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1. EINLEITUNG 

1.1. Thematik der Dissertation 

Der vorliegenden Dissertation liegen zwei wissenschaftliche Publikationen zugrunde, deren 

Schwerpunkt schlafmedizinische sowie kognitive Aspekte des primären 

Hyperaldosteronismus (PHA) sind.  

Die Patienten stellten sich zur initialen Diagnostik in der Conn-Ambulanz der Ludwig-

Maximilians-Universität München vor. Nach Diagnosestellung eines PHA erfolgte der 

Studieneinschluss. 

Der schlafmedizinische Vergleich zwischen einer Gruppe von Patienten mit einem PHA, 

einer depressiven, unbehandelten Gruppe sowie einer gesunden Kontrollgruppe stellt den 

Inhalt der ersten Publikation dar. Die Aufzeichnung der Schlaf-Elektroenzephalografien 

(Schlaf-EEGs) der Studienteilnehmer erfolgte in zwei aufeinanderfolgenden Nächten. Die 

erste Nacht diente zur Gewöhnung der Teilnehmer an die Studienbedingungen im 

Schlaflabor, in der zweiten Nacht erfolgte die Aufzeichnung.  

Der Vergleich der kognitiven Performance einer Gruppe von PHA-Patienten mit Normwerten 

der Allgemeinbevölkerung bietet den Rahmen der zweiten Publikation. Alle Studienpatienten 

wurden mithilfe von neuropsychologischen sowie psychiatrischen Scores klassifiziert. Die 

Evaluation der kognitiven Leistungsfähigkeit erfolgte mittels des „d2 Tests“, mit dem 

insbesondere eine Messung der Konzentrationsfähigkeit bzw. der konzentrierten 

Aufmerksamkeit möglich ist (1). Die Gedächtnisfunktion wurde durch den „Revised 

Wechsler Memory Scale“ (2), exekutive Funktionen mittels des „Wechsler Test of 

Intelligence“ bewertet (3). Durch Matrizentests erfolgte eine Messung des abstrakten Denkens 

sowie der sog. fluiden Intelligenz, durch den „Zahlen-Symbol-Test“ eine Evaluation der 

Bearbeitungsgeschwindigkeit. 

Nach Beschreibung der übergeordneten Fragestellung beider Publikationen wird das Deutsche 

Conn-Register vorgestellt, gefolgt von einer Darstellung der Epidemiologie, der 

Komorbiditäten sowie der Schritte zur Diagnosestellung des PHA. Ab Kapitel 1.5. wird auf 

grundlegende Aspekte der Thematik sowie schlafmedizinische, kognitive sowie 

psychiatrische Aspekte des PHA Bezug genommen. Zuletzt erfolgt die genauere Erläuterung 

der eigenen Forschungsarbeiten. 
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1.1.1. Übergeordnete Fragestellung 

Der Mineralokortikoidrezeptor (MR) ist in die Pathogenese affektiver Störungen, die 

Schlafregulation und in die Gedächtnisbildung involviert (4-10), er kann sowohl in die 

Regulation der Hypothalamus-Hypophysen-Nebennierenrinden-Achse (HPA-Achse) als auch 

in die des Renin-Angiotensin-Aldosteron-Systems (RAAS) eingreifen (11-13). Die Analyse 

des MR und der Einfluss chronisch erhöhter Konzentrationen seines natürlichen 

Bindungspartners Aldosteron nehmen eine hervorgehobene Stellung in den Publikationen ein.  

Gehäuft auftretende Depressionen, Angststörungen sowie eine herabgesetzte Lebensqualität 

unter Patienten mit einem PHA-bedingten, chronischen Aldosteronexzess (14-17), die 

schlafstadienabhängige Sekretion von Aldosteron (18-25) sowie charakteristische 

Schlafveränderungen bei depressiven Patienten betonen die wechselseitige Beziehung der in 

den Publikationen behandelten Themenfeldern (26-33). Die Rolle des MR, des RAAS und die 

Bedeutung depressiver Störungen in der Gedächtnisbildung und der kognitiven 

Leistungsfähigkeit werden in Studien an menschlichen Probanden (34-36) sowie in 

Tierstudien (37) untersucht. 

 

1.2. Deutsches Conn-Register 

Das Deutsche Conn-Register wurde 2006 in München gegründet und dient der 

Datenerhebung zu Diagnostik, Therapie und Krankheitsverlauf des PHA. Primäres Ziel des 

Registers ist die Bildung einer multizentrischen, prospektiv aufgebauten Patientenkohorte zur 

weiteren Forschung hinsichtlich Diagnostik, Subtyp-Differenzierung, Therapie und Prognose 

sowie Komorbiditäten des PHA. Die teilnehmenden Institutionen befinden sich im gesamten 

Gebiet der Bundesrepublik Deutschland (38). 

 

1.3. Epidemiologie und Komorbiditäten des PHA 

Der primäre Hyperaldosteronismus, das sog. Conn-Syndrom, wird als die häufigste Ursache 

einer sekundären Hypertonie angesehen. Aktuelle Schätzungen in einem an Bluthochdruck 

leidenden Patientenkollektiv gehen von einer Prävalenz von 5-6 % der Betroffenen aus (39, 

40). Bei schwerer1 bzw. resistenter Hypertonie2 werden Prävalenzen zwischen 10 % bzw. 

20 % (41, 42) angenommen.  

 
1 Systolischer Blutdruck ≥ 180mmHg, Diastolischer Blutdruck ≥ 110 mmHg 
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In verschiedenen Studien wurden kardiovaskuläre, cerebrovaskuläre sowie renale 

Schädigungen durch den pathologischen Aldosteronexzess untersucht.  

Zwischen essentiellen Hypertonikern und PHA-Patienten bestand eine signifikant erhöhte 

Prävalenz an Schlaganfällen, nicht-tödlichen Herzinfarkten sowie von Vorhofflimmern 

aufseiten der an PHA leidenden Personen (43). Reincke et al. beschrieben zudem eine erhöhte 

kardiovaskuläre Morbidität, welche die Haupttodesursache bei PHA-Patienten darstellte (44). 

In Studien wie der RALES-, EPHESUS- sowie der 4E-Studie wurde der positive Effekt von 

MR-Antagonisten auf das Kreislaufsystem nachgewiesen, diese Medikamente haben bereits 

Einzug in die moderne kardiovaskuläre Therapie gefunden (45-47).  

Eine nach Therapieeinleitung unter PHA-Patienten auftretende 

Nierenfunktionsverschlechterung, eine neue oder aggravierte Dyslipidämie sowie die häufig 

therapierefraktäre arterielle Hypertonie weisen auf persistierende Folgeschäden des PHA hin 

(48-52). Die erhöhte Prävalenz eines gestörten Glukosestoffwechsels und/oder eines Diabetes 

mellitus mit unzureichender metabolischer Normalisierung unter therapeutischen 

Massnahmen ergänzen diese Beobachtungen (53-58). Echokardiographische Veränderungen 

unter normotensiven Patienten mit einer familiären Form des Hyperaldosteronismus (59) 

sowie Organveränderungen bei Patienten mit einem Nebennierenadenom mit einer Fibrose 

des Herzens, der Nebennieren, des Pankreas sowie der Lunge erhalten in diesem 

Zusammenhang weitere Signifikanz (60).  

Ein frühes Erkennen der Erkrankung und Einleitung einer gezielten Therapie bekommt durch 

die mögliche Minimierung von Folgeschäden mit gesundheitsökonomischer Relevanz weitere 

Bedeutung (61).  

 

1.4. Diagnostik des PHA 

Die typische Trias einer therapierefraktären arteriellen Hypertonie, einer Hypokaliämie sowie 

einer metabolischen Alkalose weisen nur weniger als 50% der an einem PHA leidenden 

Patienten auf, weshalb sie als Screeninginstrument unzureichend ist (62). 

