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aus Linz (Österreich)

München, den 17.12.2021



Betreuer der Arbeit: Prof. Dr. Johannes M. Henn

Erstgutachter: Prof. Dr. Johannes M. Henn

Zweitgutachter: Priv.-Doz. Dr. Ralph Blumenhagen

Tag der mündlichen Prüfung: 24.02.2022



Zusammenfassung

Die moderne Teilchenphysik stützt sich auf die störungstheoretische Quantenfeldtheorie.
Jenseits der führenden Ordnung ist die Berechnung der auftretenden Feynman-Integrale
einer der wichtigsten und oft auch kompliziertesten Schritte, die notwendig sind, um Vor-
hersagen aus der Theorie zu gewinnen. Eine häufig verwendete Methode zur Berechnung
der Feynman-Integrale besteht darin, einen Satz gewöhnlicher Differentialgleichungen ab-
zuleiten, die von den Feynman-Integralen erfüllt werden, und diese anschließend in eine
kanonische Form zu transformieren, bei der die Lösung in Form bekannter Funktionen auf
einfache Weise erhalten werden kann. Diese Arbeit befasst sich mit der entscheidenden
Aufgabe, die geeignete Basisänderung zu finden, die den Satz der Differentialgleichungen
in die kanonische Form bringt.

Zu diesem Zweck werden zunächst einige der grundlegenden Eigenschaften von Feyn-
man-Integralen und der speziellen Funktionen, die in den Lösungen vorkommen, erläutert.
Anschließend erörtern wir, wie das transzendentale Gewicht dieser Funktionen ein we-
sentliches Leitprinzip bei der Suche nach Teilen der kanonischen Basis darstellt. Insbe-
sondere gehen wir auf die algorithmische Bestimmung der sogenannten dlog-Integrale
und ihrer “leading singularities” ein. Außerdem geben wir einen Überblick über heu-
ristische Methoden, die sich in vielen Fällen als ausreichend erweisen, um mit geringem
Aufwand eine kanonische Basis zu finden. Anhand eines einfachen Beispiels wird anschlie-
ßend gezeigt, wie man mit Hilfe von sogenannten “balance”-Transformationen Schritt
für Schritt zu den Eigenschaften der kanonischen Form gelangt.

Als Hauptergebnis der Arbeit stellen wir einen neuen Algorithmus vor, mit dem die ka-
nonische Form ausgehend von einem einzigen kanonischen Integral erreicht werden kann.
Dieser Algorithmus ermöglicht es ebenfalls, die transzendentalen Gewichtseigenschaften
einzelner Integrale zu testen und kann daher auch als Ergänzung zu den anderen in
dieser Arbeit beschriebenen Methoden betrachtet werden. Anhand mehrerer univariater
Beispiele, sowie eines multivariaten Beispiels, wird die Leistungsfähigkeit und Flexibi-
lität des Algorithmus und der öffentlich zugänglichen Implementierung demonstriert.
Schließlich verwenden wir die in dieser Arbeit diskutierten Methoden in drei hochmo-
dernen Anwendungen und zeigen, wie unser Algorithmus die kanonische Form in Fällen
finden kann, in denen bestehende Methoden nicht anwendbar sind. Dazu gehören unter
anderem Differentialgleichungen mit mehr als 500 Basisintegralen und eine Matrix mit
elliptischen Funktionen.
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Summary

Modern day particle physics relies on perturbative Quantum Field Theory. Beyond the
leading order, the computation of the appearing Feynman integrals is one of the most
important and often also most complicated steps necessary to extract predictions from
the theory. A prominent method for the latter is to derive a set of ordinary differential
equations satisfied by the Feynman integrals and then subsequently transforming them
into canonical form where the solution in terms of known functions can be obtained in
a straightforward manner. In this thesis, we consider the crucial task of finding the
appropriate basis change that transforms the set of differential equations into canonical
form.

To this end, we first discuss some of the basic properties of Feynman integrals and
the special functions appearing in the solutions. We then show how the transcendental
weight of these functions constitutes an essential guiding principle in the search for
members of the canonical basis. In particular, we review the algorithmic determination
of so-called dlog integrals and their leading singularities. Further, we provide a summary
of heuristic methods that, in many cases, prove to be sufficient for finding a canonical
basis with little effort. Through a simple example, we then also review how so-called
balance transformations can be used to reach the properties of the canonical form step
by step.

As the main result of the thesis, we present a new algorithm for attaining the canonical
form starting from a single canonical integral. In addition, this algorithm makes it
possible to test the transcendental weight properties of individual integrals and can
therefore also be seen as complementary to the other methods described in this thesis.
Several univariate examples, as well as a multivariate example are used to demonstrate
the power and flexibility of the algorithm and our public implementation. Finally, we use
the methods discussed in the thesis in three state-of-the-art applications and highlight
how our algorithm can find the canonical form in cases where existing methods fail
to provide an answer. This includes differential equations with more than 500 basis
integrals and a matrix involving elliptic functions.
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1 Introduction and Outline

Any theoretical physicist who had the privilege to participate in some form of public
outreach, be it a presentation given to non-scientists or just discussions with family
and friends, has probably received either one or both of the questions “Is this theory
proven?” or “Will this ever have practical applications?”. Both of these questions, of
course, express what is generally expected to be the result of a physicist’s work and their
contribution to human development.

Let us address the first of these questions. It concerns the fact that people have
the desire to understand the rules of the world they live in and that scientists are
therefore expected to create a model for this purpose, which is then proven through
experiment. However, the pitfall in this approach is that the verification of a certain
theory would require it to be subjected to every conceivable experiment, which is of
course impossible. For example, consider the Standard Model of particle physics (SM)
and general relativity (GR), which are arguably the two most important theories of our
time. The former describes the interaction of forces and matter and is able to account
for nearly all phenomena of everyday live. The latter is the theory of gravity and how it
is incorporated into four-dimensional spacetime as a geometric property. Both of these
theories have been tested to an enormous extent. Famous measurements that agree with
theoretical values within uncertainties are e.g. the magnetic moment of the electron
predicted by the SM [5] or the time dilation due a height difference of about one meter
predicted by GR [6]. Nevertheless, each theory on its own fails to describe what happens
when a large amount of matter is concentrated in an extremely small space, as is e.g.
the case in neutron stars. For this, it would be necessary to unify the two theories, a
task which has not yet been accomplished.

The failure of the theories in specific cases does however not mean that they are not
useful, which brings us to the second question. Within their limitations, each theory
is incredibly powerful and their consequences can already be seen in modern day ap-
plications. For example, while GR corrections are necessary for GPS devices to reach
the accuracy they currently provide to our navigation systems [7], quantum tunneling
already affects the development of smaller computer chips [8]. This was however not
always the case. At the advent of these theories, practical applications were far out
of sight. More likely, they were developed solely to satisfy our curiosity and that of
the scientists working on them. Today we are glad that this research was not deemed
unnecessary and stopped in its infancy.

After having argued about the importance of physical theories for human development,
let us now discuss how these theories are developed. In general, this process involves a
long sequence of trial and error. Observations made in laboratories motivate a certain
physical model based on postulates and mathematical structures. The model is then
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1 Introduction and Outline

used to make predictions which are tested in experiments. If the outcome differs from
the theoretical predictions, this is seen as a hint that the model is not correct or complete
and that we can therefore still reach an even better understanding of nature by adjusting
the model in some way.

In the case of the SM, our currently most advanced experiments are carried out at
particle colliders, specifically the large hadron collider (LHC) situated at CERN, where
many properties of the particles of the SM have been measured to very high accuracy.
In 2012, this culminated in the discovery of the Higgs boson, which was predicted by
the model more than four decades earlier.

On the theory side, the SM is built on the framework of quantum field theory (QFT)
which combines special relativity and quantum mechanics in a field theory. Similar to
experiments, it is not possible to calculate the quantities we would like to observe to
arbitrary precision. Instead, the complexity of the theory requires us to make certain
approximations. Consider e.g. the scattering of electrons depicted in figure 1.1 where

Figure 1.1: Schematic scattering of two electrons.

the gray blob indicates possible unknown interactions. To compute the probability for
this process to happen, we assume that the coupling constants of the model are small,
specifically the electric charge e. This allows us to carry out the calculation in an
expansion in e, which is called perturbation theory. At each order, the contributions can
be written in terms of Feynman diagrams, which in turn are translated to a mathematical
expression through the use of Feynman rules. An example diagram contributing to
leading order (LO), i.e. O(e2), is given in figure 1.2a, where the wavy line indicates the
exchange of an intermediate photon that cannot be observed directly at the detector.
Note that momentum is conserved at every vertex and therefore the sum of incoming
momenta equals the sum of outgoing momenta.

At next-to-leading order (NLO), we see from the example diagram in figure 1.2b that
there are now two photons exchanged between the electrons. Again, momentum is con-
served at every vertex. However, there is an overall momentum in the loop which is not
determined by momentum conservation and the Feynman rules dictate that we therefore
integrate over this loop momentum. As a result, the contributions beyond the leading
order naturally involve so-called Feynman integrals, also called loop integrals. For many
processes, the computation of the NLO or even NNLO corrections and the corresponding
Feynman integrals is highly desired because the estimation given by the LO correction
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(a) (b)

Figure 1.2: Electron-electron scattering in perturbation theory: Example diagram of (a) the
leading order and (b) the next-to-leading order in the coupling constant.

is simply not enough to give a satisfying answer on whether the theoretical predictions
agree with experimentally measured values [9]. Therefore, since the beginning of pertur-
bative QFT, great effort has been put into the development of methods that allow for
the computation of Feynman integrals, see e.g. [10] for a review.

Some of the most prominent of these approaches aim at finding a better integral
representation where each of the multi-fold integrals can be performed in terms of known
functions. Two of these are the Feynman parametrization and the Mellin-Barnes (MB)
representation which are described in many standard textbooks on QFT and Feynman
integrals, see e.g. [11, 10]. For both parametrizations there are also public tools for
the generation of the representation [12, 13, 14], as well as the direct analytic [15, 16]
or numeric [17, 13, 14] integration, see also [18] for an overview of methods that aim
at deriving a series representation of the integrals. However, there is another method
that is nowadays the most commonly used way of computing Feynman integrals: the
method of differential equations (see [19] or [10] for early reviews, and [20] for a modern
introduction).

In the ’90s [21, 22] the first such differential equations were derived by taking the
derivative of massive Feynman integrals w.r.t. the mass. This was then generalized to
the derivative w.r.t. any scalar product of external momenta [23, 24]. These first ideas
were then made more systematic in an application to complicated two-loop integrals with
four external particles [25, 26]. At this point, the differential equations already had the
form in which they are still used today and their derivation was completely algorithmic.
However, there was still no general recipe for solving them. This changed dramatically
in 2013, when it was realized [27] that the solution is straightforward if one can find a
basis of integrals that brings the differential equations to a certain canonical form.

Finding this canonical form from a given set of integrals and their differential equations
is the central theme of this thesis.

Several different techniques and algorithms are already available for this task. A
method directly proposed in [27] builds on the conjecture that integrals whose integrand
admits a so-called dlog form with constant leading singularities [28, 29, 30] can be chosen
as members of the canonical basis. An algorithm for finding this type of integrals in a
systematic way has been given in [31] and implemented in a publicly available package
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1 Introduction and Outline

in [32]. This method is especially useful for integrals with multiple kinematic variables,
because the scaling in complexity with an increasing number of variables is relatively low
compared to the other methods, see e.g. [33, 34] for an application to two-loop integrals
with five external particles. In addition, it is commonly used to choose a canonical
basis with special singularity properties, which in turn makes it easier to determine
the boundary conditions [29, 35, 32]. However, the appearance of square-roots in the
integration variables, which often need to be dealt with manually, can make this method
less algorithmic. Further, in many cases it is not possible to furnish a complete basis of
canonical integrals exclusively through dlog-form integrals.

This disadvantage can, to some extent, be mitigated by adding candidates to the basis
that are found by a more heuristic approach. Here, the two main guiding principles
are that canonical integrals satisfy a certain power counting in the loop momentum
and that canonical one-loop integrals can often be used as building blocks to construct
their higher-loop counter part. Although the success of this method is not guaranteed,
experience shows that, in many cases, it is sufficient for finding a canonical form or at
least a set of differential equations which is greatly simplified compared to the original
one. We refer to [20, 36] and also [31] for examples of this approach.

As the last technique we want to mention, it is possible to reach the properties of
the canonical form step by step through so-called balance transformations [37]. This
method is completely oblivious to the actual integrals and their integrands and therefore
always finds a complete basis of canonical integrals if successful. Because of this and the
high degree of automation offered by the implementations [38, 39, 40], this is probably
the most used technique for simpler differential equations, see e.g. [4]. However, by
construction, the balance transformations are rational functions, and it is therefore again
required that one manually rationalizes all appearing square-roots. Although there exist
methods for doing this [41, 42], especially in cases with multiple kinematic scales one
often needs to rationalize more than one square-root simultaneously. This, together with
the need to find a separate transformation for each kinematic invariant, makes it difficult
to apply the balance transformations to multivariate problems.

The main goal of this thesis is to present a new method for finding the canonical
form which aims to overcome some of the drawbacks of the mentioned techniques. Our
algorithm allows to keep the dlog integrals or candidate integrals found through other
means and furthermore use them to transform the rest of the basis to canonical integrals.
This is not restricted to rational functions and can include square-roots and and more
complicated functions if needed. In addition, in the multivariate case, it is sufficient to
run the algorithm for only one of the invariants. We also provide a publicly available
implementation [1] together with example applications on multiple single-variable cases,
as well as a four-variable example.

Before discussing the outline of the thesis, let us note that there are several topics
which are likewise of enormous importance to the method of differential equations and are
not discussed in this thesis. For instance, solving the differential equations is meaningless
if the solutions cannot be evaluated efficiently. Therefore, it is no surprise that the
special functions appearing in those solutions have sparked a rapid development both
on the mathematical and the computational side of function theory. As an example,
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understanding the algebraic structure of these special functions has made it possible to
simplify a 17-page result computed in [43, 44] to a few lines of much simpler functions
[45]. We refer to [46] for a review on analytic properties and to [47] for numerical
evaluation.

Another essential step in solving the differential equations is the determination of
boundary conditions. In some cases this proves to be even more difficult than finding
the canonical form itself. A common way of acquiring the boundary constants is to
consider the integrals in a certain, possibly singular, limit where enough simplifications
happen so that an analytic answer can be obtained. We refer to [48] for an example. In
addition, it is often possible to restrict the boundary constants through certain physical
constraints on the integrals or the full result. To some extent, this approach has already
been used since the development of the differential equations method. However, recent
work has succeeded in making this more systematic, so that, under certain requirements,
it is often possible to determine nearly all boundary conditions even for integrals with
multiple kinematic scales and loops, see e.g. [49]. Lastly, we note that it is of course also
an option to determine the boundary conditions in a non-analytic way by numerically
evaluating the integrals at some regular point. In some cases, it is then also possible to
lift the numerical values to analytic constants using the algorithm described in [50].

The outline of the thesis is as follows: In chapter 2 we introduce the reader to the
properties of Feynman integrals and differential equations which are essential to this
thesis. We assume some basic knowledge of QFT, algebra, complex analysis and special
functions. In the following three chapters, we then review the already existing methods
mentioned above, i.e. dlog integrals, heuristic techniques and balance transformations,
respectively. This is done so that readers can understand how our new algorithm fills an
important gap in the existing methods for the canonical form. Note that many concepts
introduced in chapter 2 are described in more detail at the beginning of chapter 5,
in particular, here we explicitly derive the differential equations for a simple example.
Readers who prefer an algebraic approach to the topic of this thesis are invited to
read this chapter directly after chapter 2. In chapter 6 we present our algorithm [1] for
finding the canonical form and discuss its advantages and disadvantages compared to the
techniques of the previous chapters. Further, we apply our algorithm to three different
physical processes in chapter 7 and show how it can be used in cases where the other
methods fail to find a canonical form. We conclude in chapter 8 and give an outlook
for further possible improvements of the methods discussed in the thesis. Appendix A
provides additional technical details on the algorithm of chapter 6.
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2 Feynman Integrals

In order to find efficient methods for computing Feynman integrals, it is incredibly
helpful to understand what properties the integrals have. Some of these properties can
already be deduced without knowing the actual solutions. In particular, in this chapter
we will give an overview of the singularity structure near special kinematic points and
the linear relations satisfied between integrals that share the same denominators. This
will be especially important for the differential equations method because it helps us to
understand why we generally expect the canonical form to exist. Note that this chapter
is meant to give a general overview without discussing technical details. We will derive
the differential equations for an explicit example only in chapter 5 and readers may
therefore choose to read chapter 5 directly after this chapter if they so prefer.

The goal of this thesis is to introduce a new algorithm for finding the canonical form
of the differential equations and compare it to existing methods. Some of these methods,
which will be reviewed in subsequent chapters, rely on properties of the special functions
appearing in the solutions of the canonical differential equations. At the end of this
chapter, we therefore also give a brief overview of this structure and the relevant special
functions.

2.1 The Massless One-Loop Box Integral

Let us start with one of the most prominent examples of Feynman integrals, the massless
one-loop box integral depicted in figure 2.1. It is the most important integral for massless

Figure 2.1: One-loop box.

two-to-two scattering at next-to-leading order and appears in many physical processes.

7



2 Feynman Integrals

The four external momenta pi are on-shell, p2
i = 0, and satisfy momentum conservation

p1 + p2 + p3 + p4 = 0. One can see that also at every vertex in the graph of figure 2.1
momentum is conserved. The loop momentum k is not determined by any conservation
delta function and is therefore integrated over:

Ibox =

∫
d4k

iπ2

1

k2(k + p1)2(k + p1 + p2)2(k − p4)2
. (2.1)

Since the integral is a scalar under Poincaré transformations it can depend on scalar
quantities, i.e. the Mandelstam invariants s = (p1 + p2)2 and t = (p2 + p3)2, only. By
momentum conservation we have u = (p1 +p3)2 = −s− t. The four propagators have an
implicit small imaginary part according to the Feynman prescription, e.g. k2 ≡ k2 − i0,
which shifts the poles slightly away from the real axis and is needed to preserve causality.

2.2 Divergences and Dimensional Regularization

Analyzing the integral in (2.1) more carefully shows that it is actually not well defined
because the integrand diverges for parts of the integration region. Consider e.g. the case
where |k| becomes very small. Then the integrand behaves as

Ibox ∼
∫

d|k|
|k|

. (2.2)

To define what we actually mean by Ibox we need to regularize this divergence. One
simple way would be to introduce a cut-off so that the |k| integral starts at Λ instead of
zero. The mentioned soft divergence would then appear in the limit Λ→ 0.

However, we will instead use the much more commonly used method of dimensional
regularization introduced in [51, 52, 53]. In this procedure, the space-time dimension is
slightly shifted away from four dimensions: D = 4− 2ε. The integrand then behaves as

Ibox ∼
∫

d|k|
|k|1+2ε

(2.3)

and can be integrated to yield a well-defined quantity by assuming ε < 0. The result
then has poles at ε = 0, which can subsequently be removed by redefining the parameters
of the theory.

There are several advantages of dimensional regularization over other regulators, the
most important one being that it preserves many symmetries of the integral and often
also the gauge theory under consideration. In addition, it also regulates divergences
coming from the region where the loop momentum becomes very large (ultraviolet, UV)
or when it becomes collinear to one of the external momenta, i.e. k ∼ pi. Note that
soft and collinear divergences are called infrared (IR) divergences and only appear for
integrals involving massless particles.

8



2.3 Behavior of Feynman Integrals Near Singular Points

2.3 Behavior of Feynman Integrals Near Singular Points

Another important case occurs when analyzing the integral in certain limits of the kine-
matic invariants. These limits are often used to gain valuable information without having
to deal with the complexity of the full integral. By considering specific integral represen-
tations, such as the Feynman parameter representation, it is clear that the behavior in a
certain limit is bound by some finite power [20]. In particular, one can use the method
of regions [54] to determine that an integral e.g. around s = 0 behaves as sα logk s for
some constants α and k. This means that Feynman integrals can only have regular
singularities in the kinematic invariants and no essential singularities. The latter implies
that a behavior such as e1/s is excluded.

We note that the kinematic regions where a particular Feynman integral is potentially
singular can be inferred from the Laundau equations [55, 56]. This can sometimes be
used to constrain the coefficients in an ansatz for the solution, a method which is referred
to as a bootstrap. Instead of just the Feynman integrals, one can also try to apply this
bootstrap procedure to the final answer of the calculation. Especially in the case of
scattering amplitudes such an approach has turned out to be incredibly powerful, see
e.g. [57, 58].

2.4 Integral Families

In a given scattering problem, the number of Feynman integrals appearing can be quite
large, especially at multi-loop order. Fortunately, they can be classified by the integral
“family” (also called topology), by which we usually mean integrals with propagators
from the same set. At this point it is worth mentioning that the powers of the propagators
can take any (integer) value. For example, the box family in dimensional regularization
is given by

Ia1,a2,a3,a4 = eεγE
∫

dDk

iπD/2
1

[k2]a1 [(k + p1)2]a2 [(k + p1 + p2)2]a3 [(k − p4)2]a4
, (2.4)

where the factor of eεγE/iπD/2 is purely conventional and intended to remove constants
such as Euler’s constant γE from the result. The box, triangle and bubble integrals in
figures 2.1, 2.2a and 2.2b are then given by I1,1,1,1, I1,1,0,1 and I1,0,1,0, respectively. As in
this example of the box family, the integral with all propagators of a family is generally
used as a representative and is given by the one whose graph has only three-point vertices
and no four-point vertices.

Identifying the relevant families can help reduce the number of needed integrals dras-
tically because the integrals within a family satisfy many relations. The most important
relations follow simply from using integration-by-parts (IBP). These are linear relations
and lead to a vector-space like structure of the family, meaning that there is a basis
of integrals from which all others can be computed. For instance, the three integrals
I1,1,1,1, I1,1,0,1 and I1,0,1,0 form a basis for all integrals Ia1,a2,a3,a4 in the box family. The
IBP relations, as well as the example of the box family will be discussed in more detail
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2 Feynman Integrals

(a) (b)

Figure 2.2: The one-loop triangle (a) and bubble (b) integral.

in section 5.1. In the following we will also use the word master integrals to refer to
such a basis, however, note that the basis is not unique, i.e. we are free to choose any
linearly independent set of integrals in a family as master integrals.

2.5 Computation of Master Integrals and the Differential
Equations Method

After having reduced our set of Feynman integrals to a basis, it is natural to ask how to
actually compute the chosen set of master integrals. As discussed in the introduction,
we are going to use the method of differential equations for this calculation. To this
end, we take the derivative of the master integrals w.r.t. a kinematic invariant x, which
results in

∂

∂x
~f = A(x, ε)~f, (2.5)

where ~f is the vector of master integrals and A(x, ε) is the coefficient matrix consisting
of entries rational in x and ε. Note that the fact that the integrals resulting from the
derivative of the masters can again be written in terms of the masters is thanks to the
IBP identities. This will be discussed in more detail in section 5.2 where we explicitly
derive the differential equations for a simple example.

The goal of this thesis is then to find a basis ~g, related to ~f by a transformation
~f = T~g, s.t. the dimensional regulator ε factorizes:

∂

∂x
~g = ε Ã(x)~g (2.6)

and the coefficient matrix Ã(x) has only regular singularities. A differential equation of
this type is said to be in canonical form. Note that Ã(x) might not be rational anymore
because the basis ~g can contain non-rational functions as coefficients of the Feynman
integrals.

10



2.6 Canonical Form and Uniform Transcendental Weight Integrals

A formal solution of (2.6) is given by

~g = P e
ε
∫ x
x0
Ã(x′) dx′

~g0, (2.7)

where ~g0 is a vector of boundary constants. This formula is defined through the series
expansion of the matrix-exponential, which, because of the factorization, coincides with
the expansion in ε. The path-ordering symbol P ensures that each term is ordered with
increasing x. The first few orders are

P e
ε
∫ x
x0
Ã(x′) dx′

= 1 + ε

∫ x

x0

Ã(x1) dx1 + ε2
∫ x

x0

∫ x1

x0

Ã(x1)Ã(x2) dx2 dx1 +O(ε3). (2.8)

The solution as an expansion in ε is usually sufficient since only a finite number of
terms are required to compute observables in a given integer dimension. Note that, for
simplicity, we focus here on the case of a single variable x. The generalization to the
multi-variable case can however be easily done by replacing the partial derivative in (2.6)
with a total derivative, which leads to d~g = ε dÃ~g.

