧ {(job, ·, ·) ∈ deps} = ∅
14: shouldAbort := ∃e ∈ job.reached : abort(e)
15: if f inished ∨ shouldAbort then
16: registerBA(job.reached, shouldAbort)
17: parents := {(·, ·, job) ∈ deps}
18: for (parentJob, updateState , ·) ∈ parents do
19: schedule(parentJob, deps, {updateState})
20: deps := deps \ parents

the set waitlist. The function schedule executes the given job asyn-
chronously with algorithm Alg. 3. The asynchronous execution of a
job can be delayed due to limited resources or because the same job
is scheduled twice, i.e., with different arguments. We use a thread
pool for scheduled jobs based on a job queue with a FIFO ordering
strategy. The function scheduleAndWait does the same, but awaits
the termination of the job. Themethod registerBA is executedwhen-
ever a block analysis terminates. It extracts the block abstraction
from the analyzed set reached and updates the cache of BAM.

638

Domain-Independent Multi-threaded Software Model Checking 55

ASE ’18, September 3ś7, 2018, Montpellier, France Dirk Beyer and Karlheinz Friedberger

time

block

BA

BB

BC

BD

BE

BF

A1 A2 A3 A4 A5 A6 A7 A8

B1

C1

D1

E1

F1

E2

Figure 2: Schematic time line of a possible execution of jobs
with parallel BAM for the example in Fig. 1

3.3 Example Application of Parallel BAM
The CFA in Fig. 1 consists of two characteristic parts: the upper
part has heavy branching and several control-flow paths, the part
below location 17 consists of a simple chain of locations. Parallel
BAM implicitly recognizes this structure and the scheduling will
apply a parallel analysis for the upper part. Figure 2 shows a possi-
ble time line for the execution of the new algorithm for the CFA
given in Fig. 1. The heavy branching part of the program results
in independent blocks BB , BC , and BD , which can be analyzed in
parallel. Each box in Fig. 2 represents a job, consisting of a CPA
W, a set reached, a set waitlist, and a block B ∈ {BA, ...,BF }. For
each block (more concretely: for each set reached), there can be
several jobs that are applied in sequential order.

For the example, let us assume a depth-first search as iteration
order and an expensive computation in the blocks BB , BC , and
BD . In general, the iteration order for the program analysis can
be configured by the user, and the effort to analyze blocks de-
pends of course on the given task.

Initially, Alg 2 creates job A1 (Alg. 2, line 2) for the analysis of
the block BA. Figure 2 shows the execution of job A1 with Alg. 3
as a box along the time axis. Internally, Alg. 1 CPAalg analyzes
the first abstract states of the given task (Alg. 3, line 3), until the
entry location of block BB is reached. Algorithm CPAalg terminates
for the job A1 and two further (independent) jobs A2 and B1 are
scheduled (Alg. 2, line 10 and 11) and executed in parallel. The
job B1 analyses the block BB and is not interrupted by another
block-entry location. The job A2 is scheduled because there is a
branching at location 2 in the CFA, such that the set waitlist of
the terminated CPAalg in job A1 was not empty.

For the example, we assume that the job A7 analyzes the pro-
gram location with CFA location 17. For the part below location 17
however, inter-block dependencies prevent a parallel execution of
jobs and we need to explicitly wait for nested-block abstractions
to be computed. In Fig. 2 this is visible for jobs E1, F1, E2, and
A8, which do not have any parallel execution. Overall, our par-
allel version of BAM uses a dynamic scheduling, such that such
imbalances are prevented in most cases.

3.4 Soundness of the Parallel Approach
We take a short look at the soundness of the parallel algorithm
based on its sequential instance. The main difference between the
sequential and the parallel version of BAM is the computation order

of block abstractions. Instead of computing one block abstraction
after another, they are computed in parallel whenever possible. As
the computations of block abstractions themselves are independent
and do not share any relevant data, the theoretical basis for sound-
ness does not change. Thus, the parallel approach is as sound as the
sequential algorithm that was proven to be sound in [31], i.e., only
the iteration strategy for the state space differs and the soundness
relies on the underlying analysis W of BAM. In other words: If
there exists an abstract path in the analyzed source file that reaches
a property violation, then the same path is also explored by the
parallel algorithm, consisting of the same block abstractions and
abstract states as computed by a sequential analysis.

3.5 Requirements for Parallel Execution
Our parallel approach has some additional requirements on the
used components: Each used CPA has to allow multi-threaded ac-
cess to its main components, the operators must be thread-safe and
usable in parallel. This can either be implemented (a) by stateless
operators (which is the intended behavior of operators anyway)
or (b) by separate instances of the operators for each accessing
thread (including independent data structures). (a) An ideal frame-
work would only have stateless operators (just as their theoretically
defined mathematical pendant) and thus, they would easily be us-
able in multi-threaded context without locking or synchronization.
(b) While the operators are stateless in theory, a large software
system (such as the framework CPAchecker), where the developers
integrate several different theoretical approaches, requires an im-
plementation that partially deviates from the concept of stateless
operators. We noticed that the transfer relation { and also the
operators merge and stop for several CPAs were already designed
and implemented in a stateless manner, such that they can eas-
ily be used for our parallel BAM implementation. Depending on
the CPA, most of the code (and also most of the theoretical back-
ground) is placed in the transfer relation, and thus the conceptual
difficulty was to rewrite those parts that are critical and might
need to be synchronized. To avoid heavy synchronization, we have
converted some (non-critical) parts like statistics and time measure-
ment into a thread-safe implementation or provide independent
instances of operators for special cases.

We have not only added the new algorithms (Alg. 2 and 3) for
parallel BAM into the framework, but also modified some other
components such that they can be combined and used with the new
algorithm. The following list contains a few corner cases of CPAs
that were touched or are usable with our approach:
• LocationCPA: The program location for the current analysis is
tracked with the LocationCPA. As the program location of each
statement is constant after parsing the program andwritten into
the CFA location, the ’state’ of the operators is the (immutable)
CFA itself. Thus no changes had to be made.
• CallstackCPA: The call stack for the current analysis is deter-
mined by the CallstackCPA. As the corresponding operators
are stateless (i.e., only depending on the abstract call-stack state
given as parameter), no changes were required.
• ValueCPA: The ValueCPA performs an explicit-value analysis
and tracks numerical values for variables. The analysis itself
does not need to be changed for synchronization.

639

56 A. Manuscripts

Domain-Independent Multi-threaded Software Model Checking ASE ’18, September 3ś7, 2018, Montpellier, France

4 EVALUATION
This section compares our new parallel approach with the existing
sequential implementation and shows that the new approach can
reduce the response time considerably when executed on several
cores. First, we compare the old sequential implementation with the
new implementation (executed with only one thread), in order to
show that no regression appears and that both analyses behave as
similar as possible. Second, we explore the speedup of the analysis
depending on the number of threads (as far as our hardware allows).

4.1 Evaluation Goals
It is clear from theory that not all verification tasks will benefit from
our parallelized verification approach: (a) There are many programs
wheremost paths have sequential dependencies between blocks and
therefore, there is not much room for performance improvements
from parallelization, and (b) there are many small programs, for
which parallelization does not make a difference. We claim that our
approach is effective in both regards: it parallelizes and speeds up
verification process (response time) if the structure of the program
contains sufficient branching and the size of the program is large
enough and does not negatively influence the performance for those
verification tasks that are small or have sequential dependencies.

Claim 1. The BAM-based approach to parallelization does not
negatively impact the performance of verification tasks overall.
Evaluation Plan: We take a large benchmark set of verification
tasks and verify them with and without parallelization, restricted
to one processing unit. If the run time is not worse for the par-
allel version, then the claim is valid.

Claim 2. The BAM-based approach to parallelization reduces
the response time of verification tasks by leveraging several pro-
cessing units. Evaluation Plan: We take a large set of verification
tasks that can potentially benefit from parallelization and com-
pare the response time of the verification with different numbers
of processing units.

If this experiment is positive, the question raises where the ben-
efit comes from: Is it the BAM-based approach to parallelization, or
are there other technical components of the verifier that contribute
to the speed up? What are the configurable parts of the verifier
that can benefit from parallelization? Can they be controlled in an
experiment (switched on and off separately)?

Claim 3. The parallelization of the program analysis using BAM
contributes considerably to the speedup. Evaluation Plan: After
identifying variables to control, we run experiments to investigate
the influence of the identified components.

4.2 Benchmark Environment and Limitations
Benchmark Sets. For our evaluation we use a large subset of the
SV-Benchmarks repository [4] containing over 5 400 verification
tasks3, sorted into different categories according their specification,
internal structure, or behavior. For the comparison of the existing
sequential implementation with the new parallel approach (limited
to one CPU core), we use all verification tasks with a reachability
property, in order to evaluate on a diverse set that the approach
has no negative effect (Claim 1). To demonstrate the positive effect
of parallelization of the new approach, we chose those verification
3https://github.com/sosy-lab/sv-benchmarks

tasks from the category ReachSafety-ECA that consists of rather
large problems with a highly branching control flow (Claim 2).

Setup.We ran the experiments on a cluster of 168 identical ma-
chines with a hardware specification that roughly matches available
resources on machines of software developers. This way, replica-
tion of our experiments does not require specific hardware. For
each single verification run we limit the CPU time to 15min and
the memory to 15GB, and we use an Intel Xeon E3-1230 v5 CPU
with 3.40 GHz with 8 processing units (4 physical cores with hyper-
threading). The limit of CPU time enables us to even compare the
effectiveness of parallelization (response time vs. CPU time) for
those verification tasks for which the verifier runs into a timeout.
We evaluated our implementation in CPAchecker4, revision r28809,
from the official project repository5.

Because we use Intel processors with hyper-threading, where
two neighboring (virtual) processing units share some hardware
components and influence each other, we pair the (virtual) process-
ing units and use a step width of 2 for our experiments with varying
number of processing units, i.e., we use 2, 4, 6, 8 processing units
and omit the odd numbers of processing units. The benchmarking
framework BenchExec [16] takes care of correctly assigning the two
processing units of the same physical core together to the verifi-
cation processes. We report all times in seconds and use the term
CPU time for the accumulated usage of processing units of a CPU,
and the terms response time or wall time for the time that elapses
between the start and the termination of the verification run.

Analysis Configuration. We configure BAM to use function and
loop bodies as blocks. BAM can be combined with several analy-
ses; for our evaluation, we choose a combination where the per-
formance influence from additional components is small: BAM
with an explicit-value analysis (VA) without CEGAR. This way,
we configure a simple state-space exploration based on an ex-
plicit tracking of variables and their values. Both the sequential
and the parallel configurations apply a depth-first-search as ex-
ploration strategy, i.e., the set waitlist of the CPA algorithm is a
FIFO queue for each configuration.

Unfortunately, we can not compare to other multi-threading ver-
ifiers for reachability properties of sequential C programs, because
there exists no equivalent approach to the best of our knowledge
(cf. related work in the introduction; there are portfolio verifiers).

4.3 Claim I: Sequential vs. Parallel Algorithm
Configuration. In our first experiment we compare the existing
sequential algorithm with the new parallel algorithm. Therefore,
we run all experiments on only one processing unit. The FIFO or-
dering of the job queue (see Sect. 3.2) in the parallel algorithm
guarantees that block abstractions are computed in the same order
as their blocks are reached, i.e., it behaves as similar as possible
to the sequential algorithm.

Results. Figures 3a and 3b show the response time of the con-
figurations for the benchmark set containing all verification tasks
with a reachability property. A quantile plot contains graphs that
indicate the quantile of solved problem instances (x-axis) each

4https://cpachecker.sosy-lab.org
5https://gitlab.com/sosy-lab/software/cpachecker

640

Domain-Independent Multi-threaded Software Model Checking 57

https://github.com/sosy-lab/sv-benchmarks
https://cpachecker.sosy-lab.org
https://gitlab.com/sosy-lab/software/cpachecker

ASE ’18, September 3ś7, 2018, Montpellier, France Dirk Beyer and Karlheinz Friedberger

0 250 500 750 1 000 1 250 1 500 1 7501

10

100

1 000

n-th fastest result

re
sp
on

se
tim

e
(s)

VA-BAM
VA-parallelBAM (1 thread)

(a) Verification tasks with correctness proof

0 250 500 750 1 000 1 2501

10

100

1 000

n-th fastest result

re
sp
on

se
tim

e
(s)

VA-BAM
VA-parallelBAM (1 thread)

(b) Verification tasks with property violation

Figure 3: Quantile plots for results of BAMwith value analy-
sis, sequential compared to parallel version with one thread

within a certain response time (y-axis).6 It does not show a direct
comparison for individual verification tasks, but allows to com-
pare the overall behavior of an analysis configuration. We divided
the benchmarks into two groups: The plot in Fig. 3a contains re-
sults for all verification tasks for which a correctness proof was
computed; the plot in Fig. 3b contains results for all verification
tasks for which a property violation was found. The overall im-
pression is that the (single-threaded) parallel technique does not
have any noticeable overhead above the sequential approach, i.e.,
the scheduler and the job executor from Alg. 3 are efficient. The
new approach behaves almost identical when computing proofs,
and for finding property violations, it is even faster and can solve
more problems, which we discuss in the following.

Discussion. The difference in Fig. 3b between the verification
approaches results from the exploration order of the state space.
After a nested-block abstraction has been computed, there is a small
difference in the sorting of abstract states in the setswaitlist of both
approaches. The existing sequential analysis has (and keeps) the
abstract states in the set waitlist. The (single-threaded) parallel
approach removes abstract states when finding a missing block
abstraction (cf. Alg. 3, line 7) and re-adds those abstract states into
each set waitlist (cf. Alg. 3, line 1) after computing the necessary
block abstraction. There are small differences in the exploration
order and depending on the task’s structure, different pathsmight be
analyzed first. In those cases, the parallel approach does not apply
a pure depth-first exploration order, but partially prefers paths

6A detailed description of quantile plots can be found in the literature [16].

that do not traverse deeply nested blocks, which seems beneficial
when it comes to finding property violations. For this reasoning,
we conclude that for evaluating Claim II, it would not be valid to
consider the verification tasks with property violations, because
the variable łexploration orderž is not controlled.

We conclude that Claim 1 holds, because we did not observe
any negative impact of our new approach.

4.4 Claim II: Scalability of Parallel BAM
Configuration. We show the effectiveness of the parallelization
of our new approach by increasing the number of threads
(2, 4, 6, 8 threads) and observe the improvement of the response time.
The upper limit of the number of threads is determined by the hard-
ware that we use. We set the number of processing units assigned
to the verification process to be equal to the number of threads.
We chose a subset of 154 tasks from the category ReachSafety-ECA,
such that they need a reasonable amount of time (at least 3 s with
only one thread) and do not contain a property violation. With a too
small analysis time, the default overhead of the CPAchecker frame-
work itself (like JVM startup time or parsing time) hides the effect
of the parallel approach and blurs the picture. Additionally, finding
a path to a property violation with a parallel verification approach
easily leads to non-deterministic results if there are several property
violations in a verification task or a property can be reached via dif-
ferent program paths7. Thus, we select from the benchmark set only
those verification tasks without property violation, in order to make
sure to compare the response time that is necessary to analyze the
whole state space. The used benchmark set consists of three groups:
47 simple tasks, 36 medium tasks, and 71 difficult tasks. The diffi-
culty is roughly given by the size of the state space to be explored.

Results. Figure 4a shows the response time of the configurations
for the benchmark set. Each function graph in the quantile plot
refers to a different number of threads used in the analysis. A smaller
response time of the analysis corresponds to a smaller state space
and relates to a simpler task. The different groups of verification
tasks (simple, medium, and difficult) are clearly recognizable by the
level of response time, i.e., the plot contains larger steps. Overall,
additional threads improve the performance of the analysis.

Figure 4b shows the speedup of our parallel approach over the
single-threaded application in the evaluation using box plots. Each
entry in the plot shows the median as the horizontal line within the
box, together with its two surrounding quartiles between the upper
and lower line of the box, as well as the minimum and maximum
as whiskers. The speedup becomes larger the more threads we use.
The evaluation with 2 threads outperforms the single-threaded exe-
cution by about 20% (median). The parallel approach with 8 threads
is about three times as fast as with 2 threads.

Discussion. The results look impressive: Only by parallelizing
independent BAM explorations in a way that is not tailored in
any specific way towards the framework or to a particular abstract
domain, we observe a significant improvement of the response time.
Obviously, some parts of the verification process cannot be executed
in parallel. This denies a ‘perfect’ parallelization and is known as
Amdahl’s law [1]. The sequential parts include the startup process of

7The supplementary artifact [9] and website include additional data about the evalua-
tion of our approach on a benchmark set of tasks containing a property violation.

641

58 A. Manuscripts

Domain-Independent Multi-threaded Software Model Checking ASE ’18, September 3ś7, 2018, Montpellier, France

0 20 40 60 80 100 120 140

20

40

60

source file

re
sp
on

se
tim

e
(s)

1 2 4 6 8 (#threads)

(a) Quantile plot for verification tasks without property violation

1 2 4 6 8

1

2

3

4

#threads

sp
ee
du

p

(b) Box plot comparing 1 thread to N threads; without property violation

Figure 4: Comparison of response time for different num-
bers of threads, based on restricted benchmark set

CPAchecker as well as the initial overhead of the analysis to compute
blocks for BAM and analyze parts of the most outer block until a
nested block is reached, which in turn can be analyzed in a parallel
manner. Some parts of the implementation cause an additional
synchronization overhead, like multi-threaded statistics for the
concurrent access to shared resources like the cache of BAM. The
rather modest improvement from 1 thread to 2 threads is most likely
due to hyperthreading of the processor, where the two processing
units of one physical core share important hardware resources.8

We conclude that Claim 2 holds, because the experiments show
that for those programs that have potential for speedup by paral-
lelization, we actually observe a significant speedup.

4.5 Claim III: Control Influencing Variables
The previous experiments show that several processing units are
effectively used by the verification tool, but it is unclear where the
benefit comes from. Therefore, we need to investigate which parts
of the verifier are parallelized and make sure that our new approach
contributed to the benefit. Since our implementation is based on
Java, we have also enabled the JVM to use multi-threaded garbage
collection (GC), because if we create abstract states in a parallel
manner, we should also deallocate them in parallel. The default
strategy for GC in OpenJDK 1.8.0 is a combination of PS MarkSweep
and PS Scavenge. The mark-sweep collector applies a full mark-
sweep garbage collection algorithm for old-generation objects. The
parallel scavenge collector cleans up young-generation objects.
8In our experiments we assigned successive processing units to the verification runs;
the experiment with 2 threads could be improved by using two processing units of
different physical cores.

1 2 4 6 8
1

1 2 4 6 8
2

1 2 4 6 8
4

1 2 4 6 8
6

1 2 4 6 8
8

1

2

3

4

#analysis threads (major) with #GC threads (minor)

sp
ee
du

p

(a) Box plot comparing the response time of 1 thread to 8 threads, evaluated
on as many processing units as #analysis threads

1 2 4 6 8
1

1 2 4 6 8
2

1 2 4 6 8
4

1 2 4 6 8
6

1 2 4 6 8
8

1

2

3

4

#analysis threads (major) with #GC threads (minor)

sp
ee
du

p

(b) Box plot comparing the response time of 1 thread to 8 threads, evalu-
ated on 8 processing units

Figure 5: Comparison of different numbers of analysis
threads and different numbers of GC threads

Configuration.Weuse the 154 tasks from the previous experiment
and re-evaluate them.We divide our evaluation into two cases: First,
the number of available processing units is equal to the number
of analysis threads. Second, the number of available processing
units is set to 8, which is the upper limit the available hardware.
For both cases, we evaluated all combinations of analysis threads
(using 1, 2, 4, 6, 8 threads; major, large numbers in figure) and GC
threads (using 1, 2, 4, 6, 8 threads; minor, small numbers in figure).

Results.We present the speedup statistics for comparing the re-
sponse time of a single-threaded analysis with a single-threaded
GC on a single processing unit to an execution with a given number
of analysis threads with a given number of threads for GC on a
given number of processing units. In Fig. 5a the number of avail-
able processing units is equal to the number of analysis threads.
In Fig. 5b all 8 processing units of the machine are available to
the verifier. In both figures we configure the number of analysis
threads and GC threads. In each plot, the horizontal axis contains
5 major groups (representing the number of analysis threads) of
each 5 minor entries (number of threads for GC). For example, the
five first (most left) entries in each figure show the speedup of the
approach if using one thread for the analysis and a varying number
of threads for GC. Unsurprisingly, the overall result is that using
multiple threads for both the analysis and additionally the GC is
beneficial. Nearly all tasks are solved faster if multiple processing
units are assigned to the verification process.

642

Domain-Independent Multi-threaded Software Model Checking 59

ASE ’18, September 3ś7, 2018, Montpellier, France Dirk Beyer and Karlheinz Friedberger

Discussion. In Fig. 5a, the first entry of each group shows the
speedup of the analysis when using only one thread for GC. This iso-
lates the the benefit of multi-threading caused by our new analysis
approach. Similarly, Fig. 5b shows (within each of the 5 groups) that
keeping the number of analysis threads constant and incrementing
the number of threads for GC also speeds up the verification pro-
cess. Therefore both, analysis and GC, benefit from multi-threading.
Figure 5b shows that if the analysis is bound to one thread, the
benefit from multi-threading is rather limited, while the speedup is
improved if we use more threads for the analysis. The most interest-
ing indicators are the median value (middle line inside the box) and
the minimal speedup values (lower whisker). The overall variance
for the response time and speedup is quite large if there are several
processing units available. This might indicate a non-deterministic
scheduling of workload across free resources, in contrast to the
narrow boxes in Fig. 5a in the left two groups (where the number
of processing units is bound to one and two, respectively).

We conclude that Claim 3 holds, because we were able to isolate
and control the only other cause for a significant speedup, and the
experiments confirmed that our new approach is reponsible for
the improved performance of the analysis, while the parallel GC
algorithms of the JVM take care of parallelized deallocation.

4.6 Threats to Validity
External Validity: Our benchmark suite consists of a large set of C
source files. We use the largest publicly available benchmark suite
in order to optimize the diversity in size and type of programs. This
is particularly important for evaluating Claim 1. For Claims 2 and 3,
we restricted the benchmark set to verification tasks that have po-
tential to benefit from parallelization. Our evaluation is restricted
to the language C, and while it seems clear that the concepts and
results can be transferred to other imperative languages, such a
claim is not backed up by our experiments. The chosen time limit
of 15min and memory limit of 15GB for verifying a given task is
inspired by the research community on software verification (cf.
one of the reports on the International Competition on Software
Verification [4]). Of course, the evaluation of our approach depends
on the tool in which it is implemented. There is currently no other
tool implementing the same approach, and a comparison with a
completely different approach for parallel analysis might be mis-
leading. 9 With the assumption that the default configuration is
optimized for most use cases, we did not change the configuration
of the JVM except the increment of maximal heap memory and the
adjustment of the garbage-collection strategy, such that the effect
of the number of threads can be measured. The available hardware
might also influence the results. For parallel execution, the internal
structure of the CPU is a critical element, i.e., low-level caching
and the hierarchy of processing units have a large effect on the
run time of tasks. We used a modern Intel Xeon E3-1230 v5 that
is available on the market for a reasonable price, in order to ob-
tain results that have a higher externally validity than experiments
on special high-performance clusters.

9The supplementary artifact [9] and website include an additional comparison with
some non-BAM analysis approaches, in order to show that using the BAM technology
does not negatively effect an analysis’ performance (known result [31]).

Internal Validity: Besides garbage collection of the JVM, there are
other factors that influence the speedup of the parallel approach.
Some components of CPAchecker, e.g., counters and measurements
for statistics, are not yet fully optimized for parallel execution. Ad-
ditionally, it depends on the task’s structure how many blocks can
be analyzed in parallel. Controlling this variable (number of paral-
lelization blocks) is not possible or very difficult, thus, we prefer to
increase the internal validity by the large number of experiments
on different tasks. Another control variable is the block size. Larger
blocks are beneficial for a concurrent analysis, due to the smaller
synchronization footprint. For Claims 2 and 3, the benchmark set
was already chosen such that it contains only programs where the
block size is very large. Thus, we did not further analyze differ-
ent block sizes. We also need to consider that the explicit-value
analysis computes a large number of abstract states, while other
abstract domains might lead to more compact representations of
the state space, and the fewer abstract states are explored the less
might be parallelized. Our time measurement includes the mem-
ory allocation for the JVM, parsing time, and internal statistics,
which adds processing workload that cannot be parallelized cur-
rently. We mitigate this effect by using only those verification tasks
that need more than 3 s when using one thread, i.e., we consider
verification tasks for which the analysis itself consumes a portion
of the run time that is not negligible.

5 CONCLUSION
We presented a new approach for multi-threaded software verifi-
cation that is based on program-block summaries. Our emphasis
is on providing a solution that follows the principle of separation
of concerns: the problem of making the analysis benefit from mul-
tiple processing units is treated completely orthogonal from the
problem of designing and implementing an abstract domain and
the operators for a program analysis. We formally define the new
algorithm in the framework, provide a working implementation,
and demonstrate its applicability on a large set of benchmarks. The
experiments show that our approach (a) does not add noticeable
overhead for verification tasks that do not benefit from paralleliza-
tion, (b) can considerably speed up the verification process in many
cases (given the verification task has a certain minimal size and
some independent branches to explore), and (c) contributes largely
to the performance improvements, i.e., the speedup is not only due
to multi-threading features that the JVM provides.

The presented algorithm is implemented as a shared-memory
approach, which allows efficient interaction of all components. As
the number of CPU cores per machine and also the amount of mem-
ory per host is limited, we plan to extend our algorithm to leverage
several processes that might be distributed over several machines in
a cluster. An additional benefit would be a simpler usage of abstract
domains that rely on libraries that are not thread-safe, because
there is no problem with interleaved usage of libraries in separate
processes. Additionally we plan to offload the cache of BAM to a
disk-based storage, in order to lower the memory usage for very
resource intensive tasks. The combination of both, a distributed,
multi-process verification algorithm and a disk-based cache, seems
to be very promising for the verification of very large programs.

643

60 A. Manuscripts

Domain-Independent Multi-threaded Software Model Checking ASE ’18, September 3ś7, 2018, Montpellier, France

REFERENCES
[1] G. M. Amdahl. 1967. Validity of the Single Processor Approach to Achieving

Large Scale Computing Capabilities. In Proc. AFIPS. ACM, 483ś485. https://doi.
org/10.1145/1465482.1465560

[2] P. Andrianov, K. Friedberger, M. U. Mandrykin, V. S. Mutilin, and A. Volkov. 2017.
CPA-BAM-BnB: Block-Abstraction Memoization and Region-Based Memory
Models for Predicate Abstractions (Competition Contribution). In Proc. TACAS
(LNCS 10206). Springer, 355ś359. https://doi.org/10.1007/978-3-662-54580-5_22

[3] J. Barnat, J. Havlícek, and P. Rockai. 2013. Distributed LTL Model Checking with
Hash Compaction. ENTCS 296 (2013), 79ś93. https://doi.org/10.1016/j.entcs.2013.
07.006

[4] D. Beyer. 2017. Software Verification with Validation of Results (Report on SV-
COMP 2017). In Proc. TACAS (LNCS 10206). Springer, 331ś349. https://doi.org/
10.1007/978-3-662-54580-5_20

[5] D. Beyer, M. Dangl, D. Dietsch, and M. Heizmann. 2016. Correctness Witnesses:
Exchanging Verification Results Between Verifiers. In Proc. FSE. ACM, 326ś337.
https://doi.org/10.1145/2950290.2950351

[6] D. Beyer, M. Dangl, D. Dietsch, M. Heizmann, and A. Stahlbauer. 2015. Witness
Validation and Stepwise Testification across Software Verifiers. In Proc. FSE. ACM,
721ś733. https://doi.org/10.1145/2786805.2786867

[7] D. Beyer, M. Dangl, and P. Wendler. 2015. Boosting k-Induction with
Continuously-Refined Invariants. In Proc. CAV (LNCS 9206). Springer, 622ś640.
https://doi.org/10.1007/978-3-319-21690-4_42

[8] D. Beyer, M. Dangl, and P. Wendler. 2018. A Unifying View on SMT-Based
Software Verification. J. Autom. Reasoning 60, 3 (2018), 299ś335. https://doi.org/
10.1007/s10817-017-9432-6

[9] D. Beyer and K. Friedberger. 2018. Replication Package for Article łDomain-
Independent Multi-threaded Software Model Checkingž in Proc. ASE’18. https:
//doi.org/10.5281/zenodo.1322090

[10] D. Beyer, T. A. Henzinger, R. Jhala, and R. Majumdar. 2007. The Software Model
Checker Blast. Int. J. Softw. Tools Technol. Transfer 9, 5-6 (2007), 505ś525.
https://doi.org/10.1007/s10009-007-0044-z

[11] D. Beyer, T. A. Henzinger, M. E. Keremoglu, and P. Wendler. 2012. Conditional
Model Checking: A Technique to Pass Information between Verifiers. In Proc.
FSE. ACM, Article 57, 11 pages. https://doi.org/10.1145/2393596.2393664

[12] D. Beyer, T. A. Henzinger, and G. Théoduloz. 2007. Configurable Software
Verification: Concretizing the Convergence of Model Checking and Program
Analysis. In Proc. CAV (LNCS 4590). Springer, 504ś518. https://doi.org/10.1007/
978-3-540-73368-3_51

[13] D. Beyer, M. E. Keremoglu, and P. Wendler. 2010. Predicate Ab-
straction with Adjustable-Block Encoding. In Proc. FMCAD. FMCAD,
189ś197. https://www.sosy-lab.org/research/pub/2010-FMCAD.Predicate_
Abstraction_with_Adjustable-Block_Encoding.pdf

[14] D. Beyer and T. Lemberger. 2016. Symbolic Execution with CEGAR. In Proc. ISoLA
(LNCS 9952). Springer, 195ś211. https://doi.org/10.1007/978-3-319-47166-2_14

[15] D. Beyer and S. Löwe. 2013. Explicit-State Software Model Checking
Based on CEGAR and Interpolation. In Proc. FASE (LNCS 7793). Springer,

146ś162. https://www.sosy-lab.org/research/pub/2013-FASE.Explicit-State_
Software_Model_Checking_Based_on_CEGAR_and_Interpolation.pdf

[16] D. Beyer, S. Löwe, and P. Wendler. 2017. Reliable Benchmarking: Requirements
and Solutions. Int. J. Softw. Tools Technol. Transfer (2017). https://doi.org/10.
1007/s10009-017-0469-y

[17] D. Beyer and A. Stahlbauer. 2014. BDD-based software verification: Applications
to event-condition-action systems. STTT 16, 5 (2014), 507ś518. https://doi.org/
10.1007/s10009-014-0334-1

[18] S. Blom, J. van de Pol, and M. Weber. 2010. LTSmin: Distributed and Symbolic
Reachability. In Proc. CAV (LNCS 6174). Springer, 354ś359.

[19] M. Brain and F. Schanda. 2012. A Lightweight Technique for Distributed and
Incremental Program Verification. In Proc. VSTTE (LNCS 7152). Springer, 114ś129.
https://doi.org/10.1007/978-3-642-27705-4_10

[20] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. 2003. Counterexample-
guided abstraction refinement for symbolic model checking. J. ACM 50, 5 (2003),
752ś794. https://doi.org/10.1145/876638.876643

[21] H. Guo, M. Wu, L. Zhou, G. Hu, J. Yang, and L. Zhang. 2011. Practical software
model checking via dynamic interface reduction. In Proc. SOSP. ACM, 265ś278.
https://doi.org/10.1145/2043556.2043582

[22] A. Gurfinkel, A. Albarghouthi, S. Chaki, Y. Li, and M. Chechik. 2013. Ufo:
Verification with Interpolants and Abstract Interpretation (Competition Contri-
bution). In Proc. TACAS (LNCS 7795). Springer, 637ś640. https://doi.org/10.1007/
978-3-642-36742-7_52

[23] G. J. Holzmann. 2003. The Spin Model Checker: Primer and Reference Manual.
Addison-Wesley.

[24] B. A. Huberman, R. M. Lukose, and T. Hogg. 1997. An Economics Approach to
Hard Computational Problems. Science 275, 7 (1997), 51ś54. http://www.hpl.hp.
com/research/idl/papers/EconomicsApproach/EconomicsApproach.pdf

[25] K. Laster and O. Grumberg. 1998. Modular Model Checking of Software. In Proc.
TACAS (LNCS 1384). Springer, 20ś35. https://doi.org/10.1007/BFb0054162

[26] P. Müller, P. Peringer, and T. Vojnar. 2015. Predator Hunting Party (Competition
Contribution). In Proc. TACAS (LNCS 9035). Springer, 443ś446.

[27] T. L. Nguyen, P. Schrammel, B. Fischer, S. La Torre, and G. Parlato. 2017. Parallel
bug-finding in concurrent programs via reduced interleaving instances. In Proc.
ASE. IEEE Computer Society, 753ś764. https://doi.org/10.1109/ASE.2017.8115686

[28] E. Sherman and M. B. Dwyer. 2018. Structurally Defined Conditional Data-
Flow Static Analysis. In Proc. TACAS, Part II (LNCS 10806). Springer, 249ś265.
https://doi.org/10.1007/978-3-319-89963-3_15

[29] V. Still, P. Rockai, and J. Barnat. 2016. DIVINE: Explicit-State LTL Model Checker
(Competition Contribution). In Proc. TACAS (LNCS 9636). Springer, 920ś922.

[30] T. van Dijk. 2016. Sylvan: multi-core decision diagrams. Ph.D. Dissertation. Uni-
versity of Twente, Enschede, Netherlands. http://purl.utwente.nl/publications/
100676

[31] D. Wonisch and H. Wehrheim. 2012. Predicate Analysis with Block-Abstraction
Memoization. In Proc. ICFEM (LNCS 7635). Springer, 332ś347. https://doi.org/10.
1007/978-3-642-34281-3_24

644

Domain-Independent Multi-threaded Software Model Checking 61

https://doi.org/10.1145/1465482.1465560
https://doi.org/10.1145/1465482.1465560
https://doi.org/10.1007/978-3-662-54580-5_22
https://doi.org/10.1016/j.entcs.2013.07.006
https://doi.org/10.1016/j.entcs.2013.07.006
https://doi.org/10.1007/978-3-662-54580-5_20
https://doi.org/10.1007/978-3-662-54580-5_20
https://doi.org/10.1145/2950290.2950351
https://doi.org/10.1145/2786805.2786867
https://doi.org/10.1007/978-3-319-21690-4_42
https://doi.org/10.1007/s10817-017-9432-6
https://doi.org/10.1007/s10817-017-9432-6
https://doi.org/10.5281/zenodo.1322090
https://doi.org/10.5281/zenodo.1322090
https://doi.org/10.1007/s10009-007-0044-z
https://doi.org/10.1145/2393596.2393664
https://doi.org/10.1007/978-3-540-73368-3_51
https://doi.org/10.1007/978-3-540-73368-3_51
https://www.sosy-lab.org/research/pub/2010-FMCAD.Predicate_Abstraction_with_Adjustable-Block_Encoding.pdf
https://www.sosy-lab.org/research/pub/2010-FMCAD.Predicate_Abstraction_with_Adjustable-Block_Encoding.pdf
https://doi.org/10.1007/978-3-319-47166-2_14
https://www.sosy-lab.org/research/pub/2013-FASE.Explicit-State_Software_Model_Checking_Based_on_CEGAR_and_Interpolation.pdf
https://www.sosy-lab.org/research/pub/2013-FASE.Explicit-State_Software_Model_Checking_Based_on_CEGAR_and_Interpolation.pdf
https://doi.org/10.1007/s10009-017-0469-y
https://doi.org/10.1007/s10009-017-0469-y
https://doi.org/10.1007/s10009-014-0334-1
https://doi.org/10.1007/s10009-014-0334-1
https://doi.org/10.1007/978-3-642-27705-4_10
https://doi.org/10.1145/876638.876643
https://doi.org/10.1145/2043556.2043582
https://doi.org/10.1007/978-3-642-36742-7_52
https://doi.org/10.1007/978-3-642-36742-7_52
http://www.hpl.hp.com/research/idl/papers/EconomicsApproach/EconomicsApproach.pdf
http://www.hpl.hp.com/research/idl/papers/EconomicsApproach/EconomicsApproach.pdf
https://doi.org/10.1007/BFb0054162
https://doi.org/10.1109/ASE.2017.8115686
https://doi.org/10.1007/978-3-319-89963-3_15
http://purl.utwente.nl/publications/100676
http://purl.utwente.nl/publications/100676
https://doi.org/10.1007/978-3-642-34281-3_24
https://doi.org/10.1007/978-3-642-34281-3_24

In-Place vs. Copy-on-Write CEGAR
Refinement for Block Summarization

with Caching

Dirk Beyer and Karlheinz Friedberger

LMU Munich, Germany

Abstract. Block summarization is an efficient technique in software
verification to decompose a verification problem into separate tasks
and to avoid repeated exploration of reusable parts of a program. In
order to benefit from abstraction at the same time, block summariza-
tion can be combined with counterexample-guided abstraction refine-
ment (CEGAR). This causes the following problem: whenever CEGAR
instructs the model checker to refine the abstraction along a path, sev-
eral block summaries are affected and need to be updated. There exist
two different refinement strategies: a destructive in-place approach that
modifies the existing block abstractions and a constructive copy-on-write
approach that does not change existing data. While the in-place app-
roach is used in the field for several years, our new approach of copy-
on-write refinement has the following important advantage: A complete
exportable proof of the program is available after the analysis has fin-
ished. Due to the benefit from avoiding recomputations of missing infor-
mation as necessary for in-place updates, the new approach causes almost
no computational overhead overall. We perform a large experimental
evaluation to compare the new approach with the previous one to show
that full proofs can be achieved without overhead.