Leitliniengerecht (63) wurde im Rahmen der vorliegenden Studien ein Screening der 

Patienten mithilfe des Aldosteron-Renin-Quotienten (ARQ) durchgeführt, zuvor war unter 

kontrollierten Bedingungen die Bestimmung der Plasma-Aldosteron-Konzentration sowie der 

Plasma-Renin-Konzentration erfolgt. 

 
2 Bedarf von ≥ 3 Antihypertensiva inkl. Diuretikum in therapeutischer Dosierung 
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Bei erhöhtem ARQ erfolgte nach Durchführung eines Kochsalzbelastungstests als 

Bestätigungstest der Einschluss des Patientenkollektivs in die Studien. 

Der Kochsalzbelastungstest dient dazu, die Supprimierbarkeit von Aldosteron nach 

intravenöser Gabe von zwei Litern physiologischer Kochsalzlösung innerhalb von 4h zu 

überprüfen. Bei nicht supprimierbaren Aldosteronserumspiegeln und gleichzeitig erniedrigter 

Reninkonzentration kann die Diagnose eines primären Hyperaldosteronismus als gesichert 

gelten. Bei nicht eindeutigem Ergebnis oder Kontraindikation zur Durchführung eines 

Kochsalzbelastungstests erfolgte zur weiteren Bestätigung ein Captopril-Test, dieser wurde in 

unserem Studienkollektiv bei zwei Patienten (10,53 % der PHA-Teilnehmer) durchgeführt. 

 

1.5. Grundlegendes  

1.5.1. Der Mineralo- und der Glukokortikoidrezeptor 

Der Mineralo- und der Glukokortikoidrezeptor gehören zur Familie der ligandenaktivierten, 

nukleären Hormonrezeptoren und befinden sich in nicht-aktiviertem Zustand hauptsächlich 

im Zytosol. Der Glukokortikoidrezeptor (GR) wird im menschlichen Körper ubiquitär 

exprimiert (64), der MR wird in verschiedenen Geweben nachgewiesen, insbesondere dem 

Hippocampus, dem Hypothalamus sowie den Sammelrohren der Nieren (4, 65-68).  

Eine Aktivierung erfolgt nach Bindung des Liganden und folgender Rezeptoraktivierung 

mittels Dimerisierung und Translokation in den Nucleus. Der aktivierte Rezeptor wirkt dort 

als Transkriptionsfaktor und kann zu einer Steigerung oder Herabsetzung der Genexpression 

und –transkription führen, wobei die Dimerisierung wesentlich für eine regelrechte 

Regulation der HPA-Achse ist (69). Neben der nukleären Form gibt es den membran-

assoziierten MR, welcher über eine nicht-genomische Signalkaskade einen schnellen Effekt 

der Rezeptorregulation vermitteln kann. Dieser befindet sich u.a. im Hippocampus und 

Hypothalamus und hat eine vergleichsweise geringere Affinität zu Glukokortikoiden (70), 

über ihn wird der negative Feedbackmechanismus von Cortisol auf die HPA-Achse sowie die 

cortisolabhängige Steigerung der hippocampalen Glutamatfreisetzung vermittelt (71, 72). Es 

können verschiedene Haplotypen des MR differenziert werden, wobei der Haplotyp 2 über 

eine erhöhte MR-Aktivität verfügt und besonders bei weiblichen Personen als protektiver 

Faktor gegen eine depressive Symptomatik dient (73). Der Haplotyp 1 wirkt über eine 

Hypoaktivität des Corticotropin-releasing Hormons (CRH) und einen morgendlichen 

Hypocortisolismus als Vulnerabilitätsfaktor für eine atypische Depression (74). 
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Bedeutsam ist, dass Glukokortikoide eine 10-fach erhöhte Affinität zum MR im Vergleich 

zum GR aufweisen, so dass der MR schon unter basalen Bedingungen zu 90% belegt ist. 

Trotz der hohen Belegung des Rezeptors sind unter physiologischen Bedingungen MR-

spezifische Aktionen auf die HPA-Achse möglich (75). Eine signifikante Belegung des GR 

erfolgt indes erst bei deutlich gesteigerten Cortisolspiegeln, wie sie im Rahmen einer akuten 

Stressreaktion oder des Peaks des zirkadianen Rhythmus auftreten können (76, 77).  

Bei Aktivierung des MR vermindert sich die HPA-Achsen-Aktivität, unter medikamentöser 

Hemmung desselben oder additiver Aktivierung des GR steigert sich diese (4, 10, 78). Der 

cerebrale MR trägt zudem zur Aufrechterhaltung der Neurogenese, der neuronalen Integrität 

und einer stabilen Exzitation bei (79, 80). 

Geschlechtsspezifische Unterschiede des GR sowie des MR hatten sich in präklinischen 

Studien gezeigt (81-83). Im Rahmen der Stress-induzierten Cortisolausschüttung scheinen 

insbesondere die weiblichen Geschlechtshormone ein modulierender Faktor zu sein (84, 85), 

Progesteron wirkt auf die Affinität des MR gegenüber seinen Bindungspartnern ein, Östrogen 

beeinflusst die Expression des MR (86, 87). Bei weiblichen Personen besteht unter 

medikamentöser Therapie mit Aldosteronrezeptorblockern zudem eine vergleichsweise 

ausgeprägte Wirkung (88).  

Des Weiteren wirkt der Alterungsprozess auf den MR ein: Im Alter verringert sich die MR-

Funktion sowie die HPA-Achsen-Inhibition (89), woraus eine Erhöhung der Cortisolspiegel 

bei älteren Menschen resultiert (90). 

 

1.5.2. Die Hypothalamus-Hypophysen-Nebennierenrinden-Achse  

Zellpopulationen in den Hormondrüsen des Hypothalamus, der Hypophyse sowie der 

Nebenniere bilden in ihrer Gesamtheit die HPA-Achse. Haupteffektor ist das Glukokortikoid 

Cortisol, welches in der Nebenniere gebildet wird. Dieses kann aufgrund seiner 

Lipidlöslichkeit weitestgehend ungehemmt die Blut-Hirn-Schranke durchqueren und dort 

seine Wirkung entfalten (91). 

Glukokortikoide können anti-inflammatorische Mechanismen fördern, was häufig in einem 

therapeutischen Kontext genutzt wird (92). Die unerwünschten Effekte eines 

Hypercortisolismus, insbesondere bei chronischer Glukokortikoidtherapie, sind divers und 

beinhalten neben der Immunsuppression unter anderem die Induktion eines metabolischen 

Syndroms (93), eine herabgesetzte Knochendichte (94) und eine gestörte Wundheilung (95).  
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Dysfunktionen innerhalb der HPA-Achse können sich in psychischen Störungen wie einer 

Depression, einer Schizophrenie oder einer Posttraumatischen Belastungsstörung (96-98) 

ebenso wie in somatischen Erkrankungen wie einer arteriellen Hypertonie (99) oder einem 

Diabetes mellitus Typ 2 (100) manifestieren, was die Bedeutung einer regelrechten 

hormonellen Steuerung der Achse unterstreicht. Dysregulationen in der HPA-Achse scheinen 

zudem einen Einfluss auf das Therapieansprechen sowie das Rückfallrisiko depressiver 

Patienten zu haben (101, 102). 

CRH-produzierende Neurone im Nucleus paraventricularis des Hypothalamus bilden die erste 

Station der HPA-Achse. CRH wird in das hypophyseale portal-kapilläre System eingespeist 

und stimuliert in der Hypophyse die Synthese des Adrenocorticotropen Hormons (ACTH). 

Nach einem Transport über die Blutstrombahn zur Nebenniere führt ACTH über 

Melanocortin 2-Rezeptoren zur Freisetzung von Cortisol aus der Zona fasciculata der 

Nebenniere. Über 90% des freigesetzten Cortisols sind an Transcortin gebunden, welches als 

Transportprotein dient und das Cortisol vor Degradation oder andersartiger Veränderung 

schützt, bis das Zielorgan erreicht wird (103). Dort kann Cortisol frei die Plasmamembran 

durchqueren und an seine Zielrezeptoren binden. 