2.6 Canonical Form and Uniform Transcendental Weight
Integrals

In order to find the canonical form (2.6) it is helpful to understand what properties the
master integrals in the basis ~g have. First, let us look at what class of functions we
can expect. Remember from the last section that the canonical differential equations
only have regular singularities. Further, we will assume that it is possible to find an
appropriate variable change s.t. Ã(x) is rational in x. As a result, the singularities of
Ã(x) are of the form 1/(x − c) for some constant c. Therefore, we see that the term
of order ε in (2.8) only involves logarithms and that at higher orders in ε the following
functions become relevant:

G(a1, a2, . . . , an;x) =

∫ x

0

dt

t− a1
G(a2, . . . , an; t), G(;x) = 1 (2.9)

The logarithm itself is included in this definition:

G(a, . . . , a︸ ︷︷ ︸
n

;x) =
1

n!
logn

(
1− x

a

)
(2.10)

In the special case where all indices ai are zero we define

G(0, . . . , 0︸ ︷︷ ︸
n

;x) =
1

n!
logn x. (2.11)

We will refer to these functions as multiple polylogarithms1 (MPLs) or Goncharov poly-
logarithms (GPLs) [59, 60] (see [47] for their numerical evaluation). The study of these

1Some authors use “multiple polylogarithms” to refer to the generalized classical polylogarithms
Lim1,...,mk (x1, . . . , xk) which are related to the functions G(a1, a2, . . . , an;x) discussed here.
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2 Feynman Integrals

functions and their properties have facilitated the computation of many ground-breaking
results in quantum field theory and string theory. On the other hand, the importance
of the MPLs in physics has also greatly accelerated the mathematics research on these
special functions. Especially for the simplification of lengthy expressions, it is useful to
be able to derive relations through the shuffle algebra:

G(~a;x)G(~b;x) =
∑

~c∈(~att~b)

G(~c;x), (2.12)

where we follow [46] and introduce the vector notation ~a = (a1, . . . , an). The shuffle
product ~att~b denotes all shuffles of ~a and ~b, where a shuffle is a combination of two lists
that respects the relative ordering within each original list. For instance,

(a1, a2) tt(b1, b2) = {(a1, a2, b1, b2), (a1, b1, a2, b2), (a1, b1, b2, a2) (2.13)

(b1, a1, a2, b2), (b1, a1, b2, a2), (b1, b2, a1, a2)}. (2.14)

In addition, MPLs are invariant under rescaling

G(k~a, k x) = G(~a, x), (2.15)

if the rightmost index an is different from zero. This index is also important when
discussing the definition of MPLs in eq. (2.9). We see that they are formally divergent
at the lower integration limit t = 0 if an = 0. However, the shuffle product allows us to
extract these trailing zeros, i.e. we can write any MPL with an = 0 in terms of MPLs
with an 6= 0 and MPLs where all indices are zero. For instance

G(a1, 0, 0;x) = G(a1;x)G(0, 0;x)−G(0, a1;x)G(0;x) +G(0, 0, a1;x). (2.16)

For G(0;x) and G(0, 0;x) we now simply use the definition given in (2.11). This proce-
dure of defining the functions G(~a;x) is called shuffle regularization and is equivalent to
modifying the base point in an intricate way. From this definition it follows that MPLs
are still logarithmically divergent for x → 0 if an = 0. Likewise, a similar divergence
appears for x→ a1, which can also be extracted through the shuffle algebra.

The functions defined in (2.9) are special instances of more general functions, i.e.
iterated integrals [61] (see also [62, 63]). These are defined by

I(f1, f2, . . . , fn;x) =

∫ x

x0

dtf1(t) I(f2, . . . , fn; t), I(;x) = 1, (2.17)

and have numerous applications whenever the integration kernels fi(t) cannot be written
in terms of the integration kernels of MPLs. An important case occurs when the fi(t)
involve square-roots

√
y(t) which one failed to rationalize. If y(t) is a polynomial of

degree one or two, it is likely that it is in principle still possible to find a representation
in terms of MPLs where the ai now involve square-roots of the kinematic variables.
Alternatively, one can directly use square-root valued iterated integrals [64, 65].

12



2.6 Canonical Form and Uniform Transcendental Weight Integrals

In the case where y(t) is a polynomial of degree three or four, one can use the definition
of the so-called elliptic multiple polylogarithms (eMPLs), see e.g. [66, 67]. However, for
the differential equations method, it is often more convenient to use iterated integrals
over modular forms instead of eMPLs, see [68, 69, 70]. These integration kernels then
explicitly involve the elliptic integral of the first kind:

K(x) =

∫ 1

0

dt√
(1− t2)(1− x t2)

(2.18)

Note that eMPLs can be written in terms of iterated integrals over modular forms. We
will see an example of a differential equation involving K(x) in section 6.7.3, however,
most of the methods described in this thesis have been developed for integrals that
evaluate to multiple polylogarithms and we will discuss possible generalizations to the
elliptic case in chapter 8.

For multiple polylogarithms, it is now very convenient to introduce the transcendental
weight T (f) of a function f as the number of integrations needed to define it. Therefore,
we have

T (G(a1, . . . , an;x)) = n, (2.19)

and e.g. T (log x) = 1. Following the shuffle algebra of MPLs, we also define T (f1f2) =
T (f1) + T (f2). Note that T (f1 + f2) only makes sense if T (f1) = T (f2). Further,
algebraic2 functions have weight zero and numerical constants have the transcendental
weight of the function they are derived from, e.g. G(0, 1; 1) = −π2/6 and therefore
T (π) = 1.

Going back to our solution of the differential equations in (2.8), it is customary to
use ε as a formal parameter to keep track of the transcendental weight of the expansion.
To this end, we assign T (ε) = −1. Then it becomes immediately clear that the terms
in the solution (2.8) will all have the same transcendental weight! A function with this
property is said to be of uniform transcendental weight (UT). Furthermore, the solutions
of the canonical differential equations satisfy

T
(

d

dx
gi(x)

)
= T (gi(x))− 1. (2.20)

A UT function with this property is said to be a pure function. Roughly speaking, this
means that there are no non-constant algebraic functions multiplying the transcendental
function. For example the individual functions in (2.9) are all pure, but if we multiply
them with an x-dependent factor, they are not pure anymore although they still have
uniform transcendental weight.

Comparing eq. (2.20) to the canonical differential equations (2.6) and keeping in mind
that Ã(x) has only regular singularities and that T (ε) = −1, we see why the solutions ~g
consist of pure functions.

2When referring to an algebraic function, we mean a function that is not transcendental, but can be
rational or non-rational. For example,

√
x is algebraic, but not rational. Therefore, loosely speaking,

we have: rational ⊂ algebraic ⊂ transcendental.
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2 Feynman Integrals

To summarize, the properties of Feynman integrals suggest that a certain canonical
form for their differential equations exists. In the canonical form, the solution in terms of
iterated integrals at each order in the ε-expansion follows almost by definition. Further,
this solution manifestly consists of pure functions, i.e. it has uniform transcendental
weight without any rational or algebraic functions.

One very powerful statement made in [27] is that this argument can be reversed. In
other words, the canonical form can be reached by finding a basis ~g that consists of pure
integrals, i.e. integrals that evaluate to pure functions. In the next chapter, we review
a method that allows to find these pure integrals by analyzing the singularities of the
integrand of a given Feynman integral.

Let us now discuss recent developments in the computation of Feynman integrals.
The main factors that contribute to the complexity of a given integral are the number of
loops and the number of kinematic scales [9]. The latter is determined by the number of
external and internal masses, as well as the number of external particles. At one loop,
the differential equations method and the other techniques mentioned in the introduction
are sufficient to analytically compute integrals with nearly any configuration of masses,
see [71, 72] for a collection of known results.

At two loops, most state-of-the-art results have been obtained through the differential
equations method. In particular, massless integrals with five external particles have been
computed in [33, 34] and also results with one external mass are available [73, 74, 75].
Further, two-loop integrals with massive propagators and four external particles have
received a lot of attention due to their high phenomenological relevance, see e.g. [76,
77, 78]. However, massive propagators often lead to the appearance of elliptic Feynman
integrals, which make it difficult to obtain a form of the differential equations that can
be solved analytically. For this reason, most of the mentioned results with massive
propagators have been obtained through semi-numeric methods, e.g. by numerically
expanding the analytic differential equations [79, 80].

For integrals with zero or one kinematic scale, the number of loops where analytic
results are still possible can be impressively high. Zero-scale examples (mostly com-
puted by methods other than differential equations) are given by the five-loop QCD
beta-function [81, 82, 83] and the light-like four-loop cusp anomalous dimension [84, 85].
Further, we will give an explicit one-scale four-loop example through the integrals rele-
vant to the computation of the angle-dependent four-loop cusp anomalous dimension in
QED [2].
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3 Leading Singularities and Uniform Weight
Feynman Integrals

The canonical form of the differential equations makes it possible to easily write down
their solution order-by-order in ε. Furthermore, from their structure, it is clear that this
solution will consist of pure functions, i.e. a sum of multiple polylogarithms of the same
transcendental weight without algebraic prefactors. Turning this logic around, we see
that we can exchange the task of finding a canonical basis with the one of finding pure
Feynman integrals.

In this section, we will see that the integrand of a Feynman integral already gives
information about the transcendentality of the integrated quantity. More concretely, we
will find that so-called dlog integrals constitute a basis of UT integrals [29, 30, 27], and
that a criterion for selecting this type of integrals naturally involves the computation
of leading singularities (LS). This method does not require any knowledge of the actual
differential equations and the latter are merely used to verify that the determined basis
indeed leads to a canonical form. This is in contrast to the balance transformations
which we will review in chapter 5.

An essential point is that the dlog integrals we find in this chapter might not be enough
to form a complete basis of canonical integrals. However, they can be used as an input
for our new algorithm which we will present in chapter 6.

The importance of leading singularities for scattering amplitudes was first shown in
[28], where the integrand of the two-loop five-particle amplitude in N = 4 super Yang-
Mills (sYM) was determined through an alternative method. This technique is very
similar to generalized unitarity [86, 58, 87] where one makes an ansatz for the amplitude
in terms of a minimal set of Feynman integrals and then determines the coefficients by
matching different multivariate residues on both sides. In particular, these residues are
computed by cutting the propagators Di, i.e. the integration contour is taken to encircle
the poles of the propagators:

LS(Ibox[N ]) =
1

(2πi)4

4∏
i=1

∮
Di=0

dDi

Di

N(k)

J(k)
, (3.1)

where we have used the example of the one-loop box integral. Here, N represents a
possible numerator of the integrand and J is the Jacobian from changing to the variables
Di. The resulting LS is therefore just N(k∗)/J(k∗), where k∗ is one of the solutions of
the four simultaneous equations Di = 0.

Note that, in this example, taking the four residues completely localizes all integra-
tions, because the number of poles is equal to the number of integration variables. The
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3 Leading Singularities and Uniform Weight Feynman Integrals

leading singularities generalize this concept of localizing all integrations to any number of
poles and integration variables: If there are more poles than integrations, then there will
be multiple, possibly different results depending on which poles we choose to encircle.
If there are fewer poles than integrations, new poles will appear through the Jacobian,
allowing to iteratively localize all integrations. The leading singularities are then the
residues resulting from this computation.

The development of these techniques allowed to derive a very compact recursive for-
mula for the integrand of planar scattering amplitudes in N = 4 sYM [88, 29].

3.1 Leading Singularities, dlog Forms and Uniform
Transcendental Weight Integrals

A very convenient form that makes the LS of an integrand manifest is the dlog form.
As a simple example, we consider again the one-loop box. Let us state for now that the
four-dimensional integrand can be written as [89]

Ibox =
1

st
dlog

k2

(k − k∗)2
∧ dlog

(k + p1)2

(k − k∗)2
∧ dlog

(k + p1 + p2)2

(k − k∗)2
∧ dlog

(k − p4)2

(k − k∗)2
, (3.2)

where k∗ is one of the solutions for k to the simultaneous equations k2 = (k + p1)2 =
(k+p1+p2)2 = (k−p4)2 = 0. We will show in the next section how a dlog form for a given
integrand can be obtained algorithmically. Here, we only want to discuss the advantages
of the form given in (3.2). The wedge product ∧ keeps track of the orientation of the
contour and therefore of the overall sign. However, since this will not be important in
our further analysis, we will often omit writing it explicitly. In doing so, we have to
keep in mind that the differential forms are anti-symmetric, dx ∧ dy = −dy ∧ dx and
therefore dx ∧ dx = 0.

The dlog form makes the LS of the integrand explicit since the residue of a logarithmic
differential form around its pole is trivially one. Therefore, the LS are just the prefactors
of the differential forms, i.e. LS(Ibox) = 1/(st). Note that only integrands with logarith-
mic poles can be written in dlog form. The appearance of a higher order pole1 dx/xa,
a 6= 1, in the integrand immediately implies that a dlog form cannot exist.

This is tied to the following conjecture [29, 30, 27]: Integrals whose integrand admit
a dlog form with kinematic independent LS evaluate to pure functions and are therefore
pure integrals.

Before trying to understand the origin of this conjecture, let us discuss its consequences
for the canonical basis. Since our goal is to find pure integrals, the conjecture states
that we can equivalently try to find dlog integrals within a given integral family. As
we will see in the next section, this can be done algorithmically by making an ansatz
for possible dlog integrals and subsequently determining the coefficients by requiring the
absence of double poles, as well as the kinematic independence of all LS. However, note

1A non-logarithmic pole can always be mapped to a pole dx/x2 through a change of variables. Therefore
we will refer to this as a double pole.
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that also integrals without a dlog form can be pure. Therefore dlog integrals form only
a subset of possible pure integrals and it can happen that they are not enough to form
a complete basis of master integrals for the given integral family. Because of this, the
method in this chapter should be seen as being complementary to the other methods
described in this thesis. This becomes especially important for the algorithm described
in chapter 6 where a single dlog integral can be utilized to find the rest of the integrals
in the canonical basis.

So why do we expect dlog integrals with constant LS to be pure integrals? The
idea behind this conjecture is that a double pole is a manifest obstruction in uniformly
raising the transcendental weight of the function during integration. Therefore their
absence should intuitively give a sufficient (but not necessary) criterion for the uniform
transcendental weight property of an integral. However, note that the differential forms
in (3.2) are not the same as the ones encountered in the definition of MPLs in eq. (2.9).
While the former are differential forms in the loop integration variables, the latter have
no such dependence and instead depend only on the kinematic invariants. Deriving a
precise relation between the two is far from trivial, see [90] for recent progress in this
direction. Finally, the LS of an integral roughly corresponds to the algebraic prefactor
of the transcendental functions in the result. Therefore the requirement on the LS to
be constant can be understood as the requirement on the integrals to be pure instead of
just UT.

Careful readers might have noticed that all LS mentioned so far were computed from
integrals defined in strictly four dimensions. However, in the last chapter we saw ex-
plicitly that the transcendental weight can also be used for integrals in dimensional
regularization. In fact, we even went as far as defining T (ε) = −1. The solution to
this is that dlog integrands in dimensional regularization can only to be multiplied by a
simple factor with an exponent proportional to ε [20, 91]:

I = G(k)−βε
n∏
i=1

dlog fi(k), (3.3)

where G(k) and fi are algebraic functions of the integration variables. Since G(k)−βε is
a pure function (expand in ε to see this), we expect that it does not destroy the uniform
weight of the remaining integral and therefore set ε = 0.

There is however one caveat to this prescription: While we set ε = 0 in the exponent,
there are cases were it is incorrect to use a strictly four-dimensional parametrization for
the momenta. Explicitly, Gram determinants

G({ni}, {nj}) = det
i,j

(2ni · nj) (3.4)

with more than four different momenta ni vanish in a four-dimensional parametrization,
in contrast to a D-dimensional one. In general, these determinants can play a role in
finding dlog integrals [33]. In section 3.4 we will introduce a representation of Feynman
integrals that takes these determinants into account.
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3.2 4D Momentum-Space Parametrizations

As a first example, let us try to put the integrals of the one-loop box family into dlog
form. Recall, that the four propagators of Ibox are

D1 = k2, D2 = (k + p1)2, D3 = (k + p1 + p2)2, D4 = (k + p1 + p2 + p3)2, (3.5)

with the kinematics being

p2
i = 0, p1 · p2 =

s

2
, p2 · p3 =

t

2
p1 · p3 = −s+ t

2
. (3.6)

Instead of trying to find the result quoted in (3.2) we will use a simple parametrization
that allows for a very systematic computation of the leading singularity:

k = a1p1 + a2p2 + a3q1 + a4q2, (3.7)

with two new massless vectors q2
i = 0 which are orthogonal to p1 and p2, and satisfy

q1 · q2 = −s
2
, q1 · p3 =

t

2
, q2 · p3 = −s+ t

2
. (3.8)

Note that this is a strictly four-dimensional parametrization, however, the complications
mentioned at the end of the previous section will not play a role here.

The Jacobian from the change of variables in (3.7) can be computed by noting that

det
i,j

(Ji · Jj) = −det(J)2, (3.9)

with

Jµi =
∂kµ

∂ai
, µ = 0, . . . , 3, i = 1, . . . , 4 (3.10)

and therefore

det(J) =
√
−det

i,j
(Ji · Jj) = ±is

2

4
. (3.11)

The overall factor of ±i will not be important for us and we therefore ignore it. The
propagators are now

D1 = sb4,

D2 = s(a2 + b4),

D3 = s(1 + a1 + a2 + b4),

D4 = s(a2 − a4 + b4)− t(a1 − a2 − a3 + a4),

(3.12)

where we defined b4 = (a1a2 − a3a4). Starting with the triangle integral, this leads to

I1,1,1,0 =
da1 da2 da3 db4

sa3b4(a2 + b4)(1 + a1 + a2 + b4)
. (3.13)
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Using the definition of the total differential

d =
4∑
i=1

dai
∂

∂ai
, (3.14)

as well as the antisymmetry of the wedge product, it becomes easy to bring this into
dlog form:

I1,1,1,0 =
da1 da2 da3 db4
sa3b4(a2 + b4)

∂

∂a1
log(1 + a1 + a2 + b4)

= − da2 da3 db4
sa3b4(a2 + b4)

dlog(1 + a1 + a2 + b4)

= −da3 db4
sa3b4

dlog(a2 + b4)dlog(1 + a1 + a2 + b4)

= −da3

sa3
dlog(b4)dlog(a2 + b4)dlog(1 + a1 + a2 + b4)

= −1

s
dlog(a3)dlog(b4)dlog(a2 + b4)dlog(1 + a1 + a2 + b4)

(3.15)

We see that the LS of the triangle integral is −1/s, and therefore the normalized integral
sI1,1,1,0 has constant LS and is a pure integral. Notice how we chose to start the dlog
construction in the variable a1 because there was only one factor depending on it. Of
course, we could have started also with a different variable, but e.g. for b4 we would have
needed to perform partial fractioning.

Next, consider the bubble integral I1,0,1,0. The steps are essentially the same, however,
we now encounter an obstruction:

I1,0,1,0 = −da2

s
dlog(a3)dlog(b4)dlog(1 + a1 + a2 + b4) (3.16)

This is a double pole at infinity, which can be exposed by performing the change of
variables a2 → 1/a′2. Therefore, the bubble integral in four dimensions does not admit
a dlog form and we a priori don not know whether it is a pure integral or not. The box
integral I1,1,1,1, on the other hand, is a dlog integral with LS 1/(st) and we leave it as
an example to check this explicitly.

Square-roots. In state-of-the art computations, reaching the dlog form will hardly ever
be as simple as in the above example. The most commonly encountered difficulty is the
appearance of square-roots. These arise from the fact that the propagators are often at
least quadratic in the integration variables.

As a simple example, consider again the one-loop triangle, but now with all external
legs being massive, i.e. p2

1 = m2
1, p

2
2 = m2

2 and p1 ·p2 = (s−m2
1−m2

2)/2. We would again
like to use a parametrization similar to (3.7). To do this, we introduce four massless
auxiliary vectors in the following way:

p1 = q1 + q2, p2 = q3 + q4 (3.17)
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with q2
i = 0 and q1 · q4 = q2 · q3 = q2 · q4 = 0. From the original kinematics it follows that

q1 · q2 =
m2

1

2
, q3 · q4 =

m2
2

2
, q1 · q3 =

s−m2
1 −m2

2

2
. (3.18)

After having dealt with a1 and a4, we encounter a quadratic denominator:

Imassive
1,1,1,0 =

da2 da3

s(1 + a2)a3 + (a2 − a3)((1 + a2)m2
1 − a3m2

2)
× dlog(. . .)dlog(. . .) (3.19)

By using partial fraction w.r.t. a2, one finds that

Imassive
1,1,1,0 =

da2 da3

m2
1(a2 − c+

2 )(a2 − c−2 )
× dlog(. . .)dlog(. . .) (3.20)

= − da3

m2
1(c+

2 − c
−
2 )

dlog

(
a2 − c+

2

a2 − c−2

)
dlog(. . .)dlog(. . .), (3.21)

with

c±2 = − 1

2m2
1

(
a3(s−m2

1 −m2
2) +m2

1

±
√

(a3(s−m2
1 −m2

2) +m2
1)2 − 4a3m2

1(s−m1 + a3m2
2)

) (3.22)

being the two roots of the quadratic denominator in (3.19). The denominator in (3.21)
is now the square-root of a polynomial quadratic in a3:

Imassive
1,1,1,0 =

1√
s2 + (m2

1 −m2
2)2 − 2s(m2

1 +m2
2)

da3√
(a3 − c+

3 )(a3 − c−3 )

× dlog

(
a2 − c+

2

a2 − c−2

)
dlog(. . .)dlog(. . .)

(3.23)

This is immediately a dlog because of [32] (see also [31])

1√
(x− c+)(x− c−)

=
∂

∂x
log

1 +
√

(c+−x)
(c−−x)

1−
√

(c+−x)
(c−−x)

. (3.24)

As a result, the massive triangle integral is a dlog integral with leading singularity

LS(Imassive
1,1,1,0 ) =

1√
s2 + (m2

1 −m2
2)2 − 2s(m2

1 +m2
2)

(3.25)

and normalizing it by the inverse of this LS gives a pure integral.
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3.3 Algorithmic Determination of dlog Integrals

For completeness, we list the other two dlog forms that involve square-roots and are
often encountered in a computation:

1

(x− c)
√

(x− c1)(x− c2)
=

1√
(c− c1)(c− c2)

∂

∂x
log

1 +
√

(c2−c)(c1−x)
(c1−c)(c2−x)

1−
√

(c2−c)(c1−x)
(c1−c)(c2−x)

(3.26)

1

(x− c)
√

(x− c1)
=

1√
(c− c1)

∂

∂x
log

1 +
√

(c1−x)
(c1−c)

1−
√

(c1−x)
(c1−c)

(3.27)

In [91] it was conjectured that a cubic or higher order polynomial under the square-
root leads to an elliptic integral. While it is true that this case cannot be handled by the
methods described in this section, we will see in section 3.4 an explicit counterexample
to this conjecture.

3.3 Algorithmic Determination of dlog Integrals

Now that we know how to compute LS of individual integrals, let us use this to find
all possible dlog integrals in the massless one-loop box family. Here, we will follow [31]
closely. The idea is to make an ansatz and then constrain the coefficients by requiring
the absence of double poles, as well as the kinematic independence of the LS. Of course,
we cannot include all integrals Ia1,a2,a3,a4 in the ansatz because this is an infinite number
of terms. However, we can already restrict the indices ai in the following way:

� ai ≤ 1, because higher powers in the denominator would immediately lead to a
corresponding higher-order pole.

� Bubble integrals immediately lead to a double pole, see eq. (3.16). They can
therefore be excluded from the ansatz.

� Likewise, tadpole integrals can easily be shown to lead to a double pole.

� Let a = a1 + a2 + a3 + a4. To keep the ansatz finite, we will for now restrict to
integrals with a ≥ 2. This criterion will be proven and further constrained in the
following.

This leaves us with the ansatz

n1I1,1,1,1 + n2I0,1,1,1 + n3I1,0,1,1 + n4I1,1,0,1 + n5I1,1,1,0

+ n6I−1,1,1,1 + n7I1,−1,1,1 + n8I1,1,−1,1 + n9I1,1,1,−1.
(3.28)

Requiring the coefficients of all double poles to be zero leads to

n6 = . . . = n9 = 0. (3.29)
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3 Leading Singularities and Uniform Weight Feynman Integrals

We see that triangle integrals with a numerator should have vanishing coefficient. A
systematic way to understand this [32] can be found by rescaling the loop momentum
k = k̃/k̃2, where a propagator Di = k2+k·qi transform as Di = D̃i/k̃

2 with D̃i = 1+k̃·qi.
Then, the integrand is

Ia1,a2,a3,a4 =
d4k̃

[k̃2]4−aD̃a1
1 D̃

a2
2 D̃

a3
3 D̃

a4
4

, (3.30)

and hence a < 3 always leads to a double pole. As LS we find

n1

st
,

n4

t
,

n5

s
− n1

st
, − n3

s
+
n1

st
, − n2

t
+
n1

st
. (3.31)

Five non-trivial solutions for them to be constant are

n1 = st, ni = 0, i 6= 1

n2 = t, ni = 0, i 6= 2

n3 = s, ni = 0, i 6= 3

n4 = t, ni = 0, i 6= 4

n5 = s, ni = 0, i 6= 5,

(3.32)

which gives five dlog integrals when plugging this into the ansatz (3.28). Note however
that IBP identities give only three master integrals and therefore the five dlog integrals
are not linearly independent. Specifically, the two s-channel triangles, as well as the two
t-channel triangles, are equivalent.

