
Methods for the acquisition and analysis of
volume electron microscopy data

Philipp Johannes Schubert

München 2022

Methods for the acquisition and analysis of
volume electron microscopy data

Philipp Johannes Schubert

Dissertation
der Fakultät für Physik

der Ludwig-Maximilians-Universität
München

vorgelegt von
Philipp Johannes Schubert

aus Wiesbaden

München, den 17.02.2022

Erstgutachter: Prof. Dr. Winfried Denk
Zweitgutachter: Prof. Dr. Daniel Rückert
Tag der mündlichen Prüfung: 05.04.2022

Contents

Zusammenfassung ix

Abstract xi

1 Introduction 1
1.1 Connectomics . 1
1.2 Scanning electron microscope . 3
1.3 Convolutional neural networks . 6
1.4 Automated cell segmentation . 7
1.5 Objectives and contributions . 10

2 Wafer-based image data acquisition with GCIB 11
2.1 Introduction . 11
2.2 Materials and Methods . 13
2.3 Results . 18

2.3.1 GCIB mill rate estimation . 18
2.3.2 Volume acquisition scheme and post-processing 20

2.4 Discussion . 23

3 Automated focus and stigmation correction 25
3.1 Introduction . 25
3.2 Materials and Methods . 26
3.3 Results . 33

3.3.1 DeepFocus . 33
3.3.2 Transferability to different settings 41

3.4 Discussion . 44

4 Learning cellular morphology 47
4.1 Introduction . 47

4.1.1 Multi-view representation of cell reconstructions 49
4.1.2 Point-cloud processing using continuous convolutions 52

4.2 Materials and Methods . 56
4.3 Results . 66

iv Contents

4.3.1 Compartment prediction . 66
4.3.2 Cell type classification . 75
4.3.3 Cell clustering . 78

4.4 Discussion . 80

5 SyConn2 - A connectome analysis framework 83
5.1 Introduction . 83
5.2 Materials and Methods . 85
5.3 Results . 91

5.3.1 Circuit reconstruction . 91
5.3.2 Data interface . 94
5.3.3 Mitochondria recruitment at synapses 95

5.4 Discussion . 97

6 Conclusions and Outlook 99
6.1 Conclusions . 99
6.2 Outlook . 99

A Biological samples 101

B Ground truth data 103

C SyConn2 flowchart 105

D List of Abbreviations 107

Bibliography 109

Acknowledgements 119

List of Figures

1.1 Schematic of a scanning electron microscope 3
1.2 Axial astigmatism correction . 5
1.3 Cell segmentation in volume electron microscope image data 7
1.4 Reconstructed neuron and its cellular ultrastructure 9

2.1 GCIB-SEM setup. 13
2.2 Section detection ground truth generation 16
2.3 Effect of electron irradiation on charging artefacts 18
2.4 Mean GCIB mill rate dependent on the electron irradiation 19
2.5 Section collection on a silicon wafer . 20
2.6 Wafer acquisition preparations . 21
2.7 Flattening of thick sections . 22

3.1 DeepFocus training data generation . 27
3.2 DeepFocus method for aberration correction in SEM 33
3.3 DeepFocus convergence experiments . 34
3.4 DeepFocus single-iteration performance . 36
3.5 DeepFocus extended convergence experiments 36
3.6 Learned patch scores for robust correction estimation 37
3.7 Learned pixel scores for robust estimation 38
3.8 DeepFocus processing time . 39
3.9 Comparison to MAPFoSt . 40
3.10 MAPFoSt limits . 41
3.11 DeepFocus transfer to new sample and setup 42
3.12 DeepScore autofocus convergence . 43

4.1 Cellular morphology learning networks based on multi-views 50
4.2 Applications for cellular morphology learning networks 52
4.3 Point cloud processing for surface segmentation 54
4.4 High-resolution surface segmentation of cell reconstructions with multi-views 67
4.5 Semantic segmentation surface coverage with multi-views 69
4.6 Point model compartment-prediction examples 73
4.7 Synapse classification evaluation of point-based compartment predictions . 74

vi List of Figures

4.8 Cell type classification performance with point-based models 76
4.9 Cell type certainty estimation . 78
4.10 Self-supervised neuron clustering . 79

5.1 Overview of circuit reconstruction with volume electron microscopy 84
5.2 Extraction of ultrastructure on voxel level 91
5.3 Evaluation of SyConn2 processing speed 93
5.4 volume electron microscopy (VEM) data sets processed with SyConn2 . . . 94
5.5 SyConn2 web interface . 95
5.6 Synapse-mitochondrion analysis . 96

C.1 SyConn2 architecture . 106

List of Tables

2.1 Mill rate measurements . 19

4.1 Training parameters for semantic segmentation of dendrites with multi-views 57
4.2 Training parameters for coarse semantic segmentation with multi-views . . 58
4.3 Training parameters for the surface segmentation with point clouds (zebra

finch area X, large) . 59
4.4 Point model architecture for semantic segmentation 60
4.5 Training parameters for point-based cell type classification 62
4.6 Training parameters for multi-view cell type classifier 63
4.7 Training parameters for morphology embedding model 64
4.8 Multi-view performance on the segmentation task of dendrites (zebra finch

area X, small) . 68
4.9 Compartment segmentation performance of the transferred multi-view ap-

proach on (zebra finch area X, large) . 70
4.10 Point model compartment segmentation performance (zebra finch area X,

large) . 71
4.11 Point model compartment segmentation performance (zebra finch area X,

large) without ultrastructure . 72
4.12 Comparison of compartment segmentation performances on MSN and GP

examples . 72
4.13 Cell type classification performance with point-based models 75
4.14 Cell type classification performance with myelin ablation and multi-views . 77

viii List of Tables

Zusammenfassung

Technologische Fortschritte in den Bereichen der Elektronenmikroskopie (EM) und Com-
puterhardware haben es ermöglicht die Erfassung und Analyse von elektronenmikrosko-
pischen Volumendaten zu beschleunigen. Mit der Fähigkeit synaptische Schaltkreise mit
hohem Durchsatz und hoher Genauigkeit zu rekonstruieren, können Fragen beantwortet
werden, die große Probenvolumen oder verschiedene Konditionen voraussetzen, wie zum
Beispiel das Lernen des Gesangs bei männlichen Zebrafinken. Die hochauflösenden Bild-
daten ermöglichen Einblicke in Strukturen die kleiner sind als einzelne Synapsen sowie eine
detailierte morphologische Rekonstruktion von Neuronen, erfordern aber ein hohes Maß an
Automatisierung um die immer größeren Volumen analysieren zu können. Die Automa-
tisierung ist letztendlich von der Vorhersagegenauigkeit der zugrundeliegenden Modelle
abhängig, welche wiederum von der Bildqualität beeinflusst wird. Serielle Rasterelektro-
nenmikroskopie von Blockoberflächen einzelner Proben weist weniger Bildfehler auf als
Ansätze, die auf ultra-dünnen Serienschnitten basieren, hat aber einen begrenzten Durch-
satz bei der Bildaufnahme. Diese Dissertation umfasst Experimente und Methoden zur
Aufnahme und zur automatisierten Datenanalyse von volumetrischen EM-Bilddaten.

Das erste Kapitel behandelt ein bildgebendes Verfahren mittels Elektronenmikroskopie
von Blockoberflächen, welches in einem Durchgang die Oberfläche von mehreren dicken
Probenschnitten mit Hilfe eines Gascluster-Ionenstrahls (engl. gas cluster ion beam, GCIB)
abträgt. Es ist unablässlich eine gute Bildqualität zu gewährleisten, insbesondere bei Tech-
niken, die Blockoberflächen unwiederbringlich entfernen und eine nachträgliche Neuauf-
nahme auschließen, was im Mindesten einen scharfen Fokus voraussetzt. Zu diesem Zweck
wurde eine schnelle und zuverlässige Routine für die Korrektur der Fokusparameter ba-
sierend auf tiefen künstlichen neuronalen Netzwerken entwickelt, die auch bei niedrigen
Signal-Rausch-Verhältnissen anwendbar ist.

In den letzten beiden Kapiteln werden Methoden zur Automatisierung der Analy-
seschritte eingeführt. Als eine Alternative zur semantischen Segmentierung dichter Vox-
eldaten werden zwei Modelle vorgestellt, die auf tiefen künstlichen neuronalen Netzwer-
ken beruhen und auf den Oberflächenreprseäntationen von segmentierten Zellen arbeiten.
Deren Anwendbarkeit wird an den Problemen der semantischen Segmentierung kleiner Zell-
kompartimente, beispielsweise Köpfe von Dornenfortsätzen (engl. spines), Zelltypenklassi-
fizierung und der unüberwachten Clusteranalyse von Neuronen demonstriert. Diese Mo-
delle werden mit der Identifikation von zeullulärer Ultrastruktur und Synapsenrekonstruk-
tion in einem Konnektom-Analyse Softwarepaket (SyConn2) zusammengeführt, welches

x List of Tables

auf die Nutzung von Hochleistungsrechnern optimiert und auf Konnektomdatensätzen von
bis zu zehn Teravoxeln getestet wurde.

Abstract

Technological advances in electron microscopy (EM) imaging and computer hardware have
made it possible to accelerate the acquisition and analysis of volume electron microscope
data. With the capability to extract synaptic wiring diagrams at both high throughput
and accuracy, questions can be addressed that, for instance, require large or multiple tissue
samples under varying conditions, such as song learning in male zebra finches. The high-
resolution image data allows inspection of structures smaller than individual synapses and
a detailed morphological reconstruction of neurons but demands a substantial degree of
automation to analyze increasingly large volumes. Automation ultimately depends on
the achieved accuracy, which in turn is affected by the image quality. Serial block-face
scanning electron microscopy uses a single specimen block and has fewer image defects
than approaches based on serial ultrathin sectioning but is limited in throughput during
image acquisition. This dissertation covers experiments and methods for the acquisition
and automated data analysis of volumetric EM image data.

The first chapter outlines an imaging pipeline with block-face scanning electron mi-
croscopy, which uses a gas cluster ion beam (GCIB) to ablate the surface of multiple thick
specimen sections in one pass. Maintaining good image quality throughout the acquisi-
tion is crucial, in particular for destructive block-face techniques that make subsequent
re-imaging impossible, which at the very least requires sharp focus. To this end, a fast and
robust routine for focus parameter correction based on deep artificial neural networks was
developed that is applicable under low signal-to-noise conditions.

The last two chapters introduce methods for automating the analysis steps. Two deep
learning models are introduced as an alternative to the semantic segmentation of dense
voxel data, which operate on the surface reconstruction of segmented cells. Their appli-
cation is demonstrated on the tasks of semantic segmentation of fine cell compartments,
such as spine heads, cell type classification, and unsupervised clustering of neurons. These
models are integrated with the identification of cellular ultrastructure and synapse recon-
struction in a connectome analysis framework (SyConn2), which was optimized to use
high-performance compute environments and tested on connectomic data sets of up to ten
teravoxels.

xii Abstract

Chapter 1

Introduction

1.1 Connectomics

The structural study of neurons originated in the second half of the 19th century with
Santiago Ramón y Cajal, who used light microscopes and a sparse staining technique to
capture the detailed anatomy of cells in drawings (Ramón y Cajal 1888). His pioneering
work led to the concept that the nervous system is built from individual, interconnected
cells.

With the invention of the transmission electron microscope (TEM) (Knoll and Ruska
1932) and scanning electron microscope (SEM) (von Ardenne 1938) in the 1930s, it was
possible to study neural tissue at a much higher resolution compared to light microscopy.
In contrast to the sparse staining used by Ramón y Cajal, electron microscopes allowed
the visualization of neurons with dense staining. After more than a decade of tremendous,
manual effort, John White et al. fully reconstructed 302 neurons and its thousands of
synapses in the roundworm Caenorhabditis elegans which was stained with osmium, sliced
into thin sections, and then imaged with a TEM (White et al. 1986) – the first connectome.

Important advances in the automation of volume electron microscopy (VEM) resulted
from the development of block-face imaging techniques. In serial block-face scanning elec-
tron microscopy (SBEM), the brain sample is prepared as a single epoxy block, and the
acquisition alternates between imaging and removal of the surface of the specimen block.
The top layer of the block is thereby either cut with a diamond knife (DiK-SBEM) (Denk
and Horstmann 2004; Leighton 1981), or ablated with a focused ion beam (FIB-SBEM)
(Heymann et al. 2006; Knott et al. 2008). An alternative approach to block-face imaging
is the automatic tape-collecting ultramicrotome (ATUM), where the sample block is cut
into thin sections, collected on tape and mounted on wafers for the imaging with an SEM
(Hayworth et al. 2006; Kasthuri et al. 2015).

SBEM approaches substantially reduce the complexity of data registration and artifacts
that occur with serial sectioning, and led to the acquisition and analysis of increasingly
large data sets in different species (Briggman et al. 2011; Kornfeld et al. 2017; Scheffer
et al. 2020; Schmidt et al. 2017; Wanner et al. 2016). Disadvantages of SBEM techniques

2 1. Introduction

are its destructive nature, which demands almost perfect reliability, low imaging speed and
limited sample size (Kornfeld and Denk 2018).

With the multi-beam scanning electron microscope (MSEM) (Eberle et al. 2015), tra-
ditional SEM has been extended to multiple electron beams in parallel, which increases
acquisition rate dramatically by almost two orders of magnitude. While this system was
successfully combined with serial sections using ATUM (Shapson-Coe et al. 2021), a com-
bination with diamond knife microtomes is difficult, and focused ion beam (FIB) removal
rates are too slow to be a viable with fast imaging (Kornfeld and Denk 2018).

One promising attempt that enables block-face imaging with multi-beam microscopes is
based on a gas cluster ion beam (Hayworth et al. 2020), which smoothly ablates the sample
surface by bombardment with ion clusters at high rates. This approach can be seen as a
combination of serial sectioning with a diamond knife and FIB-SEM, which instead of
operating on a single surface, alternates between imaging and milling of multiple thick
sections (hundreds of nanometers up to a micrometer) that are collected on a silicon wafer.

Volume electron microscopy in connectomics is a tool to comprehensively reveal the fine
structures of nerve cells and their connectivity. A study by Holler et al. 2021 extended it
with functional light microscopy and electrophysiological recordings and verified a positive
correlation between synaptic area and strength in mouse cortex. The wide improvements
in speed and reliability of the image acquisition have led to insights into the presence of
Hebbian-type plasticity (Bartol et al. 2015; Dorkenwald et al. 2021; Kornfeld et al. 2020;
Motta et al. 2019) and the change of synaptic connectivity during development (Gour et al.
2021; Witvliet et al. 2021).

Groups at the Allen Institute and Harvard presented imaging pipelines that enable the
acquisition of data sets in the petavoxel range (1015 three-dimensional pixels) using ATUM
with TEM (Consortium et al. 2021; Yin et al. 2020) and MSEM (Shapson-Coe et al. 2021).
With the whole mouse brain, the next milestone has already been set, a volume 107 times
larger than that required for C. elegans (Abbott et al. 2020).

1.2 Scanning electron microscope 3

1.2 Scanning electron microscope

Figure 1.1: Schematic of a scanning electron
microscope. W : working distance. Illustra-
tion inspired by Egerton 2005, p. 126.

Similar to light microscopy, lenses are a fun-
damental component for the imaging with
electrons. In contrast to light, an electron
beam can only be maintained in vacuum
and therefore requires an alternative ap-
proach to solid materials that are otherwise
used to alter the refraction index for fo-
cusing. Electrons that move inside a mag-
netic field experience a deflection orthog-
onal to it and their trajectory. This ef-
fect is described by the Lorentz force and
realized in electron microscopes by short
coils which produce axial symmetric, non-
uniform magnetic fields that focus the elec-
tron beam (Egerton 2005, Chapter 2.3).

The force that acts on an electron with
charge −e, moving inside a magnetic field B
(zero electric field component E = 0) with
velocity v, is written as the cross product
(×) of the two vectors:

F = −e (v × B) (1.1)

The resulting force directly scales with the electron speed and preserves its magnitude,
which allows focusing of a wide electron energy range and causes fewer aberrations com-
pared to electrostatic lenses. An additional azimuthal component leads to spiraling of the
electrons during the process of focusing, which results in a rotation of the image when the
working distance is changed.

As the radial component of the magnetic field (perpendicular to the optical axis) is
relevant to focus broad electron beams, a strong inhomogeneity of the magnetic field is
necessary. This property is realized by short coils and strengthened by a ferromagnetic
enclosing and so-called polepieces that concentrate the magnetic flux within a small volume
at the optical axis. The strength of the magnetic field and thereby of the focusing is
controlled by the direct current applied to the coil.

Electrons emitted from the electron gun in the microscope are demagnified with con-
denser lenses and finally focused with the objective lens onto the specimen (Fig. 1.1),
which is usually done by the EM operator adjusting the working distance (W). Typically,
a Schottky emitter is used as electron source which inherits long life times, low electron
energy spread and a high brightness (Goldstein et al. 2003, pp. 34–35).

Two generators produce staircase waveforms at different frequencies to change the de-
flection of the beam periodically in the x-y plane through scan coils, thus scanning the spec-
imen surface in a rectangular pattern. The beam-specimen interaction leads to backscat-

4 1. Introduction

tered and secondary electrons that can be measured with a detector. Binning the amplified
detector signal with the scan waveforms finally results in the image of the scanned area.

Outer-shell electrons of specimen atoms that are released by the primary beam electrons
through inelastic scattering are called secondary electrons (SE). The small remainder of
energy transferred by the scattering results in an escape depth of only a few nanometers
(Goldstein et al. 2003, Chapter 3.4) – the depth at which secondary electrons can still
escape into the vacuum and potentially arrive at the detector. The scattering of the
primary electrons intensifies with higher density and atomic number of the material in the
interaction volume, which leads to a decrease in the electron range (Kanaya and Okayama
1972). As a result, areas in biological samples with more heavy metal stain lead to stronger
signals and vice versa.

The focused electron beam impinging the surface of the specimen, also referred to as
electron probe, can be described with four key properties, which are the diameter of the
electron probe (also probe or spot size), the probe convergence angle (half the opening
angle of the converging electron cone), the probe current and acceleration voltage of the
beam. These parameters are adjusted by the SEM operator depending on the specimen,
required image properties, and the type of the detected electrons.

Electron lenses suffer from defects that need to be taken into account to enable opti-
mal imaging conditions (Goldstein et al. 2003, Chapter 2.3). With spherical aberration,
electrons that are farther apart from the optical axis are bent to a point F1 that is closer
to the center of the objective lens, leading to an increased spot size in the image plane at
location F , also called disk of confusion. The diameter of the disk of least confusion, which
resides between the locations F1 and F , depends on the maximum angle of the focused
electrons α and a constant Cs being the coefficient of spherical aberration:

ds = 1
2Csα

3 (1.2)

The effect of spherical aberration can thus strongly be reduced with an objective aper-
ture that enforces small convergence angles. This however lowers the probe current and
causes an increase in aperture diffraction:

dd = 0.61λ

α
(1.3)

with λ being the wavelength of the electrons.
Similar to light microscopes, an electron beam with a non-zero energy spread will be

focused at different locations, leading to chromatic aberration. The resulting disk of least
confusion diameter is calculated by:

dc = αCc

(
∆E0

E0

)
(1.4)

with the electron energy E0, energy spread ∆E0 and the chromatic aberration coefficient
Cc. Electron sources with low energy spread and large acceleration voltages are the means
to counteract this aberration type.

1.2 Scanning electron microscope 5

Finding a set of reasonable beam parameters is therefore a trade-off between the differ-
ent resolution-limiting effects. With fixed beam parameters, the location of the minimal
aberration disk of the electron probe is found by adjusting the working distance of the
microscope.

Figure 1.2: Effect of axial astigmatism on the electron beam (solid rays, originating from
P) and its correction (dotted lines) with an electromagnetic stigmator based on a magnetic
quadrupole. The beam forms an ellipse at Fx and Fy, and a circle at F . Illustration inspired
by Egerton 2005, p. 52.

Any deviations from a cylindrically symmetric magnetic field in the lens will result in a
focusing power difference depending on the plane of incidence of the electrons, also called
axial astigmatism (Egerton 2005, Chapter 2.6). An astigmatic lens leads to stretching of
the electron probe that at locations Fx and Fy can be approximated by two orthogonal
ellipses, or line foci in the ideal case, one for the minimal and one for the maximal focusing
power, respectively (Fig. 1.2). Although the stretching may be isotropic at location F , the
probe size will be much larger than what would be optimally possible.

Axial astigmatism is caused, among other things, by machining inaccuracies of the pole-
piece geometry but can be corrected by supplement magnetic fields, for example, provided
by a magnetic quadrupol, which brings Fx and Fy together (Fig. 1.2). In practice, two
quadrupols are used to adjust the beam with two control parameters (x- and y-stigmator).

The optimal probe size for imaging is finally found by adjusting both stigmators and
the working distance of the microscope. This can be done manually with some training
and experience, but long and continuous acquisitions in volume electron microscopy require
alternatives.

6 1. Introduction

1.3 Convolutional neural networks
With the increasing throughput of imaging techniques in volume electron microscopy, more
and more data needs to be processed. One powerful tool for the processing of images are
convolutional neural networks. Their origins can be traced to Hubel and Wiesel, who
published a research paper in the 1960s about receptive fields of neurons in the visual
cortex. They described two types of cells, one responsible for primitive feature detection
and the other, with more complex input patterns, dedicated to direction-selective motion
detection and being less sensitive to the spatial location of particular features (Hubel and
Wiesel 1962). Inspired by this working principle, Fukushima and Miyake proposed the
“neocognitron”, an artificial neural network for pattern recognition and demonstrated its
use on the identification of stimulus patterns of digits (Fukushima and Miyake 1982).

With the application of stochastic gradient descent and backpropagation (Rumelhart
et al. 1986), a solution was found to efficiently change the network weights, which led to the
development of convolutional neural networks (CNNs) and their successful application to
digit recognition (LeCun et al. 1989). Key properties of a CNN are its sparse connections,
parameter sharing and equivariance to input translation (Goodfellow et al. 2016, Chapter
9), which allows it to efficiently learn the detection of features. This is in strong contrast
to fully connected feedfoward networks which form all-to-all connections.

The processing units (nodes) in a CNN are arranged as stack of layers, each representing
pixel grids, where every node connects to a small and local subset of nodes (receptive field)
in the previous layer. Every connection is parametrized by a weight and the receptive
field of a node with its connection weights is represented by the convolution kernel. The
number of kernels from one layer to another is configurable and, importantly, the weights
of the kernels are shared across all nodes of a layer, which drastically reduces the number of
parameters and consequently increases training speed. The linear output of a convolutional
layer is then transformed by a non-linear activation function and a pooling operation, which
reduces the resolution of the layer output by aggregating outputs within small patches.

In 2012, Alex Krizhevsky et al. presented a CNN that outperformed previous approaches
in an image classification challenge by a large margin, a breakthrough that initiated the
advent of deep learning in computer vision (Krizhevsky et al. 2012). Deep learning and its
applications in the image domain, benefited further from a wide range of improvements,
such as the use of rectified linear units (ReLU) (Glorot et al. 2011) as activation functions
and batch normalization (Ioffe and Szegedy 2015), both significantly increasing training
speed. Residual networks enabled backpropagation in very deep networks (He et al. 2016)
and the U-Net represents an efficient approach to dense segmentation of volumetric images
(Ronneberger et al. 2015).

1.4 Automated cell segmentation 7

1.4 Automated cell segmentation
Before EM image data sets can be processed and analyzed, the individual 2D images need to
be consolidated by image registration. The data set essentially is a stack of consecutive two-
dimensional images of the tissue sample, which in turn, due to a limited field of view (FOV)
of the microscope, usually consist of multiple tiles. In a first step, these tiles are stitched
in the x-y image plane, requiring a minimum amount of overlap between neighboring tiles.
The stitched images are then aligned in z, orthogonal to the image plane, to correct shifts
and artifacts that occurred during the image acquisition and finally stored as a coherent
volume in a format that enables efficient access for processing and visualization.

With the availability of increasingly large data sets, a lot of effort has been put into
developing software for efficient visualization and collaborative annotation (Helmstaedter
et al. 2011; J. S. Kim et al. 2014; Maitin-Shepard et al. 2021; Schneider-Mizell et al.
2016; Sommer et al. 2011), with the goal to reduce the time requirement of the synaptic
wiring reconstruction. Advances in compute hardware led to the beginnings of automated
neuron reconstruction through algorithmic identification of pixel-level cell boundaries using
artificial neural networks (Ciresan et al. 2012; Jain et al. 2007; Turaga et al. 2010).

The goal of neuron reconstruction is to assign all voxels in the volume either to a neuron
segment entity or background, which can be seen as an instance segmentation of two classes
(cell vs. background). These segments are represented by unique identifiers and are called
supervoxels. The target of cell segmentation is to reconstruct the shape of neurons in EM
image data, but it in general also includes non-neuronal cells such as glia.

Figure 1.3: Cell boundaries and cell segmentation in image data acquired with a volume
electron microscope (area X zebra finch, small, Appendix A). a An EM section and an
example of the corresponding intracellular (black) and boundary regions (white) predicted
by a convolutional neural network (Dorkenwald et al. 2017). The arrow indicates a missed
membrane in the foreground prediction, potentially leading to a merge error in the neuron
segmentation. b Neuron (over-)segmentation. Asterisks indicate example locations where
a neuron is split into multiple fragments. Colors correspond to different cell fragments
(supervoxels).

8 1. Introduction

One way to approach cell segmentation is the aforementioned detection of boundaries
between cells (Fig. 1.3a), which includes cell membranes and extracellular space. In an ideal
case, where the boundary perfectly separates all cells, the intracellular volume could be
algorithmically filled starting from any location inside the cell. The cell shape would then
be represented by a single supervoxel. However, imperfections in the boundary (Fig. 1.3a),
even if it is only a gap with the width of a single pixel, will result in merge errors, i.e. parts
of two different cells will be covered by the same supervoxel.

To reduce the rate of merge errors, a so-called oversegmentation is generated to increase
the reliability of supervoxels at the cost of splitting a cell into multiple, smaller fragments
(Fig. 1.3b). This practice results from the fact that correcting a merge error post-hoc is
very costly in contrast to solving a split error. Splitting a supervoxel requires the definition
of a split surface and subsequent relabeling of all involved voxels, while merging can be
done by assigning two fragments the same identifier, i.e. the same cell.

In a next step, the supervoxels are agglomerated to form proposal reconstructions of
entire cells. For this purpose, supervoxels can be represented as vertices of a graph, and
supervoxels likely belonging to the same neuron (reconstruction) can be linked through
edges, leading to a supervoxel graph. If edges in that graph contain weights based on
the underlying agglomeration method, subsequent thresholding is applied to yield the final
segmentation (supervoxel agglomeration), where each connected component represents one
cell.

Flood-filling networks (Januszewski et al. 2018), the current state of the art to neuron
segmentation, are based on a convolutional neural network architecture with a recurrent
pathway, which learns to iteratively fill the intracellular region of individual neurons. The
prediction starts with an empty mask at sampled start (seed) locations and terminates if the
filled cell is surrounded by a closed background prediction. Cells are “oversampled” with
multiple seed locations leading to an initial oversegmentation that is subsequently refined
by a consensus strategy, which for example includes the application of multiple models
with different input data resolutions (voxel sizes). Januszewski et al. 2018 reported striking
results with an average path length of 1.1 mm before encountering an error. Considering
data sets with volumes in the range of hundreds of microns side length, the resulting
reconstructions thus closely match the neuron shape contained in the volume.

Aligned EM image data together with the neuron segmentation is the starting point
for connectomic analysis. Fig. 1.4 shows the shape reconstruction of a neuron consisting
of three anatomically distinct compartments, the axon, soma, and dendrites. The neuron
shape can be extended by identifying neurobiologically relevant ultrastructure captured in
the EM images, such as mitochondria, synaptic vesicles and synaptic junctions (Fig. 1.4
left). The detection of individual synapses and involved cell partners as well as methods
for the analysis of cellular morphology allow a comprehensive reconstruction of neurons
and their synaptic wiring.

1.4 Automated cell segmentation 9

Figure 1.4: Left: EM section showing the cellular ultrastructure of a presynaptic axon
(pre) forming a synapse with a spine head (post, postsynaptic) of the cell visualized on the
right. Right: Shape reconstruction of a medium spiny neuron generated by flood-filling
networks in the zebra finch brain region area X (zebra finch area X, large; Appendix A).
Scale bars are 500 nm in the EM section and 10 µm in the rendering.

10 1. Introduction

1.5 Objectives and contributions
The goal of this thesis was to advance volume electron microscopy image acquisition and
to automate the analysis of the generated data sets further.

Image acquisition
Since GCIB is one of the most promising technologies for volume electron microscopy data
acqusition, it became one of the objectives of my thesis to set up an imaging pipeline for
thick, heavy metal stained sections with gas cluster ion beam milling. Chapter 2 presents
a prototypical procedure for the collection of thick sections cut with an ultramicrotome
and outlines the imaging procedure for hundreds of sections.

An essential part of highly-automated image acquisition is to maintain good image
quality in terms of focus during data acquisition with a scanning electron microscope. The
automation of focusing and stigmation was realized with a deep learning based approach
using a convolutional neural network.

Automated data analysis
The reconstruction of neuron shapes is not sufficient for a comprehensive circuit recon-
struction and increasingly large data sets become available. Hence, the third objective was
to increase the degree of automation of the steps that follow cell and ultrastructure seg-
mentation and provide a solution to circuit reconstruction. Chapter 4 describes methods
for the detection of anatomical compartments in neurons, that also allow the identifica-
tion of pre- and postsynaptic partners, supervised cell type classification and unsupervised
clustering of neurons. Chapter 5 presents the SyConn2 connectome analysis framework
for automatic circuit reconstruction based on volumetric electron microscopy images and
corresponding cell segmentation.

Chapter 2

Wafer-based image data acquisition
with GCIB

2.1 Introduction
Serial-section electron microscopy is based on thin sections (∼ 50 nm) that are cut by the
thousands with an ultramicrotome and collected on a carrier material, for example tape
(Schalek et al. 2011) or silicon wafers (Horstmann et al. 2012). However, folds, cracks
and the loss of entire sections make it difficult to scale this technique up to large volumes
without defects (Macrina et al. 2021; Shapson-Coe et al. 2021; Zheng et al. 2018).

