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Zusammenfassung (German summary)

Ein universelles Merkmal des Lebens ist die Fähigkeit, Informationen zu speichern und sie
an zukünftige Generationen weiterzugeben. Dieser genomische Code, der in der DNS gespei-
chert ist, enthält alle Informationen, die zur Erzeugung einer lebenden Zelle erforderlich sind.
Beim Ablesen des genomischen Codes ist die DNS jedoch kein passiver Informationsträger;
ihre Organisation in Form eines gefalteten Chromosoms ist wesentlich für die Regulierung
der Gentranskription. Bei der Weitergabe der genetischen Information an die nächsten Ge-
nerationen muss die Replikation der DNS wiederum eng mit dem Wachstum und der Teilung
der Zellen koordiniert werden, um eine getreue Vererbung sicherzustellen. In dieser Arbeit
untersuchen wir zwei Aspekte dieser Organisation des Lebens in Bakterien: die räumliche
Organisation der Chromosomen und das Zellwachstum. Diese Arbeit ist wie folgt gegliedert:

Kapitel 1 - Einleitung

In diesem Kapitel werden grundlegende Konzepte und Methoden für die Untersuchung der
Chromosomenorganisation und des Zellwachstums eingeführt. Wir gehen auf die wichtigs-
ten zellulären Komponenten ein, die an der bakteriellen Chromosomenorganisation beteiligt
sind, und zeigen, wie Hi-C-Daten detaillierte Informationen über diese Organisation in Form
von Zweipunkt-Kontakthäufigkeiten liefern. Anschließend wird das Konzept der maximalen
Entropie vorgestellt, und die grundlegenden Gesetze des bakteriellen Einzelzellwachstums dis-
kutiert. Abschließend werden die Ziele und die Bedeutung dieser Arbeit dargelegt.

Kapitel 2

Mit Muriel van Teeseling, Jacqueline Janssen, Martin Thanbichler und Chase Broedersz.

In diesem Kapitel entwickeln wir ein Maximum-Entropie-Modell (MaxEnt), um die vollständige
Verteilung der bakteriellen Chromosomenkonfigurationen in einer Zelle zu inferieren. Der Mo-
dellinput besteht aus Hi-C-Daten von Caulobacter crescentus, die detaillierte Informationen
über die räumliche Chromosomenorganisation in Form von Kontakthäufigkeiten zwischen
Paaren genomischer Regionen darstellen. Das Modell wird durch unabhängige Fluoreszenz-
mikroskopie-Experimente validiert und zeigt die chromosomale Struktur über genomische
Skalen hinweg. Auf großen Skalen finden wir ein auffälliges Muster von Positionskorrelatio-
nen entlang der langen Zellachse. Dieses Korrelationsmuster wird durch das Vorhandensein
großer genomischer Cluster, so genannter Superdomänen, erklärt, die dazu neigen, sich gegen-
seitig entlang der langen Zellachse räumlich auszuschließen, wenn sie auf gegenüberliegenden
Chromosomenarmen liegen. Auf kleineren genomischen Skalen finden wir ein Muster loka-
ler Streckungen, das teilweise mit der Aktivität der Gentranskription korreliert. Schließlich
quantifizieren wir die von jeder genomischen Region kodierte Lokalisierungsinformation, die
von der Zelle als zelluläre Straßenkarte für die Positionierung von Proteinen und Proteintröpf-
chen verwendet werden könnte.

Kapitel 3

Mit Chase P. Broedersz, Grzegorz Gradziuk, Janni Harju, Imesha R. Mudiyanselage, Muriel
C.F. van Teeseling und Lucas Tröger.

Aufbauend auf dem vorangegangenen Kapitel erweitern wir das MaxEnt-Chromosomenmodell,
um die räumliche Organisation von sich replizierenden Chromosomen zu beschreiben. Durch
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die Kombination von Hi-C-Daten und Fluoreszenzmikroskopie für eine Reihe von Zeitpunkten
während des Zellzyklus erhalten wir ein stroboskopisches Modell der Chromosomenorganisa-
tion im Laufe der Zeit. Wir validieren die Vorhersagekraft des sich replizierenden MaxEnt-
Modells mit Fluoreszenzmikroskopie-Experimenten. Das replizierende MaxEnt-Modell zeigt
eine lineare Organisation, die während des gesamten Replikationszyklus über die Chromoso-
mensegmente hinweg bestehen bleibt. Ein Modell, das nur Beschränkungen für die Position
der Replikationsursprung (ori) enthält, deutet darauf hin, dass die lineare Organisation des
replizierten Chromosoms hauptsächlich auf das Ziehen der replizierten ori zu den entgegenge-
setzten Polen zurückzuführen ist. Die lineare Organisation des nicht replizierten Chromosoms
wird durch diesen Mechanismus jedoch nicht erklärt. Das replizierende MaxEnt-Modell bietet
Zugang zu einer Vielzahl von weiteren organisatorischen Merkmalen während der Replikation,
von denen einige am Ende des Kapitels hervorgehoben werden.

