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Preface

“Health is not everything, but without health everything is nothing.”

Arthur Schopenhauer, 1788-1860

The World Health Organization proclaims that improving people’s health and longevity is a key

objective of social policy. It is, however, also a means to fostering individual productivity, well-

being, and a country’s economic growth (Sachs 2001). The statement of the World Health Organi-

zation highlights the contribution of improving population health to economic and social develop-

ment beyond reducing the prevalence of diseases. The value of individual and population health

for economic performance is well documented (see e.g. Almond et al. 2018; Bloom et al. 2020;

Prinz et al. 2018; Weil 2007). Health can operate through numerous channels to promote eco-

nomic well-being, which can in turn create additional resources to invest in health (Bärnighausen

et al. 2014). Healthy individuals have a better educational attainment, a better labor market per-

formance, are wealthier and happier (e.g. Baird et al. 2016; Case et al. 2002; Currie 2009; Smith

1999). Moreover, healthy populations tend to save more in anticipation of a longer retirement

and attract more foreign direct investment contributing to capital accumulation and technological

progress (Alsan et al. 2006; Bärnighausen et al. 2014). Understanding the causes and conse-

quences of disease incidence is, therefore, of relevance not only for promoting public health, but

also for sustaining and increasing economic well-being.

This dissertation aims to uncover causal relationships that contribute to a better understanding of

the determinants shaping public health, of their economic impacts and their policy implications. I

apply microeconometric, experimental, and epidemiological methods to two distinct subfields of

health economics: medical decision making and the economics of epidemiology.

Chapter 1 focuses on improving risk prediction and treatment choice in medical decision mak-

ing by exploring a novel algorithm-based risk prediction tool. Advances in technology have been

shown to improve clinical practice by enlarging the set of diagnostics and treatment choices (Sam-

pat 2019). Historically, the development of vaccines and antibiotics is among the most prominent

examples illustrating how the availability of new technologies boosts population health and shapes

social and economic development (e.g. Bhalotra and Venkataramani 2015; Bütikofer and Salvanes

2018). Today, the use of artificial intelligence and evidence-based algorithms in medical decision

making is at the center of attention to enhance accuracy in risk prediction and early detection of
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PREFACE

diseases (Bayer and Galea 2015; Chen and Asch 2017; Obermeyer and Emanuel 2016). Although

predictive algorithms cannot eliminate medical uncertainty, they may support physicians to make

better informed treatment choices and thus, improve allocation of scarce health care resources

(Chen and Asch 2017). Particularly in the light of an ageing population and increasing health care

costs, early and targeted detection of future diseases appears to be an important policy tool to re-

duce disease burden and costs related to chronic diseases. Chapter 1 provides empirical evidence

on the use of a new risk assessment tool in medical decision making that allows physicians to

incorporate their clinical experience as an input factor into an algorithm-based decision aid.

Chapter 2 and 3 focus on the economics of infectious diseases. The emergence and rapid trans-

mission of the Covid-19 pandemic underscore the importance of infectious diseases for society

and economic well-being. Less salient, but still substantial are the consequences of established in-

fectious diseases on society and the economy. For instance, in the last century infectious diseases

have caused more deaths worldwide than all armed conflicts that occurred during the same time

period combined (Adda 2016). In modern societies with better access to health care, common

infectious diseases such as seasonal flu are an important cause of morbidity and impose substan-

tial costs on society through multiple channels. These include increased health utilization, loss

in hours of schooling and work, long-lasting morbidity, and premature deaths (e.g. Almond and

Mazumder 2005; Currie and Schwandt 2013; Schwandt 2017). Seasonal influenza, for instance,

costs the United States approximately $16 billion and Germany e800 million each year (Lambert

and Fauci 2010; Molinari et al. 2007; Scholz et al. 2019). A better understanding of institutional

determinants spurring the spread of infectious diseases and of people’s behavioral responses to

the risk of infection, is crucial in informing policy to enact targeted containment measures and

thus, minimize costs to society. Chapter 2 and 3 jointly strive to gain insight into the interaction

between infectious diseases, institutional organizations, and behavioral responses. Chapter 2 in-

vestigates the effect of early child care on the spread of influenza. While there is much evidence

on a link between increased infection rates and child care attendance (e.g. Ball et al. 2000; Ball

et al. 2002; Côté et al. 2010), little is known about a causal relationship. As child care attendance

has substantially increased over the last two decades (OECD 2020), it is all the more relevant to

understand whether child care facilities are a hotspot for disease propagation or not. The chapter

further provides insights on the impact of public policies such as mandatory vaccination before

entry into child care and closing child care facilities during local outbreaks on disease transmis-

sion patterns. Chapter 3 focuses on the role of public information about local and unexpected

outbreaks of Covid-19 as an important policy tool to mitigate the spread of the virus. Economists

have long been interested in the contribution of information to human decision making (Akerlof

1970; Arrow 1963; Pauly 1968; Spence 1973; Stigler 1961) and more recently, started to explore

how people respond to information about health risks (e.g. Banerjee et al. 2020; Dupas 2011; Kim

et al. 2019; Oster 2017; Prina and Royer 2014). Yet it remains unclear whether individuals under-

take costly behaviors with corresponding health benefits in response to health information or not.

The Covid-19 pandemic is one setting, where behavioral responses have been particularly impor-
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tant in limiting the spread of the virus and, hence, the costs of the pandemic. Chapter 3 provides

evidence on people’s intrinsic behavioral responses caused by public information on changes in

the risk of infection.

The remainder of this section provides an overview of each chapter of this dissertation. Each

chapter is self-contained and can be read independently. A consolidated bibliography is presented

at the end of the dissertation.

CHAPTER 1, which is joint work with Charles F. Manski, Joachim Winter, and Amelie Wupper-

mann, explores a new decision tool that aims at improving physicians’ risk assessment and treat-

ment choice. Physicians often face situations in which they must predict patients’ future health

outcomes under uncertainty. Precise risk assessment is the basis for informative treatment choice

and treatment intensity. To support physicians in their risk estimation, clinical practice guidelines

commonly recommend the use of evidence-based risk assessment tools (Goff et al. 2014; Piepoli

et al. 2016). These decision aids are based on prediction models derived from clinical data, but

typically include only a small set of known risk factors (Conroy 2003; Gail et al. 1989; Goff et

al. 2014). In clinical practice, physicians often observe additional risk factors and patient charac-

teristics which may change patient’s risk, but are not considered in the existing tool. Physicians

may either ignore the additional information and stick to the risk assessment tool or may subjec-

tively include the additional information into risk assessment in an entirely unstructured fashion.

Prior literature comparing these options suggests that physicians should rather ignore additional

characteristics than attempt to subjectively include them into their risk assessment (Camerer and

Johnson 1991; Dawes et al. 1989). Neither of these two options appears to be optimal. Recent

work by Manski (2018) provides a theoretical framework using bounded-variation assumptions

that allows physicians to combine their clinical experience and their assessment of a patient’s ad-

ditional risk factors with predictions from a decision tool in a structured way. The algorithm, that

we call “Personalized Risk Assessment Tool” (PRAT), can be embedded into a decision tool using

a sequence of probabilistic questions.

In this chapter, we assess empirically whether and to what extent PRAT improves the accuracy of

risk prediction and treatment choices compared to risk assessment (i) without the provision of a

decision tool and (ii) under the provision of an existing tool recommended by the current clinical

guidelines. To address these questions, we run an online experiment with medical students based

on the current European clinical practice guidelines for prevention of cardiovascular diseases.

Data from the experiment show that the use of PRAT significantly improves precision in risk

assessment compared to a decision aid currently applied in clinical practice. Specifically, we

document that the use of PRAT improves accuracy in risk prediction by 37 percentage points

compared to risk assessment without using any decision aid and by 8 percentage points compared

to using an existing tool. We further provide suggestive evidence that the use of this decision tool

enables students to make better treatment choices.
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CHAPTER 2 investigates the impact of the staggered expansion of early child care in Germany on

the spread of influenza. Recent data from contact tracing show that educational institutions such

as universities, schools, and child care facilities are among the most common locations where

airborne diseases are spread (Robert Koch Institute 2012, 2013). Simultaneously, the number of

children attending formal child care has increased substantially in many OECD countries over

the last two decades (OECD 2020). If child care facilities indeed propel the spread of infectious

diseases, the expansion of early child care imposes unintended costs on society. Work in medi-

cal literature shows that child care attendance is positively related to infection rates (e.g Ball et

al. 2000; Ball et al. 2002; Côté et al. 2010). Yet empirical evidence on a causal impact of child

care on the spread of infectious diseases is scarce.

This chapter attempts to close that gap by providing causal evidence on the transmission of in-

fluenza as a consequence of the expansion of early child care – care offered to children under the

age of 3 – in Germany. To identify these effects, I leverage the staggered roll-out of early child

care provision in Germany between 2005 and 2016. I further exploit detailed, high-frequency

data on the incidence of influenza that allow me to uncover age-specific disease transmission pat-

terns over time and space. The analysis proceeds in three steps: First, I provide reduced-form

evidence on an economically and statistically significant effect of child care on infection rates

using a difference-in-differences strategy. Second, I extend a semi-parametric model of disease

diffusion – the Susceptible-Infected-Resistant Model (SIR) – that builds on epidemiological work.

The model allows the estimation of age-specific transmission rates and the identification of policy-

relevant margins of heterogeneity. Due to the dynamic structure of the SIR model, a non-classical

measurement error in the infection rates may result in biased estimates (Adda 2016). To address

this endogeneity concern, I create a novel instrument based on lagged temperature. The results of

the SIR model document that transmission rates between children aged 0 to 2 and children aged 3

to 6 significantly increase in response to a rise in early child care coverage rates. I further find pro-

found differences between urban and rural areas: While the expansion in child care significantly

increases transmission in urban counties, the data do not provide evidence for a significant effect

in rural areas. Finally, I evaluate the effect of two counterfactual policy interventions that aim

at limiting the spread of infectious diseases in child care facilities: mandatory vaccination before

entry into child care and the closure of child care during local outbreaks. I find that both policies

significantly reduce infection rates. While the policies have positive spill-over effects on adults,

they mostly benefit children. Evaluating the economic costs and benefits of mandatory vaccination

policies shows that the policy intervention would be cost-effective reducing net annual costs by

about 20% relative to the status quo.

CHAPTER 3, which is joint work with Pavel Obraztcov, Gregory Veramendi, and Joachim Winter,

studies the role of public information about unexpected local outbreaks of Covid-19 in mitigating

the spread of the virus. Covid-19 is an overdispersed pathogen, where a small fraction of individ-

uals is responsible for a large fraction of the transmission. Epidemiological studies have shown
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that only 10-20% of individuals are responsible for between 80-90% of transmission clusters often

called “super-spreader” events (see e.g. Baggett et al. 2020; Endo et al. 2020; Hamner et al. 2020;

James et al. 2020; Lemieux et al. 2020; Majra et al. 2021; Riou and Althaus 2020). These features

imply that the local risk level can change dramatically when a transmission cluster occurs. In this

case, having quick, credible, and localized information about outbreaks can allow individuals to

change their behavior with respect to the local state of the epidemic and be an important part of the

mitigation of the outbreak. Yet it remains unclear to what extent individuals react to information

on health risks. Some studies argue that people’s behavior is sensitive to information on health risk

(Chan et al. 2016; Oster 2017; Philipson 2000), while others find that individuals appear reluctant

to undertake costly behaviors with corresponding health benefits in response to health information

(Cawley et al. 2020; Dupas 2011; Kim et al. 2019; Oster 2018; Prina and Royer 2014).

In this chapter, we combine high-frequency data on the incidence of Covid-19 and on mobility

patterns with facts about the incubation period of Covid-19 and reporting time in Germany to iso-

late the role of public information on positive cases from other possible confounding explanations.

We first develop a simple epidemiological model that allows us to identify unexpected local out-

breaks by comparing the observed number of cases to the expected number. Based on the model,

we find 259 outbreaks at the county level that are distributed relatively evenly across the counties

in Germany and across time. Using an event study design on local unexpected outbreaks, we find

that mobility significantly decreases by about 2 to 3% in response to public information about

the outbreak. In contrast, private knowledge about people falling sick does not appear to cause

a change in behavior. The effect is driven by a voluntary change in behavior, as controlling for

non-pharmaceutical interventions makes little differences to our estimates. There are important

heterogeneities in the behavioral responses. Responses are stronger in counties with high popula-

tion density, with more hotel beds per capita, and with a higher share of college educated. These

findings are consistent with behavioral changes depending on the relative risk and costs of chang-

ing mobility. Overall, the findings underscore the importance of public information as a policy

tool for mitigating public health risks.
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Chapter 1

Improving Risk Assessment and Treatment Choice
in Medical Decision Making*

Abstract

Physicians often face situations in which they must predict patients’ health outcomes

under uncertainty. Existing decision tools are based on prediction models derived from

clinical data, but typically include only a small set of known risk factors. In clinical prac-

tice, physicians often observe additional risk factors and patient characteristics which

may improve their risk assessment. We explore a new risk assessment tool that allows

physicians to combine their clinical experience and their assessment of a patient’s risk

factors with the predictions from a decision tool in a structured way. Data from an on-

line experiment with medical students show that this decision tool significantly improves

precision in risk assessment compared to a decision aid currently applied in clinical prac-

tice. We further provide suggestive evidence that the use of this decision tool enables

students to make better treatment choices.

*This chapter is based on joint work with Charles F. Manski, Joachim Winter, and Amelie Wuppermann.



CHAPTER 1 – IMPROVING RISK ASSESSMENT AND TREATMENT CHOICE

1.1 Introduction

Physicians often face situations in which they must predict patients’ health outcomes under un-

certainty. A patient, for example, may ask the physician: “What is the likelihood that I develop

a specific disease in the future? What is the chance that the treatment has severe side effects? Or

what is the probability that I survive the next ten years given a cancer diagnosis?” In these scenar-

ios, risk assessment is crucial for treatment choice and treatment intensity. Commonly, physicians

seek to optimize patient care by predicting risk conditional on all observed patient characteristics.

However, clinical practice guidelines may recommend the use of an evidence-based risk assess-

ment tool that predicts health outcomes conditional on just a subset of the patient’s characteristics.

How should the physician proceed with the risk assessment?

To date, the physician has two polar options: First, he1 may ignore the additional information and

stick to the risk assessment tool. Second, he may subjectively include the additional information

into risk assessment in an entirely unstructured fashion. A physician using the second option

acts as a Bayesian. If the physician has rational expectations, i.e. the physician makes accurate

probabilistic predictions conditional on the patient’s characteristics, the latter option performs at

least as well as an evidence-based prediction (Manski 2018). However, a strand of psychological

literature concludes that physicians do not have rational expectations.2 These studies find that

predictions based on clinical judgment perform worse than ones made with risk assessment tools

using the same patient characteristics. The gap in performance remains even when physicians

have an informational edge, in the sense that they observe additional predictive attributes that are

not included in the decision aid, as physicians tend to put too much emphasis on the additional

information relative to the information included in an existing decision tool (see e.g. Dawes et al.

1989, Camerer and Johnson 1991). Hence, Dawes et al. (1989) suggest that physicians should

rather ignore the additional characteristics than attempt to subjectively include them into their risk

assessment.

None of these two options appears to be optimal. Recent work by Manski (2018) proposes a

decision-theoretic framework using bounded-variation assumptions as a substantial middle ground

between these two polar options. In contrast to existing medical decision tools, the approach sug-

gested by Manski (2018) allows physicians to incorporate their clinical experience in a structured

way, as it serves as an input of an algorithm that predicts the patient’s risk. The algorithm, that we

call “Personalized Risk Assessment Tool” (i.e. PRAT), can be embedded in a decision tool using

a sequence of probabilistic questions.

In this paper, we assess empirically whether and to what extent PRAT improves accuracy of risk

prediction and treatment choices compared to risk assessment (i) without the provision of a de-

cision tool and (ii) under the provision of an existing tool recommended by the current clinical

1We use only masculine gender for simplification and better readability. It, however, applies likewise to feminine
gender.

2Dawes et al. (1989) summarize this literature well.
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INTRODUCTION

guidelines. To address these questions, we run an online experiment with medical students3 based

on the current European clinical practice guidelines for prevention of cardiovascular diseases.4

In the experiment, students assess the risk of cardiovascular mortality of five hypothetical patients

(henceforth: vignettes) and make treatment choices. The experiment comprises three treatment

groups that differ with respect to the availability and type of the provided decision tool. Students

in treatment group 1 (T1) obtain no decision tool, students in treatment group 2 (T2) are provided

with a tool currently used in clinical practice called SCORE, that predicts 10-year cardiovascular

mortality conditional on five risk factors, i.e. age, gender, smoking habits, systolic blood pressure,

and cholesterol level,5 and students in treatment group 3 (T3) obtain PRAT in addition to SCORE.

The experimental procedure is as follows. Students first learn about the respective decision tool

and then are asked to assess the 10-year risk of a fatal cardiovascular event of five vignettes con-

ditional on a set of well-known risk factors for cardiovascular diseases. The set of risk factors

includes the five characteristics considered in SCORE, namely age, gender, smoking habits, sys-

tolic blood pressure and cholesterol level, and one additional factor that is in our application

obesity. Obesity – defined as a body-mass-index (BMI) equal to or greater than 30kg/m2 – is

well documented to modify the risk of cardiovascular diseases (van Gaal et al. 2006). In T3, we

elicit students’ beliefs on the vignette’s minimum and maximum risk of cardiovascular mortality

conditional on vignette’s risk factors before they finalize risk estimations. Students’ expectations

serve as input factor into the risk estimation of PRAT. Since risk assessment is not an objective

in itself but the basis for treatment choice and treatment intensity, we include a second stage in

the experiment to investigate whether the provision of PRAT alters treatment choice. To this end,

we ask students to state whether they would recommend the vignette to change its lifestyle, e.g.

diet habits or physical activity, prescribe the intake of medication, and/or refer the vignette to a

cardiologist.

To construct the vignettes, we use individual-level data gathered by the Robert Koch Institute that

cover a representative sample of the adult population aged between 17 and 79 living in Germany.

The data consist of two waves, a baseline wave including information on a broad set of health

measures and a mortality follow-up. The data allow us to estimate prediction models for cardio-

vascular mortality and then, employ the models to predict the vignettes’ objective risk of cardio-

vascular mortality. In doing so, we can compare subjective risk predictions elicited in the online

3We recruited 65 students from two German universities (University of Munich and University of Halle-Wittenberg)
between March 2020 and May 2020. Medical students enrolled at these universities were invited to participate in the
online survey via the official e-mail distributor of the respective medical faculty. The programming of the experiment
was conducted by CentERdata, University of Tilburg.

4Cardiovascular diseases subsume a group of disorders of heart and blood vessels, such as high blood pressure,
heart attacks, strokes, as well as peripheral vascular diseases.

5The use of SCORE is recommended by the latest European clinical guidelines (Piepoli et al. 2016). SCORE
exemplifies a common clinical quandary, as it considers only a small set of observable risk factors for cardiovascular
diseases. If the physician observes additional risk modifying factors, such as a family history of premature cardiovas-
cular death or a diagnosis of diabetes, the clinical guidelines recommend to adjust risk predictions. There is, however,
no guidance how risk adjustment should actually be realized (Piepoli et al. 2016).
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experiment with objective risk measures and thus, evaluate student’s accuracy in risk prediction

conditional on the provided decision tool.

Further, to elicit students’ beliefs on vignettes’ risk, we use an elicitation procedure proposed by

Giustinelli et al. (2019). This approach allows us to distinguish between students holding precise

beliefs (i.e. exact probabilities) and ones holding imprecise beliefs (i.e. a range of probabilities)

about the vignette’s cardiovascular mortality.6

We find that medical students substantially overestimate objective risk without the support of a

decision tool. Providing students with SCORE helps them to make significantly more precise risk

predictions compared to risk estimation without the use of a decision tool. The provision of PRAT

in addition to SCORE further significantly improves accuracy of risk prediction. More specifi-

cally, average deviation of subjective risk estimation from objective risk without decision tool is

37 percentage points, with SCORE 8 percentage points and with PRAT 4 percentage points. We

show that the improvement in risk estimation achieved by the provision of PRAT can be explained

by at least two mechanisms: First, PRAT helps students to bound the vignette’s maximum risk

significantly better than using only SCORE. Second, PRAT supports students holding imprecise

beliefs on the risk of cardiovascular mortality to state tightened probability intervals. This sug-

gests that students feel more certain about reporting expectations of the patient’s cardiovascular

mortality when using PRAT. Turning to the effect of decision tools on treatment choice, we find

that the provision of SCORE and PRAT support students to make treatment choices better aligned

with treatment recommendations made by current clinical practice guidelines.

This paper contributes to several strands of literature. First, our findings relate to a growing strand

of literature that investigates whether algorithmic predictions lead to efficiency gains in human

decision making. These studies examine the potential of algorithms to mitigate errors and sys-

tematic biases in human judgment across a variety of domains.7 Research in that field can be

broadly divided into two subcategories: First, a body of literature that addresses a “man versus

machine” question by comparing algorithmic predictions with human judgment. Many algorithms

have been shown to outperform existing prediction routines across a variety of different settings

(e.g. Chen and Asch 2017; Dawes et al. 1989; Kleinberg et al. 2018; Obermeyer and Emanuel

2016; Rose 2018). Second, a few studies evaluate the performance of risk assessment tools when

they are placed in human hands. These studies view prediction aids as a supplement to human

discretion rather than as a replacement of human judgment and allow for human discretion. In this

setting, the performance of the tool does not only depend on its algorithm, but also on how the

6The procedure proposed by Giustinelli et al. (2019) starts by asking subjects to report precise probabilities as
single numbers between 0 and 100 percent and then, uses two follow-up questions to learn about the nature of people’s
beliefs. The first follow-up question asks whether the stated probability was intended to be an exact number or was
rounded/approximated. When the response is rounded/approximated, subjects are asked to report in a second follow-up
question an exact precise probability or an imprecise probability, expressed as an interval.

7Hoffman et al. (2018) investigate the use of prediction aids in the hiring process, Kleinberg et al. (2018) and
Stevenson and Doleac (2019) in juridical decisions on sentencing and Chen and Asch (2017) and Obermeyer and
Emanuel (2016) in medical decision making.
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decision maker applies the aid in practice. Stevenson and Doleac (2019), for example, show that

the performance of a prediction tool may vary substantially, whether it is evaluated solely on the

basis of its algorithm or based on the decision maker’s use of the decision aid.8 This paper adds to

previous literature in studying a tool that not only allows for human discretion, but also considers

human beliefs as one input factor of the algorithm.

Second, the paper adds to a literature that studies the relationship between survey responses on

subjective expectations and individual’s perceived uncertainty about future events.9 While most

economic research maintains the assumption that survey respondents hold precise subjective be-

liefs on uncertain events, a small but growing literature on subjective expectations attempts to

understand the nature of people’s beliefs underlying what they report in a survey (e.g. Giustinelli

et al. 2019; Manski and Molinari 2010). Previous literature finds that respondents, who perceive

higher uncertainty about future events, tend to round to focal values, such as 0%, 50% or 100%

(Manski and Molinari 2010) and/or compress towards 50:50 (Enke and Graeber 2021). Our survey

design allows us to distinguish between subjects with precise expectations and ones with impre-

cise expectations on cardiovascular mortality risk uncovering that indeed about one third of the

students holds imprecise beliefs.

Third, the paper complements a number of experimental studies in health economics that use

vignettes to study medical decision making (e.g. Brosig-Koch et al. 2019; Cutler et al. 2019; Hoff-

mann et al. 2014).10 Cutler et al. (2019), for example, use vignettes to study whether physicians’

beliefs on end-of-life care explain regional variation in health care spending. Our paper adds a new

layer to previous studies by constructing vignettes based on real patient data. This feature allows

us not only to compare subjects’ response behavior across treatment status in the experiment, but

also to compare subjective risk measures to objective ones. The approach is adopted from studies

evaluating individuals’ subjective health perception compared to objective risk levels (e.g. Khwaja

et al. 2009; Khwaja et al. 2007; Lundborg and Lindgren 2004; Winter and Wuppermann 2014),

but is so far not used to evaluate physicians’ risk estimation.

Finally, the algorithm underlying PRAT can easily be applied to other diseases than cardiovascular

diseases. An accurate prediction of cardiovascular diseases is a major challenge of society, as

cardiovascular diseases are a leading cause of morbidity and mortality in Western societies and

also cause considerable economic burden to society (Piepoli et al. 2016). It is well-established that

8In their study, Stevenson and Doleac (2019) demonstrate that a prediction tool, that outperforms juridical decision
making, if judges had completely complied, does not reduce crime recidivism in practice. The authors conclude that
their findings can be explained by judicial discretion in its use.

9Hurd (2009) and Manski (2004, 2018) summarize the measurement and analysis of subjective expectations.
10Vignettes are a validated and often used tool to evaluate treatment choice in clinical practice (Peabody et al. 2000;

Peabody et al. 2004). The gold standard to evaluate medical decision making is the use of standardized patients where
trained actors consult physicians and record their performance. This procedure is, however, very expensive and, thus,
it is commonly only used in very small samples. In contrast, vignettes (i.e. written case simulations) can be easily
administered, are less costly and can be applied to large sample sizes. Peabody et al. (2000) and Peabody et al. (2004),
comparing the use of standardized patients to the use of vignettes, conclude that the use of vignettes is an accurate
measure of clinical practice.
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cardiovascular diseases can be prevented by early interventions, such as a change in lifestyle and/or

medication. Hence, improving risk prediction of cardiovascular diseases is of great importance to

foster population health and also to reduce economic burden.

The paper proceeds as follows. Section 1.2 describes the theoretical considerations that build on

the decision-theoretic model of Manski (2018). Section 1.3 presents the design of the experiment.

In Section 1.4, we outline the empirical strategy and describe the sample of medical students.

Section 1.5 presents the results of the experiment. In Section 1.6, we discuss the experimental

design and the results. Section 1.7 concludes.

1.2 Theoretical Considerations based on Manski (2018)

In this section, we outline the theoretical framework of the risk assessment tool PRAT based on

recent work by Manski (2018). Section 1.2.1 and Section 1.2.2 summarize the decision-theoretic

considerations of Manski (2018). More specifically, Section 1.2.1 describes the identification

problem that arises when a physician seeks to optimize patient care by predicting a patient’s health

outcome y, such as disease development or life span, conditional on the observed patient’s char-

acteristics x and w. The characteristics x and w are known to be informative predictors of the pa-

tient’s health outcome y. An evidence-based decision tool exists that predicts the patient’s health

outcome y conditional on a subset of the observed covariates x, but not conditional on all observed

characteristics (x,w). In other words, the decision tool predicts P (y|x), but not P (y|x,w). We

discuss partial identification of P (y|x,w) given knowledge of P (y|x) and P (w|x) without further

structural assumptions and compare it to a set-up with structural assumptions that embody some a

priori knowledge of P (y|x,w). Sufficiently strong assumptions may point identify the risk condi-

tional on all observed characteristics, but have low credibility. Hence, a central issue is the tension

between the strength of identifying power and the credibility of assumptions. More specifically,

stronger assumptions have more identifying power, but less credibility (Manski 2019).11 Manski

(2018) proposes in his work the use of bounded-variation assumptions as a middle course be-

tween imposing assumptions that yield point identification and making no structural assumptions.

Identification based on bounded-variation assumptions allows tightened identification compared

to an approach without any structural assumptions and imposes weaker and thus, more credible

assumptions than ones that point identify risk. Section 1.2.2 summarizes briefly the decision-

theoretic framework of using bounded-variation assumptions proposed by Manski (2018). Section

1.2.3 describes how the theoretical framework can be used as a risk assessment tool that physicians

may easily apply in clinical practice.

11The tension between the strength of assumptions and their credibility alludes to “The Law of Decreasing Credi-
bility” that is, “the credibility of inference decreases with the strength of the assumptions maintained” (Manski 2019,
p.54).

12



THEORETICAL CONSIDERATIONS BASED ON MANSKI (2018)

1.2.1 Risk Assessment without Structural Assumptions and with Strong Structural
Assumptions

Suppose a physician wants to predict a patient’s health outcome y conditional on the observed

patient’s characteristics (x=k, w=j). An evidence-based risk assessment tool exists that predicts

the patient’s health outcome y conditional on a set of characteristics x, but does not consider one

additional risk factor w.

The Law of Total Probability relates P (y|x = k) with P (y|x = k,w = j) and P (y|x = k,w ̸=
j), as specified in Equation 1.1:

P (y|x = k) = P (w = j|x = k)P (y|x = k,w = j) + P (w ̸= j|x = k)P (y|x = k,w ̸= j) (1.1)

Knowledge of P (y|x = k) alone reveals nothing about P (y|x = k,w = j). If P (w = j|x = k)

is zero, any distribution P (y|x = k,w = j) satisfies Equation 1.1. If P (w = j|x = k) is positive,

partial conclusions about P (y|x = k,w = j) may be drawn if one knows P (w = j|x = k). It is

plausible to assume that surveys and administrative data exist that allow to derive the distribution

P (w = j|x = k) for clinical observable characteristics (x,w).

Hence, the identification problem we address is inference on P (y|x = k,w = j) given knowledge

of P (y|x = k) and P (w = j|x = k). We make the following two assumptions: First, we

assume that x and w take values in finite spaces X and W and y takes values in the binary set Y

{0, 1}. Put differently, the health outcome is binary (y = 1 patient dies due to a specific disease,

y = 0 otherwise). Second, we assume that the existing, evidence-based risk assessment tool is

accurate, in the sense that it predicts P (y|x) correctly. This assumption simplifies the analysis and

is commonly maintained by physicians in clinical practice (Manski 2018).12

Without imposing any structural assumptions the identification region for P (y = 1|x = k,w = j)

can be estimated in the following way: We first solve Equation 1.1 for P (y = 1|x = k,w = j)

and obtain Equation 1.2.

P (y = 1|x = k,w = j) =

[P (y = 1|x = k)− P (y = 1|x = k,w ̸= j)P (w ̸= j|x = k)

P (w = j|x = k)

] (1.2)

12Existing tools may indeed not be fully accurate. One concern refers to the methodology that is used to calculate
risk assessment tools in the first place: Commonly, risk assessment tools are estimated using prospective studies in that
some individuals are treated, while others are not and no information on actual treatment or health behavior is available.
More precisely, the outcome of interest may measure future health status unconditional on future treatment status. With
historical patient outcomes, there is, however, no way to avoid that we estimate averages across historical treatment
choices as made in the population we study. This is a left-out variables problem, and regression with a left-out variable
can be thought of as averaging.
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In a subsequent step, we set P (y = 1|x = k,w ̸= k) equal to 1 to identify the lower bound of

P (y = 1|x = k,w = j). Analogously, we set P (y = 1|x = k,w ̸= k) equal to 0 to specify

the upper bound of P (y = 1|x = k,w = j). Equation 1.3 defines the identification region for

P (y = 1|x = k,w = j):

P (y = 1|x = k,w = j) ∈ [0, 1]∩

[P (y = 1|x = k)− P (w ̸= j|x = k)

P (w = j|x = k)
,
P (y = 1|x = k)

P (w = j|x = k)

] (1.3)

Equation 1.3 identifies risk based on knowledge of P (y|x = k) and P (w = j|x = k). However,

without imposing any structural assumptions, the predicted interval may have a large interval

width and thus, drawing informative conclusion may be hampered. To increase identifying power,

the literature discusses two approaches that impose structural assumptions strong enough to yield

point identification: One assumes the existence of an instrumental variable and the other assumes a

parametric model for P (y|x,w) (see Manski 2018, Section 2.2 for more details on risk assessment

with strong structural assumptions). These approaches impose rather strong assumptions implying

that physicians have knowledge of the entire distribution of P (y|x = k,w = j). This, however,

may not be plausible and thus, conclusions drawn from these approaches may suffer from low

credibility.

Hence, summing up, neither identification without imposing structural assumptions nor one with

strong structural assumptions may comfort a physician, that wants to optimize patient care by pre-

dicting patient’s risk, as conclusions drawn from these approaches are either not very informative

or have low credibility.

1.2.2 Risk Assessment using Bounded-Variation Assumptions

Manski (2018) proposes an alternative approach that partially identifies P (y|x,w) by combining

knowledge of P (y|x) and P (w|x) with weaker structural assumptions than the ones that yield

point identification of P (y|x,w). The central assumption in this approach is that physicians hold

beliefs about a patient’s minimum and maximum health risk y conditional on (x,w) due to their

clinical expertise. Hence, Manski’s approach is not having physicians conjecture the entire dis-

tribution of P (y|x,w), but rather to place bounds on features of P (y|x,w). Intuitively, it means

that a physician being asked to pin down a patient’s health risk conditional on a set of observed

characteristics may plausibly be able to state that the patient’s risk falls into a range, e.g. say

between 20% and 40% or above 80%. The smaller the reported interval width, the more certain

the physician is about his risk assessment. A physician that has no a priori knowledge about a
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patient’s risk may state that the risk is between 0% and 100%, while a physician being certain

about a patient’s risk, may choose a point estimate.

Formally speaking, a physician may assume that P (y = 1|x = k,w = j) or P (y = 1|x = k,w ̸=
j) falls within specific bounds, say [a(x = k,w ̸= j), b(x = k,w ̸= j)] and [a(x = k,w =

j), b(x = k,w = j)], where

a(x = k,w ̸= j) ≤ P (y = 1|x = k,w ̸= j) ≤ b(x = k,w ̸= j) (1.4a)

a(x = k,w = j) ≤ P (y = 1|x = k,w = j) ≤ b(x = k,w = j) (1.4b)

P (y = 1|x = k,w ̸= j) may take all values within the interval specified in Equation 1.4a. Hence,

the identification region for P (y = 1|x = k,w = j) is:

P (y = 1|x = k,w = j) ∈ [a(k, j), b(k, j)]∩

[
P (y = 1|x = k)− b(k, ̸= j)P (w ̸= j|x = k)

P (w = j|x = k)
,
P (y = 1|x = k)− a(k, ̸= j)P (w ̸= j|x = k)

P (w = j|x = k)

] (1.5)

Note that bounds on P (y = 1|x = k,w = j) help to identify P (y = 1|x = k,w ̸= j) and vice

versa.

The advantage of using bounded-variation assumptions is twofold: First, it results in a tightened

interval of feasible probabilities compared to solving the Law of Total Probability without any

assumptions (compare Equations 1.3 and 1.5). Second, the assumption that physicians are able to

place bounds on minimum and maximum risk is substantially weaker and thus, more credible than

assumptions strong enough to yield point identification.

Overall, risk assessment using bounded-variation assumptions allows physicians to flexibly limit

the magnitudes of risk assessments and the extent to which they alter with patient characteristics.

Thus, it enables physicians to express quantitative risk evaluations in a structured way (Manski

2018).

1.2.3 Implementation of PRAT for Cardiovascular Diseases

The decision tool PRAT presents an application of the theoretical framework described in Section

1.2.2. The risk predicted by PRAT rests on three pillars: (i) An evidence-based risk assessment

tool exists that predicts P (y|x). (ii) The conditional probability P (w|x) can be estimated using an

auxiliary data set. (iii) Physicians hold beliefs on patients’ minimum and maximum health risk y

conditional on patients’ characteristics (x,w). The beliefs, i.e. a(x = k,w ̸= j); b(x = k,w ̸= j);
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a(x = k,w = j); b(x = k,w = j), serve as input factors into the algorithm of PRAT. Equation

1.6a and 1.6b specify the algorithm in our specific setup.

P (y = 1|x = k,w = j) ∈ [a(k, j), b(k, j)] ∩ [Lower Bound,Upper Bound]

Lower Bound =

SCORE︷ ︸︸ ︷
P (y = 1|x = k) −

physician’s
expectations︷ ︸︸ ︷
b(k, ̸= j)

estimated in a
separate data set︷ ︸︸ ︷
P (w ̸= j|x = k)

P (w = j|x = k)︸ ︷︷ ︸
estimated in a
separate data set

(1.6a)

Upper Bound =

SCORE︷ ︸︸ ︷
P (y = 1|x = k) −

physician’s
expectations︷ ︸︸ ︷
a(k, ̸= j)

estimated in a
separate data set︷ ︸︸ ︷
P (w ̸= j|x = k)

P (w = j|x = k)︸ ︷︷ ︸
estimated in a
separate data set

(1.6b)

We apply PRAT to predict a patient’s 10-year risk of cardiovascular mortality. A number of risk as-

sessment tools exists that predict fatal/non-fatal cardiovascular events conditional on a pre-defined,

typically small number of risk factors.13 The difference between existing tools and PRAT is that

PRAT allows physicians to incorporate their expectations about the patient’s risk into the algo-

rithm. Hence, PRAT can be regarded as an extension of traditional risk assessment tools, as it

combines the risk predicted by an existing tool with physicians’ expectations.

To estimate the risk predicted by PRAT we use three distinct components: First, we use the risk

assessment tool SCORE that assesses the 10-year risk of cardiovascular mortality conditional on

a set of risk factors as one component of the algorithm of PRAT (see Section 1.3.1 for more

information on SCORE). It is noteworthy that any other existing risk assessment tool such as

PROCAM or Framingham, could be equally used within the framework of PRAT.14 Second, to

13See Appendix Table 3 in Goff et al. (2014) for an overview of existing evidence-based risk assessment tools
currently used to assess the risk of cardiac events.

14We decided to use SCORE in this study, as it is the risk assessment tool for cardiovascular diseases recommended
by the latest European clinical guidelines (Piepoli et al. 2016).
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estimate P (w = j|x = k), we use individual-level data on a broad set of health measures, covering

a representative sample of the adult population living in Germany (see Section 1.3.2 for more

information). Third, PRAT considers physician’s beliefs on patient’s minimum and maximum risk

of cardiovascular mortality conditional on patient’s characteristics in the risk prediction. We elicit

beliefs on minimum and maximum risk in the online experiment.

From the applicant’s perspective, the usage of PRAT is a two-step procedure: First, physicians

are asked to report their beliefs on a patient’s minimum and maximum health risk. Subsequently,

the algorithm of PRAT combines physicians’ expectations with the risk predicted by SCORE and

with the patient’s probability of the additional risk factor w given the set of risk factors x. Second,

physicians are informed about the interval predicted by PRAT and thus, may assess a patient’s risk

conditional on risk factors (x,w).

1.3 Design of the Experiment

This section summarizes the design of the online experiment with medical students, conducted

between March 2020 and May 2020. In Section 1.3.1, we describe the risk assessment tool,

SCORE, that assesses the 10-year risk of cardiovascular mortality conditional on five, predefined

risk factors. The use of SCORE is recommended by the latest European clinical guidelines (Piepoli

et al. 2016) and thus, we benchmark the performance of PRAT against SCORE. Section 1.3.2

outlines the construction of the vignettes using survey data. Section 1.3.3 explains the procedure

of the experiment in detail.

1.3.1 Background Information on SCORE

In 2003 the European Society of Cardiology developed a risk scoring system tool that aims to im-

prove risk assessment of cardiovascular diseases, as well as to enable physicians to base treatment

choices on evidence-based and personalized risk assessment. The decision tool SCORE (System-

atic COronary Risk Evaluation) considers five risk factors, namely age, gender, current smoking

status, systolic blood pressure and serum cholesterol level, that are well-known to modify the like-

lihood of a cardiovascular event (Conroy 2003).15 SCORE is supposed to be used for primary

prevention of cardiovascular diseases, i.e. to assess the risk of apparently healthy individuals, not

of individuals with established cardiovascular diseases, chronic kidney disease or any risk mod-

15Risk levels of SCORE are estimated from 12 European cohort studies that cover 205,178 individuals. Ten-year
risk is calculated using a Weibull proportional hazard model in which age was used as a measure of exposure time to
risk rather than as a risk factor. Conroy (2003) estimate risk separately for coronary and non-coronary heart disease,
as weights assigned to different risk factors may be different for the two types of cardiovascular diseases. This may, in
turn, affect the shape of the lifetime hazard functions. Separate risk charts have been developed for low and high-risk
countries in Europe. Countries are defined as “low-risk”, if age-adjusted cardiovascular mortality rates for individuals
aged 45–74 in 2012 were below 225/100,000 for males and 175/100,000 for females. As Germany is considered as
low-risk country, we refer to those estimates in this paper. Finally, note that SCORE was re-calibrated separately for
many European countries (e.g. Diederichs et al. 2018; Lindman et al. 2007).
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Figure 1.1: SCORE Chart taken from the Clinical Practice Guidelines

increases with an increasing baseline risk; that is, the number of
individuals needed to treat (NNT) to prevent one event de-
creases with increasing risk.

– Low- to moderate-risk persons (calculated SCORE
<5%): should be offered lifestyle advice to maintain their
low- to moderate-risk status.

Figure 2 SCORE chart: 10-year risk of fatal cardiovascular disease in populations of countries at low cardiovascular risk based on the following risk
factors: age, sex, smoking, systolic blood pressure, total cholesterol. CVD ¼ cardiovascular disease; SCORE¼ Systematic Coronary Risk Estimation.

Joint ESC Guidelines2328
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http://eurheartj.oxfordjournals.org/
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Notes: The chart from the European clinical practice guidelines (2016) reports the 10-year risk of fatal cardiovascular
diseases based on the following 5 risk factors, i.e. age, gender, smoking behavior, systolic blood pressure, and total
cholesterol level (Piepoli et al. 2016, p.2328).
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ifying pre-conditions (e.g. cancer diagnosis, diabetes with severe organ damage). Moreover, its

recommended application is limited to the age range of 40 to 65 years (Piepoli et al. 2016).

