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Zusammenfassung
Vulkanaschepartikel sind eine Gefahr für die Luftfahrt, da sie in Triebwerken schmelzen
und sich anschließend an kritischen Komponenten ablagern können. Dies kann zu einem
totalen Leistungsverlust führen. Daher werden Satellitenmessungen zur kontinuierlichen,
großräumigen Detektion von Vulkanasche eingesetzt, was durch die hohe Variabilität der
atmosphärischen Bedingungen und der Ascheeigenschaften erschwert wird, etwa der bisher
weitgehend vernachlässigten petrologischen Zusammensetzung.

Diese Arbeit befasst sich mit einem neuen, universell einsetzbaren Verfahren zur Be-
stimmung von Vulkanasche. Die volumengewichtete Mittelung bekannter Brechungsindizes
der Vulkanaschekomponenten (Gläser, Minerale, Hohlräume) gemäß typischer Phasenver-
teilungen ermöglicht die Ableitung eines Effektivwertes. Es zeigt sich, dass Porosität, Silizi-
umdioxidgehalt und das Glas zu Kristall-Verhältnis den Brechungsindex in abnehmendem
Maße beeinflussen. Zusammensetzung und Partikelgröße haben vergleichbare Auswirkun-
gen auf die optischen Eigenschaften, insbesondere auf den Massenextinktionskoeffizienten.
Strahlungstransferrechnungen zeigen, dass geostationäre Satellitenbildgeber gegenüber Va-
riationen der Massensäule (mcol), der Aschewolkenoberkante (ztop) und des Effektivradius
(reff) am empfindlichsten sind. Das vertikale Massenprofil und der Siliziumdioxidgehalt
haben kleinere, aber beobachtbare Auswirkungen.

Basierend auf diesen Erkenntnissen wird der neue Algorithmus VACOS (Volcanic Ash
Cloud properties Obtained from SEVIRI) entwickelt, der sich auf Helligkeitstemperaturen
im thermischen Infrarot des Radiometers SEVIRI an Bord der geostationären Meteosat
Second Generation Satelliten und auf Daten eines numerischen Wettervorhersagemodells
stützt. Es verwendet künstliche neuronale Netze, die mit synthetischen Beobachtungen
trainiert werden, welche ein breites Spektrum an atmosphärischen Bedingungen, typischen
makrophysikalischen Aschewolkeneigenschaften, und insbesondere die Variabilität der op-
tischen Eigenschaften aufgrund verschiedener Aschearten abdecken. VACOS führt eine
pixelweise Klassifizierung durch und ermittelt ztop, reff und die optische Dicke der Asche
bei 10.8 µm (τ10,8, konvertierbar in mcol mit einem fallspezifischen Faktor). Eine Leistungs-
charakterisierung anhand simulierter Daten zeigt einen mittleren absoluten prozentualen
Fehler von ≲ 40 % für mcol für Ascheschichten mit einem wahren τ10,8 von ≥0,1, ≲ 10 %
für ztop für Ascheschichten oberhalb von 5 km, und ≲ 35 % für reff für tatsächliche reff von
0,6–6 µm. Echte mcol von 0,2–1 g m−2 und eine Detektion unter Verwendung des abgelei-
teten τ10,8 mit einem Schwellenwert von 0,04 führt zu einer Erkennungswahrscheinlichkeit
von ~93 % bei einer Fehlalarmrate von ~1 %. Die allgemeine Anwendbarkeit von VACOS
wird durch den Vergleich mit weltraumgestützten Lidar-Messungen sowie Flugzeugmes-
sungen des Deutschen Zentrums für Luft- und Raumfahrt und der Facility for Airborne
Atmospheric Measurements für die Ausbrüche des Puyehue-Cordón Caulle (2011) und des
Eyjafjallajökull (2010) demonstriert. Eine Plausibilitätsprüfung mit einem Modellensemble
des letzteren zeigt eine gute Übereinstimmung in der räumlich-zeitlichen Aschebedeckung,
aber Abweichungen von ≳ 100 km bei Entfernungen ≳ 1000 km vom Vulkan auf Grund von
Modellungenauigkeiten. Aufgrund seiner Anwendbarkeit unter einer Vielzahl von Szenarien
ist VACOS bestens geeignet für Luftverkehrsanwendungen.
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Abstract
Volcanic ash particles are a threat to aviation as they can melt within jet engines and
subsequently resolidify on critical components, potentially leading to a total loss of power.
Thus, satellite measurements are used for the continuous large-scale detection of volcanic
ash, which is complicated by the high variability in the atmospheric conditions and the
ash properties, e.g., the yet mostly neglected petrological composition.

This thesis focuses on a new general-purpose volcanic ash satellite retrieval. Volume-
weighted averaging of known refractive indices of the volcanic ash components (glasses,
minerals, voids) according to generic phase distributions allows to derive an effective value.
It is shown that porosity, silica content and glass-to-crystal ratio affect the refractive index
to a decreasing extent. Composition and particle size have comparable impact on the
optical properties, especially the mass extinction coefficient. Radiative transfer calculations
show that geostationary satellite imagers are most sensitive to variations in the mass load
(mcol), the ash cloud top height (ztop) and the effective radius (reff); the vertical mass
profile and the silica content have smaller, yet a noticeable impact.

Based on these insights, the new algorithm VACOS (Volcanic Ash Cloud properties
Obtained from SEVIRI) is developed, relying on thermal infrared brightness temperatures
from the radiometer SEVIRI aboard the geostationary Meteosat Second Generation satel-
lites and auxiliary data from a numerical weather prediction model. It applies artificial
neural networks trained with synthetic observations covering a wide range of atmospheric
conditions, typical macrophysical ash cloud properties, and in particular the variability of
optical properties due to different ash types. VACOS performs a pixelwise classification
and retrieves ztop, reff and the ash optical depth at 10.8 µm (τ10.8, convertible to mcol using
a case-dependent factor). A performance characterization using simulated data indicates a
mean absolute percentage error of ≲ 40 % for mcol for ash layers with a true τ10.8 of ≥ 0.1,
≲ 10 % for ztop for layers above 5 km, and ≲ 35 % for reff for true reff of 0.6–6 µm. True
mcol of 0.2–1 g m−2 and a detection scheme using the retrieved τ10.8 with a threshold of
0.04 leads to a probability of detection of ~93 % at a false alarm rate of ~1 %. The general
applicability of VACOS is demonstrated by comparing it with spaceborne lidar retrievals as
well as aircraft measurements by Deutsches Zentrum für Luft- und Raumfahrt and the Fa-
cility for Airborne Atmospheric Measurements for the eruptions of Puyehue-Cordón Caulle
(2011) and Eyjafjallajökull (2010). A plausibility check with a model ensemble of the latter
indicates a good agreement in the spatio-temporal ash coverage, but offsets ≳ 100 km at
distances ≳ 1000 km from the volcano caused by model inaccuracies. Overall, VACOS is
ideally suited for aviation applications due to its applicability in a wide range of scenarios.
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Chapter 1

Introduction

1.1 Motivation: Why is remote sensing of volcanic
ash necessary?

The 2010 eruption of the Icelandic volcano Eyjafjallajökull (pronounced as “A-ya-fyat-la-
yœk-utl”, Alexander, 2013) did not come unannounced, as indications for volcanic activity
(e.g., earthquakes and surface deformations) had been observed since the beginning of the
1990s (Gudmundsson et al., 2010, 2012). They intensified in the first months of 2010,
leading to a short effusive fissure at the flank of the volcano on 20 March and producing
lava until 12 April (Sigmundsson et al., 2010). A short intermission followed; then on
14 April at around 01:30 UTC in the night, an explosive eruption started. Unusually
high amounts of fine volcanic ash were produced as the magma had a rather high silica
content (~60 wt.%) and was additionally powered by the glacier on top of the volcano
(Gudmundsson et al., 2012, Watson, 2015). The ash plume (Figure 1.1) reached heights of
up to ~10 km, and strong north-westerly winds drove the ash cloud towards Scandinavia,
the United Kingdom and continental Europe in the following days (Petersen, 2010).

Volcanic ash clouds are a threat to air traffic security due to a reduction of visibil-
ity, ash and volcanic gases in the cockpit and cabin, damaging of instruments (e.g., the
pitot tube), and abrasion of wings and windshields (Casadevall, 1994). Most important,
volcanic ash might melt and resolidify within jet turbines, leading to at least temporary
malfunctioning (Przedpelski and Casadevall, 1994). In December 1989 a KLM Boeing
747-400 aircraft unknowingly entered the ash cloud of Redoubt Volcano in Alaska and
subsequently lost power on all four engines. Although the engines could be restarted, the
damage to the aircraft was totaled to about US$80 million (Casadevall, 1994). Overall,
129 encounters of aircraft with volcanic ash have been reported between 1953 and 2009,
some even at distances >1000 km from the volcano. In 9 cases, temporary loss of at
least one engine occurred, with 2 encounters taking place even at daylight at distances of
about 250 km and 930 km from the vent (Guffanti et al., 2010). This is also caused by the
fact that potentially hazardous ash concentrations might not be visually distinguishable
from harmless concentrations by flight crews (Weinzierl et al., 2012). Thus, nine Volcanic
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Figure 1.1: Moderate Resolution Imaging Spectroradiometer (MODIS) satellite images
of volcanic ash plumes of Eyjafjallajökull on 17 April 2010 (left) and Puyehue-Cordón
Caulle on 6 June 2011 (right); "Eruption of Eyjafjallajökull Volcano, Iceland April 17
[Detail]" (https://www.flickr.com/photos/24662369@N07/4530571303) and "Puyehue-
Cordón Caulle Volcano" (https://www.flickr.com/photos/24662369@N07/5804670439)
by NASA Goddard Space Flight Center, licensed under CC BY 2.0
(https://creativecommons.org/licenses/by/2.0/).

Ash Advisory Centers (VAACs) were founded in the 1990s, each covering a part of the
globe, with the task to perform numerical volcanic ash transport and dispersion model-
ing in the event of an eruption to provide forecasts on the volcanic ash contamination to
the responsible institutions (Bolić and Sivčev, 2011). At the time of the Eyjafjallajökull
eruption, the International Civil Aviation Organization (ICAO) recommended "regardless
of ash concentration—AVOID AVOID AVOID", such that during the first days in April
2010, extensive parts of the European airspace were closed, leading to the cancellation of
> 100 000 flights and lost revenues to the airlines in the order of US$1.7 billion (Bolić and
Sivčev, 2011, Budd et al., 2011). Peaking at 18 April, nearly 80 % of all flights in Europe
were postponed (Alexander, 2013).

The first eruptive phase of Eyjafjallajökull lasted from 14 to 18 April. It was followed
by a calmer phase until 4 May. Then a second explosive phase began and lasted until 17
May, again producing large amounts of volcanic ash contaminating parts of the northern
Atlantic and reaching mainland Europe (Gudmundsson et al., 2012). By then it was decided
to change regulations to not only differentiate ash-contaminated from ash-free zones, but
to establish multiple zones based on the ash volume concentration (Bolić and Sivčev, 2011,
Langmann et al., 2012), although the corresponding threshold values (initially 0.2 mg m−3

and 2 mg m−3, later raised to 2 mg m−3 and 4 mg m−3, ICAO, Schumann et al., 2011) were
decided rather arbitrarily (Alexander, 2013, Watson, 2015). Finally, from 18 to 22 May,
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the volcanic activity decreased and—apart from minor activity in June—finally ceased
(Gudmundsson et al., 2012).

The numerical ash transport and dispersion models as applied by the VAACS are ini-
tialized by a source term, including the vertical mass profile, particle size and compositional
properties of the volcanic ash emitted from the vent. The distribution of the volcanic ash
is then forced by the meteorology as given by numerical weather prediction models, and
various atmospheric processes for removal and alteration of the ash particles (Langmann
et al., 2012, Mackie et al., 2016). However, comparisons of model results with in situ mea-
surements and satellite observations indicated weaknesses of the VAAC predictions, e.g.,
overestimation of the spatial extent of the ash contamination by one order of magnitude
(Eliasson and Yoshitani, 2015, Eliasson et al., 2014), fine-structured ash clouds instead of
large scale coverage for distal locations (Weber et al., 2012), and differences in the order
of 100 km in the horizontal location with respect to the real ash clouds (Schumann et al.,
2011). Numerical dispersion calculations can be improved by better constraining volcanic
emissions. For instance, Stohl et al. (2011) applied a dispersion model-based inversion
scheme to satellite retrievals of volcanic ash loads for the 2010 Eyjafjallajökull eruption
to derive a time and height-dependent eruption source term, leading to improvements in
the agreement of dispersion model results and satellite observations with respect to the
spatial ash contamination. The authors found that ash concentrations over Europe (i.e.,
10° W–30° E, 36° N–60° N) remained below the critical limit of 4 mg m−3 (which triggers
airspace closure) in principle all the time in spring 2010.

Still, dispersion models might loose predictive power with increasing runtime as small
inaccuracies (e.g., in the meteorological forcing fields) might lead to enormous errors (Dacre
et al., 2016), such that satellite retrievals might be preferred to model results. In addition,
numerous volcanoes are situated at remote locations such that they are mainly observable
from space. Depending on the instrument, satellite measurements can provide extensive
spatial coverage in real time and at high temporal resolutions (e.g., the full disc of Earth
every 15 min and less, Schmetz et al., 2002a) , or low/infrequent spatial coverage but with
a high spatial resolution (e.g., horizontal resolutions below 1 km and vertical resolutions
down to 0.03 km, Watson et al., 2004, Winker et al., 2009) or spectral resolution (e.g.,
down to 0.25 cm−1, Hilton et al., 2012). Many volcanic ash detection algorithms rely on its
spectral signature in the thermal infrared spectrum which can produce a negative difference
in the brightness temperatures at 11 µm and 12 µm (Prata, 1989), allowing to discriminate
it from cirrus clouds (Inoue, 1985). However, the volcanic ash detection is complicated,
for example, by the presence of volcanic ash under a very diverse set of geographic and
atmospheric conditions; a large variation in volcanic ash types from different eruptions
(Mackie et al., 2016, Reed et al., 2018); complex vertical ash mass profiles (Marenco et al.,
2011); sulfur dioxide emitted by some volcanoes and influencing the infrared spectrum
(Gray and Bennartz, 2015); mineral dust clouds and arid Earth surfaces which produce a
spectral signal similar to the one of ash (Ackerman, 1997, Watkin, 2003); and water vapor,
liquid and ice water clouds hiding the ash-specific spectral signature (Watkin, 2003). At
the same time, only a very limited number of spectral bands is provided by the satellite
imagers used for real-time monitoring of volcanic ash. Thus, its detection and the retrieval
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of its properties becomes a non-trivial inversion problem.
Apart from the direct impact to aircraft in operation, volcanic ash can also affect the

infrastructure in relative proximity to the volcanic source: airports might be affected if
the corresponding airspace is ash contaminated or ash deposits reduce the traction of
runways (Guffanti et al., 2009); power outages, e.g., caused by flashovers due to moist
volcanic ash covering insulators or collapse of transmission poles/lines due to the weight
of the deposited ash (Wilson et al., 2012); disruption of water supply and disposal, e.g., by
interfering the water sources/pumps/distribution systems, changing physical and chemical
water properties or unusually high water demands (Wilson et al., 2012); components relying
on constant air exchange might be damaged, e.g., computers, ventilation and air conditions
(Wilson et al., 2012); tephra deposition can damage buildings, e.g., due to roof collapse
(Spence et al., 2005). In addition, volcanic ash might pose a threat to health, especially if
inhaled (Horwell and Baxter, 2006).

Volcanic eruptions can also influence the global climate on time scales of years. The
main impact comes from the emitted sulfur dioxide and the resulting sulfate in the strato-
sphere. The latter has a cooling effect to the surface as it scatters incoming solar light but
at the same time heats the stratosphere by absorbing thermal and near-infrared radiation.
If this heating takes place at low latitudes, the increased temperature gradient with re-
spect to high latitudes can lead to warmer continental winters on the northern hemisphere
via strengthening of the polar vortex (Langmann, 2014, Robock, 2000, Timmreck, 2012).
With respect to volcanic ash, its direct radiative effect (i.e., the direct interaction with
incoming solar and outgoing thermal radiation), as well as the indirect radiative effect
(i.e., influencing cloud formation, cloud coverage, droplet sizes and precipitation when ash
particles act as cloud condensation or ice nuclei) have in most cases only a spatially and
temporally limited impact (Langmann, 2013), due to the comparably short atmospheric
lifetime on the order of days to weeks (Grainger et al., 2013). However, sedimented ash
might modify the planetary albedo (Langmann, 2013). For instance, Flanner et al. (2014)
indicated that in the case of the 2010 Eyjafjallajökull eruption warming due to volcanic
ash deposited on snow and ice surfaces (especially in Greenland) notably counteracted the
cooling by atmospheric sulfates.

1.2 Scientific topics
As described above, there is a clear need for volcanic ash retrievals via satellite in the
context of aviation safety. Usually, those methods rely on radiative transfer calculations
based on the optical properties of volcanic ash, which in turn are related to its complex
refractive index. Due to a lack of alternatives, the majority of algorithms developed in the
past decades utilized only two laboratory measurements of this quantity in the thermal
infrared by Pollack et al. (1973), Volz (1973) (additional volcanic ash samples were inves-
tigated by Deguine et al. (2020), Grainger et al. (2013), Ishimoto et al. (2016), Reed et al.
(2018) only recently, see Section 2.1.3 for details). However, an accurate assumption of the
complex refractive index is necessary as some studies indicated that it has a non-negligible
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impact on the performance of volcanic ash retrievals in the thermal infrared (Prata et al.,
2019, Western et al., 2015). Thus, the first hypothesis is:

1. For volcanic ash, the petrological composition and the effective particle radius have a
similarly strong impact on its optical properties in the thermal infrared spectrum, such
that both need to be accounted for in radiative transfer.

This contrasts earlier assumptions, e.g., by Wen and Rose (1994), who concluded that the
particle size is of greater importance than the volcanic ash composition with respect to
mass load retrievals. To test the hypothesis, a novel method is developed to derive complex
refractive indices based on typical petrological compositions of volcanic ash (a compara-
ble approach was used for mineral dust by Lee and Park, 2014, Sokolik and Toon, 1999).
With this technique, a set of complex refractive indices is composed for different bulk silica
contents, glass-to-crystal ratios and porosities. Calculating the optical properties for these
refractive indices in combination with different particle sizes and shapes allows to compare
the individual importance.

The retrieval of multiple quantities of volcanic ash clouds is of interest: the mass
load and especially the mass volume concentration; the cloud top height and geometrical
thickness, or more general, the vertical mass profile; the effective particle radius and shape;
and the composition, e.g., the silica content and the glass-to-crystal ratio. The mass load
can be used to quantify the total mass emission of a volcanic eruption (Corradini et al.,
2016, Gudmundsson et al., 2012, Prata and Prata, 2012). Ash mass concentration and
height are needed for the aviation safety evaluation (ICAO, Watson, 2015). Vertical mass
profiles or mass loads are necessary for the comparison with numerical ash transport and
dispersion models (Dacre et al., 2016, Muser et al., 2020). Particle size and shape influence
sedimentation (Grainger et al., 2013, Mackie et al., 2016) and aggregation (Brown et al.,
2012). Mass concentration and size (and, thus, the particle number concentration) can
be used to quantify aerosol–cloud interaction (Langmann, 2013). Unfortunately, not all
quantities are retrievable due to the limited spectral resolution of the used instrument (here
the Spinning Enhanced Visible and Infrared Imager on the Meteosat Second Generation
satellites, MSG/SEVIRI); physical limits in the sensitivity; or mutual cancellation of the
effects of different properties. Hence, it is investigated:
2. What is the information content of typical spaceborne geostationary infrared observa-

tions by passive imagers like MSG/SEVIRI with respect to volcanic ash cloud proper-
ties?

The question is answered by calculating and analyzing corresponding optical properties of
volcanic ash and performing radiative transfer calculations for different ash clouds.

Based on the results related to the first two topics, the new volcanic ash retrieval
Volcanic Ash Cloud properties Obtained from SEVIRI (VACOS) is developed. It utilizes
MSG/SEVIRI and artificial neural networks trained with synthetic observations, and is
intended to be generally applicable to different volcanic eruptions. Thus, the training data
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set builds upon atmospheric data covering its daily, annual and inter-annual variability;
the full MSG/SEVIRI disc including different geographies and realistic scene-dependent
sea and land surface emissivities; volcanic ash clouds with a wide range of typical micro-
and macrophysical properties; and an extensive set of volcanic ash refractive indices rep-
resenting different ash compositions. The last point together with the choice of a radiative
transfer-based training data set constitutes the main novelty of this algorithm compared
to existing artificial neural network-based volcanic ash retrievals, which are limited to only
a few volcanic eruptions due to the choice of their training data (P4, Gray and Bennartz,
2015, Picchiani et al., 2011, 2014, Piscini et al., 2014, Zhu et al., 2020, see Section 2.5 for
details). Thus, the question is:
3. How accurate is the general-purpose volcanic ash satellite retrieval VACOS for

MSG/SEVIRI using artificial neural networks with respect to the detection of volcanic
ash clouds and the derivation of their mass column concentration, cloud top height and
effective particle radius?

The performance of VACOS is analyzed using simulated data, CALIPSO/CALIOP (Cloud-
Aerosol Lidar and Infrared Pathfinder Satellite Observation, Cloud Aerosol Lidar with Or-
thogonal Polarization) retrievals of the Puyehue-Cordón Caulle ash cloud in 2011 as well as
airborne measurements and transport and dispersion model results of the Eyjafjallajökull
eruption in 2010.

The rest of this cumulative thesis is structured as follows: In Section 2, a literature
overview on the most essential topics and tools of this work is given, namely volcanic ash
as the object of interest; radiative transfer theory; geostationary passive imagers and in
particular MSG/SEVIRI; artificial neural networks; and the currently existing volcanic
ash satellite retrievals using artificial neural networks. Note that these summaries are
intended to provide a general introduction, introducing basic facts and figures, concepts
and technical terms; they are not complete reviews of the fields. Furthermore, additional
information is given in the papers included in this work, e.g., the connection of the volcanic
ash’s microphysical properties to the optical properties is investigated in P1 and a more
extensive review of the existing volcanic ash passive satellite remote sensing techniques is
presented in P2; it is not repeated here to avoid redundancy. Section 3 forms the main
part, containing reprints of the papers. Note that they do not necessarily deal with the
scientific topics individually. Thus, in Section 4, the work is summarized, each scientific
topic is addressed again in detail and an outlook is given.



Chapter 2

Fundamentals

2.1 Volcanic eruptions
In the following subsections, the basics of volcanic eruptions, ash cloud formation and vol-
canic ash properties are introduced. Note that further information is provided in Section 3,
e.g., the relation between volcanic ash composition, its microphysical properties and the
resulting optical properties is described in P1, whereas ash cloud properties are reviewed
in P2.

2.1.1 Volcanoes
The majority of the volcanoes currently present on the Earth’s surface are located at the
rims of tectonic plates (Figure 2.1), for instance, around the Pacific Ocean (the so-called
Ring of Fire) with volcanoes at the western coast of the Americas, along the Aleutians,
Kamchatka, Japan, the Philippines, Malaysia, Indonesia, Papua New Guinea and the
surrounding islands; in the Caribbean at the boundary of the Caribbean plate; in and
around the Mediterranean at the boundary of the African and the Eurasian plate. Other
famous examples are the Hawaiian volcanoes in the Pacific or the Icelandic volcanoes in
the Atlantic (Lockwood and Hazlett, 2010, Siebert et al., 2011).

The tectonic plates are able to move relative to each other, leading either to divergent or
convergent behavior. The former happens within the oceanic basins. The weaker/thinner
crust of the Earth allows the rise of material from the interior and subsequently the for-
mation of new crust, which further drives the separation of the plates. The result is the
globally-interconnected Mid-Ocean Ridge. For the most part, it resides underwater (with
Iceland being one of the few exceptions). Convergent movement takes place mainly where
oceans meet continents. As the continental plates generally consist of lower density rocks,
the oceanic plates dive below them. At some depth, water carried by the subducting plate
is released, which lowers the melting temperature of the surrounding rocks and as a conse-
quence triggers their melting. Additionally, intraplate volcanism can take place if mantle
plumes rise from deep below the Earth’s surface (potentially from the boundary of Earth’s
core and its mantle). As the overlying plates move, these plumes form linear chains of
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Figure 2.1: Locations of volcanic eruptions since 2000 as listed by the Smithsonian Global
Volcanism Program (red, Venzke, 2021), with boundaries of continents (black) and tectonic
plates (blue, Bird, 2003).

volcanoes, especially in the Pacific (e.g., the Hawaiian islands). In all cases, melted rock
containing dissolved gases, called magma, can be created. Due to differences in the density
of the crusts material and the melted magma, the latter rises until it reaches some neu-
tral buoyancy level, where it might form a magma chamber or even a complex reservoir,
potentially only a few kilometer beneath the surface (Lockwood and Hazlett, 2010).

Finally, the eruption of a volcano could be initiated by various events. The current
theory is that some initial breaking of the magma chamber slightly reduces the pressure
within the chamber, leading to exsolution of volatiles, which could expand in the cracks of
the chamber walls and lead to further fracturing. This process might repeat and accelerate
and—if the surface is reached—could lead to an eruption. Different events (or combinations
thereof) are speculated to start this process. First, the introduction of magma from deeper
levels might increase the chamber’s pressure. Second, crystals might form in the magma
and sediment to the chamber’s bottom, such that in the chamber’s uppermost part remains
a melt of lower density, together with accumulated exsolved gases. This evolution of the
melt might increase the pressure on the chamber’s ceiling. Third, even minor changes in
the crust due to weather or tides might be enough to bring the magma chamber out of its
equilibrium (Lockwood and Hazlett, 2010).

Explosive eruptions are further driven by gases which exsolve from the magma as the
pressure decreases, forming bubbles and turning the magma into a froth. They continue
to grow and rapidly expand in volume, leading to the explosive behavior and the ejection
of volcanic material. If the magma comes in contact with external water (e.g., sea water,
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glaciers, crater lakes), the water turns into steam explosively, increasing the strength of the
event and leading to a hydromagmatic eruption (Langmann, 2013, Lockwood and Hazlett,
2010).

2.1.2 Volcanic clouds
Magma denotes melted rock under the Earth’s surface, potentially including gas bubbles
and crystals. Above the surface, it is called lava, or tephra if fragmented (Lockwood and
Hazlett, 2010, Mackie et al., 2016). The fragmentation is caused, for instance, by the fast
expansion and the resulting stress of the gas bubbles; by abrupt changes in the overall
pressure (e.g., when the volcanic dome collapses); or by water coming in contact with the
melt which either turns into steam explosively or quickly quenches the melt, potentially
bursting later on (Mackie et al., 2016). The part of the tephra with particle sizes <2 mm
is called volcanic ash (Mackie et al., 2016). Further sub-classifications are relative and
depend on the scientific field, as pointed out by Stevenson et al. (2015). E.g., particles
with sizes ≳ 1 µm are called coarse in atmospheric sciences (Wallace and Hobbs, 2006),
whereas in volcanology sizes of the order 0.1–1 mm are considered coarse (Lockwood and
Hazlett, 2010, Wilson et al., 2012). Here, particles with sizes ≲ 10 µm are in the focus, as
these travel furthest in volcanic ash clouds (Grainger et al., 2013).

Based on observations and analog/numerical experiments, the following simple model
has been established for common eruptions. Above the volcanic vent, the eruption column
rises (Figure 2.2). In the lowermost part, volcanic emissions rise due to gas thrust. This
region constitutes about 10 % of the column. Material is emitted with velocities up to
~700 m s−1 and then slows down to <100 m s−1 due to drag forces. As the column rises,
surrounding air is entrained and heated, thereby reducing the effective density of the col-
umn. If the density is below that of the environment, convective lift starts. The convective
region makes up 50–90 % of the column, with updraft velocities of most eruption styles
varying between a few meters per second and ~80 m s−1. If the effective density is not low
enough, the eruption column collapses, potentially leading to a pyroclastic density current
with the volcanic material rapidly moving downhill. Alternatively, pyroclastic density cur-
rents are also often caused by collapsing volcanic domes. Also in this case, ambient air
might be entrained such that at some point parts of the pyroclastic density current start
to rise convectively. After the convective lift and due to the vertical momentum, the ash
might rise above the neutral buoyancy level, creating an overshooting top. It falls back
and spreads laterally, forming an umbrella cloud. In the presence of wind, ash transport
begins and an ash plume forms (Lockwood and Hazlett, 2010, Mackie et al., 2016, Self and
Walker, 1991).

In general, umbrella clouds and ash plumes form in the upper half of the troposphere
(Self and Walker, 1991), e.g., at altitudes of 3–10 km for Eyjafjallajökull in 2010 (Gud-
mundsson et al., 2012) and up to 15 km for Puyehue-Cordón Caulle in 2011 (Klüser et al.,
2013). Extreme events might reach heights >25 km (Mackie et al., 2016, Siebert et al.,
2011, Sparks et al., 1986, Sparks, 1986) and up to about 50 km (Self and Walker, 1991).
An ash cloud itself can have a geometrical thickness of up to few kilometers, consisting
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Figure 2.2: Sketch of an volcanic eruption column and the consequent ash plume.

of one or more layers (Marenco et al., 2011, Schumann et al., 2011). Typical ash mass
concentrations depend strongly on the lifetime, with concentrations of a few 100 µg m−3 at
distances of 1000–2000 km from the source (Marenco et al., 2011, Schumann et al., 2011)
but concentrations of the order of 1 mg m−3 (Weber et al., 2012) to 1 g m−3 (Przedpelski
and Casadevall, 1994) at distances of a few kilometers from the volcano.

2.1.3 Volcanic ash
Composition and microphysical properties

Chemically, magma contains mainly silica (SiO2) with 40–75 wt.% (Langmann, 2013, Lock-
wood and Hazlett, 2010). Further common oxides are titanium dioxide (TiO2), aluminium
oxide (Al2O3), ferric oxide (Fe2O3), ferrous oxide (FeO), manganese oxide (MnO), magne-
sium oxide (MgO), calcium oxide (CaO), sodium oxide (Na2O), potassium oxide (K2O) and
phosphorus pentoxide (P2O5) (Best, 2003, Nakagawa and Ohba, 2002, Prata et al., 2019).
Compositions with a high silica content (roughly >65 wt.%) are called felsic, whereas low
silica contents (<50 wt.%) are called mafic; otherwise one speaks of intermediate compo-
sitions (Lockwood and Hazlett, 2010). A typical classification scheme utilizes the silica
content versus the summed weight percentage of Na2O and K2O. Based on this classifi-
cation, various volcanic products are named, e.g., basalt, andesite or rhyolite (Lockwood
and Hazlett, 2010, Siebert et al., 2011). As silica forms polymer chains in magmatic melts,
an increasing silica content results in an increasing viscosity of the magma. In addition,
higher silica contents partly correlate with higher amounts of volatiles (i.e., gases dissolved
in magma; typically 0.5–7 wt.%), primarily water vapor (H2O) but also sulfur dioxide (SO2)
and carbon dioxide (CO2) due to a tendency of felsic melts to have a higher volatile sol-
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Figure 2.3: Contribution of typical minerals to the crystalline content of volcanic ash
depending on the silica content; numbers are extracted from Jerram and Petford (2011).

ubility than more mafic ones. Clearly, the viscosity also determines the mobility of the
exsolved volatiles, i.e., the gas bubbles. And as the volatiles drive the eruption, an in-
creased amount of gases trapped in the magma (either in bubbles or dissolved) leads to an
increased explosiveness (Langmann, 2013, Lockwood and Hazlett, 2010, Sigurdsson et al.,
1999).

Within the melt, crystalline minerals are formed both during storage (usually larger
crystals called phenocrysts) and ascent (usually smaller crystals called microlites). Those
have different chemical compositions, melting temperatures and densities, and as a conse-
quence different minerals predominate in magma of different silica contents (Figure 2.3).
For example, quartz, alkali feldspar and sodium-rich plagioclase dominate for felsic magma,
whereas calcium-rich plagioclase, olivine and pyroxene is present in mafic rocks (Jerram
and Petford, 2011, Nakagawa and Ohba, 2002, Rogers, 2015). As not all melt crystallizes
before and during the eruption, the ejected volcanic ash consists of a mixture of crystals
and volcanic glass (Wilson et al., 2012). They are either internally mixed with one or more
crystals embedded in a glassy groundmass, or externally with each particle consisting either
of a mineral or of glass, see Figure 2.4 (Hornby et al., 2019, Shipley and Sarna-Wojcicki,
1982). Note that the minerals (except for quartz) have a lower silica content than the
bulk magma, and consequently the remaining glass has a higher silica content than the
bulk magma (Mackie et al., 2016). The petrological composition itself is not fixed, but
changes with the distance from the the volcanic source, as the (denser) crystals sediment
faster (e.g., at distances of the order of 100 km from the vent) than the glass shards. Thus,
distal ash contains mostly glassy particles and has a higher silica content than the original
magma (Mackie et al., 2016, Shipley and Sarna-Wojcicki, 1982).

Due to the exsolved gases, the volcanic glass might be porous and contains bubbles
(vesicles) and overall porosity can be quite high, e.g., >80 % (Sparks, 1978). However,
when considering fine ash, the actual sizes of the bubbles needs to be considered. Using
backscattered electron images or stereo-scanning electron microscopy, and considering the
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Figure 2.4: Minerals and volcanic glass present in a volcanic ash sample originat-
ing from a vulcanian explosion at the Santiaguito dome complex, Guatemala; the
phases were determined using Quantitative Evaluation of Minerals by Scanning Elec-
tron Microscopy / Particle Mineralogical Analysis (QEMSCAN/PMA) with a resolution
of 1 µm; extracted from a figure of Hornby et al. (2019), licensed under CC BY 4.0
(http://creativecommons.org/licenses/by/4.0/).

number density, size distributions with peaks at diameters of the order of 10–20 µm were
measured (Genareau et al., 2012, 2013), but also peak diameters of ~0.5 µm (Colucci et al.,
2013). With respect to the volume, bubbles with diameters of 10–600 µm contribute the
major part (Cioni et al., 2014, Genareau et al., 2013, Klug and Cashman, 1994). Still,
even for particles with effective diameters of 1.5–2.8 µm in the plume of a degassing vol-
cano, Shcherbakov et al. (2016) deduced porosities of 18–35 % from the aerosol refractive
index. Ash densities are <1 g cm−3 in the case of high vesicularity; with decreasing particle
size/decreasing porosity, the density increases (Mackie et al., 2016). Volcanic glasses have
densities of ~2.4 g cm−3, whereas minerals often have ~3 g cm−3 and larger (Shipley and
Sarna-Wojcicki, 1982, Wilson et al., 2012).

The typical volcanic ash particle size decreases with the ash cloud’s lifetime and distance
from the source; a log-normal distribution (see Equation 7 in P1 and Limpert et al., 2001)
is often used to describe size measurements (Farlow et al., 1981, Grainger et al., 2013,
Stevenson et al., 2015). However, definite figures depend heavily on the type of eruption as
well as the measurement technique. For instance, based on deposits, median grain sizes in
the order of 1–10 mm at distances of 25 km from the source have been reported for magmatic
eruptions, whereas sizes of the order of 0.1 mm have been found at the same distance for
hydromagmatic eruptions (Mackie et al., 2016). Airborne in situ measurements indicated
mainly particle diameters of 10–30 µm at distances of around 100 km (Mackie et al., 2016).
For the effective particle radius (i.e., the area-weighted radius) of Eyjafjallajökull ash in
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Figure 2.5: Images of volcanic ash particles created using Scanning Electron Microscopy
(SEM); the samples were collected in situ in the Eyjafjallajökull ash plume above the North
Sea at 2 May 2010; taken without changes from Schumann et al. (2011), licensed under
CC BY 3.0 (https://creativecommons.org/licenses/by/3.0/).

2010, Johnson et al. (2012) found 0.5–2 µm at distances of ~1400 km and Schumann et al.
(2011) 0.65–1.4 µm at ~1760 km; Weber et al. (2012) measured particle radii of roughly
0.2–3 µm about 1950 km from the source (and even smaller particles might have been
present in significant amounts). Satellite-based remote sensing retrievals of volcanic ash of
different volcanoes and under different conditions led to effective radii of 0.5–9 µm (Grainger
et al., 2013), 1.1–2.7 µm (Ishimoto et al., 2016) and 0.16–3.09 µm (Ishimoto et al., 2021).
In the discipline of cryptotephra, median shard diameters of 5–100 µm have been found
even at distances >1000 km (Mackie et al., 2016, Stevenson et al., 2015). The log-normal
distribution’s form is parameterized by two quantities: besides a radius (e.g., the effective
or the median radius), one uses the geometric standard deviation. Typical values for it are
of the order 1.38–1.74 (Farlow et al., 1981, Stevenson et al., 2015).

The shape of the ash particles (e.g., Figures 2.5 and 2.6) is highly variable (Vogel et al.,
2017), including blocky particles, glass shards originating from the hulls of fragmented gas
bubbles and foam like, vesicular ash flakes (Mackie et al., 2016). However, glassy shards
tend to dominate at large distances, i.e., beyond 50–250 km (Genareau et al., 2013, Shipley
and Sarna-Wojcicki, 1982), and smaller particles (i.e., particle diameter ≲ 5 µm) tend to
be more spherical than larger ash particles (Vogel et al., 2017).

Further changes of the volcanic ash with traveled distance are related to atmospheric
processes. Gravitational settling is determined by the terminal velocity which exhibits a
non-negligible dependence on the particle shape, with a factor of ~2 difference between
spherical and highly non-spherical particles. Model calculations for particles of diameters
of 1–10 µm and different shapes resulted in terminal velocities of about 0.05–5 mm s−1,
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Figure 2.6: Images of volcanic ash particles created using SEM; the samples are from the
eruption of Mount St. Helens at 18 May 1980; extracted from a figure of Genareau et al.
(2013), licensed under CC BY 2.0 (https://creativecommons.org/licenses/by/2.0/).

respectively (Mackie et al., 2016). Reduction of small ash particles is further increased due
to aggregation (also coagulation), i.e., fine ash particles may collide and form aggregates
with sizes in the order of 10 µm–10 mm, which again have higher fall-out velocities. In the
presence of water (from the magma, external water bodies or the atmospheric water vapor),
their creation is caused by hydrometeor formation or surface tensions when covered/mixed
with liquids. In the absence of liquid water, ash particles might cling together due to
electrostatic charges (e.g., caused by particle collisions) or their entwined irregular surfaces.
Scavenging from volcanic-emitted gases can lead to the creation of crystals on the surfaces
of ash particles, holding multiple particles together (Brown et al., 2012, Langmann, 2014,
Mackie et al., 2016). The surface of volcanic ash particles might be further altered due
to emitted gases, e.g., sulfuric acid might condensate on the surface and sulfates might be
adsorbed (Langmann, 2013, Rose, 1977, Wilson et al., 2012).

Complex refractive index

The chemical and petrological composition influence the complex refractive index of vol-
canic ash (Kolokolova and Gustafson, 2001). Back in 1973, Pollack et al. (1973) and Volz
(1973) measured the refractive index in the thermal infrared of a handful volcanic ash
samples in the laboratory, which were then heavily used in the following decades (e.g.,
Gangale et al., 2010, Ishimoto et al., 2016, Prata, 1989, Prata and Grant, 2001, Pugnaghi
et al., 2013, Wen and Rose, 1994, Yu et al., 2002). Only in recent years, additional re-
fractive indices in the thermal infrared were derived from various ash samples to cover a
wider range of possible ash types. Deguine et al. (2020), Grainger et al. (2013), Reed et al.
(2018) measured the spectral extinction and the size distribution and assumed specific
shapes to derive the refractive index from the optical properties. Using spaceborne hyper-
spectral brightness temperature measurements, Ishimoto et al. (2016) applied a two-step
retrieval to derive micro- and macrophysical ash cloud properties in a first step under the
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assumption of refractive indices from Pollack et al. (1973), and the actual imaginary part
of the refractive index in a second step by keeping all other previously retrieved quantities
constant. Prata et al. (2019) fitted linear wavelength-dependent functions to both parts
of the ash refractive index (from Reed et al., 2018), using either the silica content or the
ratio of non-bridging oxygens to tetrahedrally coordinated cations as an argument (thus,
both arguments reflect the chemical composition of the volcanic ash). The coefficient of
determination R2 was used to quantify how good the fits reproduce the original measure-
ments; although values >0.5 were found for some parts of the spectrum, it was <0.5 around
wavelengths of 9–10 µm, i.e., around the peak of the imaginary part of the refractive index
of volcanic ash.

The variability of the refractive indices is large: results from Reed et al. (2018) and
Deguine et al. (2020) show large deviations between different ash samples (a factor of 2–3)
and also significant differences between the results of the two studies for the same samples
(up to a factor of 2), potentially due to the different shape assumptions (Deguine et al.,
2020). This variability also influences, for instance, volcanic ash satellite retrievals in a
non-negligible fashion (Prata et al., 2019, Wen and Rose, 1994, Western et al., 2015).

Role as cloud condensation and ice nuclei

Volcanic ash (just as other aerosols) might impact liquid and ice water clouds. Depending
on the temperature, the relative humidity RH and the aerosol properties, ash particles
might act as cloud condensation nuclei (CCN) to produce liquid water clouds or as ice nu-
clei (IN) to form cirrus clouds (Wallace and Hobbs, 2006). A common conception (which
is by no means sufficiently tested in all aspects, Boucher et al., 2013, Fan et al., 2016,
Langmann, 2013) assumes that CCNs together with water vapor under supersaturated
conditions lead to the formation of droplets, and consequently to increases in the cloud
cover, liquid water path, droplet number concentration and finally to precipitation, which
reduces the cloudiness again. However, if the CCN number concentration is sufficiently
high, the available water vapor may be used up to form only small droplets. In this case,
cloud cover, liquid water path and droplet number concentration are again increased, but
average droplet size is decreased with respect to the previous case and, thus, precipitation
is inhibited (e.g., Rosenfeld et al., 2001). As a result, the lifetime of the clouds increases.
As discussed by Durant et al. (2008), there might be a similar situation for INs: a small
number of INs in a supercooled cloud might trigger ice particle growth (by the Wegener-
Bergeron-Findeisen process, Storelvmo and Tan, 2015) leading to precipitation, whereas a
large number of INs (e.g., as might be present after a volcanic eruption) might form many
small ice particles, each of which unable to further grow to become large enough to precipi-
tate. Note that these simple pictures are most probably complicated by further micro- and
macrophysical feedbacks dependent on the atmospheric conditions and geographical loca-
tion, which might weaken or modify the straight-forward relationships (Rosenfeld et al.,
2008, Stevens and Feingold, 2009). The aerosol-cloud interaction also varies with different
cloud types (Fan et al., 2016). Apart from modifying the water cycle, these aerosol–cloud
interactions can also have radiative impacts, e.g., the increased cloud cover increases the
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planetary albedo (Albrecht, 1989), especially for clouds over dark surfaces such as oceans,
whereas the increased droplet number concentration at reduced droplet sizes increases the
reflectivity of the clouds even more (Twomey, 1977). Further, water also influences vol-
canic ash: the formation of hydrometeors is an important process in the wet aggregation of
volcanic ash particles (Brown et al., 2012, Mackie et al., 2016). Due to their larger size, ash
aggregates sediment faster than their constituents. Thus, aggregation has to be properly
incorporated in transport and dispersion models which otherwise overestimate the amount
of fine distal ash.

For INs, different freezing modes exist which are active at different temperatures, which
again depend also on the aerosol properties. In the case of volcanic ash, laboratory exper-
iments show that contact freezing (i.e., an aerosol particle touches the surface of a liquid
water droplet from the inside or from the outside, Durant and Shaw, 2005) takes place
at −11.2 ± 1° C (Fornea et al., 2009) or about −17.5° C (Shaw et al., 2005). Immersion
freezing (i.e., the particle is completely inside the droplet) begins at −12 to −25° C (Jahn
et al., 2019) and −26 to −30° C (Schill et al., 2015), at −18.3 ± 2° C (Fornea et al., 2009)
or approximately −22° C (Shaw et al., 2005). Without differentiation between contact and
immersion mode, Durant et al. (2008) found a mean freezing temperature of −19.9±2.1° C.
Note that Schill et al. (2015) found two of their three ash samples to initiate immersion
freezing only at temperatures just above the onset of homogeneous freezing. Deposition
freezing (i.e., water vapor directly forms ice on the IN’s surface) was observed between −30
and −38° C, with the effectiveness depending on the temperature and the relative humidity
with respect to ice RHice (Kulkarni et al., 2015), and starting between −38 and −48° C
at RHice = 105 % (Schill et al., 2015). Finally, in the absence of any INs, homogeneous
freezing begins—depending on the droplet size—between −35 and −41° C (Wallace and
Hobbs, 2006). Besides the temperature dependence also the particle properties have an
impact. For example, freezing temperature slightly decreases with increasing silica content
(Durant et al., 2008) and particle size (Durant et al., 2008, Jahn et al., 2019). Maters et al.
(2019) compared different ash samples and their remelted and quenched analogs in the lab-
oratory and found increased immersion mode freezing temperatures for the ash compared
to the glass samples; for samples containing certain minerals such as alkali feldspar; and
for lower amounts of certain oxides such as Fe2O3, MgO and CaO. Genareau et al. (2018)
found increased ice nucleation activity in the immersion mode for increasing amounts of
K2O and decreasing amounts of MnO and TiO2. Volcanic gases are capable of increasing
or decreasing the ability of ash to form ice at high temperatures (400–800° C); for ex-
ample, an enhancing effect was observed with a mixture of H2O and SO2 (Maters et al.,
2020). With respect to possible surface coatings, Kulkarni et al. (2015) found reduced
deposition freezing activity if Arizona test dust is covered with H2SO4 which decreased the
crystallinity.

In nature, ice within volcanic clouds has been observed at various occasions (Rose
et al., 2004). Also in the case of the Eyjafjallajökull eruption in 2010, various studies
found signs for IN activity. For example, Steinke et al. (2011) investigated immersion
(starting at −21° C) and deposition freezing (starting at −31° C and RHice = 126 %) due to
Eyjafjallajökull ash experimentally using a cloud chamber and found that frozen fractions



2.1 Volcanic eruptions 17

of the volcanic ash particles of 0.1 % were reached at −24° C for the immersion mode and
at −40° C and RHice = 116 % for the deposition mode. A similar study was executed by
Hoyle et al. (2011); they found the onset of immersion freezing at −10 to −23° C for a
small number of particles. But comparing bulk freezing experiments (sensitive to the most
IN-active particles) with the behavior of the average ash particle showed that the latter
lowered the freezing temperatures only by 3–4° C compared to the homogeneous freezing
mode. In addition, the IN activity was in parts significantly lower than for Arizona test
dust and certain minerals. Note that differences in the measured freezing temperatures in
the studies might also be caused by different ash particle sizes (Jahn et al., 2019, Steinke
et al., 2011), e.g., Kulkarni et al. (2015) considered particles with diameters <1 µm; Hoyle
et al. (2011) had ash particles with mostly diameters of ~1 µm, but very few particles had
even sizes >100 µm; Steinke et al. (2011) used particles with diameters generally <10 µm;
Jahn et al. (2019) focussed on sizes <37 µm; and Schill et al. (2015) had effective particle
diameters <60 µm. However, Shaw et al. (2005), Fornea et al. (2009) and Durant et al.
(2008) investigated particles with diameters of 100–300 µm, 250–300 µm and 1–1000 µm,
respectively. Still, by analyzing ground-based air samples in northern Italy, Belosi et al.
(2011) found increased concentrations of aerosols in the accumulation and and coarse mode
compared to a presumably ash-free situation, as well as increased ratios of IN to aerosol
number concentrations. Evaluating ground-based lidar measurements in Germany, volcanic
ash-induced cirrus clouds were observed (e.g., Rolf et al., 2012, Seifert et al., 2011). Rolf
et al. (2012) deduced increases of the IN number concentration by one order of magnitude
(i.e., 0.1 cm−3) from lidar data, and decreases in the ice particle radius (to around 10 µm)
from accompanying model calculations. Seifert et al. (2011) found ice in aged ash clouds
at higher-than-normal temperatures (i.e., at temperatures below −15° C all ash clouds
formed ice, instead of −25° C for normal clouds) and partly at significantly lower-than-
normal altitudes. Flight campaigns found hints for ice/ice coated ash visually due to the
whitish color of the plume top (Weber et al., 2012); during in situ measurements in form
of collocated high relative humidities, mass concentrations, ice water contents and particle
diameters (Johnson et al., 2012, Marenco et al., 2011); and in lidar results (Schumann et al.,
2011). Using polar-orbiting satellites, Kahn and Limbacher (2012) retrieved ice within the
ash plume close to the vent using the Multi-angle Imaging SpectroRadiometer (MISR) with
four channels at 446–866 nm and nine viewing angles in forward and backward direction.
Waquet et al. (2014) considered the same scene using total and polarized radiances in the
visible and near-infrared spectrum from the instrument Polarization and Directionality of
Earth Reflectance (POLDER); although their method worked in principle, it struggled at
the center of the plume close to vent. The authors assumed that this was caused by ice
which was not incorporated in their retrieval.

There are also satellite-based investigations (all using MODIS products alongside other
retrievals or models) on the impact of volcanic emissions on the meteorological cloud prop-
erties: Gassó (2008) presented mostly qualitative case studies of degassing volcanoes (i.e.,
at the Aleutian Islands and the South Sandwich Islands) and weakly explosive eruptions
and their impact on meteorological clouds in the lower troposphere, finding increases in
the cloudiness and decreased cloud droplet effective radii. Analyzing multiyear data for
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effects on trade cumuli by the degassing of SO2 by the Hawaiian Kı̄lauea volcano, Yuan
et al. (2011) found additionally on average a reduction in precipitation, an increase in
cloud top height, and—as a consequence of the microphysical changes and increased cloud
coverage—an increase in the atmospheric shortwave albedo. Findings of reduced average
effective droplet radius and an increased shortwave upward flux were confirmed by Ebmeier
et al. (2014) by investigating data of multiple years and multiple island volcanoes (Kı̄lauea,
Yasur, Piton de la Fournaise) with satellite images rotated according to the horizontal wind
direction. In contrast, Malavelle et al. (2017) also observed particle size reduction but no
significant changes in cloud cover and liquid water path when comparing satellite retrievals
with results of general circulation models for the Holuhraun eruption 2014–2015. Prata
et al. (2020) reported indications for an ash-poor deep convective eruption cloud in the up-
per troposphere created by the phreatomagmatic eruption of the Anak Krakatau in 2018;
they found significant ice loads and reduced ice particle radii compared to the surrounding
meteorological ice clouds, and assumed—based on extremal updraft velocities and cloud
top temperatures—that mainly homogeneous freezing took place.
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2.2 Radiative transfer theory
In the following, the foundations of the radiative transfer theory are summarized, based
mainly on Liou (2002), Mayer et al. (2019), Thomas and Stamnes (1999), Wallace and
Hobbs (2006), unless otherwise noted. It descibes the propagation of electromagnetic
radiation (e.g., within the atmosphere) and its interaction with matter due to emission,
absorption and scattering.

2.2.1 Electromagnetic radiation
Electromagnetic radiation is an energy form which has wave as well as particle properties.
Due to the wave properties, one considers the wavelength λ (in the context of atmospheric
radiation usually in nm or µm) and the frequency ν̃ (in s−1 or Hz), which are related by

c = λ · ν̃ (2.1)

where c = 2.998 × 108 m s−1 is the constant propagation velocity of the electromagnetic
radiation in vacuum, the speed of light. In the thermal range, the wavenumber ν (often in
cm−1) is also regularly used, with

ν = 1
λ

. (2.2)

Due to its particle properties, electromagnetic radiation is quantized in form of photons
which carry an energy ∆E (in J) with

∆E = hν̃ (2.3)

with Planck’s constant h = 6.626 × 10−34 J s. The descriptions in form of wavelength,
wavenumber, frequency or energy are equivalent; mainly the wavelength is used in this
work.

Depending on the wavelength, electromagnetic radiation is qualitatively categorized
in major spectral ranges (Figure 2.7). The human eye is sensitive to the wavelengths of
circa 400–700 nm, called the visible spectrum. Towards smaller values, ultraviolet denotes
wavelengths of 10–400 nm and X-ray the spectrum of 0.01–10 nm. Photons of even shorter
wavelength are called gamma rays. Longer wavelengths of 0.7–1000 µm define the infrared
spectrum, which which includes the subranges of the near infrared at 0.7–3.5 µm and
the thermal infrared at 3.5–100 µm. For wavelengths > 1000 µm follows the microwave
spectrum. This work focuses on measurements in the thermal infrared spectral range.