MSEMs (Eberle et al. 2015) have recently been combined with an automatic tape-
collecting ultramicrotome (Shapson-Coe et al. 2021), but are incompatible with serial block-
face approaches (Hayworth et al. 2020; Kornfeld and Denk 2018). Hayworth et al. 2020
introduced gas cluster ion beam (GCIB) milling for volume electron microscopy that allows,
unlike FIB milling, the ablation of large areas and demonstrated the feasibility of acquiring
image stacks. They used up to 1 µm thick sections, which is one order of magnitude larger
than what is usually used with serial-section electron microscopy. For once, this results in
an overall lower section count and second, in a small image stack (hereinafter called sub
stack) instead of a single image per section.

All sub stacks need to be sorted in case they were not tracked during collection to
retrieve the final EM volume. The sorting is less difficult as with thin sections, because
the correlation between two images declines with increasing z-distance (orthogonal to the
image x-y coordinates) and the total section count for the same volume is lower. As a
consequence, the correlation between first and last slice of two adjacent sub stacks will be
much higher relative to other sub stacks (GCIB milling) than the correlation between two
images of ultra-thin sections that are only ∼ 50 nm apart1.

When combining GCIB milling with (multi-beam) scanning electron microscopes, it is
favorable if the milling time takes up only a small portion of the imaging time – otherwise

1Hayworth et al. 2020 estimated the loss between two consecutive thick sections that were cut with an
ultramicrotome to be ∼ 30 nm

12 2. Wafer-based image data acquisition with GCIB

the effective imaging speed will be slowed down accordingly. To this end and assuming a
constant mill current, it is important to ensure a high packing density of sections, which
in addition to the aforementioned issues, is not directly given with tape-collected sections.

Templier 2019 demonstrated a reliable wafer-based collection method of hundreds of
thin sections in which the sample was re-embedded into a resin block that contained su-
perparamagnetic nanoparticles. An actuated magnet allowed to move the floating sections
in the knife boat after cutting with an ultramicrotome. The sections were confined above
a silicon wafer and adhered to the wafer after lowering the water level. For the collection
of 507 sections he observed tears in 9 sections and no section loss, which becomes partic-
ularly relevant with thick sections. Although densely packed, the supplement epoxy block
reduces packing efficiency and can further exacerbate dulling of the knife, especially with
large samples, a common problem with serial sectioning.

This chapter presents an alternative, prototypical wafer-based collection procedure for
thick sections and milling experiments with an argon-carbon dioxide gas mixture instead
of pure argon used by Hayworth et al. 2020.

2.2 Materials and Methods 13

2.2 Materials and Methods

Experimental setup
All experiments used a Zeiss field emission SEM (Merlin) for the generation of EM images
and a GCIB 10S ion gun from Ionoptika to mill the specimen surface (Fig. 2.1). A high-
pressure gas connection supplies the horizontally oriented gun with an argon-carbon dioxide
gas mixture (18% CO2 and 82% Ar; Corgon-18 from Linde). The gun is connected to the
vacuum chamber of the EM through a manual valve and two additional turbo pumps
(Pfeiffer Vacuum TM 700) with dampers to provide a stable vacuum without introducing
vibrations into the system.

Figure 2.1: Experimental setup of the single beam field emission SEM (A) together with
an ion gun (B). The ion gun is connected with a high-pressure gas supply (C), two turbo
pumps (D) and the imaging chamber of the EM.

For the acquisition process the open source software SBEMimage2 (Titze et al. 2018)
was extended to support ion gun milling. Between two consecutive imaging iterations, the
stage together with the specimen is moved to the center of the ion beam and rotated to an
adjustable incident angle. To mill the sample surface from multiple directions for uniform
material removal, the stage is rotated about the vertical stage axis in azimuth direction
for a specified milling duration. The rotation was divided into three different azimuths
separated by 120 degrees with a 10 s delay before rotating to the next azimuth. The SEM
focus was maintained using the open source Python implementation of MAPFoSt (Binding

2https://github.com/SBEMimage/SBEMimage

https://github.com/SBEMimage/SBEMimage

14 2. Wafer-based image data acquisition with GCIB

et al. 2013) by R. Saxena3 with five correction iterations.
A secondary electron in-lens detector provided the imaging signal using a 1.5 kV accel-

eration voltage, a probe current of 1.8 nA and 800 ns pixel dwell time in all experiments.
The ion gun current was 38 nA, measured with the built-in current detector of the used
Zeiss SEM. The ion beam glancing angle was set to 30 degrees and ion clusters were tuned
to a cluster size of 2,000 ions with an acceleration voltage of 10 kV and a slight defocus of
the beam for smooth milling.

The scan pattern of the ion beam was controlled with a waveform generator (Agilent
33522A) that generated two superimposed sawtooth voltages, where the amplitude of each
signal controlled the spatial extent of the beam in one of two orthogonal directions (peak-
to-peak voltage range: 0 Vpp to 20 Vpp). A frequency of 100 Hz and 1 Hz was used for X and
Y, respectively. The irradiated area was calculated from the applied scan voltages using
the LineScan tool provided by Ionoptika together with a calibration target (a washer with
known diameter).

Section collection and preparation

For the extraction of the tissue sample, a male zebra finch (days post hatch: 124) was
anesthetized with sodium pentobarbital, distributed under the name Narcoren (Böhringer
Ingelheim), and perfused with an extracellular space preserving solution containing 0.07 M
cacodylate (Serva) buffer, 0.14 M sucrose (Sigma-Aldrich), 0.002 M CaCl2 (Sigma-Aldrich)
and a subsequent fix solution, extending the previous solution with 2% paraformaldehyde
and 2% glutaraldehyde (Serva). After carefully extracting the brain it was post-fixed
at 4° overnight and then put in 0.15 M cacodylate buffer. The brain was cut with a
vibratome (Thermo Scientific HM 650V) in 250 µm thick sections and a biospy punch
(Leica Biosystems) was used to extract a 500 × 500 × 250 µm3 basal ganglia sample. The
sample was stained as described in Hua et al. 2015 and embedded with Spurr’s (EMS) by
A. Rother.

The sections for the mill rate estimation were cut from the sample with an ultramicro-
tome (Leica EM UC7) and a diamond knife (DIATOME ultra jumbo), collected manually
with a Perfect Loop (Diatome) and placed on gold coated (Leica EM MED020 with gold
rods) silicon wafers. If not stated otherwise, all section had a thickness of 200 nm.

For the automated section collection, a floating polyester film (floater, RS PRO Mylar
A with 0.25 mm thickness) was used to confine the area for the floating sections in the
knife boat of the ultramicrotome. The floater was cut to the required shape with a CO2
laser (ILS12.75 from Universal Laser Systems). After the sections were cut and confined
above the wafer, the water level was slowly reduced using a pipette. The wafer was then
placed on a heating plate to dry and support flattening of the sections at approximately
60 °C. Silicon wafers were treated in advance with a plasma cleaner (PDC-002 from Harrick
Plasma) for about one minute to promote wetting.

3https://pypi.org/project/mapfost/

https://pypi.org/project/mapfost/

2.2 Materials and Methods 15

The diameter of the wafers (p-type, J11002 from SIEGERT WAFER) was 25.4 mm for
all experiments.

Collected thick sections were further irradiated with a strong electron source (EH-50
STAIB instruments) to increase conductivity, which is necessary to enable artefact-free
imaging (Hayworth et al. 2020). The electron energy density was monitored during the
irradiation with a current preamplifier (SR 570 from Stanford Research Systems) and a
digital multimeter (Keysight 34465A) using a custom Python script. The current measured
by the preamplifier was integrated (Simpson’s rule) over time (1 s intervals), yielding qtot,
to calculate the deposited energy volume density given the irradiated area A and thickness
d of the section:

ρE = Ubeam · qtot

A · d
(2.1)

For 200 nm thick sections the beam acceleration voltage was set to 3 kV and to 5 kV for
500 nm.

Computational section processing
The acquired image stacks for the mill rate experiments were aligned with the SIFT (Lowe
2004) plugin from Fiji (Schindelin et al. 2012). As the sample surface gets milled away suc-
cessively, the wafer becomes visible. Due to inhomogeneities in milling, the breakthrough
occurs after a different number of iterations (z) for different locations (x-y). To identify the
first wafer occurrence in z for every pixel in x-y the following procedure was applied: the
distinct wafer signal (low pixel intensities) was segmented by thresholding the gray-value
image pixels (0..255) with an appropriate threshold (< 10). The z-index for the last sample
encounter was found by arg min of the inverted (top-bottom) wafer segmentation column;
in the inverted column of the wafer segmentation the first 0 value occurs at the originally
last z-slice of the sample.

The height indices were extracted from a square of 1000 × 1000 pixels for every sample,
slightly smoothed using a Gaussian kernel with a standard deviation of 1. The average
and the error of the number of milling cycles was then calculated by taking the mean and
the standard deviation of all indices. The standard deviation of the resulting mill rates
was found by propagation of uncertainty. The identification of the last sample slice was
done manually by inspecting the aligned tiles and finding the z-slice with minimal debris
and no substantial change thereafter.

For the automatic section detection on the wafer a CNN with a 2D U-Net (Ronneberger
et al. 2015) architecture was employed using 5 blocks, 64 initial filters, ReLU activation
(Glorot et al. 2011) and batch normalization (Ioffe and Szegedy 2015) to discriminate
sample tissue from background, which included the wafer and the epoxy embedding of the
sample.

With the help of a custom Python script based on the image annotation tool Napari
(Sofroniew et al. 2021), ground truth for a two-class segmentation was generated (0: back-
ground, 1: sample tissue) in a sparse fashion. An auxiliary ignore label was used for

16 2. Wafer-based image data acquisition with GCIB

unlabeled regions (2: ignore), which did not contribute to the loss calculation during train-
ing. Labeled segments of a single class were outlined by drawing polygons on the wafer
overview mosaic (Fig. 2.2). Background labels were added automatically around the tissue
class by dilating (binary morphological operator) label-1 regions 10 times into ignore re-
gions and converting the dilated area to background (Fig. 2.2 center). The wafer overview
was downsampled to a pixel size of 4 µm for training and inference.

Figure 2.2: Sparse ground truth annotation for section detection on silicon wafers. Left:
A Mosaic overview of size 13.92 × 14.01 mm2 (14 × 19; 32 pixels overlap) acquired with
SBEMimage, which contains 87 collected thick sections of a 500 × 250 µm2 sample on a
wafer. Individual image tiles were taken with 1024 × 768 pixels, 1 µm pixel size and 200 ns
pixel dwell time. Center: Background labels around a labeled thick section generated by
binary dilation. Right: Partially annotated target labels for automatic section detection.

The model inputs were patches with 256 × 256 pixels, grayscale intensities between
0 and 255 and were centered and rescaled to -0.5 and 0.5. The following augmentations
modified the input images I during training:

• Shift, scale and rotation applied with probability p = 0.95. Relative shift values were
drawn from U(−0.0625, 0.0625), scale from U(−0.2, 0.2) and rotation angles from
U(−180, 180). The resulting affine matrix was applied with cubic interpolation and
reflecting boundary mode.

• Random flips applied with probability p = 0.5, independently on x- and y-axis.

• Elastic transformation based on (Simard et al. 2003) with probability p = 0.5,
smoothing parameter σ = 2 for the displacement field and a scaling parameter to
control the displacement strength α = 5.

• Additive Gaussian noise applied with p = 0.75: I∗ = I + X with X being a 2D noise
map with the same size as I and i.i.d. Xi,j ∼ N (0.0, 0.12).

2.2 Materials and Methods 17

• Random gamma adjustment: I∗ = Iγ with γ ∼ N (1.0, 0.252) and p = 0.75. Pixel
intensities are internally rescaled between 0 and 1.

• Random brightness B and contrast C adaption: I∗ = C(I − Imean) + Imean + B with
C ∼ N (1.0, 0.252) and B ∼ N (0.0, 0.252).

The deep learning framework elektronn34, based on PyTorch (Paszke et al. 2019),
was used for model training, augmentations and tiled inference. The shift-scale-rotate
augmentation was imported from the open-source package Albumentations (Buslaev et al.
2020).

Training was performed with AdamW (Loshchilov and Hutter 2019) optimizer (initial
learning rate 0.001, weight decay 0.5 · 10−4), learning rate scheduler (scheduler step size
of 1000, decay 0.9), cross-entropy loss (class weights: 1, 2) and was stopped after approxi-
mately 1.8·105 iterations (18h training time on one Nvidia Quadro RTX 5000). Predictions
on ground truth pixels with label 2 were ignored during loss calculation.

The tiled prediction (200 × 200 input patches with additional 30 × 31 pixels overlap)
of the mosaic overview was processed by applying one iteration of binary closing, followed
by a Canny edge filter, contour detection and a minimum-rectangle extraction from the
opencv2 Python package (https://github.com/opencv/opencv-python). In addition, in-
dividual foreground instances in the binary-closed prediction were identified via connected
components (ndimage.label from the scipy (Virtanen et al. 2020) package). Rectangles
with a pixel area larger than 200 were assigned to a foreground instance by using their
center coordinate.

If a region of interest (ROI) was larger than the field of view of an undistorted SEM
scan, it was divided into multiple tiles, further called grid, where each tile is represented
by one scan. All resulting rectangle instances were loaded into SBEMimage and used to
instantiate such acquisition grids, which also allows subsequent adjustment and placement
of missing or removal of wrongly identified grids.

For the minimization of the stage movements, a heuristic optimization implemented in
the python-tsp Python package (https://github.com/fillipe-gsm/python-tsp, with α = 0.9
and 2-opt perturbation scheme) and based on simulated annealing (Kirkpatrick et al. 1983)
was run on the pairwise distance matrix between all grids. Distances back to the start grid
were set to zero.

The computational flattening in Fig. 2.7 was performed using the pixel-wise height
index as described above and linear 1d-interpolation to the full extent via the function
interpolate.interp1d from the scipy Python package (Virtanen et al. 2020).

4https://github.com/ELEKTRONN/elektronn3

https://github.com/opencv/opencv-python
https://github.com/fillipe-gsm/python-tsp
https://github.com/ELEKTRONN/elektronn3

18 2. Wafer-based image data acquisition with GCIB

2.3 Results

2.3.1 GCIB mill rate estimation
While tape-collection approaches allow quality control with potential re-imaging in case of
acquisition artefacts, the z-resolution is limited by the ultramicrotome to at least 30 nm.
Using thick sections instead, this limit can be reduced to less than 10 nm with gas cluster
ion beam milling (Hayworth et al. 2020), which allows smooth surface ablation for parallel5
block-face SEM.

To test this approach, a field emission SEM setup was extended with an io gun from
Ionoptika. The gun was connected to a high-pressure supply for an argon and carbon
dioxide gas mixture. Upon release into the evacuated extraction chamber the gas undergoes
adiabatic expansion and forms clusters, which are ionized, accelerated and then tuned to a
specific size with a Wien filter. Two beam deflectors enabled scanning and the adjustment
of regions of interest on the specimen.

Figure 2.3: Effect of electron irradiation on charging artefacts during SEM imaging of two
sections with 200 nm thickness. Left: Section without prior electron irradiation. Right:
Section that was irradiated with a total dose of 0.5×1027 eV cm−3. Note that the images
contain different sample areas.

Increasing the thickness of sections reduces electrical conductivity to a level that leads
to severe artefacts during imaging, which can be counteracted by electron irradiation at
the cost of a reduced mill rate (Hayworth et al. 2020; Fig. 2.3). The dependency of the mill
rate on the amount of electron irradiation can be measured by milling specimens of known
thickness at different electron irradiation levels. The experiment was conducted in analogy
to the proof-of-concept study by Hayworth et al. 2020, but using a cheaper argon-carbon
dioxide gas mixture (Corgon-18, 82% argon) instead of pure argon.

5In the sense that multiple thick sections are processed within a single milling iteration.

2.3 Results 19

Table 2.1: Mill rate measurements for different electron irradiation levels. All samples had
a thickness of 200 nm. FoV: edge length of the field of view of the ion gun scan, V̇ : mill
rate, V̇ /Ibeam: mill rate per applied beam current.

dose
[
1027 eV

cm3

]
Tmill [s] FoV [µm] V̇

[
µm3

s

]
V̇ /Ibeam

[
10−8 m3

C

]
1 31680 9462 565 1.487

0.5 16800 7885 740 1.948
0.25 10080 7885 1233 3.246

0 8640 9462 2072 5.453

For this experiment, thick sections were cut from a biological sample with an ultra-
microtome, collected on silicon wafers and treated with a varying duration of electron
irradiation. The acquisition was performed with the GCIB-SEM setup and automated by
extending the open source software SBEMimage (Titze et al. 2018) with the necessary
functionality to control the ion gun. For each sample, the final tissue slice was identified to
calculate the average mill rate V̇ from the total mill duration Tmill and the scanned sample
area (Table 2.1).

The measured values for Corgon-18 are similar to those reported for pure argon in
Hayworth et al. 2020. A mill rate of V̇ = 740 eV cm−3 translates to 740 MHz assuming
perfect area usage and isotropic 10 nm voxels, which is in the same order of the scan speed
of an MSEM. This underlines the importance of either dense packing of sections on the
wafer or a high effective milling speed to keep both rates in appropriate balance.

Figure 2.4: Average GCIB mill rate dependent on the electron irradiation for complete
removal of 200 nm thick tissue sections obtained by finding the final tissue slice manually
and as mean and standard deviation on pixel level (Materials and Methods). Images did
not show charging artefacts with an irradiation dose of 1027eV cm−3 or more.

In addition, a segmentation of the surfacing wafer was performed in the acquired sub

20 2. Wafer-based image data acquisition with GCIB

stacks to identify the number of mill iterations on pixel level. Except for the unirradiated
sample, the pixel-mean mill rate was close to the mill rate obtained from the total milling
time, determined by manual identification of the final slice (Fig. 2.4). Similar to Hayworth
et al. 2020, simple thresholding was only possible with (gold-)coated wafers.

2.3.2 Volume acquisition scheme and post-processing

Figure 2.5: Section collection on a
silicon wafer using a polyester film
that confines the cut sections to an
area above the wafer. Diamond
knife boat with the sample block on
the left.

To automatically collect thick sections on a silicon
wafer, a prototype collection method was designed
which uses a floating polyester film in the microtome
knife boat to confine the movement of cut sections to
an area above the immersed wafer (Fig. 2.5). In con-
trast to Templier 2019, which requires the extension
of the sample by a resin block filled with superpara-
magnetic nanoparticles, the presented approach does
not require the modification of the sample block.
This is relevant to GCIB-SEM as the milling speed
depends on the treated area. Consequently, for effi-
cient milling, the packing density of the target tissue
on the wafer should be sufficiently high and minimize
the non-tissue area.

Using this procedure, 87 thick sections were col-
lected to develop methods for the next steps in the
acquisition process. Unfortunately, several sections
were lost due to cracking and folding when manually
lowering the water level during the collection, illus-
trating the difficulty of automated section collection.
This particularly affected peripheral sections, which
needs to be addressed by future optimizations.

To structure the acquired image data and reduce the amount of imaged background, it is
necessary to identify all regions of interest, i.e. the area containing tissue in every section,
which becomes laborious and time-consuming when thousands of sections are involved.
In order to semi-automate this task, regions of interest and background were sparsely
annotated in a mosaic overview of the wafer (approx. 30 min total manual annotation time)
and served as ground truth for segmenting the entire overview with a U-Net (Ronneberger
et al. 2015) (Fig. 2.6). It turned out that adding a background boundary around the
foreground masks was crucial to accurately segment every section (Fig. 2.2).

The foreground segmentation was further used to identify a bounding box for every sec-
tion, which were in turn made available in the graphical user interface (GUI) of SBEMimage
as acquisition grids. A grid tiles one region of interest into multiple scans and enables man-
ual adjustments in the user interface before starting the acquisition. To reduce overhead
in stage movements, the ordering of the grid traversal can be optimized by minimizing
the total path length (Fig. 2.6 right). This might also have a positive effect on associated

2.3 Results 21

mechanical wear and reduces the settling time of the stage if neighboring sections are close
(so that the stage does not reach maximal speed).

Figure 2.6: Preparations for the acquisition of thick sections collected on a silicon wafer.
Left: Mosaic overview from Fig. 2.2. Center: Predicted sample regions that contain
stained tissue. Right: Example section traversal during acquisition by greedy minimiza-
tion of the traversed path length.

After the alignment of the acquired sub stacks, one for each each thick section, a compu-
tational flattening is necessary due to small, local inhomogeneities of the mill rate (Fig. 2.4,
Fig. 2.7; Hayworth et al. 2020). The slices close to the wafer showed some imaging artefacts
(see increased brightness in Fig. 2.7), presumably caused by hydrocarbon contamination
due to accumulation of ablated material. This could be addressed by additional mild
plasma cleaning, for example using the GV10x downstream asher (ibs) between the milling
and imaging cycle. The partial stacks must be sorted into the correct z-order, e.g. by
pairwise cross-correlation of the top and bottom slices of all partial stacks, followed by a
final alignment, which is subject to future efforts.

An acquisition of 500 sections with 500 nm thickness and 0.25 × 0.25mm tissue area (in
total 7.8 teravoxels, 0.015 625 mm3) would require about 30 d (milling: 4 d, imaging: 26 d;
irradiation: 4 d)6 on a single-beam SEM (5 MHz scan rate, 200 ns pixel dwell time resp.),
assuming a mean mill rate of 856 s nm−1 for an area with 22 mm side length, extrapolated
from the value for an irradiation of 0.5 · 1027 eV

cm3 , a scan tile size of 6000 × 6000 pixels and
pixel size of 10 × 10 × 20 nm3.

6For the calculation, 5 × 5 tiles per section are considered, leading to an effective imaging rate of about
3 MHz and a packing density of about 10% with a mean wafer area per slice of 0.63 mm.

22 2. Wafer-based image data acquisition with GCIB

Figure 2.7: Computational flattening of a 500 nm thick section as proposed by Hayworth
et al. 2020: The wafer signal in the initial image stack (top, black) is segmented using
thresholding (middle, green) and used to linearly interpolate the sample signal to the full
z-extent, independently for every z-column (bottom).

2.4 Discussion 23

2.4 Discussion
Surface milling of stained and epoxy embedded neural tissue with a gas cluster ion beam for
volume electron microscopy connectomics has recently been demonstrated (Hayworth et al.
2020) and represents a promising technique compatible with high-throughput multi-beam
scanning electron microscopes. Here, a single-beam field emission SEM was extended with
GCIB milling and was successfully applied to image ultramicrotome-cut thick sections.
The mill rate with an argon-carbon dioxide gas mixture showed an electron irradiation
dependency similar to what was reported in Hayworth et al. 2020 for pure argon. The GCIB
acquisition routine was implemented in the open-source EM imaging tool SBEMimage,
which might proof useful for future studies.

With further optimization, the presented approach for section collection could evolve
into a simple yet effective procedure for future volume electron microscopy data sets that
does not require modification of the sample epoxy block. Collecting sections for example
with in-bath heating would allow a slow and controlled lowering of the water level until the
sections adhere to the wafer. Thick sections in, contrast to thin ones, do not tolerate even
a single loss, otherwise it would be impossible to unambiguously trace all neurons in the
worst case. The collection of 2000 sections, e.g. for a 1 mm thick sample, with a success
rate of p = 0.1 and without a single lost section, requires a loss rate of about 0.001 per
cut, which makes highly reliable collection critical for wafer-based GCIB-SEM.

24 2. Wafer-based image data acquisition with GCIB

Chapter 3

Automated focus and stigmation
correction

Key results of this chapter were submitted as patent EP21212051.3, which is currently
pending (Schubert and Kornfeld 2021, December 2).

3.1 Introduction
In SBEM the sample undergoes no or only very small vertical displacements (in the order
of tens of nanometers) during milling (focused ion beam) or cutting (diamond knife). Any
resulting focus drift can either be corrected via iterative optimization (Xu et al. 2017),
a heuristic autofocus (Briggman et al. 2011) or even manually in regular intervals. In
contrast, data acquisition with GCIB milling requires stage movements in the centimeter
range between two consecutive imaging cycles, which result in displacements of up to
several micrometers due to imprecisions of the microscope stage motor (Hayworth et al.
2020). Correction of the imaging parameters is therefore more challenging.

In (Hayworth et al. 2020), the authors presented a simple ad-hoc solution based on a
grid search around the last known, good focus parameters in order to correct the working
distance and stigmator parameters before the acquisition of each image. This procedure
worked well for the purpose of showing the general usability of GCIB in VEM with the
acquisition of small volumes (on the order of 10 µm edge length), but was not optimized
for speed. Meanwhile, for large volumes, the autofocusing and -stigmation procedure must
be precise and very robust, and, at the same time, the processing overhead must not
significantly affect the remaining acquisition.

With wafer-based acquisition, thick sections of tissue sample up to hundreds or thou-
sands are collected on a silicon wafer. For each ROI, which usually is a grid of overlapping
tiles for every thick section, beam parameters for a fine electron probe must be verified
after every milling cycle. In combination with the destructive nature of this acquisition
method, a reliable and fast autofocus procedure is critical.

In order to keep the additional electron dose (electrons per area) by the auto-focus

26 3. Automated focus and stigmation correction

(AF) small, the imaging time of a given beam current on the same sample area needs to
be minimized, which is necessary to prevent imaging artifacts through irradiation damage
(Egerton et al. 2004) and local changes in the milling rate (Fig. 2.4, Hayworth et al. 2020).
Minimization can be achieved by altering two factors: Firstly, by increasing the scan speed,
which reduces the pixel dwell time and thereby also the image signal-to-noise ratio (SNR),
and, secondly, by reducing the number of acquired test images for the correction estimation.
The latter was optimized by a Bayesian approach called Maximum-A-Posteriori Focusing
and Stigmation (Binding et al. 2013) (MAPFoSt), which requires the acquisition of only
two test images.

Approaches that explicitly model the electron probe formation and aberrations (Binding
et al. 2013; Erasmus and Smith 1982; Paxman et al. 1992) by taking test images or by using
classical image sharpness scores (Batten 2000; Rudnaya 2011; Xu et al. 2017) generalize
very well in theory and can be applied to different microscopes and specimens with very
little or no modifications to their working principles. In practice, they still require careful,
manual parameter tuning.

A recent study proposed an approach with two artificial neural networks to infer the
quality of SEM images with a subsequent correction estimate for the working distance based
on an updating state vector and a database of tens of thousands of manually labeled images
(W. Lee et al. 2021). The excellent performance of CNNs in general image processing tasks
and the success of deep learning models for focus correction in light microscopy (C. Li et
al. 2021; S. J. Yang et al. 2018) provided the incentive to develop a deep learning based
method, dubbed “DeepFocus”, for both focus and stigmation correction in SEMs that is
fast, accurate and requires comparably little training data.

3.2 Materials and Methods

Electron microscopes and samples

All experiments were conducted on two Zeiss single beam SEMs: One was a Zeiss Merlin
with 1.5 kV acceleration voltage, 1.5 nA beam current, in-lense secondary electron detector
and a working distance of 4.5 mm (setup A). The recalibration experiments on setup B
used a Zeiss UltraPlus SEM with, if not stated otherwise, 1.2 kV, 60 µm aperture, in-lense
secondary electron detector, 6 mm working distance and a by 90° rotated scan. All EM
images were acquired with 10 nm pixel size.

All experiments that involved a biological sample were carried out on 250 nm thick,
electron irradiated (see Chapter 2, Hayworth et al. 2020) sections collected on a silicon
wafer (sample and procedure as in Chapter 2). The non-biological samples were tin on
carbon specimens from agar scientific (S1937) on both setups A and B.

The stigmator values were used as reported by the microscope software (SmartSEM
Version 6.06) without additional adjustment or calibration.

3.2 Materials and Methods 27

Ground truth generation
Training and validation samples were generated by acquiring a pair of perturbed (±σwd =
±5 µm working distance) images relative to a known aberration, which introduced defocus
by changing working distance δwd and both stigmators δstigx,stigy (Fig. 3.1). At a given
location, the focus baseline was adjusted manually and perturbed image pairs were acquired
for 10 introduced aberration vectors, that were drawn uniformly within a given value range
δi ∼ U(ai, bi) (with i for working distance, stig x, stig y). One training sample consisted of
two perturbed images as the model input and the negative aberration vector as the target
∆F̃i = −δi.

Figure 3.1: Overview of the training data generation. The parameters of a focused beam
are changed by adding a uniformly sampled offset δi for working distance and stigmator
parameters to generate a set of distorted images with known aberration values.

At 23 locations, the aberration vectors were sampled from a working distance range of
±20 µm and stigmators from ±0.5. More specifically, every parameter was drawn indepen-
dently and the resulting aberration vector was created by concatenation. The perturbed
(input) images were acquired with a size of 1024 × 768 pixels and scan speed 3 (2.5 MHz).
17 locations were sampled within ±20 µm (wd) and ±5 (stigmators) and the images for
these locations were acquired with a size of 2048 × 1536 pixels and scan speed 1 (10 MHz).
The resulting 400 samples were shuffled and split into training (80%, 320 samples) and
validation set (20%, 80 samples). The validation set was used to monitor overfitting of

28 3. Automated focus and stigmation correction

the model during training. Test experiments were conducted on different specimen regions
and aberration vectors.

Model architectures and training
All models were implemented and trained with PyTorch (Paszke et al. 2019) 1.9.0 and
the open-source framework elektronn31 using mini batches, L1 loss (mean absolute error
(MAE) between model output and target), step learning rate scheduler (factor of 0.99
every 2000 steps) and AdamW optimizer (Loshchilov and Hutter 2019).