Eine Achsenregulation findet über ein negatives Feedback anhand des Cortisolspiegels statt 

(104, 105), sodass die HPA-Achse bei Abwesenheit von Glukokortikoiden hoch- und bei 

hohen Konzentrationen von Glukokortikoiden herunterreguliert wird. 

Die Sekretion der HPA-Achsen-Hormone erfolgt in einer circadianen, pulsatilen Form, 

sowohl eine pulsatile ACTH- als auch Cortisolausschüttung scheinen wichtig für eine 

optimale Transkription der Glukokortikoid-regulierten Gene zu sein (106, 107). Der Peak der 

Cortisolsekretion befindet sich bei den meisten Säugetieren in den Morgenstunden zu Beginn 

der aktiven zirkadianen Phase, beim Menschen kommt es darüber hinaus zu einem starken 

Cortisolanstieg circa 30 Minuten nach dem Erwachen (108). Der Nucleus suprachiasmaticus 

nimmt hier eine wichtige regulative Rolle ein, da über ihn das Sekretionsmuster von CRH 

sowie die ACTH-Sensibilität der Nebenniere beeinflusst wird (109).  

Die zirkadiane Rhythmik und die sog. ultradianen basalen Pulsationen müssen von einer 

Stress-induzierten Aktivität abgegrenzt werden. Ersterer liegt das Wechselspiel zwischen der 

ACTH-getriebenen Cortisolausschüttung und dem negativen Feedback der ACTH-

Ausschüttung durch den Cortisolspiegel zugrunde (110). Die in einem Abstand von circa 60 

Minuten auftretenden ultradianen basalen Pulsationen haben einen modulierenden Effekt auf 
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die zirkadiane Rhythmik, welche sie über Frequenz- und Amplitudenveränderungen 

beeinflussen (111).  

Im Rahmen der akuten Stressantwort kommt es zu einer Stress-induzierten Aktivität der 

HPA-Achse, wobei zwischen einer akuten und einer chronischen bzw. repetitiven 

Stressantwort unterschieden wird. Bei einer akuten Stressantwort kommt es nach 

Konfrontation mit dem Stressor zu einem zeitnahen Ansteigen des ACTH- und des 

Cortisolspiegels, nach Ende der Stresssituation erfolgt aufgrund der kurzen Halbwertszeit des 

Cortisols im Blut eine zeitnahe Normalisierung der Serumspiegel (112). Bei wiederholter 

sowie chronischer Exposition auf einen gleichartigen Stressor wird indes ein 

Gewöhnungseffekt mit Abnahme der HPA-Achsen-Antwort beschrieben.  

Dem entgegengesetzt kann die Konfrontation mit einem jeweils andersartigen Stressor bei 

vorhergehender, repetitiver Stressinduktion zu einer ausgeprägten HPA-Achsen-Antwort 

führen (113). 

Zwischen der HPA-Achse sowie dem RAAS bestehen vielfältige und komplexe 

Interaktionen. Beispiele hierfür sind die gemeinsame Regulation der Cortisol- und der 

Aldosteronausschüttung durch ACTH (11) sowie die Erhöhung der Cortisolkonzentration 

nach Gabe des MR-Antagonisten Spironolacton (12, 13). 

 

1.5.3. Das Renin-Angiotensin-Aldosteron-System  

Das Aufgabe des RAAS besteht in der Regulation des Extrazellulärvolumens, der vaskulären 

Tonizität sowie des arteriellen Blutdrucks (114).  

Renin wird bei erniedrigtem Blutdruck, erniedrigter Serumnatriumkonzentration sowie einer 

Sympatikusaktivierung von der Niere ausgeschüttet und führt zur Konversion von 

Angiotensinogen zu Angiotensin 1 (115). Nach weiteren Spaltungen u.a. in der Lunge und der 

Niere durch das Angiotensin-konvertierende Enzym (ACE) entsteht über einen 

Zwischenschritt aus Angiotensin 1 Angiotensin 2. 

Angiotensin 2 stimuliert die Aldosteronsekretion in der Nebennierenrinde (116), worüber die 

Natriumretention und Kaliumausscheidung gefördert werden. Vermittelt durch 

Osmorezeptoren wird über die Stimulation des Durstzentrums im Hypothalamus die 

Sekretion des antidiuretischen Hormons (ADH) sowie von ACTH angepasst (117). Die 

Vermittlung der Vasokonstriktion glatter Muskelzellen kann zu einer Blutdruckerhöhung 
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führen (118), über das Eingreifen in die Regulation der Lipogenese können die 

Glucosetoleranz und die Insulinresistenz beeinflusst werden (119).  

Das Mineralokortikoid Aldosteron wird von der Zona glomerulosa der Nebennierenrinde 

gebildet. In Hirnregionen, bei denen man davon ausgeht, dass sie im Rahmen der 

Stimmungsregulation des Menschen bedeutsam sind - wie dem Nucleus tractus soltarii, der 

Amygdala sowie dem Nucleus paraventricularis des Hypothalamus - besteht eine 

Bindungsselektivität des Aldosterons am MR (26). Diese kommt dort durch eine 

gewebespezifisch unterschiedlich gestaltete Co-Expression der 11β-Hydroxysteroid-

Dehydrogenase Typ 2 (11β-HSD2) zustande, welche Cortisol zu seinem inaktiven 

Metaboliten Cortison verstoffwechselt; Aldosteron kann dann als Ligand binden.  

Vermittelt über die 11β-HSD2 findet zudem in der Niere, dem Colon, den Schweißdrüsen 

sowie den zirkumventrikulären Organen des Gehirns eine selektive Regulation des 

Flüssigkeitshaushaltes sowie der Elektrolythomöostase mittels Aldosteron statt (66, 120).  

 

1.5.4. Die Regulation des Schlafs 

Schlaf wird durch eine herabgesetzte Antwort auf sensorische Stimuli und Veränderungen in 

der kortikalen Aktivität, welche über die Polysomnographie aufgezeichnet werden können, 

definiert. Auf physiologischer Ebene kommt es zu einer wechselseitigen Interaktion von 

spezifischen schlaf- und wachaktiven Zellgruppen im Gehirn, über welche der Aktivitätsgrad 

des Kortex reguliert wird.  

Der Schlaf kann in den Non-rapid eye movement (NREM)- und den Rapid eye movement 

(REM)-Schlaf unterteilt werden, wobei der NREM-Schlaf aus drei Stadien besteht, das 

Stadium N3 ist der Slow Wave Sleep (SWS) (121). Während des NREM-Schlafs kommt es 

zu einer kompletten Suppression der Acetylcholinausschüttung und einer Reduktion der 

Noradrenalin- und Serotoninkonzentration (122). Der REM-Schlaf tritt üblicherweise nach 

der ersten NREM-Phase auf und ist durch Oszillationen im EEG, einen Muskeltonusverlust 

und symmetrische Augenbewegungen charakterisiert, wobei sich im EEG eine kortikale 

Aktivierung und eine hippocampale Thetaaktivität zeigen.  

Während der Nacht ändert sich das Verhältnis NREM-Schlaf/REM-Schlaf, wobei am Anfang 

der Nacht die REM-Schlafperioden kurz und die NREM-Perioden relativ lang sind, am Ende 

der Nacht ist dies umgekehrt (123, 124). Auf neurophysiologischer Ebene kommt es beim 
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REM-Schlaf zu einem Anstieg der Acetylcholinkonzentration und einem Abfall der 

Noradrenalin- und Serotoninkonzentration (125).  

Das menschliche Gehirn durchläuft während einer Nacht 4-8 Schlafzyklen bestehend aus 

jeweils einer NREM- und einer REM-Phase, wobei jeder Zyklus circa 90 Minuten andauert. 