A central quantity of the radiative transfer is the radiance Iλ(r, θ, ϕ, t) (also monochro-
matic intensity), defined as energy per time per area per solid angle per wavelength (in
W m−2 sr−1 µm−1). r denotes the positional vector, θ and ϕ the zenith and azimuth angles,
respectively, of the direction into which the radiation propagates in a polar coordinate
system, and t the time. Consider the situation that radiation within the wavelength range
dλ and the time dt is emitted from an area dA into a solid angle dΩ = sin θ dθ dϕ. Let dA
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Figure 2.7: Overview of the electromagnetic spectrum.

define the polar coordinate system such that the zenith angle θ is the angle between the
normal of dA and the direction towards dΩ. In this case, the radiance is corrected by a
factor cos θ to project dA on a plane whose normal vector points in the direction given by
θ and ϕ. Thus, for the radiance holds

Iλ(r, θ, ϕ, t) = dE

cos θ dΩ dA dλ dt
. (2.4)

Integrating the radiance with respect to cos θ dΩ gives the monochromatic irradiance (or
monochromatic flux density). Further integrating with respect to the wavelength leads to
the irradiance (or total flux density of radiant energy). Finally, also integrating over the
area results in the total flux.

2.2.2 Blackbody radiation
All matter absorbs and emits radiation. A blackbody is an idealized body that absorbs all
radiation falling on it, i.e., it has the maximum possible absorption capacity. A cavity with
a small entrance is an approximation of a blackbody: radiation entering the cavity will be
reflected in the inside again and again until it is finally absorbed; thus, from the outside,
the hole appears to be a blackbody. The emission of a blackbody is described by Planck’s
law, with the radiance being

Bλ(T ) = 2hc2

λ5 (ehc/λkBT − 1) (2.5)

with Boltzmann’s constant kB = 1.3806 × 10−23 J K−1. The Sun’s surface has a temper-
ature of ~5800 K, whereas temperatures of 200–300 K prevail at the Earth’s surface and
within the troposphere. The corresponding blackbody radiation (Figure 2.8) has only minor
overlap around 3.5 µm. Thus, solar and thermal radiation can be treated as independent
considering passive remote sensing problems.
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Figure 2.8: Blackbody radiance for temperatures of 200–300 K (blue, in 10 K steps with
the lowermost and uppermost graph corresponding to 200 K and 300 K, respectively) and
5800 K (red, scaled for comparability to the blue graphs), and an example spectrum mea-
sured by the Infrared Atmospheric Sounding Interferometer (IASI, gray) showing that the
top-of-atmosphere radiance emitted from the Earth corresponds to Planck’s function of
different temperatures depending on the wavelength.

To quantify the difference between the theoretical blackbody and real objects (so-called
gray bodies), Planck’s law is used to introduce the emissivity ϵλ as

ϵλ = Iλ(emitted)
Bλ(T ) (2.6)

with ϵλ = 1 for a blackbody but ϵλ < 1 a gray body. Furthermore, the absorptivity
αλ, reflectivity Rλ and transmissvity Tλ are defined as the ratios between the absorbed,
reflected or transmitted radiance, respectively, and the incoming radiance. Under the
condition of a thermodynamic equilibrium (i.e., a system is simultaneously in a thermal,
radiative, mechanical and chemical equilibrium), one can derive Kirchhoff’s law

ϵλ = αλ. (2.7)

In the atmosphere, this condition is not generally satisfied, but a local thermodynamic
equilibrium is given at altitudes up to 60–70 km.

2.2.3 Absorption and scattering
Atmospheric molecular gases can interact with radiation under certain conditions (e.g., to
first order, changes in the electric dipole vector of the molecule must be possible, such
that the electromagnetic field can couple to it). The absorption of a photon by a molecule
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Figure 2.9: Brightness temperature spectrum measured by the Infrared Atmospheric
Sounding Interferometer (black), indications of main gas features (grey) and the peak-
normalized spectral response functions of Meteosat-9 (red, see Section 2.3.1).

increases its energy, whereas the emission decreases the energy. Molecules can carry energy
in form of translational energy, rotational energy, vibrational energy and electronic energy.
The last three forms are quantum-mechanically quantized, such that interactions can take
place only with photons of a specific energy which equals the difference in the discrete
energy levels. Changing the rotational energy is connected to energies in the microwave and
far-infrared spectrum; vibrational and combinations of vibrational and rotational energy
transitions lead to interactions in the infrared spectrum; electronic energies are related to
the visible and ultraviolet spectrum.

Focusing on the thermal infrared (Figure 2.9), most important atmospheric gases are
water vapor, carbon dioxide and ozone, with water vapor producing a band around 6.25 µm,
carbon dioxide around 4.3 µm and especially 15 µm, and ozone around 9.6 µm. Further-
more, the spectrum is influenced by carbon monoxide, methane, nitrous oxide, nitric oxide
and chlorofluorocarbons, but their impact is comparably small such that they can be ne-
glected when considering a broad-band radiometer as is done in this work. The spectral
region 8.3–12.5 µm is called atmospheric window, as it is mostly transparent except for the
ozone.

Absorption by solids (e.g., aerosol particles) can happen due to electronic excitation,
i.e., an electron is lifted to a higher-energy state. Thus, conductors tend to be highly
absorbing in the visible and infrared, whereas insulators are rather transparent. Energies
in the thermal infrared can cause vibrations in the solid (i.e., vibrations of single molecules
or even of the complete lattice). In the case of liquids, absorption is connected to interac-
tions between the liquid’s molecules. The bulk properties of solids and liquids relevant to
absorption and scattering are given by the complex refractive index m with

m = n + ik. (2.8)
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Liquid and ice water clouds influence radiation in the atmospheric window. Liquid water
clouds and cirrus clouds composed of large ice crystals are similar to blackbodies in the
atmospheric window, whereas thin cirrus clouds of small particles (i.e., effective radii ≲
30 µm) have a size-dependent absorption peak around 12 µm which results in a spectral
signature that can be used for its discrimination and detection (Ackerman et al., 1990,
Smith et al., 1998).

In addition, molecules, droplets, ice crystals and aerosols lead to scattering of radiation.
Light can be scattered out of the viewing direction, such that scattering increases extinc-
tion, but can also be scattered into it, thereby increasing the amount of radiation. The
mathematical description of the scattering process is generally complicated and depends
on the object size, shape and wavelength. The size parameter x is defined as

x = 2πa

λ
(2.9)

with a being the particle radius. For spherical objects and x ≳ 1, the Lorenz-Mie scattering
takes place; the corresponding theory can be derived directly from Maxwell’s equations.
It exhibits strong scattering in forward direction and is roughly wavelength-independent.
Cloud droplets and spherical aerosol particles (with sizes of roughly 1–10 µm) can be treated
with Lorenz-Mie theory. For x ≪ 1, Lorenz-Mie scattering simplifies to Rayleigh scatter-
ing, corresponding to the situation of a single electromagnetically-induced dipole moment
creating the scattered field. Rayleigh scattering leads to a radiance being proportional to
λ−4 and equal scattering in forward and backward direction. This approximation is applied
to gas molecules (a ≈ 1 × 10−4 µm). For x ≫ 1, scattering can be described by geometric
optics, i.e., light can be modeled by parallel rays being refracted according to Snell’s law.
This simplification can be used for raindrops (a ≈ 1 cm).

The situation becomes more complicated for spheroids, non-spherical objects (e.g., ice
crystals) or irregular-shaped particles (e.g., dust particles or volcanic ash). Spheroidal
particles can be treated with the T-matrix method: incoming and scattered electromagnetic
waves are expanded with respect to vector spherical wave functions, with the relation of the
corresponding coefficients (the T-matrix) being derived using boundary conditions at the
scatterer’s surface. For non-spherical particles such as ice crystals, the geometric optics
approach can be utilized as well. The theory might be extended by applying a Monte
Carlo approach, i.e., a large number of light rays is calculated with random initialization,
scattering and absorption. Comparing the initial with the resulting light rays allows to
approximate the object’s scattering properties. Another numerical approach is the finite-
difference time domain method. In this case, space and time are discretized and electric
and magnetic fields for each grid cell are alternately calculated based on the surrounding
fields in the preceding time step, thereby effectively simulating the propagation of an
initial electromagnetic wave. Numerous modifications and variations of all aforementioned
approximations as well as other approaches exist (Kahnert, 2003, Wriedt, 2009, Yang et al.,
2015).

Independent of the method, a set of optical properties parameterizes the scattering
and absorption properties. The absorption and scattering cross sections σabs and σsca
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are defined as the ratio between the radiance absorbed or scattered (in all directions),
respectively, by the molecule/particle and the incident radiance. They have the unit of a
geometrical area which represents the effective area of the object presented to the incident
beam with respect to scattering and absorption. The extinction cross section σext is the
sum of both, i.e.,

σext = σabs + σsca. (2.10)

The mass extinction coefficient kext is given by

kext = σext

M
(2.11)

with unit mass M . The extinction coefficient βext is defined as

βext = σextn = kextρ (2.12)

with n denoting the particle number density and ρ the mass concentration. Similar relations
hold for the absorption and scattering coefficients βabs and βsca, respectively, with

βext = βabs + βsca. (2.13)

The single scattering albedo ω is given by

ω = βsca

βext
= βsca

βabs + βsca
. (2.14)

The optical depth τ is defined as

τ =
∫

βext ds =
∫

kextρ ds (2.15)

with the integral along the optical path s. For scattering processes, the scattering phase
function P (θ, ϕ; θ′, ϕ′) is a normalized distribution describing the relative intensity of ra-
diation scattered the from incoming angles θ′, ϕ′ to the outgoing direction θ, ϕ. From
the given angles, the scattering angle Θ describing the deflection of the radiation can be
derived as

cos Θ = cos θ′ cos θ + sin θ′ sin θ cos(ϕ′ − ϕ) (2.16)

such that the phase function can be given by this argument as P (cos Θ). Furthermore, to
investigate the dominance of forward or backward scattering, the asymmetry parameter g
can be calculated as

g = 1
2

∫ 1

−1
P (cos Θ) cos Θ d cos Θ (2.17)

with g = 1 for forward scattering, g = 0 for isotropic scattering and g = −1 for backward
scattering.
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2.2.4 Radiative transfer equation
The general, time-independent, monochromatic radiative transfer equation for a plane-
parallel atmosphere is given by

cos θ
dIλ(z, θ, ϕ)

dz
= − βext,λ(z)Iλ(z, θ, ϕ)

+ βemis,λ(z)Bλ (T (z)) (2.18)

+ 1
4π

βsca,λ(z)
∫ 2π

0

∫ π

0
P (z; θ, ϕ; θ′, ϕ′)I(z, θ′, ϕ′) sin θ′ dθ′ dϕ′

with z describing the vertical dimension and T (z) the vertical temperature profile. The
three terms on the right hand side describe the different sources/sinks of the radiance.

The first term in Equation 2.18 describes the extinction of radiation due to absorption
and deflection of photons into another direction. Neglecting the other two terms, the
differential equation is solved by

Iλ(z, θ, ϕ) = Iλ(z = 0, θ, ϕ) exp
(

−
∫ z

0

βext,λ(z)
cos θ

dz

)
(2.19)

which is the Beer–Bouguer–Lambert law. Thus, the radiance decreases exponentially with
increasing optical depth.

The second term in Equation 2.18 describes the emission of radiation according to
Planck’s law. Due to Kirchhoff’s law (Equation 2.7), the emission coefficient βemis,λ can be
substituted by βabs,λ. Neglecting scattering in Equation 2.18, i.e., setting βsca,λ = 0, one
obtains Schwarzschild’s equation. Substituting ds = dz/ cos θ, its solution is

Iλ(s1) = Iλ(0) exp (−τλ(s1, 0)) +
∫ s1

0
Bλ (T (s)) exp (−τλ(s1, s)) βabs,λ(s) ds(2.20)

τλ(s1, s) =
∫ s1

s
βabs,λ(s′) ds′ (2.21)

with s ∈ [0, s1].
The third term in Equation 2.18 describes the scattering of photons from another di-

rection θ′, ϕ′ into the considered direction θ, ϕ. To solve the radiative transfer equation,
temperature profile, densities, cross sections for absorption and scattering, phase func-
tions and boundary conditions are necessary. The atmospheric profiles can be obtained,
e.g., from standard atmospheres, vertical measurements or model calculations. Optical
properties can be calculated according to the approaches mentioned above and under the
assumption of certain microphysical properties. For the calculation of the radiative trans-
fer, the libRadtran framework is used in this work (Emde et al., 2016, Mayer and Kylling,
2005).
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2.3 Geostationary passive imagers

2.3.1 MSG/SEVIRI

The main satellite instrument utilized in this work is the Spinning Enhanced Visible and
InfraRed Imager (SEVIRI), which is a passive imager aboard the geostationary Meteosat
Second Generation (MSG) satellites operated by the European Organisation for the Ex-
ploitation of Meteorological Satellites (EUMETSAT). The MSG spacecraft are spinning
around an axis in north-south direction, thereby measuring radiation coming from the
Earth along lines in the east-west direction. The temporal resolution for full disc cover-
age is 15 min. SEVIRI has 12 channels. Three bands are in the visible and near-infrared
spectrum and are centered at 0.6 µm, 0.8 µm and 1.6 µm. Eight bands are in the thermal
infrared at 3.9 µm, 6.2 µm, 7.3 µm, 8.7 µm, 9.7 µm, 10.8 µm, 12 µm and 13.4 µm. Finally,
one channel is a high resolution visible (HRV) broadband, covering roughly 0.4 to 1.1 µm
and half of the SEVIRI disc at each revolution. The spectral sensitivity of the channels
is characterized by the spectral response functions, shown in Figure 2.10 for Meteosat-9.
Some of the channels cover specific components of the atmosphere, i.e., the channels at
6.2 µm and 7.3 µm are influenced by water vapor, whereas the bands at 9.7 µm and 13.4 µm
are affected by ozone and carbon dioxide, respectively. Other channels, e.g., at 8.7 µm,
10.8 µm and 12 µm are located within the atmospheric window and, thus, are used to ob-
serve meteorological clouds, aerosols or the Earth’s surface. The spatial resolution at the
sub-satellite point is 1 km for the HRV band and 3 km for the other channels (Schmetz
et al., 2002a).

Radiances in the visible channels are converted to reflectances, whereas an equivalent
brightness temperature is derived for the measurements in the thermal channels. The latter
corresponds to a temperature T such that the convolution of Planck’s function B(λ, T ) and
the normalized spectral response function equals the measured radiance (EUMETSAT/2).
Typical measurement noise of the thermal channels is on the order of 0.04 to 0.24 K (EU-
METSAT/3). Examples for a scene on 6 June 2011, 12:00 UTC are given in Figure 2.11.
The observations were made shortly after the eruption of the volcano Puyehue-Cordón
Caulle on 4 June 2011 (Debling et al., 2011), with its ash plume visible in the south-west
of the SEVIRI disc (red rectangle).

As of 16 November 2021, four MSG satellites have been launched, named Meteosat-8
to -11 or alternatively MSG1 to 4. They are deployed at different longitudes (Table 2.1),
with the current main operational satellite (MSG4) located at 0°E with a backup (MSG2)
at 3.5°E. MSG3 operates at 9.5°E in rapid-scan mode, covering only the upper third of
the SEVIRI disc (including Northern Africa and Europe) but at an increased temporal
resolution of 5 min. MSG1 was moved to 41.5°E to cover the Indian Ocean (Indian Ocean
Data Coverage, WMO/MSG1).
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Figure 2.10: Peak-normalized spectral response functions of the currently active, advanced
imagers aboard geostationary satellites; only channels between 5 µm and 15 µm are shown
(data from EUMETSAT/1).

2.3.2 Other imagers in the geostationary ring

Note that there are other geostationary satellites with imagers comparable to the MSG
series, such that methods developed for MSG/SEVIRI are potentially transferable to those
as well. As of 16 November 2021, there are at least 20 satellites in the geostationary orbit
carrying a passive moderate resolution optical imager with channels in the thermal infrared,
operated by the United States, Europe, Japan, South Korea, China, Russia and India (see
Table 2.1 and references therein). They are located at different longitudes and, thus, their
field of views cover most parts of the Earth. Another 18 satellites are currently planned to
be launched within the next two decades. 13 different imagers are carried by the spacecraft
(see Table 2.2 and references therein) of which 10 are already in orbit and 3 are still under
development or need to be launched. The imagers can roughly be divided into two classes.
The older instruments (which are about to fade out) generally have three channels in the
thermal infrared in the range 5–15 µm: one in the water vapor regime around 7 µm, one or
two in the atmospheric window around 11 µm and and one to cover CO2 around 13 µm. The
newer instruments have 6–9 channels in the thermal infrared with smaller bandwidths, and
increased spatial and temporal resolution of around 2 km and 10 to 15 min, respectively.
Besides SEVIRI, this new generation of imagers includes the Advanced Baseline Imager
(ABI, Schmit et al., 2005, 2017), the Advanced Himawari Imager (AHI, Bessho et al., 2016),
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Figure 2.11: Reflectances (R) and brightness temperatures (BT) for the 12 MSG/SEVIRI
channels for a scene at 6 June 2011, 12:00 UTC; the colorbar applies to all channels, with
the extrema given in brackets for each plot; the red rectangle points to the volcanic ash
plume emitted by Puyehue-Cordón Caulle.

the Advanced Meteorological Imager (AMI, KMA), the Advanced Geostationary Radiation
Imager (AGRI, Yang et al., 2017) and the Electro-L imager (MSU-GS, Rublev et al., 2018).
These instruments alone already cover the largest part of the globe (Figure 2.12). Also they
have spectral channels with similar spectral response functions (Figure 2.10). ABI, AHI
and AMI have roughly the same spectral properties as they carry the same instrument
(L3Harris). In comparison to SEVIRI, they have additional bands (3 instead of 2 channels
in the water vapor regime as well as in the atmospheric window) and the bands tend to be
narrower (e.g., the band centered at 13.3 µm). AGRI has similar bandwidths as SEVIRI,
but misses the ozone channel around 9.7 µm, whereas MSU-GS has broader channels and
misses the carbon dioxide channel around 13.4 µm.

Starting from 2022/2023, the new satellite series Meteosat Third Generation (MTG)
should be launched to successively replace MSG (WMO/OSCAR). Those carry the Flexible
Combined Imager (FCI), which has similar thermal channels as SEVIRI but with narrower
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Figure 2.12: Field of view of all currently active advanced moderate resolution optical
imagers aboard geostationary satellites; the colored borders correspond to viewing zenith
angles of 75°.

spectral response functions and a higher temporal and spatial resolution of 10 min and
≤ 2 km, respectively (Durand et al., 2015).
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2.4 Artificial neural networks
Artificial neural networks (ANNs) are a part of the machine learning toolbox. After orig-
inal, biologically-inspired research in the 1940s, the field experienced significant boosts in
the 1980s with the establishment of a training algorithm for neural networks of multiple
layers, and again around 2006, when methods for the training of deep neural networks
were found (Goodfellow et al., 2018). ANNs are quite versatile as they can be used for
classification as well as function approximation (Gardner and Dorling, 1998). Thus, ANNs
are applied in a variety of fields nowadays, e.g., for computer vision, speech recognition or
natural language processing, using specialized structures such as convolutional neural net-
works, recurrent neural networks or auto-encoders (Bengio, 2012, Goodfellow et al., 2018,
Rumelhart et al., 1986a). It has also been applied frequently in the context of atmospheric
sciences (Gardner and Dorling, 1998, Hsieh and Tang, 1998), Earth system sciences (Liu
et al., 2010, Reichstein et al., 2019) and remote sensing (Mas and Flores, 2008). In the
following we focus exclusively on the basic structure, the feedforward multilayer perceptron.

2.4.1 Multilayer perceptron
In principle, multilayer perceptrons can be imagined as advanced fitting methods. In their
basic form they consist of at least three types of layers: one input layer, one or more
intermediate (so-called hidden) layers and one output layer. The input layer consists of
the input data, whereas the output layer contains one or more output quantities that
should be derived from the input features. Each layer is made up of so-called neurons:
they receive the weighted sum of the results of the previous layer’s neurons and use it as
the argument of an activation function; the result is forwarded to the following layer (see
Figure 2.13). More quantitatively: Let us assume a structure with multiple layers, with
the mth layer consisting of Nm neurons. The numerical value forwarded to the subsequent
layer by nth neuron in the mth layer is denoted as xm,n. xm,n itself is calculated from the
previous layers neurons by

xm,n = f

Nm−1∑
i=0

wm,n;i xm−1,i + bm,n

 (2.22)

where wm,n;i and bm,n are tunable parameters of the structure, called weight and bias,
respectively, and f being the chosen activation function (Gardner and Dorling, 1998).

Different functions can and have been used as activation functions (Figure 2.14). Gen-
erally, the perceptron is defined to have a threshold function as activation (Bishop, 1995)

fthrs(x) =
0, x < 0

1, x ≥ 0
. (2.23)

Usually, continuous and differentiable functions are chosen (Bishop, 1995, LeCun et al.,
2012), e.g., the logistic function

flogistic(x) = 1
1 + e−x

(2.24)
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Figure 2.13: Sketch of a multilayer perceptron; black dots indicate that generally an arbi-
trary amount of hidden layers and neurons per layer can be chosen.

or the related hyperbolic tangent

ftanh(x) = ex − e−x

ex + e−x
= 2flogistic(2x) − 1. (2.25)

Linear functions might be applied by single neurons (e.g., in the output layer for the
approximation of a continuous function, Goodfellow et al., 2018), but not generally. If
linear activation functions are used for all neurons, the outputs would be linear in the
input features; only the use of simple, non-linear activation functions enables the modeling
of complex, non-linear functions by the multilayer perceptron (Gardner and Dorling, 1998).
For classification tasks with N categories of which only one should be activated for each
case (i.e., the output layer consists of N neurons of which one should be 1 and the others
0) , the softmax function can be utilized in the output layer, defined for the ith neuron as

fsoftmax(x; i) = exi∑N
j=1 exj

(2.26)

with x = (x1, ..., xN) ∈ IRn describing the weighted sums at all neurons in the output
layer before applying any activation function. Then the outputs are normalized and can
be interpreted as the posterior probabilities of the individual categories (Bishop, 1995,
Goodfellow et al., 2018).

As the sigmoid functions have significant slopes only around x = 0 but behave asymp-
totically for large |x|, such that the result of the neuron changes only insignificantly when
changing x (e.g., due to a modification in the weights), one usually normalizes the input
features to be within [0, 1] or standardizes them by

x 7→ x̄ = x − µx

σx

(2.27)
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Figure 2.14: Common activation functions used for multilayer perceptrons.

with µx and σx being the mean and the standard deviation of the input feature, respectively
(Bishop, 1995). Similarly, target values need to be adjusted if a bounded activation function
is used in the output layer. In particular, the majority of the target values should not be
located at the asymptotes of the sigmoid. The use of normalized/standardized inputs and
outputs also allows them to be treated numerically the same, even if they correspond to
physically very different quantities (e.g., a temperature around 273 K versus the cosine of
an angle between ±1). It is also recommendable to use uncorrelated input features (LeCun
et al., 2012).

Using this setup, a function can be approximated by the multilayer perceptron by
choosing appropriate values for the weights and the biases. For instance, assuming only an
input and an output layer with one neuron each and a linear activation function, applying
the multilayer perceptron would correspond to performing a linear fit. Increasing the
complexity (i.e., number of hidden layers and neurons) of the multilayer perceptron and
applying non-linear activation functions allows also the approximation of a wide range of
non-linear relations (Hecht-Nielsen, 1989, Hornik, 1991, Hornik et al., 1989).

The potential of a multilayer perceptron can be visualized with a simple example
(adapted from Bishop, 1995). Assume a continuous function H(x, y) : IR2 → IR should be
modeled. Discretize the two-dimensional input space. Consider a first grid cell described
by the borders x0, x1, y0, y1. Constructing a multilayer perceptron h such that

h(x0 < x < x1, y0 < y < y1) = H
(

x0 + x1

2 ,
y0 + y1

2

)
(2.28)

allows to approximate the function H for this grid cell. Decreasing the grid size will reduce
the deviation of h with respect to H. To find h, a structure with two input neurons (i.e.,
x and y), two hidden layers and one output neuron is considered. The first hidden layer
contains four neurons describing the limits of the grid cell, i.e.,

z1 = fthrs(x − x0) (2.29)
z2 = fthrs(x1 − x) (2.30)
z3 = fthrs(y − y0) (2.31)
z4 = fthrs(y1 − y) (2.32)
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and in the second hidden layer, insert a neuron functioning as a logical AND, i.e., it
forwards 1 when the grid cell is active. It is descibed by

z5 = fthrs(z1 + z2 + z3 + z4 − 3.5). (2.33)

Finally, assume a linear activation function in the output neuron following

h(x, y) = z5 · H
(

x0 + x1

2 ,
y0 + y1

2

)
. (2.34)

Additional grid cells can be modeled by adding corresponding neurons in the hidden layers
and summands to the output neuron. More input dimensions can be introduced by using
more neurons in the first hidden layer analog to the ones shown.

2.4.2 Training
The central step in the creation of an ANN is the iterative training. After setting up
the ANN’s architecture, the weights and biases are randomly initialized. Then one uses a
training data set consisting of samples of input data and the corresponding true output
values for supervised learning; the targets can originate, for instance, from manual labeling,
a simulation or another data set. The ANN is applied to the input data and the resulting
outputs are compared to the target output to calculate the difference in form of a loss
function. All weights and biases are now modified in order to reduce the loss function. The
resulting ANN is again applied to the training input data and this procedure is repeated
until the loss function is sufficiently small, i.e, a point close to the global minimum is
reached (Bishop, 1995, Gardner and Dorling, 1998). In practice, this is complicated, e.g.,
by being trapped in local minima, at saddle points, on plateaus, or being distracted by
exploding gradients (Goodfellow et al., 2018). The loss function E between the N retrieved
values ri and the truth ti can be an arbitrary error function, e.g., the mean squared error

EMSE = 1
N

N∑
i=1

(ri − ti)2 . (2.35)

In the case of a classification task, one might also calculate the cross-entropy

ECE = −
N∑
ii

ti log(ri). (2.36)

If there is only one correct result, i.e., ti = 1 and tj ̸=i = 0, this simplifies to ECE = − log(ri),
such that ri is trained to become 1. The total loss of the training data set is the sum of
the loss for individual samples (Bishop, 1995).

For simplicity, we suppress the indices of wm,n;i from now on, and instead introduce
the incrementing counter t to label different learning steps. All weights wt are combined
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in a vector wt. A gradient descent algorithm is applied to adjust the wt such that the loss
function is reduced. In a simplest form one applies

wt = wt−1 − η
∂E

∂w

∣∣∣∣∣∣
wt−1

(2.37)

where η denotes the learning rate. The derivatives ∂E
∂w

∣∣∣
wt−1

for the connections to the
output layer are easily calculated. Applying the chain rule, one can move stepwise to the
previous layers to calculate the corresponding derivatives; hence the name backpropagation
(LeCun et al., 2012, Rumelhart et al., 1986a,b). The training speed can be increased by
using more elaborate updating rules. Momentum denotes using an average of the previous
gradients such that

mt = µmt−1 + η
∂E

∂w

∣∣∣∣∣∣
wt−1

(2.38)

wt = wt−1 − mt, (2.39)

which allows to accelerate the movement through loss space similar to a ball physically
accelerating when rolling downhill; µ < 1 parameterizes the momentum. Applying the
momentum already to calculate the gradient leads to Nesterov’s accelerated gradient, i.e.,
using ∂E

∂w

∣∣∣
wt−1−µmt−1

in Eq. 2.38 with mt being the vector of all mt (Dozat, 2016, Ruder,
2016). The choice of η is crucial: a value that is too low leads to a slow training, whereas
a value that is too high might prohibit convergence of the loss function altogether, as the
algorithm constantly oscillates around or jumps out of the minima (Bishop, 1995, LeCun
et al., 2012). Instead of a constant value, η can be related to the gradients as done by the
RMSProp algorithm

nt = κnt−1 + (1 − κ)

∂E

∂w

∣∣∣∣∣∣
wt−1


2

(2.40)

wt = wt−1 − η
√

nt + ϵ

∂E

∂w

∣∣∣∣∣∣
wt−1

(2.41)

with ϵ ≪ 1 and κ < 1. It allows to effectively reduce the learning rate for weights that
have already experienced large changes, to find the minimum of the loss function with a
smaller step size. Combining all these elements leads to the Nesterov-accelerated adaptive
moment estimation algorithm (Dozat, 2016, Ruder, 2016).

Instead of evaluating the ANN for the full training data set before updating the pa-
rameters (called batch gradient descent), one can also do so after subsets (mini-batches)
or individual samples (stochastic learning), especially if differences in the samples are not
too large. This speeds up the the training, as the weights are changed more often. It
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might also lead to better training performances, as the use of small numbers of samples
introduces a noise which can allow to explore larger parts of the parameter space (LeCun
et al., 2012, Ruder, 2016).

The initial weights are usually drawn randomly as it is important to initialize the
neurons differently to "break" the internal symmetry of the ANN (Goodfellow et al., 2018).
However, an arbitrary choice of the initial weights potentially leads to large absolute inputs
to the activation functions, letting them operate in the nearly constant regime. Thus, for
the initialization, one might use a distribution which depends on the ANN’s architecture,
i.e., with a standard deviation σw = 1√

N
for N neurons in the preceding layer (LeCun

normal distribution, Bishop, 1995, LeCun et al., 2012). Also it is not clear a priori that
a given initialization leads to a (global) minimum; thus, one might repeat training with
different initializations and compare the resulting configurations (Bishop, 1995, Goodfellow
et al., 2018).

A common phenomenon during training is the occurrence of overfitting, i.e., the ANN
starts to learn the inherent noise of the training data set and, as a result, performs worse for
new unseen samples. Thus, the available data is usually split into a training, a validation
and a test data set. The training data is used for the adjustment of the ANN, whereas
the validation data set is regularly evaluated during the training. After an initial phase
of decreasing loss functions for both training and validation data, overfitting might lead
to a further decay of training loss with a simultaneous increase in validation loss; early
stopping describes a strategy to stop training as soon as this point is reached. However,
as the loss function is usually not monotonically decreasing but might exhibit numerous
local minima, the definition of a stopping criterion is not straightforward. Alternatively,
the process might be terminated manually. Since the validation data set is now part of
this extended training algorithm, the final performance of the ANN is evaluated on the
independent test data set (Prechelt, 2012).

Further regularization strategies to avoid overfitting include the reduction of ANN com-
plexity, either by design or automatically by adding a penalty term to the loss function to
force unimportant weights to become zero/small. Examples are λ

∑ |w| for L1 or λ
∑

w2

for L2 regularization, parameterized by λ (Bengio, 2012, Goodfellow et al., 2018). The
number of training samples can be artificially increased by adding altered versions of the
given samples, for instance, translations or rotations can be applied to images if the final
ANN should internalize the corresponding invariances. A small random noise can be added
to the inputs or weights during training to increase robustness (Goodfellow et al., 2018).
Dropout denotes a technique of randomly deactivating different input and hidden neurons
for parts of the training. This resembles the training of multiple ANNs with subsequent
averaging of their outputs (as explicitly done for the bootstrap aggregating method), but
does so using a single model. Turning off arbitrary neurons also increases the robustness
of the ANN, as each unit must be redundant (Goodfellow et al., 2018).

An overall difficulty in the context of ANN training is the choice of all hyperparameters,
including parameters describing the ANN architecture (e.g., number of hidden layers, num-
ber of neurons) and the training algorithm (e.g., learning rate, momentum, minibatch size,
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regularization) as a rigorous theory for their determination is missing but parameters are
to some degree interdependent as well as problem-dependent. Thus, one needs to search
for efficient settings either manually, or automatically via a random or systematic search
in hyperparameter space. Alternatively, frequently applied default values can be chosen or
at least used as a starting point (Bengio, 2012, Goodfellow et al., 2018).

2.4.3 Interpretation
Interpetation of the trained ANNs, i.e., of their weights, is—except for small and simple
examples—hardly feasible. A common practice is to try to quantify the importance of
single weights. First, one can assume that the absolute value of a weight is related to
its relevance for the model. Second, the impact on the loss function can be considered
when setting a weight to zero, which corresponds to its removal. Third, the change of
the loss function can be investigated when slightly varying the weight, i.e., the analysis
of the derivative of the loss function with respect to the weight. These methods have
been applied for pruning, i.e., the significance of the weights of a large, trained ANN is
calculated and the least important connections are removed to obtain a smaller structure
with similar performance. Alternatively, complete neurons can be removed based on the
impact of their presence on the loss function (Bishop, 1995). In principle, these methods
can also be used to investigate the importance of individual input features of an ANN. For
example, Strandgren et al. (2017b) evaluated the weights connected to an input neuron to
deduce its relevance, whereas Piscini et al. (2014) applied the pruning method to find the
important input quantities.
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2.5 Current volcanic ash satellite retrievals using ar-
tificial neural networks

Satellite retrievals based on ANNs can have various advantages, e.g., they can be quite
robust with respect to signal perturbations (Corradini et al., 2014) or complicated me-
teorological conditions (Zhu et al., 2020) and—after the training and compared to, for
instance, approaches based on optimal estimation (Rodgers, 2000)—they are rather fast
(Picchiani et al., 2011, Strandgren et al., 2017a), such that the operational application
is possible. Thus, multiple volcanic ash retrievals utilize them. Picchiani et al. (2011)
used them for the detection and the retrieval of the mass load of volcanic ash clouds from
MODIS images, and Picchiani et al. (2014) for the classification of MODIS pixels using six
different classes (representing ash above sea, ash above liquid/ice water clouds, liquid/ice
water clouds, sea surface, ice surface, land surface). Piscini et al. (2014) retrieved the
optical depth at 11 µm, the volcanic ash and SO2 column concentrations and the effective
radius from MODIS data using ANNs. Gray and Bennartz (2015) applied them for the
detection of volcanic ash and SO2-rich ash, respectively, from MODIS observations. Zhu
et al. (2020) made use of ANNs to derive the ash cloud top height from MSG/SEVIRI
measurements. Noteworthy is the nature of the used training data sets: In all cases, real
satellite observations were used as training data, from one (Picchiani et al., 2011, Piscini
et al., 2014), two (Picchiani et al., 2014, Zhu et al., 2020) or at most seven (Gray and
Bennartz, 2015) different volcanoes. Thus, those retrievals are mostly tailored for specific
volcanoes, e.g., for Etna (Picchiani et al., 2011) or for Icelandic volcanoes (Picchiani et al.,
2014). In addition, the true values of the ash cloud properties are not known when us-
ing real satellite images as training data. Instead, they are inferred from other retrieval
methods (Picchiani et al., 2011, 2014, Piscini et al., 2014), model calculations (Gray and
Bennartz, 2015) or collocated data from other satellite instruments (Zhu et al., 2020).

A different approach was applied for VADUGS (Volcanic Ash Detection Using Geo-
stationary Satellites, Kox et al., 2013), which runs operationally at the German weather
service since 2015 (DWD). It uses MSG/SEVIRI brightness temperatures in the thermal
infrared spectrum and applies a simple ANN with a single hidden layer of 600 neurons
to derive simultaneously the ash mass load and the ash cloud top height. The ANN was
trained with synthetic observations, simulated with the radiative transfer model libRad-
tran (P4). In contrast to the previously mentioned algorithms, the target values for the
training of VADUGS were exactly known as they were part of the input data for the ra-
diative transfer calculations. Qualitative checks proved that the resulting algorithm is able
to provide convincing results: realistic volcanic ash clouds were detected for the eruptions
of Eyjafjallajökull in 2010 and Puyehue-Cordón Caulle in 2011 with reasonable ash mass
loads and ash cloud top heights (Graf et al., 2015, Kox et al., 2013). This demonstrates that
the approach of VADUGS—combining synthetic observations with ANNs—is in principle
promising. However, VADUGS showed deficits in its generalizability: it produced unsat-
isfying results when applied to a simulated test data set covering a wide range of possible
scenes (P4), and an intercomparison exhibited quite low correlations (≲ 0.2) between the
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mass load retrieval of VADUGS and other satellite-based volcanic ash retrievals. Validation
of cloud top height retrievals against CALIPSO results showed even poorer performances
of VADUGS, with an overestimation of heights around 5 km by a factor of ~2 (WMO,
2015). In addition, VADUGS was again tailored to one specific volcanic eruption (i.e., the
eruption of Eyjafjallajökull in 2010), as only a single refractive index of the corresponding
ash was used and only atmospheric data from the year of the incident.
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Overview Refractive indices and corresponding optical properties are important aerosol
properties for radiative transfer calculations. For volcanic ash, the amount of available data
has been very sparse until recently. In this paper, volcanic ash properties are reviewed—
especially particle size, shape, petrological composition and porositiy—and a novel method
is developed for the calculation of realistic refractive indices in the thermal infrared between
5 µm and 15 µm. It is applied to create a comprehensive set of refractive indices for different
ash types; those are mainly influenced by the silica content and the porosity, and only to a
smaller degree by the glass fraction. In addition, the resulting optical properties exhibit a
significant variability, with a similarly large influence by composition and size distribution.
A simple model is utilized to approximate brightness temperatures for different ash types
and indicates that the ash composition is retrievable to some degree by passive remote
sensing instruments such as MSG/SEVIRI.
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The spaceborne detection of volcanic ash clouds at infrared wavelengths helps to avoid regions with enhanced
volcanic ash concentrations that pose a threat to aviation. Current volcanic ash data retrievals require detailed in-
formation onmicrophysical properties and the refractive index of volcanic ash, which are highly variable. Uncer-
tainties in the latter currently limit the quality of volcanic ash nowcasts. Here, we introduce a novel method to
calculate the complex refractive indices of volcanic ashes at wavelengths from 5 to 15 μm from measurements
of their individual components based on generic petrological ash compositions. Thereby the refractive indices
for volcanic glasses and bulk volcanic ashes of different chemical compositions are derived. The variability of
the latter is mainly influenced by the silica content and the porosity and to a minor degree by the glass-to-
crystals ratio. Calculating optical properties exhibits an equally large impact of bulk composition and grain size
distribution, whereas particle shape is considered less important for particle sizes of the order 1 μm. Using
these optical properties to determine brightness temperature differences between the 11 μmand 12 μmchannels
we show that the effect of ash composition is non-negligible for modern satellite instruments. Particularly, the
dependence of the volcanic ash on the silica content (and to a much smaller extent on the glass-to-crystals
ratio) is observable in its refractive index, its optical properties and the brightness temperature difference,
indicating that composition might be retrievable to some degree by remote sensing methods.

© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://
creativecommons.org/licenses/by/4.0/).

1. Introduction

Volcanic ash emitted during eruptive activity poses a serious threat
to critical infrastructure on the ground (Wilson et al., 2012) and to air-
craft in operation, where contact with a volcanic ash plume or cloud
can lead to damage and engine failure (Casadevall, 1994); here the
term plume is used for volcanic emissions that are still attached to the
vent, and cloud once they are detached. Incidents at distances of
1000 kmandmore have been reported (Guffanti et al., 2010). Therefore,
the eruption of Eyjafjallajökull in 2010 led to the prolonged closure of
large parts of the European air space (Schumann et al., 2011) with esti-
mated economic losses in the aviation industry of $1.7 billion (Budd
et al., 2011).

In order to reduce the impact of future eruptions, satellite remote
sensing methods have been developed and applied to monitor volcanic

ash plumes and clouds, and thereby calibrate/validate volcanic ash
transport and dispersion models (Stohl et al., 2011; Dacre et al., 2016).
For that polar orbiting as well as geostationary passive optical imagers
are used (e.g. Pavolonis et al., 2015), often equipped with channels in
the atmospheric window at 11 to 12 μm (Schmetz et al., 2002a;
Watkin, 2003; Watson et al., 2004; Schmit et al., 2005; Bessho et al.,
2016). Volcanic ash has been commonly detected using the difference
in satellite-measured brightness temperatures at 11 μm and 12 μm
(BTD11−12), which is negative for volcanic ash clouds under certain con-
ditions (e.g. small ash particles, low amounts of water or ice present, see
Prata, 1989; Guéhenneux et al., 2015), but positive for ice clouds (Inoue,
1985) – the latter is another typical application of those channels. More
recent volcanic ash retrieval algorithms (e.g. for mass concentrations or
cloud top heights) make use also of other channels in the thermal infra-
red and visible spectrum (Prata and Grant, 2001; Pavolonis et al., 2006;
Francis et al., 2012), hyperspectral data (Gangale et al., 2010; Clarisse
et al., 2010) or more advanced concepts (Pavolonis et al., 2013;
Pugnaghi et al., 2013; Piscini et al., 2014). Many of those are based on
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radiative transfer calculations, which in turn require the microphysical
properties and the complex refractive index of the volcanic ash,
Eq. (1), for the accurate simulation of brightness temperatures as a func-
tion of optical, micro- and macrophysical properties (e.g. Prata and
Grant, 2001; Yu et al., 2002; Gangale et al., 2010; Pugnaghi et al.,
2013; Ishimoto et al., 2016).

m ¼ nþ ik ð1Þ

Unfortunately, the volcanic ash properties are quite variable
(Langmann, 2013), depending e.g. on the geographic location (Rogers,
2015) and the eruption style of the volcano (Polacci et al., 2019). Atmo-
spheric processes further change the properties of the volcanic ash
plumes and clouds (Langmann, 2013). In this study we focus on fine,
distal ash, i.e. particles of a few micrometers in size which can travel
within volcanic ash clouds thousands of kilometers. The corresponding
typical properties are reviewed in the methods section of this paper.

Themicrophysical properties of volcanic ashes, in particular the par-
ticle size distribution and the particle shape, can have a large impact on
their optical properties. Wen and Rose (1994) compared radiative
transfer calculations for volcanic ash clouds using different refractive in-
dices (from Pollack et al., 1973; Volz, 1973) and different size distribu-
tions (uniform, gamma and log-normal) and found that the size
distribution is more important for a mass retrieval than the refractive
index, and that BTD11−12 is negative for effective radii less than 5 μm
but can be positive for larger particles. Also the form of the brightness
temperature spectrum is sensitive to the particle size (Gangale et al.,
2010). Assuming a log-normal distribution with an uncertainty in the
spread (i.e. geometric standard deviations of 1.8 to 2.5) can lead to un-
certainties of > 20% in the retrieval of mass column loadings (Western
et al., 2015). Newman et al. (2012) compared equal volume spheres
(Mie calculation) with randomly oriented hexagonal columns of aspect
ratio unity (T-matrix calculation) as volcanic ash particles, and found
differences of up to 10% for extinction cross sections in the infrared.
Non-spherical rugged vesicular volcanic ash particles were compared
with mass-equivalent spheres as well as volume-equivalent spheres
with an effective refractive index corrected for the vesicles by Kylling
et al. (2014). Although similar for small sizes, significant differences in
the optical properties were found for larger particles (e.g. for mass-
equivalent radii > 4 μm at the wavelength 12 μm when comparing
non-spherical small vesicle particles with volume-equivalent spherical
small vesicle particles). The volume-equivalent approach generally
modeled reality better.

A limited number ofmeasurements of the refractive indices of volca-
nic ash exist in the ultraviolet, visible and near-infrared part of the spec-
trum (Vogel et al., 2017). In the infrared Pollack et al. (1973) presented
laboratory measurements of obsidian, basaltic glass and andesite, and
Volz (1973) of pumice (all in form of polished rock slabs, KBr or pure
pellets). These data sets have been used for decades in volcanic ash re-
trievals (e.g. Prata, 1989; Wen and Rose, 1994; Prata and Grant, 2001;
Yu et al., 2002; Gangale et al., 2010; Pugnaghi et al., 2013; Ishimoto
et al., 2016). However, it is known that these retrievals are very sensitive
to the refractive index (Wen and Rose, 1994;Western et al., 2015; Prata
et al., 2019), and thus an accurate assumption of the refractive index
could significantly improve them.

Recent studies have attempted to address this shortcoming:
Grainger et al. (2013), Reed et al. (2018) and Deguine et al. (2020) per-
formed laboratorymeasurements to determine the refractive indices for
various volcanic ash samples of different geographical origin, composi-
tion and in suspension. Ishimoto et al. (2016) used hyperspectral data
collected by satellite and established refractive indices (from Pollack
et al., 1973) to constrain the parameters (effective radius, optical
depth, cloud pressure height and the volume fraction for a mixture of
known refractive indices of volcanic ashes) of multiple volcanic ash
clouds. In a second step, those parameterswere fixed and the imaginary
part of the refractive index was retrieved. Wavelength-dependent

variations up to factors of two or three were found for the refractive
index in the infrared, indicating that the accurate knowledge of the re-
fractive index is important.

In case of a future volcanic eruption a consolidated refractive index
model together with the necessary, early, rapid chemical or mineralog-
ical analysis of a sample would be sufficient to predict the refractive
index of the volcanic ash and increase the performance of the satellite
retrievals. To this end, Prata et al. (2019) performed wavelength-
dependent linear regressions for both parts of the complex refractive
index of volcanic ash with respect to either the silica content xs or the
ratio of non-bridging oxygens to tetrahedrally coordinated cations,
using the refractive indices from Reed et al. (2018).

A different approach is to estimate the refractive index for a specific
volcanic ash by calculating the corresponding weighted average of the
known refractive indices of minerals, glasses and gas bubbles based on
their typical abundance in volcanic ashes. It allows the refractive index
to be calculated for different compositions and to consider aging pro-
cesses, e.g. the increase of glass tomineral ratio or the decrease of poros-
ity (Shipley and Sarna-Wojcicki, 1982;Mackie et al., 2016). Thus, amore
accurate estimate of the refractive index for an application can bemade,
and its variability can be investigated by changing the composition
within realistic ranges. The impact on the optical properties of the com-
position in comparison to themicrophysics can be analyzed, as has been
done formineral dust (e.g. Hansell Jr. et al., 2011). The uncertainty of re-
trievals relying on one specific refractive index can be investigated, and
it enables to consider the possibility to retrieve the volcanic ash compo-
sition remotely. Therefore we use this approach, which was previously
implemented for mineral dust in a similar fashion (Sokolik and Toon,
1999; Lee and Park, 2014). For volcanic ash Klüser et al. (2013) achieved
good results using a limited set of refractive indices of minerals in re-
mote sensing applications.

The paper is organized as follows: In themethods section (Sec. 2)we
describe an approach to determine the refractive indices of volanic
ashes based on their composition, discuss the influence of porosity,
the mineral content and a technique to determine the refractive indices
of volcanic glasses. We also compile the microphysical properties (size,
shape) of volcanic ash particles from literature and outline a simple
model to determine BTD11−12. In the results section (Sec. 3) we deter-
mine the refractive indices of volcanic glasses and the bulk refractive in-
dices of generic volcanic ashes. Then we quantify the impact of
composition and microphysical properties on the optical properties. In
the discussions section (Sec. 4) the results are analyzed and thedifferent
parameters are ranked regarding their importance for the determina-
tion of volcanic ash optical properties. The influence of the composition
on the BTD11−12 is quantified as an example. Finally, we give a
conclusion.

2. Methods

In the following we first describe a procedure to calculate the com-
plex refractive index and the bulk density of different volcanic ashes
(Sec. 2.1). Second, we review microphysical properties (size, shape) of
volcanic ash particles (Sec. 2.2). Using all these properties we are then
able to calculate the optical properties and the brightness temperature
difference BTD11−12 of volcanic ashes (Sec. 2.3).

2.1. Model for the refractive index and the bulk density of volcanic ash

Generally, volcanic ash particles are created by the fragmentation of
volcanic rocks (e.g. due to explosion of small bubbles of exsolved vola-
tiles within a magmatic froth, reaction of hot magma with water in
phreatomagmatic eruptions or milling during pyroclastic flows). There-
fore they are highly irregular. Magma typically consists of a suspension
of silicate melt, large minerals grown slowly in deep magma reservoirs
(phenocrysts), small minerals grown duringmagma ascent (microlites)
and exsolved bubbles. After fragmentation, volcanic ash particles
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represent fragments containing these components in different propor-
tions, with the silicatemelt quenched to a volcanic glass, as well as lithic
material collected during the eruption (Langmann, 2013; Jerram and
Petford, 2011; Sen, 2014). The latter category is negligible for many
eruptions, and is neglected for the purposes of this study. In the follow-
ing we parameterize the remaining components and combine the indi-
vidual refractive indices to a single effective refractive index.

2.1.1. Parameterization of the effective refractive index
There are different possible indices available to parameterize the

composition of volcanic rocks. In the followingwe use the silica content
xs (inweight percent, wt.%) of volcanic ashes, which is often determined
and regularly used for their classification (Rogers, 2015). It depends on
the tectonic location of the individual volcano and the magma genesis
conditions, as well as storage, segregation and mixing within a
subvolcanic plumbing system prior to eruption (Rogers, 2015; Freundt
and Schmincke, 1992). Variations have been determined even within
a single eruption event (Gudmundsson et al., 2012).

Other indices have been proposed as well: Prata et al. (2019) inves-
tigated the correlation between the refractive index of volcanic ash and
the silica content as well as the polymerisation of the melt, defined by
the ratio between nonbridging oxygens and tetrahedrally coordinated
cations; the latter was favored due to a wider spectral range with coef-
ficients of determination R2 > 0.5. Cooper et al. (2002) showed that the
ratio of silica and the amount of oxides of Si, Ca, Fe andMgwas superior
to the silica content with respect to the correlation between their index
and the position of specific spectral features (Christiansen and transpar-
ency feature). As these indices reflect not only the silica present in a
rock, but also the abundance of specific elements, they might be able
to better represent the chemical and therefore also mineralogical
composition.

Aerosols can be mixed internally (each particle consists of multiple
components) or externally (each particle consists of a single component
which can differ between particles, Lesins et al., 2002). Except for the
most silicic compositions consisting only of glass shards, volcanic ash
contains both types of mixtures: Crystals surrounded by volcanic glass
(Shipley and Sarna-Wojcicki, 1982; Casadevall, 1994) as well as single
crystals fragments or glass sherds (Hornby et al., 2019). Following ash
emissions, surface brines and salts formed from ash-gas reactions in-
volving sulfur dioxide and other volatiles emitted at the eruption
might be possible (Rose, 1977; Langmann, 2013; Casas et al., 2019),
but are neglected for simplicity in thiswork. The volumeweighted aver-
aging has been used for external mixtures (Ebert et al., 2002; Ball et al.,
2015) aswell as internal mixtures (Sokolik and Toon, 1999; Lesins et al.,
2002; Lee and Park, 2014) and is therefore used here. Note that other
approximations (Bruggeman, Maxwell-Garnet) exist for the calculation
of internal mixtures. Although these might lead to different results,
there are indications that the impact of the mixing formula is mostly
rather small in the infrared (Sokolik and Toon, 1999; Lesins et al.,
2002; Lee and Park, 2014).

The complex refractive index of the different components/mixtures
is denoted mx, with nx the real and kx the imaginary part. Volume
weighted averaging of the components gives the effective refractive in-
dices of the mineral part mmin, of the solid volcanic material mvolc in-
cluding volcanic glass and minerals, and of the volcanic ash mixture
meff including volcanic glass, minerals and voids, Eqs. (2) to (4).

meff ¼ f voidmvoid þ 1− f voidð Þmvolc ð2Þ

mvolc ¼ f glassmglass þ 1− f glass
� �

mmin ð3Þ

mmin ¼ ∑
i
f iminm

i
min ð4Þ

fvoid denotes the volume fraction that is occupied by gas pockets
with respect to the volume of a convex hull covering the complete

porous particle, fglass the volume fraction occupied by volcanic glass

with respect to the solid volume, and f imin the volume fraction of the
ith mineral with respect to the crystalline volume. The bulk rock density
is calculated similarly.

2.1.2. Porosity
One central driver of volcanic eruptions is the nucleation of gas bub-

bles due to supersaturation of the magma by volatile elements. These
might grow with time and finally burst explosively. For ash particles
the volume fraction filled by bubbles can be higher than 80% (Sparks,
1978). However, the actual porosity of the ash particles is size depen-
dent: if the bubble size distribution peaks at sizes smaller than the par-
ticle size distribution, a significant amount of gas pockets might be
present. But when the original bubbles are larger than the particles, po-
rosity should be negligible, and the particles will contain bubble wall
fragments.

Theoretical considerations suggest that the majority of bubbles in
volcanic ash should have a size of a few micrometers or larger
(Sparks, 1978). Measured bubble sizes in volcanic ash show multiple
peaks, indicating multiple bubble nucleation processes (Klug and
Cashman, 1994; Genareau et al., 2012, 2013; Colucci et al., 2013).
Using backscattered electron images (Klug and Cashman, 1994) and
stereo-scanning electron microscopy (Genareau et al., 2012, 2013)
bubble size distributions have been shown to typically peak at diame-
ters of 10 to 20 μm, but also at radii of 0.3 μm (Colucci et al., 2013).
Using nitrogen gas adsorption Delmelle et al. (2005) concluded that
the contribution from bubbles of diameters < 0.05 μm to the porosity
is rather negligible; their pore size distributions showed small peaks
for 0.005 μm. Mills and Rose (2010) found differences in the surface
area estimates of a factor 8 for volcanic ash of size < 130 μm between
nitrogen gas adsorption and three-dimensional scanning electron mi-
croscope stereo-pair analyses (resolution of 0.01 μm), which they con-
tribute at least partially to the occurrence of microporosity. From in-
situ measurements of plumes of degassing volcanoes Shcherbakov
et al. (2016) derived for particles with effective diameter of 1.5 to
2.8 μm a porosity of 18 to 35% based on the measured aerosol refrac-
tive index. Further work to constrain the effect of microporosity on
the refractive index is encouraged, but note that with respect to the
total volume occupied by the gas pockets the main contribution
comes from bubbles with diameters larger than 10 μm (Genareau
et al., 2013; Cioni et al., 2014).

