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D E D I C AT I O N

To my parents.



S U M M A R Y

Extracting the direction of visual motion is a critical task for the survival
of every animal that relies on vision. Although the anatomy of visual cir-
cuits was cartographed in mammals and flies alike over a century ago, the
physiology of these cells remained speculative for long. Behavioral exper-
iments with the snout weevil Chlorophanus viridis served as the basis for
the proposal of an algorithmic model for elementary motion detection. In
essence, two spatially separated inputs, one of which is delayed in time,
are integrated in a non-linear operation. Since the first stage of the visual
transduction cascade – photoreceptors – do not distinguish the direction of
motion, the computation must occur in the circuitry downstream. In the
fruit fly Drosophila melanogaster dense electron microscopic reconstruction,
cell-type-specific driver lines, and genetically encoded indicators have led to
significant progress over the past decade. We now know that: (1) motion
information is split into parallel ON and OFF pathways, (2) T4 and T5 cells
are the first direction-selective neurons in the fly motion vision pathway, (3)
and two complementary mechanisms create direction-selectivity on T4 and
T5 cells dendrites. One is responsible for enhancing signals when cells are
stimulated in their preferred direction and the other for suppressing motion
signals that are presented in the opposite direction.

Since the beginning of my doctoral work, the functional roles of the in-
puts to T4 and T5 cells are under debate. In the first manuscript, we used
2-photon calcium imaging in combination with white noise stimuli to iden-
tify the spatio-temporal response properties of all columnar input elements
to the elementary motion detectors. After reverse correlating the signals
with the stimulus, we found that input elements exhibit a range of tem-
poral properties that can be grouped into two classes: low-pass filter and
band-pass filter. Placing the cells onto the model in different spatial config-
urations and looking for those arrangements which would recapitulate T4

& T5 responses most faithfully, we were able to make suggestions about the
anatomical wiring of the presynaptic partners to the T4 and T5 cells den-
drites. This finding was later confirmed by an EM reconstruction data set.
We also showed that the filter characteristics of the input elements are not
fixed but instead can be influenced by neuromodulation.

In this study, we exclusively used the genetically encoded calcium indica-
tor GCaMP. The relationship between the calcium signal of any given cell
with its transmitter output can however, be complex. In the second study,
we, therefore, set out to measure the transmitter release of all glutamatergic
neurons in the motion vision pathway. We were able to show that spatial
aspects of the receptive fields, measured with the recently developed gluta-
mate sensor iGluSnFR, and GCaMP, are preserved. In the temporal domain,
however, we find that these responses are substantially sped up in the glu-
tamate signal. The results give a more realistic picture of the dynamics of
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the glutamatergic input, which the motion-sensitive T4 cell receives from a
presynaptic partner (Mi9).

Flies reliably track the direction of motion over a large range of veloci-
ties and contrasts. Correlation-type motion detector models, however, are
vulnerable to contrast changes when estimating the velocity in natural en-
vironments. In the last study, we set out to close this gap. Using 2-photon
calcium imaging, we demonstrated that neurons presynaptic to T4 and T5

cells implement an adaptive non-linear gain control mechanism. By blocking
the output of medullary neurons, we were able to show that this adaptive
gain reduction, at least partially, arises from feedback rather than feedfor-
ward inhibition. Lastly, integrating a divisive normalization step into the
model dramatically increased its motion vision robustness.

The three studies included in this thesis are presented chronologically and
were published in peer-reviewed journals.
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1 I N T R O D U C T I O N

In honor of the famous German physicist and physiologist Hermann von
Helmholtz, Siegmund Exner wrote for Helmholtz’s 70th birthday an entire
book about the facette eye of crustaceans and insects on the occasion. In
the preface, he described how he, "[...] despite being a physiologist, was
distracted with considerable force from his actual work by the immense di-
versity of facet eyes. Everyone who would know the abundant wealth of in-
vertebrate eyes would be bored by studying the vertebrate eye. Why would
nature pursue two so substantially different ways to come to the same re-
sult of equipping a living creature with an eye? A topic which I consider to
be of indubitable scientific appeal and which demands anatomical, biolog-
ical, physical, and physiological thinking." (freely translated from German)
(Exner, 1891). 1

Whoever observed an insect under a microscope will immediately realize
that they are diving into an otherwise hidden world of almost alien-like
creatures with strange grimaces. Maybe most prominently one will see the
arrays of facets staring back that seem fundamentally different from what
one usually defined as "eye". It is therefore hard to deny Siegmund Exner’s
fascination. But why of all species should one study the visual system of
Drosophila melanogaster? The answer lies in the fruit fly’s history as a classical
model for genetics ranging back more than one century (Morgan, 1910). This
history provides neuroscientists with an unparalleled wealth of tools that
are perfectly tailored to investigating fundamental questions that arise in
visual systems such as: How does the brain extract behaviorally relevant
information from complex visual cues, such as luminance, contrast, motion,
color, the recognition of conspecifics and objects?

Motion vision is an especially appealing topic to study in Drosophila for
various reasons. First, flies exhibit a stereotyped motion-guided behavior
which serves as a read-out. Algorithmic models proposing how the compu-
tation of motion vision can take place, have existed for long. Second, the
entire visual circuitry has recently been mapped via high-resolution elec-
tron microscopy studies. Third, there is an armory of a genetic toolbox that
grants access to the circuit.

1 "Die vorliegende Studie ist das Resultat mehrjähriger Arbeiten, welche mich stärker, als
man es von einem Physiologen erwarten mag, fesselten. Das Facettenauge liegt abseits
von den viel begangenen Wegen unserer Wissenschaft. Einerseits aber hat es einen un-
zweifelhaften wissenschaftlichen Reiz, nachzuforschen, wie und warum die Natur zwei so
grundverschiedene Mittel benutzt, um anscheinend zu demselben Ziele zu gelangen, ein
Lebewesen mit Augen auszustatten; andererseits zeigte sich mir, einmal dem Gegenstande
nähergetreten, eine solche Fülle von Formen und Erscheinungen, dass dieselben von Frage
zu Frage drängend, Antwort auf Antwort verlangten, und in ihrer Mannigfaltigkeit, indem
sie anatomisches, biologisches, physikalisches und physiologisches Denken erforderten, das
Interesse immer wieder wachriefen. Das Auge der Wirbellosen ist ein Proteus im Vergle-
iche zum Auge der Wirbeltiere, ja letzteres könnte Jeden langweilen, der den Reichthum des
ersteren kennen gelernt hat" (Exner, 1891).
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2 introduction

Throughout my Ph.D., I placed a particular focus on the question of how
circuit elements prior to the first motion-sensitive neurons filter visual sig-
nals and how this aids the computation of direction selectivity. In the fol-
lowing, I will first explain the state-of-the-art techniques that I used for this
endeavor. I will then introduce the visual system of the fly and give in-
sights into purely theoretical approaches that tackle the question of how the
direction of motion can be computed. This will lay the groundwork for
understanding the main part of my dissertation.

1.1 from anatomy to physiology

In 1873, Camillo Golgi discovered that when applying potassium dichro-
mate and silver nitrate to the tissue of the nervous system, only some cells
were stained black while others remained transparent (Golgi, 1873). Why
this is the case is still not fully understood. Conventional stainings during
that time always labelled all cells, which rendered an inspection of a single
cell impossible due to the densely interconnected networks of the nervous
tissue upon which the nervous tissue is built. From this newly developed
staining method, one could finally see the elementary units building the ba-
sis for the brain: neurons. The technique was later adopted and improved
by another neuroscientist from Petilla de Aragón in northeastern Spain: San-
tiago Ramón y Cajal. He used this method to observe the various cell types
that emerged in stark black against the yellow background and studied the
fine arborizations of the cells under a microscope. To be able to preserve
his observations and show them to other people, Ramón y Cajal produced
nearly three thousand drawings over the course of five decades. Because of
the unprecedented detail of his work, his paintings, until today, are consid-
ered an invaluable contribution not only to science but also to art. Although
these stainings and drawings marked a breakthrough in neuroscience, sci-
entists had to infer the function of the abundantly diverse cell types purely
from their anatomy. Looking at the same pictures, Golgi and Ramón y Cajal,
advocated different theories on:

1) How the brain is structured.

2) How information flows within one neuron.

Concerning the first question, Golgi advocated the idea that the neurites of
different cells are fused to form a single continuous network of nerve fibers,
a so-called reticulum. His theory was hence termed reticular theory. On the
other hand, Cajal brought forward the idea that neurons communicate by
contact and not by continuity and that neurons obey the rule of cell theory,
which says that all living tissue consists of individual elementary units. Fol-
lowing this logic, Ramón y Cajal thought of the brain as yet another organ
that is built from countless individual cells, in this case, neurons. This way
of interpreting the results was termed the neuron doctrine. Half a century
later, in the 1950s, Ramón y Cajal’s theory was proven right by electron mi-
croscopic images showing that there is a cleft between the end of each axon
of one cell and the dendrite of another. In this cleft, chemical substances are
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released from the first cell and are taken up by the second, allowing for the
flow of information. This cleft is what we today call a synapse.

The second disagreement arose from the structure of neurons themselves.
Both scientists observed that there are two different types of extensions from
the cell body. One usually branches out into numerous ramifications (den-
drite), whereas the other consists of only one thin branch that thickens at the
end (axon). Camillo Golgi was a proponent of the idea that the dendrites of
neurons only serve as nutrient deliverants and that communication between
cells happens from axon to axon. Ramón y Cajal, on the other hand, envi-
sioned that electrical signals would follow the rule of dynamic polarization,
meaning that information flows from the dendrites and cell body towards
the axon terminal (Newman et al., 2017).

Although both of Cajal’s theories were superior to the ones that were de-
veloped by Camillo Golgi, the two scientists were awarded the Nobel prize
in physiology and medicine in 1906 "in recognition of their work on the
structure of the nervous system". (https://www.nobelprize.org/prizes/
medicine/1906/summary/)

Ever since, scientists have made big efforts to understand cell-to-cell com-
munication. In neurons, this communication takes place at a specialized site:
the synapse.

1.1.1 Basics of neural transmission

At the core of anything carried out within the CNS, from reflexes to cogni-
tion, lies cell-to-cell communication. In the nervous system, this communi-
cation has to happen fast and precisely. How signals propagate within a cell
is a topic of substantial complexity. I will focus on explaining the basics of
communication between cells as we primarily studied networks of neurons
instead of isolated units. On average, a mammalian neuron receives signals
from over a thousand synaptic connections, some cells in the cerebellum
(Purkinje cells) even exceeding as much as 100.000. Despite the vast number
and specialization of synapses, two basic types of synaptic transmission can
be extracted:

1) Electrical synapse

Stereotyped electrical signals are rapidly passed onto connected cells
via specialized bridging channels called gap junctions (on average 4nm)
that allow a direct flux of ions. The postsynaptic potential change is
therefore inseparably related to the presynaptic one in terms of size
and shape (exception: rectifying synapses, e.g. in the crayfish gi-
ant motor synapse). Such speedy transmission can be advantageous
for escape responses described in many animal species, including tail-
flip responses of goldfish via Mauthner cells or fast take-off jumps in
Drosophila via the giant fiber neuron (Eaton et al., 1981; Ache et al.,
2019; Fayyazuddin et al., 2006; Allen and Murphey, 2007; Thomas and
Wyman, 1984; Von Reyn et al., 2014).

https://www.nobelprize.org/prizes/medicine/1906/summary/
https://www.nobelprize.org/prizes/medicine/1906/summary/
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2) Chemical synapse

At first, an electrical signal has to be produced and then propagated
from its origin (usually dendrite) towards the end of the cell (axon ter-
minal). When the changes in membrane voltage travelling along the
cell, reach the axon, an intricate mechanism is triggered. Opening of
voltage-gated calcium channels leads to an increase in cell-internal cal-
cium levels as seen in Figure 1 a. At a chemical synapse, there is no
direct contact between the cells; in fact, there is a cleft of about 20-40

nm. The transmission of chemical signals depends on the diffusion of
neurotransmitters, molecules that are released from the presynaptic ter-
minal (Figure 1 b) and, after diffusion, bind to specific receptors in the
postsynaptic cell. Two major groups of receptors exist: Ionotropic re-
ceptors are ion channels that open directly when a transmitter is bound,
while metabotropic receptors act indirectly on ion channels through ac-
tivation of a biochemical second-messenger cascade. In both cases, the
flow of ions changes the conductance and voltage of the postsynaptic
cell’s membrane (Figure 1 c). This operation is more time-consuming
than the pure electrical transmission of signals but offers the opportu-
nity for more interesting computations. At chemical synapses, signals
can be potentiated (amplified) or depressed (diminished) and can be
very fast (ms) or rather sluggish (minutes)(reviewed in (Cowan and
Kandel, 2001; Eccles, 1976).

Within the visual system of the fly, chemical synapses are thought to play
the critical role in computation. As a consequence, in the following sections,
I will focus on such synapses. For all three steps in chemical synaptic trans-
mission (summarized in Figure 1), various tools exist to measure the cell’s
voltage, calcium level, or transmitter release. In the following sections, I will
present a selection of tools to measure and manipulate neural activity, high-
light their advantages and disadvantages, and elucidate how behavior can
serve as a read-out for circuit function.

1.1.2 Measuring neural activity

electrophysiology As mentioned before, neurons use electrical poten-
tials to transmit information. Electrophysiology allows for the direct obser-
vation of voltage or current changes along the membrane at extremely high
temporal resolution. Many variations of this method are still being used in
modern neuroscience. Placing an electrode directly in the vicinity of the cell
of interest allows for extracellular recordings, making it possible to record
large-amplitude deflections in the cell’s voltage (i.e. action potentials). Insect
neurons however often do not fire action potentials but rather use graded po-
tentials for the transmission of information (Haag and Borst, 1998). With an
often better-suited variant of this method, one can use a sharp micropipette
to poke a hole into the membrane of the cell of interest, granting access to
the internal solution of the neuron. By comparing the difference in electric
potential of the intracellular solution and the solution in the pipette, changes
in intracellular currents can be inferred. Recordings like these were used to
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Figure 1: Synaptic transmission at chemical synapses. Depicted is the intricate
process from voltage changes in the presynapse to a change in postsynap-
tic potential. The top row shows presynaptic release sites with vesicles
and calcium channels. The bottom row shows postsynaptic sites with re-
ceptors. a. An increase in membrane voltage in the presynaptic terminal
leads to the opening of voltage-gated calcium channels. b. The increase in
intracellular calcium levels results in the fusion of the vesicle membrane
with the outer membrane. The transmitter is released into the synaptic
cleft. c. Neurotransmitter molecules diffuse towards specific receptors
in the postsynaptic cell. Transmitters bind to receptors and cause ion
channels to open/close, thereby changing membrane conductance and
potential.

characterize large lobula plate tangential cells (see Section 1.2) of the blowfly
Calliphora erythrocephala (Hausen, 1976; Krapp et al., 1998).

Due to the small size of Drosophila neurons, sharp electrode recordings
are hard to achieve. A third option, which proved to be better suited, is
whole-cell patch-clamp recording, a method that was first used in Hamill
et al. (1981). Placing a glass pipette in close vicinity of the cells membrane
and applying some pressure forms a small bulge in the membrane. Re-
leasing the pressure optimally results in a sealed surface between pipette
and membrane. As a consequence, the resistance rises immensely until a
so-called gigaseal is reached. Afterwards, suction is applied to remove the
piece of membrane that is engulfed by the pipette. When the seal is stable,
the experimenter has electrical access to the cell’s interior. In vivo patch-
clamp recordings in Drosophila have been established in many brain areas
including the visual (Joesch et al., 2008; Behnia et al., 2014) and the olfactory
system (Wilson et al., 2004).

functional imaging Despite the efforts that have already been made,
for many Drosophila neurons, the small size rendered electrophysiological
recordings very difficult. Furthermore, cell bodies are often separated from
the dendrites and axons by long neurites, such that recorded signals might
be attenuated before they reach the recording site.

Therefore the invention of 2-photon microscopy made functional imaging
especially tempting for visual neuroscience (Denk et al., 1990; Helmchen
and Denk, 2005). This method uses a highly pulsed laser that squeezes
light into tiny intervals so that many photons are shot onto a fluorophore in
femtoseconds. By absorbing a photon, an electron of a fluorescent molecule
is lifted to a higher energy state. This can be achieved by either absorbing
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one photon of a shorter wavelength or by absorbing two photons that have
twice the wavelength of the shorter one (Göppert-Mayer, 1931). In other
words, the electron in the fluorescent molecule can achieve a higher energy
state either by taking up a violet-blue photon from 450 nm light or by taking
up two photons at the same time from light that has the wavelength 900 nm.
This doubling of the wavelength has various advantages.

First, it reduces light scattering. The frequency of the light is directly
proportional to the scattering of the light. In other words, violet light at
400 nm wavelength has twice the frequency of red light at 800 nm but will
provoke 16 times as much light scattering.

The second advantage, compared to conventional one-photon imaging, is
decreased bleaching. At high energy light exposure, fluorophores lose their
brightness. Light of longer wavelengths has a lower frequency and therefore
carries less energy. This allows for a longer time span, in which signals can
be obtained. Additionally focusing the light beam in only one spot prevents
the tissue above, and below from bleaching. Therefore, 2-photon imaging
reduces bleaching to a minimum.

Third, if one wants to study the neuronal signals in a visual circuit, it is
best for the light source that creates the fluorescent image to not overlap
with the light that is being used to create the stimuli, since this can cause
artifacts. Light above 900 nm can be seen neither by the human nor by the
fly’s eye and therefore lends itself well to visual neuroscience (reviewed in
(Svoboda and Yasuda, 2006)).

Because of these convenient properties, I used 2-photon imaging as the
main technique throughout my Ph.D. In order to take advantage the techno-
logical innovations, however, genetical tools needed to be developed.

genetics Drosophila has been used as a model organism for studying
genetics for more than a century (Morgan, 1910; Bellen et al., 2010). Ever
since, the knowledge from genetics has advanced many fields in science,
including neuroscience.

The basis of gene expression is always a two-component expression sys-
tem where a driver-line, which defines the neurons of interest, is combined
with an effector line, which defines the gene that should be expressed (Brand
and Perrimon, 1993). For this purpose the Gal4/UAS and lexA/lexAop sys-
tem have been developed for Drosophila (Venken et al., 2011).

The Gal4/UAS-system is a binary expression system that is derived from
yeast, where the transcription factor Gal4 binds, under the control of an en-
dogenous promotor, to the Upstream Activation sequence (UAS), ultimately
leading to protein expression (Brand and Perrimon, 1993). Loosely speak-
ing, the Gal4 therefore determines the ’where’ and the UAS the ’what’ of
expression. Crossing a fly with the Gal4 driver line with a fly that possesses
the UAS effector line (F0 generation) results in offspring (F1 Generation) that
possesses a combination of both. Only then the gene of interest will be ex-
pressed.

A complementary system, which is based on the bacterial DNA-binding
protein-operator Lex-A-op, is controlled by the expression of LexA (Lai and
Lee, 2006). Combining the two expression systems allows the experimenter
to target two different populations of cells with two different effectors.
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Classically, Gal4 fly lines have been created by injecting randomly integrat-
ing transposable P-elements into Drosophila embryos (Hayashi et al., 2002).
Missing control over specific insertion sites, however, often results in broad
expression patterns, which render them unsuitable for circuit manipulations.
Nowadays efficacy is increased by directly cloning DNA fragments with pre-
sumed enhancer activity, and specificity is increased by intersectional strate-
gies, such as the split-Gal4 system (Pfeiffer et al., 2008; Jenett et al., 2012).
Here, the Gal4 is split into two functional subunit, the transcription activat-
ing domain (AD) and the DNA binding domain (DBD). Both subunits are
under the control of different specific enhancers. One domain alone is not
sufficient to initiate Gal4 transcription alone, therefore only in cells contain-
ing both subunits, transcription is started (Luan et al., 2006).

The result of this work, can be seen in large libaries containing thousands
of fly lines, where most cell-types of the fly brain can be targeted with high
specificity (Pfeiffer et al., 2010). Combining precise genetic expression with
functional imaging together with genetically expressed indicators has been a
predominant method for measuring voltage (genetically encoded voltage in-
dicators = GEVI, (Bando et al., 2019)), calcium (genetically encoded calcium
indicators = GECI, (Chen et al., 2013)) and transmitter release (reviewed in
(Sabatini and Tian, 2020)) in Drosophila neuroscience.

1.1.3 Manipulating neural activity

For the sole purpose of describing the physiological characteristics of a pre-
or postsynaptic cell, the above-mentioned methods are well suited. However,
in circuit neuroscience, one strives to identify the role of individual cells in
the broader perspective of an entire circuit. Manipulating the activity of
individual cell types or even single cells is therefore extremely useful.

tools for activating neurons One of the ways to learn about the cir-
cuit function of individual cell types is through activation. This, for instance,
allows to determine, whether the activity of one neuron is sufficient to drive
certain reflexes or behaviors. The heat-sensitive cation channel dTrpA1 has
been developed for reversible activation of cells (Rosenzweig et al., 2005;
Parisky et al., 2008). By increasing the temperature of the tissue, the exper-
imenter can control the activation of a certain cell with moderate temporal
resolution.

Optogenetic tools offer a solution with high temporal precision. The de-
velopment and diversification of optogenetic techniques have enormously
boosted neuroscience in general and are being used nowadays in virtually
all genetic animal models and even for therapeutic treatment of neurodegen-
erative eye disease (retinitis pigmentosa) in humans (Sahel et al., 2021). The
first light-gated cation called Channelrhidopsin-2, abbreviated as ChR2, has
been successfully extracted from the green alga Chlamydomonas reinhardtii
(Harz and Hegemann, 1991; Nagel et al., 2003) and expressed in the nema-
tode Caenorhabditis elegans and hippocampal neurons of mammals (Nagel
et al., 2005; Boyden et al., 2005). By shining blue light onto cells that ge-
netically express these light-sensitive cation pores, it is possible to deliver
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optical, non-invasive, reliable excitation with millisecond precision (for re-
view see (Deisseroth, 2015)).

tools for blocking neural activity Combined with a functional read-
out — e.g., the recording of downstream neural activity in motion-sensitive
elements — silencing individual neurons in a circuit can help to reverse en-
gineer the roles of specific units. The basics in neural transmission, depicted
in Figure 1, show three major attack points to disentangle cell-to-cell com-
munication:

1. Abolishing the electrical signal such that the subsequent cascade of
calcium influx and transmitter release is not triggered.

2. Interfering with the cascade that sets off vesicle release.

3. Getting rid of the postsynaptic receptors.

Classically, pharmacology was the go-to option for this pursuit, however,
applying substances onto the neural tissue often sets limits when interpret-
ing the results. Even when substances are applied locally via, for instance, a
pipette, diffusion to surrounding tissue often cannot be prevented, thereby
interfering with up- or downstream circuits. Additionally, most drugs, with
some exceptions (e.g. tetrodotoxin binding to voltage-gated sodium chan-
nels), bind unspecifically to receptors, therefore leading to off-target effects
(Trevor et al., 2010).

Nowadays, researchers can make use of the rich neurogenetic toolbox of
Drosophila, allowing cell-type-specific manipulations. For instance, the presy-
naptic electrical signal can be silenced by genetically overexpressing the in-
wardly rectifying potassium channel Kir2.1 and therefore constantly hyper-
polarizing the cell (Baines et al., 2001; Johns et al., 1999). Ultimately, this
leaves the cell’s membrane less excitable and the subsequent machinery is
not triggered.

Although this intervention is permanent and potentially interferes with
circuits during development, there is a reversible option. The light-gated
anion channel GtACR has been extracted from the cryptophyte algae Guil-
lardia theta (Govorunova et al., 2015). Genetically expressing the channel in
the neurons of interest and simply applying light of the right wavelength,
this channel opens, allowing the influx of negatively charged Cl− ions, ul-
timately causing the cell to hyperpolarize. This combination is a highly
sensitive, precisely timed, reversible method for steering the neural activity
(for review of optogenetic tools see (Fenno et al., 2011)).

Instead of interfering with the electrical signal of the presynaptic cell, it is
also possible to disrupt the mechanism that leads to transmitter release. The
neurotoxin tetanus toxin light chain (TNT) irreversibly cleaves the synaptic
protein synaptobrevin, which is essential for transmitter release (Sweeney
et al., 1995).

A less permanent approach is expressing the dominant-negative version
of the gene shibirets, a temperature-sensitive allele of the dynamin protein
(Kosaka and Ikeda, 1983; Henley et al., 1999). At room temperature ( ≈ 25

◦ C)
the dynamin protein is involved in the reuptake of neurotransmitters from
the synaptic cleft into to the presynaptic cell (endocytosis). Here, the GTPase
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dynamin assembles around the shaft of endocytic vesicles, which intrude
at the presynaptic membrane. The dynamin protein constricts the vesicle
membrane, which ultimately leads to the scission of the vesicle membrane
from the membrane of the presynaptic cell. Increasing the temperature to
around 29

◦ Celsius, the conformation of dynamin is changed, rendering it
dysfunctional. This effect is reversible by bringing the specimen back to
room temperature (Kitamoto, 2001).

As the third possible point of intervention, numerous genetic tools have
been invented to either knockdown or knock out neurotransmitter receptors.
At the level of the DNA, CRISPR/Cas9 has emerged as a prime tool for gene
ablation (Port et al., 2014, 2020). With this method, virtually any targeted
genetic modification in almost any organism or cell type is feasible today.
One of the problems, though, is that this can be very time-consuming to
achieve (reviewed in (Heidenreich and Zhang, 2016)).

Historically, RNA interference was one of the first ways to tackle proteins.
Here, short pieces of mostly double-stranded RNA, together with an en-
zymatic protein complex (RNA-induced silencing complex, RISC), interfere
with target mRNA transcripts. In the first step, with the help of ribonuclease-
enzymes (e.g. Dicer or Drosha), large double-stranded RNA molecules are
cut into smaller double-stranded pieces. The fragments are then separated
into single strands and integrated into the RISC complex. This activates the
enzymatic complex that now can cleave or block mRNA that is complemen-
tary to the uptaken RNA strand. As a result, translation of the protein is
blocked. Today, large libraries of RNAi lines exist with manifold lines that
allow cell-type-specific gene inactivation (Dietzl et al., 2007). Unfortunately,
this method is prone to off-target effects and often low efficacy (Perkins et al.,
2015).

Lastly, proteins can be directly affected by targeted proteolysis, a method
that circumvents the processes of transcription and translation. Here, the
target protein can be marked directly for proteasomal degradation (reviewed
in (Röth et al., 2019).

1.1.4 Receptive fields

Whether a response in a sensory neuron is elicited under natural conditions
depends on whether it matches with the receptive field of the neuron. The
concept was first introduced to describe the area on a dog’s body surface
where a scratch reflex can be elicited (Sherrington, 1906). Later, it became
more popular when Hartline (1938) used the term to describe the firing of
a bullfrog retinal ganglion cell (RGC) in dependence of the position of the
light stimulus. Generally, spatial receptive fields are described as the area in
sensory space where a neuron’s activity can be modulated. In visual neu-
roscience, for instance, this would be the pixels on the stimulation screen
where changes in luminance or contrast can elicit a response in a certain
neuron. This receptive field definition can be extended to the temporal do-
main. Here, the temporal receptive field describes the time window in the past,
in which the presentation of a visual stimulus in the spatial receptive field
had an impact on the neuron’s response.
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A receptive field is termed linear when the output of a system is propor-
tional to its input. The output of a linear system can therefore be predicted
as a weighted sum of the inputs. Mathematically this can be described with
the equations:

R(x+ y) = R(x) + R(y) (1)

which implies

R(n · x) = n · R(x) (2)

If these conditions are not met, the system is non-linear (Cruse, 1996).
Non-linearity occurs, for instance, when two channels are multiplied. Biolog-
ical systems are most often of non-linear nature, however, for understanding
the system it is useful to identify the underlying linear operations first.

In visual neuroscience, one will often encounter center-surround recep-
tive fields, where the preference of the center subregion is antagonistic to
the preference of the surround. A subregion is termed ON, when illumina-
tion increments, and OFF when light decrements lead to an increase in neu-
ral activity. In a receptive field where the center and surround are equally
balanced, this operation corresponds to spatially band-pass filtering the im-
age. In the literature such a type of spatial filter is often called difference-of-
gaussians (DOG) or Mexican hat. In this receptive field configuration, uniform
illumination would yield a net-zero response, whereas differences in stimu-
lus intensity between the center and the surround would lead to strong re-
sponses. An antagonistic receptive field configuration is thus well-suited for
the discrimination of local rather than global contrast changes (Bonin et al.,
2005; DeAngelis et al., 1995). For the identification of the receptive field of a
neuron, classically, parameterized stimuli were used, such as spots of light,
bars, or edges. A moving edge, for instance, represents a spatial step func-
tion. Here, the input value abruptly increases and is then kept at the new
value. The output of the system - or in our case a neuron - is called the
step response or transient function. Another input function is the impulse
function x(t) = ∆(t), or pulse function. It describes a brief pulse that immedi-
ately drops back to its original value. The response to an impulse function is
called the impulse response or weighting function g(t). According to system
theory, knowing the impulse response of a filter, everything that is to know
about the linear filter can be deduced. For visual systems, such an impulse
function would be an infinite short and infinite strong pulse of light. Per def-
inition, such a stimulus does not exist and can only be approximated, with
concomitant inaccuracies (Cruse, 1996).

This problem can be circumvented by the use of white noise stimuli that
allow, together with reverse-correlation, access to the impulse response of a
filter. This technique has first been used in the auditory system (Eggermont
et al., 1983), and was later broadly applied to describe the spatio-temporal
receptive fields of macaque primary visual cortex neurons (Cottaris and
De Valois, 1998; Ringach et al., 1997; Ringach, 2002).

For primary sensory neurons, a linear receptive field often yields a rea-
sonably good approximation to the "true" receptive field, however higher-
order neuronal receptive fields can rarely be described by pure linear means.
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Non-linear operations are included, for instance, in motion vision (Borst and
Helmstaedter, 2015) or divisive normalization (Carandini and Heeger, 2012).
Therefore an alternative definition of a receptive field is more applicable
here: the receptive field of a neuron is its optimal stimulus.

1.1.5 Optomotor response

Given that the assumed purpose of neural circuits is to control an animal’s
actions, behavior serves as a critical read-out to test hypotheses derived from
physiological experiments. This is particularly true when we assign func-
tion to particular components of a circuit; only if it affects behavior in a
predictable way can we assume a causal relationship. Drosophila possesses
a rich repertoire of visually guided, stereotyped behaviors such as mating,
escaping and landing responses, fixation responses, and the optomotor re-
sponse (Borst, 2014; Muijres et al., 2014; Tammero and Dickinson, 2002; Land
and Collett, 1974).

The optomotor response describes a compensatory reflex to external visual
perturbations. For instance, when a fly is placed in a striped paper drum and
the pattern is moved clockwise, the fly will also move clockwise because it
mistakes the surrounding visual motion for a counterclockwise turn of the
body (Götz, 1964; Borst et al., 2010). The optomotor response was classically
observed in tethered walking or tethered flying flies where the head and
the thorax of the fly are glued to a metal holder whereas the rest of the
body can move freely. In tethered walking experiments, for example, the fly
walks on an air-suspended styrofoam ball while visual stimuli are delivered.
The turning response is then read out as the rotation of the styrofoam ball
(Buchner, 1976). In tethered flight, differences in wingbeat amplitude (Götz,
1987) or torque (Fermi and Reichardt, 1963; Götz, 1964) can be analyzed as a
readout for the compensatory responses of the fly to visual stimulation.

In freely behaving animals, these experiments are more difficult to per-
form because ego-motion produces not only visual feedback but also propri-
oceptive cues, conveyed by club-shaped appendices, called halteres, that are
originally derived from the hind wings. With modern high-speed cameras,
however, it is possible to present visual stimuli and track the fly’s behavior
simultaneously (Mronz and Lehmann, 2008; Strauss et al., 1997; Leonte et al.,
2021).

1.2 the fly visual system

The nervous system of an adult Drosophila melanogaster consists of around
200.000 neurons (199,380 +- 3400) (Raji and Potter, 2021). It is subdivided
into the ventral nerve cord, located in the thorax, as well as the abdomen,
and the central brain and optic lobes in the head of the fly. More than half
of all neurons (107,270 +- 2,720) are dedicated to the optic lobe, the part of
the brain that extracts visual cues such as luminance, contrast, color, motion,
and position of an object.
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a b
RhabdomereSMC

Figure 2: The fly retina. a Focused stack of the Drosophila head. 22 images were ac-
quired with a camera on top of a binocular microscope. Images were
aligned and stacked using Adobe Photoshop. b Top: Schematic of a
Drosophila photoreceptor structure. To maximize absorption, the pho-
toreceptive membrane is organized in tightly packed tubular microvilli,
forming the rhabdomere. Bottom: Electron microscopic image of a rhab-
domere. Scale bar = 1 µm Pictures in b are taken with permission from
Hardie and Raghu (2001).

The optic lobe consists of the neural structures called lamina, medulla,
lobula, and lobula plate consist of a web of repetitive columns, maintain-
ing retinotopy. That is, neighboring points in visual space are processed
by neighboring ommatidia and within neighboring columns in each of the
four layers. Two optic chiasms can be found in the optic lobe, the outer one
between the lamina and medulla, and the inner one between the medulla
and lobula complex (Fischbach and Dittrich, 1989). This leads to a dou-
ble inversion of the visual image along the anteroposterior axis. Neurons in
Drosophila can be put into two anatomically distinct categories. Unicolumnar
cells strictly adhere to retinotopic structure, meaning that a neuron is found
once within one column and its arborizations do not ramify into neighbor-
ing columns. Accordingly, the second type of neurons span more than one
column and are therefore termed multi-columnar.

As a dipteran species, Drosophila has facet eyes that are fundamentally
different from mammalian eyes. Whereas our eyes use only one lens to focus
light onto the retina, each of the fly’s eyes consists of a hexagonal lattice of
about 800 ommatidia, each individually equipped with a spherically curved
lens that has an acceptance angle ρ of about 5

◦ (which matches the angle
between ommatidia ∆φ), resulting in a rather poor spatial resolution and
acuity (Götz, 1965; Land, 1997). Interestingly, there is a trend in dipteran
species that the smaller the insect, the greater is the receptor’s acceptance
angle. While this angle for larger blowflies amounts to 1

◦, the much smaller
Drosophila’s ommatidia have an acceptance angle of ≈ 5

◦ (for comparison:
human spatial resolution in the fovea is better than 0.001

◦). If Drosophila
had as many ommatidia as the larger blowfly Calliphora (roughly 5000), this
would lead to a reduction in lens diameter and result in the loss of sensitivity,
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ultimately leaving the receptors in photon noise. As a consequence, lenses
are not scaled to the size of the eye but rather the number of ommatidia is
reduced.

Each ommatidium houses 8 different photoreceptors (R1-R8). R1-R6 are
organized in a circular manner enclosing R7 and R8, which are stacked upon
each other. R1-R6 expresses the rhodopsin 1 (Rh1), which is sensitive to a
wide range of light wavelengths. It reaches peak sensitivity at two distant
locations in the light spectrum: one in at approximately 480nm (e.g. green
light) and one in the ultraviolet area. In the absence of this pigment, motion
detection is impaired (Heisenberg and Buchner, 1977; Rister et al., 2007). R7

and R8 express different types of rhodopsins, with more distinct absorption
peaks, suited for their role in color vision and the detection of polarized
light vectors (Yamaguchi et al., 2008; Wernet and Desplan, 2004; Wernet et al.,
2003).

The photoreceptors in flies are extraordinarily sensitive, such that when
electrophysiologically recording from a photoreceptor, a discrete inward cur-
rent (quantum bump) can be observed in reaction to the absorption of even
a single photon (Yeandle and Spiegler, 1973; Baylor et al., 1979). Through
adaptation, the photoreceptors can cope with brightness changes from dusk
till dawn, where the number of photons arriving at the retina can easily
change by orders of magnitude, from as little as one photon up to a million
per second. Mammalian rods instead saturate quickly at increasing light in-
tensity, making a less sensitive set of photoreceptors, the cones, necessary
(Hardie and Raghu, 2001).

neural superposition Due to the circular arrangement of R1-R6 in
each ommatidium, each photoreceptor collects light from a slightly offset
visual angle. Because the eye of the fly is curved, however, photorecep-
tors in adjacent columns possess the same optical axis. According to the
hexagonal structure of the fly’s eye this means that seven photoreceptors
from seven different ommatidia receive light from the same position in vi-
sual space. This concept is called neural superposition (Kirschfeld, 1967). The
inputs of the seven photoreceptors converge downstream in one lamina car-
tridge, thereby increasing the sensitvity of the visual system, without losing
spatial resolution.

Depending on the ecological niche of the species, evolution makes trade-
offs in favor of one or the other. Drosophila, a "true fly" (dipterian), is roaming
around early in the morning or late in the evening, therefore, sensitivity
might be more crucial for the animal’s survival than having the environment
sharply resolved.

phototransduction The fruit fly’s lack of spatial vision is compensated
for not only by the extraordinary sensitivity but also by speed. Through a
process called phototransduction, light signals are converted into electro-
chemical signals. Phototransduction in flies is highly optimized and incor-
porates the fastest G-protein-signalling cascade known, allowing for a flicker
fusion rate of about 200 Hz whereas, for comparison, the human flicker fu-
sion rate lies at around 60-90 Hz (Hecht and Wald, 1934; Heisenberg and
Wolf, 1984; Hardie and Juusola, 2015). The fly’s photoreceptor cell surface
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is largely covered by a subcellular structure that functions as a light guide,
called rhabdomere (Figure 2 b). The rhabdomeres in turn consist of ≈ 30.000

tightly packed light-absorbing compartments, called microvilli. In the mi-
crovilli, photo-active molecules, rhodopsins (Rh), absorb light and kick off a
cascade of chemical reactions.

The chromophore 3-hydroxy-11-cis-retinal is bound to the rhodopsin. Af-
ter absorbing a photon it changes its conformation to the all-trans configura-
tion, thereby converting the rhodopsin into an activated state (metarhodopsin
or M-state). Strikingly, in invertebrates, metarhodopsin can be directly re-
isomerized to rhodopsin simply by the absorption of longer wavelength light.
This constitutes a temporal advantage over the vertebrate phototransduction
where all-trans-retinal must be re-isomerized through a slow enzymatically
driven process. This rapid back and forth between the two states is enabled
by the fact that the screening pigment is permeable for long-wavelength light.
This way, the light of longer wavelengths is trapped and can continuously re-
set the transduction cascade (Hardie and Raghu, 2001). Due to this, the fly’s
eyes appear red to the human observer. After the M-state is reached, a G-
protein coupled cascade activates phospholipase C (PLC), which hydrolizes
PIP2 to DAG, IP3 and a proton. Two light-sensitive channels (TRP and TRPL)
are subsequently activated, which allows sodium and calcium to enter the
cell and depolarize the membrane, ultimately leading to the release of the in-
hibitory neurotransmitter histamine (reviewed in (Hardie, 1989; Hardie and
Raghu, 2001; Hardie and Juusola, 2015)).

1.2.1 Lamina

Primary visual information from the photoreceptors is further processed in
the subsequent neuropil, called the lamina. Here, around 6000 cells are orga-
nized to approximately 750 repetitive, retinotopic lamina cartridges (Brait-
enberg, 1967; Kirschfeld, 1967). Extensive Golgi stainings performed by
Ramón y Cajal and Sánchez (1915), that go back as far as to the beginning of
the 20th century, provided an almost complete overview of the general reper-
toire of neurons in the insect optic lobe. Next to the photoreceptors R1-R6,
at least 12 different classes of lamina affiliated neurons were found in house
flies (Strausfeld, 1976), as well as in Drosophila (Fischbach and Dittrich, 1989).
These 12 neurons can be subdivided into groups, according to the direction
of information flow and anatomical arrangement. One group contains five
feedforward lamina output neurons, L1-L5, another one is built up from 6

putative feedback neurons (T1, Lat, Law1, Law2, C2, C3), and lastly, there
is one lamina intrinsic cell (Lai). For the latter two groups, the anatomical
layout is strikingly different from the first one. Here, cell bodies reside in
the second optic ganglion, sending their projections upwards, and hence
appear ’flipped’ by 180

◦ compared to L1-L5, suggesting a feedback role in-
stead of feedforward (Tuthill et al., 2013). Some but not all neurons in this
group span multiple columns and are thought to provide feedback from the
subsequent optic ganglia. Although the anatomical details were laid out in
exquisite detail by Fischbach and Dittrich (1989), only electron microscopy
could shed light onto the intricate connectivity maps that form the lamina
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Figure 3: The Drosophila lamina neurons. a All columnar neurons with connec-
tions within the lamina. Photoreceptors R1-R6 are providing input from
the retina. R7+R8 surpassing the lamina and projecting into the medulla.
Putative feedforward neurons (L1-L5) are shown in red. Putative feed-
back neurons (C2, C3, T1) are shown in blue. Each neuron exists once
per column. b. Multicolumnar neurons that possess projections in the
lamina are depicted. Multicolumnar neurons exist less than once per col-
umn, but the population of neurons of each cell type covers the entire
visual field. Orange colored Lai (Lamina intrinsic neuron) is confined
only within the lamina, whereas blue neurons (Lat, Lawf1, Lawf2) project
from the medulla towards the lamina, likely providing feedback. The
figure is taken with permission from Tuthill et al. (2013).

circuit. This made the fly lamina one of the anatomically best studied cir-
cuits (Takemura et al., 2017; Meinertzhagen and O’Neil, 1991; Rivera-Alba
et al., 2011).