To simplify the use of SCORE in clinical practice, the guidelines provide a chart that illustrates

the 10-year risk of a fatal cardiovascular disease event for 400 different combinations of risk

factors (Figure 1.1). Hence, a physician may easily read a patient’s 10-year risk of cardiovascular

mortality conditional on the patient’s individual set of risk factors from that chart. For instance, a

male 65-year old non-smoker, who has a systolic blood pressure of 160mmHg and a cholesterol

level of 6mmol/l, has on average a 7% risk of dying due to a cardiovascular event in the next 10

years.

The guidelines classify the risk into three broad categories which are intended to assist physicians

in their treatment choice: Individuals with a SCORE below 5% are classified as low-to-moderate

risk persons and physicians should offer lifestyle advice to maintain their low-to-moderate risk

status. High risk persons (calculated SCORE ≥5% and <10%) qualify for intensive lifestyle

advice and may be candidates for drug treatment, while for very high risk persons (calculated

SCORE ≥10%) drug treatment is more frequently required (Piepoli et al. 2016). The clinical

guidelines emphasize that the thresholds are not universally applicable, but should be reconsidered

for each patient individually.

It is well known that other attributes than those considered in SCORE may modify the probability

of a cardiovascular death. Prominent examples for attributes, that may change the risk of a fatal

cardiovascular event, but are not used as predictors in SCORE, are the diagnosis of diabetes,

obesity, a family history of cardiovascular events, and socio-economic characteristics (see e.g.

Clark et al. 2009; Sattelmair et al. 2011; van Gaal et al. 2006). The clinical practice guidelines

list these risk factors and recommend physicians to reconsider the risk predicted by SCORE in the

presence of any additional risk modifying factors. There is, however, no guidance how physicians

should revise patient’s risk in the context of additional risk factors (Piepoli et al. 2016).

1.3.2 Construction of the Vignettes

In the online experiment, medical students are asked to evaluate the risk of five vignettes. To

construct the vignettes, we use individual-level data on socio-demographic characteristics, health

measures, and the event of death provided by the Robert Koch Institute (henceforth: RKI study).

The RKI study covers a representative sample of the population aged 17 to 79 living in Germany.

The RKI study comprises two waves – a baseline wave and a mortality follow-up (see Figure

3.1). The baseline wave was conducted between October 1997 and March 1999 and it contains

information on health behavior, health outcomes and lab parameters. Importantly, the data include

information on each of the five risk factors considered in the risk assessment tool SCORE (Thefeld

et al. 1999). A follow-up study was conducted about 12 years after the baseline wave, eliciting
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information on the event of death. For participants, who died between the two waves, information

on date and cause of death was collected (Wolf et al. 2014; Wolf et al. 2012).16

Figure 1.2: RKI Study – Timeline of the Baseline Wave and the Mortality Follow-up

1997 1999 2001 2003 2005 2007 2009 2011

Baseline Wave
t=0

Mortality Follow-up
t=1

Notes: The figure illustrates the timeline of the baseline wave and the mortality follow-up. The baseline wave of the
RKI study took place between 1997 and 1999. The mortality follow-up was conducted between 2008 and 2011.

Importantly, the data provide us with information on participants’ individual risk factors for car-

diovascular diseases and death caused by cardiovascular diseases. Therefore, the data enable us

to estimate risk prediction models for cardiovascular mortality. More precisely, we use Probit re-

gressions to calculate the objective 10-year risk of cardiovascular mortality (i) conditional on the

risk factors considered in SCORE (i.e. age, gender, blood pressure, cholesterol level and smoking

habits) and (ii) conditional on the characteristics included in SCORE plus obesity. Subsequently,

we calculate the objective risks for five vignettes with different combinations of risk factors using

the parameters estimated in the risk prediction models (see Appendix Section A1 for more details).

To estimate the prediction models, we construct a sample that is in terms of age structure and risk

factors as similar as possible to the sample used to estimate SCORE. Hence, in line with Conroy

(2003), we exclude participants with prior history of heart attacks from the sample. We further

exclude participants if the time span between the interview of the baseline wave and the mortality-

follow-up was less than 10 years and participants did not decease within that period.17 This leaves

us with 6,274 participants with complete information on the risk factors considered in the study

and on the event of a cardiovascular death (defined by ICD-10 code, I00 to I99). About 1.66%

of the sample died due to a cardiovascular disease within 10-years after the first interview in the

baseline wave.

Table 1.1 gives an overview of the vignettes. Panel A summarizes the vignettes’ characteristics

considered in the risk assessment process. Panel B illustrates the information that a physician

may read from the current practical guidelines (CPG). It covers the risk predicted by SCORE and
16The mortality follow-up includes the information provided on the official death certificates. In Germany, physi-

cians have to report a causal chain of diagnosis leading to death on the certificate. Specifically, physicians have to state
(i) the immediate cause of death (unmittelbar zum Tode führende Krankheit) (ii) previously diagnosed diseases leading
to death (vorangegangene Ursachen) (iii) chronic clinical conditions (Grundleiden) (iv) other relevant diagnosis (an-
dere wesentliche Krankheiten). Typically, physicians state more than one ICD-code in each of the categories. Hence,
to define the main cause of death we use the international validated system called IRIS. For further information see
Federal Institute for Drugs and Medical Devices (2021).

17Note that it is necessary to exclude these participants to predict 10-year mortality risk, as we have no information
whether participants actually died or not within 10 years.
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Table 1.1: Characteristics of the Vignettes

Vignettes

1 2 3 4 5

Panel A: Vignettes’ Risk Factors

Gender male male female male female

Age 65 65 62 64 56

Blood Pressure [mmHg] 145 165 180 145 180

Cholesterol Level [mmol/l] 6.3 4 5.4 5 5

Smoking Status (yes/no) yes yes yes no no

Obese (yes/no) yes no no yes yes

Panel B: Information from CPG

Risk Predicted by SCORE 9% 10% 5% 4% 1%

Risk Category very high very high high high low-to-moderate

Panel C: CVD Mortality Risk in RKI Study

Risk predicted in RKI study P (y = 1|x = k) 8.6% 9.45% 4.95% 4.23% 1.09%

Risk Predicted in RKI Study P (y = 1|x = k,w = obese) 10.15% 10.88% 5.66% 5.01% 1.25%

Risk Predicted in RKI Study P (y = 1|x = k,w = not obese) 8.28% 8.92% 4.49% 3.94% 0.93%

Panel D: Probability of Obesity conditional on Risk Factors in RKI Study

Risk Predicted in RKI Study P (w = obese|x = k) 25.08% 32.37% 45.15% 25.07% 44.65%

Risk Predicted in RKI study P (w = not obese|x = k) 74.92% 67.63% 54.85% 74.93% 55.35%

Notes: The table summarizes the characteristics/risk factors of the five vignettes used in the study. The
parameter k denotes the set of risk factors considered in the estimation tool SCORE (age, gender, blood
pressure, cholesterol level, and smoking habits).

the risk category provided in the clinical practice guidelines. Panel C presents the 10-year risk

of cardiovascular mortality predicted using the RKI study. We estimate risk levels (i) conditional

on the five risk factors included in SCORE if obesity is not considered as separate risk factor (ii)

conditional on the five risk factors included in SCORE if the vignette is assumed to be obese,

and (iii) conditional on the five risk factors included in SCORE if the vignette is assumed to be

not obese. The results show that being obese is associated with an increased risk of cardiovascular

mortality of roughly 25% compared to being not obese. This indicates that obesity changes relative

risks of cardiovascular mortality substantially. Panel D describes the probability of being obese

given the characteristics considered in SCORE. The estimated values are calculated using a Probit

regression model (see Appendix Section A1 for more details).

1.3.3 Experimental Procedure

Medical students18 are randomly drawn into one of three treatment groups that differ with respect

to the provided decision tool. Subjects in T1 are asked to assess the vignette’s risk without the

18The term “subjects” and “respondents” are interchangeable and used throughout the paper to describe medical
students that take part in our experiment. Individuals that participated in the RKI study are denoted as “participants”.
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provision of any decision tool, while subjects in T2 are provided with the SCORE chart (see

Figure 1.1). Subjects in T3 obtain the SCORE chart and additionally get informed about the risk

predicted by PRAT.

Figure 1.3: Flow Chart - Experimental Procedure

Randomization Process

T2 SCORET1 No Decision Tool T3 SCORE + PRAT

Survey on Subjects’ Demographic and Educational Characteristics

Introduction to the Experiment

SCORE Chart

Information on the Vignette’s Risk Factors That Are Included in SCORE

Subjective ExpectationsRisk Assessment

Information on the Additional Risk Factor

Risk Predicted by PRAT

Risk Assessment and Treatment Recommendation

Survey on the Use of SCORE in Clinical Practice

5x

Notes: The figure summarizes the experimental procedure. Cells highlighted in blue display stages of the
experiment where subjects obtain information on the risk predicted by SCORE or PRAT. Cells highlighted
in red present stages where subjects are asked to assess the vignettes’ risk.

Figure 1.3 summarizes the experimental procedure. After subjects are randomly assigned to a

treatment group, the survey starts with a questionnaire eliciting information on subjects’ socio-

demographic, educational, and job characteristics (e.g. age, gender, location of residence, year

of studies, and work experience). In the subsequent part of the survey, subjects first assess the

vignettes’ risk and then, make treatment recommendations. To avoid ordering effects, the sequence

of the vignettes presented to the subjects is randomized. The exact procedure of the survey depends

on the treatment group and is described below. The survey ends with a short questionnaire asking

subjects to report about prior knowledge and use of the risk assessment tool SCORE.
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Risk Assessment in T1 and T2

Subjects in T1 do not obtain any decision tool to support their risk assessment. During the ex-

periment they are asked to assess each vignette’s risk twice – first, conditional on the five risk

factors considered by SCORE and second, conditional on six risk factors, i.e. those included in

SCORE plus obesity. Subjects in T2 are introduced to the risk assessment tool SCORE and obtain

the SCORE chart to support their decision.19 Subsequently, subjects in T2 are asked to evaluate

each vignette’s risk once conditional on six risk factors, i.e. the factors considered by SCORE plus

obesity.

To elicit expectations of the risk of cardiovascular mortality, we build on Giustinelli et al. (2019)

and devise an elicitation procedure that allows us to distinguish between subjects holding precise

beliefs and ones holding imprecise beliefs. To this end, we start by asking subjects about a percent-

chance of cardiovascular mortality and then, use two follow-up questions to learn whether subjects

hold precise or imprecise beliefs about the risk of cardiovascular mortality. The first follow-

up question asks whether the reported probability was intended to be an exact number or was

rounded/approximated. When the response is rounded/approximated, subjects are asked to state

in a second follow-up question the exact precise probability or an imprecise probability, stated as

a range (see Appendix Figure A.1 for a graphical illustration). The initial question asking for a

percent-chance of cardiovascular mortality is worded as follows:

Initial Question: What is the 10-year risk that the patient described to you above dies

due to a cardiovascular disease? Please choose a number on a scale of 0 to 100.

This question is equivalent to the standard expectation questions used in a number of surveys (e.g.

Health and Retirement Survey) that ask subjects to state precise probabilities as single numbers

between 0% and 100%, where 0% means, that there is no chance that the patient will die within

the next 10 years and 100% means that the patient will certainly die due to a cardiovascular disease

within the subsequent 10 years. To differentiate between subjects with precise probabilistic beliefs

and ones with imprecise probabilistic beliefs, subjects are asked to state whether the reported

probability was intended to be an exact number or was rounded/approximated. The first follow-up

question is worded as follows:

Follow-up Question 1: When you said [X] percent just now, did you mean this as an

exact number or were you rounding or approximating?

Possible answers: (i) Exact number (ii) Rounding or approximating

Subjects stating that their initial response was exact are directly asked to make a treatment rec-

ommendation, while those reporting that they were rounding or approximating are asked a second

follow-up question.
19To ensure that subjects understand how to read the vignette’s risk from the chart, they can only continue with the

survey if they answer a test question correctly.
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Follow-up Question 2: Now please try without rounding or approximating your answer.

What is the 10-year risk that the patient dies due to a cardiovascular disease? If you are

uncertain about the chances, you may state an interval that includes the vignette’s risk.

For example, you may say something like “less than 9%,” “between 13% and 20%” or

“greater than 50%.”

Possible answers: (i) Exact number (ii) Risk below [X] (iii) Risk above [X] (iv) Risk

between [X] and [Y]

Risk Assessment in T3

Subjects in T3 are provided with two risk assessment tools, namely SCORE and PRAT. At the

beginning of the experiment, subjects in T3 are introduced to the risk assessment tool SCORE

and obtain the SCORE chart (as subjects in T2). Subsequently, subjects in T3 learn about the

vignette’s characteristics that are considered in the algorithm of SCORE (i.e. age, gender, systolic

blood pressure, cholesterol level, smoking habits) and are asked to state the vignette’s minimum

and maximum risk of cardiovascular mortality conditional on two counterfactual scenarios; first, if

the vignette was obese; second, if the vignette was not obese. Put differently, subjects at that stage

of the survey do not know whether the vignette is obese or not, but are asked to report maximum

and minimum risk of cardiovascular mortality for both potential scenarios.20 The wording of the

question is as follows:

Elicitation of Subjective Bounds on Risk of Cardiovascular Mortality: Consider

whether and to what extent obesity may affect the risk that the patient described above

dies due to a cardiovascular disease in the next 10 years. Presumably, you may not be

able to answer the question precisely. However, based on the risk predicted by SCORE

you may be able to state an interval, that contains the patient’s risk. For example, you

may say something like “less than 9%”, “between 13% and 20%” or “greater than

50%”. Please choose a number on a scale of 0 to 100 to respond to the following state-

ments.

Please report the maximum 10-year risk that the patient described above dies due to

any cardiovascular disease, if you have the information that the patient is (not) obese:
%

Please report the minimum 10-year risk that the patient described above dies due to

any cardiovascular disease, if you have the information that the patient is (not) obese:

%

20Note that this is necessary as P (y|x = k,w = obese) is identified by PRAT based on beliefs on Pmin(y|x =
k,w = not obese) and on Pmax(y|x = k,w = not obese) and vice versa.
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Subjects’ beliefs on minimum and maximum risk are used as input factors into the algorithm of

PRAT. It is, further, to note that we impose the assumption that the probability of cardiovascular

mortality is monotonously increasing in adverse risk factors. Hence, obesity increases the risk of

cardiovascular diseases relative to the risk predicted by SCORE that is calculated by averaging

across obese and non-obese individuals. In the same vein, not being obese decreases the risk

of cardiovascular diseases relative to the risk calculated based on SCORE. Formally speaking,

we impose the assumption that, if the vignette is not obese, the maximum risk of cardiovascular

mortality conditional on the risk factors included in SCORE must be equal or lower than the

respective risk predicted by SCORE. Vice versa, if the vignette is obese, the minimum risk of

cardiovascular mortality conditional on the risk factors covered by SCORE, must be equal or

larger than the risk predicted by SCORE. Equation 1.7 specifies the monotonicity assumption:

Pmin(x = k,w = not obese) ≤ Pmax(x = k, not obese)

≤ PSCORE ≤ Pmin(x = k,w = obese) ≤ Pmax(x = k,w = obese)
(1.7)

Subjects reporting minimum and maximum risks not in line with the monotonicity assumption,

may revise their response three times. If the third attempt does not meet the criteria (Equation

1.7), subjects are directly led to assess the next vignette’s risk. Subjects stating bounds, that align

with the monotonicity assumption, learn in the next step of the experiment whether the vignette is

obese or not. Further, they get informed about the risk predicted by PRAT. The information on the

risk predicted by PRAT is provided by the following wording: “The algorithm PRAT considers in

its calculations the risk level predicted by SCORE and your estimates on the patient’s minimum

and maximum risk level. In contrast to SCORE, PRAT takes obesity as additional risk factor into

account. PRAT predicts that the patient’s 10-year cardiovascular mortality risk is between [Lower

Bound]% and [Upper Bound]%”.

Hence, subjects in T3 obtain information on the risk predicted by SCORE and PRAT, before

they are asked to evaluate the vignette’s 10-year risk of cardiovascular mortality. The question is

worded as follows:

Risk Assessment using SCORE and PRAT: What is the 10-year risk that the patient

described above dies due to a cardiovascular disease? You may either choose an exact

number, for example 5% or if you are not certain, you may state an interval that includes

the vignette’s risk. For example, you may say something like “less than 9%”, “between

13% and 20%” or “greater than 50%”. Please choose a number on a scale of 0 to 100

to respond to the following statements.

Possible answers: (i) Exact number (ii) Risk below [X] (iii) Risk above [X] (iv) Risk

between [X] and [Y]
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Treatment Recommendations

After assessing the vignette’s risk, subjects are asked to make treatment recommendations. More

precisely, we ask subjects whether they recommend (i) a lifestyle advice such as a change in diet,

increased physical activity (ii) the prescription of blood pressure lowering drugs (i.e. antihyperten-

sive drugs) and/or of cholesterol lowering drugs (i.e. statins), and (iii) a referral to a cardiologist

on a yes/no scale (see Appendix A1 for the exact wording).

1.4 Data and Empirical Strategy

1.4.1 Sample Description and Balancing Tests

We provide a description of the sample of medical students and data below.

Sample We invited medical students enrolled at two German universities (University of Munich

and University of Halle-Wittenberg) to participate in the online survey via the official e-mail dis-

tributor of the respective medical faculty. The experiment was conducted between March 2020

and May 2020. Overall, 239 students started with the survey, 129 of them (53%) completed the

first part of the survey, a questionnaire on demographics and clinical experience, and 65 (27%) stu-

dents finished the complete survey (see Appendix Table A.2 for a detailed overview of the sample

structure).

In the analysis, we focus on the sample of students that completed the survey. Hence, our sample

comprises 65 medical students: 25 in T1, 24 in T2, and 16 in T3. Table 1.2 provides an overview of

subjects’ socio-demographic characteristics (Panel A) and clinical experience (Panel B) separately

by treatment group. The students participating in the survey are on average 24 years old, roughly

30% of them are male, and attend the 6th semester of the study curriculum of human medicine.

About 80% of the students report to reside in Bavaria.21 To learn about students’ clinical experi-

ence, we elicit information on work experience in health care prior to their studies, as well as on

internships in internal medicine during the first (i.e. preclinical) and second (i.e. clinical) period

of their studies (Panel B). In our sample, about 17% of the students worked prior to their studies

in health care and about 60% conducted an internship in internal medicine in the preclinical and

clinical period. Panel C in Table 1.2 gives information on the survey design. It took subjects on

average 40 minutes to complete the survey.

21We did not elicit whether a student is enrolled at the University of Munich or Halle-Wittenberg. Thus, we take
reported information on the location of residency as a proxy for being a student at the University of Munich or Halle-
Wittenberg.
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Table 1.2: Sample Description and Balance

Treat. Group 1 Treat. Group 2 Treat. Group 3 Diff. 1 − 2 Diff. 1 − 3 Diff. 2 − 3

Mean S.D. Mean S.D. Mean SD p-value p-value p-value

Panel A: Sociodemographic Characteristics

Year of Birth 1996.32 2.32 1994.63 5.36 1995.88 3.22 0.15 0.61 0.41

Gender (male=1) 0.32 0.48 0.17 0.38 0.44 0.51 0.22 0.46 0.06

Semester 6.76 2.91 6.42 3.02 6.06 2.72 0.69 0.45 0.71

Location of Residence (Bavaria=1) 0.80 0.41 0.71 0.46 1.00 0.00 0.47 0.06 0.02

Panel B: Clinical Experience

Work experience in health care prior to studies (=1) 0.08 0.28 0.25 0.44 0.19 0.40 0.11 0.32 0.65

Preclincal Period - Internship in Internal Medicine (=1) 0.71 0.46 0.52 0.51 0.60 0.51 0.20 0.50 0.65

Clincal Period - Internship in Internal Medicine (=1) 0.68 0.48 0.59 0.50 0.57 0.51 0.54 0.51 0.91

Panel C: Survey Design

Duration Survey (min) 48.91 77.38 31.06 16.41 38.89 34.86 0.29 0.63 0.35

Observations 25 24 16 49 41 40

Notes: The table summarizes characteristics of the sample of students that completed the survey and tests for balance
in observable characteristics between subjects in each of these treatment groups. Columns 1 to 6 report the mean and
standard deviation of the set of variables included in the analysis by treatment group. Columns 7 to 9 display the
respective p-values of the differences in means between the three treatment groups.

Selective Drop-outs To investigate whether we face selective drop-outs, we run a number of

specification tests. To this end, we use two definitions to describe the sample of drop-outs: (i)

subjects that started the survey, but stopped the questionnaire at any point before completion (174

subjects, attritors definition 1) (ii) subjects that finished the first part of the survey, a questionnaire

on sociodemographic and educational characteristics, and thus, showing general interest in the

topic, but left the survey before completion (64 subjects, attritors definition 2).

First, we compare characteristics of students who did not finish the survey with ones that com-

pleted it. We find no significant differences in sociodemographic characteristics between drop-outs

and the students completing the survey with one exception, namely students living in Bavaria are

more likely to finish the experiment compared to students residing outside Bavaria. Interestingly,

we find that students with more clinical experience (measured by internships and work experience

prior to studies) are more likely to drop out than students with less experience (see Appendix Table

A.3). Second, comparing characteristics of drop-outs by treatment group, we find no significant

differences by treatment status at a 5% significance level for all characteristics except one. Drop-

outs in T1 and T3 are significantly more likely to live in Bavaria than those in T2 (see attritors

definition 1, Appendix Table A.4). Using the sample of attritors described by definition 2, there

are no significant differences between drop-outs by treatment group (see Appendix Table A.5).
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Balance Tests Table 1.2 shows that balance across intervention status was achieved for all ob-

servable characteristics other than location of residence. We find that the fraction of respon-

dents living in Bavaria is significantly smaller in T2 than in T3 (i.e. p-value<0.05, see Table

1.2, Columns 7 to 9).

1.4.2 Empirical Strategy

To identify the causal impact of the provision of PRAT on the accuracy in risk prediction and

treatment choices compared to decision making (i) without the provision of any decision tool and

(ii) under the provision of SCORE, we estimate models of the following kind:

Yi,j = α+ βT1T1i + βT2T2i +X ′
iγ + δj + ϵi,j (1.8)

where the parameter j denotes the vignette scenario (i.e. j = 1,., 5) and i refers to the subject

responding the survey. The binary variables T1i and T2i define the treatment status and are equal

to 1 if subjects are provided with no decision tool (T1) or with SCORE (T2). Treatment effects

are measured relative to being provided with SCORE plus PRAT (T3, baseline category). In

some model specifications, we control for a set of covariates, X i, that describes the subject’s

sociodemographic characteristics, as well as his clinical experience. To account for potential

ordering effects, we vary the sequence of the vignettes at random. Further, the parameter δj

controls for ordering fixed effects. Standard errors are clustered at the subject’s level. As the

treatment status is randomly assigned, T1i and T2i are by construction orthogonal to X i and ϵi,j.

Hence, βT1 and βT2 identify the average treatment effect of using no decision tool (T1) or SCORE

(T2) relative to being provided with SCORE plus PRAT (T3) even without controlling for X i.

To evaluate risk prediction, we use as outcome variable Yi,j , the difference between subjective

and objective risk measures as a proxy for accuracy in risk assessment. Throughout the paper, we

maintain the following two assumptions: First, responses that subjects give after probing express

their “true” expectations, be they precise or imprecise.22 Second, our measure of objective risk

is the “true” underlying risk of a vignette. Hence, the smaller the absolute difference between

subjective and objective risk measure, the more accurate is the subjective risk assessment. Fol-

lowing the first assumption, we use post-probe responses to evaluate subjective risk assessment.

As post-probe responses include precise probabilities, expressed as exact numbers, and imprecise

probabilities, stated as range, we create three measures of subjective risks: (i) the midpoint of a

stated range, (ii) the upper bound of a stated interval, and (iii) the lower bound of a stated interval.

If precise probabilities are reported, all three measures fall together. More precisely, to evaluate

22We follow Giustinelli et al. (2019) in assuming that a subject’s initial response is a swift and likely error-ridden
measure of his underlying belief, while a subject’s post-probe response is an error-free measure stated after some
reflection.
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accuracy in risk assessment, we consider three outcome variables that are defined as the absolute

difference between each of the three described subjective risk measures and the objective risk.

This procedure allows us to disentangle whether the provision of decision tools enables subjects

to identify more precisely average risk (midpoints), maximum risk (upper bound), and/or mini-

mum risk (lower bound). To assess the impact of the availability and the type of a decision tool

on treatment choices, we run Probit regression models with treatment choice as binary outcome

variables.

1.5 Results

This section summarizes the empirical findings. In Section 1.5.1, we discuss the impact of using

PRAT on the accuracy in risk assessment compared to risk prediction without a decision aid and

with using SCORE. In Section 1.5.2, we analyze whether PRAT impacts treatment choice. Sec-

tion 1.5.3 discusses whether the availability and the type of decision tool affects subjects’ nature

of reporting precise or imprecise probabilities in surveys. In Section 1.5.4, we compare the perfor-

mance of decision tools without human discretion to risk assessment based on clinical judgment.

1.5.1 Accuracy in Risk Prediction

To begin, we study the causal impact of the provision of PRAT on the accuracy in risk prediction

of cardiovascular mortality conditional on six risk factors (i.e. age, gender, systolic blood pressure,

cholesterol, smoking status, obesity) compared to decision making (i) without the provision of any

decision tool and (ii) under the provision of SCORE,

Descriptive Statistics Figure 1.4 illustrates the empirical distribution of the difference between

subjective and objective risk measures, by treatment group. We find that medical students without

any decision tool (T1) substantially overestimate objective risk. Expectations on the vignette’s

risk deviate by plus 85pp to minus 5pp from the objective risk measure showing a roughly uniform

distribution within that range. Subjects being provided with SCORE (T2) state expectations that

deviate from the objective risk on a comparable range. However, in stark contrast to the findings

in T1, the empirical distribution of the difference between subjective and objective risk in T2

is compressed around zero. Providing subjects with PRAT in addition to SCORE (T3) enables

subjects to further close the gap between subjective and objective risk. Table 1.3 presents the

summary statistics of the difference between subjective and objective risk measures.

Overall, the descriptive statistics indicate that the provision of the decision tools SCORE and

PRAT helps medical students to significantly improve risk assessment.
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Table 1.3: Summary Statistics: Difference between Subj. Risk and Obj. Risk

No Decision Tool (T1) SCORE (T2) SCORE + PRAT (T3)

Mean 41.29 11.27 2.18

S.D. 26.01 19.96 9.89

Median 43.75 1.75 0.11

Range (-4.92; 85.85) (-4.42; 78.75) (-5.92; 49.85)

Observations 125 120 77

Notes: The table presents mean, standard deviation, median and the range of the difference between sub-
jective and objective risk measures, by treatment group. If subjects report probabilities as a range, we use
the midpoint of the range as measure for the subjective probability.

Figure 1.4: Empirical Distribution of the Difference between Subj. Risk and Obj. Risk, by
Treatment Group
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Average Treatment Effects Next, we turn to study the average treatment effect of the provision

of decision tools on the accuracy in risk assessment. Figure 1.5 presents the mean absolute differ-

ence between subjective and objective risk assessment in percentage points by treatment status and

vignette. The figure illustrates that the provision with SCORE helps students to make significantly

more precise risk predictions than without any decision tool. The provision of PRAT in addition

to SCORE further improves accuracy in risk prediction. The pattern looks similar across all five

vignettes.

Figure 1.5: Average Treatment Effect, by Treatment Group and Vignette
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Notes: The figure displays the mean absolute difference between subjective and objective risk measures, shown sepa-
rately by treatment group and vignette. If subjects report probabilities as a range, we use the midpoint of the range as
measure for the subjective probability. The error bars present the respective standard errors.

So far, we have been using the midpoint of a range as a measure of subjective beliefs, if a subject

reported imprecise probabilities. However, taking the midpoint is clearly only one of an infinity

large set of estimates within the range of reported probabilities. Hence, we further analyze the

impact of PRAT on the accuracy of the predicted upper (maximum risk) and lower bound (min-

imum risk). To this end, we take (i) the absolute difference between the upper bound of a stated

range and the objective risk, and (ii) the absolute difference between the lower bound of a stated

range and the objective risk as measures for accuracy in risk estimation. This procedure allows us

to disentangle whether the provision of decision tools enables subjects to identify more precisely

average risk (midpoints), maximum risk (upper bound), and/or minimum risk (lower bound).
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Table 1.4 presents the empirical findings of mean linear regressions in that we use different mea-

sures of risk accuracy as a function of the treatment status, a set of covariates and order fixed

effects. In all specifications, we find that the provision of SCORE plus PRAT (baseline category,

T3) increases accuracy in risk prediction compared to assessment without any decision tool (T1)

at a 1% significance level. Further, the provision of PRAT significantly improves predicted av-

erage risk, as well as the predicted maximum risk compared to using solely SCORE (T2). We

don’t, however, find that the use of PRAT improves the precision of the estimated lower bound of

a probability range compared to using SCORE.

Table 1.4: Treatment Effects of the Provision of Decision Tools on Accuracy in Risk Prediction

Absolute Difference between Subjective and Objective Risk

Midpoint Lower Bound Upper Bound

No Decision Tool (T1) 37.44*** 37.47*** 38.49*** 35.98*** 36.02*** 36.46*** 37.64*** 37.67*** 39.43***

(4.75) (4.78) (5.24) (4.52) (4.55) (4.98) (5.54) (5.57) (6.13)

SCORE (T2) 7.97** 8.00** 7.97* 3.66 3.69 2.62 12.63** 12.66** 14.01**

(3.33) (3.37) (4.41) (2.59) (2.62) (3.71) (5.07) (5.11) (6.15)

Constant 4.058*** 4.035*** 19.39 3.103*** 3.078*** 399.2 6.339*** 6.315*** -473.8

(1.12) (1.13) (1083.50) (0.53) (0.52) (917.92) (2.10) (2.11) (1393.95)

Observations 322 322 322 322 322 322 322 322 322

Adjusted R2 0.383 0.380 0.396 0.451 0.446 0.456 0.238 0.236 0.253

Order FE no yes yes no yes yes no yes yes

Controls no no yes no no yes no no yes

Notes: The table summarizes the average treatment effects of using no decision tool (Row 1) or SCORE
(Row 2) relative to being provided with SCORE plus PRAT (baseline category). Accuracy in risk prediction
is measured by the absolute difference between subjective and objective risk measures. Columns 1 to 3 use
the midpoint as measure for subjective risk, if a range is stated. Columns 4 to 6 use lower bounds and
Columns 7 to 10 use upper bound as measure for subjective risk, if subjects report a probability interval.
We control for order fixed effects and a set of covariates (i.e. age, gender, location of residence, semester of
studies work experience in health care prior to studies). Standard errors are clustered at the subject’s level.
Significance levels at 10%, 5% and 1% are reported by ***, ** and *, respectively.

Cumulative Distribution and Quantile Regressions We further aim to study the causal effect

of PRAT on risk assessment beyond average effects. To this end, we first investigate the cumulative

distribution functions of the difference between subjective and objective risks for each measure

of subjective expectations, stratified by treatment group. Figure 1.6 provides four key insights:

(1) Without the provision of any decision tool, students overestimate risk on an almost uniform

distribution. Only 10% of the responses fall into a range of +/-5 pp around 0. This holds for

each of the three measures for subjective risk. (2) Risk estimations in T2 are significantly more

precise. About 70% of the responses on average risks are in a range of +/-5pp around 0 (79%

lower bound; 67% upper bound). The findings indicate that SCORE is a well-working decision
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Figure 1.6: Cumulative Distribution
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Notes:. The figure illustrates the cumulative distribution functions of the differences between subjective and objective
risk measures, by treatment group and different measures for the subjective risk. The blue line represents the cumulative
distribution of accuracy in risk prediction in T1 (no decision tool), the green line in T2 (SCORE), and the red line in T3
(SCORE + PRAT), respectively.
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aid that enables students to make more informative risk assessments. (3) The use of PRAT in

addition to SCORE helps students to assess the vignettes’ risk even more precisely. We find that

about 90% of the responses on average risks fall in a range of +/-5pp around 0 (80% lower bound,

81% upper bound). (4) The gap in accuracy between risk assessment using SCORE versus PRAT

is especially large for the predicted upper bound of a vignette’s risk. This indicates that PRAT

particularly supports subjects to predict the maximum risk more precisely.

To quantify our findings, we run quantile regressions using 10th, 25th, 50th, 75th, 90th quantile (see

Appendix Table A.6). In line, with the insights derived from Figure 1.6, we find that using PRAT

particularly increases precision in risk assessment at the 90th quantile and in estimating the upper

bound of a vignette’s risk.

1.5.2 Treatment Choice

The results in Section 1.5.1 show that using PRAT enables students to improve accuracy in their

risk assessment. Since risk prediction is not an objective per se, but rather the first stage of a

decision making process, we focus in this section on the question whether and to what extent the

provision of PRAT alters treatment recommendations compared to treatment choices (i) without a

decision tools and (ii) with using SCORE.

Before turning to the empirical analysis, we seek to emphasize a few theoretical considerations:

First, the clinical guidelines classify patients’ risk into three broad categories that are used to

derive treatment recommendations (for more details see Section 1.3.1). For patients in the low-to-

moderate risk category the guidelines recommend to prescribe only some of the medical treatments

that the students are asked to evaluate in the survey, while for patients in the very high risk category

the guidelines recommend to apply all of the treatment options covered in the survey. Second, the

results in the previous section reveal that subjects primarily overestimate and hardly underestimate

the risk of cardiovascular mortality (see Figure 1.4). The use of decision tools helps subjects to

restrict the magnitude of overestimated risk levels. Hence, we expect that decision making without

using algorithms leads, if at all, to overtreatment, in the sense that subjects recommend a larger

set of medical treatments than is advised by the guidelines at a particular objective risk level. This

effect, however, can not be studied for vignettes in the very high risk category, since the guidelines

advise to prescribe in this risk category all treatment options considered in the survey already at

the vignette’s objective risk level. Therefore, we analyze the impact of using decision tools on

treatment choices for each risk category separately. Finally, it is worthwhile to mention that we

intentionally did not inform subjects about the guideline’s risk categories and respective treatment

recommendations to avoid anchoring.

Descriptive Statistics Table 1.5 and Table 1.6 summarize the fraction of vignettes that students

advise to undergo a particular medical treatment (i.e. drug and/or behavioral treatment) or re-
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fer to a cardiologist, by treatment status and risk category (see Table 1.1 for information on the

classification of vignettes into different risk categories).

We find almost no variation in the recommended intake of antihypertensive drugs and lifestyle

advice across treatment groups and risk categories. Students recommend the prescription of anti-

hypertensive medication and a change in lifestyle in almost 100% of the vignette scenarios. The

results indicate that irrespective of the availability or the type of the decision tool, medical students

recommend the prescription of antihypertensive medication for vignettes with low-to-moderate

cardiovascular risk, while clinical guidelines do not advice to prescribe medication in this risk cat-

egory. This finding, however, may be explained by the fact that the vignette with low-to-moderate

risk levels has a fairly small total risk of cardiovascular mortality of only 1%, but suffers from high

blood pressure (i.e. systolic blood pressure of 180mmHg). The results on hypertensive treatment

raise a very interesting question, namely how much emphasis decision makers put on the risk di-

mension that is targeted by a specific treatment (here: blood pressure) relative to the total risk of a

health outcome when making treatment choices.

Next, we investigate the impact of the use of decision tools on the recommended intake of statins.

In line with the theoretical considerations, we find that the use of decision tools lowers the share

of vignettes in the low-to-moderate risk category that is recommended to take statins, whereas

treatment recommendations in the very high risk category do not differ across treatment status.

Table 1.5: Treatment Recommendations - Drug and Behavioral Treatment

Chol. Drug BP. Drug BP. and Chol. Drug Lifestyle Advice

T1 T2 T3 T1 T2 T3 T1 T2 T3 T1 T2 T3

Low to Moderate Risk (in %) 48 29.17 28.57 92 100 100 48 29.17 23.53 100 100 92.86

High Risk (in %) 62 39.58 48.39 86 97.92 93.55 58 39.58 41.18 100 100 100

Very High Risk (in %) 56 54.17 56.25 90 95.83 96.88 50 52.08 50 100 97.92 100

Notes: The table reports the fraction of vignettes that was recommended to undergo a particular medical treatment
within each risk category and by treatment group. “BP. Drug” denotes medication that lowers the blood pressure and
“Chol. Drug” describes medication that aims at lowering the cholesterol level.

Finally, we investigate the likelihood that medical students recommend a vignette to see a cardi-

ologist. The results show that the fraction of vignettes in the low-to-moderate risk category that

is referred to a specialist decreases from T1 to T3 (60% in T1, 33% in T2, and 14% in T3). In

contrast, the share of vignettes in the very high risk category that is advised to see a specialist

increases from T1 to T3 (48% in T1, 60% in T2, and 75% in T3). The pattern can be explained by

increasing precision in risk prediction from T1 to T3.
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Table 1.6: Treatment Recommendations - Referral to a Specialist

T1 T2 T3

Yes No Don’t Know Yes No Don’t Know Yes No Don’t Know

Low to Moderate Risk (in %) 60.00 32.00 8.00 33.33 62.50 4.17 14.29 71.43 14.29

High Risk (in %) 44.00 48.00 8.00 43.75 52.08 4.17 48.39 32.26 19.35

Very High Risk (in %) 48.00 42.00 10.00 60.42 35.42 4.17 75.00 18.75 6.25

Notes: The table reports the fraction of vignettes referred to a specialist, stratified by treatment group and risk category.

Regression Analysis To quantify the impact of using PRAT on treatment choice, we run binary

outcome regression models using treatment recommendations as outcome variables (see Appendix

Table A.7).

Considering the total sample of vignettes (irrespective of the risk category), we find at most a weak

significant impact of the provision of SORE or PRAT on treatment choices (Columns 1 to 4). The

results, however, may hide important effects as the provision of decision tools may decrease the

likelihood of medical interventions (i.e. medication and/or referral to a specialist) for low-to-

moderate risk vignettes, while it may not affect treatment recommendations for vignettes in the

high/very high risk category. To this end, we run the analysis for each risk category separately.

In the low-to-moderate risk category, we find that students in T1 (no tool) are significantly more

likely to recommend medical interventions compared to students in T3 (PRAT). Students in T2

(SCORE) also tend to recommend more often medical treatments than students in T3, but not at

a significant level (Columns 5 to 8). In the high and very high risk category we find as expected

that neither the availability nor the type of decision tool affects the treatment recommendations

(Columns 9 to 16).

Overall, we want to emphasize that our sample size is quite small, particularly once we stratify

by risk category and thus, we can at most give suggestive evidence for the impact of PRAT on

treatment choices due to a lack of statistical power (see Section 1.6 for a detailed discussion).

1.5.3 Precise and Imprecise Subjective Probabilities

In Section 1.5.1, we focused on post-probe responses to evaluate accuracy in risk assessment.

In this section, we discuss the impact of decision tools on people’s nature of reporting precise

and imprecise expectations. To this end, we first analyze whether the provision and the type of

decision tool affect subject’s choice to express precise or imprecise expectations of cardiovascular

mortality. Second, we investigate whether the availability of decision tools alters the relationship

between initial and post-probe responses.
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Patterns of Precise and Imprecise Expectations Panel A in Table 1.7 shows the empirical dis-

tribution of three probabilistic response types – (i) those who state that their initial response were

exact numbers (ii) those who initially round/approximate and who report precise numbers after

probing (iii) those who initially round/approximate and state probability intervals after probing.

These statistics are shown separately for subjects in T1, T2, and T3.

About 60 to 80% of the subjects in T1 express precise probabilities after probing, while about

half of the subjects in T2 and only about one third of the subjects in T3 report precise estimates.

One explanation for the particularly high fraction of subjects that express precise probabilities in

T1 (also compare with Table 1 in Giustinelli 2019) may be the survey design of our experiment -

subjects in T1 learn that once they state that they meant an “exact number” in the initial question,

no follow-up questions are asked. Since the survey is quite long23 and, subjects in T1 are probed

for each vignettes twice (i.e. conditional on 5 and 6 risk factors), they may fatigue of being

probed and thus, report that they meant an exact number to complete the survey faster.24 Subjects,

however, do not get feedback on the accuracy in risk assessment during the experiment. Thus,

learning effects on the individual performance can be excluded. Besides, the survey design does

not allow us to define the fraction of subjects in T3 that initially round/approximate and state

an exact number in the post-probe question.25 Overall, we find no significant differences in the

response type between T2 and T3, while subjects in T1 are more likely to report exact numbers

than subjects in T2 and T3 (see Appendix Table A.8, Columns 1 to 3).

Next, we analyze whether the provision of algorithm-based decision tools affects the extent of

imprecisely stated beliefs among subjects that answered the post-probe question with a probability

range. To do so, we compare the empirical distribution of the interval widths of stated probability

ranges among students with imprecise probabilities across treatment groups.