Keywords: Software model checking · Block summarization
Copy-on-write · CEGAR · Abstraction refinement · CPAchecker
Program analysis

1 Introduction

Software model checking is a powerful technique for proving programs correct as
well as for finding errors in programs. Given a program and a specification, a model
checker either finds an error path through the program that exposes the specifi-
cation violation or proves that the specification is satisfied by the program. In
this paper, we take a look at the combination of two orthogonal approaches, block
summaries and abstraction refinement.

The technique of constructing summaries of program blocks [18] is effective
to reduce the overhead that an exploration without summaries would otherwise

c© Springer Nature Switzerland AG 2018
T. Margaria and B. Steffen (Eds.): ISoLA 2018, LNCS 11245, pp. 197–215, 2018.
https://doi.org/10.1007/978-3-030-03421-4_14

In-Place vs. Copy-on-Write CEGAR Re�nement for Block Summarization with Caching 63

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03421-4_14&domain=pdf
https://doi.org/10.1007/978-3-030-03421-4_14

198 D. Beyer and K. Friedberger

cause. Block-abstraction memoization (BAM) [27] is based on a standard state-
space exploration using a given control-flow automaton (CFA) that represents the
program. The CFA is partitioned into blocks, which are analyzed separately by
BAM. Block abstractions (e.g., the results of a block’s analysis) represent sum-
maries of blocks. Block abstraction is a generalization of function summaries, if the
block size is chosen according to function bodies. In general, block abstraction also
works for loop bodies and other block definitions. Block abstractions are stored in
a cache, such that they can be reused whenever the same block is explored again.
The exact behavior of the analysis and the precision of BAM is determined by a
wrapped underlying analysis, such as predicate analysis or explicit-value analysis.

Abstraction, i.e., verifying an overapproximating abstract model of the pro-
gram instead of its concrete state space, is an idea for scaling model checking to
large programs orthogonal to summaries. The verification of the abstract model
is often less complex and more resource-efficient. Counterexample-guided abstrac-
tion refinement (CEGAR) [15] is a property-directed approach for the automatic
construction of an abstract model for a given system: it automatically determines
a level of abstraction for program verification that is coarse enough to omit unnec-
essary information from the abstract model and precise enough to refute spurious
counterexamples.Thebasic idea is to iteratively identify relevant facts from infeasi-
ble program paths and use them for the further and more precise state-space explo-
ration. Many existing software model-checking algorithms are based on this app-
roach, such as predicate analysis [8], Impact [23], and explicit-value analysis [12].

Our combination of block abstraction with CEGAR needs a special refinement
strategy such that only the necessary parts of the (cached) state space are touched.
However, block abstractions are cached and can be used at different locations dur-
ing the analysis and even several times on the same error path. The problem is how
to correctly refine the block abstractions in the context of BAM based on a the
underlying refinement strategy. The original definition of refinement in BAM [27]
describes a destructive in-place update of block abstractions and explains that
holes occur in the state space which are caused by modifications on existing block
abstractions. Those holes need to be recomputed on demand. However, this is not
possible in general, e.g., after the analysis has finished, because the information
which block abstraction was computed for which block is no longer accessible. Suc-
ceeding analysis steps are not able to recompute the missing information, as not
only the block abstractions themselves, but also their dependencies are deleted
in the destructive approach. A recomputation would imply to rerun a large part
of the complete analysis. Due to the unforeseeable appearance of cache accesses,
the recomputation might even produce a completely different counterexample or
proof than the previous analysis.

The user usually wants the model checker to terminate with a proof, which in
this setting might be an abstract reachability graph (ARG). The ARG is expected
to include all initial abstract states and all abstract states that are reachable from
the initial abstract states. This guarantee does not hold if the ARG contains holes.
Succeeding analysis steps that are executed after the termination of the block-
abstraction-based analysis and depend on the full abstract state space (without

64 A. Manuscripts

In-Place vs. Copy-on-Write CEGAR Refinement for Block Summarization 199

holes) have no possibility to recompute the missing parts. For example, correct-
ness witnesses [6,22] can not be reliably produced with block-abstraction-based
analyses [1]: the exported correctness witness is either invalid because no graph
from root to all reached abstract states could be written, or a missing part in the
correctness witness (branch in the graph) is responsible for incorrectly guiding the
witness validator.

The main contribution of this paper is a new refinement approach based on a
constructive copy-on-write strategy. Our work includes a comparative evaluation
of the new copy-on-write approach with the previous in-place refinement, showing
that the new approach has only a small computational overhead for run time and
memory usage. Because BAM is independent of (and orthogonal to) other analy-
ses in a full program analysis, it can be combined with analyses based on different
abstract domains like predicate, value, or interval analysis [11,12], or combina-
tions thereof [1,17]. Our new refinement strategy is fully integrated into BAM in
CPAchecker and does not depend on the underlying analysis. Thus, there is no
change in the behavior of the sub-analyses.

Contributions. We make the following contributions:

• We design a copy-on-write approach that solves two open problems: (i) strictly
monotonic refinement for summary-based approaches in combination with
CEGAR and (ii) abstract reachability graphs without holes that cause prob-
lems in later steps of the analysis.

• We implement the approach of copy-on-write refinement in the verification
framework CPAchecker and make the source code available to others.1

• We experimentally evaluate the new approach on a large number of verification
tasks to show that the copy-on-write approach is about as efficient and effective
as the in-place approach, although the approach produces complete abstract
reachability graphs.

• We make all experimental results, including raw data, tables, experiment
setup, etc., available on a supplementary web site.2

Related Work. There are several techniques based on block-based summariza-
tion, as this idea dates back to Hoare [20]. The special case of function summaries
aims at scalability for interprocedural analyses and is integrated in several algo-
rithms and tools.

FunFrog [25,26] uses an SMT solver and Craig interpolation to compute
function summaries in the context of bounded model checking. Starting from an
initially empty set of function summaries, the tool explores the problem’s traces
and computes interpolants from path formulas for all missing procedure calls. The
interpolants are then directly used as summaries. This strategy is applied in a
CEGAR loop until the specified property can be proven or is definitely violated.

1 https://cpachecker.sosy-lab.org
2 https://www.sosy-lab.org/research/bam-cow-refinement

In-Place vs. Copy-on-Write CEGAR Re�nement for Block Summarization with Caching 65

https://cpachecker.sosy-lab.org
https://www.sosy-lab.org/research/bam-cow-refinement

200 D. Beyer and K. Friedberger

FunFrog uses a cache for function summaries, but does never modify existing
function summaries.

Bebop [3] and Saturn [28] use binary decision diagrams (BDDs) and SMT
to encode the program’s semantics. The function summary is build by renaming
variables in formulas, such that the direct encoding of a procedure call can be
reused several times within the same encoding of the program behavior. Both tools
work on a very precise abstraction level and do not refine their summarizations.

BAM is a domain-independent approach for caching and reusing block abstrac-
tions. It is independent of functions and can be used with an arbitrary block size.
Instead of being limited to a special domain like BDDs, SMT, or intervals, BAM
works on an abstract level and can be applied to any abstract domain or even com-
binations of several domains, including predicate analysis and explicit value anal-
ysis [1]. The integration of CEGAR refinement in BAM was already described in
the context of predicate analysis [27]. Our new approach of copy-on-write refine-
ment for BAM makes the approach really lazy (matching the principles of lazy
abstraction refinement [19]).

2 Background on Block Summarization

The following section provides an overview of some basic concepts and definitions
that we use for our approach. We describe the program representation and the
most important details of block-abstraction memoization that are used for state-
space exploration (cf. other literature on block-abstraction memoization for more
detailed descriptions [2,7,27]).

2.1 Program and State-Space Representation

A program is represented by a control-flow automaton (CFA) A = (L, l0, G),
which consists of a set L of program locations (modeling the program counter), a
set G ⊆ L × Ops × L (modeling the control flow), and an initial program loca-
tion l0 (entry point; initial call of the main function). The set Ops contains the
operations of the program, i.e., assignment and assume operations, function calls,
and function returns. Let V be the set of variables in the program. A concrete
data state assigns a value to each variable from the set V ; the set C contains all
concrete data states. For every edge g ∈ G, the transition relation is defined by
g→ ⊆ C × {g} × C. If there exists a sequence of concrete data states 〈c0, c1, ..., cn〉
with ∀i ∈ [1, n] : ∃g : ci−1

g→ ci ∧ (li−1, g, li) ∈ G, then state cn is called reachable
from c0 for l0, i.e., there exists a syntactic walk through the CFA.

We perform a reachability analysis that unrolls the program lazily [19] into
an abstract reachability graph (ARG) [8]. An ARG S = (N,E) is a directed
acyclic graph, consisting of a set N of ARG nodes (representing the abstract pro-
gram states, e.g., including program location and variable assignments) and a set
E ⊆ N ×N of edges modeling the transfer that leads from one abstract state to the
next one. We define a subgraph Ss = (s,Ns, Es) as a connected component of an
ARG S = (N,E), starting at a given abstract state s ∈ Ns (denoted as root), such
that Ns ⊆ N , Es ⊆ E, and ∀s′ ∈ Ns : (s′, s′′) ∈ E ⇒ (s′′ ∈ Ns ∧ (s′, s′′) ∈ Es).

66 A. Manuscripts

In-Place vs. Copy-on-Write CEGAR Refinement for Block Summarization 201

Fig. 1. Example program and its control-flow automaton with 3 blocks

2.2 Block Summarization

Block-abstraction memoization (BAM) [27] is a generalization of several block-
based summarization approaches [18,24,25]. BAM divides an input program into
smaller parts, named blocks, to analyze them separately by summary construc-
tion. It uses an arbitrary block size and is not limited to function boundaries.
In addition, BAM uses a cache to reuse block abstractions. The blocks allow us
to abstract from the surrounding context, reducing computational overhead, and
improving the performance of an analysis. The analysis of each block corresponds
to an abstract initial state at the block-entry location and a set of abstract exit
states at the block-exit locations (both described later). Block abstractions (e.g.,
the combination of initial states and exit states of a block’s analysis) are stored in
a cache, such that they can be reused whenever the same block is visited again.

Blocks. The basic components of BAM are blocks, which are formally defined as
parts of a program: A block B = (L′, G′) of a CFA A = (L, l0, G) consists of a set
L′ ⊆ L of connected program locations and a set G′ = {(l1, op, l2) ∈ G | l1, l2 ∈ L′}
of control-flow edges. Two different blocks B1 = (L′

1, G
′
1) and B2 = (L′

2, G
′
2) are

either disjoint (L′
1 ∩ L′

2 = ∅) or one block is completely nested in the other block
(L′

1 ⊂ L′
2). Each block B = (L′, G′) has entry and exit locations, which are defined

as In(B) = {l ∈ L′ | (∃(l′, op, l) ∈ G ∧ l′ �∈ L′)∨ � ∃(l′, op, l) ∈ G} and Out(B) =
{l ∈ L′ | (∃(l, op, l′) ∈ G ∧ l′ �∈ L′)∨ � ∃(l, op, l′) ∈ G}, respectively. In general, the
block size can be freely chosen in BAM. In most cases, function and loop bodies
are taken as blocks, because they represent logical structures of the program and
seem to be a good choice for block abstraction.

Figure 1 shows the CFA (b) for an example program (a). The CFA is structured
into three nested blocks Bmain, Bloop, and Bf , such that their sizes align with the

In-Place vs. Copy-on-Write CEGAR Re�nement for Block Summarization with Caching 67

202 D. Beyer and K. Friedberger

function and loop bodies. In the example, each block has only one entry and one
exit location, e.g., In(Bmain) = {l2}, Out(Bmain) = {l7}, In(Bloop) = {l3},
Out(Bloop) = {l6}, In(Bf) = {l10}, and Out(Bf) = {l11}.

State-Space Exploration with BAM. BAM is an algorithm for program anal-
ysis that makes use of a wrapped program analysis W, which tracks data facts
and does the actual (block-local) program-analysis work, i.e., computes abstrac-
tions, formulas for paths, or checking whether the property holds. Our framework
is based on the concept of configurable program analysis (CPA) [9] and uses, for
example, predicate analysis (based on SMT solving and predicates), explicit-value
analysis (tracks assignments of variables), or combinations thereof, with usage of
common basic components such as location analysis (tracks the program counter)
or call-stack analysis (tracks the current call stack). Each CPA provides the analy-
sis operators, like the transfer relation � to compute abstract successor states for
a specific abstract domain. BAM is specified as a CPA and does not know about
the internals of the wrapped analysis W, which is also a CPA. The approach of
BAM just operates on abstract states of a (possibly combined) abstract domain
to generate block abstractions.

The state-space exploration with BAM is defined recursively for blocks. The
successor computation for abstract states chooses between two possible steps,
depending on the currently analyzed program location: At an entry location of

a block B, the successor computation
B�B of the containing block executes a

separate nested sub-analysis of the block B (starting with the initial abstract
state for the block-entry location). This step produces a separate ARG that is
later integrated as block abstraction into the surrounding analysis context. The
block abstraction can either be computed or taken from a cache, if the block has
been analyzed before. For block-exit locations of blocks, there is no succeeding
abstract state (in the nested sub-analysis). For other program locations, the suc-
cessor computation �W is applied, which acts according to the abstract domain
of the wrapped analysis W (e.g., tracks variables or computes abstractions for
abstract states). Abstract states where a specification violation occurs are han-
dled as if those abstract states are at block-exit locations of the current block,
i.e., the nested sub-analysis terminates and returns the violating abstract states
directly for the block abstraction.

Note that an ARG can contain edges representing block abstractions. The
block of the block abstraction is inlined whenever a concrete program path with-
out block abstractions is needed. This overhead is the necessary price for having a
block-modular analysis. When CEGAR modifies the ARGs during the refinement,
a problem occurs, which we will describe later.

2.3 CEGAR

Counterexample-guided abstraction refinement (CEGAR) is an approach to auto-
matically adjust the granularity of an analysis by learning from infeasible error
paths the relevant analysis facts that are needed to verify a program. We use

68 A. Manuscripts

In-Place vs. Copy-on-Write CEGAR Refinement for Block Summarization 203

CEGAR as a wrapper algorithm around the state-space exploration algorithm,
which is implemented as CPA algorithm [10]. The granularity of the analysis is
defined as a precision that is refined in each iteration of the CEGAR algorithm.
Each abstract state in an ARG has a precision. The precision of an abstract state
can be changed during the refinement step. A too coarse precision would lead to
an imprecise analysis that reports false alarms, a too fine precision would lead
to an expensive state-space exploration; CEGAR tries to find the “right” level of
abstraction in between.

CEGAR consists of two steps, an exploration step and a refinement step,
which are executed alternatingly until a feasible error path is found (and a bug
is reported) or all error paths are proven to be infeasible (and a proof can be
reported): The exploration step computes new successor abstract states and builds
the abstract state space in form of an ARG G = (N,E), using the level of abstrac-
tion determined by CEGAR. When finding a possible specification violation, a
feasibility check is applied, which examines the error path to the violation. A fea-
sible error path is reported and the analysis terminates. An infeasible error path
is used for a refinement step to gain more relevant facts from the program, e.g.,
by applying interpolation, and refine the precision. If the exploration step does
not find any property violation and all abstract states are explored, the algorithm
terminates and the program is proven correct.

The refinement step determines a cut point scut ∈ N and a new precision
for this position, such that the new level of abstraction is sufficient to exclude
the infeasible error path from further exploration of the state space. The level of
abstraction depends on the abstract domain of the analysis and might consist of,
e.g., predicates (for predicate analysis) or a set of variables to be tracked (for value
analysis). The outdated (too imprecise) subgraph Sscut

= (scut, N
′, E′) of the

already explored state space is removed from the ARG G and the subgraph’s root
state scut alone is re-added to G, such that the next exploration step of CEGAR
recomputes this part of the state space with a higher precision. There are several
approaches to determine the cut point scut along the error path [13]:

• cut point at root: full eager refinement is applied, where the whole explored
state space is withdrawn and re-exploration starts from the initial root state
of the ARG (e.g. [4,14,16]),

• cut point as deep as possible: only a (minimal) part of the explored state
space is removed (lazy refinement [19]), such that a large part of the explored
state space remains intact and can be reused in the further analysis (e.g. [8,10]),
or

• cut point in between: trade-off between reuse and reexploration is some-
where in between the above two choices [13].

The second approach performs best in most cases and is currently used in the
field. As shown in Alg. 1, the refinement procedure first determines an abstract
state scut where the infeasible subgraph is to be cut off and new facts are applied
to the precision of the analysis. Lazy refinement is based on the idea that some
parts of a program are analyzed with a coarse abstraction level and only some

In-Place vs. Copy-on-Write CEGAR Re�nement for Block Summarization with Caching 69

204 D. Beyer and K. Friedberger

Algorithm 1. Default refinement procedure of CEGAR

Input: an infeasible error path σ, an ARG G of the analysis
scut,newFacts := refineW(σ)
refinePrecision(G, scut,newFacts)
removeSubgraph(G, scut)

other parts of a program use a more fine-grained precision. Cutting off only a part
of the ARG in each refinement fulfills this requirement.

2.4 Requirement for Refinement Approaches: New Precision Strictly
More Precise

We use a (partial) order on precisions, such that a precision is considered as more
precise compared to another precision, if it causes the analysis to track more infor-
mation. For example, if an analysis uses a precision to track a set of variables or
predicates (as predicate analysis and value analysis do), this relation is implicitly
given by the subset relation. If a precision p is a superset of another precision p′,
then p is more precise than p′. Let an infeasible error path be a sequence of abstract
states 〈s0, s1, ...sn〉 with their precisions 〈p0, p1, ...pn〉, such that s0 is the root of
the program and sn violates the specification. The sequence 〈p0, p1, ...pn〉 of preci-
sions is more precise then a sequence 〈p′

0, p
′
1, ...p

′
n〉 of precisions if either p0 is more

precise than p′
0, or p0 = p′

0 and the remaining sequence 〈p1, ...pn〉 of precisions is
more precise than the sequence 〈p′

1, ...p
′
n〉. We require a refined precision to be

strictly more precise than its original, in order to guarantee progress in CEGAR
(monotonic refinement).

Since CEGAR is a fixed-point algorithm that starts with a coarse precision and
refines it until it is sufficiently precise to prove or refute the program, the termina-
tion criterion for the CEGAR loop depends on a refinement approach that mono-
tonically increases the precision. To ensure progress of the analysis, the refinement
requirement needs to hold for each single refinement step in a program analysis
with CEGAR.

Removing a subgraph Sscut
= (scut, N

′, E′) from an ARG and applying a
refined precision at its cut point scut fulfills the property, because the precision
itself is more precise for the cut point, the predecessors are not touched, and
the successors are deleted (and implicitly inherit the refined precision). Even if
the removed subgraph Sscut

contained a more precise precision for some abstract
state, the refinement requirement holds: Because the refined precision is repre-
sented as mapping from locations to precisions, and assigned as precision of the
root abstract state scut of the subgraph, an ancestor of any removed state will be
seeded with the new, refined precision. During re-exploration of the deleted sub-
graph, the analysis will re-explore prefixes of previously encountered error paths in
this part of the state space and perform refinements of other error paths with cut
points that also satisfy the refinement requirement. Strengthening the precision
by additional information (like invariants from an external tool) before applying
the update during the refinement also fulfills the property.

70 A. Manuscripts

In-Place vs. Copy-on-Write CEGAR Refinement for Block Summarization 205

Fig. 2. State-space exploration with BAM and cut points for refinement

The refinement requirement is not fulfilled by the in-place approach, because
the in-place refinement potentially deletes block abstractions for already analyzed
parts of the state space and causes additional overhead if recomputation is needed
for those missing block abstractions. The copy-on-write approach does not suffer
from this problem.

After defining all necessary parts, we will now go on with a motivating exam-
ple, before giving the detailed description of the refinement approaches in BAM.
Our goal is to replace an implementation that in-place modifies the ARG by a new
copy-on-write-based approach for modifying the ARG. This allows us to efficiently
keep the original as well as the copy for further processing. In the later evaluation
we show that keeping the original data improves our analysis in several cases, and
in particular, leaves the ARG complete (without holes).

3 Motivating Example

The following example illustrates the differences of the two strategies that could
be used as refinement step in a CEGAR approach. In BAM, the analysis explores
the state space and computes block abstractions for blocks. An example for such
a state-space exploration is given in Fig. 2 (gray triangles represent ARGs, rooted
at the top corner; white triangles represent block abstractions). We use block
abstractions for nested blocks at the entry abstract states s2, s3, and s4 with the
corresponding initial abstract states sR

2 , sR
3 , and sR

4 in the nested analysis for the
blocks at those program locations. In the example, let sR

4 be equal to sR
2 , such that

we can reuse the existing block abstraction here. Block abstractions are shown as
white triangles and are connected with their ARG via dotted lines. When finding
the property violation sError, the analysis stops and performs a refinement for
the found counterexample. The lazy refinement approach determines a possible
cut-state, i.e., an abstract state scut along the error path, from where the found
property violation is no longer reachable if a refined precision is applied.

At this point, the two refinement strategies differ:
Figure 3a shows the in-place refinement, removing parts of the explored state

space, i.e., everything after the cut point scut and after the block abstractions (for

In-Place vs. Copy-on-Write CEGAR Re�nement for Block Summarization with Caching 71

206 D. Beyer and K. Friedberger

Fig. 3. In-place and copy-on-write refinement approach for BAM

abstract states s3 and s4). At the abstract state s2 the in-place approach implicitly
invalidates the ARG for the block abstraction and causes a hole in the surround-
ing ARG. Here, the applied block abstraction itself remains valid, because those
abstract states were computed before the refinement.

Figure 3b shows the copy-on-write approach, updating the abstract states. All
inner (nested) ARGs are updated copy-on-write. The red horizontal lines repre-
sent the removed abstract successor states after the block abstraction for abstract
state s4. The ARGs rooted at sR

2 and sR
3 are copied into new ARGs with roots

72 A. Manuscripts

In-Place vs. Copy-on-Write CEGAR Refinement for Block Summarization 207

at sR
2

′
and sR

3
′
, leaving out the parts that are invalid after updating the precision.

The references to or from block abstractions are also updated.
The difference in the refinement strategies is visible in Figs. 3a and 3b. While

the first approach deletes and recomputes parts of the ARGs, the second approach
works on fresh copies of the ARGs and uses them along with the old ARGs. In the
following we explain both refinement strategies in more detail and discuss benefits
of the second approach.

4 In-Place Refinement for BAM

The existing approach for refinement in BAM (as described earlier [27]) is sound,
simple, and efficient, but has problems when abstract states need to be accessible
afterwards. Briefly worded, the existing approach modifies cached block abstrac-
tions in-place and deletes important information that is not available after the
refinement and needs to be recomputed for further steps of the analysis.

4.1 In-Place Refinement Algorithm for BAM

Algorithm 2 gives an overview of the in-place refinement of CEGAR for BAM,
without going into detail for the further operation of BAM itself (cache manage-
ment). The in-place refinement tries to mimic lazy abstraction refinement and
CEGAR, i.e., it touches only a small number of abstract states and aims to update
only those states where a precision update will avoid the re-exploration of the cur-
rently found infeasible error path. In contrast to Alg. 1, there is no single ARG G
to work on, but with BAM there are several ARGs and the refinement must be
applied to several of them. Algorithm2 applies the following steps of the refine-
ment:

After the refinement procedure of the underlying analysis has computed new
facts for the analysis and determined an abstract state scut along the error path,
the refinement approach determines the subgraph S = (N,E) where the cut
point scut is located. BAM might have used the block abstraction for S several
times along the error path, and thus, we need to find out which outer subgraphs
we need to remove (see Fig. 3a). Thus, we start from the correct block abstrac-
tion, and apply the removal operations for in-place refinement: The cut point scut

Algorithm 2. In-place refinement procedure of CEGAR with BAM

Input: an infeasible error path σ
scut,newFacts := refineW(σ)
S := getARG(scut, σ)
refinePrecision(S, scut,newFacts)
removeSubgraph(S, scut)
while S is nested in another ARG S∗ along σ do

s∗ := getInitState(S, S∗, σ)
removeSubgraph(S∗, s∗)
S := S∗

In-Place vs. Copy-on-Write CEGAR Re�nement for Block Summarization with Caching 73

208 D. Beyer and K. Friedberger

and its subgraph Ss(scut, Ns, Es) get removed from S (with scut ∈ Ns ⊆ N and
Es ⊆ E).

If the ARG S represents a block abstraction for a block B, i.e., S is nested
within another ARG S∗ = (N∗, E∗), with the ARG S rooted at the initial abstract
state s∗ ∈ N∗, the subgraph Ss∗ starting at the abstract state s∗ of the nested-
block abstraction is removed from the surrounding ARG S∗. This strategy is
applied transitively up to the most outer ARG. The most outer block is not used
as a block abstraction (it represents the whole program) and thus never referred
to elsewhere in the state space.

The succeeding exploration step of CEGAR will re-explore the removed parts,
use or recompute block abstractions and reach the abstract state with the refined
precision, from where the state space is analyzed without exploring the previously
encountered infeasible error path. Every ARG modification happens in-place and
directly modifies the existing block abstractions. This approach does not consider
whether a block abstraction was already used in another part of the state space,
e.g., as part of another another ARG.

4.2 Problem of Cached Block Abstractions with In-Place Updates

The in-place refinement approach suffers from the in-place update of block
abstractions in the following way: Whenever an missing abstract state belonging
to a hole (missing block abstraction) in the state space is needed to be accessed,
e.g., as part of a new error path, the block-entry state of the hole’s block abstrac-
tion is determined (depending on the context) and a possible valid block abstrac-
tion is recomputed. The previously updated ARG can not be used to fill the hole,
because its precision might have been refined and updated in-place, such that it is
more precise than before and leads to different block-exit abstract states. In order
to not loose this refined precision for further exploration, all abstract states fol-
lowing the recomputed block abstraction need to be replaced by their recomputed
counterparts (which also happens in-place).

In Fig. 3a this case happens when a property violation is found with an error
path going through the removed block abstraction of s2. Then the subgraph of s2

needs to be removed and recomputed with a new block abstraction.
After BAM terminates (with or without finding a property violation) we often

generate statistics or collect some data from the reached abstract state space.
However, with holes there also comes the problem of missing data. This is only
a minor problem, however might also irritate and mislead the user. Numeral
statistics like the number of abstract states or the number of predicates are
potentially misleading. Missing parts in non-numerical output, such as proofs
and correctness witnesses, cause problems for later processing of the verification
results. For example, we have identified several tasks in SV-COMP’17, for which
CPAchecker (competition contribution BAM-BnB [1]) computed the correct
result during the analysis, but did not write a correctness witness for the vali-
dation, or a witness was written, but the graph of the witness was missing some
parts, such that the witness validator was not correctly guided to some branches
and could not successfully validate the result.

74 A. Manuscripts

In-Place vs. Copy-on-Write CEGAR Refinement for Block Summarization 209

The new copy-on-write approach does not suffer from these problems, because
the necessary data are kept until it is no longer needed, and we obtain correct
statistics and valid (and complete) correctness witnesses.

5 Copy-on-Write Refinement for BAM

This section describes our new approach for copy-on-write refinement in BAM and
considers the computational difference to in-place refinement.

5.1 Copy-on-Write Algorithm for BAM

We define a copy of an ARG S = (N,E) as a second graph S′ = (N ′, E′), where
each ARG abstract state from N and transition from E is copied into N ′ and E′.
Technically, a copy is just a new instance of the same ARG. Instead of changing
an existing ARG S, whenever we would need to remove a subgraph Ss from it,
the copy-on-write algorithm (Alg. 3) copies the ARG S into a new ARG S′, omit-
ting the corresponding subgraph. Then, we update the precision only for abstract
states in the new instance S′. The new ARG S′ is then registered in the cache
as new block abstraction for one position where previously S was used, such that
further explorations use the new instance S′. The old ARG S remains untouched,
is still valid, and can be accessed when revisiting existing block abstractions.

When copying an ARG S that contains an embedded ARG Snested from a
nested sub-analysis, Alg. 3 only references the existing instance Snested in the new
ARG S′ and does not copy it, except Snested itself has to be modified. In this case,
a copy Snested′ is inserted instead of the original Snested.

Computational Overhead for Copy-on-Write Refinement. The run time
of the copy-on-write refinement is similar to the in-place approach, because every
affected ARG is exactly traversed once in each of the approaches. Thus, the
run time of both refinement strategies is linear in the number of reached states.
The conceptional difference comes with the operation performed on the affected
abstract states: Instead of removing a subgraph of abstract states from an ARG,
we create a flat copy of all other abstract states, i.e., those abstract states that are
not part of the subgraph.

Algorithm 3. Copy-on-write refinement procedure of CEGAR with BAM

Input: an infeasible error path σ
scut,newFacts := refineW(σ)
S := getARG(scut, σ)
S′, s′

cut := copyWithoutSubgraph(S, scut)
registerARG(S′)
refinePrecision(S′, s′

cut,newFacts)
while S′ is nested in another ARG S∗ along σ do

S∗ := getInitState(S′, S∗, σ)
S∗′, s∗′ := copyWithoutSubgraph(S∗′, s∗)
registerARG(S∗′)
S′ := S∗′

In-Place vs. Copy-on-Write CEGAR Re�nement for Block Summarization with Caching 75

210 D. Beyer and K. Friedberger

To reduce the run time of the copy operation and the memory footprint for
the copied abstract states, the flat copy keeps all internal data of abstract states
untouched (e.g., information about program location, call stack, data state, etc.)
and just references them from the new abstract states. This perfectly matches the
copy-on-write idea and also the internal data structure of our framework, where
abstract states consist of separate components for separate domains. Only those
components where data needs to be changed are effectively constructed again, the
rest is just referenced. This approach has two benefits:

• There is no need to implement and execute methods for copying internal data of
abstract states (predicates, variable assignments, program counter, call-stack
information, ...). Thus our new approach can easily be applied to all existing
analyses.

• The copy-on-write approach has only a small memory overhead, because only
new ARG states are constructed, the internal data of abstract states are shared
and do not require additional memory.

6 Evaluation

Next we give evidence that the improvements in our refinement approach (no holes
in the ARG) do not lead to significant performance drawbacks.

Benchmark Set. We evaluate our new copy-on-write refinement approach on a
large subset of the SV-benchmark suite3 containing over 5 500 verification tasks
and compare it with the existing in-place approach.

Setup. We run all our experiments on computers with Intel Xeon E3-1230 v5
CPUs with 3.40 GHz, and limit the CPU time to 15 min and the memory to
15 GB. We use our implementation in CPAchecker4 in revision r29066. The
time needed for parsing the input program and exporting data is rather small com-
pared to the analysis time, thus we measure the complete CPU time for the verifi-
cation run of CPAchecker (i.e., including parsing, analysis, and witness export).

Analysis Configuration. BAM can be combined with several analyses and for
our experiments, we choose two combinations that are used in practice: BAM
with predicate analysis (PA) and BAM with value analysis (VA) [2]. We configure
BAM to use function and loop bodies as blocks, and predicate analysis computes
abstractions, just as in the original work [27]. The expressive power of the program
analysis depends only on the expressiveness of the predicate analysis or value anal-
ysis, and is not influenced by BAM. Except for the refinement approach itself, we
do not change any configuration for each of the analyses. Thus, each of analyses
should give the same verification answer in both cases.

3 https://github.com/sosy-lab/sv-benchmarks
4 https://cpachecker.sosy-lab.org

76 A. Manuscripts

https://github.com/sosy-lab/sv-benchmarks
https://cpachecker.sosy-lab.org

In-Place vs. Copy-on-Write CEGAR Refinement for Block Summarization 211

Results and Discussion. The experiments show nearly no difference in CPU
time and also no significant difference in memory consumption between the two
refinement approaches for each analysis. The reason for this result in terms of run
time is that copy-on-write is extremely efficient and the light overhead is compen-
sated by savings for recomputing missing parts of the state space. The reason for
the same memory footprint is that the memory overhead for the additional ARGs
is very small compared to the shared data (e.g., formulas for tracking variables).
Note that memory usage is not fully predictable in general, as the Java garbage
collection is applied non-deterministically.

The quantile plots in Fig. 4 show how many tasks are solved correctly with
each of the approaches and each of the analyses. Figure 4a presents the results
for all correctly solved verification tasks with low number of refinements (≤1): no
difference in the results is visible for the two approaches per underlying analysis.
For a low number of refinements, the equality of the results for different refinement
approaches was expected, because the effect of missing block abstractions depends
on a sufficiently large number of refinements. With only zero or one refinement the
new approach behaves exactly as the in-place approach. With a growing number
of refinements, the analysis could in principle perform differently. Figure 4b shows
the CPU time for all correctly solved verification tasks where more than one refine-
ment was needed. Both refinement approaches perform very similar, e.g., keeping
block abstractions using copy-on-write is as good as recomputing missing block
abstractions for both underlying analyses. (The similar performance of predicate
analysis and value analysis is a coincidence, because both analyses use completely
different techniques to track variables, assignments, and relations.)

Table 1 shows statistics about all verification results, for both approaches.
There are some cases (for both predicate analysis and value analysis), where the
analysis with one refinement approach delivers a result while the other does not.
Sometimes eager application of a refined precision is beneficial, sometimes the
overhead for recomputation of a missing block abstraction is too expensive. While
the difference for value analysis is negligible, predicate analysis performs better
with the in-place refinement, but needs more refinements than with copy-on-write.
It seems that predicate analysis reacts much more fragile to changes in the refine-
ment strategy and application of refined precisions than value analysis.

Figures 5a and 5b compare the number of needed refinements for each solved
task using scatter plots. The number of refinements includes also cases where a
missing block abstraction has to be recomputed (recomputation is lazy and only
applied if an error path with a hole was found; thus it counts as refinement, too).
For predicate analysis with the copy-on-write approach, the majority of results
is computed with a smaller number of refinements than with the in-place refine-
ment: on average the new approach needs only a third of the refinements. For value
analysis there is no clear difference in the number of refinements and the average
number of refinements is also similar.

Threats to Validity. Our evaluation uses a large publicly available benchmark
suite of C verification tasks in order to optimize the diversity in size and type of

In-Place vs. Copy-on-Write CEGAR Re�nement for Block Summarization with Caching 77

212 D. Beyer and K. Friedberger

Fig. 4. Quantile plots for CPU time of refinement approaches

Table 1. Statistics of refinement approaches of BAM

Predicate Analysis Value Analysis

In-place Copy-on-write In-place Copy-on-write

Found proofs 2149 2121 2352 2352

Found bugs 425 422 322 322

Incorrectly found proofs 2 2 0 0

Incorrectly found bugs 0 0 2 2

Solved by only one approach 40 9 4 4

Avg. no. of refinements 53.7 19.4 8.21 8.35

78 A. Manuscripts

In-Place vs. Copy-on-Write CEGAR Refinement for Block Summarization 213

Fig. 5. Comparison of in-place and copy-on-write refinement approach for predicate
analysis and value analysis

programs. While it seems clear that the concepts and results can be transferred to
other verification tasks, such a claim is not backed up by our experiments. Besides
the internal structure of a verification task, there are other factors that influence
the behavior of an analysis. Thus, the external validity of the experiments regard-
ing the application of refinements and precision updates is increased by the large
number of experiments on different tasks. The chosen time limit of 15 min and
memory limit of 15 GB for verifying a given task is inspired by the research com-
munity on software verification (cf. one of the reports on the International Com-
petition on Software Verification [5]). Of course, the evaluation of our approach
depends on the tool where it is implemented. To our knowledge, there is no other
tool directly implementing the approach of BAM.

7 Conclusion

We developed a new approach for CEGAR-based refinement of block summaries
that is based on copy-on-write. The new approach makes it possible to construct
an abstract reachability graph without holes, such that at the end of the program
analysis, a complete proof is available to the user. The proof can be dumped for
inspection, or a correctness witness can be extracted from the proof. We designed
and implemented the copy-on-write refinement and provide a ready-to-use imple-
mentation in the framework CPAchecker. Re-using existing underlying analy-
ses is possible without any further development overhead. The experimental com-
parison showed that there is almost no performance overhead for copy-on-write.
Furthermore, the experimental comparison of the existing in-place with the new
copy-on-write refinement strategy revealed interesting insights into some aspects
of block summarization. In the future, we plan to design a parallel version of BAM
to utilize a network of computers for our domain-independent analysis technique
(cf. Swarm [21]): The new immutable block abstractions might also be beneficial
in the context of resource-intensive communication between nodes of a computer
network.