Kapitel 4
Mit Fabian Meyer, Marc Bramkamp und Chase P. Broedersz.
In diesem Kapitel wechseln wir die Perspektive von der chromosomalen Organisation während
des Zellwachstums zu den Dimensionen der gesamten Zelle während dieses Prozesses. Das
Zellwachstum ist eng mit der Chromosomenreplikation verbunden, und die Regulierung des
Wachstums ist erforderlich, um eine stabile Zellgrößenstatistik zu gewährleisten. Hier unter-
suchen wir das bakterielle Einzelzellwachstum in Corynebacterium glutamicum, das aufgrund
seiner atypischen Wachstumsmechanismen ein vielversprechender Kandidat ist, um gängige
Wachstumsmuster zu hinterfragen. Wir entwickeln ein Inferenzverfahren, um aus detaillier-
ten Mikroskopiedaten trotz des Rauschens und der intrinsischen Variabilität des Einzelzell-
wachstums durchschnittliche Trajektorien der Einzelzellwachstum zu extrahieren. Wir stellen
fest, dass die mittleren Wachstumskurven von dem üblicherweise anzutreffenden exponentiel-
len Einzelzellwachstum abweichen; vielmehr erhöhen die Zellen anfangs ihre Wachstumsrate,
wechseln aber später auf ein lineares Wachstum. Dieses asymptotisch lineare Wachstum steht
im Einklang mit einem Modell, bei dem der Mechanismus der apikalen Zellwandbildung der
ratenbegrenzende Schritt für das Wachstum ist. Schließlich zeigen wir anhand von Simulatio-
nen des Populationswachstums, dass das asymptotisch lineare Wachstum als Regulator der
Zellgröße fungiert, was eine evolutionäre Erklärung für das Fehlen vieler gängiger Mechanis-
men zur Wachstumsregulierung in diesem Bakterium nahelegt.



Summary

A universal feature of life is the ability to store information and pass it on to next generations.
This genomic code, stored in DNA, contains all information needed to generate a living cell.
In the process of reading out the genomic code, DNA is not a passive container of informa-
tion however, but the organization of DNA into a folded chromosome is intrinsic to how gene
transcription is regulated. In the passing on of genetic information to next generations, the
replication of DNA in turn needs to be tightly coordinated with cellular growth and division
to ensure faithful inheritance. In this thesis, we explore two aspects of this organization of
life in bacteria: the spatial organization of chromosomes, and cellular growth. This thesis is
organized as follows:

Chapter 1 - Introduction

Here, we introduce basic concepts and methods for the study of chromosome organization and
cellular growth in this thesis. We review the main cellular components involved in bacterial
chromosome organization, and see how Hi-C data provides detailed information on this orga-
nization in the form of two-point contact frequencies. Next, the concept of maximum entropy
inference is introduced, and the laws of bacterial single-cell growth are discussed. Lastly, the
goals and significance of this thesis are laid out.

Chapter 2

With Muriel van Teeseling, Jacqueline Janssen, Martin Thanbichler and Chase Broedersz.

In this chapter we develop a Maximum Entropy (MaxEnt) model to learn the full distribution
of single-cell bacterial chromosome configurations. The model input consists of Hi-C data on
Caulobacter crescentus, which provides detailed information on spatial chromosome organi-
zation in the form of contact frequencies between pairs of genomic regions. The model is
validated by previous independent fluorescence microscopy experiments, and reveals chromo-
somal structure across genomic scales. At large scales, we find a striking pattern of positional
correlations along the long cell axis. This correlation pattern is explained by the presence of
large genomic clusters, termed Super Domains, which tend to spatially exclude each other
along the long cell axis if they lie on opposite chromosomal arms. At smaller genomic scales,
we find a pattern of local extensions that partially correlates with gene transcription activity.
Lastly, we quantify the localization information encoded by each genomic region, which could
be used by the cell as a cellular road map for positioning proteins and protein droplets.

Chapter 3

With Chase P. Broedersz, Grzegorz Gradziuk, Janni Harju, Imesha R. Mudiyanselage, Muriel
C.F. van Teeseling and Lucas Tröger.

Building upon the previous chapter, we expand the MaxEnt chromosome model to describe
the spatial organization of replicating chromosomes. Combining Hi-C data and fluorescence
microscopy for a series of time points throughout the cell cycle, we obtain a stroboscopic
model of chromosome organization over time. We validate the predictive power of the repli-
cating MaxEnt model with fluorescence microscopy experiments. The replicating MaxEnt
model reveals a linear organization that persists across chromosomal segments throughout
the replication cycle. A model containing only constraints on the origin of replication (ori)
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position suggests that the linear organization of the replicated chromosome is mainly due to
the pulling of replicated ori ’s to opposite poles. The linear organization of the unreplicated
chromosome is not explained by this mechanism however. The replicating MaxEnt model
provides access to a wealth of further organizational features during replication, a few of
which are highlighted at the end of the chapter.