Panel B in Table 1.7 summarizes the 1st decile, median, and 9th decile of the respective distri-

bution (see Appendix Figure A.2 for a graphical illustration of the empirical distribution of the

interval width, per treatment group). We find that the interval width decreases in the provision of

decision tools. More specifically, the average interval width without the provision of a decision

tool amounts to 20pp, using SCORE decreases it to 14pp, and under provision of PRAT it shrinks

further to 4pp. The decrease in the interval width suggests that subjects feel more certain about

reporting expectations of the vignette’s cardiovascular mortality, once decision tools are made

available and, that certainty in predictions increases in the number of observed vignettes’ charac-

teristics that are covered by the available decision tool. Summing up, we observe that the provision

23On average students need 40min to complete the survey; see Table 1.2, Panel C
24To investigate whether subjects respond to the survey design, we calculate the fraction of individuals in T1 that

state precise probabilities for the first and second vignette shown to them. We find that a smaller share of subjects state
precise numbers for the first and second vignette (i.e. 5 RF: 48% exact point, 4% rounding & 48% interval; 6 RF: 72%
exact point & 28% interval) than for the full sample of 5 vignettes (see Table 1.7).

25In the survey, subjects are first asked to state minimum and maximum risk with and without obesity and then after
obtaining the bounds calculated by PRAT may directly choose to report an exact number or an interval (see Section
1.3.3).
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Table 1.7: Classification of Response to Risk Assessments into Probabilistic Response Types and
Width of Interval among Subjects with Imprecise Probability

T1 T2 T3

5 Risk Factors 6 Risk Factors

Panel A: Response Type

Exact Point (in %) 64.00 81.60 56.67 33.77

Rounding (in %) 3.20 1.60 0.83 –

Interval (in %) 32.80 16.80 42.50 66.23

Observations 125 125 120 77

Panel B: Interval Width

1st Decile 10 10 4 1

Median 20 20 14 4

9th Decile 70 65 96 15

Observations 41 21 51 51

Notes: Panel A summarizes the response type by treatment group. Panel B describes the em-
pirical distribution of the interval widths among subjects that answered the post-probe question
with a probability range.

of PRAT significantly lowers the stated interval width and thus, the extent of imprecision in risk

assessment (see Appendix Table A.8, Columns 4 to 6).

Relationship between Initial and Post-Probe Expectations Next, we turn to investigate the

relationship between initial and post-probe expectations of cardiovascular mortality, stratified by

response type and treatment status.

Panel A in Appendix Table A.9 and Appendix Table A.10 summarize the respective empirical

distribution of initial and post-probed expectations.26 Figure 1.7 graphically illustrates the rela-

tionship between initial and post-probe response among subjects that state imprecise probabilities.

Since the results in Appendix Table A.9, Appendix Table A.10 and Figure 1.7 convey the same

main findings, we discuss them together.

We first focus on the effect of the availability of decision tools on the relationship between initial

and post-probe expectations among subjects that stated imprecise probabilities. We find that sub-

jects in T2 and T3 are substantially more likely to report a lower bound of 0% after probing than

subjects in T1 (5% in T1, 39% in T2, and 31% in T3). The provision of SCORE does not alter

the share of subjects stating an upper bound of 100% compared to T1 (∼ 30% in T1 and T2). In

contrast, subjects in T3 are significantly less likely to report 100% as upper bound (∼ 6% in T3).
26As subjects rarely rounded/approximated in the initial question and stated a precise number in the post-probe

question, we do not consider this case in Table A.9 and Table A.10.
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Figure 1.7: Relationship Initial versus Post-Probe Response
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Notes: The figure illustrates the relationship between initial responses and post-probe expectations among subjects that
stated a range in the probing question. LB (UB) denotes the lower (upper) bound of the stated interval. In T1 and T2,
the initial response is a point estimate, while it is a range in T3.
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Taking into account that the vignettes’ objective risk is at most 11%, the results suggest that the

provision of PRAT significantly improves assessing the maximum risk level.

Turning to the impact of decision tools on precisely reported probabilities, we find that students in

T2 and T3 use the value predicted by SCORE as an anchor. In 15% (27%) of the responses in T2

(T3), subjects ignore additional information on obesity and stick to the risk calculated by SCORE,

and about 75% of precisely reported responses in T2 and T3 fall into an interval defined by the

risk of SCORE plus/minus 5pp.

1.5.4 Actuarial versus Clinical Judgment

In the previous sections, we evaluated the performance of SCORE and PRAT placed in the hands

of humans. This section discusses our results in the light of prior literature that compares actuarial

or algorithm based predictions with informal clinical judgment (see e.g. Camerer and Johnson

1991; Dawes et al. 1989; Kleinberg et al. 2018). This body of research addresses a type of “man

versus machine” question rather than questioning how humans use predictive algorithms. We

add to this strand of literature by assessing the performance of the accuracy in risk prediction of

SCORE and PRAT, if subjects had fully complied with the risk predicted by SORE or PRAT. To

this end, we compare risk predictions with and without subject’s discretional choice.

To begin, we analyze risk assessment maintaining the current status quo (i.e. without the avail-

ability of PRAT) in that a physician may stick to the existing tool SCORE that considers five,

predefined risk factors or may base prediction solely on clinical judgment. The results confirm

previous findings in psychological research: First, risk predictions based on algorithms outper-

form ones made by clinical judgment using the same patient attributes (see Figure 1.8, left bars).

Second, the gap in performance remains even when subjects have an informational edge, in the

sense that they observe additional predictive attributes that are not included in the decision aid. In

line with the so-called “broken leg hypothesis”, we observe that subjects put too much emphasis

on the additional attribute relative to the remaining risk factors (Dawes et al. 1989) (see Figure 1.8,

right bars). Overall, the results based on a sample of medical students align with previous findings

that argue that decision makers should rather ignore the additional characteristics than attempt to

subjectively include them into risk assessment, as individuals tend to put too much emphasis on

the additional information relative to the information included in the existing tool.

Next, we investigate whether the use of PRAT leads to efficiency gains based on the performance

of the algorithm. A classical “man versus machine” comparison is impossible in the case of PRAT,

as human beliefs serve as input into the predictive algorithm. Therefore, we assess accuracy in

risk prediction, if subjects had fully complied to the midpoint of the interval predicted by PRAT.

To calculate the prediction based on PRAT, we consider the following three settings: (i) We take

subjects’ beliefs about the vignette’s maximum and minimum risk elicited in the survey. (ii) We

assume that subjects have no knowledge on the vignette’s maximum or minimum risk. Without any
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knowledge, subjects may choose a value of 0 for vignette’s minimum risk and the risk predicted by

SCORE as maximum risk if the vignette is not obese. Analogously, subjects may choose a value of

1 as vignette’s maximum risk, and the risk predicted by SCORE as minimum risk, if the vignette

is obese. (iii) We calculate PRAT based on a sample of students with advanced knowledge on

cardiovascular mortality risk. In line with the theoretical considerations based on Manski (2018),

it is plausible to assume that subjects with advanced knowledge may state beliefs on the vignette’s

minimum and maximum risk with smaller interval width. Hence, in this setting, we calculate

PRAT based on a subsample of medical students that stated beliefs with an interval width smaller

than the 25th percentile of the empirical distribution.

Figure 1.8: Risk Prediction under Status-Quo Conditions (without PRAT)
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Notes: The bars display the mean absolute difference between the risk of cardiovascular mortality predicted by
evidence-based algorithms (SCORE) or clinical judgment and the objective risk conditional on 5 or 6 risk factors.
The errors bars present the respective standard errors.

Figure 1.9 summarizes the average absolute difference between risk predicted based on clinical

judgment and/or evidence-based tools and the objective risk level. In scenarios with human dis-

cretion, the provision of PRAT leads to significant efficiency gains compared to risk assessment

without decision aid or with SCORE (as described in Section 1.5.1). However, if subjects had fully

complied to the risk predicted by SCORE and thus, ignored the additional information on obesity,

they would have performed even better than by using PRAT with discretional choice. The per-

formance of PRAT without human discretion (i.e. subjects stick to the midpoint of the predicted

interval) depends substantially on people’s knowledge how to place bounds on the vignette’s min-
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imum and maximum risk. We find that advanced knowledge on cardiovascular mortality risk

improves accuracy in risk prediction by about 2pp compared to a setting without any knowledge

on cardiovascular mortality risk. Overall, the results suggest that risk assessment based on the

algorithm without discretional choice outperforms prediction under discretion.

Figure 1.9: Actuarial vs. Clinical Judgment
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Notes: The bars display the mean absolute difference between the risk of cardiovascular mortality predicted by
evidence-based algorithms (SCORE/PRAT) or clinical judgment and the objective risk. The errors bars present the
respective standard errors.

1.6 Discussion

This study provides evidence that the provision of PRAT in addition to SCORE improves risk

assessment. The study is, however, subject to several limitations. First, the sample consists of

medical students and it is relatively small. Medical students have some clinical experience, but

certainly less than practicing physicians. Therefore, it is plausible that physicians assess the risk

of cardiovascular mortality more precisely than medical students. This would hold across all three

treatment groups and thus, it is not clear whether and to which extent PRAT enables physicians

with profound clinical experience to improve accuracy of risk prediction (i) compared to risk

assessment without the provision of a decision tool and (ii) under the provision of SCORE. While

our data show that the use of PRAT has a positive effect on risk assessment in a sample of medical
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students, additional experiments with practicing physicians are needed to evaluate the use of PRAT

in clinical practice.

Second, we study the use of PRAT in a fairly simplified setup, as the risk factors are well de-

fined and we provide subjects with only one risk factor additionally to those included in SCORE.

In clinical practice, however, physicians are often confronted with more than one risk modifying

factor in addition to those included in an existing decision tool. This complicates placing bounds

within the framework of PRAT, particularly if the effect of the additional risk factors for cardio-

vascular mortality goes in different directions (e.g. if a patient has diabetes, but is not obese). In

this scenario, the physician must weigh the relative risk of diabetes against the relative risk of not

being obese. This adds another layer of complexity to the decision making process and it may

be worthwhile to assess PRAT in the hands of physicians under the provision of more than one

additional risk factor.

A related question that remains open in our study is whether and to which extent the improvement

in risk accuracy in T3 can be explained by the provision of the risk predicted by PRAT or by

triggering some reflection process through the elicitation mode. More specifically, the elicitation

procedure in T3 requires decision makers to think in a structured and quantitative way about

maximum and minimum risk. This, in turn, may induce some reflection process that may explain

alone without the actual information on the risk predicted by PRAT an increased accuracy in risk

prediction. One approach to disentangle these effects, is to add an additional treatment group to

the experiment in that physicians are asked to report their beliefs on the minimum and maximum

risk of cardiovascular mortality, but they are not informed about the risk predicted by PRAT.

Furthermore, it might add value to elicit treatment recommendations not as discrete choice (yes/no),

but rather as probability on a scale from 0 to 100 in the survey among physicians. This would allow

us to investigate the impact of using risk assessment tools on treatment choices in a more granular

manner.

Finally, it is worthwhile to comment on the estimation of the decision tool SCORE and its recom-

mended application: The sample used to estimate SCORE includes individuals with established

cardiovascular diseases except for those with previous history of heart attacks, as well as individu-

als with chronic diseases that relate to the risk of cardiovascular mortality; e.g. diabetes or chronic

kidney disease (Conroy 2003). The use of SCORE, however, is explicitly recommended only to

apparently healthy individuals, i.e. people without established cardiovascular diseases, chronic

kidney disease or any risk modifying pre-condition, such as cancer, diabetes with severe organ

damage (Piepoli et al. 2016). Hence, the calculated risk level is based on a systematically different

sample than the sample it is supposed to be applied to. More precisely, it is plausible to assume

that SCORE on average overestimates risk for apparently healthy individuals. Analogously, the

estimation of SCORE includes individuals aged between 19 and 80 years, whereas its application

is intended to an age range from 40 to 65 years. Overall, as the sample used to estimate SCORE in

the first place and the sample of patients to whom SCORE is supposed to be applied to may differ,
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SCORE may not predict risk fully accurately. Despite of these limitations, we use SCORE in our

analysis, as it is the risk assessment tool currently recommended by the European guidelines on

cardiovascular disease prevention. However, we emphasize that PRAT could easily be applied to

any other existing risk assessment tool.

1.7 Conclusion

Improving risk prediction and treatment choice is a key priority in health policy. Particularly in

preventive health care accurate risk predictions may reduce disease prevalence and thus, individual

and also economic burden. Algorithm-based decision tools are one approach that may enable

physicians to make more informative and evidence-based choices.

We present findings from a new risk assessment tool called “Personalized Risk Assessment Tool”

(PRAT) that allows physicians to incorporate their clinical experience on the impact of additional

risk factors in a structured way. Leveraging an online experiment with medical students, we doc-

ument that the new tool significantly improves precision in risk assessment compared to SCORE,

a decision aid currently applied in clinical practice. We uncover two mechanisms that explain the

increased accuracy in risk estimation achieved through the provision of PRAT: First, PRAT helps

students to bound the vignette’s maximum risk significantly better than using only SCORE. Sec-

ond, PRAT supports students holding imprecise beliefs on the risk of cardiovascular mortality to

state tightened probability intervals. This indicates that students feel more certain about reporting

expectations of the patient’s cardiovascular mortality when using PRAT. We further provide sug-

gestive evidence that the use of PRAT enables students to make treatment choices better aligned

with treatment recommendations in clinical practice guidelines.

Overall, our findings underscore the contribution of algorithm-based prediction tools to improving

risk assessment in health care.
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Appendix A

A1 Design of the Experiment

Supplementary Information on the Construction of the Vignettes

Table A.1: Risk Prediction Models

Dep. Var.: CVD Mortality Dep. Var.: Obesity

5 Risk Factors 6 Risk Factors

Currently Smoking (=1) 0.269** 0.279** -0.045
(0.119) (0.119) (0.042)

Cholesterol Level (in mmol/l) 0.021 0.024 0.029*

(0.039) (0.039) (0.016)

Systolic Blood Pressure (in mmHg) 0.005** 0.005** 0.014***

(0.002) (0.002) (0.001)

Age (in years) 0.061*** 0.061*** 0.008***

(0.006) (0.007) (0.002)

Male (=1) 0.308*** 0.322*** -0.101***

(0.098) (0.099) (0.038)

Obesity (=1) 0.113
(0.104)

Constant -6.788*** -6.824*** -3.242***

(0.513) (0.523) (0.135)

Observations 6274 6274 6274
Pseudo R2 0.2702 0.2713 0.0738

Notes: The table presents the estimated coefficients derived in the risk prediction models using Probit
regression. Calculations are based on data from the RKI study (i.e. baseline wave and mortality
follow-up). The dependent variable is in Columns 1 and 2 cardiovascular mortality and in Column 3
obesity. Significance levels at 10%, 5% and 1% are reported by ***, ** and *, respectively.
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To calculate the vignettes’ objective risk level, we insert the vignettes’ risk factors presented in

Table 1.1 into Equation A.1 and A.2 and predict the vignettes’ risk level conditional on five and

six risk factors, respectively.

Pr(Y = 1|x = k) = Φ(−6.788 + 0.269 ∗DSmoking + 0.021 ∗ Cholesterol Level

+0.005 ∗ Blood Pressure + 0.061 ∗ Age + 0.308 ∗DMale)
(A.1)

Pr(Y = 1|x = k,w = j) = Φ(−6.824 + 0.279 ∗DSmoking + 0.024 ∗ Cholesterol Level

+0.005 ∗ Blood Pressure + 0.061 ∗ Age + 0.322 ∗DMale + 0.113 ∗DObese)
(A.2)

In addition, we use the data from the RKI study to calculate the vignettes’ probability of being

obese conditional on age, gender, cholesterol level, systolic blood pressure, and smoking habits.

This provides us with the probability P (w = obese|k) which is used as an input factor in the

algorithm of PRAT (see Equation 1.6a and 1.6b). In doing so, we insert the vignettes’ risk factors

into Equation A.3.

Pr(w = 1|x = k) = Φ(−3.242− 0.045 ∗DSmoking + 0.029 ∗ Cholesterol Level

+0.014 ∗ Blood Pressure + 0.008 ∗ Age − 0.101 ∗DMale)
(A.3)
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Supplementary Information on the Experimental Procedure

Figure A.1: Elicitation of Probabilistic Beliefs

Initial Question

Follow-up
Question 1

Follow-up
Question 2

Percentage - chance
of CVD mortality

Rounded/
Approximated

Exact
Number

Interval
Risk between x and y

Exact
Number

Notes: The figure presents the elicitation procedure of probabilistic beliefs used to distinguish between subjects holding
precise beliefs (i.e. subjects stated an exact number in the post-probe questions) and subjects holding imprecise beliefs
(i.e. subjects stated a probability interval in the post-probe question).

Supplementary Information on Survey Questions

Survey Questions on Treatment Recommendations: Based on your risk assessment, which

treatment(s) would you recommend the patient?

1. Medication to lower the blood pressure (yes/no)

2. Medication to lower the cholesterol level (yes/no)

3. Lifestyle advice (yes/no)

Referral: Would you refer the patient to a cardiologist? (yes/no/don’t know)
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A2 Data and Sample Description

Table A.2: Sample Flow and Attrition by Treatment Group

No Decision Tool (T1) SCORE (T2) SCORE + PRAT (T3)

Started with survey 83 81 75

Completed survey on demographics 46 36 47

Started with 1st vignette 40 29 31

Completed 1st vignette 33 29 21

Started with 2nd vignette 29 27 21

Completed 2nd vignette 29 27 1527

Started with 3rd vignette 26 24 17

Completed 3rd vignette 26 24 16

Started with 4th vignette 25 24 17

Completed 4th vignette 25 24 16

Started with 5th vignette 25 24 17

Completed 5th vignette 25 24 16

Survey on SCORE 25 24 17

No. of Completed Survey 25 24 16 28

No. of Completed Vignettes in Completed Surveys 125 120 77 29

No. of Completed Vignettes in Total Sample 138 128 84

Notes: The table reports the total number of medical students that completed different stages of the survey,
stratified by treatment group.

27If participants did not respond according to the following monotonicity assumption: Pmin(x = k,w =
not obese) ≤ Pmax(x = k,w = not obese) ≤ P SCORE ≤ Pmin(x = k,w = obese) ≤ Pmax(x = k,w = obese)
within 3 attempts, they were directly led to assess the subsequent vignettes’ risk (i.e. participants may not complete
survey on risk assessment for one particular vignette but may continue with survey).

28One participant never answered according to the monotonicity assumption. Hence, the participant completed the
survey without assessing any of the 5 vignettes’ risk.

29Thirteen participants assessed risk in line with the monotonicity assumption within 3 attempts for all 5 vignettes.
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Table A.3: Characteristics of Attritors

Sample Attr. Def. 1 Attr. Def. 2 Diff. Sample - Attr. 1 Diff. Sample - Attr. 2

Mean S.D. Mean S.D. Mean S.D. p-value p-value

Year of Birth (in years) 1995.58 3.92 1994.99 3.71 1994.86 3.72 0.35 0.28

Gender (male = 1) 0.29 0.46 0.35 0.48 0.34 0.48 0.50 0.53

Semester 6.46 2.87 6.73 2.52 6.48 2.52 0.56 0.98

Location of Residence (Bavaria =1) 0.82 0.39 0.35 0.48 0.83 0.38 0.00 0.85

Preclincal Period - Internship in Cardiology/Internal Medicine 0.61 0.49 0.50 0.50 0.52 0.50 0.21 0.29

Clincal Period - Internship in Cardiology/Internal Medicine 0.62 0.49 0.84 0.37 0.84 0.37 0.01 0.01

Work experience 0.17 0.38 0.38 0.49 0.38 0.49 0.01 0.01

Observations 65 174 64 239 129

Notes: Columns 1 and 2 show the mean and standard deviation in the sample that completed the survey. Columns 3 to
6 present the mean and standard deviation in the sample of attritors that left the survey before completion. We use two
alternative definitions for the sample of attritors: (i) subjects that started the survey, but stopped the questionnaire at any
point before completion, i.e. Definition 1, (ii) subjects that finished the first part of the survey but left the survey before
completion, i.e. Definition 2. Columns 7 and 8 show the p-values of the differences in means between the different
samples.

Table A.4: Characteristics of Attritors by Treatment Group, Definition 1

Attrition T1 Attrition T2 Attrition T3 Diff. T1-T2 Diff. T1-T3 Diff. T2-T3

Mean S.D. Mean S.D. Mean S.D. p-value p-value p-value

Year of Birth 1995.85 2.67 1994.94 4.38 1994.28 4.04 0.40 0.09 0.60

Gender 0.26 0.45 0.29 0.47 0.45 0.51 0.81 0.13 0.30

Semester 6.80 2.87 6.60 2.69 6.74 2.21 0.83 0.93 0.85

Preclincal Period of Studies - Internship in Cardiology/Internal Medicine 0.52 0.51 0.46 0.52 0.50 0.51 0.73 0.87 0.82

Clincal Period of Studies - Internship in Cardiology/Internal Medicine 0.88 0.34 0.88 0.35 0.80 0.41 1.00 0.55 0.64

Residence of Location 0.41 0.50 0.23 0.42 0.41 0.50 0.03 0.94 0.04

Work experience in health care prior to studies 0.24 0.44 0.33 0.49 0.48 0.51 0.57 0.08 0.38

Observations 58 57 59 115 117 116

Notes: The table compares sociodemographic characteristics of attritors by treatment status using definition 1 for the
sample of attritors. Columns 1 to 6 report the mean and the standard deviation in the sample of attritors, stratified by
treatment status. Columns 7 to 9 show the p-values of the differences in means between the different samples.

49



CHAPTER 1 – IMPROVING RISK ASSESSMENT AND TREATMENT CHOICE

Table A.5: Characteristics of Attritors by Treatment Group, Definition 2

Attrition T1 Attrition T2 Attrition T3 Diff. T1-T2 Diff. T1-T3 Diff. T2-T3

Mean S.D. Mean S.D. Mean S.D. p-value p-value p-value

Year of Birth 1995.90 2.91 1994.92 4.06 1994.13 4.01 0.42 0.09 0.57

Gender 0.29 0.46 0.17 0.39 0.45 0.51 0.46 0.24 0.09

Semester 6.29 2.83 6.09 2.88 6.74 2.21 0.86 0.52 0.44

Preclincal Period of Studies - Internship in Cardiology/Internal Medicine 0.52 0.51 0.55 0.52 0.50 0.51 0.91 0.87 0.80

Clincal Period of Studies - Internship in Cardiology/Internal Medicine 0.88 0.34 0.88 0.35 0.80 0.41 1.00 0.55 0.64

Residence of Location 0.90 0.30 0.83 0.39 0.77 0.43 0.56 0.23 0.68

Work experience in health care prior to studies 0.24 0.44 0.33 0.49 0.48 0.51 0.57 0.08 0.38

Observations 21 12 31 33 52 43

Notes: The table compares sociodemographic characteristics of attritors by treatment status using definition 2 for the
sample of attritors. Columns 1 to 6 report the mean and the standard deviation in the sample of attritors, stratified by
treatment status. Columns 7 to 9 show the p-values of the differences in means between the different samples.
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A3 Results

Table A.6: Treatment Effects of the Provision of Decision Tools on Accuracy in Risk Prediction,
Quantile Regression

Abs. Diff. between Subj. & Obj. Risk

Midpoint Lower Bound Upper Bound

10th Quantile

No Decision Tool (T1) 5.830** 5.830** 5.571** 4.670** 4.670** 4.709** 5.790*** 5.790** 5.489**

(2.31) (2.34) (2.23) (1.81) (1.83) (2.02) (2.22) (2.41) (2.33)

SCORE (T2) 0.170 0.170 -0.114 -0.100 -0.100 -0.0710 0.200 0.200 -0.202

(0.18) (0.18) (0.27) (0.08) (0.08) (0.18) (0.19) (0.19) (0.28)

Constant 0.250*** 0.250*** 60.28 0.250*** 0.250*** -9.957 0.290** 0.290** -9.764

(0.07) (0.06) (61.73) (0.04) (0.06) (23.92) (0.12) (0.12) (83.58)

25th Quantile
No Decision Tool (T1) 18.26*** 18.26*** 17.85*** 14.48*** 14.48*** 14.06*** 17.90*** 17.90*** 17.81***

(4.24) (4.10) (4.21) (3.57) (3.65) (3.56) (4.33) (4.55) (4.49)

SCORE (T2) 0.500* 0.500* -0.304 0.240 0.240 -0.387 0.160 0.160 -0.274

(0.30) (0.27) (0.39) (0.30) (0.30) (0.34) (0.25) (0.25) (0.38)

Constant 0.490** 0.490** 130.8* 0.510** 0.510** -7.870 0.850*** 0.850*** 140.0

(0.20) (0.19) (74.90) (0.23) (0.24) (80.52) (0.17) (0.17) (133.39)

50th Quantile

No Decision Tool (T1) 42.26*** 42.26*** 42.06*** 37.43*** 37.43*** 37.08*** 43.50*** 43.50*** 43.86***

(4.51) (4.53) (4.94) (4.51) (4.21) (4.39) (4.48) (4.58) (4.77)

SCORE (T2) 0.860 0.860 1.175 0.430 0.430 -0.125 2.260*** 2.260*** 3.459*

(0.61) (0.53) (0.98) (0.49) (0.45) (0.57) (0.81) (0.82) (1.97)

Constant 1.490*** 1.490*** -55.11 1.320*** 1.320*** 197.4 1.490*** 1.490*** -93.15

(0.24) (0.20) (135.98) (0.33) (0.32) (311.61) (0.31) (0.32) (278.37)

75th Quantile

No Decision Tool (T1) 57.33*** 57.33*** 63.44*** 54.26*** 54.26*** 56.77*** 63.90*** 63.90*** 67.29***

(3.11) (3.15) (3.86) (3.16) (2.99) (3.27) (3.70) (3.76) (3.54)

SCORE (T2) 4.830 4.830 21.78** 0.500 0.500 2.947 11.23 11.23 27.29***

(7.67) (7.25) (9.63) (1.83) (1.63) (2.14) (10.46) (10.65) (8.95)

Constant 3.750*** 3.750*** -11.82 4.490*** 4.490*** 387.1 4.850*** 4.850*** -1048.9

(0.63) (0.60) (1017.09) (1.07) (1.00) (557.53) (1.01) (0.95) (1333.76)

90th Quantile

No Decision Tool (T1) 69.07*** 69.07*** 68.83*** 65.93*** 65.93*** 67.45*** 73.76*** 73.76*** 74.45***

(5.60) (5.87) (5.49) (2.81) (2.83) (3.10) (8.71) (9.38) (8.66)

SCORE (T2) 41.07*** 41.07*** 34.20*** 1.230 1.230 15.28* 79.86*** 79.86*** 74.55***

(5.68) (5.49) (5.65) (10.13) (10.17) (7.78) (14.26) (15.40) (13.81)

Constant 5.920 5.920 132.6 8.920*** 8.920*** -638.9 9.990 9.990 -2240.3

(4.55) (4.85) (1604.59) (1.00) (0.98) (1035.68) (7.56) (8.57) (2667.54)

Observations 322 322 322 322 322 322 322 322 322

Order FE no yes yes no yes yes no yes yes

Controls no no yes no no yes no no yes

Notes: The table summarizes the results of a quantile regression that investigates the effects of using no decision tool
(Row 1) or SCORE (Row 2) relative to being provided with SCORE plus PRAT (baseline category) on accuracy in risk
assessment. Accuracy in risk prediction is measured by the absolute difference between subjective and objective risk
measures. Columns 1 to 3 use the midpoint as measure for subjective risk if a range is stated. Columns 4 to 6 use the
lower bound and Columns 7 to 10 the upper bound as measures for subjective risk if a probability interval is stated. We
control for order fixed effects and a set of covariates (i.e. age, gender, location of residence, semester of studies, work
experience in health care prior to studies). Each column presents a separate regression. Results for all quantiles within
one column were jointly estimated. Standard errors are bootstrapped with 400 replications. Significance levels at 10%,
5% and 1% are reported by ***, ** and *, respectively.
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Table A.7: Treatment Recommendations

Full Sample Low-to-Moderate Risk Category High Risk Category Very High Risk Category

BP. Drug Chol. Drug BP.+ Chol Drug Referral Chol. Drug BP.+ Chol Drug Referral BP. Drug Chol. Drug BP.+ Chol Drug Referral BP. Drug Chol. Drug BP.+ Chol Drug Referral

No Decision Tool (T1) -0.0616 0.154* 0.141 -0.0158 0.305** 0.305** 0.561*** -0.0505 0.207* 0.185 -0.0845 -0.0783 0.0850 0.0547 -0.241

(0.05) (0.09) (0.09) (0.11) (0.14) (0.14) (0.15) (0.07) (0.13) (0.12) (0.13) (0.07) (0.08) (0.08) (0.15)

SCORE (T2) 0.0209 0.0441 0.0566 -0.0169 0.0991 0.0991 0.218 0.0658* 0.00927 0.0193 -0.0462 -0.0175 0.0838 0.0854 -0.115

(0.04) (0.10) (0.10) (0.11) (0.15) (0.15) (0.14) (0.04) (0.14) (0.14) (0.14) (0.06) (0.09) (0.09) (0.14)

Observations 322 322 322 296 63 63 58 129 129 129 117 130 130 130 121

Log-Likelihood -66.122 -209.030 -209.309 -192.676 -35.399 -35.399 -29.757 -30.553 -76.655 -77.482 -72.462 -24.897 -84.558 -85.317 -68.619

Pseudo R2 0.118 0.063 0.060 0.056 0.144 0.144 0.249 0.131 0.143 0.133 0.106 0.172 0.054 0.053 0.135

Notes: The table summarizes the results of a Probit regression model that investigates the effects of using no decision tool (Row 1) or SCORE (Row 2) relative to
being provided with SCORE plus PRAT (baseline category) on treatment choices. Average marginal effects are reported. Dependent variables: recommended intake
of blood pressure lowering drugs (BP Drug=1); recommended intake of cholesterol lowering drugs (Chol. Drug=1); recommended intake of blood pressure lowering
drugs and cholesterol lowering drugs (BP Drug and Chol. Drug=1); recommended referral to a cardiologist (Referral=1). Columns 1 to 4 include the full sample.
Columns 5 to 8 refer to vignettes with low-to-moderate risk. BP drug is in this risk category not considered, as 100% of vignette scenarios are recommended to take
antihypertensive medication in T2 and T3. Columns 9 to 12 include vignettes with high risk and Columns 13 to 16 with very high risk. All regressions control for
order fixed effects and a set of control variables (i.e. age, gender, location of residence, semester of studies, work experience prior to health care). Significance levels
at 10%, 5% and 1% are reported by ***, ** and *, respectively.
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Figure A.2: Empirical Distribution of the Interval Width, by Treatment Group
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Notes: The figure displays the kernel density of interval width among subjects stated imprecise probabilities, by
treatment group. Calculations are based on an Epanechnikov kernel function.
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Table A.8: Treatment Effects of the Provision of Decision Tools on Response Type and Interval
Width

Response Type Interval Width

No Decision Tool (T1) -1.346*** -1.375*** -1.210*** 19.40* 21.90** 22.80*

(0.38) (0.38) (0.39) (10.27) (10.15) (12.30)

SCORE (T2) -0.600 -0.613 -0.363 24.56*** 25.68*** 25.01***

(0.37) (0.37) (0.41) (7.74) (8.12) (8.50)

Constant -0.435 -0.755** -83.35 10.12*** 9.233*** -2370.0*

(0.29) (0.33) (50.98) (3.09) (3.18) (1233.35)

Observations 322 322 322 123 123 123

Adjusted R2 0.124 0.171 0.187

Pseudo R2 0.112 0.126 0.192

Order FE no yes yes no yes yes

Controls no no yes no no yes

Notes: The table summarizes the effects of using no decision tool (Row 1) or SCORE (Row 2) relative to
the use of SCORE plus PRAT (baseline category) on the probabilistic response type and the stated interval
width among subjects that report imprecise probabilities. Columns 1 to 3 display the results of an ordered
probit regression in that the discrete outcome variable defines the probabilistic response type (1 = subjects
that use in their initial response exact numbers; 2 = subjects that round/approximate initially and report
precise numbers after probing; 3 = subjects that round/approximate initially and state probability intervals
after probing). Columns 4 to 6 illustrate the results from an OLS regression. The dependent variable is
defined as the interval width among subjects that state imprecise probabilities of cardiovascular mortality
risk. We control for order fixed effects and a set of covariates (i.e. age, gender, location of residence,
semester of studies, work experience in health care prior to studies). Standard errors are clustered at the
subject’s level. Significance levels at 10%, 5% and 1% are reported by ***, ** and *, respectively.
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Table A.9: Treatment Groups 1 and 2 – Initial Response and Post-Probe Response

Treatment Group 1 Treatment Group 2

5 Risk Factors 6 Risk Factors 6 Risk Factors

Exact Number Imprecise Number Exact Number Imprecise Number Exact Number Imprecise Number

Initial = Post-Probe Initial Post-Probe Initial = Post Probe Initial Post-Probe Initial = Post Probe Initial Post-Probe

LB UB LB UB LB UB

Panel A: Description of reported values - Response Distribution

1st decile 5 10 0 20 9 30 20 40 2.5 4 0 9

Mean 31.5 51.75 40.41 69.43 44.04 55.86 47.14 76.67 13.36 13.96 5.27 39.96

Median 38.06 55 40 80 40 60 40 80 6 9 3 18

9th decile 72.5 90 80 100 80 85 80 100 50 30 10 100

0 (share in %) 0 0 14.63 0 0 0 4.76 0 0 0 39.22 0

50 (share in %) 7.50 7.32 4.88 0 4.90 0 0 4.76 2.94 0 0 0

100 (share in %) 1.25 0 0 31.71 0 0 0 33.33 0 0 0 27.45

SCORE (share in %) 1.25 7.32 2.44 0 1.96 0 0 0 14.71 0 27.45 15.69

SCORE +/- 5pp. (share in %) 13.75 7.32 12.2 0 9.8 0 0 0 72.06 62.75 60.78 25.49

Panel B: Accuracy in Risk Prediction

Obj. risk within a 5 points distance 16.25 - - 11.76 - - 83.82 - -

Obj. risk within a 10 points distance 23.75 - - 17.65 - - 88.24 - -

Obj. risk inside interval (share in %) - - 19.51 - - 4.76 - - 88.23

Obj. risk above UB (share in %) - - 0 - - 0 - - 0

Obj. risk above LB; mean distance betw. obj. risk & UB - - - - - - - - -

Obj. risk below LB (share in %) - - 80.49 - - 95.24 - - 11.76

Obj. risk below LB; mean distance betw. obj. risk & LB - - 43.98 - - 42.95 - - 15.16

Observations 80 41 41 41 102 21 21 21 68 51 51 51

Notes: The table describes the relationship between initial and post-probe response in T1 and T2. Panel A describes the distribution of reported values, by treatment
group and initial/post-probe question. LB denotes the lower bound and UB the upper bound for individuals that stated an interval in the post-probe question. Panel B
presents the accuracy in risk prediction, by treatment group and initial/post-probe question.
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Table A.10: Treatment Group 3 – Initial Response and Post-Probe Response

Initial Response Post-Probe Response

Min. w/o obesity Max. w/o obesity Min. with obesity Max. with obesity Exact Number Imprecise Number

LB UB

Panel A: Description of reported values - Response Distribution

0 (share in %) 18.18 0 0 0 0 31.37 0

50 (share in %) 0 0 0 0 0 0 0

100 (share in %) 0 0 0 0 0 0 5.88

SCORE 13 74 45.5 0 26.9 25.5 25.5

SCORE +/- 5pp. (share in %) 87 100 94.8 53.2 76.9 74.5 71

Panel B: Accuracy in Risk Prediction

Obj. risk within a 5 points distance - - - - 88.46 -

Obj. risk within a 10 points distance - - - - 92.31 -

Obj. risk inside interval (share in %) - - - - - 66.76

Obj. risk above UB (share in %) - - - - - 15.68

Obj. risk above LB; mean distance betw. obj. risk & UB - - - - - 1.12

Obj. risk below LB (share in %) - - - - - 17.65

Obj. risk below LB; mean distance betw. obj. risk & LB - - - - - 2.15

Observations 77 77 77 77 26 51 51

Notes: The table describes the relationship between initial and post-probe response in T3. Panel A describes the distribution of reported values, by treatment group and
initial/post-probe question. LB denotes the lower bound and UB the upper bound for individuals that stated an interval in the post-probe question. Panel B presents the
accuracy in risk prediction, by treatment group and initial/post-probe question.
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Chapter 2

Early Child Care and Influenza Epidemics:
Evidence from High Frequency Data

Abstract

Infectious diseases are a major burden on human health. Data from contact tracing

show that child care facilities are among the most common locations where airborne

diseases are spread. Yet empirical evidence on a causal impact of child care on the

spread of infectious diseases is scarce. This paper provides evidence on the transmission

of influenza as a consequence of the expansion of early child care in Germany. In a

difference-in-differences analysis I show that a 1 percentage point rise in the child care

coverage rate leads to a significant increase in the incidence rates of children by about

3%. To uncover the impact of the roll-out on age-specific transmission patterns, I de-

velop a semi-structural model of disease diffusion based on epidemiological work. I find

that disease transmission between children aged 0 to 2 and 3 to 6 significantly increases

in response to the expansion of child care. A counterfactual analysis shows that policy

interventions, such as mandatory vaccination before entry into child care and the closure

of child care during local outbreaks, would significantly reduce infection rates by up to

11%. Besides, mandatory vaccination policies would be cost-effective decreasing net

annual costs by about 20%.
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2.1 Introduction

Infectious diseases are a major burden on human health. Seasonal influenza, for instance, infects

more than 9% of the world’s population each year and imposes an annual economic burden of

approximately $16 billion in the United States and e800 million in Germany (Lambert and Fauci

2010; Molinari et al. 2007; Scholz et al. 2019). Exposure to infectious diseases is, therefore, costly

for society through multiple channels. These include increased health utilization, loss in hours

of schooling and work, long-lasting morbidity, and premature deaths (Almond and Mazumder

2005; Currie and Schwandt 2013; Kelly 2011; Schwandt 2017). Hence, a better understanding

of the locations where people acquire infections is crucial in informing policy to enact targeted

containment measures and thus, reduce costs on society.

Recent data from contact tracing show that the place number one where people get infected with

airborne-transmitted diseases are private households, followed by educational institutions such as

universities, schools, and child care facilities (Robert Koch Institute 2012, 2013).1 Simultaneously,

many OECD countries experienced a significant increase in the number of children attending

public child care in the last two decades (OECD 2020). If child care facilities indeed spur the

spread of infectious diseases, the expansion of public child care may impose unintended costs on

society. Work in medical literature shows that formal child care is related to increased infection

rates (e.g Ball et al. 2000; Ball et al. 2002; Côté et al. 2010). However, little is known whether

child care facilities and their organizational structure, such as group sizes and the age structure of

groups, causally affect the spread of infectious diseases.

This paper attempts to close that gap by providing causal evidence on the transmission of influenza

as a consequence of the staggered roll-out of early child care – care offered to children under the

age of 3 – in Germany. The study addresses two main questions: (i) What is the effect of the

expansion of early child care on the spread of influenza? (ii) What are the economic benefits of

policy interventions that aim to limit the spread of influenza within child care facilities? To do so,

I consider two potential policy interventions: the closure of child care centers during outbreaks

and mandatory vaccination before entry into public care.

To answer these questions, I use detailed high-frequency data recording daily cases of the inci-

dence of influenza in Germany, covering the period from 2005 to 2016. According to German law,

the diagnosis of influenza has to be reported to the national public health agency (Robert Koch

Institute) in order to monitor the spread of diseases within Germany. The data include information

on the day of diagnosis, county of residence, and date of birth of infected individuals. Importantly,

the data allow me to distinguish between age groups and thus, to study whether and to which ex-

tent the expansion of formal child care has heterogeneous effects on age-specific incidence rates.

1Appendix Figure B.1 shows the locations of infection with the flu that could be pinned down by the German health
authorities between 2005 and 2016 within Germany.
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Besides, the data describe the spatial and temporal diffusion of disease incidence and thus, allow

to uncover geographical differences in the impact of the roll-out on transmission patterns.

As a source of exogenous variation in child care, I exploit the staggered expansion of public child

care centers targeted at children below the age of 3 in West Germany2 between 2005 and 2016.

During that time period Germany heavily invested into the expansion of formal child care. As

a consequence, child care coverage rates increased on average by 20 percentage points (pp) per

county over the time period. I argue that – conditional on time and region fixed effects – the tim-

ing of the roll-out is unlikely to vary with county characteristics that relate to disease incidence.

This quasi-random variation results from varying and limited capacity of staff, infrastructure and

financing at the municipality level.3 My identification strategy is predicated on two empirical ob-

servations: First, the timing of the expansion is unrelated to the demographic and socio-economic

regional characteristics prior to the roll-out. This has been established, for example, by Bauern-

schuster et al. (2016). Second, I find no empirical evidence that parental incentives to consult a

physician, when a child falls ill, change as a co-movement of the roll-out. Hence, I can rule out

that my results are driven by selective reporting behavior.

I first run a staggered difference-in-differences (DiD) analysis, investigating whether and to which

extent yearly incidence rates change as a consequence of the expansion of child care. I find an

economically and statistically significant effect of early child care on the incidence rates of chil-

dren aged 0 to 2. More precisely, a 1pp rise in the child care coverage rate leads to an increase

in the incidence rates by about 3%. The treatment effect is driven by urban areas, while I find no

evidence for a significant impact of child care on infection rates in rural areas.

The DiD analysis provides reduced-form evidence on the impact of child care expansion on the

spread of infectious diseases. Next, I develop a dynamic, semi-structural model of disease diffu-

sion that builds on the Susceptible-Infected-Resistant Model (SIR) used in epidemiological work.