The image-to-scalar architectures used 7 convolutional layers (valid convolution; 3D
kernels to share weights across the two inputs using a z-kernel size of 1) followed by 3 fully
connected layers (FCLayer). The convolutional layers (Conv3D) were built as follows:
convolution, batch normalization, activation (ReLU), max pooling, dropout (Srivastava
et al. 2014) with a rate of p = 0.1 during training. The architecture for 2 × 512 × 512
inputs consisted of the following layers and parameters (a total of about 1 million trainable
parameters):

• Conv3D(input channels: 1, output channels: 20,
kernel size: (1, 5, 5), pooling size: (1, 2, 2))

• Conv3D(20, 30, (1, 5, 5), (1, 2, 2))

• Conv3D(30, 40, (1, 4, 4), (1, 2, 2))

• Conv3D(40, 50, (1, 4, 4), (1, 2, 2))

• Conv3D(50, 60, (1, 2, 2), (1, 2, 2))

• Conv3D(60, 70, (1, 1, 1), (1, 2, 2))

• Conv3D(70, 70, (1, 1, 1), (1, 1, 1))

• FCLayer(input channels=6860, output channels=250), ReLU

• FCLayer(250, 50), ReLU

• FCLayer(50, 3)

For different input shapes, the parameters of the fully connected layers were adapted as
follows:

• 2 × 128 × 128: Linear(140, 100), Linear(100, 50), Linear(50, 3)

• 2 × 256 × 256: Linear(1260, 250), Linear(250, 50), Linear(50, 3)

• 2 × 384 × 384: Linear(3500, 250), Linear(250, 50), Linear(50, 3)
1https://github.com/ELEKTRONN/elektronn3

https://github.com/ELEKTRONN/elektronn3

3.2 Materials and Methods 29

The model output is a correction vector ∆F for working distance (in µm) and stig x and
y (arbitrary units). The L1 loss was calculated without additional weighting as the value
range of the different target types (working distance vs. stigmator) appeared sufficiently
similar and used a batch size of 8.

To average multiple correction estimates with learned weights, the above architecture
was changed to output 4 (3 corrections and an associated score as weight: ∆Fi, si), instead
of 3 channels. The model was trained by calculating the weighted average of 5 predictions
using the softmax (for normalization) of the scores as weights. More specifically, in each
training iteration 5 patch pairs were generated from the input and the resulting model
output, the weighted average, was compared with the target to calculate the loss.

In the image-to-image case with per-pixel outputs (incl. score; Fig. 3.7), a 3D U-Net was
used (Ronneberger et al. 2015) with 3 planar blocks (to allow for shared weights across the
two input images), same-convolution mode, which adds zero padding to maintain the input
shape, resize convolutions (Odena et al. 2016) for the upsampling, group normalization (Wu
and He 2018) (splitting the channels into 8 groups) and 32 start filters. Two subsequent 2D
convolution layers followed, which projected the concatenated channels of the two input
images down to 4 channels (3 corrections and the associated score) per pixel: Conv2D(input
channels=64, output channels=20, kernel size=(1, 1)), activation, Conv2D(20, 4, (1, 1)).
In total, the model contained about 0.5 million trainable parameters. A softmax function
was applied to the 2D score map output to normalize the score values. The scores were
then used to calculate the weighted average of the per-pixel predictions. Multiple dense
predictions were combined by calculating their mean.

In both, image-to-scalar and image-to-image, score models a batch size of 4 was used
and an additional loss term based on the L1 loss of the individual (either patch- or pixel-
wise) predictions Lind

1 was added to the loss of the mean prediction Lmean
1 (α = 0.25):

L = (1 − α) Lmean
1 + Lind

1 (3.1)

The model inputs (grayscale images with intensities between 0 and 255) were rescaled to
−1 and 1. Patch pairs, one for each of the perturbed images, were cropped randomly with
the same offset. For the model with un-aligned patch offsets in Fig. 3.5a, offset locations
were drawn independently for each patch. The following augmentations, implemented in
elektronn3, were each applied independently with probability p to the input images I:

• Additive Gaussian noise applied with p = 0.75: I∗ = I + X with X being a 2D noise
map with the same size as I and i.i.d. Xi,j ∼ N (0.0, 0.22).

• Random gamma adjustment: I∗ = Iγ with γ ∼ N (1.0, 0.252) and p = 0.75. Pixel
intensities are internally rescaled between 0 and 1.

• Random brightness B and contrast C adaption: I∗ = C(I − Imean) + Imean + B with
C ∼ N (1.0, 0.252) and B ∼ N (0.0, 0.252).

Trainings were stopped after validation loss convergence at 1 · 106 iterations (no-score
models), 0.5 · 106 (patch-score model) and 0.2 · 106 (pixel-score model).

30 3. Automated focus and stigmation correction

Performance tests and MAPFoSt comparison

The convergence properties of the models were assessed by tracking the state of the focus
parameters over 10 successive iterations at the same location with a known initial aberra-
tion. For each iteration the difference to a focus baseline was plotted for working distance,
stigmator x and stigmator y.

Single traces for the DeepFocus model used initial aberrations of δ = (30 µm, −6, 6).
The parameter baseline was found through manual coarse focus adjustment and three
subsequent iterations of the patch-score DeepFocus with 200 ns dwell time, 2048 × 1536
image size and 20 × 384 × 384 patches, followed by a visual confirmation that a parameter
baseline leading to sharp images was obtained.

The image SNRs in Fig. 3.3a,c were calculated with the approach of Sage and Unser
2003 implemented as Imagej plugin and a low-noise image acquired with a 800 ns pixel
dwell time as reference. Experiments with the UltraPlus (setup B) in Fig. 3.11 used two
iterations of MAPFoSt (400 ns dwell time and 4×786×768 patches) to adjust the baseline
for the unrotated beam scan (Fig. 3.11a) and manual focusing for the 90° rotated scan
(Fig. 3.11c,d).

The multi-trace plots were recorded at 9 different locations, regularly spaced on a
grid with 80 µm side length. In addition, the mean absolute difference/error (MAE) was
calculated each for iteration to estimate the average convergence speed and final variance of
the model. The initial focus baseline was found by manual focus adjustment and applying
MAPFoSt two times with 200 ns dwell time, resolution of 2048 × 1536 and 768 × 768
patches and used as baseline to set the initial aberrations. To address a slight shift in
the target focus (working distance) that was observed in the final iterations, likely due to
the frequent imaging during the trace acquisition, two iterations of MAPFoSt, or of the
patch-score model in the case of Fig. 3.9a, were applied after the trace recording to obtain a
more accurate baseline to plot the traces and margins in Fig. 3.9a,b and Fig. 3.10a. Patch
locations for DeepFocus were drawn randomly but with a fixed sequence of seeds, i.e. in
all traces and at every iteration the same N patch offsets (1 offset per patch pair) were
used. Initial aberrations were sampled uniformly within 8 to 12 µm (working distance), -4
to -2 (stig x), 2 to 4 (stig y) with a fixed random seed to ensure an identical distribution
of aberrations for MAPFoSt and DeepFocus. The test locations on the specimen of the 9
traces were identical for Fig. 3.9a and Fig. 3.10a.

Error bars were calculated using the uncorrected standard deviation (s.d.) in all plots.
All experiments with MAPFoSt were run with the open-source implementation by R. Sax-
ena2. The MAPFoSt parameters (including Gaussian approximation of the modulation
transfer function, numerical aperture, stigmator rotation and scales) were adjusted by R.
Saxena to the used SEM.

2https://pypi.org/project/mapfost/4.2.1/

https://pypi.org/project/mapfost/4.2.1/

3.2 Materials and Methods 31

Compute hardware and timings
The model trainings were run on a Windows computer with two Nvidia Quadro RTX
5000 graphics processing units (GPUs), an Intel Xeon Gold 6240 central processing unit
(CPU) @ 2.60GHz (36 threads) and 768 GB RAM. Inference was performed directly on
the microscope computers (setup A/B) and the time measurements were carried out on the
Zeiss Merlin microscope computer (Intel Xeon CPU E5-2609 v2 @ 2.50GHz, 4 threads; 16
GB memory; T1000 GPU) either with the CPU-only or with the CUDA (Compute Unified
Device Architecture by Nvidia) backend of PyTorch.

The processing timing started with the perturbed image pair array and ended with a
single correction vector, i.e. it included cropping, image normalization, CPU-GPU memory
transfers and mean estimation. PyTorch model initialization was not taken into account
as it is required only once during startup. Serialized versions of the model were stored
and loaded with TorchScript. The MAPFoSt implementation was multithreaded on image
patches, i.e. for a 2048 × 1536 input image and a patch size of 768 × 768, four parallel
processes were spawned. All timings were performed with 2048 × 1536 images and the
relative time comparison was calculated with a cycle time of 0.769 s (corresponding to a
pixel dwell time of 200 ns) and computed as the mean of 10 repetitions.

Recalibration procedure
To be able to automatically generate training data on novel setups (DeepFocus recalibra-
tion), a separate neural network was designed with the goal of regressing a general and
microscope-independent image sharpness score. The model to produce such a score for
a single image was based on the image-to-scalar variant of DeepFocus with the following
layers:

• Conv3D(1, 20, (1, 3, 3), (1, 2, 2))

• Conv3D(20, 30, (1, 3, 3), (1, 2, 2))

• Conv3D(30, 40, (1, 3, 3), (1, 2, 2))

• Conv3D(40, 50, (1, 3, 3), (1, 2, 2))

• Conv3D(50, 60, (1, 3, 3), (1, 2, 2))

• Conv3D(60, 70, (1, 3, 3),(1, 2, 2))

• Linear(2520, 250), ReLU

• Linear(250, 50), ReLU

• Linear(50, 2)

32 3. Automated focus and stigmation correction

The model output contained two scores: one for the working distance swd and one for
the stigmation sstig to allow later independent adjustment. The loss was calculated using
the L1 distance between the absolute ground truth targets (working distance, stigmator x,
stigmator y) and model outputs. The two, absolute stigmator components of the ground
truth were summed before the loss calculation with the model output score sstig. To obtain
a single score per image, the minima of N patch predictions (locations selected randomly
with fixed initial seed) were calculated independently for each score type (working distance
and stigmation) and then summed without additional weights. The resulting single score
was used for all experiments.

To turn the so obtainable image sharpness score (objective function) into a microscope-
independent autofocus algorithm, it was combined with the downhill simplex method
(Nelder and Mead 1965) that minimizes the DeepScore output through iterative adjust-
ment of the focus parameters. For this purpose, the Nelder-Mead Python implementation
of F. Chollet3 was adopted. In case there was no improvement within the last 5 iterations
(at most every 5 iterations), the current focus parameters were perturbed with noise drawn
from a uniform distribution within (±2 µm, ±0.5, ±0.5).

Automatic adjustment of the focus parameter at every location was done using the
Nelder-Mead-DeepScore autofocus with 10 × 2 × 512 × 512 patches cropped from an input
image with 200 ns pixel dwell time and 2048 × 1536 pixels. The DeepScore network was
trained on the ground truth acquired on setup A (see Ground truth generation). To obtain
a threshold to be used as a stopping criterion for the downhill simplex method, the focus
was adjusted once manually before starting the procedure and the corresponding sharpness
score was evaluated and multiplied by 1.05.

The training image pairs for the DeepFocus recalibration on setup B were acquired on
a regular grid with a resolution of 2048 × 1536 pixels and a dwell time of either 200 ns or
100 ns drawn randomly. The samples of the first 10 locations that had been acquired were
used for training, each sampled with 10 aberrations (uniformly drawn between ±20 µm,
±5, ±5; 100 location-aberration pairs in total; stopping threshold 0.0014). Recalibration
was then performed by finetuning the parameters of the last three fully connected layers of
a pre-trained DeepFocus model. Finetuning used the training parameters as described for
the DeepFocus except for an increased learning rate decay by multiplying with 0.95 every
1000 steps and by limiting training to a maximum of 50,000 steps (approx. 2 h).

3https://github.com/fchollet/nelder-mead

https://github.com/fchollet/nelder-mead

3.3 Results 33

3.3 Results

3.3.1 DeepFocus
To obtain a sharp image with a scanning electron microscope, the size of the electron
probe must be below the image pixel size. The formation of the electron beam can be
controlled by three parameters (working distance: wd, stigmator 1: stig x, stigmator 2:
stig y; Fig. 3.2a) within the microscope control software, which effectively adjust the electric
current in the objective lens to change the working distance, and two stigmators to correct
axial astigmatism. The effect of deviations from optimal parameter values are shown for
working distance and one stigmator in Fig. 3.2b.

Figure 3.2: SEM beam formation and DeepFocus algorithm. a Schematic of the electron
beam and the parameters that are controlled by DeepFocus. b Defocus - and astigmatism
series that shows the influence of mild to severe working distance (top row: 0 to 8 µm) and
stigmator deviations (bottom row: 0 to 5 a.u.) on image quality for a brain sample taken
with 800 ns pixel dwell time. c The out-of-focus image (1024 × 768 pixels) is perturbed
(symmetric perturbation σwd = ±5 µm) and N randomly located patch-pairs of fixed shape
are cropped and processed by a stacked CNN (f.c.: fully connected, conv.: convolutional).
The mean of N independent predictions is used to calculate a correction term ∆f for each
focus parameter (wd: working distance, stig x: stigmator x; stig y: stigmator y). All SEM
images have 10 nm pixel size. Scale bar in b is 500 nm.

34 3. Automated focus and stigmation correction

The adjustment of the imaging parameters for week- or even month-long acquisition
periods in VEM can hardly be done manually and require automation with little overhead
in terms of time and electron dose. Images taken with a working distance shift of the same
magnitude but different sign from the focal plane are indistinguishable, which means that
it is not possible to infer the correction direction from a single image.

Figure 3.3: DeepFocus convergence properties for different signal-to-noise levels. a Con-
vergence plot where each parameter update was calculated as the mean of N predictions
with a patch shape of 2 × H × W (height H and width W in pixels cropped from the two
perturbed images) using 5 × 2 × 512 × 512 input patches and 200 ns pixel dwell time. The
Y-axis shows the remaining difference to the initial focus values after each iteration with
an initial aberration of 30 µm, +6, -6 (wd, stig x, stig y). Dashed and dotted horizontal
lines indicate 0.25 and 1 µm margin of stigmator and working distance, cf. Fig. 3.2b. The
perturbed image size was 1024 × 768 pixels. Numbers in the top right of the example im-
ages indicate the iteration count. The plot inset is the same region of interest as in b, but
taken at 200 ns dwell time. The image SNR (see Materials and Methods) was calculated
relative to the final focus image after iteration 10 (800 ns dwell time). b Images acquired
with the initial aberrations and after applying DeepFocus. Scale bar is 1 µm. c,d Same
as in a,b but with 50 ns pixel dwell time, including the inset in c. Error bars show the
uncorrected standard deviation of the N patch predictions.

Consequently, the DeepFocus algorithm was designed to take subregions (patches)
of two SEM images as input, which were acquired with a small working distance per-
turbation σwd around the current microscope working distance and stigmator settings

3.3 Results 35

F = (fwd, fstigx, fstigy). A pair of patches, one from each perturbed image, is processed by
a CNN optimized to infer a correction term leading to a sharp image when added to F .
Note, that the offset for a patch pair is the same, e.g. the blue squares (512 × 512 pixels)
in the perturbed images (Fig. 3.2c, top and bottom) have the same relative position.

Multiple subregions are cropped from the perturbed images and processed indepen-
dently, leading to multiple ∆Fi estimates, one for each input patch pair, of which the
mean value is taken as final output for a single iteration:

∆F = 1
N

N∑
i

∆Fi = 1
N

∑

i ∆fi,wd∑
i ∆fi,stigx∑
i ∆fi,stigy

 (3.2)

The network was trained until validation loss convergence (about 2 days on a single
GPU) and a set of 32 sample locations with different aberration parameters (in total n=320
input image pairs), which refer to deviations from manually adjusted imaging parameters
leading to a sharp image. Subsequently, the model was tested on location-aberration pairs
that were not part of the training set (Materials and Methods).

The model showed fast convergence towards the target values within three iterations
(Fig. 3.3a,b; perturbed image electron dose: ∼ 19 electron/nm2), even for low-SNR image
pairs (Fig. 3.3c,d; electron dose: ∼ 5 electron/nm2) and was able to extrapolate to large
initial aberrations (wd: 30 µm, stig x: +6, stig y: -6) outside the maximal value range
covered in the ground truth (wd: −20 µm to 20 µm, stig x: -5 to 5, stig y: -5 to 5;
Section 3.2).

The mean estimated correction ∆F = (∆fwd, ∆fstgix ∆fstigy) after one iteration was
measured on 9 different locations (regularly spaced grid with edge length 100 µm) for a
larger range of initial defocus (working distance perturbation in µm of ±20, ±10, ±5, ±2,
±1) to quantify the goodness of fit of the transformation learned by the model. The rela-
tionship between target correction for the working distance ∆f̃wd (the negative introduced
defocus) and model output ∆fwd should ideally be linear (Fig. 3.4a), more specifically it
should be ∆fwd = c1 · ∆f̃wd + c2 with c1 = 1 and c2 = 0. Applying ordinary least squares
(OLS)4 to fit a line resulted in c1 = 0.9093 ± 0.006 and c2 = 0.3436 ± 0.061 (±1σ interval)
which indicates a slight, but significant deviation from the identity function.

Nonetheless, the model successfully learned to infer the direction of the correction. The
remaining MAE of the working distance |δwd| = |∆fwd − ∆f̃wd| was closer to the target
value ∆f̃wd for smaller initial deviations while the initially unchanged stigmator parameters
were barely affected (Fig. 3.4b) - both are necessary conditions for convergence.

4from the statsmodels Python package (Seabold and Perktold 2010)

36 3. Automated focus and stigmation correction

Figure 3.4: DeepFocus single-iteration performance as a function of initial defocus. a
Correction estimate (mean and s.d. of 9 different locations; in µm for wd and a.u. for stig x
and stig y) after one iteration using 5 × 2 × 512 × 512 input patches with 200 ns pixel dwell
time. b Remaining mean absolute error |δ| between estimate and target from a. Colors as
in Fig. 3.3a,c. Error bars show the uncorrected standard deviation.

Next, the parameters of the input patch pairs were varied to investigate their effect
on the convergence properties. A model that was trained on smaller input patches with
128 × 128 pixels still showed a stable, but slightly slower convergence (Fig. 3.5a). Proper
alignment of the input patch pairs, a strict requirement, e.g. for the algorithm by Binding
and Denk (Binding et al. 2013), had only a minor effect even in the extreme case that
the patches in an input pair were chosen randomly and independently and could therefore
have completely different image content (Fig. 3.5b).

Figure 3.5: Convergence of DeepFocus using different input properties. a 20×2×128×128
input crops and 50 ns pixel dwell time b 5 × 2 × 512 × 512 unaligned input crops, 200 ns
pixel dwell time. Crop locations were drawn independently for each perturbed image.

During the development it became apparent how important it is to identify regions with

3.3 Results 37

little usable information for an autofocus algorithm. Blood vessels in tissue, for example,
can extend over multiple input patches, containing only a flat signal from blank epoxy
resin. As a result, the algorithm has no structural information to deduce the defocus and
astigmatism which leads to unstable results (Fig. 3.6a,b).

Figure 3.6: DeepFocus model with additional image region score prediction used to calcu-
late a weighted estimator for the aberration correction. a Convergence of the model from
Fig. 3.3a (using 10 instead of 5 patches) at the location shown in b which in large part
contains a blood vessel. The perturbed images were acquired with 200 ns pixel dwell time
and a resolution of 2048×1568. c Model architecture that predicts an additional per patch
pair score si. d Convergence of the patch-score model with 10×2×384×384 input patches
at the same location and settings as in a. Error bars show the unweighted, uncorrected
standard deviation. e Resulting image using the score model in d and the focused image
at the baseline parameters. f Example score values for patches used in iteration 2 (fraction
of maximum value; original values: 0.0065, 0.1235, 0.1295) together with one of the two
input patches. Scale bars are 2 µm in b and 0.5 µm in f.

38 3. Automated focus and stigmation correction

In an ideal case, corrections estimated from these areas should have no impact on
the final correction ∆F . Instead of using custom filtering, the network architecture and
the training loss term was modified so that the network outputs an importance weight si

for every correction estimate ∆Fi, learned in an end-to-end fashion (Fig. 3.6c). The final
correction for one iteration is computed as the weighted average of the individual estimates:

∆F = 1∑
i si

∑
i

si∆Fi = 1∑
i si

∑

i si · ∆fi,wd∑
i si · ∆fi,stigx∑
i si · ∆fi,stigy

 (3.3)

The integration of the weighted average calculation into the model allows to adjust the
score outputs with backpropagation during training. At the same time, it requires no
additional ground truth targets other than the previously used true corrections ∆F̃ .

The score-extended output was tested on two resolution granularities. First, on the
level of patch pairs, where multiple patch pairs from random locations were chosen from
the two perturbed images (Fig. 3.6d-f) for the calculation of the weighted average. The
convergence trace was acquired using the same setting as in Fig. 3.6a,b but resulted in a
more stable convergence and a better final result. A closer inspection of the patch scores
suggests a non-linear dependency on the amount of captured structures with large score
values for patch pairs that contain at least some structural information and values close to
zero for uninformative inputs (Fig. 3.6f).

Figure 3.7: DeepFocus model with additional per-pixel score prediction that was used
to calculate a weighted average estimator for the focus correction. a Convergence of
DeepFocus with pixel-wise score predictions using 2 × 2 × 384 × 384 input crops at 50 ns
pixel dwell time and an input image resolution of 2048×1536. b Score map of one example
patch used in a. The right column shows the composite images of the example input patch
(left column) and the corresponding pixel scores (center column) in red at iteration 0 and
2. Scale bar in b is 0.5 µm.

3.3 Results 39

As second output type, predictions were tested at the level of individual pixels, where
a U-Net (Ronneberger et al. 2015) learned to output a score and correction map with the
same x-y extent as the input patches. This approach showed a fast and stable convergence
also with the lowest possible dwell time (Fig. 3.7a). Output scores with large values tended
to co-locate with well visible edges in the pixel intensity landscape of the input patches
(Fig. 3.7b).

Both the pixel- and the patch-score approaches were more robust toward specimen
regions with little contrast information, illustrating that DeepFocus does not require ad-
ditional, conventional image processing to address such edge cases. Regions which contain
little to no structural information and low contrast, which would otherwise make the re-
sulting correction volatile, undergo a soft filtering by assignment of a low weight during
inference.

As discussed beforehand, and in addition to the robust correction of image aberrations,
a relevant criterion for the actual application of a well-performing autofocus algorithm is
that it adds little computational overhead to image acquisition. The DeepFocus processing
was therefore timed on GPU and CPU directly on the microscope computer (Fig. 3.8)
and compared to the image acquisition time. Inference on GPU outperformed CPU-only
processing by about an order of magnitude, which was especially prominent for larger input
patches as the preprocessing overhead (Materials and Methods) dominated for small ones.

Figure 3.8: AF processing time (mean and s.d. of 10 repetitions and 10 input patches) per
input patch-pair of the two input images (2 x 769 ms at 2048 × 1536 pixels, 200 ns dwell
time) for different input patch side lengths on the microscope PC. Error bars show the
uncorrected standard deviation.

Importantly, with 2.1% of the acquisition time per patch pair, DeepFocus did not add
substantial overhead (processing time per 2 × 512 × 512 input: 0.032 s ± 0.004 s, total
imaging time for two 2048 × 1536 images: 2 · 0.769 s = 1.538 s). For the CPU-only mode,
the processing time was found to be 15.6% of the acquisition time (time per patch pair
0.240 s ± 0.011 s), which potentially allows widespread deployment to standard microscope
computers even without adding low-powered GPUs. The patch-score model (Fig. 3.6d)

40 3. Automated focus and stigmation correction

with its additional outputs only slightly increased the processing time per patch pair to
0.027 s ± 0.004 s, compared to 0.024 s ± 0.004 s of the baseline model with 2 × 384 × 384
input patches.

Finally, a direct comparison was performed between DeepFocus and MAPFoSt5 (Bind-
ing et al. 2013), which is state of the art for automatic aberration correction in SEM.
MAPFoSt uses two test images and models the aberrations with a Bayesian approach to
optimally process the available image signal, resulting in the output correction vector ∆F .

Figure 3.9: MAE of nine convergence traces of DeepFocus and MAPFoSt using 2048×1536
input images. The individual traces are shown in the insets. a DeepFocus model from
Fig. 3.6d with 10 × 2 × 384 × 384 patches and 50 ns pixel dwell time. b MAPFoSt with
4 × 2 × 768 × 768 patches and 200 ns pixel dwell time. Colors as in Fig. 3.3a. Dashed and
dotted horizontal lines indicate 0.25 and 1 µm margin of stigmator and working distance
respectively.

As expected, MAPFoSt successfully converged on all tested aberrations (Fig. 3.9a) but
required on average 4 more iterations to converge (MAEwd mean and s.d. of DeepFocus
after iteration 2: 0.34 µm ± 0.3 µm vs. MAPFoSt after iteration 6: 0.50 µm ± 0.21 µm)
despite using 50 ns pixel dwell time for the two perturbed images with DeepFocus and
200 ns for MAPFoSt. The convergence degraded further with lower pixel dwell times and
large initial aberrations (Fig. 3.10a,b).

Additionally, MAPFoSt had almost 4-fold longer processing times in comparison to
DeepFocus for the same patch size and almost 30-fold longer times when running DeepFocus
on a low-power GPU inside the microscope computer (processing time per 5122 patch-pair
with GPU: 0.032 s ± 0.004 s and CPU: 0.240 s ± 0.011 s vs. MAPFoSt with 0.897 s ± 0.024 s
for 5122 patches and 1.673 s ± 0.018 s for 7682; Materials and Methods).

The MAPFoSt processing times could likely be further reduced with additional code
optimization. Similarly, the DeepFocus model could be subject to inference speed opti-

5For the comparison the publicly available Python implementation by R. Saxena was used(https:
//pypi.org/project/mapfost/). See Materials and Methods for details.

https://pypi.org/project/mapfost/
https://pypi.org/project/mapfost/

3.3 Results 41

mization, for example, by using mixed/half precision or quantization with 8 bit integers,
which in some cases can yield speed-ups of almost one order of magnitude (Hubara et al.
2017).

Figure 3.10: MAPFoSt applied to large initial image aberrations using 4 × 2 × 768 × 768
patches and a perturbed image resolution of 2048 × 1536. a Convergence traces with 50 ns
pixel dwell time. Initial aberrations were drawn as in Fig. 3.9. b Large initial aberrations
(30 µm, -6, 6) and 200 ns pixel dwell time.

3.3.2 Transferability to different settings

Microscope software often contains an existing routine for autofocusing and -stigmation
similar to many approaches presented in the past, which, however, perform poorly (Binding
et al. 2013). This could be a result of overfitting model parameters or input and processing
heuristics of the algorithm to particular test cases. In order to test to which degree the
approach suffers from overfitting to its training set, it was evaluated on an unseen resolution
specimen (tin on carbon) and on a second microscope setup with different imaging settings.

The transfer to inputs of a novel specimen worked remarkably well (Fig. 3.11a,b) even
though the model was only trained on data taken from 32 different locations of a single,
biological specimen – an atypically small training set for CNNs. The influence of data
augmentation during training was not tested explicitly, but it presumably is crucial for
generalization. As expected, when switching to the different microscope setup (setup B;
single beam SEM, Zeiss UltraPlus) in combination with modified beam parameters (landing
energy, beam current, working distance), the model converged much more slowly or failed
to converge entirely with additional rotation of the scan pattern (Fig. 3.11c).

To test whether neural networks could also be used for aberration correction without
machine-specific training data or by applying scaled rotation (see Discussion and Binding
et al. 2013), an approach coined DeepScore was developed, which should be machine and
setting independent, by estimating only the magnitude of the aberration correction ∥∆F∥1

42 3. Automated focus and stigmation correction

(∥·∥1 being L1 or Manhatten distance) without direction information from a single image
(Materials and Methods, see also H. Kim et al. 2019; H. J. Yang et al. 2020).

Figure 3.11: DeepScore convergence on an unseen sample and re-calibration to a different
setup. a Convergence of the model from Fig. 3.6d on a tin on carbon sample (not contained
in the training data) on setup A (Materials and Methods) at 100 ns dwell time. b Image
from a at iterations 0 and 10. Scale bar is 1 µm. c The same model as in a applied
to tin on carbon on setup B (Materials and Methods). d Convergence of the fine-tuned
DeepFocus model (last three fully connected layers re-trained) after 50k training iterations
on 100 automatically acquired samples at 10 different locations on setup B (Materials and
Methods).

The ability to estimate such an image sharpness score (∥∆F∥1) combined with an iter-
ative, classical optimization procedure results in an AF algorithm that does not depend on
image-pair training data for a specific microscope but rather enables its automatic gener-
ation. For this purpose the downhill simplex method developed by Nelder and Mead 1965
was adopted to find minima in the score landscape, which allows to generate new training
data almost fully automatically when recalibration of the highly optimized DeepFocus is
required.

First, it was tested if the classical optimization with DeepScore is able to infer imaging
parameters leading to fine beam probes. For this, the convergence of 14 mild test aber-
rations, sampled from a uniform distribution (value ranges for wd, stigx, stigy: ±10 µm,

3.3 Results 43

Figure 3.12: DeepScore autofocus convergence analysis. a Example convergence trace using
the Nelder-Mead optimization of the DeepScore prediction with 5 × 512 × 512 input crops,
100 ns dwell time, input image size of 2048×1568 and a total of 37 score evaluations, i.e. 37
image acquisitions. The s.d. (µm for wd and a.u. for stigs) was calculated from the simplex
vertices for each iteration and parameter (iteration 0 is undefined). b EM images from
the trace shown in a before and after the Nelder-Mead optimization with the DeepScore
objective (introduced aberration: 9.11 µm, 0.35, -0.82).

±1, ±1), on setup A was recorded. All traces converged, albeit slower than the DeepFocus
model (Fig. 3.12). To find the focus baseline, the model from Fig. 3.3a with N = 10
patches was used and the stopping threshold for the parameter search was set to the score
of the autofocused image6.

The question remained whether it would be possible to restore the ability of the Deep-
Focus model to quickly find proper imaging parameters. Therefore, the proposed Nelder-
Mead optimization was used in combination with the same DeepScore model (trained on
setup A) to create a new minimal training data set on setup B (n = 10 locations, 31% of
the original training set) with the beam parameters that lead to divergence of the original
DeepFocus model (Fig. 3.11c). The fine-tuning (recalibration) on this data set took less
than 2 hours (stopped after 50,000 iterations) and resulted in a restoration of the original
convergence speed (Fig. 3.11d).