Physiologically, L1 and L2 are the most thoroughly characterized neurons
in the lamina circuit. Sharp electrode recordings in larger flies (e.g. the
blowfly Calliphora vicina, Calliphora stygia, or the dragonfly Hemicordulia tau)
(Laughlin and Hardie, 1978; Laughlin and Osorio, 1989) and calcium imag-
ing in Drosophila (Clark et al., 2011; Reiff et al., 2010) surprisingly revealed
identical response properties of both neuron types. The fact that both cells
react in such a similar pattern becomes more intuitive when considering the
tight electrical coupling of the two cell types (Joesch et al., 2010). Both cells
hyperpolarize to flashes of light (ON) and depolarize to the offset (OFF) of
such a stimulus. This response, opposite to that of the photoreceptors, can
be readily explained by the presence of the histamine-gated chloride channel
ort, which effectively leads to a sign inversion of the respective photorecep-
tor response (Hardie, 1989). Importantly, lamina cells are not selective for
the direction of visual motion. An additional difference between photore-
ceptors and L1+L2 signal becomes apparent when comparing their tempo-
ral filter properties. In a high luminance regime, for instance, L1 and L2

cells keep responding maximally, when stimulated with light modulating
sinusoidally at 60-80 Hz, while photoreceptor responses already drop to ≈
50 % of their initial response amplitude (Straka and Ammermüller, 1991).
When recorded with a sharp electrode at the soma, all lamina monopolar
cells exhibit graded potentials (Laughlin and Hardie, 1978; Laughlin, 1981;
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Laughlin and Osorio, 1989), but spikes have been recorded in the first optic
chiasm of the blowfly Calliphora vicina between lamina and medulla, without
knowing the identity of individual cells (Jansonius and Van Hateren, 1991,
1993a,b). Furthermore, L2 receptive fields possess an inhibitory antagonistic
surround, thereby altering the spatial response properties of the cell (Freifeld
et al., 2013). Although electrically the two cells react indistinguishably, some-
thing striking is happening at the axon terminals of L1 and L2 cells. Here,
the motion vision pathway is split into two separate channels, one for the
motion of luminance increments (ON) and the other for the motion of lu-
minance decrements (OFF) (Joesch et al., 2010; Eichner et al., 2011; Strother
et al., 2014; Behnia et al., 2014). While L2 releases acetylcholine, an excitatory
neurotransmitter, L1 releases glutamate which in invertebrates, can act as an
inhibitory neurotransmitter (Cully et al., 1996; Liu and Wilson, 2013; Mauss
et al., 2014).

Genetically blocking the output of L1 neurons renders motion-sensitive
lobula plate tangential cells (LPTC, see Section 1.2.3) unresponsive to ON
motion. Blocking L2 cells abolishes the responses of LPTCs to OFF motion
(Joesch et al., 2010). This result was confirmed by behavioral experiments,
where the ability of walking flies to follow either ON or OFF motion was im-
paired when blocking either L1 or L2, respectively (Clark et al., 2011; Maisak
et al., 2013). Permanently hyperpolarizing (via Kir2.1) L1 and L2 together
renders the flies completely motion blind (Tuthill et al., 2013; Bahl et al.,
2013). Hence, both cells are required for motion vision.

Recently developed genetically encoded calcium indicators have provided
access to other Drosophila lamina monopolar cells. In contrast to L1 and L2,
L3 and L4 do not receive direct photoreceptor input. Instead, input is pro-
vided by other lamina cells and downstream medulla neurons. Whereas L3

reacts with a much more sustained response, L4 possesses temporal charac-
teristics similar to L1 and L2 (Meier et al., 2014; Silies et al., 2013).

Permanently hyperpolarizing L2 and L4 reduces the fly’s ability to follow
progressive motion. Additionally to the neurons in the repetitive lamina
cartridges, the lamina also receives input from downstream partners (C2,
C3, T1) that are thought to provide feedback from subsequent downstream
circuits in the medulla. Silencing these neurons drastically impairs the fly’s
reaction to regressive motion (Tuthill et al., 2013). Lastly, lamina wide-field
neurons respond to slow luminance changes, suggesting a neuromodulatory
role (Tuthill et al., 2014).

1.2.2 Medulla

The medulla consists of 10 layers, M1 to M10. Cell types increase in variety,
such that one single column houses more than 60 different cell types (com-
pared to 12 cell types in one lamina cartridge). Based on their anatomical
structure, the columnar medulla neurons can be grouped into medulla intrin-
sic (Mi), transmedulla (Tm), and transmedulla Y (TmY) cells. While Mi cells
connect different layers within the medulla, Tm cells arborize in the medulla
layers of various layers as well as in the lobula. Lastly, TmY cells bifurcate,
connecting the medulla to the subsequent optic ganglia, the lobula, and the
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Figure 4: Anatomy of columnar neurons in the fly optic lobe. a Morphology of
abundant cell types, reproduced from Fischbach and Dittrich (1989). b
Columnar cell types in the motion vision circuit. Used with permission
from Borst et al. (2020a).

lobula plate. Via staining, it is possible to extract valuable information about
the anatomical structure of individual cell types. How these neurons are
connected, however, has long remained a matter of speculation. Over the
past decade, electron microscopy has resolved medulla circuitry completely
(Takemura et al., 2008, 2011, 2013, 2017). However, none of the connectomic
studies report the connections of multicolumnar neurons (such as Dm cells).

Using serial-section transmission EM (ssTEM), Takemura et al. (2013) found
a spatial offset of about 1

◦ between Mi1 and Tm3 cells when aligning the
receptive field centers of both cell types along the preferred direction of
the postsynaptic T4 cell. Around the same time Behnia et al. (2014) ac-
complished, to date, the only patch-clamp electrophysiology recordings in
columnar medulla neurons. Importantly, none of the medulla cells were
found to be direction-selective. The authors found a temporal offset between
the two main inputs to T4 cells (Mi1 & Tm3) of 18 ms. Since any model for
motion detection (see Section 1.3) requires a spatial and a temporal offset
between the inputs the authors suggested that Mi1 & Tm3 are the neural
substrates of the inputs to the Drosophila ON motion detector (Behnia et al.,
2014; Takemura et al., 2013). Both, the spatial as well as the temporal offset,
however, seem surprisingly small considering the high degree of direction
selectivity measured in T4 cells (Maisak et al., 2013).

By constantly hyperpolarizing either of the two cell types individually
(via Kir2.1) and simultaneously recording from large motion-sensitive lobula
plate tangential cells (LPTC), Ammer et al. (2015) found that only Mi1 is
required for ON motion along the preferred direction across all stimulus
regimes. Importantly, blocking Tm3 only affects LPTC responses to higher
stimulus velocities but leaves responses to lower velocities unaltered. This
result was confirmed by behavioral experiments in the same study. This lead
to the conclusion, that Mi1 and Tm3 cannot be the only inputs to the ON
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Figure 5: T4 and T5 cells. a First drawing of the curiosos elementos (T4 and T5 cells).
Drawings of Golgi stainings made in the optic lobe of the horsefly. Taken
from Ramón y Cajal and Sánchez (1915) b Schematic of T4 cell dendrite
orientation. Frontal view of medulla layer 10. Four T4 subtype dendrites
enter a single medulla column, extending along four distinct directions. c
Same as in b only for T5 cells. Pictures in b and c taken with permission
from Hoermann et al. (2020) d Confocal image of T4T5 cells expressing
GFP (green). In the inset, the four layers in the lobula plate are colored
according to the preferred direction of the different subtypes, revealed
by 2-photon calcium imaging. Scale bar = 20 µm. Picture adapted with
permission from Borst and Helmstaedter (2015).

elementary motion detector, since taking out only one alone was not enough
to result in ON motion blindness.

In the OFF pathway Meier et al. (2014) published first reliable recordings
of identified medulla interneurons in Drosophila. Meier et al. (2014) used
genetically encoded calcium indicators to characterize the response proper-
ties of the transmedulla neuron Tm2 (additionally to L4). By blocking the
synaptic output (via shibirets), they proved this neuron to be an essential
component in the OFF motion vision pathway.

In light of new connectomic data for both ON (Takemura, 2015) and OFF
(Shinomiya et al., 2014) pathways, it is an interesting subject to complete the
physiological roles of newly discovered neurons in the circuit (e.g. Mi4 and
Mi9).

1.2.3 Lobula complex

The lobula complex consists of two neuropils: the lobula and the lobula
plate. The lobula consists of 6 and the lobula plate of four layers. In the
OFF motion vision pathway, the Tm cells (Tm1, Tm2, Tm4, Tm9) ramify in
a layer-specific manner. While Tm cells differ anatomically, all four neurons
share a connection to T5 dendrites in the first layer of the lobula (Shinomiya
et al., 2014).

t4t5 cells In the most proximal layer of the medulla, M10, and the first
layer of the lobula, two interesting cell types reside; the bushy T cells T4

& T5. Their first anatomical descriptions were already made by Ramón y
Cajal and Sánchez (1915) (Figure 5 a). There are four subtypes of T4 and
T5 cells (T4a-T4d, T5a-Td) that connect the medulla (T4) and the lobula
(T5) to the lobula plate. Each subtype’s dendrite is anatomically oriented
in one of the four cardinal directions (See Figure 5 b,c) (Fischbach and Dit-
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trich, 1989; Ramón y Cajal and Sánchez, 1915; Strausfeld, 1976). Each T4

and T5 subtype arborizes specifically in one of the four layers of the lobula
plate (Figure 5 d) (Fischbach and Dittrich, 1989). T4 and T5 cells are the
first cells in the circuit that respond in a direction-selective manner (Maisak
et al., 2013). This had been a subject of speculation for long based on deoxy-
glucose experiments, where flies were presented with patterns moving in
only one particular direction. Deoxy-glucose would only label cells that
were active during the stimulus presentation. Depending on the direction
in which the stimulus was presented, different subtypes of T4 and T5 cells
were marked, making them top candidates for being the elementary motion
detectors (Buchner et al., 1984; Bausenwein and Fischbach, 1992; Bausenwein
et al., 1992). The final proof that these cells are direction-selective was found
by in vivo 2-photon calcium imaging experiments. It could be shown that
each subtype of T4 and T5 cells respond preferentially to one of the four
cardinal directions, which are front-to-back (T4T5a), back-to-front (T4T5b),
upward (T4T5c), and downward (T4T5d) motion. Furthermore, when pre-
sented with stimuli where the motion contains only one contrast polarity, T4

cells respond only to ON motion and T5 cells only to OFF motion (Figure 5

d) (Maisak et al., 2013). Blocking both T4 and T5 cells abolishes responses to
motion in subsequent motion-sensitive lobula plate tangential cells (Schnell
et al., 2012), impairs the optomotor response of tethered flies walking on a
styrofoam ball (Bahl et al., 2013), cancels the tethered flight escape behavior
when confronted with a looming stimulus (Schilling and Borst, 2015), and, fi-
nally, reduces the fly’s ability to maintain a straight flight path (Leonte et al.,
2021). Taken together, these experiments suggest that T4 and T5 cells are
the key players in conveying motion information to the downstream circuits
that drive behavior.

lptc In the lobula plate, T4 and T5 provide excitatory input onto large
lobula plate tangential cells (LPTC) and lobula plate intrinsic neurons (LPi).
LPTC dendritic trees span large areas of the lobula plate, sometimes over
the range of the entire layer. Consequently, their receptive fields cover a
large part of the visual field. More than 60 different types of neurons can
be attributed to that group, together forming a heavily intertwined network
of electrical and chemical synaptic connections (for review see (Borst et al.,
2010)). LPTCs were anatomically and physiologically described in detail in
larger flies like Calliphora vicina (Hausen, 1976, 1982a,b; Hengstenberg, 1982)
but also to a smaller extent in Drosophila (Fischbach and Dittrich, 1989; Hopp
et al., 2014; Haikala et al., 2013; Fujiwara et al., 2017; Maimon et al., 2010).

LPTCs can be grouped:

• according to anatomical ramification, i.e. whether the cells project
within the same brain hemisphere (ipsilateral) or whether the axons
are sent over to the contralateral side;

• based on whether they respond to stimulation with graded potentials,
or an increase in spike rate, or both;

• based on their visual response characteristics, i.e. whether they primar-
ily respond to motion in the horizontal or the vertical plane;
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Figure 6: Lobula plate tangential cells. a Schematic of the fly visual system. Retina,
lamina, medulla, and lobula complex are arranged in a hexagonal grid
structure. In the lobula plate, the anatomy of 3 different HS cells is de-
picted. Schematic from Borst (2014) b Electrophysiological recording of
an HS-N cell. The cell depolarizes to a vertical sine grating moving from
front to back and hyperpolarizes to motion in the opposite direction. The
cell is therefore direction-selective and motion-opponent. Arrows denote
the direction towards which the grating was moving. Insets show stimu-
lus onset and offset. Recording from Schnell et al. (2010).

• or if they process local or global motion cues (for an extensive review
see (Borst and Haag, 2002)).

Regarding their response characteristics, Drosophila’s LPTCs can be di-
vided into two major groups. Horizontal system (HS) and the vertical system
(VS) cells. At least three different HS cells (tiling the layer into "south", "equa-
torial" and "north": HS-N, HS-E, HS-S) and 6 VS (VS1-6) cell types (plus 3 VS
like cells), as well as dorsal and the ventral centrifugal horizontal (dCH and
vCH) cells were identified in the fruit fly. Their large dendritic stratifications
in the lobula plate, some sampling from over 100 columns, are layer-specific.
HS cells, for instance, mainly receive input from layer 1, therefore process-
ing visual motion information in the horizontal plane. VS cells, on the other
hand, mainly ramify in layer 4 (but some also additionally stratify to other
layers) and process vertical motion information (Boergens et al., 2018; Joesch
et al., 2008; Schnell et al., 2010; Wei et al., 2020).

Lobula plate tangential cells depolarize when presented with motion along
their preferred direction (PD) and hyperpolarize when presented with mo-
tion in the null direction (ND), thus exhibiting motion opponency (Figure
6 b) (for review see (Borst and Haag, 2002)). This is a result of integrat-
ing excitatory input from T4 and T5 cells from one layer in the lobula plate
and subtracting the input from the adjacent layer. The preferred direction
is dependent on the location of the dendrites. Combining all preferred di-
rections onto the dendritic tree, a complex vector pattern arises, so-called
flow-fields (Gibson, 1950) that describe the optimal pattern of motion that
results from ego-motion, such as walking or flight. Thus, LPTCs can be seen
as specialized filters for the detection of optic flow patterns that emerge from
ego-motion (Krapp and Hengstenberg, 1996).

lpi Blocking the output T4 and T5 cells not only abolishes depolarization
of LPTCs when stimulated with motion along their preferred direction (PD
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Figure 7: Lobula plate intrinsic neurons (LPi). a Multi-color flip-out of LPi3-4
cells. Each color represents one cell covering one part of the visual field.
For orientation: D = dorsal, V = ventral, L = lateral, M = medial. b
Schematic of a cross-section through the optic lobe. Note that cells only
cover layers 3+4.c Horizontal cross-section of the lobula plate showing T4

and T5 cells expressing GFP (green) and a presynaptic marker in violet
(synaptotagmin-HA). Axon terminals in violet reveal the layered structure
of the lobula plate.d Expression of GFP (green) and synaptotagmin-HA
(red) in LPi3-4 cells. Note that these cells exclusively have presynaptic
terminals in layer 4. e GFP staining of a VS cell dendrite in layer 4 of
the lobula plate. f Top: schematic of the putative circuit wiring diagram
between T4T5c+d cells, LPi3-4, and VS cells. The electrode in VS cells
stands for patch-clamp recordings at the cell body. Middle: While con-
stant optogenetic activation (1 s) of LPi3-4 cells VS cells hyperpolarize
in a sustained manner. Bottom: Differently strong brief pulses (2 ms) of
light are delivered. With increasing light intensity (from black to blue,
in mW/mm2) the amplitude and latency of the response increases. g
LPi cells are direction-selective. Calcium activity of LPi3-4 neurons after
presentation with moving gratings in different directions. Normalized re-
sponses show a clear preference for upward motion. Note that this is the
same preference that T4T5c cells do in the same layer (Inset). h Silenc-
ing LPi3-4 cells abolishes electrical null direction responses in VS cells
recorded in patch-clamp. Figure taken with permission from Borst et al.
(2020b).
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response) but also affect the hyperpolarization when stimulated with mo-
tion along their null direction (ND response, see Figure 6 b) the same way
(Schnell et al., 2012). Furthermore, when T4 and T5 are optogenetically ac-
tivated, LPTCs respond with a fast excitation followed by inhibition (Figure
7 f, (Mauss et al., 2014)). Both of these findings suggest that T4 and T5 cells
not only provide excitation but also indirect inhibition from the adjacent lob-
ula plate layer onto LPTCs. Lobula plate intrinsic neurons (LPi) are prime
candidates for this task since they bi-stratify in a layer-specific manner, such
that dendrites from one subtype exclusively reside in one and axons in the
neighboring layer. Equivalent to the T4/T5 cells, at least two subtypes of
LPis exist: LPi3-4, and LPi4-3, each receiving excitation from T4/T5 cells in
one layer and providing feedforward glutamatergic inhibitory input via the
glutamate-gated chloride channel GluClα to LPTC dendrites in the adjacent
layer. As 2-photon calcium imaging experiments revealed, LPis are direction-
selective (Figure 7 g, (Mauss et al., 2015)) and have the same preferred di-
rection as the T4T5 cells from which they receive input. Taken together,
lobula plate tangential cells thus integrate local direction-selective informa-
tion twice. One could ask: why twice? As mentioned above, LPTCs are
selective for flow-fields that emerge when maneuvering through the world
(Krapp and Hengstenberg, 1996; Krapp et al., 2001). VS cells, for instance,
are mainly selective for uniformly downward moving flow fields that arise
when the fly is lifting itself upward during flight. The retinal image will con-
sequently move downward. Moving straight forward, however, produces
an expanding flow field. Here, the VS cell will receive opposite directional
information in different parts of its receptive field that will lead to a cancella-
tion of the response since one is excitatory (T4/T5) and the other inhibitory
(LPi). Blocking LPis strongly reduces the flow-field selectivity of VS cells. By
subtracting motion-opponent signals, LPis are thus essential for increasing
flow-field selectivity (Mauss et al., 2015).
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1.3 models of motion detection

Figure 8: Schematic of the "cen-
ter for optic motion
perception". Retinal
fibers feed into the
summation points S, E,
Jf, and Jt that are con-
nected via differently
long retinal fibers. The
different lengths of the
cables illustrate differ-
ent lengths of time
needed for the signal
to travel. The first de-
lay and compare mech-
anism for motion detec-
tion. With permission
from Exner (1894).

Several computational models in the liter-
ature are dealing with the question: how
does one single unit compute the direc-
tion of motion? The earliest example goes
back to the late 19th century from Exner
(1894) seen in Figure 8. Many ideas have
been brought forward in the past decades.
Purely algorithmic approaches have been
made and tested experimentally on the be-
havioral level or at the level of single neu-
rons.

Elementary motion detectors must fulfill
three major requirements (Borst and Egel-
haaf, 1989):

1) Spatial offset

At least two input units are required
that must be spatially separated. One
needs two points in space that can be
compared. A single point cannot give
information about the direction of mo-
tion.

2) Temporal asymmetry

At least one of the inputs must be de-
layed in time compared to the other
one. Otherwise, the input signals ar-
rive to the subsequent stage at the
same time, independent of the direc-
tion of the stimulus.

3) Non-linear interaction

Inputs signals must be nonlinearly in-
tegrated at the subsequent stage. If
this were not the case, the output of
the detector would, on average, be the

same for both directions.

The Hassenstein-Reichardt correlator

One such elementary motion detector was proposed in 1956 by Bernhard
Hassenstein and Werner Reichardt (Hassenstein, 1951; Hassenstein and Re-
ichardt, 1956). From behavioral experiments with the snout weevil Chloro-
phanus viridis they concluded that the non-linear interaction must be mul-
tiplicative. This model is now referred to as the Hassenstein-Reichardt (HR)
correlator, Reichardt detector, or elementary motion detector. For the sake of
simplicity, I will only use the abbreviated term HR correlator.
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Figure 9: Classical correlation type models for motion detection. Input units are
separated by an angle ∆Φ. One input signal is delayed in time by τ. Sig-
nals are non-linearly integrated in the subsequent stage. a Multiplicative
half detector unit after Hassenstein and Reichardt (1956). b Divisive half
detector unit by Barlow and Levick (1965). Note that both detectors re-
sult in the same directionally selective output signal (i.e. large positive
signal in PD = blue curve and smaller response in ND = red curve). c
Full HR-correlator: Two mirror-symmetric subunits of the HR-correlator
are combined. After the multiplication stages, the two subunit output
signals are subtracted from each other, resulting in a motion opponent
detector, which responds positively when stimulated in PD (blue curve)
and negatively when stimulated in ND (red curve). Modified and used
with permission from Arenz et al. (2017).

In this model two spatially offset input signals, one of which is delayed
in time compared to the other one, are subsequently integrated in a mul-
tiplicative manner. Stimulating the detector in one direction (the so-called
preferred direction = PD) leads to a greater signal than when stimulated in
the other direction (null direction = ND) (Hassenstein and Reichardt, 1956).
This is simply because the overlap of the input signals is greater for one
case compared to the other. A subsequent multiplication of those signals,
therefore, leads to an enhanced response (preferred direction enhancement).
Stimulation in the other direction results in a smaller response since the two
incoming input signals are offset from each other. A multiplication of those
two signals will lead to a smaller response (Figure 9 a). Combining two
HR-subunits in a mirror-symmetric fashion and subtracting the output sig-
nals from each other, as depicted in Figure 9 c, results in a so-called Full HR
detector. As a consequence, responses are motion-opponent, meaning that
the detector produces positive output for PD stimuli and negative output
for ND stimuli. Such an arrangement was necessary for a good match of be-
havioral (Fermi and Reichardt, 1963; Hassenstein and Reichardt, 1956; Götz,
1964) and electrophysiological (Joesch et al., 2008; Borst et al., 2010; Haag
et al., 2004) responses in invertebrates.

Barlow-Levick correlator

A similar approach for achieving direction selectivity is taken by the Barlow-
Lewick (BL) detector. Two input signals are separated in space and one
input is temporally filtered, while the other one passes on a ’direct’ unfil-
tered signal. Instead of multiplying the two signals, as in the HR-correlator,
the Barlow-Levick detector uses division as the non-linear operation (Bar-
low and Levick, 1965). Here, the signal on the other side of the detector
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(null side) is delayed. Therefore, when stimulated in the preferred direction,
the overlap of the signal at the non-linear stage is small and leads to a large
response. Stimulation in the other direction results in greater overlap. Divid-
ing these signals, therefore, suppresses the null-direction response (Figure 9

b).
Both detector types can be discriminated experimentally with a clever

stimulus design called apparent motion (Schuling et al., 1989; Egelhaaf et al.,
1992; Eichner et al., 2011; Fisher et al., 2015a; Haag et al., 2016). Instead
of constant movement, stimuli are presented in discrete consecutive steps.
When the response is larger to a stimulus moving in the preferred direction,
compared to the added responses when stimuli are presented in isolation, a
preferred direction enhancement is in place. This speaks in favor of an HR-
correlator. If, on the other hand, the response of a given cell is smaller when
stimulated along the null direction, compared to isolated stimulation, then a
null direction suppression mechanism is present (Barlow-Levick correlator).

Hybrid detectors

PD

ND

HR/BL-detector
PD-enhancement
+ ND-suppression 

BA

AxB
C

τ
C

τ

Figure 10: Hybrid detector consisting of one HR and one BL unit. Signals are
sampled at three different points in space. The outer two arms of the
detector are delayed in time (τ = Delay). In the subsequent stage input
signals from the detector arms A and B are multiplied, and divided by
the signal from C. Stimulation of the detector along the preferred direc-
tion results in a positive response (blue curve); stimulation in the null
direction leads to zero response. Modified and used with permission
from (Arenz et al., 2017).

In Drosophila, such apparent motion experiments were performed in T4

and T5 cells (Haag et al., 2016, 2017; Fisher et al., 2015a). By genetically
expressing calcium indicators and precisely delivering visual stimuli to indi-
vidual lamina cartridges via a telescopic aperture, Haag et al. (2016) found
both mechanisms in place in T4 and T5 cells. Both mechanisms create direc-
tion selectivity, although at different locations in the receptive field (Haag
et al., 2016, 2017; Leong et al., 2016). Sequences of apparent motion moving
in the preferred direction of the cell amplify the signal from the first to the
second position, i.e. on the preferred side of the receptive field. Conversely,
the signal is only suppressed on the null side (i.e. from position C->B) of
the receptive field when the stimulus moves along the null direction. Con-
sequently, a new model was proposed, combining both an HR-correlator
and a BL-correlator subunit to create direction selectivity in T4 and T5 cells
(Figure 10). This detector has three instead of only two input lines, two in-
stead of one of which are filtered in time and, lastly, at the non-linear stage,
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the signals are multiplied and divided. This ensures a higher degree of di-
rection selectivity, which better matches physiological data from 2-photon
calcium imaging (Haag et al., 2016). For instance, whereas the original two-
arm model of Hassenstein and Reichardt needed two subunits and an ad-
ditional subtraction stage to completely shut down null direction responses,
the three-arm detector achieves that one stage earlier (Figure 10).

1.4 concluding remarks

At the start of my Ph.D. in 2016, physiological evidence for T4 and T5 cells
being the elementary motion detectors in the fly visual system was already
provided. Despite a rather extensive physiological characterization of T4 and
T5, the upstream input elements remained poorly understood. While the vi-
sual response properties of Mi1 & Tm3, for the ON-pathway, and Tm1 &
Tm2, for the OFF, had been electrophysiologically described, it became clear
that at least for the ON pathway Mi1 and Tm3 could not be the sole ’two
arms’ of the motion detector. Furthermore, a more complete set of EM con-
nectomic data supported the hypothesis that there are more than two inputs
to the Drosophila motion detectors. Additional 2-photon calcium imaging
experiments revealed that, in fact, two complementary mechanisms create
direction selectivity by precisely applying apparent motion stimuli onto in-
dividual visual units. A new model was proposed that requires at least
three different inputs. But how do the inputs map onto the newly proposed
model? In the first Manuscript 2.1, we combined white noise stimulation,
2-photon calcium imaging, and reverse correlation to characterize the spa-
tial and temporal receptive fields of all putative input elements to T4 and T5

cells, two of which (Mi4, Mi9) have not been described before.
Since all cells were measured with the same stimulus, we now had a good

filter bank at hand, to simulate the optimal positioning of each input filter
in a model for the best fit to the T4 and T5 data. Intriguingly, the proposed
positioning later matched the anatomical arrangement of input synapses on
the dendrites of T4 cells (for T5 cells, results were less clear).

Knowing the response properties of the inputs and the anatomical arrange-
ment of the synapses, it was time to zoom in from the cellular level onto the
level of the T4 cell membrane. More questions arose: what neurotransmit-
ters are being used by the inputs? What receptors are being expressed? How
does this orchestrate direction selectivity at the biophysical level?

One input on the dendritic tips of T4 cells, Mi9, was particularly inter-
esting, since it had an OFF-center receptive field despite being located in
the ON pathway. In the Manuscript 2.2, we were able to confirm the gluta-
matergic transmitter phenotype of this cell and with the help of new tools to
directly measure its transmitter output with high temporal precision. This
work has to be seen as a mosaic piece in understanding the biophysical
mechanism that creates direction selectivity.

Finally in the last Manuscript 2.3, we dealt with the question of why the
behavior of the fly stays robust despite the variability of visual parameters in
naturalistic environments, where the motion detector model is the same, but
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its input signals become normalized. Our findings led to three publications
in peer-reviewed journals.





2 P U B L I C AT I O N S

2.1 the temporal tuning of the drosophila mo-
tion detectors is determined by the dynam-
ics of their input elements

summary Detecting the direction of motion contained in the visual scene
is crucial for many behaviors. However, because single photoreceptors only
signal local luminance changes, motion detection requires a comparison of
signals from neighboring photoreceptors across time in downstream neu-
ronal circuits. For signals to coincide on readout neurons that thus become
motion and direction selective, different input lines need to be delayed with
respect to each other. Classical models of motion detection rely on non-linear
interactions between two inputs after different temporal filtering. However,
recent studies have suggested the requirement for at least three, not only
two, input signals. Here, we comprehensively characterize the spatiotem-
poral response properties of all columnar input elements to the elementary
motion detectors in the fruit fly, T4 and T5 cells, via two-photon calcium
imaging. Between these input neurons, we find large differences in temporal
dynamics. Based on this, computer simulations show that only a small sub-
set of possible arrangements of these input elements maps onto a recently
proposed algorithmic three-input model in a way that generates a highly
direction-selective motion detector, suggesting plausible network architec-
tures. Moreover, modulating the motion detection system by octopamine-
receptor activation, we find the temporal tuning of T4 and T5 cells to be
shifted toward higher frequencies, and this shift can be fully explained by
the concomitant speeding of the input elements.
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SUMMARY

Detecting the direction of motion contained in the
visual scene is crucial for many behaviors. However,
because single photoreceptors only signal local
luminance changes, motion detection requires a
comparison of signals from neighboring photorecep-
tors across time in downstream neuronal circuits. For
signals to coincide on readout neurons that thus
become motion and direction selective, different
input lines need to be delayed with respect to each
other. Classical models of motion detection rely on
non-linear interactions between two inputs after
different temporal filtering. However, recent studies
have suggested the requirement for at least three,
not only two, input signals. Here, we comprehen-
sively characterize the spatiotemporal response
properties of all columnar input elements to the
elementary motion detectors in the fruit fly, T4 and
T5 cells, via two-photon calcium imaging. Between
these input neurons, we find large differences in tem-
poral dynamics. Based on this, computer simulations
show that only a small subset of possible arrange-
ments of these input elements maps onto a recently
proposed algorithmic three-input model in a way
that generates a highly direction-selective motion
detector, suggesting plausible network architec-
tures. Moreover, modulating the motion detection
system by octopamine-receptor activation, we find
the temporal tuning of T4 and T5 cells to be shifted
toward higher frequencies, and this shift can be fully
explained by the concomitant speeding of the input
elements.

INTRODUCTION

The detection of visual motion arising from ego-motion is crucial

for course stabilization in flies [1]. Sets of large tangential cells in

the lobula plate of the fly optic lobe respond selectively to the

optic flow resulting from whole-body rotation around different

axes. As single photoreceptors respond to local luminance

changes in a non-direction-selective way, the intervening cir-

cuitry of the optic lobe [2–5] (Figure 1) must serve to extract

the feature of visual motion by spatiotemporal comparison of

the responses of neighboring photoreceptors.

Two competing algorithmic models of motion detectors have

been proposed (Figure 1A). Both models rely on asymmetric

temporal filtering of two input signals that are then fed into a

non-linearity. They differ by the type of non-linearity employed

and the location of the delay filter. In the Barlow-Levick (BL) de-

tector (Figure 1Aii) [6], the delay is located on the preferred side

and the non-linearity is inhibitory, leading to a suppression of sig-

nals moving in the null direction (ND). In the Hassenstein-Reich-

ardt (HR) detector (Figure 1Ai) [7], the delay is located on the null

side and the non-linearity is excitatory, leading to an enhance-

ment of signals moving in the preferred direction (PD). In the

full HR detector (Figure 1Aiii), two of those subunits, or half-

detectors, are arranged in a mirror-symmetric fashion and sub-

tracted from each other to yield a fully opponent detector (for

review, see [8]).

How do the proposed elements of these algorithmic models

map onto the neural circuits of the fly, and how does direction

selectivity arise? The fly optic lobe consists of four neuropils

downstream of the retina: the lamina, medulla, lobula, and lobula

plate (Figure 1B). Photoreceptors synapse onto lamina monopo-

lar cells. These lamina cells feed into two separate pathways en-

coding for different contrast polarities [9–11]: the ON pathway

encodes brightness increments, and the OFF pathway encodes

brightness decrements. In each pathway, the direction of visual

motion is computed separately [12, 13]. In both pathways, lam-

ina neurons connect onto a distinct set of medulla neurons. In

the ON pathway, these medulla neurons have axon terminals in

layer 10 of the medulla, where they overlap with the dendrites

of T4 neurons [4]. In the OFF pathway, transmedulla neurons

project to the lobula, where they synapse onto the dendrites of

T5 neurons [5]. T4 and T5 neurons each fall into four subclasses,

which respond selectively to visual motion in one of the four car-

dinal directions (front-to-back, back-to-front, up, and down) and

project their axons according to this preference to one of the four

layers of the lobula plate [14]. There, T4 and T5 cells converge

and provide direct excitatory cholinergic input onto wide-field

lobula plate tangential cells [15]. In addition, T4 and T5 cells syn-

apse onto lobula plate intrinsic (LPi) neurons, which in turn inhibit

tangential cells in the adjacent, oppositely tuned layer [16], mak-

ing tangential cells fully motion opponent. Hence, T4 and T5

Current Biology 27, 929–944, April 3, 2017 ª 2017 Elsevier Ltd. 929
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neuronswould represent the half-detector units of the fully oppo-

nent motion detector model just before the subtraction stage.

Although the HR detector describes the responses of lobula

plate tangential cells well, the responses of T4 and T5 neurons

are more directionally selective than would be expected for the

half-detectors of the HR model [14, 17].

In the ON pathway, medulla intrinsic neuron 1 (Mi1) and trans-

medullary neuron 3 (Tm3) were originally suggested as the main

inputs onto T4 neurons from electron-microscopic reconstruc-

tions [4]. These data showed a small spatial offset of about a fifth

of a column, about 1� in visual space, betweenMi1 and Tm3 syn-

apsing onto the same T4 neuron, with Tm3 located toward the

null side of the T4 neuron. Based on this spatial offset, two

possible implementations of the motion detector were sug-

gested: a HR correlator with Tm3, or a BL detector with Mi1,

as the delayed arm. Subsequent patch-clamp recordings

showed a small temporal delay of �20 ms for Mi1 with regard

to Tm3, as well as a similar temporal offset of Tm1 with respect

to Tm2 in the OFF pathway [18]. This led to the suggestion of HR

correlator implementations withMi1 and Tm1 as the delayed and

Tm3 and Tm2 as the direct arms in the ON and the OFF pathway,

respectively [18, 19].

However, new findings from several recent studies question

this model. First, new electron-microscopic circuit reconstruc-

tions show additional synaptic input from Mi4 and Mi9 cells onto

T4 cells (Lou Scheffer, personal communication; https://web.

archive.org/web/20150218101857/http://emanalysis.janelia.org/

flyem_tables.php), and from the transmedulla neurons Tm4 and

Tm9 onto T5 cells [5]. Second, when all four input cell types in

the OFF pathway were considered, large differences in their tem-

poral response kinetics to flashes of dark bars were revealed [20].

Whereas Tm1, Tm2, and Tm4 respond like band-pass filters with

different time constants, Tm9has the response characteristic of a

pure low-pass filter, together forming a filter bank that lends itself

well to the construction of motion detectors. Third, whereas

blocking the synaptic output of Mi1 severely reduces responses

of tangential cells to moving ON edges, blocking Tm3 output

only affects responses to edges moving at higher angular veloc-

ities but leaves responses to lower velocities unchanged [21].

This again argues against Tm3 being one of the two arms of the

motion detector under all conditions. Similarly, in the OFF

pathway, all four cell typeswere shown to contribute to the detec-

tion of moving OFF edges. Blocking their synaptic output

decreased the responses of downstream tangential cells and

reduced the optomotor response to OFF edges [20]. However,

no blocks of single cell types or of two types in combination

fully abolished the responses to dark edges, suggesting either

redundancy or a more complicated implementation than previ-

ously suggested. Fourth, recent experiments based on the

sequential stimulation of individual laminar cartridges revealed

that the elementary motion detectors in the ON pathway, T4

neurons, implement ND suppression [17] in addition to PD

enhancement [22] (Figure 1Aiv). Spatiotemporal receptive fields

of T5 neurons are consistent with a similar model in the OFF

pathway [23]. This more elaborate motion detector implementa-

tion could explain the high direction selectivity. However, in

contrast to both HR and BL detectors, it relies on at least three

input elements.

Taken together, in both pathways, evidence mounts for a neu-

ral implementation that is more complicated than either the BL or

the HR model alone, and there is a multitude of combinations

possible to place the known columnar input elements into the

proposed algorithmic three-arm model of the Drosophilamotion

detectors.

In order to dissect the roles and contributions of individual

cell types, it would be helpful to modify their temporal response

dynamics and observe the effect on the downstream motion

detectors. One remarkable property of tangential cells is that

their velocity tuning is not fixed but dependent on the behav-

ioral state of the fly, as has been observed in Drosophila and

Lucilia. In walking [24] as well as in tethered flying flies

[25, 26], the temporal-frequency tuning shifts toward higher fre-

quencies, corresponding to higher velocities, potentially match-

ing the expected change of the stimulus statistics from resting

to active locomotion. The behavioral effect can be mimicked in

resting flies by pharmacological activation of octopamine re-

ceptors with octopamine [26] or the octopamine agonist

chlordimeform (CDM) [25, 27]. The physiological source of

this neuromodulation is octopaminergic neurons that project

to the medulla, lobula, and lobula plate [28, 29]. They become

activated during flight and are both necessary and sufficient for

the increase in responses to higher temporal frequencies [26].

Importantly, this change in the temporal tuning could be repro-

duced in computer simulations by decreasing the low-pass

filter time constant in the HR detector [25], indicating that iden-

tifying the input elements that change their kinetics under

octopamine activation might help to pinpoint their functional

roles in the detector.

Figure 1. Theoretical Models for Visual Motion Detection and the Underlying Neuronal Circuitry
(A) Algorithmic models of motion detectors based on variations of a common theme of spatiotemporal correlations of local luminance changes detected by

photoreceptors. (Ai) In the Hassenstein-Reichardt (HR) correlator (of which a half-detector is shown here), a delay (t) on the first of two arms activated bymotion in

the preferred direction (PD) causes coincidence of the two signals from neighboring photoreceptors (separated by an angle, Df). A multiplicative non-linearity

results in a PD enhancement. (Aii) In the Barlow-Levick (BL) detector the delay is located on the opposite arm, and the non-linearity is suppressive/inhibitory,

causing a null-direction (ND) suppression. (Aiii) In the full HR correlator, two mirror symmetric subunits from (Ai) are subtracted, resulting in a fully opponent

detector, which not only depolarizes in PD but also hyperpolarizes in ND. (Aiv) A recently proposed model, based on the responses of T4 neurons to apparent

motion stimuli, combines PD enhancement and ND suppression along the PD axis.

(B) Schematic of the circuitry of the Drosophila optic lobe showing neuron classes suggested to be involved in visual motion detection. Local luminance changes

are detected by photoreceptors in the retina and relayed via lamina monopolar neurons (classes L1–L5) and medulla neurons (Mi1, Tm3, Mi4, Mi9, Tm1, Tm2,

Tm4, and Tm9) to T4 and T5 neurons. The latter are the first neurons in the visual pathway that respond selectively to motion. Both T4 and T5 form four subtypes

that respond to one of the cardinal directions and project accordingly to the four layers of the lobula plate, thus forming a map of visual motion directions. In the

lobula plate, they synapse onto large-field tangential cells (horizontal system [HS] and vertical system [VS] cells), as well as onto lobula plate intrinsic (LPi) cells

that in turn form inhibitory synapses onto tangential cells in the adjacent layer of opposite PD. This inhibition corresponds to the subtraction stage in the full HR

correlator (Aiii) and endows lobula plate tangential cells with full motion opponency.
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Figure 2. Response Properties of the ON- and OFF-Pathway Medulla Columnar Elements

(A) Two-photon calcium imaging of immobilized flies.

(B) Schematic of vertical (left) and horizontal (right) white-noise stimulus illustrated by three frames.

(C) Terminals of Tm2 neurons expressing the genetically encoded calcium indicator GCaMP6f. Regions of interest (ROIs) for the analysis of calcium indicator

fluorescence changes encompass single terminals.

(D) Average aligned spatiotemporal receptive field of all Tm2 cells from (C) for a white-noise stimulus consisting of vertical bars. Along the vertical axis, the center-

surround structure of the OFF-center receptive field is visible in the heat color code (vertical dashed line at the time of the peak of the response). The section along

the time axis through the receptive field center reveals the temporal response kernel.

(E–H) Receptive fields of Mi1 (E), Tm3 (F), Mi4 (G), and Mi9 (H) for vertical (upper left) and horizontal (lower right) white-noise bar stimulation. From these, the two-

dimensional receptive fields were constructed as a two-dimensional difference of Gaussians (Supplemental Experimental Procedures).

(I) Temporal kernels resulting from the reverse correlation of the calcium response with the white-noise stimulus for Mi1, Tm3, Mi4, and Mi9.

(J) Temporal kernels in frequency-space (constructed from the temporal kernels in (I) revealing Mi1 and Tm3 as band-pass filters and Mi4 and Mi9 as

low-pass filters. (For the measurements of the spatial receptive fields: Mi1: N = 5 flies, n = 35 cells; Tm3: N = 6, n = 37; Mi4: N = 5, n = 33; Mi9: N = 7,

n = 29. For the determination of the temporal kernels twice as many measurements, from the horizontal and vertical one-dimensional noise stimulus, could

be used.)

(legend continued on next page)

932 Current Biology 27, 929–944, April 3, 2017

35



In this study, we comprehensively characterize the spatiotem-

poral response profiles of all known columnar input elements of

both the ON and OFF motion detectors in the fruit fly Drosophila

melanogaster and take advantage of the motion detectors’

state-dependent tuning characteristics. Using computer simula-

tions, we test which combinations of input elements result in the

observed properties of T4 and T5 neurons and thereby narrow

down their possible cellular implementation. In particular, we

address the question of whether the response dynamics of the

input elements are sufficient to yield realistic motion detectors,

or whether additional mechanisms on the synaptic or dendritic

level are required to further modify the dynamics of the input

signals.