Other factors have an influence on the presence of bubbles as well.
For instance a higher silica content connected to a higher viscosity
might lead to smaller bubbles and a higher porosity (Genareau et al.,
2013). Also the distance from the volcano is an important parameter,
as larger and denser particles will sediment faster. Shipley and Sarna-
Wojcicki (1982) reported that at distances of 50 km and farther the fin-
est ash consists mainly of glass shards of fragmented porous particles.
Also Genareau et al. (2013) showed that for distances farther than
250 km from the eruptive vent/location simple particles (glassy shards
without vesicles, diameter < 30 μm) contribute the major part to the
ash with respect to the mass, whereas more complex particles (larger
with multiple imprints of bubbles and probably internal vesicles) con-
tribute less and less. However, in-plume measurements by Rose et al.
(1980) showed that in crystal-bearing volcanic ash the smallest frac-
tions consist of crystal fragments.

In this work, we consider mainly particles with radii of a fewmicro-
meters. As many measurements indicate that bubbles are of a similar
size or larger, we assume no internal bubbles in most parts of this
work, i.e. fvoid= 0. For particles larger than roughly 10 μm, this assump-
tion does not hold. In this case we follow Kylling et al. (2014) and as-
sume mvoid = 1. Alternatively, pumice (a volcanic glass with a porous
texture) as a component (using Volz, 1973) can be considered. The den-
sity of vesicles filled with air is significantly lower than typical volcanic
ash densities, such that we assume ρvoid = 0 g cm−3.
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2.1.3. Crystals
The presence of typical minerals as well as their relative volume

abundance can be related to the silica content according to the distribu-
tion in Fig. 3.10 (a classification scheme for igneous rocks) in Jerram and
Petford (2011) (see also Rogers, 2015; Sen, 2014; Nakagawa and Ohba,
2002) for typical silica contents xs, Eq. (5).

xs ∈ 45, 50, 55, 60, 65, 70, 75f gwt:% ð5Þ

The corresponding volume fractions with respect to the bulk silica
content are given in Table 1. In reality the composition might slightly
deviate from the distribution in Table 1. Therefore, instead of directly
applying Eq. (4), we use these fractions fmin

i as mean values, assuming
a certain variability in the composition.We add a random normally dis-
tributed value (mean of 0, width of 0.2) to each fraction fmin

i , set
resulting negative values to zero and normalize the distribution. Using
Eq. (4) with this new phase distribution gives us m0

min. The mean of
m0

min, mmin, is determined by repeating the calculation N times and av-
eraging the results. N = 10000 was found to be sufficient to get the
maximum of the wavelength-dependent standard deviation of the
real and imaginary part ofmmin being< 0.03.mmin and a similarly calcu-
lated density are used fromnowon; for simplicitywe drop the bar. Note
that for the refractive index a slightly different composition is used than
for the density, as corresponding data for amphibole are lacking. Thus,
the relative composition for the refractive index is calculated by
dropping amphibole prior to normalization.

The mineral phase distribution of Jerram and Petford (2011) in-
cluded potassium feldspar, plagioclase and pyroxene. The first is here
represented by orthoclase. The type of plagioclase changes depending
on the silica content, being sodium-rich for felsic and calcium-rich for
mafic ashes (Jerram and Petford, 2011). Therefore we use albite, labra-
dorite and anorthite to represent this behavior. For xs=75wt.% the pla-
gioclase is assumed to consist only of albite, for xs = 54 wt.% of
labradorite and for xs=40wt.% of anorthite. In betweenwe apply a lin-
ear interpolation and use amixture of twominerals. The composition of
labradorite equals on average 40% (30 to 50%) albite and 60% (50 to
70%) anorthite (Ralph, 2020a). The pyroxene is assumed to contain
orthopyroxenes (here enstatite) and clinopyroxenes (here diopside)
in equal parts. Furthermore, quartz, muscovite, biotite, amphibole and
olivine are used.

Note that we assume that theminerals with the largest contribution
with respect to the crystalline volume also lead to the major contribu-
tions to the refractive index and the density. However, there are
minor components with respect to the volume, that might still be able
to have non-negligible influence (Best, 2003). Magnetite for instance,

an iron-oxide, has a much higher density than most other components
as well as a different refractive index, see Table 2 and Fig. 1. Therefore,
we assume that 1 vol.% of the ash consists of magnetite as a representa-
tive of all iron- and titanium oxides (already included in Table 1).

The wavelength dependence of the real and imaginary part of the
minerals in Table 1 (taken from different sources, see Table 2) is
shown in Fig. 1. Various refractive indices are calculated using disper-
sion analysis as described in the corresponding papers (anorthite,
clinopyroxene, muscovite, labradorite, obsidian, olivine, orthoclase,
orthopyroxene). Caseswheremultiple indices were given for the differ-
ent orientations of the crystal with respect to the electromagnetic field
or measurement techniques are averaged assuming equal weighting
(biotite, muscovite, labradorite, obsidian, orthoclase). For quartz the or-
dinary and the extraordinary ray are mixed 2:1 (Peterson and
Weinman, 1969). This corresponds to the assumption of random orien-
tation of the particles. Also note that some materials were glassy
(albite). For small wavelengths (< 7 μm) we assume a constant refrac-
tive index m = 1.4 + 0 ⋅ i if missing.

The wavelength dependence of the component refractive indices al-
ready shows some noteworthy features. Fig. 1 (g, h) shows theminerals
typical for felsic rocks, while Fig. 1(c, d) shows minerals of mafic rocks.
The peaks of the imaginary part of the felsic minerals are slightly shifted
towards smaller wavelengths with respect to the mafic minerals, Fig. 1
(h, d). Similarly, the steep rise of the real part is shifted to smaller wave-
lengths for felsic minerals compared to the mafic minerals, Fig. 1 (g, c).
Crystalline quartz has a significantly higher peak in the imaginary part
than all other minerals, Fig. 1 (g). Note that diopside shows besides its
own characteristic features also peaks at the same wavelengths as
quartz, Fig. 1 (c, d). Fig. 1 (a, b) shows volcanic glasses for comparison:
they exhibit the same tendencies and features as the crystals (except for
magnetite) but with peaks at different wavelengths and they appear
smoother. Magnetite has a completely different refractive index than
all other components for 5 to 15 μm without prominent features,
Fig. 1 (e, f); they appear for larger wavelengths (16 to 50 μm) instead
(Glotch and Rossman, 2009).

The densities are taken from other sources than the refractive indi-
ces, see Table 2, and therefore might correspond to slightly different
samples. For instance the refractive index used for albite is taken from
Mutschke et al. (1998). However, their sample was in the glass state
and had a density of only 2.36 g cm−3. As wewant to approximate crys-
tals, we assume ahigher density of 2.625±0.025 g cm−3 corresponding
to crystalline albite (Ralph, 2020b). Inmany cases an interval of possible
densities was given. Then we use the mean and half of the width as the
uncertainty.

2.1.4. Glasses
For felsic compositions volcanic ash often consists mostly of glassy

particles and only to aminor fraction ofminerals. Thus, the glass volume
fraction fglass is often rather high. Vogel et al. (2017) showed that the
glass fraction (analyzed from the areas of glass and minerals in two-
dimensional images of ash particles) is proportional to the silica content
xs. During its lifetime fglass might increase even more due to sedimenta-
tion of the crystals, which have a higher density and a less rugged sur-
face than the glass shards (Shipley and Sarna-Wojcicki, 1982; Mackie
et al., 2016). This can lead to glass fractions of up to 1 (Heiken, 1974;
Rose et al., 2003).

Measurements of the refractive index and the silica content of vari-
ous volcanic glasses have been performed by Pollack et al. (1973). How-
ever, the silica content of the glass might be considerably higher than
the silica content of the bulk magma as a result of the crystals (except
quartz) being less silicic than the bulk material. Therefore, an increase
in crystalization increases the difference in silica content between
glass and bulk, up to 10 wt.% (Mackie et al., 2016). In addition, Reubi
and Blundy (2009) showed that melt inclusions (i.e. melt trapped in
phenocrysts) have a bimodal compositional distribution with a signifi-
cant absence of intermediate compositions (i.e. 59 to 66wt.%), although

Table 1

Rounded volume fractions f imin of mineral phases in volcanic ashwith respect to the crys-
talline part according to Fig. 3.10 in Jerram and Petford (2011) for different bulk silica con-
tents. The minerals are orthoclase (OC), quartz (Q), albite (AL), labradorite (L), anorthite
(AN), enstatite (E), diopside (D), olivine (OL), muscovite (MU), biotite (B), amphibole
(AM) and magnetite (MA). See text for further explanation.

Mineral Silica content xs / wt.%

45 50 55 60 65 70 75

OC 0.00 0.00 0.01 0.06 0.12 0.22 0.45
Q 0.00 0.00 0.06 0.13 0.23 0.33 0.23
AL 0.00 0.00 0.02 0.13 0.17 0.13 0.13
L 0.08 0.27 0.49 0.34 0.15 0.04 0.00
AN 0.15 0.11 0.00 0.00 0.00 0.00 0.00
E 0.29 0.29 0.09 0.00 0.00 0.00 0.00
D 0.29 0.29 0.09 0.00 0.00 0.00 0.00
OL 0.17 0.02 0.00 0.00 0.00 0.00 0.00
MU 0.00 0.00 0.00 0.00 0.00 0.08 0.13
B 0.00 0.00 0.05 0.12 0.14 0.08 0.04
AM 0.00 0.00 0.16 0.21 0.18 0.10 0.00
MA 0.01 0.01 0.01 0.01 0.01 0.01 0.01
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they are widespread. They proposed that intermediate compositions
might be created by magma mixing, and therefore contain volcanic
glasses with a silica content up to about 15 wt.% higher.

To circumvent this problem the refractive indices of volcanic glasses
are derived from bulk ash samples, for which the bulk silica content is
known. We invert Eqs. (2) to (4) to obtain mglass from meff, i.e. the
bulk refractive index, by making assumptions on the remaining

quantities (fvoid, mvoid, fglass and mmin, see details below). The refractive
indices of bulk volcanic ash samples are taken from Reed et al. (2018)
and Deguine et al. (2020), who investigated samples of seven
(Grímsvötn 2011, Aso 1993, Eyjafjallajökull 2010, Tongariro 2012,
Spurr 1992, Nisyros, Askja 1875) and six (Etna 2017, Grímsvötn 2011,
Calbuco 2015, Eyjafjallajökull 2010, Puyehue-Cordón Caulle 2011,
Chaitén 2008) different volcanic eruptions, respectively. The samples
cover silica contents xs from 49.1 to 70.7 wt.% and 46.5 to 74.1 wt.%, re-
spectively; xs of the Spurr sample was not given, and therefore is taken
from Vogel et al. (2017). The particle diameter are mostly < 3 μm. The
silica contents were determined by X-ray fluorescence analysis and
the refractive indices from the extinction spectra of volcanic ash
suspended in nitrogen in the infrared to ultraviolet spectrum. The den-
sities were given neither by Reed et al. (2018) nor by Deguine et al.
(2020); thus, we use the linear relation by Vogel et al. (2017) to calcu-
late the bulk dense rock equivalent density of volcanic ash from the sil-
ica content; an uncertainty of 0.1 g cm−3 is assumed. As the particles are
small we assume that porosity is negligible, i.e. fvoid = 0 (therefore,
mvoid is not needed). For the glass fglass = xs/100 wt.% ± 0.05 is chosen
(Vogel et al., 2017). Themineral composition is based on the rounded xs
(to 45, 50, 55 wt.% etc., see Table 1); the uncertainty is set to 2.5 wt.%.
The potential impact of the adjusted parameters is demonstrated with
an example, then mglass is calculated using the assumptions. Negative
values are set to zero.

We combine our volcanic glass calculations with the laboratorymea-
surements of basaltic glass, obsidian and quartz, see Table 2. For basaltic
glass the silica content (xs = 53.45 wt.%) was given by Pollack et al.
(1973). For obsidian the silica content was not given, but the refractive
index is similar to the obsidian refractive index in Pollack et al. (1973),
with values around xs=75wt.%. Quartz glass as a pure silicate glass (i.e.
xs =100 wt.%) does not appear as a volcanic glass in nature. However,
as the volcanic glasses frommafic to felsic have an increasing silica con-
tent, quartz glass can be considered as an extrapolation of this regime.
Note that for basaltic glass and obsidianwe ignore the possible difference
betweenbulk andglass silica content. The refractive indices of theglasses,
Fig. 1, show a similar behavior as the minerals with respect to the silica
content, but the peaks are generally smaller and overall smoother.

In the next stepwe follow Prata et al. (2019) and perform separately
a wavelength-dependent linear regression for the real (n) and

Table 2
Literature sources for the refractive indices at the given wavelengths λ and their densities ρ.

Component Refractive Index Source λ / μm Remark to sample/meas. Density Source ρ / g cm−3

Quartz glass
(SiO2 100 wt.%)

Kitamura et al. (2007) 0.21 to 50 combination of different measurements Wakaki et al. (2007) 2.202 ± 0.001

Obsidian
(SiO2 75 wt.%)

Koike et al. (1989) 2.5 to 400 KBr pellet (transmission), slab of bulk
(reflection)

Clark (1966) 2.37 ± 0.04

Basaltic glass
(SiO2 53.45 wt.%)

Pollack et al. (1973) 0.2 to 50 slab of bulk (reflection) Clark (1966) 2.78 ± 0.07

Orthoclase Arnold et al. (2014) 2.5 to 40 slab of crystalline material (reflection) Best (2003) 2.59 ± 0.04
Quartz Spitzer and Kleinman (1961), Peterson and

Weinman (1969)
0.768 to
37

slabs of crystalline material (reflection,
transmission)

(Best, 2003) 2.65 ± 0.01

Albite (Plagioclase) Mutschke et al. (1998) 6.7 to 500 slabs of glassy material (reflection) Ralph (2020b) 2.625 ± 0.025
Labradorite
(Plagioclase)

Ye et al. (2019) 5 to 44.4 slab of crystalline material (reflection) 0.6ρanorthite + 0.4ρalbite
(Ralph, 2020a)

2.70 ± 0.05

Anorthite
(Plagioclase)

Aronson and Strong (1975) 6.25 to 40 slab of crystalline material (reflection) Ralph (2020c) 2.75 ± 0.01

Enstsatite
(Orthopyroxene)

Roush et al. (1991) 5 to 25 KBr pellet (reflection) Best (2003) 3.55 ± 0.35

Diopside
(Clinopyroxene)

Aronson and Strong (1975), 5.88 to
43.48

slab of crystalline material (reflection) Best (2003) 3.35 ± 0.15

Olivine Mukai and Koike (1990) 72 to 200 KBr pellet (transmission) Best (2003) 3.8 ± 0.6
Muscovite Aronson and Strong (1975), Vedder (1964) 6.67 to

31.25
slab of crystalline material (reflection) Ralph (2020d) 2.825 ± 0.055

Biotite Querry (1983) 0.25 to
55.56

slab of crystalline material (reflection) Haldar and Tišljar (2014) 3.05 ± 0.35

Amphibole
(Hornblende)

NA NA NA Best (2003) 3.275 ± 0.225

Magnetite Glotch and Rossman (2009) 5 to 100 slab of crystalline material (reflection) Ralph (2020e) 5.175 ± 0.001

Fig. 1.Wavelength dependence of the real and imaginary part of the refractive index of the
minerals and glasses in use.
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imaginary part (k) of the refractive index of volcanic glass, using xs as
the independent variable. For instance the peak of k shifts towards
smaller wavelength with increasing xs for volcanic glasses (see Sec.
2.1.3). Therefore, it is possible that for a specific wavelength k first in-
creases, reaches a maximum, and then decreases again. Thus, we as-
sume for the fit a quadratic function, Eq. (6).

gi ¼ ai þ bixs þ cix2s ð6Þ

gi is n or k of volcanic glass at a wavelength i, and ai, bi, ci are the corre-
sponding fit coefficients. Finally, we use these functions to calculate the
real and the imaginary part of the refractive index of volcanic glasses
from 45 to 100 wt.% with the corresponding 1σ prediction band. Again,
occasional negative values are set to zero. Similarly, we calculate the
density, only using a linear instead of a quadratic function.

2.2. Microphysical properties of volcanic ash

Next we compile typical sizes and shapes of volcanic ash in order to
quantify the impact of these microphysical properties on the optical
properties of volcanic ash. Then we compare these impacts with the ef-
fects of the composition in order to select parameters for the determina-
tion of a representative set of optical properties.

2.2.1. Size distribution of volcanic ash particles
First, we select the type of size distribution for volcanic ash particles.

The Weibull distribution has been reported from measurements
(Stevenson et al., 2015), in addition the modified gamma distribution
(Prata, 1989; Prata and Grant, 2001; Gangale et al., 2010) or more
often the log-normal distribution (Farlow et al., 1981; Prata, 1989;
Prata and Grant, 2001; Yu et al., 2002; Gangale et al., 2010; Grainger
et al., 2013; Lee et al., 2014; Stevenson et al., 2015) has been used to
characterize volcanic ash particles. Also multi-modal distributions
have been reported (e.g. Wohletz et al., 1989; Riley et al., 2003). As
the size of volcanic tephra variees over a large regime, we use log-
normal distributions (Limpert et al., 2001) described by Eq. (7).

n rð Þ ¼
N0 exp − 1

2
ln rð Þ− ln rmð Þ

ln sð Þ
� �2

� �
ffiffiffiffiffiffi
2π

p
ln sð Þ r ð7Þ

N0 denotes the total particle number density, r the radius (see also
Sec. 2.2.2 for non-spherical particles), rm themedian and s the geometric
standard deviation parameterizing thewidth of the distribution. The ef-
fective radius reff, defined as the quotient of the third to the secondmo-
ment of n(r), becomes Eq. (8).

reff ¼ rm exp
5
2
ln sð Þ2

� �
ð8Þ

With respect to remote sensing applications, we are interested in
fine ash particles and consider reff ∈ {0.6, 1.8, 3, 4.5, 6}μm. This regime
has been investigated in the laboratory (Reed et al., 2018; Deguine
et al., 2020), in-situ (Rose et al., 1980; Schumann et al., 2011) and in
many remote sensing applications (Pugnaghi et al., 2013; Grainger
et al., 2013; Ishimoto et al., 2016). However, there is some unsolved dis-
crepancy between the typical sizes in air- and spaceborne investigations
and those found for cryptotephra. The latter shows systematically
higher values, e.g. median number diameters (i.e. long axis length as
used in the field of cryptotephra) of 20 to 70 μm at distances of about
1000 km (Stevenson et al., 2015) or mode diameters (average of 64 di-
ameters) formass density distributions of 90 μmat 1400 km(Rose et al.,
2003). These variations might arise from differences in the measuring
techniques and their sensitivities (Stevenson et al., 2015). Theoretically,
considering only sedimentation for spherical ash particles, those larger
particles are expected to fall out of the atmosphere fast, e.g. particles

with radii around 20 μm should stay in the troposphere less than one
day, whereas particles with radii of 1 μm might remain up to months
(Grainger et al., 2013). However, as volcanic ash particles are not spher-
ical but sometimes highly irregular, their terminal velocitymight be sig-
nificantly lower, and therefore their atmospheric residence time could
be longer (Rose et al., 2003; Riley et al., 2003).

Typical values for the spread s in Eq. (7) are 1.53 to 1.74 (for ash from
Mt. St. Helens, Farlow et al., 1981), 2.1 (for ash from Mt. Redoubt, Wen
and Rose, 1994), 1.38 to 1.66 (from cryptotephra, Stevenson et al., 2015)
or 1.5 to 1.77 (applied in Grainger et al., 2013). Thus, we consider
s ∈ {1.5, 2.0} in the following analysis.

2.2.2. Shape of volcanic ash particles
Second, we consider the shape of volcanic ash particles. These usu-

ally have a very rugged surface. However, for simplicity we confine
our analysis to spheres and pro- and oblate spheroids. Kylling et al.
(2014) showed that the differences in optical properties between
non-spherical rugged vesicular volcanic ash particles and volume-
equivalent spheres with an effective refractive index corrected for the
vesicles is small for the sizes considered here. For larger particles
these differences as well as the variability between different realistic
particle shapes increases.

Typical aspect ratios of volcanic ash are 1.4 (Vogel et al., 2017), 1.38
to 1.81 (Ball et al., 2015), 1.8 to 2.2 (Schumann et al., 2011), 1.4 to 2.5
(Riley et al., 2003). Vogel et al. (2017) suggest that the aspect ratio de-
creases to 1.25 to 1.3 for radii smaller than 5 μm. The density distribu-
tion with respect to the aspect ratio can be parameterized by a
modified log-normal distribution, Eq. (9) (Gasteiger and Wiegner,
2018).

n εð Þ ¼
exp − 1

2
ln ε−1ð Þ− ln ε0−1ð Þ

σar

� �2
� �

ffiffiffiffiffiffi
2π

p
σar ε−1ð Þ ð9Þ

ε denotes the aspect ratio, ε0 its median and σar the spread. Kandler
et al. (2007) described Saharan dust by Eq. (9)with ε0= 1.64 andσar=
0.66. To show that the same distribution can be used for volcanic ashwe
apply it to the aspect ratio distribution of two Sakurajima samples from
Miwa et al. (2015), Fig. 2. Fitting yields ε0=1.7 andσar=0.45. Thus,we
consider ε0 ∈ {1.5, 2.0} and σar ∈ {0.45, 0.66} in the following analysis.

The definition of a radius is ambiguous for non-spherical particles.
We consider the cross-section-equivalent radius in our study (except
when stated otherwise), Eq. (10).

rc ¼
ffiffiffiffiffiffiffiffiffi
Cgeo

π

r
ð10Þ

Cgeo denotes the orientation-averaged cross section of the particles
(Gasteiger and Wiegner, 2018). Other definitions of the radius, e.g. via
the volume (rv) or the volume to cross-section ratio (rvcr), are given in
Gasteiger and Wiegner (2018). As these different definitions result in
different values for the radius for the same particle, and as the size

Fig. 2. Fit of the modified log-normal distribution to the aspect ratio distribution given by
Miwa et al. (2015).
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distribution has a large impact on the optical properties (as will be
shown in Sec. 3.2), the radius definition may introduce a significant un-
certainty in the optical properties. Gasteiger and Wiegner (2018)
pointed out that the appropriate choice depends on the measurement
technique applied to determine the size distribution. However,we com-
bine literature values fromdifferentmeasurement techniques. Thus, the
influence of the radius definition on the optical properties is investi-
gated in a sensitivity study.

2.3. Optical properties of volcanic ash and a simplified model for BTD11−12

The composition (i.e. refractive index) and the microphysical prop-
erties are used to calculate the optical properties (mass extinction coef-
ficient, single scattering albedo and asymmetry parameter). To calculate
these properties we use the tool MOPSMAP version 1.0 (Gasteiger and
Wiegner, 2018). It comprises a precalculated data set of optical proper-
ties for single particles in random orientation, using Mie theory for
spheres and the T-matrix method for spheroids. Then MOPSMAP com-
putes the optical properties for a given ensemble of different single par-
ticles by averaging their properties. The input consists of the particle
size and shape distribution, the refractive index and the bulk density.
Wavelengths between 5 and 15 μm are considered at a resolution of
0.1 μm.

Using the optical properties one can calculate the brightness tem-
perature difference BTD11−12 as measured from satellite. Here we
adapt a simple model of a single homogeneous volcanic ash layer as de-
scribed by Prata andGrant (2001) (and applied in Prata and Prata, 2012;
Prata et al., 2019). Only two wavelengths (11 and 12 μm) at nadir are
considered and scattering effects are neglected. For theses wavelengths
surface emissivities range roughly between 0.95 and and 1, depending
on the surface type and the exact wavelength (Zhou et al., 2013). How-
ever, for simplicity we assume that the Earth's surface behaves like a
black body and that the atmosphere is transparent except for the ash
cloud; thus, we obtain Eqs. (11) and (12).

I11 ¼ 1−t11ð Þ B11 Tcð Þ þ t11 B11 Tsð Þ ð11Þ

I12 ¼ 1−t12ð Þ B12 Tcð Þ þ t12 B12 Tsð Þ ð12Þ

Here Iλ denotes the spectral radiance measured at the top of the at-
mosphere, Bλ the Planck function, Ts and Tc the temperatures of the
Earth's surface and the cloud top, respectively. tλ = exp (−βλρL) is
the transmissivitywith themass extinction coefficientβλ, themass con-
centration ρ and the geometrical cloud thickness L. We consider a test
case with typical values of L = 1000 m and ρ = 0.5 mg m−3 (e.g.
Schumann et al., 2011), Ts = 290 K and Tc = 220 K (about 10 km).

3. Results

3.1. Refractive indices

To begin we consider the potential impact of the parameters fglass,
fvoid and xs on the derivation of volcanic glass refractive indices. Fig. 3
shows example calculations for the refractive index of volcanic glass de-
rived from the the bulk refractive index of Eyjafjallajökull ash by
Deguine et al., 2020, which lies with 58.6 wt.% in the center of the re-
gime of typical silica contents. The corresponding densities are given
in Table 3. A reference calculation is shown (fglass = 0.59, fvoid = 0,
xs=60wt.%) and the results for different variations of the reference set-
tings. A change of fglass by ±0.05% leads only to minor changes of the
volcanic glass refractive index and density. However, for the extreme
case fglass = 1 the imaginary part of the refractive index increases partly
by up to 0.5 and the density by 7%. The variation of xs by ±5 wt.% can
lead to changes of the refractive index up to about ±0.2, whereas the
change in the density is of the order of 1%. fvoid has the largest impact:

for fvoid = 0.3 the real part of the refractive index increases by up to 1
and the imaginary part by about 0.8; also the density exhibits an in-
crease of close to 80%.

Next the refractive indices for volcanic glasses calculated from all
measurements of bulk volcanic ashes by Reed et al. (2018) and
Deguine et al. (2020) are considered in Figs. 4 and 5, respectively; the
latter are extrapolated from 14.49 μm up to 15 μm. Also shown are the
refractive indices for obsidian, basaltic and quartz glass. Noteworthy
are the dips between 9 and 10 μm for both n and k in the calculated re-
fractive indices, Figs. 4 (a, b) and 5 (a, b). For the felsic cases this is prob-
ably due to the high peaks of crystalline quartz, whereas for the mafic
cases a similar (althoughweaker) peakwas visible in the diopside sam-
ple, Fig. 1. Interestingly, these dips are present for themeasured volcanic
glass refractive indices, such that these exhibit more features than the
smoother bulk refractive indices (Reed et al., 2018; Deguine et al.,
2020). In Fig. 4 (b) the imaginary part of the refractive index becomes
negative for the samples of Aso and Tongario for wavelengths of 10 to
12 μm, and therefore is set to zero here. Similarly, the imaginary parts
of some refractive indices are set to zero for wavelengths < 8 μm,
Figs. 4 (b) and 5 (b).

Fig. 3. Wavelength dependence of the real and imaginary part of the refractive index of
volcanic glass derived from the bulk refractive index of Eyjafjallajökull ash by Deguine
et al., 2020; a reference value is given (black), whereas for the other settings the
reference is subtracted, i.e. the difference with respect to this reference is shown (blue,
green, red); the parameters fglass, fvoid and xs are varied.

Table 3
Density of volcanic glass derived from the bulk properties of Eyjafjallajökull ash by
Deguine et al. (2020), varying the parameters fglass, fvoid and xs; the reference calculation
is given in the first line, for the other settings the relative deviation of the density with re-
spect to the reference density is given as well.

xs / wt.% fglass fvoid ρglass / g cm−3

60 0.59 0.00 2.61 (ref.)
60 0.54 0.00 2.56 (−2%)
60 0.64 0.00 2.64 (1%)
60 1.00 0.00 2.79 (7%)
60 0.59 0.10 3.14 (20%)
60 0.59 0.20 3.80 (46%)
60 0.59 0.30 4.65 (78%)
55 0.59 0.00 2.59 (−1%)
65 0.59 0.00 2.61 (0%)

D. Piontek, A.J. Hornby, C. Voigt et al. Journal of Volcanology and Geothermal Research 411 (2021) 107174

7



Figs. 4 (c) and 5 (c) show the coefficient of determination R2 for the
wavelength-dependent linear regression. A perfect fit results in R2 = 1,
whereas a constant fit function returning themean leads to R2 = 0. The

latter might happen if there is no clear functional dependence between
the refractive index and the silica content. In Fig. 4 (c) R2 of the real part
is mostly around 0.7 up to 10 μm, except for a dip between 9 μm and
9.5 μm. Between 11 μm and 15 μm it is mostly < 0.25; this is because
of the missing quadratic relationship between the refractive index and
the silica content (e.g. the real parts of the volcanic glasses of Nisyros
and Tongariro are between those of Grímsvötn and Aso, although the
last two both have lower silica contents than the first two). For the
imaginary part R2 is roughly zero up to 8 μm as the imaginary parts of
the volcanic glasses are mostly zero (or are set to zero if they become
negative). R2 rises to values of approximately 0.8 at wavelengths of 8
to 9.5 μm. Beyond that it remains < 0.25 up to roughly 13.5 μm; this
might be partly due to the vanishing imaginary parts of the refractive in-
dices of the volcanic glasses of Aso and Tongariro. Fig. 5 (c) shows sim-
ilar values for R2 as Fig. 4 (c) up to 9.5 μm. Beyond that R2 decreases for
the real and imaginary part to values mostly between 0.25 and 0.5, ex-
cept for a dip of R2 of the imaginary part to zero at 13 μm, where the
imaginary part of quartz glass intersects all other imaginary parts. Cal-
culating the average R2 of the real and imaginary part between 8 μm
and 12 μm gives 0.41 and 0.4 using Reed et al. (2018), and 0.64 and
0.62 using Deguine et al. (2020). This shows that the linear regression
performs significantly better using the data of Deguine et al. (2020)
compared to Reed et al. (2018). Therefore, we will use only the data de-
rived from Deguine et al. (2020) from now on. In the next step we use
the linear regression results to calculate the wavelength dependence
of the refractive indices of volcanic glasses for bulk silica contents xs be-
tween 45 and 100wt.%, Fig. 6. Fig. 7 shows the calculated glass densities.
The linear regression yields R2 = 0.88.

Mathematically n and k are connected by the Kramers-Kronig rela-
tion (Lucarini et al., 2005). Its singly subtractive version is given as
Eq. (13).

n ωð Þ−n ωað Þ
ω2−ω2

a
¼ 2

π
P
Z ∞

0

ωk ωð Þ
ω2−ω2

� �
ω2−ω2

a

� �dω ð13Þ

ω andωa are twowavenumbers andP denotes the Cauchy principal
value of the integral. To check the consistency of the retrieved volcanic
glass refractive indiceswe evaluate if the Kramers-Kronig relation is still
fulfilled (Deguine et al. (2020) used a similar approach to determine the
real parts of the refractive indices). We extend the imaginary part k of
the refractive index assuming k ∝ λ−1 for wavelengths λ > 15 μm and
k ∝ λ3 for λ < 5 μm (Herbin et al., 2017). The choice of the anchor
point n(ωa) is crucial for the method (Herbin et al., 2017); we choose
ωa = 1000cm−1 such that the integrand in Eq. (13) becomes largest
in the center of the considered spectral regime where also the main

Fig. 4. Wavelength dependence of the real (a) and imaginary part (b) of the refractive
indices of the volcanic glasses calculated from refractive indices of Reed et al. (2018) for
bulk volcanic ash samples of different volcanos; (c) shows the corresponding R2 value
for the linear regression result at each wavelength.

Fig. 5. As Fig. 4 but using refractive indices of Deguine et al. (2020).

Fig. 6. Wavelength dependence of the real and imaginary part of the refractive indices of
the volcanic glasses calculated from the linear regression results for different bulk silica
contents.
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absorption feature is located, Fig. 5 (b). n(ωa) is taken from the individ-
ual regression results. The relative deviation of n by Kramers-Kronig and
linear regression relative to the latter is up to ±10% for 5 to 14 μm. For
wavelengths > 10 μm the deviation increases for larger wavelengths
and lower silica contents. At 15 μm the deviation for xs = 45 wt.% is
−17%. Note that this might be at least partially connected to the fact
that an assumption was used for k for wavelengths > 15 μm instead of
real measurements.

Next we can calculate the refractive indices for different mixtures of
volcanic glasses, minerals and bubbles, Fig. 8. We vary different param-
eters within realistic ranges in order to investigate their impact on the
refractive indices of volcanic ashes, i.e. xs from 45 to 75 wt.%, fglass
from xs/100 wt.% to 1 and fvoid from 0 to 0.75. In pink, the refractive
index for fglass = 0 is shown, i.e. the pure mineral case. The grey shaded
area shows the 68% prediction band for the pure volcanic glass case, i.e.
for fglass=1 and fvoid=0. This band shows a significant spread,which in
many cases is of the same order or even larger than the variability due to
minerals.

3.2. Optical properties

Next we quantify the impact of the different microphysical proper-
ties and the composition on the optical properties. The largest spread
and the corresponding wavelength are given for each property in
Table 4. Considering the size distributions described in Sec. 2.2.1 (lim-
ited within MOPSMAP to r ∈ [0.001, 30]μm) for spherical particles and
using the refractive index of Eyjafjallajökull ash of Deguine et al.
(2020) and a density of 2.79 g cm−3 (calculated from the silica content
and the linear relation of Vogel et al., 2017) we obtain the optical prop-
erties shown in Fig. 9. reff as well as s have a great influence on the opti-
cal properties, with reff dominating over s. The single scattering albedo,

Fig. 9 (b), shows that for small reff (0.6 μm) absorption dominates over
scattering forwavelengths above 8 μm,whereas absorption and scatter-
ing are of similar importance for larger reff (≥ 1.8 μm). The asymmetry
parameter, Fig. 9 (c), increases with increasing reff, i.e. forward scatter-
ing becomes dominant.

Next we consider different particle shapes (spheres, pro- and oblate
spheroids; r ∈ [0.001, 30]μm) and shape distributions (log-normal dis-
tributions of spheroids as described in Sec. 2.2.2; r ∈ [0.001, 13]μm).
For aspect ratio distributions ε is limited to [1,5], split in 10 intervals.
Pro- and oblate spheroids are used in equal parts. Considering different
sizes (log-normal distribution with reff ∈ {0.6, 3, 6}μm, s=1.5) we find
that the shape has small influence on the optical properties with differ-
ences up to 10%, see Fig. 10 and Table 4.

To study the sensitivitywith respect to the radius definition, we con-
sider different possibilities (with r ∈ [0.001, 13/12/9]μm for rc, rv and
rvcr, respectively) for different sizes (log-normal distribution with
reff ∈ {0.6, 3, 6}μm, s= 1.5) and a non-spherical shape (pro- and oblate
spheroids with log-normal aspect ratio distribution with ε0 = 1.5 and
σar = 0.45), Fig. 11. The absolute differences are rather small although

Fig. 7. Density of the volcanic glasses calculated from the bulk samples of different silica
contents, typical densities for basaltic, obsidian and quartz glass, and the linear fit for
these data.

Fig. 8. Wavelength dependence of the real and imaginary part of the refractive indices of
volcanic ash mixtures of glasses, minerals and voids with different compositions. fglass is
indicated by the color, fvoid by the linestyle. xs has values of 45 wt.% (a, b), 55 wt.% (c, d),
65 wt.% (e, f) and 75 wt.% (g, h). Grey shaded is the 68% prediction band for the pure
volcanic glass, i.e. for fglass = 1 and fvoid = 0.
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the relative differences can go up to about 17.5%. Generally, rvcr leads to
larger differences from rc than rv. The differences tend to decrease with
increasing reff.

Finally, we consider the influence of the volcanic ash composi-
tion (i.e. the refractive index and the corresponding bulk density)
on the optical properties. Therefore, we consider spheres of
different sizes (log-normal distribution with reff ∈ {0.6, 3, 6}μm,
s = 1.5; r ∈ [0.001, 20]μm) and the refractive indices from Fig. 8
(but only fvoid = 0 and fglass > 0; 63 compositions in total). Note
that this computation corresponds to assuming an internal mixture,
since we use an effective refractive index for all particles in an en-
semble, instead of different refractive indices of different glasses/
minerals for the single particles. Although the main behavior of

the optical properties is determined by reff, the refractive indices
introduce a significant variability, see Fig. 12 and Table 4.

4. Discussions

Considering the refractive indices of volcanic glasses in Fig. 6, there
are some general features observable. Up to 8 μmthere is relatively little
variation in the imaginary part, Fig. 6 (b), but significant variation for
larger wavelengths. Similar results have been found by Reed et al.
(2018). In the real part there is small variability approximately at
11 μm and 13 μm, Fig. 6 (a). Similar points appeared in the models of
the refractive index of Prata et al. (2019). The peak of the imaginary
part (of the broad feature, neglecting the small troughs due to single
minerals) varies between roughly 10 μm for 75 wt.% and 11 μm for
45 wt.%, Fig. 6 (b). For comparison, in laboratory measurements peaks
were found to be in the range 9 to 10 μm (Reed et al., 2018) or 10 to
10.5 μm (Deguine et al., 2020). The width of the peak varies also de-
pending on the composition. In Prata et al. (2019) and Deguine et al.
(2020), a shift of the peak towards higher wavelengths and an increase
of width was shown to be connected to a lower silica content. Fig. 6
(b) shows a similar behavior for our volcanic glasses. Also the real part
shows a similar dependence on the silica content as in Prata et al.
(2019) and Deguine et al. (2020), e.g. a negative correlation of the re-
fractive index and the silica content for wavelengths 5 to 8.5 μm and
11 to 15 μm, but a positive correlation for 9.5 to 11 μm, Fig. 6 (a). How-
ever, the amplitudes of the refractive indices are much smaller in Reed
et al. (2018) and Prata et al. (2019). The comparison indicates that the
qualitative behavior of volcanic glass and the the bulk volcanic ash are
similar. Note that we calculated the refractive indices of volcanic glasses
using the data of Deguine et al. (2020) instead of the results of Reed
et al. (2018), as R2 using the latter is generally lower, Figs. 4 (c) and 5
(c). Deguine et al. (2020) also showed that their results are in better
agreement with the glass refractive indices from Pollack et al. (1973)
than the results by Reed et al. (2018). As pointed out by Deguine et al.
(2020) different assumptionswith respect to the shape (spheres and el-
lipsoids) might be the reason for the large differences in the refractive
indices.

Fig. 8 allows us to estimate the importance of different composi-
tional properties regarding the refractive indices. For instance the differ-
ence between the pureminerals (pink in Fig. 8) and the pure glass (solid
black) is generally small, except for the typical quartz peaks between 9
and 10 μm. Also the influence of theminerals ismore visible for volcanic
ashes with xs=45wt.%, Fig. 8 (a, b), which can also havemore crystals,
i.e. a lower fglass. However, the porosity is significant, leading to aflatten-
ing of the real part n of the refractive index, Fig. 8 (a, c, e, g), and a low-
ering of the peak amplitude in the imaginary part k, Fig. 8 (b, d, f, h). Also
the silica content xs has a large impact: whereas the imaginary part k of
the refractive index reaches up to about 1 for xs = 45wt.%, Fig. 8 (b), it
increases up to about 1.5 for xs = 75 wt.%, Fig. 8 (h).

We note that these results should be treated with some caution: we
make various assumptions, each of them having a non-negligible im-
pact. For instance the calculations are based on different refractive
index measurements of minerals using different techniques and instru-
ments, and some may be less accurate than others (e.g. anorthite does
not become zero for small wavelengths, diopside exhibits some features
that are very similar to quartz, Fig. 1). Also, all the minerals are investi-
gated in form of KBr pellets or pure crystalline slabs, whereas the volca-
nic ash samples were measured in suspension in nitrogen gas (Reed
et al., 2018; Deguine et al., 2020). Furthermore, we considered only a
subset of all possible minerals in volcanic ash and assumed that all
ashes of the same silica content have the same mineral phase distribu-
tion. Both assumptionsmight fail in specific cases. The volumeweighted
averaging is certainly valid for the density, but might have its limits for
the refractive index. For instance, the refractive index of a particle
consisting of a crystal covered by glass might be stronger influenced
by the glass than by the mineral. Our assumptions for fvoid and fglass

Table 4
Maximal spreads (Δ) in the optical properties mass extinction coefficient (Ext.), single
scattering albedo (SSA) and asymmetry parameter, and the corresponding wavelengths
(λ) for the variation of different properties.

reff / μm Ext. / m2

kg
SSA Asym. param.

Δ λ / μm Δ λ / μm Δ λ / μm

Size
– 301 9.6 0.64 7.9 0.79 8.1

Shape
0.6 39 10.1 0.04 7.6 0.02 11.0
3.0 23 10.6 0.02 7.9 0.02 8.1
6.0 29 5.0 0.03 11.7 0.04 5.0

Radius definition
0.6 10 10.4 0.03 7.6 0.02 5.0
3.0 11 10.3 0.01 7.9 0.02 10.0
6.0 12 6.9 0.01 8.0 0.01 5.1

Composition (Refractive Index)
0.6 564 9.2 0.64 7.2 0.07 10.8
3.0 184 9.3 0.80 7.8 0.20 5.0
6.0 117 7.7 0.73 7.8 0.25 6.3

Fig. 9. Mass extinction coefficient (a), single scattering albedo (b) and asymmetry
parameter (c) for ensembles of spherical particles with a log-normal size distribution
with different reff and s with the refractive index of Eyjafjallajökull ash Deguine et al.
(2020).
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are based on statistical analyses rather than on individual measure-
ments. Especially a non-neglibile porosity might significantly alter the
derived refractive indices of volcanic glasses, Fig. 3 and Table 3. Also
the assumption of bubbles filled with air instead of specific gases
resulting in the approximationsmvoid= 1 and ρvoid= 0 should bemen-
tioned here. For the calculation of the volcanic glasses we relied on the

measurements of Deguine et al. (2020). However, comparing these
with Reed et al. (2018) shows that very similar measurement tech-
niquesmight still result in different refractive indices. Also the refractive
indices from both, Reed et al. (2018) and Deguine et al. (2020), do not
show the large peaks of crystalline quarz, which leads to troughs in
our volcanic glass refractive indices.

Comparing the results in Table 4 for the spreads in optical properties
we see that with respect to the mass extinction coefficient the radius
definition leads to the smallest variability, followed by the shape. Size
and composition have a similar large impact in general, with the impact
of the composition increasing with decreasing reff. Note that the maxi-
mum spread due to the composition is located at a wavelength of 9.2
to 9.3 μm for reff = 0.6 μm and 3.0 μm, respectively, which is where
the major quartz peak is located, Fig. 12 (a, b). Thus, a single crystal
leads to this large impact. Considering the single scattering albedo the
ranking of importance is the same. Heremostmaximum spreads are lo-
cated at 7.3 to 8.0 μm. At this point the single scattering albedo drops
from close to 1 to below 0.5. This drop can be slightly shifted, Fig. 9
(b), such that the maximum spread in this regime can be larger than
the general variability. Finally, with respect to the asymmetry parame-
ter the size leads to the largest spread, followed by the composition,
followedby the shape and the radius definition. Based on these rankings
we decide to incorporate the full variability due to size and composition
to create our representative data set of optical properties for volcanic
ash. Thus, the size distributions for all reff and s are considered, as well
as all refractive indices. For shape and radius definition the impacts
are relatively small such that a single setting is indeed sufficient. Thus,
for the shape a log-normal distribution with ε0 = 1.5 and σar = 0.45
and the radius definition rc are used. The ranking also indicates that

Fig. 10. Mass extinction coefficient (a), single scattering albedo (b) and asymmetry
parameter (c) for particle ensembles with a log-normal size distribution with reff = 0.6
μm and s = 1.5 with the refractive index of the Eyjafjallajökull ash by Deguine et al.
(2020). Different shapes (spheres, spheroids) and aspect ratio distributions are
considered. The latter are modified log-normal distributions consisting of ob- and
prolate particles in equal parts with different ε0 and σar. One case (thick red line) is
shown as reference (left axis), whereas for the others the relative differences are shown
(right axis).

Fig. 11. Mass extinction coefficient (a), single scattering albedo (b) and asymmetry
parameter (c) for ensembles of particles with a log-normal size distribution with
different reff and s = 1.5, a log-normal aspect ratio distribution with ε0 = 1.5, σar = 0.45
of spheroids, with the refractive index of the Eyjafjallajökull ash by Deguine et al.
(2020). For the different reff different definitions of the radius are shown. One case
(thick solid line) is shown as reference (left axis), whereas for the others the relative
differences are shown (right axis).

Fig. 12. Mass extinction coefficient (a, b, c), single scattering albedo (d, e, f) and
asymmetry parameter (g, h, i) for ensembles of spherical particles with a log-normal
size distribution with different reff and s = 1.5 for different refractive indices (see text).
The different silica contents are marked by color.
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mainly size and composition are needed for a fast calculation of the re-
fractive index and the optical properties of a specific volcanic ash.

Regarding satellite remote sensing two further points should be
stressed: First, the dominant peak of the mass extinction coefficient
around 10 μm decreases with increasing reff, Fig. 9 (a), and finally van-
ishes, leading to a strong dependence of BTD11−12 on reff; for reff ≥ 6
μm the signal in BTD11−12 might disappear or even become positive.
This dependence has also been pointed out by Prata (1989); Wen and
Rose (1994); Stevenson et al. (2015). Second, the dependency of the op-
tical properties on the silica content is visible in Fig. 12. For instance for
large particles (reff = 6 μm) the mass extinction coefficient correlates
roughly with the silica content for 8.5 to 12 μm, Fig. 12 (c). However,
for small particles (reff = 0.6 μm) the behavior changes in the regime
10 to 12 μm: here the quantities anti-correlate, Fig. 12 (a). Similar de-
pendencies are visible for the single scattering albedo, Fig. 12 (d, e,
f) and the asymmetry parameter, Fig. 12 (g, h, i). In particular the silica
dependencies of themass extinction coefficient, Fig. 12 (a, b, c), indicate
that there might be a possibility to retrieve the silica content as a proxy
for the composition by satellite.

As noted in the introduction, BTD11−12 can be considered for the de-
tection of volcanic clouds via satellite. Using our representative set of
optical properties (as outlined above and calculated for r ∈ [0.001,
12]μm) we determine BTD11−12 for an example (Sec. 2.3) of small par-
ticles (reff = 0.6 μm, s = 1.5). In this case neglecting scattering effects
(Sec. 2.3) is valid as the single scattering albedo for these particles is
below roughly 0.4, but there is large variability with respect to the com-
position, Fig. 12(a, d, g). BTD11−12 is then−1.9 ± 0.7 K and ranges from
−2.8 to−0.7 K, i.e. all BTD11−12 are negative for the specific size, Fig. 13.
Note that the standard deviation is already larger than for instance the

instrumental uncertainties of the 10.8 μm and 12.0 μm channels of the
radiometer MSG-SEVIRI, which are of the order of 0.06 K and 0.10 to
0.16 K in-flight at 95 K (EUMETSAT, 2019; Schmetz et al., 2002b),
stressing the importance to consider the correct composition in remote
sensing retrieval applications. Fig. 13 shows that in this case different
silica contents (indicated by the color) might be separable up to a cer-
tain degree. The size of the markers also indicates fglass. Within this
model an increase in fglass leads to an increase in BTD11−12. However,
the differences from fglass are much smaller than those due to xs, and
of a similar order as the instrumental noise. Crosses indicate the results
for the refractive indices of Deguine et al. (2020). They are aligned along
the results of our representative data set, but some show large devia-
tions from our calculations of similar silica content, e.g. Grímsvötn. Its
peak in the imaginary part is shifted to larger wavelengths, Fig. 5 and
Deguine et al. (2020), which results in a more negative BTD11−12. This
shows that the variability of the refractive index of volcanic ash might
be even larger than what is covered by our method.

5. Conclusions

Monitoring and initializing of nowcastings for volcanic ash clouds is
regularly performed using satellite-borne passive infrared imagers. As
these retrievals often rely on radiative transfer calculations, a good
knowledge of the microphysical properties and the complex refractive
index of volcanic ash is necessary. In this work we describe a method
to calculate the complex refractive index of volcanic ash in the infrared
(5 to 15 μm). This can be done for different volcanic ash compositions
with respect to volcanic glasses, crystalline minerals and vesicles. The
main parameters are the silica content, the glass fraction and the poros-
ity.We compose a set of complex refractive indices in the infrared of the
individual crystalline components as well as their densities. Combining
these according to a typical silica dependent distribution from the liter-
ature we get effective refractive indices for the mineral part. These are
used to determine the refractive indices of various volcanic glasses
from the refractive indices of correspondingbulk samples from the liter-
ature. Awavelength dependent linear regression between the refractive
indices of the volcanic glasses and the bulk silica content is performed.
Subsequently, the refractive indices of the minerals and the glasses are
combined for different compositions (varying silica content, glass frac-
tion and porosity). Our results indicate that the impact of the glass frac-
tion seems to be rather negligible compared to the impact of the silica
content, which in turn may have less influence than the porosity. How-
ever, a short literature review indicates that the last might be negligible
for particle sizes of the order of 1 μm, although this is not fully settled.
The density of the volcanic ash was determined similar to the refractive
index.

Furthermore, we review typical microphysical properties (size and
shape) of volcanic ash. Calculating the resulting optical properties we
show that the size and the composition lead to the largest variations
with similar impact, whereas the considered shapes and radius defini-
tions play aminor role.We show that the extinctions for 11 to 12 μmex-
hibit a size dependence such that the corresponding brightness
temperature difference BTD11−12 might become non-negative, and
thus the criterion BTD11−12 < 0 regularly applied for volcanic ash detec-
tion by satellite might not be applicable for roughly reff ≥ 6 μm. A small
single scattering albedo is observed for small particles, whereas scatter-
ing and absorption are more balanced for larger particles. Applying a
simple model we estimate the range of BTD11−12 and find a strong de-
pendence on the compositionwhich is non-negligible for modern satel-
lite instruments.

To improve our method further laboratory measurements of bulk
volcanic ashes and volcanic glasses would be needed, preferably to-
gether with measurements of mineral compositions, glass fractions
and porosities. The latter would enable us to further validate our calcu-
lations. But already now our work shows that the composition of volca-
nic ash and, therefore, a proper assumption of the refractive index is

Fig. 13. Brightness temperature at 11 μm vs. brightness temperature difference at 11 μm
and 12 μm for different compositions (as derived in Sec. 3.1), a log-normal size
distribution (reff = 0.6 μm, s = 1.5), and a ob−/prolate spheroidal shape with a
modified log-normal aspect ratio distribution (ε0 = 1.5, σar = 0.45). Also marked are
the results for the refractive indices from Deguine et al. (2020) for the same
microphysical properties.
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necessary for trustworthy satellite retrievals in the infrared. The results
can be used for the development of new retrieval algorithms or to quan-
tify the uncertainties in radiative transfer calculation-based retrievals
due to the usage of a single refractive index for the volcanic ash. Also
noteworthy is the fact that a dependence on the silica content (and to
a much smaller extent on the glass fraction) is observable in the refrac-
tive index, the mass extinction coefficient and BTD11−12, indicating that
composition might be retrievable to some degree by remote sensing
methods.

Data availability

The created complex refractive indices of volcanic ash as well as the
optical properties are available as supplementary data (Piontek et al.,
2021).
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The New Volcanic Ash Satellite Retrieval VACOS Using
MSG/SEVIRI and Artificial Neural Networks:

1. Development

Dennis Piontek, Luca Bugliaro, Marius Schmidl, Daniel K. Zhou, Christiane Voigt
Remote Sensing 2021, 13, 3112.

Overview This paper describes the development of the new volcanic ash retrieval VACOS
using thermal satellite measurements of the passive imager MSG/SEVIRI and applying
artificial neural networks. For the last, a training data set of synthetic observations is
created by composing one-dimensional atmospheric gas, cloud and temperature profiles and
performing radiative transfer simulations for them with and without a single homogeneous
volcanic ash layer. The ash-free simulations are compared to real measurements, showing
a reasonable overall agreement but some deviations for cloudy cases and for land surfaces.
The former can be explained by inaccuracies in the cloud properties or differences in the
cloudiness introduced also by a random element in the method; the latter might be caused
by inaccuracies in the ECMWF skin temperatures as already reported elsewhere. Using
this data set, different artificial neural networks are trained for the retrieval of a pixel
classification, the optical depth at 10.8 µm due to volcanic ash, the top height and the
effective particle radius of an ash cloud.