6The inferred sharpness score was multiplied by 1.1 and restricted to be ≥ 0.001. The largest so
obtained score was 0.0014.

44 3. Automated focus and stigmation correction

3.4 Discussion
In recent years, deep learning has evolved to state of the art in fields such as natural
language processing (Otter et al. 2020) and computer vision (Grigorescu et al. 2020; Kar
et al. 2021; X. Liu et al. 2019) and has shown first successes in machine control (Moe et al.
2018; Zeng et al. 2020). Here, it was demonstrated how the problem of autofocusing and
autostigmation in SEM can be solved through the use of convolutional networks that iter-
atively update beam parameters to form a fine electron probe. This data-driven approach
showed quick convergence for large initial aberrations and fast scan speeds with down to 5
incident electrons per square nanometer. Without additional optimization, the introduced
overhead for imaging and the absolute processing time was small (tens of milliseconds per
input) even with direct execution on the CPU of the microscope computer with 4 cores
(hundreds of milliseconds).

Random selection of patch locations avoids the introduction of a potentially (more)
biased selection heuristic during the model-input preparation with large images. Multiple
inputs also allow the design of an architecture that returns a consensus of independently
processed inputs. During training, the model output requires a differentiable form, but
during inference estimators other than the mean are conceivable, for example, the mean
correction of only the N highest scores, or the arg max.

Instead of random sampling, the patches could also be arranged in a regular grid in
the acquired images, or EM scans could be tailored entirely to the height and width of
a single patch. For acquisition of a whole volume EM data set, the image size is usually
on the order of 5000 × 5000 pixels or more, which takes 8 times longer to acquire than
the images that the timings were compared to here (2048 × 1536). As the autofocsing
procedure requires no minimal image size, as long as it is above the patch shape, it can,
e.g., be run on a dedicated, appropriately sized focusing tile, or on continually changing
locations in actual stack images, which would distribute the extra electron dosage evenly.

Artificial neural networks are powerful approximators, that in theory, can learn arbi-
trary mappings between a given input and output (Hornik et al. 1989). It is, therefore,
important to constrain the learning problem to achieve a sufficient level of generalization
(and computability), in terms of the architecture, like the here used convolutional network,
but also to construct reasonable inputs and targets. The target stigmator values, for ex-
ample, could be transformed into a microscope-independent reference frame by applying a
scaled rotation, such as applied by Binding et al. 2013.

Given the large number of adjustable model parameters, the data statistics of the
target domain need to be sufficiently covered in the training set and ideally complemented
by augmentations. The data set size used for training and validation was untypically
small taken at only 40 different specimen locations and a total of 400 input-output pairs
(e.g. compared to K. Lee et al. 2021 with more than ten thousand samples). Although
augmentations and pooling of patches certainly mitigate this circumstance, enlarging the
training set will likely lead to further performance improvements.

The, in the classical sense overparametrized, model outperformed the state-of-the-art
approach (Binding et al. 2013) in terms of convergence speed, correction of large aberrations

3.4 Discussion 45

with images acquired at low electron dose, and processing times. Considering how well deep
learning approaches perform, particularly in the image domain, this is not surprising since
the given problem can be well formulated as a regression of two images into a correction
vector of working distance and stigmators.

In addition to the transferability to novel specimen, a procedure was presented to
recalibrate the model to new setups or vastly different beam and scan properties almost
fully automatically. This data driven approach also allows adjustment to any peculiarities
of the used SEM or specimens. Control mechanisms in general might shift from careful,
manual fine-tuning of model parameters towards carefully designing the inputs and targets
of data-driven models.

46 3. Automated focus and stigmation correction

Chapter 4

Learning cellular morphology

Parts of this chapter contain text and figures from (Schubert et al. In review) and the
peer-reviewed publication (Schubert et al. 2019).

4.1 Introduction
The machine learning toolkit, SyConn, presented in (Dorkenwald, Schubert, et al. 2017) ap-
plied CNNs for the detection of mitochondria, vesicle clouds and synaptic junction (further
referred to as ultrastructure), and membranes. In addition, SyConn utilized cell skeletons
to reconstruct neuron surfaces, which in turn allowed the association of the prior extracted
ultrastructure to neurons. The resulting “augmented” neuron representation was the basis
for further analysis with random forests (RFs) (Breiman 2001) on a set of hand-designed
features. Although highly accurate, this approach required precise, manually traced center
lines of neurons in the volumetric image data.

One alternative to hand-designed skeleton features is to learn feature representations
using supervised learning directly for a given task, for example using artificial neural net-
works that perform a semantic segmentation of different cellular compartments on voxel
level (H. Li et al. 2020; Macrina et al. 2021). In (H. Li et al. 2020), a 3D extension of the
ResNet-18 (He et al. 2016) was applied to a multi-channel input consisting of the segmen-
tation mask of a neuron, the predicted ultrastructure and EM raw data to classify locations
into the three major neuronal compartments (axon, dendrite, soma). The excellent perfor-
mance of this approach comes at the cost of dense voxel inputs. The inference is done on
individual segmentation masks, i.e. for each neuron separately, which requires to load the
volumetric data of each input channel multiple times. This is a result of organizing and
storing volumetric images and segmentation data as small cubes (on the order of hundreds
of voxels edge length) and the dense packing of neurites in brain tissue.

Instead of cubes of voxels, cell morphology can also be represented through a surface
reconstruction that is computed by a meshing procedure from the cell segmentation, such
as marching cubes (Lorensen and Cline 1987). Meshes are a well established and an efficient
data structure used in computer graphics that consist of a point cloud (vertices) and edges.

48 4. Learning cellular morphology

The vertices are connected as polygons (faces or indices), most common are triangles, to
form a closed surface area. It should be noted that the mesh data does not contain
intensity statistics of voxels that otherwise would be available in the EM image data, but
the inclusion of raw EM data has shown to be not particularly relevant for predicting
compartments (H. Li et al. 2020). Meshes are the most common way to visualize the
neuron segmentation, which means no additional processing is required for methods that
can work with meshes directly.

During my master’s thesis, I explored the use of light-weight mesh data in the context of
VEM connectomics (Schubert 2017), which included a representation of cell reconstructions
with multi-views. By training a CNN to classify multi-views it was possible to discriminate
between the main three compartments of a neuron: axon, dendrite and soma. Such a
multi-view based approach requires less data throughput than a 3D CNN, but needs an
intermediate rendering step to generate the view representations. Operating directly on
the mesh or point cloud would make this extra step superfluous. Moreover, performing a
classification of surface fragments in the case of multi-views, or of voxel cubes in the case of
the 3D ResNet, is limited to a sparse coverage of predictions. Since both approaches provide
only a scalar output for each input surface or volume the coverage is determined by the
anchor points of the inputs. As a consequence, a denser coverage requires denser sampling,
which in turn increases redundant overlap. However, studies of synaptic properties usually
include spine information (Dorkenwald et al. 2021; Kornfeld et al. 2020) and benefit from
automated solutions to detailed compartment prediction.

The EM data sets used in this work (zebra finch area X, small and zebra finch area X,
large; Appendix A) were provided by J. Kornfeld and contain parts of area X – a nucleus
in the basal ganglia of the zebra finch song bird that is involved in song learning (Kornfeld
2018). The data sets include a flood-filling neural network (FFN) instance segmentation
of neurons and ultrastructure predictions which originated from a collaboration with V.
Jain and M. Januszewski at Google Research (see Appendix A for details). The voxel
segmentation of cells and ultrastructure was processed to generate a database of neurons,
including skeletons, meshes and their associated mitochondria, vesicle clouds and synapses,
which is described in Chapter 5. This enriched neuron representation forms the basis for
the here presented approaches.

Costa et al. 2016 proposed a method for cell type detection that calculates pairwise
similarities between neurons on the basis of their local skeleton geometry. Based on geo-
metric characteristics, such as the location, rate and angle of branches, they performed a
hierarchical clustering and were able to identify different neuron types. The inclusion of
ultrastructure adds another, informative layer to neuron morphology besides the overall
geometry. Additional shape detail, as provided for example by the cell mesh, might further
extend the expressiveness of neuron representations.

This chapter illuminates the described identification problems further by presenting
machine learning methods that enable their automation to a substantial degree, which in
turn lays the basis for a detailed analysis of synaptic wiring. It first introduces multi-
view representation of cells and a general approach for point cloud processing based on
continuous convolutions (Boulch 2020; Boulch et al. 2020) that avoids rendering overhead

4.1 Introduction 49

(Section 4.1.2). The results of three applications to morphological analysis of neurons
follow, namely an approach for the high-resolution semantic segmentation of compartments
(Section 4.3.1), supervised classification of morphologically known cell types (Section 4.3.2)
and a priori class-wise uninformed clustering (Section 4.3.3).

4.1.1 Multi-view representation of cell reconstructions

Data-efficiency is one key factor towards high-throughput connectomic analysis – ultimately
being a prerequisite for petascale data set processing. In this light, the transition from 3D
voxel cubes to sparse point clouds via surface meshing appears natural. As a data-efficient
alternative for the compartment prediction, one could imagine a 3D CNN architecture
that allows inference of voxel cubes in a dense fashion, i.e. returning predictions for every
cell fragment in a cube in parallel. In the case of subsequent proofreading, where the
agglomeration of supervoxels changes and cells have to be re-processed, the advantage of
dense cube processing would disappear since the corrections of neurons is of sparse nature.

Inspired by multi-view CNNs (Qi et al. 2016; Z. Wu et al. 2015) that use 2D projections
of entire objects for classification, the here presented cellular morphology neural networks
(CMNs) infer various properties directly from cell meshes. Contrary to objects used in the
multi-view CNN studies, cells in neural tissue inherit a very fine and elongated structure.
This property requires to develop a sampling strategy capable of preserving morphological
detail below 100 nm while covering entire neurons that potentially extend over millimeters
(Helmstaedter 2013).

Therefore, the view generation (rendering) is performed at densely sampled locations
on the neuron. The rendering locations are generated by homogeneously sampling the
neuron’s surface points (Fig. 4.1a,b), more specifically the mesh vertices are downsampled
into voxels with a configurable edge length, which is further referred to as voxelization.
After the procedure, every occupied voxel is represented by the mean coordinate of the
points inside it, or by one contributing element if it is necessary to preserve the original
coordinates. The resulting coordinates are then used for the view generation.

Meshes of the different structures (cell, mitochondrion, vesicle clouds and synapses) are
stored separately in order to create type-specific feature channels during the rendering (in-
dicated with the different colors, Fig. 4.1c,d). The orthographic projection plane of a single
view is model dependent and fixed by a width lw and height parameter lh. Multi-view fin-
gerprints are generated from the ultrastructure extended representation (here mitochondria
and synaptic junctions) at each rendering location.

The information content of the projections can be optimized by aligning their field of
view to the local cell elongation. To find the corresponding rotation, a principal component
analysis (PCA) is applied to the vertex coordinates of a local fragment of the cell mesh,
which is equivalent to finding the eigenvectors of the covariance matrix of the (centered)
coordinates (Deisenroth et al. 2020, Chapter 10).

50 4. Learning cellular morphology

Figure 4.1: Cellular morphology learning networks based on multi-view representation. a
Agglomeration of supervoxels forming the reconstruction of a dendritic tree. b Render-
ing locations generated with a voxelization into 2 µm voxels. c Mesh representation of
the neurite including ultrastructure. d Local representation of the cell using multi-views
(equiangular rotation by φ), generated by orthographic projection from a PCA-aligned
subvolume with lw = 8 µm, lh = 4 µm and a depth of 4 µm. The two-dimensional views
serve as the input for CMNs. Scale bars are 10 µm in a and 2 µm in d. The figure was
adapted from (Schubert et al. 2019).

4.1 Introduction 51

Before rendering, the mesh vertices are centered at the rendering location and rotated
into the coordinate system defined by the principal axes, or eigenvectors. Multiple views
are rendered by equiangular rotation around the main axis (the eigenvector with the largest
eigenvalue) as orthographic projections with a resolution of Npix,x × Npix,y pixels. Depth
is encoded via pixel intensities, whereas higher values represent larger distances, with a
minimum and maximum value range of ±2 µm rescaled to 8 bit unsigned integer (0 to 255).
Object surfaces outside this range are clipped.

In total, a configurable number of N views with Nch channels, one for each mesh type,
is generated for all locations Nloc, yielding an array that contains the cell’s multi-view
fingerprint with shape (Nloc, N, Nch, Npix,y, Npix,y). The rendering is implemented with
PyOpenGL1 code and supports software-based offscreen rendering (OSMesa backend) and
GPU accelerated rendering (EGL).

The described data representation can serve as input for a variety of classification and
regression problems (Fig. 4.2) with k ∈ [1, . . . , Nloc] being the location and n ∈ [1, . . . , N]
the view index:

• Single image transformation of the nth view at location k into a latent vector z̄k,n to
generate embeddings of the local morphology.

• Classification of a single multi-view at location k, resulting in a probability vector
p̄k, e.g. for astrocyte and low-resolution compartment detection.

• Pooling a set of views at Nloc · N ≥ M ≥ 1 (random) locations for the classification
of cell types.

• Pixelwise semantic segmentation of a single view Ik,n, assigning every pixel a class
probability vector px,y.

The semantic segmentation of neuron surfaces is subject of Section 4.3.1.

1http://pyopengl.sourceforge.net/

http://pyopengl.sourceforge.net/

52 4. Learning cellular morphology

Figure 4.2: Learning problems that can be addressed with CMNs. The multi-view finger-
print of a cell reconstruction serves as input for a variety of classification and regression
problems. Depending on the task, the input is either a single (index n) or the entire N
projections of a multi-view at location k, or a random set of M views drawn from all
locations K. Scale bar is 10 µm. Figure adapted from (Schubert et al. 2019).

4.1.2 Point-cloud processing using continuous convolutions

Rather then designing a representation that matches the input properties of common mod-
els such as discrete convolutions, it can be beneficial to adapt the model architecture to
support direct processing of the underlying data. A first attempt of processing point clouds
were the voxel-occupancy-based networks that learn to discriminate distributions in a 3D
voxel grid (Su et al. 2015). However, these as well have the disadvantages of a fixed-size
grid and increasingly large fractions of unoccupied voxels with larger context.

An architecture that processes point clouds should ideally be invariant against transla-
tion and the permutation of the input point order and needs to aggregate local and global
shape information from point sets (Qi et al. 2017a). The proposed PointNet in (Qi et al.
2017a) addresses permutation invariance by the use of symmetric functions, i.e. fully con-
nected layers with shared weights, which transform 3D point coordinates independently
for each point and further uses max pooling to aggregate local features. This pioneering
approach however suffered from loss of detail.

Since then, the field has progressed tremendously introducing a multitude of architec-
tures, in particular such that aggregate neighborhood point features hierarchically without
explicit spatial kernel, like PointNet++ (Qi et al. 2017b), PointConv (W. Wu et al. 2019),
PointCNN (Y. Li et al. 2018) and RandLA-Net (Hu et al. 2020). Other approaches in-
troduce kernel element locations as parameters in addition to the kernel weights, such
as Kernel Point Convolution (KPConv) (Thomas et al. 2019), Feature-Kernel Alignment
(FKAConv) (Boulch et al. 2020) and ConvPoint (Boulch 2020).

J. Klimesch conducted first experiments on compartment prediction in zebra finch area
X, small during his bachelor’s thesis (Klimesch 2020, supervised by the author of this
thesis) with continuous convolutions (Boulch 2020; Boulch et al. 2020). For this purpose,

4.1 Introduction 53

the Python package MorphX2 was designed and implemented to efficiently generate con-
tiguous point cloud chunks from cell reconstructions by combining the cell mesh vertices
with a graph representation, the skeleton of the cell. In this thesis, the point approach for
compartment prediction was extended to the large data set (zebra finch area X, large) and
compared to the method using multi-view semantic segmentation.

The ability to split cell reconstructions into smaller parts is necessary to ensure process-
ability as cell meshes can contain up to millions of vertices - ultrastructure still excluded.
In a first step, the closest skeleton node is found for every mesh vertex and the indices
(position of the vertex in the global vertex array) of the vertices associated with a node
are stored. This mapping can be efficiently computed using a k-d tree (Bentley 1975)
(k = 3 being the dimensionality of the search space), which in essence creates a Voronoi
partitioning of the surface point cloud with respect to the cell skeleton. In addition to the
cell vertices, this mapping is provided for every type of ultrastructure (synaptic junctions,
vesicle clouds, mitochondria).

A point cloud can be described by the number of points, point density (points per sur-
face area or points per volume) and the extent of the captured neuron or neuron fragment.
As these three parameters depend on each other, it is not possible to fix all three of them
for varying cell shapes. In order to guarantee a minimum context and a reasonably sized
input, the point clouds were defined by two parameters, the context radius rctx and the
number of points.

For the context generation (right half of Fig. 4.3) a node in the cell skeleton graph
is chosen and serves as center location for a k-d tree query to collect nodes within a
configurable context radius rctx. The subgraph of the collected nodes is pruned to the
connected component that contains the starting node. Collecting all vertex indices from
the subgraph nodes (indicated in red) within the radius yields the point cloud chunk by
retrieving the corresponding elements from the vertex coordinate array. The four different
sources of points (cell, synaptic junction, mitochondrion, vesicle clouds) are converted into
a one-hot encoding and used as point features.

Adjusting the density of the source locations for the context generation allows to modify
the overlap between adjacent chunks and thereby the degree of redundancy. Each chunk
is processed separately by the model and individual chunk predictions are then combined
on cell level. For this purpose, multiple predictions of a single vertex are consolidated by
majority vote (left half of Fig. 4.3). In contrast to the multi-view approach, the predicted
point labels can easily be associated with the mesh vertices by keeping track of the indices
during chunking.

A prominent property of U-Nets (Ronneberger et al. 2015) is the symmetric expand-
ing path, which allows seamless processing of images and volumes. The aggregation of
learned features in multiple resolution levels enables a large receptive field while being
computationally efficient at the same time. Images intrinsically combine positional and
intensity information by their grid layout. This structure eases the aggregation of features
and therefore transformation of pixel values into the desired output.

2https://github.com/StructuralNeurobiologyLab/MorphX

https://github.com/StructuralNeurobiologyLab/MorphX

54 4. Learning cellular morphology

Figure 4.3: Point cloud processing for surface segmentation. Point cloud chunks are re-
trieved from the neuron and ultrastructure meshes by collecting the node-associated ver-
tices from skeleton subgraphs (indicated in red). The chunks are used as input to the point
model and the resulting vertex predictions are combined on cell level. Scale bars are 20 µm
for the cell and 2 µm for the point cloud chunk. Figure adapted from (Schubert et al. In
review).

The discrete convolution with a kernel K = {w}, where w ∈ Rn and |K| being the
cardinality, i.e. number of kernel elements and input X = {x ∈ Rn} can be written as
follows:

y = β +
|K|∑

i

xiwi = β +
|X|∑

i

|K|∑
j

xi · wjδi,j (4.1)

with β being the bias. The Kronecker delta δi,j is added to demonstrate the one-to-one
correspondence between image and kernel elements mentioned above. The dimension of the
input feature for the first layer could for example be the raw EM images with x ∈ Rn=1,
just consisting of the pixel intensities. Whereas for deeper layers, this becomes n > 1,
introducing another sum through the scalar product xi · wi = ∑

n xi,nwi,n.

4.1 Introduction 55

Point clouds in contrast are a sparse way of storing shape information and therefore
require an explicit representation of spatial location. The reduction of points, analogously
to downsampling in images, is performed by hierarchical selection of anchor points for
lower resolution levels that aggregate shape features from a large set of points to a smaller
one. With every layer, the number of anchor points decreases while the number of (learned)
features increases. In the up-path, which agglomerates features from the different resolution
levels, usually the same anchor points are used as in the down-path.

The point clouds {pi} with pi ∈ R3 obtained from cell and ultrastructure meshes are
processed by a continuous convolution operator (Boulch 2020), which parametrizes kernel
element locations ci in addition to their weights wi. In contrast to the discrete convolution
in Eq. (4.1), the input X = {(p, x)} is convolved with the kernel K = {(c, w)} using
an additional weighting term, which is computed by a function ϕ that projects the input
points pi on the kernel elements:

y = β + 1
|X|

|X|∑
i

|K|∑
j

xiwjϕj(pi − c) (4.2)

The function ϕ is realized as a multilayer perceptron (MLP) with three hidden layers (1st

layer in- and output channels: 3|K| → 2|K|, 2nd layer: 2|K| → |K|, 3rd layer: |K| → |K|),
which learns to transform the relative distance between input point and all kernel points
pi − c into a scalar weight for each kernel element:

ϕ : R3 ×
(
R3
)|K|

→ R|K| (4.3)

The initial kernel point locations are drawn from a unit sphere and treated as adjustable
parameters during training, weights are initialized using Glorot initialization (Glorot and
Bengio 2010) and the input to the kernel associated with the convolution of a target point
pt are its K nearest neighbors, centered at pt.

The continuous convolution operator is flexible in terms of input and output points, i.e.
it does not require the input to be the same points as the output. This means it can be
applied in the down- and upsampling path of a U-Net-like architecture. Another use-case,
albeit not tested here, is to learn a transformation from surface point clouds to a much
sparser target cloud, e.g. the skeleton nodes.

56 4. Learning cellular morphology

4.2 Materials and Methods

Ground truth generation
The ground truth (Appendix B) for all supervised learning approaches was generated
with the help of KNOSSOS3, a viewing and annotation tool for 3D image data. For the
annotation, the skeleton and mesh of a cell were visualized, and in the case of compartment
segmentation, the nodes of the skeleton were annotated. The other ground truth data sets
either required only visualization of cells (cell type classification), or used the file format
mentioned above to store annotated properties of inspected structures.

The compartment annotation for semseg-fine-train, semseg-fine-test-vertices, semseg-
coarse-train and semseg-coarse-test was performed sparsely to save annotation time, only
targeting nodes between changing compartment types. In a subsequent step, all unlabeled
nodes received the label of the closest labeled node, the first encounter using a breadth-first
search (BFS). This approach allowed to only annotate the compartment boundaries in the
skeleton graph and fill-in all intermediate nodes automatically.

Skeleton node labels were propagated to the mesh vertices using Voronoi partition-
ing, i.e. every vertex received the label of its closest skeleton node (Euclidean distance in
nanometer coordinates).

The above sparse labeling scheme still required to annotate entire cells. In order to
cover most of the neuron diversity, including also very large cells, a label was introduced
that allowed partial annotation of cells by indicating unlabeled subgraphs. As vertices
receive the label of the closest annotated node, this indicator was placed with sufficient
distance to unlabeled, changing compartment types (e.g. a spine or bouton) to prevent
missing labels in extracted contexts. This scheme was applied to generate the data sets
semseg-large-train and semseg-large-test from the zebra finch area X, large EM volume.
Soma boundary nodes, indicating the start of a soma, were expanded by propagating the
soma label up to 40 nodes into the soma using a BFS on the test set.

Multi-view models for semantic segmentation
For the semantic segmentation of cell surfaces, a fully convolutional network (FCN) (Shel-
hamer et al. 2017) architecture with a “VGG” (Simonyan and Zisserman 2015) backbone
was used (configuration B with 10 conv. and 3 fully connected layers, no batch normal-
ization)4. The fully connected layers in the backbone are omitted for the use with FCNs.
The rational behind the “VGG” network is to use many, small 3 × 3 kernels. It consisted
of 5 blocks (5 resolution levels) each with 2 convolution layers and a 2 × 2 max pooling
(reducing the resolution by a factor of 2 in every dimension) with the following number
of output channels (max pooling denoted as ’M’): 64, 64, ’M’, 128, 128, ’M’, 256, 256,
’M’, 512, 512, ’M’, 512, 512, ’M’. The convolution was executed in “same” mode, i.e. using
zero-padding of 1 pixel on every side to preserve the height and width of the inputs.

3https://knossos.app/
4Pytorch implementation adapted from https://github.com/pochih/FCN-pytorch by P.C. Huang.

https://knossos.app/
https://github.com/pochih/FCN-pytorch

4.2 Materials and Methods 57

The lower resolution feature maps of the FCN backbone are upsampled by a trans-
posed convolution and concatenated subsequently with higher resolutions by adding skip
connections at all downsampling levels (32, 16, 8, 4, 2). For example, the output after
the 2 × 2 max pooling of the first “VGG” output block is connected to the subsequent
“VGG” block and additionally combined via skip connection with the input (same res-
olution, 2-fold downsampled) of the last transposed convolution layer (upsamples to the
original resolution) using pixelwise summation. A final convolution layer in the FCN per-
forms the pixelwise classification into the number of output classes NC using a 1×1 kernel.
In summary, the following number of output channels were used for the 5 transposed and
1 standard convolution layer: 512, 256, 128, 64, 32, NC . A ReLU activation function was
applied after every convolution or transposed convolution operation. The model contained
13.3 million trainable parameters.

The input to the model for the dendritic surface segmentation (dendritic shaft, spine
neck, spine head, other (axon/soma); semseg-fine-train, Appendix B) was set to 256 × 128
pixels covering a context of 8 × 4 µm2 with a depth of 4 µm, which is sufficient to cover
morphologically relevant structures such as spines. In addition, a rather small field of view
has the advantage to prevent occlusions, e.g. if another cell process comes close, and a
rectangular shape reduces uninformative background.

For the training, mini-batching, the AMSGrad optimizer (Reddi et al. 2018) with β1 =
0.9, β2 = 0.999 and a learning rate with step decay was used. The Lovász loss (Berman
et al. 2018) was chosen to take class balances into account. The hyperparameters for the
training are summarized in Table 4.1. All models were trained until visually-confirmed
training loss convergence.

Table 4.1: Training parameters for semantic segmentation of dendrites with multi-views.
Parameters of the learning rate schedule in the bracket are step frequency and decay factor.

Optimizer Batch size init. LR LR schedule Loss
AMSGrad 20 0.004 Stepwise (500, 0.99) Lovász

The model architecture for the coarse segmentation (dendrite, axon, soma, bouton en-
passant, terminal bouton) remained unchanged except for the input properties, which were
adapted to fit a larger context with 40.96 × 20.48 µm2 at a slightly larger pixel size using
1024 × 512 during multi-view rendering. The depth extent was set to 40.96 µm in order
to reduce clipping artifacts. The training used dice loss (Sudre et al. 2017) to be more
sensitive to infrequent classes and hyperparameters are summarized in Table 4.2. The
training data set consisted of 45 cell reconstructions (semseg-coarse-train, Appendix B).

Rendering locations (2 µm voxelization of the cell mesh vertices for fine and 40.96/6 µm
for coarse segmentation) that were within a 2 µm radius of a manually annotated skele-
ton node were chosen as context location for the multi-view generation. The generated
morphology, index and label views were stored on disk to enable fast data loading during
training. To increase data variability, x- and y-axis of the morphology and label view were

58 4. Learning cellular morphology

Table 4.2: Training parameters for coarse semantic segmentation with multi-views. Sched-
ule parameters in the bracket are step frequency and decay factor.

Optimizer Batch size init. LR LR schedule Loss
AMSGrad 4 0.0012 Stepwise (500, 0.995) Dice

flipped during training, each independently with probability p = 0.5. Flipping was always
applied to both views in order to preserve pixel correspondence.

During inference, rendering locations were generated by downsampling the cell mesh
vertices into voxels with edge lengths of 1/6 of the main axis of the context window, i.e.
8/6 µm and 40.96/6 µm for fine and coarse level, respectively. The depth was set to the
width of the views Lw.

Voxelization was performed with the voxel_down_sample method of the open3D
Python package (Zhou et al. 2018). For the alignment of views with the local cell geometry,
a PCA was applied on the subset of cell surface points inside a cube with edge length of
8 µm centered at the rendering location.

Point cloud augmentations
Point cloud chunks for the training of the point models were transformed by multiple
augmentations. These consisted of random noise added to the point positions, random
rotations and flipping, elastic transformations and anisotropic scaling. All point cloud
processing methods were implemented in the MorphX package.

The locations of the model input were centered and in some cases scaled by division of
10% of the context radius to rescale values to a reasonable range and independent of the
input, without skewing the points to a fix value range. Due to the adaptive kernel element
locations, the models were not sensitive to this form of normalization and rescaling was
omitted for all other experiments.

The additive noise was drawn from a normal distribution for every point independently
X ∼ N (0, σ2) and added to the point coordinates. In order to modulate the noise, the
standard deviation was sampled from σ ∼ N (0, σ̃2) with σ̃ being the variance of the noise
that can be adjusted.

A random rotation of the input cloud was performed with Euler angles (extrinsic xyz)
drawn uniformly within an adjustable range. As a side effect, this led to oversampling in the
pole regions when drawing from the full angle ranges. After the random rotation, flipping
of every axis with was applied with probability p = 0.5. The rotation was performed after
centering.

The elastic distortions were inspired by (Simard et al. 2003) and adapted to sparse
points. Therefore, a three dimensional displacement field with a fixed grid resolution
(number of voxels) was generated, and for every voxel, a distortion was drawn from a
uniform distribution with a configurable value range. The displacement cube was smoothed

4.2 Materials and Methods 59

using a Gaussian filter with adjustable σ. The distortion cube was interpolated along the
full range of the input point cloud and added to the vertex locations.

For the anisotropic scaling every spatial dimension was stretched/skewed independently
with a factor sx,y,z ∼ U(1−r, 1+r), where r was a parameter to adjust the scaling strength.

In addition, the two input parameters (point count, context radius) were slightly varied
during batch generation. Every fourth sample was built with a modified context size, for
which a factor was drawn from a normal distribution and multiplied with the base context
radius rctx. This augmentation led to the occasional presentation of small neuron fragments
during training, which can be beneficial during inference in the case that not all neurons
are segmented perfectly or completely contained in the EM data set. The number of input
points was drawn from U(1 − r, 1 + r).

Point models for semantic segmentation
The architecture of the point models followed a U-Net-like aggregation scheme with a down-
path to learn local shape features with increasing abstraction and decreasing resolution and
an up-path which agglomerates them across the different resolution levels. The convolution
layers in the up-path project the features of a small input point cloud onto a larger output
cloud and concatenate them with the point features that were outputted by the convolution
in the down-path on the same resolution level.