The model extends the DiD analysis in at least two ways: First, it allows me to estimate spatial and

temporal disease transmission patterns for various age groups and thus, to uncover policy-relevant

margins of heterogeneity. To do so, I estimate age-specific transmission rates and analyze how

these estimates respond to changes in child care coverage rates. Second, it provides me with a

framework to study the effect of policy interventions on disease incidence and also to evaluate the

economic benefits of these measures. Due to the dynamic structure of the model, a non-classical

measurement error in incidence rates may lead to biased estimates (Adda 2016).4 I address these

endogeneity concerns using an instrumental variables (IV) approach. To this end, I create a novel

2The analysis only includes regions in former West Germany (without Berlin), as the child care system is still
today substantially different in regions in the former German Democratic Republic compared to ones in former West
Germany.

3The expansion primarily took place at the municipality level, while the analysis is conducted at the county level.
4A non-classical measurement error may arise, since incidence rates are more likely measured with an error, once

infection rates are very high, and patients have to queue to see a physician. While a classical measurement error would
lead to attenuation bias, Adda (2016) shows in his work, that due to the dynamic structure of SIR model a non-classical
measurement error in the measure of infected and of susceptible individuals results in a complex error term, with serial
dependence.
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instrument based on lagged temperature. Temperature is a natural candidate to instrument in-

cidence rates of influenza, as influenza viruses are known to survive longer under cold and dry

conditions and weather conditions also determine socialization patterns (Deyle et al. 2016; Lowen

and Steel 2014).

In line with prior epidemiological work, I find that disease transmission primarily occurs within

the same age group. Children aged 0 to 2, however, are likely to spread influenza to children aged

3 to 6 and vice versa. The results show that transmission rates between these two age groups sig-

nificantly increase in response to a rise in child care coverage rates. This effect may be driven by

the institutional structure of child care facilities in Germany that often include mixed-age groups

with children up to the age of 6. The expansion also leads to an increase in infection rates of adults

providing evidence for spillover effects to the working population. In line with the findings of the

DiD analysis, I document significant differences in the impact of child care provision between

urban and rural areas on the spread of influenza. The findings suggest that there may exist sys-

tematic differences in the organizational structure of child care facilities between urban and rural

areas that determine distinct transmission patterns.

In a subsequent step, I evaluate two counterfactual policy interventions using the framework of

the SIR model that aim at limiting the spread of infectious diseases within child care facilities:

mandatory vaccination before entry into child care and the closure of child care facilities during

local outbreaks. I find that both policy measures significantly reduce infection rates by up to 11%.

A cost-benefit analysis of mandatory vaccination shows that the measure would be cost-effective

decreasing net annual costs by about 20% relative to the status quo.

This paper contributes to several strands of literature. First, it adds to a growing strand in eco-

nomics that investigates the impact of human behavior on the spread of infectious diseases. These

studies predominantly focus on the effect of economic activity and human mobility on disease

transmission patterns (e.g. Adda 2016; Fang et al. 2020; Glaeser et al. 2020; Hufnagel et al. 2004;

Oster 2005, 2012). While they study the incidence of different viruses such as HIV, influenza,

gastritis and SARS-CoV-19 virus in various political and social environments (e.g. Sub-Saharan

countries, Europe), they jointly show that travel intensity significantly increases infection rates.

However, less attention has been paid to the contribution of educational institutions such as schools

or public child care to the transmission of infectious diseases. Some studies show that school hol-

idays not only reduce incidence rates of children, but also of adults (Adda 2016; Cauchemez et

al. 2008). This finding underscores the importance to consider spillover effects to other age groups

than children when evaluating the impact of educational institutions on disease transmission pat-

terns. However, these studies use relatively broad age groups5 and thus, can not draw conclusions

on the effect of child care on infectious diseases. A few studies have analyzed the effect of child

care reforms on infectious diseases (Baker et al. 2008, 2015; van den Berg and Siflinger 2020).

5For instance, Adda (2016) classifies the population into three age groups: children aged 0 to 18, adults aged 19 to
60, and the elderly aged above 60.
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While these studies show that child care significantly increases the diagnosis of infectious diseases,

they leave open a number of relevant questions addressed in my study, such as spillover effects

on age groups other than children, geographical differences, and the impact of policy interven-

tions that are likely to mitigate disease transmission within child care centers. Methodologically,

my study expands the approach proposed by Adda (2016) by estimating age-specific transmission

patterns.

Second, the study is closely related to literature in the field of epidemiology. There is a large strand

in medical literature investigating the link between child care attendance and the diagnosis of

infectious diseases, but these studies do often not consider the endogeneity of child care attendance

(e.g. Ball et al. 2000; Ball et al. 2002; Côté et al. 2010).6 My study identifies a causal effect of child

care on disease transmission patterns by leveraging the staggered roll-out of child care provision

in Germany.

More broadly, this paper adds to the literature evaluating the benefits of vaccination policies. A

growing strand of literature documents that health interventions in childhood, including vaccina-

tion programs, have positive long-term effects on educational achievements, labor market perfor-

mance, and cognitive skills (e.g. Baird et al. 2016; Bleakley 2007; Bütikofer and Salvanes 2018).

However, large-scale health interventions often require major financial commitments. Systematic

comparisons of the benefits and costs of each intervention may support policy makers to allocate

scarce resources efficiently (Bärnighausen et al. 2014). Therefore, economic evaluations of health

interventions play a major role in informing health policy. This study provides empirical evi-

dence on the economic benefits of vaccination by evaluating the costs and benefits of mandatory

vaccination against seasonal influenza before entry into child care.

The paper proceeds as follows. Section 2.2 describes the institutional background and the data.

Section 2.3 summarizes the DiD strategy and presents reduced-form evidence. Section 2.4 outlines

the model of epidemics and presents the results. In Section 2.5, I evaluate two counterfactual

policy interventions. Section 2.6 discusses the empirical findings. Section 2.7 concludes.

6Closely related is the question whether children attending formal care contract more infectious diseases than those
cared for at home, but acquire immunity from the increased number of infections that protects them later in life (e.g.
Ball et al. 2000; Ball et al. 2002; van den Berg and Siflinger 2020). In the case of influenza, it is unlikely that acquired
immunity gained in one year offers significant protection during the subsequent seasons, as influenza viruses are fast-
mutating which prevents long-term immunization (Hay et al. 2001). Hence, even though it is unarguably an interesting
question whether children attending formal child care obtain immunity earlier in life compared to children cared for at
home and thus, are protected later in their life, it is not relevant in the case of influenza and will not be considered in
this paper.
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2.2 Institutional Background and Data

2.2.1 The Child Care System in Germany

Early Child Care System Public child care is provided at two levels in Germany. Early child

care is available for children below the age of 3 and kindergarten is offered to children aged 3 to 6

(Felfe and Lalive 2018). The analysis focuses on early child care which is provided either by care

centers or by extra-familial child minders (Strunz 2013). Roughly 85% of all children enrolled

in early child care attend care centers. Child care facilities are typically operated by subsidized

non-profit organizations such as municipalities, welfare organizations or the church (Felfe and

Zierow 2018).7 Public child care is heavily subsidized by municipalities, counties, and states.

Parental fees cover only between 4% and 17% of the total operating costs (Bertelsmann Stiftung

2021b). There is, however, substantial variation in the fees which range from 0 to 400 Euro/month.

Fees depend on state-specific regulations, family income, the number of siblings enrolled in child

care, and the provided daily hours of child care (i.e. full-day slot vs. half-day slot) (Bertelsmann

Stiftung 2018; Geis 2018). Demand for child care slots exceeds by far supply (Bien et al. 2006;

Bundesministerium für Familie, Senioren, Frauen und Jugend 2020). In 2016, for instance, 28%

of all children aged 0 to 2 were enrolled in child care, whereas 43% of all parents had expressed a

desire to place their child in early child care in West Germany (Bertelsmann Stiftung 2021a).

In the context of infectious diseases, regulations on group sizes and the age composition within

groups are particularly relevant, as they determine both the number of contacts with extra-familial

members and transmission patterns across age groups. In Germany, children aged 0 to 2 can be

either enrolled in groups comprising only children in this age cohort or in mixed-age groups with

children up to the age of 6 (Bundesministerium für Familie, Senioren, Frauen und Jugend 2012).8

Hence, the expansion of early child care slots is presumably not only affecting contact patterns

among 0 to 2 year old children, but also socialization patterns between children aged 0 to 2 and

children aged 3 to 6. The average group size depends on the age structure of groups. In 2013, for

example, groups exclusively for children below the age of 3 consisted on average of 10 children,

whereas groups with children between age 2 and age 6 comprised on average 21 children per group

(Strunz 2013). It is further to point out that average group sizes remained rather constant over time

suggesting that the increase in child care slots is predominantly achieved by creating new groups

rather than increasing the number of children per group (Strunz 2013).

Children aged 0 to 2 years, who are not enrolled in early child care, are mainly cared for by their

parents. Other care modes, such as paid informal care, care provision by grandparents or extended

7Only 3% of all child care centers are run by private, for-profit organizations (Bertelsmann Stiftung 2021c).
8There are 5 different types of group compositions: (i) groups targeted exclusively at children aged below 3 (31%

in 2010) (ii) groups comprising children from age 2 to age 6 (21% in 2010) (iii) groups of children aged 0 to 6 (19% in
2010) (iv) groups of children aged 0 to 4 (23% in 2010) (v) care centers without any group structure (7% in 2010). Child
care facilities without group structure can be either exclusively for children below the age of 3 or including children
between 0 and 6 years.
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family members, play only a minor role in Germany (Felfe and Lalive 2018).9 Hence, the increase

in the child care coverage rate can be interpreted as a shift from home-based care to group-based

care.

Finally, it is to note that the child care system in Germany is characterized by large differences

between East and West Germany that are historically constituted in the German partition after the

Second World War. The former German Democratic Republic established a comprehensive child

care system from the age of 0 onwards, while in West Germany child care was primarily a private

matter (Bauernschuster et al. 2016; Bauernschuster and Schlotter 2015; Felfe and Lalive 2018).

The differences in the child care systems between East and West Germany still continue to exist

today, with substantially higher coverage rates in East than in West Germany (see Appendix Figure

B.4). In the analysis, I focus on the staggered increase in child care provision in the 324 counties

of former West Germany, excluding Berlin.

Expansion of Early Child Care In the early 2000s around 90% of all 3 to 6 year old children

attended public child care, whereas coverage rates for 0 to 2 year old children were, particularly

in West Germany very low (Camehl and Frauke 2017).

In 2005, the German government started to invest heavily into the expansion of early child care. A

number of laws paved the way for an increase in the provision of subsidized child care. In 2005,

the federal government decided to create 230,000 additional child care slots by 2010 (Tagesbe-

treuungsausbaugesetz). In April 2007, the government announced a target coverage rate of 35%

nationwide by 2013. In 2008, the law on support for children (Kinderförderungsgesetz) reinforced

the announcement by declaring that every child from age 1 year onwards would have a legal claim

to an early child care slot by August 2013 (Felfe and Lalive 2018). As a consequence, Germany

has witnessed a strong increase in the number of children aged 0 to 2 attending public child care

institutions. In the period from 2005 to 2016, the average child care coverage rate increased from

about 8% to 28% in West Germany (see Figure 2.1).

The expansion of child care facilities is financed by the federal government, the state governments,

and local entities, i.e. municipalities and non-profit organizations (Diekmann and Thöne 2011).10

Federal funds are allocated to states in line with the number of 0 to 2 year old children living

in each state (Gesetz über Finanzhilfen des Bundes zum Ausbau der Tagesbetreuung für Kinder).

To obtain funding, municipalities must submit expansion plans to the respective state government

demonstrating both demand and a feasible implementation (Diekmann and Thöne 2011). A lack

of infrastructure and staff present the main obstacles to submitting a persuading expansion plan.

Strict regulations on the infrastructure limited the set of appropriate properties and prolonged the

9Felfe and Lalive (2018) report that children aged 2 to 3 years, who were not attending early child care, were cared
for by informal modes of paid care for 3.1h per week, by their grandparents for 4.1h per week, and by other members
of the extended family for 0.8h in 2011. The remaining hours per week are taken over by their parents.

10The federal government enacted three investment programs, i.e. from 2008 to 2013 (2.15 billion Euro), from 2013
to 2014 (580 million Euro), and from 2015 to 2018 (550 million Euro).
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Figure 2.1: Early Child Care Coverage Rate, West Germany
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Notes: The figures illustrate the ECC rate in West Germany between 2005 and 2016. Panel A displays the median, the
25th and 75th percentile of the annual child coverage rate. Panel B illustrates the ECC rate in percent across German
counties in 2005 and Panel C shows the relative change in the ECC rates between 2005 and 2016 (in pp).
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time until a municipality could submit a feasible expansion plan (Felfe and Lalive 2018). Further,

Germany experienced a lack in early child care workers that hampered expansion.

As a consequence, expansion of early care facilities varied substantially across counties and over

time. Figure 2.1 illustrates the temporal and spatial variation in the expansion of the child care

provision. While the mean child care coverage rate increased by about 20pp in West Germany

between 2005 and 2016, the child care coverage rate substantially differed across counties. In

2005, for instance, 21% of the children aged 0 to 2 were enrolled in public care in Hamburg, but

only 4.5% of the children of the same age cohort attended formal child care in the neighboring

county of Stade (see Figure 2.1 Panel B). Further, each county within West Germany is affected

by the expansion, experiencing an increase in early child care slots of at least 8pp between 2005

and 2016 (see Figure 2.1 Panel C).

Administrative Data on Child Care Coverage Rate I use administrative data on child care

provision from the Statistical Office Germany.11 The data include information on the early child

care coverage rate (ECC rate) that is defined as the number of children aged 0 to 2 attending formal

child care per 100 children. Information on the ECC rate is available by year and county.12

2.2.2 Characteristics of Influenza and Incidence Data

Characteristics of Influenza Influenza is one of the major viral diseases worldwide. It is an air-

borne disease, infecting 5%-20% of the entire population per year. Among children the incidence

is substantially higher with infection rates of 20%-35% (Amboss 2021). Symptoms typically in-

clude a sudden onset of fever, coughing, muscle pain, and headache. While most individuals

recover from influenza within a few days, children and the elderly population are at particularly

high risk of developing complications (e.g. acute otitis media, pneumonia) requiring hospitaliza-

tion (Amboss 2021; Scholz et al. 2019).

Table 2.1 provides a brief overview of the characteristics of influenza, with information on incu-

bation time, length of symptoms, and the period when individuals are contagious. Immunity can

be acquired either by infection or by vaccination. As influenza viruses mutate very quickly, immu-

nity typically lasts only for one influenza season. Hence, to maintain immunization, individuals

have to be re-vaccinated each autumn. In Germany, as in most European countries, vaccination is

targeted towards people above the age of 60, pregnant women, health care workers, and a small

minority of people at risk (Robert Koch Institute 2020a). Coverage is relatively low. Despite of

the target of achieving a nationwide coverage rate of 75% among people above the age of 60,

11See https://www.regionalstatistik.de/genesis/online/data and https:/www.inkar.de/
12Information on child care coverage rates is elicited each year in March. As children typically enter child care in

August/September (Meiner et al. 2015), I construct yearly aggregates that start in calendar week 27 and end in calendar
week 26 of the subsequent year. For instance, data collected in March 2007 is merged to weekly data on disease
incidence from calendar week 27 in 2006 to calendar week 26 in 2007.
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only about 30% of this age cohort is actually vaccinated (Reuss et al. 2010). Health authorities

do not typically advise children to obtain a vaccination (European Centre for Disease Prevention

and Control 2017; Robert Koch Institute 2020b). However, the World Health Organization’s rec-

ommendation to vaccinate children has recently sparked a debate on this matter (World Health

Organization 2020b).13

Table 2.1: Characteristics of Seasonal Influenza

Symptoms fever, headache, coughing, muscle pain

Length of symptoms 5 to 7 days

Incubation time 1 to 2 days

Contagious phase 1 day before to 5 days after the onset of symptoms

Acquired immunity due to infection\vaccination for one season

Infection fatality rate 0.1% - 0.2%

Annual incidence rates per 100,000, total pop. (in 2016) 50.04

Annual incidence rates per 100,000, < age 3 (in 2016) 155.64

Vaccine exists yes

Vaccine recommended age 60+ & chronic diseases

Vaccination rate, age 60+ (in 2016) 29.8%

Vaccination rate, < age 3 (in 2016) no systematic vaccination

Compulsory to report lab confirmed diagnosis since 2001

Notes: The table summarizes the characteristics of influenza. Information on disease incidence and vacci-
nation refers to the situation in Germany. Source: Amboss (2021) and Robert Koch Institute (2020b). The
annual incidence rates are based on own calculations.

Influenza has a typical temporal pattern with annual recurrent peaks during the winter months and

low incidence rates from May to September. Panel A in Figure 2.2 shows the seasonal pattern

of influenza activity in Germany within a year, by calendar week, from the first week of January

to the last week of December. The reported mean incidence rates for children below age 3 (blue

line) are substantially higher than the average incidence rates of the entire population (green line),

indicating that children aged 0 to 2 are profoundly more likely to be affected by influenza than

people in older age cohorts.14 Panel B in Figure 2.2 shows the time series patterns of incidence

rates for West Germany on a monthly basis. The yearly incidence of influenza varies widely. There

is ample variation across years with different viral strains giving rise to strong or weak seasons.
13The World Health Organization (2020b) recommends to vaccinate each child aged between 6 and 59 months

against influenza. Some European countries, such as Austria, Finland or Poland, as well as, the USA, took over the
advise by the World Health Organization and included vaccination against the flu for children from the age of 5 months
onwards into the national recommended vaccination schedule.

14The incidence rates presented here are based on the reported number of lab-diagnosed cases. Hence, the figure
only gives suggestive evidence for higher incidence rates among children compared to the individuals in other age
groups, as the testing rate might depend on the age of the infected.
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Figure 2.2: Influenza - Seasonality and Time Trend
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(b) Time Trend
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Notes: Panel A displays average weekly incidence rates (cases per 100,000 individuals) in West Germany averaged
over the years between 2005 and 2016. Panel B illustrates the monthly incidence rates for the flu seasons 2005/06 to
2015/2016. The solid, blue line displays incidence rates of children aged 0 to 2 years, the dashed, green line refers to
average incidence rates of the total population.

High Frequency Data on Infectious Diseases I use detailed, high-frequency data on the daily

incidence of influenza in Germany, covering the period from summer 2005 to summer 2016. The

data include laboratory confirmed cases of influenza (Robert Koch Institute 2016b). For each

case reported, the data provide information on the day of diagnosis, county of residence, potential

location of exposure,15 hospitalization status, birth date, and gender. Besides, the data include

information on child care attendance for a subset of children. This detailed data set allows me to

analyze the spatial, temporal and age-specific evolution of disease transmission.

The data are provided by the German national public health agency, the Robert Koch Institute.

According to the Protection Against Infection Act enacted in 2001 (Infektionsschutzgesetz lfSG),

15If the location of disease transmission is traceable, information on geographic and institutional location of expo-
sure is included in the data set.
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the diagnosis of a number of infectious diseases such as influenza, norovirus-gastritis or measles,

has to be reported to the local public health departments in order to monitor the spread of diseases

within Germany. The local health departments deliver the information on positive cases within 24

hours to the health authorities of the respective federal state. The state health department gathers

the information and passes it on to the Robert Koch Institute (see Appendix Figure B.2 for a

graphical illustration of the reporting system). To enhance comparability of information across

regions, reported cases have to fulfill well-defined criteria to be included in the database. For

instance, influenza cases are only added to the data set if the clinical diagnosis is confirmed by

lab-diagnostics or alternatively, if a patient has flu-specific clinical symptoms and has had contact

to a person who tested positive for influenza. Hence, the data clearly understate the scale of the

actual cases, since asymptomatic cases and, symptomatic cases without a positive test or proven

exposure to a positively tested individual are not recorded. This is, however, not a major concern

for the analysis, as long as the reporting behavior is not systematically linked to the expansion

of early child care (see discussion in Section 2.3.1). I supplement data on disease incidence with

information on vaccination coverage rates of all publicly insured people aged 60 or above from

administrative medical claims.16

2.2.3 Additional Data

I obtain information on daily temperature and precipitation from the German Meteorological Ser-

vice17 for the period from summer 2005 to summer 2016. I construct weekly aggregates to match

the time dimension in the disease incidence data (see Appendix Section B1 for additional informa-

tion on weather data). Further, to control for regional time-varying characteristics I use yearly data

on demographic and socio-economic characteristics measured at the county level provided by the

Statistical Office Germany. County characteristics include labor market and economic character-

istics (e.g. female labor participation rate, unemployment rate, GDP per capita) and demographic

characteristics, such as population density and population size. Appendix Table B.1 presents the

summary statistics.

16Roughly 90% of the German population is covered by the social health insurance. For the seasons 2007/2008
to 2013/2014, the data is provided at the county level by the Zentralinstitut für die Kassenärztliche Versorgung in
Deutschland (ZI) (Zentralinstitut für die Kassenärztliche Versorgung in Deutschland 2021a, 2021b). For the remaining
seasons, I use data on vaccination rates published at the state level by the Robert Koch Institute (Reuss et al. 2010;
Rieck et al. 2017, 2018; Robert Koch Institute 2016a).

17See https://opendata.dwd.de/climate_environment/CDC/observations_germany/climate/daily/kl/historical/.
Accessed on 7th March 2021.
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STAGGERED DIFFERENCE-IN-DIFFERENCES STRATEGY

2.3 Staggered Difference-in-Differences Strategy

This section provides reduced-form evidence on the effect of the expansion of early child care on

the spread of influenza using a DiD strategy. I first outline the identification strategy of the DiD

analysis and present the results thereafter.

2.3.1 Empirical Strategy

Model Specification To examine the effect of early child care expansion on annual infection

rates, I specify the following panel data regression:

Ic,t,a = α+ βECC ratec,t +Xc,tγ + δc + ωt + ϵc,t (2.1)

where I t,c,a denotes the incidence rates (i.e. cases per 100,000 inhabitants of a particular age group)

for individuals residing in county c, in year t and in age group a. ECC denotes the early child

care coverage rate in county c and year t. Xc,t represents a set of county-specific demographic

and socio-economic characteristics. The model includes county fixed effects (δc) and year fixed

effects (ωt). The county indicators (δc) control for unobservable determinants of incidence rates

that are time-invarying at the county level, while year fixed effects (ωt) absorb common time

shocks. The coefficient β captures the effect of a change in ECC rate on incidence rates. Error

terms are clustered at the county level.

Identification Strategy As a source of exogenous variation, I exploit the staggered expansion of

child care centers throughout West Germany. Because of limited capacity (i.e. staff/ infrastructure/

financing), the expansion progressed at different rates across counties. Identification is achieved

by within county variation in early child care coverage rates over time. The identification strategy

is based on the assumption that - conditional on county and year fixed effects - the timing of the

roll-out is unlikely to vary with county characteristics that correlate with disease incidence.

A key threat to the identification of β is that the timing of the expansion is correlated with unob-

served determinants of disease transmission. Potential regional characteristics that might violate

the identifying assumption are counties’ economic standing or female labor market participation,

as they may impact both the timing of the expansion of early care facilities and disease transmis-

sion patterns.

Hence, to assess the identification strategy, I run a number of robustness tests: First, I investigate

whether baseline county characteristics prior to the reform relate to the timing of the expansion

of child care slots (see Appendix B2). Overall, the results show that the timing of the expansion

does not correlate with baseline economic standing (i.e. unemployment rate, average household
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income, GDP per capita) and demographic features (i.e. population size, population density). I

find, however, that female labor participation and child care coverage in 2002 are related to the

expansion of child care between 2006 and 2007. From 2007 onward, there appears to be no sys-

tematic relationship between the timing of the roll-out and these variables. The results align with

previous studies, for example Bauernschuster et al. (2016), showing that the timing of the expan-

sion is unrelated to demographic and socio-economic regional characteristics prior to the roll-out.

Second, I regress child care coverage rates on county and year fixed effects, as well as on time-

varying covariates. I find that 95% of the variation in the adjusted R2 of the child care coverage

rate can be linked to common time shocks and time-invariant county characteristics, whereas only

1% of the variation in the adjusted R2 can be attributed to a large set of covariates.18 Third, there

might be co-movements in variables over the period of observation that confound with the number

of reported cases of influenza. A major concern is that an increase in female labor market partici-

pation induced by the expansion of child care facilities may affect reporting behavior, as parental

choice to consult a physician, if their child falls ill, may depend on their employment status. Ger-

man sick leave regulations give parents the right to stay absent from work to care for their sick

child, but require that the disease is confirmed by a physician.19 Hence, it is conceivable that a

change in reported cases is attributable to a change in reporting behavior. To tackle the concern

that child care attendance is systematically related to parental choice of consulting a physician, I

use data from a representative survey on child health (KiGGs study20). In the study, parents report

the annual number of medical consultations, the annual number of influenza-like diseases, as well

as child care attendance. The annual number of medical consultations for children conditional on

the number of reported flu-like diseases per year is not significantly different for children attending

formal child care than for children cared for at home (p-value = 0.36). The results suggest that the

likelihood of visiting a physician if a child falls ill, does not depend on child care attendance (see

Appendix Table B.2).

2.3.2 Results

Table 2.2 reports the impact of an increase in the ECC rate on annual incidence rates of children

aged 0 to 2 and of the entire population using the regression model specified in Equation 2.1. The

18The set of time-varying control variables includes demographic characteristics (population density, population
size), socio-economic features (i.e. average household income, female labor market participation, unemployment rate).

19According to German sick leave regulations, parents have the right to stay at home to care for their child if the
child is below the age of 12 and no other adult can care for the sick child. If parents are publicly insured, each parent
is entitled to stay at home for 10 days per calendar year and per child, for single parents it is 20 days. If parents have
more than 2 children, the total number of days on sick leave are 25 days per parent. However, to be eligible for sick
leave, it is necessary that the disease is confirmed by a physician (§45 SGB V). Work contracts may, however, prelude
the possibility of paid leave (§616 BGB). If parents are not entitled to paid exemptions, but are publicly health insured,
they obtain sick pay provided by the health insurance, that is commonly 70% of the regular income. In this case, sick
leave can be accompanied with a loss in income. Hence, it is ex ante not clear whether the likelihood to see a physician
increases, decreases or remains unchanged in the context of an increase in child care attendance.

20The KiGGs survey was conducted by the Robert Koch Institute and includes information on child health and
socio-economic characteristics gathered between 2003 and 2006 and between 2014 and 2016.
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reported estimates of β present the odds ratios derived by Poisson pseudo maximum likelihood

regression. Thus, the coefficients can be interpreted as factors.

I find a significant effect of early child care on the incidence rates of influenza of children aged 0 to

2. More specifically, a 1pp rise in the ECC rate leads to an increase in the incidence rates by about

3% (Columns 1 and 2). Importantly, the impact of the ECC rate on infection rates of children

remains significant at the 5% level when controlling for potential confounding mechanisms such

as female labor participation or employment rates. There is no evidence for a significant effect of

child care on incidence rates of the entire population in the full sample (Columns 5 and 6).

Table 2.2: DiD Estimates

Age 0 to 2 Total Population

Full Sample Rural Area Urban Area Full Sample Rural Area Urban Area

ECC Rate 1.047** 1.033** 1.001 1.050*** 1.019 1.015 0.974 1.048***

(0.02) (0.02) (0.02) (0.02) (0.02) (0.01) (0.02) (0.02)

Observations 3564 3564 1562 2002 3564 3564 1562 2002

Pseudo R2 0.634 0.639 0.606 0.662 0.751 0.754 0.763 0.755

Season FE yes yes yes yes yes yes yes yes

County FE yes yes yes yes yes yes yes yes

Control Variables no yes yes yes no yes yes yes

Notes: The table displays DiD estimates based on Poisson pseudo maximum likelihood regression using
Equation 2.1. The dependent variables are the incidence rates of a particular age group. Coefficients are
presented as odds ratios. Regressions are weighted by population size in a particular age group. The set of
control variables includes temperature, rain, absolute humidity, GDP per capita, employment rate, female
employment rate, and population density. Standard errors are clustered at the county level. * p < 0.10, **

p < 0.05, *** p < 0.01

Next, I investigate whether the impact of child care on infection rates differs between urban and

rural areas.21 I find that the treatment effect is driven by urban areas. Urban areas experience a rise

in the incidence rates by about 5% per percentage point increase in the ECC rate, while there is no

evidence for a significant impact of child care on infection rates in rural areas (Columns 3 and 4).

Further, I find that the expansion of child care in urban areas does not only significantly increase

infection rates of children, but also of the entire population (Columns 7 and 8. See Section 2.6

for a discussion on different transmission patterns in rural and urban counties).22 In summary, the

DiD analysis suggests a significant impact of early child care on infection rates. The treatment

effect seems to be driven by urban areas.

21I refer to the classification into urban and rural areas proposed by the Federal Institute for Research on Building,
Urban Affairs and Spatial Development (Bundesinstitut für Bau-, Stadt- und Raumforschung) (BBSR 2019). “Urban
Areas” denote Kreisfreie Großstädte with more than 100,000 inhabitants and Städtische Kreise with a population density
of at least 150 inhabitants/km2 and at least 50% of the population living in a city. “Rural Areas” denote the remaining
areas. See Appendix Figure B.3 for a graphical illustration of urban and rural areas within West Germany.

22Appendix Table B.3 and Appendix B.4 present results on DiD estimates for different age groups, stratified by
urban and rural areas.

71



CHAPTER 2 – EARLY CHILD CARE AND INFLUENZA EPIDEMICS

2.4 Model of Epidemics

The DiD analysis provides reduced-form evidence on a significant impact of the expansion of child

care on infection rates. To identify the effect of child care on age-specific transmission patterns, I

develop a semi-parametric model based on the Susceptible-Infectious-Resistant (SIR) model used

in epidemiological work. This section presents the model of epidemics, the identification strategy,

and empirical findings.

2.4.1 Description of the SIR Model

The SIR model dates back to Kermack and McKendrick (1927) and describes the dynamics of

epidemics. In the SIR model the population is divided into three mutually exclusive groups: (i) A

class of individuals that contracted the disease and is now infectious, called infected individuals I ,

(ii) A class of individuals who are healthy, but can contract the disease, the susceptibles S, and (iii)

A class of individuals that acquired immunity either by vaccination or by infection, the resistant

R. Figure 2.3 describes how individuals move from one group to another over time.

Figure 2.3: Flow Chart - SIR Model

Resistant (R)

Susceptible (S) Infected (I)
α I ( S

N
)

vS

λR

β I

Notes: The figure displays how infected, susceptible and resistant individuals move from one group to another per unit
of time. The parameter α denotes the transmission rate, β the recovery rate, v the vaccination rate and λ the fraction of
individuals that lose immunity per unit of time.

I make the following two assumptions: First, I abstract from births and deaths and second, I

assume that the society is closed in a given year (N = I + S + R). The stock of new infected

individuals depends on the number of currently infected individuals I , the transmission rate α, and

the fraction of susceptible individuals in the population ( S
N ), i.e. the probability that a randomly

selected contact is a susceptible individual. Individuals recover from the disease at rate β. Let

v denote the vaccination rate and λ the fraction of individuals that lose immunity. For influenza

the likelihood of getting infected twice within the same influenza season23 is rather low. Hence, I

assume that immunity lasts for one influenza season, until a new epidemic starts.

23I define an influenza season to last one year, starting each year in calendar week 27 when the infection rates are at
the lowest level.
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I apply a spatial, discrete-time version of the SIR model (Finkenstädt and Grenfell 2000) and

construct weekly aggregates of disease incidence. Due to disease-specific characteristics of in-

fluenza24, it is plausible to assume that infected individuals recover – in the sense of not being

infectious anymore – within one week (i.e. β=1). Hence, I obtain the following specification that

describes disease transmission patterns across weeks:

It+1︸︷︷︸
number of
individuals

that get infected

= crt︸︷︷︸
contact

rate

× p︸︷︷︸
prob. that contact

results in a transmission︸ ︷︷ ︸
transmission rate α

× It︸︷︷︸
number

of infectious individuals

× (
St

Nt
)︸ ︷︷ ︸

prob. that
contact is a susceptible

(2.2)

Equation 2.2 describes the stock of new infected individuals in week t + 1 conditional on the

transmission rate α, the stock of infected in week t, and the fraction of susceptibles in week t. The

transmission rate α can further be divided into two components, namely the contact rate cr (i.e. the

number of contacts per unit of time t) and the probability p that a contact results in a transmission.

The contact rate cr is a behavioral parameter, as infected individuals choose whether and to which

extent they meet susceptibles (and vice versa). The increase in child care slots may plausibly affect

contact rates among children and thus, disease transmission patterns, as children attending formal

child care may have contact to a larger number of individuals in addition to the family compared to

children cared for at home. The parameter p is predominately a biological, disease-specific factor

indicating how contagious a disease is. It can, however, also be affected by human-behavior, e.g.

hand-washing and other hygienic behavior. Hence, the roll-out of child care centers might also

impact the parameter p by inducing a change in child hygienic behavior. Therefore, it is plausible

to assume that both contact rate cr and the transmission parameter p are a function of the regional

child care coverage rate.

Econometric Model: Age-Stratified Spatial-Time Spread of Diseases Next, I introduce a

spatial dimension to Equation 2.2. Social mixing behavior within counties is likely to be different

from the one between counties. Hence, I estimate separate transmission rates for within (αWR)

and between regional (αBR) spread. An individual can get infected by individuals residing in the

same county, by individuals residing in any other county within West Germany or by an endemic

component that captures, e.g. the risk of imported cases from outside the study region or seasonal

effects. I follow epidemiological work by using a classic competing risks framework in which the

forces of infection – within regions, across regions, and the endemic component – are additive

(e.g. Bauer and Wakefield 2018).

24Note that the infectious period lasts less than a week and infection fatality rates (IFR) are negligible small for
influenza (∼ 0.1% to 0.3%).
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Equation 2.3 describes disease transmission patterns between infectives in age group a′ and sus-

ceptibles in age group a.25 To account for differences in the population size across counties and

age groups, I take the proportion of infected ( I
N ) and the proportion of susceptible individuals ( S

N )

rather than the stock of infected and susceptibles. Normalizing the susceptibles by the population

allows me to interpret the presented coefficients as the marginal effects of a change in the infection

rate on future infection rates, when the entire population is susceptible to the disease (i.e. basic

reproduction rate R0
26). I further assume that the contact rate is proportional to the ratio of the

size of the population containing infected individuals to the population size containing susceptible

individuals (Na′
Na

). Intuitively, this means that the likelihood that a susceptible meets an infected

is higher, if the population size containing infected individuals is relatively large compared to the

population size of susceptibles.

It,c,a
Nt,c,a

=
∑
a′∈A

αWR
a,a′

It−τ,c,a′

Nt−τ,c,a′

St−τ,c,a

Nt−τ,c,a

Nt−τ,c,a′

Nt−τ,c,a︸ ︷︷ ︸
Within regional spread

+ αBR
a,a′=total

∑
r∈R\c

1
dr,c

It−τ,r,a′=total

Nt−τ,c,a′=total∑
r∈R\c

1
dr,c

St−τ,c,a

Nt−τ,c,a

Nt−τ,c,a′=total

Nt−τ,c,a︸ ︷︷ ︸
Between regional spread

+ δc + ϕt︸ ︷︷ ︸
Endemic component
Region + Time FE

+ ϵc,t

(2.3)

The parameter αWR captures age-specific disease transmission patterns between infectives in age

group a′ and susceptibles in age group a, both living in county c. The parameter αBR measures

disease transmission between individuals living in different counties. In the case of between-

county spread, I do not differentiate between the infectives’ age. More precisely, I estimate the

effect that infectives of any age living in county r ∈ R \ c spread influenza to susceptibles in age

group a living in county c. I normalize the incidence of infectives living outside county c by the

population in county c.27 This can be interpreted as the likelihood that susceptibles living in county

25I stratify the population in five age groups: (i) age 0 to 2 (ii) age 3 to 6 (iii) age 7 to 26 (iv) age 27 to 60, and (v)
above age 60.

26The basic reproduction rate is defined as the average number of secondary cases generated per infected in a
completely susceptible population.

27To this end, I divide the sum of infected in all counties r ∈ R \ c by the population in county c.
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c meet infectives from other counties r ∈ R \ c in county c.28 I further account for differences in

the distance (dr,c) between each county r ∈ R \ c and county c.29 In other words, I assume that

individuals living in counties close to one another meet more frequently than individuals living

further apart.30 The parameter τ describes the incubation time and is set to τ=1, as the incubation

time for influenza lasts less than one week. I further include week and county fixed effects that

capture the endemic component.

Effect of Child Care on the Transmission Rate To tackle the question whether and to which

extent an increase in the child care coverage rate affects transmission rates within a county, I

decompose the transmission rate using the following additive functional form:

αWR
a′,a = α0

a′,a + α1
a′,aECC Ratet−1,c +

K∑
k=2

αk
a′,aXt−1,c (2.4)

where α1
a′,a captures the effect of the child care coverage rate (ECC rate) on the age-specific

transmission rate of influenza within a county. I denote a set of K − 1 county-specific variables

X t-1,c that may affect the spread of the flu. These variables include meteorological variables

(temperature, precipitation, and absolute humidity), population density and measures for economic

activity (i.e. female labor market participation, GDP per capita). In addition, I control for season-

specific transmission rates and calendar month-specific transmission rates.

Computation of the Stock of Susceptible Individuals To estimate Equation 2.3, I compute

the stock of the susceptible population S for each county c, week t, and age group a. To this

end, I impose the following assumptions: First, immunity against influenza lasts one season, until

the next epidemic starts. Second, the effectiveness of vaccination amounts to 60%.31 Third, I

assume that vaccination rates for individuals below the age of 60 are zero (see data description in

28The spread of diseases between counties can be modelled in two different ways: First, one can assume that
infections occur in county c in that the susceptibles live (option 1). In this case, it is assumed that one infective living
in county r travels to county c and spreads the disease to susceptibles residing in county c. Second, vice versa, one
can assume that infections between susceptibles and infectives occur in county r in that the infectives live (option 2).
The key difference is that the sum of infected outside county c is either divided by the population in county c (option
1) or by the population in county r (option 2). I specify Equation 2.3 in line with option 1, assuming that infections
between individuals living in different counties occur in county c. However, the model could be easily rewritten such
that it aligns with option 2. Results using option 1 and option 2 are similar.

29The sum of infected living outside c is weighted by the inverse of the distance between county r and c. More pre-

cisely, I use the inverse distance-weighting matrix that is defined by wc,r = (
∑

r∈R\c

Ir
Nc

distancec,r
)/(

∑
r∈R\c

1
distancec,r

).
30Prior work in epidemiology shows that most contacts between individuals indeed occur within a kilometer of the

individuals’ home. They document that the distribution of travel distance decays as power law, indicating that it is
plausible to use the inverse distance weighting matrix as a proxy for social interaction between individuals living in
different regions (Brockmann et al. 2006; Read et al. 2012).

31The effectiveness of vaccination varies annually, on average it amounts between 40% to 60% (Center fors Disease
Control and Prevention 2020).
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Section 2.2.2). Hence, the stock of susceptible individuals in a given week is described by taking

the entire population minus those who are vaccinated and those who have been infected in the

respective influenza season.

2.4.2 Identification Strategy

In addition to potential threats to the identification strategy discussed in Section 2.3.1, OLS co-

efficients estimated using Equation 2.3 may be biased due to a non-classical measurement error.

As mentioned above, the number of reported cases certainly understates the scale of influenza in-

fections, i.e. not every infected person sees a physician and not every physician delivers a report.

Besides, incidence rates are more likely measured with an error when infection rates are very high,

as patients may have to queue to see a physician (Adda 2016). This may result in a non-classical

measurement error. While a classical measurement error would lead to attenuation bias, Adda

(2016) shows, that due to the dynamic structure of the SIR model, a non-classical measurement

error in the measure of infected and susceptible individuals results in a complex error term with

serial correlation. The overall structure of the error term makes it impossible to assess the direction

of the bias, as the exact form of the error term will vary across diseases and age groups. Hence,

to obtain consistent estimates of transmission parameters, I use lagged temperature as instrument.

More specifically, I instrument the interaction terms denoted in Equation 2.3 as (i) within regional

spread and (ii) between regional spread.

Lagged Temperature as Instrument I construct two instruments based on lagged temperature.

One instruments for disease transmission within a region (i.e. IVWR, Equation 2.5a), the other one

instruments for disease transmission across regions (i.e. IVBR, Equation 2.5b).

IV WR
c,t−1 = (

i=t−3∑
i=1

median temperature c − temperaturei,c)︸ ︷︷ ︸
Part 1

Epidemic curve in county c

× (η + temperaturet−2,c)︸ ︷︷ ︸
Part 2

Recent temperature in c

(2.5a)

IV BR
c,t−1 =

( i=t−3∑
i=1

median temperaturer∈R\c −
∑

r∈R\c

1
dr,c

× temperaturei,r
1

dr,c

)
︸ ︷︷ ︸

Part 1
Epidemic curve in all other counties except c

× (η + temperaturet−2,c)︸ ︷︷ ︸
Part 2

Recent temperature in c

(2.5b)

Each instrument consists of two parts: The first part sums over the difference between the median

temperature during an epidemic outbreak and the temperature in week i of the outbreak. It presents

a humped-shaped curve that grows, as long as the temperature is below the median temperature

and declines once the temperature exceeds the median temperature, reflecting the typical dynamic

pattern of seasonal influenza outbreaks (see Appendix Figure B.7). The onset of an epidemic
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outbreak is defined as the first week of at least three consecutive weeks in which the incidence

rate is larger than 0.5 per 100,000 inhabitants. Analogously, the end of an epidemic outbreak is

defined as the first of at least five subsequent weeks in that the incidence rate is lower than 0.5 per

100,000 inhabitants. The sum is set to zero if (i) no outbreak takes place or (ii) the sum is below

zero. The second part allows to shift the curve up and down depending on temperature in t−2. To

instrument between regional spread, I interact the first part with the temperature in t− 2 in county

c based on the assumption that infections between individuals living in different counties always

occur in county c, in which the susceptibles live.