In a multi-loop computation, the number of terms in the ansatz can be considerably
larger than in this example. To reduce this number before doing the full computation of
the LS it can be advantageous to first analyze the ansatz on certain cuts. In the above
example, we could first take residues around the poles D1 = D3 = 0. This is known
as the maximal cut of the bubble I1,0,1,0, because all propagators of this integral are
cut. Note that all integrals without the denominators D1 and D3 vanish on this cut.
Therefore, although the computation of the LS is simpler, we do not get conditions on
n1, n3, n7, n8 and n10. To get the restrictions on these coefficients, we can repeat the
analysis on the maximal cut of integral I0,1,0,1 and combine the two systems to recover
the results in eqs. (3.29) and (3.31). For this reason, the two cuts are called a spanning
set of cuts.

All techniques of this section have been described in [31] and implemented in the
Mathematica-package DlogBasis [32]. The most important command is probably
LeadingSingularities, which computes the LS of a given expression together with the
constraints for the absence of double poles.

3.4 Baikov Representation

In the leading singularity computation, it can be very advantageous to use the propa-
gators themselves as integration variables. This e.g. trivializes the operation of taking
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3.4 Baikov Representation

cuts, c.f. eq. (3.1). The most systematic way to achieve such a parametrization is the
Baikov representation [92, 93, 94, 95]. An L-loop Feynman integral in D dimensions and
with E independent external momenta is written as

Ia1,...,an = CLE

∫
D

dz1 · · · dzn
za11 · · · z

an
n
U

E−D+1
2 P

D−L−E−1
2 . (3.33)

Let us go through the objects appearing in this equation one at a time. The propagators
are now called zi and form a complete set of linearly independent scalar products. Since
we have L loop momenta k1, . . . , kL and E external momenta p1, . . . , pE , there are n =
L(L + 1)/2 + LE such scalar products. For example, the simplest set of independent
scalar products is

{ki · kj} ∪ {ki · pl} i, j = 1, . . . , L, l = 1, . . . , E. (3.34)

For L ≥ 2, n is usually bigger than the number of denominators. The zi that do not
appear in the denominator, i.e. ai ≤ 0, are called irreducible scalar products (ISPs). Be-
cause n is generally not equal to the number of integration variables in four-dimensions,
this is an inherently D-dimensional representation. Otherwise the transformation would
not be invertible. However, one can often still put ε = 0 to simplify the LS computation,
see the discussion around eq. (3.3).

The factors CLE , U and P are nothing but the Jacobian from changing integration
variables. CLE is a factor of Gamma-functions:

CLE = A
π
L−n
2

Γ(D−E−L+1
2 ) · · ·Γ(D−E2 )

, (3.35)

where A is the constant Jacobian from switching from the set of scalar products in (3.34)
to the propagators zi. The factor in (3.35) is irrelevant for computing LS and we will
mostly omit it. However, note that it can be important for analyzing whether an integral
is UT.

U is the Gram determinant of the external momenta,

U = G(p1, . . . , pE) ≡ G({p1, . . . , pE}, {p1, . . . , pE}) = det
i,j

(2pi · pj) (3.36)

and P is the Baikov polynomial

P = G(k1, . . . , kL, p1, . . . , pE). (3.37)

The integration domain D can be determined by requiring the integral to be real for
certain values of the kinematic invariants [96]. For L = 1 this results in the region
where P is positive definite. This makes the Baikov representation a popular choice for
deriving IBP identities [97, 98, 99] because P vanishes on the integration boundary.
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3 Leading Singularities and Uniform Weight Feynman Integrals

For the one-loop box

CLE =
1

8

1

π
3
2 Γ(1

2 − ε)
, (3.38)

U = −2st(s+ t), (3.39)

P = t2(z1 − z3)2 + s2[t2 + (z2 − z4)2 − 2t(z2 + z4)]

− 2st[−z2z3 + t(z1 + z3) + 2z2z4 − z3z4 − z1(z2 − 2z3 + z4)] (3.40)

and

Ia1,a2,a3,a4 = CLEU
ε

∫
D

dz1 dz2 dz3 dz4

za11 za22 za33 za44

P−
1
2
−ε. (3.41)

From this parametrization, one can set ε = 0 (see the discussion around 3.3) and again
compute the LS of the dlog integrals of the previous section. As a quick check, we
compute the maximal cut of the 4d box integral:

Imax-cut
1,1,1,1 ∼ P−

1
2

∣∣∣∣
z1=···=z4=0

=
4

st
(3.42)

in agreement with its LS.

Example: The Three-Mass Double Box. As an advanced example, we consider the
double-box family in figure 3.1 with three massive external legs. The canonical basis for

Figure 3.1: The two-loop box integral. We consider the three-mass case where only p4 =
−p1 − p2 − p3 has a vanishing invariant mass.

this family was found by the present author and collaborators in [3], see also section 7.1.
The kinematics is

p2
1 = m2

1, p2
2 = m2

2, p2
3 = m2

3, p2
4 = 0

p1 · p2 =
s−m2

1 −m2
2

2
, p2 · p3 =

t−m2
2 −m2

3

2
, p1 · p3 = −s+ t−m2

2

2

(3.43)
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3.4 Baikov Representation

and the nine propagators are

z1 = k2
1, z2 = (k1 + p2

1), z3 = (k1 + p1 + p2)2,

z4 = (k2 + p1 + p2)2, z5 = (k2 − p4)2, z6 = k2
2,

z7 = (k1 − k2)2, z8 = (k1 − p4)2, z9 = (k2 + p1)2

(3.44)

where z8 and z9 are ISPs, i.e. they never appear in the denominator of the integrand
and are only needed to complete the set of independent scalar products.

We could now proceed to put the integrals in this family into Baikov representation
according to eq. (3.33). It is however more efficient to recycle the result for the one-loop
box and first only put one of the two loops in figure 3.1 into Baikov representation.
Afterwards, we proceed with the remaining diagram. This so-called loop-by-loop (LbL)
Baikov representation [100] is of course not unique, since it depends on which loop we
start with, as well as the chosen momentum-routing.

Starting with the right loop in k2, the external momenta are k1, p3 and p4. Therefore
the representation for the integral at this point is

Ia1,...a8,0 =

∫
dDk1

iπD/2
1

za11 za22 za33 za88

C1
3U

ε
2

∫
dz4 dz5 dz6 dz7

za44 za55 za66 za77

P
− 1

2
−ε

2 (3.45)

with

U2 = G(k1, p3, p4) and P2 = G(k1, k2, p3, p4). (3.46)

Note that we put a9 = 0 because z9 cannot appear in this approach. We will comment
more on this at the end of this paragraph. We now proceed with the remaining k1

integration. To decide what the external momenta for this loop are, it is helpful to look
at the remaining propagators z1, z2, z3 and z8. We recognize again the one-loop box with
external momenta p1, p2 and p4. Therefore

Ia1,...a8,0 = C1
3U

ε
1

∫
dz1 dz2 dz3 dz8

za11 za22 za33 za88

P
− 1

2
−ε

1 C1
3U

ε
2

∫
dz4 dz5 dz6 dz7

za44 za55 za66 za77

P
− 1

2
−ε

2 , (3.47)

where

U1 = G(p1, p2, p4) and P1 = G(k1, p1, p2, p4). (3.48)

We call this the right-to-left representation of the double-box integral. Another way to
arrive at eq. (3.47) is to start from the full two-loop Baikov representation in eq. (3.33)
and carry out the integration over variable z9. This is generally much more complicated
than the LbL approach and only possible when a9 = 0 [100].

The advantages of the LbL approach over the full Baikov representation are that 1)
there are fewer integration variables, and 2) the integrand factorizes into several smaller
pieces. Both of these aid the further analysis of the integral, especially the computation of
leading singularities. The downside of this approach is that one cannot analyze integrals
with a9 6= 0, missing potential dlog integrals. To circumvent this issue to some extent,
one can subsequently use the left-to-right approach where a8 = 0 instead of a9.
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3 Leading Singularities and Uniform Weight Feynman Integrals

As an advanced example for the leading singularity computation, consider the inte-
grand

I1,1,0,1,1,0,1,0,0 ∼
dz1 dz2 dz3 dz4 dz5 dz6 dz7 dz8

z1z2z4z5z7

1√
P1

√
P2
. (3.49)

We note that P1 ≡ P1(z1), P2 ≡ P2(z2) are quadratic polynomials in the variables
z1 = {z1, z3, z4, z5, z6, z7, z8} and z2 = {z1, z2, z3, z8}. Since P2 does not depend on
z4, z5 and z7 we can immediately use (3.26) to build dlog forms:

dz1 dz2 dz3 dz6 dz8

z1z2

1√
P1,457

√
P2

×
∏

i∈{4,5,7}

dzi
∂

∂zi
log(. . .), (3.50)

with P1,457 = P1(z4 = z5 = z7 = 0). Next, we factorize

P1,457 = f1(z3, z8)(z6 − c+
6 )(z6 − c−6 ) (3.51)

and use (3.24) to build a dlog in z6:

dz1 dz2 dz3 dz8

z1z2

1√
f1(z3, z8)

√
P2

×
∏

i∈{4,5,6,7}

dzi
∂

∂zi
log(. . .) (3.52)

Since f1 does not depend on z1 and z2 we can now again use (3.26) to get

dz3 dz8√
f1(z3, z8)

√
P2,12

×
∏

i∈{1,2,4,5,6,7}

dzi
∂

∂zi
log(. . .), (3.53)

with P2,12 = P2(z1 = z2 = 0).
f1 and P2,12 are both quadratic polynomials in z3 and z8. Therefore it seems that

we have reached the limit of our available methods. To proceed, we can try to find a
change of variables {z3, z8} → {x3, x8} that rationalizes one of the square roots, e.g.
f1(x3, x8) = g(x3, x8)2, where g(x3, x8) is rational. An approach for finding this change
of variables has been described in [41] and implemented in a Mathematica package in
ref. [42]. We find,

z3 = −m2
3x3(1 + x8), z8 = −m2

3(1 + x3)x8. (3.54)

Surprisingly, the Jacobian of this transformation turns out to cancel
√
f1(x3, x8). There-

fore the integrand becomes

dx3 dx8√
P2,12(x3, x8)

×
∏

i∈{1,2,4,5,6,7}

dzi
∂

∂zi
log(. . .) (3.55)

which can easily be put into dlog form. The resulting LS is

LS (I1,1,0,1,1,0,1,0,0) =
1√

(s+ t−m2
2)2 − 4m2

1m
2
3

. (3.56)
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3.5 Dimensional Recurrence Relations

3.5 Dimensional Recurrence Relations

In section 3.2 we analyzed the bubble integral and found that a double pole in the
representation prevents us from finding a dlog form. In section 3.3 we saw that this
behavior can be predicted by counting powers of |k| in the integrand. This gives a
possible hint on how to improve the situation in cases where no or only few dlog integrals
can be found: Since the power explicitly depends on the space-time dimension D, we
consider the bubble integral in two instead of four dimensions. The result is that the
integrand is now free of double poles and can therefore be put into dlog form with

LS
(
I

(D=2)
1,0,1,0

)
=

1

s
. (3.57)

However, we were initially interested in integrals in four dimensions and hence we want
to translate the 2d-integral back to 4d. This can be done via dimensional recurrence
relations (DRR) [101, 102], which are derived in the following way: Starting from the
Baikov representation in D + 2 dimensions

I(D+2)
a1,...,an = A

π
L−n
2∏L

i=1 Γ( (D+2)−E−i+1
2 )

∫
D

dz1 · · · dzn
za11 · · · z

an
n
U

E−(D+2)+1
2 P

(D+2)−L−E−1
2 , (3.58)

we factor out appropriate powers of U,P and Gamma functions, to recognize the D-
dimensional integral:

I(D+2)
a1,...,an =

1∏L
i=1(D−E−i+1

2 )
U−1

∫
D
P

×A π
L−n
2∏L

i=1 Γ(D−E−i+1
2 )

dz1 · · · dzn
za11 · · · z

an
n
U

E−D+1
2 P

D−L−E−1
2

=
1∏L

i=1(D−E−i+1
2 )

U−1P (A−1 , . . . , A
−
n )I(D)

a1,...,an ,

(3.59)

where A−i are operators that reduce the index ai by one, i.e.

A−i I
(D)
a1,...,ai,...,an = I

(D)
a1,...,ai−1,...,an

(3.60)

and P (A−1 , . . . , A
−
n ) is the Baikov polynomial with the propagators zi replaced by the

operators Ai. This is a useful way to formally pull the Baikov polynomial P (z1, . . . , zn)
out of the integral.

Using the explicit form of the polynomials in eqs. (3.39) and (3.40) we can choose to
lower the dimension of any integral in the one-loop box family. A convenient choice is

to use a set of master integrals, e.g. ~f (D+2) =
(
I

(D+2)
1,1,1,1 , I

(D+2)
1,1,0,1 , I

(D+2)
1,0,1,0

)T
, s.t.

~f (D+2) =
1

(D−3
2 )

U−1P (A−1 , . . . , A
−
4 )~f (D). (3.61)
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3 Leading Singularities and Uniform Weight Feynman Integrals

Note that the r.h.s. is a linear combination of D-dimensional integrals, which we can
again reduce to D-dimensional masters2. Therefore the result is a matrix T (D+2) s.t.

~f (D+2) = T (D+2) ~f (D). (3.62)

This enables us to invert the coefficient matrix T (D+2) and get recurrence relations which
raise the number of dimensions:

~f (D) = T (D−2) ~f (D+2) ≡ (T (D+2))−1 ~f (D+2) (3.63)

These raising dimensional recurrence relations can also be directly derived from the
parametric representation [101]. For the bubble integral we find

I
(D=2−2ε)
1,0,1,0 = 2I

(D=4−2ε)
2,0,1,0 . (3.64)

Note that this integral is directly related to the triangle integral via IBP relations:

I
(D=4−2ε)
2,0,1,0 = −ε I(D=4−2ε)

1,1,1,0 (3.65)

We see that we can search for dlog integrals in any even dimension and then relate them
to four dimensional Feynman integrals. The methods reviewed in this chapter enable
us to do so algorithmically in different representations. Some representations might be
better suited for a specific problem than others. For example, the Baikov representation
makes it trivial to take cuts of the integrals, however, the number of integration variables
might be larger than in a direct integer-dimensional parametrization.

In general, the main bottleneck in this method is the appearance of square-roots in
the integration variables that need to be rationalized, see e.g. the discussion following
(3.53). These square-roots can appear even though the final leading singularity might
be free of square-roots in the kinematic variables, i.e. only the dlog form depends on the
square-roots. However, experience shows that this gets worse mainly with the number
of loops, and the impact of an increasing number of kinematic scales is comparatively
low.

It is important to realize that dlog integrals are only a subset of all possible UT inte-
grals. In particular, it can happen that not enough linearly independent dlog integrals
are found to form a complete canonical basis. However, in chapter 6 we will introduce
an algorithm that uses the found dlog integrals to transform the rest of the basis into
canonical form.

2The IBP-relations are analytic in D and therefore the IBP reduction for ~f (D+2) is the same as for
~f (D), but with D replaced by D + 2.
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4 Heuristic Methods for Finding UT
Candidate Integrals

Many of the methods for finding pure integrals aim to be algorithmic, i.e. they require
minimal input and work in cases as general as possible. This is ideal for a situation
where little is known about the integrals under consideration or if a large number of
integrals should be analyzed in an automatic fashion. The downside is however that
these algorithms often try to do more than is actually necessary or that they scale badly
with the size and complexity of the differential equations. For example, computing
leading singularities quickly becomes unfeasible at high loop order, because there are
many square-roots appearing during the computation.

On the other hand, we saw in the last chapter that it is often possible to make state-
ments about the transcendental weight even before integrating or even before analyzing
the LS of the integrand. For example, we saw that a too high power of the loop-
momentum in the numerator immediately leads to a double pole at infinity, destroying
the uniform transcendentality. In this chapter, we try to convince the reader that gen-
eral UT integrals, not only dlog integrals, follow a certain power counting in the loop
momentum and that this can often be used to make educated guesses for uniform weight
integrals at multi-loop level. This will go hand-in-hand with the concept of building
blocks, i.e. using the result for lower-loop sub-integrals in a multi-loop integral.

Of course it would be meaningless to make guesses for UT integrals without being
able to test whether the guess is actually correct. The purity of a full basis can always
be proven by deriving the differential equations and showing that they are in canonical
form. In addition, in chapter 6, we will introduce a method to perform the test on
individual integrals and even find the rest of the canonical basis starting from the tested
integral.

The goal of this chapter is to familiarize the reader with some heuristic techniques
to quickly decide whether an integral could be UT or not, based on its diagram. It
is important to understand that these methods are quite flexible and not limited to
standard Feynman integrals. To emphasize this point, we will also extensively analyze
integrals with linear (or eikonal) propagators, i.e. of the form Di = (k · p+m2). These
propagators appear frequently in the computation of physical quantities in effective
theories such as soft-collinear effective theory (SCET) [103, 104], heave quark effective
theory (HQET) [105, 106] or the expansion of quantum gravity around the classical limit
[107, 108, 109]. In addition, they have a natural representation in terms of Wilson lines.
The latter emerge e.g. from the soft region of the loop integration or through their duality
to scattering amplitudes in certain supersymmetric theories [110, 111, 112, 113, 114].
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4.1 Summary of Pure One-Loop Integrals

The two most important one-loop UT integrals that we have seen so far are the massless
box and the massless triangle. Both admit a dlog form and we know their leading
singularities. In dimensional regularization, the integrals evaluate to

= ε−2(−s)−ε 1

st
× pure (4.1)

and

= ε−2(−s)−ε 1
s
× pure, (4.2)

where the thick line denotes a massive external leg. We see that the LS is indeed the
prefactor of the pure function. Note that the factor of ε−2(−s)−ε was chosen s.t. the pure
function depends only on dimensionless quantities and is of transcendental weight zero.
For the LS computation this factor was irrelevant, however, it will be advantageous to
keep it for the analysis done in the following sections.

Further, we also found that the scalar bubble integral has a double pole and is no dlog
integral. However, we know that the bubble integral is related to the triangle via IBP
relations for any powers of the propagators. Therefore there should be a bubble integral
with uniform transcendental weight corresponding to the scalar triangle. Indeed, we
already found in the previous chapter that

= = −ε = −ε−1(−s)−ε 1
s
× pure. (4.3)

A dot on the internal line signifies that the power of the corresponding denominator is
raised by one. The additional factor of ε is also interesting since it leads to a drop in
transcendental weight by one. This drop is actually expected because of the double pole
of the bubble integral. Likewise, putting two dots on the same line, meaning a propagator
is raised to the third power, also leads to a UT integral but with transcendental weight
lowered by two. Raising the powers of the propagators any further does not lead to new
UT integrals. This can be seen from the full result for arbitrary powers:

Ia1,a2 = (−s)D/2−aΓ(a−D/2)Γ(D/2− a1)Γ(D/2− a2)

Γ(a1)Γ(a2)Γ(D − a)
, (4.4)

where a = a1 + a2.
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4.2 Building Blocks

In the following, we list other UT integrals used in the rest of this chapter:

= ε−2(−s)−ε 1

st
× pure, (4.5)

= ε−2(−s)−ε 1

(st−m2
1m

2
3)
× pure, (4.6)

= ε−2(m2
1)−ε

1

(m2
1 −m2

2)
× pure, (4.7)

= ε−2(−s)−ε 1√
λ(m2

1,m
2
2, s)

× pure, (4.8)

where λ(x, y, z) = x2 + y2 + z2− 2xy− 2xz− 2yz is the Källén function. Further results
for one-loop integrals with at most four external legs can be found at [71].

4.2 Building Blocks

We already computed the leading singularity of the two-loop box with three external
masses of figure 4.1 in chapter 3 through the loop-by-loop Baikov representation. Let us

Figure 4.1: The two-loop box integral with three massive external legs.

now use a more pragmatic approach to quickly see that the scalar integral is a potential
UT integral. Again we proceed first with the right loop in k2 where we recognize a
box with three of the four external legs being massive. Although we know its leading
singularity from eq. (4.6), the masses complicate the subsequent analysis of the rest of
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4 Heuristic Methods for Finding UT Candidate Integrals

the diagram. To simplify the computation, we consider the maximal cut of the two-
loop box, i.e. all internal lines are on-shell. Therefore the right box now only has one
massive external leg with p2

3 = m2
3. Taking the maximal cut of the diagram is more

than reasonable to quickly decide whether the integral can be UT or not. In particular,
we will see in chapter 5 that this is enough when only considering the corresponding
diagonal block of the differential equations, and often one can read off the corrections
that are needed when relaxing the cut constraints directly from the off-diagonal blocks
of the DEs.

In the kinematics of this sub-diagram, the leading singularity is 1/[(p3 +p4)2(k1−p4)2]
or 1/[s(k1−p4)2]. The k1-dependent factor is now exactly the propagator that is missing
to complete the one-loop box integral in k1:

−→ = (4.9)

The red dashed lines remind us that the internal lines are cut. According to (4.6) we
expect this integral to be UT (on the maximal cut) with leading singularity 1/(s[st −
m2

1m
2
3]).

This method actually allows us to immediately find another UT candidate by using a
numerator (k1 − p4)2 which cancels the leading singularity in the first step:

−→ = (4.10)

leading to a UT candidate with leading singularity 1/s times the square-root given in
(4.8). A third one can be found by starting with the left loop in k1: Here the leading
singularity of the one-loop box is 1/[s(k2 + p1)2] and therefore the numerator (k2 + p1)2

again leads to a UT candidate. This explains the choice for the three master integrals
made in [3].

So far our analysis in this section, even when done on the maximal cut, still relied on
the computation of leading singularities and is therefore largely equivalent to the one of
chapter 3. However, if we consider integrals with viewer propagators we will have to use
different building blocks. As an example, consider the box with a bubble attached to it:

−→ = (4.11)
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4.2 Building Blocks

Since we know that the scalar bubble integral is not UT, we put a dot on one of its lines.
This ensures via (4.3) that this sub-integral is a UT function. Furthermore, the prefactor
of this function is again exactly the propagator missing to complete the one-loop box.
Overall, we expect this integral to have uniform weight, even if it is not a dlog integral. A
second UT integral can again be found by putting a corresponding numerator (k1− p4)2

to cancel the leading singularity.

The example in (4.11) immediately leads us to a similar integral where our heuristic
arguments result in an candidate which turns out not to be UT. Consider the case where
the bubble is now between two massive lines:

−→ (4.12)

Following the same arguments as in eq. (4.11) we conclude that (4.12) is a good UT
candidate, because we neglect the additional factor of [(k1 − p4)2]ε in the denominator
that is caused by the factor of (−s)−ε in eq. (4.3). Here, however, this slight shift actually
leads to a box integral which is not UT anymore.12 Nevertheless, in practice it is far
more efficient to ignore such shifts in the denominator powers and just include integrals
such as (4.12) into the list of candidates. As mentioned before, the basis can then later
be tested for the UT property by inspecting the differential equations or through the
algorithm which will be described in chapter 6.

In the examples so far, we have seen that the following integrals are likely to be good
building blocks for UT integrals:

� scalar box and triangle integrals

� box integrals with numerators

� bubble integrals with a dot

This leads to the heuristic rule that integrands which behave as d4k(k2)−3 or d4k(k2)−4

are generally preferred when trying to find possible candidates. An immediate question
is therefore whether the triangle integral also allows for a dot to be placed on one of its
internal lines. It turns out that indeed some of these integrals are UT at least on certain

1A very simple example of how this can happen is given by the bubble integrals in eq. (4.4) with
a1 = 2 + ε and a2 = 1. This integral is also not UT, although we would naively think that the factor
of 1/(k2)ε in the integrand should be irrelevant.

2It is indeed very interesting to observe that dlog integrals never seem to be affected by such shifts,
which is why the computation of the leading singularities can be done with ε = 0 (see the discussion
around eq. (3.3)).
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4 Heuristic Methods for Finding UT Candidate Integrals

cuts. For example:

= ε−1(−s)−ε 1

s2
× pure, (4.13)

= ε−1(m2
1)−ε

1

m2
1(m2

1 −m2
2)
× pure. (4.14)

and

= ε−1(−s)−ε (m2
1 −m2

2 + s)

sm2
1

√
λ(m2

1,m
2
2, s)

× pure. (4.15)

However, most other combinations of placements for the dot and the external masses do
not have uniform transcendental weight and are unlikely to be good candidates for the
canonical basis.

Nevertheless, triangle sub-diagrams with a dot should sometimes be considered as
building bocks, especially when they appear in combination with other triangles. To
understand why this is the case, consider the following integral of the three-mass double-
box family:

−→ (4.16)

The upper-right triangle has two massive external legs with masses k2
1 and (k1 − p4)2.