In-Place vs. Copy-on-Write CEGAR Re�nement for Block Summarization with Caching 79

214 D. Beyer and K. Friedberger

References

1. Andrianov, P., Friedberger, K., Mandrykin, M.U., Mutilin, V.S., Volkov, A.:
CPABAM-BnB: Block-abstraction memoization and region-based memory mod-
els for predicate abstractions. In: Proc. TACAS. LNCS, vol. 10206, pp. 355–359.
Springer (2017)

2. Andrianov, P., Mutilin, V.S., Mandrykin, M.U., Vasilyev, A.: CPA-BAM-Slicing:
Block-abstraction memoization and slicing with region-based dependency analy-
sis (competition contribution). In: Proc. TACAS. LNCS, vol. 10806, pp. 427–431.
Springer (2018)

3. Ball, T., Rajamani, S.K.: Bebop: A symbolic model checker for boolean programs.
In: Proc. SPIN. LNCS, vol. 1885, pp. 113–130. Springer (2000)

4. Ball, T., Rajamani, S.K.: The Slam project: Debugging system software via static
analysis. In: Proc. POPL, pp. 1–3. ACM (2002)

5. Beyer, D.: Software verification with validation of results (Report on SV-COMP
2017). In: Proc. TACAS. LNCS, vol. 10206, pp. 331–349. Springer (2017)

6. Beyer, D., Dangl, M., Dietsch, D., Heizmann, M.: Correctness witnesses: Exchang-
ing verification results between verifiers. In: Proc. FSE, pp. 326–337. ACM (2016)

7. Beyer, D., Friedberger, K.: Domain-independent multi-threaded software model
checking. In: Proc. ASE, pp. 634–644. ACM (2018)

8. Beyer, D., Henzinger, T.A., Jhala, R., Majumdar, R.: The software model checker
Blast. Int. J. Softw. Tools Technol. Transfer 9(5–6), 505–525 (2007)

9. Beyer, D., Henzinger, T.A., Théoduloz, G.: Program analysis with dynamic preci-
sion adjustment. In: Proc. ASE, pp. 29–38. IEEE (2008)

10. Beyer, D., Keremoglu, M.E.: CPAchecker: A tool for configurable software veri-
fication. In: Proc. CAV. LNCS, vol. 6806, pp. 184–190. Springer (2011)

11. Beyer, D., Keremoglu, M.E., Wendler, P.: Predicate abstraction with adjustable-
block encoding. In: Proc. FMCAD, pp. 189–197. FMCAD (2010)

12. Beyer, D., Löwe, S.: Explicit-state software model checking based on CEGAR and
interpolation. In: Proc. FASE. LNCS, vol. 7793, pp. 146–162. Springer (2013)

13. Beyer, D., Löwe, S., Wendler, P.: Refinement selection. In: Proc. SPIN. LNCS, vol.
9232, pp. 20–38. Springer (2015)

14. Chaki, S., Clarke, E.M., Groce, A., Jha, S., Veith, H.: Modular verification of soft-
ware components in C. IEEE Trans. Softw. Eng. 30(6), 388–402 (2004)

15. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement for symbolic model checking. J. ACM 50(5), 752–794 (2003)

16. Clarke, E.M., Kröning, D., Sharygina, N., Yorav, K.: SatAbs: SAT-based predicate
abstraction for ANSI-C. In: Proc. TACAS. LNCS, vol. 3440, pp. 570–574. Springer
(2005)

17. Friedberger, K.: CPA-BAM: Block-abstraction memoization with value analysis
and predicate analysis. In: Proc. TACAS. LNCS, vol. 9636, pp. 912–915. Springer
(2016)

18. Henzinger, T.A., Jhala, R., Majumdar, R.: Race checking by context inference. In:
Proc. PLDI, pp. 1–13. ACM (2004)

19. Henzinger, T.A., Jhala, R., Majumdar, R., Sutre, G.: Lazy abstraction. In: Proc.
POPL, pp. 58–70. ACM (2002)

20. Hoare, C.A.R.: Procedures and parameters: An axiomatic approach. In: Symposium
on Semantics of Algorithmic Languages, pp. 102–116. Springer (1971)

21. Holzmann, G.J., Joshi, R., Groce, A.: Tackling large verification problems with the
Swarm tool. In: Proc. SPIN 2008. LNCS, vol. 5156, pp. 134–143. Springer (2008)

80 A. Manuscripts

In-Place vs. Copy-on-Write CEGAR Refinement for Block Summarization 215

22. McConnell, R.M., Mehlhorn, K., Näher, S., Schweitzer, P.: Certifying algorithms.
Comput. Sci. Rev. 5(2), 119–161 (2011)

23. McMillan, K.L.: Lazy abstraction with interpolants. In: Proc. CAV. LNCS, vol.
4144, pp. 123–136. Springer (2006)

24. Reps, T.W.: Program analysis via graph reachability. In: Proc. ILPS, pp. 5–19. MIT
(1997)

25. Sery, O., Fedyukovich, G., Sharygina, N.: Funfrog: Bounded model checking with
interpolation-based function summarization. In: Proc. ATVA. LNCS, vol. 7561, pp.
203–207. Springer (2012)

26. Sery, O., Fedyukovich, G., Sharygina, N.: Interpolation-based function summaries
in bounded model checking. In: Proc. HVC. LNCS, vol. 7261, pp. 160–175. Springer
(2012)

27. Wonisch, D., Wehrheim, H.: Predicate analysis with block-abstraction memoization.
In: Proc. ICFEM. LNCS, vol. 7635, pp. 332–347. Springer (2012)

28. Xie, Y., Aiken, A.: Saturn: A scalable framework for error detection using boolean
satisfiability. TOPLAS 29(3), 16 (2007)

In-Place vs. Copy-on-Write CEGAR Re�nement for Block Summarization with Caching 81

Domain-Independent Interprocedural Program Analysis
using Block-Abstraction Memoization
Dirk Beyer

LMU Munich, Germany
Karlheinz Friedberger
LMU Munich, Germany

ABSTRACT
Whenever a new software-verification technique is developed, ad-
ditional effort is necessary to extend the new program analysis to
an interprocedural one, such that it supports recursive procedures.
We would like to reduce that additional effort. Our contribution
is an approach to extend an existing analysis in a modular and
domain-independent way to an interprocedural analysis without
large changes: We present interprocedural block-abstraction memo-
ization (BAM), which is a technique for procedure summarization to
analyze (recursive) procedures. For recursive programs, a fix-point
algorithm terminates the recursion if every procedure is sufficiently
unrolled and summarized to cover the abstract state space.

BAM Interprocedural works for data-flow analysis and for model
checking, and is independent from the underlying abstract domain.
To witness that our interprocedural analysis is generic and config-
urable, we defined and evaluated the approach for three completely
different abstract domains: predicate abstraction, explicit values,
and intervals. The interprocedural BAM-based analysis is imple-
mented in the open-source verification framework CPAchecker. The
evaluation shows that the overhead for modularity and domain-
independence is not prohibitively large and the analysis is still
competitive with other state-of-the-art software-verification tools.

CCS CONCEPTS
· Software and its engineering → Formal methods; Formal
software verification; · Theory of computation → Program
verification; Verification by model checking.

KEYWORDS
Software Verification, Interprocedural ProgramAnalysis, Recursive
C Program, Block Abstraction, Procedure Summary

ACM Reference Format:
Dirk Beyer and Karlheinz Friedberger. 2020. Domain-Independent Interpro-
cedural Program Analysis using Block-Abstraction Memoization. In Proceed-
ings of the 28th ACM Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering (ESEC/FSE ’20), No-
vember 8ś13, 2020, Virtual Event, USA. ACM, New York, NY, USA, 13 pages.
https://doi.org/10.1145/3368089.3409718

Funded in part by Deutsche Forschungsgemeinschaft (DFG) ś 378803395 (ConVeY).
A reproduction package is available on Zenodo [11].

ESEC/FSE ’20, November 8ś13, 2020, Virtual Event, USA
© 2020 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-7043-1/20/11.
https://doi.org/10.1145/3368089.3409718

1 INTRODUCTION
Software verification has been successfully applied to improve the
quality and reliability of computer programs [2, 3, 19, 22, 28, 30, 40].
In the last decades, several algorithms and approaches were de-
veloped to perform software model checking for various kinds of
C programs. However, only a few verifiers for C support full inter-
procedural analysis, that is, verification of recursive programs: Only
13 out of 22 tool submissions (17 different tools) in the 2020 com-
petition on software verification [5] participated successfully in
the benchmark category of recursive tasks.

A program analysis is called interprocedural if procedures are
analyzed separately and verification results are merged together
from the separate results. The idea is that a program analysis does
not depend on long traces through the program, but analyzes pro-
cedures independently from each other, such that the result of a
procedure’s analysis can be used at all call sites with the same con-
text (e. g., with the same abstract arguments). Many verifiers inline
called procedures into the calling procedure and verify long traces
through a program without any benefit from a modular approach.
This not only hinders the reuse of sub-results of the analysis, but
also makes it impossible to verify unbounded recursive programs.

We present BAM Interprocedural, a generalization of summary-
based interprocedural analysis. The abstract framework is an ex-
tension of block-abstraction memoization (BAM) [9, 57] and is
currently used to verify reachability properties about programs.

Example. We outline how to prove the correctness of the example
program in Fig. 1 (illustrated in Fig. 2), which uses two unsigned in-
teger variables a and b, and nondeterministically initializes them as
input for the recursive procedure sum, which returns the sum of its
arguments. The program is deemed correct if error () is not called.

This program can not be verified by a default bounded model
checker that iteratively unrolls the recursion, because the number
of unrollings is unknown. However, using a procedure summary
like ret =m + n, wherem and n are the parameters of procedure
sum and ret is the return value of the procedure call, would help
with the verification. This summary is a valid abstraction for the
control-flow for every call of the procedure sum and can be applied
as a substitution for the initial call in proceduremain as well as
for the recursive call in procedure sum itself. For a fully automated
analysis, the verification algorithmmust come up with this (or some
similar) summary and apply it as part of the proof strategy.

This example program requires an abstract domain that tracks re-
lations between variables. Thus, a standard predicate analysis (such
as in Sect. 4) is able to infer such predicates (e. g., via CEGAR [27]
and interpolation [43]) and can soundly apply procedure summaries
for all call-sites of a procedure. In general, our approach works on
a domain-independent level and does not depend on SMT-based
summaries. The combination of procedure summaries with a fixed-
point algorithm computes an over-approximation of the reachable

50

This work is licensed under a Creative Commons Attribution International 4.0 License.

Domain-Independent Interprocedural Program Analysis using Block-Abstraction Memoization 83

https://www.acm.org/publications/policies/artifact-review-badging
https://doi.org/10.1145/3368089.3409718
https://gepris.dfg.de/gepris/projekt/378803395
https://doi.org/10.1145/3368089.3409718
https://creativecommons.org/licenses/by/4.0/

ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA Dirk Beyer and Karlheinz Friedberger

1 void main(void) {
2 uint a = nondet();
3 uint b = nondet();
4 uint s = sum(a, b);
5 if (s != a + b) {
6 error();
7 }
8 }
9

10 uint sum(uint n, uint m) {
11 if (n == 0) {
12 return m;
13 } else {
14 uint tmp = sum(n - 1, m + 1);
15 return tmp;
16 }
17 }

Figure 1: Example program with a recursive procedure sum

2

3

4

5

6 error 7

a = nondet()

b = nondet()

s = sum(a,b)

[s , a + b] [s = a + b]

11

12 14

15

16

[n = 0] ![n = 0]

tmp = sum(n − 1,m + 1)
returnm

return tmp

Bsum

Bmain

call su
m

return from sum

call sum

return from sum

Figure 2: CFAs for the example program in Fig. 1, with pro-
cedure blocks Bmain and Bsum

state space of the recursive procedure. The algorithm first deter-
mines a procedure summary for a single unrolling of the procedure,
i. e., for all paths through the procedure that are not traversing
the recursive call. Using the above mentioned abstract domain, the
analysis obtains a summary like ret =m +n in this first step. Then,
the algorithm applies the computed procedure summary to the
recursive call and explores longer paths through the program and
refines the procedure summary until the algorithm cannot explore
any new path. For the given example, applying this summary once
for the recursive procedure call within the procedure sum does
not change the summary of the whole procedure sum, thus it is
sufficient to reach a fixed-point and the analysis can terminate.

Contribution. Our contribution consists of three parts:
(1) We present a domain-independent approach of BAM [57]

for a fully interprocedural analysis: every procedure is analyzed
separately and the result of a procedure’s analysis (an abstraction of
the procedure, also known as łprocedure summaryž) is integrated
in the analysis of the calling context.

(2) A program might contain unbounded recursion (e. g., the re-
cursion depth is depending on unknown input). Instead of just
cutting off program traces at a predefined depth, our analysis ter-
minates the unrolling of a recursive procedure in a sound way once

a fixed point is reached, and does not omit feasible error paths. The
fixed-point algorithm iteratively increments the unrolling of the
recursion until no new abstract state is reachable. The algorithm
is domain-independent, because only coverage checks for abstract
states are used, which are already provided by each abstract domain.
The overhead is negligible for non-recursive programs.

(3) We formally define an additional domain-specific operator
rebuild in the framework, such that recursive procedures can be
handled in every domain. This operator restores eliminated infor-
mation of the calling context after leaving a recursive call.

Related Work. As programs with (recursive) procedures have
been analyzed and also verified since decades, many ideas are al-
ready available and implemented in some tools. We give a short
overview of the tools and the domains they are based on.
Inlining-Based Analysis. A common approach to analyze proce-
dures in bounded model checking is to unroll them up to a certain
limit and ignore any deeper recursive calls. Tools like Cbmc [29],
Esbmc [36], and Smack [47] implement this approach, which leads
to an unsound analysis in combination with recursive procedure
calls, because there is no guarantee that the bug is unreachable
through further unrolling. Without the user specifying a bound, the
model checker might run into an endless unrolling of the recursion.
Constant propagation (like in Cbmc) or additional checks can avoid
too far unrolling of recursive procedures. Also unbounded frame-
works like CPAchecker [15] have several analyses based on different
domains [16, 17, 46] that inline procedure calls. Our approach is
built on top of them and reuses existing components, such that the
amount of changes to a single analysis is minimal.
Interpolation-Based Summaries. Some approaches to verify re-
cursive programs start with a the analysis of single procedures
and compute procedure summaries when applying nested func-
tion calls. The bounded model checker FunFrog [53, 54] generates
interpolation-based [33] procedure summaries to avoid the repeated
analysis of procedures. Whale [1] is an extension of Impact [44] and
analyzes recursive procedures using two types of formulas in its
intra-procedural analysis, namely state- and transition-interpolants,
to get summaries. Those approaches separately analyze each pro-
cedure until a fixed-point is reached and the procedures (or the
representing formulas) are sufficiently refined. UAutomizer uses
nested interpolants [38] to compute formulas for procedures de-
pending on the caller’s context. Those approaches are bound to
an SMT-based domain and the algorithms do not support combi-
nations with other domains.
Further Domain-Specific Interprocedural Analyses. Bebop [4]
computes procedure summaries for boolean programs. The applica-
tion of Bebop however is limited to boolean programs and abstract
states are described with binary decision diagrams. Abductor [23] is
an interprocedural program verifier that applies the domain of sepa-
ration logic to provememory-related safety properties. Additionally,
a recursive program can be transformed into a non-recursive one,
such that any verification tool without direct support for recur-
sion can be used indirectly to analyze the recursive program. For
example, CPArec [26] is a light-weight approach using an external
black-box verifier and a fixed-point algorithm that increments the
unrolling depth to compute procedure summaries until coverage is
reached. This approach is limited to predicate-based verifiers.

51

84 A. Manuscripts

Domain-Independent Interprocedural Program Analysis using Block-Abstraction Memoization ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA

Interprocedural Data-Flow Analysis. The above examples are
based on symbolic analysis, i. e., depending on BDD-, SAT-, or SMT-
based domains, while our proposed approach works for classic data-
flow domains as well. Since many years, programs were analyzed
in interprocedural manner using several lattice-based domains [31,
50] and with procedure summaries [55]. The classic approach to
interprocedural data-flow analysis [21, 41, 48] is restricted to finite-
height lattices of domain elements and an operator yielding the
join of two domain elements.

BAM Interprocedural works for arbitrary, unlimited abstract
domains and different operators for combining elements (depending
on the represented data, not only join) or coverage checks for
elements (domain-specific comparison).

2 BACKGROUND
We describe the program representation as a control-flow automa-
ton and domain-independent reachability analysis based on the
concept of configurable program analysis. Afterwards, their appli-
cation as components in an interprocedural analysis is shown.

2.1 Programs
A program is represented by a control-flow automata (CFA) A =
(L, l0,G) that consists of a set L of program locations, an initial
program location l0 ∈ L, and a setG ⊆ L×Ops ×L of control-flow
edges. An edge models the control-flow operation (from Ops) be-
tween program locations, for example assignments or assumptions.
Figure 2 represents the example program as CFAs. Our presentation
uses a simple imperative programming language, which allows only
assignments, assume operations, procedure calls and returns, and
all variables are integers. The implementation of our tool provides
basic support for heap-related data-structures including pointers
and arrays, but this article avoids them for simplicity. In general,
CPAchecker [15] supports the verification of C programs including
pointers and arrays. However, the analysis of recursive procedures
for such programs is still under development and a topic of research.

2.2 Blocks in a Program
Blocks are formally defined as parts of a program: A block B =
(L′,G ′) of a CFA A = (L, l0,G) consists of a set L′ ⊆ L of
program locations and a set G ′ = {(l1,op, l2) ∈ G | l1, l2 ∈ L′}
of control-flow edges. We assume that two blocks B and
B′ are either disjoint (B.L′ ∩ B′.L′ = ∅) or one block is
completely nested in the other block (B.L′ ⊂ B′.L′). Each
block has input and output locations, which are defined as
In(B) = {l∈L′ | (∃l ′:(l ′, ·, l)∈G ∧ l ′<L′) ∨ (∄l ′:(l ′, ·, l)∈G)} and
Out(B) = {l∈L′ | (∃l ′:(l , ·, l ′)∈G ∧ l ′<L′) ∨ (∄l ′:(l , ·, l ′)∈G)}, re-
spectively. In general, the block size can be freely chosen in our
approach. For an interprocedural analysis, we use procedures as
blocks, such that a block abstraction represents a procedure sum-
mary. In Fig. 2, the blocks Bmain and Bsum represent the two pro-
cedures of the program. The input and output locations are marked
in color for each block.

2.3 CPA and CPA Algorithm
The reachability analysis is based on the concept of configurable
program analysis (CPA) [13], which specifies the abstract domain
for a program analysis and additional operations.

A CPA D = (D,{,merge, stop) consists of an abstract do-
main D, a transfer relation{, and the operators merge and stop.
The abstract domain D = (C, E, [[·]]) consists of a set C of concrete
states, a semi-lattice E = (E,⊑) over a set E of abstract-domain
elements (i. e., abstract states) and a partial order ⊑ (the join ⊔ of
two elements and the join ⊤ of all elements are unique), and a con-
cretization function [[·]] : E → 2C that maps each abstract-domain
element to the represented set of concrete states. The transfer rela-
tion{⊆ E × E computes abstract successor states, a transfer rela-
tion

д
{ matches the transfer along an edge д ∈ G of the CFA. The

merge operator merge : E × E → E specifies if and how to merge
two abstract states when control flow meets. The stop operator
stop : E × 2E → B determines whether an abstract state is covered
by a given set of abstract states. The operators merge and stop can
be chosen appropriately to influence the abstraction level of the
analysis. Common choices includemergesep (e, e ′) = e ′ (which does
not merge abstract states) and stopsep (e,R) = (∃e ′ ∈ R : e ⊑ e ′)
(which determines coverage by checking whether the given ab-
stract state is less than or equal to any other reachable abstract
state according to the semi-lattice).

Given a CPA, we can apply a reachability algorithm (denoted
as CPA algorithm in [13]) that explores the abstract state space
of a program and computes all reachable abstract states. The stop
operator determines the fixed-point criteria, i. e., whether a state
has already been discovered before. For the following description,
we consider a reachability analysisCPA(D, reached,waitlist) using
a CPAD and two sets reached andwaitlist of abstract states as input
and returning two sets reached′ andwaitlist′ of abstract states. The
idea is that starting with the given sets of already reached abstract
states and a frontier waitlist, the reachability algorithm computes
more reachable successors and a new frontier waitlist.

The CPA algorithm can be used as component in a CEGAR-based
fixed-point loop [27] to refine the granularity of the current analysis.
For simplicity we ignore the precision in this article.

In the following Sect. 3, we describe our interprocedural exten-
sion of block-abstraction memoization, and then in Sect. 4 pro-
vide an application of the concept to three separate domains: the
Callstack-CPA for tracking a call stack of the program, the Value-
CPA for tracking variable assignments explicitly, and the Predicate-
CPA for handling variable assignments with predicates.

3 BAM FOR INTERPROCEDURAL ANALYSIS
Block-Abstraction Memoization (BAM) [57] is a modular and scal-
able approach for model checking abstract state spaces by leverag-
ing the idea of divide and conquer. BAM divides a large program
into smaller parts, named blocks, and analyzes them separately.
The result of a block’s analysis is denoted as a block abstraction.
Block abstractions are stored in a cache. Whenever a larger block
depends on a nested block, a block abstraction of the nested block
is created during the larger block’s analysis. Block abstractions are
independent of a concrete domain and work on an abstract level.

52

Domain-Independent Interprocedural Program Analysis using Block-Abstraction Memoization 85

ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA Dirk Beyer and Karlheinz Friedberger

There can be several block abstractions for the same block, e. g.,
depending on different input values of the block.

In the following, we use procedures as blocks. More precisely,
a procedure block Bf consists of the procedure f itself and all pro-
cedures that are (transitively) called from f , such that the whole
control-flow of nested blocks, including call and return edges, is
included in the block Bf (see Fig. 2).

BAM ensures efficiency by using a cache cache ⊆ (Blocks×E) →
(2E×2E) for block abstractions, whichmaps the initial abstract state
for a block to the block abstraction. The block abstraction is defined
as the set of reached abstract states and the set of frontier abstract
states, which both are computed during the block’s analysis.

BAM is defined recursively (independent of any recursion in the
analyzed program) and repeatedly (nestedly) applies the reacha-
bility analysis. Our implementation of BAM uses a stack of pairs
p ∈ Blocks × E that consists of all currently open analyses ref-
erenced by their block of the CFA to be analyzed and an initial
abstract state (starting point of the block abstraction).

This section defines BAM Interprocedural. We show that pro-
cedure blocks correspond to procedure summaries, describe the
problems of analyzing recursive procedures, the necessity of the
fixed-point algorithm, and a new operator rebuild.

3.1 Operators of BAM
BAM uses two complementing operators reduce ⊆ Blocks ×E → E
and expand ⊆ Blocks × E × E → E, and an additional operator
rebuild ⊆ E × E × E → E, to drop or restore context-based infor-
mation for each analyzed block. A CPA with these three additional
operators is called CPAwith BAM operators. On an abstract level, the
reduce operator performs an abstraction of the given abstract state
and the expand operator concretizes an abstract state for a given
context. These operators aim towards an interprocedural analysis
where each block can be analyzed without knowing its concrete
context. How much of this context-independence can be achieved
depends on the concrete domain (see Sect. 4 for more details). The
implicit benefit of the first two operators is an improvement of the
cache-hit-rate. The operator reduce drops unimportant informa-
tion from an abstract state when entering a block. The resulting
abstract state is more abstract and is used as cache key and as ini-
tial abstract state for the block’s analysis. The importance of some
information depends on the wrapped analysis and the available
block. For example, variables, predicates, or levels of the call stack
that are not accessed inside the entered block, but only depend on
the surrounding context, might be good candidates to be removed
from the abstract state. The operator expand restores removed in-
formation for abstract states when applying the block abstraction in
the surrounding context. The operator rebuild avoids collisions of
program identifiers (like variables) when returning from a (possibly
recursive) procedure scope into its calling context. This operator
does not compute an abstraction, but performs simple operations
depending on the given abstract domain such as renaming variables,
substituting predicates, or updating indices.

With these operators, we now formally define the CPA for BAM.

Algorithm 1 fixedPoint(Bmain , l0, e0)
Input: block Bmain with initial program location l0, abstract state e0
Output: set of reachable states, which all represent output states

of the block Bmain
Global Variables: boolean flag fixedpointReached

Variables: set blockResult of abstract states
1: repeat
2: fixedpointReached := true ;
3: blockResult := applyBlockAbstraction(Bmain, e0);
4: until fixedpointReached

5: return blockResult;

3.2 BAM as CPA
For usage with the CPA concept (see Sect. 2.3), BAM itself is for-
malized as a CPA BAM = (DBAM,{BAM,mergeBAM, stopBAM).
As BAM works on an abstract, domain-independent level, it re-
quires a separate abstract-domain-dependent analysis (like the
value analysis or predicate analysis) to track variables, values, and
assignments. This separate component analysis is also defined via
the CPA concept (see Sect. 4). For the following definition we
denote it as a general (wrapped) CPA with BAM operators W =
(DW,{W,mergeW, stopW, reduceW, expandW, rebuildW).

(1) The domain DBAM is the wrapped domain DW, i. e., BAM
simply uses the abstract states of the underlying domain.

(2) The transfer relation includes the transfer e {BAM e ′ for
two abstract states e and e ′ and a block B if

e ′ ∈

fixedPoint(Bmain , l , e) if l = l0 and stack = []
applyBlockAbstraction(B, e) if l ∈ In(B)
{e ′′ | e {W e ′′} if l < Out(B)

where l is the program location for e and stack is the internal
stack of nested blocks during the analysis.
The transfer relation applies one of three possible steps:
(1) The fixed-point algorithm Alg. 1 is executed if the current
program location is the initial program location l0 and the
stack is empty. (2) At an input location of a block B, i. e., if
a new nested block would be entered from a surrounding
context, we apply the block abstraction returned from the
operation applyBlockAbstraction (cf. Alg. 2) for the nested
block. (3) For output locations of blocks, there is no succeed-
ing abstract state (in the sub-analysis). For other program
locations, the wrapped transfer relation{W is applied.

(3) The merge operator mergeBAM = mergeW delegates to the
wrapped analysis, i. e., BAM merges whenever the underly-
ing domain merges abstract states.

(4) The termination check stopBAM = stopW delegates to the
wrapped analysis, i. e., the coverage relation between abstract
states depends on the underlying domain.

The transfer relation{BAM uses the fixed-point algorithm and
the computation of block abstractions as explained in the next
subsections.

53

86 A. Manuscripts

Domain-Independent Interprocedural Program Analysis using Block-Abstraction Memoization ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA

Algorithm 2 applyBlockAbstraction(B, eI)
Input: abstract state eI at a block input location of a block B
Output: abstract states for the output locations of the analyzed block B
Global Variables: boolean flag fixedpointReached,

set cache mapping a block and an abstract state to a
block abstraction,

sequence stack consisting of pairs of a procedure block
and an abstract state

Variables: sets reached and waitlist of abstract states
for the analysis of the current block

1: ei := reduceW(B, eI);
2: if ∃(B, ec) ∈ stack : ei ⊑ ec then
3: if cache contains (B, ec) then
4: (reached, ·) := cache(B, ec);
5: else
6: reached := {}
7: fixedpointReached := false ;
8: else
9: if cache contains (B, ei) then
10: (reached, waitlist) := cache(B, ei)
11: else
12: reached := {ei }; waitlistr := {ei }
13: stack.push((B, ei));
14: (reached, waitlist) := CPA(W, reached, waitlist)
15: stack.pop();
16: if cache contains (B, ei) then
17: (reachedold , ·) := cache(B, ei);
18: for e ∈ reached do
19: if loc(e) ∈ Out (B) ∧ ∄e′ ∈ reachedold : e ⊑ e′ then
20: fixedpointReached := false ;
21: cache(B, ei) := (reached, waitlist)
22: ecall := getPredecessor(eI);
23: tmp := {expandW(B, eI , eo) | eo ∈ reached ∧ loc(eo) ∈ Out (B)}
24: return {rebuildW(ecall , eI , eO) | eO ∈ tmp};

3.3 Fixed-Point Algorithm for Unbounded
Recursion

An analysis of recursive procedures must handle a possibly un-
bounded unrolling of the call stack if the information of an ab-
stract state is insufficient to avoid deeper exploration and can
not cut off the state space. In our approach, the fixed-point al-
gorithm (fixedPoint, Alg. 1) repeatedly analyzes the program using
applyBlockAbstraction (Alg. 2) from the initial program location on-
wards. It iteratively increments the number of unrollings and termi-
nates only if coverage was reached for all analyzed procedure calls.

In each iteration of the fixed-point algorithm, we generate an
overapproximation of some (more) paths through the recursive
procedure (because of the limited unrolling of the recursion) and
determine a summary for the currently analyzed procedure block.
The termination is decided by a coverage check for the abstract
states of the analyzed block summary.

The first iteration of the fixed-point algorithm assumes no valid
path through the recursive call. We only explore the non-recursive
parts of the program’s control flow and skip the recursive call
of the procedure. Depending on the abstract domain, the initial
summary for the recursive procedure is an empty set of abstract
states (Alg. 2, line 6). The block abstraction of a procedure is stored
in the cache after returning from the procedure call (Alg. 2, line 21).

{P}b = f (a){Q} ⊢ {P ∧ p = a}Bf {Q ∧ p = a ∧ b = r }
{P}b = f (a){Q}

Figure 3: Hoare’s rule for recursion, for a given procedure
definition f (p) {Bf ; return r ; }

{[[Pe]]}b = f (a){[[Qe]]} ⊢ {[[Pe]]}Bf {[[Qe]]}
{[[Pe]]}b = f (a){[[Qe]]}

Figure 4: Hoare’s rule for recursion (with abstract states)

In further iterations, we increment the limit of unrollings of the
recursive procedure and refine the block abstraction, analyze the
program again, starting from the initial program location (and using
several intermediate results from the cache), until the procedure
summary becomes stable.

3.4 Soundness of BAM for Recursion
The fixed-point criteria are based on Hoare’s rule for recursion
(Fig. 3): if the body of a procedure f satisfies the pre- and post-
conditions P andQ (including parameter passing and return values)
under the condition that all recursive calls to the procedure f
satisfy P and Q , then the whole procedure f satisfies P and Q .
Translated into our model, we use (concretizations of) abstract
states as pre- and post-conditions of statements, the procedure and
its body corresponds to the procedure’s block; Fig. 4 shows the
resulting rule. The renaming (or an equivalent operation) of equal
identifiers from the recursive call of f , which appear in the calling
and called procedure f , is shifted into a different part of the analysis
(see Sect. 3.5 on operator rebuild) and is handled in a sound way.

To determine the fixed-point criteria for termination, Alg. 2
checks the following two properties during the analysis.

Firstly, we try to stop the unrolling of an unbounded recursive
procedure by an over-approximating analysis. Thus, before analyz-
ing a new recursive procedure call, we check whether the abstract
state at a procedure entry is already covered by any abstract state
from the current stack (Alg. 2, line 2). If such a covering abstract
state exists, we skip the recursive call and use a procedure summary
instead of further exploring the recursive call (Alg. 2, line 3 to 7).
The procedure summary consists of either previously computed
abstract successor states from the BAM cache or (in case of a cache
miss) no successor states at all.

Secondly, because a procedure summary represents only a
bounded execution of the called procedure, this approach alone
represents only a subset of possible traces in the procedure and
might be unsound in cases that require deeper unrolling. To deter-
mine if the inserted procedure summaries are sufficient for Hoare’s
rule of Fig. 4, we check for coverage of the exit state (of the proce-
dure executed with the inserted procedure summary) against the
previously computed abstract states (of the procedure summary).
This check is performed in lines 18 to 20 of Alg. 2. If the coverage
relation is satisfied (for all procedures in the program), then the
fixed-point algorithm terminates, because fixedpointReached was
never set to false during the iteration. In this case we have found a
sound over-approximation of the recursive procedure. Otherwise
the fixed-point algorithm continues.

54

Domain-Independent Interprocedural Program Analysis using Block-Abstraction Memoization 87

ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA Dirk Beyer and Karlheinz Friedberger

3.5 Block-Abstraction Computation with
Operators

The operation applyBlockAbstraction (cf. Alg. 2) starts with the re-
duction reduceW(B, eI) of initial abstract state eI and determines
the block abstraction for a block B. The block abstraction is either
taken from the cache or computed via a separate application of the
reachability algorithm (i. e., CPA algorithm). To integrate the block
abstraction into a surrounding context, the operators expandW and
rebuildW are applied to each abstract state at the block’s output loca-
tion (lines 23 and 24). The operators reduce and expand abstract or
concretize the given abstract state and aim to increase the cache-hit
rate of BAM. For an interprocedural approach, they remove and re-
store (most of) the context-based information of a procedure block.

While the fixed-point algorithm handles over-approximations
and refinements of block abstractions, an interesting detail of the
implementation remains open: How can we identify and work
with symbols, i. e., variable identifiers, across procedure scopes?
Identical identifiers for program variables of the same procedure
scope are problematic for the analysis of recursive procedures. Due
to the modularity of the framework CPAchecker, only a separate call-
stack analysis knows about procedure scopes and all other analyses
assume unique identifiers across all operations. BAM also tracks
information about procedures in its stack, but it does not use this
information for detailed analysis of variables and identifiers. Each
recursive procedure entry starts a new procedure scope, where the
identifiers override existing (valid) identifiers from previous call-
stack levels. Entering a procedure and overriding existing identifiers
from the calling scope is no problem, because only the most local
version of an identifier is available (and visible) in the procedure
scope. Leaving the procedure afterwards is more complex, because
identifiers are overridden during the procedure’s traversal and have
to be restored to match the calling context.

A solution like a simple renaming of identifiers is not possible,
because each domain has its own way of representing variables.
Additionally, each domain must have a strategy for handling scoped
variables that allows a consistent use of the cache in BAM.

We solve this problem by using a new operator rebuild : E × E ×
E → E, and we show how to implement it for different domains.
The operator rebuild is applied after analyzing the procedure-exit
location (Alg. 2, line 24), i. e., after leaving the block of a (maybe re-
cursive) procedure and after the application of the operator expand.
The operator rebuild maps three abstract states (information about
the calling context from the procedure call state ecall , information
about the arguments and parameters of the called procedure from
the procedure entry state eI , and information about the return value
and the block abstraction from the procedure exit state eO) to a
new abstract state that is a successor of the procedure call and a
valid starting point for the further analysis. The operator rebuild

is defined depending on the underlying analysis.

4 APPLICATION OF
BAM INTERPROCEDURAL TO
ABSTRACT DOMAINS

In this section, we describe some component program analyses
that can be used by BAM Interprocedural to compute context-
independent block abstractions. Using the framework CPAchecker,

program analyses are composed of several component CPAs. Com-
ponent CPAs are defined and implemented for tracking the program
counter, the predecessor-successor relationship of the reachability
graph, or for combining other CPAs in a composite analysis. Thus,
we do not need to specify these aspects when defining a component
analysis, but directly specify the component analyses. In the fol-
lowing, we explain an analysis for tracking the call stack and two
analyses for analyzing variables and assignments (namely value
analysis and predicate analysis).
Callstack-CPA. The CPAwith BAM operators for call-stack analysis
C = (DC,{C,mergeC, stopC, reduceC, expandC, rebuildC) explic-
itly tracks the call stack s = [f1, · · · fn] of the program, where f1
to fn denote procedure scopes for an abstract state s .

(1) The domain DC = (C, EC, [[·]]) is based on the flat semi-
lattice EC = (S ∪ {⊤},⊑) for the set S of possible call stacks.
The expression s ⊑ s ′ is fulfilled if s = s ′ or s ′ = ⊤, [[⊤]] = C .
For all s in S , we have [[s]] = {c ∈ C | callstackOf(c) = s}.

(2) The transfer relation{C has the transfer s
д
{C s ′ for CFA

edge д and abstract states s = [f1, · · · , fn−1, fn] and s ′, if

s ′ =

[f1, · · · , fn , fn+1] if д is a procedure call to fn+1
[f1, · · · , fn−1] if д is a procedure return from fn

s otherwise
(3) The merge operator mergeC = mergesep does not combine

abstract states.
(4) The termination check stopC = stopsep returns whether

the same abstract state was already reached before.
(5) The reduce operator reduceC abstracts from a concrete call

stack and keeps only the context-relevant suffix. Therefore,
it determines the maximal range of procedure scopes of the
current block, i. e., procedure scopes that can be popped from
the current call stack [f1, ..., fi , ..., fn] during an analysis of
the current block. Let the procedure scope fi be the lowest
procedure scope on the stack that is reachable during the
block’s analysis. Then, the operator keeps only the reach-
able (most local) procedure scopes from the abstract state:
reduceC(B, [f1, ..., fi , ..., fn]) = [fi , ..., fn].

(6) The expand operator expandC restores the removed part of
the call stack:
expandC([f1, ..., fi , ..., fn],B, [fi , ..., fs]) = [f1, ..., fi , ..., fs].

(7) The call-stack analysis does not track variables, but the proce-
dure scopes themselves. Thus the rebuild operator is defined
as: rebuildC(ecall , eI , eO) = eO .

Value-CPA. The CPA with BAM operators for value analysis
E = (DE,{E,mergeE, stopE, reduceE, expandE, rebuildE) explic-
itly tracks the assignments of variables. The CPA is used as de-
scribed in previous work [12, 17] and extended by BAM operators.