Author contribution I conceptualized the algorithm development with LB. MS wrote the
original software RTSIM to compile vertical atmospheric profiles based on various input
data sets and to perform radiative transfer calculations using libRadtran. MS prepared the
input data on nitrogen dioxide. DZ provided data on surface emissivities. I collected atmo-
spheric data from ECMWF, prepared the volcanic ash optical properties, adapted RTSIM
for the input data and introduced the dependency of the sea surface emissivity on wind
speed and viewing zenith angle. I applied RTSIM to calculate the training data, validated
the ash-free simulations, investigated the gas absorption parameterization, trained the ar-
tificial neural networks, developed the software VACOS, prepared all figures and wrote the
manuscript. LB and CV supervised the research. All authors reviewed manuscript drafts.
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Abstract: Volcanic ash clouds are a threat to air traffic security and, thus, can have significant societal
and financial impact. Therefore, the detection and monitoring of volcanic ash clouds to enhance the
safety of air traffic is of central importance. This work presents the development of the new retrieval
algorithm VACOS (Volcanic Ash Cloud properties Obtained from SEVIRI) which is based on artificial
neural networks, the thermal channels of the geostationary sensor MSG/SEVIRI and auxiliary data
from a numerical weather prediction model. It derives a pixel classification as well as cloud top height,
effective particle radius and, indirectly, the mass column concentration of volcanic ash clouds during
day and night. A large set of realistic one-dimensional radiative transfer calculations for typical
atmospheric conditions with and without generic volcanic ash clouds is performed to create the
training dataset. The atmospheric states are derived from ECMWF data to cover the typical diurnal,
annual and interannual variability. The dependence of the surface emissivity on surface type and
viewing zenith angle is considered. An extensive dataset of volcanic ash optical properties is used,
derived for a wide range of microphysical properties and refractive indices of various petrological
compositions, including different silica contents and glass-to-crystal ratios; this constitutes a major
innovation of this retrieval. The resulting ash-free radiative transfer calculations at a specific time
compare well with corresponding SEVIRI measurements, considering the individual pixel deviations
as well as the overall brightness temperature distributions. Atmospheric gas profiles and sea surface
emissivities are reproduced with a high agreement, whereas cloudy cases can show large deviations
on a single pixel basis (with 95th percentiles of the absolute deviations >30 K), mostly due to different
cloud properties in model and reality. Land surfaces lead to large deviations for both the single
pixel comparison (with median absolute deviations >3 K) and more importantly the brightness
temperature distributions, most likely due to imprecise skin temperatures. The new method enables
volcanic ash-related scientific investigations as well as aviation security-related applications.

Keywords: volcanic ash cloud; passive satellite remote sensing; artificial neural network; radiative
transfer calculation

1. Introduction

Large, explosive volcanic eruptions might happen relatively infrequently [1], but their
emissions can have massive impacts: volcanic ash can significantly interfere with critical,
ground-based infrastructure [2] and can damage aircraft or even cause engine failure [3].
Aviation incidents have been reported more than 1000 km from the volcanic ash source [4],
as potentially hazardous ash concentrations might not be visually observable by flight
crews [5]. In the case of the eruption of Eyjafjallajökull in 2010, major parts of the European
airspace were closed for extended periods of time [6], leading to estimated economic losses
of US$1.7 billion for the aviation industry [7].

Remote Sens. 2021, 13, 3112. https://doi.org/10.3390/rs13163112 https://www.mdpi.com/journal/remotesensing



Remote Sens. 2021, 13, 3112 2 of 29

To mitigate the impact of future eruptions, satellite remote-sensing methods have been
developed to monitor volcanic ash clouds, using both polar orbiting and geostationary
passive optical imagers (e.g., [8]). Their results can be used to directly assess whether an
airspace is safe to be traversed by jet planes (according to thresholds stated by the Interna-
tional Civil Aviation Organization (ICAO) [9]), to investigate aerosol–cloud interactions [10]
or to calibrate/validate volcanic ash transport and dispersion models as applied by the
Volcanic Ash Advisory Centers [11–13]. The latter are the main providers of information on
atmospheric contamination by volcanic ash in the case of an eruption [9].

Active remote sensing instruments such as lidars provide highly resolved vertical
profiles of the aerosol load [14]. However, lidars have a limited spatial and temporal
coverage, e.g., the instrument aboard the polar orbiting Cloud-Aerosol Lidar and Infrared
Pathfinder Satellite Observations (CALIPSO) has a small footprint of 90 m× 335 m and a
16-day repeat cycle [15]. Ground instruments are fixed and airborne measurements are
performed only in exceptions (e.g., [6,16–21]). Therefore, none of those instruments is able
to provide global data as are necessary in the case of volcanic ash monitoring. In this respect,
geostationary radiometers, especially of the second generation, come in handy: such
instruments not only provide near-global coverage, but their infrared channels also allow
operation during day and night. Examples are the Geostationary Operational Environmental
Satellites (GOES) covering North and South America, the Meteosat Second Generation (MSG)
satellites for Europe and Africa and Himawari for Eastern Asia and Australia.

The difference between the brightness temperature at 11 µm (BT11) and 12 µm (BT12),
in short BTD11−12, can be negative for clouds consisting of small volcanic ash particles
(smaller than ~5 µm [22,23]) and mixtures of volcanic ash and sulfuric acid (H2SO4 [24,25]),
whereas for ice clouds BTD11−12 tends to be positive [26]. Therefore, this quantity is often
used for volcanic ash detection. However, volcanic ash can be hidden by water or ice either
within the volcanic ash cloud or as separated clouds, as well as water vapor, especially if
the ash cloud itself is at low altitude [11,27]. Furthermore, large ash particles or opaque
plumes do not lead to a negative BTD11−12 [11,22]. False alarms might be produced by
mineral dust aerosol [28], which has similar spectral properties as volcanic ash [11,29,30],
or by non-vegetated, quartz-rich surfaces due to their emissivity [11,28].

As a consequence, more sophisticated detection schemes have been proposed: to
correct for the presence of water vapor, a BTD11−12 threshold depending on BT11 has
been suggested where the exact function depends on the atmospheric conditions [27]; this
resulted in retrievals of larger contaminated areas. Multiple threshold tests were proposed,
incorporating, for instance, also BT8.7 measurements (e.g., [31,32]) or simulated clear-sky
brightness temperatures BT11 and BT12 from numerical weather predictions (e.g., [31]).
Furthermore, it was shown that reflectances in the visible and the near-infrared as well
as their ratio can further help to separate volcanic ash clouds from water and ice clouds,
especially for optically thick plumes for which BTD11−12 tends to vanish (e.g., [33–35]).

As radiance measurements are affected not only by the volcanic ash cloud but also
by the atmospheric state, other meteorological clouds and the surface properties, it was
suggested to derive quantities that are closer linked to the target cloud’s properties. An
example is the ratio of effective absorption optical depths at different wavelengths, called β
ratio, which can be approximately expressed by single scattering properties (e.g., [8,36,37]).
For the calculation of β ratios, clear sky properties have to be determined by radiative
transfer calculations. The combination of multiple β ratios of different infrared channels is
a good discriminator of volcanic and meteorological clouds [37]. A high spectral resolution
can allow for new detection schemes, either directly based on the functional behavior
of the brightness temperature spectra, thereby also enabling the separation of volcanic
ash from mineral dust (e.g., [29,30]), or by performing singular vector decompositions
with some vectors representing clear sky conditions, whereas others describe the volcanic
ash influence. A linear decomposition of a measurement with respect to these basis
vectors then reveals whether volcanic ash is present or not [38]. An alternative approach
is to detect sulfur dioxide (SO2) as a proxy for volcanic ash as both are often emitted
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simultaneously [39]. Although both detections can show reasonable spatial agreement,
they might differ in some cases [40], sometimes with more than 80% of the volcanic ash
remaining undetected [41]. This might be rooted in the presence of distinct volcanic ash
and SO2 layers that get separated due to vertical wind shear [42].

To retrieve microphysical (especially the effective particle radius reff) and macro-
physical properties (optical depth τ and mass column concentration mcol), brightness
temperatures (usually BT11 and BTD11−12 or similar) have been precalculated for generic
atmospheric settings including only a volcanic ash layer and used as look-up tables
(e.g., [22,33,43]). More complex atmospheres were assumed to correct for water vapor,
based on either measurements of the surrounding of the volcanic ash clouds or radiative
transfer calculations (e.g., [27,43]). The optimal estimation method aims to minimize a cost
function (here principally an uncertainty weighted difference between an atmospheric state
vector and an a priori assumption, as well as an observation vector and corresponding
estimates), usually iteratively for non-linear problems, incorporating radiative transfer cal-
culations [37,44]. For example, Francis et al. [31] applied this approach to retrieve pixelwise
the ash layer pressure, mass loading mcol and effective radius reff based on observations at
10.8 µm, 12 µm and 13.4 µm, whereas Pavolonis et al. [37] used the same observations to
determine different β ratios, emissivities and temperatures, later on converting these to
microphysical properties. Retrievals can also be performed by making use of the surround-
ing ash-free area; e.g., Pugnaghi et al. [45] interpolated the radiances across a volcanic ash
plume between the edges to obtain an ash-free image. Combining the radiances measured
with and without ash, the transmittance of the ash plume could be calculated for different
wavelengths. Finally, the effective radius reff and the optical depth τ were determined from
the transmittances using conversions from radiative transfer calculations. There are further
methods to determine the volcanic ash cloud top height ztop. The brightness temperature
of opaque parts of a cloud can be assumed to approximately correspond to the ambient
temperature. A nearby temperature profile (e.g., using a numerical weather prediction
or a radiosonde measurement) can be applied to convert the brightness temperature into
an altitude [33,43,46]. During daytime, the difference in the cloud position as seen by
the satellite and the sun induced cloud shadow can be used to geometrically calculate
ztop [33,43]. Stereoscopic instruments allow inferring ztop from the spatial shift between
the projection of a cloud in images retrieved under different viewing angles [33,38,43,47].
The carbon dioxide (CO2) slicing method compares multiple channels around the CO2
absorption feature which have weighting functions peaking at different heights [48,49].

A different approach is the application of artificial neural networks (ANNs), which can
be considered as universal approximators for unknown functions [50]. Based on initial re-
search in the 1940s, this method has gained much attention and has significantly advanced
in recent decades [51]. It has been used for prediction, functional approximation and classi-
fication tasks for numerous problems of atmospheric sciences [52]. With respect to satellite
remote sensing, some examples are the retrieval of properties of water clouds [53,54],
ice clouds [55,56], ozone profiles [57], volcanic SO2 [58–60] and surface reflectivity [61].
Often, the utilized training datasets either consist of collocated measurements of different
instruments [54–56] or are created using radiative transfer calculations [53,57,59–61]. One
of the major advantages of ANNs is that, once they are trained, they are fast in application
compared to other methods using time-consuming radiative transfer calculations during
the retrieval. Gray and Bennartz [62] trained two ANNs for the detection of volcanic ash
and SO2-rich ash, respectively, using Moderate Resolution Imaging Spectroradiometer (MODIS,
e.g., [63]) measurements. The training data were composed of MODIS images of different
volcanic eruptions with the target classification performed based on Hybrid Single Particle
Lagrangian Integrated Trajectory (HYSPLIT) simulations of the volcanic emissions. The input
data consisted of brightness temperature (differences) of channels between 7.3 µm and
12 µm. Picchiani et al. [64] trained separated ANNs for volcanic ash detection and ash
mass loading mcol retrieval from MODIS measurements. The training data consisted of
MODIS images from Etna eruptions with the target classification performed by applying



Remote Sens. 2021, 13, 3112 4 of 29

the BTD11−12 < 0 criterion, whereas the target mass loading was determined by a look-up
table approach. The channels centered at 7.3 µm, 11 µm and 12 µm were used as input. A
more detailed classification ANN was trained by Picchiani et al. [65], labeling ash above
sea and above meteorological clouds, meteorological clouds themselves and sea, ice and
land surfaces using MODIS data. The training data consisted of MODIS images from the
Eyjafjallajökull 2010 and Grimsvötn 2011 eruptions with the target classes derived from the
BTD11−12 < 0 criterion, the MODIS land/sea mask, cloud products and BT2.13 (band 7) for
detection of ice surfaces. The input features include 14 MODIS channels in the visible and
infrared and a land/sea mask. The method was further developed by Piscini et al. [66],
training individual ANNs for the retrieval of the mass load mcol, the effective radius reff, the
optical depth at 11 µm (τ11) and the SO2 column concentration using MODIS observations.
Training data were MODIS images from the Eyjafjallajökull 2010 eruption with the target
values determined by other retrievals based on radiative transfer calculations, similar
to [64]. Initially, all MODIS channels were used as input features, with a pruning procedure
performed after the training to find the most important inputs. The ANN ansatz by Pic-
chiani et al. [64] and Piscini et al. [66] was compared to the look-up table and the volcanic
plume removal procedure, finding that the look-up table method can be more accurate, but
the ANN approach can be less sensitive to perturbations in the satellite measurements [67].
Zhu et al. [68] developed a method to retrieve volcanic cloud top heights ztop combining
a stacked denoising autoencoder for feature extraction followed by a least squares sup-
port vector regression to derive ztop. The training data consisted of collocated Spinning
Enhanced Visible and Infrared Imager (SEVIRI, aboard MSG [69]) brightness temperatures and
Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP, aboard CALIPSO [15]) derived
ztop for volcanic ash clouds from the Eyjafjallajökull 2010 and Puyehue-Cordón Caulle 2011
eruptions. Adding vertical temperature profiles from European Centre for Medium-Range
Weather Forecasts (ECMWF) simulations further improved the retrieval performance.

The aforementioned volcanic ash algorithms used real satellite images as training
data, with target values coming either from other retrievals, other sensors or trajectory
models. In contrast, the algorithm Volcanic Ash Detection Utilizing Geostationary Satellites
(VADUGS), applying a single ANN for the retrieval of mcol and ztop, was based on a fully
simulated training dataset. The input data consisted of the thermal infrared channels
of MSG/SEVIRI and auxiliary data such as a land/sea mask, the skin temperature and
the viewing zenith angle [70,71]. The ANN architecture followed the development of the
cirrus cloud retrieval Cirrus Optical Properties derived from CALIOP and SEVIRI Algorithm
during Day and Night (COCS, [55]), which was trained with collocated CALIOP and SEVIRI
measurements to retrieve cirrus optical depths and cloud top heights. Since 2015, VADUGS
runs operationally at the German weather service [72]. Although it produces reasonable
results upon visual inspection, a validation against simulated samples has shown that
the retrievals are reliable in certain subsets of the test dataset, but not in general [71].
An intercomparison of satellite products exhibited overall low correlations between the
retrieval of mcol by VADUGS and other algorithms and found a strong underestimation
of ztop when compared with CALIOP results [73]. In addition, note that VADUGS was
developed focusing on the Eyjafjallajökull 2010 eruption as only the refractive index of the
corresponding volcanic ash was used for the training data [71]. However, the refractive
index can vary significantly for different volcanic ashes [74,75] and retrievals are sensitive
to it [22,76,77]. Technically, potential improvements can be derived from the development
of Cirrus Properties from SEVIRI (CiPS [78,79]), which is the successor of COCS. It is based
on a similar training dataset but uses a new ANN architecture and training procedure,
additional input features and updated CALIOP data. CiPS exhibited a better performance
compared to COCS and retrieved additional quantities, e.g., the ice water path.

Building upon VADUGS, a new algorithm called Volcanic Ash Cloud properties Obtained
from SEVIRI (VACOS) is developed and described in two papers (Figure 1). In Part 1
(this paper), a training dataset consisting of simulated MSG/SEVIRI measurements is
created using modeled atmospheric profiles and a climatology of the surface emissivity.
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A parameterization of the sea surface emissivity is applied that depends on the viewing
zenith angle and wind speed. To cover the variability of volcanic ash clouds, the extensive
set of volcanic ash refractive indices and optical properties from Piontek et al. [23] is used
together with a wide range of possible ash cloud top heights, geometrical thicknesses
and mass concentrations. This constitutes a major advantage compared to the previously
mentioned ANN-based volcanic ash retrievals, which were trained on satellite images of
only one [64,66], two [65,68] or seven [62] volcanic eruptions or used only a single volcanic
ash type [71]. Methodologically, we train four separated ANNs for the classification and
the retrieval of the optical depth at 10.8 µm (τ10.8), ash cloud top height (ztop) and effective
particle radius (reff) of the volcanic ash clouds. The ANNs have individual input features
and training datasets. Part 2 [80] contains a validation of the retrievals with respect to
simulated test datasets, a sensitivity study of the algorithms with respect to the vertical
mass profile of volcanic ash layers, case studies comparing the results of the new retrievals
with independent lidar and in situ measurements as well as model results and an analysis
of the working principles of the ANNs.

Figure 1. Scheme of the algorithm development and validation: (red) calculation of typical refractive indices (RIs) of
volcanic ashes (VAs) and the corresponding optical properties [23], (yellow) radiative transfer calculations to compose a
training dataset and (blue) training of different ANNs (both in this paper) and (green) validation against simulated test data
and other independent measurements and model results [80].

The rest of this paper is organized as follows. We introduce the observation instrument
MSG/SEVIRI (Section 2) and the predecessor retrieval VADUGS, including a short, general
description of ANNs (Section 3). Next, the training dataset is sketched including its analysis
(Section 4), followed by the description of the new ANNs, their input features and their
training (Section 5) as well as their application (Section 6). Finally, we give a conclusion
and an outlook (Section 7).

2. MSG/SEVIRI

VACOS is tailored for the Spinning Enhanced Visible and Infrared Imager (SEVIRI) carried
by the geostationary Meteosat Second Generation (MSG) satellites. SEVIRI is a passive
12-channel imager, measuring radiation in the visible and infrared part of the spectrum.
The radiances in the different thermal channels are converted to brightness temperatures
(BT). For the retrieval, we consider only the seven infrared channels such that it can be
applied during day and night. Three of them are window channels (centered at 8.7 µm,
10.8 µm and 12 µm), two are strongly sensitive to water vapor (H2O, 6.2 µm and 7.3 µm)
and another two (9.7 µm and 13.4 µm) to ozone (O3) and carbon dioxide (CO2), respectively.
The temporal resolution of SEVIRI is 15 min for the full disc and 5 min in rapid scan mode,
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which covers mainly Europe. The spatial resolution is 3 km at nadir. The channels are
rather broad (spectral bands up to 2 µm) and instrument specific [69]. Figure 2 shows a
red-green-blue composite of the SEVIRI disc. There are multiple MSG satellites deployed at
different coordinates. In the following, we focus on Meteosat-9/MSG2. From 11 April 2007
to 21 January 2013, it was located at 0°E as the primary operational satellite and covered
the prominent eruptions of Eyjafjallajökull 2010, Grimsvötn 2011 and the volcanic ash
clouds of Puyehue-Cordón Caulle 2011. From 9 April 2013 to 20 March 2018, it provided
the rapid scanning service at 9.5°E. As of 29 June 2020, it is located at 3.5°E as a back-up
spacecraft [81,82]. Note that other current or future imagers aboard geostationary satellites
have similar spectral channels, e.g., the Advanced Baseline Imager on GOES-R, the Advanced
Himawari Imager on Himawari-8/9, the Advanced Meteorological Imager on GEO-KOMPSAT-
2A, the Advanced Geosynchronous Radiation Imager on Fengyun-4A or the Flexible Combined
Imager on the Meteosat Third Generation satellites [83–86]. Thus, the method described
here can in principle be extended to those as well.

Figure 2. Overview red-green-blue composite of MSG/SEVIRI measurements for 15 July 2015 at
12:00 UTC.

3. VADUGS

The algorithm VADUGS (Volcanic Ash Detection Utilizing Geostationary Satellites) allows
pixelwise retrieval of volcanic ash cloud properties using SEVIRI measurements and
ANNs [71]. ANNs have been developed based on biological insights on the behavior of
the human brain. The feed-forward configuration is made up of multiple layers, with the
first one (called input layer) consisting of the input features, and the last one the output
layer. In between is an arbitrary number of so-called hidden layers. Hidden and output
layers consist of so-called neurons. Those are (usually non-linear) functions receiving
the weighted sum of the results of the previous layer’s neurons (or input features in the
case of the first hidden layer) as an argument. The weights between all pairs of neurons
of successive layers are different. They are chosen such that the n input features are
(approximately) mapped to the corresponding m target values; thus, an ANN is a function
mapping Rn → Rm. Using the backpropagation algorithm, the weights are determined in
an iterative procedure (called training) by changing their values such that the loss function
(a metric quantifying the difference between the output of the ANN for a set of input data
samples and the associated target outputs) is minimized. Thus, a training dataset is needed
for which the target values are known for all samples. The loss function evaluated on a
separate validation dataset is monitored during training to prevent overfitting, i.e., to avoid
learning the noise of the training dataset [51,52,87].

VADUGS is a single ANN with one hidden layer with 600 neurons. The input data
consist of the infrared brightness temperatures measured by SEVIRI, the skin temperature
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from ECMWF and a land/sea mask and the viewing zenith angle. The output layer gives
mcol and ztop. Radiative transfer simulations were performed to calculate the brightness
temperatures for generic atmospheric settings, leading to a dataset of properly tagged
samples used for the training. For the simulations, realistic atmospheric conditions were
chosen based on ECMWF reanalysis data; to cover seasonal variations, 12 UTC of the 15th
day for the months February 2010 to January 2011 was considered. Meteorological cloud
layers were incorporated based on the layer-resolved cloud fractions given by ECMWF
and parameterized as either liquid or ice water cloud (see also Section 4.1.2). Single
homogeneous volcanic ash layers were simulated using the complex refractive index of
ash from the Eyjafjallajökull eruption 2010, spherical and spheroidal particle shapes and
two different lognormal particle size distributions [71].

4. Training Dataset

This section covers the creation of the new training dataset, including a description
of the input data of the radiative transfer calculations (Section 4.1) and the calculations
themselves (Section 4.2), a validation of the ash-free case (Section 4.3) and the selection of
training, validation and test subsets (Section 4.4).

4.1. Input Data

In the following, we describe different input data for the radiative transfer calculations,
their variability and the settings. More specifically, we discuss the surface emissivity
(Section 4.1.1), the vertical profiles of atmospheric clouds and gases (Section 4.1.2) and the
volcanic ash clouds (Section 4.1.3).

4.1.1. Surface Emissivity

For the surface emissivity, we use data from Zhou et al. [88–90]. Those were calculated
using measurements of the polar-orbiting IASI instrument over ten years (2007-06 to 2017-
05), covering the full globe. The emissivities were averaged over the ten years and for
each month. The final spatial resolution is 0.25° and the spectral resolution is 0.25 cm−1

for 645 to 2760 cm−1 (roughly the wavelength range 3.6 to 15.5 µm). For sea surfaces,
the emissivity exhibits also a strong dependence on the viewing zenith angle θvza and
the wind speed wws: an increase of θvza reduces the emissivity, whereas an increase of
wws reduces the emissivity at small θvza but increases it at large θvza [91–93]. The impact
can be on the order of 10%. Here, θvza is determined from the geographic coordinates
for MSG2, whereas the wind speed wws =

√
U2 + V2 is based on the horizontal wind

speeds at 10 m above the surface, U and V, as given by ECMWF (Section 4.1.2). We use
the calculations by Masuda [94] which incorporate the surface-emitted surface-reflected
radiation into the sea surface emissivity for different wavelengths λ (3.7 µm, 11 µm and
12 µm), θvza (0 to 85°) and wws (0 to 15 m s−1). We divide the calculated emissivities by the
value for θvza = wws = 0. Then, for each wavelength, a function of the form

f (θvza, wws; λ) = g(θvza; λ) · h(θvza, wws; λ) (1)

is fitted, with f describing the reduction of the emissivity relative to the case
θvza = wws = 0 at λ and g and h being polynomials of sixth degree. g describes mainly the
dependence on θvza, h is the correction due to wws and f is interpolated among the three
wavelengths and constantly extrapolated beyond. For sea surfaces, the IASI-measured
emissivities are multiplied by f as the data of Zhou et al. [88–90] do not include the de-
pendence on θvza and wws explicitly. Note that Masuda [94] considered wws at a height
of 12.5 m. However, the difference to wws derived from ECMWF ERA5 data is assumed
to be negligible. During application, θvza > 85° and wws > 15 m s−1 are set to these
limiting values.

Similar to water, the emissivity of land surfaces decreases with increasing θvza. How-
ever, the relations depend strongly on the soil type and the wavelength, and the results
vary between different experiments. For instance, significant decreases of the emissivity
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have been observed for sand: Labed and Stoll [95] found changes of ~6% for wavelengths
of 10.6 µm and 12 µm between θvza = 0° and 80°; Snyder et al. [96] reported differences up
to ~4% for 8 to 10 µm and ~2% for 10 to 14 µm between θvza = 10° and 53°; Sobrino and
Cuenca [97] measured decreases of ~3% between θvza = 0° and 65° for a spectral band at 8
to 14 µm; Cuenca and Sobrino [98] found a reduction of ~5.8% between θvza = 0° and 60°
for a channel covering 8.2 to 9.2 µm; McAtee et al. [99] indicated a decrease by up to ~8%
comparing θvza = 0° to 70° for the spectral range of 8 to 12 µm; García-Santos et al. [100]
got a difference larger than 10% between θvza = 0° and 70° for a spectral band at 8.2 to
8.7 µm. On the other hand, Sobrino and Cuenca [97] did not find a dependency of emissiv-
ity on θvza for grass and Snyder et al. [96] mostly less than 1% for a sample of compost with
grass and leaves. In addition, for θvza up to 30°, the changes in the emissivity are mostly
negligible [97,98,100]. Therefore, we neglect the dependence of the emissivity on θvza for
land surface in the following.

4.1.2. Atmospheric Data

Every radiative transfer calculation needs an atmospheric state as input. We use
ECMWF ERA5 reanalysis data [101], in particular the skin temperature, temperature profile,
logarithm of surface pressure, 10 m U and V wind components, specific humidity, ozone
mass mixing ratio, fraction of cloud cover, specific cloud liquid and ice water contents
and land/sea mask. Additionally, the total column water, water vapor and ozone are
included in the training dataset; those quantities are not needed for the radiative transfer
calculations, but they are used as input features for the ANNs.

Data of three arbitrary, recent years are collected: 2010, 2013 and 2015. For each
year, the 15th day of each month is considered. Compared to the data used for VADUGS,
we have an increased vertical resolution (137 instead of 91 model levels) and temporal
resolution (1 h instead of only 12 UTC [102]).

Figure 3 shows exemplarily the variability of the skin temperature. The daily mean
skin temperature exhibits an annual variability of ~20 K in central Europe, whereas skin
temperature within a single day might vary about 10 K in central Europe but ~40 K in
Northern Africa. This stresses the necessity to cover the full yearly as well as daily vari-
ability of the atmospheric state in a sufficient temporal resolution. Figure 3c shows the
differences in daily mean skin temperature between 2010 and 2015 for a single day. These
can lead to temperature differences of roughly −10 to 10 K, which is why we base our
calculations on data of three different years. Furthermore, the high temporal resolution
allows to capture the full daily cycle of the atmospheric properties. Figure 4 shows that a
coarser resolution of, e.g., 6 h might miss a part of the skin temperature variability. When
considering a location close to a longitude of 0°E, the 6 h resolution can reproduce the
minima and maxima in the daily course of the skin temperature. However, when con-
sidering a larger longitude, this might change as the sun is in zenith at a different time
with respect to UTC. For instance, at 20°N, 30°E, the local minimum is ~3 K lower than the
temperature at 0 UTC, while, at 20°N, 55°E, the local maximum is ~3 K higher than the
temperature at 12 UTC. Thus, the hourly resolution helps to create a training dataset that
enables the resulting retrieval to work at all longitudes at all times of day, as required by a
geostationary sensor.

Based on the ECMWF data, the atmospheric state is composed similarly to the method
of Bugliaro et al. [71], i.e., vertical temperature profile, skin temperature, wind speed at
10 m altitude and densities of gaseous water (H2O) and ozone (O3). Oxygen (O2) and carbon
dioxide (CO2) are derived from the air density using constant mixing ratios of 0.20948 [103]
and 0.0004 [104], respectively, whereas, for nitrogen dioxide (NO2), the mixing ratios stem
from a chemical transport model with 72 model levels and a latitudinal and longitudinal
resolution of 2° and 2.5°, respectively, simulating November 2012 to October 2013; the daily
average of the 15th of each month was used [105,106]. Those five gases are required to
perform corresponding radiative transfer calculations [107]; especially H2O, CO2 and O3
have strong absorption features in the thermal infrared MSG/SEVIRI channels [108].
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Figure 3. Differences in the skin temperature (from ECMWF ERA5): between the maxima and minima of the daily means of
the 15th of each month in 2010, i.e., the annual variability (a); between the maxima and the minima of the 15 May 2010, i.e.,
the daily variability (b); between the daily means of 15 May 2010 and 2015 at 12:00 UTC, i.e., the inter-annual variability (c).
The blue dots mark the locations shown in Figure 4.

Figure 4. Daily course of the skin temperature (from ECMWF ERA5) for five different locations (see marker in Figure 3); the
yellow columns represent the temperatures at 0, 6, 12 and 18 UTC.

Meteorological clouds are extracted from ECMWF data as well; however, the maxi-
mum random overlap rule of ECMWF cannot be implemented in a one-dimensional (1D)
radiative transfer model. Thus, using the cloud fractions for each layer, a random set of 1D
clouds is created. No partial cloudiness is considered and vertically adjacent cloud layers
are assumed to overlap as much as possible (for details, see [71]). For liquid water clouds,
the parameterizations by Bugliaro et al. [109] and Hu and Stamnes [110] are used to create
the reff profiles and the optical properties, respectively. For ice water clouds, the parameter-
ization by Wyser [111] and the rough-aggregate habit [107] with the parameterization by
Heymsfield et al. [112], Yang et al. [113], Baum et al. [114] are applied for reff and the optical
properties, respectively. Note that the composed atmospheres are fully consistent, i.e., the
vertical temperature and gas profiles match the cloud profiles (i.e., humidity saturation
at the correct altitudes). The atmospheres, in turn, match the surface emissivities and the
viewing zenith angles. This distinguishes our approach from radiative transfer calculations
by Krebs et al. [115] or Vázquez-Navarro et al. [116], who also created comprehensive
simulated datasets of MSG/SEVIRI observations, but combined atmospheric profiles with
random cloud layers, constant surface emissivities and arbitrary viewing zenith angles. In
the case of the VADUGS training data, atmospheric profiles and clouds were consistent,
but not the viewing zenith angles [71].

4.1.3. Volcanic Ash Clouds

Volcanic ash clouds exhibit a significant amount of variability. The volcanic ash cloud
top height ztop depends on the intensity of the eruption: whereas weak eruptions emit ash
only up to a few hundred meters [117], affecting mainly the direct surrounding of the vent,
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Eyjafjallajökull 2010 injected volcanic ash at heights of 3 to 10 km above sea level [118],
Puyehue-Cordón Caulle 2011 injected ash up to 15 km high [38,119]. Even heights > 25 km
are possible [120,121], although much rarer [1]. The cloud height also depends on the
atmospheric conditions [122] and changes during the ash cloud’s lifecycle, e.g., the height
decreases due to gravitational settling [10]. Thus, in the following, ztop ∈ [0.3, 18] km
is considered.

The vertical mass profile can be quite complicated, especially for aged clouds, e.g., with
a non-uniform distribution and multiple layers [6,18,123]. As SEVIRI offers only limited
possibilities for sounding, we consider only the simplest profile of a single, homogeneous
layer (as in [71,124]). In addition, the vertical extent zext shows a large variability from
some hundred meters up to some kilometers [6,18]. Marenco et al. [18] proposed zext =√

2 mcol, meas/cmax, meas with mcol, meas being the measured mass load and cmax, meas the
measured peak mass concentration, arguing that this leads (together with the assumption of
a homogeneous layer with the concentration c being cmax, meas/

√
2) to a good representation

of real ash clouds for radiative transfer. Another approach based on plume rise calculations
for stable stratified atmospheres suggests zext = 0.4ztop for the depth [125,126] and has
been applied to volcanic ash cloud retrievals [33,43,127]. The latter relation is also assumed
for VACOS. Thus, after choosing ztop, the vertical extent is zext ∈ [100 m, 0.4ztop].

For the mass volume concentration c, typical values depend again on the eruption
strength and the ash cloud’s lifecycle, as sedimentation and dispersion may lead to a
thinning of the cloud. Przedpelski and Casadevall [128] estimated 2 g m−3 from inspec-
tions of KLM 867’s engines after encountering an ash cloud of Redoubt Volcano in 1989.
Weber et al. [19] reported in situ measured concentrations of the Eyjafjallajökull 2010 ash
plume of 500 to 2000 µg m−3 at distances of 15 to 60 km from the vent. Marenco et al. [18]
found from lidar data mean concentrations of 300 to 650 µg m−3 with maxima of 800 to
1900 µg m−3 above Great Britain on 14–17 May, about 1400 km from the source.
Schumann et al. [6] measured in situ averages of 105 to 283 µg m−3 with maxima (of 10 s
mean values) of 282 to 830 µg m−3 above the North Sea on 17 May, roughly at a distance of
1760 km from the vent. With respect to aviation, three regimes of ash contamination are dif-
ferentiated: low contaminations for concentrations ≤ 2 mg m−3, medium contaminations for
concentrations of 2 to 4 mg m−3 and high contaminations for concentrations ≥ 4 mg m−3 [9].
In the following, mass column concentrations of 0 (no ash) to 30 g m−2 are considered.

Thus, after choosing zext, the mass volume concentration is c ∈ [0 g m−3, 30 g m−2

zext
]; for a

typical cloud thickness of zext = 1 km, this would cover mass volume concentrations up to
30 mg m−3, covering all three contamination regimes according to ICAO.

Volcanic ashes themselves can also differ significantly with respect to chemical com-
position, particle size and shape. Here, we consider the comprehensive set of optical
properties covering the variability of all three properties described by Piontek et al. [23].
The refractive indices of volcanic ashes, as shown in Figure 5, were calculated by averaging
the refractive indices of different components of volcanic ash (i.e., minerals and glasses)
according to typical petrological compositions; the last depends on the silica content xs,
which was varied from 45 to 75 wt.%, and the ratio between volcanic glass and minerals,
fglass, which varied between xs/100 wt.% and 1. Focusing on distal ash, the porosity of
volcanic ash [21] is neglected.

The microphysical properties were chosen based on a literature review: a log-normal
particle size distribution (Equation (7) in [23]) was assumed with reff ∈ {0.6, 1.8, 3, 4.5, 6}
and geometric standard deviations s ∈ {1.5, 2.0}. Pro- and oblate spheroids were assumed
in equal parts, with the aspect ratio following a modified log-normal distribution (Equation
(9) in [23]) with median aspect ratio ε0 = 1.5 and a spread σar = 0.45. Using Mie theory
and the T-matrix method [129], the optical properties were derived for wavelengths of 5 to
15 µm, as shown in Figure 6.
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Figure 5. Real (a) and imaginary (b) parts of the complex refractive indices of the volcanic ash types derived by
Piontek et al. [23]. Different glass fractions fglass are denoted by the color. For visibility reasons, different silica contents xs

are shifted by 0.5 with respect to each other.

Figure 6. Mass extinction coefficient of the volcanic ash types derived by Piontek et al. [23] and (in black) for Eyjafjallajökull
ash [75] as reference. The silica content xs is denoted by the color and the status (included or excluded with respect to
the simulated dataset) by the linestyle. The mass extinction coefficient at 10.8 µm of Eyjafjallajökull ash and the standard
deviation of all mass extinction coefficients at 10.8 µm are given by the red marker. The panels show subsets of different reff

and s.
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To exclude outliers as potentially unphysical volcanic ashes, only a selection of ash
types is used for the training below (see Figure 6). Therefore, the standard deviation
σ(reff, s) of the mass extinction coefficient at 10.8 µm, k10.8, of all volcanic ashes is calculated.
Next, the mass extinction coefficient kEyja(reff, s) at 10.8 µm for Eyjafjallajökull ash from
Deguine et al. [75] is determined for the same microphysical properties reff, s and shape [23].
Finally, we keep only those volcanic ashes that are 1σ close to the Eyjafjallakökull ash, i.e.,
that fulfill

∣∣k10.8 − kEyja(reff, s)
∣∣ ≤ σ(reff, s). Overall, 57% of the ash types pass this test.

Figure 6 shows that for reff = 0.6 µm mostly ashes of low xs are excluded, whereas for
reff = 1.8 µm mainly high xs are dismissed. For the other reff, the selection is relatively
balanced with respect to xs.

4.2. Radiative Transfer Calculations

To create the input files of the radiative transfer calculation, the algorithm RTSIM [71]
randomly picks uniformly distributed times among those covered by the ECMWF data
(Section 4.1.2), coordinates with respect to the SEVIRI disc and compiles the corresponding
surface properties and atmospheric, cloud and ash profiles; meteorological clouds can
be created in ~51% of the cases. For each set of input parameters, four calculations are
performed if possible: clear-sky conditions; only meteorological clouds; only volcanic ash
clouds; meteorological and volcanic ash clouds. The ash cloud parameters (i.e., ztop, c, τ10.8
and reff) and the simulated brightness temperatures together enter the training data.

1D radiative transfer calculations of the thermal infrared brightness temperatures as
measured by SEVIRI are performed using libRadtran version 2.0.3 [130,131] and the C-
version of the Discrete Ordinate Radiative Transfer Solver (DISORT [132,133]) with 16 streams.
The Cluster for Advanced Research in Aerospace (CARA) of the Deutsches Zentrum für Luft-
und Raumfahrt (DLR) is used, allowing the calculation of 1000 samples with 7 simulated
brightness temperatures each on a single node within approximately 100 s.

To account for gas absorption, a method by Buehler et al. [134] is used in the implemen-
tation by Gasteiger et al. [135], called REPTRAN. It performs radiative transfer simulations
at representative wavelengths within a given spectral interval (on average 3 and typically
<10) and calculates a weighted sum of them as an approximation of the integral of the
top of atmosphere radiance over a satellite channel’s spectral response function/a narrow
spectral band. The representative wavelengths and the weights were determined such that
the approximation for the integrated top of atmosphere radiance has an error < 1%, using a
training dataset of simulated top of atmosphere radiances with a high spectral resolution
covering a large variety of atmospheric states. Four different parameterizations are avail-
able: channel (optimized for SEVIRI’s spectral channels), coarse (band width of 15 cm−1),
medium (5 cm−1) and fine (1 cm−1). channel uses the least number of spectral sampling
points and is fastest. However, Gasteiger et al. [135] pointed out that the applicability of the
parameterization might cease if a significant spectral variability is introduced which has
not been considered in their training dataset. For instance, surface emissivity was assumed
wavelength-independent by Gasteiger et al. [135]. In our simulations, surface emissivity
shows a strong spectral variability, especially for sand [88]. Furthermore, the refractive
index of the volcanic ash, which has imaginary values between 0 and about 1.4 (Figure 5),
was assumed wavelength-independent and between 0.001 and 0.1 by Gasteiger et al. [135].

To select accurate parameterizations, we performed test calculations of the brightness
temperatures for the REPTRAN modes channel, coarse, medium and fine. Cases with and
without meteorological clouds/volcanic ash were considered with the ash cloud parameters
as described in Section 4.1.3 and an example ash with the refractive index of Eyjafjallajökull
ash from Deguine et al. [75], a log-normal size distribution with reff = 0.6 µm, s = 1.5
and the previously described shape distribution. In total, for each parameterization,
500 atmospheric states were simulated with each up to four cloud states as described
above. The differences to the fine calculations are shown in Figure 7, assuming that those
represent the most accurate approximation to a line-by-line calculation. This is supported
by the fact that the spread decreases when considering a higher-resolution approximation
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(except for BT9.7). Median differences for channel are the largest for all channels but BT9.7.
This might reflect the fact that BT9.7 is sensitive to ozone, which is mainly present in the
stratosphere and, thus, might hide the impact of the additional spectral variability due
to the surface emissivity and the volcanic ash refractive index. Outliers reach absolute
differences >2 K (not shown). In some cases (e.g., BT6.2 and BT10.8), the differences between
coarse and medium are rather small, such that the lower resolution parameterization is
applied. Overall, we conclude to use the channel parameterization for BT9.7; coarse for BT6.2,
BT10.8 and BT12.0; medium for BT7.3, BT8.7 and BT13.4.

Figure 7. Brightness temperature differences for radiative transfer calculations of different REPTRAN parameterizations.
The considered test dataset is described in the text. The boxplot shows the median, first and third quartile (box) and the 5th
and 95th percentile (whiskers).

4.3. Test of the Ash-Free Training Data

The presented method is not expected to reproduce observations on a single pixel
basis as, for example, spatial resolution is too coarse, averaged surface emissivities are used
and the ECMWF model might not represent reality, especially clouds, accurately enough.
However, the aim of the setup is to create a dataset that statistically approximates the
reality. To validate this, 49,701 simulations without ash for 15 July 2015 at 12:00 UTC were
performed, randomly scattered over the SEVIRI disc and compared with the corresponding
SEVIRI measurements (see Figure 2). If RTSIM created no clouds in the atmosphere,
the cloud-free simulation was used, otherwise the simulation containing clouds. The
distributions of the simulated and the corresponding measured brightness temperatures
should be similar, and thereby would indicate that RTSIM creates atmospheric profiles and
libRadtran derives brightness temperatures that generally approximate reality, although
individual samples might deviate from the measurements. Thus, simulations can then be
viewed as a strong training dataset.

Figure 8 shows a two-dimensional histogram for the full dataset of measured against
simulated BT10.8. Most samples are located close to the identity, with slightly more points
above the identity than below, i.e., the simulation tends to overestimate the brightness
temperature. Single points show large differences up to about 80 K between simulation
and measurements, probably when the simulation is cloud-free and reality shows a high
cold ice cloud. Figure 9 shows the median and the 95th percentile of the absolute difference
between the simulated and the measured brightness temperatures. Different subsets are
considered: (a) all samples as well as land and sea samples for clear conditions; (b) clear
and cloudy samples for sea surfaces; (c) viewing zenith angle θvza separated by 40° and
55° for clear conditions over sea; (d) viewing zenith angle θvza separated by 40° and 55° for
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clear conditions over land. Clear conditions are determined by the fact that no cloud layers
were created by RTSIM and that the total cloud cover by ECMWF is below 25%; of course,
observations might still contain meteorological clouds. The statistical distributions of the
measured and simulated brightness temperatures (and brightness temperature differences
BTD8.7−10.8 and BTD10.8−12.0) are shown as histograms in Figure 10. Figure 11 shows as
an example the distribution of BT10.8 for the subsets of clear sky land/sea samples and
clear/cloudy samples of sea surfaces.

Figure 8. BT10.8 measured by MSG/SEVIRI against corresponding RTSIM and libRadtran results for
the corresponding coordinates.

Figure 9. The 95th percentile (cross) and median (diamond) of the absolute deviation between the simulated brightness
temperatures and the corresponding MSG/SEVIRI measurements; considered is the full dataset (all) (a) as well as subsets,
i.e., (a) land and sea for cloud-free samples (i.e., no cloud layers simulated, total cloud cover ≤ 0.25), (b) clear and cloudy
(i.e., at least one cloud layer simulated and total cloud cover ≥ 0.25) for sea surfaces and (c) different θvza above sea and
(d) land.
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Figure 10. Distributions of the brightness temperature in different MSG/SEVIRI channels as measured from space and as
simulated using RTSIM and libRadtran, separated into 50 bins.

Figure 11. Distributions of BT10.8 as measured by MSG/SEVIRI and as simulated using RTSIM and libRadtran: (a) sea and
land surfaces for clear sky conditions; (b) sea surfaces for clear and cloudy conditions.

Atmospheric gases, meteorological clouds and the surface properties are the main
aspects that determine the quality of the simulations. Water vapor is mainly visible in
BT6.2 and BT7.3, with the latter being sensitive at least down to the mid-troposphere [69].
Their brightness temperature distributions in Figure 10 show a good agreement, and, even
on a single pixel basis, the deviations are small, with median absolute deviations mostly
below 1 K. The effect of H2O on the atmospheric window channels BT8.7, BT10.8 and BT12
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is small [108,136]. However, the single pixel deviations of the window channels are larger
than those of BT6.2 and BT7.3 when considering only clear sky samples, indicating that
other effects dominate the former. O3 and CO2 mainly impact BT9.7 and BT13.4, respectively.
Their distributions in Figure 10 generally agree well up to a small peak on the right side
that is not fully reproduced. However, as this minor peak is also present in the distributions
of the window channels, it can be expected to stem from the surface properties, particularly
from land surfaces that produce multiple peaks. The single pixel median absolute deviation
for all samples is generally around 2 K.

Meteorological clouds impact the atmospheric window channels. Individual pixel
deviations are remarkable: the median absolute deviation of cloudy samples is ~6 K,
with the 95th percentile of the absolute deviation even beyond 30 K. This indicates that
the largest deviations in Figure 8 could be caused by the occurrence of meteorological
clouds, for instance, if they are present in reality but missing in the simulation, or if
the there are significant differences in the cloud top heights. The size of the smaller
deviations might be related to inaccuracies in the cloud properties, e.g., the cloud top
height, the liquid and ice water content derived from the ECMWF model or reff derived
from parameterizations. In addition, clouds are described differently in the 1D radiative
transfer calculations than in nature, which has an impact especially in the case of partial
cloudiness, and a random element is applied for the creation of the cloud layers [71].
However, the resulting brightness temperature distributions in Figures 10 and 11 agree
with the SEVIRI measured distributions.

The surface properties (emissivity and skin temperature) influence the atmospheric
window channels as well. As pointed out above, their brightness temperature distributions
show a good agreement (Figure 10). The distributions of BT10.8 for sea surfaces and clear
sky pixels roughly agree, whereas for land surfaces two peaks of similar height are visible
with the right flank of the simulated distribution shifted towards lower temperatures
(Figure 11a). The single pixel comparison exhibits generally low median absolute devi-
ations (<2 K) for clear sky sea surfaces, but the deviation is larger for land than for sea.
Considering the θvza-dependence for sea surfaces, the median absolute deviation is largest
for 55° < θvza, which might be related to the strong θvza-dependence of the water surface
emissivity for large viewing zenith angles. On the contrary, for land surfaces, the median
absolute deviation is largest for θvza < 40°. This seems reasonable as the θvza-dependence
is smaller for land surfaces than for water surfaces. Furthermore, a higher θvza leads to
a larger gas column along the optical path, thereby effectively hiding deviations due to
inaccurate surface properties.

The surface emissivity is a climatology over 10 years, whereas the actual emissivity
in the present scene might slightly deviate, e.g., due to wetter or dryer surfaces, more
or less vegetation, etc. [89]. Could this cause the deviations observed for land surfaces?
Neglecting all atmospheric effects, we can estimate the deviation of the surface emissivity
corresponding to the deviation in the simulated brightness temperatures using Planck’s
law. For the wavelength λ, let the measured brightness temperature BTλ, m be related to an
emissivity ελ, m and the simulated one BTλ, s to ελ, s. Their ratio r is

r =
ελ, s

ελ, m
=

exp(c/λ/BTλ, m)− 1
exp(c/λ/BTλ, s)− 1

(2)

with c = 0.0145 m K [108]. For BTλ, m between 263 K and 303 K and BTλ, m − BTλ, s = ±4 K,
the difference |1− r| is ca. 0.1, 0.08 and 0.07 for λ of 8.7 µm, 10.8 µm and 12 µm, respectively.
For BT8.7, such deviations are possible, as the spread in emissivities of typical surfaces is
large in the corresponding spectral regime (sand has emissivities down to 0.7, whereas
water and vegetated surfaces have values close to 1). Around 10.8 µm and 12 µm, the
differences in typical surface emissivities are <0.05 [88,89]. Therefore, it seems unlikely that
an error in the surface emissivity is the single cause for the differences in the brightness
temperatures above land surfaces, as their median absolute deviation in the three window
channels are similar.
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Another possible reason might be inaccuracies in the skin temperature. For instance,
it is known that ECMWF underestimates skin temperatures for land at daytime and
overestimates during night: Trigo et al. [137] found errors of the order of 2 to 5 K, especially
for semiarid regions (North Africa, Sahara and Namibia), and Johannsen et al. [138] found
in parts underestimations in the order of 5 K for the Iberian peninsula when comparing
ECMWF data with satellite retrievals. The ECMWF data and the surface emissivity have
a spatial resolution of 0.25°, corresponding to roughly 28 km at the SEVIRI sub-satellite
point. However, SEVIRI itself has a resolution of 3 km at nadir. Due to this difference,
small-scale features and sudden changes in the surface type (e.g., at coastlines) can lead
to inaccuracies.

To sum up, the comparison indicates that gas profiles are reproduced correctly on a
single pixel basis, similar to sea surfaces in the absence of clouds. For cloudy samples, the
measured and simulated brightness temperature distributions agree well, but considering
individual pixels we find notable deviations. Land surfaces lead to deviations for both,
single pixels (<4 K) and the brightness temperature distributions. Especially the good
agreement of the distributions of BTD8.7−10.8 and BTD10.8−12.0 highlights that relative
deviations within single spectra are small, with only a minor positive bias for BTD10.8−12.0.
Thus, we conclude that the simulations can be used as a training dataset.

4.4. Training, Validation and Test Data

We performed simulations for ~30 million samples. Then, two selections are made:
First, for ash-loaded samples, only those that have BTD10.8−12 < 0 are kept. This threshold
criterion is typical for volcanic ash detection and has been used for VADUGS as well [71]. It
reduces the amount of samples with overlapping signals from meteorological and volcanic
ash clouds, thereby effectively making the classification task slightly simpler for the ANNs.
Second, the selection of ash types similar to Eyjafjallajökull ash is applied to reduce the
complexity of the training datasets. From the remaining data, two sets are formed: the
full dataset (Dataset A) and a subset containing only the ash-loaded samples (Dataset
B). Dataset A is used for the ANNs for classification and the retrieval of τ10.8, i.e., the
algorithms that are applied to all satellite measurements. Dataset B is used for the ANNs
of ztop and reff, which are only applied to ash-loaded pixels. Dataset A and B are randomly
grouped into a training (70%), a validation (20%) and a test (10%) dataset, as shown in
Table 1. Training and validation datasets are used for the training of the ANNs; the test
dataset is used to characterize the final algorithms in Piontek et al. [80]. Distributions of
the target values in the training datasets are sketched in Figure 12. Note that they are not
uniformly distributed due to the selections performed as well as the usage of different
volcanic ash types.

Table 1. Information on the different simulated datasets.

Dataset Description Samples Ash Fraction

Training A clear + ash 8,725,531 32.1%
Validation A clear + ash 2,493,719 32.1%

Test A clear + ash 1,252,470 32.3%
Training B only ash 2,798,004 100.0%

Validation B only ash 800,117 100.0%
Test B only ash 405,556 100.0%



Remote Sens. 2021, 13, 3112 18 of 29

Figure 12. Distributions of: (a) τ10.8 in Training A; (b) ztop in Training B; (c) reff in Training B. In (a), only non-zero values
are shown.

5. Training of the ANNs

For the ANNs, TensorFlow version 1.14.0 [139,140] and Keras version 2.3.1 [141] are
used. Individual ANNs are trained for the classification, the retrieval of volcanic ash-
induced optical depths at 10.8 µm (τ10.8), cloud top heights (ztop, in meters) and effective
particle radii (reff, in micrometers). The classification ANN differentiates four categories:
clear sky; only meteorological clouds; only volcanic ash clouds; both meteorological and
volcanic ash clouds.

VADUGS directly retrieved mcol, whereas VACOS derives τ10.8 as this quantity is more
closely related to the observational data as SEVIRI measures radiances. It can be converted
into mcol using k10.8. The wavelength 10.8 µm was chosen (as in [66]) as it corresponds
to one of the SEVIRI channels, is in the atmospheric window, is less influenced by H2O
and volcanic SO2 emissions (compared to 8.7 µm, see [29]) and experiences relatively large
extinctions (compared to 12 µm). The ANNs for the classification and τ10.8 are trained
with the full training dataset (Dataset A in Table 1), whereas the ANNs for ztop and reff
are trained only with ash-containing samples (Dataset B). The input features (in Table 2)
contain the seven infrared brightness temperatures from SEVIRI, including BT10.8 and
BT12 that are often used for volcanic ash detection [24,25], as well as BT8.7 [31]. Prata and
Grant [33] showed that BTD8.7–12 can be even more negative than BTD10.8–12. As water
vapor can hide the volcanic ash [27,43], BT6.2 and BT7.3 are included, which are sensitive to
water vapor [69]. Similarly, BT9.7 and BT13.4 are included to treat O3 and CO2 [69]. From
ECMWF, the skin temperature is included as a reference for the temperature profile, as well
as estimates of the total column water, water vapor and ozone to account for the influence
of gases and meteorological clouds on the satellite measurements and thereby to extract the
impact of the volcanic ash. Latitude and longitude allow the ANNs to learn the geography
to some extent and latitudinal dependencies of the atmospheric profile. The land/sea-mask
partly encodes the very different emissivities [88,89] as well as differences of the atmosphere
and cloud layers above land and sea. Day of year and hour of day are included to consider
seasonal and diurnal variations in the atmospheric properties, respectively. Their sine
and cosine are used to avoid discontinuities (e.g., between 31 December and 1 January or
24:00 and 0:00) and make the encoding unambiguous [78]. The satellite viewing zenith
angle is included to correct slant observations, leading to longer optical paths through the
atmosphere for higher θvza. τ10.8 is included as an input feature for the ANNs of ztop and
reff to make use of the previously retrieved information. Finally, the “clear” brightness
temperatures BT8.7, clr, BT10.8, clr and BT12, clr are given as input. Those correspond to the
brightness temperatures that would be measured in absence of the volcanic ash clouds (but
with meteorological clouds if present) to quantify the surroundings [27,31,45].
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Table 2. Model settings and input features for the ANNs retrieving the classification, τ10.8, ztop and reff. σ denotes the
standard deviation. The ANN architectures are given as lists of neurons per layer, with the first number giving the amount
of input neurons, the second number the amount of neurons in the first hidden layer and the last number the amount of
output neurons.