The kernel size, i.e. the number of kernel weight-locations was 16 for all kernels and
kernel input points were normalized to a unit sphere. For the experiments, the architecture
implementations provided in the ConvPoint (Boulch 2020) and LigthConvPoint (Boulch
et al. 2020) Python packages were used and adapted. The point sampling in the down-
path was performed with space quantization as proposed in (Boulch et al. 2020). The latter
performs a repeated downsampling with decreasing voxel sizes (factor 0.5) until the desired
number of points is reached. Random points are removed if the point cloud cardinality
exceeded the target count.

Table 4.3: Training parameters for the surface segmentation with point clouds (zebra finch
area X, large). Schedule parameters in the bracket are step frequency and decay factor.

Optimizer Batch size init. LR LR schedule Loss
Adam 4 0.002 Stepwise (100, 0.996) Cross entropy

For the semantic segmentation of neuron surfaces in zebra finch area X, large, the archi-
tecture in Table 4.4 (2.3 million trainable parameters) was used for three models dedicated
to different sets of classes (axon, dendrite, soma; dendritic shaft, spine neck, spine head;
axon, bouton en-passant, terminal bouton). The models were trained on the semseg-large-
train, (Appendix B) data set with the parameters from Table 4.3, Adam optimizer (Kingma
and Ba 2015), context radius rctx of 15 µm and 15,000 input points. Non-uniform class
weights were applied in the cross-entropy loss to address the class imbalance in the finer

60 4. Learning cellular morphology

segmentation tasks: axon, bouton en-passant, terminal bouton: [1, 2, 2]; dendrite, spine
neck, spine head: [1, 2, 2]. Depending on the task, ground truth labels that were outside
of a models output classes were ignored, e.g. soma and bouton labels for the dendrite-
spine-neck model. For the axon-dendrite-soma model, finer structures were remapped to
the corresponding upper-level semantic class, i.e. spine neck and spine head were treated
as dendrite, and the two bouton classes as axon.

The model that was trained for the comparison with the multi-view approach on the
small data set ground truth (semseg-coarse-train) used the architecture from Table 4.4,
training parameters as in Table 4.3, a context radius rctx of 15 µm, 15,000 input points and
2 times larger weights for the two bouton classes during training.

Table 4.4: Number of input and output channels and point cardinality (-1 refers to the
initial size) for semantic segmentation architecture separated into down- (top) and up-path
(bottom). Features are concatenated in the up-path between layers with the same output
point cardinality.

inp. points out. points inp. channels out. ch. neighborhood
-1 -1 4 64 16
-1 2048 64 64 16

2048 1024 64 64 16
1024 256 64 64 16
256 64 64 64 16
64 16 64 128 16
16 8 128 128 16
8 16 128 128 4
16 64 256 128 4
64 256 256 64 4
256 1024 128 64 8
1024 2048 128 64 8
2048 -1 128 64 8

For the dendrite segmentation comparison a first model was learned to discriminate
the cell into dendrite and axon/soma (training parameters as above but using dice loss;
class weights [2, 1]) and a second, fine-scale model to infer dendritic shaft, spine neck and
head. Cell ultrastructure information was only used for the first model. For the parameter
search of the second model, the architecture from Table 4.3 was adapted depending on the
input point cloud cardinality to also allow processing of small point clouds. For 512 input
points architectures with the following layer specifications were used: (1: 32 channels,
32 neighbors, no reduction), (2: 32, 32, reduction to 256 points), (3: 64, 32, reduction
to 64 points), (4: 64, 16, 16), (5: 64, 8, 8), (6: 64, 4 upsampling to 16, residual to 5),
(7: 64, 4 upsampling to 64, residual to 4), (8: 32, 8, upsampling to 256, residual to 3),
(9: 32, 16, upsampling to original point cloud, residual to 2), (10: fully connected shared

4.2 Materials and Methods 61

across all points, residual to 1). Two more layers between layer 1 and 2 and layer 8 and 9
respectively were added for 1024 input points: (1/2: 32, 32, reduction to 512), (8/9: 32,
16, upsampling to 512 + residual). For 2048 points two layers (additional to the 1/2, 8/9
layers) were added: (1/2: 32, 32, reduction to 1024), (10/11: 32, 16, upsampling to 1024
+ residual). Models with more than 2048 input points shared the same architecture as for
2048 points, but changed the reduction pathway to: no reduction, 2048, 1024, 256, 64, 16,
8. Input points were not rescaled to the unit sphere and the trainings were run with an
initial learning rate of 0.001 (scheduler step size of 1000, decay 0.99), batch size of 32 and
optimized with Adam. Trainable model parameters were in the range of 0.5-0.6 million,
depending on the architecture.
During training, the following input augmentations were applied during training:

• Point-wise additive spatial noise with X ∼ N (0, σ2) and σ ∼ N (0 nm, (20 nm)2)

• Centering

• Random rotation around all three spatial dimensions and independent flipping/mirroring
of every spatial axis (p = 0.5)

• Elastic distortions (grid resolution 403 and smoothing of σ = 6)

• Anisotropic scaling sx,y,z ∼ U(0.95, 1.05)

• Number of input points noise with factor ∼ U(0.9, 1.1)

• Context size variation applied to every fourth sample with a factor sampled from
N (1, 0.12), truncated at [0.8, 1.2]

Input point clouds were voxelized to a meshing-procedure independent resolution as a
function of their type (80 nm for cell surface and 100 nm for all ultrastructure). Source
locations were drawn randomly from all skeleton nodes for the training. During inference
they were retrieved by voxelization of the skeleton nodes with rctx/5 for the dendrite
segmentation comparison and rctx/2 for all other experiments to ensure a homogeneous
coverage.

Point models for cell type classification
The ground truth was split into training and test data using 10-fold cross-validation taking
class support into account5. Due to limited ground truth, the trainings were performed
without validation and evaluated on the test set after seven days of training. Each split was
used to train three models, each starting with a different random seed for training batch
generation and initial weights to estimate the model variance. The context generation was
parameterized with radius and number of points. Seed nodes for context locations were
sampled uniformly from cell skeletons. The ground truth (celltypes-large, Appendix B)

5StratifiedKFold method from the scikit-learn Python package

62 4. Learning cellular morphology

contained 11 classes, which represent putative cell types contained in the EM data set:
STN, DA, MSN, LMAN, HVC, TAN, GPe, GPi, FS, LTS, NGF.

The model architecture consisted of 5 ConvPoint layers, each using 16 kernel elements,
group normalization (always grouping two channels) before swish activation (Ramachan-
dran et al. 2018) with the following parameters (output channels, reduction to N points,
k nearest neighbors): (64, 4096, 32), (128, 1024, 32), (256, 512, 16), (256, 256, 16), (512,
128, 16). The resulting 512 features were averaged across the 128 anchor points. An ad-
ditional dropout (rate 0.3) was applied before the final two fully connected layers with
128 and NC = 11 output channels. In total, the model consisted of 3.8 million trainable
parameters. The reduction was done with the heuristic random sampling (Boulch 2020),
that prevents oversampling of the same points.

The Training parameters are summarized in Table 4.5. To speed up the data prepa-
ration during training, a single batch (batch size 10) contained random contexts of only
one cell. Parameter updates were performed after accumulating gradients of 10 batches to
improve the learning signal.

Table 4.5: Training parameters for the supervised cell type point model. The value in
the bracket of the batch size is the number of samples presented within each iteration.
Schedule parameters in the bracket are step frequency and decay factor.

Optimizer Batch size init. LR LR schedule Loss
Adam 100 (10) 5 · 10−4 Stepwise(100, 0.99) Cross entropy

The following augmentations were applied to the input during training:
• Point-wise additive spatial noise with X ∼ N (0, σ2) and σ ∼ N (0 nm, (40 nm)2)

• Centering and scaling by division of 10% of the context radius

• Random rotation around all three spatial dimensions and independent flipping of
every spatial axis (p = 0.5)

• Elastic distortions (grid resolution 403 and smoothing of σ = 6)

• Anisotropic scaling sx,y,z ∼ U(0.9, 1.1)

• Number of input points noise with factor ∼ U(0.9, 1.1)

• Context size noise applied to every fourth sample with factor ∼ N (0.7, 0.12), clipped
to between [0.33,) to occasionally present small cell fragments.

During inference with a batch size of 20, the final classification was found as the majority
vote of multiple predictions to make the prediction more robust. The predictions were
performed at N randomly selected locations, drawn from the cell skeleton nodes after
voxelization to 2 µm. Input point clouds were voxelized with 70 nm for cells and synapses,
and all others with 100 nm.

4.2 Materials and Methods 63

Multi-view models for cell type classification
The model performance was evaluated using a 10-fold cross-validation (using the same
procedure as in Section 4.2), each with three different random seeds, multi-views with a
random set of Nviews = 20 views, and random flip augmentation (independently in x and y
for each view with probability 0.5). The training parameters are summarized in Table 4.6.

Table 4.6: Training parameters for the multi-view cell type classifier. Schedule parameters
in the bracket are step frequency and decay factor.

Optimizer Batch size init. LR LR schedule Loss
Adam 20 1 · 10−3 Stepwise (750, 0.99) Cross entropy

Cell and ultrastructure meshes were used to render the input views (input channels: 4).
In addition, the ratios of predicted symmetric synaptic area over the total synaptic area
of the entire cell and dendritic compartments were added as scalar input (Nscalar = 2) to
the first fully connected layer of the network.

Seven convolutional layers (Conv3D) were stacked and each performed, applied in the
listed order, 3D convolution (shared weights in z), batch normalization, ReLU activa-
tion, max pooling and dropout (rate: 0.08) and three subsequent fully connected layers
(FCLayer):

• Conv3D(input channels: 4, out channels: 20,
kernel size: (1, 5, 5), pooling: (1, 2, 2))

• Conv3D(20, 30, (1, 5, 5), (1, 2, 2))

• Conv3D(30, 40, (1, 4, 4), (1, 2, 2))

• Conv3D(40, 50, (1, 4, 4), (1, 2, 2))

• Conv3D(50, 60, (1, 2, 2), (1, 2, 2))

• Conv3D(60, 70, (1, 1, 1), (1, 2, 2))

• Conv3D(70, 70, (1, 1, 1), (1, 1, 1))

• FCLayer(input channels: 4200 + Nscalar, output channels: 100), ReLU activation

• FCLayer(100, 50), ReLU activation

• FCLayer(50, NC = 11)

The model contained 0.5 million trainable parameters.
Rendering was performed on-the-fly during training with N = 4 projections per render-

ing location, found by 8/3 µm voxelization of the cell mesh vertices. To speed up batching

64 4. Learning cellular morphology

of training samples the rendered views of a cell were cached and re-used up to 200 times
to sample a random set of Nviews views. A batch always contained at least one multi-view
from every neuron type to guarantee a diverse learning signal.

During inference (batch size of 10), the final classification of a neuron was found via
majority vote of the

⌊
Nloc·N
Nviews

⌋
predictions, with Nloc being the number of rendering locations

(8/3 µm voxelization) and N = 4 the number of projections per multi-view. If Nloc · N <
Nviews, views were drawn with replacement.

Point model for cell clustering
For the self-supervised training via triplet loss (Schroff et al. 2015) a model was trained
to embed the morphology (cell and ultrastructure) of two spatially nearby locations of cell
CA closer in a 10-dimensional latent space than a cutout of a different cell CB (drawn ran-
domly). The model architecture was the one used for the supervised cell type classification.

The first context center location (the coordinate of the source node used for context
generation, termed context center), was drawn uniformly from all cell skeleton nodes in
CA. The second context center was drawn uniformly within 15 µm distance along the same
cell skeleton. This training procedure did not require any additional manual annotations
and was performed on sufficiently large neuron reconstructions. Neuron reconstructions
that had a bounding box diagonal less than two times the input context of the model (here
< 30 µm) were excluded. The training was performed on the zebra finch area X, large
volume.

The input was set to rctx = 15 µm and 25k points. Training parameters are summarized
in Table 4.7. Instead of cross-entropy loss, the following regularized margin ranking loss
was used to learn the 10D output of the model:

loss(x0, x+, x−) = max(0, r+ − r− + α) + λ

3 (∥x0∥2 + ∥x+∥2 + ∥x−∥2) (4.4)

with r+,− = ∥x0 − x+,−∥2 being the distance between reference and similar/dissimilar
location, λ = 10−6 a factor for the regularization term to prevent latent vectors from
diverging and α = 0.2 a minimum margin.

Table 4.7: Training parameters for morphology embedding model. Schedule parameters in
the bracket are step frequency and decay factor.

Optimizer Batch size init. LR LR schedule Loss
Adam 16 5 · 10−4 Stepwise (250, 0.995) Margin Ranking

4.2 Materials and Methods 65

The following augmentations were applied to the input during training:

• Point-wise additive spatial noise with X ∼ N (0, σ2) and σ ∼ N (0 nm, (40 nm)2)

• Centering with additive spatial noise with ∼ U(−500 nm, 500 nm) in every spatial
dimension. Scaling by division of 10% of the context radius.

• Random rotation around all three spatial dimensions and independent flipping of
every spatial axis (p = 0.5)

• Elastic distortions (grid resolution 403 and smoothing of σ = 6)

• Anisotropic scaling sx,y,z ∼ U(0.9, 1.1)

• Number of input points noise with factor ∼ U(0.9, 1.1)

• Context size noise applied to every fourth sample with factor ∼ N (0.6, 0.12)

Local embeddings, spatially represented by their context center, were aggregated to cell
level by calculating their mean within the same compartments (axon, dendrite) and adding
the two resulting vectors. During inference, context centers of a cell were generated using
voxel downsampling of the mesh vertices with a voxel size of half the context size (7.5 µm).
Every cell skeleton node was finally assigned the embedding vector associated with the
spatially closest context center. Input point clouds were voxelized as for the cell type
classification.

Compute infrastructure
The experiments were executed on the wholebrain cluster hosted by the Max Planck Com-
puting and Data Facility (MPCDF) in Garching, which consisted of 18 compute nodes.
Each node was equipped with 2 NVIDIA Quadro RTX 5000, 20 cores (Intel Xeon CPU E5-
2660 v3 @ 2.60GHz) and 256 GB of RAM. For the management of compute jobs SLURM
(Yoo et al. 2003) was used. All models were implemented and trained with PyTorch and
elektronn3 and used the SyConn2 package (Chapter 5) to interface the VEM data.

Performance metrics
The prediction performance of the models was assessed with the F1 (harmonic mean of
precision and recall) and accuracy. If not stated otherwise, reported F1-scores are the
unweighted averages of per-class F-scores, i.e. not taking into account the class support.

66 4. Learning cellular morphology

4.3 Results

4.3.1 Compartment prediction
The identification of pre- and postsynaptic sites is based on cues in the EM image data,
with the strongest being synaptic vesicles in the presynaptic cell, which contain neuro-
transmitters that are released by an action potential. This can be either done explicitly
by detecting such vesicles and assigning it to its nearby synaptic junction or indirectly by
training a CNN to predict pre- and postsynaptic site densely on a voxel level, represented,
e.g. as vector field (Buhmann et al. 2021) or as binary masks (Turner et al. 2020). Both
approaches solve two problems: Firstly, the identification of pre- and postsynaptic site and,
secondly, their assignment to cell reconstruction instances.

These two problems were addressed separately: Based on the sparse mesh represen-
tation of cells, consequently allowing a large context, basic functional compartments of
neurons namely axon (presynaptic site), dendrite and soma are detected. The assignment
of cell partners to a putative synapse object is done by intermediately identifying cell-to-cell
contacts, which is the topic of Section 5.3.1.

In (Schubert et al. 2019), an ablation study was conducted for the image-to-scalar
classification of multi-views into compartments (axon, dendrite, soma), which showed that
the exclusion of depth information and a reduced pixel resolution only marginally affects
performance. In contrast, sufficient context (saturated at approx. 8 µm) and the presence
of ultrastructure were critical. The input for the semantic segmentation approaches with
multi-views and continuous convolutions was designed accordingly, in terms of context and
available ultrastructure information.

Multi-view models

Semantic segmentation is the dense classification of every single element of the model’s
input, e.g. all the pixels of an image. More specifically, every pixel is either assigned a
class label directly (hard classifier, e.g. support-vector machine, C. M. Bishop 2006) or a
class conditional probability vector (soft classification, such as logistic regression) which
usually is converted into the final class label by applying arg max.

Learning a model to perform semantic segmentation of single views, generated by the
multi-view representation, would result in pixel-wise labels, but relating these to the neu-
ron surface is not straightforward. The orthographic projection transforms the three-
dimensional object into two-dimensional pixel locations of an image, which is difficult to
invert. A procedure similar to (Boulch et al. 2018) was developed and implemented to
track the rendered surface representation by generating an additional index map.

To aid mapping back the semantic segmentation of a view to the original surface lo-
cations of the cell, a second projection with same camera setting is rendered. The first is
the morphology view, which captures the surface of the cell and ultrastructure including
the type of mesh (morphology view), while the second contains the index of each cell-mesh
vertex or face that contributed to the rendering of the morphology view (Fig. 4.4a) en-

4.3 Results 67

Figure 4.4: High-resolution surface segmentation of cell reconstructions. a The meshes
of cell and assigned ultrastructure (mitochondria in blue, synaptic junctions in red) are
rendered as orthographic projections into a morphology view (top left, depth and type
encoding) and an index view (bottom right, only cell mesh). The inference results in pixel-
wise labels that are combined with a vertex lookup stored in the index view. b Thus, the
sparse view predictions, each one capturing only a fragment of the cell, are remapped and
combined to form a semantic segmentation of the neuron surface. Figure adapted from
(Schubert et al. 2019).

coded in RGBA space (index view). Since the same camera perspective is used for this
second rendering pass, the semantic segmentation results can be readily associated with
their original mesh vertices. Using 8-bit unsigned integer precision per RGBA channel,
an one-to-one mapping between RGBA space and scalar vertex or face index allows the
processing of meshes with up to 2564 − 1 vertices, with one ID being reserved to encode
background.

The semantic segmentation is carried out on the morphology view M with a 2D CNN,
that learned a transformation to pixel-wise class probabilities outputting the label view
L = f(M). Fig. 4.4a shows the CNN output with 5 classes, including dendritic shaft
(black), spine neck (gray), spine head (red), one class for axon/soma (turquoise) and
background (white).

This approach does not guarantee that a class label is assigned to all mesh vertices
(due to visibility), which is why classifications are propagated to the mesh vertices by

68 4. Learning cellular morphology

assigning pixel labels Lx,y from the label view to the vertices associated with the IDs
stored in the corresponding index-view pixels Ix,y for all locations (x, y), x ∈ [1, . . . , Npix,x]
and y ∈ [1, . . . , Npix,y]. Note that this can be done either by storing face IDs (vertex indices
forming a triangle), or the vertex IDs directly. In the case of face IDs and triangle meshes,
one pixel label consequently propagates to three vertices. The index view example in
Fig. 4.4a contains colors associated to face indices and used Npix,x = 256 and Npix,y = 128.
Finally, the classification of a vertex is performed by finding the majority class in all the
labels associated to it (Fig. 4.4b).

The identification of the three major compartments dendrite, soma, and axon in (Schu-
bert et al. 2019) was realized by classifying multi-views in image-to-scalar fashion, which
suffers from a low resolution and requires the rendering of multi-views for every predic-
tion location. Building on the proposed semantic segmentation approach of surfaces with
multi-views, new ground truth was generated to learn models for the high-resolution se-
mantic segmentation of dendrites (shaft, spine neck, spine head and axon/soma) and a
coarse semantic segmentation into the three major neuron compartments and finer axon
structures (boutons).

Table 4.8: Performance values of the multi-view model on the segmentation task of den-
drites (zebra finch area X, small) depending on the number of used views and the number
of nearest neighbors denoted in brackets as (views, nearest neighbor).

(1 view, 1 n.n.) (1, 20) (2, 1) (2, 20) (6, 20)
neck 0.703 0.727 0.714 0.731 0.746
head 0.865 0.874 0.878 0.880 0.886
shaft 0.961 0.968 0.958 0.966 0.973

average 0.843 0.856 0.850 0.859 0.868
accuracy 0.907 0.918 0.910 0.918 0.926

The model for the segmentation task of dendrites was trained on five neuron recon-
structions (semseg-fine-train, Appendix B), with the main goal of separating spine head
from dendritic shaft. The F1-scores of dendritic shaft and spine head on the vertices of a
dendritic branch (semseg-fine-test-vertices, Appendix B) were only slightly affected by the
number of generated views (Table 4.8) and a higher level of smoothing with a k-nearest
neighbors (k-NN) classifier (Fix and Hodges 1989). For most of the experiments the setting
with 2 views a 20-NN classifiers was applied, due to the saturating gain of more views.

Next, the coverage of predictions was measured dependent on the number of views
per rendering location (more views decrease the rotation angle between two subsequent
projections in a multi-view). All unique face IDs that were part of a cell’s index views
were counted and then divided by the total face count to obtain the prediction coverage.
The coverage reached approx. 70% with 4 views and converged to 81% with 15 views
(Fig. 4.5), ensuring a good coverage already with 2 views (60%). The level-off effect below
1.0 is explained by the meshing procedure, which is performed on supervoxel level. Hence,
agglomerated supervoxels form surfaces that are completely occluded inside the cell at the

4.3 Results 69

Figure 4.5: Fraction of processed neuron surface. The plot shows the mean fraction and
1-σ interval of predicted mesh faces with respect to the number of projections per multi-
view (2 µm voxelization) calculated on five cell reconstructions (dendritic-synapses, Ap-
pendix B). Figure adapted from (Schubert et al. 2019).

merge location.
In addition to the vertex-level performance, the prediction was evaluated on a set of

manually annotated synapses (dendritic-synapses, Appendix B) to quantify the effective
performance in the synaptic connectivity matrix. This resulted in a much higher F1-score
of 0.978 (precision 0.978, recall 0.978, F1-score spine head only 0.977; 2 views per location,
k = 20). Synapse predictions were found by majority vote of the 20 nearest vertex labels
relative to its center coordinate.

Although a single bouton class would suffice in general, the terminal bouton class was
introduced in addition to the bouton en-passant, to probe the model sensitivity. Single-
class bouton predictions can be combined with information of the skeleton graph to identify
end-points which in turn allows subsequent separation of terminal and en-passant type,
rendering the terminal bouton optional.

The model for the coarse segmentation (semseg-coarse-train, Appendix B) achieved
an unweighted class average F1-score of 0.796 (dendrite: 0.986, axon: 0.877, soma: 0.992,
bouton: 0.776, terminal: 0.350; accuracy: 0.953) evaluated on the skeleton nodes of 6 recon-
structions (semseg-coarse-test, Appendix B) and a similar score on the vertices with 0.816
average F1-score (accuracy: 0.935). Unpredicted vertices were labeled using a nearest-
neighbor classification (k = 20) and skeleton nodes with k = 50. The k-NN majority vote
on skeleton node level slightly improved the accuracy (average F1-score 0.806 and accuracy
0.926 with k = 1), while the main source of errors originated from the two bouton classes.
Reducing the two bouton classes to a single one yielded a high F1-score of 0.945 on skeleton
nodes (dendrite: 0.986, axon: 0.877, soma: 0.992, bouton: 0.923; accuracy: 0.973).

The low performance of the terminal bouton class could presumably have been caused
by a combination of lower class support with respect to bouton en-passant (4x on the
training set) and boundary artifacts, where boutons en-passant might appear as terminals.
Importantly, the relevant overall bouton performance is considerably higher, which allows

70 4. Learning cellular morphology

to subsequently separate terminal and en-passant using the cell skeleton. The two classes
were combined for all other experiments.

Next, the models trained on the zebra finch area X, small were applied on the ap-
proximately 10-fold larger zebra finch area X, large data set. The segmentation of the
coarse and fine model was combined by extending the coarse dendrite prediction with the
fine spine predictions (dendritic shaft, spine neck, spine head). Despite different EM im-
age voxel sizes (9 × 9 × 20 nm3 vs. 10 × 10 × 25 nm3), the mesh reconstructions reside in
isotropic world coordinates (i.e. scaled to nanometers) and the transition of the models is
straightforward. To assess the transferability of the coarse and fine model quantitatively,
the prediction results were evaluated on a new ground truth data set consisting of 13 anno-
tated neurons (semseg-large-test, Appendix B). Manual annotation was sped up by using
sparse labels and including visualizations of the surface predictions of the previous models
to guide human annotators (Materials and Methods).

Table 4.9: Performance values of the multi-view approach on semseg-large-test (Ap-
pendix B). The evaluation was performed on vertices and nodes of all 6 classes (C6; den-
drite, axon, soma, bouton, terminal, neck, head) and the major three compartments (C3;
dendrite, axon, soma).

C6 (vertices) C6 (nodes) C3 (vertices) C3 (nodes)
dendrite 0.767 0.754 0.864 0.885

axon 0.807 0.878 0.951 0.964
soma 0.929 0.920 0.929 0.920

bouton 0.772 0.683 - -
neck 0.494 0.550 - -
head 0.332 0.461 - -

average 0.683 0.708 0.915 0.923
accuracy 0.791 0.801 0.924 0.943

Likely due to the larger data diversity, now including more cell types than in the small
data set, the evaluation yielded an average node F1-score of 0.680 and accuracy of 0.793
(Table 4.9). Slight changes in the meshing resulting from the different voxel sizes in the
data sets may also have contributed. Reducing the fine predictions to the major three
compartments (bouton to axon, head and neck to dendrite) resulted in a high performance
for both vertices (avg.: 0.915, acc.: 0.924) and nodes (avg.: 0.923, acc.: 0.943), reflecting
the challenging segmentation of fine structures, in particular spine heads. Nonetheless,
this shows that models operating on neuron meshes transfer easily with decent prediction
performance, allowing their labels to be used for initial inspection of unseen VEM data
sets.

4.3 Results 71

Point model comparison

In order to process the larger EM volume with models that take a more diverse set of
neuron types into account, the ground truth that was used to evaluate the multi-view
prediction was further extended by a large training set (semseg-large-train, Appendix B).
The multi-view approach requires to cache the input and target projections on disk because
the overhead of on-the-fly rendering is too heavy during training. Due to training set size
with over 100,000 labeled nodes this would result in more than 1 TB6 of required disk
storage.

Table 4.10: Performance values of the point models on (semseg-large-test, Appendix B).
The evaluation was performed on vertices and nodes of all 6 classes (C6; dendrite, axon,
soma, bouton, terminal, neck, head) and the major compartments (C3; dendrite, axon,
soma).

C6 (vertices) C6 (nodes) C3 (vertices) C3 (nodes)
dendrite 0.848 0.831 0.879 0.908

axon 0.809 0.879 0.959 0.971
soma 0.922 0.905 0.922 0.905

bouton 0.761 0.672 - -
neck 0.513 0.498 - -
head 0.624 0.615 - -

average 0.746 0.733 0.920 0.928
accuracy 0.820 0.818 0.931 0.953

As a less pre-processing intensive alternative, continuous convolutions (Boulch 2020)
were adopted to directly process point clouds. For this purpose the semantic segmentation
of neuron surfaces was divided in multiple semantic groups (axon, dendrite, soma; dendritic
shaft, spine neck, spine head; axon, bouton en-passant, terminal bouton), resulting in a
hierarchy of three point morphology networks. One model was specialized for each group
(input parameters: rctx of 15 µm and 15,000 points; Materials and Methods) and trained
on semseg-large-train. Like before, vertex predictions were smoothed with k = 20 and
mapped to skeleton nodes with k = 50 neighbor majority.

Not surprisingly, the average F1-score of all 6 classes (dendrite, axon, soma, bouton,
neck, head) increased by about 6% on vertex and 3% on node level compared to the trans-
fered multi-view models, with the largest improvement on the fine spine head structures
(0.624 vs. 0.332 on vertex level). The average performance difference of axon, soma and
dendrite was only marginal (0.928 vs. 0.923), again reflecting the good transition of the
approach to the second EM volume. Remaining errors occurred predominantly close to the
soma, where in some cases it was ambiguous where compartment started, or parts with

6Assuming 100,000 locations, 4 projections per location, 1024 × 512 8 bit pixels per projection with
4 + 1 input and target channels, the total size results in approx. 105 · 4 · 0.5 · 106 · 5 B = 1 TB only for the
coarse segmentation model.

72 4. Learning cellular morphology

Table 4.11: Performance values of the point models without ultrastructure information
on (semseg-large-test, Appendix B). The evaluation was performed on vertices and nodes
of all 6 classes (C6; dendrite, axon, soma, bouton, terminal, neck, head) and the major
compartments (C3; dendrite, axon, soma).

C6 (vertices) C6 (nodes) C3 (vertices) C3 (nodes)
dendrite 0.257 0.281 0.300 0.383

axon 0.675 0.800 0.841 0.884
soma 0.867 0.852 0.867 0.852

bouton 0.606 0.515 - -
neck 0.303 0.299 - -
head 0.433 0.427 - -

average 0.523 0.529 0.669 0.706
accuracy 0.615 0.671 0.749 0.804

fewer defining ultrastructural features, like the initial segments of axon and dendrite. As
expected, without any ultrastructure information, i.e. only using the point cloud of the cell
surface during training and inference, the overall performance dropped drastically to 0.529
on the node level (Table 4.11).

Table 4.12: Performances of the point models on the test GP and MSN neuron and trans-
fered multi-view (m.v.) performance on MSN.

GP MSN MSN (m.v.)
dendrite 0.877 0.936 0.939

axon 0.854 0.881 0.866
soma 0.976 0.973 0.982

bouton 0.815 0.685 0.561
neck 0.474 0.699 0.759
head 0.037 0.805 0.825

average 0.672 0.830 0.822
accuracy 0.873 0.888 0.892

A closer look at the performance of the most frequent cell type in area X (medium
spiny neuron, MSN) revealed a vertex F1-score that was much higher (0.830, Table 4.12)
than the overall average (0.746, Table 4.10), with a similar spine head score as the multi-
view approach on the small EM volume (Section 4.3.1), which lead to a high synapse-level
precision. The same was true for the performance values of the transferred multi-view
models (0.822 vs. 0.683). Spines in pallidal-like cells (GP) in contrast are very infrequent
(see Fig. 4.6a) and were barely identified correctly (0.037 on vertex and 0.108 on node level),
which might be a result of the reduced data availability on the test set (31 annotated head

4.3 Results 73

nodes in GP vs. 1059 in MSN7) and very rare occurrences in the training set.
Examples of remaining errors are presented for the test GP and MSN neurons, which

show that especially the boundary regions between two classes (e.g. between axon and its
boutons, or between spine neck and head/shaft) are affected (Fig. 4.6). These transition
regions, similar to the initial segments of axon and dendrite, are hard to label definitively
as annotations are done on node level and can even be ambiguous (see also protrusion in
Fig. 4.6b). Overall, the predictions result in a morphologically consistent partition of the
surface.