(1) The domain DE = (C, EE, [[·]]) is based on the semi-lattice
EC = (V ,⊑E) for the set V = (X −→◦ Z) of partial func-
tions that model abstract variable assignments for a set X
of variables and the set Z of integer values. We use v(x)
to denote the value of a variable x ∈ X for an abstract
variable assignment v ∈ V , and we use dom(v) to denote
the set of variables for which v assigns a value, that is,
dom(v) = {x | (x , ·) ∈ v}. The partial order ⊑E ⊆ V ×V is
defined as: v ⊑ v ′ if dom(v ′) ⊆ dom(v) and v(x) = v ′(x) is

55

88 A. Manuscripts

Domain-Independent Interprocedural Program Analysis using Block-Abstraction Memoization ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA

satisfied for all x ∈ dom(v ′). The top element ⊤E ∈ V (least
upper bound) denotes the abstract variable assignment with
no specific value for any variable:⊤E = {}. The join operator
⊔E : E × E → E is based on the partial order and returns
the least upper bound of its operands. The concretization
function [[·]] : V → 2C returns the meaning for an abstract
variable assignment.

(2) The transfer relation{E has the transferv
д
{E v ′ for a CFA

edge д = (·,op, ·) and two abstract variable assignments v
and v ′, if one of the following conditions is satisfied (given a
predicate p and an abstract variable assignment v , we define
ϕ(p,v) := p ∧ ∧

x ∈dom(v)
x = v(x)):

(a) op = assume(p) and predicate ϕ(p,v) is satisfiable, and
v ′ is defined as follows: (x , c) ∈ v ′ if c is the only satisfying
assignment for variable x of the predicate ϕ(p,v), or
(b) op = (w := exp) and (x , c) ∈ v ′ if either (x , w and
(x , c) ∈ v) or (x = w and c is the only satisfying assignment
for variable x ′ of the predicate ϕ(x ′ = exp,v)).

(3) The merge operator mergeE = mergesep does not combine
abstract states.

(4) The termination check stopE = stopsep returns whether a
covering abstract state was already reached before.

(5) The reduce operator reduceE only keeps abstract assign-
ments of variables that are accessed in the block’s context:
reduceE(B, eI) = {(x , c) ∈ eI | x used in B}.

(6) The expand operator expandE restores the assignments that
were removed by reduceE from the initial abstract state:
expandE(eI ,B, eo) = {(x , c) ∈ eI | x not used in B} ∪ eo .

(7) For the rebuild operator rebuildE, we define global variables
as variables declared in the global scope and the rest as lo-
cal variables, i. e., variables declared in a local procedure
scope. After leaving a (recursive) procedure call, the opera-
tor rebuildE considers local variables from the calling scope,
and global variables and the return variable 1 from the exited
procedure scope: rebuildE(ecall , eI , eO) =
{(x , c) ∈ ecall | ¬isGlobal(x) ∧ ¬isReturn(x)} ∪
{(x , c) ∈ eO | isGlobal(x) ∨ isReturn(x)}.
Because global variables can be assigned during the proce-
dure’s execution, they are not reset to their assigned value
from before the procedure’s execution; their values are taken
from the abstract state eO at the procedure’s exit location.

Note that with these definitions of reduceE and expandE, the
value analysis of a procedure block is not completely detached from
the calling context, because a block abstraction for this domain
depends on the input values of variables accessed in the block. For
procedure blocks, a block abstraction for a function call can be
taken from the BAM cache whenever the function arguments and
global variables have identical values.
Predicate-CPA. The CPA with BAM operators for predicate analy-
sis P = (DP,{P, mergeP, stopP, reduceP, expandP, rebuildP) uses
predicates to track variables and their values [8, 57]. For this analy-
sis a set P of predicates is used, which can be incrementally com-
puted in a CEGAR loop [27] that is applied on top of the CPA

1Our implementation introduces an additional variable to capture the return value,
such that we are able to reference it here as well.

algorithm. In this description, we do not go into detail on how to
determine useful predicates, but assume that the predicates are
already available, e. g., by applying an existing refinement strat-
egy [10, 16]. The refinement procedure of the predicate analysis
computes interpolants that match the structure of the procedure
blocks [38] and allow an interprocedural analysis.

For each block B, we partition the set P of predicates into two
disjoint sets PB = {p ∈ P | p relevant for B} and P¬B = P \ PB .
A predicate p ∈ P is relevant for B if it contain variables that are
accessed in the block. The partition P¬B contains the rest of P.

(1) The domain DP = (C, EP, [[·]]) is based on the set C of con-
crete states, the lattice EP = (E,⊑P), and a concretization
function [[·]] : E → C . The lattice consists of abstract states
e ∈ E that are tuples (ψ , lψ ,φ) ∈ (P × (L ∪ {l⊤}) × P).
The abstraction formulaψ is a boolean combination of pred-
icates from P and has been computed at the program lo-
cation lψ . The path formula φ represents (the disjunction
of) all paths from lψ to the abstract state e . The partial
order ⊑ ⊆ E × E is defined for any two abstract states
e1 = (ψ1, l

ψ1 ,φ1) and e2 = (ψ2, l
ψ2 ,φ2) as: e1 ⊑ e2 if

(e2 = ⊤P) ∨ ((lψ1 = lψ2) ∧ (ψ1 ∧ φ1 ⇒ ψ2 ∧ φ2)). The
top element is ⊤P = (true, l⊤, true). The join operator ⊔ :
E × E → E is based on the partial order and returns the least
upper bound of its operands.

(2) The transfer relation {P has the transfer e
д
{P e ′ for an

edge д = (·,op, l ′) and two abstract states e = (ψ , lψ ,φ) and
e ′ = (ψ ′, lψ ′

,φ ′), if

(ψ ′, lψ ′
,φ ′) =

{
(true, l ′, (SPop (φ) ∧ψ)Π) if blk(e,д)
(ψ , l ′, SPop (φ)) otherwise

,

where SPop (φ) denotes the strongest post-condition of a
given path formula φ for an operation op. The choice of
computing a boolean predicate abstraction depends on the
configurable operator blk . For our work it returns true at
least for procedure calls, procedure entries, and procedure
exits. The boolean predicate abstraction (·)Π computes the
strongest boolean combination of predicates from P.

(3) The merge operator mergeP : E × E → E combines the two
abstract states e1 = (ψ1, l

ψ1 ,φ1) and e2 = (ψ2, l
ψ2 ,φ2) ac-

cording to their last abstraction computation:merge(e1, e2) ={
(ψ2, l

ψ2 ,φ1 ∨ φ2) if (ψ1 = ψ2) ∧ (lψ1 = lψ2)
e2 otherwise

(4) The termination check stopP = stopsep returns whether a
covering abstract state was already reached before.

(5) For an abstract state eI = (ψI , lψI , true) at a block entry, the
operator reduceP computes the set P¬B := {p1, ...,pi } of
predicates that are irrelevant for the block abstraction and
removes them from the abstraction formula:
reduceP(B, eI) = ((∃p1, ...,pi : ψI), lψI , true). 2

(6) The operator expandP reverts the operation reduceP, it com-
putes the set PB := {pi+1, ...,pn } of predicates, and restores
the full set of predicates P = P¬B ∪ PB for an output state
eo = (ψo , lψo , true) as follows: The abstraction formula ψo

2We represent the abstraction formula ψ in a way that makes it easy to remove
elements from P in an atomic way from an abstraction formula. (We representψ as a
binary decision diagram (BDD) whose boolean variables represent predicates from P .)

56

Domain-Independent Interprocedural Program Analysis using Block-Abstraction Memoization 89

ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA Dirk Beyer and Karlheinz Friedberger

is extended by the remaining part of the initial abstraction
formulaψI :
expandP(eI ,B, eo) = ((∃pi+1, ...,pn : ψI) ∧ψo , lψo , true).

(7) The operator rebuildP is based on the procedure-call state
ecall = (ψcall , lψcall , true), the (not reduced) procedure-
entry state eI = (ψI , lψI , true), and the expanded procedure-
exit state eO = (ψO , lψO , true). The path formulaφcall repre-
sents the CFA edge that is the procedure entry edge between
the program locations of the abstract states ecall and eI and
represents the encoding of all assignments of the actual ar-
guments to the formal parameter variables. The operator
rebuildP computes the predicate abstraction for the conjunc-
tion of the abstractions before and after the procedure call
and the parameter assignment:
rebuildP(B, ecall , eI , eO) = (ψcall ∧ φcall ∧ψO)Π .

Interval-CPA. The CPA with BAM operators for interval analysis
I = (DI,{I,mergeI, stopI, reduceI, expandI, rebuildI) tracks vari-
ables and the range (interval) of their possible assigned values.
The interval analysis is similar to the value analysis, which can be
seen as a special case using intervals containing only one value.
The coverage relation between intervals is based on the inclusion
of intervals (instead of equality of values). We omit the detailed
definition here to keep the reader focused on our approach.

4.1 Soundness of Reduce and Expand Operator
for the Given Domains

For each of the described domains, the soundness criterion of the
whole interprocedural analysis is based on the soundness of the
CPA algorithm itself (which we assume as basis) as well as on the
properties of the specific operators reduce and expand. For a sound
analysis, the abstract states that would have been reached with-
out applying a block abstraction (i. e., only applying the wrapped
CPAW) need to be a subset of the states reached with an application
of the corresponding block abstraction, i. e., using block abstrac-
tions can only be less precise than a wrapped analysis, but never
cut off a reachable part of the abstract state space.

The transfer relation{BAM for an abstract state e ∈ E satisfies
the relation {e ′ ∈ E | e {W e ′} ⊆ {e ′′ ∈ E | e {BAM e ′′}.
Based on the definition of{BAM (Sect. 3.2), the interesting case
appears when applying a block abstraction. Thus, the concrete
implementation of the operators reduce and expand must satisfy
the following condition for all blocks B: {e ′ ∈ E | e {W e ′} ⊆
{expand(e,B, eo) ∈ E | reduce(B, e) {W eo }.

For the call-stack analysis, each abstract call-stack state after an
application of a block abstraction exactly matches the call-stack
state without such a block abstraction. To prove this, just extend
each call stack during the block analysis with the removed part
[f1, ..., fi−1] from the reduce operation. For the value analysis (and
based on a programming language without pointer handling), the
same proof can be applied: Removing assignments from abstract
states and restoring them later results in an abstract state that
matches the state when not applying a block abstraction computa-
tion. A detailed soundness proof for the predicate domain is given
in the literature [57]. Removing irrelevant predicates P¬B and con-
juncting those predicates when applying the block abstraction does

only make the analysis more imprecise, but does not reduce the
reachable abstract state space.

4.2 EmbeddingBAMInterprocedural inCEGAR
The framework CPAchecker defines BAM as a CPA and allows to
combine the CPA algorithmwith other algorithms, like CEGAR [27],
which allows to refine the granularity of the abstract analysis based
on information extracted from infeasible program paths. Additional
operators for the refinement step in CEGAR are also defined in
a domain-independent manner and available in the framework.
In our case, the CEGAR algorithm can wrap the CPA algorithm
and the analysis of BAM can benefit from this. Whenever BAM
finds a property violation, the reachability analysis and the fixed-
point algorithm terminates and the surrounding CEGAR algorithm
checks the error path for feasibility. If necessary, CEGAR refines
the precision, and BAM with the fixed-point algorithm is re-started
with the updated precision.

In case of the predicate analysis, the refinement procedure com-
putes tree interpolants [20, 38] according to procedure scopes, i. e.,
for each entered (and exited) procedure scope along an infeasible
error path, a new subtree for the tree interpolation problem is con-
structed. For other analyses, like value analysis, the refinement of
recursive procedures does not need special handling. In this case, a
refinement strategy for sequential error paths [17] is sufficient.

4.3 Detailed Description of the Example
In the following, we provide deeper insights for the previously given
example program (see Sect. 1) in Fig. 1, to show the control flow
of BAM with the fixed-point algorithm when using the predicate
analysis. We combine the previously defined Callstack-CPA C and
the Predicate-CPA P, i. e., the transfer relation, coverage check,
reduce, expand, and rebuild operators are applied in both domains.

Figure 5 shows the abstract states that are reached in the first
two iterations of the fixed-point algorithm, which terminates after
the second iteration. The labeling of each abstract state consists of
the program location (circled number in first line), the call stack
(second line), and the abstraction formula of the predicate anal-
ysis (third line). To keep the figure readable, we dismiss the call
stack and abstraction formula whenever there is no change in the
abstract state. Outside the upper left corner of each node, we anno-
tate ei , where index i refers to the exploration strategy and control
flow of the analysis.

The operators reduce, expand, and rebuild show their effect at
the program locations 11 and 16, which are the input and output
locations of the procedure block Bsum . For example, the operator
reduceC of the call-stack analysis removes of all procedure scopes
except the most local one from the call stack. The operator expandC
restores the whole call stack when the analysis leaves the block. The
effect of the rebuildP at program location 16will be described below.

Initialization. We assume that the initial cache and the stack of
BAM are empty and the following set of predicates is defined as
precision: P := {ret = mp + np , ret = a + b,m = mp ∧ n = np }.
The predicate analysis uses the symbolsmp , np , and ret to encode
parameter assignments at function entry and the return value. Such
predicates can be generated via an interpolation procedure from
previously found infeasible error paths in the context of CEGAR.

57

90 A. Manuscripts

Domain-Independent Interprocedural Program Analysis using Block-Abstraction Memoization ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA

Bmain

Bsum

Bsum

2
[main]
true

3

4

11
[main, sum]

true

11
[sum]
true

12 14

11
[sum, sum]

true

11
[sum]
true

cache
m
iss

16
[sum]

ret =mp + np

16
[main, sum]
ret = a + b

5

7
[main]
true

red
uce

reduce

exp
and

reb
uil
d

apply
block

abstraction

e1

e2

e3

e4

e5

e6 e7

e8 e9 e10

e11

e12

e13

coverage (1)

(a) After first iteration; cache miss leads to second iteration

Bmain

Bsum

Bsum

2
[main]
true

3

4

11
[main, sum]

true

11
[sum]
true

12 14

11
[sum, sum]

true

11
[sum]
true

16
[sum]

ret =mp + np

16
[sum, sum]
ret =m + n

cache
hit

forstate
e
5

16
[sum]

ret =mp + np

16
[main, sum]
ret = a + b

15

16
[sum]

ret =mp + np

5

7
[main]
true

red
uce

reduce

expand

rebuild

exp
and

reb
uild

apply
block

abstraction

apply
block

abstraction
e21

e22

e23

e24

e25

e26 e27

e28 e29 e30

e8e32

e33

e34

e35

e36

e37

coverage (1)
coverage (2)

(b) After second iteration; fixed point is reached

Figure 5: Graph of reached abstract states after the first two fixed-point iterations

For simple programs (like this example) they match the expected
procedure summary. In general, the analysis might need several iter-
ations of CEGAR to obtain a sufficient precision. In this example, we
concentrate on the rebuild operator. All predicates are relevant for
the block Bsum , i. e., PB = P, i. e., the reduce and expand operators
for predicate analysis will keep the abstraction formula unchanged.

First Iteration. The result of the first iteration of the fixed-point
loop is shown in Fig. 5a. The analysis starts with the initial abstract
state e1 at program location 2, entering the main block Bmain
and pushing e1 (as ei in Alg. 2) onto the BAM stack. The recursive
procedure block Bsum is analyzed for the first time at the procedure
call from program location 4 to program location 11, where BAM
starts a new sub-analysis with state e4 (as eI in Alg. 2) for the
block Bsum . The reduction removes the suffixmain of the call stack
and keeps the abstraction formula true . The abstract state e5 (as ei
in Alg. 2) is pushed onto the BAM stack. When the procedure
block Bsum is entered the second time (procedure call at program
location 14 for state e9), the reduced abstract state e10 is compared
with elements in the BAM stack. The coverage relation (Alg. 2,
line 2) is satisfied. BAM has no computed procedure summary in
the cache and returns an empty set of reachable abstract states
(line 6 of Alg. 2). The flag fixedpointReached is set to false in
line 7 of Alg. 2. The analysis continues with the exploration of
the non-recursive branch of the procedure. When leaving block
Bsum , the block’s summary is inserted into the cache, i. e., the block
abstraction from the abstract state e5 towards the abstract state e8
(as eO in Alg. 2) is stored for later usage in the BAM cache. For
the predicate analysis, the summary of the block is the abstraction
formula ret =mp + np , which describes the equality of the sum of
the two formal function parameters with the return value.

The rebuild operator rebuild(B, e3, e4, e8) restores information
from the calling context. Using the abstraction formulaψ3 := true ,
the parameter assignment from the procedure call φcall :=
(a = np ∧ b =mp), and the block summaryψ8 := (ret =mp + np),
the rebuild operator rebuildP computes (ψ3 ∧ φcall ∧ ψ8)Π =
(ret = a + b). That is, based on the given predicates for e11,Π(e11) =
{ret = a + b}, the procedure is summarized by ret = a + b, which
describes the equality of the sum of the two actual function argu-
ments with the return value. We do not describe internals of predi-
cate abstraction here, but refer to the literature [16]. No property
violation is found along the path until state e13, i. e., the branching
towards program location 6 is not satisfiable, and the fixed-point
computation continues.

Second Iteration. The initial steps of the second iteration are
similar to the first iteration. After a few steps, the stack consists
of the abstract states e21 and e25. A different control flow appears
when the analysis reaches the recursive procedure call again at state
e30, with a coverage relation for the abstract state e25 because it is
part of the BAM stack. Now we get a cache hit for the previously
computed block abstraction between state e5 and state e8 and apply
the procedure summary to skip the recursive procedure call (line 4
of Alg. 2). Using the abstraction formulaψ27 := true , the parameter
assignment from the procedure call φcall := (n = np ∧m = mp),
and the block summary ϕ8 := (ret =mp +np), the rebuild operator
rebuildP computes (ψ27 ∧ φcall ∧ ψ8)Π = (ret = m + n). When
leaving the procedure block, our approach (Alg. 2, line 19) checks
for new (not yet covered) abstract states. In this example, state
e34 is already covered by state e28, thus the fixed-point algorithm
terminates after this iteration. As the property violation at program
location 6 is not reachable, the program is verified.

58

Domain-Independent Interprocedural Program Analysis using Block-Abstraction Memoization 91

ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA Dirk Beyer and Karlheinz Friedberger

5 EXPERIMENTAL EVALUATION
We evaluate BAM Interprocedural for several domains and show
that it is competitive with existing approaches.We divide the evalua-
tion according to three claims. For both claims, we use a benchmark
set of non-recursive and recursive programs and provide the ef-
fectivity (number of solved problems) and performance (runtime)
of our implementation, using several analyses of CPAchecker and
other verification tools.

Claim I: Domain-Independence and Modularity.We claim that
our interprocedural approach is domain-independent and can be
implemented in a modular way as described in Sect. 3, such that
the development and integration overhead for an existing anal-
ysis in the framework CPAchecker is quite small. To evaluate the
claim, we apply the approach to several abstract domains, show that
the analysis works, and compare different analyses of CPAchecker
against each other.

Claim II: Effectiveness andEfficiency (Part 1).We claim that our
approachÐdespite themodular designÐ does not cause large perfor-
mance overheads in an analysis. To evaluate the claim, we compare
benchmark results against several state-of-the-art verification tools
that are able to verify programs with recursive procedures.

Claim III: Effectiveness and Efficiency (Part 2). We claim that
our approach is comparable to intraprocedural analyses within the
same framework. To evaluate the claim, we apply different analyses
to a larger set of recursive and non-recursive benchmark tasks and
compare benchmark results from our interprocedural approach
against intraprocedural analyses with and without BAM.

5.1 Benchmark Programs and Setup
Weuse verification tasks from the SV-COMP ’20 [5] benchmark set 3,
including tasks with and without recursive function calls from cate-
gories Reachsafety-Bitvectors, Reachsafety-ControlFlow, Reachsafety-
Loops, Reachsafety-ProductLines, and Reachsafety-Recursive. Most
recursive programs are generic and allow to easily scale the pro-
grams to deeper recursion; they include recursive algorithms, e. g.,
Fibonacci, Ackermann, Towers of Hanoi, and McCarthy91. The
non-recursive programs use integer arithmetics and avoid heap-
related data-structures.

All experiments were performed on machines with a 3.4GHz
Quad Core CPU and 33GB of RAM. The operating system was
Ubuntu 20.04 (64 bit) with Linux 5.4.0. A CPU time limit of 15min
and a memory limit of 15GB were used, which is the established
standard from SV-COMP. Measurements and resource limits were
managed by BenchExec [18].

5.2 Results and Discussion

Claim I. We implemented our domain-independent approach in
CPAchecker for several domains, including value analysis, predicate
analysis, and interval analysis. In addition, we evaluated a reduced
product [14, 32] of value and predicate analysis.We used CPAchecker
in version 1.9, which also participated in SV-COMP ’20. CPAchecker

3https://github.com/sosy-lab/sv-benchmarks/tree/svcomp20

Table 1: Results for the comparison of BAM Interprocedural
combined with different abstract domains in CPAchecker on
category Reachsafety-Recursive of SV-COMP

Domain CPU time (s) Proofs Bugs
Value 924 31 37
Predicate 3 440 29 37
Interval 849 36 38
Value + Predicate 1 690 37 43

Table 2: Results for the comparison of different verifiers on
category Reachsafety-Recursive of SV-COMP

Verifier CPU time (s) Proofs Bugs
Cbmc 662 32 47
CPAchecker (SV-COMP ’20) 2 180 37 46
Divine 1 190 32 42
Esbmc 941 33 47
Map2Check 23 600 34 37
PeSCo 3 130 37 46
Pinaka 237 31 31
Symbiotic 138 33 45
UAutomizer 2 160 41 37
UKojak 1 010 19 28
UTaipan 6 210 42 37
VeriAbs 7 630 41 46
VeriFuzz 1 960 0 45

was chosen as the implementation platform because it has a config-
urable and modular design that is easy to extend by new concepts,
has a considerable user base, and is well maintained.4

Table 1 compares BAM Interprocedural for four domains (one
of them being a product), by providing the CPU time (in seconds,
with three significant digits) needed by the verifiers for all correctly
solved verification tasks and the number of correctly solved tasks,
divided into proofs and bugs found in the category Reachsafety-
Recursive of SV-COMP.
Claim II. We provide the results of state-of-the-art software veri-
fiers, which participated in SV-COMP ’20 [5] 5. We compare 13 ver-
ifiers that participated successfully in the category Reachsafety-
Recursive of SV-COMP. This includes the predicate-based verifiers
CPAchecker [35, 56], PeSCo [34, 49] and Ultimate Automizer [37, 39],
the bounded model checkers Cbmc [29, 42] and Esbmc [36, 45], the
symbolic-execution tool Symbiotic [24, 25], as well as the SMT-
based tool Map2Check [51, 52]. The binary archives of all verifiers
are publicly available.6 The data are extracted from the published
SV-COMP ’20 results [6].

Table 2 provides the sum of CPU time needed by the verifiers for
all correctly solved verification tasks, and the number of correctly
solved tasks, divided into proofs and bugs found. The configuration
used by verifier CPAchecker (SV-COMP ’20) combines value analysis
and predicate analysis within our interprocedural approach (same
configuration as in the last entry of Table 1), which is automatically
selected as the strategy to verify recursive programs [7]. The perfor-
mance of the tool with our approach (CPAchecker) also shows that

4https://www.openhub.net/p/cpachecker
5https://sv-comp.sosy-lab.org/2020/systems.php
6https://gitlab.com/sosy-lab/sv-comp/archives-2020/-/tree/svcomp20

59

92 A. Manuscripts

https://github.com/sosy-lab/sv-benchmarks/blob/svcomp20/c/ReachSafety-BitVectors.set
https://github.com/sosy-lab/sv-benchmarks/blob/svcomp20/c/ReachSafety-ControlFlow.set
https://github.com/sosy-lab/sv-benchmarks/blob/svcomp20/c/ReachSafety-Loops.set
https://github.com/sosy-lab/sv-benchmarks/blob/svcomp20/c/ReachSafety-Loops.set
https://github.com/sosy-lab/sv-benchmarks/blob/svcomp20/c/ReachSafety-ProductLines.set
https://github.com/sosy-lab/sv-benchmarks/blob/svcomp20/c/ReachSafety-Recursive.set
https://github.com/sosy-lab/sv-benchmarks/blob/svcomp20/c/recursive/Fibonacci01-1.c
https://github.com/sosy-lab/sv-benchmarks/blob/svcomp20/c/recursive/Ackermann01-2.c
https://github.com/sosy-lab/sv-benchmarks/blob/svcomp20/c/recursive/recHanoi01.c
https://github.com/sosy-lab/sv-benchmarks/blob/svcomp20/c/recursive/McCarthy91-1.c
https://github.com/sosy-lab/sv-benchmarks/tree/svcomp20
https://www.openhub.net/p/cpachecker
https://sv-comp.sosy-lab.org/2020/systems.php
https://gitlab.com/sosy-lab/sv-comp/archives-2020/-/tree/svcomp20

Domain-Independent Interprocedural Program Analysis using Block-Abstraction Memoization ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA

Predicate Value Interval Value+Predicate
0

20
40
60
80

Reachsafety-Recursive

#C
or
re
ct
Re

su
lts

Predicate Value Interval Value+Predicate
0

20

40

Reachsafety-Bitvectors

#C
or
re
ct
Re

su
lts

Predicate Value Interval Value+Predicate
0

20
40
60

Reachsafety-ControlFlow

#C
or
re
ct
Re

su
lts

Predicate Value Interval Value+Predicate
0

50

100

Reachsafety-Loops

#C
or
re
ct
Re

su
lts

Predicate Value Interval Value+Predicate
0

200

400

Reachsafety-ProductLines

#C
or
re
ct
Re

su
lts

Proofs and Bugs found without BAM

Proofs and Bugs found with BAM Intraprocedural

Proofs and Bugs found with BAM Interprocedural

Figure 6: Results for different benchmark categories for
the comparison of different abstract domains without BAM,
with BAM Intraprocedural, and with BAM Interprocedural
in CPAchecker

although modular and domain-independent, it is competitive with
completely different tools and approaches in terms of effectiveness
and efficiency: BAM Interprocedural solves about as many tasks
as the other tools within reasonable CPU time. None of the tools
managed to verify all tasks, and there are several tasks in the given
benchmark set that could not be solved by any verifier.
Claim III. As CPAchecker is the configurable program analysis
framework, different domain-independent intraprocedural anal-
yses based on the CPA concept are available, such as the default
analysis without BAM and its combination with BAM. Figure 6

compares those algorithms with our new approach of BAM Inter-
procedural. Each analysis is combined with four different domains
(one of them being a product). We provide the number of correctly
solved tasks, divided into proofs and bugs found. Each category
of SV-COMP ’20 is given separately, such that the strengths of the
algorithms are visible. In contrast to the existing intraprocedural
approaches without and with BAM, the new approach supports
the interprocedural analysis of recursive procedures for all three
domains separately as well as for a combination of domains and
leads to good results in the category Reachsafety-Recursive. For all
other categories, the results are comparable over all approaches.
Only for the predicate domain, the result for the tasks in category
Reachsafety-ProductLines is worse. The reason for the result in this
single category is caused by a valid, but unfitting refinement step
(i. e., a suboptimal heuristic in the SMT solver), that causes expen-
sive unrolling of the program. As many tasks in this category are
similar, most results are affected. For value analysis, interval analy-
sis, and also for the analysis based on value and predicate domain
together, the new approach performs approximately as good as the
existing approaches without or with BAM.

6 CONCLUSION
We have presented BAM Interprocedural, a novel approach to inter-
procedural program analysis. The new approach ismodular and
domain-independent, because it is not integrated in a specific
program analysis but wraps an existing analysis. In other words,
given an arbitrary abstract domain for intra-procedural data-flow
analysis, we can turn it into an inter-procedural analysis without
much (a) development work and (b) performance overhead. We
have illustrated in detail how to make predicate analysis and value
analysis interprocedural. Our implementation and experiments
show that BAM Interprocedural works well for four different pro-
gram analyses. The new approach supports recursive procedures,
because it is not bounded to a fixed number of procedure scopes.
We showed the effectiveness on the benchmark set of recursive
programs from SV-COMP ’20: the approach is able to successfully
verify recursive procedures. The new approach is efficient, because
it is integrated into BAM and does not add much overhead on top
of the wrapped abstract domain. Compared to other software veri-
fiers, the new implementation is competitive. Due to the modular
approach, the effectiveness and efficiency heavily depends on the
wrapped program analysis. Our results are promising and there is
potential for optimization in our implementation. We plan to spec-
ify the operator rebuild for further domains like binary decision
diagrams, symbolic memory graphs, or octagons, e. g., to analyze
more difficult memory-accesses in recursive programs.

We hope that other researchers and developers of verification
tools can benefit from our approach because it separates the concern
of making an analysis interprocedural from the actual work on
implementing and improving abstract domains.

Data Availability Statement.All benchmark tasks for evaluation,
configuration files, a ready-to-run version of our implementation,
and tables with detailed results are available in our reproduction
package [11]. The source code of our extensions to the open-source
verification framework CPAchecker [15] is available in the project
repository; see https://cpachecker.sosy-lab.org.

60

Domain-Independent Interprocedural Program Analysis using Block-Abstraction Memoization 93

https://cpachecker.sosy-lab.org

ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA Dirk Beyer and Karlheinz Friedberger

REFERENCES
[1] A. Albarghouthi, A. Gurfinkel, and M. Chechik. 2012. Whale: An Interpolation-

Based Algorithm for Inter-procedural Verification. In Proc. VMCAI (LNCS 7148).
Springer, 39ś55. https://doi.org/10.1007/978-3-642-27940-9_4

[2] T. Ball, B. Cook, V. Levin, and S. K. Rajamani. 2004. Slam and Static Driver
Verifier: Technology Transfer of Formal Methods inside Microsoft. In Proc. IFM
(LNCS 2999). Springer, 1ś20. https://doi.org/10.1007/978-3-540-24756-2_1

[3] T. Ball, V. Levin, and S. K. Rajamani. 2011. A Decade of Software Model Checking
with Slam. Commun. ACM 54, 7 (2011), 68ś76. https://doi.org/10.1145/1965724.
1965743

[4] T. Ball and S. K. Rajamani. 2000. Bebop: A Symbolic Model Checker for Boolean
Programs. In Proc. SPIN (LNCS 1885). Springer, 113ś130. https://doi.org/10.1007/
10722468_7

[5] D. Beyer. 2020. Advances in Automatic Software Verification: SV-COMP 2020. In
Proc. TACAS (2) (LNCS 12079). Springer, 347ś367. https://doi.org/10.1007/978-3-
030-45237-7_21

[6] D. Beyer. 2020. Results of the 9th International Competition on Software Verifi-
cation (SV-COMP 2020). Zenodo. https://doi.org/10.5281/zenodo.3630205

[7] D. Beyer andM. Dangl. 2018. Strategy Selection for Software Verification Based on
Boolean Features: A Simple but Effective Approach. In Proc. ISoLA (LNCS 11245).
Springer, 144ś159. https://doi.org/10.1007/978-3-030-03421-4_11

[8] D. Beyer, M. Dangl, and P. Wendler. 2018. A Unifying View on SMT-Based
Software Verification. J. Autom. Reasoning 60, 3 (2018), 299ś335. https://doi.org/
10.1007/s10817-017-9432-6

[9] D. Beyer and K. Friedberger. 2018. Domain-Independent Multi-threaded Software
Model Checking. In Proc. ASE. ACM, 634ś644. https://doi.org/10.1145/3238147.
3238195

[10] D. Beyer and K. Friedberger. 2018. In-Place vs. Copy-on-Write CEGAR Refinement
for Block Summarization with Caching. In Proc. ISoLA (LNCS 11245). Springer,
197ś215. https://doi.org/10.1007/978-3-030-03421-4_14

[11] D. Beyer and K. Friedberger. 2020. Reproduction Package for Article ‘Domain-
Independent Interprocedural Program Analysis using Block-Abstraction Memo-
ization’ in Proc. ESEC/FSE 2020. Zenodo. https://doi.org/10.5281/zenodo.4024268

[12] D. Beyer, S. Gulwani, and D. Schmidt. 2018. Combining Model Checking and
Data-Flow Analysis. In Handbook of Model Checking. Springer, 493ś540. https:
//doi.org/10.1007/978-3-319-10575-8_16

[13] D. Beyer, T. A. Henzinger, and G. Théoduloz. 2007. Configurable Software Verifi-
cation: Concretizing the Convergence of Model Checking and Program Analysis.
In Proc. CAV (LNCS 4590). Springer, 504ś518. https://doi.org/10.1007/978-3-540-
73368-3_51

[14] D. Beyer, T. A. Henzinger, and G. Théoduloz. 2008. Program Analysis with
Dynamic Precision Adjustment. In Proc. ASE. IEEE, 29ś38. https://doi.org/10.
1109/ASE.2008.13

[15] D. Beyer and M. E. Keremoglu. 2011. CPAchecker: A Tool for Configurable
Software Verification. In Proc. CAV (LNCS 6806). Springer, 184ś190. https:
//doi.org/10.1007/978-3-642-22110-1_16

[16] D. Beyer, M. E. Keremoglu, and P. Wendler. 2010. Predicate Ab-
straction with Adjustable-Block Encoding. In Proc. FMCAD. FMCAD,
189ś197. https://www.sosy-lab.org/research/pub/2010-FMCAD.Predicate_
Abstraction_with_Adjustable-Block_Encoding.pdf

[17] D. Beyer and S. Löwe. 2013. Explicit-State Software Model Checking Based
on CEGAR and Interpolation. In Proc. FASE (LNCS 7793). Springer, 146ś162.
https://doi.org/10.1007/978-3-642-37057-1_11

[18] D. Beyer, S. Löwe, and P. Wendler. 2019. Reliable Benchmarking: Requirements
and Solutions. Int. J. Softw. Tools Technol. Transfer 21, 1 (2019), 1ś29. https:
//doi.org/10.1007/s10009-017-0469-y

[19] D. Beyer and A. K. Petrenko. 2012. Linux Driver Verification. In Proc. ISoLA
(LNCS 7610). Springer, 1ś6. https://doi.org/10.1007/978-3-642-34032-1_1

[20] R. Blanc, A. Gupta, L. Kovács, and B. Kragl. 2013. Tree Interpolation in Vampire.
In Proc. LPAR (LNCS 8312). Springer, 173ś181. https://doi.org/10.1007/978-3-642-
45221-5_13

[21] O. Burkart and B. Steffen. 1992. Model Checking for Context-Free Processes.
In Proc. CONCUR (LNCS 630). Springer, 123ś137. https://doi.org/10.1007/
BFb0084787

[22] C. Calcagno, D. Distefano, J. Dubreil, D. Gabi, P. Hooimeijer, M. Luca, P. W.
O’Hearn, I. Papakonstantinou, J. Purbrick, and D. Rodriguez. 2015. Moving Fast
with Software Verification. In Proc. NFM (LNCS 9058). Springer, 3ś11. https:
//doi.org/10.1007/978-3-319-17524-9_1

[23] C. Calcagno, D. Distefano, P. W. O’Hearn, and H. Yang. 2011. Compositional
Shape Analysis by Means of Bi-Abduction. ACM 58, 6 (2011), 26:1ś26:66. https:
//doi.org/10.1145/2049697.2049700

[24] M. Chalupa, J. Strejcek, and M. Vitovská. 2018. Joint Forces for Memory Safety
Checking. In Proc. SPIN. Springer, 115ś132. https://doi.org/10.1007/978-3-319-
94111-0_7

[25] M. Chalupa, M. Vitovská, M. Jonás, J. Slaby, and J. Strejcek. 2017. Symbiotic 4:
Beyond Reachability (Competition Contribution). In Proc. TACAS (LNCS 10206).
Springer, 385ś389. https://doi.org/10.1007/978-3-662-54580-5_28

[26] Y.-F. Chen, C. Hsieh, M.-H. Tsai, B.-Y. Wang, and F. Wang. 2014. Verifying
Recursive Programs Using Intraprocedural Analyzers. In Proc. SAS (LNCS 8723).
Springer, 118ś133. https://doi.org/10.1007/978-3-319-10936-7_8

[27] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. 2003. Counterexample-
guided abstraction refinement for symbolic model checking. J. ACM 50, 5 (2003),
752ś794. https://doi.org/10.1145/876638.876643

[28] E. M. Clarke, T. A. Henzinger, H. Veith, and R. Bloem. 2018. Handbook of Model
Checking. Springer. ISBN: 978-3-319-10574-1 https://doi.org/10.1007/978-3-319-
10575-8

[29] E. M. Clarke, D. Kröning, and F. Lerda. 2004. A Tool for Checking ANSI-C
Programs. In Proc. TACAS (LNCS 2988). Springer, 168ś176. https://doi.org/10.
1007/978-3-540-24730-2_15

[30] B. Cook. 2018. Formal Reasoning About the Security of Amazon Web Services.
In Proc. CAV (2) (LNCS 10981). Springer, 38ś47. https://doi.org/10.1007/978-3-
319-96145-3_3

[31] P. Cousot and R. Cousot. 1977. Static Determination of Dynamic Properties
of Recursive Procedures. In Formal Description of Programming Concepts: Proc.
of the IFIP Working Conference on Formal Description of Programming Concepts.
North-Holland, 237ś278.