Classification τ10.8 ztop reff

Model setting

Input/output standardization × × × ×
LeCun normal distributed initialization × × × ×
Add Gaussian noise to input (σ = 0.1) × ×
Architecture 19-100-100-100-4 19-100-100-100-1 23-100-100-100-1 23-100-100-100-1
Activation function (hidden neurons) tanh tanh tanh tanh
Activation function (output neurons) softmax linear linear linear
Loss function cross entropy mean squared error mean squared error mean squared error
Sample weighting ×
Nadam training algorithm × × × ×
Epochs trained 60,000 2000 2000 2000

Feature (unit/range)

BT6.2 (K) × × × ×
BT7.3 (K) × × × ×
BT8.7 (K) × × × ×
BT9.7 (K) × × × ×
BT10.8 (K) × × × ×
BT12 (K) × × × ×
BT13.4 (K) × × × ×
Skin temperature (K) × × × ×
Binary land/sea mask × × × ×
Total column water vapor (kg m−2) × × × ×
Total column water (kg m−2) × × × ×
Total column ozone (kg m−2) × × × ×
Latitude (−90 to 90°) × × × ×
Longitude (−180 to 180°) × × × ×
Sine of day of year × × × ×
Cosine of day of year × × × ×
Sine of hour of day × × × ×
Cosine of hour of day × × × ×
Cosine of satellite zenith angle × × × ×
τ10.8 (retrieved) × ×
BT8.7, clr (K) × ×
BT10.8, clr (K) × ×
BT12, clr (K) × ×

Input and output data are standardized. As τ10.8 is the result of a previous retrieval
and BTλ, clr is estimated from the surrounding satellite measurements for application
to real data (Section 6), those values are prone to errors. Therefore, the ANNs for ztop
and reff apply a Gaussian noise with standard deviation of 0.1 on the input layer during
training. Each ANN consists of three hidden layers with 100 neurons each. This choice
is motivated by Strandgren et al. [78], who investigated different ANN structures when
developing CiPS, i.e., a retrieval similar to VACOS but for cirrus clouds. They found the
best performance for their most complex ANN, having three hidden layers with 64 neurons
each. The output layers of our ANNs have a single neuron for regressions or four neurons
for the classification. Note that the ANNs now have roughly twice as many trainable
parameters as VADUGS: For example, an ANN with 19 inputs, 3× 100 hidden neurons and
a single output has 22,301 parameters, whereas the VADUGS architecture with 17 inputs,
1 × 600 hidden neurons and 2 outputs has 12,002 free parameters. The hidden layers
use the hyperbolic tangent as activation function, while the output layer uses a linear
function for regressions and a softmax function for classification [142]. The last allows the
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classification ANN to produce a normalized four-dimensional output vector, where each
component can be roughly interpreted as the probability of the corresponding category.
All neurons use bias neurons and are initialized by a LeCun normal distribution [87]. The
mean squared error is utilized as loss function for regressions and the categorical cross
entropy for classifications [142]. For the training of classification, ztop and reff retrievals,
all samples are weighted equally (with 1) when calculating the total loss of a batch of
samples. For the ANN of τ10.8, the following sample weighting with respect to the true
τ10.8 is applied to increase the importance of the few samples with small τ10.8 (e.g., less
than 3% of the samples in the training subset of Dataset A have τ10.8 < 0.6) in comparison
to the many ash-free and very ash-loaded samples:

0 ≤ τ10.8 ≤ 0.001 : 0.3

0.001 < τ10.8 ≤ 0.2 : 5

0.2 < τ10.8 ≤ 0.5 : 3

0.5 < τ10.8 ≤ 1 : 0.01

1 < τ10.8 : 0.001

The weight for τ10.8 ≤ 0.001 is introduced to reduce the focus on very low concentra-
tions that might be hardly retrievable anyway. With the weights for 0.001 < τ10.8 ≤ 0.5 the
focus on usual concentrations is increased. To avoid a general overestimation due to the
many samples with large τ10.8 (see Figure 12), lower weights for τ10.8 > 0.5 are applied.
The numerical values are determined by testing different settings. The Nadam (short for
Nesterov-accelerated Adaptive Moment Estimation) algorithm is applied during the training
with recommended parameters (learning rate = 0.001, β1 = 0.9 and β2 = 0.999 [143,144]),
with batch sizes of 1000. For regressions, the learning rate is reduced by a factor 100 every
500 epochs, with 2000 epochs in total, reaching a minimum of the loss function evaluated
on the validation dataset, with the loss function remaining constant for several hundred
epochs. For the classification ANN, the learning rate is reduced once after 500 epochs
and training is stopped after 60,000 epochs, as accuracy (assuming a threshold of 0.5 for
the four categories) calculated for the validation dataset decreases by <0.065% in the last
10,000 epochs.

Reality (i.e., atmospheric and volcanic ash properties) is very complex and variable
and has only been approximated by the simulated data. A possible pitfall of this approach
is that ANNs might overfit with respect to both the simulated training and the validation
data. For example, some of the first ANNs we created here were trained successfully
considering the simulated datasets, but revealed weaknesses when applied to real satellite
data, such as misinterpretation of meteorological clouds as volcanic ash or wrong retrievals
for thin ash clouds. To overcome these issues, we applied different selections with respect
to the simulated datasets when training the final ANNs and introduced Gaussian noise
layers and sample weightings as outlined above.

6. Notes on the Application

To perform the VACOS retrieval, the ANNs are applied in two steps: First, the
classification ANN is used to detect volcanic ash. Alternatively, τ10.8 is retrieved to find ash
clouds; reasonable thresholds are found in [80]. Second, reff and ztop are retrieved for all
ash-containing pixels. In order to apply the ANNs, the input features as given in Table 2
have to be composed. For the training, τ10.8 and BTλ, clr at wavelength λ are simulated
and, therefore, exact. However, for the application on satellite data, the input feature
τ10.8 is obtained from the retrieval result of the corresponding ANN, whereas BTλ, clr is
estimated from the SEVIRI images. We assume that the ash clouds are spatially limited and
the highest BTλ in the close surrounding of a specific pixel corresponds to the value that
would be measured in absence of the volcanic ash cloud [115]. Therefore, for each pixel, the
maximum BTλ within a radius of 12 pixels is determined, denoted BT12 px

λ ; similar pixel
areas were considered by Krebs et al. [115]. Assuming a pixel size of 3 km, a surrounding
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of at least 36 km would be considered, which is sufficient for ash plumes close to the
volcano [19]. At greater distance, ash clouds can become wider [6]; thus, an additional step
is implemented. The SEVIRI disc is split in 10× 10 boxes and the maximum of BT12 px

λ of
all presumably ash-free pixels, i.e., pixels with

BT12 px
10.8 µm − BT12 px

12.0 µm ≥ 0 (3)

is determined within each box, called BTref
λ . Now, for each pixel in the box, the brightness

temperature difference is checked: if Equation (3) is not fulfilled, which indicates that
volcanic ash still influences the measurement, the replacement

(
BT12 px

λ + BTref
λ

)
/2 −→ BT12 px

λ (4)

is conducted. This last step is repeated twice in case Equation (3) remains unfulfilled. The
final BT12 px

λ is used as an approximation for BTλ, clr. A uniform filter of size 5× 5 pixels is
applied for both BTλ, clr and the retrieved τ10.8 (see [80]). Similarly, the total column water
vapor and total column water are taken from an external source, e.g., a model, and might
be arbitrarily wrong. However, the training dataset includes for a specific atmospheric
profile samples with and without meteorological clouds (if those are theoretically possible
due to the ECMWF data), both with the same total column quantities. Thus, the ANNs
learn a certain robustness with respect to inaccuracies of the total column water and total
column water vapor. This is different for the total column ozone and skin temperature,
which are also obtained externally. The preferred source is ECMWF ERA5 as this was also
used to create the training data.

The results of the ANNs can be treated in different ways. The classification result can
either be used directly or a binary ash flag (i.e., ash or no ash) can be calculated by adding
the probabilities of the two ash-free and the two ash-containing categories, respectively.
Using the retrieved ztop and zext = 0.4ztop [125,126], one can derive an estimate for the
geometrical thickness [127]. The retrieved τ10.8 can be converted into mcol using k10.8;
typical values for different xs and reff are given in Table 3 as derived from all data in
Figure 6. Generally, k10.8 increases with increasing xs when reff = const., except for ashes
with a reff = 0.6 µm, where the opposite is the case. For xs = const., k10.8 is largest in the
case reff = 1.8 µm and decreases with increasing reff. In practice, to determine k10.8, one
needs to know reff and xs. The former can be approximated by satellite retrievals, the age
of an ash cloud or the distance to its source. The latter can be estimated using previous
knowledge about the volcanic source or laboratory analyses of volcanic ash samples when
considering past eruptions. If none of this information is given, one can simply assume
k10.8 = 200 m2 kg−1 which produces roughly the mean mcol considering the extremal values
140 m2 kg−1 and 328 m2 kg−1 of the mean k10.8 in Table 3.

Table 3. Mean mass extinction coefficients at 10.8 µm (k10.8) and their standard deviations for different volcanic ashes
(from [23]) given in m2 kg−1. Subsets of different effective radii reff and silica contents xs are considered.

xs/wt.% reff/µm
0.6 1.8 3.0 4.5 6.0

45 229± 9 279± 23 228± 15 173± 6 140± 10
50 210± 14 290± 25 241± 17 181± 5 146± 10
55 194± 18 305± 28 255± 19 190± 4 152± 11
60 178± 20 310± 31 263± 21 195± 5 155± 12
65 164± 22 314± 33 271± 24 201± 5 159± 12
70 152± 24 321± 34 282± 26 208± 5 164± 13
75 144± 26 328± 35 292± 28 215± 5 169± 13
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For the visible spectrum, mass extinction coefficients of 690 m2 kg−1 at λ = 532 nm [145]
and 637 m2 kg−1 for λ = 355 nm [146] were found for Eyjafjallajökull volcanic ash. As the
refractive index exhibits only a small variability in the visible spectrum with respect to
the chemical composition [75,147], these mass extinction coefficient estimates can also be
assumed to be representative for other types of volcanic ash. Thus, the optical depth of a
volcanic ash cloud is roughly 3.3 times larger in the visible spectrum when comparing to a
typical k10.8 of 200 m2 kg−1 at 10.8 µm. Finally, combining mcol and zext allows estimating
the average mass volume concentration c.

VACOS can be applied quickly: processing a full MSG/SEVIRI image (3712× 3712 pix-
els) on an ordinary desktop personal computer (using a single core of an Intel Core i5-6600
CPU at 3.30 GHz) with an off-the-shelf, uncustomized version of TensorFlow, each ANN
needs ~70 s, excluding input/output processing. Performance could be increased by re-
stricting the retrieval, e.g., only τ10.8 could be retrieved for the full disc to detect volcanic
ash, whereas ztop and reff could be determined for ash-contaminated pixels only. Thus, it is
possible to use VACOS operationally.

7. Conclusions

The new retrieval algorithm VACOS (Volcanic Ash Cloud properties Obtained from SE-
VIRI) is introduced. It derives a pixel classification, cloud top height, effective particle
radius and (indirectly) the mass column concentration, each of which is done individually
by a shallow artificial neural network. The artificial neural networks receive seven bright-
ness temperatures of the infrared channels of the geostationary instrument MSG/SEVIRI
as well as auxiliary data from ECMWF. Using MSG/SEVIRI allows for a comparably high
temporal and spatial resolution of the retrievals. Focusing on the infrared spectrum al-
lows the application at day and night. After the time-consuming creation of a radiative
transfer simulated training dataset and the training itself, artificial neural networks are
fast [64,78], have good generalization skills [52] and a high robustness with respect to
perturbations [67,68]. The training dataset is of main importance for the development of
artificial neural networks. Here, we perform one-dimensional radiative transfer calcula-
tions for a large set of typical atmospheric conditions with and without generic volcanic
ash clouds. The radiative transfer’s input data are described and the central aspects dis-
cussed, in particular pointing out the strong dependence of surface emissivities on the
surface type and the viewing zenith angle, the significant variability of the atmospheric
state between different years and the need for a high temporal resolution to also cover its
diurnal variability. A special focus is put on the representation of the volcanic ash clouds.
Macrophysical properties are reviewed, and microphysical and optical properties are re-
ceived from Piontek et al. [23]. The usage of a large set of refractive indices representing
different volcanic ash types with respect to their silica content and glass-to-crystal ratio
is a major difference to most other artificial neural network-based volcanic ash retrievals
using passive imagers: they either rely on a single or a handful of volcanic ash refractive
indices or use training datasets consisting of only a few different volcanic ash clouds. We
perform a validation of the ash-free radiative transfer calculations by comparing those
with real MSG/SEVIRI measurements for a specific scene. An overall agreement of the
statistical distributions of the brightness temperatures is found, showing that the composed
atmospheric and surface data are representative for the real world. Comparing simulations
and measurements on a single pixel basis, we find indications that atmospheric gas profiles
and sea surface emissivities are reproduced with a high agreement. For cloudy samples,
the measured and simulated brightness temperature distributions agree, but considering
individual pixels significant deviations are found (with 95th percentiles of the absolute
deviations >30 K), most likely introduced by a random element in the implementation
of the maximum-random overlap configuration in a one-dimensional atmosphere and
possible different locations of clouds in the model and reality. Land surfaces lead to large
deviations, for single pixels (with median absolute deviations >3 K) as well as for the
brightness temperature distributions, likely due to inaccurate skin temperatures. Finally,
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we describe the architecture of the different artificial neural networks and their technical
setup, input features, training and application.

Our work can be extended in different directions: the validation of the ash-free
simulations shows that the representation of land surfaces is not fully realistic and could
be improved, e.g., by using other model results or satellite retrieved skin temperatures.
Volcanic ash plumes close to the vent often carry SO2 [39,42] or ice water [148–150], both
of which are neglected for reasons of simplicity. Other aerosols are also noteworthy,
especially mineral dust which has similar refractive indices as volcanic ash due to their silica
contents [11]. Including both in the training data, it might be possible to train an algorithm
to separate volcanic ash from dust. The artificial neural networks could be improved by
using additional input data, e.g., model-based vertical temperature profiles [68] or extremal
or average brightness temperatures of the surrounding of a pixel [78]. The latter would
require the simulation of extended areas, i.e., images of volcanic ash clouds in different
atmospheric and surface settings, which would also enable the use of convolutional neural
networks for image recognition [151]. As other geostationary passive imagers have similar
spectral channels as MSG/SEVIRI [69,83,85,86], the algorithm might be transferable to
these instruments [152]. A thorough validation of VACOS is presented in a companion
paper [80]. An operational application by the German weather service (DWD) is ongoing.

To conclude, the new volcanic ash retrieval allows detecting and monitoring volcanic
ash clouds above Europe, Africa and the Atlantic with high spatial and temporal resolu-
tion, enabling volcanic ash-related scientific investigations as well as aviation security-
related applications.
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Overview In this paper, the volcanic ash retrieval VACOS is validated and characterized
using a simulated test data set, CALIOP retrievals, airborne lidar and in situ measurements
obtained during measurement campaigns of the DLR and the FAAM, and the results of
a volcanic ash transport and dispersion model ensemble. A sensitivity study with respect
to the volcanic ash cloud profile is conducted to quantify the uncertainty related to the
assumption of a single homogeneous ash layer, which was adopted during the algorithm
development. The importance of different input features is investigated and inferences are
drawn about the working principles of the artificial neural networks.
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of the VACOS retrievals against all available reference data, performed the sensitivity study
for volcanic ash cloud profiles, analyzed the input feature importance and discussed the
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Abstract: Volcanic ash clouds can damage aircrafts during flight and, thus, have the potential to
disrupt air traffic on a large scale, making their detection and monitoring necessary. The new retrieval
algorithm VACOS (Volcanic Ash Cloud properties Obtained from SEVIRI) using the geostationary
instrument MSG/SEVIRI and artificial neural networks is introduced in a companion paper. It
performs pixelwise classifications and retrieves (indirectly) the mass column concentration, the cloud
top height and the effective particle radius. VACOS is comprehensively validated using simulated
test data, CALIOP retrievals, lidar and in situ data from aircraft campaigns of the DLR and the FAAM,
as well as volcanic ash transport and dispersion multi model multi source term ensemble predictions.
Specifically, emissions of the eruptions of Eyjafjallajökull (2010) and Puyehue-Cordón Caulle (2011)
are considered. For ash loads larger than 0.2 g m−2 and a mass column concentration-based detection
procedure, the different evaluations give probabilities of detection between 70% and more than 90%
at false alarm rates of the order of 0.3–3%. For the simulated test data, the retrieval of the mass
load has a mean absolute percentage error of ~40% or less for ash layers with an optical thickness
at 10.8 µm of 0.1 (i.e., a mass load of about 0.3–0.7 g m−2, depending on the ash type) or more, the
ash cloud top height has an error of up to 10% for ash layers above 5 km, and the effective radius
has an error of up to 35% for radii of 0.6–6 µm. The retrieval error increases with decreasing ash
cloud thickness and top height. VACOS is applicable even for overlaying meteorological clouds, for
example, the mean absolute percentage error of the optical depth at 10.8 µm increases by only up to
~30%. Viewing zenith angles >60° increase the mean percentage error by up to ~20%. Desert surfaces
are another source of error. Varying geometrical ash layer thicknesses and the occurrence of multiple
layers can introduce an additional error of about 30% for the mass load and 5% for the cloud top
height. For the CALIOP data, comparisons with its predecessor VADUGS (operationally used by the
DWD) show that VACOS is more robust, with retrieval errors of mass load and ash cloud top height
reduced by >10% and >50%, respectively. Using the model data indicates an increase in detection
rate in the order of 30% and more. The reliability under a wide spectrum of atmospheric conditions
and volcanic ash types make VACOS a suitable tool for scientific studies and air traffic applications
related to volcanic ash clouds.

Keywords: volcanic ash cloud; passive satellite remote sensing; artificial neural network; validation;
Eyjafjallajökull; Puyehue-Cordón Caulle; lidar; in situ; transport and dispersion model

Remote Sens. 2021, 13, 3128. https://doi.org/10.3390/rs13163128 https://www.mdpi.com/journal/remotesensing



Remote Sens. 2021, 13, 3128 2 of 36

1. Introduction

A new volcanic ash retrieval using artificial neural networks (ANNs) and the Spinning
Enhanced Visible and Infrared Imager (SEVIRI) aboard the Meteosat Second Generation (MSG)
satellites is developed and presented; this algorithm is called VACOS (Volcanic Ash Cloud
Properties Obtained from SEVIRI) and builds upon its predecessor VADUGS (Volcanic Ash
Detection Using Geostationry Satellites [1]). The companion paper [2] describes the algorithm
development: Using a comprehensive set of volcanic ash optical properties [3], surface
emissivities [4–6] and atmospheric profiles of pressure, temperature, air density, concen-
trations of oxygen, water vapor, ozone, carbon dioxide and nitrogen dioxide, liquid and
ice water clouds, mostly derived from ECMWF model reanalyses, one-dimensional radia-
tive transfer calculations are performed with and without realistic volcanic ash clouds to
create training, validation and test data sets. These three simulated data sets contain the
volcanic ash cloud properties, i.e., geometrical vertical extent, mass volume concentration,
cloud top height, the brightness temperatures (BTs) of the infrared channels of SEVIRI
and various auxiliary quantities. The ash-free simulations are validated by comparing the
results of radiative transfer calculations of a specific date with the corresponding SEVIRI
measurements. Using the simulated data sets, four different ANNs are trained for the
pixelwise retrieval of the optical depth at 10.8 µm due to ash (τ10.8), the ash cloud top height
(in m, ztop), the effective particle radius (in µm, reff) and an overall classification in four
categories (ash-free and cloud-free; only meteorological clouds; only volcanic ash clouds;
both volcanic ash and meteorological clouds present). The ANN for classification returns a
normalized four-dimensional vector, where each component can be roughly interpreted as
the probability of the corresponding category. The four ANNs perform independently of
each other, but the retrievals of ztop and reff receive an estimate of τ10.8 as an input. This
approach allowed to use different training data sets and ANN settings for each retrieval.

This paper contains an analysis of the retrieval performance: A detailed validation
with respect to simulated test data sets is presented (Section 2) and the sensitivity of the
retrievals with respect to the volcanic ash cloud profile is given (Section 3). To demonstrate
the reliability of the new algorithm and to check its performance with respect to its prede-
cessor, various comparisons with other remote and in situ measurements (Section 4) and
model calculations were made (Section 5). The individual features of the final ANNs are
analyzed to make some inferences on the functioning of the algorithms (Section 6). Finally,
we give a conclusion and an outlook.

2. Performance on Simulated Test Data

The development of the VACOS retrieval is described in Piontek et al. [2]. In the
following, we systematically quantify the performance of the retrievals with respect to
volcanic ash cloud properties, presence of meteorological clouds (defined to include liquid
and ice water clouds) and geographic location. Therefore, the ANNs are applied to the test
data sets A (1,252,470 samples) or B (405,556 samples) from Piontek et al. [2], depending
on their training data set. The samples of the test data sets are the results of independent
radiative transfer calculations and can be compared to the situation for single pixels in
a SEVIRI image. The VACOS results are compared with these true values, providing
references for the error of the retrievals; those might be larger in reality due to more
complicated atmospheric conditions (e.g., additional aerosols such as mineral dust), cases
that have not been covered by the training data set (e.g., non-homogeneous ash clouds
or multiple ash layers, emitted sulfur dioxide) or slight differences between our radiative
transfer calculations and the reality (e.g., due to partial cloud covers, inaccuracies due to
the applied parameterizations for meteorological clouds). The error metrics mean absolute
percentage error (MAPE), mean percentage error (MPE), probability of detection (POD), false
alarm rate (FAR) and accuracy are used and described in Appendix A.
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2.1. Classification

The classification ANN returns a normalized four-dimensional vector with each com-
ponent interpreted as the probability of the corresponding category, see Table 1. Defining
that a sample is assigned to a given category if the corresponding component is >50%,
the accuracy is 92% with 0.012% of the samples remaining unclassified. These values de-
pend on the composition of the test data set with respect to the different categories, as they
are retrieved with different accuracy, see Table 1. Whereas clear sky, cloudy and ash-loaded
samples are correctly classified with probabilities of more than 90% each, samples with both
meteorological and ash clouds are correctly classified in only 49% of the cases. About 47%
of those samples were classified as ash only. Again, this might depend on the composition
of the test data; samples with thick ash clouds on top of comparably thin meteorological
clouds might be misclassified as ash only. Reducing the amount of these samples in the
test data set would significantly modify the results in Table 1. Nevertheless, VACOS is able
to detect the presence of ash in almost all cases even for this category, with only 4.1% of
the ash remaining undetected. Next, only the samples containing ash and meteorological
clouds are considered and separated according to the location of the meteorological clouds
as above or below the ash layer, where we define that above denotes that no meteorological
clouds are below the volcanic ash cloud bottom and below that no meteorological cloud
is above the ash cloud top. Samples with multiple meteorological clouds located both
above and below the ash layer are not included in either class. Again, note that we do
not differentiate between liquid and ice water clouds, although ice water clouds can be
expected to dominate for altitudes in the upper troposphere and liquid water clouds in
the lower troposphere, and although ice water clouds might damp the ash signal, e.g., in
BTD11–12. Furthermore, the dependence on the optical depth of the meteorological clouds
themselves is not investigated, although expected to be significant. Table 2 shows the
classification of the two subsets. Nearly all samples are classified as ash-containing if the
meteorological cloud is below, and astonishingly still ~85% if it is above. The amount
of correctly classified samples (i.e., both ash and meteorological cloud) is ~15% higher
for meteorological clouds below than above, whereas ~15% of the samples are classified
as containing only meteorological clouds if those are above but less than 1% if they are
below. This represents the well known fact that an optically thick meteorological cloud can
effectively hide a below-cloud volcanic ash layer from the satellite observation. More than
48% of the samples are classified as containing only ash, independently of the position of
the meteorological clouds. Motivated by the fact that the identification of cases with both
ash and meteorological clouds is not very reliable, but that ash is detected in the majority
of the situations, a binary ash flag Pash (i.e., ash or no ash) is introduced by adding the
probabilities of the two categories without ash (clear, clouds) and the two with ash (ash,
both), respectively. Now, if the resulting probability for ash is above 80%, we assume that
ash is present, otherwise not; the threshold is motivated in Section 2.3. The binary ash flag
will be used in the rest of the section. It has an accuracy of 99.5%, a POD of 98.6% and a
FAR of 0.008% for the simulated data.

Table 1. Results of the classification ANN with respect to the simulated test data in percent; four categories are differen-
tiated: ash-free and cloud-free (clear), only meteorological clouds (clouds), only volcanic ash (ash), both volcanic ash and
meteorological clouds (both); the true value is given in the left column, the corresponding number of samples and how they
are classified is given in the other columns.

Retrieval/%
Truth Samples Clear Clouds Ash Both
clear 560,713 99.7 0.3 <0.1 <0.1

clouds 287,740 5.6 94.3 <0.1 <0.1
ash 279,395 <0.1 <0.1 94.6 5.2

both 124,622 <0.1 4.1 46.8 49.2
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Table 2. Results of the classification ANN with respect to the simulated test data in percent; only samples with volcanic ash
and meteorological clouds are considered; above denotes that no meteorological clouds are below the volcanic ash cloud
bottom and below that no meteorological cloud is above the ash cloud top; the retrieval categories are the same as in Table 1.

Retrieval/%
Cloud Location Samples Clear Clouds Ash Both

above 21,833 <0.1 15.1 48.8 36.1
below 81,630 <0.1 0.3 48.0 51.6

2.2. Dependence on Volcanic Ash Cloud Properties, Meteorological Clouds and
Geographic Coordinates

Next we analyze the binary ash flag and the regression retrievals in detail. As met-
rics we calculate the accuracy for the binary ash flag, and MAPE and MPE for the re-
trievals of τ10.8, ztop and reff for simulated samples within certain intervals of the true
values τ′10.8, z′top or r′eff (in the rest of this work, primed quantities will always denote
the reference data, which might be the truth when using simulated data, or in situ mea-
surement/retrieval/model results in the other cases). As discussed in Piontek et al. [2],
τ′10.8 can be converted to a mass column concentration m′col using the mass extinction
coefficient at 10.8 µm, with a mean value of ~200 m2 kg−1. Thus, the investigated range
τ′10.8 ∈ [0.01, 10] corresponds approximately to m′col ∈ [0.05, 50]g m−2. m′col = 0.05 g m−2 is
quite low; typical mass loads are about one order of magnitude larger (Section 4). Figure 1
shows subsets with land and sea surfaces, and with and without meteorological clouds.
Figure 2 shows results for ash-containing samples with meteorological clouds above and
below the ash layer (as defined before). Test data set A is considered for the binary ash
flag when investigating the dependence on τ′10.8, otherwise only the ash-loaded samples
are used. For the retrieval of τ10.8 only the ash-loaded samples of test data set A are used,
and for the retrieval of ztop and reff the test data set B, which also contains only ash-loaded
samples [2]. Note that no prior selection is made based on whether or not ash is detected
in a sample using the binary ash flag or the retrieved τ10.8. The sample distribution for
test data set B is given in Figures 1h and 2h; generally, the distribution is similar for test
data set A with differences of <10%, except for the first bin which contains also the ash-free
samples when considering the accuracy with respect to τ′10.8.

For the binary ash flag, high accuracies of 90–100% are found for usual ash clouds
(τ′10.8 > 0.1) and in absence of volcanic ash (left-most bin in Figure 1a1). The additional
presence of meteorological clouds decreases the accuracy: if they are above the ash layer the
difference is of the order of 20%, whereas the influence is much smaller when they are below.
This demonstrates that ash layers might often be hidden by the meteorological clouds
above. The accuracy is also close to 100% for z′top > 5 km, but decreases with decreasing
z′top. The latter might be partly connected to the impact of water vapor above the ash cloud,
as their column load above the ash layer increases with decreasing z′top. However, as the
accuracy decreases only slightly for z′top < 5 km compared to higher z′top in the absence of
meteorological clouds, the impact of water vapor appears to be limited. The presence of
meteorological clouds leads to a much worse performance, especially for z′top < 5 km and
if the meteorological clouds are above the ash layer, where the accuracy drops well below
50%. The dependence on r′eff is generally small, except when meteorological clouds are
present above, leading to a decreasing accuracy with ~90% for r′eff = 0.6 µm, but less than
60% for r′eff = 6 µm. The dependence on the surface (land/sea) is small.

For the regression ANNs, the MAPE generally decreases from roughly 100% for
τ′10.8 = 0.03 / z′top = 1 km to less than 30% for τ′10.8 = 10 / z′top = 18 km with increasing
τ′10.8 and z′top, and is up to 35% with respect to r′eff. In all cases, the MAPE is smallest
in the absence of meteorological clouds and largest in their presence, with significantly
larger errors for meteorological clouds above with respect to τ′10.8 > 0.3 and r′eff, and for
meteorological clouds below with respect to z′top. The MAPEs for land and sea surfaces are
again rather similar.
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Figure 1. Estimations of the accuracy of the binary ash flag (a), and MAPE and MPE for the retrievals of τ10.8 (b,c), ztop (d,e)
and reff (f,g) based on the simulated test data sets; the columns show the performance for different τ′10.8 (1), z′top (2) and
r′eff (3); for (a–c) the test data set A is used, for (d–g) test data set B [2]; for (b,c) only ash-loaded samples are considered;
the sample distribution of test data set B is shown in (h); different subsets are shown, i.e., only sea (black) or land (green)
surfaces, only samples with meteorological clouds (red) or without meteorological clouds (blue).
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Figure 2. Similar as in Figure 1: Estimations of the accuracy of the binary ash flag (a), and MAPE and MPE for the retrievals
of τ10.8 (b,c), ztop (d,e) and reff (f,g) based on the simulated test data sets; the columns show the performance for different
τ′10.8 (1), z′top (2) and r′eff (3); for (a–c) the test data set A is used, for (d–g) test data set B [2]; for (b,c) only ash-loaded samples
are considered; the sample distribution of test data set B is shown in (h); only samples with meteorological clouds above
(blue) and below (red) the volcanic ash layer are considered.
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On average, the retrieval of τ10.8 is biased towards high values for τ′10.8 < 0.25 (i.e.,
MPE > 0) and towards low values otherwise (MPE < 0); the MPE has values of −20 to
60% for τ′10.8 > 0.025. The MAPE has minima for τ′10.8 around 0.3 and 8; the first minimum
might be explained by the increased sample weights applied during training for τ′10.8 at
corresponding values [2]. For z′top < 10 km, the retrieved τ10.8 is underestimated with the
MPE being −50 to −100% for z′top < 4 km and 0 to −50% for 4 km < z′top < 10 km.

The retrieved ztop is generally overestimated, with MPEs up to 50% but below 20%
for τ′10.8 > 0.5 and below 10% for z′top > 4 km. The bias is larger for optically thin ash
clouds (e.g., τ′10.8 < 0.17) with meteorological clouds above, whereas nearly no bias is
apparent in the presence of meteorological clouds below. For z′top > 15 km, the retrieval
error of ztop slightly increases again; a physical reason might be that at high latitudes the
tropopause is located at similar heights, such that the disappearance or inversion of the
vertical temperature gradient makes the determination of ztop more difficult.

The retrieved reff is overestimated for all values of τ′10.8 and z′top; the MPE becomes >50%
for τ′10.8 < 0.05 and between 10% and more than 140% for z′top < 3 km, strongly depending
on the presence of meteorological clouds. For r′eff < 4 µm, the retrieved reff is overestimated,
and underestimated beyond; the MPE is generally between −20% and 20%.

Our simulated test data sets consist of samples which are calculated for specific geo-
graphical locations. The latitude/longitude coordinates are drawn randomly, but are equally
distributed with respect to the SEVIRI disc [2]; thus, more samples are located around 0°N,
0°E than at larger viewing zenith angles. The georeferenced test data are used to investigate
the dependence of the accuracy, POD and FAR of the binary ash flag on the geographical
position in Figure 3, and the MAPE and MPE of the regression ANNs in Figure 4. In all cases,
four different subsets are investigated: with meteorological clouds, without meteorological
clouds, with meteorological clouds above and below (as defined before). The samples are
arranged in boxes of 10°× 10°, except for the FAR in Figure 3c1,c2, which is given for 45°× 45°
boxes to accumulate enough samples given its small numerical value. The decreasing sample
density towards the edges of the plots can explain the worse retrieval performances at higher
viewing zenith angles. Thus, we focus on the central regions of ±40° around 0°N, 0°E.

The binary ash flag has a high accuracy and POD (both close to 100%) in the absence of
clouds except for the desert regions of Northern Africa and the Arabian peninsula, where both
metrics decrease by 1–2%, whereas the FAR rises to about 0.008%. This might be connected
to the surface emissivity of quartz-rich soils that can lead to a negative BTD10.8–12 [7]. In
the presence of clouds, the accuracy and POD remain close to 100% above Africa, especially
above the tropical forest and in proximity of the equator; otherwise the metrics decrease by
up to 3% and 10%, respectively. The decrease is even more pronounced if meteorological
clouds are above, which might be connected to the fact that the simulated samples are mostly
located above tropical Africa; thus, the ANNs are in this case mainly exposed to samples
of a very specific type. Meteorological clouds below are predominantly above the south
east Atlantic off the coast of Africa, where an extensive marine stratus deck at low altitudes
is usual [8]. The non-uniform distribution of the different sample types resembles reality,
as the occurrence of meteorological clouds in the radiative transfer simulation is based on
their presence in the ECMWF model [2]. To try to improve the performance of the ANNs
for the physically less common cases, one could increase their amount in the training data
set in the future, by specifically selecting those samples during the data set creation, or by
increasing their sample weight during the training. However, this would also distort the
underlying probability distributions, e.g., by artificially increasing the number of samples with
meteorological clouds above the ash layer above the Atlantic, the corresponding probability
would be higher for the training data set than in reality. A priori it is not clear whether this
would improve the overall performance of the algorithm. Note that other retrievals exhibited
similar properties as the binary ash flag, e.g., the ice cloud retrieval CiPS had the highest POD
above forest for cirrus clouds with an optical thickness up to 0.5, and at the same time a high
FAR above equatorial Africa as cirrus clouds often occur in this region (i.e., above tropical
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rainforests) and, thus, corresponding samples made up a significant part of the used training
data set [9,10].

The retrieval of τ10.8 has a MAPE of mostly 20–30%, independently of meteorological
cloud presence. Again there is a high MAPE of more than 60% above the Atlantic west of
southern Africa if meteorological clouds are above the ash. τ10.8 is generally underestimated
with MPEs of 0 to −20%, except if meteorological clouds are below the ash layer, which
leads to MPEs of 0–15%.

Figure 3. Estimations of the accuracy (a), the POD (b) and the FAR (c) for the binary ash flag for different geographical
coordinates and subsets without meteorological clouds (1), with meteorological clouds (2), with meteorological clouds
above (3) and below (4) a volcanic ash layer; the number of samples is given in (d); no metrics are shown if a grid cell
contains <100 (<50,000 for FAR) samples; mind the different color scales.

The retrieval of ztop shows a latitudinal dependence of the MAPE: it is 5–10% at
the equator, but rises towards the poles up to 20% at ±50°N. Similarly, the MPE rises
from ~0% around the equator to about 10%. A reason for the latitudinal dependence
of MAPE and MPE could be that the ANN might learn mainly the vertical temperature
profile at the tropics, as there the sample density in the training data is the highest. Since
the temperatures are generally lower towards the poles [11], the retrieved ztop from the
measured brightness temperatures using the tropical temperature profile is systematically
too high. Theoretically, this issue might be overcome by using a training data set of
samples equally distributed over the complete latitudinal range, again either by accordingly
increasing the amount of samples or the weight of the given samples. Then there should be
comparable focus on all the different temperature profiles. The ANN’s decision on which
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temperature profile to use could be based on the latitude, but also on, for instance, the time
of day and day of year, all of which are used as input data for VACOS. However, another
problem might be the decreasing height of the tropopause and the corresponding vertical
temperature inversion at higher latitudes, which makes it harder to deduce ztop from the
measured brightness temperatures for ash clouds above the tropopause. Differences in the
surface emissivity due to ice and snow surfaces [5] might also introduce errors in the most
poleward regions. The last two issues would not be solved by using a training data set
evenly distributed across latitudes.

Figure 4. As in Figure 3, but given are MAPE and MPE for the retrieval for τ10.8 (a,b), ztop (c,d) and reff (e,f) and the number
of samples (g) according to test data set B.
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The retrieval of reff is generally overestimated, with MAPEs at the equator around
15% if no meteorological clouds are present, and 20% on average in their presence. Again,
the error is higher above the Sahara in the absence of meteorological clouds.

2.3. Detection of Volcanic Ash

Volcanic ash can be detected using the following threshold rules: a sample is classified
as ash-containing if one of BTD12–10.8, τ10.8 or the probability for ash due to the binary ash
flag Pash is larger than a given threshold BTD12–10.8,thrs, τ10.8, thrs or Pash, thrs, respectively.
Notice that the first possibility is independent of VACOS. Figure 5 shows POD and FAR
for all three methods for different thresholds. Generally, by increasing the threshold the
POD as well as the FAR decrease. Thus, it is necessary to find a trade-off between both
properties. In case of doubt a higher POD is favored with regard to the relevance of ash
detection in aviation-security. As thin ash layers are harder to detect (Section 2), two
subsets are considered besides the full test data set: samples with τ′10.8 < 0.2 and τ′10.8 < 0.5.
Using BTD12–10.8 (e.g., [7,12,13]) with BTD12–10.8,thrs = 0 K gives a POD of 100% and a
FAR of about 10%. The former is due to the selection of ash samples in the simulated
data sets, i.e., only ash-loaded samples with BTD10.8–12 < 0 have been considered [2].
For BTD12–10.8,thrs = 1.58, the POD is ca. 70% and the FAR is about 0.25% for the full test
data set. For the subsets of lower τ′10.8, the POD is much lower, whereas the FAR remains
high. Using τ10.8, thrs leads to higher PODs compared to BTD12–10.8,thrs for all three sets of
test data, the curves move towards the upper left corner of Figure 5. Again the PODs are
smaller for lower τ′10.8. For example, τ10.8, thrs = 0.04 leads to a FAR of 1% and a POD of
98.7% (95.4%, 86.8%) for the full test data set (only τ′10.8 < 0.5, <0.2). Using Pash leads to an
even better performance in all subsets: up to roughly Pash, thrs = 0.8, the POD decreases
only slightly, whereas the FAR decreases by multiple orders of magnitude. Only for higher
Pash, thrs, the POD drops as well. For Pash, thrs = 0.8, the FAR is 0.008% and the POD is 98.6%
(95.5%, 88.2%) for the full test data set (only τ′10.8 < 0.5, <0.2).

Figure 5. Estimations of the POD and the FAR for the detection of volcanic ash using BTD12–10.8 (connected by a red line),
τ10.8 (blue line) and the probability of the binary ash flag for ash Pash (green line), and a corresponding threshold (color of
marker, see colorbars); different subsets of the test data set [2] are used and encoded in the marker type, i.e., the full data set
(square), only samples with τ′10.8 < 0.5 (circle) and <0.2 (diamond); the x-axis is linear left of the black, dotted, vertical line
and logarithmic right of it.

Instead of subsets defined by the τ′10.8 as in Figure 5, one can also select sets according
to m′col: For τ10.8, thrs = 0.04, corresponding to 0.2 g m−2 when considering a mean mass
extinction coefficient at 10.8 µm of 200 m2 kg−1[2], and m′col ∈ [0.2, 1] g m−2, a typical
regime for distal volcanic ash clouds (Section 4), the POD is ca. 93% and the MAPE for
mcol roughly 40%, whereas m′col ∈ [1, 10] g m−2 leads to a POD of 99% and a MAPE of 26%.
For the ash-free samples, the FAR is about 1%.
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3. Sensitivity to Volcanic Ash Cloud Profiles

For the training data set, we made the ad hoc assumption of a single, homogeneous
volcanic ash layer with ztop up to 18 km, geometrical thicknesses up to 7.2 km and mcol up
to 30 g m−2 [2]. Here we consider the sensitivity of the brightness temperatures and the
ANNs on the ash cloud profile. In all cases we apply the refractive index of Eyjafjallajökull
ash [14], a log-normal particle size distribution with reff = 0.6 µm, a geometric standard
deviation s = 1.5 and a representative shape distribution of spheroids as considered in
Piontek et al. [3]. A thick ash cloud is assumed with mcol = 10 g m−2, corresponding
to τ10.8 = 2 for a mass extinction coefficient at 10.8 µm of 200 m2 kg−1. This order of
magnitude of mcol can be found in close proximity of a volcano (Section 5); for lower
mcol, the absolute impact of the investigated macrophysical properties on the brightness
temperatures is assumed to be smaller.

Using ECMWF ERA5 data for 2010 and the methods described in Piontek et al. [2],
a random set of 500 atmospheric and geographical conditions is chosen and used for the
calculation of the brightness temperatures for each cloud setting. Only cases without
meteorological but with volcanic ash clouds are investigated as meteorological clouds were
already shown to influence the retrievals significantly.

3.1. Multiple Ash Layers

To quantify the variability in the brightness temperatures due to multiple layers, we
compare a single layer with four different multi-layer structures, Figure 6a. All four setups
keep ztop and mcol fixed (i.e., the parameters that are retrieved by the ANNs). Layers #1
and #2 also keep the mass concentration c fixed and introduce a gap in the volcanic ash
cloud. Layers #3 and #4 keep the cloud bottom height fixed but increase c. The brightness
temperatures of the infrared channels of SEVIRI are simulated and the differences compared
to the single layer are calculated, Figure 6b. Layers #1 and #2 show that the brightness
temperature increases with a decreasing height for the lower ash layer; the differences
are generally positive, as more of the mass is in warmer parts of the atmosphere. For a
gap of 0.5 km the differences can be >0.5 K, but for a gap of 2 km the differences are even
>2 K, with outliers even >3 K. For the more condensed structures #3 and #4, the differences
are mostly between 0 K and −0.5 K and negative as more of the mass is in cooler parts of
the atmosphere. Figure 6c shows the relative differences in the retrievals with respect to
the true values. The median ztop retrieval is overestimated by ca. 3%, the retrieved reff
is underestimated by about 7%. In both cases is the influence of multi-layer structures
compared to single layers on the order of 1%. The median retrieved τ10.8 for a single layer
is about 20% higher than the true value. Again structure #2 leads to the largest difference:
here the median retrieved τ10.8 is about 10% lower than the true value. The structures #3
and #4 lead only to minor differences compared to the single layer.

3.2. Non-Homogeneous Ash Profiles

The assumption of a uniform ash layer [2] is often not fulfilled in reality, where vertical
ash mass profiles do not have discontinuities and might have a clear peak [15–17]; thus, a more
realistic description would be a normal distribution or the Π-sigmoid distribution (Appendix B
and [18]), which has the ability to approximate uniform and normal distributions as limiting
cases, Figure 7a. To quantify the influence of the cloud profile, different assumptions are
compared. A uniform cloud with a typical height of 8–9 km is assumed [2]; thus, the mean
height is 8.5 km and the standard deviation 0.289 km. These values are assumed for the other
distributions as well. For the Π-sigmoid distribution, the variables parameterizing the lower
and upper end of the cloud are varied (Π-sigmoid #1: 8.01 km and 8.99 km, #2: 8.05 km
and 8.95 km, #3: 8.1 km and 8.9 km). The continuous distributions are cut off at 7.5 km and
9.5 km; within this regime they are modeled by 100 sublayers of depth 0.02 km, each having a
mass volume concentration corresponding to mcol times the density of the normalized vertical
mass distribution at the mean height of the sublayer. The brightness temperatures of the
infrared channels of SEVIRI are simulated and the differences of the various profiles compared
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to the uniform distribution are calculated, Figure 7b. The absolute differences are mostly
<0.1 K and, therefore, smaller or of the same order as the instrumental noise [19]. Outliers
are <−0.2 K. In some channels (e.g., BT8.7 or BT9.7) the differences for all profiles are mostly
negative, indicating that a more realistic cloud profile might lead to slightly lower brightness
temperatures. Applying the ANNs to the different profiles leads to negligible differences
(not shown).

Figure 6. Analysis of the impact of different ash layerings with (a) the normalized vertical cloud profiles for multiple layers,
(b) the BTD of different channels between a single mass layer and the layerings in (a), (c) the relative differences in the
retrievals of τ10.8, ztop and reff compared to the true values for the different layerings in (a); for each setup 500 simulations are
averaged (see text); the boxplot shows the median, first and third quartile (box) and the 5th and 95th percentile (whiskers).

3.3. Geometrical Ash Cloud Thickness

Although the geometrical cloud thickness is varied within the training data set, it is
not retrieved explicitly by the ANNs, and it is not clear whether they are able to derive
this information internally as a side product. Here we quantify the impact of this property
with respect to the brightness temperature and the retrieval results. Therefore, layers
with thicknesses of 0.5 km, 1 km, 2 km and 3 km are considered, with ztop = 9 km and
mcol = 10 g m−2 kept constant. The difference compared to the 1 km thick case are
considered, Figure 8a. As expected, thicker clouds have higher brightness temperatures as
more mass is in lower and warmer parts of the troposphere; the thinner layer leads to lower
brightness temperatures. The geometrical cloud thickness introduces a variability of the
brightness temperatures of−1 to 4 K. Figure 8b shows the results of the retrievals. Whereas
the impact of the cloud thickness is generally negligible for reff, an increased thickness
(and, therefore, decreased cloud base height) leads to smaller retrievals for τ10.8 and ztop.
The influence on the latter is only small (between −4% and 8%), but the former can exhibit
differences of more than 20% comparing cloud geometrical thicknesses of 0.5 km and 3 km.
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Figure 7. Analysis of the impact of different ash profiles with the same mean and standard deviation with respect to the
height of the center of the cloud, with (a) the different profiles and (b) the BTD of different channels between a uniform
vertical mass distribution and the other distributions in (a); for each setup 500 simulations are averaged (see text); the
boxplot shows the median, first and third quartile (box) and the 5th and 95th percentile (whiskers).

Figure 8. Analysis of the impact of different geometrical ash layer thicknesses, with (a) the BTD of different channels
between a layer with a thickness of 1 km and the other thicknesses, (b) the relative differences in the retrievals of τ10.8, ztop

and reff compared to the true values for the different layer thicknesses; for each setup 500 simulations are averaged (see
text); the boxplot shows the median, first and third quartile (box) and the 5th and 95th percentile (whiskers).

Comparing different volcanic ash clouds, geometrical layer thickness and multi-
layering represent the largest sources of error. The uncertainties introduced by those
properties with respect to the brightness temperatures are larger than the instrumental
noise [19] and are of the order of 30% for τ10.8, 5% for ztop and negligible for reff. The shape
of a single layer profile is negligible.

4. Comparisons with Independent Measurements

To prove the applicability of the retrievals to real data, we compare our results with
other in situ and remote sensing measurements as well as the outcome of the predecessor
VADUGS for selected scenes.

4.1. Puyehue-Cordón Caulle Eruption (2011)

Lidar measurements represent an excellent source for comparison since they pro-
vide accurate estimates for ztop and the vertical profile. Here we use data from the
CALIPSO/CALIOP [20] version 4.10 level 2 aerosol products, which include informa-
tion about volcanic ash layers in the stratosphere [21]. The extinction profiles of those
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layers were used to calculate their optical depth at 532 nm, which was converted to mcol
using a mass extinction coefficient of 690 m2 kg−1 [22,23]. ztop corresponds to the top of
the uppermost ash layer. Only ash samples with extinction quality control flag zero (initial
lidar ratio resulted in stable extinction retrievals, i.e., “unconstrained” retrievals) or one
(when the lidar ratio could be inferred directly from the data, i.e., “constrained” retrievals)
were used. For the unconstrained retrievals, a lidar ratio of 58 sr (median of the directly
retrieved lidar ratios) was used to update the ash optical depth to correct for the low bias
resulting from the use of the default lidar ratio of 44 sr for ash in CALIPSO version 4.10.
The final data set has a horizontal resolution of 5 km and a vertical resolution of 60 m.

The six scenes in consideration are listed in Table 3 and sketched in Figure 9; data are
plotted in Figure 10 (blue line). They show volcanic ash clouds from the Puyehue-Cordón-
Caulle eruption, starting at 4 June 2011. The flyovers took place above the southern Atlantic
ocean between 15 June 2011 and 18 June 2011 during day and night. ztop was 10–15 km and
mcol reached up to 1.5 g m−2; note that the uncertainty of the latter is roughly a factor of 2, see
Figure 10. reff is not derived from CALIOP data, but Bignami et al. [24] used MODIS data
to retrieve mean values of 4–6 µm within 300 km from the volcano. Due to sedimentation
processes reff should be smaller in the scenes considered here. Ishimoto et al. [25] retrieved
from IASI spectra at distances of ~1000 km for most samples reff < 0.5 µm. The silica content
was around 70 wt.% or slightly below [14,26,27].

Table 3. Investigated CALIPSO flyovers in June 2011 with timespan, coordinates of start and endpoint, number of samples
and track number according to Figure 9.

Day Start Time/UTC End Time/UTC Start Coordinates End Coordinates Samples Track Number

15 June 2011 18:30 18:40 −55.7°N, −59.8°E −40.4°N, −66.0°E 300 1
16 June 2011 15:51 16:05 −48.8°N, −24.4°E −39.3°N, −27.7°E 162 2
16 June 2011 17:29 17:43 −60.9°N, −42.7°E −44.6°N, −50.7°E 187 4
17 June 2011 03:00 03:13 −40.6°N, −27.7°E −62.0°N, −37.8°E 251 5
17 June 2011 14:55 15:10 −44.4°N, −12.1°E −37.3°N, −14.4°E 82 3
18 June 2011 02:04 02:18 −35.4°N, −12.2°E −64.4°N, −25.9°E 199 6

Figure 9. Overview of the CALIPSO transits (green) as described and numbered in Table 3 with the corresponding VACOS
retrievals of τ10.8 (red colors) and the cirrus flag of CiPS (blue); Figure (a,b) are made up of three stripes each, showing the
VACOS and CiPS retrievals at the times of the corresponding CALIPSO transits; thus, the retrievals of the three stripes in
each plot correspond to three different times.

We compare the CALIOP measurements with the results of the ANNs applied to
SEVIRI images at close times. The coordinates given by CALIPSO are corrected such that
the light path of the SEVIRI measurements penetrates the top of the ash cloud (parallax
correction). The regression retrievals are shown on a single pixel basis (faint red), and after
a mean filter of 5× 5 pixels was applied (red); the classification result is shown only on
a single pixel basis. τ10.8 is converted to mcol using a mean mass extinction coefficient at
10.8 µm of 152 m2 kg−1, which holds for silica contents of 70 wt.% and reff = 0.6 µm [2].
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Additionally, the retrievals of volcanic ash by VADUGS and of cirrus clouds by CiPS [9,10]
are shown in Figure 10. The MAPE and MPE for the retrievals of mcol and ztop are given in
Table 4, the PODs using mcol and Pash and different thresholds are given in Figure 11.

Figure 10. Pixel classification (ash) and retrievals of mcol (derived from τ10.8), reff and ztop as determined using CALIOP (blue),
VADUGS (green) and VACOS (red) for volcanic ash clouds of the Puyehue-Cordón Caulle eruption 2011 above the Atlantic on
15–18 June 2011, see Table 3; the times above the plots indicate the start of measurement of the SEVIRI image used; the VACOS
regression results are averaged on 5× 5 pixels with the 1× 1 pixel result shown in faint red, whereas the for the classification
the single pixel result is shown; the upper uncertainty of mcol by CALIOP is indicated in faint blue; the ash classification shows:
clear skies (green), meteorological clouds (blue), volcanic ash (red), ash and meteorological clouds (orange); a cirrus cloud flag
(ice) and, if applicable, the ice water path (IWP) are derived using CiPS (black); the cirrus flag shows: cirrus (black), no cirrus
(white); the latitude refers to the position of CALIPSO; note that vertical axes are scaled differently in the plots.
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Table 4. Comparison of the retrievals VADUGS and VACOS against CALIOP data; different subsets depending on m′col
from CALIOP are considered; the MAPE and MPE for the retrieval of mcol and ztop are calculated; the retrieval is analyzed
after application of a 3× 3 pixels (px) and 5× 5 px uniform filter.

mcol ztop

Algorithm MAPE MPE MAPE MPE
full data set (1181 samples)

VADUGS 123% 70% 75% −74%
VACOS (1 px) 190% 93% 19% −14%
VACOS (9 px) 111% 43% 18% −14%

VACOS (25 px) 112% 49% 18% −14%
only m′col ≥ 0.2 g m−2 (875 samples)

VADUGS 62% 12% 71% −70%
VACOS (1 px) 56% −24% 18% −14%
VACOS (9 px) 47% −20% 18% −14%

VACOS (25 px) 45% −20% 18% −14%

Figure 11. Estimations of the POD of volcanic ash using mcol and Pash of VACOS (connected by red and blue lines,
respectively) and mcol of VADUGS (green line), and a corresponding threshold; different subsets of the test data (Table 3),
are used and encoded in the marker type, i.e., the full data set (square), only samples with target m′col ≥ 0.2 g m−2 (circle).