RESULTS

Characterization of the Columnar Input Neurons to
T4 Cells
The functional role of the input neurons to the elementary motion

detectors and their correspondence to elements of any detector

model depend crucially on their spatiotemporal response char-

acteristics. For this reason, we characterized the spatial extent

of the receptive fields as well as the response dynamics of all pu-

tative input elements to the T4 and T5 cells: Mi1, Tm3, Mi4, and

Mi9 in the ON pathway, and Tm1, Tm2, Tm4, and Tm9 in the OFF

pathway. Expressing the genetically encoded calcium indicator

GCaMP6f [30] with cell-type-specific Gal4-driver lines, we

imaged calcium signals in single terminals in layer 10 of the

medulla or the proximal lobula for the ON- and OFF-pathway

elements, respectively.

To precisely map the receptive fields of the input elements, we

used a one-dimensional white-noise stimulus consisting of 2.8�

wide horizontal or vertical bars covering the full extent of the

arena (Figures 2A–2D; Figure S1; Supplemental Experimental

Procedures). The spatiotemporal receptive fields were then

determined from the neuron’s calcium response by reverse

correlation. The spatial components of these are the one-dimen-

sional horizontal and vertical projections of the underlying two-

dimensional spatial receptive field of the cell. In all cases, they

strongly resembled a difference of Gaussians (DOG; also called

a ‘‘Mexican hat’’). Because they were similar for both the hori-

zontal and vertical dimensions, we fitted a two-dimensional

DOG to reconstruct two-dimensional spatial receptive fields

(Figures 2E–2H and 2K–2N). The temporal component of the

spatiotemporal receptive field reflects the temporal filtering

properties of the neuron (impulse response). The extracted tem-

poral filters were validated by predicting held-out test sequences

of neuronal responses from the stimulus for two example neuron

types (Mi1 and Tm9) (Figure S2; see Supplemental Experimental

Procedures).

All four cell types in the ON pathway, Mi1, Tm3, Mi4, and Mi9,

showed locally confined receptive fields that appeared isotropic

in the horizontal and vertical dimensions (Figures 2E–2H). Mi1,

Mi4, and Mi9 cells revealed a receptive field center with a half-

width diameter of approximately 6�–7�, corresponding to about

one optical column. In contrast, the receptive field center of

Tm3 was substantially larger, with a half-width diameter of about

12�. Mi4 andMi9, and to a lesser degreeMi1, also revealed a sig-

nificant antagonistic surround, giving them spatial band-pass

characteristics. This antagonistic surround had a half-width

diameter of approximately 20� for both Mi4 and Mi9 (Table S1).

Because the area and thus the volume under the curve are pro-

portional to the square of the radius, the amplitude ratio of sur-

round to center should equal the inverse of the ratio of the

squares of their half-widths for the center and the antagonistic

surround to cancel perfectly. Notably, this relation is fulfilled for

both low-pass elements, and the integrals of their surrounds

perfectly match their respective centers, thus predicting no re-

sponses to wide-field flicker stimuli. At the same time, the spatial

band-pass filter enhances responses to edges within the visual

scene. In the case of Mi1, the integral of the surround reached

about 50% of the one of the center. For Tm3, surround inhibition

was completely absent, such that those cells have a pure low-

pass characteristic in the spatial domain.

The temporal component of the spatiotemporal receptive field

centers yielded the impulse responses, which reflect the tempo-

ral filtering properties of the respective cell type. Mi1 and Tm3

showed band-pass filter characteristics, as can be seen in their

biphasic impulse responses (Figure 2I) and in their response

spectra (Figure 2J). In contrast, Mi4 and Mi9 appeared as pure

low-pass filters (Figures 2I and 2J). Surprisingly, and in contrast

to the other elements of the ON pathway, Mi9 showed the in-

verse contrast preference, with an increased calcium response

to darkening in its receptive field center (OFF response). How-

ever, apart from the polarity, the time course and filter character-

istics of Mi9 were very similar to those of Mi4 (Figures 2I and 2J).

Thus, the four ON-pathway elements can essentially be grouped

into two classes: two fast-transient cells (Mi1 and Tm3) and two

slow-sustained cells (Mi4 and Mi9). Within each class, the cells’

impulse responses revealed only small differences.

Characterization of the Columnar Input Neurons to
T5 Cells
We next performed analogous experiments on the OFF-pathway

elements Tm1, Tm2, Tm4, and Tm9. Mirroring the situation in the

ON pathway, all four neurons of the OFF pathway had locally

confined isotropic receptive fields (Figures 2K–2N). In agreement

with previous reports [18, 20], they were all excited by luminance

decrements. Accordingly, they revealed an OFF receptive field

center. The receptive fields of all four cells also had an antago-

nistic surround component, giving them a spatial band-pass

characteristic. In contrast toMi4 andMi9, however, the surround

inhibition, with respect to the center, was weaker, which should

render themmore responsive to wide-field flicker. As a parallel to

the ON-pathway elements, three of the neurons, Tm1, Tm2, and

Tm9, showed a receptive field center with a half-width diameter

of about 7�, whereas one element, Tm4, had a larger receptive

field center, with a half-width diameter of approximately 10�.

(K–P) Characterization of the inputs to T5 cells in the OFF pathway. Spatial receptive fields of Tm1 (K), Tm2 (L), Tm4 (M), and Tm9 (N). Temporal kernels in the

time (O) and frequency domain (P) for the four input elements in the OFF pathway. (Tm1: N = 8 flies, n = 71 cells; Tm2: N = 9, n = 93; Tm4: N = 5, n = 35;

Tm9: N = 5, n = 32.)

Graphs depict the mean. Shaded areas around the line, where displayed, represent ±SEM. See also Figures S1 and S2 and Tables S1 and S2.
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The half-width of the antagonistic surround amounted to about

25� for Tm1, Tm2, and Tm9 and to 35� for Tm4 (Table S2). As

forMi1, and in contrast toMi4 andMi9, the antagonistic surround

strength for all OFF input elements reached about 50% of the

center, as calculated above on the basis of the amplitude and

half-width ratios.

As for the ON-pathway elements, we assessed the temporal

filter dynamics by measuring the impulse responses within the

receptive field centers (Figures 2O and 2P). This revealed a clear

band-pass characteristic for Tm1, Tm2, and Tm4 with rather

short low-pass time constants of about 100–270 ms. In contrast,

the impulse response of Tm9 reflected a pure low-pass filter with

amuch longer time constant of about 500ms.Within the group of

band-pass filters, Tm1, Tm2, and Tm4 responses have different

time courses (Figure 2O) and response spectra (Figure 2P),

corroborating a previous study [20]. Thus, as a striking difference

from the ON-pathway elements, where two fast and two slow

cells are found, the OFF pathway comprises three fast and

only one slow cell.

Application of the Octopamine Agonist CDM Changes
the Temporal Frequency Tuning of T4 and T5 Cells
It has previously been shown that activation of the octopamine

system modulates the temporal-frequency tuning of lobula plate

tangential cells [25, 26]. This effect could be implemented

directly at the level of the tangential cells, or indirectly, by modi-

fying the temporal tuning properties of its presynaptic input neu-

rons, i.e., the T4/T5 cells. The latter case would give a handle to

manipulate the elementary motion detectors and potentially

allow narrowing down of their cellular implementation.

We first confirmed that the activation of the octopamine sys-

tem with the octopamine agonist CDM [31] at a concentration

of 20 mM [25] shifts the temporal tuning of tangential cells in

the lobula plate of immobilized Drosophila to higher frequencies

(Figure S3), corroborating earlier findings using octopamine [26].

Next we focused on T4 and T5 neurons. We performed two-

photon Ca2+ imaging in Drosophila expressing the genetically

encoded calcium indicator GCaMP6m in the subset of T4/T5

neurons that are upwardmotion selective and project their axons

to layer 3 of the lobula plate (T4c/T5c) (Figure 3A). Visual stimu-

lation was presented on a semi-cylindrical LED arena and

consisted of full-contrast square-wave gratings with a spatial

wavelength of 24�, moving at 12 different velocities ranging

from 1.2�/s to 480�/s, corresponding to temporal frequencies

from 0.05 to 20 Hz, in PD and ND. Responses of T4 and T5 neu-

rons were quantified as relative change of fluorescence (DF/F)

amplitudes within small regions of interest in lobula plate layer 3

(example traces in Figure 3B). We found a temporal-frequency

optimum of 1 Hz formotion in PD (Figure 3C, black traces). Appli-

cation of CDM shifted the temporal-frequency optimum from

1 Hz in control to about 2.5 Hz (Figure 3C, magenta traces).

Recording Ca2+ signals from the dendrites of either T4 or T5

cells, we found that T4 and T5 cells, considered separately, ex-

hibited a similar temporal-frequency tuning, under control condi-

tions as well as after application of CDM, and a similar shift in

their tuning with CDM (Figures 3D and 3E).

In order to distinguish changes in the response to isolated

motion stimuli from changes in the temporal integration of peri-

odic signals, we also tested the velocity tuning of T4 and T5 neu-

rons to moving edges. For this, we presented bright and dark

edges of full contrast moving at different speeds ranging from

3�/s to 300�/s in PD (Figures 3F and 3G). Corroborating previous

results [14], T4 neurons responded selectively to bright edges,

whereas T5 neurons were found to be selective for motion of

dark edges. Measuring the calcium responses in the axon termi-

nals in the lobula plate, we found that under control conditions

the responses were highest to edges moving at the slowest

velocity of 3�/s for both ON and OFF edges, i.e., T4 and T5 neu-

rons, respectively (Figures 3F and 3G, black traces). Aswas seen

for the grating stimuli above, application of CDM shifted the

optimal stimulus condition to higher velocities of 12�/s (Figures

3F and 3G, magenta traces).

Therefore, the shift of the temporal tuning properties of lobula

plate tangential cells during flight or mimicked by the application

of octopamine-receptor agonists (Figure S3 [25, 26]) is already

present at the level of the T4 and T5 cells, thus affecting the tun-

ing of the elementary motion detectors.

Octopamine-Receptor Activation Speeds the Input
Elements of T4 and T5 Cells
Different possible mechanisms could explain this shift of tempo-

ral tuning in T4/T5 cells. On the one hand, octopamine signaling

could affect the synaptic inputs onto T4 and T5 neurons by

changing the kinetics of neurotransmitter receptors or the den-

dritic integration of those signals in T4/T5 neurons. Different

input elements with different response kinetics could differen-

tially contribute to the postsynaptic signals in different states

through changes in their response amplitude or via their synaptic

weight. On the other hand, the kinetics of some or all input ele-

ments could speed up. We set out to test the latter hypothesis,

i.e., that the response characteristics and tuning of the elemen-

tary motion detectors result directly from the temporal dynamics

of the respective input elements.

For this, we characterized the spatiotemporal receptive fields

of all input elements in both the ON and OFF pathways after acti-

vation of the octopamine system with CDM and compared them

to control conditions. Application of CDM left the spatial recep-

tive fields of all four input neurons in the ON pathway unaffected

(Figure 4A). However, it accelerated the response kinetics of all

four cell types to different degrees, with much stronger effects

on the fast band-pass elements Mi1 and Tm3 than on the slow

low-pass filters Mi4 and Mi9 (Figures 4B and 4C, magenta

traces; Figures S4A, S5Ai, and S5Bi). As for control conditions,

response kinetics of Mi1 and Tm3, as well as of Mi4 and Mi9,

remained similar to each other after addition of CDM. In the

OFF pathway, the results were very similar. The spatial receptive

fields appeared unchanged by CDM for any of the columnar

input neurons (Figure 4D). However, in the temporal domain,

addition of CDM to the bath sped up the impulse responses

significantly (Figures 4E and 4F, magenta traces; Figures S4B,

S6Ai, and S6Bi), as was seen in the ON-pathway band-pass

elements.

Computer Simulations Based on the Input Elements’
Temporal Filters Suggest Candidate Motion Detectors
The input elements to the motion-detecting neurons T4 and T5

can be roughly grouped into two classes: temporal low-pass

filters with large time constants, and band-pass filters with
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Figure 3. Application of CDM Shifts the Temporal-Frequency and Velocity Tunings of T4/T5 Cells to Higher Velocities
(A) T4/T5 neurons of the upward motion-selective subtype ‘‘c’’ projecting their axons to layer 3 of the lobula plate, expressing the genetically encoded calcium

indicator GCaMP6m. The circles mark ROIs in the lobula plate; the red circle corresponds to the example calcium traces in (B).

(B) Example of calcium responses (fluorescence changes) in the axon terminals of T4/T5 cells in response to square-wave gratings moving at temporal fre-

quencies of 1 Hz (Bi) and 5 Hz (Bii) in control (black) and after application of CDM (magenta).

(C) Population average of responses of T4/T5 axon terminals to square-wave gratings moving in the PD (up). Application of CDM leads to a shift of the temporal

tuning optimum (Ncont = 36 flies, ncont = 80 ROIs; N/nCDM = 15/39).

(D and E) Characterization of the temporal-frequency tuning in T4 (D) and T5 dendrites (E). As observed for the axon terminals, application of CDM (magenta) shifts

the temporal-frequency tunings of both T4 and T5 cells to higher frequencies, as compared to control (black) (T4: Ncont = 27 flies, ncont = 52 ROIs, N/nCDM = 9/14;

T5: N/ncont = 18/27, N/nCDM = 7/9).

(F and G) Population average of responses of T4 and T5 axon terminals in the lobula plate to bright (F; T4) and dark edges (G; T5), moving at different velocities, in

control (black) and after application of CDM (magenta) (Ncont = 9 flies, ncont_T4 = 21, ncont_T5 = 37 ROIs; NCDM = 6, nCDM_T4 = 16, nCDM_T5 = 17).

Graphs depict the mean. Shaded areas around the line represent ±SEM. See also Figure S3.

Current Biology 27, 929–944, April 3, 2017 935



Ci Cii Ciii Civ

Bi Bii Biii Biv

Ai Aii Aiii Aiv

Di Dii Diii Div

Ei Eii Eiii Eiv

Fi Fii Fiii Fiv

(legend on next page)

936 Current Biology 27, 929–944, April 3, 2017

39



significantly shorter time constants. We used the above-deter-

mined spatial receptive fields and response kinetics of the input

elements and asked whether these could predict the responses

of their postsynaptic targets, the elementary motion detector

T4/T5 cells, without the necessity of additional filters or delays

implemented either at the level of the synapses between the in-

puts and the T4/T5 cells or within the dendrites of the T4/T5 cells

itself. In addition, we asked whether the observed shift in the

temporal tuning in T4/T5 cells after application of the octopamine

agonist CDM could be fully explained by the change of filter

properties of the respective input neurons.

AlthoughGCaMP6f has relatively fast kinetics when compared

with other calcium indicators, it still possesses a decay time con-

stant on the order of hundreds of milliseconds [30, 32]—long

enough to significantly prolong the calcium signals of cells that

have temporal dynamics on the same order of magnitude. In

order to correct for this temporal filtering by the calcium indicator

itself, we deconvolved the impulse responses in the frequency

domain with a GCaMP6f low-pass filter (Figures S5 and S6).

These corrected spectra were used as an approximation of the

underlying filter properties of the input cells by fitting first-order

filters to the average corrected frequency responses (Tables

S1 and S2). We then used these values as well as the spatial filter

characteristics in our computer simulations of a motion detector.

Because the synaptic transmitters and postsynaptic receptors,

and therefore the sign of the synaptic inputs, are not known,

we decided not to make any assumptions about the sign of the

synapses and ignored the response polarities of the determined

receptive fields in our simulations.

Our simulations were based on a motion detector that com-

bines PD enhancement and ND suppression, resembling a

hybrid of a HR half-detector and a BL detector, as described

in Haag et al. [17] (Figure 1Aiv). In this detector, three inputs

with receptive fields offset by 5� each along the PD axis are

processed such that an enhancing input A on the null side

(left) forms a multiplicative non-linearity with the central,

direct input (B), whereas a suppressing input (C) on the

preferred side (right) implements a divisive non-linearity. The

response of this detector equals the product of the input sig-

nals on the enhancing and the direct arm, divided by the signal

from the suppressing arm (see the Supplemental Experimental

Procedures).

There are 24 possible permutations that map the four input

elements of each pathway onto the three positions of this detec-

tor, each one resulting in a detector with different tuning proper-

ties. Without making any further assumptions, we askedwhether

some of these combinations would yield more direction-selec-

tive motion detectors than others. Each simulated detector

was tested with moving square-wave gratings, and the re-

sponses were quantified in three ways (Figure 5A): (1) To assess

how well the particular detector model discriminates between

motion along PD and ND across velocities, we simulated

square-wave gratings moving in PD and ND at different speeds

covering more than three orders of magnitude. From the simu-

lated responses, we calculated a direction selectivity index

(DSI) as the relative difference between PD and ND responses,

averaged over all grating velocities/temporal frequencies.

(2) To judge the frequency tuning, we determined the temporal

frequency evoking the maximum response in PD (temporal-fre-

quency optimum, fopt). (3) To characterize the direction tuning

beyond PD and ND, emphasizing tuning sharpness, we simu-

lated gratings moving in 12 equally spaced directions at the

fopt of each detector, as determined above. From those simu-

lated responses, the normalized length of the tuning vector

(Ldir) was calculated [33]. This tuning vector length of the

hybrid detector was furthermore compared with the ones of

the constituting HR and BL modules (Figures 1Ai and 1Aii,

respectively).

In general, detectors with the low-pass filters Mi4 and Mi9 on

both the outer enhancing and suppressing arms, flanking one of

the band-pass elements Mi1 or Tm3, performed extremely well:

they showed a rather high degree of direction selectivity and

tuning sharpness (Figure 5B), in good agreement with the

experimental data from T4 cells (compare with [14]), and their

temporal-frequency optimum matched that of T4 cells as well

(Figure 5B, right; compare with Figures 3C and 3D).

In addition, most combinations with one central low-pass

neuron, Mi4, or, particularly, Mi9, flanked by the two band-

pass elements Mi1 and Tm3, also achieved high direction-

selectivity values. The PD (see arrows in Figure 5B, left) of these

detectors is inverted as a consequence of the position of the

delay in the HR and BL sub-modules. However, when consid-

ering both sub-modules separately (blue and red bars, respec-

tively, in Figure 5B, right), the BL alone showed very low tuning

sharpness (Ldir) and thus contributed little to the hybrid detector.

This affects the tuning specificity of the hybrid detector, as

can be seen when comparing, for example, Tm3xMi9/Mi1 with

Mi9xTm3/Mi4. Both detectors are built on the same HR detector

(using the same cells), but the one that employs Mi4 for the

BL part of the model has a higher tuning sharpness. The same

is true for all other pairs of this kind: given one pair of cells for

the HRmodule, the implementation that places two low-pass fil-

ters on the outer arms of the detector always has the sharper

tuning.

Figure 4. Activation of Octopamine Receptors Accelerates the Temporal Filters of the ON- and OFF-Pathway Medulla Columnar Elements

(A) Spatial receptive fields of Mi1 (Ai), Tm3 (Aii), Mi4 (Aiii), and Mi9 (Aiv) for vertical (upper left) and horizontal (lower right) white-noise bar stimulation under control

conditions (black traces) and after application of CDM (magenta traces and two-dimensional receptive fields).

(B) Temporal kernels for Mi1 (Bi), Tm3 (Bii), Mi4 (Biii), and Mi9 (Biv) revealing the faster time course after application of CDM (magenta) as compared to control

(black).

(C) Temporal kernels in frequency-space, constructed from the temporal kernels in (B). Application of CDM (magenta) leads to a shift of the center frequency of the

band-pass filters as compared to control (black). (For themeasurements of the spatial receptive fields [controls are as in Figure 2]: Mi1: NCDM = 5, nCDM = 31; Tm3:

N/nCDM = 6/34; Mi4: N/nCDM = 5/38; Mi9: N/nCDM = 7/37. Again, the temporal kernel results determined from the horizontal and vertical one-dimensional noise

stimuli were pooled, resulting in twice as many measurements.)

(D–F) Analogous to (A)–(C), the spatial receptive fields (Di–Div), temporal kernels (Ei–Eiv), and frequency spectra (Fi–Fiv) of the OFF-pathway elements Tm1, Tm2,

Tm4, and Tm9. (Controls are as in Figure 2; Tm1: CDM: NCDM = 8, nCDM = 67; Tm2: N/nCDM = 9/93; Tm4: N/nCDM = 5/28; Tm9: N/nCDM = 5/42.)

Graphs depict the mean. Shaded areas around the line represent ±SEM. See also Figure S4 and Tables S1 and S2.
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Figure 5. Computer Simulations of Elementary Motion Detectors

(A) Left: schematic of a three-arm detector combining a multiplicative PD enhancement and a divisive ND suppression. The positions of the enhancing (‘‘A’’),

central (‘‘B’’), and suppressing (‘‘C’’) input can be occupied by any but different input elements. Those input elements are described by their temporal filtering

characteristics, implemented as a band-pass (BP) and low-pass filter (LP) with subsequent rectification. The receptive fields of the three inputs are offset by 5�

each. The simulated detectors are stimulated with square-wave gratings moving at different temporal frequencies in PD and ND. Middle: the direction selectivity

(legend continued on next page)
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Similarly, detectors that incorporated twoelementswith similar

temporal responseproperties (suchasMi1andTm3)on twoadja-

cent positions tended to perform worse, especially with respect

to the Ldir value, indicating poor tuning sharpness. This can be

easily explained by the fact that both the HR and BL modules of

the hybrid detector rely on temporal differences in their respec-

tive two input arms. Inputs with more similar kinetics thus render

the corresponding module less effective in creating direction

selectivity. In fact, the best detectors were those where both

halves showedhighdirection selectivities on their own (Figure 5B,

right), provided the PDs of both modules were aligned.

Interestingly, almost all combinations showed a shift in their

tuning toward higher temporal-frequency optima by about a fac-

tor of 2 when the filter properties after application of the octop-

amine agonist CDM were used, matching the experimental

data. As a control that the direction selectivities in our simula-

tions were not dependent on the used deconvolution filter, we

repeated the simulations with the raw temporal kernels derived

from the calcium responses. The same arrangements of input

elements led to the motion detectors with the highest direc-

tion-selectivity values (Figure 5C), consistent with the notion

that it is the relative filter properties that are crucial. Deconvolu-

tion merely changes the temporal frequency of the visual stim-

ulus that leads to the maximum response (Figure 5D).

In the above simulations, we followed an unbiased approach

with all inputs separated by 5�, thus having receptive fields

arising from neighboring neuro-ommatidia. However, electron-

microscopic reconstructions have shown a spatial offset be-

tween Tm3 and Mi1 cells projecting to the same T4 cell of about

1� in this order along the PD of the postsynaptic T4 cell [4]. The

smaller spatial offset could counterbalance the small differences

in temporal kinetics between these cells. Repeating the above

simulations of the three-arm detector under these constraints

still resulted in poorly direction-selective detectors for these

combinations, with Ldir values of 0.38 (for Mi9xTm3/Mi1, as

compared to 0.41 for a 5� offset) or less. In fact, when consid-

ering only a simple two-arm detector (HR or BL type), any detec-

tor that consisted of Tm3 and Mi1 with a spatial offset of 1�

resulted in Ldir values of less than 0.06 for both types of detectors

(in comparison to 0.13 for a 5� offset).
Although the evidence is weaker for the structure of themotion

detector implementation in T5, we constructed analogous mo-

tion detectors for the OFF pathway with the measured receptive

fields and response kinetics of the columnar inputs onto T5 neu-

rons (Figure 5E). In contrast to the ON pathway, only one out of

the four input elements, Tm9, constitutes a low-pass filter,

whereas the other three, Tm1, Tm2, and Tm4, exhibit band-

pass characteristics. Most input element combinations resulted

in motion detectors with low direction selectivity. Notably, the

highest direction selectivity resulted from detectors with the

low-pass filter Tm9 on the suppressing arm. Naturally, detectors

with the fastest input (principally Tm2) in the central position

flanked by two slower elements achieved higher direction selec-

tivities, as with this arrangement the PDs of the HR and BL sub-

units are aligned. Arrangements with the sole low-pass filter,

Tm9, in the central position resulted in detectors with poor direc-

tional tuning, both measured as DSI across all frequencies and

Ldir, resulting from a virtually ineffective BL half (Figure 5E, right).

Interestingly, combinations with the band-pass filters Tm1 and

Tm4 constituting either half of the detector tended to perform

comparatively poorly—and sometimes even showed a complete

breakdown of direction selectivity—in at least one of the simu-

lated physiological states. This can be explained by the fact

that the small differences in the temporal response kinetics of

these neurons were not stable between control and under

CDM (Figure S6). As was seen for the ON pathway, using the

spatiotemporal filters extracted under CDM in the simulations

led to an increase of the temporal-frequency optimum by about

a factor of 2 across all detectors (Figure 5E, middle, magenta

dots). Again, the simulations were robust to the deconvolution

applied to account for the filtering by the calcium indicator (Fig-

ure 5F). The best arrangements were the same irrespective of

whether the raw or deconvolved filters were used, and only the

temporal-frequency optimum was affected (Figure 5G).

Taken together, we find distinctly different response kinetics of

the input elements in both the ON and the OFF pathway, from

band-pass filters to pure low-pass filters. These map naturally

onto hybrid elementary motion detectors implementing PD

enhancement and ND suppression. The best-performing detec-

tors arise when the fastest element occupies the central arm,

flanked by slower inputs on the enhancing and suppressing

arms. In the ON pathway, two low-pass inputs, Mi4 and Mi9,

are found to fill this role. In the OFF pathway, the single low-

pass element, Tm9, appears to be best positioned on the sup-

pressing arm to achieve the highest direction selectivity.

DISCUSSION

To understand howmotion detection is implemented on the den-

drites of T4 and T5 cells, we describe in this study the response

of the detector is assessed across all temporal frequencies based on the area under the temporal-frequency tuning curves in PD and ND as the direction

selectivity index: DSI = (SPD� SND) / (SPD + SND). The dotted line indicates the temporal-frequency optimum (fopt) for responses in PD. Right: illustration of the

normalized tuning vector length (Ldir) as ameasure for direction selectivity and tuning sharpness. Ldir is calculated as the vector sum of all responses according to

the direction of stimulus motion, normalized to the sum of all response vector lengths.

(B–D) Characterization of the simulated motion detectors for the ON pathway.

(B) Direction selectivity (left), temporal-frequency optimum (middle), and normalized tuning vector length (right) for all possible permutations of the four

ON-pathway input elements on the three positions of the simulated detector. The magenta dots indicate the effect of CDM application on direction selectivity

and temporal-frequency tuning resulting from the accelerated temporal filters of the input elements. Arrows indicate the PD with respect to the corresponding

cell arrangements. For the tuning vector length, the hybrid detectors (black open bars) were compared to their constituting HR (‘‘AxB’’; blue) and BL modules

(‘‘B/C’’; red).

(C and D) Direction-selectivity indices (C) and temporal-frequency optima (D) of all detectors based on the deconvolved filter kernels as shown in (B) plotted

against the detectors based on the raw calcium kernels.

(E–G) Same as (B)–(D) but for the OFF pathway.

See also Figures S5 and S6.
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properties of the elementary motion detectors in Drosophila, the

T4 and T5 neurons, as well as all of their known columnar synap-

tic input neurons, under two different tuning regimes. With this

comprehensive characterization, we are able to narrow down

the cellular implementation of the motion detectors and suggest

probable wiring diagrams.

All of these input elements possess spatially restricted recep-

tive fields with centers spanning one to two ommatidia. All, with

the exception of the ON-pathway band-pass neuron Tm3, have

pronounced antagonistic surrounds. Particularly for the low-

pass filter elements Mi4 and Mi9, the strong antagonistic sur-

round fully counterbalances the excitatory center. This should

not only eliminate sensitivity to large-field flicker stimuli but

more importantly curtail the otherwise tonic responses of pure

low-pass filters to moving edges, and thus strongly improve

direction selectivity. The locally confined receptive fields are in

agreement with previous studies [18, 20, 34] but in contradiction

to [35], which described Tm9 as a wide-field neuron. In both

pathways, one neuron shows a larger receptive field (Tm3 in

theONpathway, and Tm4 in theOFF pathway). The larger recep-

tive field sizes of Tm3 [18] and Tm4 neurons are consistent with

the multi-columnar input these neurons receive based on elec-

tron-microscopic reconstructions [4, 5].

All elements of the OFF pathway respond to light OFF in the

center of their receptive fields, consistent with [20]. In the ON

pathway, Mi1, Tm3 [18], and Mi4 analogously show an ON-

center response. Mi9, however, despite being an element in

the ON pathway, responds positively to OFF stimuli. This could

suggest a sign reversal through an inhibitory synapse onto T4.

However, it is not known what neurotransmitter is released by

Mi9, and thus whether it excites or inhibits T4 neurons.

Within each of the two pathways, we find a diversity of tempo-

ral filter characteristics from fast band-pass filters to pure low-

pass filters with slow-sustained responses. These differences

in temporal dynamics make them ideal components for motion

detection without the need of postulating further processing by

slow synaptic signaling or electrotonic filtering within the den-

drites of T4 and T5 cells. Where the response kinetics of these

cells have been previously described, our data are consistent.

In particular, Mi1, Tm3, Tm1, Tm2, and Tm4 have previously

been shown to respond transiently to sustained stimuli, i.e., to

possess band-pass characteristics [18, 20, 34]. Tm3 appears

faster than Mi1 [18] (but see [36]), and Tm2 faster than Tm1

[18, 20, 36]. However, these temporal differences are often

very small. On the other hand, Tm9 in the OFF pathway has

been described as a low-pass filter [20, 35], which matches

our results. In the ON pathway, we find that the previously un-

characterized cell types Mi4 and Mi9 also show pure temporal

low-pass response characteristics. Thus, in both pathways,

input elementswith slow-sustained and fast-transient responses

are found, which then converge onto the dendrites of T4 and T5

cells, respectively. Yet the relative distribution differs. In the ON

pathway, two input elements show pure low-pass characteris-

tics (Mi4 andMi9), whereas in the OFF pathway, Tm9 constitutes

the only pure low-pass filter. Two of the three input elements that

constitute pure low-pass filters, namelyMi9 in theON and Tm9 in

the OFF pathway, receive their lamina input primarily from the

lamina monopolar neuron L3 [37]. As L3 has been shown to

respond in a slower and more sustained fashion [38] than,

e.g., the transient L2 [10, 11], this could explain the low-pass

characteristics of Mi9 and Tm9. L3, like all lamina neurons,

responds positively to light decrements, and it releases the

excitatory neurotransmitter acetylcholine, explaining the OFF

response of Tm9 and Mi9. The response dynamics of Mi4 are

likely to be heavily shaped by the strong reciprocal connections

with Mi9 [37]. These reciprocal connections, and thus likely the

cells themselves, would have to be inhibitory, as these cells

show opposite response polarities.

Based on the spatial receptive fields and response kinetics,

we could ask which input neurons could play which role in the

motion detector. Previous computer simulations based on the

measured dynamics of Tm cells in the OFF pathway have shown

that most combinations of two elements result in classical (full)

HR detectors with similar temporal tuning optima roughly match-

ing the tuning of tangential cells [20]. In that study, only the com-

bination of Tm2 and Tm4 could be excluded, as their filter time

constants were too similar to each other to result in a functioning

detector. However, subtraction of oppositely tuned half-detec-

tors not only leads to motion opponency but increases direction

selectivity of otherwise poorly tuned half-detectors. Conse-

quently, the tuning of lobula plate tangential cells represents a

rather indirect readout. By comparing simulations of the half-

detector stage with recordings from T4 and T5 neurons, we

can exclude the majority of possible combinations of input ele-

ments based on their temporal-frequency optimumor directional

selectivity (see below).

Based on visual stimulation of single individual columns, T4

neurons have recently been shown to implement both PD

enhancement and ND suppression [17]. The receptive fields of

these interactions are spatially offset along the PD axis in this

order. The corresponding hybrid of an HR half-detector and a

BL detector requires a minimum of three columnar inputs:

a fast central input, flanked by two outer inputs providing signals

that are delayed relative to the central one.

In our computer simulations for the ON pathway (Figure 5),

the majority of detectors with the highest direction selectivity

fall into two groups: (1) the two low-pass filter elements Mi4

and Mi9 on the outer enhancing and suppressing arms, and

either of the fast band-pass elements Mi1 and Tm3 on the cen-

tral arm, matching the above layout, and (2) the inverted

arrangement, with one central low-pass filter, flanked by the

band-pass filter elements Mi1 and Tm3. This also resulted in

an inverted PD.

In the latter case, however, the BL subunit considered alone

contributed very little to the directional tuning (Figure 5B, right),

as the low-pass-filtered central excitatory input tends to outlast

the corresponding suppression from the band-pass outer arm.

This reduces the tuning sharpness of these detectors. Further-

more, this implementation does not match the arrangement of

PD-enhancement and ND-suppression receptive fields along

the PD in this order found for T4 cells [17]. Additionally, this

arrangement would require Mi1 and Tm3 on the outer arms of

the model, which is in stark contrast to their reported 1� spatial
offset [4].

Among the more direction-selective detectors was also one

combination with Tm3 on the central andMi1 on the suppressing

arm. However, the resulting BL subunit considered alone shows

very poor directional tuning, and the direction selectivity arises
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virtually exclusively from the HR subunit. Even taking the

reported small anatomical offset of about 1� between these cells

into account [4] did not compensate for the small temporal differ-

ences but actually resulted in even worse directional tuning. This

indicates that sizable differences not only in the temporal but

also in the spatial domain are a prerequisite for direction selec-

tivity. Similar considerations are true for all combinations that

place neurons with similar response kinetics on neighboring

arms. In general, the most effective hybrid detectors result

from combinations of cells that are arranged such that the

respective HR and BL sub-detectors are as direction selective

as possible and aligned in their PD.

For detectors where two low-pass filters flank a central band-

pass filter element, bothMi1 and Tm3 seem feasible to fill the role

of the latter. However, a previous study blocking the synaptic

output of Tm3 found an effect on the response of tangential cells

to moving ON edges only at high but not at low to moderate

velocities [21]. Hence, although we do not exclude a functional

role for Tm3 in ON motion detection, this finding argues against

Tm3 as the (sole) central arm of the detector in the ON pathway,

as the interference especially with the central arm should fully

abolish the detection of motion.

Taken together, an implementation of the ON elementary

motion detector as depicted in Figure 6 seems most likely: Mi1

as the fast central input, flanked by the low-pass elements Mi4

and Mi9 constituting the suppressing and enhancing arm in

either order. Depending on the location, these neurons need to

be either both excitatory or both inhibitory to accommodate their

respective response polarity and fulfill the required role of

enhancing and suppressing input. Considering their opposite

polarity and reciprocal connection, it is more likely that both

neurons are inhibitory. This would place Mi9 on the enhancing

arm (‘‘A’’ in Figure 6A), and Mi4 on the suppressing arm (‘‘C’’ in

Figure 6A). Importantly, with the observed range of temporal

response characteristics in the input elements, it is not

necessary to postulate further delays at the synaptic or dendritic

level.

In the OFF pathway, the algorithmic structure of motion detec-

tion is less clear. On the one hand, spatiotemporal receptive field

measurements of T5 neurons reveal excitatory and inhibitory

sub-fields that are offset along the PD axis and appropriately

tilted in space and time to support PD enhancement and ND

suppression [23]. This would suggest a similar architecture as

for T4. On the other hand, other studies have only reported PD

enhancement for T5 [22, 39]. Nevertheless, we performed anal-

ogous simulations based on the measured T5 input kinetics

and receptive fields assuming a similar detector architecture.

The two detectors with the highest direction selectivity incorpo-

rated the low-pass filter, Tm9, into their suppressing arm (Fig-

ure 5E). Lacking a second pure low-pass filter input in the OFF

pathway, the central and enhancing arms were occupied with

band-pass filters. Because the PDs of PD enhancement and

ND suppression need to be aligned, the fastest element of the

combination, principally Tm2, must be located in the central

position. This is also illustrated by the two worst combinations

(Figure 5E, right), where even though the BL module on its own

performs quite well, the oppositely oriented HRmodule destroys

the direction selectivity of the hybrid detector. As above, hybrid

detectors with the low-pass filter, Tm9, on the central arm

perform poorly, as the constituting BL half contributes little to di-

rection selectivity in those combinations (Figure 5E, right;

e.g., Tm2xTm9/Tm4).

According to our simulations, and if the structure for T5 resem-

bles the hybrid detector proposed for T4, the arrangement of a

central Tm2, flanked on the null side by an enhancing Tm1 and

on the preferred side by a suppressing Tm9 input, achieves by

far the best direction selectivity. This implementation would pre-

dict inhibitory/suppressing input from Tm9 onto T5, which could

be experimentally tested. Consistent with this arrangement, out

of all four T5 columnar inputs, blocking the synaptic output from

Tm4 cells results in the lowest reduction in OFF-edge responses

in tangential cells [20]. Nevertheless, those blocking experiments

indicate that Tm4 plays a role in the detector that awaits

resolving.

A B Figure 6. Proposed Implementation of the

Elementary Motion Detectors in the ON

Pathway

(A) T4 neurons implement both PD enhancement

and ND suppression with receptive fields offset in

this order along the PD axis. This requires one

central fast arm being flanked by two delayed or

stronger low-pass-filtered inputs. The relatively

fast kinetics of Mi1 or Tm3 would suggest either or

both for the central input. Mi4 and Mi9, on the

other hand, show pure low-pass characteristics in

their temporal kernels fitting the requirements of

the two outer arms. The signs of both outer-arm

synapses depend on the arrangement of Mi4 and

Mi9 to accommodate their respective response

polarity andmatch them to the required enhancing

and suppressive inputs.

(B) Simulated detector responses for gratings

moving across the visual field in 12 different

directions, separated from each other by 30�. Top:
directional tuning for the two sub-modules of this

detector. Top left: the pure HR (half) detector Mi9xMi1 shows some direction selectivity but has a low tuning sharpness. Top right: the pure BL detector Mi1/Mi4

shows a substantial response in the ND direction (180�). Bottom: directional tuning for the hybrid detectorMi9xMi1/Mi4. This hybrid detector is very sharply tuned

to rightward motion (left), whereas its direction selectivity remains high across stimulus frequencies (right).
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In this study, we have shown that the activation of the octop-

amine system by CDM shifts the temporal-frequency and veloc-

ity tuning of T4 and T5 neurons to higher temporal frequencies/

velocities, mirroring the temporal tuning shift in tangential cells

of the lobula plate observed under active locomotion or octopa-

minergic activation [24–27]. At the level of T4 and T5 neurons,

we find a temporal-frequency optimum of about 1–1.5 Hz for

moving gratings under control conditions, corroborating previ-

ous studies [14, 17, 22]. Application of CDM shifts the tempo-

ral-frequency optimum to 2.5 Hz. T4 and T5 cells show a velocity

optimum for moving edges at 3�/s or lower under control condi-

tions, which shifts to about 12�/s under CDM. The much higher

velocity optimum observed in tangential cells [40] results from

the summation of synaptic inputs from the larger number of T4

and T5 neurons swept by the edge during the same time interval

at higher velocities.

In parallel to the temporal-frequency tuning shift in T4 and T5

neurons, the temporal response properties of the input elements,

in particular of the band-pass filter elements, accelerate. Indeed,

the shift in the tuning of T4 and T5 neurons (Figure 3) can be fully

accounted for by the speeding of their input elements (Figures 4

and 5). This further supports the hypothesis that the temporal

kinetics of the input elements alone, without any further filtering

at the synaptic or T4/T5 dendritic levels, represent the delay

stage of the elementary motion detectors.

Interestingly, we observe that whereas the order of input

elements with respect to their filter characteristics generally re-

mained the same under CDM, Tm1 became faster than Tm4 (Fig-

ure S6). As a consequence, simulated motion detectors using

combinations that relied on temporal differences between these

two cell types suffered a strong reduction or complete break-

down of direction selectivity under CDM (Figure 5). Considering

cell-to-cell variability and such changes under different physio-

logical conditions, detectors relying on small differences in the

dynamics of their input elements [18, 39] will not be robust.

Octopaminergic neurons broadly innervate the optic lobes,

specifically the medulla, lobula, and lobula plate [26, 28, 29].

They activate during flight and are necessary and sufficient for

the observed change in the temporal tuning profile of tangential

cells [26]. Although the molecular and cellular mechanisms of

action on themedulla neurons and T4/T5 cells, aswell as the pre-

cise physiological activation of the octopamine system, are

beyond the scope of this study, a few points are worth noting.

Four different types of octopamine receptors exist in Drosophila

that are all G protein-coupled receptors but act via different

pathways and thus will have different effects [41, 42]. Of those

four types, only the octopamine receptors Oamb and to a lesser

degree Oct1bR appear to be expressed in the optic lobes [42].

The expression pattern of these octopamine receptors is not

known at the cellular level. Considering that all input elements

in both the ON and the OFF pathway are accelerated in their

responses, albeit to different degrees, it is entirely possible

that those changes are indirect and inherited from neurons in

the lamina or even the retina. For example, an accelerated

response in L1 and L2, and to a smaller degree in L3, could

explain the observed response changes in the medulla neurons

described here. So far, octopaminergic neurons have not been

shown to innervate the retina and lamina directly [26, 28, 29],

yet octopamine might nevertheless directly or indirectly affect

photoreceptors or lamina neurons. For example, lamina wide-

field neurons, projecting from the medulla back into the lamina

and forming synaptic inputs to lamina neurons [43], are modu-

lated by the behavioral state and octopamine signaling [44].

Although it cannot be excluded that octopamine acts at multiple

levels, including on T4/T5 neurons directly, we have shown that

the observed tuning shift in T4/T5 neurons can be fully ac-

counted for by the changes in the temporal dynamics of their

input elements.