Während des Einschlafprozesses wird regelhaft in stufenweiser Abfolge zunächst das 

Schlafstadium N3 erreicht, bevor eine REM-Schlafphase folgt. In der Einleitung des Schlafs 

spielt der Thalamus über seine Rolle als „Torhüter“ mit Steuerungsfunktion der sensorischen 

Impulse zum Kortex eine Schlüsselrolle (126). Dieser stellt bei Einleitung der Schlafphase bei 

rückläufigen Eingangssignalen aus den Wachzentren von einer tonischen auf eine salvenartige 

Aktivität um, es kommt daraufhin zu einer deutlichen Verminderung des Informationsflusses 

zum Kortex (127, 128). Im Rahmen der Salvenaktivität treten im NREM-Schlaf 

charakteristischerweise die sog. Schlafspindeln und Deltawellen auf, welche ihren Ursprung 

in inhibitorischen GABAergen Thalamuskernen haben (128). Über diese kann es auch zu 

einer Modulation des NREM-Schlafs kommen (129). 

Die Regulation des REM-Schlafs findet im Hirnstamm, dem Hypothalamus sowie der Area 

preoptica statt (130-132). Der Genese des REM-Schlafs ist noch nicht abschließend geklärt, 

es wird vermutet, dass eine abwechselnde reziproke Aktivierung und Inaktivierung von 

Zellverbänden in Hirnstammzellen bedeutsam ist (133), wobei die Zellen des glutamatergen 

sublaterodorsalen Nucleus insbesondere in die Regulation des Muskeltonus eingreifen (130). 

Spezielle Hirnnervenkerne, sog. Wachzentren, befinden sich im Hypothalamus, in der Pons, 

dem Hirnstamm sowie im basalen Vorderhirn und haben axonale Projektionen in den Kortex. 

In der Wachphase wird über diese eine hohe Menge des jeweils spezifischen 

Neurotransmitters sezerniert, während der Einschlafphase und der NREM-Schlafphase nimmt 

die Sekretion deutlich ab. Eine Besonderheit stellt der REM-Schlaf dar, bei dem es zu einer 

erhöhten Ausschüttung von Acetylcholin, vergleichbar zum Wachzustand, kommt (134). 

Nach dem Zwei-Prozess-Modell der Schlafregulation erfolgt die Regulation des Schlafs über 

den circadianen Prozess C und den homöostatischen Prozess S, wobei der Prozess C 

wesentlich über den 24h-Tag/Nacht-Zyklus gesteuert wird. Eine zentrale Struktur stellt der 

retino-hypothalamische Trakt mit dem Nucleus suprachiasmaticus dar, auch nicht-

photonische Zeitgeber wie der Zeitpunkt der Nahrungsaufnahme oder soziale Interaktionen 

vor dem Schlafen sind bedeutsam. Der Prozess S beinhaltet die über physiologische Prozesse 

vermittelte, bei andauernder Wachheit zunehmende, physiologische Schlafneigung, bei deren 

Steuerung verschiedene Hirnareale involviert sind (135).  
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Im Rahmen des Alterungsprozesses kommt es zu einer schlechteren Schlafqualität 

und -menge sowie zu einer erhöhten Fragmentierung des Schlafs mit geringerer 

Schlafintensität und Veränderung der Schlafstadien. Eine wesentliche Rolle diesbezüglich 

wird in der Verschiebung des Verhältnisses von CRH und des Wachstumshormon-Releasing-

Hormons (GHRH) zugunsten von CRH gesehen, welches sich aufgrund der Verminderung 

der GHRH-Aktivität im Rahmen des Alterungsprozesses einstellt (136, 137). Als weitere 

beeinflussende Faktoren vermutet man eine Funktionseinschränkung des Nucleus 

suprachiasmaticus sowie Veränderungen innerhalb des Orexin/Hypocretin-Systems (138-

142).  

Geschlechtsspezifische Unterschiede werden u.a. im Rahmen des Reproduktions- und 

Menstruationszyklus durch die weiblichen Geschlechtshormone reguliert, welche den Schlaf-

Wach-Rhythmus beeinflussen können (143-145). 

 

1.6. Schlafmedizinische, psychiatrische sowie kognitive Aspekte des PHA 

1.6.1. Die Bedeutung der HPA-Achse und des RAAS für den Schlaf 

Verbindungen zwischen einem gestörten Schlafverhalten, einer erhöhten HPA-

Achsenaktivität und polysomnographischen Auffälligkeiten bestehen schon im 

Kindergartenalter (146).  

Die Sekretion von CRH kann zu einer Verringerung des SWS, vermehrtem Leichtschlaf und 

einer verlängerten Wachheit führen, was vermutlich über eine Aktivierung des im Hirnstamm 

lokalisierten, sympathikoergen Locus coeruleus-Noradrenalin Systems vermittelt wird. 

Noradrenalin wird infolgedessen gesteigert sekretiert und fördert über Projektionen in den 

Kortex, den Thalamus sowie den Hypothalamus Wachheit (147-154). Im Rahmen des 

spontanen nächtlichen Erwachsens wird CRH eine regulierende Funktion zugeschrieben, hier 

kommt es zudem zu einer gesteigerten Sekretion von Cortisol (155, 156). Erhöhte 

Cortisolkonzentrationen werden interessanterweise auch bei einer chronischen Insomnie 

beschrieben (148).  

Veränderungen der Schlafarchitektur scheinen abhängig von der Dosis der zugeführten 

Glukokortikoide zu sein. So gingen hohe Glukokortikoiddosen mit einem verringerten Anteil 

an SWS und einer gesteigerten Wachheit einher, bei einer geringen Dosierung war dies 
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umgekehrt (157-159). Als Ursache wird das spezifische Bindungsverhalten des MR und des 

GR mit seinen Liganden diskutiert (75-77, 160).  

REM-Schlaf kann nach Gabe von CRH induziert werden (153, 161, 162), bei der 

Aufrechterhaltung scheint Cortisol bedeutsam zu sein (163). So kam es bei Patienten mit 

einer primären Nebennierenrindeninsuffizienz nach Verabreichung von Hydrocortison zu 

einer Zunahme des REM-Schlafs und einer Reduktion der REM-Latenz (163), ähnliche 

Veränderungen der Schlafarchitektur konnten bei Patienten mit einem Cushing-Syndrom 

beobachtet werden (164).  

GHRH als Teil der somatotropen Achse übt eine inhibierende Wirkung auf die HPA-Achse 

aus. Bei Männern werden schlaffördernde Effekte durch GHRH beschrieben, bei Frauen 

scheint es ähnlich von CRH den Schlaf zu stören (165, 166). Es wird vermutet, dass GHRH 

und CRH im Rahmen der Schlafregulation eine balancierende Rolle einnehmen, wobei 

erhöhte GHRH-Spiegel zu Beginn der Nacht dominieren. CRH ist vor allem in der zweiten 

Nachthälfte wesentlich und induziert einen Cortisol- und REM-Schlaf-Anstieg. Im Zuge einer 

Depression sowie des Alterungsprozesses kommt es zu einer Verschiebung des GHRH/CRH-

Verhältnisses zugunsten des CRH (136, 137). 

Bei Betrachtung des Sekretionsverhaltens der RAAS-Hormone Aldosteron und Renin fällt ein 

jeweils charakteristisches, oszillierendes Sekretionsverhalten auf. Aldosteron wird in der 

Wachphase hauptsächlich durch die HPA-Achse und deren Endprodukt Cortisol gesteuert, in 

der Schlafphase bestehen Assoziationen mit der Plasma-Renin-Aktivität (PRA) (167). In der 

REM-Schlafphase kommt es zu einem Anstieg der Aldosteronsekretion, was auf eine 

schlafstadienabhängige Sekretion hinweist (23, 168), auch die rückläufige Sekretion nach 

Schlafentzug kann hierfür ein Indiz sein (167). 