[32] P. Cousot and R. Cousot. 1979. Systematic design of program-analysis frameworks.
In Proc. POPL. ACM, 269ś282. https://doi.org/10.1145/567752.567778

[33] W. Craig. 1957. Linear Reasoning. ANew Form of theHerbrand-Gentzen Theorem.
J. Symb. Log. 22, 3 (1957), 250ś268. https://doi.org/10.2307/2963593

[34] M. Czech, E. Hüllermeier, M.-C. Jakobs, and H. Wehrheim. 2017. Predicting
Rankings of Software Verification Tools. In Proc. SWAN. ACM, 23ś26. https:
//doi.org/10.1145/3121257.3121262

[35] M. Dangl, S. Löwe, and P.Wendler. 2015. CPAcheckerwith Support for Recursive
Programs and Floating-Point Arithmetic (Competition Contribution). In Proc.
TACAS (LNCS 9035). Springer, 423ś425. https://doi.org/10.1007/978-3-662-46681-
0_34

[36] M. R. Gadelha, F. R. Monteiro, J. Morse, L. C. Cordeiro, B. Fischer, and D. A. Nicole.
2018. ESBMC 5.0: An Industrial-Strength C Model Checker. In Proc. ASE. ACM,
888ś891. https://doi.org/10.1145/3238147.3240481

[37] M. Heizmann, D. Dietsch, J. Leike, B. Musa, and A. Podelski. 2015. Ultimate
Automizer with Array Interpolation. In Proc. TACAS (LNCS 9035). Springer,
455ś457. https://doi.org/10.1007/978-3-662-46681-0_43

[38] M. Heizmann, J. Hoenicke, and A. Podelski. 2010. Nested interpolants. In Proc.
POPL. ACM, 471ś482. https://doi.org/10.1145/1706299.1706353

[39] M. Heizmann, J. Hoenicke, and A. Podelski. 2013. Software Model Checking
for People Who Love Automata. In Proc. CAV (LNCS 8044). Springer, 36ś52.
https://doi.org/10.1007/978-3-642-39799-8_2

[40] A. V. Khoroshilov, V. S. Mutilin, A. K. Petrenko, and V. Zakharov. 2009. Estab-
lishing Linux Driver Verification Process. In Proc. Ershov Memorial Conference
(LNCS 5947). Springer, 165ś176. https://doi.org/10.1007/978-3-642-11486-1_14

[41] J. Knoop, O. Rüthing, and B. Steffen. 1996. Towards a tool kit for the automatic
generation of interprocedural data-flow analyses. J. Program. Lang. 4, 4 (1996),
211ś246.

[42] D. Kröning and M. Tautschnig. 2014. Cbmc: C Bounded Model Checker (Com-
petition Contribution). In Proc. TACAS (LNCS 8413). Springer, 389ś391. https:
//doi.org/10.1007/978-3-642-54862-8_26

[43] K. L. McMillan. 2003. Interpolation and SAT-Based Model Checking. In Proc. CAV
(LNCS 2725). Springer, 1ś13. https://doi.org/10.1007/978-3-540-45069-6_1

[44] K. L. McMillan. 2006. Lazy Abstraction with Interpolants. In Proc. CAV
(LNCS 4144). Springer, 123ś136. https://doi.org/10.1007/11817963_14

[45] J. Morse, M. Ramalho, L. C. Cordeiro, D. Nicole, and B. Fischer. 2014. Esbmc
1.22 (Competition Contribution). In Proc. TACAS (LNCS 8413). Springer, 405ś407.
https://doi.org/10.1007/978-3-642-54862-8_31

[46] P. Müller and T. Vojnar. 2014. CPAlien: Shape Analyzer for CPAchecker
(Competition Contribution). In Proc. TACAS (LNCS 8413). Springer, 395ś397.
https://doi.org/10.1007/978-3-642-54862-8_28

[47] Z. Rakamarić and M. Emmi. 2014. SMACK: Decoupling Source Language Details
from Verifier Implementations. In Proc. CAV (LNCS 8559). Springer, 106ś113.
https://doi.org/10.1007/978-3-319-08867-9_7

[48] T. W. Reps, S. Horwitz, and M. Sagiv. 1995. Precise Interprocedural Data-Flow
Analysis via Graph Reachability. In Proc. POPL. ACM, 49ś61. https://doi.org/10.
1145/199448.199462

[49] C. Richter and H.Wehrheim. 2019. PeSCo: Predicting Sequential Combinations of
Verifiers (Competition Contribution). In Proc. TACAS (3) (LNCS 11429). Springer,
229ś233. https://doi.org/10.1007/978-3-030-17502-3_19

[50] N. Rinetzky, M. Sagiv, and E. Yahav. 2005. Interprocedural Shape Analysis for
Cutpoint-Free Programs. In Proc. SAS (LNCS 3672). Springer, 284ś302. https:
//doi.org/10.1007/11547662_20

[51] H. O. Rocha, R. Barreto, and L. C. Cordeiro. 2016. Hunting Memory Bugs in C Pro-
grams with Map2Check (Competition Contribution). In Proc. TACAS (LNCS 9636).
Springer, 934ś937. https://doi.org/10.1007/978-3-662-49674-9_64

[52] H. O. Rocha, R. S. Barreto, and L. C. Cordeiro. 2015. Memory Management Test-
Case Generation of C Programs Using Bounded Model Checking. In Proc. SEFM
(LNCS 9276). Springer, 251ś267. https://doi.org/10.1007/978-3-319-22969-0_18

61

94 A. Manuscripts

https://doi.org/10.1007/978-3-642-27940-9_4
https://doi.org/10.1007/978-3-540-24756-2_1
https://doi.org/10.1145/1965724.1965743
https://doi.org/10.1145/1965724.1965743
https://doi.org/10.1007/10722468_7
https://doi.org/10.1007/10722468_7
https://doi.org/10.1007/978-3-030-45237-7_21
https://doi.org/10.1007/978-3-030-45237-7_21
https://doi.org/10.5281/zenodo.3630205
https://doi.org/10.1007/978-3-030-03421-4_11
https://doi.org/10.1007/s10817-017-9432-6
https://doi.org/10.1007/s10817-017-9432-6
https://doi.org/10.1145/3238147.3238195
https://doi.org/10.1145/3238147.3238195
https://doi.org/10.1007/978-3-030-03421-4_14
https://doi.org/10.5281/zenodo.4024268
https://doi.org/10.1007/978-3-319-10575-8_16
https://doi.org/10.1007/978-3-319-10575-8_16
https://doi.org/10.1007/978-3-540-73368-3_51
https://doi.org/10.1007/978-3-540-73368-3_51
https://doi.org/10.1109/ASE.2008.13
https://doi.org/10.1109/ASE.2008.13
https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/10.1007/978-3-642-22110-1_16
https://www.sosy-lab.org/research/pub/2010-FMCAD.Predicate_Abstraction_with_Adjustable-Block_Encoding.pdf
https://www.sosy-lab.org/research/pub/2010-FMCAD.Predicate_Abstraction_with_Adjustable-Block_Encoding.pdf
https://doi.org/10.1007/978-3-642-37057-1_11
https://doi.org/10.1007/s10009-017-0469-y
https://doi.org/10.1007/s10009-017-0469-y
https://doi.org/10.1007/978-3-642-34032-1_1
https://doi.org/10.1007/978-3-642-45221-5_13
https://doi.org/10.1007/978-3-642-45221-5_13
https://doi.org/10.1007/BFb0084787
https://doi.org/10.1007/BFb0084787
https://doi.org/10.1007/978-3-319-17524-9_1
https://doi.org/10.1007/978-3-319-17524-9_1
https://doi.org/10.1145/2049697.2049700
https://doi.org/10.1145/2049697.2049700
https://doi.org/10.1007/978-3-319-94111-0_7
https://doi.org/10.1007/978-3-319-94111-0_7
https://doi.org/10.1007/978-3-662-54580-5_28
https://doi.org/10.1007/978-3-319-10936-7_8
https://doi.org/10.1145/876638.876643
https://www.worldcat.org/isbn/978-3-319-10574-1
https://doi.org/10.1007/978-3-319-10575-8
https://doi.org/10.1007/978-3-319-10575-8
https://doi.org/10.1007/978-3-540-24730-2_15
https://doi.org/10.1007/978-3-540-24730-2_15
https://doi.org/10.1007/978-3-319-96145-3_3
https://doi.org/10.1007/978-3-319-96145-3_3
https://doi.org/10.1145/567752.567778
https://doi.org/10.2307/2963593
https://doi.org/10.1145/3121257.3121262
https://doi.org/10.1145/3121257.3121262
https://doi.org/10.1007/978-3-662-46681-0_34
https://doi.org/10.1007/978-3-662-46681-0_34
https://doi.org/10.1145/3238147.3240481
https://doi.org/10.1007/978-3-662-46681-0_43
https://doi.org/10.1145/1706299.1706353
https://doi.org/10.1007/978-3-642-39799-8_2
https://doi.org/10.1007/978-3-642-11486-1_14
https://doi.org/10.1007/978-3-642-54862-8_26
https://doi.org/10.1007/978-3-642-54862-8_26
https://doi.org/10.1007/978-3-540-45069-6_1
https://doi.org/10.1007/11817963_14
https://doi.org/10.1007/978-3-642-54862-8_31
https://doi.org/10.1007/978-3-642-54862-8_28
https://doi.org/10.1007/978-3-319-08867-9_7
https://doi.org/10.1145/199448.199462
https://doi.org/10.1145/199448.199462
https://doi.org/10.1007/978-3-030-17502-3_19
https://doi.org/10.1007/11547662_20
https://doi.org/10.1007/11547662_20
https://doi.org/10.1007/978-3-662-49674-9_64
https://doi.org/10.1007/978-3-319-22969-0_18

Domain-Independent Interprocedural Program Analysis using Block-Abstraction Memoization ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA

[53] O. Sery, G. Fedyukovich, and N. Sharygina. 2011. Interpolation-Based Function
Summaries in Bounded Model Checking. In Proc. HVC (LNCS 7261). Springer,
160ś175. https://doi.org/10.1007/978-3-642-34188-5_15

[54] O. Sery, G. Fedyukovich, and N. Sharygina. 2015. Function Summarization-Based
Bounded Model Checking. In Validation of Evolving Software. Springer, 37ś53.
https://doi.org/10.1007/978-3-319-10623-6_5

[55] M. Sharir and A. Pnueli. 1981. Two approaches to interprocedural data-flow
analysis. In Program Flow Analysis: Theory and Applications. Prentice-Hall, 189ś
233. ISBN: 978-0-137-29681-1

[56] D. Wonisch. 2012. Block Abstraction Memoization for CPAchecker (Competition
Contribution). In Proc. TACAS (LNCS 7214). Springer, 531ś533. https://doi.org/
10.1007/978-3-642-28756-5_41

[57] D. Wonisch and H. Wehrheim. 2012. Predicate Analysis with Block-Abstraction
Memoization. In Proc. ICFEM (LNCS 7635). Springer, 332ś347. https://doi.org/10.
1007/978-3-642-34281-3_24

62

Domain-Independent Interprocedural Program Analysis using Block-Abstraction Memoization 95

https://doi.org/10.1007/978-3-642-34188-5_15
https://doi.org/10.1007/978-3-319-10623-6_5
https://www.worldcat.org/isbn/978-0-137-29681-1
https://doi.org/10.1007/978-3-642-28756-5_41
https://doi.org/10.1007/978-3-642-28756-5_41
https://doi.org/10.1007/978-3-642-34281-3_24
https://doi.org/10.1007/978-3-642-34281-3_24

J. Bouda et al. (Eds.): 11th Doctoral Workshop
on Mathematical and Engineering Methods
in Computer Science (MEMICS 2016)
EPTCS 233, 2016, pp. 61–71, doi:10.4204/EPTCS.233.6

c© D. Beyer & K. Friedberger

A Light-Weight Approach for Verifying Multi-Threaded
Programs with CPAchecker

Dirk Beyer
LMU Munich, Germany

Karlheinz Friedberger
University of Passau, Germany

Verifying multi-threaded programs is becoming more and more important, because of the strong trend
to increase the number of processing units per CPU socket. We introduce a new configurable pro-
gram analysis for verifying multi-threaded programs with a bounded number of threads. We present
a simple and yet efficient implementation as component of the existing program-verification frame-
work CPACHECKER. While CPACHECKER is already competitive on a large benchmark set of sequential
verification tasks, our extension enhances the overall applicability of the framework. Our implemen-
tation of handling multiple threads is orthogonal to the abstract domain of the data-flow analysis,
and thus, can be combined with several existing analyses in CPACHECKER, like value analysis, interval
analysis, and BDD analysis. The new analysis is modular and can be used, for example, to verify
reachability properties as well as to detect deadlocks in the program. This paper includes an evalu-
ation of the benefit of some optimization steps (e.g., changing the iteration order of the reachability
algorithm or applying partial-order reduction) as well as the comparison with other state-of-the-art
tools for verifying multi-threaded programs.

1 Introduction

Program verification has successfully been applied to programs to find errors in applications. There exist
many approaches to verify single-threaded programs (cf. SV-COMP for an overview [1]), and several of
them are already implemented in the open-source program-verification framework CPACHECKER [4, 10].
For multi-threaded programs a new dimension of complexity has to be taken into account: the verification
tool has to efficiently analyze all possible thread interleavings. CPACHECKER did not support the analysis
of multi-threaded programs for a long time. Our work focuses on a new, simple configurable program
analysis that reuses several existing components of the framework. The approach is sound and can be
combined with several steps of optimization to achieve an efficient analysis for multi-threaded programs.

Our analysis is based on a standard state-space exploration using a given control-flow automaton
that represents the program. For a program state with several active threads, we compute the succeeding
program state for each of those threads, i.e. basically we compute every possible interleaving of the
threads. The approach is orthogonal to other data-flow based analyses in CPACHECKER, thus it can be
combined with algorithms like CEGAR [7] and analyze an potentially infinite state space.

1.0.1 Related Work

A prototypical version of our analysis was already applied for the category of concurrent programs
during the SV-COMP’16 [1]. Due to some unsupported features and missing parts of the optimization
that where implemented later, the score in this category was low at that time. The experimental results
that we report show that the current version of the implementation performs much better.

Just like several other tools [15, 8, 9], we explore possible interleavings of different thread executions
and our optimization methods include partial order reduction [12]. In contrast to verification techniques

A Light-Weight Approach for Verifying Multi-Threaded Programs with CPAchecker 97

http://dx.doi.org/10.4204/EPTCS.233.6

62 A Light-Weight Approach for Verifying Multi-Threaded Programs with CPAchecker

for multi-threaded programs like constraint-based representation [13] that limits the domain to Horn
clauses and predicate abstraction or sequentialization [11, 16] that transforms the program on source-
code level before starting the analysis, our approach computes the interleaving of threads on-the-fly and
is independent from the applied analysis. This makes it possible to integrate our approach easily with
data-flow analyses of different abstract domains, such as value analysis [5] and BDD analysis [6].

2 Analysis of Multi-Threaded Programs in CPACHECKER

The following section provides an overview of some basic concepts and definitions used for our approach.
We describe the program representation and the details of our configurable program analysis.

2.1 Program Representation

A program is represented by a control-flow automaton (CFA) A = (L, l0,G), which consists of a set L of
program locations (modeling the program counter), a set G ⊆ L×Ops×L (modeling the control flow
with assignment and assumption operations from Ops), and an initial program location l0 (entry point of
the main function).

Let V be the set of variables in the program. The concrete data state for a program location assigns a
value to each variable from the set V ; the set C contains all concrete data states. For every edge g∈G, the
transition relation is defined by

g→⊆C×{g}×C. The union of all edges defines the complete transfer
relation→=

⋃
g∈G

g→. If there exists a chain of concrete data states 〈c0,c1, ...,cn〉 with ∀ci : there exists a

program location li for which ci is a concrete data state and ∀i : 1≤ i≤ n⇒∀i : 1≤ i≤ n⇒∃g : ci−1
g→

ci∧ (li−1,g, li) ∈ G, then the state cn is reachable from c0 for l0.
Our analysis is a reachability analysis and unrolls the program lazily [14] into an abstract reachability

graph (ARG) [2]. The ARG is a directed acyclic graph that consists of abstract states (representing the
abstract program state, e.g., including program location and variable assignments) and edges modeling
the transfer relation that leads from one abstract state to the next one.

2.2 ThreadingCPA

CPACHECKER is based on the concept of configurable program analysis (CPA) [3]. Thus, different as-
pects of a program are analyzed by different components (denoted as CPAs). A default analysis in
CPACHECKER [4] uses the LocationCPA to track the program location (program counter) and the Call-
stackCPA to track call stacks (function calls and their corresponding return location in the CFA). Thus,
for the analysis of sequential programs, each abstract state that is reached during an analysis consists of
exactly one program location and one call stack.

For the analysis of multi-threaded programs we have developed a new ThreadingCPA that replaces
both the LocationCPA and the CallstackCPA and explores the state space of a multi-threaded program
on-the-fly. The benefit of the ThreadingCPA is that it is able to track several program locations (one per
thread) together with their call stacks (also one per thread). For simplicity of the definition we ignore the
handling of call stacks in the next section. The reader can simply assume that for each program location
there is also a call stack. The ThreadingCPA has to handle multiple call stacks (one per thread), whereas
the CallstackCPA only handles a single call stack.

The definition of the ThreadingCPA T= (DT, T,mergeT,stopT) follows the structure of a config-
urable program analysis:

98 A. Manuscripts

D. Beyer & K. Friedberger 63

Domain: The abstract domain DT = (C,T , [[·]]) is a triple of the set C of concrete states, the flat
semi-lattice T = (T,v,t,>), and the concretization function [[·]] : T → 2C. Let I be the set of all
possible thread identifiers, e.g., a set of names used to identify threads in the program. The type of
abstract states T : I −→◦ L consists of all assignments of thread identifiers t ∈ I to program locations
l ∈ L = L∪{>L}. The special program location >L represents an unknown program location. The
top element > ∈ T , with >(t) = >L for all t ∈ I, is the abstract state that holds no specific program
location for any thread identifier. Each abstract threading state s ∈ T is represented by the assignments
{t1 7→ lt1 , t2 7→ lt2 , ...} of thread identifiers to their current program location. The partial order v induces
a semi-lattice for the abstract states. The join operator t yields the least upper bound of given abstract
states. The top element > of the semi-lattice is defined as >= tT .
Merge: The ThreadingCPA uses the merge operator mergesep, which does not combine different ele-
ments.
Stop: The ThreadingCPA uses the termination operator stopsep, which defines coverage only in case of
equal abstract states.
Transfer: The transfer relation T determines the syntactic successor for the current state and is based
on the transfer relation of the LocationCPA. The implementation is simple: The transfer relation returns
all possible successors for all threads that are active in an abstract state, i.e., it applies the transfer relation
of the LocationCPA for each active thread. Additionally, thread-management-related operations are
included, such that creating or joining threads (when calling pthread_create or pthread_ join) is defined.
It is in theory sufficient to only handle these two function calls, because other thread-related function calls
do not change the number of threads or the progress of the state-space exploration. The transfer relation
 T has the transfer s

g s′ for two abstract states s = {t1 7→ lt1 , t2 7→ lt2 , ..., tN 7→ ltN} and s′ = {t1 7→
l′t1 , t2 7→ l′t2 , ..., tN 7→ l′tM} and g = (lti ,op, l′ti) if

1. the operation op matches the pthread_create statement for ti that is in program location lti and
creates a new thread tnew starting from a CFA node ltnew

0 ∈ L:

s′ = s\{ti 7→ lti}∪{tnew 7→ ltnew
0 }∪{ti 7→ l′ti}

i.e., an existing thread ti matches the program location lti and moves along the edge g towards
program location l′, and the initial program location ltnew

0 of the new thread tnew is added to the
current abstract state.

2. the operation op matches the pthread_ join statement for ti that is in program location lti and waits
for a thread texit to exit, texit exits at program location ltexit

E , and texit 7→ ltexit
E ∈ s:

s′ = s\{ti 7→ lti}\{texit 7→ ltexit
E }∪{ti 7→ l′ti}

i.e., an existing thread ti matches the program location lti and moves along the edge g towards
program location l′ti , and the program location ltexit

E of the thread texit is removed from the current
abstract state, if the thread texit has already been at this program location.

3. otherwise, if the operation op is not related to thread management:

s′ = s\{ti 7→ lti}∪{ti 7→ l′ti}
i.e., thread ti matches the program location lti and moves along the edge towards l′ti .

For a basic analysis for multi-threaded programs the handling of the operations pthread_create and
pthread_ join is sufficient. Additional thread management like mutex locks (details in Section 4.3) can
be applied on top of this transfer relation. We assume C statements as atomic statements, i.e., interleaving
of threads is considered to happen on statement level (matching the encoding of the program as CFA).
This might be insufficient for real-world programs, but is good enough for several examples and in theory
the CFA could be inflated with read and write operations for memory registers.

A Light-Weight Approach for Verifying Multi-Threaded Programs with CPAchecker 99

64 A Light-Weight Approach for Verifying Multi-Threaded Programs with CPAchecker

1 pthread_t id1, id2;
2 int i=1, j=1;
3

4 void main() {
5 pthread_create(&id1, 0, t1, 0);
6 pthread_create(&id2, 0, t2, 0);
7

8 pthread_join(id1, 0);
9 pthread_join(id2, 0);

10

11 assert(j <= 8);
12 }
13

14 void t1() {
15 i+=j;
16 i+=j;
17 }
18

19 void t2() {
20 j+=i;
21 j+=i;
22 }

Figure 1: Program with concurrent threads

0

1

2

3

4

5

6

7

pthread_t id1, id2;

int i=1; j=1

pthread_create(&id1, 0, t1, 0);

pthread_create(&id2, 0, t2, 0);

pthread_join(&id1, 0);

pthread_join(&id2, 0);

assert(j<=8);

A

B

C

i+=j;

i+=j;

X

Y

Z

j+=i;

j+=i;

main

t1 t2

Figure 2: CFA for the functions of the program

2.3 Example main7→0

main7→1

main7→2

main7→3
id17→A

main7→3
id1 7→B main7→4

id17→A
id2 7→X

main7→3
id17→C main7→4

id1 7→B
id27→X

main7→4
id17→A
id27→Ymain7→4

id17→C
id27→X

main7→4
id17→B
id27→Y

main7→4
id17→A
id2 7→Z

main7→5
id27→X

main7→4
id1 7→C
id27→Y

main7→4
id17→B
id2 7→Z

main7→5
id27→Y

main7→4
id1 7→C
id2 7→Z

main7→5
id2 7→Z

main7→6

main7→7

Figure 3: ARG of the interleaved threads of the
program

The following example applies our new Thread-
ingCPA to a given program. In contrast to the
simplified illustration below, a real-world analysis
would combine the ThreadingCPA with another
analysis, e.g., to track assignments, such as value
analysis or BDD analysis.

The example program (cf. Fig. 1 for the
source code) creates two additional threads that
change the value of global variables. After-
wards, the main method checks the assignment of
a global variable. In this example, the property
holds. The program’s functions are represented as
CFAs in Figure 2. The ThreadingCPA produces
the ARG in Fig. 3, where each abstract state is la-
beled with the indices of the program locations of
all active threads.

The analysis starts at entry location l0 of
the main function and analyzes all possible
interleavings. After reaching the statement
pthread_create, an additional program location is
tracked for the newly created thread, e.g., when
reaching program location l3 in the main function,
the abstract state is enriched with the initial pro-
gram location lA of the newly created thread.

100 A. Manuscripts

D. Beyer & K. Friedberger 65

As the ThreadingCPA merges its abstract states when reaching the same program locations via differ-
ent execution paths, the diamond-like structure in the ARG is the result of interleaved thread-execution
of two (or more) threads. When exploring the statement pthread_ join, the program-exit location of the
exiting thread is removed from the abstract state. This is visible in Fig. 3 for each abstract state with an
outgoing edge leading from program location l4 towards program location l5, because the program-exit
location lC of the joining thread t1 (identified by id 1) is removed from the abstract state.

3 Optimization

The simple definition of the ThreadingCPA allows (and needs) a wide range of optimization to gain
competitive efficiency. In the following, we define some approaches and show how fluently they match
existing concepts in CPACHECKER.

3.1 Partitioning of Reached Abstract States

The reachability algorithm [3] has two important operators merge and stop that are defined as operations
on sets of reached abstract states. These operations can merge abstract states and combine their informa-
tion into a new abstract state or detect coverage, i.e., an abstract state is implied by another one and thus
the exploration can stop at that point. In each iteration of the reachability algorithm, these operators are
by default applied to all combinations of new explored abstract states and previously reached abstract
states. However, applying such an operator to all previously reached abstract states is inefficient, because
most of the abstract states are irrelevant for a concrete application of these operators. For example, com-
paring abstract states from different program locations is useless, because there will not be any important
relation between them.

Partitioning the set of abstract states makes it possible to perform both operations much more ef-
ficiently, as only a (small) subset of the previously reached abstract states has to be considered in the
computation. This basic optimization is also applied for verifying single-threaded programs. Each par-
tition is identified by a constant key that is based on the program location of the abstract state, as only
states from equal program locations are considered for merging or coverage. We extended the existing
partitioning of abstract states, such that it uses the tuple of program locations for all threads in an abstract
state. This new partitioning can also be combined with partitionings provided by other CPAs.

3.2 Waitlist Order

For finding property violations it is often sufficient to only analyze interleavings with a low number of
thread interleavings. As the exploration algorithm in CPACHECKER analyzes the reachable state space state
by state, there exists the possibility to prioritize abstract states during the exploration: The abstract states
waiting to be analyzed are simply sorted by some criteria. This optimization is a heuristic depending on
the internal structure of the analyzed program and the executed analysis. For a bug-free program this
heuristic does not bring any benefit. however an existing error path in a faulty program might be found
sooner.

The most-often used orderings of abstract states cause the state-space exploration to perform either
depth-first search (DFS) or breadth-first search (BFS), i.e., the list of waiting abstract states is ordered in
the same manner as abstract states are explored (BFS) or reverse (DFS). For multi-threaded programs, we
added a new ordering of this list based on the number of active threads, such that states with fewer active
threads are considered first. The new ordering can also be combined with existing orderings, i.e., the

A Light-Weight Approach for Verifying Multi-Threaded Programs with CPAchecker 101

66 A Light-Weight Approach for Verifying Multi-Threaded Programs with CPAchecker

first criteria for ordering is based on the number of active threads, the second criteria uses the exploration
order.

3.3 Partial-Order Reduction

With multi-threaded programs, the most common form of optimization is partial-order reduc-
tion (POR) [12, 19, 18]. POR aims to avoid unnecessary interleavings of threads and improves the
performance of the analysis by reducing the explored state space. However, its application depends on
the property to be verified, because all necessary program paths must remain reachable.

In our case (reachability analysis), we started with a simple separation of program operations (mod-
eled as CFA edges) into thread-local and global operations. We conservatively apply a static analysis
for all program variables and memory accesses, on whether they are declared and used in global scope
or only locally in the context of a thread. Because CPACHECKER uses several dummy operations (e.g., for
temporary variables or function returns), a majority of CFA edges is marked as thread-local.

If a statement is thread-local for a thread, we do not simulate any interleaving after analyzing this
operation, but the analysis executes the current thread further, until a global operation (in the same
thread) is reached. This behavior is sound, because no interaction between threads is possible, due to the
definition of thread-local operations. Thus, we only need to synchronize all available threads after the
next global transition.

Our approach can analyze program with loops as well, because we execute both paths, i.e., the loop
and the concurrent thread, and none of them disables the other path. Thus, any possible interaction
between CFA edges of the loop and other threads is considered. Our approach handles loops implicitly,
thus we do not have to actively check for loops, but simply apply the reachability algorithm combined
with the described POR technique.

4 Extensions

During our work on the analysis of multi-threaded programs, we explored some assumptions in
CPACHECKER that need to be considered when integrating such a basic analysis as the ThreadingCPA.
We also noticed several features that can also be specified or implemented for the analysis of multi-
threaded programs. In the following, we describe the extensions that we have developed in order to use
the full potential of the framework.

4.1 Cloning for CFAs

CPACHECKER has a modular structure, such that many components can be combined without knowing
(and depending on) details about each other. As the analysis of multi-threaded programs should fit into
this design, we decided not to modify each analysis that should be combined with our new approach, but
use an approach that allows us to re-use as much existing code as possible.

The basic problem with the existing components of CPACHECKER is that many of them rely on knowing
only their current function scope, and solely identify a variable by its name combined with the name of
the function scope it was declared in. For example, many analyses (including value analysis and BDD
analysis) use the identifier f ::x for a variable x declared in function f . This identifier is used in the
internal data structures whenever the variable is used during the program analysis. In a multi-threaded
program, the same function f might be called in different threads, such that f ::x is not unique for one

102 A. Manuscripts

D. Beyer & K. Friedberger 67

variable any more at a certain point in the program’s execution. The existing analyses do not know about
two variables with the same identifier and would, e.g., assign a wrong value to one of them.

Our solution is simple: We use different function names for each thread by cloning the function and
inserting the corresponding indexed function name. For a function f we create a clone f ′ by copying the
corresponding CFA nodes from L and edges from G, while renaming all appearances of the function’s
identifier in the clone. Cloning functions causes all function-local variables to be unique for different
threads in the later applied analysis, e.g., the identifier f ::x is distinct from f ′::x. An analysis using the
identifier does not even have to know whether the function is cloned and can simply assume uniqueness
of identifiers for all variables.

4.2 Deadlock Detection

A deadlock [17] is defined as an abstract state where two (or more) competing actions wait for each other
to finish, and thus neither ever does. CPACHECKER allows the user to define the goal of an analysis by
giving a specification in form of an automaton. Detecting deadlocks in the program can be done by giving
an observer automaton that monitors the abstract states of the ThreadingCPA and reports deadlocks. This
approach is independent of any further analysis and can be combined with, e.g., value analysis or BDD
analysis.

4.3 Mutex Locks

Mutex locks are commonly used to synchronize threads, e.g., to manage access to shared memory. In
our implementation, mutex locks are stored as part of the abstract state of the ThreadingCPA. If a mutex
lock is requested along a CFA edge, but not available in the preceding abstract state, the transfer relation
does not yield a successive abstract state for the CFA edge.

Additionally, we use mutex locks for more use cases: We simulate atomic sequences of statements
and some aspects of partial order reduction as mutex locks in the ThreadingCPA. Entering an atomic
sequence requires an atomic mutex lock, which is released after leaving the atomic sequence. Consecutive
CFA edges containing only thread-local operations (see Section 3.3) are modeled and analyzed as atomic
sequence.

5 Evaluation

In this section we evaluate different configurations of the ThreadingCPA and compare it with other state-
of-the-art tools. The evaluation is performed on machines with a 2.6 GHz Intel Xeon E5-2650 v2 CPU
running Ubuntu 16.04 (Linux 4.4.0). Each single verification run is limited to 15min of run time and
15GB of memory. The 1016 benchmark tasks are taken from the category of multi-threaded programs
at SV-COMP’16 1. The tasks are C programs, where reaching a specific function call is considered as
property violation. We use CPACHECKER 2 1.6.1 in revision 23011.

1https://github.com/sosy-lab/sv-benchmarks/releases/tag/svcomp16
2https://cpachecker.sosy-lab.org/

A Light-Weight Approach for Verifying Multi-Threaded Programs with CPAchecker 103

https://github.com/sosy-lab/sv-benchmarks/releases/tag/svcomp16
https://cpachecker.sosy-lab.org/

68 A Light-Weight Approach for Verifying Multi-Threaded Programs with CPAchecker

0 200 400 600 800 1000100

101

102

103

n-th fastest result

C
PU

tim
e

(s
)

plain value analysis
+ partitioning
+ waitlist order
+ POR (opt. VA)

Figure 4: Quantile plot for different configurations
of the value analysis, corresponding to step-wise
applied optimization steps

0 200 400 600 800 1000100

101

102

103

n-th fastest result

C
PU

tim
e

(s
)

BDD analysis
interval analysis
opt. VA

Figure 5: Quantile plot for different ab-
stract domains using the ThreadingCPA within
CPACHECKER

5.1 Optimization Steps

First, we show the effect of applying each optimization step from Section 3 successively, i.e., on top
of the previous optimization. Starting with a plain (non-optimized) configuration of the ThreadingCPA
combined with the value analysis, we step-wise apply optimization in form of
• reached-set partitioning (see Section 3.1) based on the abstract states,

• waitlist ordering (see Section 3.2) based on the number of threads, and

• POR (see Section 3.3) based on local-scope and global statements.
The optimization steps are independent of the value analysis and can also be applied to any other

analysis like BDD analysis and interval analysis, where the same benefit will be visible. Figure 4 shows
a quantile plot containing the run time of correctly solved verification tasks. The evaluation shows that
the verification process benefits from each of the optimization steps. For small tasks that can be verified
within a few second, e.g., because of only a few thread interleavings in the program, the benefit of
optimization is small. For tasks that need more run time the benefit becomes visible.

We noticed that the heuristic of ordering the waiting abstract states is beneficial in two ways: first,
some property violations are found earlier (some property violations need only a small number of in-
terleavings); second, some unsupported operations (like assigning several thread instances to the same
thread identifier) are reached earlier and the analysis can abort immediately without wasting time.

Compared to the plain value analysis, partitioning the reached set improves the performance and
reduces the run time of the analysis by more than an order of magnitude. Additionally changing the
waitlist order improves run time in several cases, mostly for tasks with a property violation. However, in
our benchmark this optimization step does not lead to more correctly solved tasks. POR causes a lower
number of explored abstract states, and thus the performance increases.

104 A. Manuscripts

D. Beyer & K. Friedberger 69

5.2 Abstract Domains

Second, we combine the ThreadingCPA with different analyses, such as value analysis, interval analysis,
and BDD analysis, which are already implemented in the CPACHECKER framework and are normally
used for the analysis of single-threaded programs. We only evaluate the optimized version of each
combination. The analyses could also be combined with CEGAR [7], however the current benchmark
does not benefit from it, and thus we just execute a reachability algorithm to verify the specification. We
show that we can verify the majority of benchmark programs and discuss strengths and weaknesses of
the analyses. As all compared analyses use the same framework (parser, algorithm, ...), we expect our
evaluation to be fair for all implemented approaches and allow a precise comparison. Figure 5 shows the
quantile plot of correct results for the combinations of the ThreadingCPA with other analyses.

The BDD analysis is optimized for BFS in the reachability algorithm, whereas value analysis and
interval analysis use DFS as basic order for the list of waiting abstract states during the exploration
algorithm (see Section 3.2). Thus, the state-space exploration traverses program locations and thread
interleavings in another order and finds the corresponding abstract states in a different order, too. De-
pending on the verification task, this can result in an in- or decreased performance compared to the value
analysis.

0 200 400 600 800 1000100

101

102

103

n-th fastest result

C
PU

tim
e

(s
)

CBMC
VVT
opt. VA

Figure 6: Quantile plot for comparison of other
verifiers with support for multi-threaded programs

5.3 Other Tools

Third, we compare the (optimized) value anal-
ysis with two other state-of-the-art verification
tools, namely CBMC 3 and VVT 4. Both tools
are executed as in the SV-COMP’16 and are
chosen, because they do not apply special ap-
proaches like sequentialisation, but rely on a sim-
ilar state-space exploration technique as our ap-
proach in CPACHECKER. Figure 6 shows the quan-
tile plot of correct results for CBMC, VVT, and
CPACHECKER (using the optimized value analysis).
The ThreadingCPA (combined with value analy-
sis) is competitive with the other tools. The plot
for CPACHECKER matches the trend of the other
tools with only some differences. At the left side
of the plot the initial start-up time of a few seconds
for CPACHECKER is visible, whereas other tools al-
ready solve some of the given instance within this
time. Due to the missing support for pointer alias-
ing and array computations in the value analy-
sis as well as due to our simple kind of POR,
CPACHECKER can not solve as many verification
tasks as other tools within the time limit.

3http://www.cprover.org/cbmc/
4https://vvt.forsyte.at/

A Light-Weight Approach for Verifying Multi-Threaded Programs with CPAchecker 105

http://www.cprover.org/cbmc/
https://vvt.forsyte.at/

70 A Light-Weight Approach for Verifying Multi-Threaded Programs with CPAchecker

6 Conclusion

This paper presents a basic approach to support the analysis of multi-threaded programs in CPACHECKER.
We formally defined a new ThreadingCPA in the framework and demonstrated that several core com-
ponents can be reused. Re-using existing analyses is possible without any further overhead. Due to our
simple approach, there are a few limitations that have to be considered when verifying multi-threaded
programs with CPACHECKER. Our approach for partial order reduction is simple and can be extended with
more advanced techniques to further reduce the number of explored abstract states. The maximum num-
ber of threads is bounded, because of possible conflicts in function names. To avoid naming conflicts,
we clone each function’s CFA several times before starting the analysis. The number of clones cannot be
changed afterwards. If we run out of clones during the analysis and would need more due to a naming
conflict, we abort the analysis and report an insufficient number of threads.

As the ThreadingCPA identifies each thread only by the variable it is assigned to, we currently can
not analyze more complex thread management such as pointer aliasing for the thread identifier or more
complex locking mechanisms. Our framework already contains a mechanism for exchanging information
between abstract states on a state-level during the analysis. The analysis of multi-threaded programs
could be extended to exchange information about thread management with another analysis capable of
such data, such that we could analyze more difficult thread management with the ThreadingCPA.

Possible ideas for optimization have been implemented and evaluated. The evaluation shows that
the results of different analyses based on the ThreadingCPA are competitive with other state-of-the-art
tools.

References

[1] D. Beyer (2016): Reliable and Reproducible Competition Results with BENCHEXEC and Wit-
nesses. In: Proc. TACAS, Springer, pp. 887–904, doi:10.1007/978-3-662-49674-9_55. Available at
http://www.sosy-lab.org/~dbeyer/Publications/2016-TACAS.Reliable_and_Reproducible_
Competition_Results_with_BenchExec_and_Witnesses.pdf.