The instruments must fulfill two conditions: First, they must be strong predictors for the interaction

between infectives and susceptibles in t − 1 (i.e. relevance condition). Temperature appears to

be a natural candidate to instrument disease transmission patterns of influenza for biological and

behavioral reasons: It is well documented that influenza viruses are more stable under cold and dry

conditions than in warm temperature, which explains the seasonal pattern of this diseases (Deyle

et al. 2016; Lowen and Steel 2014).32 Weather is also likely to affect socializing patterns and thus,

transmission rates. The results from the first stage regressions show that the relevance condition

is satisfied with p-values of the Sanderson-Windmeijer F-Statistic well below 1% (see Appendix

Table B.6). Second, the instruments need to be orthogonal to unobserved components of infectives

in t conditional on county and week fixed effects (i.e. exclusion restriction). Exogenous week-to-

week variation in weather conditions are plausibly unrelated to infection rate in t, except through

disease transmission pattern in t− 1.

2.4.3 Results

This section summarizes the empirical results based on the SIR model. I proceed in two steps:

First, I use a simplified version of the model described in Equation 2.3 in which I differentiate

only between the susceptibles’ age, but not between the infectives’ age (see Econometric Model

1). Second, I run an extended model of disease diffusion investigating transmission patterns within

and across age groups of the infective and the susceptible population (see Econometric Model 2).

Econometric Model 1: Spatial-Time Spread of Diseases Table 2.3 presents the results con-

sidering disease transmission between infectives of any age and susceptibles in a particular age

group.

32Various mechanisms are discussed in the medical literature, such as increased virus half-life at lower temperatures
and more efficient transmission paths via aerosols or respiratory droplets under dry and cold conditions.
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Table 2.3: Econometric Model 1: Spatial-Time Spread of Diseases

OLS Results IV Results

Age<3 Age: 3 to 6 Age: 7 to 26 Age: 27 to 60 Age: 60+ Total Age<3 Age: 3 to 6 Age: 7 to 26 Age: 27 to 60 Age: 60+ Total

Panel A: Transmission Rates

Within Regional Spread (αWR) 0.0299*** 0.0724*** 0.2474*** 0.1777*** 0.0574*** 0.6059*** 0.0806*** 0.1704*** 0.2378*** 0.3114*** 0.1449*** 0.9617***

(0.003) (0.006) (0.015) (0.012) (0.006) (0.030) (0.006) (0.011) (0.010) (0.014) (0.014) (0.013)

Between Regional Spread (αBR) 0.0008 0.0084* 0.0661*** 0.0431*** 0.0120*** 0.1368*** -0.0169 0.0172 0.0043 0.1215*** 0.0574** 0.1813***

(0.003) (0.004) (0.012) (0.008) (0.004) (0.021) (0.011) (0.021) (0.018) (0.027) (0.023) (0.038)

Observations 185004 185004 185004 185004 185004 185004 185004 185004 185004 185004 185004 185004
Adj.R2. 0.323 0.381 0.577 0.598 0.325 0.666
Endogeneity Test 92.023 64.960 11.008 53.942 55.091 52.473
p-value - Endog. Test 0.000 0.000 0.004 0.000 0.000 0.000

Panel B: Effect of ECC Rate on Transmission Rate

αWR x ECC rate 0.00058** 0.00052 0.0011 0.0028*** 0.00072 0.0060*** 0.0012** 0.0011 -0.00065 -0.00026 -0.0013 0.00028
(0.0003) (0.0005) (0.0012) (0.0007) (0.0006) (0.0022) (0.0006) (0.0007) (0.0008) (0.0011) (0.0014) (0.0014)

Observations 185004 185004 185004 185004 185004 185004 185004 185004 185004 185004 185004 185004
Adj.R2. 0.391 0.448 0.621 0.664 0.470 0.700

Panel C: Urban Areas - Effect of ECC Rate on Transmission Rate

αWR x ECC rate 0.00080** 0.0014** 0.0011 0.0034*** 0.00064 0.0074** 0.0017** 0.00089 -0.00023 0.000023 -0.00023 -0.000020
(0.0004) (0.0006) (0.0015) (0.0010) (0.0009) (0.0031) (0.0008) (0.0008) (0.0002) (0.0001) (0.0002) (0.0001)

Observations 103922 103922 103922 103922 103922 103922 103922 103922 103922 103922 103922 103922
Adj.R2. 0.446 0.514 0.617 0.677 0.483 0.698

Panel D: Rural Areas - Effect of ECC Rate on Transmission Rate

αWR x ECC rate 0.00035 -0.00036 0.0012 0.0023** 0.00069 0.0049 0.00020 0.0000088 -0.00082 -0.00071 0.000087 -0.00098
(0.0002) (0.0006) (0.0020) (0.0010) (0.0006) (0.0030) (0.0005) (0.0009) (0.0013) (0.0015) (0.0018) (0.0020)

Observations 81082 81082 81082 81082 81082 81082 81082 81082 81082 81082 81082 81082
Adj.R2. 0.329 0.390 0.639 0.660 0.465 0.710

Notes: The table displays estimates of Equation 2.3 in that one infected individual of any age spreads influenza to susceptibles in a particular age group.
Columns 1-6 are based on OLS estimation, Columns 7-12 on IV regressions. Each column presents estimates from a different regression. The dependent
variables are the incidence rates of a particular age group. Panel A displays estimated transmission rates within a county (αWR) and between counties
(αBR). Panel B to D present the change in transmission rates in response to an increase in the ECC rate in the total sample (Panel B), in urban areas (Panel
C) and in rural areas (Panel D). All regressions include county fixed effects and week-in-a-year fixed effects. In addition, regressions presented in Panel B
to D control for season dummies, month dummies, climate, GDP per capita and distance to an airport interacted with transmission rates within a county.
The complete set of regression coefficients is presented in Appendix Table B.7 to Appendix Table B.12. Regressions are weighted by population size in a
particular age group. * p < 0.10, ** p < 0.05, *** p < 0.01
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Panel A summarizes the estimated transmission rates within a region (αWR) and between regions

(αBR) using OLS regression (Columns 1 to 6) and an instrumental variable approach (Columns 7

to 12). The OLS estimates show that 100 infected individuals transmit influenza to 74 susceptibles

(Column 6). This corresponds to an estimate of the basic reproduction rate R=0.74 with R de-

fined as the average number of secondary cases generated per infected in a completely susceptible

population. While some epidemiological studies document a basic reproduction rate for seasonal

influenza below 1, the median estimate of the basic reproduction rate for seasonal influenza is 1.28

(Biggerstaff et al. 2014). One reason for the discrepancy between the estimated reproduction rate

in this study and the median value documented in the literature is that OLS coefficients may be

biased due to a non-classical measurement error. The Hausman tests displayed at the bottom of

Panel A show that the exogeneity of the regressors is indeed rejected for all age groups. Compared

with the OLS results, transmission rates estimated based on the IV strategy tend to have a larger

effect size. In the IV framework, the estimated R-value is 1.14 indicating that infections spread

exponentially (Column 12). The results further illustrate that individuals of all age groups get in-

fected at a significant rate from people living in the same county (p<0.01).33 The risk of infection

from people living outside the county seems to be negligibly small for younger age cohorts, while

it plays an important role for older age cohorts.34

Next, I study how the estimated transmission rates change in response to an increase in the ECC

rate. To this end, I interact weekly transmission rates (αWR) with annual ECC rates. Panel B

summarizes the results including all counties in West Germany. The coefficients can be interpreted

as the additional number of individuals that get infected by one infected individual due to a 1pp

increase in the ECC rate. I find that transmission rates of children aged 0 to 2 significantly increase

in response to an increase in the ECC rate. The results suggest that 100 infected individuals

transmit influenza to 2.4 additional children due the increase of the average child care coverage

rate by 20pp between 2005 and 2016 (Column 7).35 Besides, the effect size of the expansion on

infection rates of children aged 3 to 6 is comparable to the one of children aged 0 to 2, but not

significant.

Panel C and D represent the effect of the expansion of child care on disease transmission, sepa-

rately for urban and rural areas. In line with the results of the DiD analysis, I observe substantial

differences in transmission patterns between urban and rural regions. While the expansion in child

care significantly increases the spread of influenza in urban areas, I find no evidence for an impact

of the roll-out on infection rates in rural areas.

33The IV estimates of within regional transmission rates show that 100 individuals infected with influenza spread
the disease to 8 children aged 0 to 2, 17 children aged 3 to 6, 24 individuals aged 7 to 26, 31 individuals aged 27 to 60
and 15 individuals above 60 living in the same county as the infected.

34The IV estimates of between regional transmission rates present that increase in the average number of infected
living outside a county by a 100 infections results in 12 additional infections of individuals aged 27 to 60 and 5
additional infections of individuals above 60 within a county of interest.

35The IV estimates show that 100 infected individuals spread influenza to additional 0.12 children in response to
1pp increase in the early child care coverage rate.
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Econometric Model 2: Age-Stratified Spatial-Time Spread of Diseases I now consider an

extended model of disease diffusion which differentiates between age groups of the infective and

the susceptible population. I first estimate transmission rates between infectives and susceptibles

within and across age groups and then, investigate how these estimates change due to an increase

in early child care coverage rates. Estimates are based on OLS regressions, as the instruments

can not be applied to different age groups of infectives. The results of the extended model are

consistent with the findings in the IV framework based on econometric model 1. Both model

specifications illustrate that mainly infection rates of children aged 0 to 2 and children aged 3 to 6

increase in response to the roll-out.36

Figure 2.4 and Appendix Table B.15 summarize the results. Panel A in Figure 2.4 displays the

estimated age-specific transmission rates per week within a county (αWR
a′a ) and the respective p-

values. The y-axis presents the infectives’ age group a′, while the x-axis denotes the susceptibles’

age group a. For instance, 100 infected children aged 0 to 2 transmit influenza to approximately

30 children aged 3 to 6 years living in the same county within a week. Panel A provides three

key insights: First, the strong diagonal pattern in the matrix shows that disease transmission oc-

curs predominantly within the same age group. This aligns with previous studies in epidemiology

showing that people mainly socialize with people of the same age which results in higher trans-

mission rates within age groups than across age groups (e.g. Meyer and Held 2017; Mossong et

al. 2008). Second, there are two salient clusters describing disease transmission across age groups:

Children aged 0 to 2 and children aged 3 to 6 infect each other at particularly high rates. The same

holds for adults and the elderly population. Third, the estimates suggest that an infected child

below the age of 3 transmits influenza to a higher number of individuals per week than infected

individuals in any other age group. This corresponds to findings in medical studies showing that

children shed greater quantities of influenza viruses for longer periods of time compared to adults

(King et al. 2005). Hence, the results point towards the role of children as main disseminators of

influenza within a community discussed in the epidemiological literature (Gonzalez et al. 2000;

Heikkinen et al. 2004).

In a subsequent step, I analyze whether and to which extent an increase in the early child care cov-

erage rate affects the estimated age-specific transmission rates. To this end, I interact age-specific

transmission rates (αWR
a′a ) with annual and county-specific early child care coverage rates. Panel B

in Figure 2.4 summarizes the estimated effects of a 1pp increase in the child care coverage rate on

age-specific transmission rates and the respective p-values. The coefficients can be interpreted as

the additional number of infections in age group a caused by an infected individual in age group

a′ due to a 1pp increase in the child care coverage rate. I find that the expansion in child care

significantly increases disease transmission between 0 to 2 year old children and 3 to 6 year old

children. The expansion, however, appears not to affect transmission patterns among 0 to 2 year

36Besides, the IV estimates of within regional transmission rates presented in Table 2.3 Panel A are consistently
larger than OLS estimates. Hence, estimates on transmission rates based on OLS regression can be regarded as lower
bounds.
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Figure 2.4: Econometric Model 2: Age-Stratified Spatial-Time Spread of Diseases

(a) Age-specific Transmission Rates
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(b) Effect of Child Care on Age-specific Transmission Rates
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Notes: Panel (a) presents the estimated age-specific transmission rates within counties (αWR
a′a ) based on Equation 2.3

using OLS regressions and the respective p-values. Cells with p-values below 0.001 and an effect size above 0.05 are
highlighted in blue. Panel (b) presents the change in transmission rates in response to an increase in the ECC rate. Cells
with p-values below 0.01 are highlighted in blue. Each column presents estimates from a different regression. The
dependent variables are the incidence rates of susceptibles in a particular age group. All regressions include county
and week-in-a-year fixed effects. In addition, regressions presented in Panel (b) control for season dummies, month
dummies, climate, GDP per capita and distance to an airport interacted with transmission rates within a county. The
complete set of regression coefficients is presented in Appendix Table B.15. Regressions are weighted by population
size in a particular age group.
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old children. The results suggest that contact rates of 0 to 2 year old children with 3 to 6 year old

children increase in response to the expansion in child care, whereas contact patterns within the

age cohort of 0 to 2 year old children remain constant. One possible explanation for this finding

is that children in the same age group have contact to each other at the same rate with and with-

out attending child care. Children not enrolled in formal child care may meet peers in privately

organized parent-child play groups or at playgrounds instead of in child care facilities. However,

children in different age cohorts may not meet each other at the same rate outside child care centers

and thus, the expansion in early child care increases contact rate between these age cohorts. This

could be explained by age-mixed groups in child care centers (see Section 2.2.1 for more details).

As in the previous analyses, I find that the treatment effect is driven by urban areas (see Appendix

Figure B.8, Appendix Table B.16, and Appendix Table B.17).

2.5 Policy Interventions: Mandatory Vaccination and Closure of Child Care Cen-
ters

In this section, I use the dynamic model of disease diffusion specified in Equation 2.3 as a frame-

work to study the impact of two counterfactual policy interventions: mandatory vaccination before

entry into formal child care and the closure of child care facilities during local outbreaks. I first

explore the effect of these policies on reducing the spread of influenza and then, evaluate economic

benefit and costs induced by these policy measures. In the counterfactual analysis, I assume that

the setup is unchanged except for the introduction of the respective policy. Thus, I rule out by

assumption that parental choice of home care versus formal child care is affected by the policy.37

2.5.1 Effect of Policies on Disease Incidence

Mandatory Vaccination before Entry in Child Care Mandatory vaccination before entry into

child care is one strategy adopted in many European countries to contain the spread of infectious

diseases (e.g. France, Italy, Slovenia). In Germany, the government only recently enforced manda-

tory vaccination against measles before entry into child care (Masernschutzgesetz, March 2020).

To study the impact of mandatory vaccination against influenza before entry into child care, I es-

timate dynamically how incidence rates would have evolved, if each child attending formal care

was vaccinated.38 Figure 2.5 summarizes the average weekly incidence rates of children aged 0

to 2 (blue line), estimated incidence rates using the dynamic model without imposing any policy

(green line), and with enforcing mandatory vaccination (red line). First of all, the figure illustrates

that the dynamic model of disease diffusion describes the actual incidence rates reported over the

37In the counterfactual analysis, I leave out the 2009/10 influenza season (known as swine flu) due to occurrence
of a new virus mutant and slightly different disease features. Results, however, do not change significantly, when
considering the 2009/10 influenza season in the analysis.

38I assume that (i) vaccination rate is identical to the child care coverage rate in a specific year and county and (ii)
the efficiency of the vaccine is 60%.
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year well (i.e. blue and green line are nearly the same). Further, I find that mandatory vaccination

reduces annual mean incidence rates of children below the age of 3 by about 11% and of children

aged 3 to 6 by 3% (p<0.01, see Table 2.4). The data show that mandatory vaccination benefits

mostly children, who see a significant reduction in the incidence of influenza.

Figure 2.5: Counterfactual Analysis: Mandatory Vaccination before Entry into Child Care
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Notes: The figure displays the average weekly reported incidence rates of children aged 0 to 2 (blue line), estimated
incidence rates based on the dynamic model of disease diffusion without imposing any policy (green line), and with
enforcing mandatory vaccination (red line). The data are aggregated over counties and averaged over the years between
2005 and 2016, excluding the 2009/10 influenza season.

Closure of Child Care Centers during Local Outbreaks Another feasible policy intervention

to limit the spread of infectious diseases within child care facilities is to close care facilities during

local outbreaks. To evaluate the impact of closure of child care centers during local outbreaks on

the incidence rates of influenza, I estimate dynamically how infection rates would have evolved, if

all child care centers in a county were closed for a two-week spell, once incidence rates in a county

exceed 4.75 (lab-diagnosed) cases per 100,000 inhabitants for at least three subsequent weeks (i.e.

the incidence rate is higher than 95% of the week-county pairs; definition 1). Alternatively, an

outbreak is defined as incidence rates above 1.85 cases per 100,000 inhabitants for at least three

subsequent weeks (i.e. the incidence rate is higher than 90% of the week-county pairs; definition

2). Figure 2.6 and Table 2.4 illustrate that a closure of child care facilities for two weeks during

local outbreaks significantly reduces incidence rates by about 2 to 4%. Importantly, closure of

child care facilities not only causes a significant decrease in the incidence rates of children, but

also of people aged 6 to 60. Infection rates of the elderly population are not affected by the policy

intervention.
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Figure 2.6: Counterfactual Analysis: Closure of Child Care Centers
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Notes: The figure displays the average weekly reported incidence rates of children aged 0 to 2 (blue line), estimated
incidence rates based on the dynamic model of disease diffusion without imposing any policy (green line), and with
closure of child care centers using definition 1 for local outbreaks (red line). The data are aggregated over counties and
averaged over the years between 2005 and 2016, excluding the 2009/10 influenza season.

Table 2.4: Effect of Policy Interventions on Disease Incidence

Age: <3 Age: 3-6 Age: 7-26 Age: 27-60 Age: 60+

Vaccination Policy -0.108*** -0.030*** -0.015** -0.008* -0.003
(0.040) (0.018) (0.012) (0.011) (0.011)

Closure of Child Care Centers (Def. 1) -0.024** -0.020** -0.018** -0.020** -0.011
(0.022) (0.018) (0.016) (0.019) (0.015)

Closure of Child Care Centers (Def. 2) -0.041*** -0.035*** -0.031*** -0.033** -0.017
(0.028) (0.025) (0.021) (0.024) (0.019)

Notes: The table reports the mean relative effect of each policy intervention on annual disease inci-
dence rates, e.g. mandatory vaccination reduces annual incidence rates of children aged 0 to 2 by
10.8%. The standard deviation is presented in brackets. The stars denote the p-value of a two-sided
t-test displaying whether a policy significantly reduces annual incidence rates compared to mean an-
nual incidence rates without policy intervention. * p < 0.10, ** p < 0.05, *** p < 0.01

2.5.2 Cost and Benefit Analysis

I now evaluate the economic benefits of mandatory vaccination policies and the closure of child

care facilities during outbreaks, measured by the costs saved due to avoided infections. To this end,

I draw on epidemiological literature that calculates the costs per case of influenza based on health

insurance claims (Scholz et al. 2019). The data consider direct medical costs, such as outpatient

care, hospitalization and medication, and also indirect costs caused by sick leave.39 Total costs per

case are estimated separately for different age groups. A limitation of this data set is that indirect

costs are only calculated for adults, but not for children (i.e. a loss in parents’ productivity caused

39Indirect costs are calculated as a function of the average number of working days lost due to an infection, average
income and the percentage of individuals that participate actively in the labor market. See Scholz et al. (2019) for more
details.
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by a sick child, is not taken into account). Hence, the estimated costs per sick child represent a

lower bound of the total costs. I supplement the data from Scholz et al. (2019) with information

on costs of premature death that are estimated based on the concept of the value of a statistical life

(VSL).40 Appendix Table B.18 summarizes the costs considered in the analysis. Medical costs are

highest for children and the elderly. For adults, direct medical costs are relatively low. However,

total costs per case are highest for adults due to indirect costs caused by sick leave.41

The economic gains of the policy interventions are given by multiplying costs per case with the

number of cases avoided. Recall from Section 2.2.2, that the data on disease incidence provided

by the system of notifiable diseases includes mainly lab-diagnosed cases. Hence, using this data

set to calculate the number of cases avoided likely underestimates the actual reduction in the

number of cases. For this reason, I use medical claims data that document the annual share of

people clinically diagnosed with influenza-like diseases (ICD-10 codes: J09 to J11) to calculate

the number of avoided cases (Scholz et al. 2019). In doing so, I impose the assumption that the

estimated relative effect size of the policy interventions is the same for clinically and lab-diagnosed

cases. This procedure allows me to estimate the benefits of the two policies in monetary terms for

clinically diagnosed cases.42

Table 2.5 summarizes the estimated annual economic benefits of the two policy interventions

across all age groups. The results provide suggestive evidence that economic benefits due to

closure of child care facilities are larger than those resulting from mandatory vaccination policies.

The implementation of policy interventions also imposes costs on society, which makes them

not per se desirable as a policy measure to curb influenza. Therefore, it is important to com-

pare economic benefits to the costs imposed by a policy intervention. For this reason, I evaluate

net benefits of introducing mandatory vaccination policies.43 To calculate the costs imposed by

mandatory vaccination policies, I use information on costs per flu shot from medical billing data.44

To vaccinate each child attending child care between 2005 and 2016, would have imposed annual

average costs of e2.3 million on the German health care system (Table 2.5, Row 2).

40The VSL measures the society’s willingness to pay for a small change in the probability of a fatality (Ashenfelter
2006; Kniesner and Viscusi 2019; Viscusi and Aldy 2003). There is substantial variation in the calculated VSL (Viscusi
and Aldy 2003). In this study, I use a range between e1.3 and e6 million, which corresponds to the range found in the
literature (Adda 2016).

41In Germany, adults stay absent from work for an average of 6.71 days due to an influenza caused sickness spell
(Scholz et al. 2019).

42More specifically, I take the share of people infected with influenza-like diseases (ILD) to calculate the annual
average number of infected with ILD in West Germany (Appendix Table B.19). I further estimate the number of cases
with ILD avoided due to the policy interventions (Appendix Table B.20 Column 3) by multiplying the relative effect
size of the respective policy (Appendix Table B.20 Column 1) with the annual number of infected without any policy
intervention (Appendix Table B.19, Column 4).

43I abstract from calculating the costs of closing child care facilities for a two-week spell, as there is no comprehen-
sive database on the costs imposed by the policy.

44Costs per flu shot are about e7 and comprise the costs of the vaccine and of consulting a physician.The costs per
flu shot vary between privately and publicly insured patients. For publicly insured individuals, the costs were about e7
in 2012 (Medical billing: Symbolnummer: 89111, 89112) and varied slightly across regions in Germany. For privately
insured individuals, the costs were about e20 per shot (Medical billing: GOÄ: 1 and 375; factor 2.3).
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Table 2.5: Estimated Benefits and Costs, by Policy Intervention

Mandatory Vaccination Closure of Child Care Centers

Outbreak Def. 1 Outbreak Def. 2

Annual Benefits (in e) 2,981,324 5,488,629 9,068,098

Annual Costs (in e) 2,306,590 - -

Annual Net Benefits (in e) + 674,734 - -

Notes: The table reports the estimated annual economic benefits of mandatory vaccination and closure of
child care centers based on health insurance claims (Row 1). The data on health insurance claims include
clinically diagnosed cases of influenza-like diseases between 2012 and 2014 (Scholz et al. 2019). The
economic benefits are calculated by multiplying the number of avoided cases per age group (Appendix
Table B.20) with the lower bound of the calculated total costs per case in a particular age (Appendix Table
B.18). The estimate reported presents the aggregate over all age cohorts. Row 2 presents the annual costs
of introducing mandatory vaccination policy and is approximated by taking the costs per flu shot times
the average number of children attending child care. Row 3 presents the annual net benefit of mandatory
vaccination policies.

Comparing costs and benefits of enforced vaccination policies shows that mandatory vaccination

policies would reduce annual costs by 23% compared to the status quo (Table 2.5, Row 3).

2.6 Discussion

This paper provides causal evidence on the impact of early child care on the spread of influenza.

I find that the roll-out of child care increases disease incidence of children aged 0 to 2, children

aged 3 to 6 and, in some model specifications, adults. The effect is driven by urban areas, while

there is no significant impact of the expansion in child care on infection rates in rural areas.

Several mechanisms might explain the observed differences in transmission patterns between ru-

ral and urban counties: First, there might be differences in the baseline incidence rates prior to

the reforms between rural and urban areas. If child care centers have a multiplier effect on dis-

ease incidence, higher baseline incidence rates in urban areas than in rural areas may explain the

findings. The data on disease incidence, however, show that mean baseline incidence rates do not

differ significantly between urban and rural areas, ruling out that explanation. Second, the effect of

child care expansion on incidence rates might be non-linear. At the start of the expansion, supply

of child care was significantly lower in rural areas compared to urban areas (p< 0.001). Third,

differences in the expansion strategy and the organizational structure of child child care between

urban and rural areas may drive the results. The expansion of child care can occur in at least two

ways: By expanding existing facilities or by creating new facilities. Expanding existing child care

centers requires that facilities exist prior to the reforms and is likely to result in an increased num-
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ber of children per center compared to newly built centers. Children enrolled in large facilities

interact with a higher number of children at common play areas compared to children attending

small centers. As rural areas started at very low levels of child care coverage rates in 2005, expan-

sion likely occurred primarily by creating new facilities. In contrast, child care provision in urban

areas started at higher levels and thus, expansion is likely to be implemented by enlarging existing

facilities and creating new ones. Additionally, group structures, for instance in terms of the age

composition, may significantly vary across rural and urban areas. An alternative explanation for

heterogeneous treatment effects between urban and rural areas might be differences in the trans-

portation mode to the care center. Children living in urban areas are likely to be taken to the child

care center by public transport and thus, are arguably exposed to a greater risk of infection than

children in rural areas that are brought to child care centers by foot or car. Finally, this heterogene-

ity does not appear to be specific to influenza, as I find a similar pattern for norovirus gastritis, a

highly contagious viral disease infecting particularly children (see Appendix Table B.5).

The roll-out of early child care also changes female labor force participation (Müller and Wrohlich

2019). Hence, some of the increase in infection could be coming from the mother’s workplace.

To investigate whether and to which extent the effect is driven by an increase in the mothers’

labor supply, I run the analysis with and without controlling for county-specific female labor

participation. I find that the effect of the expansion of child care on infection rates is nearly

the same in both specifications. This indicates that the location of increased infections is indeed

child care and not mothers’ workplace (see Appendix Table B.7, Appendix Table B.8, Appendix

Table B.13, and Appendix Table B.14).

The contribution of child care facilities to the propagation of infectious diseases is highly debated

in the context of the ongoing Covid-19 pandemic (Gilliam et al. 2021; Lopez et al. 2020). Find-

ings from this study can, however, only be partly transferred to other diseases such as Covid-19,

as transmission patterns strongly depend on disease-specific parameters such as incubation time,

infectivity, and transmission mode. Influenza and Covid-19 share some characteristics – both

viruses are transmitted by contact, droplets, and fomites and cause respiratory symptoms (World

Health Organization 2021). Hence, it is plausible to assume that a change in contact patterns in

response to increased child care attendance might affect the spread of Covid-19 or more generally,

the spread of any airborne-transmitted infectious disease. However, the effect size of child care

on disease transmission may vary depending on other disease-specific characteristics such as viral

load in patients of different age groups. In the case of Covid-19, age-specific disease transmis-

sion patterns appear to strongly differ from those of influenza.45 Summing up, this study provides

evidence that child care facilities spur the spread of airborne-transmitted infectious diseases. To

45Children appear to be less susceptible to infections of Covid-19, have lower rates of hospitalisation and when
infected, less often lead to onward transmission than adolescents and adults (European Centre for Disease Prevention
and Control 2020; Parri et al. 2020; Viner et al. 2020). In contrast, children are more often infected with influenza, have
higher rates of hospitalization and when infected, more often lead to onward transmission compared to adolescents and
adults below 60 (Amboss 2021; Gonzalez et al. 2000; Heikkinen et al. 2004).
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assess, however, the exact effect size of child care attendance on the transmission of other viruses

than influenza, additional studies are required.

2.7 Conclusion

This paper contributes to a better understanding of disease transmission patterns by exploring the

impact of early child care on the spread of influenza. Using a difference-in-differences approach,

I find that early child care significantly increases infection rates of influenza. To identify age-

specific transmission patterns, I extend a semi-parametric model of disease diffusion that builds

on epidemiological work. The results show that transmission patterns between children aged 0

to 2 and children aged 3 to 6 are profoundly increased in response to a rise in early child care

provision. I further document significant differences in the impact of child care on the spread of

influenza between urban and rural areas. However, the geographic differences do not appear to be

specific to influenza, as I find a similar pattern for norovirus gastritis, another highly contagious

viral disease. The heterogeneous treatment effects between urban and rural areas indicate that there

exist systematic differences in the organizational structure of child care facilities between urban

and rural areas that need to be further explored in future research. In a counterfactual analysis, I

find that mandatory vaccination before entry into child care and the closure of child care facilities

significantly reduce disease incidence by up to 11%. These policy interventions benefit mostly

children, who see a significant reduction in the incidence of influenza. In addition, a cost-benefit

analysis of mandatory vaccination policy shows that the policy would be cost-effective decreasing

net annual costs by about 20% relative to the status quo.

The emergence and rapid transmission of Covid-19 pandemic has propelled the importance of

infectious diseases for society and the economy into the public spotlight. Less salient, but still

substantial are the health and economic hazards of established viruses such as seasonal influenza

(Girard et al. 2005; Lambert and Fauci 2010; Schwandt 2017). Identifying the “hotspots” in

society that are particularly relevant for the spread of infectious may help individuals to protect

themselves, and also policy makers to enact targeted containment measures and thus, minimize

costs to society.
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Appendix B

B1 Data Description

Table B.1: Summary Statistics

Mean S.D.

Child Care Coverage Rate

ECC rate in 2005 (in %) 7.32 3.83

ECC rate in 2010 (in %) 19.57 5.69

ECC rate in 2016 (in %) 27.13 5.91

Kindergarten coverage rate in 2005 (in %) 86.53 6.90

Kindergarten coverage rate in 2010 (in %) 92.70 3.92

Kindergarten coverage rate in 2016 (in %) 93.56 3.35

Incidence of influenza

Annual incidence rate, total population 50.68 78.79

Annual incidence rate, aged 0 to 2 131.25 207.72

influenza-vaccination rate (age 60+) 35.30 6.97

Socio-Economic Characteristics

Female labor market participation (in %) 48.41 5.00

GDP per capita (in e) 33.14 14.50

Unemployment rate (in %) 6.14 2.78

Regional Characteristics

Population density (population per km2) 566.48 694.93

Population size, total population 20,1813.14 17,7974.66

Population size, aged 0 to 2 5,186.96 5,060.32

Distance to airport (mean time in minutes by car) 48.25 21.35

ID 1 - urban/rural areas (dummy for rural=1) 0.44 0.50

ID 2 - urban/rural areas (= large cities) 0.18 0.38

ID 2 - urban/rural areas (= cities) 0.39 0.49

ID 2 - urban/rural areas (= rural with small cities) 0.24 0.43

ID 2 - urban/rural areas (= sparsely populated areas) 0.20 0.40

Weather

Temperature (in celsius) 9.53 1.41

Precipitation (in mmHg) 2.19 0.55

Absolute humidity (in g/m3) 8.19 0.55

Notes: The table reports the mean and standard deviation of the set of variables included in the analysis, by county. The
data is pooled over the period of observation (2005 to 2016). I use two different classification schemes for rural and
urban areas proposed by BBSR (2019): First, a binary variable (ID 1): “Urban Areas” denote Kreisfreie Großstädte with
more than 100,000 inhabitants and Städtische Kreise with a population density of at least 150 inhabitants/km2 and at
least 50% of the population living in a city. “Rural Areas” denote the remaining counties. Second, a variable that groups
German counties into four categories (ID 2): “Large Cities” denote Kreisfreie Großstädte with more than 100,000
inhabitants. “Cities” present Städtische Kreise with a population density of at least 150 inhabitants/km2 and at least
50% of the population living in a city. “Rural Areas with Small Cities” include (i) counties with a population density
less than 150 inhabitants/km2 and at least 50% of the population living in a city and (ii) counties with a population
density of at least 100 inhabitants/km2 and less 50% of the population living in a city. “Sparsely Populated Areas”
denote counties with a population density smaller than 100 inhabitants/km2 and less than 50% of the population living
in a city.
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Figure B.1: Locations of Influenza Infections in Germany
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Notes: The figure summarizes the locations of infection with influenza derived from contact tracing by German health
authorities (Robert Koch Institute). The data is aggregated over the years between 2005 and 2016.

Figure B.2: Reporting System of Notifiable Diseases in Germany
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Notes: The figure illustrates the reporting system of notifiable diseases in Germany. The diagnosis of a notifiable
disease has to be reported by a physician or a lab to the local health department that passes the information on to the
respective federal health department. The state health department in turn transmits the information to the national
department for public health (Robert Koch Institute).
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Figure B.3: Classification of Counties into Rural and Urban Areas

Rural Areas Urban Areas No Data

Notes: The figure illustrates the classification of the 324 counties in West-Germany into rural (green) and urban areas
(blue). The classification is based on the definition of the Federal Institute for Research on Building, Urban Affairs and
Spatial Development (Bundesinstitut für Bau-, Stadt- und Raumforschung) (BBSR 2019).
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Figure B.4: Trend in the Early Child Care Coverage Rate, East and West Germany
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Notes: The figure illustrates the annual early child care coverage rates for children aged between 0 to 2 between 1997
and 2017. The blue line presents the early child care coverage rates in West Germany and the green line presents
the annual child care rate in East Germany. The vertical dashed, grey lines indicate the start and end point of the
observation period.

Supplementary Information on Weather Data The data is obtained from 439 active weather

stations allocated within Germany. Based on geographic information, I link each municipality to

its nearest weather station. The mean distance between the weather station and a municipality is

10km (S.D.=3.8km). In case a county consists of more than one municipality, I take the average

temperature and precipitation per week within a county. In doing so, I obtain weekly information

on temperature, precipitation and absolute humidity per county.
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B2 DiD Strategy

Assessing the Identification Strategy

I study whether baseline county characteristics prior to the reforms, that induced the roll-out of

child care slots (see Section 2.2.1), are related to the timing of the expansion. In doing so, I follow

Akerman et al. (2015) and use Equation B.1:

∆Ec,t = δc + (ωt ×Xc)
′ηt + ϵc,t (B.1)

where ∆Ec,t denotes the change in early child care coverage rate between two subsequent years,

i.e. ∆Ec,t = Ec,t − Ec,t−1. The parameters δc and ωt represent county and year fixed effects,

respectively. Xc includes baseline county characteristics prior to the expansion in early child care.

More specifically, I study whether counties’ economic performance (i.e. unemployment rate, aver-

age household income, female labor market participation and education), regional characteristics

(i.e. population density, number of 0 to 2 year old children), and political attitudes are related to

the timing of the roll-out.46 In addition, I investigate whether average incidence rates for influenza

in the pre-expansion period correlate with the timing of child care expansion. For each variable

included in Xc, I take the latest available observation between 2002 and 2004.

46Prior literature shows that a higher vote share for Social Democrats is related to expanding child care from half to
full day slots (Felfe and Zierow 2018).
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Figure B.5: Timing of Child Care Expansion and Baseline Covariates

(a) Socio-Economic Characteristics
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(b) Child Care Coverage Rates and Disease Incidence
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Notes: The figures report estimates of the vector ηt for each year t and the associated 95% confidence
intervals based on Equation (B.1). All variables included in Xc are standardized.

Selective Reporting - Likelihood of GP Visit Conditional on Symptoms and Child
Care Attendance

Table B.2: Number of GP Visits and Child Care Attendance

Annual No. of Medical Consultation

Home Care Center Care p-value

β/(SE) β/(SE) βHome Care=βCare Center

No. of Flu-like Diseases in the Last 12 Month 0.69*** 0.49*** 0.36

(0.17) (0.12)

No. of Observations 1353 232

Notes: The table displays the estimated effect of the number of flu-like diseases on the number
of medical consultation for a sample of children aged 0 to 2 that is cared for at home (Column 1)
and for a sample of children aged 0 to 2 that is attending public child care (Column 2). Column 3
reports the p-value of the differences in means between children cared for at home and children
attending public child care. All models control for child age and gender, survey year fixed
effects, and general health conditions. Robust standard errors are shown in parentheses. *

p < 0.05, ** p < 0.01, *** p < 0.001. Data source: KiGGS survey data gathered between
2003-2006 and 2014-2016 by the Robert Koch Institute.
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Additional Results

Figure B.6: Early Child Care Rates and Incidence Rates of Influenza

(a) W/o Controls and W/o FE
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Notes: The binned scatter plots display the link between incidence rates of children aged 0 to 2 (i.e. cases per 100,000
citizens aged 0 to 2) and the ECC rate per year and county. Panel (a) includes the raw data. Panel (b) controls for county
and time fixed effects and a set of control variables (temperature, rain, absolute humidity, GDP per capita, employment
rate, female employment rate, and population density).