Chapter 4
With Fabian Meyer, Marc Bramkamp and Chase P. Broedersz.
In this chapter, we shift perspective from chromosomal organization during cellular growth,
to the dimensions of the entire cell during this process. Cellular growth is intimately linked
to chromosome replication, and regulation of growth is required to ensure stable cell size
statistics. Here, we study single-cell bacterial growth in Corynebacterium glutamicum, which
is a promising candidate to challenge common growth patterns due to its atypical growth
mechanisms. We develop an inference procedure to extract average single-cell elongation
trajectories from detailed microscopy data, despite noise and intrinsic variability in single-
cell growth. We find the mean elongation trajectories to deviate from the commonly found
exponential single-cell growth; rather, cells initially increase their elongation rate, but to level
off to a linear growth regime for later times. This asymptotically linear growth is found to be
consistent with a model of the apical cell wall formation mechanism being the rate-limiting
step for growth. Lastly, with population growth simulations we show that asymptotically
linear growth acts as a regulator of cell size, suggesting an evolutionary explanation for the
absence of many common growth-regulation mechanisms in this bacterium.
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Chapter 1

Introduction

Bacteria form a fascinating subject to investigate all aspects of life in one of its simplest yet
essential forms. Ten times shorter than a single human cell, and containing a thousandth of
its genetic material, bacteria have a life cycle of only a few hours, continually splitting in two
to generate offspring. Despite their relative simplicity, they echo patterns of organization and
behaviour found throughout the phylogenetic tree of life. During the bacterial life cycle the
internal metabolism is regulated, DNA is replicated, but bacteria also interact with their envi-
ronment. They search their surroundings for nutrients using active propulsion, communicate
with fellow bacteria using chemical signalling, and even exchange genetic material between
each other. They also engage in warfare between bacterial colonies, collectively performing
coordinated strikes, preemptive attacks, and chemical alarm calling that mirrors animal world
behaviour [1]. In some ways, bacteria even outshine their multicellular counterparts. For ex-
ample, they are extremely versatile in the nutrients they use, and can switch their entire
metabolic pathway to process a different food source if nutrient conditions change [2]. Due
to this rich phenomenology despite a modest organism size, understanding the principles of
bacterial organization might offer a window into principles underlying the organization of life
in general.

From a physics point of view, there are interesting problems abound relating to bacterial
organization. Many cellular dynamics involve active processes, which defy description in
terms of traditional equilibrium statistical physics. As all cellular processes take place at the
micrometer scale or below, there is a constant interplay between thermodynamic noise and
self-organised order. The bacterium is a highly complex self-regulating system, establishing
robustness of its biochemical interaction networks under chemical and thermal fluctuations [3].
These fluctuations also raise questions on the limits of cellular information processing and
computation, where cells have been found to function close to optimality in the processing of a
few crucial pieces of information [4–6]. Proper cellular function also requires the establishment
of spatial patterns [7, 8], for example to ensure accurate division at midcell. The active
self-propulsion of bacteria through liquids as well as on surfaces raises questions on how
this movement is established [9–11], and which search strategies bacteria follow while using
chemical gradients to find nutrients [12]. The competition between bacterial species over
nutrients in turn leads to intricate cooperation and predator-prey dynamics, which reveal
that competition can be a source as well as a disruption of species diversity [13, 14]. Finally,
due to their generation time on the order of hours, bacteria are a prime candidate to study
evolutionary processes in real-time [15–17].

In this thesis, we dive into two aspects of bacterial organization: spatial chromosomal
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folding and cellular growth. The folding of the bacterial chromosome is intimately connected
to gene expression patterns, which ultimately dictate all cellular processes. How chromosome
folding influences gene expression, and how the chromosome folding itself is modified by
cellular processes is unclear however. In fact, even a coherent description of the order and
variability of chromosome configurations is presently lacking. To make progress on this major
outstanding problem, in chapters 2 and 3 we employ a top-down Maximum Entropy approach,
using ideas from statistical physics and information theory to infer chromosome organization
directly from experimental data. In chapter 4, we consider the growth of bacterial cells across
generations. Under favourable conditions, bacterial colonies can grow rapidly, doubling in
size in under an hour. During this process individual cells must continue to establish stable
single-cell growth and internal homeostasis, despite growth fluctuations propagating across
generations. We infer the single-cell growth mode of the unusually growing Corynebacterium
glutamicum from detailed experimental data, and reveal the implications of this growth mode
for cellular growth mechanisms and cell size regulation.

In preparation for the following chapters, we will introduce a few major concepts in chro-
mosome organization, Maximum Entropy inference, and bacterial growth, and discuss how
the work in this thesis builds upon previous work.

1.1 The main actors of bacterial chromosome organization

The bacterial chromosome, which is a circular polymer typically around 1mm long, must
be highly compacted to fit inside the approximately 1-2µm long bacterial cell. How this
compaction is achieved, and how chromosomal processes like transcription, replication and
segregation are established and regulated under this compaction has been a longstanding
subject of research. The earliest investigation into spatial chromosome organization dates
back to the 1880’s [18], where staining was used to visualize chromosomal localization in the
cell. In contrast to human chromosomes, which display a dramatic spatial rearrangement
during mitosis, bacterial chromosomes appeared uniform throughout the cell cycle. This
observation led to the hypothesis that the bacterial chromosome is unstructured. With major
experimental advances in recent years, a wide range of organizational features are however
being discovered, and a picture of a much more structured polymer is starting to emerge.
We will now give a brief overview of the main actors in bacterial chromosome organization
identified so far.