Figure 4.6: Example point-model predictions of a GPi (a) and an MSN (b) test cell (the
same as in Table 4.12). Each panel shows on the left erroneous vertices (in red) and the
corresponding prediction inset. Prediction colors correspond to dendrite (gray), axon (dark
red), soma (black), spine neck (yellow), spine head (bright red). The arrows in b indicate
errors at protrusions that are also manually hard to classify, and the asterisk typical errors
at neck-head boundaries. Scale bars are 20 µm for the whole cell renderings and 2 µm for
the insets.

Next, the point model performance was assessed on the small EM volume by performing
an evaluation on the vertices of the semseg-coarse-test ground truth (dendrite: 0.982, axon:
0.809, soma: 0.971, bouton: 0.820; avg.: 0.895; accuracy: 0.933) and on skeleton nodes
(0.979, 0.814, 0.965, 0.803; avg.: 0.890; acc.: 0.946) using the same input properties as
previously with a context radius rctx of 15 µm and 15,000 inputs points. A comparison
to the multi-view models showed a slightly degraded performance on node-level with a
class-average F1-score of 0.890 (mutli-views: 0.945) and accuracy of 0.946 (0.973).

To further evaluate the point approach on synapse level (dendritic-synapses), two point
models were trained for the dendrite segmentation task. One for coarse (dendrite and non-
dendrite) and one for fine segmentation (shaft, neck, head). Due to the comparably small

7A single spine head may consist of multiple nodes.

74 4. Learning cellular morphology

Figure 4.7: Grid search of context radius and number points for the point-based com-
partment predictions, evaluated on a set of manually labeled synapses (dendritic-synapses,
Appendix B). Figure adapted from (Schubert et al. In review).

training data set, leading to quick trainings, the influence of the input parameters was
assessed by conducting a grid search of the number of input points and the context radius
rctx (Materials and Methods), where the coarse model was fixed and the input to the fine
model was varied. For every parameter pair, three trainings were run, resulting in high
mean F1-scores over a wide value range, preferably for balanced context-to-point ratios
(4 µm, 4k points: 0.969, 0.980, 0.986; 16 µm, 16k points: 0.963, 0.952, 0.980; Fig. 4.7).

4.3 Results 75

4.3.2 Cell type classification
In (Schubert et al. 2019), high-accuracy results for the prediction of four cell type classes
(excitatory axon, medium spiny neuron, interneuron, pallidal-like neuron) of the zebra finch
area X, small data set were presented. Due to the larger volume of zebra finch area X,
large, it contains more complete neuron reconstructions and consequently allowed a finer,
manual morphological separation into 11 putative types (celltypes-large, Appendix B).

For this task, the input point features were extended by including axon myelination8 and
synapse type (excitatory or inhibitory, see Chapter 5). As a result, the dimensionality of
the one-hot encoding of the input point features increased from previously 4 (cell surface,
synaptic junctions, mitchondria, vesicle clouds) to 6 dimensions (cell, myelinated cell,
excitatory syn., inhibitory syn., mito., v.c.).

Table 4.13: 10-fold cross-validation F1-scores and accuracy of the cell type classification
using a context radius of rctx = 20 µm, 50,000 input points and three repetitions for
redundancies 50 and 1.

redundancy N = 50 redundancy N = 1
repetition 0 1 2 0 1 2

STN 0.945 0.931 0.944 0.8 0.684 0.732
DA 1 0.972 1 0.944 0.812 0.944

MSN 1 1 1 0.923 0.941 0.939
LMAN 1 1 0.984 0.906 0.843 0.895
HVC 1 1 1 0.857 0.918 0.903
TAN 1 1 1 0.857 0.782 0.695
GPe 0.866 0.892 0.857 0.687 0.645 0.592
GPi 0.875 0.941 0.882 0.758 0.838 0.750
FS 0.961 0.961 0.961 0.692 0.692 0.716

LTS 0.888 0.842 0.842 0.640 0.555 0.545
NGF 1 0.978 1 0.857 0.830 0.893

average 0.958 0.959 0.951 0.811 0.776 0.782
accuracy 0.968 0.968 0.964 0.826 0.798 0.814

The model performance was evaluated by 10-fold cross-validation with a redundancy
of three training repetitions per split (training: 90%, test: 10%; 30 models in total, each
trained for about 7 days). The unweighted class-average F1-score reached 0.951 in the worst
and 0.959 in the best case, with GPe, GPi and LTS being the hardest types (Table 4.13).

Fig. 4.8 shows the result of a parameter search for context radius, number of input
points and the number of predictions per cell (redundancy) with the overall mean F1-score
for varying input parameters. If the model input was represented by too few points (20 µm,

8The myelination information was aggregated on skeleton node level from a dense voxel prediction and
then propagated to the associated cell surface vertices. See also Chapter 5.

76 4. Learning cellular morphology

5k), which translates into a low level of detail, or the input did not contain sufficient context
(4 µm, 25k), the performance of individual predictions was overall poor. For a fixed context
of 20 µm, performance increased substantially up to a number of 75,000 points (mean F1-
scores with N = 50 for 25k: 0.954, 50k: 0.956, 75K: 0.944).

To test the impact of redundancy on the predictions for averaging, the model was
applied to a range of N ∈ [1, 10, 20, 50] inputs, generated at random locations of the cell.
The individual class predictions for N > 1 were combined to a single prediction by majority
vote of the individual hard classifications. The performance gain is very prominent between
N = 1 and N = 10 (Table 4.13) and is less apparent for larger N and large contexts
(Fig. 4.8).

Figure 4.8: Classification performance of putative cell types dependent on the input pa-
rameters (context radius, input points) and the number of generated inputs (redundancy)
per neuron. E.g. 20 µm, 5k refers to a 20 µm context radius with 5,000 points. The data
points are the overall mean ± s.d. of the unweighted class-average F1-score of three repeti-
tions. One repetition of an input parameter configuration consisted of 10 trainings (10-fold
cross-validation).

The baseline model (50,000 points, 20 µm context) with a redundancy of N = 50
achieved an overall mean F1-score of 0.956 (averaged across the three repetitions) on the 10-
fold cross-validated ground truth, compared to 0.930 F1-score with the multi-view approach
(Table 4.14, Materials and Methods). The major performance drop originated from the
LTS class with a mean F1-score of 0.692 and STN with 0.878.

The impact of missing myelin and synapse type information on the model performance
was assessed by conducting a feature ablation study where models were trained on the
same samples, but with a reduced input feature set. Excluding myelin reduced the overall

4.3 Results 77

mean F1-score by 0.023 and had a severe effect on the performance of LTS (mean F1-
score 0.730 vs. 0.857). This performance drop is similarly visible in the results of the
multi-view approach, which did not incorporate myelin information in the 2D projections
(Table 4.14). The ablation experiment of the synapse type in contrast did not show a
performance degradation with a mean F1-score of 0.958.

Table 4.14: 10-fold cross-validation F1-scores and accuracy of the cell type classification
without myelin and using multi-views. Other than the feature dimension, the input pa-
rameters for the point model are the same as in Table 4.13 with rctx = 20 µm, 50,000 input
points and a redundancy of 50. The multi-view models used N = 20 projections with
lw = 8 µm and lh = 4 µm (Section 4.2).

w/o myelin multi-views
repetition 0 1 2 0 1 2

STN 0.888 0.916 0.906 0.857 0.895 0.882
DA 0.972 0.972 1 0.950 1 0.947

MSN 0.969 0.969 1 1 1 1
LMAN 1 0.967 1 0.967 0.949 0.966
HVC 1 0.984 1 0.952 0.985 0.939
TAN 0.956 1 1 1 1 1
GPe 0.857 0.896 0.896 0.933 0.896 0.896
GPi 0.882 0.909 0.909 0.937 0.909 0.909
FS 0.872 0.925 0.961 0.941 0.961 0.961

LTS 0.750 0.736 0.705 0.645 0.740 0.692
NGF 0.978 0.977 1 1 1 1

average 0.920 0.932 0.943 0.925 0.939 0.926
accuracy 0.936 0.944 0.960 0.932 0.948 0.936

Further, the mean of the N individual class probabilities pi = 1
N

∑N
k pi,k was calculated to

estimate the model uncertainty based on the information entropy of the predictions:

certainty(p) = 1 − H(p)/Hmax = 1 + 1
Hmax

C∑
i=1

pi log2 pi

= 1 +
C∑

i=1
pi logC pi

(4.5)

The maximum entropy is given by

Hmax = −
C∑

i=1

1
C

log2
1
C

= log2 C (4.6)

The certainty of the point model with rctx = 20 µm and 50,000 points on the test data (for
all three repetitions), split into correct and incorrect classification is shown in Fig. 4.9 and

78 4. Learning cellular morphology

differs significantly (two-sided Mann-Whitney U test (Mann and Whitney 1947) statistic:
5.24 and p-value: 1.57·10−7; correct: 734, incorrect: 25), which makes this a useful quantity
for guided proofreading of cell type ground truth data.

Figure 4.9: Model certainty on the 10-fold cross-validated cell type classification ground
truth. Box plot represents the median, lower and upper quartile; whiskers are 1.5x in-
terquartile range (Q3-Q1). Points are the values of all three repetitions using 20 µm con-
text radius, 50,000 points and a redundancy of 50.

4.3.3 Cell clustering
With the availability of ever larger data sets in VEM, it becomes possible to identify
patterns, which can reduce manual annotation efforts (Chen et al. 2020) or provide an
assessment of the data with little human bias. Unsupervised or self-supervised approaches
don not require explicit target labels and aim to extract feature representations that lead
to semantic arrangement of the input data, which in turn can be used to improve sub-
sequent supervised tasks. Self-supervised metric learning, as ,for example, the SimCLR
framework presented in (Chen et al. 2020), alters one sample from the original distribution
by augmentation to generate a pair, of which both instances are semantically similar but
inherit substantially different input statistics. During training, the model learns to push
these artificially generated pairs together in a latent space and different samples from the
original distribution apart from each other.

For the purpose of learning cell morphology embeddings, the previous self-supervised
approach using multi-views (Schubert et al. 2019) with triplet loss (Schroff et al. 2015) is
here extended for embedding entire neurons directly from local point clouds. A model was
trained to extract a 10-dimensional latent feature vector from an input cloud, with the
constraint to keep “similar” inputs closer than “dissimilar” in a learned latent space. Two
point cloud contexts (rctx = 15 µm, 25k points) within 15 µm distance in the same cell were
treated as similar, and a third context, drawn randomly from any other cell in the zebra
finch area X, large volume as dissimilar (Materials and Methods). The model was applied to

4.3 Results 79

Figure 4.10: Self-supervised neuron clustering of the latent space of 531 neurons in the
data set that contained soma, axon and dendrite (MSNs not considered). The embedding
vectors were transformed using a UMAP dimensionality reduction. Colors indicate putative
cell type based on supervised classification with the point model. Scale sphere has a 10 µm
diameter. Figure adapted from (Schubert et al. In review).

the whole zebra finch area X, large data set and the inspection of the resulting embeddings
was focused on the rare cell types of area X, only considering cell reconstructions with a
soma skeleton length > 10 µm (compartment predictions were smoothed using a majority
vote on all node labels collected within 10 µm path length), axon and dendrite skeleton
lengths > 200 µm, and that were not classified as MSN or an axon class only projecting to
area X (LMAN, HVC, DA). For each of the resulting 531 cells a 10-dimensional compound
latent vector was constructed by averaging the local triplet-loss embeddings along each
dimension separately for axonal and dendritic compartments, followed by summation of
the two vectors.

The low-dimensional 2D UMAP (McInnes et al. 2020) projection9 of the compound
latent space, colored by the prediction results of the supervised classification with the
point model from Section 4.3.2, indeed formed clusters of known morphological neuron
types (Fig. 4.10), such as putative cholinergic (TAN) and pallidal-like neurons (GP). Fur-
thermore, the UMAP projection suggests that area X contains more cell types that can
morphologically be distinguished, for example a type of local neurons that form synapses
with excitatory ultrastructural characteristics (STN), that has so far only been physiolog-

9Parameters: n_neighbors=60, metric=’euclidean’, random_state=0, min_dist=0.05, n_epochs=1000

80 4. Learning cellular morphology

ically identified (Budzillo et al. 2017) but not anatomically characterized. This provides
a first glimpse into the expressiveness of dense morphology information contained in con-
nectomic EM data, which could become a powerful tool for the characterization of neuron
types in a brain area.

4.4 Discussion
Recently, many sophisticated approaches for instance segmentation of neurons (Januszewski
et al. 2018; K. Lee et al. 2021; Sheridan et al. 2021) and pipelines for acquiring and process-
ing large EM volumes (Shapson-Coe et al. 2021; Yin et al. 2020) have been introduced. One
has to now analyze all this data, and processing the surface of neurons and ultrastructure
offers a promising alternative to voxel inputs. In this thesis, two approaches for compart-
ment identification were compared, that are based on semantic surface segmentation either
using multi-views or point clouds. The proposed methods are more data-efficient in terms
of required throughput than previously published approaches based on voxel-volume (H. Li
et al. 2020) or multi-view classification (Schubert et al. 2019), and were tested down to a
resolution of individual spine necks and heads. In addition, methods that use dense voxel
grids suffer from an increasing fraction of background with larger field of views (H. Li et al.
2020).

The evaluations on two EM data sets showed a similar high-level performance for both
point and multi-view networks in predicting the major three neuron compartments and in
predicting head vs. shaft at the synapse level, with a slight advantage on the computation-
ally more intensive multi-view approach. The surface segmentation of all cell types in area
X remains challenging, in particular of rare structures, such as spines in pallidal-like cells.

Surprisingly, the multi-view models transferred to the large EM data set performed as
well as the point models on medium spiny neurons, the most frequent cell type in area X,
even though the point models were trained on data-set-specific ground truth. This reflects
an input property that is generally desirable for connectomics, namely that the model input
is independent of the voxel size and intensity characteristics of the underlying EM volume,
at least in a narrow range. Given a minimum level of detail that can be represented by the
resulting surface reconstruction of the neurons10, transfer of the model to new data sets
is straightforward as long as the data diversity is sufficiently covered. This facilitates the
development of a general backbone model that is shared across different laboratories.

For the overall excellent classification performance of eleven putative classes, the inclu-
sion of axon myelinization proved beneficial, whereas synapse type (inhibitory vs. excita-
tory) had no impact. The information entropy calculated from the predicted class prob-
abilities differed significantly between correct and incorrect predictions, which could be
exploited for guided proofreading and presumably the identification of out-of-distribution
samples, such as neuron segmentations with a merge error combining two different cell
types.

10The finest voxel size used for the point model input was 70 nm and the 30 nm pixel size for the
multi-views.

4.4 Discussion 81

A point morphology network was trained using self-supervised metric learning to embed
point clouds of neuron fragments which were then aggregated to compound feature vectors
on neuron level, using the (supervised) compartment labels. The clusters in the resulting
neuron embeddings matched qualitatively well with class labels predicted by the supervised
model, also for so far anatomically undescribed cell types in area X. In (Shapson-Coe et al.
2021), for example, the SimCLR framework (Chen et al. 2020) was adopted to separate
two glial types with comparably little annotation effort. Self-supervision will likely become
more important and powerful, in particular with increasing availability of unlabeled data.

The proposed dual representation of neurons using point clouds in combination with
their cell skeleton could in future efforts also be ported to different, more recent architec-
tures that evolved in the rapidly moving field for point cloud and mesh processing (Hanocka
et al. 2019; Xiang et al. 2021).

82 4. Learning cellular morphology

Chapter 5

SyConn2 - A connectome analysis
framework

This chapter contains text and figures from (Schubert et al. In review).

5.1 Introduction
With the detailed and dense reconstruction of neurons in VEM data sets, it is possible
to study correlations of synaptic properties across different cell types with high statistical
power. The high resolution enables the identification of structures such as, but not limited
to, mitochondria, vesicle clouds, synaptic junctions, endoplasmic reticulum and Golgi ap-
paratus. To date, these function-relating structures are detected on voxel level with CNNs
(Buhmann et al. 2021; Dorkenwald et al. 2017; Haberl et al. 2018; Heinrich et al. 2021;
Staffler et al. 2017) and can further be combined with the cell segmentation to build a
database that consolidates circuit, neuron and ultrastructure properties.

The acquisition speed of VEM data sets has increased about 100-fold during the past
5 years (Kornfeld and Denk 2018), now yielding data sets of petabyte-scale (Shapson-
Coe et al. 2021; Yin et al. 2020). The resulting computational challenges require scalable
analysis solutions which can be run on classical high-performance computing (HPC) envi-
ronments or cloud computing services and are facilitated by open-source code to increase
reproducibility. Despite considerable advances in areas such as automated neuron recon-
struction (Januszewski et al. 2018; K. Lee et al. 2017), proofreading (Dorkenwald et al.
2022; Zhao et al. 2018) and integrative processing in cloud environments (Johnson et al.
2020; Macrina et al. 2021), a pipeline that creates an annotated connectome and that can
also be operated cost-efficiently on existing HPC infrastructure is lacking.

The synapse reconstruction framework published in (Dorkenwald, Schubert, et al. 2017)
incorporated ultrastructure and membranes, and included cell analysis methods based on
hand designed features. Since automated neuron tracing with reasonable run-lengths was
not possible back then, it used manual cell tracings as starting point. The 3D cell membrane
prediction was transformed into a sparse hull representation by a ray-casting approach that

84 5. SyConn2 - A connectome analysis framework

associated membrane sample points with the cell skeleton. To identify synaptic connections
between a pair of neurons, contact sites, areas where the neuron hulls are in close proximity,
were extracted and checked if they coincided with a predicted synaptic junction. In order to
efficiently support the now available segmentation of the flood-filling networks, the previous
framework SyConn (short for synaptic connectivity) was fundamentally upgraded.

Figure 5.1: Time estimates of the different reconstruction steps for manual connectomic
analysis of a whole mouse brain, zebra fish larval brain and area X, small (data taken
from (Dorkenwald, Schubert, et al. 2017)). The time for neuron reconstruction refers to a
volume reconstruction based on manual cell tracings and not a voxel-wise annotation.

The large number of neuron-neuron contacts in dense volumes of neural tissue, the fact
that not every contact is synaptic (Kasthuri et al. 2015), and the central role of synapses
make their careful reconstruction particularly important. Moreover, counter-intuitively,
reconstructing synapses can take more time than neuron tracing when performed fully
manually (Fig. 5.1).

This chapter outlines the design and implementation of the SyConn2 analysis frame-
work. SyConn2 combines morphology neural networks (Chapter 4) with detailed synapse
extraction and allows neuroscientists to run queries against connectomes with millions of
synapses.

5.2 Materials and Methods 85

5.2 Materials and Methods

Input segmentation maps and ultrastructure predictions

Zebra finch area X, large

The cell instance segmentation map was provided by M. Januszewski and generated using
the flood-filling neural networks as reported earlier (Januszewski et al. 2018), with addi-
tional training data provided by annotators at the MPI of Neurobiology and ariadne.ai
ag. Synaptic junction (sj), synapse type (symmetric and asymmetric), vesicle cloud (vc)
and mitochondria (mi) voxel segmentation maps were equally provided by M. Januszewski
using a 3D convolutional neural network model that predicts these classes on a per-voxel
level, followed by thresholding.

A myelin segmentation map (4-fold downsampled) was generated using SyConn’s neural
network inference pipeline, that divides the data set into a configurable number of data
chunks (used here: cube size of [482, 481, 236] voxels with additional [30, 31, 20] overlap
on every side) to enable parallel processing. For the myelin inference, a model based on the
U-Net architecture (Ronneberger et al. 2015) was trained using the elektronn3 framework
(myelin-gt, Appendix B; class weights: 1, 2) with the following parameters: 32 output
channels in the first layer, output channels increase by a factor of 2 in every downpath
layer, 4 downpath and up-path layers, ReLU activation and batch normalization. Instead
of an isotropic kernel size of 3, first and third layers in the down- and up-path had a z-
kernel extent of 1 (planar block). For the training, ground truth generated on zebra finch
area X, small was used and transformed by flip, grayscale, gamma, Gaussian noise and
blurring augmentations.

Zebra finch area X, small

M. Januszewski provided the cell instance segmentation map generated with flood-filling
neural networks. Voxel segmentation maps for sj, vc and mi were predicted using CNNs
(Dorkenwald, Schubert, et al. 2017). The myelin prediction was performed with a U-Net
architecture similar as above, but with 16 output channels in the first layer. The synapse
type (synapse-type-gt, Appendix B) was equally predicted via a U-Net with a total of 4
blocks, but without planar blocks and 28 initial channels and three final outputs. The
manual ground truth annotations (background, symmetric, asymmetric) were extended
by small cubes containing sj predictions with known synapse type, based on manually
annotated pre- and postsynaptic cell type labels. Background voxels were added by 3-fold
binary dilation of the foreground synapse type voxels. Remaining voxels were assigned an
auxiliary ignore label. Training patches with a background ratio of more than 90% were
skipped and the same augmentation scheme used for the large data set was applied.

86 5. SyConn2 - A connectome analysis framework

Compute infrastructure

The development and implementation was done on the MPCDF compute cluster described
in Section 4.2.

SegmentationObject generation

This section describes the extraction steps that make single supervoxels and their properties
in the cell and ultrastructure segmentations accessible for processing and analysis. The
(binary) ultrastructure segmentation maps were transformed into an instance segmentation
by a 3D watershed procedure (segmentation.watershed from skimage package; Van der
Walt et al. 2014), that was performed on the distance transform (filters.distanceTran
sform from the vigranumpy package; Köthe 2000) of the input maps. The seeds for the
watershed were generated from the morphologically modified (vc: binary opening, binary
closing, binary erosion; mi: binary opening, binary closing, 3x binary erosion) input maps
using connected component analysis (ndimage.label from the scipy package; Virtanen
et al. 2020). Compute tasks were distributed across the workers by chunking (512 voxels
edge length; 6, 2 voxels overlap for mi, vc). Chunk-wise IDs were made unique data set
wide, and the overlap regions were used to unify IDs of objects that span across multiple
chunks. The resulting 3D connected components of voxels (supervoxels) were subsequently
analyzed and stored in an accessible format, as described in the next paragraph.

The supervoxels formed the basis for SegmentationObjects (SO), which store additional
properties (representative coordinate, voxel bounding box, voxel count, mesh, skeletons,
mesh area and mesh bounding box) of cells, ultrastructure (mi, vc), contact sites (cs, see
Synapse-cell association) and synapse fragments/agglomerates (sv-syn, see Synapse-cell
association) and are collected in SegmentationDatasets (SD), with separate SDs for each
SO type. An SD can therefore be seen as a key-value store that provides an interface to
individual supervoxels/SOs.

The SO property extraction was performed on 3D chunks (512 voxels edge length)
of every ultrastructure’s instance segmentation, as described in the following: The mesh,
voxel count, bounding box and representative coordinate of all segmentation IDs in a cube
are computed in a single pass and the partial results are merged in a final reduction step.
Representative coordinates were chosen as a random voxel coordinate (except for putative
synapse objects, see Synapse-cell association), as long as it was inside the object. For every
syn object the fraction of overlapping symmetric and asymmetric voxels was determined.
Cell SO also store the ID and fraction of overlapping ultrastructure segmentation voxels
and were skeletonized1 using kimimaro (Silversmith et al. 2021) which adapts and extends
the TEASAR algorithm (Sato et al. 2000). Meshes of cells, mitochondria and vesicle clouds
were computed with zmesh2.

1scale=2 and const=500
2https://github.com/seung-lab/zmesh, meshing parameters were simplification_factor: 50,

max_simplification_error: 40 nm.

https://github.com/seung-lab/zmesh

5.2 Materials and Methods 87

SuperSegmentationObject generation
In this section, the extraction and generation of neuron properties is described, which pro-
vide access to neuron-level statistics, such as the size distribution of dendritic synapses.
The SuperSegmentationObject (SSO) class represents the agglomerated supervoxels (cells
or cell fragments) of a neuron segmentation. Based on a supervoxel graph, that defines
which cell fragments belong to the same neuron, an SSO aggregates the properties of
the corresponding cell SOs (representative coordinate, bounding box, mesh, skeleton) and
contains associated ultrastructure SO IDs and further analysis results (cell type predic-
tions and certainties, vertex and skeleton node compartment predictions, local morphology
embeddings, spine head volumes, myelination status).

SO properties were merged as follows. Representative coordinate: first SO rep. coord;
bounding box: min and max value of all SO bounding boxes; meshes: concatenation of
vertices and indices; skeleton: concatenation of nodes and edges, adding edges between
the closest skeleton nodes of SO skeleton pairs until the whole-cell skeleton was a single
connected component.

Myelin predictions were mapped onto cell skeletons by storing the fraction of as-myelin-
predicted voxels within a cube of size [11, 11, 5] voxels (voxel size [nm]: 40, 40, 100) at
every skeleton node and thresholding (per-voxel probability threshold 0.5 and classification
via majority vote). The myelin node predictions were smoothed using a running majority
vote on all neighboring nodes collected within a 10 µm path traversal starting from the
source node.

Vertex predictions of the morphology networks for dendrite, spines, axon, boutons and
soma were propagated to skeleton nodes by calculating the majority vote of the k = 50
nearest prediction locations. The node labels were in turn smoothed using a running ma-
jority vote on all neighboring nodes collected within a 10 µm path traversal starting from
the source node. The smoothing was only applied on the three major compartments (den-
drite, axon, soma). Finer structures were then reassigned to corresponding compartments
(e.g. bouton en-passent only if the original node remained axonic).

Synapse-cell association
The synapse reconstruction was performed through a multi-step extraction process. At
first, a contact site instance segmentation was generated by iterating over the cell segmen-
tation and storing adjacent supervoxel IDs. At every boundary voxel (6-connectivity) of
the cell segmentation, a partner cell ID was identified by finding the majority ID within
a window of [13, 13, 7] voxels (voxel size: 10 × 10 × 25 nm3). If a majority ID was found
(background and the source boundary voxel ID were excluded) the contact site voxel was
assigned a value that allowed the retrieval of the two partner cells (bit shift combination
to uint64 in case of uint32 cell segmentation, tuple of uint64 in case of uint64 cell segmen-
tation). The resulting thin boundary instance segmentation was morphologically closed
(N=7 iterations; this is sufficient to close the maximum distance of adjacent cells found
through the adjacency filter, see “contact sites” in Fig. 5.2) and dilated two times after-

88 5. SyConn2 - A connectome analysis framework

wards. Note that one instance in this segmentation represents all contact sites between
a cell-supervoxel pair, since the contact instance ID is the same, even if the supervoxels
touch at different locations.

In a second step, the contact site instances were intersected with the voxels of the
sj foreground prediction, generating intermediate synapses only between cell supervoxels
(sv-syn). Individual putative synapse objects between two cells (supervoxel agglomerates)
were obtained by computing connected components on a graph that was built with the
voxels of sv-syns of all the cells’ supervoxels that form such sv-syns between the cell pair.
Within sv-syns between the same supervoxel pair, edges were added between voxels not
farther apart than two voxels, and sv-syns of different supervoxel pairs were connected
if their closest voxels were within a distance of at most 250 nm. For generating synapse
meshes the function create_from_point_cloud_poisson from open3D (Zhou et al. 2018)
was applied on the voxels of the individual synapse objects. The area of the synaptic cleft
was estimated by dividing the mesh area by two, to not double count the front - and back
face. The representative coordinate of synapses was the voxel closest to the mean of all
object voxel coordinates.

Synaptic properties
The resulting synaptic objects were further assigned a probability value with a random
forest classifier3 (N = 10 features: synapse size in voxels, mesh area, numbers and voxel
counts of pre- and postsynaptic mitochondria and vesicle clouds), with 0 meaning least
synaptic and 1 meaning most synaptic. For the training, a random set of extracted, putative
synapse objects were manually annotated into synaptic and non-synaptic (synapses-rfc,
Appendix B).

The voxel count features for nearby mi and vc objects (initial search within a maximal
distance of 4 µm to the representative coordinate) were calculated by finding the number
of mi or vc mesh vertices with a maximum distance of 2 µm or 1 µm to the synapse voxels
respectively, followed by dividing this vertex count with the total object vertex count, to
obtain a fraction that could then be multiplied with the object voxel count, resulting in
the number used as feature (mesh vertices and synapse voxels were 2-fold subsampled).

The “spiness” of a synapse was identified with nearest-neighbor classification of the
vertex labels predicted by the morphology network for dendrite segmentation (k = 50,
relative to the synapse representative coordinate). An estimate for the spine head volume
was calculated for all synapses that were labeled both as spine head from the vertices
and dendrite from their nearest skeleton node (see SuperSegmentationObject generation).
Centered at the synapse representative coordinate, all voxels of the binary postsynaptic
neuron mask within a cube of 400×400×200 voxels (original voxel resolution) were loaded.
The neuron mask was resized to isotropic voxels, binary filled (ndimage.binary_fill_
holes from scipy), and local maxima (feature.peak_local_max from skimage) of its
distance transform (ndimage.distance_transform_edt) served as seeds for a watershed

3Using the scikit-learn (Pedregosa et al. 2011) implementation with 2000 trees.

5.2 Materials and Methods 89

(skimage) procedure. The watershed propagated the labels of the local maxima found by
a 50-nearest-neighbor classification of the vertex spine predictions (spine neck, spine head,
dendritic shaft). The spine head volume was then calculated from all the voxels of the
segmented spine head supervoxel.