Pharmacological activation, like any optogenetic or other

exogenous activation of the octopamine system, is unlikely to

capture all subtleties of the physiological changes during active

locomotion, yet it can serve as a tool to manipulate the tuning of

the visual motion detection system. At the same time, consid-

ering the match between pharmacological manipulation and

physiological state changes observed at the level of lobula plate

tangential cells [24–26], it is highly likely that the speeding of the

filter characteristics in the medulla neurons described here is

relevant under physiological conditions.

We have shown that it is possible to construct a hybrid HR/BL

detector (as proposed in [17]) with the measured filters for the

cellular elements for both the ON and the OFF pathway across

different network states. From these, we can predict anatomical

arrangements that would give rise to the observed response

characteristics of the elementary motion detectors. Although

we cannot rule out additional synaptic or dendritic filter mecha-

nisms, we show that the temporal dynamics of the input ele-

ments alone are sufficient to explain the response properties of

the elementarymotion detectors across different tuning regimes.

Future studies using the genetic toolbox ofDrosophila to activate

or block individual input neurons and studying the effects on

visual responses in the T4 and T5 cells, as well as neurotrans-

mitter and receptor expression pattern analyses and electron-

microscopic reconstructions of the wiring, will be required to

verify and further confine the proposed circuitry.

EXPERIMENTAL PROCEDURES

Experimental procedures are described in detail in the Supplemental Experi-

mental Procedures.
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Figure	S1.	Related	to	Figure	2.	Example	acquisition	of	spatiotemporal	receptive	fields	via	
stochastic	stimulation	and	reverse	correlation	of	calcium	signals	for	the	neurons	Tm9	and	
Mi4.		
(A)	 2-photon	 image	 from	 a	 fly	 expressing	 GCaMP6f	 in	 Tm9	 axon	 terminals	 in	 the	 lobula.	
Highlighted	 in	color	are	seven	manually	drawn	regions	of	 interest	 (ROIs)	around	 individual	
terminals	from	neighboring	columns.		
(B)	Snapshot	of	one	frame	of	the	one-dimensional	horizontal	noise	stimulus.		
(C)	Calcium	trace	from	a	single	ROI	in	response	to	10	minutes	of	white	noise	stimulation.		
(D)	Spatiotemporal	receptive	fields	obtained	by	reverse	correlation	of	the	calcium	signals	in	
each	ROI	with	the	stimulus.		
(E)	Cross-sections	through	the	receptive	fields	along	the	space	axis	reflecting	the	retinotopic	
organisation	of	the	lobula.		
(F)	Cross-sections	through	the	receptive	fields	along	the	temporal	axis	revealing	the	low-pass	
characteristics	of	Tm9.		
(G-J)	Same	for	Mi4.	
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Figure S2. Related to Figure 2. Prediction of calcium responses in Tm9 and Mi1 terminals 
from the linear spatiotemporal receptive �elds.
(A) Schematic of the model. The linear prediction of individual axon terminal responses (of Tm9 
or Mi1) to a white noise stimulus is given by the convolution of the stimulus with the respective 
spatio-temporal receptive �eld of the cell. A linear-nonlinear model (LN) is built by remapping 
the output of the linear prediction with a static nonlinearity. 
(Bi) Actual response of an exemplary Tm9 axon terminal (black) and the prediction of the LN 
model (red). (Bii) Scatter plot of the linear prediction against the actual response for all cells 
recorded. The static nonlinearity (red) is obtained by averaging the point cloud within discrete 
bins along the x-axis for each axon terminal. (Biii) Coe�cient of determination for the linear 
model (L, black) and the linear-nonlinear model (LN, red). The linear model prediction alone 
accounted for 60% and the LN model for 62% of the response variance. Circles represent meas-
urements of individual terminals, the bar shows the standard deviation and the mean among all 
cells measured (N = 4, n = 22). 
(C) Same as in (B), but for Mi1 (N = 4, n = 78). The L model alone accounted for 59% and the LN 
model for 61% of the response variance. 
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Figure S3. Related to Figure 3. Temporal frequency tunings of lobula plate tangential 
cells change with the application of the octopamine agonist CDM. 
(A) Voltage responses of HS and VS tangential cells in the lobula plate (population average, N 
= 15 �ies, n=15 cells) to square-wave gratings moving in the preferred or null direction in 
control (black) and after application of CDM (magenta) for gratings moving at a temporal 
frequency of 1 Hz (left) or 5 Hz (right). The period of motion of the grating is indicated by the 
grey-shaded region. 
(B) Average voltage responses over the stimulation period for square-wave gratings at di�er-
ent temporal frequencies. Responses, measured as average voltage de�ections over the 
whole stimulus period, peaked at 0.5 Hz in both the preferred (as maximum average depolari-
zation) and null (as maximum average hyperpolarization) direction. Application of the octo-
pamine agonist chlordimeform (CDM; magenta) at a �nal concentration of 20 µM resulted in 
increased responses to higher temporal frequencies from 2-20 Hz.
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Figure	S4.	Related	to	Figure	2	and	4.		Analysis	of	the	temporal	filters	of	the	inputs	to	T4	and	
T5.		
(A)	T4	inputs.	We	quantified	the	shape	of	the	temporal	filters,	as	well	as	their	change	after	
application	of	CDM,	by	three	measures	(B):	the	time-to-peak	for	the	first	peak	(t(1)peak,	(Ai))	
and,	for	the	biphasic	filter	kernels	of	band-pass	filters,	to	the	second	peak	(t(2)peak,	(Aii)),	as	
well	as	the	full-width	at	half-maximum	for	the	first	peak	(wpeak,	(Aiii))	of	the	temporal	kernel.	
Measurements	after	application	of	CDM	are	presented	 in	a	darker	color	shade	 (right	bars)	
than	 for	 the	 control	 condition	 (left	 bars)	 of	 the	 respective	 cell.	 Statistical	 comparisons	
between	control	and	CDM	condition	(based	on	a	paired	t-test)	are	shown	in	(Aiv),	highlighted	
in	red	color	when	statistical	significance	is	observed	(with	a	gradient	in	the	red	nuance	from	
light	to	dark	red	indicating	p	values	of	p<0.05,	p<0.01	and	p<0.001).		
(C)	Same,	for	T5	inputs.	
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Figure S5. Related to Figure 5. Model �tting on the frequency spectra of the ON pathway 
elements. 
(Ai) Frequency spectrum derived from calcium imaging experiments for the ON pathway columnar 
neurons Mi1, Tm3, Mi4, Mi9. (Aii) Frequency spectrum after deconvolution with a low-pass �lter repre-
senting the dynamics of the calcium indicator GCaMP6f. Dashed lines represent the �tted frequency 
responses of 1st order band-pass or low-pass �lters. 
(Bi, Bii) Like (Ai, Aii), for the spectra determined from the recordings after application of CDM.
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Figure S6. Related to Figure 5. Model �tting on the temporal �lter frequency spectra of the OFF 
pathway elements. 
(Ai) Measured frequency spectra based on calcium imaging experiments for the OFF pathway 
elements Tm1, Tm2, Tm4 and Tm9. (Aii) Frequency spectra after deconvolution with a �lter describing 
the dynamics of the calcium indicator. Dashed lines represent the �tted frequency responses of 1st 
order band-pass or low-pass �lters. 
(Bi, Bii) Same as (Ai, Aii), after application of CDM.
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Table S1. Related to Figure 2 and 4. Spatio-temporal response properties of T4 input cells. 
Numerical parameters derived from the model �ts to the temporal and the spatial components of the spatio-temporal 
receptive �elds obtained from reverse correlation for the ON-pathway neurons. 
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Table S2. Related to Figure 2 and 4. Spatio-temporal response properties of T5 input cells. 
Numerical parameters derived from the model �ts to the temporal and the spatial components of the spatio-temporal 
receptive �elds obtained from reverse correlation for the OFF-pathway neurons. 
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Supplemental Experimental Procedures 

Flies/preparation 

Flies were raised and kept on standard cornmeal-agar medium on a 12 hour light/12 hour dark 
cycle at 25°C and 60% humidity. For patch-clamp recordings from tangential cells, Canton S 
flies were used. For calcium imaging experiments, the genetically-encoded calcium indicators 
GCaMP6f or GCaMP6m [S1] were expressed using the Gal4/UAS- or LexA/lexAop-system in 
cell-type specific driver lines, resulting in the following genotypes:  

Short name Genotype 
Mi1>GC6f w-; R19F01-AD/UAS-GCaMP6f; R71D01-DBD/UAS-GCaMP6f 
Tm3>GC6f w-; UAS-GCaMP6f; R13E12-Gal4 
Mi4>GC6f w-; R48A07-AD/UAS-GCaMP6f; R13F11-DBD/UAS-GCaMP6f 
Mi9>GC6f w-; R48A07-AD/UAS-GCaMP6f; VT046779-DBD/UAS-GCaMP6f 
Tm1>GC6f w-; UAS-GCaMP6f; VT12717-Gal4 
Tm2>GC6f w-; UAS-GCaMP6f; VT12282-Gal4 
Tm4>GC6f w-; UAS-GCaMP6f; R35H01-Gal4 
Tm9>GC6f w-; UAS-GCaMP6f; VT65303-Gal4 
T4/T5>GC6m w-; Sp/CyO ; VT50384-lexA, lexAop-GCaMP6m/TM6b 

The transgenic fly lines driving split-Gal4 expression in the medulla neurons Mi1, Mi4 and 
Mi9, respectively, were generated and will be described in [S2] (with the Mi1 driver line 
corresponding to their transgenic fly line SS00809, Mi4 to SS01019, and Mi9 to SS02432). 

For electrophysiological and calcium imaging experiments, flies were prepared as previously 
described  [S3, S4]. Briefly, flies were anaesthetized on ice or with CO2, fixed with their backs, 
legs and wings to a Plexiglas holder with the back of the head exposed to a recording chamber 
filled with fly external solution. The cuticula at the back of the head on one side was cut away 
with a fine hypodermic needle and removed together with muscles and air sacks covering the 
underlying optic lobe. To gain access to tangential cells for electrophysiological recordings, the 
neurolemma covering the brain was partially digested by applying 0.5mg/ml collagenase IV 
(Gibco) with a glass electrode to the brain until the tangential cell somata were exposed. Where 
indicated, the octopamine agonist chlordimeform (CDM, Sigma Aldrich) was added as a 2mM 
stock solution (in external solution) directly to the bath to yield a final concentration of 20 µM. 
Diffusion was allowed for 15 min before recordings recommenced. 

Patch-clamp recordings from vertical and horizontal system tangential cells were performed 
as previously described [S4]. 

2-Photon calcium imaging 

Calcium imaging was performed on custom-built 2-photon microscopes as previously 
described [S3] controlled with the ScanImage software in Matlab [S5]. Acquisition rates were 
between 3.8 and 15 Hz, image resolution between 64x64 and 128x128 pixels. Before starting 
the acquisition, we verified that the receptive fields of the cells were located on the stimulus 
arena by showing a search stimulus consisting of moving gratings. 
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Visual stimulation 

For the study of visual responses of lobula plate tangential cells and T4/T5 neurons, visual 
stimuli were presented on an LED arena, based on a design by [S6], covering approximately 
180° in azimuth and 90° in elevation. Stimuli covered the whole extent of the arena and were 
presented at full contrast. Square-wave gratings had a spatial wavelength of 24°, and moved 
with velocities of 1.2-480°/s in the preferred and null direction, corresponding to temporal 
frequencies ranging from 0.05 to 20°/s. Single stimulation periods of moving gratings lasted 
for 3.8 s, separated by periods of 5 s where the grating remained stationary. For the edge 
velocity tuning, bright or dark edges of full contrast were presented, moving at velocities of 3 
to 300 °/s in the preferred (up) and null direction (down) of T4c/T5c neurons, separated by 6 s. 
All stimuli were presented in a pseudo-random order with 3-5 repetitions per stimulus. 

The spatio-temporal response properties of the Mi and Tm columnar input elements were 
determined on a custom-built projector-based arena that allowed for greater stimulus 
flexibility. Stimuli were projected with 2 commercial micro-projectors (TI DLP Lightcrafter 
3000) onto the back of an opaque cylindrical screen covering 180° in azimuth and 105° in 
elevation of the fly’s visual field. The projectors were programmed to use only the green LED 
(OSRAM L CG H9RN) which emits light between 500nm to 600nm wavelength. This 
increased the refresh rate from 60 to 180 Hz (at 8 bit color depth). To prevent overlap between 
the spectra of the GCaMP signal and the arena light, we placed two long-pass filters (Thorlabs 
FEL0550 and FGL550) in front of each projector restricting the stimulus light to wavelengths 
above 550nm. A band-pass filter in front of the photomultiplier (Brightline 520/35) allowed 
only the portion of the light within the GCaMP emission spectrum to be detected. Additional 
shielding of stray light from the arena with black foil effectively suppressed any leak of the 
arena light into the photomultiplier signal. The maximum luminance achieved by our 
stimulation system is 276 ± 48 cd m$. For all stimuli used here, we set the medium brightness 
to a 8-bit grayscale value of 50, which corresponds to a medium luminance of 55 ± 11	 cd m$. 

Stimuli were rendered using a custom written software in Python 2.7. To account for the 
curvature of the arena screen, our software pre-distorts the generated images such that the 
projected image appears as a regular grating on the screen. For that, the software takes 
advantage of functions from Panda3D, a framework for 3D rendering for Python. 
 
 
Gaussian noise stimulus 
 
To generate the horizontal white noise stimulus, we partitioned the cylindrical screen into 64 
bars, so that each bar covered an angle of approximately 2.8° in azimuth. For each bar, samples 
were drawn at a frame rate of 60 Hz from a Gaussian distribution, so that the standard deviation 
was at 25% contrast around a mean intensity value of 50 on the 8-bit grayscale of the display 
devices. We then filtered the random samples for each bar with a Gaussian filter with a standard 
deviation of 5 Hz in the frequency domain which leads to a stimulus auto-correlation function 
that is a Gaussian with approximately 45ms standard deviation. Since the calcium indicator 
dynamics of GCaMP and the data acquisition frame rate (12 Hz in this case) place a lower 
bound on the temporal precision of the signal we can extract from calcium imaging 
experiments, we restricted the frequency content of the stimulus in this way to the relevant 
domain. The whole stimulus sequence was 10 minutes long and was exported as a video file in 
H.264 format with lossless compression. For the vertical noise the same stimulus was rotated 
by 90° and scaled such that 54 bars covered the height of the screen, accounting for the aspect 
ratio of the screen being approximately 1.2. 



Data acquisition and analysis 

Data analysis was performed offline using custom-written routines in Matlab and Python 2.7 
(with the SciPy and OpenCV-Python Libraries).  

For the electrophysiological experiments, baseline-subtracted voltage responses of tangential 
cells were averaged across trials, and the response to gratings was quantified as the average 
voltage over the whole period of the respective stimulus presentation. Preferred direction was 
front-to-back for HS and down for VS cells, null direction the corresponding opposite direction. 
For Suppl. Figure S3 voltage responses over the individual stimuli were averaged across all 
cells. 

Calcium imaging: Images were automatically registered using vertical and horizontal 
translations to correct for the movement of the brain. Fluorescence changes (ΔF/F values) were 
then calculated by dividing every registered frame by the average of the registered first 5 images 
of the recording. Regions of interest (ROIs) were selected on the average raw image by hand: 
in layer 10 of the medulla for the ON, in the lobula for the OFF pathway elements, outlining 
single terminals. For T4 and T5 neurons, ROIs were routinely chosen in the lobula plate, 
encompassing small regions with single to few axon terminals, or selected to cover single 
neurites between medulla or lobula and lobula plate. For Figure 3D&E, ROIs were drawn in 
the medulla for T4 and in the lobula for T5 neurons to separate those 2 cell types. Averaging 
the fluorescence change over this ROI in space resulted in a ΔF/F time course. Neuronal 
responses were quantified as the maximum ΔF/F value over the stimulation period plus the 
subsequent 0.5 s, subtracted by the average of the baseline period covering the 2 frames before 
the respective stimulus onset. To average across cells/ROIs, responses were first normalized to 
the maximum response of each ROI to the corresponding stimulus set. For edges, normalization 
was performed separately to ON and OFF stimuli to take any selection bias for T4 or T5 cells 
within the ROI into account. 

White noise reverse-correlation 

For the input elements, spatio-temporal receptive fields were calculated following standard 
reverse-correlation methods (Figure S1) [S7, S8]. First, the mean value was subtracted from the 
raw signals of single ROIs by using a low-pass filtered version of the signal (Gaussian filter 
with 120 seconds standard deviation) as a baseline for a ΔF/F-like representation of the signal. 
This effectively removed slow baseline fluctuations caused by bleaching and very slow changes 
in the average calcium level from the signals.  
We then calculated the stimulus-response reverse correlation function 
 

𝐾 𝑥, 𝜏 = 	 𝑑𝑡	𝑆 𝑥, 𝑡 − 𝜏 ∙ 𝑅(𝑡)
6

7
 

 
where S denotes the stimulus and R the response of the neuron. 
 
The resulting spatiotemporal fields were normalized in z-score and as a quality control only 
receptive fields with peak amplitudes above 10 standard deviations from the mean were taken 
for further analysis (for Mi9 the threshold was lowered to 7). Cross-sections through the 
receptive fields along the space axis were fit with a Gaussian function to determine the position 
of the peak.  
 

61



Since one imaging frame is built up continuously over one sample time, ROIs lying at different 
y-coordinates in the image will in fact be imaged at slightly different times. Since the stimulus 
is presented at a higher frame rate of 60 Hz, this leads to a notable peak shift between the 
impulse responses of different ROIs. We corrected for this by translating the spatiotemporal 
receptive field of each ROI by a) the time difference between the start of a frame and the 
effective sampling point estimated by the y-coordinate of the center of mass of the respective 
ROI and b) the start time of the white noise stimulus within the very first frame acquired during 
stimulation.  
 
Spatio-temporal receptive fields resulting from different ROIs (that were retinotopically 
shifted) were then centered about each other to generate a mean receptive field. To ensure 
receptive fields of input elements were fully covered, cells with a receptive field center less 
than 10 pixels (28º) from the edge of the arena were excluded. 
 
Frozen noise 

Filter kernels were validated by testing their ability to predict the neuronal responses from the 
stimulus. For this, neurons were again stimulated with a white-noise stimulus, only this time 
part of the stimulus consisted of 15 repetitions (each 30 seconds long) of a white-noise sequence 
(‘frozen noise’) to eliminate noise in the neuronal responses. As above, spatio-temporal filter 
kernels were then reconstructed from responses to single repetition stimulus sequences (20 
minutes long). Analogously to above, only receptive fields with a peak higher than 20 standard 
deviations were included for further analysis. Subsequently the averaged response during the 
held-out test portion of the stimulus was predicted for each recorded cell individually. Linear 
predictions were obtained by convolution of the spatio-temporal filter kernels with the frozen 
noise stimulus along the time axis. Filter kernels were thresholded versions of the spatio-
temporal receptive fields (all values below 5% of the peak amplitude as well as regions further 
away than 15° from the receptive field center were set to zero). Both, the predicted response 
trace and the actual mean response to the frozen noise stimulus, were normalized in z-score in 
order to make different cells with varying calcium indicator expression levels and therefore 
different absolute signal values comparable. The static nonlinearity for the LN model was 
estimated for each cell by averaging all values from the actual mean response corresponding to 
values of the predicted response within bins of size 0.5 from -2.5 to +2.5 z-score (see scatter 
plots Bii and Cii in Suppl. Figure S2). Prediction accuracy of the linear filter was assessed 
through the correlation of the predicted versus actual response of the neuron [S9].  

Spatial receptive field model 
 
The one-dimensional spatial receptive fields (Figure 2 E-H and K-N, top and right) are cross-
sections through the peak of the spatiotemporal receptive fields along the space axis and are 
averaged over the 12 samples (200ms) around the peak. For almost all columnar neurons 
measured we found a small-field, antagonistic center-surround organization of the spatial 
receptive field using both the horizontal and the vertical white noise stimulus.  
 
 
Mathematically, receptive fields of this kind can be described as a difference of Gaussians 
 

𝑅𝐹9:(𝜑) = 𝑒
= >?
$@ABC? − 𝐴EFG ∙ 𝑒

= >?

$@HIJ? 
 



without loss of generality for the horizontal one-dimensional receptive field along the azimuth 
ϕ. Here, 𝜎LFM and 𝜎NOE are the standard deviations of center and surround, respectively, and 
𝐴EFG = 	𝐴NOE/𝐴LFM denotes the relative strength of the surround in relation to the amplitude of 
the center Gaussian (which is normalized to 1).  
 
To reconstruct a two-dimensional receptive field from the measured one-dimensional 
projections, we chose the same mathematical approach as above, only in 2D: 
 

𝑅𝐹$:(𝜑, 𝜗) = 𝑒
=	

>?RS?

$@ABC? − 𝐴EFG ∙ 𝑒
=	

>?RS?

$@HIJ?  
 
For simplicity, throughout the analysis we used the small-angle approximation tan 𝜗 ≈ 𝜗 for 
the vertical axis or the elevation 𝜗 even if receptive fields span angles larger than 5°. Thus, we 
neglected perspective distortions induced by the arena screen not being spherical, but 
cylindrical. Accounting for additional distortions induced by the relative displacement of the 
fly’s body in relation to the elevation of the receptive field on the arena would require even 
more detailed mathematical description, yet we did not observe any severe irregularities in the 
spatial receptive fields. 

It is important to note that receptive field estimation via a one-dimensional stimulus as 
performed here yields in fact a projection of the underlying two-dimensional spatial receptive 
field: 

𝑅𝐹9:(𝜑) = 𝑅𝐹$: 𝜑, 𝜗 𝑑𝜗
X

=X
 

 
Hence, we fitted the above function 𝑅𝐹$:(𝜑, 𝜗) such that its projections along the horizontal 
and vertical axis would agree with the given one-dimensional receptive field projections 
measured via reverse correlation. The fitting procedure was implemented using standard least-
square algorithms (SciPy 0.16.1). The resulting values for 𝐴EFG, 𝜎LFM and 𝜎NOE and the 
corresponding coefficients of the fit are given in Table S1 and S2 for each neuron type. 

Temporal filter model 
 
The time-reversed impulse responses shown in Figure 2&4 are cross-sections through the center 
of the spatiotemporal receptive fields along the time axis and are averaged over the three center 
pixels. For the frequency domain representations in Figure 2&4, impulse responses were 
Fourier-transformed, averaged, and the resulting amplitude spectrum (absolute value) was 
divided by the power spectrum of the stimulus for frequencies below 5.5 Hz (below the Nyquist 
frequency). This is equivalent to deconvolving the impulse response with the stimulus auto-
correlation and thereby correcting for non-white input signals [S7]. All frequency-space-
representations are plotted on a double logarithmic scale expressing all signal gains in decibel 
according to convention in filter theory. 
 
The complicated relationships between calcium, calcium indicator, voltage and 
neurotransmitter release of a cell render it impossible to precisely characterize each of these 
aspects having access to only the calcium indicator fluorescence as a read-out. However, we 
can assume under certain conditions that the calcium indicator itself essentially acts as a simple 
low-pass filter on the calcium signal  [S10], which is a kind of distortion that we are able to 
correct for by applying deconvolution.  
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GCaMP6f is designed to have especially fast kinetics. However, we can find decay constants 
in the order of several hundreds milliseconds that vary depending on the system under 
observation [S1]. As an approximation we chose a time constant of 350 ms for a plausible low-
pass filter that distorted the calcium signals in our system, which lies in the range of reported 
decay constants for GCaMP6f [S1, S11]. 
 
We corrected the frequency domain representations of the temporal filters of all cells by 
dividing the spectra with the frequency response of a 1st order low-pass filter with this time 
constant. Since this was restricted to frequencies below the Nyquist frequency, we did not have 
to apply additional techniques to avoid the impact of poor signal-to-noise ratios at higher 
frequencies.  
 
For quantitative description and further simulations, we sought to describe the response 
characteristic of each cell under each condition with a simplified model that catches the main 
properties. For that, we fitted simple 1st order filters to the corrected frequency responses of all 
cells. We did this separately for each condition, i.e. for control and CDM condition and for the 
raw filters (corrected by the stimulus power spectrum only) and the deconvolved filters 
(corrected by the GCaMP filter) respectively. 
 
In particular, we approximated Mi1, Tm3, Tm1, Tm2 and Tm4 as band-pass filters and fitted a 
band-pass model consisting of a 1st order high-pass and a 1st order low-pass filter to the 
frequency responses (Figures S5, S6). The band-pass model was parametrized by a 
multiplicative amplitude and the two time constants of the filters. Parameters were optimized 
using a standard implementation of the Levenberg-Marquardt algorithm (SciPy). Similarly, 
Mi4, Mi9 and Tm9 frequency responses were fit using a 1st order low-pass filter model. 

 

Computational modeling 

Neural simulations (Figure 5 and 6) were based on a motion detector that combines preferred-
direction enhancement and null-direction suppression, resembling a hybrid of a Hassenstein-
Reichardt half-detector and a Barlow-Levick detector, as suggested in [S12].  

Stimuli were simulated in a 2-dimensional space covering 90° in both azimuth and elevation 
with 1° resolution. Each hypothetical motion (half-)detector had three neighboring input lines 
(termed A, B and C) which were offset by 5° from each other along the horizontal axis (for 
simplicity). Each input line consisted of a spatial and a temporal filter that was applied to the 
stimulus before further processing. The spatial filter was modeled as a 2D convolution with a 
Mexican hat filter kernel using the above definition (see “Spatial receptive field model”) and 
the fitted parameters from table S1 and S2. The temporal filter consisted of either a 1st order 
band-pass or as a 1st order low-pass filter with the time constants from the table correspondingly. 
Subsequent rectification simulated the polarity selectivity of the input lines to the downstream 
motion detector. To implement the nonlinear interaction between the three input lines in the 
most simplified, we modelled the nonlinear action as	𝐴 ∙ 𝐵/(𝐶 + 0.1) involving only one free 
parameter to avoid division by zero. 270 of these elementary motion detectors were arranged 
on a 2-dimensional grid, separated by 5° from each other.  
To evaluate the performance and tuning of the simulated detectors across stimulus frequencies, 
we measured the mean response of the simulated (half-)detectors to moving gratings at different 
speeds. Vertically oriented square wave gratings of 24° wavelength were swept over the 
detector array with 50 different velocities corresponding to 50 different contrast frequencies 



logarithmically spaced between 0.01 Hz and 20 Hz. The gratings moved for 5s to the right 
followed by a pause of 0.5s and 5s of motion in the opposite direction. The time step for all 
simulations was 10 ms. The direction of the stimulus that elicited the strongest response across 
all frequencies was termed the preferred direction (PD) of the respective motion detector. 
Consequently, the other direction was the null direction (ND). 
The direction selectivity of the resulting tuning curve was evaluated by defining a direction 
selectivity index (DSI) 
 

𝐷𝑆𝐼 = 	
𝑃𝐷 − 𝑁𝐷
𝑃𝐷 + 𝑁𝐷 

 
where the sum goes over all frequencies simulated. This definition produces DSI values 
between 0 and 1, where 1 means perfect, and 0 means no direction selectivity. Secondly, the 
optimal frequency 𝑓cde was defined as the stimulus frequency that elicited the strongest 
response in PD direction.  
The above measure only quantifies the response difference between the two opposing directions 
of motion along the main axis of the detector. However, it cannot distinguish between detectors 
that differ in their response properties to intermediate directions of motion. Hence, we 
additionally assessed the directional tuning specificity of each detector by measuring its 
response to differently oriented moving gratings. We stimulated the model with square wave 
gratings of 24° wavelength, rotated by different angles from 0° to 360° in steps of 30°, and 
measured the mean response of the detector array at the optimal frequency  𝑓cde, as determined 
above. From the corresponding simulated responses, the direction selectivity was quantified as 
the length of the normalized response vector:  
 

𝐿ghE =
𝑣(𝜑)>

𝑣(𝜑)>
 

 
where 𝑣(𝜑) is a vector proportionally scaled with the mean detector response and pointing in 
the corresponding stimulus direction of motion given by the rotation angle 𝜑 of the stimulus. 
This quantity 𝐿ghE has been suggested as a robust measure of direction selectivity that includes 
both relative response magnitude and tuning width of a direction selective neuron [S13]. 
For the bar plots in Figure 5B&E (right column) the simulations were repeated also for all 
possible implementations of a two-arm detector whose nonlinear interaction was either 
modelled as 𝐴 ∙ 𝐵 for a classical Hassenstein-Reichardt-(half-)detector or as 𝐵/(𝐶 + 0.1) for a 
Barlow-Levick-detector.  
All simulations were performed using Python 2.7. 
 
 
Statistics 
 
Throughout this article, values are reported as mean ± standard error (SEM). In order to quantify 
the significance of the effect of CDM application on the temporal response characteristics of 
the medulla cells, we defined three different measures for the impulse responses: a) the time to 
the first peak 𝑡dFjk

(9)  is the time between the onset of the impulse response (defined as the time 
when it has reached 15% of its maximum value) and the time when it has reached its maximum 
value; b) the time to the second peak 𝑡dFjk

($)  is similarly defined as the time between the onset of 
the impulse response and the peak of the subsequent undershoot or overshoot, which is defined 
only for the band-pass filters; c) lastly, we defined a peak width wpeak as the width of the first 
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peak at half maximum. We quantified these values for each fly and tested the change between 
control and CDM condition for significance using a paired t-test.  
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2.2 glutamate signaling in the fly visual system

summary For a proper understanding of neural circuit function, it is im-
portant to know which signals neurons relay to their downstream partners.
Calcium imaging with genetically encoded calcium sensors like GCaMP has
become the default approach for mapping these responses. How well such
measurements represent the true neurotransmitter output of any given cell,
however, remains unclear. Here, we demonstrate the viability of the gluta-
mate sensor iGluSnFR for 2-photon in vivo imaging in Drosophila melanogaster
and prove its usefulness for estimating spatiotemporal receptive fields in the
visual system. We compare the results obtained with iGluSnFR with the
ones obtained with GCaMP6f and find that the spatial aspects of the recep-
tive fields are preserved between indicators. In the temporal domain, how-
ever, measurements obtained with iGluSnFR reveal the underlying response
properties to be much faster than those acquired with GCaMP6f. Our ap-
proach thus offers a more accurate description of glutamatergic neurons in
the fruit fly.
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SUMMARY

For a proper understanding of neural circuit function, it is important to know which signals neurons

relay to their downstream partners. Calcium imaging with genetically encoded calcium sensors like

GCaMP has become the default approach for mapping these responses. Howwell such measurements

represent the true neurotransmitter output of any given cell, however, remains unclear. Here, we

demonstrate the viability of the glutamate sensor iGluSnFR for 2-photon in vivo imaging inDrosophila

melanogaster and prove its usefulness for estimating spatiotemporal receptive fields in the visual sys-

tem. We compare the results obtained with iGluSnFR with the ones obtained with GCaMP6f and find

that the spatial aspects of the receptive fields are preserved between indicators. In the temporal

domain, however, measurements obtained with iGluSnFR reveal the underlying response properties

to be much faster than those acquired with GCaMP6f. Our approach thus offers a more accurate

description of glutamatergic neurons in the fruit fly.

INTRODUCTION

To understand how neural circuits operate and carry out certain computations, it is essential to observe the

signals that are transmitted from cell to cell. Synaptic transmission via chemical synapses proceeds in four

major stages: (1) Depolarization in the presynapse opens voltage-gated calcium channels. (2) The resulting

calcium influx leads to the fusion of transmitter-filled vesicles and the presynaptic membrane. (3) Trans-

mitter molecules are released into the synaptic cleft where they diffuse and bind receptors in the postsyn-

aptic membrane. (4) The subsequent activation of these receptors leads to opening or closing of ion

channels, either directly or indirectly, with the resulting ion flux ultimately changing the postsynaptic mem-

brane conductance and potential (reviewed in [Di Maio, 2008]). This fundamental signaling cascade, from

electric potential to calcium to transmitter release to postsynaptic electric potential, orchestrates compu-

tation within any neuronal circuit.

For monitoring voltage changes, electrophysiology is the default approach. Here, direct observations of

both de- and hyperpolarization in pre- or postsynaptic cells are possible. Due to the position or size of

many neurons, however, direct single-cell recordings are often not feasible and have to be replaced by in-

direct extracellular recordings or optical imaging. Only recently genetically encoded voltage indicators

(GEVIs) have emerged as powerful tools for recording neuronal activity (Cao et al., 2013; Jin et al., 2012;

St-Pierre et al., 2014; Tsutsui et al., 2013; Yang et al., 2016). Experiments with optical voltage indicators

such as ASAP2f that are compatible with 2-photon imaging, however, remain challenging due to weak

signal-to-noise ratio (Yang et al., 2016). The fluorescence level of genetically encoded calcium indicators

(GECIs) is thought to correlate with transmitter release and is therefore suitable for identifying the crucial

signal to the postsynaptic cell (Zucker, 1993). Although GECIs are being improved continuously and some

variants were designed to have especially fast kinetics (e.g., GCaMP6f [Chen et al., 2013]), temporal reso-

lution is still limited due to calcium buffering (Borst and Abarbanel, 2007). This usually leads to decay

constants in the order of several hundreds of milliseconds that vary depending on the system under obser-

vation (Arenz et al., 2017; Chen et al., 2013). For glutamatergic neurons, a tool to potentially overcome

these limitations is the recently developed fast glutamate sensor iGluSnFR (Marvin et al., 2013).

Visual motion detection is a canonical example for computation in neural microcircuits. Prevalent models

posit that, in both mammalian retina and fly visual system, local direction selectivity emerges from the

nonlinear interaction between precisely tuned spatiotemporal filters (Barlow and Levick, 1965; Von Hassen-

stein and Reichardt, 1956). Recent work in connectomics on the visual system of Drosophila melanogaster

has revealed this computation to be implemented by a circuit that consists of only a few dozen individual

cells (Takemura et al., 2017). The optic lobe is the largest neuropil in the fruit fly’s brain and consists of the

1Max-Planck-Institute of
Neurobiology, 82152
Martinsried, Germany

2These authors contributed
equally

3Lead Contact

*Correspondence:
frichter@neuro.mpg.de
(F.G.R.),
aborst@neuro.mpg.de (A.B.)

https://doi.org/10.1016/j.isci.
2018.08.019

iScience 7, 85–95, September 28, 2018 ª 2018 The Author(s).
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

85



four consecutive neuropils: lamina, medulla, lobula, and lobula plate (Figure 1). Lamina monopolar cells L1

and L2, among others, receive direct photoreceptor input and feed into two parallel pathways (Bausenwein

et al., 1992; Bausenwein and Fischbach, 1992; Borst, 2014; Clark et al., 2011; Joesch et al., 2010; Rister et al.,

2007; Shinomiya et al., 2014; Silies et al., 2013; Takemura et al., 2017; Tuthill et al., 2013). The ON pathway

processes the motion of light increments, whereas the OFF pathway processes the motion of light decre-

ments only (Eichner et al., 2011; Joesch et al., 2013, 2010). Among the medulla interneurons that connect

the lamina cells to direction-selective T4 and T5 neurons (Maisak et al., 2013; Takemura et al., 2017), we find

the glutamatergic cell Mi9 that has been characterized with a receptive field responsive toOFF in the center

and an antagonistic ON surround (Arenz et al., 2017; Strother et al., 2017). T4 and T5 neurons each come in

four subtypes, tuned to one of the four cardinal directions, and project, according to their preferred direc-

tion, to one of the four layers in the lobula plate. Here, T4 and T5 cells make excitatory cholinergic connec-

tions onto the dendrites of large tangential cells as well as onto inhibitory lobula plate interneurons (LPis).

These neurons in turn inhibit large field tangential cells in the adjacent layer during null direction motion

and thus increase their flow-field selectivity (Hausen et al., 1980; Hopp et al., 2014; Schnell et al., 2010; Scott

et al., 2002; Wasserman et al., 2015). To provide this inhibition, LPis release glutamate onto the glutamate

Figure 1. Schematic of the Drosophila Optic Lobe

Schematic of theDrosophila optic lobe with glutamatergic cell types in the motion vision pathway. The three cell types are

not directly connected to each other but play an import role in the circuit. For the sake of simplicity, postsynaptic partners

of the glutamatergic neurons are not displayed but can be reviewed inMauss et al. (2015) and Takemura et al. (2011, 2017).

Colored layers indicate area where we imaged glutamate release of the respective cell type.
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Figure 2. Vesicular Glutamate Transporter VGlut Localizes to Axon Terminals of L1, Mi9, and LPi4-3 Neurons

Indicating their Glutamatergic Phenotype

(A–C) Upper rows show overviews of optic lobes with L1 (A), Mi9 (B), and LPi4-3 (C) labeled with myr::GFP (green),

background staining against bruchpilot brp (gray), and anti-VGlut staining (magenta). In the lower rows higher

magnifications of axon terminals of L1, Mi9, and LPi4-3 neurons are depicted (sections marked with white boxes in

overview images).
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receptor GluCla, which is an inhibitory glutamate receptor only found in invertebrates (Liu and Wilson,

2013; Mauss et al., 2015, 2014).

The exact biophysical mechanisms by which T4 and T5 become direction selective remain unclear. To un-

derstand on a cell-by-cell level how direction selectivity is achieved, precise measurements of the signals

transmitted between neurons are crucial. In this study, we focus on the final stage of the synaptic signaling

cascade, i.e., transmitter release. First, we confirm the neurotransmitter phenotype of all known glutama-

tergic cell types (L1, Mi9, LPi) in the Drosophila motion vision pathway. Second, using the recently

developed fast glutamate sensor iGluSnFR (Marvin et al., 2013), we comprehensively characterize their

spatiotemporal response profiles and compare them with the ones obtained expressing the genetically

encoded calcium indicator GCaMP6f (Chen et al., 2013).

RESULTS

The Vesicular Glutamate Transporter VGlut Localizes to Axon Terminals of L1, Mi9, and LPi4-
3 Neurons

VGlut or DVGLUT (CG9887) is the only vesicular glutamate transporter known in Drosophila. VGlut is

located in the vesicle membrane of glutamatergic neurons where it fills the synaptic vesicles with gluta-

mate. The protein localizes to presynaptic terminals of all known glutamatergic neuromuscular junctions

(NMJs) as well as to synapses throughout the CNS neuropil in Drosophila (Daniels, 2004). Hence, VGlut

is the most commonly used marker for glutamatergic neurons. Several antibodies have been raised against

VGlut to identify glutamatergic neurons in the nervous system of the fruit fly (Daniels, 2004; Mahr and

Aberle, 2006).

Recent studies revealed the glutamatergic phenotype of L1, Mi9, and LPi neurons—each of them a crucial

element of the motion vision pathway of the fruit fly (Joesch et al., 2010; Kolodziejczyk et al., 2008; Mauss

et al., 2015; Takemura et al., 2017, 2011). The somata of these cell types showed positive immunoreactivity

against the VGlut antibody, which was raised against a C-terminal peptide—CQMPSYDPQGYQQQ

(Daniels, 2004). Interestingly, this antibody labeled mainly cell bodies of designated neurons. Since it is

known that the vesicular glutamate transporter VGlut is localized to axon terminals, we investigated the

glutamatergic transmitter phenotype of L1, Mi9, and LPi4-3 in more detail. We used a different anti-VGlut

antibody (Mahr and Aberle, 2006), which only labels neuronal arborizations in the optic lobe neuropil and

no somata. In general, the VGlut protein is highly abundant throughout all four neuropils of the optic lobe

(Figure 2).

The axon terminals of L1 neurons show clear overlap with the anti-VGlut signal in layer M1 and M5 of the

medulla (Figure 2A). The vesicular glutamate transporter VGlut resides at the presynaptic sites of L1 neu-

rons, which indicates their glutamatergic phenotype. In layer M10 of the medulla, the same is found for Mi9

neurons: VGlut staining in this layer is co-localized with GFP-labeled Mi9 axon terminals (Figure 2B). This

suggests that Mi9 neurons are glutamatergic and that they are the only source of glutamate in layer

M10 of the medulla. Furthermore, we found an overlapping signal of LPi4-3 terminals in layer 3 of the lobula

plate and anti-VGlut staining (Figure 2C). This confirms recent findings (Mauss et al., 2015) that described

LPi neurons as glutamatergic, being presynaptic only in one of the two layers where it arborizes.

In summary, we could show that the protein VGlut localizes to axon terminals of the glutamatergic neurons

L1, Mi9, and LPi4-3.

Faster Sensor Kinetics Enable More Precise Characterization of Visual Interneurons

One commonly used approach to characterize a sensory neuron is to find its preferred stimulus. This can be

achieved by using a white noise input and cross-correlating the resulting output with the input (Dayan and

Figure 2. Continued

(A) L1 axon terminals in medulla layers 1 and 5 show overlapping signal with anti-VGlut staining.

(B) VGlut protein co-localizes with Mi9 axons in layer 10 of the medulla.

(C) Lobula plate intrinsic neurons LPi4-3 have their dendrites in layer 4 and project their terminals to layer 3. Labeled with

arrowheads are LPi boutons in layer 3 showing overlapping signal with anti-VGlut staining. Shown here are single planes

of confocal stacks. Scale bar for overview of optic lobes is 20 mm. For higher magnification close-ups the scale is 5 mm.