At the small chromosomal length scales, the bacterial chromosome forms twisted loops
termed plectonemes. These plectonemes, which typically contain about 10kb [19] of chro-
mosomal length, form through underwinding of the DNA double helix, termed negative su-
percoiling. The degree of negative supercoiling is maintained via antagonizing effecs of gyrase,
which windes up the DNA, and topoisomerase, which relaxes strain by cutting the chromo-
some and subsequently reattaching loose ends [20–22]. Plectonemes are found be topologically
insulated; many single-strand knicks are needed to fully relax the chromosome [23], with the
total number of such topological domains estimated at around 400 [19]. The locations of
topological domains are found to be highly dynamic [24, 25], and the likely separation of
topological domains at a central core [18, 26], gives rise to a ‘bottle brush’ picture of chro-
mosome organization. Topological domains aid in the separation of chromosome copies by
pulling non-contiguous DNA strands away from each other, and are proposed to facilitate
strand break repair by keeping loose ends spatially close [19] .
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Further structure is imposed on the chromosome via interactions with various nucleoid
associated proteins (NAP’s). The protein H-NS binds to the chromosome and itself, fa-
cilitating ‘daisy-chaining’ of multiple DNA-bound H-NS proteins [27], forming chromosomal
filaments and loops [28, 29]. Local bending of the DNA is performed by Fis, HU and IHF,
further inducing local compaction [18, 30]. Fis is additionally found to preferentially bind at
DNA overlaps, potentially stabilizing plectonemes [31–33].

On larger chromosomal length scales, organziational structure is imposed via ring-shaped
Structural Maintenence of the Chromosome (SMC) proteins, which link two chromosomal
regions and extrude loops. Via this process, they are involved in the segregation of newly
replicated sister chromosomes [33–35]. Although the mechanism of SMC loop extrusion is still
unclear, recent years have seen rapid progress on its experimental characterization, revealing
that loop extrusion is an active process [36], that SMC’s can traverse one another on the
chromosome [37] and can overcome roadblocks significantly larger than their ring size [38].
SMC induces alignment between the two chromosomal arms at each side of its loading site, re-
sulting in a juxtaposed organization between the origin (ori) and terminus (ter) of replication
in Caulobacter crescentus and Bacillus subtilis [39–41].

During chromosomal replication, the segregation of newly replicated sister chromosomes
is induced by active transportation of the newly replicated ori via the Par system. This
system consists of three components: the proteins ParA and ParB, and the chromosomal
ParS loci. ParB specifically binds to ParS sites, which sit close to the ori region on de
DNA [42–44]. ParA binds nonspecifically to the entire chromosome, after which the ParBS
complex is actively moved across the cell by ‘surfing’ the DNA-bound ParA [45–48]. The
transport mechanism hinges on ParA being removed from the chromosome after binding to
ParBS complex, creating a ParA gradient for the ParBS complex to follow. Several analytical
models elucidate the dynamics of this elegant transportation mechanism [49–53]. The Par
system separates replicated ori ’s in several bacterial species, among which C. crescentus [54]
and B. subtilis [55], however other bacteria such as Escherichia coli [18] lack this mechanism.

Apart from these major components, there are several other factors that modify bacterial
chromosomal structure [18, 33, 56]. Importantly, these components do not act independently,
but frequently interact with each other, are influenced by cellular processes such as transcrip-
tion, and interact with other proteins present in the bacterial cytoplasm [18, 33]. Therefore,
elucidating the large-scale organization that emerges via these processes poses a major chal-
lenge. In recent years, significant advancement has been made in our understanding of this
large-scale organization through the development of the chromosome conformation capture
technique Hi-C, which we discuss in the following section.

1.2 Probing chromosome organization with Hi-C

In parallel to increasing detail on molecular mechanisms of bacterial chromosome organiza-
tion being revealed in recent years, breakthroughs in experimental techniques have provided
insight into organizational features across chromosomal length scales. The chromosome con-
formation capture technique Hi-C [57, 58] yields detailed information on spatial chromosome
organization in the form of two-point contact frequencies between pairs of genomic regions.
The result is an interaction map of genomic region pairs throughout the chromosome, three
examples of which are shown in Fig. 1.1. Within this map, each pair of genomic coordinates
has a Hi-C score associated with it, which is a measure of how often these genomic regions
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are in close proximity, averaged over a population of cells.