Therefore its LS, according to eq. (4.7), is 1/[k2
1 − (k1− p4)2] = 1/(2k1 · p4). As a result,

the denominator has the correct momentum flow (k1 − p4) to complete the triangle in
k1, however, it has been linearized, i.e. the k2

1 part was removed. We will indicate such
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4.3 Wilson Line Integrals

linear propagators using a double-line in the diagram:

= (4.17)

Since this line is now not quadratic in the loop-momentum anymore, the power counting
behavior of the integrand changes. Therefore we expect that it is now safer to put a dot
on one of the lines when trying to find UT integrals. Indeed, we find that the three-mass
case with a dot is now UT also without cuts,

= ε−1(−s)−ε 1

m2
2(m2

3 − s)
× pure, (4.18)

and that the leading singularity of the scalar integral simplifies compared to (4.8):

= ε−1(−s)−ε 1

(m2
1 +m2

3 − s− t)
× pure (4.19)

As a result, the scalar integral in (4.16) and also the integral with a dot on the lower-left
triangle are UT.

4.3 Wilson Line Integrals

Linear propagators, like the one coming from the leading singularity of the triangle, are
conventionally not found in standard Feynman integral computations. The Lagrangian
and the ensuing Feynman rules usually dictate that propagators should be quadratic in
the loop momentum. However, linear propagators appear e.g. when considering the soft
region of Feynman integrals, which is important when analyzing the IR divergences of
scattering amplitudes. The latter are known to factorize in a universal way from the
process-dependent finite part [115, 116] and can be studied in terms of Wilson lines
[117, 118].
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4 Heuristic Methods for Finding UT Candidate Integrals

(a) (b)

Figure 4.2: (a) The massive one-loop triangle integral. (b) The integral in the soft region can
be approximated by a Wilson line integral.

As an example, we follow [119, 120] and consider the massive triangle integral in
figure 4.2a, which appears e.g. in the computation of the massive quark form factor.
The integral is given by

IΓ =

∫
dDk

iπD/2
1

k2[(k − p1)2 −m2][(k − p2)2 −m2]
, (4.20)

where p2
1 = p2

2 = m2. In the soft region, we can approximate the denominators by

(k − p1)2 −m2 ≈ −2k · p1 and (k − p2)2 −m2 ≈ −2k · p2. (4.21)

The integral in this region is therefore

IIR
Γ =

1

4

∫
dDk

iπD/2
1

k2(−k · p1)(−k · p2)
, (4.22)

and shown in figure 4.2b, where we used the diagrammatic notation for linear propagators
introduced in the last section.

We can now use the simple identity

1

−k · p
= −i

∫ ∞
0

ds eis(−k·p), (4.23)

to write the integral as

IIR
Γ =

1

4

∫ ∞
0

ds1

∫ ∞
0

ds2

∫
dDk

iπD/2
eik·(−s1p1−s2p2)

k2
(4.24)

=
Γ(1− ε)

24−D

∫ ∞
0

ds1

∫ ∞
0

ds2
1

[−(s1p1 + s2p2)2]1−ε
, (4.25)

where in the second line we used the Fourier transform of the propagator:

D(x) = −i
∫

dDk

(2π)D
eik·x

k2
=

Γ(1− ε)
4πD/2

1

(−x2)1−ε (4.26)
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4.3 Wilson Line Integrals

In position space, the interpretation of (4.25) is now the following (see also figure 4.2b):
The k2 propagator has endpoints x1 and x2. They are integrated along a contour C
formed by the external legs p1 and p2, i.e. x1 = −s1p1 and x2 = s2p2. Up to an overall
factor, this is exactly the integral appearing in the O(g2) correction of the following
Wilson line:

W (C) = 〈0|Tr P exp

(
ig

∫
C

dxµA
µ(x)

)
|0〉 (4.27)

There is however one caveat to this: The integral in (4.22) has not only IR but also UV
divergences when integrated over the full space RD. In dimensional regularization these
divergences cancel so that the integral vanishes. Therefore we need to disentangle the
two divergences in order to study them separately, however, since they are equivalent,
we can choose to study either IR or UV. It will be convenient for us to remove the IR
divergence by adding a mass δ to the linear propagators:

1

−2k · pi
−→ 1

−2k · pi + δ
(4.28)

We will see in the next section that the effect of this on the position space representation
is very mild and does not alter the transcendental weight properties of the integral.
Further, we can set δ = 1, since the dependence of the integral on this scale can always
be deduced from dimensional analysis. In addition, from (4.22) we see that we can rescale
p1 = v1m and p2 = v2m and then factor out the overall dependence of the integral on
m2. This enables us to also set m2 = 1 since we know the overall factor from counting
powers of p1 and p2. As a result, the integral becomes

IIR
Γ =

∫
dDk

iπD/2
1

k2(−2k · v1 + 1)(−2k · v2 + 1)
, (4.29)

and depends only on the Euclidean cusp angle cosφ = v1 · v2.
Let us now start analysing the Wilson line integrals and try to find pure integrals

which can be used as building blocks at higher-loop order. First, by using the methods
of chapter 3, we easily find that (4.29) has a dlog form with leading singularity
(1− cos2 φ)−1/2. It is advantageous to rationalize this square root through the change
of variables

x = eiφ, (4.30)

s.t.

cosφ =
1

2

(
x+

1

x

)
, (4.31)

and

sinφ =
√

1− cos2 φ =
1

2i

(
x− 1

x

)
. (4.32)
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4 Heuristic Methods for Finding UT Candidate Integrals

Figure 4.3: The L-loop Wilson line ladder with L rungs is UT.

Second, this allows us to see that all L-loop Wilson line ladder integrals in figure 4.3
are candidates for UT integrals, by also using the following building block:

= ε−2(−k2
1)−ε

1

sinφ

1

k2
1

× pure (4.33)

Here, the red dashed lines indicate again that the corresponding propagators are on
shell. Since these propagators are (−2k1 · p1,2 + 1), this means that k1 · p1,2 = 1/2. It
turns out that all of these integrals do indeed have a dlog form [121, 36] with leading
singularity (sinφ)−L at L-loops.

Another important building block is the bubble integral where one of the propagators
is linear. This can be computed for arbitrary indices and the result is [36]∫

dDk

iπD/2
1

[(k1 − k2)2]a1 [−2k1 · v1 + 1]a2

= (−2k2 · v1 + 1)D−2a1−a2 Γ(2a1 + a2 −D)Γ(D/2− a1)

Γ(a1)Γ(a2)
,

(4.34)

which gives UT integrals for {a1, a2} being {1, 2}, {1, 3} or {2, 1}. Therefore one again
needs to put a dot on one of the lines to make this bubble integral UT. Note however, that
the result, and especially the power of the prefactor, now depends on which propagator
is squared. This is important when using this integral as a building block. For example,
we find that the following integral is a good candidate for the canonical basis:

−→ (4.35)
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On the other hand, putting the dot on the other line of the bubble integral leads to

−→ =

(4.36)

which is less likely to be a good candidate. Indeed, deriving the differential equations
shows that (4.35) is a pure integral when normalized by sinφ, but that (4.36) does not
have uniform transcendental weight.

4.4 Position-Space Parametrization

In chapter 3 we saw that different parametrizations can be used to analyze the tran-
scendental weight properties of Feynman integrals. In particular, we computed leading
singularities through four-dimensional momentum space parametrizations and through
the Baikov representation. The latter was especially suited for doing computations on
certain cuts of the integral. For Wilson line integrals, however, we have already seen
that linear propagators naturally lead to a simple position space representation, and we
can therefore expect that this simplifies the computation of leading singularities. A sys-
tematic way to analyze the uniform weight property of Wilson line integrals in position
space, together with some examples presented also in this section, has been given e.g. in
[36] and [121].

First, consider again the one-loop integral in figure 4.2b and eq. (4.29). We derived the
corresponding line integral in eq. (4.24), however, the introduction of the IR regulator
δ = 1, leads to an additional exponential inside the integral:∫ ∞

0
ds

∫ ∞
0

dt
ei(s1+s2)/2

[(s1v1 + s2v2)2]1−ε
, (4.37)

where we omitted overall factors that do not affect the uniform weight properties. We
now change variables according to s1 = ρz, s2 = ρz̄ with z̄ = 1− z, which leads to

−
∫ ∞

0

dρ

ρ1−2ε
eiρ
∫ 1

0
dz

[
x

(zx+ z̄)(z + z̄x)

]1−ε
. (4.38)

In this form, the integral over the overall scale ρ is completely factorized. Note how
the exponential correctly regularizes the IR divergence of this integral, s.t. in the result
only the UV divergence appears in the form of a Gamma function Γ(2ε) ∼ 1/(2ε). This
structure continues at higher loop orders, i.e. we can always separate the ρ integral which
leads to a pure function and is therefore not relevant for finding uniform weight integrals.
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4 Heuristic Methods for Finding UT Candidate Integrals

The computation of the leading singularity is now straightforward since the rest of
the integrand has the following dlog-form:∫ 1

0
dz

[
x

(zx+ z̄)(z + z̄x)

]1−ε
=

x

1− x2

∫ 1

0
d log

(
z + z̄x

zx+ z̄

)
×[

x

(zx+ z̄)(z + z̄x)

]−ε (4.39)

Neglecting again the factor with exponent proportional to ε, we find the leading singu-
larity x/(1− x2) = −2i/ sinφ.

An interesting feature of the position space representation is that doubled propagators
do not immediately lead to a double pole. For example, the Fourier transform of a
doubled quadratic propagator is

−i
∫

dDk

(2π)D
eik·x

(k2)2
= −1

ε

Γ(1− ε)
16πD/2

1

(−x2)−ε
, (4.40)

which effectively removes the corresponding line from the computation and leads to a
weight drop by one. As an example, consider the position space representation of the
integral in figure 4.4a with x1 = −s1v1, x2 = s2v2 and x3 = s3v2:

(a) (b)

Figure 4.4: Two-loop Wilson line integrals with doubled propagators.

1

ε

∫ ∞
0

ds1 ds2 ds3
ei(s1+s2)/2

[(s1v1 + s2v2)2]−ε[(s1v1 + s3v2)2]1−ε
(4.41)

Again we separate the overall scale ρ through s1 = ρz, s2 = ρz̄ and s3 = ρz̄y. This leads
to

1

ε

∫ ∞
0

dρ

ρ−4ε
eiρ/2

∫ 1

0
dz dy z̄

[
x

(zx+ z̄)(z + z̄x)

]−ε [ x

(zx+ z̄y)(z + z̄yx)

]1−ε
. (4.42)

While the ρ integral can be evaluated in terms of a Gamma function (this time without
pole in ε), the rest of the integrand has the dlog form

x

1− x2

∫ 1

0
d log

(
yz̄ + xz

xyz̄ + z

)
d log z

×
[

x

(zx+ z̄)(z + z̄x)

]−ε [ x

(zx+ z̄y)(z + z̄yx)

]−ε
.

(4.43)
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Likewise, the integral in figure 4.4b, which has a doubled linear propagator, can also
be put into dlog form. To see this, we first use

1(
−k · p+ 1

2

)2 = −
∫ ∞

0
ds s e

is
(
−k·p+ 1

2

)
(4.44)

and then proceed in the same way as for the other examples:∫ ∞
0

dρ

ρ1−4ε
eiρ/2

∫ 1

0
dz dy zz̄

[
x

(zx+ z̄)(z + z̄x)

]1−ε [ x

(zx+ z̄y)(z + z̄yx)

]1−ε

=

(
x

1− x2

)2 ∫ 1

0
d log

(
yz̄ + xz

xyz̄ + z

)
d log

(
z + z̄x

zx+ z̄

)
×
(
. . .
)−ε (4.45)

Both of the integrals in figure 4.4 have been shown to be UT integrals by deriving the
corresponding differential equations in canonical form [36].

We see that, for Wilson line integrals, the position space parametrization is indeed
very powerful when trying to find pure Feynman integrals. Another advantage of this
representation is that the integration boundaries are very simple as compared to e.g.
the Baikov representation. In many cases, this allows one to explicitly carry out the
integrals through direct integration. Especially for integrands in dlog form, writing
down the solution in terms of multiple Polylogarithms often reduces to a sequence of
algebraic manipulations and the identification of a suitable integration order. This is
implemented in the HyperInt package [15], see also [121] for examples and other methods
regarding the direct integration of Wilson line integrals.

41





5 Algebraic Simplifications of Differential
Equations

The transcendental weight of Feynman integrals is an immensely useful guiding principle
when trying to find a basis which brings the differential equations into canonical form.
Often, it is possible to find a complete UT basis before ever looking at the differen-
tial equations, and upon subsequent analysis the latter then turn out to indeed be in
canonical form.

However, in many cases it is necessary to perform at least some algebraic manipula-
tions on the integrals based on the specific entries of the coefficient matrix A(s, ε). In
particular, this is expected when using the heuristic methods of the previous chapter,
because the found candidate integrals often still require some slight “corrections” to
make them proper pure integrals. As a simple example, consider the case where our
analysis found a candidate which is a uniform weight function, but we did not manage
to compute what the correct normalization (leading singularity) is. A typical differential
equation for such an integral (i.e. the entry A1,1) is

∂

∂s
f1 =

a+ bε

s
f1 + . . . , (5.1)

where the dots indicate the dependence of the derivative on the other integrals of the
basis. Anticipating that the normalization of this integral is not correct, we define
f1 = n(s)g1. The resulting equation for g1 is

∂

∂s
g1 = n(s)−1

(
a+ bε

s
n(s)− n(s)′

)
g1 + . . . ,

=
bε

s
g1 + n(s)−1

[a
s
n(s)− n(s)′

]
g1 + . . . .

(5.2)

Here we make two observations: First, we see that the homogeneous term linear in ε does
not depend on n(s) since we chose this normalization to be independent of ε. Second, to
make (5.2) proportional to ε, we have to solve the differential equation n(s)′ = (a/s)n(s)
which is similar to the original equation in (5.1) but with ε = 0. This equation can
easily be solved and we find n(s) = sa. Therefore, g1 = f1/s

a is the correctly normalized
integral, which we obtained by integrating out the ε0 part of the homogenous differential
equation (5.1).

In practice, the differential equations will often be too complicated to manually find
a suitable transformation for the whole basis. In addition, there are cases where it is
not possible to find enough independent dlog integrals to form a complete set of master
integrals. Therefore it is important to have an algorithm available that, in principle,
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can bring the differential equations for an arbitrary basis into canonical form. In this
chapter, we will review the method of balance transformations, which is one of the
most commonly used algorithms for this task. At the same time, this is also a good
opportunity to make some concepts more concrete that we have so far mentioned only in
passing. This includes the determination of master integrals through the integration-by-
parts identities (IBPs), the derivative of Feynman integrals w.r.t. a kinematic variable,
the matrix structure of the differential equations, as well as the algebraic structure of
its entries.

All of these concepts will be crucial as a starting point for the presentation of our
new algorithm for the canonical form in chapter 6. Further, the balance transformations
make many properties of the canonical differential equations manifest and realizing how
these properties can be reached step by step will likewise be helpful in understanding
the principles of our new algorithm. We will also discuss the limitations of the method
of balance transformations and how, in this thesis, we strive to fill an important gap
among the available techniques for the canonical form.

Throughout this chapter, we will again use the massless one-loop box integral family to
serve as an explicit example for all introduced concepts, however, we will frequently also
refer to the three-mass two-loop box of section 3.4 to point out additional complications
in the multi-loop case.

5.1 Revisiting Integration-by-Parts

As a reminder, the integrals in the massless one-loop box-family are defined through

Ia1,a2,a3,a4 = eεγE
∫

dDk

iπD/2
1

Da1
1 D

a2
2 D

a3
3 D

a4
4

(5.3)

where the propagators are

D1 = k2, D2 = (k + p1)2, D3 = (k + p1 + p2)2, D4 = (k − p4)2. (5.4)

The integrals in this family are related by the integration-by-parts identities1

0 = eεγE
∫

dDk

iπD/2
∂

∂kµ
vµ

Da1
1 D

a2
2 D

a3
3 D

a4
4

, (5.5)

where v can be any of the available vectors, i.e. k, p1, p2 or p4. We can also choose
v = p3, but the resulting relation will obviously not be independent of the others. The
derivative inside the integral will now lead to a linear combination of terms where the
powers ai are in general different from the original ones. In addition, numerators in the
form vµ∂kµDi will appear. However, since the propagators Di form a complete set of

1Note that the vanishing of total derivatives is special to dimensional regularization and other regulators
might require careful consideration of boundary terms.
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independent scalar products, these numerators can again be written as propagators. For
example, for v = k we have

kµ∂kµD1 = 2D1, kµ∂kµD2 = D1 +D2,

kµ∂kµD3 = D1 +D3 − s, kµ∂kµD4 = D1 +D4
(5.6)

so that eq. (5.5) becomes

0 =(D − 2a1 − a2 − a3 − a4)Ia1,a2,a3,a4 − sa3Ia1,a2,a3+1,a4 − a2Ia1−1,a2+1,a3,a4

− a3Ia1−1,a2,a3+1,a4 − a4Ia1−1,a2,a3,a4+1.
(5.7)

We note that, starting from two-loops, it is necessary to introduce auxiliary propaga-
tors into the integral family since the denominators coming from the Feynman diagram
are not sufficient to form an independent set of scalar products2. These auxiliary prop-
agators are the irreducible scalar products (ISPs) and we already made use of them at
the beginning of section 3.4.

Additional relations, which are not expressible through integration-by-parts, come
from diagram symmetries. For example, since the kinematic variables, s = (p1 + p2)2

and t = (p1+p3)2, are invariant under the simultaneous exchange {p1 ↔ p3, p2 ↔ p4}, the
integrals have to have the symmetry Ia1,a2,a3,a4 = Ia3,a2,a1,a4 . This can easily be verified
by performing the momentum shift k → k + p1 + p2 after the exchange of the external
momenta or by comparing the parametric representation of the two integrals. The
latter is also used to automatically detect scaleless integrals which vanish in dimensional
regularization.

All relations together can then be solved in terms of a finite number [124] of master
integrals. Since this is a very important task in modern particle physics, there are
various implementations that aim at doing this as efficiently as possible. In particular,
LiteRed [125] is able to solve the relations with analytic indices ai, which is useful if a
large number of relatively simple integrals should be computed. On the other hand, for
more complicated integrals, it has become standard practice to use the Laporta algorithm
[126], where a system of equations with integer values for the indices is generated before
attempting to solve it. Common implementations of this are for example FIRE [127],
Kira [128], FiniteFlow [129], Reduze 2 [130] and AIR [131].

In the present case of the massless one-loop box integral, we find that there are only
three independent master integrals. However, since the basis is not unique, we have to
make a choice, which is commonly done by requiring the following numbers to be as
small as possible:

� `, the number of denominators, i.e. positive exponents ai with ai > 0

2When deriving these relations, the external momenta are usually considered inD dimensions. However,
there also exist methods which restrict the external momenta to four dimensions [122, 123] in which
case the number of independent scalar products further reduces due to the vanishing of certain Gram
determinants.
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� d, the number of dots, i.e.

d = −`+
∑
j|aj>0

aj (5.8)

� r, the total power of the numerator, i.e.

r = −
∑
j|aj≤0

aj . (5.9)

In general, the order of importance varies between different implementations, although
the first criterion is usually taken to be the most important one.3 The idea behind this
is that integrals with higher `, d and r are considered to be more complex. Following
these criteria, we find

~f =

I0,1,0,1

I1,0,1,0

I1,1,1,1

 (5.10)

to be a suitable basis.
To discuss this choice of master integrals further, it is advantageous to introduce the

concept of sectors: A sector is the set of all integrals with the same denominators,
but possibly raised to different powers or with different numerators. In other words,
two integrals are in the same sector if they have the same lines in their diagram. It is
common practice to represent a sector by its corner integral, i.e. the integral with no
numerators and all denominators raised to power one. For example, I1,0,1,−1 and I2,−1,1,0

are both in the same sector which is called the s-channel bubble sector and denoted by
J1,0,1,0. Further, a sub-sector is obtained by removing one or more denominators from a
sector. For instance, J1,0,1,0 is a sub-sector of J1,1,1,0. Lastly, the sector with all possible
lines, i.e. the highest number of denominators, is called the top sector.4

Using this terminology, we see that our basis includes one integral from the top sector
J1,1,1,1 which cannot be further reduced to only integrals from its sub-sectors. This
leads to the concept of master integrals of a sector: In general we say that a sector has
n master integrals if all integrals from this sector can be written as a linear combination
of n integrals from this sector plus integrals from sub-sectors. Therefore the box sector,
as well as the two bubble sectors J0,1,0,1 and J1,0,1,0, each have one master integral. For
example the integrals I1,1,2,2 and I1,0,2,0 reduce to

I1,1,2,2 =
(D − 5)(D − 6)

st
I1,1,1,1 −

4(D − 5)(D − 3)

s3t
I1,0,1,0

− 4(D − 5)(D − 3)

st3
I0,1,0,1, (5.11)

I1,0,2,0 =− (D − 3)

s
I1,0,1,0. (5.12)

3An algorithmic implementation will of course define further criteria so that no two integrals have the
same importance.

4The diagram of the top sector typically has only three-point vertices and no four- or higher-point
vertices.
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On the other hand, the triangle sectors J1,1,1,0, J1,1,0,1, J1,0,1,1 and J0,1,1,1 have zero mas-
ter integrals, which can be seen e.g. in

I1,1,1,0 =
2(D − 3)

(D − 4)s
I1,0,1,0. (5.13)

Of course, the terminology of master integrals per sector is mainly useful when combined
with the criterion of a small number of denominators because otherwise a master integral
can always be replaced by an integral from one of its super-sectors that is linearly
independent from the rest of the basis.

5.2 Differential Equations for the Massless One-Loop Box
Integral

The next step in the computation of the integrals of the massless one-loop box family is
the computation of the master integrals. To this end, we take the derivative of the basis
~f w.r.t. the kinematic invariants s and t. However, since the propagators in eq. (5.4) do
not explicitly depend on these variables, we make the ansatz

∂s = (α1p1 + α2p2 + α4p4) · ∂p2 , (5.14)

∂t = (β1p1 + β2p2 + β4p4) · ∂p4 . (5.15)

The coefficients can be found by requiring that the derivatives are compatible with the
kinematics. The result is

α1 =
1

2s
, α2 =

2s+ t

2s(s+ t)
, α4 =

1

2(s+ t)
, (5.16)

β1 =
1

2t
, β2 =

1

2(s+ t)
, β4 =

s+ 2t

2t(s+ t)
. (5.17)

A general formula for this change of variables has been given in [125]:

∂

∂(p1 · p2)
=

3∑
i=1

[G−1]i2 pi · ∂p1 =
3∑
i=1

[G−1]i1 pi · ∂p2 , (5.18)

∂

∂(p2
1)

=
1

2

3∑
i=1

[G−1]i1 pi · ∂p1 , (5.19)

where G is the Gram matrix, Gij = pi · pj .5
Applying these derivatives to our master integrals yields linear combinations very

similar to the ones coming from the derivative in the integration-by-parts identities.

5Eqs. (5.18) and (5.19) make it clear that there is some freedom in defining the derivative. However,
the result will always be the same after IBP reduction.
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However, all appearing integrals can again be written in terms of master integrals through
a subsequent IBP reduction. The resulting differential equations are

∂s ~f = As ~f, (5.20)

∂t ~f = At ~f, (5.21)

with

As =

 0 0 0
0 − ε

s 0

−2(1−2ε)
st(s+t)

2(1−2ε)
s2(s+t)

− s+t+εt
s(s+t)

 , (5.22)

At =

 − ε
t 0 0

0 0 0

−2(1−2ε)
t2(s+t)

2(1−2ε)
st(s+t) − s+t+εs

t(s+t)

 . (5.23)

Note that the matrices are rational functions in the kinematic variables and ε, which
follows simply from the structure of the integrand and the IBP identities. An immediate
check of the two equations can be obtained through ∂s∂t ~f = ∂t∂s ~f , which, for the
coefficient matrices, translates to

∂tAs − ∂sAt + [As, At] = 0. (5.24)

This is known as the integrability condition and it implies that the differential equations
can be unambiguously integrated, meaning that the result does not depend on the chosen
integration contour. In canonical form one can collect powers of ε in this equation, s.t.

∂tAs − ∂sAt = 0 and [As, At] = 0 (5.25)

hold separately. The first of these equations implies that there is a matrix A s.t. its total
differential is dA = dsAs + dtAt.