Again the mass load due to CALIOP (i.e., the “true” value) is denoted m′col. For
m′col ≥ 0.2 g m−2, the retrieval of mcol using VADUGS has a MAPE of 62% and a MPE
of 12%, indicating a slight overestimation; this is visible in Figure 10 for 15 June 2011
at 18:30 UTC or 16 June 2011 at 17:30 UTC, although the VADUGS results are mostly
within the uncertainty interval of the CALIOP data. VACOS has a smaller MAPE of 56%,
but underestimates mcol due to a MPE of −24%. Remember that VACOS is more complex
than VADUGS, consisting of four instead of only one ANN, using more input features,
with each ANN having three compared to just a single hidden layer (although with 100
instead of 600 neurons per hidden layer) [1,2]. As a consequence, VACOS has significantly
more trainable parameters and has the potential to learn more complex functions, such
that their pixelwise application can lead to rather abrupt jumps in the retrievals; this can
be seen, for instance, at 18 June 2011, 02:15 UTC in Figure 10 and the corresponding track
6 in Figure 9b. Thus, the VACOS retrievals are also calculated after the application of a
3× 3 and a 5× 5 pixels uniform averaging, which leads to a further reduction of MAPE
(47% and 45%, respectively) and MPE (−20% each). Note that this MAPE is similar to the
values found for the simulated test data. Whereas the reduction in the errors is of the order
of 10% when comparing the unfiltered results with the results after an averaging over
3× 3 pixels, the further decrease is only on the order of a few percent when considering
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5× 5 pixels. Note that averaging over even larger areas might worsen the retrieval of
fine structured ash clouds, e.g., thin plumes close to the volcanic vent; therefore, this is
not done here. Considering the full CALIOP data set leads to significantly higher errors
than for the subset with m′col ≥ 0.2 g m−2, showing that the retrieval of thin ash layers is
much harder. VADUGS has a MAPE of 123% and a MPE of 70%. VACOS has higher errors
before averaging the results, but performs better after averaging over 3× 3 pixels, with a
MAPE of 111% and a MPE of 43%. Averaging over 5× 5 pixels slightly increases the errors.
The reason might be that small mcol are often located at the edges of ash clouds, where
the averaging over larger areas includes ash-free pixels. The retrieval of ztop is mostly
independent of the subset and the averaging for both VADUGS and VACOS. MAPE and
absolute MPE of VADUGS are 70–75%. Although VADUGS is able to retrieve the correct
heights in some cases (especially when mcol ≥ 1 g m−2), it often strongly underestimates
ztop; compare, for instance, 16 June 2011 at 15:45 UTC in Figure 10. VACOS retrieves ztop
with a MAPE < 20%, but also slightly underestimates the true height as indicated by a
MPE of −14%. The retrieved reff exhibits large variations with values between 0.6 µm (the
lower end of the training data regime [2]) and 4 µm; thus, they are smaller than the values
retrieved by Bignami et al. [24] close to the volcano, but significantly larger than the results
by Ishimoto et al. [25]. Note that the lowest reff are retrieved for the highest mcol (e.g., at
16 June 2011, 17:30 UTC). As the errors of reff decrease with increasing τ10.8 (as shown in
Section 2), the retrieved reff is most reliable for thick clouds. The small reff also supports
the choice of the mass extinction coefficient at 10.8 µm above.

The classification ANN indicates the presence of volcanic ash especially for thick ash
layers, whereas thinner layers are often misclassified as meteorological clouds. The POD
using Pash of the resulting binary ash flag and using mcol of VADUGS and VACOS (compare
Section 2.3) are given for different thresholds in Figure 11. For VACOS, the averages
over 5× 5 pixels are used for mcol and the single pixel result for Pash. VACOS performs
slightly worse than VADUGS with respect to volcanic ash detection using mcol. Setting
mcol, thrs = 0.2 g m−2 leads to a POD of 65–75% for VACOS; for mcol, thrs = 0.1 g m−2, the
POD is around 80%. Both values are significantly smaller than for the simulated test data
set, which indicates that there are differences between the simulated data set and data
collected in reality. However, note that the different performances of VADUGS and VACOS
can be explained in part by the retrievals MPEs: VADUGS overestimates mcol whereas
VACOS underestimates it. Correcting this would lead to a decrease of the POD of VADUGS
and to an increase for VACOS. Furthermore, the assumed mass extinction coefficient at
10.8 µm for the transformation of τ10.8 to mcol has an impact for VACOS: using a smaller
value increases mcol due to VACOS and consequently also the POD. The performance of
the binary ash flag is significantly lower here as compared to the simulated test data and
the results using the retrieved mcol, independently of the threshold; Pash, thrs = 0.5 leads to
a POD around 60%. This indicates that the use of mcol for detection is more reliable than
the classification ANN in this situation. The FAR has not been quantified here, but Figure 9
shows mostly large-scale structures representing the ash clouds, and only in some scenes
are tiny patches with significant τ10.8 which are not connected to the ash clouds and might
be false detections. Thus, we assume the FAR to be reasonably low.

Two scenes, 15 June 2011 at 18:30 UTC and 18 June 2011 at 02:15 UTC, contained
cirrus clouds underneath the ash layer, with ice water paths up to 20 g m−2 and 40 g m−2,
respectively. In both cases the cirrus has a moderate impact on the retrieved ztop, but the
retrieved reff is significantly increased in the presence of the cirrus clouds; meanwhile,
the retrieved τ10.8 drops to zero, especially at 18 June 2011, 02:15 UTC. This shows that it
seems recommendable to always evaluate VACOS results alongside cirrus retrievals.

4.2. Eyjafjallajökull Ash Cloud (17 May 2010)

Following the 2010 eruption of the Eyjafjallajökull, the Deutsches Zentrum für Luft-
und Raumfahrt (DLR, the German aerospace center) and the Facility for Airborne At-
mospheric Measurements, United Kingdom (FAAM) independently performed airborne
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in situ and lidar measurements of the volcanic ash clouds [15,16,28]. Here we consider
measurements from 17 May 2010, when both aircraft simultaneously investigated the
same ash cloud above the North Sea [17]. The VACOS retrieval of τ10.8 and the cirrus
mask of CiPS are given for an example scene, Figure 12b, showing that the ash and
ice clouds are well separated. VACOS can be compared to volcanic ash detections by
Schumann et al. [15] for a scene two hours later, using BTD10.8–12 with a threshold of −1 K
for detection and applying a low-pass filter (Figure 15 in [15]). Both methods exhibit similar
distributions of the optically thickest ash clouds, e.g., patches above the North Sea, west of
Norway and above Iceland. However, VACOS finds additional, extended ash clouds with
τ10.8 ≤ ~0.05 above Germany and Norway. The ash cloud investigated by DLR and FAAM
as well as the flight trajectories of the two aircraft are sketched in Figure 12a.

Figure 12. VACOS retrieval of τ10.8 at 17 May 2010, 16:00 UTC; shown is (a) the North Sea between the Netherlands and
England, and (b) north-western Europe up to Iceland; blue areas are covered by cirrus clouds according to CiPS [9]; panel
(a) also shows the flight tracks of the DLR Falcon aircraft (with different parts of the track in black, yellow, blue and violet)
and the FAAM aircraft (green) [15,16].

Schumann et al. [15] provided in situ measurements with a time resolution of 1 s for
the altitude and 10 s for the mass volume concentration. To derive the latter they made
two different assumptions on the refractive index of the volcanic ash (case L: 1.59 + 0.0 i,
case M: 1.59 + 0.004 i; at 630 nm), leading to an upper and a lower estimate of the mass
concentration. A third case (H: 1.59 + 0.008 i) was evaluated by Schumann et al. [15],
but based on their full analysis they expected the true value to be between case L and M.
Ball et al. [29] measured for the refractive index of Eyjafjallajökull ash at a wavelength
of 650 nm a real part of 1.554± 0.01 and an imaginary part of 0.00085± 0.00069, which
would support case L. Schumann et al. [15] pointed out that the imaginary part of the
refractive index was the major source of uncertainty. The effective radius was estimated to
be 0.65–1.05 µm [15]. Considering altitude and mass concentration shows that the aircraft
enters the ash cloud from above at 15:50 UTC, reaches a minimum altitude around 16:35
UTC (yellow in Figure 12), and rises afterwards until it leaves the ash cloud again at ca.
17:00 UTC (blue in Figure 12), see Figure 13. Data of the two transits (from above and
from below) are treated separately; the corresponding measured vertical mass profiles as
well as their linearly interpolated and over 200 m averaged profiles are shown in Figure 14.
Although different parts of the ash cloud are probed during the two flight legs, the vertical
mass profiles are relatively similar, indicating a horizontally homogeneous ash distribution
(over distances in the order of ~50 km). However, vertically the ash cloud has a highly
variable mass profile. Ash cloud top and bottom height are roughly at 6.3 km and 3.3 km,
respectively. Integrating the vertical mass profiles of Figure 14 and averaging mcol of the
two flight legs gives 0.52 g m−2 and 2.13 g m−2 for the lower (L) and upper (M) estimate,
respectively. The DLR data are shown in the left panel of Figure 13.
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Figure 13. Pixel classification (ash) and retrievals of mcol (derived from τ10.8), reff and ztop as measured in situ by DLR (blue,
left panel [15]), derived using an airborne lidar by FAAM (blue, right panel [16]), VADUGS (green) and VACOS (red) for an
Eyjafjallajökull ash cloud above the North Sea at 17 May 2010; the VACOS regression results are averaged on 5× 5 pixels
with the 1× 1 pixel result plotted in faint red, whereas only the single pixel result is shown for the classification; also
VACOS retrievals of reff and ztop for mcol < 0.1 g m−2 are plotted in faint red; for the in situ data, only mean values or upper
and lower estimates are given; for the lidar-derived data, the upper and lower uncertainty of mcol is indicated in faint blue;
the ash classification shows: clear skies (green), meteorological clouds (blue), volcanic ash (red), ash and meteorological
clouds (orange); the altitudes of the aircrafts are given (grey dashed).

Figure 14. Vertical mass profiles of the volcanic ash cloud as measured by Schumann et al. [15] during two flight legs (see
text) indicated by the color (blue, red); based on different assumptions, there is an upper estimate (M, bold colors) and a
lower estimate (L, faint colors) of the in situ measurements; 10 s averages are given as dots, derived 200 m means are shown
as lines.

From Marenco et al. [16] the lidar-derived mass profiles are used, which have a
vertical resolution of 45 m and a temporal resolution of 60 s, corresponding to a horizontal
resolution of 9 ± 2 km at typical aircraft speeds. The uncertainty of the masses is given
by a factor of two [16]. We calculate mcol by integrating the vertical mass profile, whereas
we define ztop as the height where the mass volume concentration (median over 315 m,
i.e., 7 height levels) exceeds 50 µg m−3; averaging kernel and mass concentration threshold
are based on visual inspection of the mass profiles. In situ measurements performed in
April and May 2010 by the FAAM led to reff of ca. 0.5–2 µm [28]. The FAAM data for
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the flight at 17 May 2010 are shown in the right panel in Figure 13. Just as the DLR,
the FAAM aircraft dipped into the ash cloud several times; to avoid incomplete mass
profiles, measurements of mcol and ztop are discarded if the FAAM aircraft is <500 m above
ztop or if the aircraft is below 5 km.

Apart from different instrumentation and processing for the in situ measurements [17],
the flights by DLR and FAAM followed fundamentally different strategies: the DLR air-
craft remained in an self-contained area well within the ash cloud, hence the relatively
constant mcol, whereas the FAAM entered and left the ash-containing area multiple times,
see Figure 12a. Still, the data from both measurements shows some similarities, Figure 13.
The lower estimate of mcol from DLR is generally in good agreement with the maxi-
mum best estimate mcol due to the FAAM, whereas the upper estimate from DLR and
the maximum of the uncertainty of mcol by the FAAM are both around 2 g m−2. The
lower estimate of reff is similar for DLR and FAAM, but the upper estimate differs by
roughly 1 µm; differences in the ash particle size distributions were also reported by
Turnbull et al. [17]. ztop from DLR agrees with the largest estimate derived from FAAM
data, but the latter varies between roughly 4 km and 7 km, again indicating that a more
diverse area of the ash cloud was sampled.

For the VACOS and VADUGS retrievals, a parallax correction is implemented, i.e., co-
ordinates are considered such that the light path crosses the coordinates of the DLR and
FAAM aircraft at a height of 6 km and 5 km, respectively, and penetrate the observed ash
clouds. The heights correspond roughly to the measured ztop of DLR/FAAM. The SEVIRI
images with a time resolution of 15 min are processed and the temporally closest image is
chosen for each measurement; the SEVIRI line acquisition time is considered. The FAAM’s
mean aircraft velocity of ~146 m s−1 (on ground) and a SEVIRI pixel size of roughly 6.8 km
times 3.2 km (at 54°N, 1.5°E) indicate that it takes the aircraft generally about 47 s to cross a
pixel in north–south direction and 22 s in east–west direction. As the FAAM data has a time
resolution of 60 s, a minimum averaging of 1× 3 SEVIRI pixels is necessary to compare
the satellite retrievals to the FAAM data, assuming the aircraft moves only in east–west
direction. Based on the results of Section 4.1, an averaging over 5× 5 pixels is considered
here. As reff due to DLR and FAAM data is around 1 µm, a mass extinction coefficient at
10.8 µm of 200 m2 kg−1 is assumed [2]; note that this conversion factor is applied in the rest
of this work when dealing with Eyjafjallajökull ash clouds. VACOS retrievals of reff and
ztop are shown in faint red if mcol < 0.1 g m−2, as the former are ill-defined in the absence
of ash clouds. The resulting retrieval data is given in Figure 13.

Considering the DLR case (left panel in Figure 13) we find that the VACOS mcol
lies at the lower end of the uncertainty interval of the DLR measurement with rela-
tively low variability. ztop varies between 5.5 km and 8.5 km, which includes the value
found from the DLR data. For the most parts, reff lies well between the estimates by
Schumann et al. [15]. The classification ANN flags the whole ash cloud correctly.

The FAAM measurements (right panel in Figure 13) and the VACOS retrievals for mcol,
ztop and reff are generally in agreement. VACOS slightly underestimates the mass load
with mcol ≈ 0 g m−2 compared to the FAAM value of ~0.1 g m−2 before 14:00 UTC (and
consequently derives too high estimates for reff and ztop), but retrieves similar mcol around
0.6 g m−2 as the FAAM later on. VACOS retrieved reff and ztop show plateaus around
0.9 µm and 5 km, respectively, at 14:30 to 14:45 UTC as well as 15:45 to 16:30 UTC. At other
times, e.g., around 14:20 or 15:20 UTC, there are coincident increases of reff and ztop, which
can be attributed at least partially to thin ash clouds with mcol < 0.3 g m−2 at the edges of
the ash clouds; thus, these retrievals can be assumed to be unphysical. Other peaks in reff
and ztop, e.g., around 15:00 UTC, appear although there is a significant amount of volcanic
ash (i.e., VACOS retrieves mcol ≥ 0.4 g m−2). The classification correctly classifies the major
parts of the ash encounters.

Although the comparisons of VADUGS retrievals with the CALIOP results in the
case of the Puyehue-Cordón Caulle ash cloud showed a good agreement, VADUGS seems
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hardly applicable in the present case: mcol and ztop are strongly underestimated in both
comparisons and at all times.

4.3. Eyjafjallajökull Ash Plume at Vent (11 May 2010)

The concentrations that have been compared up to now are rather low. Here the
retrieval ability closer to the vent is investigated. Researchers from the University of Iceland
used a piston-driven aircraft to probe the outer parts of the ash plume of Eyjafjallajökull
in 2010 at distances of 45–60 km from the vent [30]. Plume heights of 3–4.3 km have been
reported [30,31], and at 11 May 2010, mass volume concentrations of 0.5–2 mg m−3 [30].
Assuming a geometrical thickness of 1–2 km, this corresponds to mcol being 0.5–4 g m−2

for the fringes of the ash plume; in the center of the plume the values should obviously
be higher. Note that Weber et al. [30] reported the boundary of the ash plume to be
inhomogeneous, with ash cloud puffs of diameter 0.5–2 km. These small scale structures
are not resolvable by SEVIRI [2].

As an example we consider a scene at 11 May 2010, 14:00 UTC, Figure 15. The Eyjafjal-
lajökull ash plume moves southwards from the vent and is surrounded by different cloud
fields (a). The cirrus cloud retrieval CiPS [9,10] shows ice water clouds collocated with the
ash plume up to some hundred kilometers from the vent. With roughly 1–6 g m−2, the ice
water path (b) is rather low (e.g., compared to the retrievals in Figure 10), and the cirrus
clouds are located at 9–11 km height (c), i.e., above the heights given by Weber et al. [30].
Weber et al. [30] also report that the top of the ash plume above the sea appeared white,
whereas it was darker below, and significant ice contents have been found in volcanic ash
plumes before [32–34]. The additional ice content might spoil the volcanic ash retrieval in
this scene (compare Section 4.1). Note that although it was shown that aerosol layers below
cirrus clouds have only a small impact on CiPS [10], the volcanic ash plume in this scene is
by no means negligible (f). Therefore, the CiPS retrievals have to be treated with caution
as well. The ash plume is detected by VADUGS (d), but with mcol ≈ 0.03 g m−2 it under-
estimates the mass load by one to two orders of magnitude compared to Weber et al. [30].
The classification due to VACOS (e) shows the (mostly pure) ash plume moves southwards
and then bends eastwards. A visual comparison of the classification results with (a) in-
dicates that too few pixels might be classified as clear sky (green). The VACOS retrievals
of mcol (f), ztop (g) and reff (h) are shown for pixels with τ10.8 > 0.02. mcol (f) shows the
plume with decreasing values downwind. The upper end and the center of the ash plume
show values around 3 g m−2 and larger, the edges values of the order 1 g m−2; this is in
agreement with the in situ measurements by Weber et al. [30]. Downwind the plume bends
eastwards. The ash has dispersed and mcol is ca. 0.5–1 g m−2. The retrieved ztop (g) has
values of 10–12 km close to the vent, which is much larger than the literature values. When
the plume bends eastward, ztop retrievals drop to 5–6 km. Similarly, we find large reff
(h) around 3 µm close to the volcano and then a sudden drop to values around 1 µm. In
all three cases the sudden change in the retrievals happens at the edge of the retrieved
cirrus cloud, compare (b) and (f), indicating that the presence of the cirrus cloud might
lead to the overestimation of mcol, ztop and reff. Apart from the impact by the cirrus cloud,
the retrievals also have some inherent limitations that might lead to inaccuracies close to
the vent: the ash properties used in the training data correspond rather to those of aged
ash clouds than to fresh ash (e.g., only small particles without porosity are considered) and
typical gas emissions (e.g., water vapor, sulfur dioxide) have not been included [2].
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Figure 15. Retrieval results for the Eyjafjallajökull eruption at 11 May 2010, 14:00 UTC with Iceland outlined in the top of
the plots; (a) false color overview composite from SEVIRI data, from CiPS (b) cirrus ice water path and (c) cloud top height,
(d) mcol from VADUGS, and from VACOS (e) the classification (color code as in Figure 10), (f) mcol, (g) ztop and (h) reff.

5. Comparison with a Model Ensemble

To check the general performance of VACOS on large scales, the retrievals are com-
pared with the results of a volcanic ash transport and dispersion model. Note that the
model is an approximation of the reality as, for instance, inaccuracies in the volcanic ash
source term or the meteorological conditions are transferred to the ash distribution. Thus,
the scope of this section is to quantify the agreement of the spatial distribution of volcanic
ash clouds and to compare the order of magnitude of mcol.

Here the multi model multi source term ensemble by Plu et al. [35] is used. They
simulated the Eyjafjallajökull eruption at 13–19 May 2010 and the area from Iceland in the
north-west to Italy in the south-east. We consider scenes every six hours. Four models
were used: the atmospheric Lagrangian transport model FLEXPART, the Eulerian chemical
transport model MATCH and the chemical transport models MOCAGE and WRF-Chem,
considering in varying ways phenomena such as atmospheric transport and mixing, gravi-
tational settling, wet and dry deposition, and chemical reactions. An a posteriori source
term is used, determined using a FLEXPART-based optimal estimation model and esti-
mates of mcol from satellite data, as well as upper and lower bounds for the source term
based on the uncertainties of the optimal estimation result. All models spin-up for at least
3 days, their results are vertically integrated and averaged on a 0.2°× 0.2° grid, as only the
large-scale distribution of ash is of interest here. The ensemble result m′col is the median of
all simulations.

VACOS and VADUGS retrievals of mcol are averaged on the same grid. Instead of the
simple uniform averaging of the retrieval results performed in Section 4, the following
accumulation rule is applied to alleviate the impact of (a) the different spatial resolutions,
(b) possible temporal and spatial shifts between model and satellite retrieval and (c) false
satellite detections: a grid cell at time t is assumed to be ash-contaminated if at least a
fraction fthrs of all pixels within the cell and within the time [t− 15 min, t + 15 min] exceeds
a threshold of mcol, thrs; then the estimate of mcol is the mean of this fraction of the pixels.
For VADUGS, fthrs = 0.5 and mcol, thrs = 0.1 g m−2 is used. For VACOS, three different
settings are applied: the same as for VADUGS; fthrs = 0.5 and mcol, thrs = 0.2 g m−2;
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fthrs = 0.9 and mcol, thrs = 0.2 g m−2. Grid cells covered by cirrus clouds according to the
retrieval COCS [36] are discarded.

Three example scenes are shown in Figure 16. The model ensemble shows thick
volcanic ash plumes close to the Eyjafjallajökull with m′col ≥ 10 g m−2, and ash clouds
with m′col < 1 g m−2 extending over large parts of Europe. VADUGS detects only very
limited ash clouds, which correspond spatially to the thickest parts of the simulated ash
clouds but with a lower mcol. However, in some cases it does not detect ash directly at the
volcano, although a prominent plume is simulated. VACOS detects more ash contamination,
especially also the plumes in the direct surroundings of the vent, and retrieves higher mcol
for them compared to VADUGS. Still, the model ensemble often produces larger ash-
loaded areas in the surroundings of the volcano than retrieved by VACOS. At greater
distances VADUGS hardly retrieves any ash, whereas VACOS regularly finds ash clouds
above central Europe. For instance, in Figure 16b3 volcanic ash is found above the
Atlantic north of Scotland, south-east England and at the Atlantic coast of France; then,
the ash cloud bends towards north-east and continues over central France and central
Germany with concentrations around 0.2–0.3 g m−2. The model ensemble produces a
similar distribution, but the ash cloud heads further south after the bending, continuing
above the Mediterranean sea (panel a3). Similar offsets between the model and the VACOS
retrieval are also visible comparing the other two scenes; in both cases there are faint ash
clouds that are detected further east by VACOS than they are simulated by the model
ensemble. This indicates that the model is less reliable at large distances, e.g., above central
Europe, which might also influence the following comparisons, but at the same time it
confirms that the satellite retrievals over here are plausible and reliable.

Figure 17 shows the POD and the FAR for the different retrievals and accumulation
rules with respect to different subsets of the model ensemble. Furthermore, offsets up to
100 km are taken into account, i.e., an ash-loaded grid cell of the simulation is considered
detected if the retrievals find ash within the given radius, and a retrieved ash-loaded
cell is considered a false alarm if no ash is modeled within the same radius. VADUGS is
found to have the smallest POD and FAR, whereas both metrics are larger for VACOS but
decrease for more conservative accumulation and threshold rules. Increasing the offset
distance leads to significant increases in POD, whereas the decrease of FAR is mostly
rather small. When increasing m′col, thrs, the POD as well as the FAR increase. The latter is
explained by samples with m′col < m′col, thrs but mcol > mcol, thrs, existing either because of
overestimation by the retrievals, or in the case of the subset with m′col, thrs = 0.2 g m−2 due
to mcol, thrs = 0.1 g m−2, such that samples with correctly retrieved mass loads in between
those two values lead to false alarms. Considering m′col ≥ 0.01 g m−2 and an offset of
100 km leads for VADUGS to a POD of ~30% and a FAR of 0.02%, whereas VACOS (with
mcol, thrs = 0.2 g m−2, fthrs = 0.5) has a POD of close to 60% at a FAR of about 2%. The PODs
increase by ~20% for m′col ≥ 0.1 g m−2 and by 25–30% for m′col ≥ 0.2 g m−2. In the latter
case, the POD of VACOS is nearly 90% and the FAR is 2–3%.
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Figure 16. mcol (red) according to the median of a model ensemble (a), VACOS (mcol, thrs = 0.1 g m−2 and 0.2 g m−2,
fthrs = 0.5; b and c) and VADUGS (mcol, thrs = 0.1 g m−2, fthrs = 0.5; d) for three scenes (1: 13 May 2010, 00:00 UTC;
2: 14 May 2010, 00:00 UTC; 3: 15 May 2010, 12:00 UTC); for the model mcol < 0.01 g m−2 is not shown; cirrus presence
according to COCS is indicated (blue).
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Figure 17. Estimations of the POD and the FAR for the detection of volcanic ash using mcol of VACOS (connected by red,
blue and violet lines) and of VADUGS (green line) applying different thresholds and accumulation rules (see text); different
thresholds for the model data are used, e.g., only samples with m′col ≥ 0.01 g m−2 (a), ≥0.1 g m−2 (b) or ≥0.2 g m−2 (c) are
classified as ash-containing; only pixels in absence of cirrus clouds are used, ca. 66,000 in total; different offset distances
between the model and the satellite data are considered and indicated by the marker color (see text).

Table 5 gives the MAPE and MPE for the retrieval of mcol for VADUGS and VACOS,
different accumulation and threshold rules and different subsets of the modeled data, not
considering any distance offsets. For m′col ≥ 0.01 g m−2 the MAPE is around 100% and
the MPE is −96% for VADUGS, whereas for VACOS the MAPE is higher (106–138%) and
the MPE is less negative (−26 to −83%), i.e., the underestimation is smaller compared to
VADUGS. However, considering only grid cells that are classified as ash-contaminated by
the model and the retrieval, i.e., m′col and mcol ≥ 0.2 g m−2, the MAPE and MPE of VADUGS
change to 65% and −60%, respectively. Using the same accumulation and threshold
(mcol, thrs = 0.1 g m−2, fthrs = 0.5) for VACOS leads to a MAPE of only 57% and a MPE of
0%; thus, the retrievals of VACOS are in better agreement with the model results than those
of VADUGS, indicating that VACOS is more reliable for these mass concentrations.

Table 5. Comparison of the mcol retrieval of VADUGS and VACOS against the model ensemble median; MAPE and MPE
of different subsets depending on m′col from the model ensemble and mcol from the satellite retrieval are considered; for
VACOS a mass extinction coefficient at 10.8 µm of 200 m2 kg−1 is considered for the conversion of τ10.8 to mcol; different
accumulation rules and thresholds are used for the satellite retrievals; pixels with cirrus cloud presence are excluded.

Algorithm Accumulation Rule m′col ≥ 0.01 g m−2 m′col ≥ 0.2 g m−2 m′col and mcol ≥ 0.2 g m−2

(mcol, thrs; fthrs) Samples MAPE MPE Samples MAPE MPE samples MAPE MPE

VADUGS 0.1 g m−2; 0.5 222,932 99% −96% 63,595 94% −94% 6201 65% −60%

VACOS 0.1 g m−2; 0.5 221,663 138% −26% 63,363 79% −56% 26,200 57% 0%

VACOS 0.2 g m−2; 0.5 221,633 127% −52% 63,357 87% −62% 21,331 60% 12%

VACOS 0.2 g m−2; 0.9 221,663 106% −83% 63,363 94% −76% 12,006 68% 25%

6. Unraveling the Black Box: How Do the ANNs Work?

In this section, we aim to shed light upon the working principles of our ANNs.
Therefore, we first perform additional radiative transfer calculations for different ash
cloud settings to investigate how the brightness temperatures (differences) depend on
the ash cloud properties and show examples on how to deduce those properties from
different combinations of channels. Second, we analyze the importance of the different
input features of the ANNs with respect to their performance and connect these results
with the conclusions drawn from the simulations.

A single, homogeneous ash layer of geometrical thickness 1 km without meteoro-
logical clouds is assumed; mcol is varied to be 0.1–1000 g m−2 and ztop is 3–12 km above
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ground. The volcanic ash has the refractive index of Eyjafjallajökull ash [14], a log-normal
size distribution with reff =0.6 µm, 3 µm and 6 µm, s = 1.5 and a representative shape
distribution of spheroids as considered by Piontek et al. [3]. The brightness temperatures of
the infrared channels of SEVIRI are simulated for the different ash clouds 500 times for dif-
ferent atmospheric settings and geographical locations in 2010 with the methods outlined
in Piontek et al. [2]; finally, the median is determined. Figure 18 shows the dependence of
the brightness temperatures on mcol. Panel (a) shows (for ztop = 9 km and reff = 0.6 µm)
that the brightness temperature decreases with increasing mcol. Clearly visible are the
atmospheric window channels (BT8.7, BT10.8, BT12), which exhibit a S-curve behavior with
plateaus for mcol < 0.1 g m−2 and mcol > 100 g m−2. The water vapor channels (BT6.2,
BT7.3) reach saturation at higher mcol. The absolute changes in brightness temperature are
largest for the atmospheric window channels, about half as large for BT7.3, BT9.7, BT13.4
and smallest for BT6.2. The reason is that all brightness temperatures are around 240 K
for a thick ash layer (e.g., mcol = 100 g m−2) which dominates over all other atmospheric
constituents, whereas in the absence of an ash layer the brightness temperature depends on
the impact of the atmospheric gases on the different channels. Panel (b) shows the results
for BT10.8 for reff ∈ {0.6, 3, 6}µm and ztop ∈ {3, 6, 9, 12} km. It shows that with increasing
ztop the asymptotic value of BT10.8 at large mcol decreases (from roughly 280 K to 220 K),
as the opaque ash layer completely hides the surface and the top of atmosphere brightness
temperature is mostly determined by the atmospheric temperature at ztop, which decreases
with increasing ztop within the troposphere. The influence of reff is smaller and mainly
visible in the intermediate regime (i.e., for mcol ∈ [1, 30] g m−2), where BT10.8 is smallest
for reff = 3 µm and largest for 6 µm. This can be understood from the size dependence of
the mass extinction coefficient, which is largest for reff = 3 µm and smallest for 6 µm with
respect to the three considered reff [2]. Note that both an increase in ztop and in mcol leads
to a lower BT10.8.

Figure 18. Median brightness temperature of different SEVIRI channels averaged for 500 simulations (see text); (a) brightness
temperatures for an ash cloud with ztop = 9 km and reff = 0.6 µm for different mcol, (b) BT10.8 for different ztop and reff.

Figure 19 shows combinations of different brightness temperatures and brightness
temperature differences for the same simulations. The size of the markers encodes mcol.
Markers of constant ztop and reff but different mcol are connected by black, blue and violet
lines for reff =0.6 µm, 3 µm and 6 µm, respectively, whereas the linestyle denotes ztop.
Additionally, points of constant mcol, reff and variable ztop are connected by red lines,
and points of constant mcol, ztop and variable reff by green lines. Thus, Figure 19 shows
whether the variation of different parameters leads to similar behaviors with respect to
certain brightness temperatures (differences). Panel (a) shows BT10.8 against BTD10.8–12;
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this combination has often been studied [37,38]. For mcol < 3 g m−2 an increase in mcol
(along the black lines) reduces BT10.8–12 and BTD10.8–12; the latter is related to the spectral
dependence of the mass extinction coefficient of volcanic ash [3]. An increase in ztop
(along the red line) also reduces BT10.8 and leads overall to a similar change in this two-
dimensional phase space, i.e., the black and the red curves are parallel and lie on top of each
other. However, for mcol > 3 g m−2 the directions of these curves deviate as BTD10.8–12
vanishes if the ash cloud becomes opaque in the thermal infrared; thus, mcol and ztop can
be distinguished. In (c), BT13.4 and BT12−13.4 are combined. Here the black and the red
curve proceed in different directions already for mcol < 1 g m−2 and allow the separation
of the influence of mcol and ztop: Increasing either of the two quantities reduces BT13.4,
but increasing ztop changes BT12 and BT13.4 similarly, thus BTD12−13.4 shows only minor
changes. Yet, increasing mcol leads to a reduction of BTD12−13.4, which is ~20 K in the
absence of volcanic ash due to the impact of carbon dioxide (see Figure 18), but vanishes as
the ash cloud becomes opaque. In principle, the same behavior is visible for reff = 3 µm
in (b) and (d), but the curves corresponding to different ztop are located closer together.
Note that for reff = 6 µm (violet curve) BTD10.8–12 is positive independent of mcol for
ztop = 9 km [3,38].

Figure 19. Combinations of the medians of different brightness temperatures and brightness temperature differences,
calculated from 500 simulations for each volcanic ash cloud (see text); mainly two different reff are used: 0.6 µm (a,c,e,g) and
3 µm (b,d,f,h); mcol is given by the size of the markers; markers with constant ztop and reff but different mcol are connected
by black, blue and violet lines for reff =0.6 µm, 3 µm and 6 µm, respectively; the linestyle encodes ztop; points of constant
mcol, reff and variable ztop are connected by red lines, and points of constant mcol, ztop and variable reff by green lines.

The variation of brightness temperatures (differences) due to reff is shown by the green
lines as an example. In (a) and (c), reff cannot be determined easily as it is entangled with
mcol and ztop. Therefore, we consider BT8.7, BT9.7 and BT10.8, which are located at the typical
absorption peak of volcanic ash and which are influenced differently depending on the
particle size [3]. Panel (e) shows BT10.8 against BTD8.7−10.8. Here reff = 0.6 µm mostly leads
to BTD8.7−10.8 < 0, in contrast to reff =3 µm and 6 µm (except for mcol < 1 g m−2, but even
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there the reff can be separated). Panel (g) shows BTD9.7−13.4 on the y-axis. The blue curve
for reff = 3 µm is convex, whereas the violet curve for reff = 6 µm is concave. A threshold at
roughly −1.5 K with respect to BTD9.7−13.4 would allow to separate the different reff except
for mcol > 30 g m−2. To summarize, it is possible to disentangle the physical quantities
mcol, ztop and reff using the MSG/SEVIRI channels in the thermal infrared and exploiting
the dependence of the mass extinction coefficient of volcanic ash on the wavelength and
the particle size as well as the relatively constant impact of other atmospheric gases (e.g.,
carbon dioxide).

The actual working principles of ANNs are hard to determine. However, one can
try to quantify the importance of the individual input features for each ANN and thereby
deduce which physical principles are exploited and which functions might be implemented
internally. Neglecting those features and retraining the ANNs might also allow to simplify
the algorithms [39,40]. We define two metrics: The first, Mx, is the relative contribution of
the xth input neuron to the total weight between the input layer and the first hidden layer,
defined as

Mx =

√
∑m

j=0 w2
x,j

∑n
i=0

√
∑m

j=0 w2
i,j

(1)

for an input layer of n neurons, a first hidden layer of m neurons and the connecting weights
wi,j [10]. The expectation is that the weights of unimportant features will vanish during
training such that they have no impact on the calculation of the ANNs. However, in case
of multiple hidden layers it might be possible that the impact of a feature significantly
changes in the subsequent layers. Therefore, we consider a second metric: the relative
change in loss, Kx, when a feature is set to zero (simulating wx,j = 0 for all j ∈ [1, m]) for
the complete test data set, i.e.,

Kx =
Lx − L0

L0
(2)

with L0 being the loss (here the mean squared error for regressions and the categorical
cross entropy for the classification) for the full test data set, whereas Lx is the loss for the
test data set when setting the xth input to zero. When dropping an unimportant feature
Lx should not change significantly, no matter whether it has vanishing weights already
between the input and the first hidden layer or deeper in the network. However, dropping
an important feature that is necessary for the calculation of the ANN will lead to a worse
performance and, therefore, a larger loss Lx.

Figure 20 shows Mx and Kx for all four ANNs and their input features. The two
metrics quantitatively lead to different results. Whereas Mx shows for all features always
at least a small value, Kx produces relatively large contrasts; thus, using Kx it becomes
more obvious whether an input is important or not. However, qualitatively both methods
lead to similar pictures: For example, for the classification both metrics (a, b) indicate BT10.8
to be the most important of all brightness temperatures. Compared with the results of the
other ANNs also the total column water and the total column water vapor appear to be
important, and finally the viewing zenith angle.

For the τ10.8 retrieval (c, d) only ash-loaded samples are considered, with BT12 being
the most important channel. Furthermore, BT8.7, BT10.8 and BT13.4 are prominent in both
metrics. This is in agreement with the conclusions drawn from Figure 19. Compared to
the retrievals of ztop and reff also the total column water and water vapor have significant
impact on Kx (d); they might be used to take the corresponding atmospheric constituents
into account. For the ztop retrieval, Mx (e) implies BT8.7, BT9.7, BT10.8 and BT13.4 to be the
most important brightness temperatures, and furthermore τ10.8 and surprisingly the day
of year variables have large metrics. However, generally the contrast is not very large
between the features. Kx (f) however points out BT9.7, BT13.4 and τ10.8. The importance
of BT13.4 is again in agreement with the conclusions from Figure 19. The large values for
τ10.8 show that the performance of the ztop algorithm heavily depends on the accuracy
of the τ10.8 retrieval. For the reff retrieval, Mx (g) slightly highlights BT8.7, BT12, BT13.4.
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From the auxiliary features the latitude, the cosine of the viewing zenith angle, τ10.8 and
the ash-free temperatures BT8.7, clr, BT10.8, clr and BT12, clr stand out. Again, the contrast
between features is overall small. Using Kx (h) leads roughly to the same result but stresses
the leading channels BT8.7, BT12, BT13.4 even more. The importance of these channels for
the derivation of reff was also visible in Figure 19.

Figure 20. Two estimations of the feature importance: the relative contribution to the total weight at the 1st hidden layer
(Mx; a,c,e,g) and the relative change in loss (Kx; b,d,f,h) (see text for definition) for all four ANNs and all input features,
including the viewing zenith angle (θvza), the hour of day (HOD) and the day of year (DOY); the loss function used for Kx is
is the mean squared error for regressions and the categorical cross entropy for classification; bars are alternately colored
blue and light blue for better readability.

Let us focus on Kx (b, d, f, h) now: From the auxiliary input features the total column
water vapor and the total column water play a minor role in the retrieval of τ10.8 and a larger
one for the classification; for height and effective radius retrievals they are unimportant.
The latitude appears to be important mostly for the ztop retrieval and the classification,
and the skin temperature only for the classification. The land/sea mask, the total column
ozone, the longitude, the day of year and the hour of day are rather negligible in all cases.

The metric Mx was also derived for the input features of the cirrus cloud retrieval
CiPS, which also consisted of several ANNs to derive, e.g., the cirrus optical depth or
the cloud top height, trained using collocated SEVIRI and CALIOP measurements [10].
Comparing the results CiPS and VACOS shows similarities, e.g., in both cases the brightness
temperatures play a dominant role, but the day of year and surface classifications are rather
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negligible. A noteworthy difference is that whereas the ztop retrieval of CiPS mainly
depends on latitude (as maximum cirrus cloud top height strongly depends thereon; thus,
a statistical effect), our results show only a smaller dependence on this quantity.

Generally, the metrics support the observations made before in Figure 19, with the
brightness temperatures having the major impact, whereas the auxiliary data seem to be
of minor importance (even the skin temperature). The low values for the geographical
coordinates imply that the ANNs do not learn the geography of the Earth as visible
from SEVIRI. Similarly, the low values for the land/sea mask show that even this rough
classification of the Earth’s surface remains unregarded. The low values for the times (day
of year, hour of day) indicate that the ANNs do also not learn seasonal or diurnal variations.
Reasons why the ANNs do not internalize those more evolved concepts might be a too
small training data set, or they are just not helpful enough as the central physical quantities
are rather obtained in the observations. For example, although the atmospheric state
undergoes a seasonal variation, volcanic ash clouds are independent of them as volcanic
eruptions can take place at any time of year. The hint that the ANNs do not learn the map
indicates that the method might be applicable to other regions of the Earth (e.g., using
GOES or Himawari satellites).

7. Conclusions

In a companion paper, we introduced a new algorithm to retrieve volcanic ash proper-
ties, i.e., a pixel classification, the cloud top height (ztop), the effective particle radius (reff)
and (indirectly from the optical depth at 10.8 µm, τ10.8) the mass column concentration
(mcol) from MSG/SEVIRI data using artificial neural networks; it is called VACOS (Vol-
canic Ash Cloud properties Obtained from SEVIRI [2]). The input data encompass the seven
brightness temperatures of the imager’s channels in the thermal infrared and additional
data from ECMWF. VACOS allows spatially and temporally highly resolved retrievals of
volcanic ash clouds independent of daylight.

For the validation, VACOS is compared to independent measurements. With respect
to CALIOP retrievals of the Puyehue-Cordón Caulle ash clouds (2011), VACOS shows quite
a large variability on a single pixel basis. A regional average over 5× 5 pixels reduces this
variability and leads to lower deviations between mcol of VACOS and the lidar retrieval:
the mean absolute percentage error (MAPE) of mcol decreases to 45% and the MAPE of ztop
is 18% when considering only samples with a lidar retrieval of mcol ≥ 0.2 g m−2. Therefore,
this averaging is recommended for future applications of the new algorithm. The VACOS-
derived mcol is in good agreement with the CALIOP measurements in most, but not all,
cases. Deviations are generally within the uncertainties of the reference data. ztop and reff
by VACOS have the correct order of magnitude but exhibit significant scattering, with ztop
being slightly underestimated (having a mean percentage error of −14%), whereas reff
lies within the regime constrained by literature values. The four category classification of
VACOS detects the volcanic ash clouds with the highest mass loads, but ash layers with
mcol less than ~0.4 g m−2 are often misclassified as meteorological clouds (which includes
liquid and ice water clouds). Similarly, SEVIRI images indicate that clear sky might be too
often misclassified as cloudy, but here dedicated retrievals of meteorological clouds should
provide help. Additionally considering a cirrus retrieval also shows that thick ice clouds
have the potential to completely hide the volcanic ash or distort their retrieval; thus, we
also recommend to consider VACOS results always together with a cirrus cloud retrieval to
avoid misinterpretations.

As another reference, airborne lidar and in situ data of an Eyjafjallajökull ash cloud
(2010) are used as obtained during two different measurement campaigns by FAAM and
DLR, respectively. The various measurement results for mcol, ztop and reff agree well,
considering that different instrumentation was used and different parts of the ash cloud
were probed. Main differences are a higher upper estimate of mcol according to the DLR
(roughly 2 g m−2 compared to mostly around 1 g m−2) and a higher upper limit for reff
in the FAAM data (2 µm compared to 1 µm); ztop estimates are up to ~6 km in both cases.
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For the most part, the VACOS retrievals of mcol and reff lie within the uncertainty intervals
of the airborne measurements, whereas ztop from the new retrieval scatters around the
reference values with deviations in the order of 1–2 km. Concurrent overestimations of ztop
and reff can be explained by low mcol in some cases, but not generally. The classification
algorithm correctly detects the ash cloud.

Results of a volcanic ash transport and dispersion multi model multi source term
ensemble simulating the eruption of Eyjafjallajökull (2010) are used to analyze the per-
formance of VACOS on large scales. Different accumulation rules are investigated when
regridding the satellite retrievals. Example scenes indicate that the model results and
the VACOS retrievals are in good agreement close to the volcano, but that there are dis-
placements of the ash clouds at larger distances, e.g., for ash clouds above continental
Europe; those might be caused by inaccuracies in the model calculations. As a consequence,
distance offsets up to 100 km are considered. The model ensemble covers a larger inter-
val of possible mcol than VACOS: mcol can be an order of magnitude larger in the model
calculations than in the VACOS retrieval in a surrounding of some 100 km around the
vent, whereas it can be more than one order of magnitude smaller at distances of >1000 km.
Considering only samples with mcol ≥ 0.2 g m−2 according to both the model ensemble
and VACOS results in a MAPE of ~60% for mcol of VACOS.

To further quantify the performance of VACOS, a simulated test data set similar to
its training data is used. The four category classification classifies correctly more than
94% of the simulated cases, except when both volcanic ash and meteorological clouds
are present, which reduces the amount of correct classifications to ~50%. Simplifying
classification results to a binary ash flag results in a probability of detection (POD) of close
to 100%. The retrievals of τ10.8, ztop and reff have mostly MAPEs of 10–100%. For τ10.8,
the MAPE is ~40% or less for ash layers with a true τ10.8 of 0.1 (corresponding to mcol of
0.3–0.7 g m−2) or more; the retrieval error of ztop is up to ~10% for ash layers above 5 km;
and reff has an error of up to 35% for true radii of 0.6–6 µm. The performance increases
with increasing τ10.8 and ztop of the ash layers. Thus, the greatest errors occur for the
thinnest and lowest ash clouds, for which the MAPE can even exceed 100%. No significant
differences exist between underlying land and sea surfaces, in contrast to the presence
of meteorological clouds (particularly if they are located above the ash layer), which can
increase the MAPE by up to one order of magnitude and decrease the POD by a factor
of two. Analysis of the geographical dependence shows that deserts lead to a decreased
performance for clear sky cases, e.g., the accuracy of the binary ash flag slightly decreases
(ca. 1%), whereas the MAPE for reff increases. An increased performance of the binary ash
flag is observable in the presence of clouds above areas that are typically cloudy, i.e., where
many cloudy samples are included in the simulated (training and test) data sets. The
retrievals of τ10.8 and reff show increased MAPEs with increasing viewing zenith angle,
whereas the MAPE of ztop increases with the absolute latitude. Using further simulated test
data sets, the dependence of the retrievals with respect to the ash layer(s) is investigated.
The (unretrieved) geometrical layer thickness and the presence of multiple layers might
introduce errors of about 30% for τ10.8, 5% for ztop, but are negligible for reff.

Volcanic ash detection can be performed using the binary ash flag or τ10.8/mcol and
corresponding thresholds. Using the simulated data shows that the detection ability of
the binary ash flag is better than the one using τ10.8, and both outperform the usage of the
brightness temperature difference between the channels centered at 10.8 µm and 12 µm;
using for mcol a threshold of 0.2 g m−2 and considering only ash layers with 0.2–1 g m−2

leads to a POD of more than 90% and a false alarm rate (FAR) of ca. 1%. For the CALIOP
data, higher PODs can be found when using mcol compared to the binary ash flag; a similar
threshold as before leads to a POD of ~70%. Using the model results as reference data, we
find for similar thresholds PODs of 20–85% and FARs of 0.3–3%, which strongly depend on
the accumulation rule and the allowed distance offsets. Note that the model result is not a
perfect representation of reality; therefore, POD and FAR should be regarded as metrics
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quantifying the agreement of model and retrieval results rather than performance metrics
attributed exclusively to VACOS.

VACOS is also compared to its direct predecessor VADUGS. The latter exhibits a
better detection performance on the CALIOP data and has a smaller FAR for the model
data, but it also misses significantly more modeled ash clouds than VACOS, especially also
ash plumes close to the vent. Whereas the mcol retrieval of VADUGS performs similar to
VACOS for the CALIOP data, it underestimates mcol compared to the airborne lidar and in
situ findings. The VADUGS retrieval of ztop is reliable only for ash clouds with mcol of the
order 1 g m−2 or larger. Overall, VADUGS seems much more sensitive to specific cases than
VACOS. In the end, we consider the importance of different input features of the VACOS
retrievals, showing that they are mostly dependent on the SEVIRI brightness temperatures,
and partly also on the viewing zenith angle as well as total column water and water vapor
estimates from ECMWF. Longitude, land/sea-mask and times have negligible impact on
the output.

In the future it would be desirable to further analyze the retrieval performance also
with respect to mineral dust. As volcanic ash and mineral dust share similar optical
properties due to the common high silica content, it is likely that VACOS might misclassify
dust as volcanic ash [7,41,42]. In this case, it would be interesting to see if VACOS could be
used to retrieve dust cloud properties as well. The aviation industry considers similar risks
for volcanic ash and for dust, hence a combined retrieval seems advantageous. Furthermore,
VACOS has been tailored for Meteosat-9/MSG2. The usage of the retrieval algorithm with
the currently operational MSG satellite as well as the satellites in other operation modes (i.e.,
rapid scan mode, Indian Ocean data coverage) should be investigated. As other infrared
imagers aboard geostationary weather satellites such as GOES-R [43], Himawari-8/9 [44]
and Fengyun-4A [45] share similar channels with MSG/SEVIRI one could also investigate
the transferability of VACOS to those instruments. The error of the VACOS retrievals
decreases when a local average is calculated. To expand on this idea, further processing of
the retrieval map seems desirable, e.g., to cluster ash-containing pixels and quantify the
resulting ash patches, or even track them in time. Possible fields of application of VACOS
include the Volcanic Ash Advisory Centers, the intercomparison with other volcanic ash
retrievals (as in [46]), calibrating and validating volcanic ash transport and dispersion
models [35,47–49] and flight planning for future in situ measurements [15]. Due to the high
spatial and temporal resolution, it can be used to track individual ash clouds to investigate
their lifecycle on timespans of days to weeks. In combination with information on liquid
and ice water clouds, aerosol-cloud interaction could be analyzed.

In summary, VACOS is well characterized and shown to be reliably applicable under
different atmospheric conditions and for various kinds of volcanic ash clouds. It can be
utilized for atmospheric research as well as for air space monitoring with respect to volcanic
ash. Operational use by the German weather service (DWD) as a follow-on of VADUGS
is planned.
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Appendix A. Metrics

Different error metrics are used in this work, derived from a set of n pairs of retrieved
values ri and corresponding true values ti. The mean squared error MSE is defined as

MSE =
1
n

n

∑
i=1

(ri − ti)
2. (A1)

The mean absolute percentage error MAPE is calculated by

MAPE =
100
n

n

∑
i=1

∣∣∣∣
ri − ti

ti

∣∣∣∣. (A2)

The mean percentage error MPE is

MPE =
100
n

n

∑
i=1

ri − ti
ti

. (A3)

To quantify the performance of a boolean retrieval we consider the probability of detection
POD and the false alarm rate FAR (also probability of false detection [50])

POD =
Ntp

Ntp + N f n
(A4)

FAR =
N f p

N f p + Ntn
(A5)

with Ntp being the number of true positives (here meaning that the retrieval signals the
presence of volcanic ash, which is really present), N f p the false positives (presence of ash is
signaled although none is present), Ntn the true negatives (absence of of ash is signaled
and none is present) and N f n the false negatives (absence of ash is signaled although it is
present). The performance of multi-category classifications is described by the accuracy
given as the number of correctly classified samples divided by the total number of samples.
For two categories, the accuracy simplifies to

accuracy =
Ntp + Ntn

Ntp + N f p + Ntn + N f n
(A6)

and if no negative samples are present, i.e., Ntn = N f p = 0, the accuracy equals the POD.
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Appendix B. Π-Sigmoid Distribution

The Π-sigmoid distribution was introduced by Alivanoglou and Likas [18] and is
defined as the difference of two sigmoid functions, i.e.,

Π(x) =
1

b− a

(
1

1 + e−λ(x−a)
− 1

1 + e−λ(x−b)

)
(A7)

with a and b > a parameterizing the positions of the rise of the corresponding sigmoid,
and λ > 0 describing their steepness. The expectation value is (a + b)/2 and for the the
standard deviation σ holds

σ2 =
b3 − a3

3(b− a)
− a2 + b2

4
− ab

2
+

π2

3λ2 . (A8)
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Chapter 4

Conclusions and outlook

The focus of this cumulative dissertation is the development of a new method for the
detection of volcanic ash and the retrieval of the corresponding ash cloud properties using
satellite remote sensing with the aim to be applicable to any volcanic eruption and volcanic
ash type as far as possible. This retrieval is called VACOS; it uses brightness temperature
measurements from MSG/SEVIRI and is based on artificial neural networks. VACOS
provides information on no-fly zones for aviation in the event of a future eruption and
reference data for numerical ash transport and dispersion models.

In P1 the microphysical and petrological properties of volcanic ash were considered
and especially their impact on the complex refractive index and the resulting scattering
and absorption optical properties. Building upon these results, P2 described the creation
of an extensive training data set and the development of VACOS. Finally, P3 includes
the validation and characterization of the method as well as further comparisons with
numerical model calculations (which are extended in P5 and P6). In the following, the
main results are summarized in light of the three scientific questions/hypotheses formulated
in Section 1.2 and corresponding outlooks are given. The abbreviations from P3 are used,
with the mass column concentration mcol, the ash optical thickness at 10.8 µm τ10.8 (or
any other wavelength for that matter), the ash cloud top height ztop, the effective ash
particle radius reff , the brightness temperature of the MSG/SEVIRI channel centered at the
wavelength λ being BTλ, and the brightness temperature difference between the channels
centered at the wavelengths α and β denoted as BTDα−β. Primed quantities always denote
the reference data. The retrieval performance is described by the mean absolute percentage
error MAPE, the probability of detection POD, the false alarm rate FAR, and the accuracy
denoting the fraction of correctly classified samples.

1. For volcanic ash, the petrological composition and the effective particle radius have a
similarly strong impact on its optical properties in the thermal infrared spectrum, such
that both need to be accounted for in radiative transfer.