From Hi-C data, a wide range of of organizational features can be deduced. In E. coli [59]
(left panel Fig. 1.1), large contact clusters spanning up to 1.5Mb were identified, termed
macrodomains. These macrodomains are associated with an increased fidelity of chromo-
some segregation [60], and chromosomal loci within a macrodomain display reduced mobility
compared to loci in unstructured regions [61]. In C. crescentus (middle panel Fig. 1.1), the
chromosome was found to organize into Contact Interaction Domains (CIDs), spanning up
to a few hundred kb [58]. The boundaries of CID’s consist of plectoneme-free regions, and
correlate with the positions of highly transcribed genes. Furthermore, the juxtaposed orga-
nization of chromosomal arms under the influence of SMC can clearly be observed, with the
role of SMC in establishing this organization confirmed via Hi-C measurements on a ∆smc
mutant [58]. In B. subtilis (right panel Fig. 1.1), Hi-C revealed that the two chromosomal
arms going from ori to ter are also juxtaposed in this organism, and that SMC is in fact
required for this juxtaposition [62]. Subsequent Hi-C experiments performed on cells subject
to transpositions of the SMC loading site ParS revealed that SMC tethers chromosomal chro-
mosomal arms as it moves from ori to ter, and an estimate of the SMC progression rate was
obtained [39]. In addition to these examples, many further insights on bacterial chromosome
organization have been obtained from Hi-C [40, 63–68].

Figure 1.1: Hi-C data sets shown for three bacteria: E. coli (left, data from [59]), C. crescentus (middle, data from [58]),
and B. subtilis (right, data from [62]). The Hi-C maps, which are subject to an overall unknown scale factor [69, 70],
are rescaled such that the mean score per genomic pair is equal for all three data sets, facilitating direct comparison.
The data sets for E. coli and B. subtilis are for a mixed population of cells distributed over all cell cycle stages. The
data set for C. crescentus is collected at 45 minutes after the synchronization of newborn swarmer cells, implying that
the replication fork has approximately crossed half the chromosome on average (see Chapter 3).

Hi-C data thus provides a wealth of information on many aspects of spatial chromosome
organization. The vast amount of information contained in this data however raises the
question: is it also possible to infer the full three-dimensional organization of the bacterial
chromosome from Hi-C? This is a hard problem, as many possible chromosome models could in
principle be consistent with Hi-C data, and a Hi-C map typically contains ∼80000 data points
that serve as constraints [69]. In one class of approaches, consensus chromosome structures
were obtained by converting Hi-C scores to average distances using an assumed Hi-C score-
distance relation [71–73]. Other approaches model the chromosome as an equilibrium polymer
with pairwise interactions [74–76], or construct an ensemble of configurations consistent with
Hi-C data [77]. Many possible ensembles of configurations could however be consistent with
Hi-C data, and an equilibrium polymer might not be suitable to describe a chromosome in a
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living cell, which exhibits non-equilibrium fluctuations [78–80].

To overcome the challenge of obtaining a principled model of chromosome organization,
in this thesis we construct a Maximum Entropy model to derive the full distribution of
chromosome configurations directly from Hi-C data. MaxEnt models constitute a general,
unbiased approach to infer a model from experimental data, the construction of which is the
subject of the following section.

1.3 Maximum entropy inference

Maximum entropy (MaxEnt) inference is a method of constructing statistical models directly
from empirical data. The MaxEnt method is the inverse of common physics approaches
to model construction; rather than starting from fundamental interactions between system
constituents, and deriving system properties from this, we search for the least-structured
model that is consistent with our observations. This approach provides a rigorous answer to
the question: given a set of observations on a system, which other properties is the system
most likely to have?

MaxEnt approaches have been employed in a wide variety of biological contexts to further
system understanding, including neuronal firing patterns in the retina [81], bird flocking [82],
protein structure prediction [83], antibody diversity [84], and metabolic networks [85]. Com-
pared to traditional bottom-up physics approaches, such an approach differs in what it can
teach us about a system. A MaxEnt model does not offer an explanation for why a system
behaves the way it does; it does not offer an understanding in terms of more fundamental
interactions. What it does however do, is provide a way to get all available information
about a system out of an experimental data set. Especially for data sets that are hard to
interpret in terms of individual system states, this approach can make the difference between
uncovering fundamental system properties, or these properties remaining veiled within the
data. Furthermore, the MaxEnt model provides constraints for any bottom-up model; the
effective behaviour of any bottom-up model should be consistent with MaxEnt predictions.
Lastly, a MaxEnt model might still give us insight into system interactions, if we can perform
experiments where some interactions are modified. Comparing MaxEnt predictions between
differently modified systems can offer insight into how these modifications alter system be-
haviour, which in turn might offer insight into the system interactions themselves. A concrete
example of this will be presented in Chapter 2, where we learn MaxEnt chromosome models
for various growth conditions and mutants in C. crescentus, and investigate differences in
inferred organizational features.

Quantifying uncertainty

Before developing a MaxEnt inference procedure, we need a measure of the amount of un-
certainty contained within a statistical model. A statistical model we will here take as an
ensemble of N system microstates σ, where each microstate has a probability P (σ) associated
to it. We now imagine a measurement of some system property µ being performed, with a
resulting value fµ. Via this measurement, we have now gained information about the system,
but how can we quantify how much information exactly? This quantified information content
lies at the heart of the field of information theory, launched by the seminal 1948 paper by
Shannon [86].
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To construct a measure of information content [86–88], we note that it should be a function
of the probability P (fµ) of observing fµ, given our system description in terms of the P (σ).
We subsequently impose the following properties on I(P (fµ)):

1. Information is non-negative: I(P ) ≥ 0.

2. An event with certain occurance contains no information: I(1) = 0.

3. For two independent events, the information obtained from the simultaneous observation
of these events is equal to the sum of the information gained from each event separately:
I(P1P2) = I(P1) + I(P2). In other words, the order in which observations are obtained
should not matter for their information content if they pertain to independent system
properties.