White dashed lines in the lower panel are manually drawn and indicate layers of the lobula plate.
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Abbott, 2013; French, 1976; Ringach and Shapley, 2004), which yields the linear spatiotemporal receptive

field as a result (e.g., Figures 3D and 3E, upper panel). The receptive field of a neuron is defined as the loca-

tion of a stimulus in space and the time relative to its occurrence in which the neuron’s response is modu-

lated by the stimulus. The receptive field also describes the specific filtering properties of a system, in space

as well as in time. Here, we use simple first-order low-pass, high-pass, or band-pass filters to quantify these

filtering properties using the measured receptive fields. A low-pass filter only allows low frequencies to

pass and attenuates high frequencies. Conversely, a high-pass filter attenuates low frequencies and allows

high frequencies to pass. A band-pass filter is a combination of a high-pass and a low-pass filter in series,

allowing signals within a certain frequency band to pass and attenuating all others (Cruse, 1996). In a linear

system, the filters characterized this way are equivalent to the neurons’ impulse responses. The temporal

impulse response reveals critical aspects of the cellular response kinetics (Dayan and Abbott, 2013; Ringach

and Shapley, 2004).

For this reason, we characterized the spatial extent of the receptive fields as well as the response dynamics

of all known glutamatergic cells in the motion vision circuit of Drosophila L1, Mi9, and LPi4-3. Expressing

either the fast version of the genetically encoded calcium indicator GCaMP6f (Chen et al., 2013) or the

fast glutamate-sensing reporter iGluSnFR (Marvin et al., 2013) with cell-type-specific Gal4 driver lines,

we imaged glutamate and calcium signals in single axon terminals (Figure 3C). To precisely map the recep-

tive fields of these cells, we used a one-dimensional white noise stimulus consisting of 2.8! wide vertical

bars covering the full extent of the arena (180!, Figure 3B, see also Methods). The spatiotemporal receptive

fields were then determined from the neuron’s calcium or glutamate response by reverse correlation. Cross

sections through the peak of the spatiotemporal receptive fields along the space axis therefore yield the

one-dimensional spatial receptive fields depicted in Figures 3D and 3E. Cross sections along the time

axis yield the temporal filtering properties of the neuron (Chichilnisky, 2001; Dayan and Abbott, 2013;

French, 1976; Ringach, 2004).

To calculate the spatial extent of the cells’ receptive field, we fitted a Mexican hat function (also called dif-

ference of Gaussians) that best resembled the center-surround structure of the estimated spatial receptive

fields. Both neurons show a small confined center of "7! for Mi9 and 9–11! for L1. The full width at half

maximum of the surround is about 40–50! for L1 and 20–30! for Mi9. Considering the uncertainty of the

fitted model parameters, these values are similar and lie in the same order of magnitude when comparing

results from imaging with both sensors. In addition, testing the raw data of both conditions against each

other we find no significant difference (see Figures S2A and S2B, p value > 0.5, Welch’s t test) of spatial

receptive fields neither for L1 nor for Mi9. Both neurons show a small confined center of "7! for Mi9 and

9–11! for L1. The size of the surround has the same order of magnitude for both sensors, 40–50! for L1

and 20–30! for Mi9. This is within the range of uncertainty that the fit is subject to. Testing the raw data

of both conditions against each other for the two cell types, however, does not yield a significant difference

(see Figures S2A and S2B, right panel).

For a reliable estimation of the time constants of the temporal responses, we transferred the impulse

responses of L1 and Mi9 into frequency space and fitted either a first-order low-pass or a first-order

band-pass filter to the neurons’ responses (see Figures S1C and S1D). For L1, we find that the data

are best represented by a band-pass filter. The filter derived from the iGluSnFR signal has a low-pass

time constant of 70 ms and a high-pass time constant of about 400 ms (see Figure S1A). The time con-

stants derived from the GCaMP6f signal are significantly larger with low-pass and high-pass time con-

stants of 350 and about 1,180 ms, respectively. For Mi9, we find that the temporal properties are best

described by a low-pass filter. The estimated time constant of the Mi9 temporal kernel (Figure 3D, lower

Figure 3. Response Properties of the ON Pathway Columnar Elements L1 and Mi9

(A) Experimental setup: Fly tethered to a plastic holder under the 2-photon microscope looking onto the stimulus arena (see also Transparent Methods).

(B) Schematic of three frames of the white noise stimulus consisting of 64 horizontal bars.

(C) Example of 2-photon image of L1 expressing iGluSnFR. In purple are manually drawn region of interest ROIs.

(D) Left: Schematic of the Drosophila optic lobe. The cell type related to the right panel is highlighted. Right upper panel: Averaged aligned

spatiotemporal receptive fields after reverse correlation of L1 expressing either the glutamate indicator iGluSnFR (5 flies and 66 cells) or GCaMP6f (5 flies

and 60 cells). Cross sections along space and time axes result in receptive fields in right lower panel. Spatial receptive fields do not differ significantly for

both indicators. Temporal kernels differ substantially. Impulse responses are shorter for iGluSnFR than for GCaMP6f. Shaded areas indicate a confidence

interval of 95%.

(E) Same as (D) only for Mi9 (with iGluSnFR: 5 flies, 26 cells; with GCaMP6f: 5 flies, 50 cells).
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left) is 75 ms when measured with iGluSnFR compared with about 610 ms when measured with GCaMP6f

(see Figure S1B).

For both cell types, the temporal kernel of the calcium response can be derived by low-pass filtering the

faster glutamate signal. This is because the kinetics of the calcium sensor can be approximated by a

low-pass filter when the intracellular calcium concentration is small compared to the KD value of the indi-

cator (Borst and Abarbanel, 2007). For both cells, i.e., L1 and Mi9, we can fit the glutamatergic signal to the

calcium signal by filtering it with a low-pass filter with a time constant of 360 ms (see Figures S2A and S2B,

left panel). LPis, as motion-selective neurons, are not suitable for white noise analysis. To characterize the

response properties of the LPi4-3 (Figure 4A), we first stimulated single ommatidia with local flicker stimuli

that were placed precisely onto the lattice of the fly’s eye via a custom-built telescopic device (see Trans-

parent Methods and [Haag et al., 2017, 2016]). LPi4-3 cells responded to the individual pulses with different

amplitudes, depending on the position of the stimulus (Figure 4C). The maximum response (Figure 4B,

black center) of a recorded neuron was then set as the receptive field’s center. All other responses to adja-

cent stimulation are normalized accordingly. Single flicker stimulations in the center of the receptive field

show different time courses (Figure 4C) when using the two different indicators. The onset of the calcium

response is much slower when compared with the glutamate response. In fact, whereas the glutamate

signal shows a short transient peak response and then plateaus after "500ms, the calcium signal does

not resolve any similar details in the time course of the response. The calcium signal decays back to

zero in approximately 2 s after stimulus offset, whereas the glutamatergic signals are back at the baseline

level in less than 200 ms. This loss-of-response features can be explained by the characteristics of the

A B

DC

Figure 4. Response Properties of the Direction Selective Lobula Plate Interneuron LPi4-3

(A) Schematic of the Drosophila optic lobe with LPi4-3 highlighted.

(B) Comparison of spatial receptive field size of LPi4-3 cells recorded with iGluSnFR (left, n = 24 cells from 7 flies) or

GCaMP6f (right, n = 14 cells from 5 flies). The responses of individual cells to flicker stimuli presented at 19 different

columnar positions were averaged after alignment to the maximum (in black) and normalization. d, Dorsal; v, ventral;

l, lateral; f, frontal.

(C) Time course of LPi4-3 response upon local flicker stimulation. The decay of the signal is faster for iGluSnFR response.

(D) LPi4-3 expressing iGluSnFR show glutamatergic direction selective responses (n = 8 cells from 5 flies). Five consecutive

flicker stimuli were shown along the preferred (downward) or null (upward) direction of the neuron, acting as apparent

motion. Shaded areas indicate mean G SEM.
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calcium indicator, which acts as a low-pass filter (Borst and Abarbanel, 2007). Low-pass filtering the gluta-

mate response (t = 446 ms, Figure S2C) results in a similar slope and decay as the calcium response. We

also asked if the glutamatergic signal of the LPis is indeed direction selective as expected from Mauss

et al. (2015). To asses this question we tested LPi4-3 cells with five light pulses of 472ms duration positioned

along the dorsoventral axis of the eye. When stimulated sequentially from dorsal to ventral (Figure 4D), the

cell responded more strongly (PD, red line) than when we showed the same stimulus in the opposite direc-

tion (ND, black line, paired sample t test, p value < 0.01). We therefore conclude that the sensor is indeed

also suitable for resolving glutamatergic direction-selective signals.

DISCUSSION

In this study we showed that all three investigated cell types (L1, Mi9, LPi4-3) express the vesicular trans-

porter for glutamate, VGlut, in their axon terminals (Figure 2). To our knowledge, L1, Mi9, and LPi are

the only glutamatergic cells in theDrosophilamotion vision circuit. Two studies using either antibody stain-

ings (Kolodziejczyk et al., 2008) a Flp-out analysis of the dvGlutCNSIII-Gal4 driver line (heat-shock inducible

flipase excises stop-cassette upstream of mCD8-GFP to label only a few cells) (Raghu and Borst, 2011)

found L2 cells to be glutamatergic. However, a recent RNA sequencing study that characterized gene

expression patterns of more than 60 different cell types of the optic lobe could not confirm the expression

of VGlut in L2 (Davis et al., 2018). Although they could identify other cell types like Dm cells, Lai, PB_1, Tm29,

and TmY5a as glutamatergic due to their expression of VGlut, none of the other cells in the motion vision

circuit (besides L1, Mi9, and LPi) seem to express VGlut. The role of Dm, Lai, PB, Tm29, and TmY5a cells in

general and their potential contribution to motion vision in the fly brain are not known to date.

We also demonstrated that the spatial receptive fields measured with the glutamate sensor iGluSnFR are

almost identical to the ones measured with the calcium sensor GCaMP6f (Figures 3 and 4). Both neurons

possess a local OFF center receptive field with a differently strong antagonistic ON surround. Surround in-

hibition is a phenomenon frequently found in the early processing stages in visual systems: Bipolar and gan-

glion cells of the mammalian retina possess receptive fields with an antagonistic center-surround structure

(reviewed in Shapley and Lennie, 1985), and first-order interneurons of the insect compound eye share this

feature as well (Srinivasan et al., 1982). Functionally, a neuron with a center-surround antagonism acts as a

spatial band-pass filter, enhancing the neuron’s responses to edges over full field illuminations. Such band-

pass filtering reduces redundancy in natural images (Srinivasan et al., 1982). We find such spatial band-pass

characteristics for both cell types, L1 andMi9. Basedon their spatial receptive fields, wepredict, for instance,

no response of Mi9 to wide field dark flashes since the integral of the spatial receptive field is close to zero.

In the time domain, however, the glutamate signal turned out to be much faster than the calcium signal

derived from the same cells. Due to their small size, many visual interneurons in the fly brain are inaccessible

to electrophysiological recordings, so only a few direct recordings have been reported (Behnia et al., 2014;

Gruntman et al., 2018; Juusola et al., 2016). Since data from voltage recordings from L1, Mi9, and LPi are not

available so far, a direct comparison with the time constant estimated here is not possible. Simulation

studies predicted time constants between 50 and 100 ms for the delayed input to the fly motion-detecting

neurons (Eichner et al., 2011; Leonhardt et al., 2016). Since Mi9 is thought to provide this signal to T4 cells,

the elementary motion-sensing neurons in the ON pathway, the low-pass time constant of 75 ms estimated

here matches this prediction well. In addition, a previous study determined the low-pass time constant for

Mi9 to be around 550ms from calcium imaging experiments. A deconvolution of the filter with an estimated

GCaMP kernel led to a resulting time constant of 63 ms (Arenz et al., 2017). This result again is in line with

the time constants of the Mi9-iGluSnFR of 75 ms reported here.

In the mammalian CNS, glutamate is the most abundant and major excitatory transmitter (Meldrum, 2000;

Traynelis et al., 2010). Glutamate binds to two types of receptors: metabotropic (mGluRs) and ionotropic

glutamate receptors (iGluRs). iGluRs can be divided into N-methyl-D-aspartate (NMDA) and non-NMDA

receptors (a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid [AMPA] and kainate receptors) accord-

ing to their response to agonist molecules NMDA and AMPA (Mosbacher et al., 1994). Analysis of the

Drosophila genome annotated 14 iGluRs genes, which show sequence similarities with vertebrate

AMPA, kainite, and NMDA receptors (Littleton and Ganetzky, 2000). However, the kainite receptor

DKaiR1D and the AMPA receptor DGluR1A have different agonist/antagonist selectivity from the verte-

brate’s pharmacology-based classification (Li et al., 2016). Furthermore, invertebrates like Drosophila

melanogaster possess a third type of iGluR, the so-called glutamate-gated chloride channel GluCla, which
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is inhibitory (Cully et al., 1996; Liu and Wilson, 2013). Glutamate can also act on metabotropic glutamate

receptors, which signal via slower G-protein-coupled pathways. In mammals, eight mGluRs have been

described (Conn and Pin, 1997). In contrast, the Drosophila genome encodes only one functional mGluR

(DmGluRA), which is expressed at the glutamatergic NMJ localized in the presynaptic boutons (Bogdanik

et al., 2004). Regarding the broad range of glutamate receptors in Drosophila, glutamate can act as a fast,

slow, excitatory, or inhibitory transmitter (Li et al., 2016; Liu and Wilson, 2013; Mauss et al., 2015).

This gives rise to interesting speculations about the respective role of glutamate for each of the cell types

investigated. In the case of the LPis, glutamate binds to the inhibitory glutamate receptor GluCla on the

dendrites of large-field tangential cells, inhibiting them during null direction motion and, thus, enhancing

their flow-field selectivity (Mauss et al., 2015). In the case of L1, the glutamatergic output signal seems to be

key for the sign inversion of L1’s OFF response in the ON pathway. This is because all Drosophila photore-

ceptors (R1-R8) depolarize upon illumination and release histamine onto lamina neurons, which results in

the opening of chloride channels (Hardie, 1989; Hardie and Raghu, 2001). Therefore, lamina monopolar

cells transiently hyperpolarize upon illumination onset and respond with a rebound excitation at illumina-

tion offset (Laughlin et al., 1987). L1 and L2 neurons respond in an identical way (Joesch et al., 2010). L1

possess an OFF receptive field center (Figure 3D) and therefore depolarizes to OFF stimuli, in contrast

to its described downstream synaptic partners, which depolarize to ON stimuli (Arenz et al., 2017; Behnia

et al., 2014; Strother et al., 2017; Yang et al., 2016). Hence, an inversion of the signmust occur at the synapse

of L1 and its downstream partners. Since L1 is glutamatergic and GluCla is the only inhibitory receptor

described inDrosophila, the glutamatergic signal is likely to be responsible for this sign inversion. Whether

the downstream partners of L1 indeed express GluCla, however, is beyond the scope of this study and

awaits further investigation. The hypothesis outlined above suggests that the mechanism by which a com-

mon photoreceptor input signal is split into anONand anOFF pathway in invertebrates is different from the

one in the mammalian retina where glutamatergic photoreceptors hyperpolarize in response to light. This

signal is directly transmitted, i.e., without sign inversion, by ionotropic glutamate receptors expressed on

the dendrites of OFF bipolar cells (Euler et al., 2014) and sign inverted by metabotropic glutamate recep-

tors expressed on the dendrites of ON bipolar cells (Masu et al., 1995). In case of Mi9, the functional inter-

pretation of an inhibitory glutamatergic signal is less intuitive. Mi9 directly contacts the dendrites of T4 cells,

the first direction-selective neurons in the ON pathway (Takemura et al., 2017). Given the OFF response of

Mi9 cells (Figure 3D), T4 cells are expected to be inhibited in darkness via theMi9-T4 synapse. AmovingON

edge would inhibit Mi9 followed by a closure of chloride channels and, thus, an increased input resistance

in postsynaptic T4 cells, resulting in an amplification of a subsequently delivered excitatory input signal.

Computer simulations have shown that such a two-fold signal inversion can indeed form the biophysical

basis of preferred direction enhancement underlying direction selectivity in T4 cells (Borst, 2018).

Taken together our results could demonstrate the functionality of the fast glutamate reporter iGluSnFR in

glutamatergic neurons of the fruit fly Drosophila melanogaster. It allowed for a more faithful description of

important elements of the motion vision pathway, in particular with respect to their temporal response

properties.

Limitations of the Study

Since iGluSnFR is anchored to the outer side of the plasma membrane, it senses extracellular glutamate

that is present in the synaptic cleft. In addition, the iGluSnFR signal is affected by spillover and diffusion

to iGluSnFR molecules outside the cleft. Thus, the iGluSnFR signal should present an upper limit to the

‘‘real’’ time course, i.e., the one of glutamate in the synaptic cleft as seen by the postsynaptic receptors.

For the same reason, one might record an iGluSnFR signal even if the indicator is expressed on a neuron

that is not glutamatergic or does not receive glutamatergic input, but ramifies within the same volume

where glutamate is being released from other cells.

METHODS

All methods can be found in the accompanying Transparent Methods supplemental file.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Transparent Methods and two figures and can be found with this article

online at https://doi.org/10.1016/j.isci.2018.08.019.
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Supplemental Figures 
 
 

 
 
Figure S1. Model fits to L1 and Mi9 data, related to Fig 3 
(A)  Parameters to quantitatively describe the receptive field characteristics of L1 recorded either 

with GCaMP6f (left column) or iGluSnFR (right column). First two parameters describe temporal 

components of the receptive field, last three parameters describe those of the spatial component.  

(B) Same as (A) only for Mi9. Description of highpass characteristics is missing, since Mi9 is best 

described by a pure low-pass. 

(C) Impulse responses from Figure 3 D-E plotted in frequency space. Black dashed lines mark the fit 

of a 1st order band-pass filter (for time constants see table (A). 

(D) Same as (C) only for Mi9. Black dashed lines mark the fit of a 1st order low-pass filter. 

(E)+(F) Spatial receptive fields from Figure 3 D-E. Data are fitted with a Mexican hat function that 

captures both, the excitatory center as well as the inhibitory surround of these receptive fields. cen 

= center, sur = surround, LP = low-pass, HP = high-pass, A = amplitude, τ = time constant, FHWM = 

full width at half maximum. 



 

 
 
Figure S2. GCaMP data resembles low-pass filtered iGluSnFR data, related to Fig 3 and 4 
(A) Low-pass filtering of the Mi9 impulse response measured with iGluSnFR with a time constant 

of 360 ms (grey) shows the best fit with the impulse response measured with GCaMP6f (left panel). 

Spatial receptive fields (right panel) are not significantly different from each other, when measured 

with the two different sensors. 

(B) Same as (A) for L1 

(C) Low-pass filtering of the LPi4-3 > iGluSnFR response to local flicker with a time constant of 446 

ms (grey) shows the best fit to response measured with GCaMP6f (orange). 
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Transparent Methods 
 
 
Flies/preparation 
 
Flies were raised and kept on standard cornmeal-agar medium on a 12 hour light/12 hour 
dark cycle at 25°C and 60% humidity. For imaging experiments, the genetically-encoded 
calcium indicators GCaMP6f or the genetically encoded glutamate sensor iGluSnFR (Chen 
et al., 2013; Marvin et al., 2013) were expressed using the Gal4-UAS system in cell-type 
specific Gal4 fly lines, resulting in the following genotypes: 
 
Genotypes: 
 
L1>GC6f:   w+; R48A08-AD/UAS-GCaMP6f; R66A01-DBD/UAS-GCaMP6f 
L1>iGluSnFR:  w+; R48A08-AD/+; R66A01-DBD/UAS-iGluSnFR (BL59611, AV184) 
Mi9>GC6f:  w+; R48A07-AD/UAS-GCaMP6f; VT046779-DBD/UAS-GCaMP6f 
Mi9>iGluSnFR: w+; R48A07-AD/+; VT046779-DBD/UAS-iGluSnFR (BL59611, AV184) 
LPi>GC6f:   w+; +/UAS-GCaMP6f; R38G02-Gal4/UAS-GCaMP6f 
LPi>iGluSnFR:  w+; +; R38G02-Gal4/UAS-iGluSnFR (BL59611, AV184) 
 
For immunohistochemical stainings in Figure 2: 
 
L1>myr::GFP:  w-; R48A08-AD/UAS-myr::GFP; R66A01-DBD/+ 
Mi9>myr::GFP:  w-; R48A07-AD/ UAS-myr::GFP; VT046779-DBD/+ 
LPi4-3>myr::GFP:  w-; UAS-myr::GFP/+; R38G02-Gal4/+ 
 
 
The transgenic fly lines driving split-Gal4 expression in the lamina neuron L1 were generated 
and described in (Tuthill et al., 2013). Mi9 in (Strother et al., 2017) and the one of LPi¶s in 
(Mauss et al., 2015). For calcium and glutamate imaging experiments, flies were prepared 
as previously described (Maisak et al., 2013; Strother et al., 2017). Briefly, flies were 
anaesthetized on ice, fixed with their backs, legs and wings to a Plexiglas holder with the 
back of the head exposed to a recording chamber filled with fly external solution. The cuticle 
at the back of the head on one side was cut away with a fine hypodermic needle and 
removed together with muscles and air sacks covering the underlying optic lobe. 
 
 
Data acquisition and analysis: 
 
Data analysis was performed offline using custom-written routines in Matlab and Python 2.7 
(with the SciPy and OpenCV-Python Libraries). 
 
 
2-photon imaging:  
 
Imaging was performed on custom-built 2-photon microscopes as previously described 
(Maisak et al., 2013) and controlled with the ScanImage software in Matlab (Pologruto et al., 
2003). Acquisition rates were between 15 (for LPi experiments) and 23.67 Hz (for L1 and 
Mi9 experiments), image resolution between 64x64 and 128x32 pixels (for L1 and Mi9 
experiments). Before starting the acquisition, we verified that the receptive fields of the cells 
were located on the stimulus arena by showing a search stimulus consisting of moving 
gratings. 



 

Calcium imaging was performed as previously described in (Arenz et al., 2017). In brief: 
Images were automatically registered using horizontal and vertical translations to correct for 
the movement of the brain. Fluorescence changes (ǻF/F values) were then calculated using 
a standard baseline algorithm (Jia et al., 2011). Regions of interest (ROIs) were drawn on 
the average raw image by hand in the medulla layer M1 for L1 and in layer M10 for Mi9. For 
LPi neurons, ROIs were routinely chosen in the lobula plate, encompassing small regions 
with single to few axon terminals. Averaging the fluorescence change over this ROI in space 
resulted in a ǻF/F time course. Glutamate imaging was performed with the same settings 
as the calcium imaging experiments. 
 
Visual stimulation for L1 and Mi9 experiments 
 
The spatiotemporal response properties of the L1 and Mi9 columnar input elements were 
determined on a custom-built projector-based arena, as previously described in (Arenz et 
al., 2017). Stimuli were projected with 2 commercial micro-projectors (TI DLP Lightcrafter 
3000) onto the back of an opaque cylindrical screen covering 180 ° in azimuth and 105 ° in 
elevation of the fly¶s visual field. The projectors refresh rate is 180 Hz (at 8 bit color depth). 
For all stimuli used here, we set the medium brightness to a 8-bit grayscale value of 50, 
which corresponds to a medium luminance of 55 ± 11 cd/m2. Stimuli were rendered using a 
custom written software in Python 2.7.  
 
Visual stimulation for LPi4-3 experiments with telescope 
 
This technique has been previously described in (Haag et al., 2016). In brief: Antidromic 
illumination of the fly¶s head visualizes the hexagonal structure of the optical axes of the 
ommatidia (Franceschini, 1975; Schuling et al., 1989). Visual stimuli are generated on the 
AMOLED display (800x600 pixels, pixel size 15x15 mm, maximal luminance > 1500 cd/m2; 
lambda = 530 nm; refresh rate 85 Hz) (SVGA050SG, Olightek). This allows to precisely 
position the stimuli onto single lamina cartriges. In order to prevent stimulus light from 
entering the photomultiplier of the two-photon micro-scope, light generated by the AMOLED 
display was filtered with a long-pass filter (514 LP, T: 529.4– 900 nm, AHF). The AMOLED 
display was controlled with MATLAB and the psychophysics toolbox (V3.0.11;(Brainard, 
1997)). 
 
White noise reverse-correlation 
 
The analysis of spatial receptive fields was previously described in (Arenz et al., 2017). For 
the input elements, spatiotemporal receptive fields were calculated following standard 
reverse-correlation methods (Dayan and Abbott, 2013; French, 1976). First, the mean value 
was subtracted from the raw signals of single ROIs by using a low-pass filtered version of 
the signal (Gaussian filter with 120 seconds standard deviation) as a baseline for a ǻF/F-
like representation of the signal. 
The stimulus-response reverse correlation function was calculated as: 
 

𝐾ሺ𝑥, 𝜏ሻ ൌ  න 𝑑𝑡 𝑆ሺ𝑥, 𝑡 െ 𝜏ሻ ∙ 𝑅ሺ𝑡ሻ
்


 

 
with S for the stimulus and R for the response of the neuron. The resulting spatiotemporal fields 
were normalized in z-score. Only receptive fields with peak amplitudes above 10 standard 
deviations from the mean were taken for further analysis (for Mi9-GCaMP6f the threshold 
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was lowered to 7). Cross-sections through the receptive fields along the space axis were fit 
with a Gaussian function to determine the position of the peak (Suppl. Fig. 1 E-F).  
 
Gaussian noise stimulus 
 
The same stimulus was used in (Arenz et al., 2017). In brief: The stimulus consisted of 64 
vertical bars covering an angle of 180° in total. The intensity of each bar fluctuated randomly 
around a mean intensity of 50 on the 8-bit grayscale of the display. The intensities were 
drawn from a Gaussian distribution with a standard deviation of 25% contrast. In time, the 
stimulus was low-pass filtered with a Gaussian window with approximately 22ms standard 
deviation, which restricted the frequency content of the stimulus to frequencies below 10Hz. 
For Mi9-GCaMP6f imaging, similarly, the time window was 45ms long, covering frequencies 
until up to 5Hz. 
 
Spatial receptive field 
 
The analysis of spatial receptive fields was previously described in (Arenz et al., 2017). In 
brief: One-dimensional spatial receptive fields are cross-sections through the peak of the 
spatiotemporal receptive fields along the space axis and are averaged over the 12 samples 
(200ms) around the peak. For both L1 and Mi9 we found a small-field, antagonistic center-
surround organization of the spatial receptive field using the vertical white noise stimulus. 
The black dashed lines in Suppl. Fig 1 represents a Mexican hat function (Difference of 
Gaussian). Mathematically such a function can be described as follows:  
 

𝑅𝐹ଵሺ𝜑ሻ ൌ 𝑒
ିଵ

ଶ
ఝమ

ఙమ െ 𝐴 ∙ 𝑒
ିଵ

ଶ
ఝమ

ఙೞೠೝమ 
 
with M as azimuth, 𝜎 and 𝜎௦௨ as the standard deviations of center and surround, 
respectively, and 𝐴 ൌ  𝐴௦௨/𝐴 the relative strength of the surround in relation to the 
amplitude of the center Gaussian (which is normalized to 1).  
 
Temporal receptive field 
 
The analysis of temporal receptive fields was previously described in (Arenz et al., 2017). In 
brief: The time-reversed impulse responses shown in Figure 3 are cross-sections through 
the center of the spatiotemporal receptive fields along the time axis and are averaged over 
the three center pixels. For the determination of the time constants (tau), we sought to 
describe the response characteristic of each cell with a simplified model that catches the 
main properties. For that, we fitted simple 1stst order filters (e.g. 1st order low-pass for Mi9; 1st 
order bandpass for L1) to the impulse responses of all cells.  
The model fit in Suppl. Fig 2 (grey lines) was performed by low-pass filtering the measured 
iGluSnFR response of each neuron type (L1, Mi9, LPi) with a 1st order low-pass filter and 
optimizing the time-constant such that the difference between the low-pass filtered signal 
and the measured calcium response of the neurons was minimal. The fitting procedure was 
implemented using standard least square algorithms (SciPy 0.19). 
 
Immunohistochemistry 
 
Fly brains were dissected in ice-cold 0.3% PBST and fixed in 4% PFA in 0.3% PBST for 25 
min at room temperature. Subsequently, brains were washed 4-5 times in 0.3% PBST and 
blocked in 10% normal goat serum (NGS) in 0.3% PBST for 1 hour at room temperature. 
Primary antibodies used were mouse anti-bruchpilot brp (nc82, Developmental Studies 



 

Hybridoma Bank, 1:20) and rabbit anti-VGlut (courtesy of H. Aberle, 1:500). Secondary 
antibodies used were: goat anti-mouse ATTO 647N (Rockland, 1:300) and goat anti-rabbit 
Alexa Fluor 568 (Life Technologies, 1:300). Myr::GFP-labeled cells were imaged natively 
without antibody staining. 5% NGS was added to all antibody solutions and both primary 
and secondary antibodies were incubated for at least 48 hours at 4°C.  
Brains were mounted in Vectashield Antifade Mounting Medium (Vector Laboratories) and 
imaged on a Leica TCS SP8 confocal microscope.  
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2.3 dynamic signal compression for robust mo-
tion vision in flies

summary Sensory systems need to reliably extract information from highly
variable natural signals. Flies, for instance, use optic flow to guide their
course and are remarkably adept at estimating image velocity regardless of
image statistics. Current circuit models, however, cannot account for this
robustness. Here, we demonstrate that the Drosophila visual system reduces
input variability by rapidly adjusting its sensitivity to local contrast condi-
tions. We exhaustively map functional properties of neurons in the motion
detection circuit and find that local responses are compressed by surround
contrast. The compressive signal is fast, integrates spatially, and derives
from neural feedback. Training convolutional neural networks on estimating
the velocity of natural stimuli shows that this dynamic signal compression
can close the performance gap between model and organism. Overall, our
work represents a comprehensive mechanistic account of how neural sys-
tems attain the robustness to carry out survival-critical tasks in challenging
real-world environments.
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SUMMARY

Sensory systems need to reliably extract information
from highly variable natural signals. Flies, for
instance, use optic flow to guide their course and
are remarkably adept at estimating image velocity
regardless of image statistics. Current circuit models,
however, cannot account for this robustness. Here,
we demonstrate that the Drosophila visual system
reduces input variability by rapidly adjusting its sensi-
tivity to local contrast conditions. We exhaustively
map functional properties of neurons in the motion
detection circuit and find that local responses are
compressed by surround contrast. The compressive
signal is fast, integrates spatially, and derives from
neural feedback. Training convolutional neural net-
works on estimating the velocity of natural stimuli
shows that this dynamic signal compression can
close the performance gap between model and or-
ganism. Overall, our work represents a comprehen-
sive mechanistic account of how neural systems
attain the robustness to carry out survival-critical
tasks in challenging real-world environments.

INTRODUCTION

Visual motion represents a critical source of sensory feedback
for navigation. Self-motion results in particular patterns of local
directional cues across the retina. Detection of these optic flow
fields allows animals to estimate and control their current head-
ing [1]. Flies, for instance, react to whole-field retinal motion by
turning in the same direction as their surroundings. This optomo-
tor response enables them to maintain a straight path under per-
turbations as well as over long distances [2, 3].
For the reflex to work effectively, biological motion detectors

need to respond reliably and independently of the particular vi-
sual statistics of the environment. This poses a challenge given
the complexity of natural scenes [4, 5]. Motion vision systems
therefore need to employ processing strategies that maintain
robust performance despite the variability of natural visual
input.

Recent circuit mapping efforts have yielded unprecedented
insight into the neural substrate ofmotion detection inDrosophila
[6, 7]. The fly optic lobe consists of sequential neuropils (retina,
lamina, medulla, lobula, and lobula plate) and is arranged in
columns that process visual input retinotopically. In various com-
binations, lamina cells L1–L5 feed into a light-sensitive ON or a
dark-sensitive OFF pathway, each comprising at least four cell
types in the medulla [8]. Medulla units fall into two classes char-
acterized either by transient temporal filtering and moderate
center-surround antagonism in their spatial receptive field (Mi1
and Tm3 for ON; Tm1, Tm2, and Tm4 for OFF) or by tonic re-
sponses and strong antagonistic surround (Mi4 and Mi9 for
ON; Tm9 for OFF) [9–13]. Postsynaptic T4 and T5 cells then
compute local ON and OFF motion, respectively, by comparing
medulla signals with different dynamics across neighboring col-
umns [8, 14–19]. Jointly, they are necessary for the optomotor
response [20]. By pooling appropriate T4 and T5 signals, lobula
plate tangential cells (LPTCs) detect optic flow fields that corre-
spond to rotations around different body axes and ultimately
control turning [3, 21–23].
For artificial stimuli, fly motion processing is well explained by

correlation-based detector models that rely on multiplication of
spatially adjacent, asymmetrically filtered luminance signals
[24]. These elementary motion detectors (EMDs) account for
subtle features of behavioral and neural responses such as
pattern-induced shifts in velocity tuning [25, 26], intrinsic velocity
gain control [27], or reverse-phi sensitivity [28, 29]. However,
EMD output strongly depends on contrast as defined by the
average difference between light and dark [26]. EMDs thus
invariably confound image contrast with velocity. Since local
contrast varies substantially within natural images [4], output
from individual EMDs is sparse and fluctuates heavily under
naturalistic conditions (Figures S1A–S1C). Motion responses in
flies, however, have been shown to be highly robust, across
both time and different natural scenes [30, 31].
Various general mechanisms for adaptation to naturalistic

signals have been described in the fly visual system. These
include gain control in photoreceptors or LPTCs [32–34], redun-
dancy reduction through lateral inhibition [35], subtractive
enhancement of flow field selectivity [36], and tailoring of
processing to fundamental natural scene statistics [31, 37,
38]. However, none effectively address the problem of contrast
fluctuations.
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In vertebrate visual systems, contrast sensitivity is continu-
ously regulated through the mechanism of divisive normalization
[39–41]. Here, the response of a neuron is effectively divided by
local contrast, estimated as the average activity within a popula-
tion of neighboring neurons. The process compresses signals of
varying contrast into a fixed range by dynamically adjusting gain
to current conditions [5] and renders the neural representation of
stimuli largely invariant with respect to contrast. However, so far,
no comparable mechanism has been described for the inverte-
brate visual system.

Here, we investigate how the fly visual system copes with
contrast variability and demonstrate that dynamic signal
compression based on divisive contrast normalization renders
motion processing robust to the challenges imposed by natural
visual environments.

RESULTS

Fly Motion Responses Are Robust to Natural Scene
Variability
To rigorously assess the robustness of Drosophila motion pro-
cessing, we measured optomotor responses to a diverse set
of moving naturalistic panoramas on a walking treadmill setup
(Figure 1A). Fly turning was highly consistent across images
and velocity tuning curves showed virtually no variation over
different scenes, matching previous findings [31] (Figure 1B; Fig-
ure S1). To quantify reliability at the neural level, we recorded the
membrane potential of horizontal system LPTCs that detect

optic flow fields corresponding to yaw rotation (Figure 1C).
Potential was tuned to scene velocity and again exhibited little
image-dependent variation (Figure 1D). Additionally, membrane
voltage proved highly stable across time. This was consistent
with earlier work in hoverflies [30].
To perform a consistent comparison, we tested the robust-

ness of EMDs on the same set of stimuli as in behavior and elec-
trophysiology (Figure 1E). As anticipated from a multitude of
similar studies [31, 37, 42, 43], responses were remarkably unre-
liable across time and images (Figure 1F). For most images,
temporally resolved output fluctuated strongly, average ampli-
tudes differed, and tuning curves exhibited peaks at different
velocities. Overall, EMDs provided a poor readout of true image
velocity. This stands in stark contrast to the experimentally
observed robustness of motion responses and leads to the
central question: how does the fly visual system compensate
for natural contrast variability?

Sensitivity of Optomotor Response Is Modulated by
Surround Contrast
We designed an optomotor stimulus to establish whether
Drosophila dynamically adapt the sensitivity of motion-induced
turning to image contrast, which could serve to normalize varia-
tion within natural scenes. The stimulus segregated the visual
field into a background and a foreground pattern (Figure 2A).
The background contained random luminance fluctuations but
no net motion. Pattern movement within the foreground window
triggered turning. For both, average contrast could be controlled
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Figure 1. Flies Respond More Robustly to
Natural Scene Variability Than Predicted
by Correlation-Based Motion Detectors
(A) Illustration of behavioral set-up. Tethered wild-

type Drosophila were stimulated with translating

natural images.

(B) Left: turning responses for images moving at

80!s"1 (n = 16 flies). Each color indicates a distinct

scene. Images moved during gray-shaded period.

Right: velocity tuning curves for all measured

scenes (averaged between 0 and 1 s after motion

onset).

(C) Illustration of fly visual system. Photoreceptor

signals are processed in five retinotopically ar-

ranged neuropils. Wide-field lobula plate tangen-

tial cells (LPTCs) respond to particular optic flow

fields.

(D) Left: membrane potential of horizontal system

LPTCs in response to images moving at 20!s"1

(n = 11 cells from 9 flies). Right: velocity tuning

curves (averaged between 0 and 3 s after motion

onset).

(E) Schematic of an individual correlation-based

elementary motion detector (EMD; t denotes

delay line; 3, multiplication; –, subtraction).

(F) Left: responses of an array of EMDs to stimu-

lation with natural images moving at 20!s"1. Right:

velocity tuning curves of EMD array (evaluated like

LPTC output). Note that in contrast to experi-

ments, model responses were averaged across

many different starting phases. Shaded areas

around curves indicate bootstrapped 68% confi-

dence intervals.

See also Figure S1 and Table S2.
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independently. We confirmed that the background by itself pro-
duced no net activity in EMDs (Figure 2B).
At zero background contrast, foreground motion induced a

reliable optomotor response (Figure 2C). Turning was fully sup-
pressed at maximum background contrast, proving that turning
gain is controlled by surround contrast. Average field luminance
was constant for all conditions, so linear processing could not
account for the phenomenon. A full measurement of contrast
tuning curves for foreground motion revealed a smooth shift of
the dynamic range of the optomotor response toward the current
surround contrast (Figures 2D and 2E).
To efficiently map features of contrast gain control in a single

stimulus condition, we sinusoidally modulated background
contrast over time, which resulted in oscillations around mean
turning (Figures 2F and 2G). Whenever background contrast
was high, syndirectional rotation in response to motion was

transiently suppressed. Evaluating oscillation amplitude thus
allowed a readout of the level of contrast-induced gain adjust-
ment. We determined the spatial scale of suppression by varying
the spacing between foreground and a windowed background,
separated by uniform gray (Figure 2H). Modulation fell with dis-
tance between motion stimulus and background stripe and
dropped to baseline at approximately 35!, so contrast estimation
was non-local but spatially limited (Figure 2I; Figures S2A and
S2B; full width at half maximum of 43.8! for zero-centered
Gaussian least-squares fit to mean tuning curve).
When we varied oscillation frequency in the background, sup-

pression followed contrast changes up to fast timescales
beyond 3Hz (Figure 2J; Figures S2C–S2F). However, modulation
decreased at lower frequencies than for equivalent foreground
oscillations, which is indicative of temporal integration. We
additionally evaluated the lag between contrast oscillation and
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Figure 2. Sensitivity of Drosophila Optomo-
tor Response Is Controlled by Surround
Contrast
(A) Experimental set-up. Visual display is separated

into two areas whose contrast can be set inde-

pendently.

(B) Bottom: space-time plot of base stimulus.

Foreground pattern moved during time span indi-

cated by dashed lines; background is dynamic but

contains no coherent motion. Top: time-averaged

response of EMD array along azimuth. Only fore-

ground produced net activity.

(C) Turning responses for extreme background

contrast conditions (n = 16 wild-type flies) at

foreground contrast 12.5%. Gray-shaded area in-

dicates motion.

(D) Mean rotation (averaged between 0 and 1 s after

stimulus onset) as a function of foreground contrast

for two background conditions (n = 16; gray arrow

indicates foreground contrast depicted in C).

(E) Heatmap of mean rotation for multiple back-

ground conditions. With increasing background

contrast, optomotor sensitivity shifted rightward

(n = 16).

(F) Example stimulus for mapping magnitude of

sensitivity shift. Background contrast was modu-

lated at 1 Hz.

(G) Left: baseline turning response in the absence of

background contrast (n = 16, foreground contrast

25%). Right: turning response for sinusoidal change

in background contrast (data taken from spatial

experiment evaluated in I at distance 15!). During

high-contrast phase, optomotor response was

suppressed; turning modulation allowed readout of

background-induced changes in gain.

(H) Illustration of spatial oscillation experiment.

Distance indicates separation between centers of

foreground motion and flanking background.

(I) Turning response modulation as a function of

distance between motion stimulus and background

(n = 16). Gray-shaded bar indicates 68% confi-

dence interval around baseline modulation in the

absence of background.

(J) Turning response modulation as a function of

carrier frequency for either foreground (n = 13) or

background (n = 13). Shaded area around curves

indicates bootstrapped 68% confidence interval.

See also Figure S2, Table S2, and Videos S1 andS2.
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turning by means of cross-correlation (Figures S2G and S2H).
The maximum suppressive effect of background modulation
was delayed with respect to the effect of foreground modulation
by approximately 70ms (bootstrapped 95%CI: 33–114ms). This
supported the previous conclusion that themechanism for back-
ground contrast estimation operates on slower timescales than
the primary motion pathway. Silencing T4 and T5 cells abolished
all contrast-guided oscillatory turning (Figures S2I–S2K), sug-
gesting that contrast adaptation is not mediated by a system
parallel to motion detection [44]. Our experiments thus point to
a rapid, spatially distributed gain control mechanism that arises
in early visual processing.