Another useful check is to compute

(s∂s + t∂t)~f = (sAs + tAt)~f =

−ε 0 0
0 −ε 0
0 0 −2− ε

 ~f. (5.26)

As one can readily check, the entries on the diagonal correspond to the scaling dimensions
of the master integrals. Since this matrix can easily be inferred from the integrals
themselves, it is actually redundant to compute both As and At. Instead, we should
normalize our integrals to have mass-dimension zero

~f ′ =

 (−t)εI0,1,0,1

(−t)εI1,0,1,0

(−t)2+εI1,1,1,1

 , (5.27)
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so that they can only depend on the dimensionless variable x = s/t. In practice, we
set x = −s, t = −1 since the overall factor of t can always be inferred from the mass
dimension of the integrals. The differential equations are therefore

∂x ~f = A(x, ε)~f, (5.28)

with

A(x, ε) =

 0 0 0
0 ε

x 0
2(1−2ε)
x(1+x)

2(1−2ε)
x2(1+x)

1+x+ε
x(1+x)

 . (5.29)

5.3 Algorithmic Reduction to Canonical Form

Now that we have obtained the differential equations for the master integrals we would
like to find a transformation ~f = T~g that brings them into canonical form

∂x~g = ε Ã(x)~g, (5.30)

where

εÃ(x) = T−1 [A(x, ε)T − ∂xT ] (5.31)

has only logarithmic singularities. We have already seen how the transcendental weight
can be used to achieve this. In this section, however, we will use the algorithm introduced
in [37] to reach the same result. This is done in multiple steps where each step will change
the properties of A(x, ε) to be closer to the ones of the canonical form. In particular,
the steps are

1) Fuchsification: Removal of essential singularities

2) Normalization: Shifting the eigenvalues of the residue-matrices, s.t. they are
proportional to ε

3) Factorization: Factorizing ε

and they will be described in more detail further below. Here we only mention that each
step requires certain criteria to be met in order to succeed, giving us the opportunity to
discuss in which cases a canonical form is unobtainable. The algorithm has already been
implemented in the packages Libra [38], epsilon [40] and Fuchsia [39] and we refer to
the respective papers for their usage.

5.3.1 Fuchsification

As discussed in section 2.3, Feynman integrals are free of essential singularities, i.e. they
only have regular singularities. In the present case, this means that it should be possible
to make this property manifest by reaching the form

d~f ′ =

(∑
i

ai(ε)
dx

(x− ci)

)
~f ′ =

(∑
i

ai(ε) d log(x− ci)

)
~f ′ (5.32)
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where ci are constants and ai are matrices independent of x. Differential equations of
this type are called Fuchsian. Often one also speaks of the dlog form. We can see from
(5.29) that the one-loop box integrals have potential singularities at x = 0 and x = −1.
In addition, x = ∞ is also a singular point, which is visible through the change of
variables x = 1/y.

Inspecting eq. (5.29), it becomes clear that we need to remove the double pole at
x = 0. This can be achieved by letting T be a so-called balance transformation

T = B(P, x1, x2;x) = P̄ +
x− x2

x− x1
P, (5.33)

where P is a projector, P 2 = P , and P̄ = 1−P . Note that, because P̄P = 0, the inverse
of (5.33) is simply B(P, x2, x1;x) and hence the transformation only has the singular
points x = x1 and x = x2. Therefore, either x1, x2 or both will be chosen to be a
singular point that we would like to affect trough the transformation. In addition, it is
also possible to choose the point at infinity by defining

B(P, x1,∞;x) = P̄ +
1

x− x1
P, B(P,∞, x2;x) = P̄ + (x− x2)P. (5.34)

Now, without loss of generality, let x1 = 0 and assume that the coefficient matrix
A(x, ε) has the following expansion around this singular point:

A(x, ε) =
A0

xr+1
+
A1

xr
+O(1/xr−1), (5.35)

where r is called the Poincaré rank of A(x, ε). Computing the transformed matrix

AF (x, ε) = T−1 [A(x, ε)T − ∂xT ] (5.36)

and collecting the most singular terms results in

AF (x, ε) = −x2P̄A0P

xr+2
+
PA0P + P̄ (A0 − x2A1P )

xr+1
+O(xr). (5.37)

Therefore, the first requirement on the projector P is P̄A0P = 0, so that the Poincaré
rank of the matrix at x = 0 is not increased. This can easily be achieved by noting that
an n × n projector matrix can always be constructed from an n × k matrix U and an
k × n matrix VT in the following way:

P = U(VTU)−1VT (5.38)

Choosing U s.t. A0U = UC for some matrix C ≡ C(ε), one can easily show that the
resulting projector satisfies P̄A0P = 0. Note that A0U = UC means that we should
choose the columns of U to be the (generalized) eigenvectors of the matrix A0. Likewise,
one can show that VT with VTA0 = C ′VT ensures that the Poincaré rank at x = x2 is
not increased.

Next, for Fuchsification, we would like to decrease the rank of the coefficient matrix
at O(1/xr+1) so that repeated application of such a transformation eventually leads to
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the vanishing of this coefficient. An algorithm for constructing a suitable projector has
been given in [132] section E.8. The general idea is to first choose only the eigenvectors
with eigenvalues zero, so that A0U = 0 and therefore A0P = 0. Then one ensures that
(A0 − x2A1P ) has a non-zero overlap with the direction of the projector P , so that the
complementary projector P̄ necessarily removes these components and therefore reduces
the rank of the coefficient-matrix. This can again be done solely through the choice of U .
Similarly, VT can be chosen to reduce the rank of the coefficient matrix at the singular
point x2.

In total, this gives an algorithm to systematically bring the differential equations
into dlog form by constructing appropriate balance transformations that decrease the
Poincaré rank at one singular point while not affecting the other. Even more, it is often
possible to choose U and VT in such a way that the Poincaré rank at both singular points
is decreased simultaneously.

Applied to A(x, ε) in (5.29) we find that the coefficient-matrix of the 1/x2 pole has
rank one. Therefore, a single balance transformation with x1 = 0 and e.g. x2 = −1 is
enough to Fuchsify the matrix at x = 0 while not affecting the Poincaré rank at x = −1.
The result is

AF (x, ε) =
a0(ε)

x
+
a−1(ε)

1 + x
(5.39)

with

a0(ε) =

 0 0 0
0 ε 0

2(2+ε)(1−2ε)
ε

2(2−ε)(1−2ε)
ε 2 + ε

 , (5.40)

and

a−1(ε) =

 0 0 0
0 0 0

−2(2+ε)(1−2ε)
ε −2(2−ε)(1−2ε)

ε −1− ε

 . (5.41)

Further, by the global residue theorem, we have a∞(ε) = −a0(ε)− a−1(ε).
Let us note that this algorithm will always succeed in finding an appropriate transfor-

mation to reduce the Poincaré rank at a given singular point, if such a transformation
exists [133]. In other words, the existence of the appropriate eigenvectors that decrease
the rank of the leading term in the expansion gives a necessary and sufficient criterion
for the possibility of removing an essential singularity [134]. However, since Feynman
integrals only have regular singularities, we expect this to be always the case.6

5.3.2 Normalization

The next step is to normalize the matrix residues ai(ε), which means that their eigenval-
ues should be proportional to ε. The reason for doing this will become clear in the next

6An exception to this may be when the IBP reduction failed to completely reduce all integrals, so
that some relations between the master integrals are not implemented into the differential equation
system.
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section. We note that all eigenvalues are of the form n+ kε, which can be seen from the
parametric representation and proven by using the method of regions [54]. Moreover, we
will assume that n is an integer, which is the case for our example where the eigenvalues
are

a−1(ε) : {0, 0,−1− ε} (5.42)

a0(ε) : {0, 2 + ε, ε} (5.43)

a∞(ε) : {0,−1,−ε} (5.44)

The case where n is not an integer will be discussed in section 5.5.

Constructing an appropriate transformation is now very simple since we already in-
troduced all necessary tools in the last section. As an example, we can shift the third
eigenvalue of a−1(ε) by +1 while simultaneously shifting the second eigenvalue of a0(ε)
by −1. This is done through a balance transformation with x1 = −1 and x2 = 0, where
U is now the right eigenvector of the corresponding eigenvalue at x1 and VT is the left
eigenvector of the corresponding eigenvalue at x2.

To understand why e.g. U is chosen in this way, one can consider a basis where a−1(ε) is
in Jordan form. Then the projector P will have a 1 one the diagonal entry corresponding
to the position of the eigenvalue we want to shift. Using this projector in the balance
transformation then leads to the desired shift in the Jordan form of the coefficient matrix.

In summary, the balance transformation will always increase an eigenvalue at x1 by
one, while decreasing an eigenvalue at x2 by one. In principle, successive application of
this always leads to a completely normalized matrix, since we know that the sum of all
eigenvalues has to be zero by the global residue theorem. However, it can happen that
the two eigenvectors are orthogonal, in which case VTU in eq. (5.38) is not invertible.
Then one can try to choose a different pair of eigenvectors. Note that it might be
necessary to artificially shift an already normalized eigenvalue, so that it can then be
balanced with a different eigenvalue.

If at some point it is not possible to find a suitable pair of eigenvectors anymore, one
can conclude that the ε-factorized form cannot be reached using rational transformations
only. A typical case of where this happens is when the result involves elliptic functions,
see e.g. [68]. We will give an example of such a differential equation in the next chapter.

For our current example however, this obstruction does not occur and we can com-
pletely balance the second eigenvalue of a0(ε) first with the third eigenvalue of a−1(ε) and
then with the second eigenvalue of a∞(ε). This results in a differential equation which is
both Fuchsian and normalized. Note that, to some extent, it is possible to combine the
Fuchsification with the normalization procedure by e.g. choosing U to affect a matrix
rank at one singular point, while choosing VT to shift an eigenvalue of a matrix residue
at another singular point.

5.3.3 Factorization

The last step of the algorithm is to find a transformation matrix which completely
factorizes ε from the residue-matrices ai(ε). If there was only one singular point, this
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would be an easy task since we could just transform ai(ε)/ε to Jordan form through a
simple similarity transformation. Because this is not the case, we will have to allow for
a more general transformation T (ε) to factor ε from all ai(ε) simultaneously.

This task can be stated as finding a T (ε) s.t. there exist constant matrices sk with

T−1(ε)
ai(ε)

ε
T (ε) = sk = T−1(µ)

ai(µ)

µ
T (µ). (5.45)

We can make this system of equations linear by multiplying with T (ε) from the left and
T−1(µ) from the right:

ai(ε)

ε
T (ε, µ) = T (ε, µ)

ai(µ)

µ
, (5.46)

where T (ε, µ) = T (ε)T−1(µ) and there are as many such equations as there are singular
points. In practice, one can set µ to an arbitrary number so long as T (µ) remains well
defined and invertible. This is because ε-factorized differential equations

∂x~g = εÃ(x)~g, (5.47)

remain factorized when performing an arbitrary constant, i.e. x and ε-independent trans-
formation T (µ). In fact, in [135] it was proven that the canonical form is unique up to
exactly such transformations.

For the example of the massless one-loop box, the factorization step results in

∂x~g = ε

(
ã−1

1 + x
+
ã0

x

)
, (5.48)

with

ã−1 =

0 0 0
0 0 0
0 0 −1

 and ã0 =

0 0 0
0 1 0
1 0 1

 . (5.49)

Although our example only depends on a single variable x, all steps of the algorithm
in principle also work in the multi-variables case. One simply applies each step to one
variable at a time while treating the others as constant. However, after having brought
the differential equations w.r.t. one variable into canonical form, the transformations for
the other variables should be independent of the first variable. In practice, the ability
to find such transformations mainly depends on an educated choice of variables and the
correct order of variables for which to apply the algorithm. Because of this, as well as
the increasing algebraic complexity, the leading singularity analysis is usually preferred
in the multivariate case.

We note that it is also possible to directly make an ansatz for Ã(x) and T (x, ε) and
solve the transformation law

εT (x, ε)Ã(x) = A(x, ε)T (x, ε)− ∂xT (x, ε) (5.50)
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order-by-order in ε. In doing so, one has to deal with the fact that the equations are
not linear in the unknowns due to the term T (x, ε)Ã(x). However, in [136] it was shown
that they can be linearized by utilizing the above mentioned freedom of a constant
transformation. This approach is implemented in the package CANONICA [135]. In
chapter 6 we describe another method to reach the canonical form through an ansatz
for Ã(x) but without the need of an ansatz for T (x, ε).

5.4 The Block Structure of the Differential Equations

In section 5.1 we argued that it is advantageous to introduce the concept of sectors for
the IBP reduction. In doing so, we also showed how the integrals of a specific sector are
reduced to the master integrals of that sector plus master integrals from its sub-sectors.
Since the coefficients of the master integrals in the differential equations directly come
from an IBP reduction, it is natural to expect that this dependence is also visible in the
coefficient matrix A.

Indeed, we observe from eqs. (5.22) and (5.23) the following structure:

∂s,t

I0,1,0,1

I1,0,1,0

I1,1,1,1

 =

(
? 0 0
0 ? 0
? ? ?

)I0,1,0,1

I1,0,1,0

I1,1,1,1

 (5.51)

First, we have marked the diagonal blocks, i.e. the homogenous part of the differential
equations for each sector, through solid lines. The size of a diagonal block directly
corresponds to the number of master integrals in the sector. Importantly, it is easy to
see that a diagonal block corresponds to the maximal cut of the integrals in that sector.
Indeed, the differential equation for the top sector is

∂s,t
(
I1,1,1,1

)
=
(
?
) (
I1,1,1,1

)
+ · · · (5.52)

where the dots correspond to integrals that vanish on the maximal cut.
Second, the derivative of the box integral depends on the master integrals in its sub-

sectors through off-diagonal blocks. On the other hand, the bubble integrals do not have
sub-sectors and therefore their derivative only depends on themselves. Moreover, the
bubble sectors do not depend on each other, since one cannot be a sub-sector of the
other.

In total, sorting the master integrals by sector and by increasing number of denomi-
nators leads to the following structure of the differential equations:

1. They are lower block triangular.

2. The size of a diagonal block corresponds to the number of master integrals in the
sector.

3. The derivative of a sector can only depend on its sub-sectors.

4. Sectors with the same number of denominators cannot depend on each other be-
cause they cannot be sub-sectors of each other.
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We have emphasized the last point through the dotted lines in eq. (5.51). Note that the
outlined structure simply follows from the fact that a derivative of the integrand cannot
introduce new denominators into the integrand. This is true for both the derivative
w.r.t. an external variable and w.r.t. the loop momentum.

As an advanced example, in figure 5.1 we present the structure of the differential
equations for the three-mass two-loop box of section 3.4. We can immediately see that
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Figure 5.1: Block structure of the differential equations for the three-mass two-loop box integral
family. There are 47 master integrals. Black elements indicate non-zero blocks.
Dashed lines group together sectors with the same number of denominators.

there are several sectors with one or two master integrals. In addition, there is a single
sector with six master integrals, for which we found a suitable dlog integral in eq. (3.56).
Again we observe that sectors with the same number of propagators, which are grouped
together by the dashed lines, do not depend on each other. In general, the matrix is
quite sparse due to the limited dependence of the sectors on each other. The latter
dependence can simply be inferred from the denominators present in the sectors while
also taking symmetries of the integrand into account.

The block structure of the differential equations simplifies the process of finding a
canonical basis enormously. First, we note that, if the diagonal blocks are Fuchsian and
normalized, then the whole differential equation matrix is automatically normalized.
Therefore, if the diagonal blocks are in canonical form, all we need to do is Fuchsify the
off-diagonal blocks and then factorize ε from the whole matrix.

Second, Fuchsifying the off-diagonal blocks is much easier than doing the same for the
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diagonal blocks. Consider the differential equation matrix

A(x, ε) =

(
εC(x) 0
B(x, ε) εD(x)

)
, (5.53)

where the diagonal blocks C and D are in canonical form7 and B(x, ε) has the following
expansion around x = 0:

B(x, ε) =
B0(ε)

xr+1
+O(1/xr), (5.54)

with r > 0. Since C(x) and D(x) are canonical, they are of the form

C(x) =
C0

x
+O(x0), D(x) =

D0

x
+O(x0). (5.55)

The transformation

T =

(
1 0

M(ε)
xr 1

)
(5.56)

has the inverse

T−1 =

(
1 0

−M(ε)
xr 1

)
(5.57)

and therefore only affects the singular point x = 0. Using this transformation on A(x, ε),
the diagonal blocks remain unchanged, whereas the result for the off-diagonal block is

B(x, ε)′ =
B0(ε) + rM(ε) + ε[D0M(ε)−M(ε)C0]

xr+1
+O(1/xr). (5.58)

Demanding that the numerator vanishes gives a set of linear equations for the entries of
the matrix M(ε). Moreover, one can show that this equation will actually always have
a solution [37] and we can therefore easily Fuchsify the off-diagonal block B(x, ε).

To illustrate the global strategy on larger matrices, consider

A(x, ε) =

 εD11(x) 0 0
A21(ε, x) εD22(x) 0
A31(ε, x) A32(ε, x) εD33(x)

 , (5.59)

where the diagonal blocks are again in canonical form. One can then first Fuchsify
A21(ε, x) where the only other block this affects is A31(x, ε). Next, we transform A32(x, ε)
which likewise affects A31(x, ε). Therefore A31(x, ε) should be considered last, because
changes on this block do not alter the other blocks in any way. To summarize the steps:

1. Transform the diagonal blocks into canonical form.

7Transformations done on one diagonal block cannot influence any other diagonal block. Also note that
the differential equation for the integrals in block εC(x) can already be solved.
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2. Subsequently Fuchsify the off-diagonal blocks by working from top to bottom and
right to left.8

3. Factorize ε from the whole matrix.

Obviously, the factorization can already be done for parts of the matrix at an earlier
stage if this simplifies the analysis. In the above example, one could already factorize
the matrix consisting of εD11(x), εD22(x) and A21(ε, x) after having brought A21(ε, x)
into dlog form.

5.5 Variable Changes and Rationalization

In this section we want to comment on the case when the eigenvalues of the residue
matrices are not of the form n+ kε with n being an integer. Of particular interest is the
case of half integers, but other cases, though more difficult, can be studied analogously.
Therefore let us assume that the coefficient matrix ax1(ε) of the singular point x = x1

has an eigenvalue of the form 1/2 + n + kε, with n being again an integer. Since the
balance transformations can only shift the eigenvalues by ±1 they cannot be used to
normalize this eigenvalue.

Instead, we should perform a change of variables x = y(x) that rationalizes the square-
root

√
x− x1. One way to see this is by considering the solution of the differential

equations around x1 (see e.g. [137, 138]), which is

~f = (x− x1)ax1 [1 +O(x− x1)] ~f0(ε), (5.60)

where ~f0 is a vector of boundary constants. By choosing a basis in which ax1 is in
Jordan form, we find that at least one of the integrals will behave as (x − x1)1/2+n+kε

and therefore involves the above mentioned square-root. In the case where only one
singular point is affected, we can just use x = y2 + x1, which causes the solution to
behave as y1+2n+2kε and therefore we can apply balance transformations in the variable
y.

However, it is often the case that not one but multiple singular points are affected
through a single square-root, which e.g. happens in the case of

√
1− x2. Especially for

multivariate differential equations it can be very difficult to find an appropriate change
of variables9 due to the increasing complexity of the argument of the square-root. And
even if such a variable change is found, it usually increases the polynomial degree of the
other denominators drastically, making a subsequent analysis very tedious. Because of
this, approaches based on the transcendental weight or on an ansatz for the canonical
form are usually preferred for multivariate kinematics.

8Note that, when Fuchsifying the off-diagonal blocks of a sector, one can remove all other sectors with
the same number of propagators because they cannot depend on the considered sector. Another way
to think about this is that sectors with the same number of denominators can always be reordered
among each other in the basis, without destroying the block-triangular form.

9We refer to [41, 42] for an algorithmic approach to the question of rationalization.
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5 Algebraic Simplifications of Differential Equations

5.6 Relaxing the Canonical Form: Importance of the ε0-Part
and Normalization Factors

The canonical form is arguably the most useful form when trying to solve the differential
equations in an expansion in ε in terms of iterated integrals. First, the factorized ε allows
one to compute each order in ε as an integral over the coefficient matrix multiplied by
the previous order. Second, since the integration kernels are in dlog form, it is trivial to
identify the iterated integrals with the multiple polylogarithms

G(a1, a2, . . . , an;x) =

∫ x

0

dt

t− a1
G(a2, . . . , an; t), G(;x) = 1 (5.61)

of section 2.6.
In this section, however, we would like to consider the question what properties of the

canonical form we can relax and still retain the ability to solve it in a straightforward,
albeit more difficult, way. First, we note that double and higher order poles as integration
kernels are in principle no problem, since one can always use integration-by-parts to
reduce the order of the pole10. For example,∫ x

0

dt

(t+ 1)2
G(1, a2, . . . , an; t) =

∫ x

0

dt

(t+ 1)(t− 1)
G(a2, . . . , an; t)

− 1

(t+ 1)
G(1, a2, . . . , an; t)

∣∣∣∣t=x
t=0

=
1

2
G(1, a2, . . . , an;x)− 1

2
G(−1, a2, . . . , an;x)

− 1

1 + x
G(1, a2, . . . , an;x) +G(1, a2, . . . , an; 0).

(5.62)

Second, it is still possible to iteratively solve the differential equations order-by-order
in ε, if they are in the form ∂x ~f = εA(x, ε)~f and the ε-expansion of A(x, ε) starts at
ε0. This is simply because the integrals at a fixed order in ε can still be computed
through an integral over (a linear combination of) the previous orders. However, one
might potentially have to consider very high orders in ε to compute all contributions to
the order in ε one is interested in.

Moreover, it is possible to relax this condition even further to the form

∂x ~f = A(x, ε)~f, A(x, ε) =
∑
i=0

εiA(i)(x), (5.63)

where A(0)(x) is strictly lower-triangular. To see this, consider the differential equation
for the very first integral. Because A(0)(x) is strictly lower-triangular, the equation for
this integral is ∂xf1 = O(ε). Therefore the lowest order of this integral is simply given
by the boundary constants. Likewise, the second integral has the differential equation

10In the case where the lower integration boundary leads to a potential divergence, one has to use
shuffle-regularization, see e.g. [46].
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5.6 Relaxing the Canonical Form: Importance of the ε0-Part and Normalization Factors

∂xf2 = A
(0)
21 f

(0)
1 + O(ε), which can be computed because the first order of f1, here

denoted by f
(0)
1 , is known. Repeating this for all integrals shows that the form (5.63),

with A(0)(x) being strictly lower-triangular is in principle enough to solve the differential
equations in an expansion in ε.11

An algorithm for reaching this form has been given in [139] and we will give a very
short overview of the main steps, because this allows us to show the importance of the
normalization factors considered at the beginning of this chapter. The first step is to
reach (5.63) without A(0)(x) being strictly lower-triangular. This can always be achieved
by multiplying the integrals with appropriate powers of ε so that their solutions start
at the same order in ε. In a second step, one finds a transformation rational in x and
ε which transforms A(0)(x) into a lower triangular form. The details of finding this
transformation go beyond what we want to consider in this text and we note that in
general this step is only possible for integrals that evaluate to multiple polylogarithms.
We refer the reader to [139] for details of the algorithm.

The important point is then that the diagonal elements of the lower triangular A(0)(x)
can be regarded as diagonal blocks of size 1× 1, and we have already seen that transfor-
mations on one diagonal block do not influence other diagonal blocks (at this order in
ε). Therefore one can immediately integrate out the ε0-part of the diagonal elements by
choosing an appropriate normalization ni(x) for each integral, as was done for f1 in eqs.
(5.1) and (5.2). Therefore, using the algorithm of [139], solving the differential equations
can be reduced to the task of finding the correct normalization factors.

This in turn shows how the ε0-part of the differential equations influences the functions
appearing in the solutions of the integrals to a large degree. For example, we have already
seen how half-integer numbers in the ε0 part can lead to the appearance of square-roots
in the kinematic variables. As another example, there are cases where it is not possible
to determine a transformation s.t. the diagonal blocks of A(0)(x) are of size 1×1 only. In
particular, an irreducible 2×2 block can only be integrated out by solving a second-order
differential equation, which in general involves elliptic integrals in the solution. These
elliptic integrals will then necessarily appear in the transformation matrix, as well as the
integration kernels. An example of this will be discussed in the next chapter.

11If one does not sort the master integrals by sectors so that the differential equations are not block-
triangular, it is necessary to consider the more general condition of A(0)(x1) . . . A(0)(xk) = 0 for some
degree k, which is a criterion for the integrals to have a Dyson series with a finite number of terms
at fixed order in ε.
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6 The Canonical Basis from a Single
Uniform Weight Integral

At this point, we have described two very different approaches for finding a basis of pure
integrals. The first is only concerned with the integrals themselves and is oblivious to the
actual differential equation matrix. The second is meant to directly transform a given set
of differential equations into canonical form while not caring about the transcendental
structure of the original Feynman integrals.

Each of these approaches has certain advantages over the other. For example trans-
formations on the coefficient matrix A(x, ε) can in principle be found for any number of
master integrals, whereas the analysis of the integrands and diagrams of the Feynman
integrals in a family is sometimes simply not enough to find a complete basis of UT
candidates. On the other hand, especially in the multivariate case, writing down UT
candidates and computing leading singularities is usually easier than finding a transfor-
mation matrix for each individual variable.

A natural question to ask is therefore whether a method exists that allows us to

1) keep the already known UT candidates

2) do transformations on the rest of the basis in order to complete the set of pure
master integrals.