4. The information measure should be a continuous function of the probability P .

These properties turn out to be highly constraining for the functional form of I(P ). In fact,
from these properties we can derive [88] that our information measure must be of the form

I(P ) = − logb(P ), (1.1)

with the base b a free parameter that determines the units with which we measure information
content.

With a definition of information content available to us, we define the model information
entropy S as the expectation value of the information gained upon performing a measurement
of the system state, 〈I(P (σ))〉. This leads to the Shannon Entropy formula [86]

S = −
∑

σ

P (σ) lnP (σ). (1.2)

This defines the amount of uncertainty, or information entropy, that we associate to a statis-
tical model.

Constructing a MaxEnt model

The construction of a MaxEnt model, as first introduced in [87], amounts to finding a system
description that maximizes the Shannon entropy (Eq. 1.2), under the constraint that the
model should match experimental constraints. This ensures that we find a model that is
consistent with experimental data, but otherwise contains as little structure as possible.

The first step in this construction, is the definition of the possible system microstates. This
choice defines which states a system could possibly be in at our chosen level of description,
and implicitly encodes our prior knowledge on the multiplicities of system states [89]. The
emsemble of all such possible system microstates we denote with {σ}. Next, we introduce a
set of experimentally measured system properties f expt

µ , and demand that our model matches
these values. This implies ∑

σ

P (σ)fµ(σ)
!

= 〈f expt
µ 〉. (1.3)

Furthermore, we require that our probability distribution is normalized:

∑

σ

P (σ)
!

= 1. (1.4)
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We now maximize 1.2 under the constraints 1.3 and 1.4 via the method of Lagrange multi-
pliers:

S̃[P (σ)] = −
∑

σ

P (σ) lnP (σ)−
∑

µ

λµ

(∑

σ

(P (σ))fµ(σ)− 〈f expt
µ 〉

)
− λ0

(∑

σ

(P (σ))− 1

)
,

(1.5)
where we have one Langrage multiplier λµ for each experimental constraint, and an additional

λ0 ensuring normalization. Setting ∂S̃[P (σ)]
∂P (σ)

!
= 0 and rewriting we obtain

P (σ) =
1

Z
exp


−

K∑

µ=1

λµfµ(σ)


 , (1.6)

where Z = exp[1+λ0]. This gives us the general form of P (σ) for any MaxEnt model, in terms
of the set of Lagrange multipliers λµ. The values of the Lagrange multipliers are obtained by
solving Eq. 1.3.

Relation to the Bolzmann distribution and equilibrium models

The MaxEnt probability distribution (Eq. 1.6) is strongly reminiscent of the familiar Bolz-
mann distribution. In general, this similarity is strictly an analogy, and the assumptions used
to construct the Bolzmann distribution need not apply to our MaxEnt probability distribution.
For example, a Bolzmann distribution description requires a system to be in thermodynamic
equilibrium, whereas in our MaxEnt derivation no such assumptions are required.

There is however a special case where the MaxEnt probability distribution is identical
to the Bolzmann distribution; this occurs when we impose a constraint on the mean system
energy 〈E〉:

〈E〉 !
=
∑

σ

P (σ)E(σ). (1.7)

Solving the corresponding MaxEnt model indeed yields the Boltzmann distribution

P (σ) =
1

Z
exp [−λE(σ)] . (1.8)

In this case, the Lagrange multiplier λ has a physical interpretation as the inverse temperature.
Furthermore, we can now rewrite Eq. 1.5 to

−S̃λ−1 = 〈E(σ)〉 − Sλ−1 + const., (1.9)

which is the expression for the free energy F under the identification F = −S̃λ−1 and T = λ−1.
This means that the probability distribution that maximizes the entropy functional S̃ is also
the distribution that minimizes the free energy.

Constructing a MaxEnt model by constraining the expected system energy is a logical
approach if we are dealing with a system in thermodynamic equilibrium. If our system
is out of equilibrium however, the energy of a system state can not in general be used to
predict its probability, since in a non-equilibrium system active agents continuously consume
energy to perform work, and energy is continuously dissipated within the system. Thus, when
constructing a MaxEnt model for a biological system, we must carefully consider whether non-
equilibrium effects can be ignored before energy constraints are applied.
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1.4 The laws of bacterial growth

In the fourth chapter of this thesis, we will consider single-cell bacterial growth over time. In
preparation for this chapter, we will give a short overview of the bacterial growth laws that
have been established so far.

Pioneering work on studying bacterial growth was done in [90–92], where the size of a
bacterial colony was measured over many generations. Several distinct growth phases were
identified, amongst which the phase of exponential population growth. The appearance of an
exponential growth phase is to be expected: in favourable growth conditions, each bacterium
grows and divides into two daughter cells. This implies that after Ngen generations, there will
be 2Ngen bacteria in the population, i.e. an exponential increase. This result remains true
regardless of how each individual bacterium grows from its birth to division length.