Time and cost analysis
The timing and throughput experiments were performed with a dynamically created SLURM
cluster on Google Cloud Platform using elasticluster4. In total, 24 compute nodes (n1-
highmem-32) each with 2 Tesla P100 GPUs, 32 virtual cores and 208 GB RAM were
used in combination with a Gluster filesystem5 (4 server nodes with SSD) and a 10 TB
persistent disk to store the input data (aligned EM data, cell segmentation, myelin, sj,
mi, vc and synapse type predictions). The processed data were subvolumes (voxel extent:
[6144,6144,3072], [9216,9216,4608], [12288,12288,6144], [15360,15360,7680]) centered at the
center of the zebra finch area X, large data set (Appendix A).

All processing steps were grouped as follows:

• Data store: Generation and caching of object properties for mi and vc Segmenta-
tionObjects (SO), and cell SO and SuperSegmentationObjects (SSO).

• Synapse extraction: SO generation (cs, sv-syns and putative synapses), feature ex-
traction and RF classification.

• Synapse enrichment: Spine head volume estimation and consolidation of synapse
properties.

• Morphological analysis (Chapter 4): Astrocyte prediction and splitting6, cellular
compartment prediction (Section 4.3.1, multi-view approach used the two models:
axon, dendrite, soma, en-passant bouton, terminal bouton and dendritic shaft, spine
neck, spine head, axon/soma; point-based used three models: axon, dendrite, soma
and axon, en-passant bouton, terminal bouton and dendritic shaft, spine neck, spine
head), cell type classification (Section 4.3.2; point model with 20 µm context, 50k
points and redundancy of 20), morphology embeddings (Section 4.3.3, multi-view
embeddings as described in Schubert et al. 2019).

The point models for the compartment prediction used the architecture as described in
Table 4.4, with a slightly adapted configuration for the two fine-level models (neighborhood:
[32, 32, 32, 16, 8, 8, 4, 8, 8, 8, 16, 16, 16], output points: [-1, 1024, 512, 256, 64, 16, 8, 16,
64, 256, 512, 1024, -1]) and the axon-dendrite-soma model (neighborhood: [16, 16, 16, 16,
8, 8, 4, 4, 4, 4, 8, 8, 8]).

4https://github.com/elasticluster/elasticluster
5https://www.gluster.org/
6Approach as described in (Schubert et al. 2019). For the astrocyte prediction with points, the point

morphology learning networks (Section 4.1.2.) were slightly modified to infer skeleton node labels given
an input point cloud context

https://github.com/elasticluster/elasticluster
https://www.gluster.org/

90 5. SyConn2 - A connectome analysis framework

Mito-synapse distance distributions
This analysis was performed on the zebra finch area X, large data set. The minimal
distances between presynaptic MSN/GP (predicted GPi and GPe combined) synapses and
mitochondria were calculated as the Euclidean distance between representative synapse
coordinate and the closest mesh vertex (point on the surface; downsampled to voxels with
edge length 200 nm) of the neuron’s mitochondria. Neurons were filtered for minimal path
lengths as follows to exclude small reconstructions: Minimum axon, dendrite and soma
path length of 100 µm, 50 µm and 5 µm, respectively, and cell type certainty (Section 4.3.2)
of at least 0.75. Only axo-dendritic synapses with a random forest classifier probability
above 0.8 were included. Path lengths were calculated by summing the edges between cell
skeleton nodes that were labeled as the respective compartment type. The inference of cell
types was performed with the point model (Section 4.3.2), N = 20 predictions per neuron,
50,000 input points and a context radius of 20 µm.

The compartment prediction was performed with the multi-view morphology networks
(Section 4.3.1) that were trained on the ground truth of the small data set (area X zebra
finch, small; semseg-coarse-train and semseg-coarse-fine, Appendix B).

Cell types were predicted by the point model with 20 predictions per cell, 50,000 input
points and a context radius of 20 µm (Section 4.3.2). During the assessment the information
about synapse size (upper or lower half) and cell type was hidden.

A control for the minimal synapse-mitochondria distances was performed by sampling
locations on the cell’s axonal compartment surface randomly and calculating the distance
to the closest mitochondria mesh vertex (downsampled to voxels with edge length 200 nm).
For each cell up to 1000 skeleton nodes that belonged to the axon (less if the cell contained
fewer nodes) were drawn, and for each node a random vertex from all cell mesh vertices
that were assigned to that node via Voronoi partitioning was chosen as the control location.

5.3 Results 91

5.3 Results

5.3.1 Circuit reconstruction
Taking advantage of the details visible in dense heavy metal staining of tissue, SyConn2
processing begins with multiple voxel-level semantic annotations that span the entire VEM
data set, including segmentation into cells, extracellular space and ultrastructure (Fig. 5.2).
It provides the option to apply deep neural network segmentation models to an entire EM
data set by splitting it into chunks and distributing them to multiple workers using the
SLURM workload manager (Yoo et al. 2003).

Figure 5.2: Voxel-level neuron and ultrastructure segmentation (synaptic junctions (sj) in
red; mitochondria (mi) in blue; vesicle clouds (vc) in green) derived from aligned raw VEM
data. While intra-cellular ultrastructure (e.g. mi segmentation) uses simple voxel-overlap,
synaptic junction predictions are associated with neurons by combing the sj voxels with a
contact site instance segmentation, which results in an instance segmentation of putative
synapses (syn segmentation). The contact areas of the synapses are computed, and pre- and
postsynaptic cell types assigned (1: MSN dendrite, 2: excitatory axon, EA, 3: inhibitory
axon, IA). Bottom right shows a rendering of the three neurons involved in the synapse
formation (green box; neuron colors correspond to the 2D overlay). Scale bars are 1 µm
in the EM section and 4 µm in the neuron rendering (bottom right). Figure adapted from
(Schubert et al. In review).

In contrast to Staffler et al. 2017, where features from a subvolume around the contact
site were used for synapse classification, synapse reconstruction is separated in two, inde-
pendent parts: firstly, the extraction of contact areas between neurons, which additionally
serve for synaptic partner assignment, and secondly, the identification of synaptic junctions
on voxel level (Fig. 5.2). The contact sites are combined by overlap with the prediction

92 5. SyConn2 - A connectome analysis framework

mask of the synaptic junctions, split by connected components into individual, putative
synapse objects (Materials and Methods) which in turn receive a “synapticity” probability
by a random forest classifier (10-fold cross-validation F1-score for the synapse-true class
of 0.826; precision: 0.794, recall: 0.861; synapses-rfc, Appendix B). Note that there is no
intrinsic ordering of the neurons for the RFC partner features, because the information
about pre- and postsynaptic site is not taken into account. The classifier performance was
only slightly affected when duplicating the samples in the training and test splits, and
swapping the partner features in the duplicates (F1-score: 0.834; precision: 0.803, recall:
0.868).

A useful byproduct of the two-step approach are the neuron-to-neuron contacts, that
would not be available if pre- and postsynaptic partners were extracted jointly (Buhmann
et al. 2021; Turner et al. 2020). Ultrastructure other than synapses (mitochondria and
vesicle clouds) is associated to the neuron (or neurite fragment) with which it forms the
largest voxel overlap.

Instead of inferring the direction of synaptic signaling locally (Buhmann et al. 2021;
Macrina et al. 2021; Shapson-Coe et al. 2021; Turner et al. 2020), the neuron skeletons were
divided into subgraphs belonging to axon, dendrite, and soma based on the prediction of
the morphology learning networks (Chapter 4: Learning cellular morphology). The starting
point for these models are neuron representations, that include associated ultrastructure
and cell meshes, as well as the cell skeleton. The compartment and cell type predictions
of a neuron are then used to extend the representation of the synapses associated to it
(Fig. 5.2 top right).

In order to manage the huge amount of data at a reasonable cost, huge efforts were
made to ensure computational efficiency at every step of the processing. For example,
instead of dense neuron processing, the employed neural morphology networks operate
on sparse point clouds and all pipeline steps were implemented to be highly distributed.
Processing can be roughly divided into three groups: the preparation of object property
file caches (data store), contact site generation and overlay with synaptic junction pre-
dictions (synapse extraction), surface segmentation, classification and embedding of cells
(morphology analysis), and the final consolidation of synapse properties with the export of
a connectivity graph (synapse enrichment). A detailed overview of the intermediate steps
and their dependencies is shown in Fig. C.1.

A timing of the SyConn processing on Google Cloud Platform and the area X zebra
finch, large data set yielded overall a throughput of about 34 megavoxels per hour per CPU
core and 4.4 gigavoxels per hour per GPU, which leads to an approximate cost of about
$2,000 per teravoxel of 8-bit raw VEM data at a voxel size of 10 × 10 × 25 nm3 (∼ $800
per million cubic microns, Section 5.2).

The timed processing steps were grouped into CPU-only (data store, synapse extraction,
synapse enrichment; 68.56 h processing for 1.812 teravoxels) and GPU+CPU (morphologi-
cal analysis; 8.44 h point-based, 27.51 h multi-view-based processing for 1.812 teravoxels).
Assuming GPU nodes only for GPU relevant processing steps, the cost per teravoxel for

5.3 Results 93

the different categories summed to approximately7 $1200 for CPU-only (1.325 hourly rate
for one CPU node), $380 for GPU+CPU (point-based; $1200 for multi-view models; $3.36
hourly rate for one GPU node) and $260 for infrastructure ($4.84 hourly rate for persistent
HDD disk and $0.348 per SSD file system server node); in total $1840 per teravoxel (voxel
size: 10 × 10 × 25 nm3).

Figure 5.3: Timings of the different pipeline steps on subvolumes of area X zebra finch,
large, grouped into synapse extraction, data store, synapse enrichment and morphology
analysis (m.a.) with multi-views (views) and point clouds (points). a Compute time as
a function of the processed volume (in teravoxels, TVx) with linear fits. Pie charts show
the fraction of the different steps relative to the total time at the smallest and largest test
cube (i: 0.29 · 106µm3, syn. extraction: 0.45, data store: 0.22, syn. enrichment: 0.18, m.a.
(points): 0.14; ii: 4.53 · 106µm3, 0.58, 0.19, 0.12, 0.11). The “views” step was excluded
for the “total” timings and the pie charts in i, ii. Compute resources: 24 Google Cloud
computing nodes (n1-highmem-32), each with 32 virtual cores (threads), 2 Tesla P100, 208
GB memory. b Compute time as a function of the number of available compute nodes (8,
12, 16, 20, 24) with a constant processing volume of 0.391 teravoxels. Color code as in a.
Figure adapted from (Schubert et al. In review).

The point morphology networks (Chapter 4) showed a 3.3-fold increase in speed com-
pared to the multi-view approach (8.4 h vs. 27.5 h at 1.81 teravoxels, Fig. 5.3a), albeit
with a slight performance decrease in the semantic segmentation of neuron surfaces (Sec-
tion 4.3.1: Compartment prediction). Fig. 5.3a shows an increasing dominance of the
synapse reconstruction (i vs. ii) and a disproportionate increase in throughput with more

7based on https://cloud.google.com/products/calculator

https://cloud.google.com/products/calculator

94 5. SyConn2 - A connectome analysis framework

computational power (Fig. 5.3b), presumably due to the saturation of the available in-
put/output operations of the file system.

To date, SyConn2 has been applied to three SEM data sets ranging from approximately
0.5 to 11.5 teravoxels and two species (Fig. 5.4) which is described in detail in (Kornfeld
et al. 2020; Svara et al. In review).

Figure 5.4: VEM data sets processed with SyConn2 (z.f.: zebra fish). a Volume in mm3.
b Volume as voxel count in teravoxels (TVx).

5.3.2 Data interface
SyConn2 was developed in Python, is open source8 and implements an API (Application
Programming Interface) that allows object properties to be accessed via key-value stores
during processing and for later in-depth analyses. To ease the access of the connectome
data output also for researchers that have not originally produced and analyzed the volume
EM data sets, a webclient was developed based on the widely used Neuroglancer interface
(Maitin-Shepard et al. 2021; Fig. 5.5). Using the SyConn client, neuroscientists can for
example inspect neurons and reconstructed synapses with the associated morphology net-
work annotations, without downloading the entire data set. This feature is intended to
help a larger research community take advantage of the rapidly emerging connectomic data
sets.

8https://github.com/StructuralNeurobiologyLab/SyConn

https://github.com/StructuralNeurobiologyLab/SyConn

5.3 Results 95

Figure 5.5: A reconstructed synapse between two pallidal-like cells (top right) in zebra
finch area X, large visualized with the SyConn2 web interface through Neuroglancer (syn:
synapse, mi: mitochondrion). Scale bar in the EM 3D rendering is 30 µm.

5.3.3 Mitochondria recruitment at synapses

In a previous analysis, the relation between the firing rates of striato-pallidal neuron classes
and the mitochondrial content of different cellular compartments was analyzed (Dorken-
wald, Schubert, et al. 2017). The now available, much larger pool of cell-type identified
synapses allowed to test the hypothesis that larger synapses preferentially recruit mito-
chondria presynaptically, which could accommodate increased local energy demand (Vos
et al. 2010).

To estimate the fraction of true synapses in the analysis, 52 putative synapse objects
were drawn from a subset of 100 randomly selected presynaptic MSN and 38 GP cells, and
annotated as true or false synapse. The annotated synapses were part of a pool of 100,
which was evenly sampled from lower and upper half of the global synapse area distribution
for MSN and GP respectively, e.g., 25 were presynaptic MSN and above the type-specific
area median. In total, 12 GP and 13 MSN from the lower half of synapse area distributions
and 13 GP and 14 MSN of the upper half were annotated. 51 synapses were found to be
true, 1 upper half MSN to be incorrect.

Distances are indeed smaller between mitochondria and larger synapses, with a cell-type
dependent distance distribution (Fig. 5.6a; distance to median lower half of synapses MSN:
0.833 µm, GP: 0.267 µm; median upper half MSN: 0.339 µm, GP: 0.232 µm; N synapses GP:
7,482, MSN: 59,131; p-value 0.0 for lower vs. upper half size population in both cell types

96 5. SyConn2 - A connectome analysis framework

using a two-sided Kolmogorov-Smirnov 9; Materials and Methods).
In addition, pallidal neuron types (GP), which exhibit high firing rates, showed smaller,

left shifted, synapse-mitochondria distance distributions compared to the sparsely firing
striatal spiny neurons (MSN). Furthermore, large and small GP synapses inherited a small
mitochondria-to-synapse distance, whereas mitochondria appear to be recruited selectively
to large MSN synapses (Fig. 5.6a,b). This simple analysis demonstrates that queryable
EM connectomic data sets with dense ultrastructural annotation provide insights that go
far beyond simple connectivity analyses.

Figure 5.6: Distance analysis between synapses and mitochondria in zebra finch area X,
large. a Cumulative distribution of the minimal distance between axo-dendritic synapses
(and a random control, Methods) and mitochondria in GP and MSN, split into small and
large synapses (≤ and > median of mesh area; median GP: 1.16 µm2, MSN: 0.75 µm2;
N synapses GP: 7,482, MSN: 59,131; N random control locations for GP: 37,149, MSN:
6,128,974). The two-sided Kolmogorov-Smirnov test returned p-values of 0.0 for lower vs.
upper half of the size population for GP (test statistic: 0.154) and MSN (test statistic:
0.245) and for lower vs. control for GP (test statistic: 0.195) and MSN (test statistic:
0.206). b Box plot (median, lower and upper quartile; whiskers, 1.5x interquartile (Q3-
Q1); points, outlier) of the average synapse count per micrometer for cell types MSN (N =
6327, median: 0.017 µm−1, Q1: 0.012 µm−1, Q3: 0.022 µm−1) and GP (N = 38, 0.057 µm−1,
0.033 µm−1 0.066 µm−1). Two-sided Mann-Whitney U test statistic: −9.71 and p-value:
2.57 · 10−22. Figure adapted from (Schubert et al. In review).

9ks_2samp method from the scipy package in “asymp” mode

5.4 Discussion 97

5.4 Discussion
With the rapid advances in imaging pipelines, available data sets are now peaking at
petabyte scales (∼ 1 mm; Consortium et al. 2021; Shapson-Coe et al. 2021), a trend that
is likely to continue. SyConn2 contributes to the open source analysis of volume electron
microscopy data, enabling community-driven development and improving reproducibility.
In addition to a high degree of automation and low error rates, the cost efficiency of the
analysis is a decisive factor. Excluding voxel-level segmentation maps, the cost for the
extraction of a comprehensive synaptic connectivity map was estimated to be about $800
per million cubic microns. Extrapolating this to an entire mouse brain (5·1011 µm3, Abbott
et al. 2020) yields a horrendous sum of $400 million.

With the growing data set sizes, distributed proofreading is becoming a common tool to
address remaining errors in the circuit reconstruction (C. Bishop et al. 2021; Dorkenwald
et al. 2022; Zhao et al. 2018). In addition to the convenient way of visualizing detailed
analysis results, the SyConn2 webclient could be extended to an interface that enables the
feedback of manual corrections into the connectome database.

To lift this effort, the automatically generated cellular compartment labels could be uti-
lized to verify neurobiological consistency in neuron representations and suggest detected
inconsistencies for guided, human inspection. Such constraints are that each neuron or
neurite may contain at most one soma connected component in its skeleton graph, or, if
neuroanatomy permits, that dendritic and axonal neurites are only connected via a soma.
These properties could be leveraged to not only identify remaining compartment predic-
tion errors but also potential merge errors in the neuron or initial synapse segmentation.
Out-of-distribution samples, such as incorrectly merged neuron fragments, might also be
identifiable by exploiting the certainty of the supervised cell type classification or cluster
properties in the self-supervised cell embeddings.

98 5. SyConn2 - A connectome analysis framework

Chapter 6

Conclusions and Outlook

6.1 Conclusions
In the first part of this thesis, gas cluster ion beam (GCIB) milling was combined with scan-
ning electron microscopes (SEM), resulting in a serial thick-section block-face technique
for biological specimen. First imaging experiments showed the feasibility of its application
with silicon wafers and a floating mask for section collection, but further advancements in
section collection and during image acquisition are required for routine. The deep learn-
ing based model for autofocusing and -stigmation in SEMs showed fast convergence and
reliability, making it a useful tool for the continuous and long-running image acquisitions
in connectomics and beyond.

As an alternative to cell morphology analysis with 3D-EM voxel data, two types of
convolutional neural networks, dubbed cellular morphology neural networks (CMNs), were
adopted to exploit surface representations as a data source. The CMNs were evaluated
on the tasks of cell type classification and surface segmentation of neuronal compartments
and achieved high performance scores. In addition, a self-supervised training paradigm
was applied to extract morphological features for neuron clustering that showed qualitative
agreement with the supervised cell type classifier.

The developed synaptic connectivity framework SyConnn2 fundamentally upgraded the
previous version (Dorkenwald et al. 2017). It, within the limits of ground truth generation,
automates the steps of synaptic connectivity inference, cell type and compartment classi-
fication and was applied to EM data sets with up to 12 teravoxels. The framework thus
substantially improves the degree of automation in synaptic circuit analysis and allows
researchers to inspect and query the extracted connectivity results.

6.2 Outlook
The high removal rate of GCIB milling enables future combination with a high-throughput
multi-beam SEM, but reliable section collection remains challenging, albeit critical for the
use of GCIB-SEM in volume electron microscopy (VEM). Whether the proposed collection

100 6. Conclusions and Outlook

procedure with floating masks can be improved to achieve the reliability required for volume
electron microscopy acquisitions remains to be determined.

The DeepFocus approach will be a useful tool for upcoming acquisitions with GCIB-
SEM, which require frequent refocusing. Also, the adoption to other microscope types or
the control of more machine parameters seem plausible.

Surface meshes offer a lightweight but expressive neuron representation, which can
be exploited by deep learning models, such as the here presented cellular morphology
networks. Given the data sparsity and ease of transferability between data sets with inputs
not directly relying on sometimes varying image statistics, mesh-based approaches seem
worthwhile for VEM. It remains to be tested if CMNs profit from other types of neural
network architectures. MeshCNN (Hanocka et al. 2019), for example, takes into account
the edges of the mesh representations in addition to point locations.

With automated circuit reconstruction, the time required to analyze EM data sets is
substantially reduced. As a result, connectomic studies targeting brain region development
become feasible.

Appendix A

Biological samples

The following samples and data were used for development, testing and analysis:

• zebra finch area X, small Part of the zebra finch nucleus area X provided by J.
Kornfeld. Data set size: 10,664 x 10,914 × 5701 8 bit voxels of size 9 x 9 x 20 nm.
Neuron segmentation, skeletons and meshes were provided by Google Research.

• zebra finch area X, large Part of the zebra finch nucleus area X provided by J.
Kornfeld. Data set size: 27,119 x 27,350 × 15,494 8 bit voxels of size 10 x 10 x 25
nm. Neuron, ultrastructure and synapse type segmentation was provided by Google
Research.

102 A. Biological samples

Appendix B

Ground truth data

If not otherwise stated, data sets were generated in zebra finch area X, large.

• semseg-fine-train Five node-wise annotated cell reconstructions (zebra finch area X,
small). Labels used: Dendritic shaft, spine neck, spine head, other (axon/soma);
Number of annotated nodes: 21,081 (dendritic shaft), 3223 (neck), 5601 (head), 3245
(other). The multi-view data was split into training (24,248 views) and validation
(6062 views); views of all reconstructions were shuffled prior to the split. Note
that here the rendering location sampling was performed using the center vertex
within 2 µm voxels. Multi-views contained N = 5 projections. Label boundaries
were smoothed by assigning each vertex the majority label of 40 vertices, that were
found by BFS on a vertex graph. All cell mesh vertices were used as graph nodes
and edges were added between vertices that were within a distance of 120 nm.

• semseg-fine-test-vertices: One dendritic arbor (zebra finch area X, small). Number
of annotated nodes: 75 (head), 122 (neck), 770 (shaft).

• dendritic-synapses: Four neurons (zebra finch area X, small) with synapses manually
annotated into spine head or dendritic shaft (shaft: 94, head: 88).

• semseg-coarse-train: 45 node-wise annotated neurons (zebra finch area X, small).
Number of annotated nodes: 94,984 (axon), 112,103 (dendrite), 102,324 (soma),
19,639 (bouton en passant) and 5745 (terminal bouton). Views of all reconstructions
were shuffled prior to splitting into train (90%) and valid (10%) data set. Multi-views
contained N = 4 projections.

• semseg-coarse-test: 6 node-wise annotate neurons (zebra finch area X, small). Num-
ber of annotated nodes: 27,405 (dendrite), axon (3812), soma (11,551), bouton en-
passant (3093), terminal bouton (1210).

• semseg-large-train: 29 sparsely, node-wise annotated neurons (6 DA, 6 HVC, 2
LMAN, 1 FS, 2 GPe, 2 GPi, 2 LTS, 2 MSN, 2 NGF, 2 STN and 2 TAN) with
the following vertex and node support: dendrite (2848956, 41008), axon (2908024,

104 B. Ground truth data

92318), soma (113642, 83), bouton en-passant (1423132, 23381), terminal bouton
(218560, 3063), neck (128923, 6518), head (176322, 5506).

• semseg-large-test: 13 sparsely, node-wise annotated neurons (2 DA, 2 HVC and 1 of
each of the other 9 cell types, see below) with the following vertex and node support:
dendrite (1297702, 21037), axon (1720652, 60872), soma (766222, 3647), bouton en-
passant (1069485, 17401), terminal bouton (137827, 2068), neck (70612, 4264), head
(77328, 2667).

• celltypes-large: 253 neuron reconstructions labeled as one of 11 classes. Class support:
STN (35), DA (19), MSN (32), LMAN (31), HVC (33), TAN (12), GPe (14), GPi
(17), FS (27), LTS (10), NGF (23).

• synapses-rfc: 300 neuron-neuron contact locations, manually annotated into synaptic
(156) and non-synaptic (144).

• myelin-gt: Three manually proofread cubes from zebra finch area X, small, with a
total of approx. 100 megapixels (voxel size [µm]: 36, 36, 80). Original prediction
was based on the output of the inner myelin model presented in (Dorkenwald et
al. 2017), i.e. foreground pixels flag the entire volume of a myelinated axon. Class
support: background (98%), foreground (2%).

• synapse-type-gt: Based on from zebra finch area X, small, four manually annotated
cubes and 900 small cubes that were auto-generated from synapse locations between
cell types with known synapse type (background: 95.8%, asymmetric: 1.5%, sym-
metric: 2.7%). For training patch creation, cubes were drawn based on their total
volume fraction.

Appendix C

SyConn2 flowchart

106
C

.
SyC

onn2
flow

chart

[SD] cs_ssv

find contact sites

combine and
split cs

[SD] syn_ssv

combine and
split syn

synapse
extraction

[KD & SD] SV
Segmentation

[KD] aligned
EM data

[KD] SJ
Segmentation

[KD] MI
Segmentation

[KD/CD] VC
Segmentation

segmentation CNN CNN

SV
agglomeration

Glia removal

astrocyte
removal [KD & SD] SV

Segmentation SV agglomeration

initial cell
rendering

astrocyte
prediction

astrocyte splitting

neuron SV
agglomeration

step 1

step 3

step 2

+

[KD] synapse
type

CNN

neuron
analysis

[SSD] Neuron

compartment
prediction

cell rendering

[SSD] Neuron

spine
prediction

skeleton
generation

cell type
prediction

+

synapse
analysis

[SD] syn_ssv

[KD & SD] syn

synapse gen.

SD: SegmentationDataset
KD: KnossosDataset
SSD: SuperSegmentationDataset

[KD & SD] cs

[SSD] Neuron

SV: (cell-) supervoxel
SJ: synaptic junction
VC: vesicle cloud
MI: mitochondrion

mesh
generation

processing step

Data structure

initial requirement

optional structure or
processing step

create SSD

[KD] myelin

CNN

Figure C.1: Flowchart of the SyConn2 architecture.

Appendix D

List of Abbreviations

AF auto-focus

BFS breadth-first search

CMN cellular morphology neural network

CNN convolutional neural network

CPU central processing unit

DA putative dopaminergic axon

EM electron microscopy

FCN fully convolutional network

FFN flood-filling neural network

FIB focused ion beam

FOV field of view

FS putative fast-spiking neuron

GB gigabyte

GCIB gas cluster ion beam

GPe putative pallidal-like neuron of direct pathway

GPi putative pallidal-like neuron of indirect pathway

GPU graphics processing unit

GUI graphical user interface

108 D. List of Abbreviations

HPC high-performance computing

HVC putative HVC-projection axon

k-NN k-nearest neighbors

LMAN putative LMAN-projection axon

LTS putative low-threshold-spiking neuron

MAE mean absolute error

MLP multilayer perceptron

MSEM multi-beam scanning electron microscope

MSN putative medium spiny neuron

NGF putative neuro glia form

OLS ordinary least squares

PCA principal component analysis

RAM random-access memory

RF random forest

ROI region of interest

s.d. standard deviation

SBEM serial block-face scanning electron microscopy

SEM scanning electron microscope

SNR signal-to-noise ratio

STN putative subthalamic-nucleus-like neuron

TAN putative tonically active neuron

TEM transmission electron microscope

VEM volume electron microscopy

Bibliography

Abbott, L. F., Bock, D. D., Callaway, E. M., Denk, W., . . . Van Essen, D. C. (2020). The
mind of a mouse. Cell, 182, 1372–1376.

Bartol, J., Thomas M, Bromer, C., Kinney, J., Chirillo, M. A., . . . Sejnowski, T. J. (2015).
Nanoconnectomic upper bound on the variability of synaptic plasticity. eLife, 4,
e10778.

Batten, C. F. (2000). Autofocusing and astigmatism correction in the scanning electron
microscope (Master’s thesis). University of Cambridge.

Bentley, J. L. (1975). Multidimensional binary search trees used for associative searching.
Commun. ACM, 18, 509–517.

Berman, M., Triki, A. R., & Blaschko, M. B. (2018). The lovász-softmax loss: A tractable
surrogate for the optimization of the intersection-over-union measure in neural net-
works. Conference on Computer Vision and Pattern Recognition (CVPR), 4413–
4421.

Binding, J., Mikula, S., & Denk, W. (2013). Low-dosage Maximum-A-Posteriori focusing
and stigmation. Microsc. Microanal., 19, 38–55.

Bishop, C., Matelsky, J., Wilt, M., Downs, J., . . . Gray-Roncal, W. (2021). Confirms:
A toolkit for scalable, black box connectome assessment and investigation. 2021
43rd Annual International Conference of the IEEE Engineering in Medicine Biology
Society (EMBC), 2444–2450.

Bishop, C. M. (2006). Pattern recognition and machine learning (information science and
statistics). Springer-Verlag.

Boulch, A. (2020). Convpoint: Continuous convolutions for point cloud processing. Com-
puters & Graphics, 88, 24–34.

Boulch, A., Guerry, J., Le Saux, B., & Audebert, N. (2018). SnapNet: 3D point cloud
semantic labeling with 2d deep segmentation networks. Computers & Graphics, 71,
189–198.

Boulch, A., Puy, G., & Marlet, R. (2020). Fkaconv: Feature-kernel alignment for point
cloud convolution. Proceedings of the Asian Conference on Computer Vision, 12622,
381–399.

Breiman, L. (2001). Random forests. Machine Learning, 45, 5–32.
Briggman, K. L., Helmstaedter, M., & Denk, W. (2011). Wiring specificity in the direction-

selectivity circuit of the retina. Nature, 471, 183–188.

110 BIBLIOGRAPHY

Budzillo, A., Duffy, A., Miller, K. E., Fairhall, A. L., & Perkel, D. J. (2017). Dopaminergic
modulation of basal ganglia output through coupled excitation–inhibition. Proceed-
ings of the National Academy of Sciences, 114, 5713–5718.

Buhmann, J., Sheridan, A., Malin-Mayor, C., Schlegel, P., . . . Lee, W.-C. A., et al. (2021).
Automatic detection of synaptic partners in a whole-brain drosophila electron mi-
croscopy data set. Nature Methods, 18, 771–774.

Buslaev, A., Iglovikov, V. I., Khvedchenya, E., Parinov, A., . . . Kalinin, A. A. (2020).
Albumentations: Fast and flexible image augmentations. Information, 11, 125.

Chen, T., Kornblith, S., Norouzi, M., & Hinton, G. (2020). A simple framework for con-
trastive learning of visual representations. Proceedings of the 37th International
Conference on Machine Learning, 119, 1597–1607.

Ciresan, D. C., Giusti, A., Gambardella, L. M., & Schmidhuber, J. (2012). Deep neural
networks segment neuronal membranes in electron microscopy images. Advances in
Neural Information Processing Systems, 25, 2852–2860.