Renin zeigt ein oszillierendes Sekretionsmuster mit ansteigender Aktivität in den NREM- und 

abfallender Aktivität in den REM-Phasen, der NREM-Schlaf wird als Impulsgeber der 

Reninsekretion vermutet (169). Nach Schlafentzug kommt es in der ersten Nachthälfte zu 

einer Steigerung der Reninkonzentration und –amplitude, was in Kombination mit den 

erhöhten Anteilen an SWS und Deltawellen als Zeichen einer gebesserten Schlafqualität 

gewertet werden kann (25, 170, 171). Hierfür spricht auch die positive Assoziation der PRA 

mit der Slow Wave Activity (SWA) und der Schlafeffizienz (24, 25, 172).  

Die unter weiblichen Teilnehmern sowie im höheren Alter vergleichsweise niedrige Plasma-

Renin-Aktivität, die auf eine jüngere Population begrenzte Korrelation zwischen Renin und 
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GH sowie der erhöhte Anteil von Deltawellen nach Schlafentzug unter männlichen Probanden 

weisen auf eine geschlechts- sowie altersspezifisch divergente Sekretion des Renins hin (25).  

 

1.6.2. Psychiatrische Krankheitsbilder und der Schlaf 

Depressive Erkrankungen sind häufig mit Veränderungen des Schlafs assoziiert, 80% der 

depressiven Patienten geben an, an einer Insomnie zu leiden, bei 15-35% liegt eine 

Hypersomnie vor (173, 174). Hierbei haben depressive Patientengruppen mit Schlafstörungen 

häufiger schwere Symptome und sind schwieriger zu therapieren (175).  

Umgekehrt ist die Insomnie ein Risikofaktor für depressive Krankheitsbilder, Suizidversuche 

oder Suizide, unter antidepressiver Therapie kommt es zu einer Verbesserung der Insomnie 

sowie einem Rückgang der depressiven Symptomatik (176-178). 

Charakteristische Veränderungen der Polysomnographie bei depressiven Patienten sind die 

Desinhibition des REM-Schlafs mit einer verkürzten REM-Latenz, d.h. einem kürzerem 

Intervall zwischen dem Schlafbeginn und der ersten REM-Schlaf-Phase, einer verlängerten 

ersten REM-Periode und einer erhöhten REM-Dichte, einem Maß für die Zahl schneller 

Augenbewegungen während des REM-Schlafs (33, 179). Ein frühes Auftreten des REM-

Schlafs nach Stimulation mit einem cholinergen Agonisten kann auf eine erhöhte 

Vulnerabilität für eine Depression hindeuten (180), eine hohe REM-Dichte scheint zudem mit 

einem schlechteren Therapieansprechen assoziiert zu sein (181, 182). 

Bei depressiven Patienten können zudem Veränderungen des NREM-Schlafs mit einer 

Abnahme des SWS, der SWA und des Schlafstadiums N2 (179) sowie einer herabgesetzten 

Schlafkontinuität mit verlängerter Schlaflatenz und vermehrtem und/oder verfrühtem 

Erwachen auftreten (33, 179). Die Prolongation der SWS-Phasen wird dem entgegengesetzt 

als möglicher Prädiktor für ein ungünstiges therapeutisches Outcome bei depressiven 

Patienten diskutiert (183). Eine kurzzeitig anhaltende Therapie der Depression ist der 

therapeutische Schlafentzug (184, 185), welcher ebenso wie die REM-Suppression vieler 

Antidepressiva (186) die Verbindung zwischen den Feldern der Depression und des Schlafs 

unterstreicht.  

Die „synaptic plasticity hypothesis of depression“ ist ein Modell der Depression und geht von 

einer Störung der Synapsen bei depressiven Patienten aus (187), was erwähnenswert ist, da 

der Schlaf auf die synaptische Plastizität einwirken kann (188). 
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1.6.3. Die Bedeutung der HPA-Achse und des RAAS bei psychiatrischen Erkrankungen 

Die Dysfunktion der HPA-Achse mit einer herabgesetzten Glukokortikoidrezeptorfunktion 

und einem Hypercortisolismus ist bedeutsam in der Pathogenese der Depression (96, 189). 

Beobachtungen legen nahe, dass auch die Minderexpression und Funktionsbeeinträchtigung 

des MR eine wichtige Rolle in der Vermittlung von affektiven Störungen spielt (5, 6, 190). So 

kommt es unter einer antidepressiven Therapie zur Steigerung der MR- und Normalisierung 

der GR-Expression (191-194), eine Add-on-Therapie mit dem MR-Agonisten Fludrocortison 

erbringt ein schnelleres Therapieansprechen depressiver Patienten (195). Dieser Effekt scheint 

allerdings abhängig von der Dauer der antidepressiven Therapie zu sein, bei einer 

kurzzeitigen Therapiedauer berichteten Yau et al. von einer verminderten Expression der MR-

messenger RNA (mRNA) (196). 

Aldosteron kann in Hirnregionen, welche für die Stimmungsregulation bedeutsam sind, 

selektiv an den Mineralokortikoidrezeptor binden (26). Erhöhte Aldosteronkonzentrationen, 

welche in depressiven Patientenkohorten gemessen wurden (27, 28) sowie eine Steigerung der 

Ängstlichkeit und der Depressivität nach Infusion von Aldosteron in Tierstudien 

unterstreichen die Bedeutung des RAAS in der Depressionsforschung (29, 30). Des Weiteren 

werden Polymorphismen des ACE-Gens mit einer unipolaren Depression sowie einem 

Hyperkortisolismus in Verbindung gebracht (197), in einer Tierstudie mit Mäusen bestand 

unter denjenigen mit einem deletierten Angiotensinogen-Gen ein weniger depressives 

Verhalten (198).  

Der Aldosteronspiegel wird als Marker für den Depressionsbeginn untersucht (199), in einer 

weiteren Studien korrelierte die Höhe der Aldosteronkonzentration mit der 

Depressionsschwere, der Dauer der depressiven Episode sowie der Ängstlichkeit der 

Patienten, wobei die Ergebnisse in Teilen auf die weiblichen Teilnehmer beschränkt blieben 

(31, 32). 

Patienten mit einer endokrinen Störung weisen häufig psychopathologische Komorbiditäten 

auf (200-202), Fallberichte, in denen sich ein PHA als Depression präsentiert hatte, sind 

publiziert (203, 204). In diesem Patientenkollektiv besteht eine erhöhte Prävalenz von 

Angststörungen sowie eine herabgesetzte Lebensqualität mit erhöhter Somatisierung und 

erhöhtem Stressempfinden (14, 15), wobei weibliche PHA-Patienten hinsichtlich einer 

Depression, Angststörung sowie herabgesetzten Lebensqualität stärker beeinträchtigt zu sein 

scheinen (16, 17).  
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Nach therapeutischer Intervention kommt es zu einer deutlichen Verbesserung der 

Lebensqualität der PHA-Patienten (205), adrenalektomierte Patienten weisen im Vergleich zu 

medikamentös behandelten Patienten ein besseres Outcome auf (206, 207). Murck et al. 

beschreiben eine Verbindung zwischen der Abnahme des Aldosteronsspiegels mit dem 

Rückgang der depressiven Symptomatik, wobei diese auf die adrenalektomierten PHA-

Patienten beschränkt bleibt (208). Unterstützung für diese Beobachtung kommt aus einer 

Studie an depressiven Patienten (31). Eine erhöhte Aldosteron/Cortisol-Ratio scheint 

interessanterweise mit einem schlechteren therapeutischen Ergebnis assoziiert zu sein (183).  

Ein Rückgang der Ängstlichkeit von PHA-Patienten konnte - bei bemerkenswerterweise eher 

ansteigenden Aldosteronspiegeln - nur durch eine Therapie mittels MR-Antagonisten erreicht 

werden (208), dieser Effekt wurde auch an anderer Stelle beschrieben (209).  