In addition, such a method should

3) work for any number of master integrals (in principle)

4) not require to find a transformation for each kinematic variable separately.

The first two points require that we find a transformation that does not change the part of
the basis that is already pure. The third is automatically satisfied if the approach is based
on the coefficient matrix A(x, ε). The last requirement can be met by working with an
ansatz for the canonical differential equation matrix. This is because the transformation
is completely determined if the coefficients in the ansatz are fixed.

In this chapter, we will present a method that satisfies all of the above criteria. The
idea of this method is the following: First, we use A(x, ε) to derive a higher-order
differential equation which only depends on the UT candidates and their derivatives.
Second, we derive the same equation starting from an ansatz for the canonical matrix
εÃ(x) s.t. the UT candidates are the same as the ones from the first step. Lastly, we
require that the two resulting higher-order differential equations agree and use this to
determine the unknown constants in the ansatz.
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6 The Canonical Basis from a Single Uniform Weight Integral

We note that, for this method to work, the number of UT candidates has to be greater
than zero, i.e. we need at least one integral from the canonical basis. At the same time
this gives an algorithmic way to test whether an individual candidate integral is indeed
pure or not (provided the ansatz for the canonical form is correct).

In the following, we first describe the case of one dimensionless variable x and a basis
~f with

∂

∂x
~f = A(x, ε)~f, (6.1)

where f1 is a candidate UT integral. The case of more kinematic scales and multiple
UT candidates will be described in sections 6.5 and 6.6, respectively. Throughout this
chapter, we will largely follow the presentation given in [1], and in particular, some of
the equations are taken from this reference. However, on several occasions, we aim to
give additional important details about the algorithm and try to clarify the concepts
beyond what is given in [1].

6.1 The Picard-Fuchs Equation

Starting from eq. (6.1), one can derive the following relation between the basis ~f and its
derivatives: 

f ′1 · · · f
(n)
1

f ′2 · · · f
(n)
2

...
. . .

...

f ′n · · · f
(n)
n

 =
(
A[1] ~f, . . . , A[n] ~f

)
, (6.2)

where

A[1] := A, (6.3)

A[j] :=
∂

∂x
A[j−1] +A[j−1]A for j > 1 (6.4)

and n is the number of master integrals. Without loss of generality, we can pick one of
the integrals in ~f , e.g. f1, and project the above equation on this subspace using the

vector ~v1 = (1, 0, . . . , 0). This leads to f
(j)
1 = ~v1A

[j] ~f and hence we can define the basis
change  f ′1

...

f
(n)
1

 = Ψ~f (6.5)

with

Ψ :=

~v1A
[1]

...

~v1A
[n]

 . (6.6)
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6.2 Determining the Canonical Form

In the case that the derivatives are linearly independent1, we can invert Ψ and project
(6.5) on f1 to get

f1 +
n∑

m=1

bmf
(m)
1 = 0, (6.7)

where the coefficients are

(b1, . . . , bn) ≡ −~v1Ψ−1. (6.8)

The n-th order differential equation in (6.7) is called the Picard-Fuchs equation and it
solely depends on the integral f1. Therefore we could apply any basis transformation to
eq. (6.1) that leaves f1 unchanged and still end up with the same Picard-Fuchs equation
for f1.

Note that, in the basis (f ′1, . . . , f
(n)
1 )T of eq. (6.5), the differential equation matrix is

[139]

(
∂

∂x
Ψ + ΨA

)
Ψ−1 =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

b̂1 b̂2 b̂3 · · · b̂n

 , (6.9)

as is evident from eq. (6.7). The elements of the last row are b̂m = (bm−1 + b′m)/bn.

6.2 Determining the Canonical Form

In the previous section, we have derived a higher-order differential equation depending
only on a single integral in the basis, namely f1. In the following, we are going to
assume that this integral evaluates to a pure function. We show in appendix A.1 that
this assumption can be used to derive degree bounds on the coefficients bi. Further, if the
integral is not yet normalized correctly, one can use these degree bounds to determine
the overall factor needed to make f1 a pure integral. This is the subject of appendix
A.2.

However, here in the main text, we will show that the assumption that f1 is a pure
integral is even more powerful. In particular, it is enough to determine a complete basis
~g of uniform weight integrals, i.e.

∂

∂x
~g = B(x, ε)~g, B(x, ε) = εÃ(x). (6.10)

This may be surprising at first, but becomes more understandable when looking at eq.
(6.5). According to this equation, any possible basis containing f1 can immediately be

1The case of linearly dependent derivatives will be dealt with in section 6.6.
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6 The Canonical Basis from a Single Uniform Weight Integral

related to the basis formed by the derivatives of f1. Since we want ~g to be a uniform
weight basis, we can pick g1 = f1. It is then clear that one can also compute the basis
change  f ′1

...

f
(n)
1

 = Φ~g, with Φ :=

~v1B
[1]

...

~v1B
[n]

 , (6.11)

where B[j] is defined in the same way as A[j]:

B[1] := B, (6.12)

B[j] :=
∂

∂x
B[j−1] +B[j−1]B for j > 1 (6.13)

Recall that f1 having uniform transcendental weight is a statement about the functions
at each order in an infinite expansion in ε. This information is contained in eq. (6.11)
through the fact that the derivatives of f1 still contain multiple pieces of uniform tran-
scendental weight multiplied by rational functions. The transformation Φ in eq. (6.11)
is then telling us how to remove the rational functions in each derivative and restore
the uniform transcendentality. We therefore see why f1 carries enough information to
determine a canonical basis.

Continuing the results of the previous section, we can use (f ′1, . . . , f
(n)
1 )T as an inter-

mediate basis to find

~f = T~g, where T ≡ Ψ−1Φ. (6.14)

Therefore we have a way of determining the transformation T to the canonical basis
once the matrix B is known. To determine the latter, we can use the fact that f1 = g1

and therefore the first line of T must equal ~v1:2

~v1Ψ−1Φ = ~v1 (6.15)

From eq. (6.11) we see that Φ contains higher-order derivatives of the entries of B
and therefore solving this equation would be just as complicated as the initial problem.
Fortunately, we can remove the derivatives by making an ansatz for B. In the case of
multiple polylogarithms, we write

B(x, ε) = ε
∑
l

ml
∂

∂x
logαl(x), (6.16)

where αl(x) are called the letters and the set of all letters is called the alphabet ~α =
{αl}. A reasonable guess for the letters αl(x) can be obtained by the set of irreducible
denominators of A(x, ε) that are independent of ε. Using this form, the only unknowns

2This is equivalent to requiring the coefficients in the Picard-Fuchs equations to agree, i.e. ~v1Ψ−1 =
~v1Φ−1.
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6.3 Implementation

in eq. (6.15) are the constant matrices ml, however, due to (6.13), the equations are
highly non-linear. To circumvent this issue, one can expand (6.15) in ε and solve one
order at a time. We explain this highly technical procedure in great detail in appendix
A.3.

In summary, this gives an algorithm to compute the canonical form starting from a
single pure integral. Assuming that the ansatz for B(x) is correct, this also allows us
to test f1 for the uniform weight property, i.e. if f1 is not pure, then there will be no
solution to eq. (6.15).

6.3 Implementation

The above algorithm is implemented in the Mathematica package INITIAL (an INI-
Tial Integral ALgorithm) [1] and publicly available at

https://github.com/UT-team/INITIAL

It uses the FiniteFlow library [129] to perform the sampling over different kinematic
variables and subsequently solve the equation system over finite fields. The library
then automatically lifts the result from the finite field to the field of rational numbers
and reconstructs the rational functions in the solution. In this way, it also greatly
reduces the size of intermediate expressions, particularly when inverting the Ψ-matrix
and performing repeated matrix multiplications.

6.4 Single-Variable Examples

In this section we show three Feynman integral families that depend only on a single
dimensionless scale and how the corresponding differential equations can be brought
into canonical form by using the algorithm described in the previous section. The three
examples have been chosen to highlight the applicability of the algorithm (and its im-
plementation) to the following three types of problems:

1. A large total number of integrals.

2. A large number of directly coupled integrals.

3. An initial integral is not known.

The IBP reductions for deriving the differential equations were done through the methods
and algorithms described in section 5.1. Apart from the initial integral f1 = g1 the basis
of master integrals used as an input to our algorithm is always given by the reduction
codes, i.e. no further optimizations were done. A summary of the performance, including
the multi-variable example of the next section, can be found in table 6.1.
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6 The Canonical Basis from a Single Uniform Weight Integral

6.4.1 Full Differential Equations for Planar Three-Loop Integrals

The so-called “tennis-court” integral family is defined by the following propagators

D1 = −(k1 − k3)2, D2 = −(k1 + p1)2, D3 = −(k1 + p1 + p2)2,

D4 = −(k2 + p1 + p2)2, D5 = −(k2 − p3)2, D6 = −(k2 − k3)2,

D7 = −(k1 − k2)2, D8 = −k2
3, D9 = −(k3 + p1)2,

D10 = −(k3 − p3)2, D11 = −(k3 + p1 + p2)2, D12 = −(k2 + p1)2,

D13 = −(k1 − p3)2, D14 = −k2
1, D15 = −k2

2,
(6.17)

where the top-sector is given by J1,1,1,1,1,1,1,1,1,1,0,0,0,0,0 and shown in figure 6.1. It is

1

2 7 5

109

3 4

8

6

Figure 6.1: Planar three-loop four-point integrals. The number of MIs for this family is 41.

straightforward to find a complete UT basis and compute the master integrals [140].
Nevertheless, we will use the corresponding DEs to show that our implementation of the
algorithm is relatively fast in determining the canonical form even in the case of a basis
of 41 master integrals.

As an initial integral we choose the dlog-integral

f1 = g1 = ε6x2I1,1,1,1,1,1,1,1,1,1,−1,0,0,0,0, (6.18)

where x = s/t. f1 can easily be found by applying the methods of chapter 3. The
differential equations suggest the alphabet ~α = {x, 1+x}. Computing the Ψ-matrix takes
about 7 min. As described in the previous section, the equations are iteratively solved
order-by-order in ε by introducing auxiliary vectors ~vj . The number of independent
vectors steadily increases until O(ε6) where all 41 independent vectors are determined.
However, testing eq. (A.16) shows that there are still missing relations between the
vectors ~vjml and ~vj . These relations are then determined by going to O(ε7) at which
point the problem is solved and the ml can be computed by making a suitable choice
for the auxiliary vectors. In total, building and solving the system of equations takes
22 min. Finally, we compute the matrix Φ in about 3 min, and the transformation T in
about 30 s.
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6.4 Single-Variable Examples

6.4.2 Scaling with the Number of Master Integrals

At this point, it is interesting to analyze the scaling of the time the algorithm takes
to compute the transformation matrix with the matrix size. In figure 6.2a we apply
our algorithm to different systems of differential equations that are already in canonical
form. We can see that the algorithm is relatively fast even for state-of-the-art problem
sizes. However, since the scaling behavior is exponential, the computing time increases
drastically when going beyond a certain point. This exponential behavior is expected,
since the matrix multiplications in the computation of Ψ follow the same behavior, i.e.
A[n] ∼ An. Therefore the complexity of the rational functions in Ψ and the equation
system also scales exponentially with the matrix size.

In figure 6.2b we show the application to systems that have artificially been trans-
formed away from the canonical form. As a result, the entries of the matrices are rational
functions with numerators and denominators being polynomials up to degree 21 in ε and
23 in x. We see that the scaling behavior is similar, however the overall scale (the base
of the exponential) is about 13 times larger.
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Figure 6.2: Scaling of the time it takes to find a transformation matrix with the matrix size.
The scaling is exponential but depends on the complexity of the matrix: In (a)
systems already in canonical form were analyzed, whereas (b) shows the application
to systems with high-degree rational functions in ε and x.
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6.4 Single-Variable Examples

6.4.3 Non-Planar Four-Loop Sector with 17 Master Integrals

Next, we consider the diagonal block of a specific sector in the DEs of the following
integral family (see also section 7.3 for a further discussion of this integral family):

D1 = 1− 2k1 · v1, D2 = 1− 2k2 · v1, D3 = 1− 2k2 · v2,

D4 = 1− 2k3 · v2, D5 = −k2
1, D6 = −k2

3,

D7 = −k2
4, D8 = −(k1 − k2)2, D9 = −(k1 − k4)2,

D10 = −(k2 − k3)2, D11 = −(k3 − k4)2, D12 = −(k1 − k2 + k3 − k4)2,

D13 = −(k2 − k4)2, D14 = −(k2 − k3 − k4)2, D15 = 1− 2k4 · v1,

D16 = 1− 2k4 · v2, D17 = 1− 2k3 · v1, D18 = 1− 2k1 · v2,
(6.19)

where the sector integral is given by J1,0,1,1,0,1,1,1,1,0,0,1,0,0,0,0,0,0 and shown in figure 6.3.
As discussed in section 5.4, looking at the diagonal block is equal to considering the

7 6

4

3

129

81

Figure 6.3: An integral sector with 17 master integrals.

maximal cut of this integral. Therefore all integrals of the block directly couple to each
other, which leads to a dense matrix without the usual block-triangular structure. This
means that blocks like this will be the smallest “sub-problems” that we have to deal with
when trying to bring the differential equations of a full integral family into canonical
form.

In the case at hand, the diagonal block is a 17 × 17 matrix and, in fact, it is the
largest diagonal block in this family. Hence, it is reasonable to assume, that we might
be able to solve the full differential equations if our algorithm can handle this sector
(and the alphabet is not vastly more complicated in other sectors). We want to stress
that the typical sector size of the other sectors of this family, as well as those of the
other examples given in this thesis, is significantly smaller, meaning that the number of
master integrals per sector is usually between two and seven.

The initial integral is easily found by making a guess (see e.g. [140, 36] as well as
chapter 4) for a list of UT integrals, and then systematically testing them with our
algorithm. In this way we find that the following integral is a pure integral on the
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6 The Canonical Basis from a Single Uniform Weight Integral

maximal cut:

f1 = g1 = ε6
(

1− x2

x

)2

I1,0,1,1,0,1,1,2,2,0,0,1,0,0,0,0,0,0, (6.20)

where x is defined by 2v1 · v2 = x + 1/x. The singular points of the differential equa-
tions suggest ~α = {x, 1 + x, 1 − x} as ansatz for the alphabet. With this input, our
implementation takes less than two minutes to find a transformation to canonical form.

6.4.4 Four-Loop Four-Point Integrals

In this example, we analyze previously unknown four-loop integrals. Again we are only
concerned with the differential equations and not with the actual solution for the inte-
grals, which can be found in [1]. The integral family is defined by

D1 = −k2
4, D2 = −(k1 + p1)2, D3 = −(k2 + p1 + p2)2,

D4 = −(k3 + p1 + p2 + p3)2, D5 = −(k1 − k2)2, D6 = −(k2 − k3)2,

D7 = −(k3 − k4)2, D8 = −(k1 − k4)2, D9 = −k2
1,

D10 = −(k2 + p1)2, D11 = −(k3 + p1 + p2)2, D12 = −(k4 + p1 + p2 + p3)2,

D13 = −k2
2, D14 = −k2

3, D15 = −(k1 − k3)2,

D16 = −(k1 + p1 + p2)2, D17 = −(k1 + p1 + p2 + p3)2, D18 = −(k2 − k4)2,

D19 = −(k2 + p1 + p2 + p3)2, D20 = −(k3 + p1)2, D21 = −(k4 + p1)2,

D22 = −(k4 + p1 + p2)2.
(6.21)

and we consider the sector J1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0, shown in figure 6.4, together
with its sub-sectors. In total there are 19 master integrals and we take ~α = {x, 1 + x}

42
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Figure 6.4: Planar four-loop four-point integral. The number of master integrals is 19.

as an ansatz for the alphabet.
This example is interesting because it is not straightforward to find an initial integral.

The reason is the following: From power counting, one can show that the integrand
of the scalar integral always exhibits a double pole. As a consequence, there are no
dlog integrals in four dimensions. While there are other possibilities to determine a
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6.5 Generalization to Multi-Variable Case

UT integral, we here want to exploit our algorithm’s ability to test a list of candidate
integrals.

The scalar integral itself turns out to be UT up to an overall normalization in ε,
however only 18 of its derivatives are linearly independent. As will be discussed in
section 6.6, we could proceed by first bringing an 18× 18 block into canonical form, and
then apply the methods of chapter 5 to the last row. Instead, we choose to test further
suitable candidates. In particular, we investigate integrals with one doubled propagator.
From figure 6.4 we see that there are only two inequivalent ways of doubling a propagator.
We find that both lead to UT integrals, but that only one of them gives an invertible
19× 19 Ψ-matrix:

f1 = g1 = ε7(1 + x)I1,1,1,1,1,1,1,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0 (6.22)

In this case, the overall factor in x was easily determined by demanding that b̃0 =
O(ε). Using this as an input, our implementation takes less than one minute to find a
transformation to canonical form.

6.5 Generalization to Multi-Variable Case

Many algorithms that aim at finding a canonical basis do not scale very well with the
number of scales involved or cannot handle more than one variable at all. As we will
see in the following, this is not the case for our algorithm, and the number of scales
is only limited by the complexity of the rational functions appearing in the differential
equations, which increases the needed computing power. The latter difficulty can often
be overcome by using some tricks that are described in a state-of-the-art example in the
last part of this section.

6.5.1 General Considerations

Starting from a set of partial differential equations

∂

∂xi
~f = Ai(~x, ε)~f, i = 1, . . . ,m (6.23)

our goal is to achieve the canonical form

d~g(~x, ε) = dB(~x, ε)~g(~x, ε), dB(~x, ε) = ε

[∑
l

ml d logαl(~x)

]
, (6.24)

where ~x = {x1, . . . , xm} denotes the set of variables and as usual d =
∑

i dxi∂xi . Without
loss of generality, we first consider the differential equations in x1, treating the other
variables as constants. The steps for these differential equations are then essentially the
same as in the single-variable case, except that we now need to make sure our solutions
for the ml are independent of all variables, instead of just x1. This can be achieved
either by sampling over an array of values for ~x, by successively series expanding in
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6 The Canonical Basis from a Single Uniform Weight Integral

the xi or by finding an independent basis of functions, e.g. through generalized partial
fractioning, see [141].

Following this procedure results in the differential equations w.r.t. x1 being in canon-
ical form:

∂

∂x1
~g′(~x, ε) = B1(~x, ε)~g′, (6.25)

where Bi = ∂xiB. As in the single-variable case, this ε-factorized form is unique up to
transformations that are independent of x1, as well as an overall factor in ε. However,
the ansatz (6.24) together with the choice of the independent vectors in the matrix Q in
the solution

ml = Q−1βlQ (6.26)

completely determines the canonical form (6.25) in x1. Therefore the only freedom that
is left are transformations that leave (6.25) invariant, i.e. multiplication by an overall
factor in ε and x2, . . . , xm:

~g(~x, ε) = N̂(ε, x2, . . . , xm)~g′(~x, ε) (6.27)

We want to stress that, compared to the method of balance transformations,
N̂(ε, x2, . . . , xm) is not a matrix but a scalar function. In practice, we found that this nor-
malization factorizes as N̂(ε, x2, . . . , xm) = n(ε)N(x2, . . . , xm) and that N(x2, . . . , xm)
can easily be determined by integrating out the ε0 part of the differential equations
w.r.t. the variables x2, . . . , xm. However, it is conceivable that a very bad choice of
initial integral does not lead to this factorization.

6.5.2 Four-Variable Example: Non-Planar Double Pentagon Integrals

To demonstrate the application of our algorithm to a multi-scale problem, we consider
the top sector J1,1,1,1,1,1,1,1,0,0,0 of the non-planar double pentagon integral family, shown
in figure 6.5 and defined by the propagators [33, 34]

7

6

1 4

8

2

3 5

Figure 6.5: Top sector of the non-planar double pentagon integral family. The number of master
integrals on the maximal cut is nine.
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6.5 Generalization to Multi-Variable Case

D1 = −k2
1, D2 = −(k1 − p1)2, D3 = −(k1 − p1 − p2)2,

D4 = −k2
2, D5 = −(k2 + p4 + p5)2, D6 = −(k2 + p5)2,

D7 = −(k1 − k2)2, D8 = −(k1 − k2 + p3)2, D9 = −(k1 + p5)2,

D10 = −(k2 − p1)2, D11 = −(k2 − p1 − p2)2.

(6.28)

An ansatz for the alphabet in terms of 31 letters {αi} has been suggested in [142, 143]. To
rationalize the external kinematics and thereby also the alphabet, we employ a (variation
of) momentum-twistor parametrization, see e.g. [144]:

s12 = b1, s23 = b1b4, s34 =
b1(1 + b3)b4

b2
− b1b3(1− b5), (6.29)

s45 = b1b5, s15 = b1b3(b2 − b4 + b5), (6.30)

where b1 is the only dimensionfull variable. Hence, the 9×9 differential equation matrix
depends on the four dimensionless variables ~b = {b2, . . . , b4}. An initial integral can
easily be found using the methods of section 3.4 and 3.5, as was done in [33] and [34],
respectively.

We start by determining the canonical form w.r.t. b2, i.e.

B2(~b, ε) = ε
22∑
l=1

ml
∂

∂b2
logαl(~b), (6.31)

where the sum runs only over the 22 letters that depend on b2. The solutions for
m1, . . . ,m22 are easily found by solving the equations after sampling over different values
for the variables. In fact, it turns out that, after sampling over different values for b2, the
solution is automatically independent of b3, . . . , b5 and therefore only a single evaluation
in these variables is necessary.

In principle, one can now compute the analytic transformation matrix T (~b, ε) from
analytic expressions for Ψ2 and Φ2. However, the higher-order derivates in the com-
putation of these matrices lead to complicated rational functions. Therefore this step
would be quite time consuming, and we prefer to take a different path by actually ex-
ploiting the fact that we have multiple variables for the derivatives available. First, we
determine the other matrices Bi, and therefore the full differential, analytically in the
following way:

1. Compute Ψ2, Φ2 and T without setting b3 to a constant. This allows us to trans-
form the differential equations in b3 into canonical form where b4 and b5 are con-
stant values.

2. Determine the analytic B3(~b, ε) by matching the canonical form from the previous
step to the ansatz for B3.

3. Repeat in b4 and b5 to get B4(~b, ε) and B5(~b, ε).
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6 The Canonical Basis from a Single Uniform Weight Integral

We note that the analytic matrix dB(~b, ε) depends on only 17 of the 31 letters. Using
this result, we can also compute the Φ-matrix for any basis we like. Therefore we can
choose e.g. to use the intermediate basis

~h = (f1, ∂b2f1, ∂
2
b2f1, ∂b3f1, ∂

2
b3f1, ∂b4f1, ∂

2
b4f1, ∂b5f1, ∂

2
b5f1) (6.32)

instead of a basis that consists of only derivatives w.r.t. one variable but to n-th order
as in (6.5) and (6.11). The fact that ~h contains at most second-order derivatives greatly
simplifies the matrices Ψh and Φh defined through

~h = Ψh
~f,

Ψh := (~v1, ~v1A
[1]
2 , ~v1A

[2]
2 , ~v1A

[1]
3 , ~v1A

[2]
3 , ~v1A

[1]
4 , ~v1A

[2]
4 , ~v1A

[1]
5 , ~v1A

[2]
5 )T

(6.33)

and

~h = Φh~g,

Φh := (~v1, ~v1B
[1]
2 , ~v1B

[2]
2 , ~v1B

[1]
3 , ~v1B

[2]
3 , ~v1B

[1]
4 , ~v1B

[2]
4 , ~v1B

[1]
5 , ~v1B

[2]
5 )T.

(6.34)

Finally, the transformation matrix is computed through T (~b, ε) = Ψ−1
h Φh.

In total, our implementation takes only a few minutes for all steps outlined above. A
summary for all examples is given in table 6.1.

type of problem #MI #vars #letters time mem.
[min] [MB]

three-loop four-point tennis court 41 — 3 1 2 34 1710

four-loop four-point crossed box 19 — 12 1 2 1 240

non-planar four-loop HQET 17 — 17 1 3 2 390

non-planar two-loop five-point 9 — 9 4 17 5 510

Table 6.1: Approximate evaluation time and memory usage of the different examples on a desk-
top computer with twelve logical CPU cores. The second column shows the total
number of master integrals, as well as the maximum sector size. The third column
shows the number of dimensionless variables and the fourth column gives the number
of (relevant) letters in the alphabet.

It is remarkable that the number of scales only marginally influences the time it takes
to compute the canonical form, and that a higher number of scales actually seems to aid
the computation of the transformation matrix. Note that it is also possible to directly
and analytically determine the matrix B(~b, ε) through an intermediate basis similar3

to ~h. However, we found that the above mentioned procedure is still by far the most
efficient way of computing the canonical form.