Table B.3: DiD Estimates, by Age Groups

Age 0 to 2 Age 3 to 6 Age 7 to 26 Age 27 to 60 Age 60+ Total Population

ECC rate 0 to 2 1.047** 1.033** 1.033 1.023 1.009 1.009 1.018 1.016 1.014 1.009 1.019 1.015

(0.02) (0.02) (0.02) (0.02) (0.02) (0.01) (0.02) (0.02) (0.01) (0.02) (0.02) (0.01)

Observations 3564 3564 3564 3564 3564 3564 3564 3564 3553 3553 3564 3564

Pseudo R2 0.634 0.639 0.646 0.649 0.845 0.847 0.725 0.729 0.724 0.728 0.751 0.754

Control variables no yes no yes no yes no yes no yes no yes

Season FE yes yes yes yes yes yes yes yes yes yes yes yes

County FE yes yes yes yes yes yes yes yes yes yes yes yes

Notes: The table displays DiD estimates based on Poisson pseudo maximum likelihood regression using Equation
(2.1). The dependent variables are the incidence rates in a particular age group. Coefficients are presented as odds
ratios. The set of control variables includes temperature, rain, absolute humidity, GDP per capita, employment rate,
female employment rate, and population density. Regressions are weighted by population size in a particular age group.
Standard errors are clustered at the county level. * p < 0.10, ** p < 0.05, *** p < 0.01
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Table B.4: DiD Estimates, by Age Groups, Urban and Rural Areas

Age 0 to 2 Age 3 to 6 Age 7 to 26 Age 27 to 60 Age 60+ Total Population

Rural Urban Rural Urban Rural Urban Rural Urban Rural Urban Rural Urban

ECC rate 0 to 2 1.001 1.050*** 0.988 1.038* 0.966* 1.045** 0.979 1.047** 1.016 1.014 0.974 1.048***

(0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02)

Observations 1562 2002 1562 2002 1562 2002 1562 2002 1551 2002 1562 2002

Pseudo R2 0.606 0.662 0.644 0.660 0.843 0.852 0.736 0.732 0.736 0.729 0.763 0.755

Season FE yes yes yes yes yes yes yes yes yes yes yes yes

County FE yes yes yes yes yes yes yes yes yes yes yes yes

Control variables no yes no yes no yes no yes no yes no yes

Notes: The table displays DiD estimates based on Poisson pseudo maximum likelihood regression using Equation 2.1,
shown separately for urban and rural areas. The dependent variables are the incidence rates in a particular age group.
Coefficients are presented as odds ratios. The set of control variables includes temperature, rain, absolute humidity,
GDP per capita, employment rate, female employment rate, and population density. Regressions are weighted by
population size in a particular age group. Standard errors are clustered at the county level. * p < 0.10, ** p < 0.05, ***

p < 0.01

Table B.5: Sensitivity Analysis: DiD Estimates, Norovirus Gastritis by Age Group

Age 0 to 2 Total Population

Full Sample Rural Area Urban Area Full Sample Rural Area Urban Area

ECC rate 0 to 2 1.029** 1.025** 1.012 1.035** 1.012** 1.008 0.994 1.016**

(0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01)

Observations 3564 3564 1562 2002 3564 3564 1562 2002

Pseudo R2 0.711 0.713 0.688 0.729 0.669 0.672 0.653 0.683

Season FE yes yes yes yes yes yes yes yes

County FE yes yes yes yes yes yes yes yes

Control variables no yes yes yes no yes yes yes

Notes: The table displays DiD estimates based on Poisson pseudo maximum likelihood regression using Equation 2.1,
shown separately for urban and rural areas. The dependent variables are the incidence rates of norovirus gastritis in a
particular age group. Coefficients are presented as odds ratios. The set of control variables includes temperature, rain,
absolute humidity, GDP per capita, employment rate, female employment rate, and population density. Regressions are
weighted by population size in a particular age group. Standard errors are clustered at the county level. * p < 0.10, **

p < 0.05, *** p < 0.01
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B3 IV Strategy

Table B.6: IV Strategy, First Stage

Age: <3 Age: 3 to 6 Age: 7 to 26 Age: 27 to 60 Age: 60+ Total

WR BR WR BR WR BR WR BR WR BR WR BR

IVWR (Part 1 & 2) -0.3397*** -0.0924*** -0.2568*** -0.0692*** -0.0419*** -0.0111*** -0.0186*** -0.0051*** -0.0318*** -0.0098*** -0.0087*** -0.0024***

(0.107) (0.022) (0.073) (0.016) (0.011) (0.003) (0.005) (0.001) (0.008) (0.002) (0.002) (0.001)

IVWR (Part 1) 5.2003*** 0.9337*** 3.9191*** 0.7105*** 0.6376*** 0.1158*** 0.2857*** 0.0526*** 0.4747*** 0.1025*** 0.1321*** 0.0254***

(0.892) (0.234) (0.608) (0.173) (0.095) (0.027) (0.046) (0.012) (0.070) (0.021) (0.020) (0.006)

IVBR (Part 1 & 2) -0.2719*** -0.5114*** -0.1818*** -0.3639*** -0.0276*** -0.0574*** -0.0135*** -0.0266*** -0.0200*** -0.0408*** -0.0059*** -0.0119***

(0.074) (0.060) (0.054) (0.043) (0.009) (0.006) (0.004) (0.003) (0.006) (0.004) (0.002) (0.001)

IVBR (Part 1) 1.6914*** 3.7094*** 1.1238*** 2.6422*** 0.1688** 0.4175*** 0.0824*** 0.1929*** 0.1190** 0.2931*** 0.0360** 0.0864***

(0.598) (0.427) (0.433) (0.297) (0.069) (0.044) (0.031) (0.021) (0.050) (0.030) (0.014) (0.009)

Observations 185004 185004 185004 185004 185004 185004 185004 185004 185004 185004 185004 185004

F-Stat. 70.044 30.684 69.544 33.000 68.904 37.209 73.726 34.891 78.610 39.009 74.236 36.542

p-value F-Stat. 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Sanderson-Windmeijer F-Stat. 57.272 36.629 51.569 34.393 47.550 34.135 52.299 35.019 53.227 38.485 51.503 35.782

p-value Sanderson-Windmeijer F-Stat. 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Notes: The table displays the estimates of the first stage regressions for disease transmission within regions (WR) and between regions (BR). Coefficients are scaled by dividing
by 100,000. Each column represents a separate regression. IVWR and IVBR denote the functional form described in Equation (2.5a) and (2.5b). All regressions include county and
week-in-a-year fixed effects. Standard errors are clustered at the county level.* p < 0.10, ** p < 0.05, *** p < 0.01
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Figure B.7: Graphical Illustration of the Instrument
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Notes: The figure shows one example of how the first part of the instrument mimics an outbreak in Munich in the
influenza season 2010/2011. The green line displays the sum over the difference between the median temperature
during an outbreak and the temperature in week i of the same outbreak. It presents a humped-shaped curve that grows
as long as the temperature is below the median temperature and declines ones the temperature exceeds the median
temperature. The curve overlaps with reported incidence rates (cases per 100,000 inhabitants) of influenza (blue line).
The horizontal red line at an incidence rate of 0.5 presents the threshold value for the definition of an outbreak. The
onset of an outbreak is defined as the first week of at least three consecutive weeks in that the incidence rate is larger
than 0.5, the end of a local outbreak is defined as the first of at least five subsequent weeks in that the incidence rate
is lower than 0.5. The sum over the difference between the median temperature of an outbreak and the temperature in
week i of the epidemic outbreak is set to zero if (i) no outbreak takes place or (ii) the sum is below zero.
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B4 Econometric Model 1: Time-Space Model

Table B.7: Econometric Model 1: Time-Space Model, OLS Regressions

OLS Results

Age: <3 Age: 3 to 6 Age: 7 to 26 Age: 27 to 60 Age: 60+ Total

αWR 0.12*** 0.28*** 0.25** 0.27*** 0.086 1.01***

(0.0223) (0.0578) (0.0979) (0.0695) (0.0552) (0.1980)

αBR 0.0050*** 0.013*** 0.049*** 0.036*** 0.0081** 0.12***

(0.0015) (0.0035) (0.0137) (0.0076) (0.0037) (0.0245)

αWR × ECC rate 0.00058** 0.00052 0.0011 0.0028*** 0.00072 0.0060***

(0.0003) (0.0005) (0.0012) (0.0007) (0.0006) (0.0022)

αWR × gdp per capita -0.000025 0.000087 -0.00027 0.00086** 0.00026 0.00085
(0.0001) (0.0002) (0.0005) (0.0003) (0.0003) (0.0009)

αWR × airport -0.000070 -0.00010 -0.000028 0.00016 -0.000087 -0.000055
(0.0001) (0.0002) (0.0005) (0.0002) (0.0002) (0.0008)

αWR × population density 0.0000051* 0.0000042 -0.000046** -0.000025** -0.0000048 -0.000070**

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

αWR× cities 0.0039 0.016 0.0019 -0.030 -0.0054 -0.0083
(0.0054) (0.0099) (0.0371) (0.0256) (0.0170) (0.0617)

αWR× rural areas with small cities 0.0046 0.016 -0.027 -0.024 -0.0098 -0.040
(0.0050) (0.0118) (0.0422) (0.0305) (0.0196) (0.0699)

αWR× sparsely populated areas 0.0022 0.0077 -0.025 -0.024 -0.00065 -0.038
(0.0050) (0.0109) (0.0434) (0.0298) (0.0198) (0.0708)

αWR × rain 0.00049 0.0024 0.015** 0.0042* -0.0029*** 0.020*

(0.0006) (0.0021) (0.0066) (0.0025) (0.0011) (0.0102)

αWR × temperature -0.0017** -0.0028* -0.015*** -0.0072** -0.0033 -0.032***

(0.0007) (0.0015) (0.0052) (0.0029) (0.0020) (0.0087)

αWR × absolute humidity 0.0024 -0.0025 0.040** -0.0015 0.0034 0.048*

(0.0018) (0.0050) (0.0159) (0.0090) (0.0054) (0.0247)

Observations 185004 185004 185004 185004 185004 185004
Adj.R2. 0.391 0.448 0.621 0.664 0.470 0.700

Notes: The table displays estimates of Equation 2.3, in that one infected individual of any age spreads
influenza to susceptibles in a particular age group. Estimates are based on OLS regressions. Each column
presents estimates from a different regression. The dependent variables are the incidence rates of a particular
age group. All regressions include county fixed effects, week-in-a-year fixed effects, season fixed effects,
and month dummies interacted with transmission rates. Regressions are weighted by population size in a
particular age group. Standard errors are clustered at the county level. * p < 0.10, ** p < 0.05, *** p < 0.01
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Table B.8: Econometric Model 1: Time-Space Model, IV Regressions

IV-Results

Age: <3 Age: 3 to 6 Age: 7 to 26 Age: 27 to 60 Age: 60+ Total

αWR 0.10*** 0.35*** 0.66*** 0.39*** 0.24*** 1.78***

(0.0324) (0.0708) (0.0802) (0.0980) (0.0809) (0.1906)

αBR -0.023* -0.041** -0.057* 0.028 0.000020 -0.090
(0.0118) (0.0209) (0.0301) (0.0302) (0.0228) (0.0666)

αWR × ECC rate 0.0012** 0.0011 -0.00065 -0.00026 -0.0013 0.00028
(0.0006) (0.0007) (0.0008) (0.0011) (0.0014) (0.0014)

αWR × gdp per capita -0.00021 -0.00019 0.00011 -0.000038 0.000038 -0.00032
(0.0002) (0.0003) (0.0003) (0.0004) (0.0005) (0.0005)

αWR × airport -0.000036 -0.00044 0.00066* 0.00032 -0.00019 0.00036
(0.0002) (0.0005) (0.0003) (0.0004) (0.0004) (0.0005)

αWR × population density 0.0000040 -0.0000023 -0.000017 0.0000044 0.00000011 -0.000013
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

αWR× cities 0.0010 0.0039 -0.0063 -0.0042 -0.019 -0.023
(0.0143) (0.0234) (0.0224) (0.0352) (0.0321) (0.0386)

αWR× rural areas with small cities 0.0080 0.044 0.0070 -0.032 -0.047 -0.018
(0.0153) (0.0298) (0.0258) (0.0403) (0.0361) (0.0470)

αWR× sparsely populated areas 0.010 0.035 0.0046 -0.020 -0.029 0.0026
(0.0169) (0.0267) (0.0257) (0.0440) (0.0379) (0.0475)

αWR × rain 0.00059 0.0014 0.00074 -0.00034 -0.0018 0.0012
(0.0013) (0.0027) (0.0031) (0.0039) (0.0025) (0.0083)

αWR × temperature -0.0023 -0.0086*** -0.0076** -0.0056 -0.0011 -0.026***

(0.0014) (0.0029) (0.0037) (0.0038) (0.0028) (0.0094)

αWR × absolute humidity 0.012*** 0.016** 0.0052 -0.0045 -0.0072 0.025
(0.0044) (0.0072) (0.0115) (0.0121) (0.0106) (0.0277)

Observations 185004 185004 185004 185004 185004 185004

Notes: The table displays estimates of Equation 2.3, in that one infected individual of any age spreads
influenza to susceptibles in a particular age group. Estimates are based on IV regressions. Each column
presents estimates from a different regression. The dependent variables are the incidence rates of a particular
age group. All regressions include county fixed effects, week-in-a-year fixed effects, season fixed effects,
and month dummies interacted with transmission rates. Regressions are weighted by population size in a
particular age group. Standard errors are clustered at the county level. * p < 0.10, ** p < 0.05, *** p < 0.01
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Table B.9: Econometric Model 1: Time-Space Model, OLS Regressions, Urban Regions

OLS Results

Age: <3 Age: 3 to 6 Age: 7 to 26 Age: 27 to 60 Age: 60+ Total

αWR × ECC rate 0.00080** 0.0014** 0.0011 0.0034*** 0.00064 0.0074**

(0.0004) (0.0006) (0.0015) (0.0010) (0.0009) (0.0031)

αWR 0.15*** 0.41*** 0.19 0.19** 0.067 1.01***

(0.0296) (0.0919) (0.1508) (0.0758) (0.0609) (0.2814)

αBR 0.0067*** 0.012*** 0.053*** 0.035*** 0.0059 0.12***

(0.0023) (0.0042) (0.0201) (0.0106) (0.0043) (0.0359)

αWR × gdp per capita -0.000029 -0.000076 -0.0000034 0.00088*** 0.00025 0.00099
(0.0001) (0.0003) (0.0006) (0.0003) (0.0004) (0.0011)

αWR × population density 0.0000051* 0.0000028 -0.000043* -0.000033*** -0.0000035 -0.000077*

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

αWR × airport -0.00016* -0.00041 -0.00029 -0.000018 0.000089 -0.00080
(0.0001) (0.0003) (0.0007) (0.0003) (0.0002) (0.0012)

αWR × rain 0.00063 0.0016 0.023** 0.0085** -0.0012 0.034**

(0.0010) (0.0033) (0.0094) (0.0036) (0.0019) (0.0154)

αWR× cities 0.0053 0.015 0.015 -0.040* -0.0056 -0.0071
(0.0053) (0.0093) (0.0419) (0.0217) (0.0193) (0.0687)

αWR × temperature -0.0024** -0.0054** -0.022*** -0.010*** 0.00052 -0.043***

(0.0011) (0.0024) (0.0073) (0.0033) (0.0023) (0.0117)

αWR × absolute humidity 0.0047 -0.0014 0.059** 0.013 -0.0062 0.079**

(0.0033) (0.0080) (0.0241) (0.0107) (0.0067) (0.0367)

Observations 103922 103922 103922 103922 103922 103922
Adj.R2. 0.446 0.514 0.617 0.677 0.483 0.698

Notes: The table displays estimates of Equation 2.3, in that one infected individual of any age spreads influenza to
susceptibles in a particular age group, shown separately for urban counties. Estimates are based on OLS regressions.
Each column presents estimates from a different regression. The dependent variables are the incidence rates of a
particular age group. All regressions include county fixed effects, week-in-a-year fixed effects, season fixed effects,
and month dummies interacted with transmission rates. Regressions are weighted by population size in a particular age
group. Standard errors are clustered at the county level. * p < 0.10, ** p < 0.05, *** p < 0.01
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Table B.10: Econometric Model 1: Time-Space Model, IV Regressions, Urban Regions

IV-Results

Age: <3 Age: 3 to 6 Age: 7 to 26 Age: 27 to 60 Age: 60+ Total

αWR × ECC rate 0.0017** 0.00089 -0.00023 0.000023 -0.00023 -0.000020
(0.0008) (0.0008) (0.0002) (0.0001) (0.0002) (0.0001)

αWR 0.087* 0.29*** 0.073*** 0.0093 0.035*** 0.041***

(0.0462) (0.0841) (0.0171) (0.0066) (0.0105) (0.0070)

αBR -0.043* -0.090** -0.0081 0.0037 0.0028 -0.0035
(0.0222) (0.0415) (0.0076) (0.0031) (0.0042) (0.0040)

αWR × gdp per capita -0.00048** -0.00031 0.000036 0.000043 0.000076 0.000030*

(0.0002) (0.0003) (0.0000) (0.0000) (0.0001) (0.0000)

αWR × population density -0.0000028 -0.0000051 -0.0000032 0.00000097 0.00000043 -0.00000035
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

αWR × airport 0.000074 0.00025 0.000032 -0.0000083 -0.000023 0.0000016
(0.0003) (0.0004) (0.0001) (0.0000) (0.0001) (0.0000)

αWR × rain -0.00086 0.0013 -0.00015 -0.000040 0.00015 0.000013
(0.0020) (0.0022) (0.0005) (0.0004) (0.0004) (0.0003)

αWR× cities -0.014 -0.023 -0.0038 0.0012 -0.0028 -0.0018
(0.0154) (0.0237) (0.0041) (0.0023) (0.0037) (0.0017)

αWR × temperature -0.0044** -0.013*** -0.0019*** -0.00062** 0.00070* -0.0011***

(0.0022) (0.0041) (0.0007) (0.0003) (0.0004) (0.0004)

αWR × absolute humidity 0.015** 0.011 0.0020 0.00093 -0.0032** 0.00100
(0.0063) (0.0076) (0.0021) (0.0009) (0.0013) (0.0009)

Observations 103922 103922 103922 103922 103922 103922

Notes: The table displays estimates of Equation 2.3, in that one infected individual of any age spreads influenza to
susceptibles in a particular age group, shown separately for urban counties. Estimates are based on IV regressions.
Each column presents estimates from a different regression. The dependent variables are the incidence rates of a
particular age group. All regressions include county fixed effects, week-in-a-year fixed effects, season fixed effects,
and month dummies interacted with transmission rates. Regressions are weighted by population size in a particular age
group. Standard errors are clustered at the county level. * p < 0.10, ** p < 0.05, *** p < 0.01
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Table B.11: Econometric Model 1: Time-Space Model, OLS Regressions, Rural Areas

OLS Results

Age: <3 Age: 3 to 6 Age: 7 to 26 Age: 27 to 60 Age: 60+ Total

αWR 0.082*** 0.17*** 0.35*** 0.41*** 0.066 1.12***

(0.0310) (0.0461) (0.1063) (0.0843) (0.0504) (0.1880)

αBR 0.0044** 0.016*** 0.047** 0.040*** 0.016*** 0.12***

(0.0019) (0.0049) (0.0186) (0.0109) (0.0049) (0.0330)

αWR × ECC rate 0.00035 -0.00036 0.0012 0.0023** 0.00069 0.0049
(0.0002) (0.0006) (0.0020) (0.0010) (0.0006) (0.0030)

αWR × gdp per capita 0.00024 0.00065 -0.0011 -0.00022 0.00030 -0.00022
(0.0002) (0.0005) (0.0019) (0.0009) (0.0004) (0.0028)

αWR × population density -0.0000087 -0.000024 -0.000046 0.000027 -0.000015 -0.000061
(0.0000) (0.0000) (0.0001) (0.0000) (0.0000) (0.0001)

αWR × airport 0.000027 0.00016 0.00029 0.00018 -0.00021 0.00057
(0.0001) (0.0002) (0.0006) (0.0003) (0.0002) (0.0009)

αWR × sparsely populated areas -0.0040 -0.014** -0.0017 0.00044 0.011** -0.0077
(0.0026) (0.0068) (0.0247) (0.0128) (0.0049) (0.0362)

αWR × rain 0.00017 0.0035** 0.0087 -0.00018 -0.0046*** 0.0067
(0.0006) (0.0018) (0.0088) (0.0032) (0.0013) (0.0114)

αWR × temperature -0.0018* -0.0012 -0.0041 -0.0000047 -0.0064** -0.013
(0.0010) (0.0018) (0.0063) (0.0047) (0.0029) (0.0115)

αWR × absolute humidity 0.0026 0.00048 0.014 -0.026* 0.012* 0.00038
(0.0022) (0.0056) (0.0219) (0.0135) (0.0069) (0.0338)

Observations 81082 81082 81082 81082 81082 81082
Adj.R2. 0.329 0.390 0.639 0.660 0.465 0.710

Notes: The table displays estimates of Equation 2.3, in that one infected individual of any age spreads influenza to
susceptibles in a particular age group, shown separately for rural counties. Estimates are based on OLS regressions.
Each column presents estimates from a different regression. The dependent variables are the incidence rates of a
particular age group. All regressions include county fixed effects, week-in-a-year fixed effects, season fixed effects,
and month dummies interacted with transmission rates. Regressions are weighted by population size in a particular age
group. Standard errors are clustered at the county level. * p < 0.10, ** p < 0.05, *** p < 0.01
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Table B.12: Econometric Model 1: Time-Space Model, IV Regressions, Rural Areas

IV-Results

Age: <3 Age: 3 to 6 Age: 7 to 26 Age: 27 to 60 Age: 60+ Total

αWR 0.15*** 0.42*** 0.72*** 0.54*** 0.046 1.96***

(0.0367) (0.0995) (0.0963) (0.1310) (0.1010) (0.2554)

αBR 0.0019 -0.011 -0.010 0.037 0.027 0.039
(0.0145) (0.0313) (0.0653) (0.0364) (0.0370) (0.0976)

αWR × ECC rate 0.00020 0.0000088 -0.00082 -0.00071 0.000087 -0.00098
(0.0005) (0.0009) (0.0013) (0.0015) (0.0018) (0.0020)

αWR × gdp per capita -0.000077 -0.00072 -0.00045 0.000076 0.000016 -0.0013
(0.0004) (0.0008) (0.0008) (0.0009) (0.0010) (0.0013)

αWR × population density 0.000016 0.000017 0.000062 -0.000070 -0.000033 0.0000069
(0.0000) (0.0000) (0.0001) (0.0001) (0.0000) (0.0001)

αWR × airport -0.000025 -0.00055 0.00085* 0.00020 -0.00032 0.00033
(0.0002) (0.0009) (0.0005) (0.0005) (0.0004) (0.0006)

αWR × sparsely populated areas -0.00021 -0.011 0.0028 0.011 0.019 0.022
(0.0077) (0.0171) (0.0230) (0.0193) (0.0168) (0.0260)

αWR × rain 0.0016 -0.0027 0.00067 -0.0015 -0.0035 -0.0046
(0.0017) (0.0049) (0.0055) (0.0061) (0.0039) (0.0153)

αWR × temperature 0.00056 -0.0032 -0.00074 -0.00099 -0.0086** -0.012
(0.0015) (0.0036) (0.0041) (0.0059) (0.0042) (0.0129)

αWR × absolute humidity 0.0063 0.014 -0.0026 -0.022 0.021 0.012
(0.0053) (0.0115) (0.0138) (0.0216) (0.0174) (0.0447)

Observations 81082 81082 81082 81082 81082 81082

Notes: The table displays estimates of Equation 2.3, in that one infected individual of any age spreads influenza to
susceptibles in a particular age group, shown separately for rural counties. Estimates are based on IV regressions. Each
column presents estimates from a different regression. The dependent variables are the incidence rates of a particular
age group. All regressions include county fixed effects, week-in-a-year fixed effects, season fixed effects, and month
dummies interacted with transmission rates. Regressions are weighted by population size in a particular age group.
Standard errors are clustered at the county level. * p < 0.10, ** p < 0.05, *** p < 0.01
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Table B.13: Econometric Model 1: Time-Space Model, OLS Regressions, Female Labor Partici-
pation

OLS Results

Age: <3 Age: 3 to 6 Age: 7 to 26 Age: 27 to 60 Age: 60+ Total

αWR 0.095*** 0.16** 0.31* 0.20** 0.20*** 0.96***

(0.0320) (0.0628) (0.1580) (0.0842) (0.0537) (0.2531)

αBR 0.0052*** 0.013*** 0.049*** 0.036*** 0.0079** 0.12***

(0.0015) (0.0035) (0.0137) (0.0077) (0.0035) (0.0246)

αWR× ECC rate 0.00052** 0.00020 0.0013 0.0026*** 0.00100 0.0058**

(0.0002) (0.0005) (0.0013) (0.0008) (0.0006) (0.0023)

αWR× gdp per capita -0.000026 0.000085 -0.00026 0.00086** 0.00026 0.00085
(0.0001) (0.0002) (0.0005) (0.0004) (0.0003) (0.0009)

αWR× female labor market participation (in %) 0.00040 0.0024** -0.0011 0.0014 -0.0023* 0.0011
(0.0004) (0.0010) (0.0026) (0.0018) (0.0013) (0.0046)

αWR× population density 0.0000054** 0.0000058 -0.000047** -0.000024** -0.0000058 -0.000070**

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

αWR× airport -0.000055 -0.000012 -0.000066 0.00021 -0.00018 -0.000013
(0.0001) (0.0002) (0.0005) (0.0002) (0.0001) (0.0008)

αWR× cities 0.0032 0.012 0.0040 -0.032 -0.00057 -0.011
(0.0057) (0.0101) (0.0374) (0.0280) (0.0172) (0.0639)

αWR× rural areas with small cities 0.0038 0.011 -0.025 -0.027 -0.0048 -0.043
(0.0053) (0.0127) (0.0427) (0.0336) (0.0200) (0.0733)

αWR× sparsely populated areas 0.0012 0.0013 -0.022 -0.028 0.0060 -0.041
(0.0054) (0.0120) (0.0447) (0.0330) (0.0204) (0.0756)

αWR× rain 0.00053 0.0026 0.015** 0.0044* -0.0032*** 0.020**

(0.0006) (0.0020) (0.0066) (0.0025) (0.0010) (0.0101)

αWR× temperature -0.0018** -0.0033** -0.015*** -0.0075*** -0.0029 -0.032***

(0.0007) (0.0015) (0.0052) (0.0029) (0.0020) (0.0087)

αWR× absolute humidity 0.0031 0.0017 0.039** 0.00092 -0.00044 0.050**

(0.0020) (0.0044) (0.0164) (0.0090) (0.0054) (0.0251)

Observations 185004 185004 185004 185004 185004 185004
Adj.R2. 0.392 0.450 0.621 0.665 0.472 0.700

Notes: The table displays estimates of Equation 2.3, in that one infected individual of any age spreads influenza to
susceptibles in a particular age group. Estimates are based on OLS regressions. The dependent variables are the
incidence rates of a particular age group. All regressions include county fixed effects, week-in-a-year fixed effects,
season fixed effects, and month dummies interacted with transmission rates. Regressions are weighted by population
size in a particular age group. In addition to Table B.7, the regressions control for female labor participation. Standard
errors are clustered at the county level. * p < 0.10, ** p < 0.05, *** p < 0.01
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Table B.14: Econometric Model 1: Time-Space Model, IV Regressions, Female Labor Participa-
tion

IV-Results

Age: <3 Age: 3 to 6 Age: 7 to 26 Age: 27 to 60 Age: 60+ Total

αWR 0.16*** 0.28*** 0.75*** 0.34*** 0.44*** 2.03***

(0.0556) (0.0931) (0.1009) (0.1150) (0.1117) (0.1984)

αBR -0.020* -0.050** -0.057* 0.025 0.012 -0.085
(0.0112) (0.0203) (0.0302) (0.0285) (0.0230) (0.0639)

αWR× ECC rate 0.0012** 0.0011 -0.00058 -0.00030 -0.0010 0.00045
(0.0006) (0.0007) (0.0008) (0.0012) (0.0013) (0.0014)

αWR× gdp per capita -0.00019 -0.00015 0.00018 -0.000024 0.000019 -0.00016
(0.0002) (0.0003) (0.0003) (0.0004) (0.0004) (0.0004)

αWR× female labor market participation (in %) -0.0012 0.0017 -0.0016 0.0010 -0.0047** -0.0046*

(0.0010) (0.0021) (0.0016) (0.0022) (0.0022) (0.0024)

αWR× population density 0.0000044 -0.0000069 -0.000018 0.0000027 0.0000059 -0.000014
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

αWR× airport -0.000093 -0.00036 0.00058* 0.00036 -0.00039 0.00013
(0.0002) (0.0005) (0.0003) (0.0004) (0.0004) (0.0005)

αWR× cities 0.0049 -0.0067 -0.0021 -0.0090 0.0025 -0.011
(0.0158) (0.0280) (0.0252) (0.0411) (0.0358) (0.0419)

αWR× rural areas with small cities 0.012 0.036 0.013 -0.035 -0.028 -0.0022
(0.0164) (0.0293) (0.0278) (0.0450) (0.0397) (0.0487)

αWR× sparsely populated areas 0.014 0.026 0.0099 -0.024 -0.0074 0.017
(0.0182) (0.0292) (0.0282) (0.0497) (0.0417) (0.0504)

αWR× rain 0.00046 0.0017 0.00062 -0.00016 -0.0026 0.00087
(0.0013) (0.0025) (0.0031) (0.0039) (0.0024) (0.0082)

αWR× temperature -0.0022 -0.0088*** -0.0074** -0.0057 -0.00064 -0.026***

(0.0014) (0.0029) (0.0037) (0.0038) (0.0028) (0.0093)

αWR× absolute humidity 0.011** 0.016** 0.0024 -0.0040 -0.010 0.017
(0.0047) (0.0075) (0.0118) (0.0120) (0.0104) (0.0276)

Observations 185004 185004 185004 185004 185004 185004

Notes: The table displays estimates of Equation 2.3, in that one infected individual of any age spreads influenza to
susceptibles in a particular age group. Estimates are based on IV regressions. Each column presents estimates from a
different regression. The dependent variables are the incidence rates of a particular age group. All regressions include
county fixed effects, week-in-a-year fixed effects, season fixed effects, and month dummies interacted with transmission
rates. Regressions are weighted by population size in a particular age group. In addition to Table B.8, the regressions
control for female labor participation. Standard errors are clustered at the county level. * p < 0.10, ** p < 0.05, ***

p < 0.01
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B5 Econometric Model 2: Age-Specific Time-Space Model

Table B.15: Econometric Model 2: Age-Specific Time-Space Model

Age: <3 Age: 3 to 6 Age: 7 to 26 Age: 27 to 60 Age: 60+ Total

αWR
<3 0.21** 0.089 0.094 0.29*** 0.13*** 0.79*

(0.0931) (0.1037) (0.2822) (0.0954) (0.0480) (0.4168)

αWR
3-6 0.085 0.29** 0.12 0.29*** 0.15*** 0.95**

(0.0615) (0.1379) (0.2081) (0.0724) (0.0325) (0.4460)

αWR
7-26 0.081*** 0.23*** 0.31*** 0.25*** 0.097*** 0.98***

(0.0288) (0.0367) (0.1030) (0.0662) (0.0268) (0.1777)

αWR
27-60 0.00016 0.071 0.13 0.44*** 0.16*** 0.78***

(0.0254) (0.0604) (0.1298) (0.0864) (0.0379) (0.2477)

αWR
60+ 0.035 0.059 -0.043 0.30*** 0.40*** 0.69***

(0.0225) (0.0444) (0.1138) (0.0669) (0.0930) (0.2183)

αWR
<3× ECC rate 0.0016 0.0078** 0.0070 0.0075 0.00061 0.026

(0.0029) (0.0034) (0.0099) (0.0049) (0.0036) (0.0162)

αWR
3-6× ECC rate 0.0037** 0.0029 0.0045 -0.0014 -0.0022 0.011

(0.0016) (0.0034) (0.0076) (0.0034) (0.0018) (0.0147)

αWR
7-26× ECC rate -0.00054 -0.00037 0.0047* 0.0021 0.00068 0.0063

(0.0004) (0.0008) (0.0028) (0.0016) (0.0006) (0.0051)

αWR
27-60× ECC rate 0.0013* 0.00036 -0.0041 0.0042 -0.00046 0.0019

(0.0007) (0.0011) (0.0036) (0.0030) (0.0019) (0.0079)

αWR
60+× ECC rate -0.0013 -0.0026 0.0031 -0.0023 0.0055 0.00092

(0.0010) (0.0016) (0.0043) (0.0040) (0.0051) (0.0122)

αBR
total 0.0051*** 0.013*** 0.058*** 0.036*** 0.0071*** 0.12***

(0.0012) (0.0028) (0.0129) (0.0067) (0.0022) (0.0241)

αWR
total × gdp per capita -0.000055 0.000044 0.000018 0.00057*** 0.000042 0.00058

(0.0000) (0.0001) (0.0004) (0.0002) (0.0001) (0.0007)

αWR
total × airport -0.000061 -0.000094 0.000062 -0.000030 -0.00014* -0.00014

(0.0000) (0.0001) (0.0004) (0.0002) (0.0001) (0.0007)

αWR
total × temperature -0.00089** -0.0031** -0.0069 -0.0067*** -0.0021*** -0.020***

(0.0004) (0.0015) (0.0043) (0.0019) (0.0005) (0.0076)

αWR
total × rain 0.00060 0.0027 0.013** 0.0035 -0.0041*** 0.017*

(0.0005) (0.0017) (0.0061) (0.0023) (0.0009) (0.0092)

αWR
total × absolute humidity -0.0012 -0.0030 0.017 -0.013** -0.0057*** -0.00067

(0.0012) (0.0024) (0.0122) (0.0054) (0.0015) (0.0204)

αWR
total× large cities 0.0028 0.0027 0.042 0.030 0.0066 0.088

(0.0035) (0.0086) (0.0405) (0.0213) (0.0074) (0.0632)

αWR
total× cities 0.0013 0.010 0.022 -0.00052 -0.0045 0.031

(0.0023) (0.0062) (0.0216) (0.0098) (0.0042) (0.0341)

αWR
total× rural areas with small cities 0.0013 0.0068 0.0015 -0.0012 -0.0085** -0.00066

(0.0021) (0.0055) (0.0198) (0.0105) (0.0040) (0.0332)

αWR
total × population density 0.0000017 -0.00000051 -0.000049** -0.000021** -0.0000021 -0.000076**

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

Observations 185004 185004 185004 185004 185004 185004
Adj.R2. 0.437 0.479 0.629 0.686 0.530 0.704

Notes: The table displays estimates of Equation 2.3. Results are based on OLS regressions. All regressions include
county fixed effects, week-in-a-year fixed effects, season fixed effects, and month dummies interacted with transmission
rates. Each column presents estimates from a different regression with incidence rates as the dependent variables.
Regressions are weighted by population size in a particular age group. * p < 0.10, ** p < 0.05, *** p < 0.01
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Figure B.8: Econometric Model 2: Age-Stratified Spatial-Time Spread of Diseases, Urban and
Rural Areas

(a) Effect of Child Care on Age-specific Transmission Rates - Urban Areas
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(b) Effect of Child Care on Age-specific Transmission Rates - Rural Areas
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Notes: The figures present the change in the estimated transmission rates within a county (αWR
a′a ) in response to an

increase in the ECC rate in urban areas (Panel A) and in rural areas (Panel B). Cells with p-values below 0.01 are
highlighted in blue. Each column presents estimates from a different regression. The dependent variables are the
incidence rates of susceptibles in a particular age group. All regressions include county and week-in-a-year fixed
effects. In addition, regressions control for season dummies, month dummies, climate, GDP per capita, and distance to
an airport interacted with transmission rates within a county. The complete set of regression coefficients is presented in
Appendix Table B.16 and Appendix Table B.17. Regressions are weighted by population size in a particular age group.
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Table B.16: Econometric Model 2: Age-Specific Time-Space Model, Urban Areas

Age: <3 Age: 3 to 6 Age: 7 to 26 Age: 27 to 60 Age: 60+ Total

αWR
<3 0.10 0.011 -0.013 0.28*** 0.097** 0.42

(0.1315) (0.1239) (0.4022) (0.1010) (0.0469) (0.5782)

αWR
3-6 0.19** 0.64*** 0.37 0.34*** 0.14*** 1.71***

(0.0967) (0.1492) (0.2356) (0.0854) (0.0345) (0.5209)

αWR
7-26 0.078*** 0.32*** 0.52*** 0.30*** 0.10*** 1.36***

(0.0203) (0.0544) (0.1213) (0.0634) (0.0234) (0.1921)

αWR
27-60 0.039 0.14*** 0.24 0.54*** 0.13*** 1.08***

(0.0288) (0.0482) (0.1487) (0.1272) (0.0318) (0.2972)

αWR
60+ 0.18** 0.17*** -0.10 0.35* 0.038 0.62*

(0.0770) (0.0474) (0.1713) (0.2009) (0.0853) (0.3430)

αWR
<3× ECC rate -0.0014 0.014*** 0.015 0.020*** 0.00078 0.051*

(0.0031) (0.0039) (0.0168) (0.0068) (0.0045) (0.0265)

αWR
3-6× ECC rate 0.0078*** 0.0017 0.0076 0.00084 -0.00038 0.020

(0.0021) (0.0043) (0.0111) (0.0051) (0.0026) (0.0202)

αWR
7-26× ECC rate -0.00097** -0.00029 0.0042 0.0016 0.00083 0.0049

(0.0004) (0.0010) (0.0035) (0.0021) (0.0005) (0.0065)

αWR
27-60× ECC rate 0.0017 0.0012 -0.0081 0.0011 -0.0026 -0.0056

(0.0011) (0.0017) (0.0062) (0.0038) (0.0018) (0.0117)

αWR
27-60× ECC rate -0.0031** -0.0030 0.0093 0.0049 0.010** 0.016

(0.0015) (0.0026) (0.0071) (0.0042) (0.0046) (0.0133)

αBR
total 0.0058*** 0.011*** 0.059*** 0.032*** 0.0045* 0.12***

(0.0018) (0.0036) (0.0196) (0.0095) (0.0026) (0.0358)

αWR
total × GDP per capita -0.00011** -0.000091 0.00026 0.00054** 0.000044 0.00065

(0.0000) (0.0002) (0.0005) (0.0002) (0.0001) (0.0008)

αWR
total × airport -0.00013** -0.00030* -0.00022 -0.00022 -0.00015 -0.00092

(0.0001) (0.0002) (0.0006) (0.0003) (0.0001) (0.0010)

αWR
total × temperature -0.0011* -0.0048** -0.0069 -0.0062** -0.0020*** -0.022*

(0.0006) (0.0024) (0.0060) (0.0027) (0.0007) (0.0110)

αWR
total × rain 0.00078 0.0016 0.022*** 0.0076** -0.0032** 0.031***

(0.0007) (0.0026) (0.0073) (0.0031) (0.0013) (0.0118)

αWR
total × absolute humidity -0.0011 -0.0077** -0.0046 -0.018** -0.0058*** -0.034

(0.0023) (0.0038) (0.0187) (0.0087) (0.0018) (0.0316)

αWR
total × population density 0.00000055 -0.00000086 -0.000052** -0.000028*** -0.00000091 -0.000089**

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

αWR
total× cities 0.0028 0.012** 0.0092 0.00064 -0.0085* 0.016

(0.0020) (0.0055) (0.0216) (0.0107) (0.0044) (0.0349)

Observations 103922 103922 103922 103922 103922 103922
Adj.R2. 0.503 0.550 0.627 0.698 0.582 0.705

Notes: The table displays estimates of Equation 2.3 for urban areas. Results are based on OLS regressions. The
regressions control for county and week-in-a-year fixed effects in levels and season fixed effects, and month dummies
interacted with transmission rates. Each column presents estimates from a different regression with incidence rates as
the dependent variables. Regressions are weighted by population size in a particular age group. Standard errors are
clustered at the county level. * p < 0.10, ** p < 0.05, *** p < 0.01
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Table B.17: Econometric Model 2: Age-Specific Time-Space Model, Rural Areas

Age: <3 Age: 3 to 6 Age: 7 to 26 Age: 27 to 60 Age: 60+ Total

αWR
<3 0.31*** 0.12 0.23 0.31* 0.050 1.06*

(0.1053) (0.1522) (0.3773) (0.1724) (0.0654) (0.5864)

αWR
3-6 0.020 -0.045 -0.16 0.17* 0.12*** 0.082

(0.0412) (0.1054) (0.2844) (0.0952) (0.0419) (0.4681)

αWR
7-26 0.076 0.15*** 0.076 0.22** 0.070* 0.58**

(0.0474) (0.0454) (0.1484) (0.1012) (0.0376) (0.2548)

αWR
27-60 -0.039 0.050 0.062 0.38*** 0.18*** 0.63*

(0.0503) (0.0804) (0.1984) (0.1105) (0.0560) (0.3451)

αWR
60+ -0.0040 -0.052 -0.17 0.26*** 0.46*** 0.41

(0.0196) (0.0553) (0.1477) (0.0876) (0.0680) (0.2740)

αWR
<3× ECC rate -0.0015 -0.0050 -0.018 -0.0075 0.0073 -0.028

(0.0036) (0.0053) (0.0134) (0.0075) (0.0046) (0.0239)

αWR
3-6× ECC rate -0.0020 0.00066 -0.0065 -0.0018 0.00051 -0.0076

(0.0016) (0.0032) (0.0098) (0.0045) (0.0030) (0.0174)

αWR
7-26× ECC rate 0.00048 -0.00069 0.0046 0.0017 0.00018 0.0068

(0.0005) (0.0012) (0.0049) (0.0020) (0.0009) (0.0077)

αWR
27-60× ECC rate 0.0012* 0.00037 0.0021 0.0073* 0.0016 0.013

(0.0007) (0.0012) (0.0043) (0.0040) (0.0028) (0.0097)

αWR
27-60× ECC rate 0.00043 0.00010 -0.0015 -0.0058 -0.0029 -0.0088

(0.0014) (0.0017) (0.0050) (0.0063) (0.0080) (0.0179)

αBR
total 0.0046*** 0.016*** 0.054*** 0.039*** 0.015*** 0.13***

(0.0016) (0.0044) (0.0176) (0.0093) (0.0043) (0.0327)

αWR
total × GDP per capita 0.00021 0.00055 -0.00055 0.000078 0.00018 0.00040

(0.0001) (0.0003) (0.0016) (0.0008) (0.0003) (0.0025)

αWR
total × airport -0.0000099 0.000088 0.00048 0.00011 -0.00014 0.00065

(0.0001) (0.0001) (0.0005) (0.0003) (0.0001) (0.0009)

αWR
total × temperature -0.00080 -0.0012 -0.0060 -0.0066*** -0.0020** -0.017**

(0.0006) (0.0012) (0.0052) (0.0020) (0.0009) (0.0083)

αWR
total × rain 0.00052 0.0049*** 0.010 0.00013 -0.0052*** 0.010

(0.0006) (0.0017) (0.0097) (0.0031) (0.0012) (0.0122)

αWR
total × absolute humidity -0.00061 0.0028 0.041*** -0.0081 -0.0043** 0.037

(0.0012) (0.0030) (0.0139) (0.0060) (0.0022) (0.0229)

αWR
total × population density -0.0000065 -0.000022** -0.000043 0.000013 -0.000014 -0.000067

(0.0000) (0.0000) (0.0001) (0.0000) (0.0000) (0.0001)

αWR
total× sparsely populated areas 0.0028 0.012** 0.0092 0.00064 -0.0085* 0.016

(0.0020) (0.0055) (0.0216) (0.0107) (0.0044) (0.0349)

Observations 81082 81082 81082 81082 81082 81082
Adj.R2. 0.364 0.418 0.647 0.682 0.487 0.714

Notes: The table displays estimates of Equation 2.3 for rural areas. Results are based on OLS regressions. The
regressions control for county and week-in-a-year fixed effects in levels and season fixed effects, and month dummies
interacted with transmission rates. Each column presents estimates from a different regression with incidence rates as
the dependent variables. Regressions are weighted by population size in a particular age group. Standard errors are
clustered at the county level. * p < 0.10, ** p < 0.05, *** p < 0.01
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B6 Cost and Benefit Analysis

Table B.18: Costs of Influenza per Case

Direct Costs (in e) Indirect Costs (in e) Costs of Death (in e) Total (in e)

Outpatient Costs Inpatient Costs Pharamceuticals VSL × Risk of Death

Age 0 to 6 47 73.4 7.76 - 1.3 − 6 129.48 - 134.18

Age 7 to 26 50 33 7 - 1.3 − 6 111.54 − 116.24

Age 27 to 60 53.85 14.39 6 338.76 6.5 − 42 419.5 − 455

Age 60+ 65.71 58.48 7.40 83.91 22.1−102 237.6 − 317.2

Notes: Data on direct and indirect costs are taken from Scholz et al. (2019). The study calculates medical costs weighted
by the probability of health care usage separately for different age groups. Note that Scholz et al. (2019) use slightly
different age groups to those in this study. Hence, the numbers are to be regarded as approximations. The value of
statistical life is assumed to be between e1.3-6 million. Mortality risk due to an infection with influenza varies across
age groups. For people aged 0 to 26, it is 0.1 per 100,000 inhabitants, for people aged 27 to 60, it is 0.5 per 100,000
inhabitants and for individuals above age 60 1.7 per 100,000 inhabitants.47

Table B.19: Relative and Absolute Number of Influenza Cases

System of Notifiable Diseases Insurance Claims

Share of Infected Number of Cases Share of Infected Number of Cases

Age 0 to 2 0.108% 1816.96 2% 33700.44

Age 3 to 6 0.144% 3276.99 2.31% 52981.04

Age 7 to 26 0.039% 5558.81 1.4% 198251.20

Age 27 to 60 0.024% 7318.24 1.17% 363989.44

Age 60+ 0.015% 2438.90 0.57% 91964.04

Notes: The table summarizes the average annual number of individuals infected with influenza
in absolute and relative terms. Columns 1 and 2 consider cases reported to the system of no-
tifiable diseases between 2005 and 2016. Column 3 reports the share of clinically diagnosed
cases with influenza-like diseases taken from Scholz et al. (2019). Scholz et al. (2019) refer
to data from health insurance claims covering about 10% of the German population between
2012 and 2014. Column 4 is based on the author’s calculations. The absolute number of cases
with flu-like diseases is calculated by the share of infected, based on health claims times the
age-specific population size in West Germany.