 

1.6.4. Das obstruktive Schlafapnoesyndrom 

Das obstruktive Schlafapnoesyndrom (OSAS) ist definiert als eine partielle oder komplette 

Obstruktion der oberen Atemwege während des Schlafs, 60-80% der Patienten mit einer 

therapierefraktären Hypertonie leiden darunter (210). Als physiologischer Hintergrund wird 

vermutet, dass es bei erhöhten Aldosteronspiegeln aufgrund eines aktivierten RAAS durch 

Natrium- und Wasserretention zu einem nächtlichen Flüssigkeitsshift in den Nacken mit 

Zunahme des Nackenumfangs kommt, was zu einer Verschlechterung des OSAS führt (211). 

Die im Rahmen des OSAS auftretende intermittierende Hypoxie scheint eine wesentliche 

Rolle in der Aktivierung des RAAS zu haben (212). In Studien wird zudem auf die 

Assoziation zwischen dem OSAS und dem PHA hingewiesen, wobei neben der Schwere des 

OSAS die Höhe des Aldosterons bedeutsam ist (210, 213-218). Gemäß der aktuellen 

Leitlinien sollten dementsprechend Patienten mit einem OSAS bezüglich eines PHA getestet 

werden (63).  

Die „Continuous positive airway pressure“ (CPAP)-Therapie führt beim OSAS zu guten 

therapeutischen Ergebnissen und einem Abfall der Aldosteronkonzentration (216, 219), auch 

unter der medikamentösen Therapie mit den Mineralokortikoidantagonisten Spironolacton 

und Eplerenon mindert sich der Schweregrad des OSAS sowie der Nackenumfang (220, 221). 

Unter der Behandlung des PHA verringert sich der Schweregrad des OSAS, was die 

wechselseitige Verbindung beider Erkrankungen betont (222).  
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1.6.5. Kognition und Schlaf  

Der Schlaf ist für die kognitive Verarbeitung ebenso bedeutsam wie für die 

Gedächtnisbildung. Die im Wachzustand schlechtere Konsolidierung von Gedächtnisinhalten 

und die potenzielle Transformation von Gedächtnisinhalten im Rahmen kreativer Prozesse 

während des Schlafs unterstreicht dessen Bedeutung (223-226).  

Während der Wachphase werden neuronale, hippocampale Verschaltungen gebildet, deren 

Aktivitätssequenzen während des Schlafs über Repetition aktiviert werden, was zur Stärkung 

und Aktivierung der neuronalen Gruppen führt (188, 227). Über Verbindung der 

hippocampalen und kortikalen Repetitionssequenzen und die Überführung der Sequenzen in 

das kortikale Netzwerk kann die Bildung des Langzeitgedächtnisses erreicht werden. Die 

Interaktion physiologischer Mikroprozesse wie der „slow oscillations“, Delta-Wellen, K-

Komplexe, „sharp wave ripples“ und Schlafspindeln während des NREM-Schlafs scheint in 

der Vermittlung der neuronalen Repetition eine wesentliche Rolle zu spielen (188, 228-231).  

Globale Prozesse zur Reorganisation von Gedächtnisspuren über den ganzen Kortex hinweg 

sowie zwischen dem Kortex und dem Hippocampus (232) treten ebenso auf wie lokale 

Prozesse innerhalb der einzelnen Hirnareale. Letztere scheinen der Modulation der 

synaptischen Plastizität sowie der Synchronisation auf lokaler Ebene zu dienen (233). 

Der REM-Schlaf wird in der Konsolidierung des affektiven Gedächtnisses sowie in der 

Stimmungsregulation als bedeutsam angesehen (234, 235), polysomnographische 

Veränderungen im Rahmen affektiver Störungen und in Stresssituationen sind schon länger 

bekannt (33, 236). Die assoziative Verbindung der Stimmungslage mit der Verteilung der 

schnellen Augenbewegungen des REM-Schlafs in einem depressiven Patientenkollektiv weist 

auf die enge Verbindung des REM-Schlaf mit der affektiven Gesundheit hin (237).  

In der weiteren Verarbeitung und Etablierung der Gedächtnisinhalte sind kortikale 

Gedächtnisnetzwerke bedeutsam. Es wird vermutet, dass Schlaf über eine hippocampale Re-

Aktivierung des Gedächtnisinhalts und die Weiterleitung an den Kortex in diese eingreift 

(231, 232). 

 

1.6.6. Kognitive Aspekte des Mineralo- und des Glukokortikoidrezeptors  

Eine regelrechte MR/GR-Balance wird für eine adäquate Stressreaktion ebenso für essenziell 

erachtet wie für die Gedächtnisbildung (4). Die Stressreaktion und die Gedächtnisbildung 
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bedingen sich auch gegenseitig, unter akuten Stressbedingungen kommt es zu einer 

Verbesserung der Gedächtniskonsolidierung (238, 239).  

Der MR ist bedeutsam in der Bildung eines räumlichen und verbalen Gedächtnisses, des 

Arbeitsgedächtnisses sowie des explorativen und exekutiven Verhaltens (80, 81, 240, 241). 

Zudem scheint er in die Bildung einer adäquaten Langzeitpotenzierung involviert zu sein 

(242). Eine wesentliche Rolle erfährt der MR in Stresssituationen, wo er, vermittelt über seine 

membran-assoziierte Form mit Möglichkeit einer schnellen Stressreaktion, -bewertung und -

antwort (72, 243), den Shift von einem aufwendigen, deklarativen zu einem einfachen, 

prozeduralen Gedächtnissystem ermöglichen kann (244). In diesem Kontext hat er eine 

maßgebliche Bedeutung in der Koordination der Stressreaktion (245).  

Die Verbesserung der kognitiven Leistung und die Steigerung des Risikoverhaltens unter 

Stimulation oder Überexpression des MR zeigen dies auf (8, 9, 246), bei depressiven 

Patienten kommt es in diesem Rahmen auch zu einem Rückgang der depressiven 

Symptomatik und zu einer Verringerung der Cortisolkonzentration (240, 241). Bei Blockade 

des MR verschlechtert sich dem entgegengesetzt die kognitiven Performance (10, 247, 248), 

wobei es in einer Tierstudie zu einer stärkeren kognitiven Beeinträchtigung der weiblichen 

Mäuse kam (249).  

Die Rolle der langsameren, genomisch über den GR vermittelten Mechanismen wird in der 

weiteren Konsolidierung, Weiterverarbeitung, Bewertung sowie ggf. Anpassung der initialen 

Stressantwort gesehen (4, 243, 250). Bei Nagetieren mit einer herabgesetzten Funktionalität 

des GR ist die Gedächtniskonsolidierung ohne Auswirkungen auf die direkte 

Gedächtnisspeicherung vermindert (243, 251). Nach einem stressbehafteten Ereignis ist der 

GR für die Rückbildung der neuronalen Aktivität bedeutsam (250, 252).  

 

1.6.7. Kognitive Aspekte der HPA-Achse und des RAAS 

Erhöhte ebenso wie erniedrigte Cortisolspiegel können zu einer Zunahme der 

Risikobereitschaft, einer erhöhten Furchtlosigkeit sowie einer Verminderung der Sensitivität 

auf eine drohende Bestrafung führen (253-255).  

Vermittelt durch den Angiotensin 2-Rezeptor kommt es nach einer RAAS-Aktivierung zu 

einer kognitiven Verschlechterung, welche nach Blockade des Rezeptors reversibel ist (37, 

256). Auch eine Erhöhung des Aldosteronspiegels geht mit einer verschlechterten kognitiven 

Performance einher (36, 257). Unter der Therapie mit Angiotensinrezeptorblockern wurde 
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eine Verzögerung der Progression der Alzheimererkrankung beschrieben, welche sich in 

verringerten Amyloidablagerungen sowie einer geringeren Inzidenz der Erkrankung 

widerspiegelt (258-260). Angiotensin 2 sowie weitere Komponenten des RAAS werden auch 

im zentralen Nervensystem exprimiert und scheinen in die Pathogenese der Multiplen 

Sklerose involviert zu sein (261). 