3The basis ~h itself cannot be used for this task since the entries of ~v1Ψ−1 are not the coefficients of a
Picard-Fuchs equation and, in fact, ~v1Ψ−1Φ = ~v1 is trivially fulfilled.
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6.6 Degenerate Ψ-Matrix

6.6 Degenerate Ψ-Matrix

In the example of section 6.4.4 we saw that for some initial integrals not all derivatives
were linearly independent and hence Ψ was not invertible. In this section we discuss
possible reasons for linearly dependent derivatives, as well as ways to deal with such a
case.

As probably the most obvious example, consider the following differential equation
matrix

A(x, ε) =

(
A1,1 0
A2,1 A2,2

)
(6.35)

consisting of only two sectors with diagonal blocks A1,1 and A2,2. We can see that A2,2

corresponds to the top sector and therefore we should consider an initial integral from
this sector. Instead, we use f1 as initial integral, which is the first integral in sector A1,1.
This will immediately lead to a non-invertible Ψ-matrix, as can be seen by recalling that
each row of the Ψ-matrix is computed through

Ψ1 = ~v1A, (6.36)

Ψm =
∂

∂x
Ψm−1 + Ψm−1A, m = 2, . . . , n, (6.37)

with n being the number of master integrals. Therefore the columns corresponding to
the sector A2,2 are always zero and hence the rows are linearly dependent. This in turn
means that the derivatives of f1 are linearly dependent because

f
(m)
1 = Ψm

~f. (6.38)

This result is of course not very surprising, because the matrix structure in eq. (6.35)
makes it immediately clear that f1 does not carry enough information to determine all
integrals in the basis.

Another interesting case is given by a differential equation matrix without top-sector:

A(x, ε) =

A1,1 0 0
A2,1 A2,2 0
A3,1 0 A3,3.

 (6.39)

An initial integral in any of the three sectors leads to a non-invertible Ψ-matrix. This
problem can be resolved by realizing that we should actually look separately at the two
differential equations

A2(x, ε) =

(
A1,1 0
A2,1 A2,2

)
and A3(x, ε) =

(
A1,1 0
A3,1 A3,3

)
. (6.40)

Taking initial integrals from the respective new top-sectors A2,2 and A3,3 will result in
linearly independent derivatives for each of the two integrals.
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6 The Canonical Basis from a Single Uniform Weight Integral

However, in doing so we consider the sector A3,3 twice. Therefore, it might be ad-
vantageous to use the two known pure integrals to directly bring A(x, ε) in (6.39) into
canonical form. This can be done in the following way:

Let us call the two pure integrals f2 and f3. These two integrals are from sectors A2,2

and A3,3 of size n2 and n3 respectively. Further, let the two unit vectors that project on
these two integrals be ~v2 and ~v3, respectively. Then we can define the following basis of
n linearly independent derivatives:

(f ′2, . . . , f
(n2)
2 , f ′3, . . . , f

(n−n2)
3 )T = Ψ~f, (6.41)

where

Ψ ≡



~v2A
[1]

...

~v2A
[n2]

~v3A
[1]

...

~v3A
[n−n2],


(6.42)

Here it is important that the basis includes n2 derivatives of f2 and n3 derivatives of f3.
The remaining n− n2− n3 integrals can be filled in any convenient way, as long as they
are linearly independent. In this example we filled them with higher order derivatives
of f3. Using this intermediate basis, we can also compute a Φ-matrix, where now A is
replaced by the ansatz B for the canonical form. The latter is computed by requiring
that f2 = g2 and f3 = g3, which results in the simultaneous constraints(

~v2

~v3

)
Ψ−1Φ =

(
~v2

~v3

)
, (6.43)

which can be solved in the usual way by expanding in ε and grouping terms of equal
transcendental weight. The transformation matrix to canonical form is then T = Ψ−1Φ.

Note that the knowledge of multiple pure integrals is not only helpful in the case of
a non-invertible Ψ-matrix, but also to reduce the highest order of derivatives present
in the intermediate basis4. This is somewhat similar to the multi-variable case, where
derivatives w.r.t. different variables was used to reduce this order.

Finally, it is important to understand that the block-structure in eq. (6.35) or (6.39)
can be hidden, so that it is not obvious whether all derivatives will be independent. In
particular, a diagonal block can have this hidden structure. This explains why sometimes
even an integral from the top sector leads to a non-invertible Ψ-matrix.

Fortunately, the linear dependence of the derivatives gives a convenient way to make
the block-structure manifest [139]: Consider a basis ~f of integrals, where only the first r

4We note that it is often also possible to artificially couple the two differential equations by using
f2 + f3 as initial integral. However, the order of derivatives in this case is still higher than through
the method described here.
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derivatives of f1 are linearly independent. Therefore, f1 satisfies a Picard-Fuchs equation
of the form

f1 +
r∑

m=1

bmf
(m)
1 = 0. (6.44)

A basis that makes the block-structure manifest is given by

~fB = (f ′1, . . . , f
(r)
1 , fσr+1 , . . . , fσn)T, (6.45)

where we added (n − r) integrals from the original basis, i.e. fσr+1 , . . . , fσn ∈ ~f . These
integrals need to be linearly independent of the first r derivatives of f1. Since the
integrals in ~f are linearly independent, such a subset of integrals always exists.

As we have seen in eq. (6.9), the differential equations in this basis now have the form

∂

∂x
~fB = AB(x, ε)~fB, AB(x, ε) =



0 1 0 . . . 0 0 . . . 0
0 0 1 . . . 0 0 . . . 0
...

...
...

. . .
...

...
...

...
0 0 0 . . . 1 0 . . . 0

b̂1 b̂2 b̂3 . . . b̂r 0 . . . 0
∗ ∗ ∗ . . . ∗ • . . . •
...

...
...

. . .
...

...
...

...
∗ ∗ ∗ . . . ∗ • . . . •


, (6.46)

where ∗ and • are arbitrary, i.e. possibly non-zero, entries. Depending on whether the
entries ∗ are zero or not, we arrive at the cases of eq. (6.39) or (6.35), respectively.

6.7 Generalizations of the Ansatz

In this section we discuss how the logarithmic ansatz for the canonical form

B(~x, ε) = ε

[∑
l

ml logαl(~x)

]
(6.47)

can be modified to incorporate more general letters.

6.7.1 Algebraic Singularities

First, we can allow for rational functions instead of just logαl(~x). As an example,
consider a differential equation with singular points at ±i. Instead of log(x± i) we can
equivalently use two linearly independent functions with the same poles but without
explicit appearance of complex numbers:

B(x, ε) = ε

[
m1

1

1 + x2
+ m2

x

1 + x2

]
(6.48)
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6 The Canonical Basis from a Single Uniform Weight Integral

The advantage of this is that the transformation matrix T (x, ε) does not explicitly de-
pend on ±i and we can therefore still solve the equations over Q instead of C. This is
particularly helpful when combining the algorithm with finite-field methods.

In general, the appearance of letters of the form x−xi, where xi is one of the (algebraic)
roots of a degree-k polynomial Pk(x) with real and rational coefficients suggests adding

ε
k∑
l=1

ml
xl−1

Pk(x)
(6.49)

to the ansatz for B(x, ε). This avoids the explicit appearance of the roots xi in the equa-
tions and the transformation matrix, which is expected to be possible if the kinematics
of the Feynman-integrals do not explicitly introduce these algebraic numbers. The same
is true in the multi-variable case, however one should make sure that the basis of rational
functions used in the ansatz is still linearly independent, see e.g. [141].

6.7.2 Algebraic Letters

As discussed in section 5.5, rational transformations are not always sufficient to reach
the canonical form. In particular, if the eigenvalues of the residue matrices at a singular
point xi are half-integer for ε = 0, one should either try to find a change of variables
which rationalizes

√
x− xi [37] or incorporate this square root into the ansatz.

An example of this is given by the maximal cut of the sector shown in figure 6.6.
There are two master integrals and the differential equations suggest

Figure 6.6: Wilson line sector requiring algebraic letters. The number of master integrals is
two.

B(x, ε) = ε

[
m1

1

x
+ m2

1√
x

+ m3
1

x− 1
+ m4

√
x

x− 1
+ m5

1

x+ 1
+ m6

√
x

x+ 1

]
(6.50)

as the ansatz for the canonical form. The scalar integral, normalized by (1 − x2)/x, is
a suitable initial integral. The algorithm proceeds in the same way as in the rational
case, however, we do not use finite-field techniques to sample over x. For this reason,
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6.7 Generalizations of the Ansatz

square-roots are currently not supported by our implementation. The ensuing canonical
form turns out to be very simple. In particular, the result can be written in terms of
the alphabet {x, 1 + x, (1−

√
−x)/(1 +

√
−x)}.

6.7.3 Non-Polylogarithmic Case

So far we assumed that the canonical form can be reached through algebraic transfor-
mations. However, there are cases when the solution to the integrals cannot be written
in terms of only MPLs, but more general iterated integrals are required. One example is
the so-called two-loop sunrise graph shown in figure 6.7. In [68] a basis of integrals was

m

m

m

Figure 6.7: Two-loop sunrise graph. There are two master integrals on the maximal cut. All
internal lines are massive, e.g. D1 = k21 −m2.

found where the dimensional regulator still factorizes in the differential equation ma-
trix and consequently the solution can be straightforwardly written in terms of iterated
integrals and subsequently also in terms of so-called elliptic multiple polylogarithms.

Here we want to demonstrate that this form can still be found by our algorithm, as
long as an initial integral and an ansatz for the desired differential equations is known.
For the purpose of this example, we simply take this information from [68]:

f1 = g1 =
1

Ψ1
I

(2−2ε)
1,1,1,0,0 (6.51)

B(x, ε) = ε

[
m1

1

x(x− 1)(x− 9)Ψ2
1

+ m2
3x2 − 10x− 9

x(x− 1)(x− 9)

+ m3 Ψ1 + m4
(3 + x)4Ψ2

1

x(x− 1)(x− 9)

]
,

(6.52)

where

Ψ1 =
4 K

(
16
√
x

(1+
√
x)3(3−

√
x)

)
π(1 +

√
x)

3
2 (3−

√
x)

1
2

(6.53)

with

K(k) =

∫ 1

0

dt√
(1− t2)(1− k t2)

(6.54)
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being the complete elliptic integral of the first kind. I
(2−2ε)
1,1,1,0,0 is the scalar integral near two

dimensions, which can be related to the four-dimensional basis through the dimensional
recurrence relations discussed in section 3.5. The only dimensionless kinematic variable
x is defined by x = s/m2. We note that the functions in B(x, ε) are modular forms, see
[69]. For example, it is straightforward to verify the absence of essential singularities in
(6.52).

The algorithm then proceeds in the usual manner, however, we again need to assure
that the solutions to the equations are independent of x. To do this, we prefer to treat
Ψ1 and its derivative as additional independent variables to sample over. This results
in expressions that are easier to handle with Mathematica compared to sampling only
over x or expanding the equations around x = 0. Once a solution for the mi is known,
it becomes straightforward to compute the transformation matrix in the usual way.

This example demonstrates how flexible the algorithm is w.r.t. the functions appearing
in the ansatz. Compared to the other techniques discussed in previous chapters, there
is no need to rationalize square-roots in the kinematic variables and one can even use
elliptic integrals if required. Further, in the multivariate case, running the algorithm for
just one variable is enough to determine the canonical basis up to a rotation in the other
variables.

However, there is arguably more input needed than in the leading singularity or the
balance transformation methods. Especially the ansatz for the canonical form can be
difficult to find in the multivariate case. We refer to [143] for an example of how the
letters can be bootstrapped by using information on branch cuts. Further, the algorithm
requires the knowledge of at least one UT integral and its normalization. In practice, it is
usually relatively easy to find suitable candidates through the methods of chapter 3 and
4. One can then test the integrals w.r.t. the UT property and also find the appropriate
normalization as discussed in appendix A.2.

In contrast to the balance transformations of chapter 5, the algorithm is able to use
already found pure integrals to simplify the computation. Consider e.g. the extreme
case where all but a single integral of the basis are pure. First, without our ability to
test individual integrals, there would be no way of knowing which of the integrals needs
to be replaced. Second, after having determined which of the integrals is not pure, our
algorithm then allows us to find a transformation to canonical form where only a single
row is different from the identity matrix. This is an enormous simplification compared
to the method of balance transformations.
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7 Applications

In this chapter, we present the application of the canonical differential equations method
to three different physical processes. Although we could use our algorithm for all three
examples, we will see that the leading singularity analysis or the balance transformation
method are better suited for certain problems. The main point of this chapter will
be however, that we can apply our algorithm in cases where the other methods fail.
This justifies our statement that our algorithm fills an important gap in the existing
techniques for the canonical form.

We note that the three examples have already been presented in the publications [3],
[4] and [2], respectively, from where we also take a large portion of the equations and
figures of this chapter.

7.1 Three-Mass Two-Loop Box Integral Family

This section is dedicated to the computation of the complete canonical basis for the
two-loop box with three external masses of figure 3.1. The propagators are given in eq.
(3.44). The canonical basis for this family has been computed by the present author
and collaborators in [3]. Figure 7.1 shows all unique non-zero sectors together with the
number of master integrals. As described in section 5.1, these sectors are found during
the IBP reduction.

The list of all UT integrals ordered by sector is given in table 7.1. The square roots
are defined as

r1 =
√
λ(m2

1,m
2
2, s), r2 =

√
(m2

2m
2
3 −m2

3s+ st)2 − 4m2
1m

2
2m

2
3s,

r3 =
√
λ(m2

2,m
2
3, t), r4 =

√
λ(m2

1,m
2
3, u),

(7.1)

where we have used s+ t+ u =
∑3

i=1m
2
i . Recall that λ(x, y, z) = x2 + y2 + z2 − 2xy −

2xz − 2yz is the Källén function.

Let us discuss how these integrals were found through the methods described in this
thesis:

� Most integrals without bubble sub-integrals are dlog integrals with unit leading
singularity. These have been determined in the loop-by-loop Baikov representation
as discussed in section 3.4.
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Figure 7.1: The different sectors of the three-mass double-box. Thick lines represent massive
external momenta. The sectors J are labeled by the lines that are present in the
diagram and we also show the number of master integrals (MIs) in each sector.
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J1234567 : g1 = −ε2s(st−m2
1m

2
3)I1,1,1,1,1,1,1,0,0,

g2 = ε2r1(−m2
3I0,1,1,1,1,1,1,0,0 + sI1,1,1,1,1,1,1,−1,0),

g3 = ε2(m2
3 − s)(−m2

1I1,1,1,0,1,1,1,0,0 −m2
2I1,1,1,1,1,0,1,0,0 + sI1,1,1,1,1,1,1,0,−1),

J234567 : g4 = ε2(m2
1m

2
3 +m2

2s−m2
2m

2
3 − st)I0,1,1,1,1,1,1,0,0,

J124567 : g5 = ε2s(m2
1 − t)I1,1,0,1,1,1,1,0,0,

J123457 : g6 = ε2r2I1,1,1,1,1,0,1,0,0,

J24567 : g7 = ε(1− 2ε)(m2
3 − s)I0,1,0,1,1,1,1,0,0,

J12357 : g8 = εr1I1,1,1,0,2,0,1,−1,0, g9 = ε(m2
1m

2
3 − st)I1,1,1,0,2,0,1,0,0,

J12457 : g10 = −εm2
1(m2

3 − s)I2,1,0,1,1,0,1,0,0, g11 = −εm2
1r3I1,2,0,1,1,0,1,0,0,

g12 = −εm2
3r1I1,1,0,2,1,0,1,0,0, g13 = −εm2

3(m2
1 − t)I1,1,0,1,2,0,1,0,0,

g14 = ε(m2
3m

2
1 − st)I1,1,0,1,1,0,2,0,0, g15 = ε2r4I1,1,0,1,1,0,1,0,0,

J23567 : g16 = ε2(m2
1 +m2

3 − s− t)I0,1,1,0,1,1,1,0,0, g17 = 2εm2
2(t−m2

1)I0,2,1,0,1,1,1,0,0,

J23467 : g18 = ε2r1I0,1,1,1,0,1,1,0,0,

J23457 : g19 = ε2r3I0,1,1,1,1,0,1,0,0,

J13457 : g20 = ε2(m2
3 − s)I1,0,1,1,1,0,1,0,0,

J12467 : g21 = ε2r1I1,1,0,1,0,1,1,0,0,

J12345 : g22 = ε2(m2
3 − s)r1I1,1,1,1,1,1,0,0,0,

J12346 : g23 = εr1m
2
3(−2εI1,1,1,1,1,1,0,0,0 + sI1,1,1,2,1,1,0,0,0),

J2467 : g24 = εr1I0,2,0,1,0,1,1,0,0, g25 = 3ε(s−m2
1 −m2

2)I0,2,0,1,0,1,1,0,0 +m2
2m

2
1I0,2,0,1,0,1,2,0,0,

J2457 : g26 = εr3I0,2,0,1,1,0,1,0,0, g27 = 3ε(m2
3 −m2

2 − t)I0,2,0,1,1,0,1,0,0 +m2
2tI0,2,0,1,1,0,2,0,0,

J2367 : g28 = εr1I0,1,1,0,0,2,1,0,0, g29 = 3ε(m2
2 −m2

1 − s)I0,1,1,0,0,2,1,0,0 +m2
1tI0,1,1,0,0,2,2,0,0,

J2357 : g30 = εr3I0,1,1,0,2,0,1,0,0, g31 = 3ε(m2
2 −m2

3 − t)I0,1,1,0,2,0,1,0,0 +m2
3tI0,1,1,0,2,0,2,0,0,

J1247 : g32 = εr1I1,1,0,2,0,0,1,0,0, g33 = 3ε(m2
1 −m2

2 − s)I1,1,0,2,0,0,1,0,0 + sm2
2I1,1,0,2,0,0,2,0,0,

J1257 : g34 = (1− 2ε)(1− 3ε)I1,1,0,0,1,0,1,0,0,

J1357 : g35 = (1− 2ε)(1− 3ε)I1,0,1,0,1,0,1,0,0,

J1457 : g36 = (1− 2ε)(1− 3ε)I1,0,0,1,1,0,1,0,0,

J2346 : g37 = (1− 2ε)2I0,1,1,1,0,1,0,0,0, J2345 : g38 = (1− 2ε)2I0,1,1,1,1,0,0,0,0,

J1346 : g39 = (1− 2ε)2I1,0,1,1,0,1,0,0,0, J1345 : g40 = (1− 2ε)2I1,0,1,1,1,0,0,0,0,

J1246 : g41 = (1− 2ε)2I1,1,0,1,0,1,0,0,0, J1245 : g42 = (1− 2ε)2I1,1,0,1,1,0,0,0,0,

J367 : g43 = sI0,0,2,0,0,2,1,0,0, J357 : g44 = m2
3I0,0,2,0,2,0,1,0,0, J267 : g45 = m2

1I0,2,0,0,0,2,1,0,0,

J247 : g46 = tI0,2,0,0,2,0,1,0,0, J247 : g47 = m2
2I0,2,0,2,0,0,1,0,0.

Table 7.1: Complete canonical basis for the three-mass two-loop box integral family. The inte-
grals are ordered according to the sector they belong to.
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� To reduce the number of integration variables, it is very beneficial to first per-
form a general search for dlog integrals on the maximal cut of each sector (see
also the discussion at the end of section 3.3). To determine possible corrections
when relaxing the cut constraints, one can then further reduce the number of cut
propagators in the leading singularity analysis or examine the off-diagonal blocks
of the differential equations, see section 5.4. Examples where such corrections are
necessary are the integrals g2 and g3.

� The master integrals with a bubble can be processed through the heuristic rule of
putting a dot on one of the lines of the bubble. An example of this is given by
g8 and g9 which have also been discussed in equation (4.11). Since most of these
sectors only have a single master integral, one can alternatively infer the relative
factor in ε from the off-diagonal blocks. This leads to the factors of (1 − 2ε) and
(1− 3ε) in some of the integrals.

� An exception to this are the triangle-bubble sectors where only one of the two
master integrals can be found in this way. However, in this case the corresponding
diagonal blocks turn out to be linear in ε, and we therefore determine the second
canonical integral by simply integrating out the ε0 term.

� Finally, there is one sector with six master integrals: J12457. Because of the position
of the massless leg, the leading singularity of one of the triangles is a square-root
and therefore we cannot proceed along the lines of sector J23567, see eqs. (4.16)-
(4.19). However, we can still guess that the integrals with a single dot on any line
are potential UT integrals. Indeed, it turns out that all of them are UT and that
we can infer the correct normalization through the ε0-part of the homogeneous
differential equation. Alternatively, one can consider super sectors to determine
these integrals. For example, a dlog integral in sector J124567

1 is

(m2
3 − s)(−I1,1,0,1,1,0,1,0,0 + I1,1,0,1,1,1,1,0,−1 −m2

1I1,1,0,1,1,1,1,0,0) (7.2)

= −m
2
1(m2

3 − s)
ε

I2,1,0,1,1,0,1,0,0, (7.3)

and it completely reduces to an integral in sector J12457.

We see that it is straightforward to find a canonical basis using standard techniques
and that it is not necessary to apply our new algorithm. The reason is that most sectors
have only one or two master integrals and therefore the few UT integrals that are usually
used as an input to our algorithm already provide enough information. An exception
to this might be sector J12457 which has six master integrals. Indeed, one can use the
dlog integral found in eq. (3.56) as an input to our algorithm to bring the corresponding
diagonal block into canonical form. However, the effort needed to correctly deduce the
ansatz for the alphabet is far higher than it is to just guess the remaining five UT
integrals by putting dots on the lines of the triangle sub-integrals. In addition, the latter

1Note that this sector has zero master integrals.
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7.1 Three-Mass Two-Loop Box Integral Family

integrals do not require any corrections through off-diagonal blocks, which would not be
the case for integrals found by applying our algorithm to the diagonal block only.

Using the canonical basis results in the following differential equations:

d~g = ε(dÃ)~g, Ã =
∑
l

ml logαl, (7.4)

where ml are 47 × 47 matrices containing rational numbers. The matrix Ã can be
obtained from the five partial differential equation matrices ∂iÃ by subsequently inte-
grating them in each variable, similar to how one can find the potential associated to a
conservative force, see e.g. [77]. The alphabet ~α of the three-mass two-loop box integral
family consists of 30 letters. They can be ordered according to their behavior under the
change of the sign of the square roots ri:

� Even letters:

α1 = m2
1, α2 = m2

2, α3 = m2
3, α4 = s, α5 = t α6 = m2

3 − s,
α7 = m2

1 − t, α8 = m2
1m

2
3 − st, α9 = m2

1 +m2
3 − s− t,

α10 = m2
2s+m2

1m
2
3 −m2

2m
2
3 − st,

α11 = −2m2
1s− 2m2

2s+m4
1 +m4

2 − 2m2
1m

2
2 + s2

α12 = −2m2
2t− 2m2

3t+m4
2 +m4

3 − 2m2
2m

2
3 + t2,

α13 = −2m2
2s− 2m2

2t+m4
2 − 4m2

1m
2
3 + s2 + 2st+ t2,

α14 = −2m2
3s

2t+m4
3s

2 + 2m2
2m

2
3st− 2m2

2m
4
3s− 4m2

1m
2
2m

2
3s+m4

2m
4
3 + s2t2,

α15 = −m2
1st−m2

2st−m2
3st+m2

1m
2
2s−m2

1m
2
3s−m2

1m
2
3t+m2

2m
2
3t

+m2
1m

4
3 +m4

1m
2
3 −m2

1m
2
2m

2
3 + s2t+ st2

(7.5)

� Odd letters:

α16 =
m2

1 −m2
2 + s− r1

m2
1 −m2

2 + s+ r1
, α17 =

m2
2 −m2

3 + t− r3

m2
2 −m2

3 + t+ r3
,

α18 =
m2

1 −m2
2 − s− r1

m2
1 −m2

2 − s+ r1
, α19 =

m2
2 −m2

3 − t− r3

m2
2 −m2

3 − t+ r3
,

α20 =
m2

2 − s− t+ r4

m2
2 − s− t− r4

, α21 =
−m2

3s+m2
2m

2
3 + st+ r2

−m2
3s+m2

2m
2
3 + st− r2

,

α22 =
m2

2s+m2
3s−m2

3t+ 2m2
1m

2
3 −m2

2m
2
3 − s2 − st− r4

(
m2

3 − s
)

m2
2s+m2

3s−m2
3t+ 2m2

1m
2
3 −m2

2m
2
3 − s2 − st+ r4

(
m2

3 − s
) ,

α23 =
m2

2s−m2
3s+m2

2t−m2
1t−m4

2 +m2
1m

2
2 +m2

3m
2
2 +m2

1m
2
3 + st− r1r3

m2
2s−m2

3s+m2
2t−m2

1t−m4
2 +m2

1m
2
2 +m2

3m
2
2 +m2

1m
2
3 + st+ r1r3

,

α24 =
−m2

2s+m2
3s− 2m2

2t−m2
3t+m4

2 − 2m2
1m

2
3 −m2

2m
2
3 + st+ t2 − r3r4

−m2
2s+m2

3s− 2m2
2t−m2

3t+m4
2 − 2m2

1m
2
3 −m2

2m
2
3 + st+ t2 + r3r4

,

(7.6)
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α25 =
m2

1s+ 2m2
2s−m2

1t+m2
2t−m4

2 +m2
1m

2
2 + 2m2

1m
2
3 − s2 − st− r1r4

m2
1s+ 2m2

2s−m2
1t+m2

2t−m4
2 +m2

1m
2
2 + 2m2

1m
2
3 − s2 − st+ r1r4

,

α26 =
f26 − r1r2

f26 + r1r2
, α27 =

f27 − r2r3

f27 + r2r3
, α28 =

f28 − (m2
1m

2
3 − st)r2

f28 + (m2
1m

2
3 − st)r2

,

α29 =
f29 − (m2

2s+m2
1m

2
3 −m2

2m
2
3 − st)r1

f29 + (m2
2s+m2

1m
2
3 −m2

2m
2
3 − st)r1

,

α30 =
f30 − (−m2

2t+m2
1m

2
2 −m2

1m
2
3 + st)r3

f30 + (−m2
2t+m2

1m
2
2 −m2

1m
2
3 + st)r3

(7.7)

where
f26 =−m2

3s
2 −m2

1st−m2
2st+ 2m2

1m
2
2s+m2

1m
2
3s

+ 2m2
2m

2
3s−m4

2m
2
3 +m2

1m
2
2m

2
3 + s2t,

f27 =m2
2st+ 2m2

3st−m4
3s+m2

2m
2
3s−m2

2m
2
3t

+m2
2m

4
3 −m4

2m
2
3 + 2m2

1m
2
2m

2
3 − st2,

f28 =−m2
3s

2t−m2
1m

2
3st+m2

2m
2
3st+m2

1m
4
3s

− 2m2
1m

2
2m

2
3s+m2

1m
2
2m

4
3 + s2t2,

f29 =m2
2s

2 −m2
1st+m2

2st−m4
2s+m2

1m
2
2s−m2

1m
2
3s

−m2
2m

2
3s+m4

1m
2
3 +m4

2m
2
3 − 2m2

1m
2
2m

2
3 + s2t,

f30 =m2
2st−m2

3st+m2
2t

2 −m4
2t−m2

1m
2
2t−m2

1m
2
3t

+m2
2m

2
3t+m2

1m
4
2 +m2

1m
4
3 − 2m2

1m
2
2m

2
3 + st2.