Consortium, M., Bae, J. A., Baptiste, M., Bodor, A. L., . . . Yu, S.-c. (2021). Functional
connectomics spanning multiple areas of mouse visual cortex. bioRxiv, 2021.07.28.4
54025.

Costa, M., Manton, J. D., Ostrovsky, A. D., Prohaska, S., & Jefferis, G. S. (2016). Nblast:
Rapid, sensitive comparison of neuronal structure and construction of neuron family
databases. Neuron, 91, 293–311.

Deisenroth, M. P., Faisal, A. A., & Ong, C. S. (2020). Mathematics for machine learning.
Cambridge University Press.

Denk, W., & Horstmann, H. (2004). Serial block-face scanning electron microscopy to
reconstruct three-dimensional tissue nanostructure. PLoS Biol., 2, e329.

Dorkenwald, S., McKellar, C. E., Macrina, T., Kemnitz, N., . . . Seung, H. S. (2022). Fly-
wire: Online community for whole-brain connectomics. Nature Methods, 19, 119–
128.

Dorkenwald, S., Schubert, P. J., Killinger, M. F., Urban, G., . . . Kornfeld, J. (2017). Au-
tomated synaptic connectivity inference for volume electron microscopy. Nature
Methods, 14, 435–442.

Dorkenwald, S., Turner, N. L., Macrina, T., Lee, K., . . . Seung, H. S. (2021). Binary and
analog variation of synapses between cortical pyramidal neurons. bioRxiv, 2019.12
.29.890319.

Eberle, A. L., Mikula, S., Schalek, R., Lichtman, J., . . . Zeidler, D. (2015). High-resolution,
high-throughput imaging with a multibeam scanning electron microscope. J. Mi-
crosc., 259, 114–120.

Egerton, R. F. (2005). Physical principles of electron microscopy (Vol. 56). Springer.
Egerton, R. F., Li, P., & Malac, M. (2004). Radiation damage in the TEM and SEM

[International Wuhan Symposium on Advanced Electron Microscopy]. Micron, 35,
399–409.

Erasmus, S., & Smith, K. (1982). An automatic focusing and astigmatism correction system
for the SEM and CTEM. Journal of Microscopy, 127, 185–199.

2021.07.28.454025
2021.07.28.454025
2019.12.29.890319
2019.12.29.890319

BIBLIOGRAPHY 111

Fix, E., & Hodges, J. L. (1989). Discriminatory analysis. nonparametric discrimination:
Consistency properties. International Statistical Review/Revue Internationale de
Statistique, 57, 238–247.

Fukushima, K., & Miyake, S. (1982). Neocognitron: A new algorithm for pattern recognition
tolerant of deformations and shifts in position. Pattern recognition, 15, 455–469.

Glorot, X., & Bengio, Y. (2010). Understanding the difficulty of training deep feedfor-
ward neural networks. Proceedings of the Thirteenth International Conference on
Artificial Intelligence and Statistics, 9, 249–256.

Glorot, X., Bordes, A., & Bengio, Y. (2011). Deep sparse rectifier neural networks. Proceed-
ings of the fourteenth international conference on artificial intelligence and statis-
tics, 315–323.

Goldstein, J. I., Newbury, D. E., Joy, D. C., Lyman, C. E., . . . Michael, J. R. (2003).
Scanning electron microscopy and x-ray microanalysis. Springer.

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning [http://www.deeplearni
ngbook.org]. MIT Press.

Gour, A., Boergens, K. M., Heike, N., Hua, Y., . . . Helmstaedter, M. (2021). Postnatal con-
nectomic development of inhibition in mouse barrel cortex. Science, 371, eabb4534.

Grigorescu, S., Trasnea, B., Cocias, T., & Macesanu, G. (2020). A survey of deep learning
techniques for autonomous driving. Journal of Field Robotics, 37, 362–386.

Haberl, M. G., Churas, C., Tindall, L., Boassa, D., . . . Peltier, S. T., et al. (2018).
Cdeep3m—plug-and-play cloud-based deep learning for image segmentation. Na-
ture Methods, 15, 677–680.

Hanocka, R., Hertz, A., Fish, N., Giryes, R., . . . Cohen-Or, D. (2019). MeshCNN: A
network with an edge. ACM Trans. Graph., 38, 90:1–90:12.

Hayworth, K. J., Kasthuri, N., Schalek, R., & Lichtman, J. W. (2006). Automating the col-
lection of ultrathin serial sections for large volume TEM reconstructions. Microscopy
and Microanalysis, 12, 86–87.

Hayworth, K. J., Peale, D., Januszewski, M., Knott, G. W., . . . Hess, H. F. (2020). Gas
cluster ion beam SEM for imaging of large tissue samples with 10 nm isotropic
resolution. Nature Methods, 17, 68–71.

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition.
Conference on Computer Vision and Pattern Recognition (CVPR), 770–778.

Heinrich, L., Bennett, D., Ackerman, D., Park, W., . . . Xu, C. S., et al. (2021). Whole-cell
organelle segmentation in volume electron microscopy. Nature, 599, 141–146.

Helmstaedter, M. (2013). Cellular-resolution connectomics: Challenges of dense neural cir-
cuit reconstruction. Nature Methods, 10, 501–507.

Helmstaedter, M., Briggman, K. L., & Denk, W. (2011). High-accuracy neurite reconstruc-
tion for high-throughput neuroanatomy. Nat. Neurosci., 14, 1081–1088.

Heymann, J. A., Hayles, M., Gestmann, I., Giannuzzi, L. A., . . . Subramaniam, S. (2006).
Site-specific 3D imaging of cells and tissues with a dual beam microscope. Journal
of Structural Biology, 155, 63–73.

Holler, S., Köstinger, G., Martin, K. A., Schuhknecht, G. F., & Stratford, K. J. (2021).
Structure and function of a neocortical synapse. Nature, 591, 111–116.

http://www.deeplearningbook.org
http://www.deeplearningbook.org

112 BIBLIOGRAPHY

Hornik, K., Stinchcombe, M., & White, H. (1989). Multilayer feedforward networks are
universal approximators. Neural networks, 2, 359–366.

Horstmann, H., Körber, C., Sätzler, K., Aydin, D., & Kuner, T. (2012). Serial section
scanning electron microscopy (s3em) on silicon wafers for ultra-structural volume
imaging of cells and tissues. PLOS ONE, 7, 1–8.

Hu, Q., Yang, B., Xie, L., Rosa, S., . . . Markham, A. (2020). RandLA-Net: Efficient se-
mantic segmentation of large-scale point clouds. Conference on Computer Vision
and Pattern Recognition (CVPR), 11105–11114.

Hua, Y., Laserstein, P., & Helmstaedter, M. (2015). Large-volume en-bloc staining for
electron microscopy-based connectomics. Nature Communications, 6, 1–7.

Hubara, I., Courbariaux, M., Soudry, D., El-Yaniv, R., & Bengio, Y. (2017). Quantized
neural networks: Training neural networks with low precision weights and activa-
tions. The Journal of Machine Learning Research, 18, 6869–6898.

Hubel, D. H., & Wiesel, T. N. (1962). Receptive fields, binocular interaction and functional
architecture in the cat’s visual cortex. The Journal of physiology, 160, 106.

Ioffe, S., & Szegedy, C. (2015). Batch normalization: Accelerating deep network training
by reducing internal covariate shift. International conference on machine learning,
37, 448–456.

Jain, V., Murray, J. F., Roth, F., Turaga, S. C., . . . Seung, H. S. (2007). Supervised
learning of image restoration with convolutional networks. International Conference
on Computer Vision (ICCV), 1–8.

Januszewski, M., Kornfeld, J., Li, P. H., Pope, A., . . . Jain, V. (2018). High-precision
automated reconstruction of neurons with flood-filling networks. Nature Methods,
15, 605–610.

Johnson, E. C., Wilt, M., Rodriguez, L. M., Norman-Tenazas, R., . . . Downs, J., et al.
(2020). Toward a scalable framework for reproducible processing of volumetric,
nanoscale neuroimaging datasets. GigaScience, 9, giaa147.

Kanaya, K., & Okayama, S. (1972). Penetration and energy-loss theory of electrons in solid
targets. Journal of Physics D: Applied Physics, 5, 43–58.

Kar, M. K., Nath, M. K., & Neog, D. R. (2021). A review on progress in semantic image
segmentation and its application to medical images. SN Computer Science, 2, 1–30.

Kasthuri, N., Hayworth, K. J., Berger, D. R., Schalek, R. L., . . . Lichtman, J. W. (2015).
Saturated reconstruction of a volume of neocortex. Cell, 162, 648–661.

Kim, H., Oh, M., Lee, H., Jang, J., . . . Lee, J. (2019). Deep-learning based autofocus score
prediction of scanning electron microscope. Microscopy and Microanalysis, 25, 182–
183.

Kim, J. S., Greene, M. J., Zlateski, A., Lee, K., . . . EyeWirers. (2014). Space-time wiring
specificity supports direction selectivity in the retina. Nature, 509, 331–336.

Kingma, D. P., & Ba, J. (2015). Adam: A method for stochastic optimization. 3rd Inter-
national Conference on Learning Representations (ICLR).

Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by simulated annealing.
Science, 220, 671–680.

BIBLIOGRAPHY 113

Klimesch, J. (2020). Analysis of neuronal morphology using semantic segmentation of point
clouds (BA thesis). Technische Universität München.

Knoll, M., & Ruska, E. (1932). Das elektronenmikroskop. Zeitschrift für Physik, 78, 318–
339.

Knott, G., Marchman, H., Wall, D., & Lich, B. (2008). Serial section scanning electron
microscopy of adult brain tissue using focused ion beam milling. Journal of Neuro-
science, 28, 2959–2964.

Kornfeld, J. (2018). Connectomic analyses in the zebra finch brain (Doctoral dissertation).
Ruperto-Carola University of Heidelberg.

Kornfeld, J., Benezra, S. E., Narayanan, R. T., Svara, F., . . . Long, M. A. (2017). EM con-
nectomics reveals axonal target variation in a sequence-generating network. eLife,
6, e24364.

Kornfeld, J., & Denk, W. (2018). Progress and remaining challenges in high-throughput
volume electron microscopy. Current Opinion in Neurobiology, 50, 261–267.

Kornfeld, J., Januszewski, M., Schubert, P. J., Jain, V., . . . Fee, M. (2020). An anatomical
substrate of credit assignment in reinforcement learning. bioRxiv, 2020.02.18.954354.

Köthe, U. (2000). Generische programmierung für die bildverarbeitung (Doctoral disserta-
tion). University of Hamburg.

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). ImageNet classification with deep
convolutional neural networks. Advances in Neural Information Processing Systems,
25, 1106–1114.

LeCun, Y., Boser, B. E., Denker, J. S., Henderson, D., . . . Jackel, L. D. (1989). Handwritten
digit recognition with a back-propagation network. Advances in Neural Information
Processing Systems, 2, 396–404.

Lee, K., Lu, R., Luther, K., & Seung, H. S. (2021). Learning and segmenting dense voxel
embeddings for 3D neuron reconstruction. IEEE Transactions on Medical Imaging,
40, 3801–3811.

Lee, K., Zung, J., Li, P., Jain, V., & Seung, H. S. (2017). Superhuman accuracy on the
snemi3d connectomics challenge. arXiv:1706.00120.

Lee, W., Nam, H. S., Kim, Y. G., Kim, Y. J., . . . Yoo, H. (2021). Robust autofocusing
for scanning electron microscopy based on a dual deep learning network. Scientific
Reports, 11, 1–12.

Leighton, S. B. (1981). SEM images of block faces, cut by a miniature microtome within
the SEM-a technical note. Scanning electron microscopy, 73–76.

Li, C., Moatti, A., Zhang, X., Ghashghaei, H. T., & Greenabum, A. (2021). Deep learning-
based autofocus method enhances image quality in light-sheet fluorescence mi-
croscopy. Biomedical optics express, 12, 5214–5226.

Li, H., Januszewski, M., Jain, V., & Li, P. H. (2020). Neuronal subcompartment classifica-
tion and merge error correction. Medical Image Computing and Computer Assisted
Intervention, 12265, 88–98.

Li, Y., Bu, R., Sun, M., Wu, W., . . . Chen, B. (2018). PointCNN: Convolution on X-
transformed points. Advances in Neural Information Processing Systems, 31, 828–
838.

114 BIBLIOGRAPHY

Liu, X., Deng, Z., & Yang, Y. (2019). Recent progress in semantic image segmentation.
Artificial Intelligence Review, 52, 1089–1106.

Lorensen, W. E., & Cline, H. E. (1987). Marching cubes: A high resolution 3D surface
construction algorithm. Comput. Graph., 21, 163–169.

Loshchilov, I., & Hutter, F. (2019). Decoupled weight decay regularization. 7th Interna-
tional Conference on Learning Representations (ICLR).

Lowe, D. G. (2004). Distinctive image features from scale-invariant keypoints. International
Journal of Computer Vision, 60, 91–110.

Macrina, T., Lee, K., Lu, R., Turner, N. L., . . . Seung, H. S. (2021). Petascale neural circuit
reconstruction: Automated methods. bioRxiv, 2021.08.04.455162.

Maitin-Shepard, J., Baden, A., Silversmith, W., Perlman, E., . . . Li, P. H. (2021). Neu-
roglancer. Zenodo. https://doi.org/10.5281/zenodo.5573293

Mann, H. B., & Whitney, D. R. (1947). On a Test of Whether one of Two Random Variables
is Stochastically Larger than the Other. The Annals of Mathematical Statistics, 18,
50–60.

McInnes, L., Healy, J., & Melville, J. (2020). Umap: Uniform manifold approximation and
projection for dimension reduction. arXiv:1802.03426.

Moe, S., Rustad, A. M., & Hanssen, K. G. (2018). Machine learning in control systems: An
overview of the state of the art. International Conference on Artificial Intelligence
(AI), 11311, 250–265.

Motta, A., Berning, M., Boergens, K. M., Staffler, B., . . . Helmstaedter, M. (2019). Dense
connectomic reconstruction in layer 4 of the somatosensory cortex. Science.

Nelder, J. A., & Mead, R. (1965). A simplex method for function minimization. The com-
puter journal, 7, 308–313.

Odena, A., Dumoulin, V., & Olah, C. (2016). Deconvolution and checkerboard artifacts.
Distill, 1, e3.

Otter, D. W., Medina, J. R., & Kalita, J. K. (2020). A survey of the usages of deep
learning for natural language processing. IEEE Transactions on Neural Networks
and Learning Systems, 32, 604–624.

Paszke, A., Gross, S., Massa, F., Lerer, A., . . . Chintala, S. (2019). Pytorch: An impera-
tive style, high-performance deep learning library. Advances in Neural Information
Processing Systems, 32, 8024–8035.

Paxman, R. G., Schulz, T. J., & Fienup, J. R. (1992). Joint estimation of object and
aberrations by using phase diversity. JOSA A, 9, 1072–1085.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., . . . Duchesnay, E. (2011). Scikit-
learn: Machine learning in Python. Journal of Machine Learning Research, 12, 2825–
2830.

Qi, C. R., Su, H., Mo, K., & Guibas, L. J. (2017a). PointNet: Deep learning on point sets
for 3D classification and segmentation. Conference on Computer Vision and Pattern
Recognition (CVPR), 77–85.

Qi, C. R., Su, H., Nießner, M., Dai, A., . . . Guibas, L. J. (2016). Volumetric and multi-
view CNNs for object classification on 3D data. Conference on Computer Vision
and Pattern Recognition (CVPR), 5648–5656.

https://doi.org/10.5281/zenodo.5573293

BIBLIOGRAPHY 115

Qi, C. R., Yi, L., Su, H., & Guibas, L. J. (2017b). PointNet++: Deep hierarchical feature
learning on point sets in a metric space. Advances in Neural Information Processing
Systems, 30, 5099–5108.

Ramachandran, P., Zoph, B., & Le, Q. V. (2018). Searching for activation functions. 6th
International Conference on Learning Representations (ICLR).

Ramón y Cajal, S. (1888). Estructura de los centros nerviosos de las aves. Rev. Trim.
Histol. Norm. Pat, 1, 1–10.

Reddi, S. J., Kale, S., & Kumar, S. (2018). On the convergence of adam and beyond. 6th
International Conference on Learning Representations (ICLR).

Ronneberger, O., Fischer, P., & Brox, T. (2015). U-net: Convolutional networks for biomed-
ical image segmentation. Medical Image Computing and Computer-Assisted Inter-
vention, 9351, 234–241.

Rudnaya, M. (2011). Automated focusing and astigmatism correction in electron microscopy
(Doctoral dissertation). Technische Universiteit Eindhoven.

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by
back-propagating errors. Nature, 323, 533–536.

Sage, D., & Unser, M. (2003). Teaching image-processing programming in Java. IEEE
Signal Processing Magazine, 20, 43–52.

Sato, M., Bitter, I., Bender, M. A., Kaufman, A. E., & Nakajima, M. (2000). TEASAR:
tree-structure extraction algorithm for accurate and robust skeletons. 8th Pacific
Conference on Computer Graphics and Applications, PG 2000, Hong Kong, October
3-5, 2000, 281.

Schalek, R., Kasthuri, N., Hayworth, K., Berger, D., . . . Lichtman, J. (2011). Development
of high-throughput, high-resolution 3D reconstruction of large-volume biological
tissue using automated tape collection ultramicrotomy and scanning electron mi-
croscopy. Microscopy and Microanalysis, 17, 966–967.

Scheffer, L. K., Xu, C. S., Januszewski, M., Lu, Z., . . . Plaza, S. M. (2020). A connectome
and analysis of the adult central brain. Elife, 9, e57443.

Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., . . . Schmid, B., et al. (2012).
Fiji: An open-source platform for biological-image analysis. Nature Methods, 9, 676–
682.

Schmidt, H., Gour, A., Straehle, J., Boergens, K. M., . . . Helmstaedter, M. (2017). Axonal
synapse sorting in medial entorhinal cortex. Nature, 549, 469–475.

Schneider-Mizell, C. M., Gerhard, S., Longair, M., Kazimiers, T., . . . Cardona, A. (2016).
Quantitative neuroanatomy for connectomics in Drosophila. eLife, 5, e12059.

Schroff, F., Kalenichenko, D., & Philbin, J. (2015). FaceNet: A unified embedding for
face recognition and clustering. IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 815–823.

Schubert, P. J. (2017). Cellular morphology learning neural networks (Master’s thesis).
Ruperto-Carola University of Heidelberg.

Schubert, P. J., Dorkenwald, S., Januszewski, M., Klimesch, J., . . . Kornfeld, J. (In review).
SyConn2: Dense synaptic connectivity inference for volume EM.

116 BIBLIOGRAPHY

Schubert, P. J., Dorkenwald, S., Januszewski, M., Jain, V., & Kornfeld, J. (2019). Learning
cellular morphology with neural networks. Nature Communications, 10, 1–12.

Schubert, P. J., & Kornfeld, J. (2021, December 2). Method for automatic focusing and
astigmatism correction for an electron microscope (European pat.) [prending].

Seabold, S., & Perktold, J. (2010). Statsmodels: Econometric and statistical modeling with
python. Proceedings of the 9th Python in Science Conference, 57, 61.

Shapson-Coe, A., Januszewski, M., Berger, D. R., Pope, A., . . . Lichtman, J. W. (2021).
A connectomic study of a petascale fragment of human cerebral cortex. bioRxiv,
2021.05.29.446289.

Shelhamer, E., Long, J., & Darrell, T. (2017). Fully convolutional networks for semantic
segmentation. IEEE Trans. Pattern Anal. Mach. Intell., 39, 640–651.

Sheridan, A., Nguyen, T., Deb, D., Lee, W.-C. A., . . . Funke, J. (2021). Local shape
descriptors for neuron segmentation. bioRxiv, 2021.01.18.427039.

Silversmith, W., Bae, J. A., Li, P. H., & Wilson, A. (2021). Kimimaro: Skeletonize densely
labeled 3D image segmentations. https://doi.org/10.5281/zenodo.5539913

Simard, P., Steinkraus, D., & Platt, J. (2003). Best practices for convolutional neural
networks applied to visual document analysis. Seventh International Conference on
Document Analysis and Recognition, 2003. Proceedings., 958–963.

Simonyan, K., & Zisserman, A. (2015). Very deep convolutional networks for large-scale im-
age recognition. 3rd International Conference on Learning Representations (ICLR).

Sofroniew, N., Lambert, T., Evans, K., Nunez-Iglesias, J., . . . Har-Gil, H. (2021). Napari.
Zenodo. https://doi.org/10.5281/zenodo.3555620

Sommer, C., Straehle, C., Köthe, U., & Hamprecht, F. A. (2011). Ilastik: Interactive learn-
ing and segmentation toolkit. IEEE International Symposium on Biomedical Imag-
ing (ISBI), 230–233.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014).
Dropout: A simple way to prevent neural networks from overfitting. Journal of
Machine Learning Research, 15, 1929–1958.

Staffler, B., Berning, M., Boergens, K. M., Gour, A., . . . Helmstaedter, M. (2017). SynEM,
automated synapse detection for connectomics. eLife, 6, e26414.

Su, H., Maji, S., Kalogerakis, E., & Learned-Miller, E. G. (2015). Multi-view convolutional
neural networks for 3D shape recognition. International Conference on Computer
Vision (ICCV), 945–953.

Sudre, C. H., Li, W., Vercauteren, T., Ourselin, S., & Cardoso, M. J. (2017). Generalised
dice overlap as a deep learning loss function for highly unbalanced segmentations.
Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical
Decision Support (DLMIA), 10553, 240–248.

Svara, F., Förster, D., Kubo, F., Januszewski, M., . . . Baier, H. (In review). Automated
synapse-level reconstruction of neural circuits in the larval zebrafish brain.

Templier, T. (2019). MagC, magnetic collection of ultrathin sections for volumetric correl-
ative light and electron microscopy. eLife, 8, e45696.

https://doi.org/10.5281/zenodo.5539913
https://doi.org/10.5281/zenodo.3555620

BIBLIOGRAPHY 117

Thomas, H., Qi, C. R., Deschaud, J.-E., Marcotegui, B., . . . Guibas, L. J. (2019). Kpconv:
Flexible and deformable convolution for point clouds. International Conference on
Computer Vision (ICCV), 6410–6419.

Titze, B., Genoud, C., & Friedrich, R. W. (2018). SBEMimage: Versatile acquisition control
software for serial Block-Face electron microscopy. Front. Neural Circuits, 12, 54.

Turaga, S. C., Murray, J. F., Jain, V., Roth, F., . . . Seung, H. S. (2010). Convolutional net-
works can learn to generate affinity graphs for image segmentation. Neural Comput.,
22, 511–538.

Turner, N. L., Lee, K., Lu, R., Wu, J., . . . Seung, H. S. (2020). Synaptic partner as-
signment using attentional voxel association networks. International Symposium on
Biomedical Imaging (ISBI), 1–5.

Van der Walt, S., Schönberger, J. L., Nunez-Iglesias, J., Boulogne, F., . . . Yu, T. (2014).
Scikit-image: Image processing in python. PeerJ, 2, e453.

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., . . . SciPy 1.0 Contributors.
(2020). SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python.
Nature Methods, 17, 261–272.

von Ardenne, M. (1938). Das Elektronen-Rastermikroskop. Zeitschrift für Physik, 109,
553–572.

Vos, M., Lauwers, E., & Verstreken, P. (2010). Synaptic mitochondria in synaptic trans-
mission and organization of vesicle pools in health and disease. Frontiers in synaptic
neuroscience, 2, 139.

Wanner, A. A., Genoud, C., & Friedrich, R. W. (2016). 3-dimensional electron microscopic
imaging of the zebrafish olfactory bulb and dense reconstruction of neurons. Scien-
tific data, 3, 1–15.

White, J. G., Southgate, E., Thomson, J. N., & Brenner, S. (1986). The structure of the
nervous system of the nematode caenorhabditis elegans. Philosophical Transactions
of the Royal Society of London, 314, 1–340.

Witvliet, D., Mulcahy, B., Mitchell, J. K., Meirovitch, Y., . . . Holmyard, D., et al. (2021).
Connectomes across development reveal principles of brain maturation. Nature, 596,
257–261.

Wu, W., Qi, Z., & Li, F. (2019). PointConv: Deep convolutional networks on 3D point
clouds. Conference on Computer Vision and Pattern Recognition (CVPR), 9621–
9630.

Wu, Y., & He, K. (2018). Group normalization. Proceedings of the European conference on
computer vision (ECCV), 11217, 3–19.

Wu, Z., Song, S., Khosla, A., Yu, F., . . . Xiao, J. (2015). 3D ShapeNets: A deep representa-
tion for volumetric shapes. Conference on Computer Vision and Pattern Recognition
(CVPR), 1912–1920.

Xiang, T., Zhang, C., Song, Y., Yu, J., & Cai, W. (2021). Walk in the cloud: Learning
curves for point clouds shape analysis. International Conference on Computer Vi-
sion (ICCV), 915–924.

Xu, C. S., Hayworth, K. J., Lu, Z., Grob, P., . . . Hess, H. F. (2017). Enhanced FIB-SEM
systems for large-volume 3D imaging. eLife, 6, e25916.

118 BIBLIOGRAPHY

Yang, H. J., Oh, M., Jang, J., Lyu, H., & Lee, J. (2020). Robust deep-learning based
autofocus score prediction for scanning electron microscope. Microscopy and Mi-
croanalysis, 26, 702–705.

Yang, S. J., Berndl, M., Ando, D. M., Barch, M., . . . Rueden, C. T., et al. (2018). Assessing
microscope image focus quality with deep learning. BMC bioinformatics, 19, 1–9.

Yin, W., Brittain, D., Borseth, J., Scott, M. E., . . . da Costa, N. M. (2020). A petascale
automated imaging pipeline for mapping neuronal circuits with high-throughput
transmission electron microscopy. Nature Communications, 11, 1–12.

Yoo, A. B., Jette, M. A., & Grondona, M. (2003). SLURM: simple linux utility for resource
management. Job Scheduling Strategies for Parallel Processing (JSSPP), 2862, 44–
60.

Zeng, A., Song, S., Lee, J., Rodriguez, A., & Funkhouser, T. (2020). Tossingbot: Learning
to throw arbitrary objects with residual physics. IEEE Transactions on Robotics,
36, 1307–1319.

Zhao, T., Olbris, D. J., Yu, Y., & Plaza, S. M. (2018). Neutu: Software for collaborative,
large-scale, segmentation-based connectome reconstruction. Frontiers in Neural Cir-
cuits, 12, 101.

Zheng, Z., Lauritzen, J. S., Perlman, E., Robinson, C. G., . . . Sharifi, N., et al. (2018). A
complete electron microscopy volume of the brain of adult drosophila melanogaster.
Cell, 174, 730–743.

Zhou, Q.-Y., Park, J., & Koltun, V. (2018). Open3D: A modern library for 3D data pro-
cessing. arXiv:1801.09847.

Acknowledgements

First of all, I want to thank Winfried Denk for his supervision and support throughout the
years, without him this work would not have been possible. I greatly thank my co-advisor
Jörgen Kornfeld for many, very productive discussions and intensive feedback. The past
years have been an unforgettable and adventurous time in many positive ways.

I want to thank the entire team of the Denk department and Kornfeld laboratory for a
great working environment, in particular Alexandra Rother, Maria Kormacheva and Ran-
goli Saxena and Jonas Hemesath for helpful discussions and their expertise.

I would like to thank my students Jonathan Klimesch (Bachelor’s Thesis), Andrei Mancu
(Bachelor’s Thesis), Christina Schick (Bachelor’s Thesis) and Hashir Ahmad (Master’s
theis) for working with me on their thesis and many inspiring discussions.

I want to thank the student assistants Christina Schick, Anna Umurzakova, David Nagel
and Julian Hendricks for annotating neurons and EM images, and Martin Drawitsch for
maintaining and continuously improving elektronn3 neural network library.

Furthermore, I thank Anton Grüner (Zeiss) for his technical support and advice on the
electron microscopes.

I thank Alexandra Rother for the staining and embedding of tissue samples.

I would like to thank Gavyn Trowbridge (Ion Optika) and Maria Kormacheva for assistance
with the ion gun.

I thank Jörgen Kornfeld and Fabian Svara for realizing KNOSSOS and the whole K-team
for support and new features, in particular Norbert Pfeiler and My-Tien Nguyen.

Additionally, I am very grateful for the funding from the Max Planck Society.

I would like to thank Viren Jain (Google Research) for providing Google Cloud resources.

I also want to thank Sven Dorkenwald, Jennifer Krebs and Franz Rieger for comments on

120

the manuscript.

I would like to thank Lorenz Hüdepohl and Christian Guggenberger from the MPCDF
for compute cluster support, and Jürgen Tritthardt and Stefan Apel for their outstanding
support with the electron microscope setups and help with designing and creating many
parts together with the workshop.

Ich danke meiner gesamten Familie, sowie der Familie Reich für beständigen, reichhaltigen
Zuspruch.

Finally, I want to thank Charlotte for her unwavering support, energy and love over all
these years, and the years to come.

	Zusammenfassung
	Abstract
	Introduction
	Connectomics
	Scanning electron microscope
	Convolutional neural networks
	Automated cell segmentation
	Objectives and contributions

	Wafer-based image data acquisition with GCIB
	Introduction
	Materials and Methods
	Results
	GCIB mill rate estimation
	Volume acquisition scheme and post-processing

	Discussion

	Automated focus and stigmation correction
	Introduction
	Materials and Methods
	Results
	DeepFocus
	Transferability to different settings

	Discussion

	Learning cellular morphology
	Introduction
	Multi-view representation of cell reconstructions
	Point-cloud processing using continuous convolutions

	Materials and Methods
	Results
	Compartment prediction
	Cell type classification
	Cell clustering

	Discussion

	SyConn2 - A connectome analysis framework
	Introduction
	Materials and Methods
	Results
	Circuit reconstruction
	Data interface
	Mitochondria recruitment at synapses

	Discussion

	Conclusions and Outlook
	Conclusions
	Outlook

	Biological samples
	Ground truth data
	SyConn2 flowchart
	List of Abbreviations
	Bibliography
	Acknowledgements