Signal Compression Emerges in Transient Medulla
Neurons
We next used two-photon calcium imaging to locate the neural
origin of contrast adaptation. The calcium indicator GCaMP6f
was genetically expressed in particular cell types [45]. We tar-
geted visual stimuli to individual neurons by determining recep-
tive field coordinates through a combination of stochastic stimuli
and online reverse correlation (Figures 3A and 3B; STAR
Methods). This procedure additionally yielded estimated linear
receptive fields for L1–L5, analogously to the ones previously
described for medulla neurons [9] (Figures S3A–S3T). Consistent
with earlier functional work [29, 46], spatiotemporal filters group-
ed into tonic (L3) or transient units (L1, L2, L4, and L5) like they
did in the medulla. In contrast to all other lamina cells, we found
that the polarity of the L5 receptive field center is ON.

To precisely map context-dependent changes in contrast
sensitivity for a given cell type, we then presented drifting sine
gratings with separately controlled contrast in the foreground
(as defined by a 25! circular window centered on the receptive
field) and the background (Figure 3C). At a fixed foreground
contrast, L1 activity followed local grating luminance and was
independent of background contrast (Figure 3D). Responses in
downstream synaptic partner Tm3, however, showed the signa-
ture of gain control as signal amplitude was increasingly sup-
pressed by growing surround contrast (Figure 3E).

We performed these experiments for all major columnar cell
types in the circuit as well as T4 and T5 cells (Figure 3F). To
obtain contrast tuning curves, we evaluated calcium modulation
at the stimulus frequency. Lamina units tracked foreground
contrast but were weakly, if at all, modulated by the surround
except for a vertical shift at low levels (Figures 3G–3K). This
was likely due to background leaking into the receptive fields
since antagonistic surrounds extend beyond 25! for some cell
types (Figure S3) [9]. In the medulla (Figures 3L–3U), tonic Mi4,
Mi9, and Tm9 showed similar tuning as L1–L5 and again little sur-
round dependency. However, for all transient cells (Mi1 and Tm3
for ON; Tm1, Tm2, and Tm4 for OFF), increasing background
contrast had a strongly suppressive effect, which is a hallmark
of divisive contrast normalization [41].

As with the corresponding behavioral experiments (Figure 2),
linear receptive fields could not explain the effect given that
the average luminance was constant for all conditions. Curves
were shifted rightward on the logarithmic axis, which corre-
sponds to divisive stretching in linear contrast space. Impor-
tantly, preferred direction responses in T4 and T5 were also
strongly background dependent (Figures 3P and 3U) even

though not all their medulla inputs are subject to gain control.
Finally, sensitivity to foreground contrast was generally higher
in ON than OFF units.
Several cell types—particularly medulla transient cells—

showed a dependency between fluorescence modulation at
the target frequency and average response (Figure S4), possibly
due to temporal integration by the calcium indicator [47].
Depending on this average activity, a saturating transformation
between calcium signal and GCaMP fluorescence could by itself
introduce compression of strong signal amplitudes due to ceiling
effects at the far end of the sensor’s dynamic range. To rule this
out, we directly compared mean activity with oscillation ampli-
tude and found no region in which this correlation was negative
(Figures S4Q–S4S).
To quantify tuning curves in detail, we fit a closed-form model

resembling commonmodels of divisive normalization to the data
(Figure 3V; STARMethods) [41, 48]. Here, response gain is regu-
lated by a divisive term that depends on background contrast
while a linear term represents the combined contribution of fore-
ground contrast and background leakage. The model accurately
reproduced tuning curves for each cell type (Figure 3W; Table
S1). Critically, it accounted for vertical shifts as well as sigmoidal
tuning curves and context-dependent changes in contrast
sensitivity.
We computed a normalization index from model parameters

that estimates the degree of normalization. Given that different
cell types had different baseline sensitivities and that horizontal
shifts on a logarithmic scale correspond to multiplication, we
quantified the relative factor by which tuning curves would shift
when background contrast was increased from 0% to 100%
(STAR Methods). This index was substantially higher in transient
medulla cells (Mi1, Tm3, Tm1, Tm2, and Tm4) and direction-
selective T4 and T5 cells than in L1–L5 or tonic medulla units
(Mi4, Mi9, and Tm9; Figure 3X). Interestingly, L2 and L5 exhibited
mildly elevated normalization indices. For L2, this may be related
to previously described non-linearities in its receptive field
structure [49].

Normalization Relies on Fast Integration of a Pool of
Transient Units
Overall, fly contrast gain control appeared to be based on divi-
sive normalization that predominantly originates in medulla units
with transient response dynamics. We focused on these neurons
to investigate the mechanism in detail. Responses in Mi1, Tm1,
Tm2, and Tm3 were equally suppressed for all background
grating directions relative to a reference stimulus with zero back-
ground contrast (Figure 4A). Temporal frequency tunings for
suppression resembled band-pass filters with a peak at 2 Hz
(Figure 4B). Crucially, static backgrounds did not have a sup-
pressive effect. Suppression steadily increased with the outer
diameter of an annulus containing the background pattern,
which again indicated an extended integration area (Figure 4C).
Spatiotemporal features of neural gain control thus matched our
findings from behavior (Figure 2).
To determine the temporal scale of normalization, we de-

signed a contrast-step stimulus in which the foreground was
replaced by a single light pulsematching each cell type’s polarity
(Figure 4D). By varying the time interval between motion onset of
the background grating and the onset of the pulse, we scanned
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the temporal profile of the suppressive signal. For the tested
neurons Tm3 and Tm2, we found virtually immediate response
reduction within a measurement precision of 50 ms given by
the smallest tested onset difference. We observed transient
ringing of suppression strength at the background temporal fre-
quency. Ringing was stronger when the grating was present

before motion onset compared to when it was masked by uni-
form gray. A similar effect has been described in LPTCs [26],
where it results from neural integration of multiple transient,
out-of-phase inputs. In sum, these findings indicated that sur-
round suppression derives from a pool of transient neurons
that are not selective for direction. Both isotropy and frequency
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Figure 3. Contrast Normalization Emerges in Transient Medulla Neurons
(A) Schematic of experimental procedure. (1) White noise stimulus. (2) Receptive field reconstruction from single-neuron calcium signals. (3) Drifting grating with

different contrasts in foreground and background.

(B) Two-photon image of L1 axon terminals expressing GCaMP6f. Green line indicates example region of interest.

(C) Experimental protocol. Darker color shade corresponds to higher background contrast as used in (G)–(U). Zero background contrast condition is shown in

black.

(D and E) Average calcium responses of L1 (D) and Tm3 (E) for fixed foreground and various background contrasts.

(F) Schematic of the motion circuit including all neurons measured.

(G–K) Contrast tuning curves measured as amplitude of calcium signals at stimulus frequency for L1–L5. Shaded areas show bootstrapped 68% confidence

intervals around the mean (L1 in G: 21/7 cells/flies, L2 in H: 26/8, L3 in I: 23/6, L4 in J: 19/6, L5 in K: 18/9).

(L–P) Contrast tuning curves for ON pathway neurons (Mi1 in L: 20/5, Tm3 in M: 21/8, Mi4 in N: 20/13, Mi9 in O: 21/9, T4 in P: 23/10).

(Q–U) Contrast tuning curves for OFF pathway neurons (Tm1 in Q: 21/7, Tm2 in R: 20/6, Tm4 in S: 20/13, Tm9 in T: 19/6, T5 in U: 21/9).

(V) Illustration of divisive normalization model for tuning curves. Increasing background contrast cbg shifts the sigmoidal tuning curve from baseline sensitivity c50
to higher contrasts.

(W) Example fit of model for Tm1.

(X) Normalization index for all neurons shown asmedian with 68% bootstrapped confidence intervals. Transient medulla neurons Mi1, Tm3, Tm1, Tm2, and Tm4,

as well as T4 and T5, exhibited strongest degree of normalization.

See also Figures S3 and S4, Tables S1 and S2, and Video S3.
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tunings were strikingly similar to filter properties of the transient
lamina and medulla units involved in motion detection (Figures
S3U and S3V). This suggested that one or more of these cell
types provides input to the suppressive pool.

To determine whether a mechanism that integrates transient
units across space to divisively suppress local responses could
reproduce our findings, we built a time-resolved, data-driven
model. The model faithfully predicted direction, frequency, and
size tunings, as well as contrast-step ringing, T4 and T5 re-
sponses, and LPTC output for our behavioral stimuli (Fig-
ure S5A–K).

Neural Feedback Is Critical for Contrast Normalization
Spatial pooling, however, could occur over either feedforward
signals from the lamina or feedback from themedulla (Figure 5A).
In vertebrate systems, it has provendifficult to distinguish the two
[41, 50, 51]. Fly transient units in the laminaormedullahavesimilar
temporal properties (Figures S3U and S3V), and both implemen-
tations produce equivalent steady-state output [48], so we used
genetic silencing to pinpoint the source. We co-expressed a cal-
cium indicator and the tetanus toxin light chain (TNT; STAR
Methods) [52] in different medulla cell types, blocking chemical
synaptic output and thus feedback from the entire neuron array
but leaving feedforward input and calcium signals intact.

For the ON pathway unit Tm3, we observed significantly
reduced suppression across background frequencies when
compared to controls with inactive TNT (Figures 5B and 5C).
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Figure 4. Neural Contrast Normalization
Relies on Rapid Integration of a Pool of
Transient Units
(A) Polar plot of response amplitude for different

directions of background motion. Black dashed

line represents response to reference stimulus

with background contrast of 0%. For each neuron,

foreground contrast was chosen to maximize

possible background suppression (Mi1: 16%,

Tm3: 32%, Tm1: 64%, Tm2: 100%).

(B) Responses for different background contrast

frequencies, revealing band-pass tuning of sup-

pression.

(C) Suppression strength increased with outer

diameter of background annulus (Mi1: 21/9

cells/flies, Tm3: 20/6, Tm1: 18/6, Tm2: 21/4 in A–C).

(D) Top left: x-y and x-t plots of contrast-step

stimulus for Tm3 (ON center). Background

contrast frequency was 3 Hz. Center left: velocity

function vbg(t) of background and intensity func-

tion Icen(t) of center pulse. Bottom left: mean re-

sponses of Tm3 for different time intervals Dt.

Right: mean peak amplitude for Tm3 and Tm2

(Tm3: 19/6, Tm2: 20/5). Black line shows condi-

tion where the background grating was masked

before onset; red where background was visible

but static.

Shaded areas around curves indicate boot-

strapped 68% confidence intervals. See also

modeling in Figure S5, Table S2, and Video S4.

When measuring tuning curves (similar to
Figure3butonly for backgroundcontrasts
0% and 100%), baseline contrast sensi-
tivity as measured by the semi-saturation

constant of model fits was significantly increased (Figure 5D).
This suggests that Tm3 cells were disinhibited due to a reduced
pool signal.Weobserved similar effects forON-sensitiveMi1 cells
(Figures 5E and 5F), but the impact was less pronounced than for
Tm3 cells. Absolute signal amplitude was generally not affected
by silencing, demonstrating that cells remained visually respon-
sive in the presence of TNT (see Figure 5B).
In the OFF pathway, blocking Tm1 cells did not have any sig-

nificant effects (Figures 5G and 5H). In contrast, when blocking
Tm2, we observed an almost complete loss of background sup-
pression across frequencies (Figure 5I). For this cell type, we did
not observe any change in contrast tuning curves for the 0%
background condition, and consequently, the fitted semi-satura-
tion constant was not affected (Figure 5J). For full background
contrast, however, suppression at high foreground contrasts
was strongly reduced. Additionally, background leakage at low
foreground contrasts increased substantially compared to con-
trol flies. As with Tm3 and Mi1, this is compatible with Tm2 cells
being disinhibited due to the silencing of a suppressive signal
derived from recurrent output. We therefore conclude that in
the fly, contrast normalization is at least partially based on feed-
back from a combination of medulla neurons.

Contrast Normalization Improves Robustness to Natural
Scene Variability
Could this type of response normalization account for the
robustness of fly motion detection? Previous work on EMDs
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and natural scenes has exploited compressive transforms but
did so heuristically or without surround-dependent gain control
[42, 43, 53]. We evaluated natural image responses in the

A B

C D

FE

G H

JI

Figure 5. Neural Feedback Underlies Contrast
Normalization
(A) Schematic of feedforward and feedback model

for surround suppression.

(B) Mean responses of Tm3 for TNT block (red) and

TNTin controls (black) at background frequency

16 Hz (dashed line indicates reference response and

solid line the response at full background contrast;

Tm3 block: 21/5 cells/flies, Tm3 control: 20/5).

(C) Left: frequency tuning for block experiment. Black

dashed line represents response to reference stim-

ulus. Right: average amplitude over all frequencies

was higher for Tm3 block flies (Mann-Whitney U: 8,

***p < 0.001).

(D) Left: foreground contrast tuning for block exper-

iments at 0% and 100% background contrast. Right:

contrast sensitivity was increased for Tm3 block flies

as measured by lowered semi-saturation constant

c50 (Mann-Whitney U: 39, ***p < 0.001).

(E) Blocking results for Mi1 (as in C). Average ampli-

tude over all frequencies was reduced for Mi1 block

flies (Mi1 block: 20/5, Mi1 control: 21/6; Mann-

Whitney U: 143, *p = 0.04).

(F) Blocking results for Mi1 (as in D). Contrast sensi-

tivity was increased for Mi1 block flies (Mann-Whit-

ney U: 128, *p = 0.02).

(G) Blocking results for Tm1 (as in C). No significant

effect was found for Tm1 block flies (Tm1 block: 20/5,

Tm1control: 19/5;Mann-WhitneyU: 169,NSp=0.28).

(H) Blocking results for Tm1 (as in D). Sensitivity was

not affected (Mann-Whitney U: 158, NS p = 0.19).

(I) Blocking results for Tm2 (as in C; Tm2 block: 20/5,

Tm2 control: 25/6; Mann-Whitney U: 17, ***p < 0.001).

(J) Blocking results for Tm2 (as in D; Mann-Whitney

U: 239, NS p = 0.49). Semi-saturation constant at 0%

background contrast did not change for Tm2 block

flies. Shaded areas show bootstrapped 68% confi-

dence intervals around the mean. Error bars show

bootstrapped 68% confidence intervals around the

median.

See also Table S2.

data-driven LPTC model and found moder-
ate reduction of cross-image variability
compared to a model with bypassed
normalization (Figures S5L–S5N). However,
post hoc ablation may specifically disad-
vantage the simpler model. To investigate
performance limits in a principled way, we
pursued a task-driven approach.
Recent progress in deep artificial net-

works has made it feasible to use image-
processing models of neural systems for
rigorously assessing performance on real-
world problems [54–56]. EMD-like architec-
tures are concisely expressed asmulti-layer
convolutional networks [54] and fully differ-
entiable, rendering them amenable to opti-
mization methods like gradient descent.

We designed a fly-like neural network and independently trained
possible types of contrast processing such that eachmodel class
could optimally adapt to a specific, behaviorally relevant task.
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All models featured linear, spatiotemporally separable input
convolutions (Figure 6A). We evaluated three alternatives for
contrast transformation: a linear stage where output was trans-
mitted unchanged, a statically compressive stage that limited
signal range independently of context, and a dynamic compres-
sion stage with adaptive gain depending on the output of a
contrast-sensitive surround filter (Figures 6A and 6B; STAR
Methods). Resulting output from two distinct channels was
then processed according to a multiplicative EMD scheme.
Through backpropagation and stochastic gradient descent,
models were trained to estimate the true velocity of natural im-
ages translating at random speeds.

All models successfully learned the task on the training set
(Figure 6C). We initialized convolutions randomly but after
training observed antagonistic spatial filters and transient tem-
poral filters where one channel was phase delayed with respect
to the other (Figure 6D; Figures S6A–S6C). Models thus made
extensive use of redundancy reduction through center-surround
configurations [35] and discovered the EMD strategy of delay
and compare [26]. Normalization fields for the dynamic model
spanned approximately 30! in azimuth and invariably excluded
information from the center of the filter (Figure 6E; Figure S6C).
Interestingly, dynamic models exploited normalization in both

channels and switched normalization strategies during training,
transitioning from purely static to purely context-dependent
compression (Figures S6D and S6E). Overall, normalized net-
works acquired representations that matched filtering and gain
control properties of the fly medulla.
When tested on previous experimental stimuli (Figure 1), linear

models exhibited improved velocity tuning curves compared to a
standard EMD (Figures 1F and 6F; Figure S6F), but estimates still
varied substantially across time. Dynamic models, on the other
hand, proved extremely robust at extracting scene motion
across time, images, and velocities within the velocity range of
the training set (Figures 6F and 6G). Given that all networks
were based on amultiplicative EMD scheme, typical phenomena
like the velocity optimum were still present. We compared
average estimation error on a held-out test set and found both
types of non-linear compression to vastly outperform the linear
stage (Figure 6H). The performance of static compression indi-
cates that simple response saturation already enhances robust-
ness to contrast fluctuations in natural scenes. However, fly-like
context sensitivity consistently decreased test error over the
static non-linearity (error reduction 22.0%–29.2%; bootstrapped
95% CI). Finally, we benchmarked generalization on a fully inde-
pendent image set (Figure S6G), where linear models failed
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Figure 6. Contrast Normalization Enhances
Robustness to Natural Scene Variability
(A) Schematic of single convolutional input filter.

Motion stimuli are sequentially processed by a

spatial 3 3 3 3 1 (azimuth, elevation, time) and a

temporal 1 3 1 3 30 filter. Through a transfer

function, the signal is combined with a normali-

zation signal generated by a 11 3 11 3 1 convo-

lution operating on full-wave rectified input signal.

The output of two distinct channels is processed

analogously to multiplicative EMDs.

(B) Input-output relationships for linear, static, and

dynamic models. In the dynamic model, response

sensitivity is a function of normalization field activity.

(C) Training mean squared error (MSE) for two

example models during stochastic gradient

descent.

(D) Spatial and temporal receptive fields for the

two channels of a typical dynamic model. De-

picted are normalized filter weights.

(E) Spatial receptive field of normalization pool for

the model from (D).

(F) Model output for individual images moving at

20!s"1 during gray-shaded period. Gray line in-

dicates target velocity. Left: example model

without non-linearity. Right: example model with

dynamic non-linearity.

(G) Velocity tuning curves of example dynamic

model for individual images (averaged between

0 and 3 s after motion onset). Gray line indicates

true velocity. Gray-shaded area indicates the 99th

percentile of absolute velocities in training set.

(H) Mean performance of trained models on held-

out test set, estimated as root mean square error

(RMSE; n = 22/23/16 for linear/static/dynamic;

*p < 0.001, t = 9.01, Student’s t test with assumed

equal variance; only difference between static and

dynamic was tested). Error bars indicate boot-

strapped 68% confidence intervals.

See also Figure S6.
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catastrophically while both compressive stages retained perfor-
mance. This was particularly pronounced when testing images
with high dynamic range (STAR Methods). Critically, on all data-
sets, dynamic compression resulted in substantial error reduc-
tion with respect to both linear transfer and static compression.

DISCUSSION

In summary, our work represents the first demonstration that
divisive contrast normalization occurs in the fly visual system
and offers a comprehensive look at non-linear response proper-
ties in a virtually complete motion vision circuit. We established
at multiple levels of motion processing that responses to moving
panoramas are substantially more robust than predicted by
correlation-based models of the system. Our behavioral experi-
ments indicate that the sensitivity of the optomotor response is
regulated by average contrast in a spatially confined part of the
visual field. Critically, we traced the emergence of this dynamic
signal compression to local elements in the medulla of the fly
optic lobe and used targeted circuit manipulation to identify
neural feedback as a critical underlying mechanism. Finally,
our task-driven approach revealed that the inclusion of spatial
contrast normalization drastically improves velocity estimation
in correlation-based models of fly motion vision.

Implications for Fly Motion Vision
Previous work on the function of local units in the Drosophila
optic lobe mostly explored linear properties of light responses,
often relying on first-order systems identification techniques
like reverse correlation [9–11, 29]. Investigation of non-linear
contributions generally focused on computations in direction-
selective T4 and T5 cells [13–19, 57, 58].
Here, we describe a powerful non-linearity, adaptive gain con-

trol that occurs in a majority of columnar neurons involved in the
detection of motion. This casts doubt on the extent to which
existing functional descriptions can be generalized. Linear filter
estimates are typically based on responses to dynamic noise
stimuli of fixed amplitude [9, 10, 29]. Our work suggests that
this contrast regime only corresponds to one particular adapta-
tion state for anymeasured cell type, so filter properties may well
differ for stimuli with differing contrast characteristics. Step and
edge responses, for instance, are usually measured on back-
groundswith uniform luminance [11, 12, 18, 59]. This places cells
in a maximally sensitive state due to lack of surround inhibition
and is likely to affect both response amplitude and kinetics.
Signal compression may reconcile observed discrepancies be-
tween studies conducted with different stimuli.
Interestingly, visual interneurons exhibited qualitatively

different sensitivity curves even at constant background contrast.
In the lamina, for instance, only tonic cell type L3 responded lin-
early to increasing visual contrast. Sensitivity curves of transiently
responding cell types like L1 and L2, on the other hand, proved
approximately logarithmic. This is in line with expectations from
previous work in other fly species [60] but deviates from predic-
tions based on white noise characterizations [29].
Moreover, we observed a stark discrepancy in baseline sensi-

tivity between ON- and OFF-sensitive neurons, where tuning
curves of dark-selective units were shifted toward higher pattern
contrast. Notably, due to strong surround suppression, full-field

gratings elicited comparatively weak responses in T5 units
whereas T4 cells were driven effectively by the same stimuli.
This adds to previous work on ON-OFF asymmetries in the
Drosophila visual system [31, 38]. We conclude that even at pri-
mary processing stages, the fly visual system represents
contrast in a multiplexed fashion where individual channels
diverge with respect to how they transmit information about
luminance differences. The function of these asymmetries re-
mains to be investigated.
The proposed model based on divisive normalization accu-

rately captures most features of the observed contrast tuning
curves (see Figure 3; Figure S5; Table S1). Certain discrep-
ancies remain. For instance, the normalization model predicts
that responses for different background contrasts eventually
plateau at the same level. However, we observed in both
behavior (Figure 2E) and T4 responses (Figure 3P) that in the
absence of background contrast, saturation occurred at a lower
level than for other conditions. To explain such non-monotonic
behavior, further investigation of the underlying mechanism is
required.
Divisive normalization of local motion signals has previously

been suggested to occur at the level of LPTCs, through either
isotropic pooling of EMDs in hypothetical secondary cell types
[33] or passive membrane properties of LPTCs [61, 62]. Here,
we show that gain control already originates upstream of mo-
tion-sensitive cell types T4 and T5. However, LPTC-intrinsic
gain control mechanisms, including temporal adaptation [32],
could well be complementary such that at each processing
stage, the fly visual system makes use of compression to opti-
mize the reliability of output signals.
In flies, there is ample evidence for changes in visual coding

that depend on the behavioral state of the animal. Various inter-
neurons within the optic lobe, for instance, are affected by the
activity of octopaminergic projection units, leading to drastic
shifts in response gain or temporal tuning [9, 59, 63–67]. Our cal-
cium imaging experiments were performed in immobilized
Drosophila. It will be of interest to explore whether the properties
of contrast gain control are modulated by locomotion, particu-
larly in highly state-sensitive units like Mi4 [59].

Mechanism of Signal Compression
Our experiments suggest that neural feedback plays a crucial
role in gain adjustment. At this point, the cellular origin of feed-
back is unknown. Present experiments indicate a visual integra-
tion field that spans many columns (Figures 2 and 4). Moreover,
the observed contrast compression appears to be suppressive.
All tested medulla cell types with strong background contrast
dependency emit acetylcholine, which, in the Drosophila visual
system, is generally thought to be excitatory [68, 69]. Inhibitory
interneurons could mediate the required synaptic sign reversal.
Signal compression could then be implemented through lateral
neighbor-to-neighbor interactions between columnar medulla
units where suppressive signals spread through a local network.
Alternatively, we hypothesize that wide-field interneurons pool
local medulla units across multiple columns and provide recur-
rent inhibitory input to the same cells. In our data-driven model,
such a pool cell mechanism accounted for all observed spatio-
temporal properties of signal compression including ringing ef-
fects (Figure S5). Finally, our TNT-based intervention strategy
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should leave coupling via electrical synapses intact [52, 70]. We
can therefore not exclude that gap junctions are also involved in
shaping contrast response properties.

Silencing feedback from individual medulla cell types had dif-
ferential effects, ranging from completely abolished suppression
in Tm2 to unchanged responses in Tm1 (Figure 5). This suggests
either that multiple cell types feed into the pool signal with vary-
ing weight or that alternative mechanisms provide the compres-
sive signal, for example, in Tm1. Moreover, it is an open question
whether all cell types are suppressed by one or multiple pool cell
types. Asymmetries in sensitivity between ON and OFF path-
ways, for instance, could be an indicator for polarity-specific
sources of suppression.

In both distal and proximal layers of the medulla, the class of
neuropil-intrinsic Dm and Pm neurons contains approximately
20 cell types and offers a possible substrate for the mechanism
[71, 72]. These neurons arborize within the medulla and exhibit
diverse stratification and tiling patterns, often spanning dozens
of columns and thus approximately matching the observed sup-
pression field of local units. Dm and Pm units release either
GABA or glutamate for which receptors in the fly visual system
are mostly inhibitory [68], pointing to these cell types as potential
candidates for gain control.

Functional Relevance
Normalization has often been described as a generic mechanism
for removing higher-order correlations from natural signals [5,
73–75]. Here, we close the loop between neural mechanism
and an ecologically critical behavior, the optomotor response,
and demonstrate how contrast gain control can render motion
detection resilient to challenges imposed by natural scene statis-
tics. Specifically, normalization serves to distinguish between
ecologically relevant parameters like retinal image velocity and
nuisance factors like image contrast.

Various biomimetic modeling studies have incorporated
compressive transforms along the motion processing cascade
to improve robustness under naturalistic visual conditions [43,
53, 76]. In contrast to our work, these normalization stages
were not based on experimental evidence, required ad hoc
parameter tuning, and generally operated in the temporal
domain. Interestingly, the fly visual system bases gain control
on a temporally immediate, spatially extended estimate of
contrast. This represents a trade-off where spatial resolution is
sacrificed in favor of temporal resolution, whichmay be advanta-
geous for global optic flow estimation in rapidly moving animals.

To assess the exact causal contribution of contrast compres-
sion to the robustness of velocity estimation in Drosophila, one
would need to disrupt this mechanism specifically while leaving
all other visual processing intact. Silencing the synaptic output of
medulla neurons (Figure 5) demonstrates the importance of neu-
ral feedback for gain control but should additionally affect feed-
forward processing in downstream units, particularly T4 and T5
[11, 12, 77, 78]. Future mapping of the circuits underlying
contrast compression will provide the tools for establishing
causality.

The convolutional network (Figure 6) solves the task of esti-
mating velocity across diverse environments and at little compu-
tational cost, particularly compared to standard optic flow
algorithms like the Lucas-Kanade method [79]. Present findings

may thus aid the design of low-power, low-latency machine
vision systems suitable for autonomous vehicles [80, 81].

Comparison with Other Sensory Systems
Gain control in the Drosophila optic lobe bears a striking resem-
blance to normalization in other systems and modalities like fly
olfaction [82] or mammalian auditory cortex [83] as well as pro-
cessing in vertebrate visual areas from retina to V1 [48, 84–86].
Spatial and temporal tuning or isotropy of non-linear surround
suppression in the lateral geniculate nucleus, in particular, qual-
itatively match that of transient units in the fly medulla [40]. The
present study suggests differences at the implementation level.
For instance, investigations into divisive normalization in
mammalian V1 cells point to feedforward mechanisms underly-
ing gain control whereas the fly visual system appears to rely pri-
marily on feedback signals (Figure 5) [50]. Both systems, howev-
er, realize a similar algorithm. This provides further proof for
evolutionary convergence on canonical solutions in neural sen-
sory processing [41].
Overall, our work establishes the Drosophila visual system

with its defined cell types, known connectivity patterns, powerful
genetic toolkit, and direct correspondence between circuit and
task as a novel model for the study of normalization. It thus
lays the foundation for future mechanistic inquiries into the func-
tional, cellular, molecular, and biophysical underpinnings of a
crucial computation in sensory processing.
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LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Aljoscha
Leonhardt (leonhardt@neuro.mpg.de). This study did not generate new unique reagents.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Drosophila melanogaster were kept on a 12 h light/12 h dark cycle at 25!C and 60% humidity on standard cornmeal-agar medium.
Genetic expression of effectors was targeted through the Gal4-UAS system [90]. Resulting genotypes and their abbreviations are
listed in Table S2.
Unless stated otherwise, locomotion and tangential cell responses were recorded in wild-type Canton S flies 1 to 5 days after

eclosion (Figures 1 and 2). We used the genetically encoded calcium indicator GCaMP6f [45] to determine the functional properties
of individual cell types (Figures 3, 4, and 5). Throughout silencing experiments (Figure 5; Figure S2), we expressed tetanus toxin
light chain (TNT) or an inactive version (TNTin) in the cell type of interest [52]. For calcium imaging experiments involving silencing
(Figure 5), one day old flies were collected and put on 29!C for 3 days to boost expression of TNT or TNTin.

METHOD DETAILS

Natural image sets
For electrophysiology, behavioral, and modeling experiments, we used images from a published set of 20 natural panoramic scenes
[43] termed dataset A. All images were independently processed as follows: We averaged across color channels and downsampled
the scene to a resolution of 1,600 3 320 pixels (covering 360! sampled at 0.225 pixels per degree along the azimuth) using linear
interpolation. To be able to render 12 bit images on conventional screens with 8 bits of dynamic range, we first performed standard
gamma correction by raising raw pixel values to a power of 0.45 and then clipped the top percent of pixel intensities. The resulting
image was scaled to fill the range between 0 and 255.
For optomotor experiments (Figure 1), we selected a subset of 8 images that covered different types of terrain. From this set, we

again selected a subset of 6 images to determine tangential cell responses. We used all 20 images to build the convolutional network
(Figure 6), randomly assigning 15 scenes to the training and 5 to the test set. Finally, we validated the trained convolutional model with
images from an independent panoramic scene collection [89] consisting of 421 images (Figure S6G). These scenes were kept at their
native resolution of 927 3 251 pixels (corresponding to an azimuthal sampling rate of 0.39 pixels per degree) and processed as
above, yielding dataset B. We then generated two test sets: One had gamma correction applied to limit the images’ bit depth
(‘‘low dynamic range’’ or LDR) and the other one was left at 12 bit depth to produce a dataset with high dynamic range (HDR).

Behavioral experiments
Experiments on the treadmill setup were conducted as described before [20, 31, 44]. Briefly, we tethered flies to a thin metal rod and
placed them on air-cushioned polyurethane balls whose movement was tracked at 4 kHz, allowing for direct readout of rotational
motion along all three axes. Temperature within the vicinity of the fly was 25!C at the start of each experiment. Using a closed-
loop thermoregulation system, we linearly increased it to 34!C within 15 min to encourage locomotion.
For visual stimulation, we used three identically calibrated computer screens that were placed in a rectangle surrounding the fly. To

simulate a cylindrical display, all stimuli were rendered onto a virtual cylinder and distorted accordingly before projection onto
screens. Our setup covered approximately 270! in azimuth and 120! in elevation of the visual field. All stimuli were displayed at
144 Hz and at a spatial resolution greatly exceeding that of the fly eye. Screens had a maximum luminance of approximately
100 cd m-2 and a luminance depth of 8 bit; for all descriptions below, we assume pixel brightness to range from 0 to a maximum
of 1. Patterns were generated in real-time and programmed in Python 2.7 using the game engine Panda3D.

Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Software and Algorithms

Custom-written software in Python This study https://github.com/borstlab/

normalization_paper

ScanImage 3.8 [88] http://scanimage.vidriotechnologies.

com/display/SIH/ScanImage+Home

Other

Natural images for experiments and modeling [43] N/A

Natural images for modeling [89] https://doi.org/10.4119/unibi/2689637
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Wemeasured velocity tuning curves (Figure 1) for 8 distinct natural images at 6 logarithmically spaced velocities ranging from 5 to
1,280!s-1. Initial image phase was randomized on each trial. Scenes were displayed at their native gamma-corrected mean
luminance and contrast (see above). On each trial, images stood still for 1.5 s, then were rotated at the chosen velocity for 0.5 s,
and remained fixed for another 1.5 s.

The optomotor contrast stimulus separated the visual field into two areas (see Figure 2A; Figure S2). For the so-called background,
we tiled the visual field with pixels of size 5! x 5!. At each pixel location we drew a temporal frequency f from a normal distribution
(m = 0 Hz, s = 1 Hz) and a starting phase l from a uniform distribution covering 0 to 360!. Instantaneous luminance of each pixel iwas
then determined by a random sinusoid of the form

IiðtÞ = 0:5+ 0:5 cbggðsinð2p fi t + liÞÞ

where the experimental parameter cbg runs from 0 to 100% and controls the effective contrast of the background. To increase
average contrast in the visual field, we applied the compressive transform

gðxÞ = x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1+a2

1+a2x2

r

where a = 5 determined the degree of curve flattening. Using this method, we generated stochastic and dynamic visual input at a
controllable contrast level without introducing coherent motion (see Figure 2B).

The so-called foreground delivered a coherent motion stimulus driving the optomotor response. It consisted of two vertical stripes
that were placed at plus and minus 90! from the frontal axis of the fly, each spanning 20! in azimuth and the full screen elevation. We
again tiled each stripe with pixels covering an area of approximately 5! x 5!. For each pixel i, luminancewas fixed over time and deter-
mined by

IiðtÞ = 0:5+ 0:5cfggðsinðliÞÞ

where the experimental parameter cfg controls the effective motion contrast and l was independently drawn from a uniform dis-
tribution covering 0 to 360!. The pixelated noise pattern smoothly wrapped around the azimuthal borders whenmoving. Note that for
all instantiations of the stimulus, mean luminance across the visual field was 0.5.We verified that at typical scales of visual processing
in Drosophila (approximated as a Gaussian filter with FWHM = 25! that covers a majority of the receptive fields of visual neurons; see
[9]), variation in average luminance around this mean was small (Figure S2L).

For the basic contrast tuning experiment (Figures 2A–2E; see Video S1), we exhaustively measured combinations of logarithmically
spaced values for cfg (1.6, 3.1, 6.3, 12.5, 25, 50, and 100%) and cbg (0, 25, 50, and 100%). At the beginning of each trial we simul-
taneously presented the dynamic background and the static foreground pattern. Between 1.5 and 2.0 s following stimulus onset, the
foreground pattern moved at a fixed velocity of 50!s-1. For oscillation experiments (Figures 2F–2J), the motion period was extended
to 6 s.While the foreground pattern wasmoving, we sinusoidally modulated the contrast of either fore- or background between 0 and
100% around a mean value of 50% and at the specified temporal frequency (see Figure 2F; Figures S2A, S2C, and S2E; Video S2).
When mapping the spatial extent of the contrast-induced modulation, we set the modulation frequency to 1 Hz and restricted the
background pattern to two stripes of 10! width flanking each foreground pattern (see Figure S2A). The distance parameter (15,
17.5, 20, 22.5, 25, 27.5, 30, 35, or 40!) determined the separation between centers of foreground and background. In this experiment,
we additionally measured a zero-contrast background condition to obtain an appropriate modulation baseline. Here, the motion
stimulus had a contrast of 25% and luminance in the rest of the field was set to a uniform 0.5. Example traces in Figure 2G are taken
from this spatial experiment (for distance 15! or no background). For the temporal experiments, wemeasured oscillation frequencies
of 0.5, 0.75, 1, 1.5, 2, 3, 4, 6, 8, and 10 Hz (Figure 2J). Background contrast was zero when measuring foreground tuning; for back-
ground tuning, foreground contrast was set to 25%.

All stimulus patterns were displayed twice throughout optomotor experiments, once in clockwise and once in counterclockwise
direction of motion. We recorded multiple trials to obtain robust turning responses for each fly (15 trials for natural image stimuli,
20 for contrast tuning, 25 for oscillation stimuli). Presentation order was shuffled across conditions within any trial to mitigate adap-
tation effects. Individual experiments lasted between 60 and 120 min.

Electrophysiology
Our patch-clamp recordings from tangential cells followed established protocols [11]. Cell bodies of horizontal system (HS) units
were targeted visually through a microscope. We confirmed their preferred direction by stimulation with oriented moving sine
wave gratings before each experiment.

Visual stimulation was delivered using a cylindrical projector-based arena as previously described [9]. Briefly, the screen of the
arena covered a viewing angle of the fly of 180! in azimuth and 105! in elevation. Stimuli were generated at a framerate of 180 Hz
using green light spanning approximately 500 nm to 600 nm in wavelength. The maximum luminance this arena achieved was
276 ± 48 cd m-2 (mean ± SD across devices). All visual stimuli were rendered using custom software written in Python 2.7 and the
Panda3D framework. Membrane potential was recorded using custom software written in MATLAB (MathWorks, MA).

We measured tuning curves for 6 distinct natural image panoramas at 9 logarithmically spaced velocities ranging from 2.5 to
640!s-1 (Figure 1). On each presentation, the scene was displayed at a fixed phase, stayed still for 1 s, and then rotated horizontally
for 3 s at the chosen constant velocity. Image movement was always in the preferred direction of the HS unit. We showed images at
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their native gamma-corrected mean luminance and contrast (see above). Each condition was repeated 5 times. Conditions and trials
were randomly interleaved to exclude adaptation effects along any stimulus dimension.

Calcium imaging
Calcium imaging experiments were performed using custom-built two-photon microscopes as described before [9]. The imaging
acquisition rate was 11.8 Hz for all experiments, or 23.7 Hz for the experiment in Figure 4D, with imaging resolutions ranging from
32 3 32 to 64 3 128 pixels. Image acquisition was controlled using the ScanImage software (version 3.8) [88]. We prepared flies
as previously described [9, 14]. Briefly, Drosophila were anesthetized on ice and glued onto an acrylic glass holder with the back
of their head exposed to a perfusion chamber filled with Ringer’s solution. Then the cuticula was surgically opened to allow optical
access.
Stimuli were presented using the same projector system as in electrophysiological experiments, with additional long-pass filters

(cut-off wavelength of 550 nm) in front of the projectors to spectrally separate visual stimulation from GCaMP fluorescence signals.
To identify receptive field (RF) positions of individual neurons, white noise stimuli of 3 min length were used (except for T4 and T5

cells, see below). The stimuli were pre-rendered at 60 Hz and generated as previously described [9]. Briefly, the spatial resolution of
all white noise stimuli was 2.8! of visual angle corresponding to 64 pixels across the 180! screen. For all lamina cells, the same stim-
ulus was used in order to provide a systematic description of their spatiotemporal filtering properties (Figure S3). This stimulus had a
Gaussian autocorrelation with a standard deviation of approximately 45 ms in time and a contrast of 25% around a mean intensity
value of 50 on an 8 bit grayscale. For some medulla cell types, variants of this stimulus with higher contrast or longer time constants
were used if necessary to reliably locate their RFs on the arena. Specifically, wemapped RFs for Tm4,Mi4,Mi9 and Tm9with a binary
stimulus at 100% contrast and a temporal cut-off frequency of 1 Hz. For Mi9, we chose a 1D version of this stimulus, consisting of
horizontal (1.5 min) and vertical bars (1.5 min) instead of pixels.
For T4 and T5, we relied on a novel stochastic motion noise stimulus to determine RF coordinates. First, we determined the

preferred direction of an ROI using drifting gratings. Then we displayed a stimulus consisting of 20 randomly distributed 15! wide
circular windows. Inside of each window, a 30! wavelength sine grating drifted at 30!s-1 in the preferred direction (Figure S3X).
The positions of these 20 windows were changed and randomly chosen every second over 4 min. Reverse correlation of T4 and
T5 responses with the area covered by those windows at a given time point yielded motion-sensitive RFs which were fit with a
Gaussian to determine center coordinates (Figure S3Y). These were verified by presenting 25! windows containing full contrast drift-
ing gratings at the estimated RF center and 6 hexagonally distributed positions around the center. Cells responded only to the grating
in the RF center (Figure S3Z).
For the experiments shown in Figure 3, a 25! circular window around the RF center of a cell defined the foregroundwhereas the rest

of the screen was defined as background. Before stimulus presentation, we verified that RF centers were sufficiently distant from the
border of the screen to allow full display of the foreground. A drifting sine grating with 30! wavelength and a velocity of 30!s-1 was
shown, starting with medium gray at the center of the RF and moving for 4 s after stimulus onset (see Video S3). The contrast of the
grating was varied independently between background and foreground. A stimulus matrix of 7 foreground contrasts (1.6, 4, 8, 16, 32,
64 and 100%) and 6 background contrasts (0, 8, 16, 32, 64 and 100%) at a constant mean luminance of 0.5 was presented.
For the experiments shown in Figures 4A–4C, the foreground contrast was chosen depending on the cell type as the point where

the suppression elicited by 100% background contrast (as measured in Figure 3) would be greatest. This was 16% for Mi1, 32% for
Tm1, 100% for Tm2 and 64% for Tm3. The background had 100% contrast and 30! wavelength. We varied either its direction, its
velocity (0, 0.25, 0.5, 1, 2, 4, 8, 16, 32 or 64!s-1), or restricted its presentation to an annulus with changing outer diameter. A reference
condition with 0% background contrast was added to the stimulus protocol.
For the contrast-step stimulus experiments shown in Figure 4D (see Video S4), the background grating had 30! spatial wavelength,

drifted with 90!s-1 after motion onset and its initial phase was randomized. For Tm2 it had full contrast, for Tm3 44%contrast. The 25!

foreground windowwas 50%gray and we placed a 5! wide dot in the center. For Tm3, the dot was initially black and set to white for a
duration of 50ms at a given time interval aftermotion onset of the background grating. For Tm2, the dot was initially white and then set
to black. The time interval was varied in steps of 50 ms from –250ms to 500 ms and then in steps of 100ms. Negative values indicate
that the surround grating started to move after the dot changed its intensity. Additional time intervals were –500 ms and –1 s. The
block experiments in Figure 5 were performed with the same frequency tuning stimuli as before (Figure 4B). For the contrast tunings,
the same stimuli as in Figure 3 were used but with background contrast of either 0 or 100% only.
All stimuli were repeated three times in randomized condition order to prevent adaptation to any stimulus features.