[2] D. Beyer, T. A. Henzinger, R. Jhala & R. Majumdar (2007): The Software Model Checker
BLAST. Int. J. Softw. Tools Technol. Transfer 9(5-6), pp. 505–525, doi:10.1007/s10009-007-0044-
z. Available at http://www.sosy-lab.org/~dbeyer/Publications/2007-STTT.The_Software_
Model_Checker_BLAST.pdf.

[3] D. Beyer, T. A. Henzinger & G. Théoduloz (2007): Configurable Software Verification: Concretizing
the Convergence of Model Checking and Program Analysis. In: Proc. CAV, LNCS 4590, Springer,
pp. 504–518, doi:10.1007/978-3-540-73368-3_51. Available at http://www.sosy-lab.org/~dbeyer/
Publications/2007-CAV.Configurable_Software_Verification.pdf.

[4] D. Beyer & M. E. Keremoglu (2011): CPACHECKER: A Tool for Configurable Software Verifica-
tion. In: Proc. CAV, LNCS 6806, Springer, pp. 184–190, doi:10.1007/978-3-642-22110-1_16. Avail-
able at http://www.sosy-lab.org/~dbeyer/Publications/2011-CAV.CPAchecker_A_Tool_for_
Configurable_Software_Verification.pdf.

[5] D. Beyer & S. Löwe (2013): Explicit-State Software Model Checking Based on CEGAR and In-
terpolation. In: Proc. FASE, LNCS 7793, Springer, pp. 146–162, doi:10.1007/978-3-642-37057-1_-
11. Available at http://www.sosy-lab.org/~dbeyer/Publications/2013-FASE.Explicit-State_
Software_Model_Checking_Based_on_CEGAR_and_Interpolation.pdf.

[6] D. Beyer & A. Stahlbauer (2013): BDD-Based Software Model Checking with CPACHECKER.
In: Proc. MEMICS, LNCS 7721, Springer, pp. 1–11, doi:10.1007/978-3-642-36046-6_1. Avail-
able at http://www.sosy-lab.org/~dbeyer/Publications/2013-MEMICS.BDD-Based_Software_

106 A. Manuscripts

http://dx.doi.org/10.1007/978-3-662-49674-9_55
http://www.sosy-lab.org/~dbeyer/Publications/2016-TACAS.Reliable_and_Reproducible_Competition_Results_with_BenchExec_and_Witnesses.pdf
http://www.sosy-lab.org/~dbeyer/Publications/2016-TACAS.Reliable_and_Reproducible_Competition_Results_with_BenchExec_and_Witnesses.pdf
http://dx.doi.org/10.1007/s10009-007-0044-z
http://dx.doi.org/10.1007/s10009-007-0044-z
http://www.sosy-lab.org/~dbeyer/Publications/2007-STTT.The_Software_Model_Checker_BLAST.pdf
http://www.sosy-lab.org/~dbeyer/Publications/2007-STTT.The_Software_Model_Checker_BLAST.pdf
http://dx.doi.org/10.1007/978-3-540-73368-3_51
http://www.sosy-lab.org/~dbeyer/Publications/2007-CAV.Configurable_Software_Verification.pdf
http://www.sosy-lab.org/~dbeyer/Publications/2007-CAV.Configurable_Software_Verification.pdf
http://dx.doi.org/10.1007/978-3-642-22110-1_16
http://www.sosy-lab.org/~dbeyer/Publications/2011-CAV.CPAchecker_A_Tool_for_Configurable_Software_Verification.pdf
http://www.sosy-lab.org/~dbeyer/Publications/2011-CAV.CPAchecker_A_Tool_for_Configurable_Software_Verification.pdf
http://dx.doi.org/10.1007/978-3-642-37057-1_11
http://dx.doi.org/10.1007/978-3-642-37057-1_11
http://www.sosy-lab.org/~dbeyer/Publications/2013-FASE.Explicit-State_Software_Model_Checking_Based_on_CEGAR_and_Interpolation.pdf
http://www.sosy-lab.org/~dbeyer/Publications/2013-FASE.Explicit-State_Software_Model_Checking_Based_on_CEGAR_and_Interpolation.pdf
http://dx.doi.org/10.1007/978-3-642-36046-6_1
http://www.sosy-lab.org/~dbeyer/Publications/2013-MEMICS.BDD-Based_Software_Model_Checking_with_CPAchecker.pdf

D. Beyer & K. Friedberger 71

Model_Checking_with_CPAchecker.pdf.
[7] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu & H. Veith (2003): Counterexample-guided abstraction refinement

for symbolic model checking. J. ACM 50(5), pp. 752–794, doi:10.1145/876638.876643.
[8] E. M. Clarke, D. Kröning, N. Sharygina & K. Yorav (2005): SATABS: SAT-Based Predicate Abstraction for

ANSI-C. In: Proc. TACAS, LNCS 3440, Springer, pp. 570–574, doi:10.1007/978-3-540-31980-1_40.
[9] L. Cordeiro & B. Fischer (2011): Verifying multi-threaded software using smt-based context-bounded model

checking. In: Proc. ICSE, ACM, pp. 331–340, doi:10.1145/1985793.1985839.
[10] Matthias Dangl, Stefan Löwe & Philipp Wendler (2015): CPACHECKER with Support for Recursive

Programs and Floating-Point Arithmetic. In: Proc. TACAS, LNCS 9035, Springer, pp. 423–425,
doi:10.1007/978-3-662-46681-0_34.

[11] B. Fischer, O. Inverso & G. Parlato (2013): CSeq: A Sequentialization Tool for C (Competition Contribution).
In: Proc. TACAS, LNCS 7795, Springer, pp. 616–618, doi:10.1007/978-3-642-36742-7_46.

[12] Patrice Godefroid (1996): Partial-Order Methods for the Verification of Concurrent Systems - An Approach
to the State-Explosion Problem. LNCS 1032, Springer, doi:10.1007/3-540-60761-7.

[13] A. Gupta, C. Popeea & A. Rybalchenko (2011): Threader: A Constraint-Based Verifier for Multi-threaded
Programs. In: CAV, LNCS 6806, Springer, pp. 412–417, doi:10.1007/978-3-642-22110-1_32.

[14] T. A. Henzinger, R. Jhala, R. Majumdar & G. Sutre (2002): Lazy abstraction. In: Proc. POPL, ACM, pp.
58–70, doi:10.1145/503272.503279.

[15] G. J. Holzmann (1997): The SPIN Model Checker. IEEE Trans. Softw. Eng. 23(5), pp. 279–295,
doi:10.1109/32.588521.

[16] Omar Inverso, Truc L. Nguyen, Bernd Fischer, Salvatore La Torre & Gennaro Parlato (2015): Lazy-CSeq: A
Context-Bounded Model Checking Tool for Multi-threaded C-Programs. In: Proc. ASE, ACM, pp. 807–812,
doi:10.1109/ASE.2015.108.

[17] Sreekaanth S. Isloor & T. Anthony Marsland (1980): The Deadlock Problem: An Overview. IEEE Computer
13(9), pp. 58–78, doi:10.1109/MC.1980.1653786.

[18] Doron A. Peled (1993): All from One, One for All: on Model Checking Using Representatives. In: Proc.
CAV, LNCS 697, Springer, pp. 409–423, doi:10.1007/3-540-56922-7_34.

[19] Antti Valmari (1989): Stubborn sets for reduced state space generation. In: Proc. Petri Nets, LNCS 483,
Springer, pp. 491–515, doi:10.1007/3-540-53863-1_36.

A Light-Weight Approach for Verifying Multi-Threaded Programs with CPAchecker 107

http://www.sosy-lab.org/~dbeyer/Publications/2013-MEMICS.BDD-Based_Software_Model_Checking_with_CPAchecker.pdf
http://www.sosy-lab.org/~dbeyer/Publications/2013-MEMICS.BDD-Based_Software_Model_Checking_with_CPAchecker.pdf
http://dx.doi.org/10.1145/876638.876643
http://dx.doi.org/10.1007/978-3-540-31980-1_40
http://dx.doi.org/10.1145/1985793.1985839
http://dx.doi.org/10.1007/978-3-662-46681-0_34
http://dx.doi.org/10.1007/978-3-642-36742-7_46
http://dx.doi.org/10.1007/3-540-60761-7
http://dx.doi.org/10.1007/978-3-642-22110-1_32
http://dx.doi.org/10.1145/503272.503279
http://dx.doi.org/10.1109/32.588521
http://dx.doi.org/10.1109/ASE.2015.108
http://dx.doi.org/10.1109/MC.1980.1653786
http://dx.doi.org/10.1007/3-540-56922-7_34
http://dx.doi.org/10.1007/3-540-53863-1_36

Violation Witnesses and Result Validation
for Multi-Threaded Programs

Implementation and Evaluation with CPAchecker

Dirk Beyer and Karlheinz Friedberger

LMU Munich, Munich, Germany

Abstract. Invariants and error traces are important results of a program
analysis, and therefore, a standardized exchange format for verification
witnesses is used by many program analyzers to store and share those
results. This way, information about program traces and variable assign-
ments can be shared across tools, e.g., to validate verification results,
or provided to users, e.g., to visualize and explore the results in or-
der to fix bugs or understand the reason for a program’s correctness.
The standard format for correctness and violation witnesses that was
used by SV-COMP for several years was only applicable to sequential
(single-threaded) programs. To enable the validation of results for multi-
threaded programs, we extend the existing standard exchange format by
adding information about thread management and thread interleaving.
We contribute a reference implementation of a validator for violation
witnesses in the new format, which we implemented as component of the
software-verification framework CPAchecker. We experimentally evalu-
ate the format and validator on a large set of violation witnesses. The
outcome is promising: several verification tools already produce violation
witnesses that help validating the verification results, and our witness
validator can re-verify most of the produced witnesses.

Keywords: Verification witness · Result validation · Software
verification · Proof format · Program analysis · Violation witness ·
Counterexample · CPAchecker

1 Introduction

Reliable and correct software is a basic dependency of today’s society and industry.
For proving programs correct as well as for finding errors in programs, formal ver-
ification is a powerful technique. Given a program and a specification, a software
verifier either finds an error path through the program that exposes the specifica-
tion violation or proves that the specification is satisfied by the program. In most
cases, the analysis produces some kind of data that is valuable for the user and can

Replication package available on Zenodo [14].
Funded in part by Deutsche Forschungsgemeinschaft (DFG) – 378803395 (ConVeY).
c© The Author(s) 2020
T. Margaria and B. Steffen (Eds.): ISoLA 2020, LNCS 12476, pp. 449–470, 2020.
https://doi.org/10.1007/978-3-030-61362-4_26

Violation Witnesses and Result Validation for Multi-Threaded Programs 109

https://doi.org/10.5281/zenodo.3885694
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61362-4_26&domain=pdf
http://orcid.org/0000-0003-4832-7662
http://orcid.org/0000-0001-7624-654X
http://gepris.dfg.de/gepris/projekt/378803395
https://doi.org/10.1007/978-3-030-61362-4_26

450 D. Beyer and K. Friedberger

be used in further applications. Several tool chains support the direct reuse of ver-
ification results [5,6,25]. In general, information about the program analysis can
be provided in form of a verification witness, either as correctness witness [10] (e.g.,
describing invariants from the correctness proof) or as violation witness [11,12]
(e.g., representing an abstract counterexample towards a property violation).

The standard witness exchange format was specified and continuously
improved by the verification community (especially SV-COMP) over the last
years.1 The specification was first supporting only sequential programs (since SV-
COMP 2015 [4,11]), and we later extended it to multi-threaded programs as well
(SV-COMP 2018–2020). In this paper, we describe the necessary extensions to the
witness format and provide evidence that violation witnesses for concurrent tasks
are not only produced by many verification tools (in SV-COMP 2020: Cbmc [29],
CPAchecker [18], CPAlockator [1], Dartagnan [33], Divine [3], Esbmc [32],
Lazy-CSeq [39], PeSCo [31], Ultimate Automizer [37], Ultimate Taipan [35],
Yogar-Cbmc [40]), but that most of the violation witnesses for concurrent
programs can also be validated by our implementation of a validation tool.

Contributions. The paper makes the following contributions:

• Extension of the existing violation witness format by additional hints on
thread management: (i) thread interleavings are represented using thread-ids
at all edges and (ii) thread creation is added to the witness.

• Implementation of an approach for validation of violation witnesses for multi-
threaded programs in the verification framework CPAchecker and make the
source code available as reference implementation for others.2

• Experimental evaluation of the new format and validator on a large number
of verification tasks with violation witnesses from several verifiers to show
that the approach is effective and helps validating the existence of error traces
in multi-threaded programs.

• Availability of all experimental results, including raw data, tables, experiment
setup, etc. (see Sect. 6).

RelatedWork. As we extend an existing standardized witness format and valida-
tion technology, this work is based on a number of existing ideas, which we outline
in the following.

Verification Artifacts. Many program-analysis techniques are efficient at discov-
ering proofs or failures. However, it is often difficult to evaluate results, such
as program paths towards property violations. Artifacts [24] from verifier ex-
ecutions are valuable for users [2,28,36]. The standard exchange format for
verification witnesses [11] is the basis of our work; we describe and extend
it in this paper and apply it in our evaluation.

1 https://github.com/sosy-lab/sv-witnesses
2 https://cpachecker.sosy-lab.org

110 A. Manuscripts

https://github.com/sosy-lab/sv-witnesses
https://cpachecker.sosy-lab.org

Violation Witnesses and Result Validation for Multi-Threaded Programs 451

Test Execution and Harnesses. While it is comparatively simple to create an
executable harness for a sequential program [12,27,30,34], the situation for
multi-threaded programs is more complex. Simple test cases can not capture
the difficulty of nondeterministically interleaved threads and can only be used
to heuristically execute a sample of all possible program traces. The schedul-
ing of threads needs to be encoded into the harness in such a way that all
statements are interleaved in the correct ordering.

Sequentialization. Tools like Lazy-CSeq [38,39] apply sequentialization tech-
niques before verification and can thus provide data about multi-threaded
counterexample traces via a sequentialized program. However, the mapping
from a sequentialized program (and the found counterexample path in it) back
to its multi-threaded origin needs to be supported.

2 Background

We provide only a short overview of some basic concepts and definitions that we
use to describe our approach, including the program representation, the format
for violation witnesses, and the multi-threaded program analysis in CPAchecker.

2.1 Program Representation

For presentation, we restrict our programs to a simple imperative programming
language that contains only assignments, assumptions, declarations, function
calls, and function returns. The language supports simple thread management via
the calls of pthread_create and pthread_join, and assumes that each statement
in the code is atomic on its own, i.e., uses a strong memory model providing
sequential consistency, such that an update of a shared variable is immediately
visible to all threads and the verification approach does not need to care about
asynchronous memory accesses like simultaneously updating the same memory
cell from multiple threads or unit-local caching of values that might happen on
hardware level. This is not a theoretical restriction, as each statement could
be decomposed into a sequence of reading and writing statements, where each
statement involves at most one shared variable. For simplicity and generality, the
witnesses ignore further thread-management methods like mutex locks, wait, and
cancel operations, as well as interrupts. In violation witnesses such operations
do not need to be specified for the validation tool.

The violation witnesses for multi-threaded programs that are produced by
the verifiers all support the C programming language as input language and
may support a wider range of thread-management operations. We will analyze
the quality of those witnesses in the evaluation (Sect. 5).

A program is represented by a control-flow automaton (CFA) (L, linit, G),
which consists of a set L of program locations (modeling the program counter),
a set G ⊆ L × Ops × L of control-flow edges (modeling the control flow with
assignment and assumption operations as well as declarations and function calls

Violation Witnesses and Result Validation for Multi-Threaded Programs 111

452 D. Beyer and K. Friedberger

Fig. 1. Source code and CFAs for multi-threaded example program, adopted from
program https://github.com/sosy-lab/sv-benchmarks/blob/svcomp20/c/pthread/fib_bench-2.c

and returns from Ops), and a program-entry location linit ∈ L. A sequence
<g1, g2, ..., gn> of CFA edges from G is called program path if it starts from
the program-entry location (i.e., g1 = (linit, ·, ·)). As we analyze multi-threaded
programs, this sequence consists of potentially interleaved edges from different
threads, e.g., there is no need that the end location l of a CFA edge gi = (·, ·, l)
is identical with the start location l′ of its directly succeeding CFA edge gi+1 =
(l′, ·, ·), but the next CFA edge along the sequence from the same thread must
start with program location l. At the program entry and at each thread entry,
there is no matching previous program location in a valid program path.

The example in Fig. 1 shows a short multi-threaded program and the corre-
sponding CFAs. The program is build around the Fibonacci sequence, even if
the source itself does not directly reveal this. We will later examine this example
and find a sequence of operations such that fib(10) = 55 was computed (this
is modeled as a violation of the specification G ! call(__VERIFIER_error())
i.e., a call to function __VERIFIER_error is not reachable).

1 int NUM = 4 , FIB = 55 ;
2 int i = 1 , j = 1 ;
3

4 void ∗ t1 () {
5 for (int k = 0 ; k < NUM; k++) {
6 i += j ;
7 }
8 pthread_exit (0) ;
9 }

10

11 void ∗ t2 () {
12 for (int k = 0 ; k < NUM; k++) {
13 j += i ;
14 }
15 pthread_exit (0) ;
16 }
17

18 int main () {
19 pthread_t id1 , id2 ;
20 pthread_create(&id1 , 0 , t1 , 0) ;
21 pthread_create(&id2 , 0 , t2 , 0) ;
22 i f (i >= FIB | | j >= FIB) {
23 __VERIFIER_error () ;
24 }
25 return 0 ;
26 }

1

2

18

19

20

21

22

23

25

26

int NUM=4, FIB=55

int i=1, j=1

main()

pthread_t id1, id2

pthread_create(&id1, 0, t1, 0)

pthread_create(&id2, 0, t2, 0)

![i ≥ FIB
|| j ≥ FIB]

[i ≥ FIB || j ≥ FIB]

__VERIFIER_error()

return 0

5

5a

6

78

9

int k=0

[k<NUM]

i += j
k++![k<NUM]

pthread_exit(0)

12

12a

13

1415

16

int k=0

[k<NUM]

j += i
k++![k<NUM]

pthread_exit(0)

112 A. Manuscripts

https://github.com/sosy-lab/sv-benchmarks/blob/svcomp20/c/pthread/fib_bench-2.c

Violation Witnesses and Result Validation for Multi-Threaded Programs 453

2.2 Violation Witnesses

Witnesses in software verification are based on the concept of protocol au-
tomata [11] that are matched against a CFA for validation. A protocol automaton
consists of control states with invariants and edges between control states that
represent program transitions. An edge contains a source guard, which restricts
the transition to a specific set S ⊆ G of edges from the CFA, and a state-space
guard, which restricts the state space by giving additional constraints on variables.

For exporting a violation witness to a file, the protocol automaton is converted
intoGraphML [26], enriched with additional meta-data (like a hash of the analyzed
program). When importing a violation witness from a file, the GraphML data
structure is transformed into a protocol automaton, such that it can be used
internally in parallel to any of CPAchecker’s program analyses.

2.3 Analysis of Multi-Threaded Programs in CPAchecker

CPAchecker is based on the concept of configurable program analysis (CPA)
[15,16]. Different concerns of a program are analyzed by different components
(denoted as CPAs). To track variables and their assigned values, we can choose
from a predicate-abstraction analysis [19], an explicit-value analysis [21], a BDD-
based analysis [23], a symbolic execution [20], and several more. For the analysis
of program locations in multi-threaded programs, the multi-threading analy-
sis [13] explores the state space, computes possible thread interleavings on-the-fly,
and maintains abstract states, where each abstract state consists of several
program locations (one per thread) together with their call stacks (also one
per thread). Additional optimizations like partial-order reduction are available
in the implementation, but not considered here.

To avoid collisions of identifiers during a program analysis, e.g., as it might
happen if the same function is called in two different threads at the same
time, CPAchecker uses different function names for parallel running threads.
If necessary, we use several copies of the CFA for a function of the program,
using indexed names. For exporting a violation witness, the indexes are re-
moved, because changed function names are not compatible across different
tools. When using an existing violation witness for validating a multi-threaded
program, we reintroduce a matching of available thread identifiers in the wit-
ness and indexed function copies of the CFAs.

3 Detailed Example

In the following, we explain an example step by step. First we start a verifier
to verify an example program and produce a witness, and second we start a
validator to validate the verification result using the produced witness.

3.1 Producing a Violation Witness

The program from Fig. 1 creates two threads id1 and id2, which run in par-
allel and increase the value of the variables i and j. If any of the variables i

Violation Witnesses and Result Validation for Multi-Threaded Programs 113

454 D. Beyer and K. Friedberger

Fig. 2. Counterexample trace represented by program path, scheduling of opera-
tions, data state as variable assignment, and line number as reference

or j reaches their limit (which is fib(10)), then function __VERIFIER_error
is reached and a standard verifier can check this by using the specification
G ! call(__VERIFIER_error()) and let it produce a counterexample path. This
case can happen if the assignments i+=j and j+=i in the two threads id1 and id2
are executed in alternating order for all iterations of the loops. The rest of the
loop statements in both threads, i. e., checking the loop bound, can be executed
in arbitrary ordering here and allows a wide range of possible thread interleaving.

The following command line runs CPAchecker as a verifier, configured to
use an explicit-value-based analysis for verifying multi-threaded programs:

scripts/cpa.sh \
-outputpath verification \
-setprop counterexample.export.graphml=witness.graphml \
-setprop counterexample.export.compressWitness=false \
-spec config/properties/unreach-call.prp \
-valueAnalysis-concurrency \
fib.c

This command specifies the directory for all output (including the witness
file), the name of the witness file (without compressing it), the specification
(which searches for the function call __VERIFIER_error), the domain-specific
analysis for the verification process, and the subject program.

Program Path Operation Scheduling Variable Values Line
main id1 id2 i j kt1 kt2

(1, ., 2),(2, ., 18),(18, ., 19),(19, ., 20) i=1, j=1 1 1 2
(20, ., 21),(5, ., 5a) kt1 = 0 0 5
(5a, ., 6),(6, ., 7) i+=j 2 6
(7, ., 5a) kt1++ 1 5
(21, ., 22),(12, ., 12a) kt2 = 0 0 12
(12a, ., 13),(13, ., 14) j+=i 3 13
(14, ., 12a) kt2++ 1 12
(5a, ., 6),(6, ., 7) i+=j 5 6
(12a, ., 13),(13, ., 14) j+=i 8 13
(14, ., 12a) kt2++ 2 12
(7, ., 5a) kt1++ 2 5
(5a, ., 6),(6, ., 7) i+=j 13 6
(12a, ., 13),(13, ., 14) j+=i 21 13
(14, ., 12a) kt2++ 3 12
(7, ., 5a) kt1++ 3 5
(5a, ., 6),(6, ., 7) i+=j 34 6
(12a, ., 13),(13, ., 14) j+=i 55 13
(22, ., 23) j >= FIB 22

114 A. Manuscripts

Violation Witnesses and Result Validation for Multi-Threaded Programs 455

Fig. 3. Graphical representation of a violation witness and the available data

A1
entry=true

A2
threadId=0 , startline=18, enterFunction=main

A3
threadId=0 , startline=20, createThread=1

A4
threadId=1 , startline=20, enterFunction=t1

A5
threadId=1 , startline=5, scope=t1, enterLoopHead=true, assumption="k==0;"

A6
threadId=1 , startline=5, scope=t1, control=condition-true, assumption="k==0; NUM==4;"

A7
threadId=1 , startline=6, scope=t1, assumption="i==2;"

A8
threadId=1 , startline=5, scope=t1, enterLoopHead=true, assumption="k==1;"

A9
threadId=1 , startline=5, scope=t1, control=condition-true, assumption="k==1; NUM==4;"

A10
threadId=0 , startline=21, createThread=2

A11
threadId=2 , startline=21, enterFunction=t2

A12
threadId=2 , startline=12, scope=t2, enterLoopHead=true, assumption="k==0;"

A13
threadId=2 , startline=12, scope=t2, control=condition-true, assumption="k==0; NUM==4;"

A14
threadId=2 , startline=13, scope=t2, assumption="j==3;"

A15
threadId=2 , startline=12, scope=t2, enterLoopHead=true, assumption="k==1;"

A16
threadId=2 , startline=12, scope=t2, control=condition-true, assumption="k==1; NUM==4;"

A17
threadId=1 , startline=6, scope=t1, assumption="i==5;"

A18
threadId=2 , startline=13, scope=t2, assumption="j==8;"

A19
threadId=2 , startline=12, scope=t2, enterLoopHead=true, assumption="k==2;"

A20
threadId=2 , startline=12, scope=t2, control=condition-true, assumption="k==2; NUM==4;"

A21
threadId=1 , startline=5, scope=t1, enterLoopHead=true, assumption="k==2;"

A22
threadId=1 , startline=5, scope=t1, control=condition-true, assumption="k==2; NUM==4;"

A23
threadId=1 , startline=6, scope=t1, assumption="i==13;"

A24
threadId=2 , startline=13, scope=t2, assumption="j==21;"

A25
threadId=2 , startline=12, scope=t2, enterLoopHead=true, assumption="k==3;"

A26
threadId=2 , startline=12, scope=t2, control=condition-true, assumption="k==3; NUM==4;"

A27
threadId=1 , startline=5, scope=t1, enterLoopHead=true, assumption="k==3;"

A28
threadId=1 , startline=5, scope=t1, control=condition-true, assumption="k==3; NUM==4;"

A29
threadId=1 , startline=6, scope=t1, assumption="i==34;"

A30
threadId=2 , startline=13, scope=t2, assumption="j==55;"

A31
violation=true

threadId=0 , startline=22, scope=main, control=condition-true, assumption="j==55; FIB==55;"

Violation Witnesses and Result Validation for Multi-Threaded Programs 115

456 D. Beyer and K. Friedberger

The verification process starts the analysis at the program entry and explores
the reachable state space. In this example, it finds and reports an error trace
as a program path (first column of Fig. 2) and provides the violation witness
in Fig. 3, which is written into the file verification/witness.graphml.gz.
Both, the counterexample trace and the violation witness specify the inter-
leaved thread execution and variable assignments, such that a user or a wit-
ness validator can directly follow the path until reaching the property vio-
lation in the program. We highlight the information that is relevant for the
thread interleaving. The violation witness uses sink nodes for branches or
thread interleavings that do not follow the counterexample path. For simplic-
ity, we avoid them in the graphical representation.

Using the explicit-value domain allows us to export detailed data about the
counterexample trace, such as assignments for all variables at many program
locations. The verification witness is enriched with these assignments, such that
the validator can use them as additional constraints.

The information about which thread is executed, and how the interleaving
looks like, is important for the user (and also for the validator). In a pro-
gram with threads created from the same function (that is, with identical line
numbers), the thread identifier is the only way to distinguish between differ-
ent contexts. Therefore, a witness must contain a thread identifier for every
transition (edge) in the witness. In this example, the executed threads have
different function scopes (t1 and t2) which makes it easier for the reader to
find the correct trace towards the property violation.

3.2 Validating Results Based on a Violation Witness

In order to validate the information from the witness, the violation witness
is matched against the program source code. As the violation witness de-
scribes a limited set of paths (best case: exactly one path), the validation
process is expected to be efficient and to only analyze a small portion of
the reachable state space of the whole program.

The following command line runs CPAchecker as a validator based on the
provided violation witness for the multi-threaded program:

scripts/cpa.sh \
-outputpath validation \
-spec config/properties/unreach-call.prp \
-witnessValidation \
-witness verification/witness.graphml \
fib.c

This command specifies the directory for all output (including the newly
generated witness file), the specification (which searches for the function call
__VERIFIER_error), the validation analysis that will select the strategy to
analyze multi-threaded programs, the witness that will be used for the vali-
dation (as second, parallel specification), and the subject program. Figure 4

116 A. Manuscripts

Violation Witnesses and Result Validation for Multi-Threaded Programs 457

Fig. 4. Overview of CPAchecker’s control flow for violation witness validation
for multi-threaded programs

shows the architecture of CPAchecker for the witness validation for multi-
threaded programs. The program is parsed into a CFA and then given to an
analysis based on the CPA concept [17]. The property specification and the
violation witness are used as protocol automata.

The validation proceeds with the following steps: The witness validator
CPAchecker converts the GraphML file (from Fig. 3) into its internal protocol
automaton [11], which includes the constraints of the witness. The analysis then
runs this automaton in parallel to the default analysis (reduced product) and
strengthens the transition relation of the analysis with the additional constraints
from the witness. The analysis starts with an initial abstract state built from the
program-entry location in the CFA and the entry node in the witness automaton.
Then it computes successors for each state and follows a strategy that aims
at getting as deep as possible into the witness automaton. This corresponds
with strict guidance from the protocol automaton.

By the definition of the witness and the CFA, it is guaranteed that each
step through the violation witness matches one or more edges in the program’s
CFA. The witness structure guides the search towards the property violation
in the program. The validator only confirms a property violation from a vio-
lation witness, if both the witness automaton and the program location refer
to a property violation according to the specification.

For the example, the validation process reports a property violation and
confirms the violation witness. The framework reports the validated counterex-
ample trace in form of a new violation witness, which looks quite similar to
the existing one. As our validation process uses the BDD-based domain, inter-
mediate steps can be different and more precise than with the previously used
explicit-value analysis. However, exporting data from BDDs is more difficult and
CPAchecker does not (yet) support it for the witness export.

Witness

Specification

Source Code Validation
Result

CFA
Builder

CPA
Algorithm

Automaton
CPA

Threading
CPA

BDD
CPA

Witness Validator

Violation Witnesses and Result Validation for Multi-Threaded Programs 117

458 D. Beyer and K. Friedberger

4 Violation Witnesses for Multi-threaded Programs

This section gives some details about the extension of the witness format to
multi-threaded programs and the implementation of a validator. We used the
most obvious way to model traces in multi-threaded programs: specify which
thread executes which statement at which point in the trace.

4.1 Extending the Existing Format

A violation witness should contain sufficient information about the verification
task, such that a validator can efficiently replay the property violation, that is,
without re-analyzing the whole state space of the program. This means that for
guiding the validator towards a certain property violation, the witness needs to
contain sufficient information about all branching choices. While branching points
are obvious in sequential programs —just mark all if-then-else statements—,
the situation in a multi-threaded program is more complex. The difficulty is
to determine the correct ordering of thread interleavings along the counterex-
ample trace. A detailed look provides us insights about the encoding of thread
interleavings in CPAchecker: Each program state represents multiple program
counters (i.e., one program location per thread) and thus allows the execution of
the follower statement from any available thread. We identified only one single
information that is critical for the validator to successfully validate a violation
witness for a multi-threaded program: a unique thread identifier to identify the
actual thread that executes a statement given in the witness. Along a violation
witness, the thread identifier is required for two different steps:

• Whenever a new thread is started via a control-flow edge calling
pthread_create, we insert the information createThread=<ID>, where ID
is a new thread identifier for the new thread. Using these hints on thread
creation, the validator can register a new thread and follow its control flow.

• The thread interleaving is encoded with the thread identifier that is given
for each statement in the witness. The information threadId=<ID> is added
to all control-flow edges in the witness, where the thread <ID> executes the
statement along the control-flow edge.

To keep the witness format as simple as possible, our extension of the witness
format consists of only the two above pieces of information (and even those
two are optional, i.e., just act as hints for the validator to find the property
violation faster). Overall, this allows verification tools that already have support
for exporting violation witness and can analyze concurrent programs to directly
export violation witnesses for concurrent programs without larger changes to their
code base. We considered to include an explicit notion of thread exit or thread join
into the set of critical information, but it turned out that none of these actually
helped or improved the performance of the validator. In other words, terminating
a single thread is unimportant and the validator can automatically infer such
information, whenever a single thread reaches the end of its control flow.

118 A. Manuscripts

Violation Witnesses and Result Validation for Multi-Threaded Programs 459

Limitations of the Format. The current witness format does not support
assumptions using thread-local scopes of identifiers, such as x from thread 1
is larger than x from thread 2. The validator could in principle overcome this
limitation by heuristically choosing which thread is responsible for which identifier.
This could make validation slow due to a potentially large overhead. Alternatively,
we could extend the assumption format, which are currently plain C statements,
with fully qualified names. However, that requires several changes to the syntax
(parser and exporter) of the assumptions in both producer and consumer of
the witness format. Thus, our validator currently ignores assumptions for which
it can not deterministically assign the corresponding thread.

The current witness format does not support quantifiers. For a possibly
unbounded number of threads in the program, a correctness witness has to
provide information (invariants) over all threads, i.e., uses quantifiers such
as forall threads: property violation can not happen.

4.2 Implementation of the Validator in CPAchecker

CPAchecker transforms a given GraphML-based witness into its internal au-
tomaton format, which is then applied along the program analysis to restrict
the reachable state space. Additional assumptions over program variables that
are given in the witness can be used to strengthen domain-specific transfer
relations or cut off the state-space exploration, e. g., if an assumption about
a program variable does not satisfy its current assignment.

The validator uses the information from the violation witness for two different
features: (1) The state-space exploration is configured to prioritize the search in
the direction of the violation witness, i.e., as soon as any control-flow edge from
the witness is matching, CPAchecker directly follows that direction. This does
not exclude other traces of the program, as they will just be scheduled later in the
exploration algorithm. (2) If an assumption is available in the witness, the valida-
tor applies strengthening and allows to exchange of information between CPAs.

Matching Thread Identifiers. The validator needs to combine the infor-
mation provided in the witness automaton with its own thread model. The
important information for multi-threading is provided as an (optional) thread
identifier for each single control-flow edge. The validator assumes that the iden-
tifier is unique for any particular state in the witness, and we allow to reuse
a thread identifier if its previous usage is out of scope, i.e., the correspond-
ing thread has already exited and was joined.

Our internal thread model uses indices to refer to threads in an abstract state.
When validating the violation witness, we create a mapping of the thread identifier
from the witness to a possible thread index of our own thread model. This allows
the validator to be independent from any concrete representation of a thread identi-
fier in the witness.

Analyses in CPAchecker with Support for Multi-threaded Programs.
The validation for violation witnesses uses the default CPA algorithm [17], which
provides an efficient state-space exploration and can be combined with CEGAR.

Violation Witnesses and Result Validation for Multi-Threaded Programs 119

460 D. Beyer and K. Friedberger

With the CPA concept, we combine independent analyses (CPAs) that work for
different aspects of the program analysis. The automaton analysis handles the
matching against the specification automaton and the witness automaton, The
threading analysis [13]manages the thread scheduling and interleaving.Additional
CPAs like an explicit-value analysis [21], a BDD-based [23], or interval-based
analysis allow to reason about assignments of variables.

For validation of violation witnesses, we additionally strengthen the abstract
threading state with information provided in the witness automaton, in or-
der to track the mapping of thread identifiers and thread indices, and to cut
off irrelevant branches in the state space eagerly.

Limitations of theValidator. There are some conceptional or implementation-
defined limitations of the current implementation of the validator.Wediscuss these
limitations to encourage developers of future validators for multi-threaded pro-
grams to improve the approach in our tool, to extend other validators for sequential
programs by support for multi-threaded tasks, or to provide new validators.

Based on the requirement to prepare a CFA for each thread of a multi-
threaded program, there is a fixed upper bound in the number of threads (default
value is 5). The validator ignores traces that use more than the given number
of threads, which is an unsound approximation. Note that this is no general
limitation of the witness format or the validator. Each concrete error trace for
a violation witness has a bounded length and thus can only use a bounded
number of thread interleavings. (For example, the number of threads could be
added to the metadata of the violation witness and the limit value could be
set appropriately.) For the evaluated verification tasks, the default limit was
sufficient. If the violation witness is to imprecise and the program allows to create
more threads than given in the violation witness, the validator can of course also
apply the analysis for more threads. Due to our simple threading analysis, we
can only track threads with simple thread-identifier assignments, i.e., where the
thread itself is not assigned to an array element or complex pointer structure.

CPAchecker currently supports two domains concretely for analyzing multi-
threaded programs, which are explicit-value analysis and BDD-based analysis.
The default is to use the BDD-based approach, as it can also handle symbolic
values. The validator inherits the limitations of those domains, e.g., it has only
limited support for heap-related data structures, such that we need to ignore
most array- or pointer-related operations, which can make the validation process
imprecise and in some cases even unsound (in case of pointer assignments). This
leads to two general cases in which a validator can be wrong: (a) there could be a
perfectly valid violation witness but the validator cannot replay it and rejects it
due to missing feature support and (b) there could be an invalid violation witness
(does not describe a feasible error path) but the validator still finds a different
feasible counterexample itself and accepts it due to imprecise information in the
witness. There were a few such cases in SV-COMP 2020. The following examples
are extracted from the results of SV-COMP 2020 by manual investigation, to give
an impression for unsupported features and how they show up in the results3:
3 SV-COMP published all referenced witnesses [9] and verification tasks [8].

120 A. Manuscripts

Violation Witnesses and Result Validation for Multi-Threaded Programs 461

• Cbmc provides a valid (rather short) violation witness4 for the task
tls_destructor_worker.yml5. The validator with BDD-based analysis can
not confirm this witness due to missing support for pthread_create_key and
pointer operations.

• Esbmc provides a valid violation witness6 for the task
race-2_3-container_of.yml7, which the validator with BDD-based analy-
sis can not confirm due to missing support for structs.