 

1.7. Eigene Forschungsarbeiten 

1.7.1. Sleep-EEG in patients with primary aldosteronism in comparison to healthy 

controls and patients with depression 

Ziel der Studie war das bessere Verständnis des Effekts einer chronisch erhöhter 

Aldosteronkonzentration auf den durch Polysomnographie untersuchten  Schlaf von PHA-

Patienten, einer gesunden Kontrollgruppe sowie einer Gruppe depressiver Patienten. 

Bei den PHA-Patienten lag eine im Vergleich zur Normalbevölkerung subjektiv schlechtere 

Schlafqualität vor, in der polysomnographischen Auswertung kamen allerdings weder 

signifikante geschlechtsspezifische Unterschiede innerhalb der PHA-Gruppe noch 

signifikante EEG-Unterschiede zwischen der PHA-Gruppe und der gesunden Kontrollgruppe 

zur Darstellung. Diese hätte man aufgrund der im Vergleich zur Normalbevölkerung stärkeren 

psychischen Beeinträchtigung der PHA-Patienten (16, 17) sowie den bei affektiven Störungen 

gehäuft auftretenden Schlaf-Veränderungen (33, 173, 174) erwarten können. In der 

vergleichenden Analyse zwischen der depressiven Gruppe und der PHA-Gruppe lagen keine 

depressionstypischen Veränderung der Schlafarchitektur der PHA-Patienten oder signifikante 

Assoziationen zwischen den Depressionsskalen und den Polysomnographie-Parametern vor. 

Es bestanden indes Zeichen einer besseren Schlafqualität der PHA-Gruppe im Vergleich zur 

depressiven Gruppe.  

Angststörungen spiegeln sich im Gegensatz zu depressiven Störungen häufig nicht in 

typischen objektiven Schlaf-Veränderungen wider (262), was ein Deutungsmodell der 

erhobenen Ergebnisse bietet. Die unter den männlichen PHA-Teilnehmern auffallenden 

Korrelationen der Schlaf-Parameter mit den Ängstlichkeitsscores (HAM-A, GAD-7) können 

diesbezüglich ein weiteres Indiz sein.  

Die Ursache der auf die weiblichen Teilnehmer beschränkten Assoziationen zwischen den 

Blutdruckparametern und den depressions- (BDI), ängstlichkeits- (GAD-7) sowie 
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lebensqualitätsbezogenen Scores (SF-12) kann in einem spezifischen Verhalten des 

Mineralokortikoidrezeptors liegen, Unterstützung hierfür kommt aus anderen Studien (8, 81, 

82). In diesem Kontext ist erwähnenswert, dass der MR in der Vermittlung von affektiven 

Störungen, welche bei an Patienten mit PHA gehäuft auftreten (16), beteiligt zu sein scheint 

(5, 6, 183, 249). Eine neuere Studie legt eine divergente zentrale Regulation der depressiven 

und der ängstlichen Komponente des PHA durch den MR nahe (208). In der eigenen Studie 

fanden sich allerdings keine signifikanten assoziativen Verbindungen zwischen den 

erhobenen Hormonparametern und den Depressions- oder Ängstlichkeitsskalen. 

Auch die geschlechtsspezifischen Korrelationen zwischen den Schlafparametern und den 

humoralen Faktoren sowie die nur zwischen den männlichen PHA-Patienten und den 

depressiven Probanden signifikanten Unterschiede zur depressiven Gruppe könnten im 

Rahmen einer zentralen Genese erklärbar sein.  

 

Diese Arbeit wurde im „Journal of Psychiatric Research“ (Impact Factor 2019: 3.745) unter 

dem Titel „Sleep-EEG in patients with primary aldosteronism in comparison to healthy 

controls and patients with depression” veröffentlicht.  

 

1.7.2. Effects of chronically high levels of aldosterone on different cognitive dimensions: 

an investigation in patients with primary aldosteronism 

Ziel dieser Studie war die Untersuchung des Effekts einer chronisch erhöhten 

Aldosteronkonzentration auf die kognitiven Fähigkeiten der Versuchsteilnehmer. Nach 

Aufzeichnung verschiedener kognitiver Scores im Rahmen des Studienprotokolls erfolgte ein 

Vergleich mit Normwerten der Allgemeinbevölkerung. 

In der vorliegenden Arbeit fand sich ein nicht-signifikanter Trend zu unterdurchschnittlichen 

Resultaten (Prozentrang < 16) der Gedächtnis- sowie Aufmerksamkeitsmessungen bei der 

Hälfte der Studienteilnehmer. 

Die Abwesenheit von signifikanten kognitiven Abweichungen zwischen der PHA-Gruppe 

und der Normalbevölkerung kann dadurch begründet sein, dass keine affektive Störungen 

oder Angststörungen im Sinne des DSM-IV oder des ICD-10 in der PHA-Gruppe vorlagen, 

so dass sich die für diese Erkrankungen charakteristischen kognitiven Veränderungen nicht 

abbildeten (263, 264). Dieses Ergebnis ist eine Divergenz zu der herabgesetzten 

Aufmerksamkeits- und Gedächtnisleistung unter einer akuten Blockade des MR an gesunden 
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Probanden (247). Ein unterschiedliches Rezeptorenverhalten zwischen einer akuten im 

Gegensatz zu einer chronischen Rezeptorblockade erscheint hier möglich.  

In den Korrelationsanalysen fielen mehrere geschlechtsspezifische Unterschiede auf: So war 

der quantitativ orientierte „d2 Test“ nur bei den männlichen PHA-Teilnehmern negativ mit 

depressions- (PHQ-9), ängstlichkeits- (GAD-7) sowie schlafbezogenen (ESS, PSQI) Skalen 

assoziiert, zudem korrelierten Marker der qualitativen Leistung negativ mit der physischen 

Lebensqualität nur auf Seiten der männlichen Studienteilnehmer.  

In der weiblichen PHA-Studiengruppe waren diese Assoziationen bis auf einen negativen 

assoziativen Einfluss zwischen dem PSQI und den exekutiven Funktionen nicht vorhanden. 

Weitere geschlechtsspezifische Unterschiede fanden sich bei Betrachtung der RAAS-

Komponenten, hier korrelierte die Bearbeitungsgeschwindigkeit negativ mit der Plasma-

Renin-Konzentration unter den männlichen PHA-Teilnehmern, bei den weiblichen 

Teilnehmern waren Komponenten des „d2 Tests“ positiv mit der Plasma-Aldosteron-

Konzentration assoziiert.  

Erklärungsmodell der geschlechtsspezifischen Befunde kann das spezifische Verhalten des 

MR sein, Unterstützung kommt aus vorhergehenden Studien (8, 82, 183, 249, 265, 266). Die 

spezifischen Assoziationen zwischen den RAAS-Komponenten und den kognitiven 

Parametern sind vor dem Hintergrund der deutlichen Beeinträchtigung weiblicher PHA-

Patienten hinsichtlich Ängstlichkeit, Depression und Lebensqualität erwähnenswert (16, 17). 

Ein aktiviertes RAAS ist zudem mit einer kognitiven Verschlechterung assoziiert (37, 267), 

auch eine mögliche Beteiligung des RAAS in der Pathogenese neurodegenerativer 

Erkrankungen erscheint interessant (259, 261). Bezüglich der Beobachtung eines divergenten 

Ansprechens der depressiven und der ängstlichen Komponente der PHA-Patienten auf eine 

operative bzw. medikamentöse Therapie besteht weiterer Forschungsbedarf (208). 

 

Diese Arbeit wurde in der Fachzeitschrift „Endocrine Connections“ (Impact Factor 2019: 

2.450) unter dem Titel „Effects of chronically high levels of aldosterone on different 

cognitive dimensions: an investigation in patients with primary aldosteronism” veröffentlicht.  