Modeling
Natural motion stimuli
To evaluate the performance of our models under naturalistic conditions, we generated a synthetic set of motion sequences that
closely mimicked the experimental stimuli described above. For each sequence we translated 360! images at a fixed horizontal ve-
locity through a virtual window spanning 100! in azimuth. Given their panoramic nature, scenes wrapped around seamlessly at each
border. Movies were generated at a time resolution of 100 Hz. To reduce jitter for small velocities, we linearly interpolated non-integer
pixel shifts. Fly eye optics were simulated ahead of time. We blurred each frame with a Gaussian filter (full width at half-maximum of
4!) to approximate the acceptance angle of each photoreceptor [26] and then sampled individual signals from a rectangular grid with
isotropic spacing of 4! (yielding 23 3 17 receptor signals per frame for dataset A and 23 3 23 for dataset B, as described above).
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For the comparison in Figure 1, we modeled the exact stimulus parameters of the electrophysiological experiment including an
approximation of the image’s starting phase on the arena. We generated sequences for our convolutional detector models (Figure 6)
as follows: The set of 20 panoramic images was randomly split into a training group consisting of 15 scenes and a test group con-
sisting of 5 scenes. For each sequence, a random image was drawn from the appropriate set. The stimulus lasted 5 s. Between 1 and
4 s, scene velocity stepped from zero to a fixed value drawn from a Gaussian distribution with SD = 100!s-1. The initial window phase
followed a uniform distribution spanning 360!. To further augment the dataset, we flipped the underlying image along the horizontal
and vertical axes with a probability of 50%. We generated 8,192 such sequences for the training set and 512 for the test set.
Experimental stimuli
For all modeling experiments in Figure S5, we replicated the experimental protocols described above as precisely as feasible. All
stimuli were projected onto a field of view that spanned 120! in azimuth and 90! in elevation at a spatial resolution of 1! for calcium
imaging experiments and 0.5! for behavioral experiments. Frames were then blurred and sampled as described for natural image
stimuli. Brightness values for all stimuli ran from 0 to 1 and we fixed the mean level for contrast stimuli at 0.5. For calcium imaging
stimuli, we always placed the foreground disk at the center of the field of view. Patterns were rendered and processed at 100 Hz.

Tuning curves for the basic contrast experiment (Figures S5B–S5D), the frequency experiment (Figure S5F), and the background
diameter experiment (Figure S5G) were estimated from a single trial per parameter setting. For the background orientation experi-
ment (Figure S5E) and the step interval experiment (Figure S5H) we averaged 100 trials with randomized background pattern phases
to approximate the experimental phase stochasticity that results from individual cell receptive fields being located in different parts of
the visual field. We averaged 200 trials for the behavioral stimuli (Figure S5K) to account for the intrinsic stochasticity of the stimulus
and to generate reliable model responses. Throughout Figure S5, we calculated point estimates for all tuning curves exactly as
described for the behavioral and calcium data.
Tuning curve normalization model
The analytical model for divisive normalization (Figures 3V–3X) resembles previous formulations in the literature [48, 50, 86]. The
steady-state response R of a neuron is given by

R
"
cfg; cbg

#
=
Lfgc

p
fg + Lbgc

p
bg

cp
50 + cp

fg +Sp

where cfg and cbg are foreground and background contrast and Lfg and Lbg are weight factors defining the respective amount of
linear contribution of foreground and background to the response. The semi-saturation constant c50 determines the contrast at which
the cell responds with 50% strength and the parameter p defines the steepness of the saturation curve.

The normalization term

S = wpool$c
q
bg

gives the amount of divisive surround suppression which is proportional to background contrast to a power of q, which accounts
for possible non-linear scaling behavior, with a proportionality weight constant wpool. In this model, the normalization indexwpool/c50
quantifies how much the sigmoidal tuning curve shifts to the right when cbg is increased from 0 to 1 (full contrast), in relation to the
semi-saturation constant. It thus describes the fold decrease in contrast sensitivity between no background contrast and full back-
ground contrast.

For evaluation of the normalization index (Figure 3X), this model was fit individually for each cell. Parameter fits to the average
tuning curve per cell type are listed in Table S1. Since tuning curves from individual cells are subject to measuring inaccuracies,
we cross-validated fit quality. We optimized model parameters for the average tuning curve of 50% of all measured cells per type
and evaluated variance explained for the other 50%. This was repeated 100 times with shuffled training and validation sets. For
all cell types, cross-validated variance explained was more than 90% (see R2

DivisiveNorm in Table S1). When we repeated this proced-
ure with a fully linear model

R
"
cfg; cbg

#
= Lfgcfg + Lbgcbg

variance explained dropped substantially for all units except L3 (see R2
linear in Table S1).

This analysis was implemented using Python 2.7 and NumPy 1.11.3. Optimization of model parameters was performed using the
L-BFGS-B algorithm in SciPy 0.19.0.
Data-driven detector model
The reference model in Figure 1 was based on a standard implementation of the Reichardt-type correlational motion detector [26].
Briefly, all receptor signals of the two-dimensional input grid (see above) were filtered with a first-order high-pass (t = 150 ms). We
then multiplied each local signal with the delayed horizontal neighbor (first-order low-pass, t = 50 ms). This was done twice in a
mirror-symmetrical fashion and resulting output was subtracted. Finally, we summed across all local detectors to derive a model
of tangential cell output. For the illustration in Figure S1C, we simulated the receptor array at the full image resolution without blurring.
These models were implemented in Python 3.6 using PyTorch 0.4.1.

We simulated time-resolved cell models for three basic response types: a purely linear low-pass unit (modeled after L3; Fig-
ure S5B), a strongly normalized band-pass unit (modeled after Mi1; Figure S5C), and a weakly normalized low-pass unit (modeled
after Mi9; Figure S5D). We hand-tuned parameters based on our and previous work [9] to qualitatively match response properties
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of the corresponding cell. Models were implemented as signal processing cascades (see Figure S5A). First, signals at each location in
the field of view were filtered with a spatial difference of Gaussians kernel that had a central full-width at half-maximum (FWHM) of 6!

and a FWHM of 20! in the surround. In accordance with results from receptive field mapping (Figure S3), the weight ratio between
surround and center was 100% for low-pass units and 50% for the band-pass model. Full-field flashes would thus produce no acti-
vation in low-pass units. This was followed by first-order temporal filters: a single low-pass filter for low-pass units (t = 80ms) or serial
low- (t = 50 ms) and high-pass filters (t = 150 ms) for band-pass units. We then left the signal as is for ON cells or sign-inverted it for
OFF cells and half-wave rectified the output by setting all negative values to zero.
For normalized cell models, we calculated local input Pi from the normalization field by pooling across rectified signals xi with a

Gaussian kernel (FWHM = 30!). Final output was then calculated using the divisive normalization equation

fðxiÞ =
xpi

cp
50 + xpi + ðwpoolPiÞp

where i indexes across points in space and time, c50 determines baseline sensitivity, exponent p regulates the static response non-
linearity, andwpool adjusts sensitivity to the normalization field signal.Wemanually tuned normalization parameters for the band-pass
(c50 = 0.012, p = 1.3, wpool = 1.5) and the low-pass cell (c50 = 0.12, p = 1.1, wpool = 3.0) to match critical features of the empirical
contrast tuning curves (Figures S5C and S5D).
To generate simulated T4 responses (Figures S5I and S5J), wemultiplied the output of spatially adjacent low- and band-pass units.

For the linear reference model we bypassed the final normalization step in both arms of the detector. We built the LPTC model (Fig-
ure S5K) as a spatial array of T4 and T5 cells covering the full field of view, analogously to the previously described two-quadrant
detector [28]. For the T5 model, we used two OFF-sensitive input units with identical parameters as for ON cells. Output from
syndirectionally tuned T4 and T5 motion detectors was summed and subtracted from a mirror-symmetric, oppositely tuned array
to produce LPTC model output. The same model was used to simulate natural scene responses (Figures S5L–S5N). All models in
Figure S5 were implemented using Python 3.6 and NumPy 1.15.
To quantify the robustness of velocity tuning for models and LPTCs (Figure S5N), we calculated per-velocity coefficients of vari-

ation as the ratio between response standard deviation across images and response mean across images. For neural data, we used
cell-averaged mean potential to estimate these parameters.
Task-driven detector model
We implemented the trained detector model as a four-layer convolutional neural network consisting of linear input filters, a normal-
ization stage, local multiplication, and linear spatial summation. In contrast to typical deep architectures used for object recognition,
this network processed three-dimensional inputs spanning two dimensions of space as well as time.
First, receptor signals of shape 23 3 17 3 500 or 23 3 23 3 500 (azimuth, elevation, time), depending on the dataset, were

processed in two independent convolutional channels. The convolutions were temporally causal and spatiotemporally separable.
Each of the channels was composed of a 3 3 3 x 1 spatial filter (covering 3 simulated receptors in azimuth and elevation) followed
by a temporal filter of shape 13 1 x 30 (corresponding to 300 ms at the chosen time resolution of 100 Hz). Convolutions had no bias
parameter. In contrast to standard Reichardt detectors, each filter weight was allowed to vary freely during optimization.
Second, we passed local output signals xi (where i indexes points in space and time) through one of three types of local normal-

ization: a simple pass-through (termed ‘‘linear’’)

fðxiÞ = xi

a static and contrast-independent compression stage (termed ‘‘static’’)

fðxiÞ = tanh
$xi
c

%

where the trained parameter c determines the sensitivity of the saturating function, or an adaptive saturation stage (termed
‘‘dynamic’’)

fðxiÞ = tanh

&
xi

c+Pi

'

where c again determines the baseline sensitivity and Pi is the instantaneous output of a 113 113 1 spatial filter (centered on the
location of xi and operating on full-wave rectified output signals |xi|; see Figure 6A). This models the fast and spatially distributed
normalization we observed during experiments. We chose the hyperbolic tangent because it generalizes to positive and negative
input values, the transformation closely resembles the normalization model described above, and it is more commonly used in
the field of deep learning. Spatiotemporal filters were optimized independently for each of the two channels while the sensitivity
parameter c was shared.
Third, we then combined signals from both channels in a EMD-type scheme where adjacent signals were multiplied and output

from two mirror-symmetric pairs was subtracted. This stage was parameter-free. Finally, resulting signals were summed across
space and multiplied by a trained scalar amplification factor to generate the final time-resolved output of the model. The base model
without normalization had 79 trainable parameters; static normalization added one parameter and dynamic normalization
another 242.
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We trained each model architecture to estimate the true velocity of translation stimuli using automatic differentiation, backpropa-
gation, and stochastic gradient descent. The loss function we applied was the mean squared error (MSE) between model output and
current velocity of the scene. Weights were updated using the Adam optimizer [91], with parameters set to standard values (b1 = 0.9,
b1 = 0.999, ε = 10-8). Models were trained over 800 epochs with a batch size of 128; no early stopping was used. We set the initial
learning rate to 0.025 and divided it by a factor of 4 after 400, 500, and 600 steps. Input convolutional layers were initialized to random
values drawn from a uniform distribution. For the pooling receptive field, we initialized each weight with 0.0001 and the sensitivity
factor c with 1.0. Static sensitivity as well as pooling weights were constrained to be positive. In the dynamic normalization model,
we applied a L2 penalty of 400.0 to the spatial weights of the pooling stage. Hyperparameters were determined in preliminary exper-
iments with an independent image set. We optimized each architecture 16 to 23 times with different random number generator seeds
to assess reliability and did not select models post hoc.

We implemented all architectures in Python 3.6 using PyTorch 0.4.1 for automatic differentiation. Depending on model type, a
single optimization run took between 6 and 14 hs on an NVIDIA Titan Xp GPU.

QUANTIFICATION AND STATISTICAL ANALYSIS

Data evaluation for behavioral experiments
To ensure data quality, we excluded all flies whose average forward velocity during the experiment was below 0.25 cm s-1 andwhose
average turning tendency was either slowly drifting or far from 0!s-1. Fewer than 20% of all experiments failed these criteria.
Measurements of ball movement were downsampled via linear interpolation for further processing (to 50 Hz for natural image stimuli,
Figure 1; 20 Hz for contrast tuning, Figure 2; 100 Hz for oscillation stimuli, Figure 2). Trials were averaged.

Responses for clockwise and counterclockwise motion were subtracted and divided by two to minimize residual deviations from
straight forward walking. Traces for natural image and contrast tuning stimuli were filtered using a first-order low-pass with a time
constant of 100ms. For the contrast oscillation experiments, we evaluatedmodulation at the relevant carrier frequency by calculating
the zero-padded Fourier Transform of the turning trace and averaging the amplitude spectrum in a window of width 0.2 Hz centered
on the target frequency. These values were normalized per experiment such that themodulation peak after averaging was 100%.We
applied a Savitzky-Golay filter (window length 11 samples, 5th order polynomial) before plotting traces from oscillation experiments;
this did not affect the analysis.

All analysis for behavioral experiments was performed in custom-written software using Python 3.6, NumPy 1.15, and SciPy 1.1.

Data evaluation for electrophysiological experiments
Voltage data were digitized at 1,000 Hz. To account for slow drift in potential, we subtracted the average voltage in a 1 s window
before stimulus onset from each trace per stimulus condition and trial. Signals were then low-pass filtered (8th order Chebyshev
Type 1) and resampled at 100 Hz. Finally, we averaged cell responses across trials. Cells whose mean depolarization during full-
contrast sine grating presentation in preferred direction remained below 5 mV were discarded before further analysis. All analysis
for electrophysiological experiments was performed in custom-written software using Python 3.6, NumPy 1.15, and SciPy 1.1.

Data evaluation for calcium imaging experiments
Calcium imaging stacks were registered in order to correct for translational movement artifacts of brain tissue using custom-written
software. Responses of individual neurons were extracted by manually selecting small regions of interest (ROI) encompassing
individual anatomical structures. For T4 and T5 these corresponded to single or few axon terminals; for Mi and Tm cells, individual
axon terminals could be identified clearly through visual inspection. For ON pathwaymedulla cells, signals weremeasured in layer 10
of the medulla, for OFF pathway medulla cells in layer 1 of the lobula. For lamina cells L1–5, signals were measured at axon terminals
in corresponding layers 1–5 in the medulla. For T4 and T5, signals were recorded in the lobula plate.

To reconstruct RFs, calcium signals were mean subtracted and reverse-correlated with the stimulus as previously described [9].
1DGaussians were fit to horizontal and vertical cross-sections of spatial receptive fields to obtain precise RF coordinates. For lamina
cells (Figure S3), all reconstructed RFs were peak-aligned and analyzed as previously [9]. For 1D projections of spatial RFs (Figures
S3F–S3J), an average of 1D projections of 2D RFs along 3600 evenly distributed projection angles between 0! and 360! was calcu-
lated. This enhanced the visibility of the center-surround structure but neglected possible anisotropies in the spatial structure of RFs
[49]. For impulse responses (Figures S3K–S3O) the temporal receptive field of the 9 center pixels was averaged; frequency responses
(Figures S3P–S3T) are the Fourier-transformed impulse responses. Deconvolution (Figures S3U and S3V) was performed by dividing
the frequency spectra with the frequency response of a 1st order low-pass filter with time-constant 350 ms as a proxy for calcium
indicator dynamics [9, 92].

Relative fluorescence changes (DF/F) from raw calcium traces were obtained by adapting an automatic baseline detection algo-
rithm [93]. Briefly, raw data were first smoothed with a Gaussian window (full-width at half maximum, FWHM = 1 s). Then, minima
within a 90 s long sliding window were extracted and the resulting trace smoothed with a Gaussian window (FWHM = 4 min). The
result was used as a dynamic baseline F0 and DF/F values were computed as DF/F = (F–F0)/F0.

For further evaluation, only recordings with good signal-to-noise ratio (SNR) were taken. The criterion was that the standard
deviation of the mean signal averaged over trials had to be at least 120% of the mean standard deviation over trials. This criterion
filtered out cells with an inter-trial variance larger than the typical cell response (caused by movement artifacts or photobleaching).

e7 Current Biology 30, 209–221.e1–e8, January 20, 2020

111



In addition, the standard deviation of the mean signal had to be larger than 25% DF/F. On average, 90% of all cells measured passed
these criteria with slight variations due to different levels of GCaMP expression depending on the genotype.
For experiments with drifting gratings, the driving foreground contrast frequency was 1 Hz. For these experiments, we evaluated

the amplitude of the 1 Hz component of the signal. This was achieved by computing the Fourier coefficient at that frequency, using
the equation

F =

((((((
1

T

ZT

0

dt s tð Þ e"2pi$1Hz$t

((((((

where s(t) denotes the signal and T the stimulation time. For experiments in Figure 4D, we evaluated the peak response of the
calcium signal. For Figure S4, we additionally evaluated the average calcium signal (F0) during stimulus presentation and normalized
it to the maximum amplitude of the 1 Hz component (F1).
Amplitudes were averaged over trials and normalized to the maximum, then averaged over cells and normalized to the maximum.

For Figures 4 and 5, amplitudes were normalized to the response amplitude for the reference stimulus.

Statistical tests
Unless indicated otherwise, error bars show bootstrapped 68% confidence intervals around the mean (estimated as corresponding
distribution percentiles after resampling the data 1,000 times). All statistical tests were two-tailed and performed at a 5% significance
level. Normality of data distributions was assessed visually but not tested formally. Sample sizes are given in each figure legend and
were not based on power analysis but predetermined in line with standards in the field. We did not blind experimenters to genotypes
or conditions during data gathering and analysis.

DATA AND CODE AVAILABILITY

Code and experimental data are available on GitHub (https://github.com/borstlab/normalization_paper).
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Figure S1 | Behavioral, neural, and model responses to natural scenes. Related to Figure 1. 
(A) Natural image patch as seen through the field of view of model LPTC. (B) Estimate of local 
contrast in natural image patch. RMS contrast was estimated by filtering the image with a Gaussian (σ 
= 0.5 º), subtracting the filtered image from the original, squaring the mean-subtracted image, filtering 
it with a Gaussian (σ = 0.5 º), and taking the square root. (C) Spatially reconstructed output of 
simulated LPTC for same image patch as before, plotted as the square root of the time-averaged 
response. A horizontally motion-sensitive LPTC was constructed using the same parameters as in 
Figure 1F (STAR Methods) with the exception of more fine-grained sampling at exactly the image 
resolution. The depicted panorama was moved for 16 s at a velocity of 22.5 ºs-1, resulting in a single 
complete rotation. Responses at each pixel location were then averaged across the full stimulus period. 
This demonstrates that the response of the EMD array depends strongly on squared local image 
contrast. (D) Turning responses for 8 images (indicated by trace color) and 5 velocities (indicated by 
panel title; N=16 wild-type flies; data as in Figure 1B). Gray shaded area indicates duration of motion 
stimulus. (E) Membrane potential for 6 images and 5 velocities (N=11 HS cells from 9 flies; data as in 
Figure 1D). (F) Output of model LPTC for same images and velocities as E (data as in Figure 1F). See 
Table S2. 



 
 

Figure S2 | Detailed behavioral responses to contrast stimuli. Related to Figure 2. 
(A) Illustration of spatial oscillation experiment. Background was restricted to 10 º wide stripes 
flanking the foreground motion stimulus at the center distance indicated by the red arrow. Dashed 
lines indicate period during which foreground pattern moved at 50 ºs-1. This arrangement was repeated 
at plus and minus 90 º from the frontal axis of the fly; 0 º in this plot indicates the center of the 
foreground. (B) Contrast traces and turning responses for five distance conditions (indicated above 
each panel). Top, instantaneous contrast (25 % in foreground, oscillating at 1 Hz in background). 
Bottom, turning response of the fly (N=16 wild-type flies). Modulation was reduced as spacing 
between foreground and background increased. (C) Illustration of temporal foreground modulation 
stimulus at 1 Hz frequency. (D) Contrast traces and turning responses for five foreground oscillation 
frequencies (N=13; background contrast was 0 %). Modulation decreased as frequency increased. (E) 
Illustration of temporal background modulation stimulus at 1 Hz frequency. (F) Contrast traces and 
turning responses for five background oscillation frequencies (N=13; foreground contrast was 25 %). 
Modulation again decreased with frequency. (G) Normalized cross-correlation between contrast 
oscillation and turning behavior for 1 Hz data from D and F. (H) Lag between stimulus oscillation and 
turning, evaluated as per-fly lag at first minimum within 500 ms for cross-correlations from G. (I) 
Left, comparison of turning responses between wild-type flies and flies in which T4/T5 cells were 
silenced using TNT (STAR Methods; N=16/14 for WT/block flies). Right, turning responses averaged 
between 0 and 6 s following motion onset. Syndirectional turning was abolished in T4/T5-silenced 
flies. (J) Average forward speed throughout full experiment. T4/T5 block flies did not exhibit 
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locomotion deficiencies. (K) Comparison of spatial oscillation tuning. T4/T5 block flies did not show 
modulation at the contrast oscillation frequency of 1 Hz and a generally increased level of baseline 
fluctuation. (L) Evaluation of luminance properties at different spatial scales for the behavioral 
stimulus. Normalized coefficient of variation across visual field was calculated after applying a 
Gaussian filter with different full-widths at half-maximum (FWHM). Gray lines indicate typical 
FWHM of ommatidium (left) and full receptive field of medulla cells (right). See Table S2. 
 
 
  



 
 

 
Figure S3 | Lamina and T4/T5 receptive field mapping. Related to Figure 3. 
(A–E) Averaged 2D spatial receptive fields (RF) of L1–L5 from reverse correlation using white noise 
stimulation (L1: 21/7 cells/flies, L2: 34/5, L3: 34/5, L4: 17/6, L5: 18/9). (F–J) 1D projection 
(averaged over all orientations) of the RFs in A–E. All cell types possessed linear RFs with 
antagonistic center-surround structure. (K–O) Temporal RFs measured in the center of the spatial RFs. 
(P–T) Frequency-space representations of temporal RFs. (U) Frequency representations of lamina 
transient cells (all lamina cells except for L3) after deconvolution with a putative linear GCaMP6f 
low-pass filter with time constant 350 ms as performed previously [S1]. (V) Deconvolved frequency 
responses of medulla bandpass filter cells (replotted from previous work [S1]). (W) Spatial integral of 
the 2D RFs in A–E. For L3, the strong antagonistic ON surround exactly counterbalanced the OFF-
center contribution. (X) x-y plot of the stochastic motion noise stimulus used for localizing T4/T5 
RFs. (Y) Example RF of a T4 cell from reverse correlation with the motion noise stimulus. (Z) 
Average responses of T4/T5 to 25 ° windowed drifting gratings probing different positions around the 
estimated RF center. This validated the RF coordinates obtained from the stochastic motion noise 
stimulus. All data are shown as mean ± s.d. See Table S2. 
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Figure S4 | Raw calcium responses for basic contrast stimuli. Related to Figure 3. 
(A) Shown is only a subset of the data evaluated in Figure 3. Background contrast of 0 % is indicated 
by black lines, background contrast of 100 % is depicted in magenta. Responses are shown only for 3 
out of 7 foreground contrasts. (B–P) Average calcium responses of all neurons to combinations of 
different foreground and background contrasts. (Q) Shown is a correlation analysis of the same dataset 
as in Figure 3 for the lamina cells L1–L5. On the y-axis is the F1-component of the calcium response 
(as evaluated in Figure 3) while the x-axis indicates the F0-component of the signal, i.e. the average 
calcium response during the stimulus. Data points corresponding to the same BG contrast are 
connected by lines and color-coded analogously to Figure 3. All data points are normalized to the 
maximum F1 response for each cell type. The gray dashed line marks the diagonal of the coordinate 
system. Correlation coefficient R is indicated in each panel. (R) Same as in Q but for ON-pathway 
medulla cells Mi1–Mi9 and for T4 cells. (S) Same as in Q but for OFF-pathway medulla cells Tm1–
Tm9 and for T5 cells. (T) Color legend for panels Q–S. Darker color shade corresponds to higher 
background contrast, similarly to Figure 3. Zero background contrast condition is shown in black. See 
Table S2. 
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Figure S5 | Data-driven functional model of normalization circuit. Related to Figure 4. 
(A) Illustration of signal cascade for data-driven cell model (STAR Methods). Filter elements are 
sketched for an ON band-pass cell with normalization. (B–D) Contrast tuning curves for three model 
cells, estimated using the same protocol as during calcium imaging (FG = foreground, BG = 
background). Top, empirical data for L3, Mi1, and Mi9 (see Figure 3). Inset depicts a single frame 
from stimulus centered on recorded cell with background contrast 25 % and foreground contrast 100 
%. Bottom, tuning curves from models manually tuned to resemble their empirical counterparts (see 
STAR Methods for parameters). (E) Responses of normalized ON band-pass cell model to orientation 
tuning stimulus (see Figure 4A; dashed line marks reference stimulus without background). Stimuli 
and evaluation were exactly matched to the experiment. (F) Responses of the same model to 
background frequency tuning experiment (see Figure 4B; dashed line marks reference stimulus 
without background). (G) Responses of the same model to background size stimulus (see Figure 4C; 



dashed line marks reference stimulus without background). (H) Responses of the same model to 
contrast-step protocol (see Figure 4D). (I) Illustration of T4 or T5 model. Signals from a strongly 
normalized band-pass and a weakly normalized low-pass unit covering adjacent areas of the visual 
field are multiplied, yielding a direction-selective signal. (J–M) Top, responses from motion detector 
models with normalization. Bottom, responses from motion detector models in which normalization 
was switched off for both input arms. (J) Foreground contrast tuning for simulated T4 cell (see Figure 
3). (K) Responses to behavioral contrast stimulus for a LPTC model composed of T4 and T5 models 
(STAR Methods). (L) Responses to various natural scenes moving at 20 ºs-1 (modelled and evaluated 
as in Figure 1). (M) Velocity tuning curves for natural scenes (modelled and evaluated as in Figure 1). 
(N) Coefficient of variation across images for individual image velocities (derived from velocity 
tuning curves in M and Figure 1F; STAR Methods). A model including input normalization 
outperformed the linear model and approximated the variability of LPTC responses. 
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Figure S6 | Detailed receptive fields and performance data for task-driven model. Related to 
Figure 6. 
(A–C) Receptive fields and temporal filters for 16 models of each non-linearity configuration (A, 
linear; B, static; C, dynamic). Models were sorted by test set error (increasing from left to right). Each 
pair of spatial and temporal filters was normalized to the maximum absolute weight across both 
channels (SF = spatial filter, TF = temporal filter, NF = normalization filter). Axis limits are the same 
as in Figure 6. (D) Values of sensitivity parameter c for all static (N=23) and dynamic (N=16) 
normalization models. (E) Evolution of weights for a single dynamic model. Both curves were 
independently normalized to their maximum across epochs. Pool contribution was quantified as the 
sum of weights across both 11 x 11 x 1 normalization filters. (F) Velocity tuning curves of best-
performing linear model for various images (analogously to Figure 6G). Gray curve indicates true 
scene velocity on logarithmic axis. (G) Quantification of average model performance for all tested 
data sets (analogously to Figure 6H; LDR = low dynamic range, HDR = high dynamic range). See 
STAR Methods for details on how data sets were generated. Note that performance is plotted on a 
logarithmic axis. N=22/23/16 for linear/static/dynamic; *P<0.001; t=9.01/7.51/7.72 for set A/set B 
(LDR)/set B (HDR); Student’s t-test with assumed equal variance; only difference between static and 
dynamic was tested. 



Cell type Lfg Lbg p c50 wpool q Norm. index R2
DivisiveNorm R2

linear 
L1 1.47 0.07 1.10 0.53 0.22 0.97 0.42 98.39 ± 0.10 92.55 ± 0.14 
L2 1.10 0.05 1.37 0.23 0.36 0.77 1.58 99.29 ± 0.03 85.17 ± 0.13 
L3 1.68 0.16 1.46 1.00 0.00 1.27 0.00 95.90 ± 0.08 97.17 ± 0.07 
L4 1.41 0.12 1.23 0.53 0.32 1.09 0.61 98.94 ± 0.04 93.71 ± 0.07 
L5 1.04 0.05 1.29 0.14 0.19 1.10 1.36 94.51 ± 0.23 69.34 ± 0.24 
Mi1 1.03 0.03 1.21 0.06 0.25 1.05 4.33 97.37 ± 0.14 56.26 ± 0.41 
Mi4 1.61 0.33 0.90 1.00 0.31 5.92 0.31 90.08 ± 0.26 87.50 ± 0.35 
Mi9 1.69 0.23 0.99 1.00 0.40 2.87 0.40 92.40 ± 0.24 89.61 ± 0.32 
T4 0.96 0.01 2.47 0.11 0.49 0.74 4.45 96.78 ± 0.15 74.17 ± 0.35 
T5 1.08 0.07 1.97 0.26 1.17 0.92 4.55 97.02 ± 0.13 77.27 ± 0.27 
Tm1 0.98 0.09 1.87 0.18 0.86 0.71 4.75 97.53 ± 0.11 78.67 ± 0.29 
Tm2 1.08 0.17 1.36 0.20 1.14 0.91 5.76 97.58 ± 0.08 73.09 ± 0.32 
Tm3 1.02 0.01 1.97 0.16 0.53 0.72 3.39 97.97 ± 0.12 82.33 ± 0.20 
Tm4 1.06 0.11 2.33 0.40 1.44 0.81 3.61 96.77 ± 0.16 76.96 ± 0.37 
Tm9 1.83 0.50 0.92 0.98 1.01 1.65 1.03 96.37 ± 0.14 87.42 ± 0.25 

 
 
Table S1 | Fits for divisive normalization model. Related to Figure 3. 
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Short name Full genotype Used in 

WT w+/w+; +/+; +/+ Figure 1, Figure 2 

T4/T5 block w+/w-; R59E08-AD/UAS-TNT; R42F06-DBD/+ Figure S2 

L1-GCaMP6f w+/w-; VT027316-AD/UAS-GCaMP6f; R40F12-
DBD/UAS-GCaMP6f 

Figure 3, Figure S3–
S4 

L2-GCaMP6f w+/w-; R53G02-AD/UAS-GCaMP6f; R29G11-
DBD/UAS-GCaMP6f 

Figure 3, Figure S3–
S4 

L3-GCaMP6f w+/w-; R59A05-AD/UAS-GCaMP6f; R75H07-
DBD/UAS-GCaMP6f 

Figure 3, Figure S3–
S4 

L4-GCaMP6f w+/w-; R20A03-AD/UAS-GCaMP6f; R31C06-
DBD/UAS-GCaMP6f 

Figure 3, Figure S3–
S4 

L5-GCaMP6f w+/w-; R21A05-AD/UAS-GCaMP6f; R31H09-
DBD/UAS-GCaMP6f 

Figure 3, Figure S3–
S4 

Mi1-GCaMP6f w+/w-; R19F01-AD/UAS-GCaMP6f; R71D01-
DBD/UAS-GCaMP6f 

Figure 3, Figure 4, 
Figure S4 

Tm3-GCaMP6f w+/w-; R13E12-AD/UAS-GCaMP6f; R59C10-
DBD/UAS-GCaMP6f 

Figure 3, Figure 4, 
Figure S4 

Mi4-GCaMP6f w+/w-; R48A07-AD/UAS-GCaMP6f; R13F11-
DBD/UAS-GCaMP6f 

Figure 3, Figure S4 

Mi9-GCaMP6f w+/w-; R48A07-AD/UAS-GCaMP6f; VT046779-
DBD/UAS-GCaMP6f 

Figure 3, Figure S4 

Tm1-GCaMP6f w+/w-; R41G07-AD/UAS-GCaMP6f; R74G01-
DBD/UAS-GCaMP6f 

Figure 3, Figure 4, 
Figure S4 

Tm2-GCaMP6f w+/w-; +/UAS-GCaMP6f; VT012282/UAS-
GCaMP6f 

Figure 3, Figure 4a-c, 
Figure S4 

Tm2split-GCaMP6f w+/w-; R28D05-AD/UAS-GCaMP6f; R82F12-
DBD/UAS-GCaMP6f 

Figure 4 

Tm4-GCaMP6f w+/w-; +/UAS-GCaMP6f; R35H01/UAS-GCaMP6f Figure 3, Figure S4 

Tm9-GCaMP6f w+/w-; +/UAS-GCaMP6f; VT065303/UAS-
GCaMP6f 

Figure 3, Figure S4 

T4-GCaMP6f w+/w-; VT016255-AD/UAS-GCaMP6f; 
VT012314-DBD/UAS-GCaMP6f 

Figure 3, Figure S3, 
Figure S4 

T5-GCaMP6f w+/w-; VT013975-AD/UAS-GCaMP6f; R42H07-
DBD/UAS-GCaMP6f 

Figure 3, Figure S3, 
Figure S4 

Mi1-GCaMP6f, 
TNT-E 

w+/w-; R19F01-AD/UAS-TNT-E; R71D01-
DBD/UAS-GCaMP6f  

Figure 5 

Mi1-GCaMP6f, 
TNTin 

w+/w-; R19F01-AD/UAS-TNTin; R71D01-
DBD/UAS-GCaMP6f  

Figure 5 



Tm3-GCaMP6f, 
TNT-E 

w+/w-; R13E12-AD/UAS-TNT-E; R59C10-
DBD/UAS-GCaMP6f 

Figure 5 

Tm3-GCaMP6f, 
TNTin 

w+/w-; R13E12-AD/UAS-TNTin; R59C10-
DBD/UAS-GCaMP6f 

Figure 5 

Tm1-GCaMP6f, 
TNT-E 

w+/w-; R41G07-AD/UAS-TNT-E; R74G01-
DBD/UAS-GCaMP6f 

Figure 5 

Tm1-GCaMP6f, 
TNTin 

w+/w-; R41G07-AD/UAS-TNTin; R74G01-
DBD/UAS-GCaMP6f 

Figure 5 

Tm2split-GCaMP6f, 
TNT-E 

w+/w-; R28D05-AD/UAS-TNT-E; R82F12-
DBD/UAS-GCaMP6f 

Figure 5 

Tm2split-GCaMP6f, 
TNTin 

w+/w-; R28D05-AD/UAS-TNTin; R82F12-
DBD/UAS-GCaMP6f 

Figure 5 

 
 
Table S2 | Genotypes and abbreviations. Related to Figures 1–5. 
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3 D I S C U S S I O N

Studying the visual system of Drosophila melanogaster in general and the mo-
tion vision circuit in particular is an appealing topic. Arthropods are by
far the largest and diverse group of animal species on this planet, which
conquered almost every corner on land during their long path of evolu-
tion. The general building blocks of the visual system are conserved de-
spite the enormous diversity (Strausfeld, 2012). Therefore understanding
general circuit motifs and basic computations in flies may be generalizable
and transferrable to other species. The fruit fly’s neurogenetic toolbox, a
connectome of the whole circuitry from photoreceptors to dendrites of the
motion-sensitive T4 and T5 cells, and the much smaller number of neurons
are critical advantages on the path towards a detailed understanding of ele-
mentary motion detection.

For decades researchers have derived hypotheses on how the direction of
visual motion might be detected from computational models. Three essential
criteria were formulated. First, inputs must be spatially separated. Second,
inputs must be differentially filtered in time. Third, inputs signals must be
non-linearly integrated.

In Manuscript 2.1 we systematically characterized the response properties
of all putative input elements to T4 and T5 cells that were known at the time
when I started my Ph.D. Two out of four neurons in the ON-pathway (Mi4 &
Mi9) have previously not been characterized. For the other inputs, different
studies had measured either the membrane potential or the calcium signal
of these cells with stimuli varying from study to study. As we will see in
the following discussion, using different stimuli, such as gratings, moving or
extending bars, may yield different outcomes. Therefore we systematically
characterized all input cells to T4 and T5 cells using a stochastic white-noise
stimulus while simultaneously monitoring the calcium levels. This allowed a
direct comparison of the dynamics and extent of the spatial receptive fields.
Through the use of computer simulations we were able to show that by
placing the slow low-pass neurons Mi4 and Mi9 at the outer sides of a three-
arm hybrid detector, while the fast band-pass elements Mi1 or Tm3 reside
in the center, the ON pathway model achieved peak direction selectivity and
matched experimental results best.

In Manuscript 2.2 my colleagues and I confirmed the glutamatergic trans-
mitter phenotype of Mi9. Using a newly developed glutamate sensor (iGluS-
nFR) we again measured the temporal properties of Mi9, but used transmit-
ter release instead of calcium signals as a proxy for neural activity. Since
iGluSnFR possesses significantly faster kinetics compared to the calcium
sensor (GCaMP), the transmitter release could be defined with much greater
precision. Convolving the glutamatergic signal with the determined calcium
kernel revealed a good match between the two data sets.
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Lastly, in Manuscript 2.3 we were able to demonstrate that the responses
of some of the neurons in the circuit are modulated by background contrast
far outside the linear receptive field that we had determined in the previous
manuscripts. Dynamically adapting to global contrast changes had previ-
ously been investigated in mammalian systems. We showed that models for
the Drosophila motion vision circuit which implement such a divisive con-
trast normalization step are superior to ones without when confronted with
naturalistic stimuli.

In the first part of this chapter, I will discuss anatomical and functional
similarities between the visual system in mammals and flies. In a second
part, I will further elaborate on how the field of Drosophila motion vision has
progressed towards a biophysically plausible model of T4 cells.

3.1 the visual system of flies and mammals - com-
monalities and differences

Despite the division of the two phyla over 600 million years ago (De Rober-
tis and Sasai, 1996) and the fundamentally different outward appearances of
the mammalian and the fly visual systems, convergent evolution brought for-
ward striking parallels in terms of structure, development, and function (re-
viewed in Sanes and Zipursky (2010)). Conserved principles between species
could hint at computational algorithms and strategies that are close to opti-
mal in fulfilling the challenges faced by an animal using vision to behave in
the physical world. Moreover, we can use our knowledge of the mammalian
system to generate hypotheses wherever we have gaps in our understanding
of the insect visual system. In the following section, I will therefore discuss
similarities in anatomy and structure of the circuit as well as commonalities
in the physiology.

3.1.1 Anatomy and functional structure

An anatomical resemblance was already pointed out by Ramón y Cajal and
Sánchez (1915), as seen in Figure 11. One can easily appreciate some key
aspects which are conserved between the two phyla. Cells are arranged in
orderly layers. Instances of specific cell types are repeated in a regular tiling
principle (Wässle and Riemann, 1978; Devries and Baylor, 1997; Rockhill
et al., 2000). Finally, cell types run either perpendicularly or in parallel
(e.g. horizontal cells in mammals, see Figure 13 a; amacrine cells like Lat in
invertebrates, see Figure 3 b) to the aforementioned layers.

In Section 1.2 I laid out the basic anatomical structure of the fly optic lobe.
The mammalian retina consists of five distinct layers: the outer and inner
nuclear layer, which contain cell bodies but no synapses; the outer and in-
ner plexiform layer, which contain synapses but no cell bodies; and lastly
the ganglion cell layer. Six cell types dominate the mammalian retina: Pho-
toreceptors, bipolar cells, horizontal cells, amacrine cells, retinal ganglion
cells, and glial cells (Masland, 2001; Wässle, 2004). Based on anatomical and
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Figure 11: Comparison of vertebrate and invertebrate anatomy. a The insect retina
(I - III), Lamina (IV + V), Medulla (V - VIII) and Lobula (L). a and b in
the original drawings depict photoreceptors, c shows lamina monopo-
lar cells and h denotes transmedullary neurons. b Schematic of major
cell types in the vertebrate retina and their connections. Arabic numer-
als denote regions that correspond to the Roman numbers in (a) which
Ramón y Cajal and Sánchez (1915) believed to be similar. c Ramon y
Cajal drew a combination of the two retina organizations. For this, he
displaced the cell bodies of the invertebrate retina such that the simi-
larity to the vertebrate one would become more apparent. As a result
lamina monopolar cells appear as bipolar cells (c) invertebrate amacrine
cells resemble now horizontal cells (d) and transmedulla cells become
more similar to vertebrate retinal ganglion cells (h). NO = nervio optico,
optic nerve. Pictures were taken and modified from Ramón y Cajal and
Sánchez (1915).
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Figure 12: Convergence and divergence in the visual system. a An individual
mice cone photoreceptor synapses onto at least 10 different bipolar cell
types. b A single mouse bipolar cell receives input from at least 10 cone
photoreceptors. c Neurons in one lamina cartridge receive input from
6 different photoreceptor subtypes. Each subtype input comes from a
different ommatidium. This concept is called neural superposition and
serves to improve sensitivity while simultaneously preserving visual
acuity. The figure is taken and modified with permission from (Sanes
and Zipursky, 2010).

functional characteristics or based on molecular expression profiles each cell
type can be split up into several sub-types.

outer retina Rods and cones are the two types of mammalian pho-
toreceptors, with rods being 20-30 times more numerous depending on the
species (Carter-Dawson and Lavail, 1979). There is only one type of rod but
cones can be subdivided into separate classes based on the light-sensitive
pigments (opsins) they express. Rods are highly sensitive and therefore
mainly, but not exclusively, active during dim light conditions (Szikra et al.,
2014). Cones are less sensitive and mainly active during bright daylight
where they provide the animal with color vision (Dacey, 2000). In the in-
ner plexiform layer photoreceptors are connected to 1-3 horizontal cell types
and to at least 13 bipolar cell types via electrical and chemical synapses
(Masland, 2012b; Connaughton, 2011). Bipolar cell types in the mouse retina
can be grouped according to their molecular profiles, the polarity of changes
in incoming light to which they respond preferentially (ON or OFF), whether
they receive rod or cone photoreceptor input or both, from which sub-type of
cone photoreceptor (medium wavelength sensitivity (M) or short-wavelength
sensitivity (S)) they receive input, or according to their transiency and if they
generate spikes (see Figure 13 b, (Behrens et al., 2016; Euler et al., 2014)).

inner retina Despite enormous diversity and complexity, cells in the
inner plexiform layer are arranged in a layer-specific manner (Sanes and
Zipursky, 2010). Here, 13 bipolar cell types, at least 40 types of amacrine
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cells, and a minimum of 20 types of RGCs form an intricate web of synaptic
connections (Masland, 2012a; Euler et al., 2014; Völgyi et al., 2009; MacNeil
et al., 1999). The axons of RGCs in turn collectively form the optic nerve and
project to at least ten different brain areas (Van Essen et al., 1992).