47See Gesundheitsberichterstattung des Bundes (2021).
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Table B.20: Effect of Policy Interventions on Disease Incidence

No. of Avoided Cases (in %) Absolute No. of Avoided Cases

System of Notifiable Diseases Insurance Claims

Policy - Mandatory Vaccination before Entry into Child Care

Age 0 to 2 -10.8% -196.23 -3639.56

Age 3 to 6 -3% -98.36 -1590.32

Age 7 to 26 -1.5% -84.16 -3001.41

Age 27 to 60 -0.8% -60.26 -2997.08

Age 60+ -0.3% -7.05 -266.02

Policy - Closure of Child Care Centers during Local Outbreaks (Def. 1)

Age 0 to 2 -2.4% -44.36 -822.86

Age 3 to 6 -2% -64.99 -1050.77

Age 7 to 26 -1.8% -100.26 -3575.79

Age 27 to 60 -2% -148.31 -7376.64

Age 60+ -1.1% -28.02 -1056.44

Policy - Closure of Child Care Centers during Local Outbreaks (Def. 2)

Age 0 to 2 -4.1% -74.98 -1390.73

Age 3 to 6 -3.5% -113.19 -1829.98

Age 7 to 26 -3.1% -174.98 -6240.52

Age 27 to 60 -3.3% -243.40 -12106.25

Age 60+ -1.7% -42.31 -1595.57

Notes: The table summarizes the impact of two policy interventions – mandatory vaccination
before entry into child care and closure of child care centers during local outbreaks – on av-
erage annual incidence rates of influenza. Column 1 reports the estimated effect of the policy
interventions on disease incidence in percent per age group. Column 2 summarizes the absolute
average number of cases avoided due to the policy interventions based on lab-confirmed cases.
Analogously, Column 3 reports the the number of cases reduced due to the containment mea-
sures based on health insurance claims data.
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Table B.21: Estimated Benefits and Costs, by Policy Intervention

Mandatory Vaccination Closure of Child Care Centers

Outbreak Def. 1 Outbreak Def. 2

Notifiable System Claims Notifiable System Claims Notifiable System Claims

Annual Benefits (in e) 87,126 2,981,324 122,798. 5,488,629 203,821.9 9,068,098

Annual Costs (in e) 2,306,590 - - - -

Net Benefits (in e) -2,219,464 + 674,734 - - - -

Notes: The table reports the calculated economic benefits of the two policy interventions, i.e. mandatory vaccination
and the closure of child care centers based on the data from the system of notifiable diseases (mainly lab-diagnosed
cases) and health insurance claims (clinically diagnosed cases). In addition, it presents the costs and net benefits linked
to the introduction of mandatory vaccination policies.
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Chapter 3

The Role of Information When Risk Levels Change:
Evidence from COVID-19*

Abstract

This paper investigates the role of public policies that provide information on changes in

health risks. We study this in the context of Covid-19, where behavioral responses have

been important in mitigating the spread of the virus and, hence, the costs of the pan-

demic. To identify behavioral responses induced by public information versus other

sources, we combine high-frequency data with facts about the incubation period of

Covid-19 and reporting time in Germany. Using an event study design on local un-

expected outbreaks, we find that mobility significantly decreases by about 2 to 3% in

response to public information about the outbreak, while private knowledge about peo-

ple falling sick does not appear to cause a change in behavior. There are important

heterogeneities in the behavioral responses, where responses are stronger in counties

with high population density, with more hotels per capita, and with a higher share of

college educated. These findings are consistent with behavioral changes depending on

the relative risk and costs of changing mobility.

*This chapter is based on joint work with Pavel Obraztcov, Gregory Veramendi, and Joachim Winter.



CHAPTER 3 – THE ROLE OF INFORMATION WHEN RISK LEVELS CHANGE

3.1 Introduction

Individuals often face health decisions under uncertainty (e.g. Banerjee et al. 2020; Dupas 2011;

Kim et al. 2019; Oster 2012, 2017; Prina and Royer 2014). One of the primary roles of pub-

lic health agencies is to provide information on health risks so that individuals can make better

choices. Information on public health risks may be particularly important when risk levels change

depending on the state of the world. In this case, individual responses can be crucial for mitigating

the costs of these risks. An important public policy is providing quick and credible information

about the state of the world, not only for policy-makers to make decisions, but also for individuals

to be able to respond quickly to changes in risk levels. Yet it remains unclear to what extent indi-

viduals react to information on health risks. Some studies argue that people’s behavior is sensitive

to information on health risk (Chan et al. 2016; Oster 2017; Philipson 2000), while others find

that individuals appear reluctant to undertake costly behaviors with health benefits in response to

health information (Kim et al. 2019; Oster 2012, 2018; Prina and Royer 2014).

The Covid-19 pandemic is one setting where individual behavior is especially important for mit-

igating the spread and, hence, the costs of the virus. Covid-191 is an overdispersed pathogen, in

that a small fraction of individuals is responsible for a large fraction of the transmission. In the

case of Covid-19, studies have shown that only 10–20% of individuals are responsible for 80–90%

of transmission clusters often called “super-spreader” events (see e.g. Baggett et al. 2020; Endo et

al. 2020; Hamner et al. 2020; James et al. 2020; Lemieux et al. 2020; Majra et al. 2021; Riou and

Althaus 2020).2 This feature of the virus implies that the local risk level can change dramatically

when a transmission cluster occurs. In this case, having quick, credible, and localized information

about outbreaks can allow individuals to change their behavior with respect to the local state of

the epidemic and be an important part of the mitigation of the outbreak.

This paper studies the role of publicly-provided information in mitigating the pandemic. We

estimate the effect of information on positive cases using an event study approach that examines

the changes in mobility patterns in a county when an unexpected outbreak occurs.3 In other

settings, it would be difficult to isolate the role of a specific source of information from other

sources without experimental variation. In the case of Covid-19, we combine high-frequency

data with known features of the incubation time and reporting time to isolate the role of public

information on positive cases from other possible confounding explanations. Briefly, Covid-19

has a median incubation period of about five days (Guan et al. 2020; Lauer et al. 2020; Li et

al. 2020) and there is a median time of six days from first symptoms to the reporting of a case

1The expressions Covid-19, coronavirus and SARS-CoV-2 are used interchangeably.
2Some commonly known “super-spreader” events or clusters are the example of a Korean woman infecting 1000+

others in a few days, a woman in Garmisch-Partenkirchen that attended several bars despite of symptoms and caused
jump in local infection rates in September. Another famous example is a wedding in Hamm in the beginning of
September.

3Mobility is measured using cell phone data on the number of trips taken within and across counties each day. See
Section 3.3 for more information.
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by the German national public health authority.4 Hence, any behavioral changes in mobility due

to private information of individuals getting sick should lead to changes in mobility in the seven

to ten days before the outbreak is publicly observed. In contrast, behavioral responses caused

by public information will occur after the start of the observed outbreak. The use of daily data

on positive cases and mobility patterns allows us to distinguish mobility changes due to different

sources of information.

We identify local unexpected outbreaks by comparing the number of cases in a seven-day period

to the number of cases we would expect based on a parsimonious epidemiological model. We

define a local unexpected outbreak as a county and seven-day period where the observed number

of cases exceeds the expected number based on our model. This definition captures all of the well-

known outbreaks in Germany, along with many others.5 Our preferred specification identifies 259

outbreaks between February and November.6

We use the outbreaks to perform an event study of county-level mobility near the time of the

outbreak controlling for state times day and county times day-of-the-week fixed effects. Control-

ling for non-pharmaceutical interventions (NPIs) makes little difference in our estimates which

indicates that we are capturing a voluntary response in mobility. We find that public information

about local outbreaks significantly reduces the number of trips taken inside the county and also

reduces the number of trips between other counties and the outbreak county. The number of trips

is reduced by between 1.8% to 2.5%. We do not, however, find any changes in the number of trips

before the beginning of the observed outbreak, ruling out changes due to private knowledge of a

risky event or private knowledge of individuals with symptoms.

We further investigate heterogeneity in response to local outbreaks along three distinct dimensions:

Counties may differ in (i) costs of adjusting mobility, e.g. depending on the fraction of workers that

can work from home, (ii) relative risks of infection, e.g. depending on transportation modes and

structure of urbanization, and (iii) average beliefs about the risk of the virus. We find that counties

with larger tourism sector and a larger share of workers that can work from home7 react stronger to

local outbreaks indicating that behavioral responses are indeed larger if costs of adjusting mobility

are lower. We do not, however, find evidence that use of public transport or beliefs on the risk of

Covid-198 affect people’s reaction to local outbreaks. Interestingly, we find that the effect size

4There is a median time of four days between first symptoms and a positive test results. In addition, there is a 1 to 2
day lag until information on positive tests is compiled and made publicly available by the national pubic health agency
(see Section 3.3.1).

5e.g. Heinsberg in February 2020, Gütersloh in June 2020, and Berchtesgaden in October 2020.
6Our preferred specification requires that the excess cases in a county is at the 98th percentile for all counties in

Germany between February and November 2020. See Section 3.4.2 for more information.
7We take the share of people with a college-degree as measure for the likelihood of working from home. Previous

literature shows that people with higher educational degree are more likely to do home office in response to the pandemic
(Gaudecker et al. 2020).

8We use the vote share of the AfD in the last state elections as a proxy for beliefs. A number of studies in the US
have shown that partisanship affects people’s beliefs on the risks of Covid-19. Similarly in Germany, the AfD party was
critical of the government handling of Covid-19 and one may expect that counties with high AfD vote shares would,
likewise, respond less to an outbreak.
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of the response to local outbreaks is larger during the 2nd wave of the pandemic in autumn 2020

than during the 1st wave in spring 2020. Hence, while people may generally fatigue about the

pandemic and its restrictions, intrinsic responses to localized outbreaks appear not to be affected

by this phenomenon. Finally, we provide evidence that our results are robust to a number of

sensitivity checks.

This paper contributes to several strands of literature. First, the paper adds to a growing strand

in economics studying the role of information in shaping people’s health behavior and beliefs

(e.g. Bollinger et al. 2011; Cawley et al. 2020; Dupas 2011; Oster 2017; Wisdom et al. 2010).

This body of literature investigates whether people adjust their behavior to information on health

risk. Yet evidence on that matter is inconclusive. A strand of literature shows that people appear

reluctant to undertake costly behaviors with corresponding health benefits. For example, people

are resistant to sexual behavior change in the face of HIV, to change diet in response to a diabetes

diagnosis, and lack regular cancer screening (Caldwell et al. 1999; Cummings and Cooper 2011;

Hut and Oster 2018; Kim et al. 2019; Oster 2012, 2018; Prina and Royer 2014). Another strand of

literature, however, argues that people are sensitive to changes in health risk and demand for self-

protection (Chan et al. 2016; Kremer 1996; Oster 2017; Philipson 2000). These studies document

a prevalence-elasticity of private demand for prevention against disease. By investigating whether

people adjust their behavior voluntarily beyond social distancing policies, we provide evidence on

people’s intrinsic willingness to change behavior in response to a change in health risk.

Second, in the light of the Covid-19 pandemic, a recent strand of literature investigates the effect

of information about the risk of the virus on people’s behavioral response and ultimately, on miti-

gating the spread of the disease. These studies examine various channels of information provision

such as Twitter, TV shows, the word of political leaders, and also experimentally provided infor-

mation in different social and political environments, e.g. India, Mexico, Brazil, and USA. They

jointly show that providing information significantly determines people’s health behavior (Ajzen-

man et al. 2020; Banerjee et al. 2020; Brzezinski et al. 2020; Grossman et al. 2020; Gutierrez

et al. 2020). In the context of fast-changing risk levels it is crucial that people quickly obtain in-

formation on local risk and respond to a change in localized risk. This study adds to this question

by investigating the timing of public information measured by the number of reported cases and

people’s behavioral response.

Finally, the paper relates to a strand of literature in economics and epidemiology investigating the

effect of people’s travel activities on the spread of infectious diseases (e.g. Adda 2016; Brockmann

et al. 2006; Grenfell et al. 2001; Hufnagel et al. 2004; Oster 2005, 2012). Prior work documents

that travel routes and intensity significantly impact transmission patterns of different viruses such

as HIV, influenza, gastritis, and measles in various countries, e.g. Sub-Saharan countries, USA,

and European countries. In the light of the COVID-19 pandemic, a fast-growing body of literature

aims to identify the effect of mobility on the propagation of the coronavirus and discusses the

contribution of NPIs to mitigating the spread of the virus by reducing physical contact between
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people (Fang et al. 2020; Ferguson et al. 2020; Glaeser et al. 2020; Gupta et al. 2020). This paper

studies the reverse relationship, namely the impact of unanticipated increases in infection rates on

mobility uncovering intrinsic avoidance behavior due to a change in risk levels.

The paper proceeds as follows. Section 3.2 gives background information on the characteristics

of Covid-19 and describes the experience of the pandemic in Germany including the political and

policy responses. Section 3.3 presents the data and descriptive statistics. Section 3.4 outlines the

empirical strategy. Section 3.5 presents the results and Section 3.6 concludes.

3.2 Background

In this section, we first give an overview of the characteristics of Covid-19 relevant to our analysis.

Then we describe the experience of the pandemic in Germany including the political and policy

responses.

3.2.1 Characteristics of Covid-19

The Covid-19 pandemic is a major threat to human health. According to the World Health Or-

ganization, there have been 112 million confirmed cases and 2.5 million deaths worldwide.9 A

SARS-CoV-2 infection primarily causes respiratory diseases with symptoms ranging from mild

upper respiratory tract illness to severe pneumonia with acute respiratory distress syndrome and

death (Chen et al. 2020; Huang et al. 2020). At the same time, many individuals infected with

the virus never develop symptoms (Huang et al. 2020). Hence, the clinical spectrum appears to

be wide, encompassing asymptomatic infections, mild diseases comparable to a common cold, as

well as severe lower respiratory tract diseases with many patients being hospitalized, and death

(Gandhi et. al 2020b). Potential long-term consequences of an infection with Covid-19, such as

fatigue and dyspnoea, are currently studied (Huang et al. 2021; Zhao et al. 2020). Recent estimates

suggest that the infection fatality rate (IFR) of Covid-19 is about 1%, which is substantially higher

than, for example, the estimated IFR of 0.1% of influenza (Pritsch et al. 2020; Staerk et al. 2020;

World Health Organization 2020a). Particularly, the elderly population and individuals with un-

derlying medical conditions, such as cardiovascular diseases, diabetes or chronic lung illnesses,

are at risk of developing a severe course of Covid-19 infections (Centers for Disease Control and

Prevention 2021; Wu and McGoogan 2020; Zhou et al. 2020).

Covid-19 spreads rapidly – within a couple of months, the world turned from a few reported cases

in the city of Wuhan in China to a state in which almost all countries were affected by the new

coronavirus (Bloom et al. 2020). The transmission of Covid-19 occurs from human-to-human,

primarily through droplets, aerosols, and close contact with infected individuals (Gandhi et. al

9See https://covid19.who.int/ accessed on 27th February 2021. For comparison, seasonal influenza causes world-
wide approximately 300,000–500,000 deaths per year (Girard et al. 2005; Lambert and Fauci 2010).
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2020b). The transmissibility of Covid-19 exhibits two disease-specific features relevant for our

study: First, there is growing evidence in the medical literature that Covid-19 is an overdispersed

virus, where a small fraction of individuals is responsible for a large fraction of the transmission

(see e.g. Baggett et al. 2020; Endo et al. 2020; Hamner et al. 2020; James et al. 2020; Lemieux

et al. 2020; Majra et al. 2021; Riou and Althaus 2020). Second, in contrast to other established

viruses10, presymptomatic and asymptomatic patients are infectious (Gandhi et. al 2020a). For

symptomatic cases, the median incubation period is four to five days, with a range from 2 to up to

14 days (Gandhi et. al 2020b; Lauer et al. 2020).11

In the absence of a Covid-19 vaccine, prevention of infections was limited to reducing the physical

proximity between individuals and to wearing face masks (Chu et al. 2020; Ferguson et al. 2020).12

A number of public health measures (NPIs) were aimed at reducing contact rates in the population

and thereby mitigating the spread of the virus. Examples of the policy interventions adopted

include closing schools, restaurants and retail events, and contact banning.

3.2.2 Covid-19 Pandemic and Policy Response in Germany

At the end of January 2020, the World Health Organization declared the outbreak of the novel

Coronavirus SARS-CoV-2 (i.e. Severe Acute Respiratory Syndrome Coronavirus 2) as a “public

health emergency of international concern” (World Health Organization 2020b). At this time the

epicenter of the outbreak was Wuhan city, the capital of Hubei province in China. About a month

later, the virus had reached Europe and started to spread uncontrolled within Germany.13 As a

consequence, the German government introduced a number of regulations to limit social contacts

and thus, the diffusion of the Covid-19 virus.14 The political response can be classified into at

least four stages (Figure 3.1): The first stage is characterized by the increasing political and social

awareness due to a growing number of local outbreaks such as in the county of Heinsberg after a

carnival party. To curb the spread of the virus, the government appealed to all citizens to avoid so-

cial contacts whenever possible (e.g. Angela Merkel held nationally-televised speeches on March

12 and 18) and started to gradually impose social distancing policies. Most schools, childcare

facilities, and retail stores were closed starting on March 16th onwards. Travel restrictions, such

as enhanced controls at the borders and a 30-day entry ban for non-EU inhabitants, were enforced.

The second stage is described by a national contact ban. During that period it was prohibited to

meet more than one person from outside one’s household and required to keep a minimum distance
10e.g. SARS-CoV-1 causing a pandemic in 2003 (Gandhi et. al 2020a).
11Additional information is drawn from the European Center for Disease Prevention and Control (European Centre

for Disease Prevention and Control 2021a) and from the Robert Koch Institute (Robert Koch Institute 2021c)
12Note that recently some vaccines for the protection against Covid-19 have been approved. However, during the

period we consider in our study no vaccines against Covid-19 were available.
13In Germany, COVID-19 began to propagate uncontrolled after the detection of two cases in the end of February,

2020. An earlier outbreak at the end of January had been completely contained.
14Information provided in this subsection is drawn from the German ministry of health (Bundesministerium für

Gesundheit 2021) (in German) and from the European Center for Disease Prevention and Control (European Centre for
Disease Prevention and Control 2021b).
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of 1.5 meters (Glogowsky et al. 2020). By mid-April incidence rates started to decrease, which

allowed authorities to gradually relax social distancing policies. During the third stage (May to

October), incidence rates were comparatively low on the national level. Local outbreaks, however,

led to temporary rises in the disease rates at the county level. One prominent example of a cluster

event is the outbreak of Covid-19 in a meat processing plant in Gütersloh. The government agreed

to respond locally to outbreaks, once the seven-day incidence rate within a county exceeded 50

cases per 100,000 inhabitants. Travel restrictions within the EU were largely removed during the

summer months. In October, the number of local outbreaks increased rapidly, so that local policy

interventions were not sufficient any more. As a response, the German government announced

enhanced regulations at the national level from November, 2nd onwards. The fourth stage is de-

scribed as so-called “lockdown light” – schools, child care facilities, and retail shops remained

open, while restaurants and bars were closed.

Figure 3.1: Periods of the Covid-Pandemic in Germany

Jan. Feb. March April May June July Aug. Sept. Oct. Nov. Dec

Pre-Covid
Period

Start
of

Pandemic
1st NPIs

1.3 - 22.3

Lockdown
23.3 - 6.5

Hotspot Strategy
Partial lift
of NPIs

7.5 - 1.11

Lockdown
light
2.11 -

Notes: The figure illustrates the different periods of political response to the Covid-19 pandemic in Germany.

3.3 Data and Descriptive Statistics

In this section, we describe the data we use to build a balanced panel for 401 districts (i.e. NUTS

Level 3 regions) and 350 days spanning the period from January 1st to December 20th, 2020

(140,350 observations).15

15Due to technical reasons, the mobility data is missing for 4 days in December.
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3.3.1 Covid-19 Incidence Data

We use daily data on laboratory-confirmed cases of Covid-19 within Germany. The data is pro-

vided by the national public health institution, the Robert Koch Institute (RKI).16 According to the

Protection Against Infection Act (Infektionsschutzgesetz), lab-diagnosed cases of Covid-19 are re-

ported to the local public health departments in order to monitor the temporal and spatial diffusion

of the virus within Germany.17 The reporting system follows strict rules to improve comparability

across regions: Physicians and laboratories are obliged to inform local health departments about

a positive test result within at most 24 hours. The local health departments, in turn, deliver the

information to the health authorities of the respective federal state with at most a one day delay.

The state health department gathers the information and passes it to the Robert Koch Institute at

the national level on the same or the next working day. Only reported cases that fulfill well-defined

criteria are included in the data set (Infektionsschutzgesetz, §11). While the standardized proce-

dure ensures high data quality, as well as comparability across time and regions, it creates a two

day lag between the registration of positive test results at the local health department and publicly

provided information on new Covid-19 cases by the Robert Koch Institute.18

The data set covers information on the day of reporting to the local health department, day of first

symptoms, and the county of residence of the individual infected. Individuals are not included in

the data set if they are not laboratory tested. Hence, the data likely understates the actual number

of cases of Covid-19 as a study conducted in Munich shows (Pritsch et al. 2020).19

Figure 3.2 illustrates the daily number of cases reported to the Robert Koch Institute between

the end of February 2020 and December 2020. Germany experienced two waves of Covid-19

infections: The first wave started at the end of February and continued to the end of April. The

second wave started in October. We classify the pandemic into three phases – 1st wave, summer,

and 2nd wave – to study heterogeneous response behavior over time. Appendix Table C.1 presents

the summary statistics of the new infections as counts and incidence rates separately by phase of

the pandemic and by federal states.

16The data is publicly available via COVID-19 Data Hub (COVID-19 Datenhub 2021).
17The information is taken from the official webpage of the Robert Koch Institute (in German) (Robert Koch Institute

2021b).
18Note that local health departments also publish information on positive test results which may create some dis-

crepancy between information published by local health departments and the Robert Koch Institute. Nationwide news-
papers such as “Bild”, “Frankfurter Allgemeine Zeitung”, and “Handelsblatt” use the RKI data as source for providing
information on county-specific incidence rates (websites accessed on 3rd March 2021).

19The study shows that in a representative sample of 2,994 private households living in Munich 1.82% individuals
are tested positive for SARS-CoV-2 specific antibodies indicating that these individuals are/were infected with Covid-
19. During the same time period, however, only 0.46% of the citizens in Munich have reported a positive PCR-test result
to the national health agency. Hence, the reported number of cases likely understates the “true” number of individuals
infected with Covid-19.
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Figure 3.2: Cases of Infection
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Notes: The figure illustrates the daily number of cases (grey line) and the 7-day moving average of the cases (red
line) reported by the Robert Koch Institute between January 1st, 2020 and December 31st, 2020. The vertical
dotted grey lines present the different phases of the pandemic. The first phase describes the 1st wave of the
pandemic between the end of February and the end of April. The second phase covers the summer months. The
third phase refers to the 2nd wave of the pandemic starting in October.

3.3.2 Data on Aggregate Mobility

To measure mobility patterns in Germany, we use cell phone data provided on a daily basis. To

ensure connectivity phones switch between cell towers, when cell phone users move. These cell

tower switches are used to estimate the number of trips taking place between two geographic areas

which is a proxy of human mobility over time and space (Oliver et al. 2020). We obtain data on

the daily number of trips between and within counties in Germany for the period from January 1st,

2020 to December 31st, 2020 from Teralytics, a business partner of Telefónica.20

Panel A in Figure 3.3 describes the average daily number of inflows per capita in a county be-

tween January and December 2020. By late March the number of trips decreased substantially by

about 50%. During the summer months mobility increased again and remained stable at a level

comparable to the number of trips per capita in January and February. Starting in October, we

observe a reduction in mobility again. Panel B in Figure 3.3 outlines the average daily number of

trips within a county. The change in mobility over time follows a similar pattern as for mobility

20Note that origin-destination pairs that have less than 5 trips taking place between counties are not included in the
data set.
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Figure 3.3: Mobility Patterns
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(b) Internal Trips per capita
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Notes: The figures display the daily number of trips per capita (grey line) and the 7-day moving average of the
number of trips (red line) between January 1st, 2020 and December 31st, 2020. Panel A illustrates the average
inflow (outflow) per capita into (out of) a county. Panel B summarizes the mean number of trips per capita within
a county. The vertical dashed lines outline different phases of the pandemic.
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between counties. Appendix Table C.1 presents the summary statistics for the number of trips per

capita by phase of the pandemic and federal states.

3.3.3 Additional Data

We supplement the data on disease incidence and mobility with information on local NPIs. Data

on local NPIs in Germany are provided by an interdisciplinary consortium that works on behalf of

the German Ministry of Economics and Energy.21 The consortium collects information on NPIs

based on data provided on official websites of state governments. Appendix Table C.3 presents

summary statistics of the NPIs considered in this study. The consortium also publishes information

on county characteristics, such as the share of AfD votes, use of public transport, and the share

of college educated, that we use to study heterogeneous behavior in response to local outbreaks.

Appendix Table C.2 presents the summary statistics of additional variables.

3.4 Empirical Strategy

In this section, we describe our empirical strategy for distinguishing different sources of infor-

mation, identifying unexpected outbreaks, and studying the aggregate behavioral response to the

unexpected outbreaks. We start by describing the strategy used to disentangle changes in mobility

caused by different sources of information (Section 3.4.1). In Section 3.4.2, we outline a model

for predicting the incidence rate in each county on each day in Germany and classify outbreaks

as an excess of cases above what is predicted by the model. In Section 3.4.3, we present both

event study and difference-in-differences models for estimating the change in mobility due to the

outbreak. Section 3.4.4 assesses the identification strategy.

3.4.1 Identification of Information Sources

The timing of disease progression and delays in testing allow us to define distinct periods dur-

ing which individuals receive information from two different sources: (i) Private information on

people falling sick and (ii) Public information on reported Covid-19 cases.

If a local event sparks an unexpected outbreak, individuals may obtain private information on

people falling sick about 4 to 7 days (inter-quartile range) after the event (Lauer et al. 2020). Data

on disease incidence, further, document that individuals get tested about 5 days after first feeling

symptoms. Hence, there is a delay of about a week between private information arriving based

on individuals feeling sick and public information on excess cases being reported by the national

21The interdisciplinary consortium comprises “infas-Institut für angewandte Sozialwissenschaft”, “infas 360
GmbH”, and the Institute for Hygiene and Public Health of the University of Bonn. The data sets are gathered for
research purposes. For more information see https://www.corona-datenplattform.de. Accessed on 3rd March 2021.
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Figure 3.4: Timing of First Symptoms and Cases
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Notes: This figure shows the distribution of the relative date of first symptoms and positive cases reported publicly
for infections that occur at ∆t = −8. The relative date (∆t = 0) is chosen with respect to the first decile of
the positive case information. The log-normal distribution of first symptoms relative to the infection date is taken
from Appendix Table 2 in Lauer et al. (2020). The delay between first symptoms and positive test results reported
by the national public health agency is based on author’s calculations from RKI dataset (see Section 3.3).

public health agency.22 Combining high-frequency data with knowledge of incubation and testing

delays allows us to disentangle changes in behavior caused by private information from changes

induced by public information.

Figure 3.4 illustrates the timing of first symptoms and observed cases graphically. Consider an

infection cluster that occurs at relative date ∆t = −8. We show the distribution of the incubation

time (i.e. time period between infection and first feeling symptoms) based on estimates using the

log-normal distribution from Lauer et al. (2020).23

To calculate the delay between first symptoms and cases being reported by the national public

health agency, we draw on information from the RKI dataset. We define ∆t = 0 as the start of

the observed outbreak which is specified as the day of the first decile of positive cases.24 We

define the period ∆t ∈ (−7,−1) as the private information period, where behavior may change

22Recall from Section 3.3.1, that it takes about 2 days until the information on positive test results is passed on from
the local to the national health department.

23We use the parameter estimates in Appendix Table 2 in Lauer et al. (2020).
24The first decile is our approximation of the first day of excess positive test results (see Section 3.4.2).
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due to private information about individuals getting sick. Figure 3.4 shows that more than 82% of

individuals feels symptoms by ∆t = −1, but only 10% of the cases are reported by the national

health agency at that point. The public information period includes the days ∆t ∈ (0, 6), when

behavior may start to change due to excess cases being reported. Finally, we define a post period

as ∆t ∈ (7, 21), when we expect that there is no additional information about the outbreak.25

3.4.2 Identification of Outbreaks

We identify outbreaks by comparing the observed number of cases in a seven-day period to the

number of cases predicted by a simple epidemiological model. The model used to predict the

expected incidence ic,s,t (cases per 100,000 inhabitants) in county c, state s, day-of-the-week

dotwt, phase pt, and day t is:

ic,s,t =

7∑
j=1

βjic,s,t−j + γic,dotwt,pt + δis,t + ηc,t, (3.1)

where βj captures how the incidence depends on the seven-day incidence history in the same

county. The model includes county times day-of-the-week times phase fixed effects (γic,dotwt,pt
)

and state times day fixed effects (δis,t).
26 The fixed effects account for differences in testing regimes

across counties, the incidence rate in the surrounding state, and the effect of any state-level pol-

icy changes. Importantly, individuals might expect the incidence to increase in a county if the

incidence is already high in the surrounding state. Our procedure identifies outbreaks that are

unexpected with respect to both the history of cases in the county and the number of cases in the

state.

We define an outbreak as a seven-day period where the observed incidence exceeds the expected

incidence based on our simple model (̂ic,s,t). We consider two different criteria due to sampling

variation when the expected number of cases is low. For counties where the expected number

of cases is at least five cases per day (henceforth: Small-Count Threshold), we take the ratio of

the observed incidence to the predicted over seven days. If this ratio is greater than a threshold

X , then we identify an outbreak in county c in the seven-day period (see Equation 3.2a, Ratio

Criterion). As we are using count data, the ratio will be sensitive to sampling variation when the

expected cases are low.27 For this reason, we use a fixed number of cases as the threshold when the

25About 80% of observed cases have been reported by ∆t = 7.
26County times day-of-the-week FE are allowed to vary by phase of the epidemic in Germany (1st wave, summer,

2nd wave) due to differences in testing and reporting regimes across counties and across phases. As Figure 3.2 shows,
there is important day-of-the-week variation even in aggregate data.

27Consider the Poisson distribution. If the expected number of cases on a given day is five, then observing at least
twice the number of cases has a probability of 1.4%. For this reason, we fix the threshold in terms of number of cases
when the expected number of cases is five cases or lower. Five is the number when the Poisson probability of observing
twice the number of cases is at least one percent.
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expected number of cases is below five per day on average (see Equation 3.2b, Fixed Criterion).28

Let Ic,s,t ≡ ic,s,t ∗ popc be the number of cases observed in a county, where popc is the population

divided by 100,000 inhabitants. The decision rule is then∑6
j=0 ic,t+j∑6
j=0 îc,t+j

≥ X if
6∑

j=0

Îc,t+j ≥ 35︸ ︷︷ ︸
Small-Count Threshold︸ ︷︷ ︸

Ratio Criterion

(3.2a)

6∑
j=0

Ic,t+j ≥ X ∗ 35 if
6∑

j=0

Îc,t+j < 35︸ ︷︷ ︸
Small-Count Threshold︸ ︷︷ ︸

Fixed Criterion

. (3.2b)

In determining the threshold X , we consider different percentiles of the distribution of the ratio∑
j=0,6 ic,t+j∑
j=0,6 îc,t+j

conditional on
∑

j=0,6 Îc,t+j ≥ 35 in the data.

Equations 3.2a and 3.2b identify the seven-day period of an outbreak. We identify the first day

of excess cases (i.e. first day of the observed outbreak) as the first day out of the seven when

the number of observed cases is above the 90th percentile of the Poisson distribution (henceforth:

Poisson Threshold) given the number of expected cases from the model. Finally, if two outbreaks

occur within six weeks of each other in the same county, we ignore the second outbreak as it is

likely part of a single large outbreak.

3.4.3 Event Study and Difference-in-Differences Designs

To investigate whether and to what extent information about local outbreaks affects mobility pat-

terns, we use both event study and difference-in-differences designs. Recall from Section 3.4.1,

that we can define three periods during which individuals may respond to different sources of infor-

mation relative to first day of excess cases (∆t = 0): private information period (∆t ∈ (−7,−1)),

public information period (∆t ∈ (0, 6)), and the post period (∆t ∈ (7, 21)).

The main estimation equation is

log(tripsc,s,t) =
∑
k

αkT
k
c,t + λ · NPIc,t + γc,dotwt,pt + δs,t + ϵc,s,t, (3.3)

where we define the treatment variable T k
ct differently depending if we are estimating the event

study model or the difference-in-differences model. For the event study, the treatment variable is

28We also consider small-count thresholds of four and seven in our robustness exercises and it does not affect our
results. See Section 3.5.3.
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defined as

T k
c,t(ES) =


∑−22

j=−∞Dc,t−j if k = −22

Dc,t−k if − 21 ≤ k ≤ 21∑∞
j=22Dc,t−j if k = 22

,

where Dc,t is an indicator that is 1 if it is the first day of an outbreak in county c at time t and 0

otherwise. We normalize αES
−7 = 0. In other words, all effects are relative to seven days before

the first day of excess cases. For the difference-in-differences model, we aggregate the pre-period,

private information period, public information period, and the post-period,

T k
c,t(DiD) =



∑−22
j=−∞Dc,t−j if k = 0∑−8
j=−21Dc,t−j if k = 1∑−1
j=−7Dc,t−j if k = 2∑6
j=0Dc,t−j if k = 3∑21
j=7Dc,t−j if k = 4∑∞

j=22Dc,t−j if k = 5

,

where we normalize αDiD
1 = 0. In other words, all effects are relative to the period 8 to 21 days

before the first day of excess cases (pre-period).

The parameters of interest are a set of dummies αj indicating a change in mobility relative to

the pre-period.29 We include county times day-of-the-week times phase fixed effects (γc,dotwt,pt),

which accounts for seasonal and day of the week variation in mobility at the county level. State

times day fixed effects (δs,t) account for any state-level policies and seasonal variation at the state

level. Finally, we include a vector of indicators on different non-pharmaceutical interventions

(NPIct) at the county-day level, which accounts for policy changes that happen within states, (e.g.

NPI’s implemented in response to the outbreak).

As outcome variables we consider within and between regional mobility, measured by the loga-

rithm of the daily number of trips. To investigate between-county mobility, we sum the number of

inter-county trips that begin or end in the county of interest.

3.4.4 Assessing the Identification Strategy

Identification is achieved within a county over time. The identifying assumption is that – condi-

tional on the set of fixed effects – the timing of a local outbreak is exogenous.

Threats to identification include (1) county-specific time-varying unobservable characteristics (omit-

ted variables) that correlate with outbreaks and mobility and (2) reverse causality, a change in

mobility patterns affects local incidence rates.

29We bin periods at the endpoints of the event window. Hence, the parameters αES
−22 and αDiD

0 account for all
outbreaks occurring 22 or more days before the first day of excess cases. The parameters αES

22 and αDiD
5 account for all

outbreaks occurring 22 or more days after the first day of an outbreak (Schmidheiny and Siegloch 2019).
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Local events (e.g. carnival, seasonal work in agriculture, private celebrations) may induce in-

creased mobility in a particular county and thus, cause local Covid-19 outbreaks. In the case of

publicly known local events, people might perceive an increased risk of infection prior to the event

and thus, adjust their mobility in anticipation of an outbreak. Hence, the exogeneity assumption

of local outbreaks may be violated.

To tackle the concern of potential outbreak endogeneity, we first exploit that the incubation time

of Covid-19 takes on average four to five days (Gandhi et. al 2020b) and the time between first

symptoms and positive test results is two to seven days. Individuals expecting a local event (e.g.

wedding, religious gathering), that may increase the risk of infection, likely change their behavior

already around the time of the event. Hence, there is plausibly a delay of at least seven days be-

tween a change in mobility caused by knowledge of a local event and one induced by information

from an increase in incidence rates. Therefore, combining high frequency data on a daily basis

with disease-specific characteristics (i.e. incubation time) allows us to disentangle changes in mo-

bility due to a local event from ones due to information from the reported incidence rates. Second,

to identify local outbreaks we use the predictions derived from the incidence model specified in

Equation 3.1 (see Section 3.4.2 for a detailed description of the identification of local outbreaks).

This approach allows us to identify unexpected changes in the number of locally reported cases.

Finally, it is noteworthy that we control for local NPIs imposed in the aftermath of the outbreaks.

For example, child care facilities and schools were closed to curb the outbreak in a meat processing

plant in Gütersloh.

3.5 Results

In this section, we present our empirical results on unanticipated outbreaks in Germany and the

mobility response to the outbreaks. Section 3.5.1 describes the 259 outbreaks we identify in

Germany. Section 3.5.2 presents our main results on the change in mobility due to information

about the outbreaks. Finally, in Section 3.5.3, we discuss the sensitivity of our results to different

criteria of outbreaks.

3.5.1 Unanticipated Covid-19 Outbreaks in Germany

We identify unanticipated outbreaks by looking for excess incidence rates relative to expected

incidence rates based on a simple model that includes lagged incidence, state times day fixed

effects, and county times day-of-the-week fixed effects (see Equation 3.1).30 Appendix Table C.4

presents the estimates of the incidence rate model. The fixed effects alone explain about 74%

of the variation in the incidence rates. This is not surprising because there is a strong day-of-

the-week variation in the reporting of cases and the state-level incidence rate is a good predictor

30See Section 3.4.2 for more details.
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Table 3.1: Summary of Outbreaks Identified

No. of Outbreaks

Total Identified by Eq. 3.2a Identified by Eq. 3.2b

1st wave 105 77 28

Summer 80 36 44

2nd wave 74 48 26

Total 259 161 98

Notes: The table summarizes the number of outbreaks per phase of the pandemic. Column 1 presents
the total number of outbreaks per phase. Columns 2 and 3 display the number of outbreaks identified
by Equation 3.2a and Equation 3.2b, respectively.

of the incidence rate in the counties. Including state times day fixed effects is important as an

increase in incidence rates that can be predicted by the incidence rate at the state level is unlikely

to be unanticipated. The lagged incidence rate in a county is also an important predictor of future

incidence rates as can be seen in the second column of Appendix Table C.4.31 We use the incidence

rate model to predict incidence rates in each county on each day.

We define an outbreak as an excess in the observed incidence rates compared to the expected

incidence rates from our model using Equations 3.2a and 3.2b. Appendix Figure C.1 shows the

distribution of the ratio of observed to expected incidence rates in the data. Our preferred threshold

is the 98th percentile (i.e. X = 1.54), which identifies 259 outbreaks between February and

November. In other words, we identify outbreaks in counties that have more than a 54% excess in

a seven-day period, or more than 54 cases when the expected number of cases is less than 35 in

a seven-day period. The Ratio Criterion (i.e. Equation 3.2a) identifies 161 outbreaks and 98 are

identified by the Fixed Criterion (i.e. Equation 3.2b). Table 3.1 shows the number of outbreaks

we identify in each phase and by each criterion.

To better understand how unanticipated outbreaks are identified, we present the time-series figures

for four well-known examples of outbreaks in Germany. Figure 3.5 displays the daily observed

cases (blue line), the daily expected cases (green line), the earliest seven-day period that an excess

is observed (grey shading), and the first day of excess cases determined by the Poisson Threshold

(purple vertical line).32

31With the lagged incidence rates, the model explains about 78% of the variation in incidence rates.
32Perhaps the dates chosen for Gütersloh are surprising, but it is important to note that this was a particularly large

outbreak and the first day of excess cases are larger than they appear due to the differences in scale.
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Figure 3.5: Examples of Well-Known Outbreaks in Germany

(a) March Outbreak in Heinsberg

(b) June Outbreak in Gütersloh

(c) September Outbreak in Hamm

(d) October Outbreak in Berchtesgaden

Notes: These figures show four examples of well-known outbreaks that are also identified by our procedure. The blue
time-series line shows the cases reported to the national public health institute on each day and the green time-series
line shows the cases predicted by our model. The grey shaded area represents the seven-day period of the beginning
of the outbreak and the purple vertical line shows the first date of the outbreak identified by our procedure. All four
outbreaks are identified by the Ratio Criterion Equation 3.2a.
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Figure 3.6 shows the spatial distribution of outbreaks across Germany, while Appendix Figure C.2

presents the temporal distribution of outbreaks. The outbreaks are distributed relatively evenly

across the counties of Germany and across time.