(7.8)

One can also explicitly check that the alphabet of the three-mass one-loop box is a subset
of this alphabet.

7.2 Three-Loop Classical Gravitational Potential of Binary
Systems

Feynman integrals are not only useful for the computation of cross-sections at particle
colliders, but they can also be used to extract classical observables through an effective
field theory approach. In recent years, this has led to an acceleration of new results
in the field of gravitational waves [145, 146, 147, 148, 149, 150]. An example is the
dynamics of a binary system, where a specific case is the inspiral phase of two black
holes. The powerful techniques developed for particle physics have made it possible
to perform this computation to fourth order in Newton’s constant for the conservative
contribution. This was derived by the present author and collaborators in [4], but has
first been obtained in [151] through a different method.

Let us discuss the integrals appearing in the computation. First, since there are two
particles going in and two particles going out, we are dealing with four-point kinematics
which are characterized by two momenta p1 and p2, and one momentum transfer q with
pi · q = 0. Second, we are interested in the classical part and therefore work in the
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framework of an effective field theory. This leads to linear propagators (ki + pj)−m2
1 ≈

2ki · pj very similar to the Wilson lines we encountered in section 4.3.

The integral families relevant to the computation can be summarized as

D1 = ±k1 · v1, D2 = ±k2 · v1, D3 = ±k3 · v1,

D4 = ±k1 · v2, D5 = ±k2 · v2, D6 = ±k3 · v2,

D7 = −k2
1, D8 = −k2

2, D9 = −k2
3,

D10 = −(k1 − q)2, D11 = −(k2 − q)2, D12 = −(k3 − q)2,

D13 = −(k1 − k2)2, D14 = −(k2 − k3)2, D15 = −(k1 − k3)2,

(7.9)

where we again factored out the overall masses as pi = vimi. Therefore q2 is the only
variable which is not dimensionless and we can infer it through dimensional analysis. As
a result, the integrals only depend on v1 ·v2 = (x+1/x)/2 in a non-trivial way. The signs
of the first six propagators can be different in each integral family2. Another interesting
property of the integrals is that certain propagators are cut, i.e. they are replaced by
delta functions of the same argument. From the point of few of the differential equations
this is a simplification because we can simply set all integrals with non-positive powers
for the cut propagators to zero. An example diagram representing an integral family is
given in figure 7.2.

Figure 7.2: Example appearing in the computation of the conservative binary dynamics to
fourth post-Minkowskian order.

The most important simplification, however, comes from the fact that not all integrals
are needed to compute the result. Therefore, these integrals can be removed from the
differential equations if non of the needed integrals depend on them. In some cases, e.g.
when the top-sector integrals of a family are removed, this leads to a decoupling of the
differential equations into several smaller closed systems, c.f. section 6.6.

Let us now discuss how we bring the largest of these systems with 40 master integrals
into canonical form:

2Recall that we omit the Feynman prescription, Di ≡ Di − i0, and therefore different choices for the
signs generally give different results.
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� Because of the relatively small size of sectors (n ≤ 4), we prefer to use balance
transformations on the diagonal blocks and then subsequently transform the off-
diagonal blocks through the transformations discussed in section 5.4.

� There is one sector with three master integrals that cannot be brought into canon-
ical form through algebraic transformations. This can be revealed in the fol-
lowing way: we first multiply all integrals by factors of ε s.t. the differential
equation matrix is A(x, ε) = A0(x) + O(ε). From this, we derive a third order
Picard-Fuchs equation for the scalar integral that can easily be solved through
the methods discussed in [152]. Three independent solutions of this equation are
xK(x2)2, xK(x2)K(1− x2) and xK(1− x2)2.

� Using the knowledge about the elliptic functions in our algorithm, we bring the
diagonal block into canonical form in the same way as for the sunrise integral in
section 6.7.3. As initial integral we use the scalar integral normalized by 1/(xK(1−
x2)2).

The resulting differential equations are

∂

∂x
~g = εÃ(x)~g, (7.10)

with

Ã(x) = m1
π2

K(1− x2)2(1− x)x(1 + x)
+ m2

1

1− x
+ m3

1

x
+ m4

1

1 + x

+ m5
x

1 + x2
+ m6

K(1− x2)2

π2(1− x)x(1 + x)
+ m7

K(1− x2)2

π2(1− x)(1 + x)

+ m8
K(1− x2)2

π2x
+ m9

K(1− x2)2

π2
+ m10

K(1− x2)2(1− x)(1 + x)

π2x

+ m11
K(1− x2)4

π4(1− x)x(1 + x)
+ m12

K(1− x2)4

π4x

+ m13
K(1− x2)4(1− x)(1 + x)

π4x
+ m14

K(1− x2)4(1− x)2(1 + x)2

π4x
,

(7.11)

where the mi are 40×40 matrices consisting of rational numbers. We note that all of the
functions appearing in eq. (7.11) are modular forms and therefore the solution in terms
of iterated integrals of modular forms is straightforward. However, using the solutions
of the integrals to obtain the final answer shows that only simple elliptic integrals and
multiple polylogarithms are relevant for the required order in ε.

In this example, we again see that our new algorithm is not necessary for a large
portion of the differential equation matrix. This is mostly because of the small size of
the diagonal blocks, but also due to the fact that there is only one kinematic variable.
For more kinematic variables, the preferred standard approach would have been the
computation of leading singularities, however, this can become computationally rather
expensive at three loops because of the higher number of integration variables. The
most important contribution of our algorithm is to the non-polylogarithmic sector, which
cannot be handled by the other methods.
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7.3 Four-Loop Cusp Anomalous Dimension in QED

As discussed in section 4.3, IR divergences of scattering amplitudes are known to factorize
in a universal way from the process-dependent finite part [115, 116]. Understanding
the universal divergent part is crucial for deriving IR finite observables. Further, it
is determined by a set of anomalous dimensions, one of which is the so-called cusp
anomalous dimension. Because of the universal nature of the cusp anomalous dimension,
it can be computed from the divergent part of several different quantities, in particular,
from the 1/ε pole coefficient of a Wilson line [117] similar to the one considered in section
4.3.

Here, we want to discuss the computation of a particular color structure at four loops,
which was first presented in [2]. This color structure, called the matter-dependent quartic
Casimir, appears for the first time at four loops and constitutes the first corrections
involving non-planar Feynman diagrams. Further, it determines an important part of
the four-loop cusp anomalous dimension in QCD and, before the appearance of [2], was
the last missing piece for the answer in QED.

There are six necessary Feynman diagrams, which are depicted in figure 7.3. These
diagrams are also representative of the integral families that appear in each diagram.
The largest and most complicated family is given in figure 7.3e and has 521 master
integrals in 154 different sectors. The propagators for this family are given in eq. (6.19).
Let us discuss the computation of the integrals of this family through the method of

(a) (b) (c)

(d) (e) (f)

Figure 7.3: Feynman diagrams contributing to the quartic Casimir term of the angle-dependent
cusp anomalous dimensions. The diagrams are also representative of the Feynman
integral topologies appearing in the computation of each diagram. For this, one
can simply replace the gluonic curly lines by scalars, whereas heavy-quark lines
depicted by double lines represent linear propagators.

differential equations:

� Because of the large number of sectors, it would be convenient to apply the highly
automatized method of balance transformations to each diagonal block and then
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subsequently transform the off-diagonal blocks through the transformations dis-
cussed in section 5.4. However, the size of the diagonal blocks often goes beyond
what the implementations of the method can handle. We observe that sectors
with around six master integrals often take several hours to complete, and that
for many sectors with more than seven master integrals, the computation fails to
advance beyond a certain point.

� Due to the large number of integration variables and the UV behavior of the
integrals, it is difficult to find a complete dlog basis for the whole family or even
individual sectors. However, by employing different parametrizations, e.g. the
position-space parametrization of section 4.4, it is still possible to find a few dlog
integrals or UT candidates in each sector.

� We then use these dlog integrals and UT candidates to transform each diagonal
block into canonical form through our new algorithm. Here we want to highlight
again the ability of the algorithm to test a given list of integrals for the UT property.

� For the sector depicted in figure 7.4, we fail to find a canonical form through alge-
braic transformations. In fact, an irreducible two-by-two system in this sector at ε0

suggests that elliptic functions are necessary to achieve a canonical form. Instead
of trying to find these elliptic functions, we proceed in a more pragmatic way:
The boundary constants can be used to infer which integrals actually contribute
to the 1/ε pole of the final answer. In this way, we find that the potentially elliptic
integrals can be discarded, so that a new differential equation system is formed
that can now be solved in terms of multiple polylogarithms.

Figure 7.4: Wilson line sector involving functions beyond multiple polylogarithms. The number
of master integrals is eleven.

The functions appearing in the solutions of the integrals then depend on the following
alphabet:

~α = {x, 1 + x, 1− x, 1 + x2, 1− x+ x2,
1−
√
−x

1 +
√
−x

,
1−
√
−x+ x

1 +
√
−x+ x

}. (7.12)
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However, due to cancellations between different terms, the cusp anomalous dimension
itself only depends on the first four letters.

This example shows how our algorithm is perfectly suited for the case where both the
dlog integral method and the balance transformations fail to give a complete canonical
basis. A particular example of this is the sector with 17 master integrals discussed
in section 6.4.3, whose canonical form seemed to be unobtainable through the use of
existing methods. Another important case is the sector discussed in section 6.7.2, which
involves algebraic letters and can be transformed through our algorithm without any
rationalization.
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8 Conclusions and Outlook

The method of differential equations is currently the predominant tool for computing
Feynman integrals analytically [153, 154, 9]. However, one of the main bottlenecks in
applying it is still to simplify the differential equations enough so that the solutions can
be obtained. The canonical form takes this to the point where the solutions in terms
of iterated integrals follow almost by definition. One can argue that it is the simplest
and most natural form of the differential equations. Not only are the transcendental
properties of the iterated integrals in the ε-expanded solutions completely manifest, but
the behavior around singular points also explicitly follows the behavior that is expected
from the parametric representation.

In this thesis, we have reviewed several methods for finding a canonical basis. We
have then presented our new method which aims to overcome some of the drawbacks of
the already existing techniques. Our algorithm allows us keep the pure integrals found
through other means and furthermore use them to transform the rest of the basis to
pure integrals. The ansatz for the canonical form is not restricted to rational functions
and can include square-roots and even elliptic functions if needed. In addition, in the
multivariate case, it is sufficient to run the algorithm for only one of the invariants. The
determined UT integrals can then only differ from pure integrals by an overall factor
in the remaining invariants. To demonstrate the power of our implementation, we have
applied the algorithm to multiple single-variable cases, as well as a four-variable example,
see table 6.1 for approximate time and memory usage on a desktop computer. Further,
we used the algorithm to derive the canonical form of two example matrices involving
elliptic integrals.

We want to emphasize that our algorithm also allows us to test a candidate integral for
the UT property by analyzing only the differential equation matrix. This is not possible
through any of the other described methods, as they either do not take this matrix into
account or are only able to make statements about the basis as a whole. The ability to
test integrals opens the possibility to also automatize the step of finding an initial pure
integral which the algorithm needs as an input. One simply creates a list of candidate
integrals (aided e.g. by a power counting criterion) and then checks one candidate after
another until a viable integral is found. As described in section 7.3, this approach was
used in [2] to determine the canonical form of most of the diagonal blocks, where the
full basis consists of about 521 master integrals.

There are several possible future applications and generalizations of the methods dis-
cussed in this thesis:

Using multiple UT integrals in the algorithm: The algorithm of section 6 has so far
been mainly applied by using a single canonical integral as input. Because of the high-
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degree polynomials appearing in the derivatives, this limited the algorithm to problems
with less than about 100 master integrals. Only in the case of linearly dependent deriva-
tives we also used the derivatives of a second canonical integral in order to complete
the basis. However, in principle, one could use multiple canonical integrals, e.g. one
from each sector, to bring the differential equations for hundreds of master integrals into
canonical form.

Simplifications for finite loop integrals: Although the integrals can have divergences
that are regularized through dimensional regularization, the desired outcome of the com-
putation is usually a finite four-dimensional quantity. In some cases, it is possible to
already choose the integral basis to consist of manifestly finite integrals. One can then
try to apply the method of differential equations also for ε = 0, where many simplifica-
tions happen [155]. The canonical form would then be equivalent to a block triangular
matrix with zeros on the diagonal, where the blocks group together integrals of equal
transcendental weight. This can e.g. easily be seen by deriving the differential equations
for a basis of MPLs ~f = (G(a1, a2, . . . , an;x), G(a2, . . . , an;x), . . . ,
G(an;x), 1)T. Finding this form can e.g. be done through the leading singularities ap-
proach, where it is already very natural to classify the integrals according to their IR
properties [29, 35, 32]. It would however be very interesting to generalize the methods
based on the explicit differential equation matrix to the case of ε = 0.

Loop-by-loop Baikov representation for a complete dlog basis: It is known that the
number of master integrals within an integral family can be related to the number of
critical points of certain polynomials in the integrand of a specific representation of the
integral. In [91] it was shown that each of these critical points can be used to construct
a specific, linearly independent dlog integral, which suggests that there is a way to find
exactly as many dlog integrals as are needed to complete the canonical basis! However,
these dlog integrals do not necessarily have standard Feynman propagators and it would
be interesting to analyze when a translation of these integrals to the integrals of the
considered family is possible. See [3] for recent progress in this direction.

Generalizations to elliptic integrals: Here, we want to discuss how the methods dis-
cussed in this thesis can be generalized to the case where a canonical form cannot be
reached through rational or even algebraic transformations [68]. Differential equations
of this type have become increasingly important in the last decade and there has been
tremendous progress towards understanding the special functions appearing in the re-
sults [69, 66, 67, 70]. First, when computing leading singularities, one usually tries to
localize all integrations by taking residues around the poles of the integrand. However,
for an elliptic Feynman integral, one is left with a denominator that is an unrationaliz-
able square-root in the last integration variable [156, 157]. Therefore, one cannot take
the residue in this variable but is forced to explicitly keep this last integration. Depend-
ing on the integration contour, the resulting leading singularity is one of two possible
elliptic integrals [158], which reflects the fact that a second-order differential equation
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has two independent solutions. This approach is already used routinely to determine
the elliptic functions appearing in the solutions, as well as to find individual elliptic dlog
integrals. However, it remains extremely challenging to find a complete basis in this
way. Moreover, the differential equations found in this way often not only depend on
the elliptic integral of the first kind, but also on the elliptic integral of the second kind
[159]. The latter is a major obstruction to finding a representation in terms of modular
forms.

Next, it would be interesting to see if the balance transformations of chapter 4 can
be modified to incorporate elliptic integrals. For example, in the case of a rationalizable
square-root y =

√
x, one can see that either the numerator or denominator of the trans-

formation will involve the pole x = 0 exactly through this square-root. It is conceivable
that one can similarly represent the pole through an elliptic integral which then appears
explicitly in the numerator or denominator of the transformation.

Analyzing our new algorithm, we have already seen how elliptic integrals can be in-
corporated by modifying the ansatz for the canonical form accordingly. However, in
contrast to the leading singularity computation, it is not possible to determine which
type of elliptic functions appear or what arguments they have. Therefore, a promising
approach is to try to generalize the algorithm s.t. it can find differential equations linear
in ε:

d~f = (dA0 + εdA1) ~f, (8.1)

see also [20, 160]. As described in section 5.6, integrating out A0, or at least its diagonal
blocks, would make it possible to solve the differential equations in a straightforward
way. If integrating out A0 leads to elliptic integrals of the second kind, one can then
also use the newly won knowledge about the function space in an ansatz for a canonical
form in terms of modular forms only. The main difficulty in generalizing the algorithm
to the form (8.1) is that the equations are not linearized by expanding in ε. This can
also be observed when trying the same in the approach of [135].
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A The ε-Expansion of the Picard-Fuchs
Equation

In this appendix, we give details on the ε-expansion of the coefficients of the Picard-
Fuchs equation derived in chapter 6. After obtaining bounds on the polynomial degrees
appearing in the rational functions, we discuss the algorithmic solution of eq. (6.15) for
the matrices ml.

A.1 Degree Bounds on the Coefficients

Assuming that f1 is a pure integral leads to degree bounds in ε on the coefficients of the
Picard-Fuchs equation. As a corollary, this yields a necessary condition for an integral
to be pure. To derive these degree bounds, let us normalize the coefficients bm through
a common minimal denominator b̃0

b̃0f1 +
n∑

m=1

b̃mf
(m)
1 = 0, (A.1)

s.t. the b̃m are polynomials in ε and x. Let us also assume that f1 is not only of uniform
transcendental weight, but specifically of weight zero. This can always be achieved by
multiplying it with a suitable power in ε which in turn does not change its differential
equations because they are homogeneous. As a result, f1 starts at ε0 with constant
coefficients, and its m-th derivative is a sum of functions whose transcendental weights
range between −1 and −m, i.e.

f
(m)
1 =

m∑
k=1

f
(m,k)
1 , m ≥ 1 (A.2)

where f
(m,k)
1 has weight −k and is of O(ε1). Similarly, we can expand the coefficients as

b̃m =

pm∑
k=0

εk b̃(k)
m . (A.3)

Note that this is also an expansion in transcendental weight, since the polynomials b̃
(k)
m

have weight zero.
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A The ε-Expansion of the Picard-Fuchs Equation

Grouping together terms of equal transcendental weight in eq. (A.1) results in the
equations

b̃
(0)
0 f1 = 0, (A.4)

εk b̃
(k)
0 f1 +

n∑
m=1

k−1∑
l=0

εlb̃(l)m f
(m,k−l)
1 = 0, k = 1, . . . , pmax, (A.5)

where pmax is minus the minimum transcendental weight of eq. (A.1) and therefore it is
the maximum value of pm +m for all m. Eqs. (A.4) and (A.5) define pmax + 1 equations

in the 1 +
∑n

m=1m = 1 + n(n + 1)/2 unknowns {f1, f
(m,k)
1 }. Hence, for non-trivial

solutions to exist, we must therefore have pm + m ≤ pmax ≤ n(n + 1)/2. Further, from

the equation at weight zero in (A.4), we see that b̃
(0)
0 = 0.

In summary, if f1 is a pure integral, then the following conditions must hold:

b̃0 = O(ε), (A.6)

pm ≤
n(n+ 1)

2
−m, m = 0, . . . , n. (A.7)

This gives a bound on the maximal ε-degree pm of the coefficient b̃m.

A.2 The Normalization and the ε0-Part

Next, we want to consider the case of an integral that is UT but not pure. However, we
assume that this integral can be made pure by a suitable ε-independent normalization
factor, i.e. we consider the integral h1 = f1/n(x), where f1 is pure. The result is that

the derivatives of h1 now have a non-vanishing weight-zero term h
(m,0)
1 = n(m)(x) f1.

Eq. (A.4) changes to (
b̃
(0)
0 n(x) +

n∑
m=1

b̃(0)
m n(m)(x)

)
f1 = 0 (A.8)

which immediately gives a method to determine n(x) from a given set of coefficients b̃m.
Note that the necessary condition (A.7) for h1 to have uniform transcendental weight is
unchanged.

A.3 Solving for the Unknowns

In this section, we want to solve eq. (6.15), i.e.

~v1Ψ−1Φ = ~v1, (A.9)
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A.3 Solving for the Unknowns

by expanding it in ε. We already discussed the expansion of ~v1Ψ−1 = −(b1, . . . , bn) in
appendix A.1, see eq. (A.3). On the other hand, the expansion of each row of Φ is

Φm ≡ ~v1B
[m] ≡

m∑
r=1

εrΦ(r)
m , (A.10)

where each coefficient can be computed recursively

Φ(r)
m =

∂

∂x
Φ

(r)
m−1 +

∑
l

Φ
(r−1)
m−1 ml

∂

∂x
logαl(x), (A.11)

and we also defined Φ0 ≡ ~v1. Plugging the ε-expansions into eq. (A.9) results in

k∑
r=1

n∑
m=r

b̃(k−r)m Φ(r)
m = b̃

(k)
0 ~v1, k = 1, . . . , pmax. (A.12)

Let us use (A.11) to explicitly write down this equation for k = 1:

∑
l

n∑
m=1

b̃(0)
m ~v1ml

∂m

∂xm
logαl(x) = b̃

(1)
0 ~v1 (A.13)

which is a linear equation if we treat {~v1ml} as unknown constants. Since we want the
solutions to be independent of x, we can either expand (A.13) in x and treat each order
as an independent equation, or we can simply sample the equation over different rational
values of x until the rank of the system no longer increases. The solution to the k = 1
equation will then be of the form

~v1ml =

l−r1+1∑
j=1

βl1j~vj , (A.14)

where r1 is the mentioned rank of the x-independent system of equations and we in-
troduced l − r1 independent vectors {~v2, . . . , ~vl−r1+1} to parametrize the solutions. For
example, if r1 = l then there are no new vectors and all of the unknowns could be
determined in terms of ~v1.

Using these solutions at k = 2, we find that the resulting equation depends on {~vj} as

well as {~vjml} due to the term Φ
(r−1)
m−1 ml in (A.11). Assuming that the system has rank

r2, we can again solve it by introducing a new set of independent vectors, similarly to
the previous step.

In general, we introduce Nk = lNk−1 − rk new vectors at each step, with N0 = 1. At

a certain step k = kf we will have a set of S =
∑kf

j=1Nj independent vectors

Q ≡

~v1
...
~vS

 (A.15)
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A The ε-Expansion of the Picard-Fuchs Equation

that are closed under multiplication with ml, i.e.

Qml = βlQ (A.16)

for some constant matrices βl. We can check (A.16) explicitly by using the solutions
obtained from the previous steps. This relation also means that no new vectors can be
introduced at further steps and hence Φ is completely determined by the set of vectors
in Q.

In fact, if non-trivial solutions exist, than we must have S = n. S cannot be greater
than n because the vectors ~vj are linearly independent. Further, S cannot be smaller than
n because the rows of Φ, or equivalently the derivatives of f1, are linearly independent.
Hence Q is an n × n invertible matrix and we can determine the unknowns in B(x)
through

ml = Q−1βlQ. (A.17)

Recall that the ~vj parametrize the solution to eq. (A.9) and therefore we can choose
them to be any set of linearly independent constant vectors. In particular, a convenient
choice for the vectors ~vj are the unit vectors, s.t. Q is the identity matrix and ml = βl.
Different choices of Q generate constant similarity transformations on the canonical form
through eq. (A.17).

In total, this gives an algorithm to solve the equation ~v1Φ−1Φ = ~v1 in an expansion
in ε, which reduces the non-linear problem of determining the ml to a linear problem of
solving in terms of n independent vectors ~v1, . . . , ~vn. The fact that the canonical form
is only defined modulo a constant similarity transformation poses no problem and is
reflected in the choice of the independent vectors.
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