On a structural basis, there are multiple similarities to the fly visual sys-
tem that stand out. First, a small number of major neuronal classes defines
the whole circuitry. Diversity is hence achieved by dividing neuronal classes
into multiple sub-types. Second, the visual systems are arranged in a lay-
ered structure with repetitive units across the layer (e.g., columnar cells in
the fly and bipolar cells in the mammalian retina). A third anatomical simi-
larity concerns multi-contact synapses that are formed between the photore-
ceptors and their subsequent partners. Mammalian ON bipolar cells, for
instance, intrude on the photoreceptor axon terminal, thereby getting closer
to a specialized active zone of transmitter release called ribbon. Synapses to
OFF bipolar cells in contrast are located further away from the active zone
(DeVries et al., 2006; Haverkamp et al., 2000). The time until the transmitter
released by the presynaptic photoreceptors diffuses towards the postsynap-
tic receptors in OFF bipolar cells is therefore thought to impose a delay on
the signal (Haverkamp et al., 2001). Similar to the pedicle synapse in mam-
mals, Drosophila photoreceptors form a multi-contact tetrade synapse with
amacrine, L1, and L2 cells. As in mammalian photoreceptors, the ones in
Drosophila contain an unusually large presynaptic specialization called T-bar
(Sanes and Zipursky, 2010).

Taken together, despite having fundamentally different optical appara-
tuses in compound versus lens eyes, the general principles downstream of
photoreceptors seem to be conserved across the two phyla. The similarities
are so remarkable that they led Ramón y Cajal and Sánchez (1915) to form a
hypothetical hybrid of the two systems as depicted in Figure 11 c.

3.1.2 Parallel pathways

The very first connection between photoreceptors and bipolar cells yields
commonalities not only in anatomy but also in function. Multiplexing, for
example, is a technique that is frequently used in signal processing and
telecommunications (Schwartz and Batchelor, 2008). In resource-constrained
systems, it is typically beneficial to transmit multiple logically distinct sig-
nals via shared pathways. Arthropods and mammals seems to make use of
this concept in the early visual system, where different aspects of the incom-
ing visual signal are processed in separate, parallel channels, fed forward,
and integrated later on. I present three examples for such splits that are
present in early visual circuits of mouse and fly:

1. ON-OFF split: During darkness mammalian photoreceptors are depo-
larized and release glutamate, creating a so-called dark current. Con-
versely, upon illumination photoreceptors hyperpolarize (in contrast
to invertebrate photoreceptors which depolarize, see Chapter 1.2) and
less glutamate is released, therefore producing an OFF signal. The
photoreceptor signal is then split into two parallel processing channels.
It is either conveyed without sign inversion via ionotropic glutamate
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receptors to OFF bipolar cells (Euler et al., 2014) or via metabotropic
glutamate receptors (mGluR6) onto ON bipolar cells (Masu et al., 1995;
Slaughter and Miller, 1981), effectively hyperpolarizing the cell and
therefore inverting the sign of the initial signal.

As introduced in chapter 1.2.1, in Drosophila achromatic visual infor-
mation is split into two distinct channels at the synapse between the
lamina monopolar cells L1 and L2 and the medulla cells (Joesch et al.,
2010). In contrast to the mammalian visual system, where this split
occurs right at the first synapse, in the fly visual system visual infor-
mation is split one synapse further downstream. The lamina appears
to be a neuropil that is additionally "inserted" with no obvious corre-
spondence in the mammalian system (Borst and Helmstaedter, 2015).
However, it is striking that L1 and L2 hyperpolarize upon illumination,
similarly to mammalian photoreceptors. Positive change in luminance
is therefore represented in the same way, namely by hyperpolarization.
For cell types in the downstream layers, we observe a clear separation
between ON and OFF cells just as with bipolar cells in the mammalian
retina, with ON cells becoming more active whenever luminance in-
creases (e.g., Mi1) and OFF cells becoming more active whenever lumi-
nance decreases (e.g., Tm2).

2. Chromatic versus achromatic split: Rods and cones in the mammalian
retina provide specialized input to subsequent bipolar cells, thereby
splitting color and non-color vision (so-called scoptic vision) into paral-
lel pathways (Yoshimatsu et al., 2021). In the fly, color and non-color
vision first arise at the level of photoreceptors, with R1-R6 processing
achromatic and R7 and R8 providing color vision (Schnaitmann et al.,
2018). Additionally, both streams are processed in parallel like in the
mammalian retina.

3. Spatial multiplexing: A single cone photoreceptor in the mouse retina
forms synapses with at least 10 different bipolar cell types (as seen in
Figure 12 a). A single bipolar cell, in turn, samples signals from ≈ 10

cone photoreceptors (Wässle et al., 2009) (see Figure 12 b).

In the fly, the convergence of multiple photoreceptor signals onto one
cell type downstream is called neural superposition. To increase sensi-
tivity without losing visual acuity, evolution came up with an intricate
wiring system depicted in Figure 12 c. Due to the circular arrangement
within one facet, each of the photoreceptors R1-R6 collects light from
a slightly offset point in space. The curvature of the fly’s eye, however,
means that photoreceptors from neighboring ommatidia have the same
optical axes. The six receptor cells from six different ommatidia then
converge in the same lamina cartridge (Vigier, 1909; Braitenberg, 1967;
Kirschfeld, 1967; Trujillo-Cenóz, 1965). Therefore lamina cartridges
are a good example for multiplexing in the visual system, since they
converge signals from multiple photoreceptors and then diverge them
onto subsequent medullary neurons (≈60, see Section 1.2).
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3.1.3 Motion vision circuitry

In the section above, I described the high-level layout of the mammalian
retina and showed examples of multiplexing in the early visual system as a
general circuit motif in two phyla. For my doctoral work, motion vision is
of particular interest. Therefore, I will specifically describe the wiring of the
mammalian motion vision circuit and how some functional aspects relate to
the work included in this thesis.

First, photoreceptors relay signals onto bipolar cells. Here, the achromatic
visual information is split into an ON and an OFF channel. In the inner
plexiform layer (IPL) ON and OFF bipolar cells synapse onto the direction-
selective cells SACs of the same polarity preference (ON-SAC, OFF-SAC)
and direction-selective retinal ganglion cells (DSRGCs) Vlasits and Baden
(2019); Helmstaedter et al. (2013); Yonehara and Roska (2013); Euler et al.
(2002).

Classically, direction selectivity in the mammalian retina was studied in
DSRGCs of rabbits and mice (Vlasits and Baden, 2019; Barlow and Levick,
1965). Out of at least 20 different types of RGCs (Völgyi et al., 2009), only a
subset exhibits direction-selective responses: OFF-JAM-B cells, which prefer
upward motion (Kim et al., 2008); ON ganglion cells, with three subtypes
and 120 degrees of separation in their preferred directions (Oyster and Bar-
low, 1967; Sun et al., 2006); and ON-OFF ganglion cells, with one subtype
for each of the four cardinal directions (front-to-back, back-to-front, upward
and downward) (Elstrott et al., 2008).

Direction selectivity, however, first arises on the radially symmetric den-
drites of SACs (see Figure 13 e). Each dendritic branch responds maximally
(preferred direction response) when stimulated centrifugally (from the soma
towards the distal tips, green arrow) and minimally (null direction response)
when stimulated centripetally (from the distal tip inwards towards the soma,
red arrow) (Euler et al., 2002). SAC dendrites and the dendrites of T4 and T5

cells are thus the primary direction-selective neurons in each circuit (Maisak
et al., 2013; Euler et al., 2002).

But how does direction-selectivity arise in the first place?
Having spatially offset inputs, with one delayed in time with respect to

the other, represents two out of three essential criteria for the Hassenstein-
Reichardt correlator and the Barlow-Lewick correlator as described in Section 1.3
(Hassenstein and Reichardt, 1956; Barlow et al., 1964). Given the overwhelm-
ing success these models had in predicting biological responses and proper-
ties, it stands to reason that spatial and temporal asymmetries are indeed
implemented at a cellular level. It is therefore critical for the understanding
of motion vision to know how synapses on the dendrites of motion-sensitive
neurons are spatially distributed and which temporal properties the presy-
naptic partners possess. I will discuss these offsets comparatively:

spatial offset When looking at the distribution of bipolar cell synap-
tic connections with their postsynaptic direction-selective SAC, it becomes
apparent that at least two subgroups are wired differentially (see Figure 13

d). Whereas the slower CBC2 (orange curve) mainly contacts the SAC den-
drite close to the soma, the faster CBC3 (blue curve) forms most synapses
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Figure 13: Space and time in retinal bipolar cells. a Schematic of the three nu-
clear and two plexiform layers and the main cell types in the mouse
retina: light travels through the entire tissue where rod and cone pho-
toreceptors transduce light into electrochemical signals. The signal is
then shaped by horizontal cells and transferred onto at least 13 types
of bipolar cells, which in turn synapse onto either starburst amacrine
cells (SAC) or retinal ganglion cells (RGC). RGCs then collectively form
the optic nerve and project to higher brain areas. b Morphology of 13

distinct types of bipolar cells (12 cone bipolar cells and one rod bipolar
cell) in the mouse retina lined up according to the inner plexiform layer
to which they project. Bipolar cells can be grouped according to their
polarity preference (ON or OFF), whether they transmit signals from
rods (second row in purple), whether they receive inputs from cones
that process light of shorter (S, blue, fourth row) or medium (M, green,
third row) wavelengths or how transiently they respond (purple gradi-
ent at the bottom). c Differential calcium response dynamics of four
different OFF cone bipolar cell clusters. Functional clusters were deter-
mined based on the location of their projections. Clusters fall into slow
sustained (violet and blue) and transient (orange and red) response. d
Lines show contacts of bipolar cell subtypes to starburst amacrine cells
(SAC) as a function of distance from the SAC soma. Data is based on
electron microscopic data. Note that distribution is not homogeneous. e
Spatial offset dx between two types of cone bipolar cell synapses onto
the SAC dendrite (yellow for CBC2 and blue for CBC3A). Temporal off-
set dt between the two cone bipolar cell types is depicted for stimulation
along the preferred (green arrow, upper left traces) and null direction
(red arrow, upper right traces). Figure taken and modified with permis-
sion from (Euler et al., 2014) for panels a+b and (Borst and Helmstaedter,
2015) for panels c-e.
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Figure 14: Temporal delay mechanisms. Two spatially offset inputs (red half cir-
cles) are delayed by different temporal dynamics in the presynpatic in-
puts (left), by synaptic delays on the postsynaptic membrane (middle)
, e.g. through receptors with different kinetics, or by intrinsic proper-
ties of the dendritic membrane of direction-selective cells (right). Figure
taken with permission from (Vlasits and Baden, 2019).

further distally (Kim et al., 2014a; Ding et al., 2016). The arrangement of
input synapses to T4 & T5 dendrites in flies is shown in Figure 15 c+d. The
distribution of input synapses found in EM reconstructions (Takemura et al.,
2017; Shinomiya et al., 2019) as well as the distribution of transmitter recep-
tors (Fendl et al., 2020) follow a clear pattern. Faster cell types like Mi1 &
Tm3 in the ON pathway and Tm1, Tm2 & Tm4 in the OFF pathway synapse
onto the central part of the dendritic tree, whereas the slower Mi9, Mi4 (ON
pathway), and Tm9 (OFF pathway) cells flank the central inputs distally or
proximally. In both organisms, we therefore find that motion-sensitive neu-
rons have laterally extended connection fields, with different input cell types
making connections at different sites. Given the retinotopic spatial organi-
sation of these input cell types, this pattern is ideally suited to receiving
differently tuned inputs that are offset in visual space.

temporal offset In principle, there are three mechanisms by which two
spatially offset signals can be asymmetrically delayed: (1) The relative delay
already exists in the membrane signals of the input cells; (2) the delay arises
due to different kinetics of receptors on the postsynaptic membrane; or (3)
intrinsic filtering of the dendritic membrane separates the inputs in time
(see Figure 14 Vlasits and Baden (2019)). The three options are not mutually
exclusive. There is some evidence for these mechanisms in the mammalian
retina:

(1) Looking at OFF bipolar cell types, we find that they exhibit distinguish-
able temporal dynamics which fall into two distinct classes: slow, sustained,
and low-pass filter-like (blue and violet curve, see Figure 13 c) on the one
hand, and a fast transient band-pass filter (orange and red, see Figure 13

c) like responses on the other hand (Kim et al., 2014b; Greene et al., 2016;
Baden et al., 2013; Borghuis et al., 2013). (2) The exact receptor types ex-
pressed and their distribution on SAC dendrites is currently unknown (Vla-
sits and Baden, 2019), so we can currently not draw firm conclusions on the
role of receptor kinetics in generating such delays. (3) Another hypothesis,
which is based on computer simulations, suggests an electrotonic delay in
the dendritic membrane of SACs. The SAC presynaptic transmitter release
sites are located at the distal part of the thin (≈ 200-300 nm) dendrite and
are thought to represent a compartment with a high input resistance (≈ 1
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GΩ) (Vlasits et al., 2016; Hausselt et al., 2007). Sequentially stimulating the
spatially offset excitatory inputs are therefore summed up optimally when
stimulated centripedally compared to centrifugal stimulation.

In starburst amacrine cells, it is thus plausible that a combination of in-
trinsic dendritic filtering and different input dynamics together create the
required offset for elementary motion detection. Conversely, in Drosophila
we have made some progress toward understanding the mechanisms behind
the required temporal delay:

(1) In Manuscript 2.1 we used white-noise stimuli and reverse correlation
to identify the spatial and temporal characteristics of all putative input ele-
ments to the elementary motion detectors, T4 for the ON pathway and T5

for the OFF pathway respectively. In the temporal domain, we found that
inputs generally fall into two classes: transient band-pass filters and slow
sustained low-pass filters. In the ON pathway, Mi9 & Mi4 appear as pure
low-pass filters, whereas Mi1 & Tm3 show band-pass filter characteristics.
This bears a clear resemblance to the dynamics of the bipolar cell depicted
in Figure 13 c. (2) In theory, a temporal delay can also be implemented
through metabotropic receptors. Although the data set of Fendl et al. (2020)
is not yet complete, the dendritic receptors labelled so far are all fast and
ionotropic. (3) Because the dendrite of T4 and T5 cells are inaccessible to
classical electrophysiology, only estimations about the electrotonic proper-
ties of the dendritic membrane are currently possible (Borst, 2018). Recently
developed tools for labelling the endogenous receptor distribution (Fendl
et al., 2020) will maybe inspire computational approaches in finding out if
there is an additional delay in the dendritic membrane of T4 and T5 cells.

Taken together, it seems likely that the different dynamics in the presy-
naptic input elements are sufficient to create the necessary temporal delay
in the fly elementary motion detector (Arenz et al., 2017).

3.1.4 Biophysical implementation of filtering

Investigating the dynamics of neurons in the fly medulla has been a major
task of my thesis. We were able to show differential response kinetics of
the neurons, how they are influenced by neuromodulators, and how the re-
sponses of some neurons are suppressed by background contrast. However,
as the previous section has already shown, we still don’t know how response
kinetics are generated and modulated at the physiological and biophysical
levels. In the following, I will compare our findings to mammalian bipolar
cells and how the signals of both bipolar and medulla cells are shaped. Dis-
cussing the extensive body of literature from mammalian bipolar cells (Euler
et al., 2014) might give answers to questions that are largely untouched in the
fly: Due to which mechanisms do the dynamics of these cells arise? Which
receptors are involved? How is contrast adaptation implemented at the bio-
physical level? I will follow the path of a signal passing through retina
bipolar cells and highlight commonalities or differences along the way.

dendritic mechanisms The bipolar cell’s dendritic signal is initially de-
termined by the composition of glutamatergic photoreceptor input (i.e. how
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many connections and of which photoreceptor subtype) and GABAergic in-
put from horizontal cells (see schematic in Figure 13 a). Horizontal cells pro-
vide the bipolar cells’ spatial receptive field with an antagonistic surround
that enhances contrast discrimination (Miller and Dacheux, 1983; Duebel
et al., 2006; Thoreson and Mangel, 2012; Vardi et al., 2000).

Additionally to interactions at the cellular level, cell-intrinsic mechanisms
shape the dendritic response properties. OFF bipolar cells for instance ex-
press different combinations of ionotropic glutamate receptors, such as AMPA
or kainate or both, thereby creating unique kinetics (Regus-Leidig and Brand-
stätter, 2012; DeVries, 2000; Lindstrom et al., 2014). ON bipolar cells, how-
ever, all express the same metabotropic glutamate receptor (mGluR6) but
still possess different dendritic kinetics (Masu et al., 1995; Ichinose et al.,
2014). These different response kinetics are achieved by either different com-
ponents in the second-messenger component of the receptor (Cao et al., 2012;
Pearring et al., 2011), differentially expressed voltage-gated calcium chan-
nels (De Sevilla Müller et al., 2013) or inward-rectifying potassium channels
(Sulaiman et al., 2013).

In Manusript 2.1, we used 2-photon calcium imaging in combination with
white-noise stimuli and reverse correlation to identify the spatio-temporal
receptive fields of all putative input elements to the elementary motion de-
tectors. Except for Tm3, all spatial receptive fields show a center-surround
structure. In the temporal domain, we found that inputs generally fall into
two classes: transient band-pass filters and slow and sustained low-pass fil-
ters. In the ON pathway, Mi9 & Mi4 appear as pure low-pass filters, whereas
Mi1 & Tm3 show band-pass filter characteristics.

Whereas bipolar cells receive direct photoreceptor input, medulla cells
in the motion vision pathway receive their major dendritic input from the
lamina. Hence medulla cells could inherit their spatial and temporal re-
ceptive field structures to large extent from lamina neurons. Mi9, for in-
stance, receives the majority of its synapses from the lamina monopolar cell
L3 (Takemura et al., 2017). L3 shares major features with Mi9 such as ex-
tent, polarity, and center-surround structure of the spatial receptive as well
as slow-sustained filter characteristics in the temporal domain (Silies et al.,
2013; Fisher et al., 2015a) (see also manuscript 2.3). This however pushes the
initial question just one synapse further upstream. Mi4 receives transient
band-pass-like input from L5. Therefore it can’t simply inherit its dynamics
from upstream lamina neurons. Two options seem plausible: Mi4 receives
its low-pass filter characteristics from another synaptic partner or the signal
it receives from the lamina is filtered intrinsically. Mi4 and Mi9 are recipro-
cally connected (Takemura et al., 2017). It seems therefore also feasible that
Mi9 is the dominant input to Mi4 that defines its response characteristics.

The faster cells Mi1 & Tm3 receive their major input from L1 (Takemura
et al., 2017). L1 already possesses faster band-pass-like characteristics (Clark
et al., 2011; Reiff et al., 2010; Drews et al., 2020). Therefore, key features
of the filter could already be implemented one synapse further upstream
in the lamina. While for Drosophila L1 there is no evidence of how they
achieve their temporal high-pass component, recent studies argued that L2

acquires transiency by the expression of the rapidly inactivating potassium
channels called Shaker and Shal (Gür et al., 2019). Since L1 and L2 responses
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are indistinguishable, the results from L2 might be transferrable to L1. This
however awaits further investigations.

With large high-resolution transcriptomes (Davis et al., 2020) and con-
nectomes (Rivera-Alba et al., 2011; Takemura et al., 2013; Meinertzhagen
and O’Neil, 1991) of lamina and medulla circuits, future experimental data
should be able decipher the responsible components that contribute to the
broadly different filter time constants in lamina and medulla cells (Arenz
et al., 2017; Drews et al., 2020; Richter et al., 2018).

the neurite After the complementary mechanisms mentioned before
have played in concert in the bipolar cell dendrite, their combined contri-
bution is reflected in the dendritic voltage which is passed down a largely
passive axon cable to the axon terminal. Along its way, the signal is low-pass
filtered because of the axial resistance and the membrane capacitance lead-
ing to an attenuation of fast voltage transients (Euler et al., 2014). Following
that logic, there is a trend in mammalian retinal bipolar cells that neurons
with shorter cables are responsible for processing fast changes in the visual
scene and vice versa (Connaughton, 2011).

Neurites in fly medulla cells too could be subject to passive filtering. The
length and diameter of the neurite and its membrane resistance determine
the conduction velocity of electrical signals. The low-pass filtering properties
of a neuron are defined by the time constant, which depends linearly on its
input resistance (Koch, 2004). It could therefore be that slower medulla neu-
rons like Mi4 and Mi9 simply have a higher specific membrane resistance.

axonal mechanisms The voltage signal arrives at the axon terminal of
bipolar cells where it is subject to local non-linear signal transformations
that are carried out in every chemical synapse (from voltage to calcium to
transmitter, see section 1.1.1 and Figure 1).

The first transformation is defined by the dynamics of the calcium chan-
nels that open when the axonal membrane becomes depolarized. In bipolar
cells calcium mainly enters through L-type calcium channels that are clus-
tered around a specialized structure in the presynapse called ribbon (Zenisek
et al., 2003; Llobet et al., 2003). Within the cell, the calcium undergoes a
variety of time-consuming processes (in the order of hundreds of millisec-
onds) like diffusion, buffering, and extrusion from the cytoplasm (Euler
et al., 2014). Transmitter release is influenced by various adaptive processes.
The process is initiated by a small pool of primed vesicles that are close to
the active zone. Second, an intermediate pool of vesicles that are tethered to
the ribbon but not primed releases the transmitter. After hundreds of mil-
liseconds, this pool undergoes depletion. The depletion of these two pools
underlies short and long-term contrast adaptations (Ozuysal and Baccus,
2012; Nikolaev et al., 2013; Manookin and Demb, 2006).

In manuscript 2.3 we showed that responses of medullary neurons are
dynamically suppressed by dividing local contrast changes through the av-
erage contrast of the visual scene background. Such a mechanism, therefore,
normalizes the neuronal responses to the current contrast of the visual en-
vironment. Importantly, this effect was pronounced in the band-pass filter
cells (i.e. Mi1, Tm3 in the ON pathway, Tm1, Tm2, Tm4 in the OFF pathway)
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and less so in low-pass filter cells (i.e. Mi9, Mi4 in the ON pathway, Tm9 in
the OFF pathway). Furthermore, we showed that medulla cells are the first
in the motion vision circuit to perform this operation (the effect is absent in
lamina cells L1-L5) and that T4 and T5 cells most likely inherit compressed
signals from the upstream circuitry. We suggested that this mechanism de-
rives at least in part from feedback rather than feedforward input. Which
cell type is providing this feedback or how the signals are integrated in bio-
physical terms at the synapse remained unsolved.

neuromodulation Bipolar cell axon terminals receive local GABAergic
or glycinergic inhibitory input from amacrine cells (Euler and Masland, 2000;
Masland, 2012b; Euler and Wässle, 1998; Eggers et al., 2007; Ivanova et al.,
2006). With more than 42 identified cell types, amacrine cells are the most
diverse and at the same time understudied group of interneurons in the
retina (Lin and Masland, 2006; MacNeil and Masland, 1998; MacNeil et al.,
1999; Masland, 2012a). Most GABAergic amacrine cells additionally release
neuromodulatory substances, suggesting that they play a role in regulating
the behavioral state of the circuit (Yang et al., 2013; Tooker et al., 2013) as
well as integrating information from other sensory modalities like olfaction
(Esposti et al., 2013). Amacrine cells therefore could act as gates for visual
information flow in a context and stimulus-dependent manner.

Neuromodulation is a prominent example how a cell’s activity and tuning
properties can be shifted. It has been shown in monkeys, mice, and flies
that visual circuits alter their tuning properties according to their behavioral
demands (Maimon, 2011). One way to change the gain of a cell towards
a desired value, is adapting the membrane resistance by the opening and
closing of ion channels. By Ohm’s law, increasing the input resistance of a
cell leads to an increased voltage response induced by a fixed input current.
Therefore closing the ion channels of a cell can act as a way to boost the gain
of the cell.

In the fly’s lobula plate, tangential cells shift their temporal frequency tun-
ing optimum towards higher frequencies during tethered flight or walking
(Chiappe et al., 2010; Maimon et al., 2010; Jung et al., 2011). The membrane
resistance however drops, making it electrically leakier (Rosner et al., 2010).
To still boost sensory responses, LPTCs most likely receive increased input
from the upstream visual circuit. This state-dependent modulation of visual
responses in the fly’s LPTCs is realized by large octopaminergic neurons
that innervate large parts of the optic lobe (Sinakevitch and Strausfeld, 2006;
Longden and Krapp, 2009; Long et al., 2010; Suver et al., 2012; Busch et al.,
2009). Strother et al. (2018) showed that already the medulla neurons in
the ON motion vision pathway modulate their baseline calcium level accord-
ing to their behavioral state and that octopaminergic neurons are necessary
for walking flies to adequately process fast moving visual stimuli. In sum-
mary, in both the mammalian and the fly’s visual system, the general state
of the animal influences visual processing early in the circuit and only a few
synapses away from photoreceptor input.

In manuscript 2.1 we made use of this modulatory effect. We applied
the octopamine agonist Chlordimeform (CDM) and measured the temporal
filtering properties of T4 and T5 cells and all their respective inputs in vivo.
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Temporal tuning optima shifted towards higher frequencies for T4 and T5

cells and all the input elements. Notably, the effect was stronger on input
neurons with band-pass characteristics than on neurons that are low-pass
filters. The resulting filter bank allowed us to make a biologically plausible
suggestion on where to place the neural correlates of the input lines in the
three-arm detector model (Figure 10).

conclusions The voltage in bipolar cell axon terminals reflects a com-
plex combination of dendritic inputs, cell-intrinsic voltage transformations,
and additional modulatory input from amacrine cells. Intriguingly, these
response characteristics are well captured, across many stimulus conditions,
by the classic linear-nonlinear-Poisson cascade model. In this model, in-
put signals are first transformed by a set of spatio-temporal linear filters
(e.g., spatial center-surround receptive fields and first-order band-pass fil-
ters), then fed through a non-linearity (e.g., rectification), and finally used to
drive a Poisson spiking model (Euler et al., 2014). This resembles the mod-
els we used to model medulla cell responses in Arenz et al. (2017). However,
such abstractions often miss out on specific biophysical details of the signal-
generating process as well as more complex circuit interactions like feedback.
Future approaches should implement neuromodulation, feedback, biophysi-
cal plausible properties of receptors, and their distribution.

3.2 fly motion vision

Where are we in understanding how direction selectivity arises in Drosophila
motion detectors? A complete connectome of the motion vision circuitry has
been assembled over the course of decades (Takemura et al., 2008, 2013; Take-
mura, 2015; Takemura et al., 2017; Shinomiya et al., 2019, 2014). Functional
response properties (Ammer et al., 2015; Drews et al., 2020; Arenz et al., 2017;
Strother et al., 2017; Fisher et al., 2015a; Serbe et al., 2016; Meier et al., 2014;
Meier and Borst, 2019; Richter et al., 2018) and the transmitter phenotypes
(Takemura et al., 2017; Richter et al., 2018; Davis et al., 2020; Shinomiya et al.,
2019) of the inputs to T4/T5 cells have been described in great detail. Mod-
els evolved from classical Hassenstein-Reichardt (Behnia et al., 2014; Behnia
and Desplan, 2015) and Barlow-Levick (Fisher et al., 2015b; Takemura, 2015)
to a combination of both models, resulting in a high degree of direction
selectivity, closely matching the experimental data (Haag et al., 2016, 2017;
Borst, 2018).

Additionally, several studies investigated the RNA profiles of almost all
cell types in the fly optic lobe, including T4 and T5 cells (Davis et al., 2020;
Pankova and Borst, 2016; Hoermann et al., 2020; Konstantinides et al., 2018).

Although this is a valuable repertoire that can complement anatomical and
physiological data, it is problematic to infer the protein level from mRNA
levels. Both mRNA and protein levels are subject to complex regulatory post-
transcriptional, translational, and protein degradation mechanisms (Vogel
and Marcotte, 2012). With a recently developed genetic labeling method, it
is possible to visualize the endogenous expression of receptor proteins in
Drosophila neurons. For T4 and T5 cells, the subcellular distribution of the
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Figure 15: Distribution of input synapses and receptors on T4 and T5 cells. a
Schematic of the optic lobe of the fly and one cell of each T4 (darker grey)
and T5 (lighter grey) cell subtype projecting from medulla and lobula
respectively to one of the layers of the lobula plate. b Morphology of
one exemplary EM-reconstructed T4 neuron showing the location of the
dendrite, axon and cell body in relation to each other. c Input synapses
on the dendrite are arranged in a particular order dependent on the
transmitter released by the input cell. Dendrites are elongated on the
direction contrary to the preference of visual motion. In this example,
a T4b cell dendrite is elongated towards the right whereas its preferred
direction is to the left (Arrows). d Same as in c but for T5 cells. Note that
a glutamatergic input is absent compared to T5 cells. e Distribution of
the glutamate-gated chloride channel GluClα , the acetylcholine receptor
subunit Dα7 and the GABA receptor subunit Rdl. f Same as in e for T5

cells. The figure is used and modified with permission from (Fendl et al.,
2020).
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Acetylcholine (ACh) receptor subunit Dα7, the GABA receptor subunit Rdl
and the glutamate-gated chloride channel GluClα (among others) have been
shown (Fendl et al., 2020). The following picture emerges: in T4 dendrites
GluClα is located at the very distal end, Dα7 is distributed in the center
and Rdl is expressed mainly on the proximal end. At the membrane of T5

cells, a similar arrangement for Dα7 and Rdl is applicable, however, GluClα
is not expressed (see Figure 15 e+f). This compartmentalized expression of
receptors at the dendrite matches the location of input synapses intriguingly
well (Figure 15 c-f). The glutamatergic input Mi9 synapses onto T4 cells
on the distal part of the dendrite where GluClα is expressed. Dα7 in the
center of the dendrites conveys the cholinergic signal from Mi1 & Tm3 for
T4 cells and from Tm1, Tm2 & Tm4 for T5 cells. Lastly, Rdl is located at the
proximal sides of the dendrite where CT1, Mi4, C3 & TmY15 synapse onto
T4 dendrites and CT1 & TmY15 synapse onto T5 dendrites (see Figure 15).

Although the picture of receptor distribution is far from complete (Davis
et al., 2020) it gives rise to tempting speculations. All the receptors that are
described so far are ionotropic and fast. This suggests that the differential
input dynamics proposed by the current algorithmic model (See Figure 9)
are already created in the inputs themselves and that the synapse does not
add any additional delay.

So what is there still to learn?
The above-mentioned findings open the door to look one level deeper into

how direction selectivity arises at the dendritic membrane. Recently, a bio-
physical model has been brought forward for how a purely passive piece of
membrane can accomplish a non-linear operation such as multiplication in
terms of ionic conductances and membrane potential (Borst, 2018). The au-
thor suggests, that on the T4 cell’s dendrite can achieve the required signal
amplification derived for the 3-arm detector (see Chapter 1.3 and Figure 9)
by multiplying the inhibitory glutamate input Mi9 on the distal arm of the
dendrite together with an excitatory inhibitory input in the center (putatively
the cholinergic inputs Mi1 & Tm3). At first glance a combination of a nega-
tive inhibitory with a positive excitatory input is counter-intuitive. It is owed
to peculiarities of the glutamatergic input Mi9 however, that this becomes
plausible. In the presence of glutamate-gated chloride channel GluClα glu-
tamate acts as an inhibitory transmitter (Liu and Wilson, 2013; Mauss et al.,
2015). Mi9 has an OFF receptive field center, despite being attributed to the
ON pathway (Arenz et al., 2017; Richter et al., 2018; Salazar-Gatzimas et al.,
2018). Assuming a constant tonic release of neurotransmitters from Mi9 in
darkness, an ON edge moving along T4’s preferred direction would result
in a release from inhibition on the preferred side of the receptive field. As
a consequence the input resistance of the T4 cell rises, which acts as an am-
plifier to a subsequent excitatory input. In this way, the preferred direction
response would become supra-linear and therefore enhanced. Stimulation
in the null direction would produce sub-linearity, because the excitatory in-
put would arrive at the dendrite before the inhibition is released. Whether
the model represents the physiological reality awaits further experimental
proof.

How preferred direction enhancement is implemented in the OFF path-
way is less clear. As depicted in Figure 15 d, the columnar input (Tm9)
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on the distal side of the T5 cell’s dendrite releases acetylcholine as a trans-
mitter (Davis et al., 2020; Shinomiya et al., 2019) and has an OFF receptive
field center (Serbe et al., 2016; Arenz et al., 2017; Fisher et al., 2015a). There-
fore a mechanism as proposed for the T4 cell seems unlikely for T5 cells.
The excitatory receptor Dα7 is distributed in the central and the distal part
of the dendrite (Fendl et al., 2020). It is thus plausible that Tm9 on the
distal side of the dendrite provides excitatory input. Based on mRNA lev-
els, however, other receptors types are expressed in T4 and T5 cells (Davis
et al., 2020). It has therefore been speculated that muscarinic acetylcholine
receptors ensure inhibitory input that would be in line with a Barlow-Levick
model (Shinomiya et al., 2014).

The second non-linear component of the three-arm detector, a division
(null direction suppression), could be implemented for instance by opening
an inhibitory conductance (i.e. chloride) that is larger than the leak conduc-
tance (Torre and Poggio, 1978). This type of inhibition is called "shunting
inhibition" because an excitatory input is suppressed by division rather than
linear subtraction (Carandini and Heeger, 1994). On the proximal side of
T4 and T5 dendrites, such a type of inhibition could be implemented by the
integration of inhibitory GABAergic input (Mi4, C3, and CT1 for T4 and
CT1 for T5) via the Rdl receptors (Fendl et al., 2020). Another possibility is
the integration of a modest inhibitory conductance, followed by a rectifica-
tion (i.e. a voltage-gated calcium channel) (Koch, 2004). Definite answers
will only follow after ionic currents can be measured and manipulated by
pharmacological or genetic means.

voltage-gated sodium channels The aforementioned model does not
require any active conductances (Borst, 2018). However, according to mRNA
levels quantified in Davis et al. (2020) and protein levels quantified in Fendl
et al. (2020), the voltage-gated sodium channel Paralytic or Para is highly ex-
pressed in T4 and T5 cells and limited to the fiber connecting dendrites and
axon terminal. Importantly, there is no expression in the fiber connecting the
dendrite and the cell body or dendrites and axon terminals. Voltage-gated
sodium channels are classically involved in generating the rising phase of
an action potential and are essential for the excitability of the membrane
(Catterall, 2000). Rapidly depolarizing synaptic inputs open Na+ channels,
Na+ enters the cell along its concentration gradient (outside ≈ 10 times
higher than inside), resulting in an even larger depolarization. When the
equilibrium potential of Na+ is reached, the inactivation of Na+ channels
and efflux of K+ ions bring the cell’s membrane potential back to rest (Kan-
del et al., 2000). Despite being the sole voltage-gated sodium channel gene in
insects the exact kinetics remain unclear because dozens of alternative splice
variants of the gene can alter biophysical characteristics of the channel (Lin
et al., 2009).

Experiments in the lobula giant movement detector of locusts (LGMD)
showed a multiplication-like mechanism. Here, a multiplication is approx-
imated by feeding input signals through a logarithmic non-linearity, sum-
ming them linearly on the target dendrite, and transforming this sum via an
exponential non-linearity.
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Mathematically, this can be defined as:

elogx+logy = elogx · elogy = x · y (3)

The resulting signal therefore is the product of the two input signals. By
locally blocking voltage-gated sodium channels with tetrodotoxin (TTX) the
authors showed that voltage-gated sodium channels are essential for map-
ping the membrane potential to firing rate in an exponential manner (Gab-
biani et al., 2002). Whether voltage-gated sodium channels like Para also
contribute to non-linearities in T4 and T5 cells is not yet understood.

Patch-clamp electrophysiology experiments have reported that T4 and T5

cells exclusively convey graded potentials instead of action potentials (Grunt-
man et al., 2018, 2019). So how do these two findings fit with the presence of
voltage-gated sodium channels? In the following, I want to discuss two pos-
sibilities. First, the Para channel could have a different role than contributing
to an action potential. In direction-sensitive and opponent mechanosensory
neurons in Drosophila, Na+ channels do not act as amplifiers of depolariza-
tion but rather as buffers that stabilize the cell’s resting membrane potential
by counteracting any change in the cell’s voltage (Azevedo and Wilson, 2017).
This is due to the depolarized membrane potential of the cell at around -50

mV. In this way additional depolarization causes Na+ channel to inactivate
and hyperpolarization results in an opening of the channels. T4 and T5 cells
however are much more hyperpolarized at rest (≈ - 60 mV) (Gruntman et al.,
2018, 2019), therefore a similar role seems less likely.

Other explanations are derived from the general morphology of inverte-
brate neurons. In contrast to vertebrate neurons, where the cell body of any
given neuron is located between the dendrite and axon of the cell, inver-
tebrates "outsourced" the cell body such that from the dendrite one cable
runs towards the axon terminal whereas another one ramifies to a cell body
(Figure 15 b). In the case of T4 cells the latter is extremely thin ( ≈ 2 nm)
and dependent on the location on the distal-proximal axis ≈ 40-120 µm long.
It could therefore be that high frequency components are attenuated (Euler
et al., 2014) and action potentials arrive at a reduced amplitude at the cell
body where voltage signals were measured so far (Gruntman et al., 2018,
2019).

Furthermore, it could be that due to compartmentalization action poten-
tials do not propagate along the cable from the dendrite to the cell body.
A recent study links connectomic to physiology data between second-order
projection neurons (PNs) to third-order lateral horn neurons (LHNs) in the
olfactory network of Drosophila, which appear to be remarkably similar to T4

and T5 neurons concerning their morphology. Generating one single action
potential (AP) via optogenetic stimulation in the presynaptic PN neurons
and measuring the postsynaptic potential (EPSP) in LHN cells, they report
three major findings. First, the amplitude of EPSPs increases linearly with
the density of synapses across a diverse set of connection types. Second,
connection weight decreases with synaptic distance along the cable that con-
nects dendritic and axonal arbors. Third, multi-compartment models predict
EPSPs much more accurately than single-compartment models (Liu et al.,
2021).
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To test whether such mechanisms actually take place in T4 and T5 cells,
one would optimally perform patch-clamp recordings at the dendrite and
the axon terminal. This is however impossible to the minuscule size of these
arborizations.

voltage imaging To overcome these problems researchers have made ef-
forts to create genetically encoded fluorescent voltage indicators (GEVI) that
allow non-invasive, all-optical monitoring of the membrane potential (re-
viewed in (Knöpfel and Song, 2019; Madhusoodanan, 2019)) and have been
successfully demonstrated for studying brain function in various model or-
ganisms, including mice, fish, and flies (Chamberland et al., 2017; Miyazawa
et al., 2018; Aimon et al., 2019; Abdelfattah et al., 2019).

In the fly motion vision circuit voltage indicators have been used to mea-
sure subcellular voltage responses of the lamina monopolar cells L1 & L2

and a selection of the presynaptic inputs of T4 cells (Mi1 & Tm3) and T5

cells (Tm1&Tm2), as well as the responses of T5 cells (Yang et al., 2016; Wie-
necke et al., 2018). The indicators used in these studies have slow kinetic
properties and are therefore unable to show action potentials. Nowadays
indicators that are fast enough to detect spikes, exhibit an acceptable signal-
to-noise and are compatible with 2-photon imaging (Villette et al., 2019).
Combined with genetic targeting of single cells this will enhance the under-
standing of signal processing in T4 and T5 cells and beyond.

3.3 concluding remarks

In summary, the work in this cumulative thesis has contributed to the accel-
erating progress the field of Drosophila motion vision has seen over the past
decades. First, we comprehensively characterized all the input elements to
the elementary motion detectors in the fly with a standardized stimulus set
that allowed comparisons of the spatial and temporal response properties
between cell types. This was hard to infer from previous data because of
varying stimulus conditions or physiological techniques and paved the way
for mapping individual cell types onto plausible roles in the algorithmic
model. The result was largely confirmed by anatomical data from EM re-
constructions. Additionally, we showed that response properties in the early
visual system are not fixed but instead are influenced by neuromodulatory
transmitters that most likely encode the behavioral state of the animal. Sec-
ond, we determined the dynamics of transmitter release of one particularly
interesting glutamatergic cell type in the circuit with newly available indica-
tors. Lastly, we showed that neurons in the early visual system are subject
to non-linear processing of surround contrast outside their linear receptive
field that we had determined in the previous manuscripts. Despite being
well studied in the mammalian visual circuitry and other sensory modalities,
it was the first time that a mechanism for divisive contrast normalization has
been shown in the fly visual system. Our findings lay the groundwork for
interesting, but so far unresolved, questions. What is the cellular or biophys-
ical implementation of contrast normalization in medulla cells? Do active
conductances shape direction-selectivity in T4 and T5 cells? How do circuits
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downstream of T4 and T5 cells filter motion information such that behav-
iorally relevant information can be optimally extracted? Finding answers to
these questions will be the next step in understanding visual computation
at a fundamental level.
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