Figure 3.6: Counties with Outbreaks

3 2 1 0

Notes: This figure shows how the outbreaks are distributed across Germany. Some counties have more than one
outbreak in the February to November period.
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3.5.2 Aggregate Mobility Responses to Outbreaks

We now study the mobility response to the outbreaks identified in Section 3.5.1. Recall that

due to the progression of the disease and delays in getting tested, we can interpret changes in

mobility on different days as being driven by different sources of information. Let the relative

date be represented by ∆t, where ∆t = 0 is the first day of excess cases. Individuals may reduce

mobility due to information about a risky event (e.g. a wedding or festival) in the period ∆t ∈
(−14,−7), due to private information about people falling ill in the period ∆t ∈ (−7,−1), and

public information on excess cases in the period ∆t ∈ (0, 6).33

We construct the distribution of the relative date of first symptoms for cases that were reported on

the first day of the observed outbreak (∆t = 0). Figure 3.7 shows the distribution of first reported

symptoms for our set of outbreaks. Most individuals with positive cases start having symptoms in

the seven days before the start of the observed outbreak. This distribution further motivates our

definition of the private information period. In other words, the private information period is the

period when infected individuals start to have symptoms, but when there is no public information

about the outbreak yet.

Figure 3.7: Distribution of First Symptoms
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Notes: This figure shows the distribution of the relative date of first symptoms for the cases that were reported on the
first day of the observed outbreaks (∆t = 0). Note that the relative date includes a two-day delay between individuals
getting tested and the cases being publicly reported by the national public health agency (See Section 3.3).

33If a risky event is large enough, we may observe an increase in mobility at the time of the event.
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Our main results use an event study design to distinguish the effects of different sources of infor-

mation on mobility. Figure 3.8 presents the event study on the effect of an outbreak on the number

of within-county and between-county trips. We normalize effects relative to ∆t = −7 as most

of the infected individuals in the outbreak do not have any symptoms at this point. We shade the

private information period and the public information periods. We don’t find any pre-trend in the

data that may be due to knowledge of a risky event, nor do we see a significant change in mobility

during the private information period. It is not until public information of the outbreak becomes

available that mobility begins to decline. The decrease in mobility plateaus after about seven days

have passed since the first day of excess cases. The effects look similar for within-county travel

and between-county travel, where the effect is a bit delayed and larger for between-county trips.

Figure 3.8: Event Study of County-Level Mobility
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(b) Trips To/From Other Counties

-.075

-.025

.025

.075

Es
tim

at
ed

 E
ffe

ct
 R

el
at

iv
e 

to
 t=

-7

- 21 -7 0 +7 21

Days Relative to Start of the Outbreak

Notes: Event studies of the log of number of trips taken within a county with an outbreak (panel a) and between the
outbreak county and other counties (panel b). The model controls for day times state fixed effects, county times day-
of-the-week fixed effects and NPI indicators at the county-day level (see Section 3.4.3 for more information). Time
∆t = 0 is the first day of excess cases in the outbreak (see Section 3.4.2). We normalize at ∆t = −7 as we might
expected mobility to change in the seven days before the observed outbreak due to private information. Hence, the left
(dark grey) shaded area represents the period where we would expect changes in mobility due to private information.
The right (light grey) shaded area represents the seven-day period when the excess of cases is reported and information
about the outbreak is revealed by the public health authorities.

We present the results for the difference-in-differences specification in Table 3.2, where we pool

the effects for the different periods. In order to understand if local NPIs are driving our results,

we present results with and without controlling for local NPIs. We find that controlling for NPIs

makes little difference in our estimates. As in the event study, we do not find any effect of the

outbreak in the private information period. The average effect in the public information period

is between a third (between-county) to half (within-county) of the full-effect in the post period.

Within-county mobility decreases by about 2.2% and between-county mobility decreases a bit

more, by about 2.4%.
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Table 3.2: Difference-in-Difference Estimates

Within-County Between-County

Private Information (∆t ∈ (−7,−1)) -0.0007 -0.0007 0.0012 0.0012

(0.003) (0.003) (0.003) (0.003)

Public Information (∆t ∈ (0, 6)) -0.0102* -0.0100* -0.0085* -0.0084*

(0.004) (0.004) (0.004) (0.004)

Post Period (∆t > 6) -0.0221*** -0.0217*** -0.0242*** -0.0237***

(0.005) (0.005) (0.005) (0.005)

Observations 140350 140350 140350 140350

Adj.R2. 0.994 0.994 0.992 0.992

Local NPI FE No Yes No Yes

Notes: This table presents the difference-in-difference estimates of the event studies shown in
Figure 3.8. The dependent variable is the log of number of trips taken within a county with an
outbreak and between the outbreak county and other counties. The model controls for day times
state fixed effects, county times day-of-the-week fixed effects and NPI indicators at the county-
day level (see Section 3.4.3 for more information). Time ∆t = 0 is the first day of excess
cases in the outbreak (see Section 3.4.2). We normalize ∆t ∈ (−21,−8) as we might expected
mobility to change in the seven days before the observed outbreak due to private information of
infected individuals falling ill. Standard errors are clustered at the county level. * p < 0.05, **
p < 0.01, *** p < 0.001

Heterogeneity Analysis There are a number of reasons why the mobility response to an out-

break may vary across counties and across time. Counties may differ in the average costs of re-

ducing mobility (e.g. more factory workers than programmers), mobility may expose populations

in certain counties to greater risk (e.g. higher usage of subways than cars), or the average beliefs

about the risk of the virus may vary across populations. In the following, we provide suggestive

evidence on each of the three channels.

Table 3.3 shows how effects vary by continuous proxies: share of college educated, hotel beds

per capita, public transportation trips per capita, and share of voters who voted for the party AfD

in the last state election. The continuous variables are standardized with mean zero and standard

deviation one to ease interpretation and comparability of the results. Table 3.4 shows how effects

vary by discrete proxies: stage of the pandemic and level of urbanization of the county.

The costs of adjusting mobility may vary if a large share of workers can work from home, if a

large share of the mobility is discretionary, or if individuals are tired of restrictions on mobility.

We investigate each of these in turn. If the likelihood of being able to work from home is larger

for college-educated workers, then we may expect the effects to be larger in counties where the

fraction of individuals with tertiary degrees is higher. Interestingly, we do not find that the effect

on within-county mobility changes depends on education. The effect for between-county mobility

is stronger in counties with a higher fraction of individuals with a tertiary degree. The effect is

fifty percent larger in a county with a one standard deviation higher share of tertiary degrees.
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Table 3.3: Heterogeneity Analysis: Part I

Tertiary School Degree Public Transport AFD Vote Share Hotel Beds per Capita

Within Between Within Between Within Between Within Between

Private Information (∆t ∈ (−7,−1)) -0.0008 0.0012 -0.0009 0.0012 -0.0008 0.0014 -0.0014 0.0008
(0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003)

Public Information (∆t ∈ (0, 6)) -0.0099* -0.0080 -0.0102* -0.0082 -0.0098* -0.0079 -0.0110** -0.0090*
(0.004) (0.004) (0.004) (0.004) (0.004) (0.004) (0.004) (0.004)

Post Period (∆t > 6) -0.0214*** -0.0230*** -0.0219*** -0.0233*** -0.0205*** -0.0225*** -0.0229*** -0.0245***
(0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005)

Private Information × Tertiary School Degree 0.0016 0.0002
(0.002) (0.002)

Public Information × Tertiary School Degree -0.0015 -0.0052
(0.003) (0.003)

Post Period × Tertiary School Degree -0.0037 -0.0113*
(0.004) (0.005)

Private Information × Public Transport 0.0024 0.0003
(0.002) (0.002)

Public Information × Public Transport 0.0018 -0.0016
(0.004) (0.004)

Post Period × Public Transport 0.0025 -0.0050
(0.005) (0.006)

Private Information × AfD Vote Share -0.0003 0.0008
(0.003) (0.003)

Public Information × AfD Vote Share 0.0011 0.0019
(0.005) (0.004)

Post Period × AfD Vote Share 0.0048 0.0048
(0.007) (0.006)

Private Information × Hotel Beds per Capita -0.0028 0.0011
(0.005) (0.004)

Public Information × Hotel Beds per Capita -0.0155 -0.0094
(0.008) (0.006)

Post Period × Hotel Beds per Capita -0.0368*** -0.0257***
(0.009) (0.007)

Observations 140350 140350 140350 140350 140350 140350 140350 140350
Adj.R2. 0.994 0.992 0.994 0.992 0.994 0.992 0.994 0.992
FE Yes Yes Yes Yes Yes Yes Yes Yes

Notes: The table studies heterogeneity in response to local outbreaks along different dimensions. Column 1 analyzes how people’s response in mobility vary by
the share of individuals with a tertiary school degree in a county. Column 2 investigates differences in response behavior on the daily number of trips by public
transportation per capita inhabitants, Column 3 on the vote share for AfD in the last state elections. Column 4 studies differences in response to the number of hotel
beds per capita in a county. All four variables are standardized to have zero mean and standard deviation of 1.0. Standard errors are clustered at the county level. *
p < 0.05, ** p < 0.01, *** p < 0.001
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Trips taken due to tourism or business travel may be easier to reduce compared to other kinds

of trips, like commuting to work. We study how the effects vary by the importance of the travel

industry in a county, proxied by hotel beds per capita. Indeed, we find that the effect of an outbreak

on mobility is much larger in counties where the travel industry is important. Counties with one

standard deviation more hotel beds per capita have mobility effects that are two and a half times

larger for within-county travel and twice as large for between-county travel.

“Pandemic fatigue” could increase the perceived cost of decreasing mobility as more time has

passed since the beginning of the pandemic. To study this, we estimate the effects separately

by phase. On one hand, we do find that the response to an outbreak is about half as strong in the

summer period compared to the first wave. On the other hand, we find that the mobility response is

largest during the second wave. We interpret these results as showing that “pandemic fatigue” was

not important in the mobility response to unanticipated outbreaks. Alternatively, the response may

have been weaker during the summer as people were less attentive while the national incidence

rate was low.34

If the average risk of a trip is higher, we may expect the mobility response to be larger. The

average risk may be larger in counties with higher usage of public transportation or in counties

with a higher population density. Interestingly, as seen in Table 3.3, we do not find that the

mobility response depends on the number of public transportation trips per capita. In Table 3.4,

we separately estimate the effects for four different categories of population density. We do find

that the effects are larger in “Large Cities” and do not find a significant effect in “Cities” and

“Rural Areas with Small Cities”.35 Paradoxically, we find equally large effects in the “Rural”

areas—least dense category—as in “Large Cities”. Many of the rural counties in our sample are

also places with high levels of tourism. If we control for the interaction with hotel beds per capita,

we find that the mobility response in rural areas decreases by half, while it increases in cities. We

interpret this as evidence that the increased effect in rural areas is mostly due to the lower costs

of discretionary travel, while the effect in cities is consistent with the increased risk of a higher

population density.

Finally, beliefs about the risk of Covid-19 in a county may lead to stronger or weaker mobility

responses to an outbreak. A number of studies in the US (e.g. Allcott et al. 2020; Andersen

2020; Barrios and Hochberg 2020; Grossman et al. 2020; Painter and Qiu 2021) have shown how

counties with higher Republican support were less likely to change their behavior in response to

34For example, a simple query in google trends for “rki corona” or “rki corona fallzahlen” shows that the number
of searches in Germany about the coronavirus were higher during the first and second wave compared to the summer
period, reaching four to five times higher at the peaks in the middle of our first and third phases.

35We refer to the classification into different types of urbanization proposed by BBSR (2019). “Large Cities” denote
Kreisfreie Großstädte with more than 100,000 inhabitants. “Cities” present Städtische Kreise with a population density
of at least 150 inhabitants/km2 and at least 50% of the population living in a city. “Rural Areas with Small Cities”
include (i) counties with a population density less than 150 inhabitants/km2 and at least 50% of the population living in
a city and (ii) counties with a population density of at least 100 inhabitants/km2 and less 50% of the population living
in a city. “Rural Areas” denote counties with a population density smaller than 100 inhabitants/km2 and less than 50%
of the population living in a city.
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Table 3.4: Heterogeneity Analysis: Part II

Phase of Pandemic Type of Urbanization

Within Between Within Between Within Between

Private Information × 1st Wave -0.005 -0.000
(0.004) (0.004)

Private Information × Summer -0.001 0.002
(0.003) (0.004)

Private Information × 2nd Wave 0.006 0.002
(0.008) (0.005)

Public Information × 1st Wave -0.019** -0.012
(0.007) (0.007)

Public Information × Summer -0.002 -0.001
(0.004) (0.005)

Public Information × 2nd Wave -0.007 -0.012
(0.011) (0.008)

Post Period × 1st Wave -0.024** -0.028**
(0.008) (0.010)

Post Period × Summer -0.012** -0.012*
(0.005) (0.006)

Post Period × 2nd Wave -0.029* -0.032**
(0.014) (0.010)

Private Information × Large Cities -0.001 -0.001 -0.002 -0.001
(0.005) (0.005) (0.005) (0.005)

Private Information × Cities -0.003 -0.003 -0.003 -0.003
(0.003) (0.003) (0.003) (0.003)

Private Information × Rural w/ Small Cities 0.010 0.003 0.009 0.002
(0.008) (0.008) (0.007) (0.007)

Private Information × Rural -0.008 0.009 -0.006 0.010
(0.009) (0.007) (0.009) (0.006)

Public Information × Large Cities -0.018* -0.019* -0.025** -0.024*
(0.008) (0.009) (0.009) (0.010)

Public Information × Cities -0.005 -0.005 -0.009 -0.008
(0.005) (0.005) (0.006) (0.005)

Public Information × Rural w/ Small Cities 0.002 -0.001 0.003 -0.000
(0.007) (0.010) (0.008) (0.009)

Public Information × Rural -0.022 -0.007 -0.011 0.000
(0.014) (0.010) (0.011) (0.009)

Post Period × Large Cities -0.037*** -0.044*** -0.050*** -0.053***
(0.011) (0.013) (0.011) (0.013)

Post Period × Cities -0.003 -0.007 -0.013 -0.015*
(0.006) (0.006) (0.007) (0.006)

Post Period × Rural w/ Small Cities -0.015 -0.016 -0.011 -0.013
(0.008) (0.011) (0.008) (0.011)

Post Period × Rural -0.047** -0.039** -0.023* -0.021*
(0.017) (0.013) (0.011) (0.010)

Observations 140350 140350 140350 140350 140350 140350
Adj.R2. 0.994 0.992 0.994 0.992 0.994 0.992
FE Yes Yes Yes Yes Yes Yes
Period × Hotel Beds Interactions No No No No Yes Yes

Notes: The table studies heterogeneity in response to local outbreaks during different phases of the pandemic
(Columns 2 and 3) and types of urbanization in counties (Columns 4 and 5). In addition, the model with urban-
ization is estimated additionally controlling for interactions with the standardized “hotel beds per capita” variable
from Table 3.3 (Columns 6 and 7). Standard errors are clustered at the county level. * p < 0.05, ** p < 0.01,
*** p < 0.001
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Covid-19. Similarly in Germany, the AfD party was critical of the government handling of Covid-

19 and one may conjecture that counties with high AfD vote shares would, likewise, respond less

to an outbreak. Unlike in the US, we do not find any variation in the effect in counties where the

AfD vote share is larger.

3.5.3 Sensitivity Analysis

We estimate a number of alternative specifications to understand the robustness of our results. We

vary the X threshold (97th, 98th, and 99th percentiles), the small-count threshold (four, five, and

seven expected cases per day), and the Poisson threshold (p-values of 0.1, 0.01, and 0.001) for

identifying outbreaks (see Section 3.4.2). Appendix Table C.5 shows the number of outbreaks

identified using the different thresholds and for the different criteria, where the number of out-

breaks identified varies from 140 to 353. We estimate the difference-in-differences model using

each of these sets of outbreaks in Appendix Table C.6. The estimated effect is smaller when

lowering the small-sample threshold, this is expected as we are introducing some outbreaks that

are identified from the small-count noise. The estimated effects when raising the small-count

threshold are nearly the same as our preferred specification. Lowering the X threshold leads to

slightly lower estimates for the effect, but the difference with preferred specification is negligi-

ble. Increasing the X threshold on the other hand, leads to a substantial increase in the estimated

effects. The higher X threshold only includes larger outbreaks, and so it may not be surprising

that the responses are larger in this case. Finally, the estimates do not change much when vary-

ing the Poisson threshold, but this is expected as the value of Poisson threshold only determines

which day the outbreak occurs. A tighter Poisson threshold leads to a one to two day delay in the

identification of the first day of an outbreak, which has a small effect on the event study results.

In addition, we find that behavioral responses to local outbreaks identified by the Ratio Criterion

(Equation 3.2a) and by the Fixed Criterion (Equation 3.2b) are nearly the same (see Appendix

Table C.8).

We also consider outbreaks that are mentioned in the daily reports of the national public health

agency (RKI) during the summer (see Appendix Table C.7).36 If we use the RKI-defined out-

breaks, we find similar between-county effects and slightly smaller within-county effects com-

pared to our main specification (1.2%). If we consider the outbreaks that are identified both in the

RKI and in our sample, then we find larger effects that are similar to ones in the first and third

phase of the pandemic (compare with results in Table 3.4). The main conclusion is that we do not

find substantially different effects if we consider the outbreaks identified by the RKI as opposed to

36See Robert Koch Institute (2021a). The RKI listed outbreaks only during the summer period in their daily reports,
presumably when they could use contract tracing to identify transmission clusters. We could not find a precise rule for
how the RKI defined outbreaks during the summer period. They mention outbreaks in counties with incidence rates
relatively high to the rest of Germany. However as the baseline incidence rate varies in Germany, the cutoff appears to
also change.
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the outbreaks identified using the procedure in Section 3.4.2. Our procedure though can be applied

to the entire sample period.

Finally, we perform a placebo study, where, for each outbreak we identify, we randomly choose

a county and then repeat the analysis. Appendix Figure C.4 shows the event study analysis using

placebo outbreaks. We do not find any effect in the placebo outbreak sample.

3.6 Conclusion

This paper underscores the importance of public information as a policy tool for mitigating public

health risks. We study this in the context of Covid-19, where behavioral responses have been im-

portant to contain the spread of the virus and, hence, the costs of the pandemic. To identify behav-

ioral responses induced by public information versus other sources, we combine high-frequency

data with facts about the incubation period of Covid-19 and reporting time in Germany. We first

develop a simple epidemiological model that allows us to identify unexpected local outbreaks by

comparing the observed number of cases to the expected number. Based on the model, we find 259

outbreaks at the county level that are distributed relatively evenly across the counties in Germany

and across time. Using an event study design on local unexpected outbreaks, we find that mobility

significantly decreases by about 2 to 3% in response to public information about the outbreak,

while private knowledge about people falling sick does not appear to cause a change in behavior.

There are important heterogeneities in the behavioral responses, where responses are stronger in

counties with high population density, with more hotels per capita, and with a higher share of

college educated. These findings are consistent with behavioral changes depending on the relative

risk and costs of changing mobility.

The study provides evidence that people respond to information on local outbreaks to protect

themselves towards an increased risk of infection. Having instruments to control the spread of the

pandemic beyond enforced social distancing measures will be particularly important for policy

makers in times that people exhibit “pandemic fatigue” while at the same time herd immunity by

the vaccination strategy has not been achieved. More generally, this paper highlights the impor-

tance of providing detailed real-time information to improve population health.
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Appendix C

C1 Descriptive Statistics

Table C.1: Summary Statistics Part I: Infections and Trips

New Infections, Mean (S.D.) Trips per capita, Mean (S.D.)
State # of Counties Phase Obs Cases Incidence Outgoing Incoming Internal

All states 401 before 20,050 0.68 (0.29) 0.68 (0.29) 1.46 (0.41)
1st wave 28,070 5.79 (13.25) 2.83 (5.18) 0.50 (0.26) 0.50 (0.26) 1.24 (0.39)
Summer 61,353 2.15 (6.76) 0.89 (1.94) 0.68 (0.28) 0.68 (0.28) 1.54 (0.48)

2nd wave 36,892 39.57 (73.07) 18.21 (17.63) 0.61 (0.28) 0.61 (0.28) 1.46 (0.45)

Baden-Württemberg 44 before 2,200 0.62 (0.26) 0.62 (0.26) 1.55 (0.40)
1st wave 3,080 10.51 (15.05) 4.47 (6.27) 0.44 (0.23) 0.44 (0.23) 1.29 (0.37)
Summer 6,732 2.64 (4.43) 1.00 (1.47) 0.59 (0.23) 0.59 (0.23) 1.52 (0.38)

2nd wave 4,048 47.47 (45.58) 18.66 (14.32) 0.54 (0.25) 0.54 (0.24) 1.52 (0.43)

Bayern 96 before 4,800 0.91 (0.33) 0.90 (0.33) 1.42 (0.45)
1st wave 6,720 6.40 (14.60) 4.71 (7.87) 0.64 (0.32) 0.63 (0.32) 1.16 (0.41)
Summer 14,688 1.76 (6.15) 1.12 (2.59) 0.89 (0.31) 0.89 (0.30) 1.50 (0.53)

2nd wave 8,832 29.59 (50.69) 20.95 (17.92) 0.81 (0.34) 0.81 (0.33) 1.43 (0.45)

Berlin 1 before 50 0.22 (0.04) 0.22 (0.03) 1.78 (0.29)
1st wave 70 84.97 (76.02) 2.33 (2.09) 0.16 (0.05) 0.16 (0.05) 1.35 (0.38)
Summer 153 58.86 (52.57) 1.61 (1.44) 0.22 (0.04) 0.21 (0.03) 1.56 (0.28)

2nd wave 92 903.95 (501.08) 24.80 (13.75) 0.19 (0.04) 0.18 (0.04) 1.46 (0.30)

Brandenburg 18 before 900 0.74 (0.26) 0.72 (0.24) 1.40 (0.48)
1st wave 1,260 2.33 (5.19) 1.43 (2.89) 0.59 (0.24) 0.59 (0.24) 1.30 (0.47)
Summer 2,754 0.52 (1.32) 0.34 (0.86) 0.86 (0.26) 0.86 (0.26) 1.75 (0.64)

2nd wave 1,656 23.51 (26.81) 17.48 (20.80) 0.73 (0.25) 0.73 (0.25) 1.72 (0.65)

Bremen 2 before 100 0.57 (0.14) 0.56 (0.13) 1.52 (0.29)
1st wave 140 6.46 (12.65) 1.40 (2.28) 0.43 (0.17) 0.42 (0.16) 1.21 (0.32)
Summer 306 5.11 (7.63) 1.41 (2.06) 0.52 (0.14) 0.52 (0.14) 1.40 (0.26)

2nd wave 184 60.88 (67.49) 14.79 (10.71) 0.49 (0.17) 0.49 (0.16) 1.35 (0.30)

Hamburg 1 before 50 0.32 (0.06) 0.32 (0.05) 1.73 (0.31)
1st wave 70 69.36 (60.72) 3.77 (3.30) 0.22 (0.09) 0.22 (0.08) 1.28 (0.33)
Summer 153 20.89 (23.52) 1.13 (1.28) 0.29 (0.06) 0.28 (0.05) 1.51 (0.29)

2nd wave 92 319.12 (158.07) 17.33 (8.59) 0.25 (0.06) 0.25 (0.06) 1.42 (0.32)

Hessen 26 before 1,300 0.60 (0.22) 0.61 (0.22) 1.40 (0.37)
1st wave 1,820 4.61 (6.89) 1.97 (2.91) 0.44 (0.20) 0.45 (0.20) 1.18 (0.33)
Summer 3,978 2.72 (5.04) 1.03 (1.54) 0.58 (0.19) 0.58 (0.19) 1.44 (0.36)
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2nd wave 2,392 49.97 (52.73) 19.83 (15.60) 0.52 (0.19) 0.52 (0.19) 1.37 (0.38)

Mecklenburg-Vorpommern 8 before 400 0.50 (0.22) 0.49 (0.22) 1.72 (0.39)
1st wave 560 1.24 (2.13) 0.67 (1.28) 0.41 (0.21) 0.40 (0.21) 1.53 (0.41)
Summer 1,224 0.43 (1.21) 0.22 (0.68) 0.69 (0.24) 0.68 (0.25) 2.50 (0.91)

2nd wave 736 15.04 (17.74) 7.49 (8.72) 0.53 (0.24) 0.52 (0.25) 2.02 (0.68)

Niedersachsen 45 before 2,250 0.60 (0.22) 0.60 (0.22) 1.47 (0.39)
1st wave 3,150 3.28 (7.55) 1.58 (2.80) 0.46 (0.21) 0.46 (0.21) 1.25 (0.37)
Summer 6,885 1.49 (4.08) 0.72 (1.57) 0.60 (0.21) 0.60 (0.21) 1.52 (0.41)

2nd wave 4,140 21.52 (34.56) 11.40 (11.57) 0.54 (0.22) 0.54 (0.22) 1.46 (0.42)

Nordrhein-Westfalen 53 before 2,650 0.53 (0.16) 0.53 (0.15) 1.61 (0.34)
1st wave 3,710 8.92 (13.33) 2.65 (3.58) 0.38 (0.16) 0.39 (0.16) 1.32 (0.33)
Summer 8,109 4.67 (9.01) 1.35 (2.47) 0.50 (0.14) 0.50 (0.14) 1.56 (0.32)

2nd wave 4,876 66.93 (59.47) 19.86 (13.85) 0.44 (0.14) 0.44 (0.14) 1.43 (0.35)

Rheinland-Pfalz 36 before 1,800 0.79 (0.27) 0.79 (0.26) 1.26 (0.33)
1st wave 2,520 2.41 (3.83) 2.07 (3.12) 0.59 (0.25) 0.59 (0.25) 1.07 (0.28)
Summer 5,508 0.87 (1.96) 0.71 (1.46) 0.80 (0.24) 0.80 (0.23) 1.32 (0.34)

2nd wave 3,312 18.87 (19.88) 16.38 (14.65) 0.70 (0.24) 0.70 (0.24) 1.22 (0.35)

Saarland 6 before 300 0.61 (0.17) 0.61 (0.17) 1.47 (0.31)
1st wave 420 6.05 (11.36) 3.24 (4.52) 0.43 (0.18) 0.43 (0.18) 1.16 (0.30)
Summer 918 0.90 (1.62) 0.54 (0.95) 0.59 (0.17) 0.59 (0.17) 1.44 (0.30)

2nd wave 552 30.23 (32.74) 17.53 (12.92) 0.54 (0.18) 0.54 (0.18) 1.39 (0.31)

Sachsen 13 before 650 0.49 (0.18) 0.49 (0.18) 1.54 (0.37)
1st wave 910 5.20 (7.78) 1.66 (2.43) 0.39 (0.19) 0.39 (0.19) 1.36 (0.38)
Summer 1,989 1.39 (2.94) 0.45 (1.02) 0.53 (0.19) 0.53 (0.20) 1.66 (0.39)

2nd wave 1,196 108.95 (103.10) 36.29 (34.21) 0.46 (0.20) 0.46 (0.20) 1.59 (0.44)

Sachsen-Anhalt 14 before 700 0.53 (0.21) 0.54 (0.21) 1.65 (0.46)
1st wave 980 1.60 (3.15) 0.97 (1.77) 0.45 (0.20) 0.45 (0.20) 1.51 (0.43)
Summer 2,142 0.53 (1.45) 0.31 (0.78) 0.58 (0.20) 0.59 (0.21) 1.79 (0.46)

2nd wave 1,288 22.01 (25.58) 13.86 (15.46) 0.53 (0.22) 0.54 (0.22) 1.73 (0.49)

Schleswig-Holstein 15 before 750 0.59 (0.19) 0.58 (0.18) 1.38 (0.30)
1st wave 1,050 2.58 (4.77) 1.21 (1.99) 0.43 (0.19) 0.43 (0.19) 1.17 (0.31)
Summer 2,295 0.93 (2.16) 0.49 (1.33) 0.61 (0.19) 0.60 (0.18) 1.55 (0.50)

2nd wave 1,380 14.71 (17.52) 7.04 (7.00) 0.53 (0.19) 0.52 (0.19) 1.38 (0.38)

Thüringen 23 before 1,150 0.60 (0.21) 0.60 (0.21) 1.35 (0.43)
1st wave 1,610 1.45 (2.87) 1.52 (2.92) 0.48 (0.21) 0.49 (0.21) 1.22 (0.39)
Summer 3,519 0.51 (1.38) 0.58 (1.69) 0.63 (0.21) 0.63 (0.22) 1.43 (0.42)

2nd wave 2,116 18.66 (22.98) 20.67 (25.26) 0.57 (0.23) 0.58 (0.23) 1.41 (0.43)

Notes: The table reports the mean and standard deviation of the set of variables included in the analysis. The data is pooled over the period of observation and
counties (N=401). Incidence is defined as the daily number of cases per 100,000 inhabitants.
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Table C.2: Summary Statistics Part II: Additional Variables

Mean S.D.

No. of Beds in Hotels per Capita 4.26 5.24
Public Transport per Capita 0.29 0.09
Share of Tertiary Degree 11.85 3.23
Vote Share AfD 12.47 6.15
Large Cities 0.17 0.37
Cities 0.33 0.47
Rural Areas w/ Small Cities 0.25 0.43
Rural Areas 0.25 0.44

Notes: This table reports mean and standard deviation of variables used
in the heterogeneity analysis. The data are cross-sectional and provided
at the county level.

Table C.3: Summary Statistics Part III: Non-Pharmaceutical Interventions

1st wave summer 2nd wave
Mean S.D. Mean S.D. Mean S.D.

Child Care, School and Work
Day Care 0.35 0.48 0.66 0.47 0.86 0.35
Primary Schools 0.42 0.49 0.89 0.31 0.91 0.29
Secondary Schools 0.35 0.48 0.91 0.28 0.92 0.27
Workplace 0.07 0.26 0.24 0.42 0.13 0.34

Travel
Travel Restrictions Domestic 0.12 0.33 0.13 0.34 0.00 0.00
Travel Restrictions Foreign 0.04 0.20 0.00 0.00 0.00 0.00
Public Transport 0.00 0.00 0.00 0.00 0.00 0.00

General NPIs
Mask Mandate 0.09 0.29 0.99 0.10 1.00 0.00
Social Distancing 0.45 0.50 0.87 0.34 0.95 0.22
Exit Restrictions 0.15 0.35 0.05 0.21 0.09 0.29
Contacts - Private Space 0.19 0.39 0.57 0.49 0.76 0.42
Contacts - Public Space 0.41 0.49 0.99 0.07 0.98 0.13
Testing 0.02 0.14 0.12 0.33 0.08 0.27

Service, Hotels, Restaurants
Services 0.52 0.50 0.99 0.07 0.99 0.07
Hotels 0.52 0.50 0.96 0.20 0.93 0.25
Restaurants 0.57 0.50 1.00 0.00 0.97 0.18
Retails 0.49 0.50 0.91 0.28 0.97 0.16

Events, Sports and Culture
Events Indoor 0.56 0.50 0.99 0.08 0.98 0.13
Events Outdoor 0.57 0.50 0.97 0.17 0.99 0.11
Night Life 0.55 0.50 1.00 0.00 1.00 0.02
Sports Indoor 0.55 0.50 0.96 0.20 0.96 0.19
Sports Outdoor 0.55 0.50 0.94 0.23 0.93 0.25
Culture and Education 0.54 0.50 0.96 0.20 0.97 0.16

Observations 28070 61353 36892

Notes: This table reports mean and standard deviation of the NPIs con-
sidered in this study, by phase of the pandemic. The variables present
the fraction of days a particular NPI was in place.
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APPENDIX C

C2 Empirical Strategy

Table C.4: Incidence Model

Incidence Ratest

Incidence Ratet-1 0.1465***

(0.011)

Incidence Ratet-2 0.0921***

(0.011)

Incidence Ratet-3 0.0956***

(0.009)

Incidence Ratet-4 0.0945***

(0.011)

Incidence Ratet-5 0.0709***

(0.011)

Incidence Ratet-6 0.0971***

(0.009)

Incidence Ratet-7 0.0468***

(0.012)

Observations 131127 131127

Adj.R2. 0.742 0.777

FE Yes Yes

Notes: The table displays the estimates of Equation 3.1 in the text. Col-
umn 1 includes county times day-of-the-week times phase fixed effects
(γi

c,dotwt,pt ) and state times day fixed effects (δist). In Column 2, we
additionally control for lagged incidence rates.
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Figure C.1: Distribution of the Seven-Day Incidence Rate Relative to the Expected Seven-Day
Incidence Rate
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Notes: The figure illustrates the empirical distribution of the 7-day incidence rates relative to the expected 7-day
incidence rates if the number of expected cases within that 7-day window exceeds 35. The red line displays the
98th percentile threshold.

Figure C.2: Distribution of Outbreaks, per Day
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Notes: The figure illustrates the number of outbreaks per day. The red dash vertical lines represent the classifica-
tion into the phases of the pandemic.
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APPENDIX C

C3 Results

Figure C.3: Event Study of County-Level Mobility for Different Phases

(a) Trips Within County (1st Wave)
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(b) Trips To/From Other Counties (1st Wave)
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(c) Trips Within County (Summer)
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(d) Trips To/From Other Counties (Summer)
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(e) Trips Within County (2nd Wave)
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(f) Trips To/From Other Counties (2nd Wave)
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Notes: Event studies of the log of number of trips taken within a county with an outbreak and between the outbreak
county and other counties. For three different phases of the Covid-19 epidemic in Germany. Model controls for
day times state and county times day-of-the-week fixed effects, accounting for state-level policy changes. Time
∆t = 0 is the first day we observe excess cases in an outbreak (see Section 3.4.2). We normalize at ∆t = −7
as we might expected mobility to change in the seven days before the outbreak is observed in testing data due to
private information. Hence, the left (dark grey) shaded area represents the period where we would expect changes
in mobility due to private information. The right (light grey) shaded area represents the seven-day period when
the excess of cases is reported and information about the outbreak is revealed by the case data.
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Table C.5: Sensitivity Analysis: Description of Outbreaks

Main Specification Change in Sum-Count Threshold Change in X-Threshold Change in Poisson-Threshold

28 49 97th 99th 0.01 0.001

1st wave 105 (77, 28) 103 (74, 29) 98 (69, 29) 137 (104, 33) 61 (45, 16) 105 (77, 28) 105 (77, 28)

Summer 80 (36, 44) 98 (45, 53) 52 (23, 29) 101 (47, 54) 41 (15, 26) 79 (35, 44) 77 (33, 44)

2nd wave 74 (48, 26) 72 (59, 13) 81 (56, 25) 115 (85, 30) 38 (23, 15) 75 (49, 26) 77 (51, 26)

Total 259 (161, 98) 273 (178, 95) 231 (148, 83) 353 (236, 117) 140 (83, 57) 259 (161, 98) 259 (161, 98)

Notes: The table summarizes the number of outbreaks per phase of the pandemic. The first number in the bracket refers to the number identified by
Equation 3.2a and the second is identified by Equation 3.2b, respectively.
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Table C.6: Sensitivity Analysis: Changes in Outbreak Definition

Main Specification Change in Sum-Count Threshold Change in X-Threshold Change in Poisson-Threshold

28 49 97th 99th 0.01 0.001

Within Between Within Between Within Between Within Between Within Between Within Between Within Between

Private Information (∆t ∈ (−7,−1)) -0.0007 0.0012 0.0003 0.0016 -0.0022 0.0006 -0.0010 0.0005 -0.0017 0.0006 0.0001 0.0010 -0.0016 -0.0007
(0.003) (0.003) (0.003) (0.002) (0.003) (0.003) (0.002) (0.002) (0.004) (0.003) (0.003) (0.003) (0.003) (0.003)

Public Information (∆t ∈ (0, 6)) -0.0100* -0.0084* -0.0076* -0.0076* -0.0099* -0.0084* -0.0099** -0.0071* -0.0131* -0.0129* -0.0119** -0.0124** -0.0128** -0.0142***

(0.004) (0.004) (0.004) (0.004) (0.004) (0.004) (0.004) (0.003) (0.006) (0.006) (0.004) (0.004) (0.004) (0.004)

Post Period (∆t > 6) -0.0217*** -0.0237*** -0.0170*** -0.0205*** -0.0193*** -0.0228*** -0.0198*** -0.0216*** -0.0275*** -0.0335*** -0.0222*** -0.0245*** -0.0221*** -0.0238***

(0.005) (0.005) (0.004) (0.005) (0.006) (0.005) (0.004) (0.004) (0.007) (0.007) (0.005) (0.005) (0.005) (0.005)

Observations 140350 140350 140350 140350 140350 140350 140350 140350 140350 140350 140350 140350 140350 140350
Adj.R2. 0.994 0.992 0.994 0.992 0.994 0.991 0.994 0.992 0.994 0.991 0.994 0.992 0.994 0.992
FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Notes: The table presents results from a DiD regression using different definitions for outbreaks. Columns 1 and 2 refer to the main specification. Columns 3 to 6 summarize
results when changing the decision rule such that the expected number of cases must be above 28 (49) within a week (i.e. Small-Count Threshold). Columns 7 to 10 present
results defining the X-threshold by the 97th or 99th percentile (i.e. X-Threshold). In Column 11 to 14 we change the threshold used to define the first day out of the seven day
window when the number of cases is above the 99th percentile or about the 99.9th percentile of the Poisson distribution given the number of expected cases from the model
(i.e. Poisson-Threshold). Standard errors are clustered at the county level. * p < 0.05, ** p < 0.01, *** p < 0.001
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Table C.7: Sensitivity Analysis: Summer Outbreaks defined by RKI

Outbreaks in RKI Reports Outbreaks only in Our Study Outbreaks only in RKI Reports Outbreaks in RKI Reports & Our Study

Within Between Within Between Within Between Within Between

Private Information (∆t ∈ (−7,−1)) -0.0012 -0.0017 0.0023 0.0012 0.0018 -0.0009 -0.0048 0.0023

(0.003) (0.003) (0.004) (0.004) (0.005) (0.004) (0.004) (0.006)

Public Information (∆t ∈ (0, 6)) -0.0056 -0.0081 0.0003 -0.0010 -0.0030 -0.0079 -0.0034 -0.0003

(0.005) (0.004) (0.006) (0.006) (0.007) (0.006) (0.006) (0.008)

Post Period (∆t > 6) -0.0085 -0.0135** -0.0023 0.0002 0.0001 -0.0103 -0.0203*** -0.0201*

(0.005) (0.005) (0.006) (0.007) (0.007) (0.007) (0.006) (0.008)

Observations 140350 140350 140350 140350 140350 140350 140350 140350

Adj.R2. 0.994 0.991 0.994 0.991 0.994 0.991 0.994 0.991

Basic FE Yes Yes Yes Yes Yes Yes Yes Yes

Notes: The table compares outbreaks listed in the daily reports of the German national health institute (Robert Koch Institute) and outbreaks identified by Equation 3.2a and
Equation 3.2b between May, 2020 and September, 2020. Columns 1 and 2 consider the 103 outbreaks mentioned in the RKI reports. The date of the onset of an outbreak
is defined by first time the outbreak is mentioned in the reports. Columns 3 and 4 include outbreaks identified by Equation 3.2a and Equation 3.2b, but not listed in the
reports. Columns 5 to 6 consider outbreaks only identified by RKI reports, but not in our specification. Columns 7 to 8 include outbreaks identified by RKI reports and in
our specification. Standard errors are clustered at the county level. * p < 0.05, ** p < 0.01, *** p < 0.001
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APPENDIX C

Table C.8: Sensitivity Analysis: Outbreaks identified by Ratio/Fixed Criterion

Within Between

Private Information × Ratio Criterion (Eq. 3.2a) -0.002 -0.001
(0.004) (0.003)

Private Information × Fixed Criterion (Eq. 3.2b) 0.002 0.005
(0.003) (0.004)

Public Information × Ratio Criterion (Eq. 3.2a) -0.011 -0.009
(0.006) (0.006)

Public Information × Fixed Criterion (Eq. 3.2b) -0.009* -0.007
(0.004) (0.005)

Post Period × Ratio Criterion (Eq. 3.2a) -0.021** -0.025***
(0.007) (0.007)

Post Period × Fixed Criterion (Eq. 3.2b) -0.022*** -0.021**
(0.005) (0.007)

Observations 140350 140350
Adj.R2. 0.994 0.992
FE Yes Yes

Notes: The table studies compares behavioral responses to local outbreaks identified by Equation 3.2a and by Equation
3.2b. Standard errors are clustered at the county level. * p < 0.05, ** p < 0.01, *** p < 0.001

Figure C.4: Sensitivity Analysis: Event Study using Placebo Outbreaks

(a) Trips Within Outbreak County
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(b) Trips To/From Other Counties
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Notes: Event studies of the log of number of trips taken within a county with a “placebo” outbreak. Placebo
outbreaks are randomly assigned to another county as a real outbreak using the same date. Model controls for day
times state and county times day-of-the-week fixed effects, accounting for state-level policy changes. Relative
time ∆t = 0 is the first day of the outbreak (see Section 3.4.2). We normalize at ∆t = −7 as we might expect
mobility to change in the seven days before the observed outbreak due to private information. Hence, the left (dark
grey) shaded area represents the period where we would expect changes in mobility due to private information.
The right (light grey) shaded area represents the seven-day period when the excess of cases is reported and
information about the outbreak is revealed by the case data.
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