To confirm this hypothesis, a new method for calculating the complex refractive index of
volcanic ash in the thermal infrared based on its petrological composition was outlined
in P1. It assumes a volume-weighted averaging approach of the refractive indices of the
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individual components (including the crystalline minerals, the volcanic glasses and the
voids from exsolved gases) to derive an effective refractive index. The refractive indices of
the minerals as derived from laboratory measurements were collected from the literature.
The mineral phase distribution was related to the bulk silica content. Using the effective
refractive indices of volcanic ash from Deguine et al. (2020), the new method was used to
obtain the refractive indices of different volcanic glasses. Finally, a wavelength-dependent
linear regression of both parts of the refractive index of volcanic glass with respect to the
bulk silica content was performed; the resulting functions were used to derive volcanic glass
refractive indices for various bulk silica contents.

Combining the refractive indices of the minerals with the ones derived for volcanic glass,
the new method allowed to investigate the impact of different petrological compositions on
the effective refractive index (see Figure 8 in P1). Varying the silica content, the glass-to-
crystal ratio and the porosity within typical ranges, it was found that the porosity can have
the largest impact; as the porosity can be in excess of 80 % with respect to the ash particle
volume, the peak in the imaginary part of the refractive index could be reduced by up to
~80 %. Generally, an increased porosity led to a flattened real and a reduced imaginary
part of the refractive index and, thus, reduced its spectral signature in the thermal infrared.
Increasing the silica content from 45 wt.% to 75 wt.% increased the spectral variability; the
peak in the imaginary part of the refractive index rose correspondingly by ~50 %. The
glass-to-crystal ratio had the smallest impact on the refractive index; increasing the glass
fraction with respect to the solid part of the ash particle from 45 % to 100 %, the variations
remained mostly within the uncertainty of the volcanic glass refractive index.

The glass fraction also influenced the bulk density of the volcanic ash, and both the
bulk density and the refractive index impacted the optical properties; only the composi-
tions without porosity but a non-zero glass fraction were considered in the rest of the study.
Still, the single scattering albedo and the asymmetry parameter were mainly affected by
the particle size (for reff being 0.6–6 µm, Figure 9 in P1) and experienced only minor con-
tributions from the composition (Figure 12 in P1) and the shape (different spherical and
spheroidal shape distributions, Figure 10 in P1). Of course, as pointed out in Section 2.1.3,
ash particles are generally neither spherical nor spheroidal and the corresponding approx-
imation loses validity for larger particles (Kylling et al., 2014). Considering the mass
extinction coefficient (Figure 12 in P1), one could see that the glass-to-crystal ratio had a
notable impact and even more so the silica content; the latter could induce a variability
of a factor of 1.5–3 when comparing silica contents of 45 wt.% and 75 wt.%, especially for
small particles (reff = 0.6 µm). Different particle sizes (e.g., reff = 0.6 µm and 6 µm) led
to a variability of a factor of ~4 (Figure 9 in P1). Thus, the influences of composition
and particle size on the mass extinction coefficient are indeed comparable, whereas the
investigated shapes are of subordinate importance (Figure 10 in P1).

The results stress that the volcanic ash composition is of significant importance and
cannot be neglected with respect to the particle sizes. Similar conclusions were also drawn
by Prata et al. (2019) when investigating the dependence of the volcanic ash refractive
index on the chemical composition. The new extensive data set of refractive indices and
optical properties established in P1 can be used to develop new volcanic ash retrievals (as
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was done in this work) or to estimate uncertainties of existing methods.
Future work to better validate the proposed method would be beneficial. The few

laboratory measurements of volcanic ash refractive indices provide analyses of the chemical
composition for the used samples, but petrological compositions are missing in all cases
(Deguine et al., 2020, Pollack et al., 1973, Reed et al., 2018); corresponding studies are
necessary. Generally, the impact of the petrological composition on the refractive index
compared to the impact of the chemical composition needs further attention. Comparing
measurements of the refractive index of real ash samples (i.e., including minerals) with
remelted and then quenched glass samples (i.e., with the same chemical composition but
without crystalline structures) would allow to do so; such approaches have been used before
to investigate the impact of crystallinity in other respects (e.g., Maters et al., 2019). The
same attention must be paid to the effects of microphysical properties on the refractive
index, e.g., the internal porosity or thin layers of water/ice/H2SO4 covering the ash surface.
In this context it might also be worth quantifying the uncertainty due to different effective
medium theories to calculate the effective refractive index (Kolokolova and Gustafson,
2001). A notable problem (discussed also by Deguine et al., 2020) for the experimentally-
determined volcanic ash refractive indices is the assumption of the particle shape: Reed
et al. (2018) assumed the Rayleigh continuous distribution of ellipsoids whereas Deguine
et al. (2020) assumed Mie theory, leading in parts to large differences. Clearly, potential
inaccuracies directly carry over to subsequent studies such as the one presented here or by
Prata et al. (2019).

2. What is the information content of typical spaceborne geostationary infrared observa-
tions by passive imagers like MSG/SEVIRI with respect to volcanic ash cloud proper-
ties?

To answer this question, the refractive indices and the optical properties of volcanic ash
from P1 were used to perform various radiative transfer calculations in P3. As pointed out
in the previous answer, the particle shape had only minor impact on the optical proper-
ties (mass extinction coefficient, single scattering albedo, asymmetry parameter) for small
particles (reff = 0.6 µm) with relative differences of 5–10 % for different shape distribu-
tions (Figure 10 in P1). In the considered particle size range, particle shape was of least
importance compared to composition and size (Table 4 in P1) and, thus, is rather not
retrievable using MSG/SEVIRI. Instead, a representative shape distribution was chosen
for all subsequent calculations.

In the previous answer it was mentioned that the composition had a significant im-
pact on the optical properties (Figure 12 in P1) which is carried over to the top-of-
atmosphere brightness temperatures. A simple model of a thin ash layer (mcol = 0.5 g m−2,
ztop ≈ 10 km, reff = 0.6 µm) as typically observed at distances in the order of 1000 km
was considered (Figure 13 in P1). Decreasing the silica content from 75 wt.% to 45 wt.%
decreased BT11 by ~2.5 K and BTD11−12 by ~2 K. The impact of the glass-to-crystal ra-
tio on the same brightness temperatures was about one order of magnitude smaller, with
variations of 0.2–0.3 K; this is comparable to typical instrumental noise of MSG/SEVIRI
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(EUMETSAT/3, Schmetz et al., 2002b). Thus, the glass-to-crystal ratio might not be re-
trievable from MSG/SEVIRI measurements, but it might be possible to estimate the silica
content from satellite. In fact, Ishimoto et al. (2016) used high-resolution spectra from
the Atmospheric Infrared Sounder (AIRS) to derive the imaginary part of the volcanic ash
refractive index from various ash clouds, and Ishimoto et al. (2021) used IASI spectra to
determine the refractive index of different ash clouds based on a set of 21 different ash
refractive indices.

The effective radius reff was retrieved from moderate resolution radiometers (e.g., Prata,
1989, Wen and Rose, 1994). Calculating corresponding optical properties (for reff of 0.6–
6 µm) confirmed that this is possible (Figure 9 in P1): in the case of Eyjafjallajökull
ash (from Deguine et al., 2020), the peak of the mass extinction coefficient at 9–12 µm
shifted and increased with decreasing reff , whereas the asymmetry parameter decreased by
a factor of ~4. Also the single scattering albedo decreased significantly for the smallest
particles. Consequently, reff had also a notable impact on the brightness temperatures.
E.g., considering an Eyjafjallajökull ash layer with mcol between 1–30 g m−2 and ztop = 9 km
led to variations in BT10.8 of 5–10 K due to reff (Figure 18 in P3). Note that in this
case, there was not a strictly monotonic relation between BT10.8 and reff , i.e., BT10.8 for
reff = 0.6 µm lays between the corresponding values for 3 µm and 6 µm.

The retrieval of mass load mcol or the optical depth τ10.8 (they are equivalent as they
can be converted into each other using the mass extinction coefficient if the ash layer has
constant optical properties) was also performed regularly (e.g., Wen and Rose, 1994, Yu
et al., 2002). For an Eyjafjallajökull ash layer with ztop = 9 km and reff = 0.6 µm, brightness
temperature measurements in the atmospheric window were found to be sensitive to mcol
between ~0.1 g m−2 and 100 g m−2 (Figure 18 in P3), which covers typical mcol of ash layers
even at distances of few kilometers from the vent (see Section 2.1.2). The atmospheric
window brightness temperatures decreased from ~290 K to ~240 K with increasing mcol.
Beyond the mcol thresholds, brightness temperatures remained relatively constant. Note
that some channels (e.g., the water vapor channels) showed variability even in excess of
100 g m−2. Increasing the ztop from 3 to 12 km lowered BT10.8 at the high-mcol plateau
from ~280 K to ~220 K (Figure 18 in P3). This indicates the sensitivity to ztop, and that
also the sensitivity to mcol increases with increasing ztop (this was rediscovered at the
characterization of VACOS with its retrieval errors decreasing with increasing ztop).

Sounding of volcanic ash clouds is usually not performed with radiometers such as
MSG/SEVIRI. The impact of varying geometrical thicknesses (0.5–3 km) on MSG/SEVIRI
brightness temperatures for an Eyjafjallajökull ash layer with mcol = 10 g m−2, ztop = 9 km
and reff = 0.6 µm was simulated (Figure 8 in P3). Comparing with a geometrical thickness
of 1 km, a thinner layer of 0.5 km lowered the brightness temperatures by up to 1 K (as
relatively more ash mass was in higher/colder parts of the atmosphere), whereas thicker
layers of 2 km and 3 km increased the brightness temperatures by up to 2 K and 4 K,
respectively (relatively more ash in lower/warmer parts of the atmosphere). The impact
was smallest in the water vapor channels. More generally, the sensitivity to the vertical
mass profile was investigated by splitting the 1 km thick ash layer into multiple layers with
overall constant mcol and ztop as before (Figure 6 in P3). Lowering the bottom half of the
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layer by 0.5 km or dividing the single layer into two or three layers of higher mass volume
concentrations but with fixed cloud bottom height led to absolute changes in the brightness
temperatures of < 1 K with respect to the single layer configuration. However, lowering
the bottom half by 2 km increased the deviations in the brightness temperatures up to
3 K. Again, the water vapor channels were affected the least. Finally, comparing different
vertical mass profiles for the single layer (i.e., uniform, π-sigmoid and normal distributions)
showed that the resulting impacts on the brightness temperatures are negligible (Figure 7 in
P3). Thus, MSG/SEVIRI is sensitive to typical variations in the geometrical thickness and
multi-layer structures, but much less to more realistic (i.e., continuous) vertical profiles of
single layers. The impact on the MSG/SEVIRI brightness temperatures seems to be caused
by the relocation of ash mass to higher/colder or lower/warmer parts of the atmosphere
and the corresponding changes in the ash layer temperature and emitted radiation.

Overall, the sensitivity of MSG/SEVIRI brightness temperatures to mcol, ztop and reff
was found to be largest; thus, these quantities are retrieved by the new algorithm VACOS.
The vertical mass profile (i.e., geometrical thickness and multiple layers) and the composi-
tion (specifically, the silica content) had comparable, smaller impact on the satellite signal;
their estimation might be possible under certain, favorable conditions (e.g., homogeneous
Earth surface; absence of meteorological clouds; perhaps holding some macrophysical pa-
rameters fixed). The exact vertical profile (i.e., with a continuous mass distribution for
layers of fixed vertical extent), the particle shape and the glass-to-crystal ratio had the
smallest impact in the considered cases. An important issue to be tackled in more detail
in future studies involves the particle size. As confirmed in P1 (e.g., Figure 9), BTD10.8−12
might be non-negative for reff ≥ 6 µm (also Prata, 1989, Wen and Rose, 1994) which can
lead to an underestimation of retrieved reff and mcol (Stevenson et al., 2015). Further-
more, Mackie et al. (2016) point out that the particle size distribution generally needs
more attention, as it is a central input data for remote sensing algorithms and transport
and dispersion models. However, currently available estimations of it (by remote sensing
methods, in situ or in the field) were done with different measurement techniques which
exhibit significant differences in their particle size sensitivity and the resulting particle size
distributions.

3. How accurate is the general-purpose volcanic ash satellite retrieval VACOS for
MSG/SEVIRI using artificial neural networks with respect to the detection of volcanic
ash clouds and the derivation of their mass column concentration, cloud top height and
effective particle radius?

VACOS was developed in P2 with the aim to build a general-purpose volcanic ash retrieval
for MSG/SEVIRI using artificial neural networks. This included mainly three key points:
background atmospheric data were collected from several years and checked to cover daily,
annual and inter-annual variabilities; macrophysical ash layer properties covered the full
range of typical values; and an extensive set of volcanic ash optical properties was utilized
to cover various types of ashes, including variations in the silica content, the crystallinity
and the particle size. Including such a wide range of possible cases constitutes the main
difference to the predecessor VADUGS and other existing ANN-based volcanic ash satel-
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lite retrievals. VACOS retrieves τ10.8 (convertable to mcol), ztop, reff and a four-category
classification (clear sky, only liquid and ice water clouds, only volcanic ash clouds, both
volcanic ash and liquid/ice water clouds); based on the latter, a binary ash flag was de-
rived. To answer the question on the performance of VACOS, a comprehensive validation
was performed in P3 with respect to different eruptions; different ash clouds; different
geographical locations; and ash in the presence of ice water clouds.

VACOS was applied to ash clouds of the Eyjafjallajökull eruption in 2010 and the
Puyehue-Cordón Caulle eruption in 2011. The former was investigated in situ and using
an airborne lidar by the Deutsches Zentrum für Luft- und Raumfahrt (DLR) and the Facil-
ity for Airborne Atmospheric Measurements (FAAM), whereas the latter was observed by
the spaceborne lidar CALIOP. The two cases were quite different: the Icelandic Eyjafjalla-
jökull, located in the northern Hemisphere, emitted ash with a silica content of ~59 wt.%
and the considered ash cloud was located in the mid-troposphere with a ztop ≈ 6 km. The
Chilean Puyehue-Cordón Caulle emitted ash with a silica content of ~70 wt.% up to ztop
of 10–15 km, i.e., up to the tropopause/lower stratosphere. However, mcol ≲ 1.5 g m−2 was
similar. In both cases, VACOS retrievals of mcol were in good agreement with the reference
data (Figure 10 and 13 in P3). With respect to the CALIOP retrieval, mcol of VACOS
had a MAPE of ~50 % for m′

col ≥ 0.2 g m−2 (Table 4 in P3). VACOS retrievals for ztop
were of the same order of magnitude as the reference values, although underestimations
of few kilometers appeared sporadically; compared to the CALIOP results, the MAPE of
ztop was 18 % for m′

col ≥ 0.2 g m−2 (Table 4 in P3). In the Eyjafjallajökull case, retrieved
reff were generally within the uncertainty range of the in situ measurements (Figure 13 in
P3). The classification algorithm correctly classified the thickest ash clouds, but tended to
fail for thinner layers. Notably, the predecessor VADUGS performed rather bad: mcol was
in reasonable agreement with the CALIOP data for the Puyehue-Cordón Caulle, but was
strongly underestimated in the Eyjafjallajökull case; ztop was too low in all scenes except
for a few situations related to rather thick ash clouds.

The performance of VACOS with respect to different ash clouds was investigated by
performing systematic tests of the retrievals with respect to τ ′

10.8, z′
top and r′

eff using a
data set of synthetic observations which was created similarly as the original training data
(Figure 1 in P3). In general, MAPEs of τ10.8, ztop and reff decreased with increasing τ ′

10.8
and z′

top from ~100 % for τ ′
10.8 ≈ 0.03 / ztop ≈ 1 km to ≲ 30 % for τ ′

10.8 ≈ 10 / ztop ≈ 18 km.
Selecting τ ′

10.8 ≥ 0.1 (to consider typical values for an ash cloud) led to a MAPE of ≲ 40 %
for the retrieval of τ10.8; z′

top ≥ 5 km resulted in a MAPE of ≲ 10 % for ztop; and for r′
eff

of 0.6–6 µm one ended up with a MAPE of ≲ 35 % for reff . The accuracy of the binary
ash flag increased from 20–30 % for τ ′

10.8 ≈ 0.02 to >90 % for τ ′
10.8 > 0.1, and from ~50 %

for z′
top < 1 km to >90 % for z′

top > 3 km. The dependence on r′
eff was much smaller. As

described in the answer to the previous scientific questions, radiative transfer simulations
were performed to investigate the impact of the vertical profile, specifically the presence
of multiple layers and variations in the geometrical thickness under the assumption of
constant mcol and ztop (Figure 6 and 8 in P3). On average, minor sensitivity was found for
the retrieval for reff , but an impact of the order of ~5 % for ztop and ~30 % for τ10.8/mcol.

Generally, the sensitivity of the retrievals to the underlying surface type (i.e., land or
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sea) was insignificant (Figure 1 in P3), but the geographical location had some impact
(Figure 4 in P3): Considering only scenes free of meteorological clouds, the MAPE of
τ10.8 increased from ~20 % at the sub-satellite point to ~40 % at viewing zenith angles
>60°, presumably due to the increased optical path. The MAPE of ztop increased with
the absolute value of the latitude, i.e., from 5–10 % at the equator to 15–20 % at latitudes
of ~50° N/S; here, one reason could have been differences in the atmospheric temperature
profile between the equatorial and the polar regions (i.e., overall lower temperatures and
tropopause at higher latitudes) together with a training data set whose sample density
had a maximum at the sub-satellite point. The MAPE of reff—being generally ~15 % at
the center of the MSG/SEVIRI disc—increased to 17.5–20 % above the Sahara, probably
due to similar optical signatures caused by mineral dust surfaces and volcanic ash aerosol
(Watkin, 2003). Similarly, the binary ash flag’s accuracy/POD exhibited a decrease (from
~100 % to 98.5–99.5 %) with a simultaneous increase in FAR (from close to 0 % to ~0.008 %)
above the Sahara (Figure 3 in P3).

As explained in the introduction, volcanic ash is commonly detected by BTD11−12 < 0 K
(Prata, 1989); this spectral signature might also be used internally by VACOS. As ice clouds
produce a positive brightness temperature difference for the same channels (Gangale et al.,
2010, Inoue, 1985), they have the ability to effectively hide volcanic ash layers (Watkin,
2003). An example test case is the Eyjafjallajökull ash plume on 11 May 2010, 14:00 UTC,
for which ice was indicated by Weber et al. (2012) and the algorithm Cirrus Properties from
SEVIRI (CiPS, Strandgren et al., 2017a) with an ice water path of 1–5 g m−2 (Figure 15
in P3). Still, VACOS was able to detect the ash plume (with mcol up to ~3 g m−2) and the
retrieved mcol ≈ 1 g m−2 at the fringes was in good agreement with in situ measurements by
Weber et al. (2012), whereas ztop appeared to be overestimated where ice is present. Cirrus
clouds with ice water paths of roughly 10–30 g m−2 were also detected underneath the ash
layers of the Puyehue-Cordón Caulle eruption in 2011 by combining VACOS and CiPS
(Figure 10 in P3). In the two considered cases, increases in the retrieved ztop and reff were
found. In one case with an ice water path >20 g m−2, the ash cloud was not observed at all,
neither by the classification nor by the mcol retrieval. The situation was investigated more
systematically by using the simulated test data set. It was found that the increases of the
MAPEs of the retrievals in the presence of meteorological clouds (here defined to include
liquid and ice water clouds) were often only in the order of 10–20 % (Figure 1 in P3).
However, the MAPE of the retrievals increased significantly if the meteorological clouds
were above the ash layer, sometimes by roughly one order of magnitude compared to the
situation with the meteorological cloud below the ash (Figure 2 in P3). An exception were
the MAPEs of the retrievals of τ10.8, ztop and reff with respect to z′

top, which were lower for
meteorological clouds above than below for z′

top ≳ 10 km. Overall, even if meteorological
clouds were above, MAPEs were <100 % if τ ′

10.8 > 0.2 or z′
top > 1 km and for all considered

r′
eff , and <50 % if τ ′

10.8 > 0.5 or z′
top > 4 km. The accuracy of the binary ash flag fell below

50 % for τ ′
10.8 < 0.1 or z′

top < 2 km.
Ash detection can be performed using either the binary ash flag or the retrieved mcol

together with corresponding thresholds. Considering the POD and the FAR for different
thresholds for the simulated test data (Figure 5 in P3), the binary ash flag performed
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better than the mcol-based detection scheme (i.e., higher PODs at lower FARs), and
both outperformed a procedure based on BTD10.8−12. Considering only test samples with
m′

col ∈ [0.2, 1]g m−2 and for mcol a threshold value of 0.04 (which roughly equals 0.2 g m−2),
the POD was ~93 % and the FAR was ~1 %. However, the POD was only ~70 % for a
comparable calculation based on the Puyehue-Cordón Caulle reference data from CALIOP
(Figure 11 in P3).

To conclude, the validation showed that VACOS is able to perform with reasonable ac-
curacy over a wide range of atmospheric and geographic conditions as well as macro- and
microphysical volcanic ash properties. In particular, VACOS is preferred over its predeces-
sor VADUGS with respect to retrievals and a conventional threshold-based scheme using
BTD10.8−12 with respect to detections. Especially the satisfying results for two different
eruptions indicate that VACOS can be applied to arbitrary volcanic ash clouds. Remain-
ing uncertainties of a factor of ~2 are not untypical for volcanic ash-related measurements
(e.g., Marenco et al., 2011, Schumann et al., 2011). As indicated in the introduction, one
important field of application of volcanic ash retrievals is the comparison with ash trans-
port and dispersion models for configuration and validation. Here, satellite retrievals of
the Eyjafjallajökull eruption in 2010 were compared to the median of a model ensemble
(Figure 16 in P3). In contrast to VADUGS, the new algorithm VACOS was able to detect
ash plumes not only within the surrounding of the vent, but even at large distances, e.g.,
above continental Europe. An important outcome of the direct comparison was that the
simulated ash clouds might be mislocated at distances >1000 km with displacements of
few 100 km. This also stresses the importance of satellite retrievals of distal ash clouds
for air traffic control, as model simulations alone are not reliable enough in these cases; as
far as VACOS is concerned, an operational application at the German weather service is
planned. Further model comparisons were performed in P5 and P6.

Concerning further developments of volcanic ash retrieval capacities building upon VA-
COS, three pathways are available. First, the training data set could be expanded and the
ANNs retrained. An obvious choice would be the inclusion of SO2 which is often (but not
always) emitted together and collocated with volcanic ash (Carn et al., 2009, Thomas and
Prata, 2011) and influences the MSG/SEVIRI channels at 7.3 µm and 8.7 µm (Gray and
Bennartz, 2015). Scenarios with ice covering or being collocated with volcanic ash (Sec-
tion 2.1.3) could be improved: although the training data set might have included samples
with ash and ice at the same altitude by chance, the frequency of their occurrence might
have been underestimated with respect to reality, or the amounts of ash mass/particle
number relative to the ice water path might not have resembled real cases as no physical
relation was implemented. Also samples with layers of mineral dust could be included, as
dust shares similar refractive indices with volcanic ash due to their silica contents (Watkin,
2003); this might allow to train an additional ANN which differentiates between volcanic
ash and dust.

Second, one could leave the training data as is but modify the ANNs. P3 showed that
local averaging of the VACOS retrievals led to an overall better performance. Instead of
this averaging one could try to make the ANNs more robust in the first place, e.g., by
applying further regularization such as Gaussian noise to all inputs. Also further input
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data could be used to constrain the phase space, e.g., vertical temperature profiles from
models (Zhu et al., 2020). Using the training data set in its current form, strategies
such as bootstrap aggregating (Section 2.4) might improve the overall retrieval: one could
train multiple ANNs for each task using only a subset of the complete training data; the
retrievals of the resulting ANNs could then be combined to derive a final result. Another
possibility would be to use either temporally consecutive or spatially linked observations:
"close" measurements should share properties, and discontinuities in the retrieval results
should be suppressed. When considering extended areas, the volcanic ash retrieval might
also profit from distinct features such as sharp edges at the rim of the ash cloud or straight
plumes close to the vent. To do so, the radiative transfer model needs to be coupled to
a transport and dispersion model; then convolutional neural networks could be applied to
the resulting images (Drönner et al., 2018).

Third, one could leave VACOS as is but focus on further processing the retrieval out-
puts. It might be promising to further evaluate the pixel-based retrievals altogether to
detect clusters of ash-contaminated pixels (i.e., ash clouds), evaluate their mean proper-
ties (Pavolonis et al., 2015) and track them in time, potentially connecting them to their
volcanic source. Note that such a post-processing would exploit the strengths of a geosta-
tionary instrument such as MSG/SEVIRI, i.e., the high temporal and spatial resolution
compared to polar-orbiting instruments such as MODIS.

The composition-dependence of volcanic ash refractive indices was shown to notably
influence brightness temperatures in the atmospheric window. Thus, it might be promis-
ing to develop a retrieval for the volcanic ash composition, e.g., for the bulk silica content.
However, to exploit the full potential of this data set, one might make use of hyperspectral
instruments (e.g., AIRS or IASI), which already proved sensibility to volcanic ash com-
position (Clarisse et al., 2010, Gangale et al., 2010, Ishimoto et al., 2016, 2021, Klüser
et al., 2013). This points also to one shortcoming of MSG/SEVIRI (and all moderate
resolution radiometers for that matter): the limited number of spectral channels. How-
ever, large areas of the Earth are covered by multiple geostationary imagers (Figure 2.12)
with slightly different channels (Figure 2.10), such that in principle one might profit from
simultaneous observations of different instruments. As explained in Section 2.3, various
other passive imagers carried by geostationary spacecraft have similar spectral channels
as MSG/SEVIRI. Using adequate spectral band adjustment factors (Chander et al., 2013,
Scarino et al., 2016), VACOS could be applied to their observations, thereby potentially
covering nearly the full globe. This would also be the preferred path to apply VACOS to
the upcoming Flexible Combined Imager (FCI) on board of the Meteosat Third Generation
(MTG) satellites.

A scientific outlook: Combining VACOS with COCS/CiPS to study ash-induced
ice formation

Aerosol–cloud interactions introduce one of the largest uncertainties in current climate
simulations using general circulation models. This is especially due to the differences
in the scales of the individual cloud processes and the comparably coarse resolutions of
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Figure 4.1: Simultaneous retrieval of mcol and ztop due to Eyjafjallajökull volcanic ash using
VACOS (left column), and τ532 nm and ztop of cirrus clouds using COCS (middle column)
and CiPS (right column) on 7 May 2010, 12:45 UTC; the ash plume is given in all plots
as red contour (mcol > 0.5 g m−2); ztop is given for ash and ice if mcol > 0.5 g m−2 and
τ532 nm > 0.1, respectively; the coast of Iceland is given in the top left (black).

the model grids. To better constrain existing model parameterizations of aerosol–cloud
interactions, further global measurements of these processes are necessary (Seinfeld et al.,
2016). The effects of aerosols on clouds might even depend on the region, the cloud
type or the atmospheric state, such that it might be necessary to investigate the different
possibilities individually (Stevens and Feingold, 2009). One example might be volcanic
ash particles that induce ice formation by acting as ice nuclei, potentially affecting cirrus
coverage, ice water path, ice crystal size and precipitation (Durant et al., 2008). The ice
nucleation ability of volcanic ash was studied extensively in the laboratory (e.g., Hoyle
et al., 2011, Steinke et al., 2011) and in nature (e.g., Belosi et al., 2011, Rolf et al., 2012,
Seifert et al., 2011). Still, there is a need for corresponding large-scale satellite-based
studies (see Section 2.1.3 for details). Combining VACOS with existing cirrus retrievals,
e.g., Cirrus Optical Properties derived from CALIOP and SEVIRI Algorithm during Day
and Night (COCS, Kox et al., 2014) or CiPS (Strandgren et al., 2017a), might allow to fill
this gap by exploiting the high spatial coverage and temporal resolution of MSG/SEVIRI.

In a first test, VACOS is applied alongside both ice cloud retrievals COCS and CiPS
to the eruption of Eyjafjallajökull on 7 May 2010, 12:45 UTC to check whether or not the
two cirrus retrievals produce different results in the presence of ash. A mass extinction
coefficient of 200 m2 kg−1 is assumed (as in P3) to convert the retrieved τ10.8 of ash into
mcol. Figure 4.1 shows a comparison of the retrievals of ztop and mcol / τ532 nm of volcanic
ash and ice. A few minutes earlier, the Terra satellite crossed the same area, carrying
the MISR instrument. The MISR data were investigated by Kahn and Limbacher (2012),
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indicating the presence of patches of ice clouds within the ash plume (see Figure 3 in their
paper). The retrievals of COCS and CiPS give a similar picture: they show small areas
where τ532 nm has values of 0.2–0.5 at ztop ≈ 10 km. In particular, the retrievals of COCS
and CiPS are very similar in this scene; thus, both retrievals seem to be similarly suited
to consider ash–ice interactions. VACOS retrieves for mcol mass loads of 0.5–3 g m−2 at
ztop ≈ 11 km, i.e., a similar height as given by the cirrus retrievals. Note that ztop is again
increased where COCS and CiPS indicate the presence of ice.

Next, the retrieval results of VACOS and COCS of the May 2010 period are scanned
manually for scenes which show ice detection in spatial congruence with a simultaneous ash
detection. The temporal evolution of six events is given in the examples in Figure 4.2 to
4.4. Figure 4.2 contains two events similar to the one in Figure 4.1, i.e., with ice detections
in the ash plume close to the vent. The event on 16 May 2010, 08–12 UTC shows how
multiple patches of ice are transported downwind with the ash plume, whereas the event on
17 May 2010, 01–09 UTC demonstrates how a previously ice-free ash plume turns into an
ice-contaminated ash plume within a few hours. Figure 4.3 displays two ash clouds which
are already slightly aged. The event on 14 May 2010, 08–11 UTC includes an ash cloud
moving westwards over the eastern coast of Iceland and subsequently forming ice according
to COCS. The second event on 14 May 2010, 16–19:30 UTC shows how an arc-shaped ash
cloud moves towards the north-east over the Faroe Islands. Afterwards, VACOS does not
detect the ash anymore, but COCS detects an extended cirrus cloud with exactly the same
shape as the ash cloud before. Figure 4.4 shows two events south-east of Greenland. In
both cases, COCS detects small elongated patches of ice in spatial agreement with the
ash detections. The event on 15 May 2010, 20–23:45 UTC is related to a relatively thick
ash cloud with mcol being 0.5–1 g m−2, whereas much less ash is detected for the event on
16 May 2010, 13–17 UTC, but the alignment of ash clouds in the area indicates that the
ice-formation could be connected to volcanic ash.

Different mechanisms could explain the described scenarios. Ice close to the vent (Fig-
ure 4.2) might be caused by an increased emission of water vapor, e.g., due to contact of
lava with external water or the glacier on the volcano’s surface. The apparent ice formation
when the ash cloud crosses the coasts of Iceland and the Faroe Islands (Figure 4.3) might
be explained by orographic lift resulting in lower temperatures. The ice creation off the
coast of Greenland (Figure 4.4) might be triggered by cool or moist air from Greenland
as it seems as if the cirrus cloud above Greenland slowly extends towards the south-east
along the ash cloud.

Although these examples are intriguing, they can only be considered a first step; further
investigation is necessary. First, the applied methods need further checking. VACOS was
also trained on ash clouds in the presence of cirrus, but not specifically for (partly) ice-
covered ash (i.e., in many training cases, the ash and the cirrus layer were well separated).
Similarly, COCS as well as CiPS were not trained specifically for the combination of ice
and thick aerosol layers; thus, it is not clear how reliable these retrievals perform in the
considered cases. The typical spectral signature of ash and ice in the thermal infrared leads
to BTD11−12 being negative (Prata, 1989) or positive (Inoue, 1985), respectively. If both
ash and ice are present, BTD11−12 is influenced by both. As a consequence, ash might be
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Figure 4.2: Simultaneous retrieval of mcol due to Eyjafjallajökull volcanic ash using VACOS
(in yellow and red) and detection of cirrus clouds using COCS (blue) on 16 and 17 May
2010; the plots of ash and ice are semi-opaque such that collocated retrievals are visible;
two events (left and right column, respectively) show ice detections collocated with the ash
plume close to the vent; both events are marked by black boxes, with zoomed plots given
as insets on the lower right corner.
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Figure 4.3: As in Figure 4.2: Simultaneous retrieval of mcol due to Eyjafjallajökull volcanic
ash using VACOS (in yellow and red) and detection of cirrus clouds using COCS (blue) on
14 May 2010; the plots of ash and ice are semi-opaque such that collocated retrievals are
visible; two events north-east of Iceland (left column) and around the Faroe Islands (right
column) are marked by black boxes, with zoomed plots given as insets on the lower right
corner.
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Figure 4.4: As in Figure 4.2: Simultaneous retrieval of mcol due to Eyjafjallajökull volcanic
ash using VACOS (in yellow and red) and detection of cirrus clouds using COCS (blue) on
15 and 16 May 2010; the plots of ash and ice are semi-opaque such that collocated retrievals
are visible; two events south-east of Greenland (left and right column, respectively) are
marked by black boxes, with zoomed plots given as insets on the lower right corner.
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hidden by the cirrus clouds or the other way around. Second, the vertical collocation of ash
and ice needs to be checked to make sure that potential ice formation is related to volcanic
ash particles acting as ice nuclei. To this end, cloud top retrievals of VACOS and COCS can
be considered, as well as CALIPSO/CALIOP soundings for selected cases. Third, other
possible explanations/aerosols for ice formation need to be ruled out. Specifically, sulfates
are a common by-product of volcanic eruptions. Considering scenes which are dominated
by volcanic ash (e.g., as SO2/sulfates are spatially separated due to vertical wind shear)
might allow to do so. Fourth, the overall meteorology needs to be analyzed. Is the onset
of ice formation related to sudden temperature decreases, e.g., by orographic lifting? Is
supersaturation with respect to liquid water/ice given? In addition, as the formation and
the transport of cirrus clouds is driven by the given meteorology, which also determines
the ash transport, one needs to consider the possibility that potential collocations are just
by chance (Boucher et al., 2013).

If this is done and the given observations are confirmed, one may investigate how
the ice formation events unfold with time; under which atmospheric conditions they take
place; how ash-contaminated areas differ from ash-free regions statistically with respect
to ice formation; whether the results of ash transport and dispersion models including a
description for ice formation resemble the satellite observations, thereby testing the applied
parameterizations.
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List of abbreviations

1D One-Dimensional
ABI Advanced Baseline Imager
AGRI Advanced Geostationary Radiation Imager
AHI Advanced Himawari Imager
AIRS Atmospheric Infrared Sounder
AMI Advanced Meteorological Imager
ANN Artificial Neural Network
BT Brightness Temperature
BTD Brightness Temperature Difference
CALIOP Cloud Aerosol Lidar with Orthogonal Polarization
CALIPSO Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation
CARA Cluster for Advanced Research in Aerospace
CCN Cloud Condensation Nucleus
CiPS Cirrus Properties from SEVIRI
COCS Cirrus Optical Properties from CALIOP and SEVIRI
DISORT Discrete Ordinate Radiative Transfer Solver
DLR Deutsches Zentrum für Luft- und Raumfahrt
DOY Day of Year
DWD Deutscher Wetterdienst
ECMWF European Centre for Medium-Range Weather Forecasts
ERA ECMWF Reanalysis
EUMETSAT European Organisation for the Exploitation of Meteorological Satellites
FAAM Facility for Airborne Atmospheric Measurements
FAR False Alarm Rate
FCI Flexible Combined Imager
FLEXPART Flexible Particle Dispersion Model
FY Feng-Yun
GOES Geostationary Operational Environmental Satellite
HOD Hour of Day
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HRV High Resolution Visible
HYSPLIT Hybrid Single Particle Lagrangian Integrated Trajectory
IASI Infrared Atmospheric Sounding Interferometer
ICAO International Civil Aviation Organization
IN Ice Nucleus
IR Infrared
IWP Ice Water Path
LIDAR Light Detection and Ranging
LSM Land/Sea Mask
MAPE Mean Absolute Percentage Error
MATCH Multi-scale Atmospheric Transport and Chemistry
mcol Mass Column Concentration
MISR Multi-angle Imaging SpectroRadiometer
MOCAGE Modèle de Chimie Atmosphérique à Grande Echelle
MODIS Moderate Resolution Imaging Spectroradiometer
MOPSMAP Modeled Optical Properties of Ensembles of Aerosol Particles
MPE Mean Percentage Error
MSE Mean Squared Error
MSG Meteosat Second Generation
MTG Meteosat Third Generation
NADAM Nesterov-accelerated Adaptive Moment Estimation
PMA Particle Mineralogical Analysis
POD Probability of Detection
POLDER Polarization and Directionality of Earth Reflectance
QEMSCAN Quantitative Evaluation of Minerals by Scanning Electron Microscopy
reff Effective Radius
RH Relative Humidity
SEM Scanning Electron Microscopy
SEVIRI Spinning Enhanced Visible and Infrared Imager
τ10.8 Optical Depth due to Volcanic Ash at 10.8 µm
TCO3 Total Column Ozone
TCW Total Column Water
TCWV Total Column Water Vapor
UTC Coordinated Universal Time
VAAC Volcanic Ash Advisory Center
VADUGS Volcanic Ash Detection Utilizing Geostationary Satellites
VACOS Volcanic Ash Cloud Properties Obtained from SEVIRI
VZA Viewing Zenith Angle
WMO World Meteorological Organization
WRF-Chem Weather Research and Forecasting Model Coupled with Chemistry
xs Silica Content
ztop Cloud Top Height



Bibliography

S. A. Ackerman. Remote sensing aerosols using satellite infrared observations. Journal of
Geophysical Research: Atmospheres, 102(D14):17069–17079, 1997. doi: 10.1029/96JD03
066.

S. A. Ackerman, W. L. Smith, H. E. Revercomb, and J. D. Spinhirne. The 27–28 October
1986 FIRE IFO Cirrus Case Study: Spectral Properties of Cirrus Clouds in the 8–12
µm Window. Monthly Weather Review, 118(11):2377–2388, 1990. doi: 10.1175/1520-0
493(1990)118<2377:TOFICC>2.0.CO;2.

B. A. Albrecht. Aerosols, Cloud Microphysics, and Fractional Cloudiness. Science, 245
(4923):1227–1230, 1989. doi: 10.1126/science.245.4923.1227.

D. Alexander. Volcanic ash in the atmosphere and risks for civil aviation: A study in
European crisis management. International Journal of Disaster Risk Science, 4(1):9–19,
2013. doi: 10.1007/s13753-013-0003-0.

F. Belosi, G. Santachiara, and F. Prodi. Eyjafjallajökull Volcanic Eruption: Ice Nuclei and
Particle Characterization. Atmospheric and Climate Sciences, 1(2):48–54, 2011. doi:
10.4236/acs.2011.12005.

Y. Bengio. Practical Recommendations for Gradient-Based Training of Deep Architectures.
In G. Montavon, G. B. Orr, and K. R. Müller, editors, Neural Networks: Tricks of the
Trade. Springer, Berlin and Heidelberg, Germany, 2nd edition, 2012. doi: 10.1007/978-
3-642-35289-8_26.

K. Bessho, K. Date, M. Hayashi, A. Ikeda, T. Imai, H. Inoue, Y. Kumagai, T. Miyakawa,
H. Murata, T. Ohno, A. Okuyama, R. Oyama, Y. Sasaki, Y. Shimazu, K. Shimoji,
Y. Sumida, M. Suzuki, H. Taniguchi, H. Tsuchiyama, D. Uesawa, H. Yokota, and
R. Yoshida. An Introduction to Himawari-8/9 - Japan’s New-Generation Geostationary
Meteorological Satellites. Journal of the Meteorological Society of Japan, 94(2):151–183,
2016. doi: 10.2151/jmsj.2016-009.

M. G. Best. Igneous and Metamorphic Petrology. Blackwell, Malden, MA, USA and Oxford,
United Kingdom and Melbourne, Australia and Berlin, Germany, 2nd edition, 2003.

P. Bird. An updated digital model of plate boundaries. Geochemistry, Geophysics, Geosys-
tems, 4(3), 2003. doi: 10.1029/2001GC000252.



144 BIBLIOGRAPHY

C. M. Bishop. Neural Networks for Pattern Recognition. Clarendon Press, Oxford, United
Kingdom, 1995. ISBN 9780198538646.

T. Bolić and Z. Sivčev. Eruption of Eyjafjallajökull in Iceland: Experience of European
Air Traffic Management. Transportation Research Record, 2214(1):136–143, 2011. doi:
10.3141/2214-17.

O. Boucher, D. Randall, P. Artaxo, C. Bretherton, G. Feingold, P. Forster, V.-M. Kermi-
nen, Y. Kondo, H. Liao, U. Lohmann, P. Rasch, S. Satheesh, S. Sherwood, B. Stevens,
and X. Zhang. Climate Change 2013: The Physical Science Basis. Contribution of Work-
ing Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate
Change, chapter Clouds and Aerosols. Cambridge University Press, Cambridge, United
Kingdom and New York, NY, USA, 2013.

R. Brown, C. Bonadonna, and A. Durant. A review of volcanic ash aggregation. Physics
and Chemistry of the Earth, 45-46:65–78, 2012. doi: 10.1016/j.pce.2011.11.001.

L. Budd, S. Griggs, D. Howarth, and S. Ison. A Fiasco of Volcanic Proportions? Ey-
jafjallajökull and the Closure of European Airspace. Mobilities, 6(1):31–40, 2011. doi:
10.1080/17450101.2011.532650.

S. A. Carn, A. J. Krueger, N. A. Krotkov, K. Yang, and K. Evans. Tracking volcanic sulfur
dioxide clouds for aviation hazard mitigation. Natural Hazards, 51:325–343, 2009. doi:
10.1007/s11069-008-9228-4.

T. J. Casadevall. The 1989–1990 eruption of Redoubt Volcano, Alaska: impacts on aircraft
operations. Journal of Volcanology and Geothermal Research, 62(1):301–316, 1994. doi:
10.1016/0377-0273(94)90038-8.

CGMS. Status of current and future Russian satellite systems by Roscosmos/Roshydromet.
https://www.cgms-info.org/Agendas/GetWpFile.ashx?wid=42833d40-cbef-4e4e-
91cf-aace91183d90&aid=e656c459-2da5-498b-8010-af1c6dbf30e0. Last accessed:
16 Nov. 2021.

G. Chander, N. Mishra, D. L. Helder, D. B. Aaron, A. Angal, T. Choi, X. Xiong, and
D. R. Doelling. Applications of Spectral Band Adjustment Factors (SBAF) for Cross-
Calibration. IEEE Transactions on Geoscience and Remote Sensing, 51(3):1267–1281,
2013. doi: 10.1109/TGRS.2012.2228007.

R. Cioni, M. Pistolesi, A. Bertagnini, C. Bonadonna, A. Hoskuldsson, and B. Scateni.
Insights into the dynamics and evolution of the 2010 Eyjafjallajökull summit eruption
(Iceland) provided by volcanic ash textures. Earth and Planetary Science Letters, 394:
111–123, 2014. doi: 10.1016/j.epsl.2014.02.051.

L. Clarisse, F. Prata, J.-L. Lacour, D. Hurtmans, C. Clerbaux, and P.-F. Coheur. A
correlation method for volcanic ash detection using hyperspectral infrared measurements.
Geophysical Research Letters, 37(19), 2010. doi: 10.1029/2010GL044828.

https://www.cgms-info.org/Agendas/GetWpFile.ashx?wid=42833d40-cbef-4e4e-91cf-aace91183d90&aid=e656c459-2da5-498b-8010-af1c6dbf30e0
https://www.cgms-info.org/Agendas/GetWpFile.ashx?wid=42833d40-cbef-4e4e-91cf-aace91183d90&aid=e656c459-2da5-498b-8010-af1c6dbf30e0


BIBLIOGRAPHY 145

S. Colucci, D. M. Palladino, G. K. Mulukutla, and A. A. Proussevitch. 3-D reconstruction
of ash vesicularity: Insights into the origin of ash-rich explosive eruptions. Journal of
Volcanology and Geothermal Research, 255:98–107, 2013. doi: 10.1016/j.jvolgeores.201
3.02.002.

S. Corradini, S. Pugnaghi, A. Piscini, L. Guerrieri, L. Merucci, M. Picchiani, and M. Chini.
Volcanic Ash and SO2 retrievals using synthetic MODIS TIR data: comparison between
inversion procedures and sensitivity analysis. Annals of Geophysics, 57(0), 2014. doi:
10.4401/ag-6616.

S. Corradini, M. Montopoli, L. Guerrieri, M. Ricci, S. Scollo, L. Merucci, F. S. Marzano,
S. Pugnaghi, M. Prestifilippo, L. J. Ventress, R. G. Grainger, E. Carboni, G. Vulpiani,
and M. Coltelli. A Multi-Sensor Approach for Volcanic Ash Cloud Retrieval and Eruption
Characterization: The 23 November 2013 Etna Lava Fountain. Remote Sensing, 8(1),
2016. doi: 10.3390/rs8010058.

H. F. Dacre, N. J. Harvey, P. W. Webley, and D. Morton. How accurate are volcanic
ash simulations of the 2010 Eyjafjallajökull eruption? Journal of Geophysical Research:
Atmospheres, 121(7):3534–3547, 2016. doi: 10.1002/2015JD024265.

F. Debling, J. F. Schneider, M. Rosi, E. Leoz-Garziandia, and E. Rorije. Technical Coop-
eration Mission, Effects of the Puyehue-Cordón Caulle Eruption Argentina, 4–19 July
2011. Joint UNEP/OCHA Environment Unit, 2011. https://www.eecentre.org/wp-
content/uploads/2019/06/Argentina-volcan-eruption-2011-report.pdf. Last
accessed: 17 Nov. 2021.

A. Deguine, D. Petitprez, L. Clarisse, S. Guđmundsson, V. Outes, G. Villarosa, and
H. Herbin. Complex refractive index of volcanic ash aerosol in the infrared, visible,
and ultraviolet. Applied Optics, 59(4):884–895, Feb 2020. doi: 10.1364/AO.59.000884.

T. Dozat. Incorporating Nesterov Momentum into Adam, 2016. https://openreview.n
et/pdf?id=OM0jvwB8jIp57ZJjtNEZ. Last accessed: 17 Nov. 2021.

J. Drönner, N. Korfhage, S. Egli, M. Mühling, B. Thies, J. Bendix, B. Freisleben, and
B. Seeger. Fast Cloud Segmentation Using Convolutional Neural Networks. Remote
Sensing, 10(11), 2018. doi: 10.3390/rs10111782.

Y. Durand, P. Hallibert, M. Wilson, M. Lekouara, S. Grabarnik, D. Aminou, P. Blythe,
B. Napierala, J.-L. Canaud, O. Pigouche, J. Ouaknine, and B. Verez. The flexible
combined imager onboard MTG: from design to calibration. In R. Meynart, S. P. Neeck,
and H. Shimoda, editors, Sensors, Systems, and Next-Generation Satellites XIX, volume
9639, pages 1–14. International Society for Optics and Photonics, SPIE, 2015. doi:
10.1117/12.2196644.

A. J. Durant and R. A. Shaw. Evaporation freezing by contact nucleation inside-out.
Geophysical Research Letters, 32(20), 2005. doi: 10.1029/2005GL024175.

https://www.eecentre.org/wp-content/uploads/2019/06/Argentina-volcan-eruption-2011-report.pdf
https://www.eecentre.org/wp-content/uploads/2019/06/Argentina-volcan-eruption-2011-report.pdf
https://openreview.net/pdf?id=OM0jvwB8jIp57ZJjtNEZ
https://openreview.net/pdf?id=OM0jvwB8jIp57ZJjtNEZ


146 BIBLIOGRAPHY

A. J. Durant, R. A. Shaw, W. I. Rose, Y. Mi, and G. G. J. Ernst. Ice nucleation and
overseeding of ice in volcanic clouds. Journal of Geophysical Research: Atmospheres,
113(D9), 2008. doi: 10.1029/2007JD009064.

DWD. Jahresbericht 2015: Flugwetterdienst. Deutscher Wetterdienst, 2015. https:
//www.dwd.de/DE/fachnutzer/luftfahrt/download/jahresberichte_flugwetterd
ienst/2015.pdf?__blob=publicationFile&v=3. Last accessed: 17 Nov. 2021.

S. K. Ebmeier, A. M. Sayer, R. G. Grainger, T. A. Mather, and E. Carboni. Systematic
satellite observations of the impact of aerosols from passive volcanic degassing on local
cloud properties. Atmospheric Chemistry and Physics, 14(19):10601–10618, 2014. doi:
10.5194/acp-14-10601-2014.

J. Eliasson and J. Yoshitani. Airborne Measurements of Volcanic Ash and Current State
of Ash Cloud Prediction. Disaster Prevention Research Institute Annuals, 58(B):35–41,
2015. http://hdl.handle.net/2433/210094. Last accessed: 17 Nov. 2021.

J. Eliasson, N. Yasuda, K. Weber, A. Vogel, and T. Palsson. The role of in-situ measure-
ments of volcanic ash concentrations in preventing economic disasters due to volcanic
ash clouds. Journal of Integrated Disaster Risk Management, 4(1):48–60, 2014. doi:
10.5595/idrim.2014.0092.

C. Emde, R. Buras-Schnell, A. Kylling, B. Mayer, J. Gasteiger, U. Hamann, J. Kylling,
B. Richter, C. Pause, T. Dowling, and L. Bugliaro. The libRadtran software package
for radiative transfer calculations (version 2.0.1). Geoscientific Model Development, 9
(5):1647–1672, 2016. doi: 10.5194/gmd-9-1647-2016.

EUMETSAT/1. https://nwp-saf.eumetsat.int/site/software/rttov/download/co
efficients/spectral-response-functions. Last accessed: 17 Nov. 2021.

EUMETSAT/2. The Conversion from Effective Radiances to Equivalent Brightness Tem-
peratures. European Organisation for the Exploitation of Meteorological Satellites, 2012.
https://www-cdn.eumetsat.int/files/2020-04/pdf_effect_rad_to_brightness.
pdf. Last accessed: 17 Nov. 2021.

EUMETSAT/3. Typical Radiometric Noise, Calibration Bias and Stability for Meteosat-8,
-9, -10 and -11 SEVIRI. European Organisation for the Exploitation of Meteorological
Satellites, 2019. https://www-cdn.eumetsat.int/files/2020-04/pdf_typ_radiome
t_acc_msg-1-2.pdf. Last accessed: 17 Nov. 2021.

J. Fan, Y. Wang, D. Rosenfeld, and X. Liu. Review of Aerosol–Cloud Interactions: Mecha-
nisms, Significance, and Challenges. Journal of the Atmospheric Sciences, 73(11):4221–
4252, 2016. doi: 10.1175/JAS-D-16-0037.1.

N. H. Farlow, V. R. Orberbeck, K. G. Snetsinger, G. V. Ferry, G. Polkowski, and D. M.
Hayes. Size Distributions and Mineralogy of Ash Particles in the Stratosphere from

https://www.dwd.de/DE/fachnutzer/luftfahrt/download/jahresberichte_flugwetterdienst/2015.pdf?__blob=publicationFile&v=3
https://www.dwd.de/DE/fachnutzer/luftfahrt/download/jahresberichte_flugwetterdienst/2015.pdf?__blob=publicationFile&v=3
https://www.dwd.de/DE/fachnutzer/luftfahrt/download/jahresberichte_flugwetterdienst/2015.pdf?__blob=publicationFile&v=3
http://hdl.handle.net/2433/210094
https://nwp-saf.eumetsat.int/site/software/rttov/download/coefficients/spectral-response-functions
https://nwp-saf.eumetsat.int/site/software/rttov/download/coefficients/spectral-response-functions
https://www-cdn.eumetsat.int/files/2020-04/pdf_effect_rad_to_brightness.pdf
https://www-cdn.eumetsat.int/files/2020-04/pdf_effect_rad_to_brightness.pdf
https://www-cdn.eumetsat.int/files/2020-04/pdf_typ_radiomet_acc_msg-1-2.pdf
https://www-cdn.eumetsat.int/files/2020-04/pdf_typ_radiomet_acc_msg-1-2.pdf


BIBLIOGRAPHY 147

Eruptions of Mount St. Helens. Science, 211(4484):832–834, 1981. doi: 10.1126/scienc
e.211.4484.832.

M. G. Flanner, A. S. Gardner, S. Eckhardt, A. Stohl, and J. Perket. Aerosol radiative forc-
ing from the 2010 Eyjafjallajökull volcanic eruptions. Journal of Geophysical Research:
Atmospheres, 119(15):9481–9491, 2014. doi: 10.1002/2014JD021977.

A. P. Fornea, S. D. Brooks, J. B. Dooley, and A. Saha. Heterogeneous freezing of ice on
atmospheric aerosols containing ash, soot, and soil. Journal of Geophysical Research:
Atmospheres, 114(D13), 2009. doi: 10.1029/2009JD011958.

G. Gangale, A. Prata, and L. Clarisse. The infrared spectral signature of volcanic ash
determined from high-spectral resolution satellite measurements. Remote Sensing of
Environment, 114(2):414–425, 2010. doi: https://doi.org/10.1016/j.rse.2009.09.007.