• Yogar-CBMC provides a valid violation witness8 for the task bigshot_p.yml9,
for which the validator aborts due to an unexpected assignment of a thread
identifier into an array element.

So far, the presented validator is the only validator for multi-threaded pro-
grams, and it participated already three years in the competition of software verifi-
cation (since SV-COMP 2018).

5 Experimental Evaluation

We perform an experimental evaluation on violation witnesses for multi-threaded
programs to provide qualitative and quantitative insights on how well the result
validation based on violation witnesses for multi-threaded programs works.

5.1 Evaluation Questions

We split our experimental evaluation into the following evaluation questions:

Q1: Which verifiers already support the export of violation witnesses for multi-
threaded programs after a successful verification run and what kind of
information about the counterexample trace is provided within the witness.

Q2: Is the format sufficient and concrete enough for the validator to re-verify
the counterexample trace?

Q3: Is the validation process faster than the verification process?

4 https://sv-comp.sosy-lab.org/2020/results/fileByHash/
c4a519d36a719304f05e0af3675a0bcf40a7ce4d5000fba784365eed63105ee0.
graphml

5 https://github.com/sosy-lab/sv-benchmarks/blob/svcomp20/c/
pthread-divine/tls_destructor_worker.yml

6 https://sv-comp.sosy-lab.org/2020/results/fileByHash/
784befbee140f91b180268f489a6cdce2471ffc6f8578fb0e361c3d2953313d1.
graphml

7 https://github.com/sosy-lab/sv-benchmarks/blob/svcomp20/c/ldv-races/
race-2_3-container_of.yml

8 https://sv-comp.sosy-lab.org/2020/results/fileByHash/
f197f473759cc28e4845bcfc6f92af00c0d3ad27e020ee9db1029bfd7c854dba.
graphml

9 https://github.com/sosy-lab/sv-benchmarks/blob/svcomp20/c/pthread/
bigshot_p.yml

Violation Witnesses and Result Validation for Multi-Threaded Programs 121

https://sv-comp.sosy-lab.org/2020/results/fileByHash/c4a519d36a719304f05e0af3675a0bcf40a7ce4d5000fba784365eed63105ee0.graphml
https://sv-comp.sosy-lab.org/2020/results/fileByHash/c4a519d36a719304f05e0af3675a0bcf40a7ce4d5000fba784365eed63105ee0.graphml
https://sv-comp.sosy-lab.org/2020/results/fileByHash/c4a519d36a719304f05e0af3675a0bcf40a7ce4d5000fba784365eed63105ee0.graphml
https://github.com/sosy-lab/sv-benchmarks/blob/svcomp20/c/pthread-divine/tls_destructor_worker.yml
https://github.com/sosy-lab/sv-benchmarks/blob/svcomp20/c/pthread-divine/tls_destructor_worker.yml
https://sv-comp.sosy-lab.org/2020/results/fileByHash/784befbee140f91b180268f489a6cdce2471ffc6f8578fb0e361c3d2953313d1.graphml
https://sv-comp.sosy-lab.org/2020/results/fileByHash/784befbee140f91b180268f489a6cdce2471ffc6f8578fb0e361c3d2953313d1.graphml
https://sv-comp.sosy-lab.org/2020/results/fileByHash/784befbee140f91b180268f489a6cdce2471ffc6f8578fb0e361c3d2953313d1.graphml
https://github.com/sosy-lab/sv-benchmarks/blob/svcomp20/c/ldv-races/race-2_3-container_of.yml
https://github.com/sosy-lab/sv-benchmarks/blob/svcomp20/c/ldv-races/race-2_3-container_of.yml
https://sv-comp.sosy-lab.org/2020/results/fileByHash/f197f473759cc28e4845bcfc6f92af00c0d3ad27e020ee9db1029bfd7c854dba.graphml
https://sv-comp.sosy-lab.org/2020/results/fileByHash/f197f473759cc28e4845bcfc6f92af00c0d3ad27e020ee9db1029bfd7c854dba.graphml
https://sv-comp.sosy-lab.org/2020/results/fileByHash/f197f473759cc28e4845bcfc6f92af00c0d3ad27e020ee9db1029bfd7c854dba.graphml
https://github.com/sosy-lab/sv-benchmarks/blob/svcomp20/c/pthread/bigshot_p.yml
https://github.com/sosy-lab/sv-benchmarks/blob/svcomp20/c/pthread/bigshot_p.yml

462 D. Beyer and K. Friedberger

5.2 Benchmark Set

We evaluate the witness format and the validator on a large set of verification tasks,
which is taken from the SV-Benchmarks collection [8]10, in the same version as
used for SV-COMP 2020. We limit the benchmark set to the subset of verification
tasks that exactly matches the category ConcurrencySafety in SV-COMP 2020,
i.e., multi-threaded programs with a reachability property as specification.

5.3 Setup

Our experiments were executed on computers with Intel Xeon E3-1230 v5 CPUs,
3.40 GHz CPU frequency, and 33 GB of RAM. We limited the CPU time to 15 min
and the memory to 15 GB.

We evaluated our validator on violation witnesses from SV-COMP [9] that
were produced by several different software verifiers. We selected those verifiers
that participated in SV-COMP 2020 [7], support violation witnesses (produced
more than 100 such witnesses that were confirmed), and have publicly available
archives on GitLab11. Those verifiers are the following seven: Cbmc, CPA-Seq,
Divine, Esbmc, Lazy-CSeq, PeSCo, and Yogar-CBMC. In addition to the
witnesses that we took from SV-COMP [9], we also used an updated version of
CPAchecker (revision r33531) to produce witnesses, where a small extension
for the export of violation witnesses was applied (add all beneficial informa-
tion about thread identifiers to the violation witness and consider more thread
interleavings). We include this additional verifier to show that a small and
inexpensive extension can lead to a significant improvement of the validation
results. The CPU time and memory consumption for each verification run was
measured by SV-COMP using BenchExec [22], and the number of nodes and
transitions was counted using the GraphML witness files.

Currently, there is only one validator available for violation witnesses of multi-
threaded programs, which is the validator explained in Sect. 4.2 and implemented
in the CPAchecker framework2. We use revision r33531 for the experiments.

5.4 Results and Discussion

Q1: Verifier Support and Available Information. All verifiers that we considered
in our experiments support (1) the verification of multi-threaded programs
and (2) the export of violation witnesses. Some tools include the beneficial
information about thread interleaving in the violation witness. That specific
feature was already requested in SV-COMP 2018, when the organizers extended
the validation of violation witnesses to the category of concurrent tasks. This
shows that our extension was already adopted to other verification tools. However,
the availability and the quality of the integration differs between the tools.

10 https://github.com/sosy-lab/sv-benchmarks/tree/svcomp20
11 https://gitlab.com/sosy-lab/sv-comp/archives-2020/-/tree/svcomp20/2020

122 A. Manuscripts

https://github.com/sosy-lab/sv-benchmarks/tree/svcomp20
https://gitlab.com/sosy-lab/sv-comp/archives-2020/-/tree/svcomp20/2020

Violation Witnesses and Result Validation for Multi-Threaded Programs 463

Table 1. Statistical description of the generated witnesses for the verifiers

Verifier Number of states Number of transitions
Median Mean Max Sum Median Mean Max Sum

Cbmc 6.00 6.05 10 4 790 4.00 4.05 8 3 210

CPA-Seq 48.0 48.7 662 38 700 82.0 84.4 744 67 000

CPAchecker (r33531) 141 140 1 480 112 000 207 202 1 620 161 000

Divine 3.00 3.05 5 1 820 2.00 2.05 4 1 220

Esbmc 3.00 5.19 30 4 140 2.00 4.19 29 3 340

Lazy-CSeq 66.0 64.1 156 52 100 64.0 62.1 154 50 500

PeSCo 51.0 49.5 662 38 600 83.0 85.9 744 67 000

Yogar-CBMC 86.0 84.7 188 68 300 84.0 82.7 186 66 700

Table 2. Properties of the exported violation witnesses

Verifier Thread id Thread creation All thread interleavings

Cbmc ✓

CPA-Seq ✓ ✓

CPAchecker (r33531) ✓ ✓ ✓

Divine

Esbmc

Lazy-CSeq ✓ ✓ ✓

PeSCo ✓ ✓

Yogar-CBMC ✓ ✓ ✓

Table 1 gives a statistical overview of the provided violation witnesses
and shows how many states and transitions are available in the violation wit-
nesses. Figure 5a shows the distribution of sizes of the violation witnesses for
different verifiers. As most tasks have roughly equal difficulty and length of
the counterexample trace, the sizes of the violation witnesses are in a cer-
tain range. The noticeable difference comes with the tools themselves, i.e.,
some tools export more details than others.

We also inspected the witnesses for the kind of information they contain.
Table 2 shows the different kinds of information available in thewitnesses produced
by the verifiers. We analyzed whether the violation witnesses contain the thread id
for every transition, information about thread creation for newly started threads
during the counterexample trace, and information about thread interleaving.
Cbmc, Divine, and Esbmc only export the main thread of the multi-threaded
program, which is not suitable for a counterexample trace with interleaving
thread statements, because all information about other threads is missing.

Q2:ValidationResults. The validation results for the produced violation witnesses
show whether the information from the violation witness was sufficient to guide
the validator towards confirming the given counterexample trace. Overall, the
performance of the validation run is determined by two factors: first, how well the
violation witness itself guides the state-space exploration and defines the thread

Violation Witnesses and Result Validation for Multi-Threaded Programs 123

464 D. Beyer and K. Friedberger

Fig. 5. Quantile plots for violation witnesses from different verifiers

scheduling, and second, how precise the data in the violation witness are. The
less information is provided in the violation witness, the more work is left to the
validator with its heuristics to recover the error trace. In other words, more precise
violation witnesses are often validated faster than less precise witnesses. Figure 5b
shows the CPU time of the validator for violation witnesses from different verifi-
cation tools. Comparing the results with the annotations exported by the tools
(Table 2) leads us to a first conclusion: exporting thread interleavings is critical for
finding a concrete counterexample path through the program during validation.

As Cbmc, Divine, and Esbmc produce violation witnesses that contain only
a minimal set of nodes and transitions, especially only consisting of the main
function of the program and ignoring any additional threads, the validation
can not follow the given trace sufficiently and performs worse than for other
violation witnesses. CPA-Seq and PeSCo use the same underlying analysis,
i.e., both tools apply CPAchecker’s BDD-based concurrency analyzer with
nearly identical options. Thus, they produce nearly identical violation witnesses
which also results in similar validation performance.

For the three tools that export thread interleavings in the violation witness,
the validation is fast and precise for most of the available verification tasks.
Apart from the startup time of the validator (due to starting the Java VM), the

0 200 400 600 800
1

10

100

1 000

n-th largest witness

N
um

be
r
of

st
at
es

Cbmc
CPA-Seq

CPAchecker (r33531)
Divine
Esbmc

Lazy-CSeq
PeSCo

Yogar-CBMC

(a) Size of witnesses

0 100 200 300 400 500 600 700 800

10

100

1 000

n-th fastest correct validation result

C
P
U

ti
m
e
(s
)

(b) Runtime of validation of witnesses

124 A. Manuscripts

Violation Witnesses and Result Validation for Multi-Threaded Programs 465

Fig. 6. Scatter plot showing the CPU time of the verification process of several
tools against the CPU time of the validation process

.1 1 10 100 1 000

10

100

1 000

Verification Cbmc (s)

V
al
id
at
io
n
(s
)

.1 1 10 100 1 000

10

100

1 000

Verification CPA-Seq (s)

V
al
id
at
io
n
(s
)

.1 1 10 100 1 000

10

100

1 000

Verification CPAchecker (r33531) (s)

V
al
id
at
io
n
(s
)

.1 1 10 100 1 000

10

100

1 000

Verification Divine (s)

V
al
id
at
io
n
(s
)

.1 1 10 100 1 000

10

100

1 000

Verification Esbmc (s)

V
al
id
at
io
n
(s
)

.1 1 10 100 1 000

10

100

1 000

Verification Lazy-CSeq (s)

V
al
id
at
io
n
(s
)

.1 1 10 100 1 000

10

100

1 000

Verification PeSCo (s)

V
al
id
at
io
n
(s
)

.1 1 10 100 1 000

10

100

1 000

Verification Yogar-CBMC (s)

V
al
id
at
io
n
(s
)

Violation Witnesses and Result Validation for Multi-Threaded Programs 125

466 D. Beyer and K. Friedberger

runtime of the validation itself is negligible. The violation witness guides the
validator in the right direction, i.e., all scheduling information is available and
nearly no overhead from unimportant program traces appears in the validation
process. Only some validation tasks suffer from a high runtime, but these cases
also suffer from a rather long and complex to find counterexample trace, such
that the violation witness itself contains several thousands of nodes. Note that
depending on the verifier, a different path might have been determined, resulting
in violation witnesses of different length for each verification task.

Q3: Performance of Validation Compared to Verification. Based on the CPU time
consumed by the verifiers and the CPU time consumed by the validator, we can
compare the performance of the validation with the performance of the verification
per verifier. Figure 6 shows several scatter plots, each comparing for a given verifier
the CPU times for successful validation runs against the corresponding verification
runs. Each data point in the scatter plots represents a verification task that was
verified and the resulting violation witness was then successfully validated. The
three diagonal lines indicate the factors of 0.1, 1, and 10 between the coordinates.

The overall picture for all scatter plots is as follows: The validator (as part of
CPAchecker) is written in Java and has a large startup overhead. This makes it
difficult to see a clear performance difference for the small and fast verification
tasks. For Cbmc and Esbmc, which are tools with only very imprecise witnesses,
the validation usually needs much more CPU time than the actual verification
took, i.e., the validator needed much more time to find a counterexample trace
matching the rudimentary information in the violation witness. Divine not
only has quite imprecise witnesses, but also requires more CPU time for the
verification process; thus the difference to the time required for the validation is
smaller. For more precise witnesses, as produced by Lazy-CSeq, Yogar-CBMC,
and CPAchecker (r33531), the validation process is often faster, or at least
requires mostly a nearly constant time (about 10 s).

5.5 Threats to Validity

The validity of our experiments is limited by certain choices that we made in the ex-
periment setup.

External Validity. The verifiers are all state-of-the-art and seven of them are
taken from SV-COMP 2020. We applied the same options and a similar en-
vironment that was used in the competition execution, and collected the vi-
olation witnesses from the selected verifiers.

There exists only a single validator for multi-threaded violation witnesses, and
it might be possible that our results (sufficient information in the witness format)
does not apply to other, future validators for multi-threaded programs. We based
our validator on the verification frameworkCPAchecker, because mechanisms for
witness export and validation was already integrated. The configuration using a
BDD-based analysis is currently the most performant approach for multi-threaded

126 A. Manuscripts

Violation Witnesses and Result Validation for Multi-Threaded Programs 467

programs in the framework. The heuristics for exploring the abstract state space
are tuned to match witnesses from a broad range of verifiers.

The community-based SV-Benchmarks repository is a largest and most divers
collection of verification tasks for the language C. We used all verification tasks
that were also used by the most recent competition: category ConcurrencySafety.

Internal Validity. The validator might contain programming bugs, but we based
our validator on the infrastructure that is used by the verifier CPA-Seq, which
performed extremely well in the recent competitions. Thus, we believe that
the implementation has a high quality. Also, previous versions of our valida-
tor participated in the competition since SV-COMP 2018. Limitations of the
validator were discussed in depth in Sect. 4.2.

The execution of the verification and validation runs was done with
BenchExec [22], the (only available) state-of-the-art benchmarking tool, which
is also used by the StarExec competition infrastructure and competitions like
SV-COMP and Test-Comp. BenchExec is used to enforce the limits and collect
measurements for the consumed resources (CPU time and memory).

6 Conclusion

While validation of verification results for sequential programshas been thoroughly
described in 2015, validation support for multi-threaded programs was not yet
described in the literature. This paper closes this gap by describing the (only avail-
able) validator for multi-threaded programs, which was already used three times
as validator in the competition on software verification (SV-COMP 2018-2020).

In our evaluation, we report the available features that the witnesses produced
by several verifiers expose to the validator, and we report the performance. The
results are promising, but it would be better for the verification community
to have more such validators available: There are six validators for violation
witnesses for sequential programs, but only one for multi-threaded programs.

Data Availability Statement. We make the violation witnesses, a ready-to-
run archive of CPAchecker, and all experimental results (including raw data,
tables, and plots) available on a supplementary web site12 and in a Zenodo
archive [14]. The verifiers that participated in SV-COMP 2020 have publicly
available archives in a GitLab repository.11 More witnesses and results from
SV-COMP can be found in the archives mentioned in the report [7] (Table 4).

References

1. Andrianov, P., Mutilin, V., Khoroshilov, A.: Predicate abstraction based config-
urable method for data race detection in Linux kernel. In: Proc. TMPA, CCIS,
vol. 779. Springer (2018). https://doi.org/10.1007/978-3-319-71734-0_2

12 https://www.sosy-lab.org/research/witnesses-concurrency

Violation Witnesses and Result Validation for Multi-Threaded Programs 127

https://doi.org/10.1007/978-3-319-71734-0_2
https://www.sosy-lab.org/research/witnesses-concurrency

468 D. Beyer and K. Friedberger

2. Artho, C., Havelund, K., Honiden, S.: Visualization of concurrent program execu-
tions. In: Proc. COMPSAC, pp. 541–546. IEEE (2007). https://doi.org/10.1109/
COMPSAC.2007.236

3. Baranová, Z., Barnat, J., Kejstová, K., Kučera, T., Lauko, H., Mrázek, J.,
Ročkai, P., Štill, V.: Model checking of C and C++ with Divine 4. In:
Proc. ATVA, LNCS, vol. 10482, pp. 201–207. Springer (2017). https://doi.org/
10.1007/978-3-319-68167-2_14

4. Beyer, D.: Software verification and verifiable witnesses (Report on SV-COMP
2015). In: Proc. TACAS, LNCS, vol. 9035, pp. 401–416. Springer (2015). https://
doi.org/10.1007/978-3-662-46681-0_31

5. Beyer, D.: Reliable and reproducible competition results with BenchExec and
witnesses (Report on SV-COMP 2016). In: Proc. TACAS, LNCS, vol. 9636,
pp. 887–904. Springer (2016). https://doi.org/10.1007/978-3-662-49674-9_55

6. Beyer, D.: Software verification with validation of results (Report on SV-COMP
2017). In: Proc. TACAS, LNCS, vol. 10206, pp. 331–349. Springer (2017). https://
doi.org/10.1007/978-3-662-54580-5_20

7. Beyer, D.: Advances in automatic software verification: SV-COMP 2020. In: Proc.
TACAS (2), LNCS, vol. 12079, pp. 347–367. Springer (2020). https://doi.org/
10.1007/978-3-030-45237-7_21

8. Beyer, D.: SV-Benchmarks: Benchmark set of 9th Intl. Competition on Soft-
ware Verification (SV-COMP 2020). Zenodo (2020). https://doi.org/10.5281/
zenodo.3633334

9. Beyer, D.: Verification witnesses from SV-COMP 2020 verification tools. Zenodo
(2020). https://doi.org/10.5281/zenodo.3630188

10. Beyer, D., Dangl, M., Dietsch, D., Heizmann, M.: Correctness witnesses: Exchang-
ing verification results between verifiers. In: Proc. FSE, pp. 326–337. ACM (2016).
https://doi.org/10.1145/2950290.2950351

11. Beyer, D., Dangl, M., Dietsch, D., Heizmann, M., Stahlbauer, A.: Witness valida-
tion and stepwise testification across software verifiers. In: Proc. FSE, pp. 721–733.
ACM (2015). https://doi.org/10.1145/2786805.2786867

12. Beyer, D., Dangl, M., Lemberger, T., Tautschnig, M.: Tests from witnesses:
Execution-based validation of verification results. In: Proc. TAP, LNCS, vol. 10889,
pp. 3–23. Springer (2018). https://doi.org/10.1007/978-3-319-92994-1_1

13. Beyer, D., Friedberger, K.: A light-weight approach for verifying multi-threaded
programs with CPAchecker. In: Proc. MEMICS, EPTCS, vol. 233, pp. 61–71
(2016). https://doi.org/10.4204/EPTCS.233.6

14. Beyer, D., Friedberger, K.: Replication package for article ‘Violation witnesses
and result validation for multi-threaded programs’. Zenodo (2020). https://doi.org/
10.5281/zenodo.3885694

15. Beyer, D., Gulwani, S., Schmidt, D.: Combining model checking and data-flow
analysis. In: Handbook of Model Checking, pp. 493–540. Springer (2018). https://
doi.org/10.1007/978-3-319-10575-8_16

16. Beyer, D., Henzinger, T.A., Théoduloz, G.: Configurable software verification:
Concretizing the convergence of model checking and program analysis. In: Proc.
CAV, LNCS, vol. 4590, pp. 504–518. Springer (2007). https://doi.org/10.1007/
978-3-540-73368-3_51

17. Beyer, D., Henzinger, T.A., Théoduloz, G.: Program analysis with dynamic preci-
sion adjustment. In: Proc. ASE, pp. 29–38. IEEE (2008). https://doi.org/10.1109/
ASE.2008.13

128 A. Manuscripts

https://doi.org/10.1109/COMPSAC.2007.236
https://doi.org/10.1109/COMPSAC.2007.236
https://doi.org/10.1007/978-3-319-68167-2_14
https://doi.org/10.1007/978-3-319-68167-2_14
https://doi.org/10.1007/978-3-662-46681-0_31
https://doi.org/10.1007/978-3-662-46681-0_31
https://doi.org/10.1007/978-3-662-49674-9_55
https://doi.org/10.1007/978-3-662-54580-5_20
https://doi.org/10.1007/978-3-662-54580-5_20
https://doi.org/10.1007/978-3-030-45237-7_21
https://doi.org/10.1007/978-3-030-45237-7_21
https://doi.org/10.5281/zenodo.3633334
https://doi.org/10.5281/zenodo.3633334
https://doi.org/10.5281/zenodo.3630188
https://doi.org/10.1145/2950290.2950351
https://doi.org/10.1145/2786805.2786867
https://doi.org/10.1007/978-3-319-92994-1_1
https://doi.org/10.4204/EPTCS.233.6
https://doi.org/10.5281/zenodo.3885694
https://doi.org/10.5281/zenodo.3885694
https://doi.org/10.1007/978-3-319-10575-8_16
https://doi.org/10.1007/978-3-319-10575-8_16
https://doi.org/10.1007/978-3-540-73368-3_51
https://doi.org/10.1007/978-3-540-73368-3_51
https://doi.org/10.1109/ASE.2008.13
https://doi.org/10.1109/ASE.2008.13

Violation Witnesses and Result Validation for Multi-Threaded Programs 469

18. Beyer, D., Keremoglu, M.E.: CPAchecker: A tool for configurable software ver-
ification. In: Proc. CAV, LNCS, vol. 6806, pp. 184–190. Springer (2011). https://
doi.org/10.1007/978-3-642-22110-1_16

19. Beyer, D., Keremoglu, M.E., Wendler, P.: Predicate abstraction with adjustable-
block encoding. In: Proc. FMCAD, pp. 189–197. FMCAD (2010)

20. Beyer, D., Lemberger, T.: CPA-SymExec: Efficient symbolic execution in
CPAchecker. In: Proc. ASE, pp. 900–903. ACM (2018). https://doi.org/10.1145/
3238147.3240478

21. Beyer, D., Löwe, S.: Explicit-state software model checking based on CEGAR
and interpolation. In: Proc. FASE, LNCS, vol. 7793, pp. 146–162. Springer (2013).
https://doi.org/10.1007/978-3-642-37057-1_11

22. Beyer, D., Löwe, S., Wendler, P.: Reliable benchmarking: Requirements and solu-
tions. Int. J. Softw. Tools Technol. Transfer 21(1), 1–29 (2017). https://doi.org/
10.1007/s10009-017-0469-y

23. Beyer, D., Stahlbauer, A.: BDD-based software verification: Applications to event-
condition-action systems. Int. J. Softw. Tools Technol. Transfer 16(5), 507–518
(2014). https://doi.org/10.1007/s10009-014-0334-1

24. Beyer, D., Wehrheim, H.: Verification artifacts in cooperative verification: Sur-
vey and unifying component framework. arXiv/CoRR 1905(08505) (May 2019).
https://arxiv.org/abs/1905.08505

25. Beyer, D., Wendler, P.: Reuse of verification results: Conditional model check-
ing, precision reuse, and verification witnesses. In: Proc. SPIN, LNCS, vol. 7976,
pp. 1–17. Springer (2013). https://doi.org/10.1007/978-3-642-39176-7_1

26. Brandes, U., Eiglsperger, M., Herman, I., Himsolt, M., Marshall, M.S.: GraphML
progress report. In: Graph Drawing, LNCS, vol. 2265, pp. 501–512. Springer (2001).
https://doi.org/10.1007/3-540-45848-4_59

27. Cadar, C., Ganesh, V., Pawlowski, P.M., Dill, D.L., Engler, D.R.: EXE: Automati-
cally generating inputs of death. In: Proc. CCS, pp. 322–335. ACM (2006). https://
doi.org/10.1145/1180405.1180445

28. Castaño, R., Braberman, V.A., Garbervetsky, D., Uchitel, S.: Model checker exe-
cution reports. In: Proc. ASE, pp. 200–205. IEEE (2017). https://doi.org/10.1109/
ASE.2017.8115633

29. Clarke, E.M., Kröning, D., Lerda, F.: A tool for checking ANSI-C programs. In:
Proc. TACAS, LNCS, vol. 2988, pp. 168–176. Springer (2004). https://doi.org/
10.1007/978-3-540-24730-2_15

30. Csallner, C., Smaragdakis, Y.: Check ‘n’ crash: Combining static checking and
testing. In: Proc. ICSE, pp. 422–431. ACM (2005). https://doi.org/10.1145/
1062455.1062533

31. Czech, M., Hüllermeier, E., Jakobs, M.C., Wehrheim, H.: Predicting rankings of
software verification tools. In: Proc. SWAN, pp. 23–26. ACM (2017). https://
doi.org/10.1145/3121257.3121262

32. Gadelha, M.Y.R., Ismail, H.I., Cordeiro, L.C.: Handling loops in bounded model
checking of C programs via k -induction. Int. J. Softw. Tools Technol. Transfer
19(1), 97–114 (2017). https://doi.org/10.1007/s10009-015-0407-9

33. Gavrilenko, N., Ponce de León, H., Furbach, F., Heljanko, K., Meyer, R.: BMC
for weak memory models: Relation analysis for compact SMT encodings. In: Proc.
CAV, LNCS, vol. 11561, pp. 355–365. Springer (2019). https://doi.org/10.1007/
978-3-030-25540-4_19

34. Gennari, J., Gurfinkel, A., Kahsai, T., Navas, J.A., Schwartz, E.J.: Executable
counterexamples in software model checking. In: Proc. VSTTE, LNCS, vol. 11294,
pp. 17–37. Springer (2018). https://doi.org/10.1007/978-3-030-03592-1_2

Violation Witnesses and Result Validation for Multi-Threaded Programs 129

https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/10.1145/3238147.3240478
https://doi.org/10.1145/3238147.3240478
https://doi.org/10.1007/978-3-642-37057-1_11
https://doi.org/10.1007/s10009-017-0469-y
https://doi.org/10.1007/s10009-017-0469-y
https://doi.org/10.1007/s10009-014-0334-1
https://arxiv.org/abs/1905.08505
https://doi.org/10.1007/978-3-642-39176-7_1
https://doi.org/10.1007/3-540-45848-4_59
https://doi.org/10.1145/1180405.1180445
https://doi.org/10.1145/1180405.1180445
https://doi.org/10.1109/ASE.2017.8115633
https://doi.org/10.1109/ASE.2017.8115633
https://doi.org/10.1007/978-3-540-24730-2_15
https://doi.org/10.1007/978-3-540-24730-2_15
https://doi.org/10.1145/1062455.1062533
https://doi.org/10.1145/1062455.1062533
https://doi.org/10.1145/3121257.3121262
https://doi.org/10.1145/3121257.3121262
https://doi.org/10.1007/s10009-015-0407-9
https://doi.org/10.1007/978-3-030-25540-4_19
https://doi.org/10.1007/978-3-030-25540-4_19
https://doi.org/10.1007/978-3-030-03592-1_2

470 D. Beyer and K. Friedberger

35. Greitschus, M., Dietsch, D., Podelski, A.: Loop invariants from counterexamples.
In: Proc. SAS, LNCS, vol. 10422, pp. 128–147. Springer (2017). https://doi.org/
10.1007/978-3-319-66706-5_7

36. Gunter, E.L., Peled, D.A.: Path exploration tool. In: Proc. TACAS,
LNCS, vol. 1579, pp. 405–419. Springer (1999). https://doi.org/10.1007/
3-540-49059-0_28

37. Heizmann, M., Hoenicke, J., Podelski, A.: Software model checking for people
who love automata. In: Proc. CAV, LNCS, vol. 8044, pp. 36–52. Springer (2013).
https://doi.org/10.1007/978-3-642-39799-8_2

38. Inverso, O., Tomasco, E., Fischer, B., La Torre, S., Parlato, G.: Lazy-
CSeq: A lazy sequentialization tool for C (competition contribution). In:
Proc. TACAS, LNCS, vol. 8413, pp. 398–401. Springer (2014). https://doi.org/
10.1007/978-3-642-54862-8_29

39. Inverso, O., Trubiani, C.: Parallel and distributed bounded model checking of multi-
threaded programs. In: Proc. PPoPP. ACM (2020)

40. Yin, L., Dong, W., Liu, W., Wang, J.: On scheduling constraint abstraction for
multi-threaded program verification. IEEE Trans. Softw. Eng. (2018). https://
doi.org/10.1109/TSE.2018.2864122

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

130 A. Manuscripts

https://doi.org/10.1007/978-3-319-66706-5_7
https://doi.org/10.1007/978-3-319-66706-5_7
https://doi.org/10.1007/3-540-49059-0_28
https://doi.org/10.1007/3-540-49059-0_28
https://doi.org/10.1007/978-3-642-39799-8_2
https://doi.org/10.1007/978-3-642-54862-8_29
https://doi.org/10.1007/978-3-642-54862-8_29
https://doi.org/10.1109/TSE.2018.2864122
https://doi.org/10.1109/TSE.2018.2864122
http://creativecommons.org/licenses/by/4.0/

JavaSMT 3: Interacting with SMT Solvers in Java

Daniel Baier , Dirk Beyer , and Karlheinz Friedberger

LMU Munich, Munich, Germany

Abstract. Satisfiability Modulo Theories (SMT) is an enabling technology
with many applications, especially in computer-aided verification. Due to
advances in research and strong demand for solvers, there are many SMT
solvers available. Since different implementations have different strengths,
it is often desirable to be able to substitute one solver by another. Un-
fortunately, the solvers have vastly different APIs and it is not easy to
switch to a different solver (lock-in effect). To tackle this problem, we
developed JavaSMT, which is a solver-independent framework that unifies
the API for using a set of SMT solvers. This paper describes version 3
of JavaSMT, which now supports eight SMT solvers and offers a simpler
build and update process. Our feature comparisons and experiments show
that different SMT solvers significantly differ in terms of feature support
and performance characteristics. A unifying Java API for SMT solvers is
important to make the SMT technology accessible for software developers.
Similar APIs exist for other programming languages.

Keywords: Satisfiability Modulo Theories · SMT Solver · Java · API

1 Introduction

SMT solvers [6, 21] are used in a multitude of applications, e.g., in formal software
analysis, where automated test-case generation [7, 16, 29, 30], SMT-based algo-
rithms for software verification [10, 34], and interactive theorem proving [27, 44]
are used. Applications and users rely on efficiency and expressiveness (sup-
ported SMT theories) to compute reasonable results in time. For application
developers, the usability and API of the solver are also important aspects, and
some features needed in applications, such as interpolation or optimization,
are not available in some solvers.

Using the solver’s own API directly makes it difficult to switch to another
solver without rewriting extensive parts of the application, as there is no stan-
dardized binary API for SMT solvers. The SMT-LIB2 standard [4] improves
this issue by defining a common language to interact with SMT solvers. How-
ever, this communication channel does not define a solver interface for special
features like optimization or interpolation.1 Additionally, the application has to
parse the data provided by the SMT solver on its own, and this of course
slightly changes from solver to solver.
1 A proposal for adding interpolation queries exists since 2012, see https://ultimate.
informatik.uni-freiburg.de/smtinterpol/proposal.pdf .

c© The Author(s) 2021
A. Silva and K. R. M. Leino (Eds.): CAV 2021, LNCS 12760, pp.
https://doi.org/10.1007/978-3-030-81688-9_9

195–208, 2021.

JavaSMT 3: Interacting with SMT Solvers in Java 131

https://www.acm.org/publications/policies/artifact-review-and-badging-current
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81688-9_9&domain=pdf
https://orcid.org/0000-0001-9116-1974
https://orcid.org/0000-0003-4832-7662
https://orcid.org/0000-0001-7624-654X
https://ultimate.informatik.uni-freiburg.de/smtinterpol/proposal.pdf
https://ultimate.informatik.uni-freiburg.de/smtinterpol/proposal.pdf
https://doi.org/10.1007/978-3-030-81688-9_9

JavaSMT [37] provides a common API layer across multiple back-end solvers
to address these problems. Our Java-based approach creates only minimal over-
head, while giving access to most solver features. JavaSMT is available under
the Apache 2.0 License on GitHub.2

Contribution. Our contribution consists of three parts:

• We integrated more SMT solvers into the API framework JavaSMT (new:
Boolector [43], CVC4 [5], and Yices2 [25]).

• We simplified the steps to get started using JavaSMT, by including support
for more operating systems (new: MacOS and Windows) and more build
techniques (new: Ant and Maven).

• We evaluated the performance of several algorithms for software verification
to show that different SMT solvers have different strengths.

Outline. This paper first provides a brief overview of JavaSMT in Sect. 2, ex-
plaining the inner structure and features. Sect. 3 discusses the development since
the previous publication [37]: more integrated SMT solvers and extended support
for operating systems and build processes. Sect. 4 describes a case study, based
on SMT-based algorithms [10] in a common verification framework.

Related Work. SMT-LIB2 [4] is the established standard format for exchanging
SMT queries. It provides simple usage, is easy to debug, and widely known in
the community. However, it requires extra effort to parse and transform formulas
in the user application. Features like optimization, interpolation, and receiving
nested parts of formulas are not defined by the standard, such that some SMT
solvers provide their own individual solution for that. Alternatively, several SMT
solvers already come with their special bindings for some programming languages.
Most SMT solvers are written in C/C++, so interacting with them in these
low-level languages is the easiest way. However, the support for higher-level
languages is sparse. The most prominent language binding for several SMT
solvers is Python, as it directly allows the access to C code and avoids automated
memory management operations like asynchronous garbage collection. Bindings
for Java are available for some SMT solvers, such as MathSAT5 and Z3, but
missing, unsupported, or unmaintained for others, such as Boolector and CVC4.

In the following, we discuss libraries, similar to JavaSMT, that provide access
to several underlying SMT solvers via a common user interface in different popular
languages, and their binding mechanism, i.e., whether the solver interaction is
based on a native interface or text-based on SMT-LIB2. With SMT-LIB2, an ar-
bitrary SMT solver can be queried, but the interaction happens through communi-
cating processes and the solver is mostly limited to features defined in the standard.
Accessing a native interface directly allows to support more features of the under-
lying solver, e.g., using callbacks, simplifying formulas, or eliminating quantifiers.

Table 1 provides an overview of the libraries for interacting with SMT solvers.
We enumerate several special features that are not available in some libraries,

2 https://github.com/sosy-lab/java-smt

196 D. Baier, D. Beyer, and K. Friedberger

132 A. Manuscripts

https://github.com/sosy-lab/java-smt

Table 1: Comparison of different interface libraries for SMT solvers

R
ef
er
en

ce

L
an

gu
ag
e

N
at
iv
e
A
P
I

S
M

T
-L

IB
2

U
ns
at

C
or
es

In
te
rp
ol
at
io
n

O
pt
im

iz
at
io
n

Fo
rm

ul
a

D
ec
om

po
si
ti
on

P
ro
je
ct

-
Fo

rk
s

P
ro
je
ct

-
St
ar
s

P
ro
je
ct

-
Y
ea
r

L
at
es
t
C
om

m
it

JavaSMT [37] Java 3 7 3 3 3 3 22 90 2021
PySMT [28] Python 3 3 3 3 3 7 99 363 2021
SMT Kit C/C++ 3 7 3 7 7 7 4 36 2014
Smt-Switch [38] C/C++ 3 7 3 3 7 3 15 40 2021

jSMTLIB [20] Java 7 3 3 7 7 7 15 21 2020
metaSMT [45] C/C++ 7 3 7 7 3 3 19 43 2016
rsmt2 Rust 7 3 3 7 7 7 10 24 2021
SBV Haskell 7 3 3 7 3 7 17 134 2021
Scala SMT-LIB Scala 7 3 3 7 7 3 18 44 2021
ScalaSMT [17] Scala 7 3 7 7 7 3 1 4 2019
what4 Haskell 7 3 3 7 7 7 5 97 2021

such as unsat cores, interpolation, or optimization queries. Those features depend
on the support by the underlying SMT solver, but can be provided in general
by an API on top of them. Most libraries use their own formula representation
and not just wrap the objects provided by the SMT solver. This potentially
allows for easier formula decomposition and inspection, e.g., by using the visitor
pattern. JavaSMT directly provides formula decomposition if available in the
SMT solver. The provided numbers of forks and stars of the project repositories
on GitHub or Bitbucket can be seen as a measurement of popularity.