The characterization of single-cell growth is more challenging than that of population
growth, since it requires accurate measurements of size changes over time for individual cells.
The presence of measurement noise and intrinsic cell-to-cell variations also implies that statis-
tics over many such single cells must be collected before inferences on mean growth behaviour
can be made. In recent years, major advances in automated single-cell measurement tech-
niques have enabled the collection of such data sets [93–95], leading to what has been termed
a modern renaissance in microbial physiology [95]. From these measurements, universal prop-
erties of bacterial growth have started to emerge.

The adder principle

A basic quantity to characterize single-cell growth, is the relationship between birth length
and division length. Given that a cell is born with at a certain volume vb, at what volume
vd do we expect it to divide? Different strategies imply different possible underlying cellular
mechanisms, and lead to different cell size distributions. In [96, 97], a mathematical framework
was developed to systematically think about the relation between vb and vd. Denoting a
species-specific growth policy by vd = f(vb), the class of affine linear policies is given by

f(vb) = ∆ + cvb. (1.10)

Depending on the values of ∆ and c, we have different possible size policies:

• f(vb) = ∆. This is known as the sizer model, where cells grow to a specific final size ∆.

• f(vb) = cvb. Under exponential single-cell growth, this implies a timer model, where
cells grow for a fixed time before dividing.

• f(vb) = ∆ + vb. This corresponds to an adder model, where cells add a fixed amount
∆ to their birth volume.

All measurements on single-cell bacterial growth so far have found adder behaviour [98–102],
suggesting the universality of this policy. A timer principle combined with exponential single-
cell growth can be excluded by stability arguments; in [96] it was shown that this size control
strategy leads to divergences in the cell size distribution.

These size policies do not make any statements on the underlying cellular mechanisms,
only on the effective behaviour at the population level. In principle, many regulatory mecha-
nisms could give rise to effective adder behaviour. We can however gain insight into possible
mechanisms by considering how cell size increase and initiation of chromosome replication are
coordinated.
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The General Growth Law

In bacteria, cellular growth has the remarkable property that the time between division events
can be significantly shorter than the time needed to complete one round of chromosome
replication. This feat is achieved by initiating new rounds of replication before the previous
one is completed [103, 104]. This results in multiple replication forks per chromosome, most
of which will only be completed in future generations. As all ori copies simultaneously fire
at initiation of replication, this implies that the number of ori ’s in the cell is of the form 2n,
with n an integer.

The multifork replication mechanism raises the question how cell mass increase and chro-
mosomal copy number increase are coordinated. On average, the cell mass doubling time must
be equal to the ori doubling time, to prevent either continuous accumulation of ori copies or
indefinite dilution. The cell mass doubling time has been found to be tightly connected to
cell size; in nutrient-rich environments that support rapid growth, cell size was found to scale
with growth rate regardless of the chemical composition of the medium. This is known as
the Growth Law [105], and implies that we could grow cells of a given species in an unknown
medium, and by measuring the growth rate infer the mean cell size. Combining this finding
with multifork replication led to the hypothesis that replication initiation occurs at a fixed
cell size per origin of replication [106].

Initially, it was unclear how the parameters of such an adder-per-origin model would vary
across growth conditions and cell masses. Subsequent observations however revealed that the
mean mass per origin is constant across a range of cell masses [107–111], and that initiation
of replication occurs at a fixed mass for a given growth condition [108, 112, 113]. This lead
to the postulation of what is known as the General Growth Law [108]:

S = S0 × 2τcyc/τ . (1.11)

Here, S is the cell size, S0 is the cell size per origin of replication (ori), τ is the mass doubling
time, and τcyc is the cell cycle time, defined as the time needed for one round of chromosome
replication and division. Conceptually, the General Growth Law represents a quantitative
description of the adder-per-origin model, where a cell adds a fixed amount of volume S0 for
each newly replicated origin, and the total number of origins is given by 2τcyc/τ . The General
Growth Law has been validated for a wide range of growth conditions and mutations affecting
individual parameters in Eq. 1.11, suggesting this represents a general principle of bacterial
growth [108, 114].

How can we reconcile the General Growth Law with the adder principle?

In general, the General Growth Law and the adder principle do not necessarily imply each
other. A reconciliation of these two growth principles might however be found if a mechanistic
origin of the General Growth Law is identified. A long-standing hypothesis for this is the
initiator-titration mechanism [106, 115, 116], in which an initiator protein accumulates at a
rate proportional to the growth rate, and triggers a new replication round when a critical
concentration of this protein has titrated at the ori sites. After this start of a new repli-
cation round, the initiator protein is degraded again and the cycle begins anew. Modelling
work performed in [116–118] demonstrated that such a mechanism can indeed produce adder
behaviour at sufficiently slow turnover of the initiator protein. So far, no molecular mecha-
nism for such an initiator-titration protein has been identified [119], although clues may be



10 1. Introduction

found in interactions of the replication-initiation protein DnaA, whose accumulation is a key
requirement for origin firing [120, 121].