M. Gardner and S. Dorling. Artificial neural networks (the multilayer perceptron)—a
review of applications in the atmospheric sciences. Atmospheric Environment, 32(14):
2627–2636, 1998. doi: 10.1016/S1352-2310(97)00447-0.

S. Gassó. Satellite observations of the impact of weak volcanic activity on marine clouds.
Journal of Geophysical Research: Atmospheres, 113(D14S19), 2008. doi: 10.1029/2007
JD009106.

K. Genareau, A. A. Proussevitch, A. J. Durant, G. Mulukutla, and D. L. Sahagian. Sizing
up the bubbles that produce very fine ash during explosive volcanic eruptions. Geophys-
ical Research Letters, 39(15), 2012. doi: 10.1029/2012GL052471.

K. Genareau, G. K. Mulukutla, A. A. Proussevitch, A. J. Durant, W. I. Rose, and D. L.
Sahagian. The size range of bubbles that produce ash during explosive volcanic eruptions.
Journal of Applied Volcanology, 2(1):4, 2013. doi: 10.1186/2191-5040-2-4.

K. Genareau, S. M. Cloer, K. Primm, M. A. Tolbert, and T. W. Woods. Compositional
and Mineralogical Effects on Ice Nucleation Activity of Volcanic Ash. Atmosphere, 9(7),
2018. doi: 10.3390/atmos9070238.

I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning: Das umfassende Handbuch.
mitp, Frechen, Germany, 1st edition, 2018. ISBN 9783958457003.

K. Graf, S. Kox, M. Schmidl, J. Gasteiger, and R. Buras. VADUGS algorithm: Volcanic
Ash Detection using Geostationary Satellites. Presentation at the Meeting on the Inter-
comparison of Satellite-based Volcanic Ash Retrieval Algorithms, Madison, WI, USA,
29 June–2 July 2015, 2015. http://cimss.ssec.wisc.edu/meetings/vol_ash15/P
DFs/20150630/Item2.10_20150630_WMO_Madison_Graf.pdf. Last accessed: 26 Nov.
2021.

http://cimss.ssec.wisc.edu/meetings/vol_ash15/PDFs/20150630/Item2.10_20150630_WMO_Madison_Graf.pdf
http://cimss.ssec.wisc.edu/meetings/vol_ash15/PDFs/20150630/Item2.10_20150630_WMO_Madison_Graf.pdf


148 BIBLIOGRAPHY

R. G. Grainger, D. M. Peters, G. E. Thomas, A. J. A. Smith, R. Siddans, E. Carboni, and
A. Dudhia. Measuring volcanic plume and ash properties from space. Geological Society,
London, Special Publications, 380:293–320, 2013. doi: 10.1144/SP380.7.

T. M. Gray and R. Bennartz. Automatic volcanic ash detection from MODIS observations
using a back-propagation neural network. Atmospheric Measurement Techniques, 8(12):
5089–5097, 2015. doi: 10.5194/amt-8-5089-2015.

M. T. Gudmundsson, R. Pedersen, K. Vogfjörd, B. Thorbjarnardóttir, S. Jakobsdóttir,
and M. J. Roberts. Eruptions of Eyjafjallajökull Volcano, Iceland. Eos, Transactions
American Geophysical Union, 91(21):190–191, 2010. doi: 10.1029/2010EO210002.

M. T. Gudmundsson, T. Thordarson, r. Höskuldsson, G. Larsen, H. Björnsson, F. J. Prata,
B. Oddsson, E. Magnússon, T. Högnadóttir, G. N. Petersen, C. L. Hayward, J. A.
Stevenson, and I. Jónsdóttir. Ash generation and distribution from the April-May 2010
eruption of Eyjafjallajökull, Iceland. Scientific Reports, 2:572, 2012. doi: 10.1038/srep
00572.

M. Guffanti, G. C. Mayberry, T. J. Casadevall, and R. Wunderman. Volcanic hazards to
airports. Natural Hazards, 51(2):287–302, 2009. doi: 10.1007/s11069-008-9254-2.

M. Guffanti, T. J. Casadevall, and K. Budding. Encounters of aircraft with volcanic ash
clouds; A compilation of known incidents, 1953–2009. U.S. Geological Survey Data
Series 545, ver. 1.0, 12 p., plus 4 appendixes including the compilation database, 2010.
https://pubs.usgs.gov/ds/545/DS545.pdf. Last accessed: 17 Nov. 2021.

Hecht-Nielsen. Theory of the backpropagation neural network. In International 1989 Joint
Conference on Neural Networks, pages 593–605 vol.1, 1989. doi: 10.1109/IJCNN.1989.1
18638.

F. Hilton, R. Armante, T. August, C. Barnet, A. Bouchard, C. Camy-Peyret, V. Capelle,
L. Clarisse, C. Clerbaux, P.-F. Coheur, A. Collard, C. Crevoisier, G. Dufour, D. Edwards,
F. Faijan, N. Fourrié, A. Gambacorta, M. Goldberg, V. Guidard, D. Hurtmans, S. Illing-
worth, N. Jacquinet-Husson, T. Kerzenmacher, D. Klaes, L. Lavanant, G. Masiello,
M. Matricardi, A. McNally, S. Newman, E. Pavelin, S. Payan, E. Péquignot, S. Peyri-
dieu, T. Phulpin, J. Remedios, P. Schlüssel, C. Serio, L. Strow, C. Stubenrauch, J. Tay-
lor, D. Tobin, W. Wolf, and D. Zhou. Hyperspectral Earth Observation from IASI:
Five Years of Accomplishments. Bulletin of the American Meteorological Society, 93(3):
347–370, 2012. doi: 10.1175/BAMS-D-11-00027.1.

A. J. Hornby, Y. Lavallée, J. E. Kendrick, G. Rollinson, A. R. Butcher, S. Clesham,
U. Kueppers, C. Cimarelli, and G. Chigna. Phase partitioning during fragmentation re-
vealed by QEMSCAN Particle Mineralogical Analysis of volcanic ash. Scientific Reports,
9(1):126, 2019. doi: 10.1038/s41598-018-36857-4.

https://pubs.usgs.gov/ds/545/DS545.pdf


BIBLIOGRAPHY 149

K. Hornik. Approximation capabilities of multilayer feedforward networks. Neural Net-
works, 4(2):251–257, 1991. doi: 10.1016/0893-6080(91)90009-T.

K. Hornik, M. Stinchcombe, and H. White. Multilayer feedforward networks are universal
approximators. Neural Networks, 2(5):359–366, 1989. doi: 10.1016/0893-6080(89)90020
-8.

C. J. Horwell and P. J. Baxter. The respiratory health hazards of volcanic ash: a review
for volcanic risk mitigation. Bulletin of Volcanology, 69(1):1–24, 2006. doi: 10.1007/s0
0445-006-0052-y.

C. R. Hoyle, V. Pinti, A. Welti, B. Zobrist, C. Marcolli, B. Luo, A. Höskuldsson, H. B.
Mattsson, O. Stetzer, T. Thorsteinsson, G. Larsen, and T. Peter. Ice nucleation proper-
ties of volcanic ash from Eyjafjallajökull. Atmospheric Chemistry and Physics, 11(18):
9911–9926, 2011. doi: 10.5194/acp-11-9911-2011.

W. W. Hsieh and B. Tang. Applying Neural Network Models to Prediction and Data
Analysis in Meteorology and Oceanography. Bulletin of the American Meteorological
Society, 79(9):1855–1870, 09 1998. doi: 10.1175/1520-0477(1998)079<1855:ANNMTP>
2.0.CO;2.

ICAO. Volcanic Ash Contingency Plan: European and North Atlantic Regions, Edition
2.0.0. International Civil Aviation Organization, European and North Atlantic Office,
2016. https://web.archive.org/web/20200827203551/https://www.icao.int/E
URNAT/EUR%20and%20NAT%20Documents/EUR+NAT%20VACP.pdf. Last accessed: 17 Nov.
2021.

T. Inoue. On the Temperature and Effective Emissivity Determination of Semi-Transparent
Cirrus Clouds by Bi-Spectral Measurements in the 10 µm Window Region. Journal of
the Meteorological Society of Japan, 63(1):88–99, 1985. doi: 10.2151/jmsj1965.63.1_88.

H. Ishimoto, K. Masuda, K. Fukui, T. Shimbori, T. Inazawa, H. Tuchiyama, K. Ishii, and
T. Sakurai. Estimation of the refractive index of volcanic ash from satellite infrared
sounder data. Remote Sensing of Environment, 174:165–180, 2016. doi: 10.1016/j.rse.
2015.12.009.

H. Ishimoto, M. Hayashi, and Y. Mano. Optimal ash particle refractive index model for
simulating the brightness temperature spectrum of volcanic ash clouds from satellite in-
frared sounder measurements. Atmospheric Measurement Techniques Discussions, 2021:
1–28, 2021. doi: 10.5194/amt-2021-103.

L. G. Jahn, W. D. Fahy, D. B. Williams, and R. C. Sullivan. Role of Feldspar and Pyroxene
Minerals in the Ice Nucleating Ability of Three Volcanic Ashes. ACS Earth and Space
Chemistry, 3(4):626–636, 2019. doi: 10.1021/acsearthspacechem.9b00004.

https://web.archive.org/web/20200827203551/https://www.icao.int/EURNAT/EUR%20and%20NAT%20Documents/EUR+NAT%20VACP.pdf
https://web.archive.org/web/20200827203551/https://www.icao.int/EURNAT/EUR%20and%20NAT%20Documents/EUR+NAT%20VACP.pdf


150 BIBLIOGRAPHY

D. Jerram and N. Petford. The Field Description of Igneous Rocks. Wiley and Blackwell,
Chichester, United Kingdom, 2nd edition, 2011. ISBN 978-0-470-02236-8.

JMA. AHI-8 Performance Test Results. https://www.data.jma.go.jp/mscweb/en/him
awari89/space_segment/fig/AHI8_performance_test_en.pdf. Last accessed: 16
Nov. 2021.

B. Johnson, K. Turnbull, P. Brown, R. Burgess, J. Dorsey, A. J. Baran, H. Webster,
J. Haywood, R. Cotton, Z. Ulanowski, E. Hesse, A. Woolley, and P. Rosenberg. In
situ observations of volcanic ash clouds from the FAAM aircraft during the eruption of
Eyjafjallajökull in 2010. Journal of Geophysical Research: Atmospheres, 117(D20), 2012.
doi: 10.1029/2011JD016760.

R. A. Kahn and J. Limbacher. Eyjafjallajökull volcano plume particle-type characterization
from space-based multi-angle imaging. Atmospheric Chemistry and Physics, 12(20):
9459–9477, 2012. doi: 10.5194/acp-12-9459-2012.

F. Kahnert. Numerical methods in electromagnetic scattering theory. Journal of Quanti-
tative Spectroscopy and Radiative Transfer, 79-80:775–824, 2003. doi: 10.1016/S0022-40
73(02)00321-7.

C. Klug and K. V. Cashman. Vesiculation of May 18, 1980, Mount St. Helens magma.
Geology, 22(5):468–472, 05 1994. doi: 10.1130/0091-7613(1994)022<0468:VOMMSH>
2.3.CO;2.

L. Klüser, T. Erbertseder, and J. Meyer-Arnek. Observation of volcanic ash from Puye-
hue–Cordón Caulle with IASI. Atmospheric Measurement Techniques, 6(1):35–46, 2013.
doi: 10.5194/amt-6-35-2013.

KMA. https://nmsc.kma.go.kr/enhome/html/base/cmm/selectPage.do?page=sate
llite.gk2a.userReadinessInformation. Last accessed: 16 Nov. 2021.

L. Kolokolova and B. S. Gustafson. Scattering by inhomogeneous particles: microwave
analog experiments and comparison to effective medium theories. Journal of Quantitative
Spectroscopy and Radiative Transfer, 70(4):611–625, 2001. doi: 10.1016/S0022-4073(01)0
0033-4.

S. Kox, M. Schmidl, K. Graf, H. Mannstein, R. Buras, and J. Gasteiger. A new approach
on the detection of volcanic ash clouds. In Proceedings of the 2013 EUMETSAT Meteo-
rological Satellite Conference, 2013. https://www-cdn.eumetsat.int/files/2020-04
/pdf_conf_p_s11_06_kox_v.pdf. Last accessed: 17 Nov. 2021.

S. Kox, L. Bugliaro, and A. Ostler. Retrieval of cirrus cloud optical thickness and top
altitude from geostationary remote sensing. Atmospheric Measurement Techniques, 7
(10):3233–3246, 2014. doi: 10.5194/amt-7-3233-2014.

https://www.data.jma.go.jp/mscweb/en/himawari89/space_segment/fig/AHI8_performance_test_en.pdf
https://www.data.jma.go.jp/mscweb/en/himawari89/space_segment/fig/AHI8_performance_test_en.pdf
https://nmsc.kma.go.kr/enhome/html/base/cmm/selectPage.do?page=satellite.gk2a.userReadinessInformation
https://nmsc.kma.go.kr/enhome/html/base/cmm/selectPage.do?page=satellite.gk2a.userReadinessInformation
https://www-cdn.eumetsat.int/files/2020-04/pdf_conf_p_s11_06_kox_v.pdf
https://www-cdn.eumetsat.int/files/2020-04/pdf_conf_p_s11_06_kox_v.pdf


BIBLIOGRAPHY 151

G. Kulkarni, M. Nandasiri, A. Zelenyuk, J. Beranek, N. Madaan, A. Devaraj, V. Shut-
thanandan, S. Thevuthasan, and T. Varga. Effects of crystallographic properties on the
ice nucleation properties of volcanic ash particles. Geophysical Research Letters, 42(8):
3048–3055, 2015. doi: 10.1002/2015GL063270.

A. Kylling, M. Kahnert, H. Lindqvist, and T. Nousiainen. Volcanic ash infrared sig-
nature: porous non-spherical ash particle shapes compared to homogeneous spher-
ical ash particles. Atmospheric Measurement Techniques, 7(4):919–929, 2014. doi:
10.5194/amt-7-919-2014.

L3Harris. https://www.l3harris.com/all-capabilities/advanced-baseline-imag
er-solutions. Last accessed: 17 Nov. 2021.

B. Langmann. Volcanic Ash versus Mineral Dust: Atmospheric Processing and En-
vironmental and Climate Impacts. ISRN Atmospheric Sciences, 2013, 2013. doi:
10.1155/2013/245076.

B. Langmann. On the Role of Climate Forcing by Volcanic Sulphate and Volcanic Ash.
Advances in Meteorology, 2014(340123), 2014. doi: 10.1155/2014/340123.

B. Langmann, A. Folch, M. Hensch, and V. Matthias. Volcanic ash over Europe during
the eruption of Eyjafjallajökull on Iceland, April–May 2010. Atmospheric Environment,
48:1–8, 2012. doi: 10.1016/j.atmosenv.2011.03.054.

Y. A. LeCun, L. Bottou, G. B. Orr, and K. R. Müller. Efficient BackProp. In G. Montavon,
G. B. Orr, and K. R. Müller, editors, Neural Networks: Tricks of the Trade. Springer,
Berlin and Heidelberg, Germany, 2nd edition, 2012. doi: 10.1007/978-3-642-35289-8_3.

K.-M. Lee and J.-H. Park. Optical constants for Asian dust in midinfrared region. Journal
of Geophysical Research: Atmospheres, 119(2):927–942, 2014. doi: 10.1002/2013JD0202
07.

E. Limpert, W. A. Stahel, and M. Abbt. Log-normal Distributions across the Sciences:
Keys and Clues. BioScience, 51(5):341–352, 05 2001. doi: 10.1641/0006-3568(2001)051
[0341:LNDATS]2.0.CO;2.

K. N. Liou. An Introduction to Atmospheric Radiation. Academic Press, San Diego, CA,
USA and London, United Kingdom, 2nd edition, 2002. ISBN 9780124514515.

Z. Liu, C. Peng, W. Xiang, D. Tian, X. Deng, and M. Zhao. Application of artificial neural
networks in global climate change and ecological research: An overview. Chinese Science
Bulletin, 55(34):3853–3863, 2010. doi: 10.1007/s11434-010-4183-3.

J. P. Lockwood and R. W. Hazlett. Volcanoes: Global Perspectives. Wiley-Blackwell,
Oxford and Chichester, United Kingdom and Hoboken, NJ, USA, 1st edition, 2010.
ISBN 978-1-4051-6249-4.

https://www.l3harris.com/all-capabilities/advanced-baseline-imager-solutions
https://www.l3harris.com/all-capabilities/advanced-baseline-imager-solutions


152 BIBLIOGRAPHY

S. Mackie, K. Cashman, H. Ricketts, A. Rust, and M. Watson, editors. Volcanic Ash:
Hazard Observation. Elsevier, Amsterdam, Netherlands, 1st edition, 2016. ISBN 978-0-
08-100405-0.

F. F. Malavelle, J. M. Haywood, A. Jones, A. Gettelman, L. Clarisse, S. Bauduin, R. P.
Allan, I. H. H. Karset, J. E. Kristjánsson, L. Oreopoulos, N. Cho, D. Lee, N. Bellouin,
O. Boucher, D. P. Grosvenor, K. S. Carslaw, S. Dhomse, G. W. Mann, A. Schmidt,
H. Coe, M. E. Hartley, M. Dalvi, A. A. Hill, B. T. Johnson, C. E. Johnson, J. R. Knight,
F. M. O’Connor, D. G. Partridge, P. Stier, G. Myhre, S. Platnick, G. L. Stephens,
H. Takahashi, and T. Thordarson. Strong constraints on aerosol–cloud interactions
from volcanic eruptions. Nature, 546(7659):485–491, 2017. doi: 10.1038/nature22974.

F. Marenco, B. Johnson, K. Turnbull, S. Newman, J. Haywood, H. Webster, and H. Rick-
etts. Airborne lidar observations of the 2010 Eyjafjallajökull volcanic ash plume. Journal
of Geophysical Research: Atmospheres, 116(D20), 2011. doi: 10.1029/2011JD016396.

J. F. Mas and J. J. Flores. The application of artificial neural networks to the analysis
of remotely sensed data. International Journal of Remote Sensing, 29(3):617–663, 2008.
doi: 10.1080/01431160701352154.

E. C. Maters, D. B. Dingwell, C. Cimarelli, D. Müller, T. F. Whale, and B. J. Murray.
The importance of crystalline phases in ice nucleation by volcanic ash. Atmospheric
Chemistry and Physics, 19(8):5451–5465, 2019. doi: 10.5194/acp-19-5451-2019.

E. C. Maters, C. Cimarelli, A. S. Casas, D. B. Dingwell, and B. J. Murray. Volcanic
ash ice-nucleating activity can be enhanced or depressed by ash-gas interaction in the
eruption plume. Earth and Planetary Science Letters, 551:116587, 2020. doi: 10.1016/
j.epsl.2020.116587.

B. Mayer and A. Kylling. Technical note: The libRadtran software package for radiative
transfer calculations - description and examples of use. Atmospheric Chemistry and
Physics, 5(7):1855–1877, 2005. doi: 10.5194/acp-5-1855-2005.

B. Mayer, A. Kylling, C. Emde, R. Buras, U. Hamann, J. Gasteiger, and B. Richter.
libRadtrans users’s guide, 2019. https://web.archive.org/web/20200822040829/h
ttp://www.libradtran.org/doc/libRadtran.pdf. Last accessed: 17 Nov. 2021.

L. O. Muser, G. A. Hoshyaripour, J. Bruckert, A. Horváth, E. Malinina, S. Wallis, F. J.
Prata, A. Rozanov, C. von Savigny, H. Vogel, and B. Vogel. Particle aging and aerosol–
radiation interaction affect volcanic plume dispersion: evidence from the Raikoke 2019
eruption. Atmospheric Chemistry and Physics, 20(23):15015–15036, 2020. doi: 10.519
4/acp-20-15015-2020.

M. Nakagawa and T. Ohba. Minerals in Volcanic Ash 1: Primary Minerals and Volcanic
Glass. Global Environmental Research, 6:41–51, 2002.

https://web.archive.org/web/20200822040829/http://www.libradtran.org/doc/libRadtran.pdf
https://web.archive.org/web/20200822040829/http://www.libradtran.org/doc/libRadtran.pdf


BIBLIOGRAPHY 153

M. J. Pavolonis, J. Sieglaff, and J. Cintineo. Spectrally Enhanced Cloud Objects—A
generalized framework for automated detection of volcanic ash and dust clouds using
passive satellite measurements: 2. Cloud object analysis and global application. Journal
of Geophysical Research: Atmospheres, 120(15):7842–7870, 2015. doi: 10.1002/2014JD
022969.

G. N. Petersen. A short meteorological overview of the Eyjafjallajökull eruption 14 April–23
May 2010. Weather, 65(8):203–207, 2010. doi: 10.1002/wea.634.

M. Picchiani, M. Chini, S. Corradini, L. Merucci, P. Sellitto, F. Del Frate, and S. Stra-
mondo. Volcanic ash detection and retrievals using MODIS data by means of neu-
ral networks. Atmospheric Measurement Techniques, 4(12):2619–2631, 2011. doi:
10.5194/amt-4-2619-2011.

M. Picchiani, M. Chini, S. Corradini, L. Merucci, A. Piscini, and F. D. Frate. Neural
network multispectral satellite images classification of volcanic ash plumes in a cloudy
scenario. Annals of Geophysics, 57(0), 2014. doi: 10.4401/ag-6638.

A. Piscini, M. Picchiani, M. Chini, S. Corradini, L. Merucci, F. Del Frate, and S. Stra-
mondo. A neural network approach for the simultaneous retrieval of volcanic ash pa-
rameters and SO2 using MODIS data. Atmospheric Measurement Techniques, 7(12):
4023–4047, 2014. doi: 10.5194/amt-7-4023-2014.

J. B. Pollack, O. B. Toon, and B. N. Khare. Optical properties of some terrestrial rocks
and glasses. Icarus, 19(3):372–389, 1973. doi: 10.1016/0019-1035(73)90115-2.

A. J. Prata. Infrared radiative transfer calculations for volcanic ash clouds. Geophysical
Research Letters, 16(11):1293–1296, 1989. doi: 10.1029/GL016i011p01293.

A. J. Prata and I. F. Grant. Retrieval of microphysical and morphological properties of
volcanic ash plumes from satellite data: Application to Mt Ruapehu, New Zealand.
Quarterly Journal of the Royal Meteorological Society, 127(576):2153–2179, 2001. doi:
10.1002/qj.49712757615.

A. J. Prata and A. T. Prata. Eyjafjallajökull volcanic ash concentrations determined
using Spin Enhanced Visible and Infrared Imager measurements. Journal of Geophysical
Research: Atmospheres, 117(D20), 2012. doi: 10.1029/2011JD016800.

A. T. Prata, A. Folch, A. J. Prata, R. Biondi, H. Brenot, C. Cimarelli, S. Corradini,
J. Lapierre, and A. Costa. Anak Krakatau triggers volcanic freezer in the upper tropo-
sphere. Scientific Reports, 10(1):3584, 2020. doi: 10.1038/s41598-020-60465-w.

G. S. Prata, L. J. Ventress, E. Carboni, T. A. Mather, R. G. Grainger, and D. M. Pyle. A
New Parameterization of Volcanic Ash Complex Refractive Index Based on NBO/T and
SiO2 Content. Journal of Geophysical Research: Atmospheres, 124(3):1779–1797, 2019.
doi: 10.1029/2018JD028679.



154 BIBLIOGRAPHY

L. Prechelt. Early Stopping – But When? In G. Montavon, G. B. Orr, and K. R. Müller,
editors, Neural Networks: Tricks of the Trade. Springer, Berlin and Heidelberg, Germany,
2nd edition, 2012. doi: 10.1007/978-3-642-35289-8_5.

Z. J. Przedpelski and T. J. Casadevall. Impact of Volcanic Ash from 15 December 1989
Redoubt Volcano Eruption on GE CF6-80C2 Turbofan Engines. In Volcanic Ash and
Aviation Safety: Proceedings of the First International Symposium on Volcanic Ash and
Aviation Safety, U.S. Geological Survey Bulletin 2047, pages 129–135, 1994.

S. Pugnaghi, L. Guerrieri, S. Corradini, L. Merucci, and B. Arvani. A new simplified
approach for simultaneous retrieval of SO2 and ash content of tropospheric volcanic
clouds: an application to the Mt Etna volcano. Atmospheric Measurement Techniques,
6(5):1315–1327, 2013. doi: 10.5194/amt-6-1315-2013.

B. E. Reed, D. M. Peters, R. McPheat, and R. G. Grainger. The Complex Refractive
Index of Volcanic Ash Aerosol Retrieved From Spectral Mass Extinction. Journal of
Geophysical Research: Atmospheres, 123(2):1339–1350, 2018. doi: 10.1002/2017JD0273
62.

M. Reichstein, G. Camps-Valls, B. Stevens, M. Jung, J. Denzler, N. Carvalhais, and Prab-
hat. Deep learning and process understanding for data-driven Earth system science.
Nature, 566(7743):195–204, 2019. doi: 10.1038/s41586-019-0912-1.

A. Robock. Volcanic eruptions and climate. Reviews of Geophysics, 38(2):191–219, 2000.
doi: 10.1029/1998RG000054.

C. D. Rodgers. Inverse Methods for Atmospheric Sounding. World Scientific, Singapore,
2000. doi: 10.1142/3171.

N. Rogers. The composition and origin of magmas. In H. Sigurdssonn, B. Houghton, S. R.
McNutt, H. Rymer, and J. Stix, editors, The Encyclopedia of Volcanoes, pages 93–112.
Academic Press, London, 2nd edition, 2015. ISBN 978-0-12-385938-9.

C. Rolf, M. Krämer, C. Schiller, M. Hildebrandt, and M. Riese. Lidar observation
and model simulation of a volcanic-ash-induced cirrus cloud during the Eyjafjalla-
jökull eruption. Atmospheric Chemistry and Physics, 12(21):10281–10294, 2012. doi:
10.5194/acp-12-10281-2012.

J. Rose, William I. Scavenging of volcanic aerosol by ash: Atmospheric and volcanologic
implications. Geology, 5(10):621–624, 10 1977. doi: 10.1130/0091-7613(1977)5<621:
SOVABA>2.0.CO;2.

W. I. Rose, G. J. S. Bluth, and I. M. Watson. Ice in Volcanic Clouds: When and Where?
In Proceedings of the 2nd International Conference on Volcanic Ash and Aviation Safety,
21–24 June 2004, Alexandria, VA, USA, pages 3.27–3.33. Office of the Federal Coordi-
nator for Meteorological Services and Supporting Research, 2004.



BIBLIOGRAPHY 155

D. Rosenfeld, Y. Rudich, and R. Lahav. Desert dust suppressing precipitation: A possible
desertification feedback loop. Proceedings of the National Academy of Sciences, 98(11):
5975–5980, 2001. doi: 10.1073/pnas.101122798.

D. Rosenfeld, U. Lohmann, G. B. Raga, C. D. O’Dowd, M. Kulmala, S. Fuzzi, A. Reissell,
and M. O. Andreae. Flood or Drought: How Do Aerosols Affect Precipitation? Science,
321(5894):1309–1313, 2008. doi: 10.1126/science.1160606.

A. N. Rublev, E. V. Gorbarenko, V. V. Golomolzin, E. Y. Borisov, J. V. Kiseleva, Y. M.
Gektin, and A. A. Zaitsev. Inter-calibration of Infrared Channels of Geostationary
Meteorological Satellite Imagers. Frontiers in Environmental Science, 6:142, 2018. doi:
10.3389/fenvs.2018.00142.

S. Ruder. An overview of gradient descent optimization algorithms, 2016. https://arxi
v.org/pdf/1609.04747.pdf. Last accessed: 17 Nov. 2021.

D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning Internal Representations
by Error Propagation. In D. E. Rumelhart and J. L. McClelland, editors, Parallel
Distributed Processing: Explorations in the Microstructure of Cognition, Vol. 1: Foun-
dations, pages 318–362. MIT Press, Cambridge, MA, USA, 1986a.

D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning representations by back-
propagating errors. Nature, 323:533–536, 1986b. doi: 10.1038/323533a0.

B. R. Scarino, D. R. Doelling, P. Minnis, A. Gopalan, T. Chee, R. Bhatt, C. Lukashin,
and C. Haney. A Web-Based Tool for Calculating Spectral Band Difference Adjustment
Factors Derived From SCIAMACHY Hyperspectral Data. IEEE Transactions on Geo-
science and Remote Sensing, 54(5):2529–2542, 2016. doi: 10.1109/TGRS.2015.2502904.

G. P. Schill, K. Genareau, and M. A. Tolbert. Deposition and immersion-mode nucleation
of ice by three distinct samples of volcanic ash. Atmospheric Chemistry and Physics, 15
(13):7523–7536, 2015. doi: 10.5194/acp-15-7523-2015.

J. Schmetz, P. Pili, S. Tjemkes, D. Just, J. Kerkmann, S. Rota, and A. Ratier. An Intro-
duction to Meteosat Second Generation (MSG). Bulletin of the American Meteorological
Society, 83(7):977–992, 07 2002a. doi: 10.1175/1520-0477(2002)083<0977:AITMSG>
2.3.CO;2.

J. Schmetz, P. Pili, S. Tjemkes, D. Just, J. Kerkmann, S. Rota, and A. Ratier. Radiometric
Performance fo SEVIRI. Bulletin of the American Meteorological Society, 83(7):ES50–
ES51, 2002b.

T. J. Schmit, M. M. Gunshor, W. P. Menzel, J. J. Gurka, J. Li, and A. S. Bachmeier.
Introducing the Next-Generation Advanced Baseline Imager on GOES-R. Bulletin of
the American Meteorological Society, 86(8):1079–1096, 08 2005. doi: 10.1175/BAMS-8
6-8-1079.

https://arxiv.org/pdf/1609.04747.pdf
https://arxiv.org/pdf/1609.04747.pdf


156 BIBLIOGRAPHY

T. J. Schmit, P. Griffith, M. M. Gunshor, J. M. Daniels, S. J. Goodman, and W. J. Lebair.
A Closer Look at the ABI on the GOES-R Series. Bulletin of the American Meteorological
Society, 98(4):681–698, 2017. doi: 10.1175/BAMS-D-15-00230.1.

U. Schumann, B. Weinzierl, O. Reitebuch, H. Schlager, A. Minikin, C. Forster, R. Bau-
mann, T. Sailer, K. Graf, H. Mannstein, C. Voigt, S. Rahm, R. Simmet, M. Scheibe,
M. Lichtenstern, P. Stock, H. Rüba, D. Schäuble, A. Tafferner, M. Rautenhaus, T. Gerz,
H. Ziereis, M. Krautstrunk, C. Mallaun, J.-F. Gayet, K. Lieke, K. Kandler, M. Ebert,
S. Weinbruch, A. Stohl, J. Gasteiger, S. Groß, V. Freudenthaler, M. Wiegner, A. Ans-
mann, M. Tesche, H. Olafsson, and K. Sturm. Airborne observations of the Eyjafjalla
volcano ash cloud over Europe during air space closure in Apri and May 2010. Atmo-
spheric Chemistry and Physics, 11(5):2245–2279, 2011. doi: 10.5194/acp-11-2245-2011.

P. Seifert, A. Ansmann, S. Groß, V. Freudenthaler, B. Heinold, A. Hiebsch, I. Mattis,
J. Schmidt, F. Schnell, M. Tesche, U. Wandinger, and M. Wiegner. Ice formation in ash-
influenced clouds after the eruption of the Eyjafjallajökull volcano in April 2010. Journal
of Geophysical Research: Atmospheres, 116(D20), 2011. doi: 10.1029/2011JD015702.

J. H. Seinfeld, C. Bretherton, K. S. Carslaw, H. Coe, P. J. DeMott, E. J. Dunlea, G. Fein-
gold, S. Ghan, A. B. Guenther, R. Kahn, I. Kraucunas, S. M. Kreidenweis, M. J.
Molina, A. Nenes, J. E. Penner, K. A. Prather, V. Ramanathan, V. Ramaswamy, P. J.
Rasch, A. R. Ravishankara, D. Rosenfeld, G. Stephens, and R. Wood. Improving our
fundamental understanding of the role of aerosol-cloud interactions in the climate sys-
tem. Proceedings of the National Academy of Sciences, 113(21):5781–5790, 2016. doi:
10.1073/pnas.1514043113.

S. Self and G. P. L. Walker. Ash Clouds: Characteristics of Eruption Columns. In T. J.
Casadevall, editor, Volcanic Ash and Aviation Safety: Proceedings of the First Interna-
tional Symposium on Volcanic Ash and Aviation Safety in Seattle, WA, USA in July
1991, U.S. Geological Survey Bulletin 2047, pages 65–74, Washington, DC, USA, 1991.
United States Government Printing Office. doi: 10.3133/b2047.

R. A. Shaw, A. J. Durant, and Y. Mi. Heterogeneous Surface Crystallization Observed
in Undercooled Water. The Journal of Physical Chemistry B, 109(20):9865–9868, 2005.
doi: 10.1021/jp0506336.

V. Shcherbakov, O. Jourdan, C. Voigt, J.-F. Gayet, A. Chauvigne, A. Schwarzenboeck,
A. Minikin, M. Klingebiel, R. Weigel, S. Borrmann, T. Jurkat, S. Kaufmann, R. Schlage,
C. Gourbeyre, G. Febvre, T. Lapyonok, W. Frey, S. Molleker, and B. Weinzierl. Porous
aerosol in degassing plumes of Mt. Etna and Mt. Stromboli. Atmospheric Chemistry and
Physics, 16(18):11883–11897, 2016. doi: 10.5194/acp-16-11883-2016.

S. Shipley and A. M. Sarna-Wojcicki. Distribution, Thickness, and Mass of Late Pleis-
tocene and Holocene Tephra from Major Volcanoes in the Northwestern United States:
a Preliminary Assessment of Hazards from Volcanic Ejecta to Nuclear Reactors in the



BIBLIOGRAPHY 157

Pacific Northwest. U.S. Geological Survey Miscellaneous Field Studies Map 1435, 1982.
https://doi.org/10.3133/mf1435. Last accessed: 17 Nov. 2021.

L. Siebert, T. Simkin, and P. Kimberly. Volcanoes of the World. University of California
Press, Berkely and Los Angeles, CA, USA and London, United Kingdom, 3rd edition,
2011. ISBN 9780520268777.

F. Sigmundsson, S. Hreinsdóttir, A. Hooper, T. Árnadóttir, R. Pedersen, M. J. Roberts,
N. Óskarsson, A. Auriac, J. Decriem, P. Einarsson, H. Geirsson, M. Hensch, B. G.
Ófeigsson, E. Sturkell, H. Sveinbjörnsson, and K. L. Feigl. Intrusion triggering of the
2010 Eyjafjallajökull explosive eruption. Nature, 468(7322):426–432, 2010. doi: 10.103
8/nature09558.

H. Sigurdsson, B. Houghton, H. Rymer, J. Stix, and S. McNutt, editors. Encyclopedia of
Volcanoes. Academic Press, San Diego, CA, USA, 1st edition, 1999.

W. L. Smith, S. Ackerman, H. Revercomb, H. Huang, D. H. DeSlover, W. Feltz, L. Gumley,
and A. Collard. Infrared spectral absorption of nearly invisible cirrus clouds. Geophysical
Research Letters, 25(8):1137–1140, 1998. doi: 10.1029/97GL03491.

I. N. Sokolik and O. B. Toon. Incorporation of mineralogical composition into models
of the radiative properties of mineral aerosol from UV to IR wavelengths. Journal of
Geophysical Research: Atmospheres, 104(D8):9423–9444, 1999. doi: 10.1029/1998JD20
0048.

R. Sparks. The dynamics of bubble formation and growth in magmas: A review and
analysis. Journal of Volcanology and Geothermal Research, 3(1):1–37, 1978. doi: 10.101
6/0377-0273(78)90002-1.

R. J. Sparks, J. G. Moore, and C. J. Rice. The initial giant umbrella cloud of the May 18th,
1980, explosive eruption of Mount St. Helens. Journal of Volcanology and Geothermal
Research, 28(3):257–274, 1986. doi: 10.1016/0377-0273(86)90026-0.

R. S. J. Sparks. The dimensions and dynamics of volcanic eruption columns. Bulletin of
Volcanology, 48:3–15, 1986. doi: 10.1007/BF01073509.

R. J. S. Spence, I. Kelman, P. J. Baxter, G. Zuccaro, and S. Petrazzuoli. Residential
building and occupant vulnerability to tephra fall. Natural Hazards and Earth System
Sciences, 5(4):477–494, 2005. doi: 10.5194/nhess-5-477-2005.

I. Steinke, O. Möhler, A. Kiselev, M. Niemand, H. Saathoff, M. Schnaiter, J. Skrotzki,
C. Hoose, and T. Leisner. Ice nucleation properties of fine ash particles from the Eyjaf-
jallajökull eruption in April 2010. Atmospheric Chemistry and Physics, 11(24):12945–
12958, 2011. doi: 10.5194/acp-11-12945-2011.

B. Stevens and G. Feingold. Untangling aerosol effects on clouds and precipitation in a
buffered system. Nature, 461(7264):607–613, 2009. doi: 10.1038/nature08281.

https://doi.org/10.3133/mf1435


158 BIBLIOGRAPHY

J. A. Stevenson, S. C. Millington, F. M. Beckett, G. T. Swindles, and T. Thordarson. Big
grains go far: understanding the discrepancy between tephrochronology and satellite
infrared measurements of volcanic ash. Atmospheric Measurement Techniques, 8(5):
2069–2091, 2015. doi: 10.5194/amt-8-2069-2015.

A. Stohl, A. J. Prata, S. Eckhardt, L. Clarisse, A. Durant, S. Henne, N. I. Kristiansen,
A. Minikin, U. Schumann, P. Seibert, K. Stebel, H. E. Thomas, T. Thorsteinsson,
K. Tørseth, and B. Weinzierl. Determination of time- and height-resolved volcanic ash
emissions and their use for quantitative ash dispersion modeling: the 2010 Eyjafjal-
lajökull eruption. Atmospheric Chemistry and Physics, 11(9):4333–4351, 2011. doi:
10.5194/acp-11-4333-2011.

T. Storelvmo and I. Tan. The Wegener-Bergeron-Findeisen process – Its discovery and
vital importance for weather and climate. Meteorologische Zeitschrift, 24(4):455–461, 07
2015. doi: 10.1127/metz/2015/0626.

J. Strandgren, L. Bugliaro, F. Sehnke, and L. Schröder. Cirrus cloud retrieval with
MSG/SEVIRI using artificial neural networks. Atmospheric Measurement Techniques,
10(9):3547–3573, 2017a. doi: 10.5194/amt-10-3547-2017.

J. Strandgren, J. Fricker, and L. Bugliaro. Characterisation of the artificial neural network
CiPS for cirrus cloud remote sensing with MSG/SEVIRI. Atmospheric Measurement
Techniques, 10(11):4317–4339, 2017b. doi: 10.5194/amt-10-4317-2017.

G. E. Thomas and K. Stamnes. Radiative Transfer in the Atmosphere and Ocean. Cam-
bridge University Press, Cambridge, United Kingdom, 1st edition, 1999.

H. E. Thomas and A. J. Prata. Sulphur dioxide as a volcanic ash proxy during the April-
May 2010 eruption of Eyjafjallajökull Volcano, Iceland. Atmospheric Chemistry and
Physics, 11:6871–6880, 2011. doi: 10.5194/acp-11-6871-2011.

C. Timmreck. Modeling the climatic effects of large explosive volcanic eruptions. Wiley
Interdisciplinary Reviews: Climate Change, 3(6):545–564, 2012. doi: 10.1002/wcc.192.

S. Twomey. The Influence of Pollution on the Shortwave Albedo of Clouds. Journal of
Atmospheric Sciences, 34(7):1149–1152, 1977. doi: 10.1175/1520-0469(1977)034<1149:
TIOPOT>2.0.CO;2.

E. Venzke, editor. Global Volcanism Program, 2013. Volcanoes of the World, v. 4.10.2 (24
Aug 2021). Smithsonian Institution, 2021. doi: 10.5479/si.GVP.VOTW4-2013. Last
accessed: 7 Septemer 2021.

A. Vogel, S. Diplas, A. J. Durant, A. S. Azar, M. F. Sunding, W. I. Rose, A. Sytchkova,
C. Bonadonna, K. Krüger, and A. Stohl. Reference data set of volcanic ash physic-
ochemical and optical properties. Journal of Geophysical Research: Atmospheres, 122
(17):9485–9514, 2017. doi: 10.1002/2016JD026328.



BIBLIOGRAPHY 159

F. E. Volz. Infrared Optical Constants of Ammonium Sulfate, Sahara Dust, Volcanic
Pumice, and Flyash. Applied Optics, 12(3):564–568, 1973. doi: 10.1364/AO.12.000564.

J. M. Wallace and P. V. Hobbs. Atmospheric Science: An Introductory Survey. Academic
Press, Burlington, MA, USA and San Diego, CA, USA and London, United Kingdom,
2nd edition, 2006. ISBN 9780127329512.

F. Waquet, F. Peers, P. Goloub, F. Ducos, F. Thieuleux, Y. Derimian, J. Riedi, M. Chami,
and D. Tanré. Retrieval of the Eyjafjallajökull volcanic aerosol optical and microphys-
ical properties from POLDER/PARASOL measurements. Atmospheric Chemistry and
Physics, 14(4):1755–1768, 2014. doi: 10.5194/acp-14-1755-2014.

S. C. Watkin. The application of AVHRR data for the detection of volcanic ash in a
Volcanic Ash Advisory Centre. Meteorological Applications, 10(4):301–311, 2003. doi:
10.1017/S1350482703001063.

I. Watson, V. Realmuto, W. Rose, A. Prata, G. Bluth, Y. Gu, C. Bader, and T. Yu.
Thermal infrared remote sensing of volcanic emissions using the moderate resolution
imaging spectroradiometer. Journal of Volcanology and Geothermal Research, 135(1):
75–89, 2004. ISSN 0377-0273. doi: 10.1016/j.jvolgeores.2003.12.017.

M. Watson. Test the effects of ash on jet engines. Nature, 520(7546):133–133, 2015. doi:
10.1038/520133a.

K. Weber, J. Eliasson, A. Vogel, C. Fischer, T. Pohl, G. van Haren, M. Meier, B. Grobéty,
and D. Dahmann. Airborne in-situ investigations of the Eyjafjallajökull volcanic ash
plume on Iceland and over north-western Germany with light aircrafts and optical par-
ticle counters. Atmospheric Environment, 48:9–21, 2012. doi: 10.1016/j.atmosenv.2011.
10.030.

B. Weinzierl, D. Sauer, A. Minikin, O. Reitebuch, F. Dahlkötter, B. Mayer, C. Emde,
I. Tegen, J. Gasteiger, A. Petzold, A. Veira, U. Kueppers, and U. Schumann. On the
visibility of airborne volcanic ash and mineral dust from the pilot’s perspective in flight.
Physics and Chemistry of the Earth, 45-46:87–102, 2012. doi: 10.1016/j.pce.2012.04.003.

S. Wen and W. I. Rose. Retrieval of sizes and total masses of particles in volcanic clouds
using AVHRR bands 4 and 5. Journal of Geophysical Research: Atmospheres, 99(D3):
5421–5431, 1994. doi: 10.1029/93JD03340.

L. M. Western, M. I. Watson, and P. N. Francis. Uncertainty in two-channel infrared remote
sensing retrievals of a well-characterised volcanic ash cloud. Bulletin of Volcanology, 77
(8):67, 2015. doi: 10.1007/s00445-015-0950-y.

T. M. Wilson, C. Stewart, V. Sword-Daniels, G. S. Leonard, D. M. Johnston, J. W.
Cole, J. Wardman, G. Wilson, and S. T. Barnard. Volcanic ash impacts on critical
infrastructure. Physics and Chemistry of the Earth, 45-46:5–23, 2012. doi: 10.1016/j.pc
e.2011.06.006.



160 BIBLIOGRAPHY

D. M. Winker, M. A. Vaughan, A. Omar, Y. Hu, K. A. Powell, Z. Liu, W. H. Hunt, and S. A.
Young. Overview of the CALIPSO Mission and CALIOP Data Processing Algorithms.
Journal of Atmospheric and Oceanic Technology, 26(11):2310–2323, 11 2009. ISSN 0739-
0572. doi: 10.1175/2009JTECHA1281.1.

WMO, 2015. Meeting on the Intercomparison of Satellite-based Volcanic Ash Retrieval
Algorithms, Madison WI, USA, 29 June–2 July 2015, Final Report. World Meteorological
Organization, 2015. https://web.archive.org/web/20171113102551/http://www.wm
o.int/pages/prog/sat/documents/SCOPE-NWC-PP2_VAIntercompWSReport2015.pdf.
Last accessed: 17 Nov. 2021.

WMO/GHI. https://space.oscar.wmo.int/instruments/view/ghi. Last accessed: 16
Nov. 2021.

WMO/IMAGER-INSAT. https://space.oscar.wmo.int/instruments/view/image
r_insat. Last accessed: 16 Nov. 2021.

WMO/MSG1. https://space.oscar.wmo.int/satellites/view/meteosat_8_iodc.
Last accessed: 17 Nov. 2021.

WMO/MSU-GS. https://space.oscar.wmo.int/instruments/view/msu_gs. Last
accessed: 16 Nov. 2021.

WMO/MX-LWIR. https://www.wmo-sat.info/oscar/instruments/view/mx_lwir.
Last accessed: 16 Nov. 2021.

WMO/OSCAR. https://www.wmo-sat.info/oscar/satellites/. Last accessed: 16
Nov. 2021.

WMO/S-VISSR. https://space.oscar.wmo.int/instruments/view/s_vissr_fy_2
f_g_h. Last accessed: 16 Nov. 2021.

T. Wriedt. Light scattering theories and computer codes. Journal of Quantitative Spec-
troscopy and Radiative Transfer, 110(11):833–843, 2009. doi: 10.1016/j.jqsrt.2009.02.02
3.

J. Yang, Z. Zhang, C. Wei, F. Lu, and Q. Guo. Introducing the New Generation of Chinese
Geostationary Weather Satellites, Fengyun-4. Bulletin of the American Meteorological
Society, 98(8):1637–1658, 2017. doi: 10.1175/BAMS-D-16-0065.1.

P. Yang, K.-N. Liou, L. Bi, C. Liu, B. Yi, and B. A. Baum. On the radiative properties of
ice clouds: Light scattering, remote sensing, and radiation parameterization. Advances
in Atmospheric Sciences, 32:32–63, 2015. doi: 10.1007/s00376-014-0011-z.

T. Yu, W. I. Rose, and A. J. Prata. Atmospheric correction for satellite-based volcanic
ash mapping and retrievals using “split window” IR data from GOES and AVHRR.
Journal of Geophysical Research: Atmospheres, 107(D16):AAC 10–1–AAC 10–19, 2002.
doi: 10.1029/2001JD000706.

https://web.archive.org/web/20171113102551/http://www.wmo.int/pages/prog/sat/documents/SCOPE-NWC-PP2_VAIntercompWSReport2015.pdf
https://web.archive.org/web/20171113102551/http://www.wmo.int/pages/prog/sat/documents/SCOPE-NWC-PP2_VAIntercompWSReport2015.pdf
https://space.oscar.wmo.int/instruments/view/ghi
https://space.oscar.wmo.int/instruments/view/imager_insat
https://space.oscar.wmo.int/instruments/view/imager_insat
https://space.oscar.wmo.int/satellites/view/meteosat_8_iodc
https://space.oscar.wmo.int/instruments/view/msu_gs
https://www.wmo-sat.info/oscar/instruments/view/mx_lwir
https://www.wmo-sat.info/oscar/satellites/
https://space.oscar.wmo.int/instruments/view/s_vissr_fy_2f_g_h
https://space.oscar.wmo.int/instruments/view/s_vissr_fy_2f_g_h


161

T. Yuan, L. A. Remer, and H. Yu. Microphysical, macrophysical and radiative signatures of
volcanic aerosols in trade wind cumulus observed by the A-Train. Atmospheric Chemistry
and Physics, 11(14):7119–7132, 2011. doi: 10.5194/acp-11-7119-2011.

W. Zhu, L. Zhu, J. Li, and H. Sun. Retrieving volcanic ash top height through combined
polar orbit active and geostationary passive remote sensing data. Remote Sensing, 12:
953, 2020. doi: 10.3390/rs12060953.



162



Acknowledgements

Carrying out this thesis would not have been possible without the guidance and support
of many people. To begin, I want to thank Dr. Margarita Vázquez-Navarro who trusted
me first and gave me the opportunity to write my thesis at the Institute of Atmospheric
Physics of the German Aerospace Center. Next, I am very grateful to Prof. Dr. Bernhard
Mayer, Prof. Dr. Christiane Voigt and Prof. Dr. Markus Rapp for their supervision of my
work, their guidance and valuable feedback and comments. In particular, I want to express
my deepest appreciation to Dr. Luca Bugliaro, who shared his time and knowledge with
me. Who introduced me to passive remote sensing of clouds and aerosols, had always an
open door for me to brainstorm and discuss scientific problems, and who reviewed all my
papers, posters and presentations. It was a pleasure working with you and I owe you a lot!

Furthermore, I am thankful to numerous other people who contributed to this work in
one way or another. To Prof. Dr. Donald Dingwell for sharing his expertise on volcanic
processes and volcanic ash in particular. To Dr. Adrian J. Hornby for sharing his knowledge
on volcanic ash properties and discussing the corresponding refractive indices. To Dr. Josef
Gasteiger for introducing me to the MOPSMAP package. To Dr. Marius Schmidl for
advising me in using RTSIM. To Dr. Daniel K. Zhou for providing a climatology of IASI-
based surface emissivities. To Dr. Ka Lok Chan for providing modeled data of nitrogen
dioxide mixing ratios. To Prof. Dr. Ulrich Schumann for providing the in situ measurements
of the Eyjafjallajökull ash clouds in 2010 using the Falcon 20E aircraft operated by the
flight experiment facilities of the German Aerospace Center. To Dr. Franco Marenco for
providing the lidar measurements of the Eyjafjallajökull ash clouds in 2010 using the BAe-
146-301 Atmospheric Research Aircraft operated by Directflight Ltd. and managed by the
Facility for Airborne Atmospheric Measurements of the Natural Environment Research
Council and the Met Office. To Dr. Jayanta Kar for providing CALIOP retrievals of the
Puyehue-Cordón Caulle ash clouds in 2011. To Dr. Matthieu Plu for providing the volcanic
ash transport and dispersion multi model multi source term ensemble of the Eyjafjallajökull
eruption in 2010. To Dr. Winfried Beer and Susanne Flierl for helping me with all kinds
of technical and administrative issues, respectively. To Dr. Jonas Wilzewski, Dr. Johan
Strandgren, Georgios Dekoutsidis, Dr. Ralf Meerkötter and Christoph Linse for helpful
comments on parts of this manuscript. To my office colleagues Dr. Eleni Marinou, Johannes
Lucke, Markus Laufmann and Manuel Moser, as well as Dr. Andreas Luther, Eleni Tetoni
and all members of the cloud physics department and the former passive remote sensing
group for a productive and always enjoyable working environment, occasional dart matches



164

and extended breaks at the lake. I would like to stress again my gratitude to all the co-
authors of the presented papers for discussing the results and reviewing the paper drafts.

Parts of this work were financially supported by and linked to the "European Natural
Airborne Disaster Information and Coordination System for Aviation" (EUNADICS-AV)
project funded by the European Union’s Horizon 2020 research and innovation program
under grant agreement No. 723986; the German weather service; the "Terrestrial Magmatic
Systems Research Platform" (TeMaS) associated to the University Mainz; and the project
"Der individuelle und automatisierte Luftverkehr" (DIAL) by the German Aerospace Cen-
ter. I am also grateful to EUMETSAT and ECMWF for providing the satellite and model
data, respectively. In addition, I am thankful to the German Aerospace Center for letting
me participate at the "DLR Graduate Program" and supporting various conference and
workshop visits.

A heartfelt thank you to Ineke Zimmermann for being by my side during these last
years, for always encouraging me and—at the end of the day—reminding me not to forget
to live! And last but not least to my parents Helmut and Monika Piontek and my sister
Jennifer Piontek for believing in me even when I had doubts, and supporting me ever since
the very beginning. Thank you so much!


	Zusammenfassung
	Abstract
	Publications
	Introduction
	Motivation: Why is remote sensing of volcanic ash necessary?
	Scientific topics

	Fundamentals
	Volcanic eruptions
	Volcanoes 
	Volcanic clouds
	Volcanic ash

	Radiative transfer theory
	Electromagnetic radiation
	Blackbody radiation
	Absorption and scattering
	Radiative transfer equation

	Geostationary passive imagers
	MSG/SEVIRI
	Other imagers in the geostationary ring

	Artificial neural networks
	Multilayer perceptron
	Training
	Interpretation

	Current volcanic ash satellite retrievals using artificial neural networks

	Papers
	P1: Volcanic ash refractive indices and optical properties
	P2: Development of the new volcanic ash retrieval VACOS
	P3: Validation and application of VACOS

	Conclusions and outlook
	List of abbreviations
	Bibliography
	Acknowledgements