PySMT [28] is a Python-based project and aims at rapid prototyping of
algorithms using the native API of the installed SMT solvers. It has the ability to
perform formula manipulation without a back-end SMT solver and additionally
supports the conversion of boolean formulas to plain SAT problems and then
apply a SAT solver or a BDD library. This approach comes with the drawback
of a noticeable memory overhead and performance of an interpreted language.
metaSMT [45], SMT Kit, and Smt-Switch [38] provide solver-agnostic APIs for
interacting with various SMT solvers in C/C++ to focus on the application instead
of the solver integration. jSMTLIB [20], Scala SMT-LIB, and ScalaSMT [17] are
solver-independent libraries written in Java or Scala and interact via SMT-LIB2
with SMT solvers. Scala SMT-LIB and ScalaSMT allow to use an additional
domain-specific language to interact with SMT solvers and rewrite Scala syntax
into valid SMT-LIB2 and back. Both partially extend the SMT-LIB2 standard,
e.g., by offering the ability to overload operators or receive interpolants. SBV
and what4 are generic Haskell libraries based on process interaction via SMT-
LIB2 and support several SAT and SMT solvers. rsmt2 offers a generic Rust
library that currently supports three SMT solvers.

197JavaSMT 3: Interacting with SMT Solvers in Java

JavaSMT 3: Interacting with SMT Solvers in Java 133

https://github.com/sosy-lab/java-smt
https://github.com/pysmt/pysmt
http://ahorn.github.io/smt-kit/
https://github.com/makaimann/smt-switch
https://smtlib.github.io/jSMTLIB
https://github.com/agra-uni-bremen/metaSMT
https://github.com/kino-mc/rsmt2
https://github.com/LeventErkok/sbv
https://github.com/regb/scala-smtlib
https://bitbucket.org/franck44/scalasmt
https://github.com/GaloisInc/what4
https://github.com/pysmt/pysmt
https://github.com/agra-uni-bremen/metaSMT
http://ahorn.github.io/smt-kit/
https://github.com/makaimann/smt-switch
https://smtlib.github.io/jSMTLIB
https://github.com/regb/scala-smtlib
https://bitbucket.org/franck44/scalasmt
https://github.com/regb/scala-smtlib
https://bitbucket.org/franck44/scalasmt
https://github.com/LeventErkok/sbv
https://github.com/GaloisInc/what4
https://github.com/kino-mc/rsmt2

2 JavaSMT’s Architecture and Solver Integration

In the following, we describe the architecture of JavaSMT and its main con-
cepts. Afterwards, we give an overview of the integrated SMT solvers and their
features. The architecture did not significantly change, but we added a few
new SMT solvers, as shown in Fig. 1.

Architecture. JavaSMT provides a common API for various SMT solvers. The
architecture, shown in Fig. 1, consists of several components: As common context,
we use a SolverContext that loads the underlying SMT solver and defines the
scope and lifetime of all created objects. As long as the context is available,
we track memory regions of native SMT-solver libraries. When the context is
closed, the corresponding memory is freed and garbage collection wipes all unused
objects. Within a given context, JavaSMT provides FormulaManagers for creating
formulas in various theories and ProverEnvironments for solving SMT queries.

A FormulaManager allows to create symbols and formulas in the correspond-
ing theories and provides a type-safe way to combine symbols and formulas
in order to encode a more complex SMT query. We support the structural
analysis (like splitting a formula into its components or counting all function
applications in a formula) and transformations (like substituting symbols or
applying equisatisfiable simplifications) of formulas.

Each ProverEnvironment represents a solver stack and allows to push/pop
boolean formulas and check them for satisfiability (the hard part). This follows
the idea of incremental solving (if the underlying SMT solver supports it). After a
satisfiability check, the ProverEnvironment provides methods to receive a model,
interpolants, or an unsatisfiable core for the given formula.

JavaSMT guarantees that formulas built with a single FormulaManager
can be used in several ProverEnvironments, e.g., the same formula can be
pushed onto and solved within several distinct ProverEnvironments. The in-
teraction with independent ProverEnvironments works from multiple threads.
However, some SMT solvers require synchronization (e.g., locking for an in-
terleaved usage) and other solvers do not require external synchronization
(this allows concurrent usage).

SMT-Solver Integration and Bindings. Of the eight SMT solvers that are available
in JavaSMT, only Princess [46] and SMTInterpol [18] were ‘easy’ to integrate,
as they are written in Scala and Java, respectively. Those solvers also use
the available memory management and garbage collection of the Java Virtual
Machine (JVM). All other solvers are written in C/C++ and need a Java Native
Interface (JNI) wrapper to interface with JavaSMT. Z3 [40] and CVC4 [5]
provide their own Java wrappers, while the bindings used for MathSAT5 [19],
Boolector [42], and Yices2 [25] are maintained by us. Those bindings are
self-written or partially based on a version of the solver developers, extended
with exception handling, and usable for debugging in JavaSMT. By providing
language bindings for solvers in our library, we relieve the solver developers
from this burden, and the implementation of exception handling and memory
management is done in an efficient and common manner across several solvers.

198 D. Baier, D. Beyer, and K. Friedberger

134 A. Manuscripts

SolverContext

FormulaManager

...Formula Formula

Prover
Environment

Prover
Environment

Model

Interpolant

Unsat Core

Model

Interpolant

Unsat Core

Ja
va
SM

T
A
P
I

So
lv
er

B
in
di
ng

s

User
Application

JavaSMT

Boolector

CVC4

MathSAT5

OptiMathSAT

Princess

SMTInterpol

Yices2

Z3

Fig. 1: Overview of JavaSMT

Table 2: Size (LOC) of the Java-based solver wrappers and native solver bindings

B
o
o
le

ct
o
r

C
V

C
4

M
at

h
S
A
T

5

O
pt

iM
at

h
S
A
T

P
r
in

ce
ss

S
M

T
In

te
r
po

l

Y
ic

es
2

Z
3

Java-based Wrapper 1644 1918 3229 3229 2042 2117 2728 2674
JNI Bindings 3136 1388 1508 1598

Table 2 lists the size (lines of code) of the wrappers to integrate each solver
in JavaSMT, in order to get a rough impression of the required effort to get a
solver and its bindings usable in JavaSMT. The size information consists of two
parts, namely the JNI bindings that are written in C/C++ and the Java code
that implements the necessary interfaces of JavaSMT. An expressive solver API
(like MathSAT5 or OptiMathSAT [47]) needs more code for their binding, with
only a small increment in complexity compared to other solver bindings.

Note that the evolution of JavaSMT depends on the evolution of the underlying
SMT solvers. Z3 is well-known, has a large user group, and an active develop-
ment team. Yet, interpolation support for Z3 was dropped with release 4.8.1.3
Bitwuzla [41] is the successor of the SMT solver Boolector, for which the
developers still provide small fixes. Bitwuzla can be supported in JavaSMT in
the future. CVC4 has been developed further to CVC5. However, the maintainers
3 https://github.com/Z3Prover/z3/releases/tag/z3-4.8.1

199JavaSMT 3: Interacting with SMT Solvers in Java

JavaSMT 3: Interacting with SMT Solvers in Java 135

https://github.com/Z3Prover/z3/releases/tag/z3-4.8.1

dropped the existing Java API, partially because of issues with the Java garbage
collection, and plan to replace it.4 Yices2 is also actively maintained and adds
new features regularly. For example, the developers added support for third-party
SAT solvers such as CaDiCaL and CryptoMiniSat [48].

3 New Contributions in JavaSMT 3

This section describes the improvements over the JavaSMT version from five
years ago [37], split into two parts. First, we describe newly integrated solvers
and theory features. Second, we provide information about the build process.

Support for Additional SMT Solvers. JavaSMT3 provides access to eight SMT
solvers. Besides the solvers that were already integrated before, MathSAT5,
OptiMathSAT, Z3, Princess, and SMTInterpol, the user can now additionaly
use Boolector, CVC4, and Yices2. Table 3 lists available theories and impor-
tant features supported by each individual solver. Boolector is specialized in
Bitvector-based theories, but does not support the Integer theory. It is shipped
with several back-end SAT solvers, from which the user can choose a favorite:
CaDiCaL, CryptoMiniSat [48], Lingeling, MiniSat [26], and PicoSAT [13]. All
solvers support the input of plain SMT-LIB2 formulas. However, the feature
most requested by JavaSMT users is the input and output of SMT queries via
the API, i.e., parsing and printing boolean formulas for a given context. This
feature is required for (de-)serializing formulas to disk, for network transfer, and
to translate formulas from one solver to another one. This feature is unfortu-
nately missing for the newly integrated solvers, even though each solver internally
already contains code for parsing and printing SMT-LIB2 formulas.

For formula manipulation, JavaSMT accesses the components of a formula,
e.g., operators and operands. We do not require full access to the internal data
structures of the SMT solvers, but only limited access to the most basic parts.
Only Boolector does not provide the necessary API.

Build Simplification. JavaSMT3 also supports more operating systems than
before. Besides the existing support for Linux, we started to provide pre-compiled
binaries for MacOS and Windows for more than half of the available solvers.
This simplifies the initial steps for new users, which previously were required to
compile and link the solvers on their own. This was an involving task, because
of the diversity of build systems and dependencies of each solver.

In addition to this, we now offer direct support for two popular build sys-
tems for Java applications, namely Ant and Maven. JavaSMT comes with
several examples and documentation, such that the mentioned build systems
can be used to set up JavaSMT in a ready-to-go state on most systems. This
eliminates the need for complex manual set up of dependencies and eases the
use of JavaSMT and the SMT solvers.

4 https://github.com/cvc5/cvc5/issues/5018

200 D. Baier, D. Beyer, and K. Friedberger

136 A. Manuscripts

https://github.com/arminbiere/cadical
https://github.com/msoos/cryptominisat
https://github.com/arminbiere/cadical
https://github.com/msoos/cryptominisat
https://github.com/arminbiere/lingeling
http://minisat.se
http://fmv.jku.at/picosat
https://github.com/cvc5/cvc5/issues/5018

Table 3: SMT theories and features supported by SMT solvers in JavaSMT3

B
o
o
le

ct
o
r

C
V

C
4

M
at

h
S
A
T

5

O
pt

iM
at

h
S
A
T

P
r
in

ce
ss

S
M

T
In

te
r
po

l

Y
ic

es
2

Z
3

SM
T

T
he

or
ie
s

Integer 7 3 3 3 3 3 3 3

Rational 7 3 3 3 3 3 3 3

Array 3 3 3 3 3 3 7 3

Bitvector 3 3 3 3 3 7 3 3

Float 7 3 3 3 7 7 7 3

UF 3 3 3 3 3 3 3 3

Quantifier 3 3 7 7 3 7 3 3

Fe
at
ur
es

Incremental Solving 3 3 3 3 3 3 3 3

Model 3 3 3 3 3 3 3 3

Assumption Solving 3 7 3 3 7 7 3 3

Interpolation 7 7 3 3 3 3 7 7

Optimization 7 7 7 3 7 7 7 3

UnsatCore 7 3 3 3 3 3 3 3

UnsatCore with Assumptions 7 7 3 3 7 3 3 3

SMT-LIB2 (plain text input) 3 3 3 3 3 3 3 3

SMT-LIB2 (via API) 7 7 3 3 3 3 7 3

Quantifier Elimination 7 3 7 7 3 7 7 3

Formula Decomposition 7 3 3 3 3 3 3 3

4 Evaluation

Frameworks that provide a unified API to SMT solvers (such as JavaSMT,
PySMT, and ScalaSMT) are necessary because the characteristics of the SMT
solvers vary a lot. In the evaluation we provide support for this argument.

We inlined a discussion of the features already in the previous section. Table 3
provides the overview of supported theories and shows that certain theories are
available only for a subset of SMT solvers. The table also shows that there are
several features that restrict the choice of SMT solvers for certain applications.

In terms of performance, we evaluate JavaSMT3 as a component of
CPAchecker [11], which is an open-source software-verification framework 5

that provides a range of different SMT-based algorithms for program analysis [10]
and encoding techniques for program control flow [8, 12]. We compare three
well-known and successful SMT-based algorithms for software model checking
and show that — when using the same algorithm and identical problem encoding
— the performance result of an analysis depends on the used SMT solver. Some

5 https://cpachecker.sosy-lab.org

201JavaSMT 3: Interacting with SMT Solvers in Java

JavaSMT 3: Interacting with SMT Solvers in Java 137

https://github.com/sosy-lab/java-smt
https://github.com/pysmt/pysmt
https://bitbucket.org/franck44/scalasmt
https://cpachecker.sosy-lab.org

algorithms depend on special features of the SMT solver, e.g., to provide a certain
type of formula (such as interpolants) and operation on a formula (such as access
to subformulas). There are SMT solvers that can not be used for some algorithms.

We aim to show that depending on the feature set of the SMT solvers, it is
important to support a common API, and additionally, that using the text-based
interaction via SMT-LIB2 is not an efficient solution, when it comes to formula
analysis like adding additional information into a formula.

Benchmark Programs. We evaluate the usage of JavaSMT on a large subset
of the SV-benchmark suite 6 containing over 1 000 verification tasks. To have
a broad variation of benchmark tasks, we include reachability problems from
the categories BitVectors, ControlFlow, Heap, and Loops.

BitVectors depends on bit-precise reasoning and thus, the SMT solver needs
to support Bitvector logic. Heap depends on modeling heap memory access, e.g.,
which is either encoded in the theory of Arrays or as Uninterpreted Functions.
The category Loops contains tasks where the state space is potentially quite large.

Experimental Setup. We run all our experiments on computers with Intel Xeon
E3-1230 v5 CPUs with 3.40GHz, and limit the CPU time to 15min and the
memory to 15GB. We use CPAchecker revision r36714, which internally uses
JavaSMT 3.7.0-73. The time needed for transforming the input program into
SMT queries is rather small compared to the analysis time. Additionally, the
progress of an algorithm depends on the result (e.g., model values or interpolants)
returned from an SMT solver, thus we do not explicitly extract the run time
required by the SMT solver itself for answering the satisfiability problem, but we
measure the complete CPU time of CPAchecker for the verification run.

Analysis Configuration. We use three different SMT-based algorithms for software
verification [10]. The first approach is bounded model checking (BMC) [14, 15],
which is applied in software and hardware model checking since many years. In this
approach, a verification problem is encoded as single large SMT query and given
to the SMT solver. No further interaction with the SMT solver is required. In our
evaluation, we use a loop bound k = 10, which limits the size of the SMT query.

The second approach is k -induction [9, 24], which extends BMC, and which
uses auxiliary invariants to strengthen the induction hypothesis. In this approach,
the algorithm generates several SMT queries (base case, inductive-step case, each
with increasing loop bound) and uses an invariant generator that provides the
auxiliary invariants. We use an interval-based invariant generator that provides
not only the invariants, but also information about pointers and aliases, which
must be inserted into the SMT formula using the formula visitor.

The third approach is predicate abstraction [3, 12, 31, 35], which uses Craig
interpolation [22, 32, 39] to compute predicate abstractions of the program. This
approach does not only query the SMT solver multiple times, but also uses
(sequential) interpolation, which is currently supported only by MathSAT5,
Princess, and SMTInterpol.

6 https://github.com/sosy-lab/sv-benchmarks

202 D. Baier, D. Beyer, and K. Friedberger

138 A. Manuscripts

https://github.com/sosy-lab/sv-benchmarks

0 250 500

10

100

1 000

n-th fastest result

C
P
U

ti
m
e
(s
) Boolector CVC4

MathSAT5 Princess
Yices2 Z3

Fig. 2: Quantile plot for the runtime of k -induction with several SMT solvers

All approaches are executed in two configurations, depending on the used
encoding of program statements: First, we apply a bitvector-based encoding that
precisely models bit-precise arithmetics and overflows of the program. Second,
an encoding based on linear integer arithmetic is used, which approximates the
concrete program execution and is sufficient for some programs.

Solver Configuration. Overall, we aim to show that each solver provides a unique
fingerprint of features and results. We aim for a precise program analysis and
thus configure the SMT solvers to be as precise as possible, but with a rea-
sonable configuration for each solver (i.e., without using a feature combination
that is unsupported by the SMT solver).

SMTInterpol does not support efficient solving of SMT queries in Bitvector
logic, thus, it is configured to use only Integer logic. Boolector misses Integer
logic, thus, it is applied only to the bit-precise configurations. Additionally, this
SMT solver does not support formula inspection and decomposition, which is
required by several components in k -induction, e.g., to encode proper pointer
aliasing for the program analysis. While the code for formula inspection is called
quite often, its influence on the results for the selected benchmark tasks is small.
In order to be comparable as far as possible, we deactivate pointer aliasing when
using Boolector. Yices2 misses proper support for Array logic, thus, we use a
UF-based encoding of heap memory as alternative for this solver, which results
in a slightly unsound analysis, but a comparable formula size and run time.

Results and Discussion. Figure 2 provides the quantile plot for the results of
k -induction configurations with bit-precise encoding using several SMT solvers.
The plot shows the CPU time for valid analysis results, i.e., proofs or counterex-
amples found, for both expected results true and false. We aim for providing all
result that are useful for a user and do not show results where the tool (or SMT
solver) crashes or runs out of resources. We do not subtract the run time required
for the framework CPAchecker itself (which starts a Java virtual machine), as
we assume it to be comparable per program task; we are only interested in the
asymptotics in this evaluation. The overall performance of SMT solvers is similar
for simple verification tasks, i.e., those with a small run time in the analysis. For
difficult tasks with harder SMT queries, the differences of the SMT solvers emerge.
When applying k -induction, the analysis inserts additional constraints into the

203JavaSMT 3: Interacting with SMT Solvers in Java

JavaSMT 3: Interacting with SMT Solvers in Java 139

Table 4: Run time for using different SMT solvers for bounded model checking
(‘BMC’), k-induction (‘KI’), and predicate abstraction (‘PA’) with the theories
of Bitvectors (‘BV’) and Integers (‘Int’); CPU time given in seconds with two
significant digits, ‘ TO’ indicates timeouts (900 s), ‘ ERR’ indicates errors, and
empty cells indicate that the theory or interpolation was not supported

V
er
ifi
ca
ti
on

T
as
k

s3
_
sr
vr
.b
la
st
.0
7.
i.c
il-
2

by
te
_
ad

d_
1-
1

ps
6-
ll_

va
lu
eb

ou
nd

10
0

s3 di
am

on
d_

1-
1

m
od

ul
us
-2

ja
in
_
5-
2

s3
_
cl
nt
_
1.
ci
l-2

di
sk
pe

rf
_
si
m
pl
1.
ci
l

ru
le
57
_
eb

da
_
bl
as
t

Algorithm BMC BMC KI KI KI KI PA PA PA PA
Encoding Int BV Int Int BV BV Int Int BV BV

Boolector 5.8 ERR ERR

CVC4 340 6.4 TO TO 110 TO

MathSAT5 17 7.8 200 53 60 54 TO 11 16 7.1

Princess TO TO 530 TO 260 TO 38 160 TO ERR

SMTInterpol 50 TO 140 TO 13

Yices2 14 7.7 340 23 34 28

Z3 15 6.7 130 66 43 21

SMT formula and requires the SMT solver to allow access to components of
existing formulas. As Boolector misses this specific feature, k -induction cannot
be very effective here. Other SMT solvers are the preferred choice.

Table 4 contains some example tasks from all used algorithms and encodings,
where the difference between distinct SMT solvers is noteworthy. Choosing the
optimal SMT solvers for an arbitrary problem task is not obvious.

5 Conclusion

We contribute JavaSMT3, the third generation of the unifying Java API for
SMT solvers. The package now contains more SMT solvers, an improved build
process, and support for MacOS and Windows. The project has over 20 con-
tributors, 2 500 commits, and overall about 41 000 lines of code.7 JavaSMT is
used in Java applications (e.g., [23, 33, 36]) as a solution to combine convenience
and performance for the interaction with SMT solvers, or to switch between
different solvers and compare them [11, 49]. The most prominent application using
JavaSMT is the verification framework CPAchecker (a widely-used software

7 https://www.openhub.net/p/java-smt

204 D. Baier, D. Beyer, and K. Friedberger

140 A. Manuscripts

https://www.openhub.net/p/java-smt

project 8 with 73 forks on GitHub alone), for which JavaSMT was originally
developed. In the future, we plan to support more SMT solvers, operating sys-
tems, and hardware architectures, while keeping the user interface stable. We
hope that even more researchers and developers of Java applications can benefit
from SMT solving via a convenient and powerful API.

Data Availability Statement. All benchmark tasks for evaluation, configuration
files, a ready-to-run version of our implementation, and tables with detailed
results are available in our reproduction package on Zenodo as virtual machine [1]
and as ZIP archive [2]. The source code of the open-source library JavaSMT [37]
is available in the project repository; see https://github.com/sosy-lab/java-smt.

Funding. This project was supported by the Deutsche Forschungsgemeinschaft
(DFG) – 378803395 (ConVeY).

References

1. Baier, D., Beyer, D., Friedberger, K.: Reproduction package (VM) for ar-
ticle ‘JavaSMT 3: Interacting with SMT solvers in Java’. Zenodo (2021).
https://doi.org/10.5281/zenodo.4708050

2. Baier, D., Beyer, D., Friedberger, K.: Reproduction package (ZIP) for ar-
ticle ‘JavaSMT 3: Interacting with SMT solvers in Java’. Zenodo (2021).
https://doi.org/10.5281/zenodo.4865175

3. Ball, T., Podelski, A., Rajamani, S.K.: Boolean and cartesian abstraction for model
checking C programs. In: Proc. TACAS. pp. 268–283. LNCS 2031, Springer (2001).
https://doi.org/10.1007/3-540-45319-9_19

4. Barrett, C., Stump, A., Tinelli, C.: The SMT-LIB Standard: Version 2.0. In: Proc.
SMT (2010)

5. Barrett, C.W., Conway, C.L., Deters, M., Hadarean, L., Jovanovic, D., King, T.,
Reynolds, A., Tinelli, C.: CVC4. In: Proc. CAV. pp. 171–177. LNCS 6806, Springer
(2011). https://doi.org/10.1007/978-3-642-22110-1_14

6. Barrett, C., Tinelli, C.: Satisfiability modulo theories. In: Handbook of Model
Checking, pp. 305–343. Springer (2018). https://doi.org/10.1007/978-3-319-10575-
8_11

7. Beyer, D., Chlipala, A.J., Henzinger, T.A., Jhala, R., Majumdar, R.: Gener-
ating tests from counterexamples. In: Proc. ICSE. pp. 326–335. IEEE (2004).
https://doi.org/10.1109/ICSE.2004.1317455

8. Beyer, D., Cimatti, A., Griggio, A., Keremoglu, M.E., Sebastiani, R.: Software
model checking via large-block encoding. In: Proc. FMCAD. pp. 25–32. IEEE
(2009). https://doi.org/10.1109/FMCAD.2009.5351147

9. Beyer, D., Dangl, M., Wendler, P.: Boosting k-induction with continuously-
refined invariants. In: Proc. CAV. pp. 622–640. LNCS 9206, Springer (2015).
https://doi.org/10.1007/978-3-319-21690-4_42

10. Beyer, D., Dangl, M., Wendler, P.: A unifying view on SMT-based software verifica-
tion. J. Autom. Reasoning 60(3), 299–335 (2018). https://doi.org/10.1007/s10817-
017-9432-6

8 https://github.com/sosy-lab/cpachecker

205JavaSMT 3: Interacting with SMT Solvers in Java

JavaSMT 3: Interacting with SMT Solvers in Java 141

https://github.com/sosy-lab/java-smt
https://gepris.dfg.de/gepris/projekt/378803395
https://doi.org/10.5281/zenodo.4708050
https://doi.org/10.5281/zenodo.4865175
https://doi.org/10.1007/3-540-45319-9_19
https://doi.org/10.1007/978-3-642-22110-1_14
https://doi.org/10.1007/978-3-319-10575-8_11
https://doi.org/10.1007/978-3-319-10575-8_11
https://doi.org/10.1109/ICSE.2004.1317455
https://doi.org/10.1109/FMCAD.2009.5351147
https://doi.org/10.1007/978-3-319-21690-4_42
https://doi.org/10.1007/s10817-017-9432-6
https://doi.org/10.1007/s10817-017-9432-6
https://github.com/sosy-lab/cpachecker

11. Beyer, D., Keremoglu, M.E.: CPAchecker: A tool for configurable soft-
ware verification. In: Proc. CAV. pp. 184–190. LNCS 6806, Springer (2011).
https://doi.org/10.1007/978-3-642-22110-1_16

12. Beyer, D., Keremoglu, M.E., Wendler, P.: Predicate abstraction with adjustable-
block encoding. In: Proc. FMCAD. pp. 189–197. FMCAD (2010)

13. Biere, A.: PicoSAT Essentials. JSAT 4(2-4), 75–97 (2008).
https://doi.org/10.3233/SAT190039

14. Biere, A., Cimatti, A., Clarke, E.M., Zhu, Y.: Symbolic model checking with-
out BDDs. In: Proc. TACAS. pp. 193–207. LNCS 1579, Springer (1999).
https://doi.org/10.1007/3-540-49059-0_14

15. Biere, A., Cimatti, A., Clarke, E.M., Strichman, O., Zhu, Y.: Bounded model check-
ing. Advances in Computers 58, 117–148 (2003). https://doi.org/10.1016/S0065-
2458(03)58003-2

16. Cadar, C., Dunbar, D., Engler, D.R.: Klee: Unassisted and automatic generation
of high-coverage tests for complex systems programs. In: Proc. OSDI. pp. 209–224.
USENIX Association (2008)

17. Cassez, F., Sloane, A.M.: ScalaSMT: Satisfiability modulo theory
in Scala (tool paper). In: Proc. SCALA. pp. 51–55. ACM (2017).
https://doi.org/10.1145/3136000.3136004

18. Christ, J., Hoenicke, J., Nutz, A.: SMTInterpol: An interpolating SMT solver. In:
Proc. SPIN. pp. 248–254. LNCS 7385, Springer (2012). https://doi.org/10.1007/978-
3-642-31759-0_19

19. Cimatti, A., Griggio, A., Schaafsma, B.J., Sebastiani, R.: The MathSAT5
SMT solver. In: Proc. TACAS. pp. 93–107. LNCS 7795, Springer (2013).
https://doi.org/10.1007/978-3-642-36742-7_7

20. Cok, D.R.: jSMTLIB: Tutorial, validation, and adapter tools for SMT-LIBv2. In:
Proc. NFM. pp. 480–486. LNCS 6617, Springer (2011). https://doi.org/10.1007/978-
3-642-20398-5_36

21. Cok, D.R., Déharbe, D., Weber, T.: The 2014 SMT competition. JSAT 9, 207–242
(2016)

22. Craig, W.: Linear reasoning. A new form of the Herbrand-Gentzen theorem. J. Symb.
Log. 22(3), 250–268 (1957). https://doi.org/10.2307/2963593

23. Demarchi, S., Menapace, M., Tacchella, A.: Automating elevator design with
satisfiability modulo theories. In: Proc. ICTAI. pp. 26–33. IEEE (2019).
https://doi.org/10.1109/ICTAI.2019.00013

24. Donaldson, A.F., Haller, L., Kröning, D., Rümmer, P.: Software verification
using k-induction. In: Proc. SAS. pp. 351–368. LNCS 6887, Springer (2011).
https://doi.org/10.1007/978-3-642-23702-7_26

25. Dutertre, B.: Yices 2.2. In: Proc. CAV. pp. 737–744. LNCS 8559, Springer (2014).
https://doi.org/10.1007/978-3-319-08867-9_49

26. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Proc. SAT. pp. 502–518.
LNCS 2919, Springer (2003). https://doi.org/10.1007/978-3-540-24605-3_37

27. Ernst, G., Huisman, M., Mostowski, W., Ulbrich, M.: VerifyThis: Verification
competition with a human factor. In: Proc. TACAS. pp. 176–195. LNCS 11429,
Springer (2019). https://doi.org/10.1007/978-3-030-17502-3_12

28. Gario, M., Micheli, A.: PySMT: A solver-agnostic library for fast prototyping of
SMT-based algorithms. In: Proc. SMT (2015)

29. Godefroid, P., Sen, K.: Combining model checking and testing. In: Handbook of
Model Checking, pp. 613–649. Springer (2018). https://doi.org/10.1007/978-3-319-
10575-8_19

206 D. Baier, D. Beyer, and K. Friedberger

142 A. Manuscripts

https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/10.3233/SAT190039
https://doi.org/10.1007/3-540-49059-0_14
https://doi.org/10.1016/S0065-2458(03)58003-2
https://doi.org/10.1016/S0065-2458(03)58003-2
https://doi.org/10.1145/3136000.3136004
https://doi.org/10.1007/978-3-642-31759-0_19
https://doi.org/10.1007/978-3-642-31759-0_19
https://doi.org/10.1007/978-3-642-36742-7_7
https://doi.org/10.1007/978-3-642-20398-5_36
https://doi.org/10.1007/978-3-642-20398-5_36
https://doi.org/10.2307/2963593
https://doi.org/10.1109/ICTAI.2019.00013
https://doi.org/10.1007/978-3-642-23702-7_26
https://doi.org/10.1007/978-3-319-08867-9_49
https://doi.org/10.1007/978-3-540-24605-3_37
https://doi.org/10.1007/978-3-030-17502-3_12
https://doi.org/10.1007/978-3-319-10575-8_19
https://doi.org/10.1007/978-3-319-10575-8_19

30. Godefroid, P., Levin, M.Y., Molnar, D.A.: Automated whitebox fuzz testing. In:
Proc. NDSS. The Internet Society (2008)

31. Graf, S., Saïdi, H.: Construction of abstract state graphs with Pvs. In: Proc. CAV.
pp. 72–83. LNCS 1254, Springer (1997). https://doi.org/10.1007/3-540-63166-6_10

32. Henzinger, T.A., Jhala, R., Majumdar, R., McMillan, K.L.: Abstractions from proofs.
In: Proc. POPL. pp. 232–244. ACM (2004). https://doi.org/10.1145/964001.964021

33. Ibrhim, H., Khattab, S., Elsayed, K., Badr, A., Nabil, E.: A formal methods-
based rule verification framework for end-user programming in campus build-
ing automation systems. Building and Environment 181, 106983 (2020).
https://doi.org/10.1016/j.buildenv.2020.106983

34. Jhala, R., Majumdar, R.: Software model checking. ACM Computing Surveys 41(4)
(2009). https://doi.org/10.1145/1592434.1592438

35. Jhala, R., Podelski, A., Rybalchenko, A.: Predicate abstraction for program
verification. In: Handbook of Model Checking, pp. 447–491. Springer (2018).
https://doi.org/10.1007/978-3-319-10575-8_15

36. Joshaghani, R., Black, S., Sherman, E., Mehrpouyan, H.: Formal specification and
verification of user-centric privacy policies for ubiquitous systems. In: Proc. IDEAS.
pp. 31:1–31:10. ACM (2019). https://doi.org/10.1145/3331076.3331105

37. Karpenkov, E.G., Friedberger, K., Beyer, D.: JavaSMT: A unified interface for
SMT solvers in Java. In: Proc. VSTTE. pp. 139–148. LNCS 9971, Springer (2016).
https://doi.org/10.1007/978-3-319-48869-1_11

38. Mann, M., Wilson, A., Tinelli, C., Barrett, C.W.: SMT-Switch: A solver-agnostic
C++ API for SMT solving. arXiv/CoRR (2007.01374) (2020), https://arxiv.
org/abs/2007.01374

39. McMillan, K.L.: Interpolation and model checking. In: Handbook of Model Checking,
pp. 421–446. Springer (2018). https://doi.org/10.1007/978-3-319-10575-8_14

40. de Moura, L.M., Bjørner, N.: Z3: An efficient SMT solver. In: Proc. TACAS. pp.
337–340. LNCS 4963, Springer (2008). https://doi.org/10.1007/978-3-540-78800-
3_24

41. Niemetz, A., Preiner, M.: Bitwuzla at the SMT-COMP 2020. arXiv/CoRR
(2006.01621) (2020), https://arxiv.org/abs/2006.01621

42. Niemetz, A., Preiner, M., Biere, A.: Boolector 2.0. J. Satisf. Boolean Model.
Comput. 9(1), 53–58 (2014). https://doi.org/10.3233/sat190101

43. Niemetz, A., Preiner, M., Wolf, C., Biere, A.: Btor2, BtorMC, and
Boolector 3.0. In: Proc. CAV. pp. 587–595. LNCS 10981, Springer (2018).
https://doi.org/10.1007/978-3-319-96145-3_32

44. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL: A Proof Assistant for Higher-
Order Logic. LNCS 2283, Springer (2002). https://doi.org/10.1007/3-540-45949-9

45. Riener, H., Haedicke, F., Frehse, S., Soeken, M., Große, D., Drechsler, R., Fey, G.:
metaSMT: Focus on your application and not on solver integration. Int. J. Softw.
Tools Technol. Transf. 19(5), 605–621 (2017). https://doi.org/10.1007/s10009-016-
0426-1

46. Rümmer, P.: A constraint sequent calculus for first-order logic with linear in-
teger arithmetic. In: Proc. LPAR. pp. 274–289. LNCS 5330, Springer (2008).
https://doi.org/10.1007/978-3-540-89439-1_20

47. Sebastiani, R., Trentin, P.: OptiMathSAT: A tool for optimization mod-
ulo theories. In: Proc. CAV. pp. 447–454. LNCS 9206, Springer (2015).
https://doi.org/10.1007/978-3-319-21690-4_27

48. Soos, M., Nohl, K., Castelluccia, C.: Extending SAT solvers to cryptographic
problems. In: Kullmann, O. (ed.) Proc. SAT. pp. 244–257. LNCS 5584, Springer
(2009). https://doi.org/10.1007/978-3-642-02777-2_24

207JavaSMT 3: Interacting with SMT Solvers in Java

JavaSMT 3: Interacting with SMT Solvers in Java 143

https://doi.org/10.1007/3-540-63166-6_10
https://doi.org/10.1145/964001.964021
https://doi.org/10.1016/j.buildenv.2020.106983
https://doi.org/10.1145/1592434.1592438
https://doi.org/10.1007/978-3-319-10575-8_15
https://doi.org/10.1145/3331076.3331105
https://doi.org/10.1007/978-3-319-48869-1_11
https://arxiv.org/abs/2007.01374
https://arxiv.org/abs/2007.01374
https://doi.org/10.1007/978-3-319-10575-8_14
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://arxiv.org/abs/2006.01621
https://doi.org/10.3233/sat190101
https://doi.org/10.1007/978-3-319-96145-3_32
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1007/s10009-016-0426-1
https://doi.org/10.1007/s10009-016-0426-1
https://doi.org/10.1007/978-3-540-89439-1_20
https://doi.org/10.1007/978-3-319-21690-4_27
https://doi.org/10.1007/978-3-642-02777-2_24

49. Sprey, J., Sundermann, C., Krieter, S., Nieke, M., Mauro, J., Thüm, T., Schaefer,
I.: SMT-based variability analyses in FeatureIDE. In: Proc. VaMoS. pp. 6:1–6:9.
ACM (2020). https://doi.org/10.1145/3377024.3377036

208 D. Baier, D. Beyer, and K. Friedberger

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/
4.0/), which permits use, sharing, adaptation, distribution and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need
to obtain permission directly from the copyright holder.

144 A. Manuscripts

https://doi.org/10.1145/3377024.3377036
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	1 Introduction
	1.1 Motivation
	1.2 Structure of This Thesis
	1.3 Software Analysis and Software Model Checking
	1.4 Frameworks and Tools
	1.4.1 CPAchecker
	1.4.2 JavaSMT

	1.5 Contributions

	2 Discussion of Manuscripts
	2.1 Block-Abstraction Memoization
	2.1.1 Domain-Independent Multi-threaded Software Model Checking
	2.1.2 In-Place vs. Copy-on-Write CEGAR Refinement for Block Summarization with Caching
	2.1.3 Domain-Independent Interprocedural Program Analysis using Block-Abstraction Memoization

	2.2 Multi-Threaded Programs
	2.2.1 A Light-Weight Approach for Verifying Multi-Threaded Programs with CPAchecker
	2.2.2 Violation Witnesses and Result Validation for Multi-Threaded Programs

	2.3 JavaSMT
	2.3.1 JavaSMT 3: Interacting with SMT Solvers in Java

	3 Conclusion and Future Research
	3.1 Summary
	3.2 Future Work and Prospects in CPAchecker and JavaSMT
	3.2.1 Block-Abstraction Memoization with More Domains and Further Algorithms
	3.2.2 Extensions of the Concurrency Analysis
	3.2.3 JavaSMT

	3.3 Usage of Verification in Real-World Software Projects

	Acronyms
	Bibliography
	A Manuscripts
	Domain-Independent Multi-threaded Software Model Checking
	In-Place vs. Copy-on-Write CEGAR Refinement for Block Summarization with Caching
	Domain-Independent Interprocedural Program Analysis using Block-Abstraction Memoization
	A Light-Weight Approach for Verifying Multi-Threaded Programs with CPAchecker
	Violation Witnesses and Result Validation for Multi-Threaded Programs
	JavaSMT 3: Interacting with SMT Solvers in Java