 

1.7.3. Eigener Anteil an den Veröffentlichungen 

Der eigene Beitrag an den Veröffentlichungen bestand in der Zusammenstellung der 

Patientenkohorten, insbesondere erfolgte die Rekrutierung der Studienteilnehmer der PHA-

Gruppe. Um den vergleichenden Charakter der Studie zu gewährleisten, wurden an folgend 
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die Patientenkollektive der Kontroll- und depressiven Gruppe aus den Datensätzen des Max-

Planck-Instituts für Psychiatrie München recherchiert. Nach dem Zusammentragen der 

verschiedenen Datensätze erfolgte nach der Aufbereitung der Daten und Durchführung der 

statistischen Analyse die Niederschrift der Manuskripte. 

 

1.8.  Zusammenfassung/Summary 

Zusammenfassung 

Der primäre Hyperaldosteronismus gilt als häufigste Ursache einer sekundären Hypertonie 

(39, 42) und geht mit einer herabgesetzten Lebensqualität, depressiven Erkrankungen, 

Angststörungen und einer erhöhten Morbidität einher (15-17, 44). Nach therapeutischer 

Intervention kommt es bei Patienten mit einem PHA zu einem Rückgang der 

Krankheitsbeschwerden (205).  

Veränderungen des RAAS (27, 28, 36, 37, 197), der HPA-Achse (96, 189) sowie des MR (4-

6, 190) sind bezüglich der Pathogenese, Diagnostik sowie Therapie von psychiatrischen 

Erkrankungen, kognitiven Prozessen und Schlafstörungen bedeutsam und bilden die 

Grundlage dieser Arbeit. 

In der ersten Arbeit wird das Schlafverhalten von Patienten mit einem PHA im Vergleich zu 

einer depressiven Gruppe und einer gesunden Kontrollgruppe untersucht. Auffallend waren 

geschlechtsspezifische Unterschiede innerhalb der PHA-Gruppe, welche in einer divergenten 

Aktivierung des Mineralokortikoidrezeptors begründet sein können (8, 183, 249, 265, 266). 

Das Fehlen von depressionstypischen Schlafveränderungen kann darauf hinweisen, dass das 

Schlafverhalten von Patienten mit einem PHA dem ähnelt, welches unter Patienten mit einer 

Angststörung beschrieben wird (268). Eine unterschiedliche Regulation der depressiven und 

der ängstlichen Symptomatik durch den MR kann hierfür die Grundlage bieten (208). 

In der zweiten Arbeit wird der Einfluss chronisch erhöhter Aldosteronkonzentrationen auf die 

kognitive Performance von PHA-Patienten untersucht. Signifikante Unterschiede zwischen 

der PHA-Gruppe und den beiden anderen Gruppen hinsichtlich der kognitiven 

Leistungsfähigkeit bestanden nicht, was auf physiologische Anpassungsmechanismen unter 

einem chronischen Aldosteronexzess im Gegensatz zu einer akuten Aldosteronsteigerung 

hinweisen kann (247). Eine geschlechtsspezifische Rolle des MR erscheint nach Betrachtung 

der Korrelationsanalysen möglich (8, 82, 183, 249, 265, 266).  
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In der Zusammenfassung beider Studien wird hinsichtlich kognitiver und schlafmedizinischer 

Aspekte der PHA-Patienten ein geschlechtsspezifischer Faktor deutlich. Zur weiteren 

Untersuchung dieses Sachverhalts und seiner zentralen sowie peripheren 

Regulationsmechanismen in den verschiedenen Patientengruppen besteht weiterer 

Forschungsbedarf. 

 

Summary 

Primary aldosteronism is considered to be the most common cause of secondary hypertension 

and is associated with a reduced quality of life, depression, anxiety disorders and increased 

morbidity. After therapeutic intervention, disease complaints are reduced.  

Dysregulations within the RAAS, the HPA axis and the MR, which are significant in regard 

to pathogenesis, diagnosis, and therapy of psychiatric diseases, cognition, and sleep disorders, 

are the basis of this work.  

In the first report, we investigated the objective sleep of PA patients in comparison to a group 

of depressed patients and a healthy control group. There were noticeable gender-specific 

differences within the PA group which could be caused by a specific role of the MR. The 

absence of depression-like changes in the sleep of the PA patients might be an indication of a 

similarity of sleep changes between PA patients and patients suffering from an anxiety 

disorder. A differing regulation of the depressive and the anxious symptoms mediated by the 

MR could be the base of this observation. 

In the second report, the influence of chronically increased aldosterone levels on cognitive 

performance of PA patients was investigated. There was no significant difference between the 

PA group and the other groups concerning cognitive performance. This could indicate 

physiological adjustment mechanisms to a chronically increased aldosterone secretion versus 

an acute increase of secretion. In light of the evaluation of the correlation analysis, a gender-

specific role of the MR seems possible. 

Summarizing both studies, a gender-specific factor concerning the cognitive performance and 

the objective sleep of PA patients becomes apparent. Future research is necessary concerning 

this issue and its central and peripheral regulatory mechanisms within the different groups of 

patients. 
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3. Verzeichnis der Abkürzungen 

ACE Angiotensin-konvertierendes Enzym (de) / Angiotensin Converting Enzyme 

(en) 

ACTH Adrenocorticotropes Hormon (de) / Adrenocorticotropic hormone (en) 

ADH Antidiuretisches Hormon (de) / Antidiuretic hormone (en) 

ARQ Aldosteron-Renin-Quotient (de) / Aldosteron/renin ratio (en) 

BDI Beck-Depressions-Inventar (de) / Beck Depression Inventory (en) 

CRH  Corticotropin-releasing Hormon (de) / Corticotropin-releasing hormone (en) 

Conn-Syndrom syn. primärer Hyperaldosteronismus 

CPAP Continuous positive airway pressure (en) 

DSM-IV Diagnostic and Statistical Manual of Mental Disorders (en) 

EEG Elektroenzephalografie (de) / Electroencephalography (en) 

ESS Epworth Sleepiness Scale (en) 

EPHESUS Eplerenone Neurohormonal Efficacy and Survival Study (en) 

GABA gamma-Aminobuttersäure (de) / gamma-Aminobutyric acid (en) 

GAD-7 Generalized Anxiety Disorder 7 (en) 

GHRH  Wachstumhormon-Releasing-Hormon (de) / Growth hormone releasing 

hormone (en) 

GR Glukokortikoidrezeptor (de) / Glucocorticoid receptor (en) 

HPA-Achse Hypothalamus-Hypophysen-Nebennierenrinden-Achse (de) / 

Hypothalamic–pituitary–adrenal axis (en) 

HAM-A Hamilton-Angst-Skala (de) / Hamilton Anxiety Rating Scale (en) 

ICD-10 International Statistical Classification of Diseases and Related Health 

Problems (en) 

MR Mineralokortikoidrezeptor (de) / Mineralocorticoid receptor (en) 

mRNA Boten-RNA (de) / messenger RNA (en) 

NREM Non-rapid eye movement (sleep) (en) 

OSAS Obstruktives Schlafapnoesyndrom (de) / Sleep apnea syndrome (en) 

PHA/PA Primärer Hyperaldosteronismus (de) / Primary aldosteronism (en) 

PHQ-9 Patient Health Questionnaire-9 (en) 

PRA Plasma-Renin-Aktivität (de) / Plasma Renin Activity (en) 

PSQI Pittsburgh Schlafqualitätsindex (de) / Pittsburgh Sleep Quality Index (en) 

RAAS Renin-Angiotensin-Aldosteron-System (de) / Renin-angiotensin-aldosterone 

system (en) 

RALES Randomized Aldactone Evaluation Study (en) 

REM Rapid eye movement (sleep) (en) 

SF-12 Short-Form-Health Survey (en) 

SWS Slow Wave Sleep (en) 

SWA Slow Wave Activity (en) 

11β-HSD2 11β-Hydroxysteroid-Dehydrogenase Typ 2 (de) 
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