The replication-initiation centred picture of cell size control has led to speculation that
the laws governing cell size are not a direct product of evolutionary selection, but are rather
a by-product of selection pressure favouring the multifork replication mechanism [122]. In
this scenario, it is the mass-doubling time that is the main determinant of cellular fitness.
The General Growth Law is then an emergent property of the requirement that all newborn
cells have identical chromosome densities under multifork replication. So far, this hypothesis
still awaits experimental validation [119], although results from Lenski’s long-term evolu-
tion experiment [16, 17] show an evolution of the mean cell size that is consistent with this
idea [122].

Going beyond static growth measures

The regulatory mechanisms discussed so far focus on cell lengths at specific waypoints along
the cell cycle. We can however uncover much more details on the cellular growth process
if we study the size as a function of time between these points. A wide range of previous
measurements of bacterial growth over time suggested exponential single-cell growth [100,
123–126], and this growth mode is often assumed in the development of bacterial growth
and cell size regulation models [96, 97, 116–118]. However in the last two years deviations
from this trend have started to be revealed from detailed inspection of average single-cell
growth [127, 128]. In Escherichia coli, growth rate was found to increase at later stages in
the cell cycle [128]. In Bacillus Subtilis, systemtatic deviations from exponential growth were
observed as a function of the cell cycle stage, which were found to compensate for growth-rate
disturbances and promote growth-rate homeostasis [127].

Deviations from exponential growth thus have implications for cell size control mecha-
nisms, but they could also reveal features of molecular growth mechanism itself. In chapter
4, we study this growth over time in an unusually growing bacterium, Corynebacterium glu-
tamicum which displays a completely different growth mode altogether. From this novel
growth mode, we then demonstrate implications for the cellular growth process and cell size
regulation.

1.5 Goals and significance of this thesis

Many details of bacterial chromosome organization have rapidly been uncovered in recent
years, however the overall picture of organization that emerges from this is still unclear.
The recently developed chromosome conformation capture technique Hi-C yields a wealth
of information on chromosome organization across genomic scales, however deciphering this
information in terms of single-cell chromosome configurations is difficult. In chapters 2 and
3, we take a top-down approach to this question by learning a MaxEnt chromosome model
directly from experimental constraints. From the MaxEnt chromosome model, organizational
features across genomic scales are subsequently inferred. Chapters 2 and 3 of this thesis
address the question:

What are the features of the full distribution of bacterial chromosome organization across
length scales, and what do they imply for cellular function?
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The identification of bacterial single-cell growth principles has seen rapid progress over recent
years, however much is still left unknown. Single-cell bacterial growth is still sparsely charted
across species and growth conditions [119], and emerging methods of dynamical growth anal-
ysis have the potential to uncover deeper principles governing bacterial growth. In chapter
4, we develop an inference procedure to extract mean elongation curves from single-cell data,
and apply this to the atypically growing Corynebacterium glutamicum. The inferred growth
behaviour sheds light on cellular growth processes and cell size control mechanisms. Chapter
4 is driven by the question:

What sets the speed limit for single-cell bacterial growth, and how does this limit affect
cell size regulation?

We make progress on these questions in the following ways.
In chapter 2, we derive a Maximum Entropy model for the spatial organization of a bac-

terial chromosome in Caulobacter crescentus, yielding the full distribution of single-cell chro-
mosome configurations directly from Hi-C data. We validate this model with independent
chromosomal localization experiments, and show that the MaxEnt model predicts emergent
order across genomic scales. We quantify organizational features across length scales, and
discuss their implications for cellular organization.

In chapter 3, we expand upon the approach developed in chapter 2 and develop a MaxEnt
model for the full distribution of replicating chromosome configurations. We combine con-
straints from Hi-C and fluorescence microscopy at various stages throughout the cell cycle to
obtain a series of replicating chromosome models over time. The replicating MaxEnt model
is validated by fluorescence microscopy data across the chromosome and across the cell cycle.
From this model we show how chromosome organization changes throughout the replication
cycle, and in particular highlight the role of the pulling of replicated origins of replication
(ori ’s) to opposite cell poles. The replicating MaxEnt model provides access to a wealth of
further organizational features, a few of which are discussed at the end of the chapter.

In chapter 4, we study the dynamics of single-cell growth in the highly atypically grow-
ing Corynebacterium glutamicum. From detailed single-cell growth measurements we obtain
average elongation rate curves despite noise and cell-to-cell variability, using an inference pro-
cedure that carefully avoids inspection bias effects. To understand the obtained elongation
rate curves, we develop a model of the apical growth mechanism being the rate-limiting step
for growth, and show the results are consistent with observations. Lastly, we show how C.
glutamicum’s single-cell growth mode acts as a regulator for cell size.
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Chapter 2

Learning the full distribution of bacterial
chromosome conformations

Chapter Summary

In this chapter, we investigate the spatial organization of bacterial chromosomes. This spatial
organization is intimitely connected to the regulation of gene transcription, and facilitates
faithful replication and segregation despite the chromosome being highly compacted within
the cellular confinement. A state-of-the-art experimental procedure to investigate this spatial
organization is Hi-C, which detects contact frequencies between pairs of genomic regions
across the chromosome. These two-point contacts reveal several features of chromosomal
organization. However, the full distribution of 3D chromosome configurations remains elusive.

In this chapter, we develop a principled Maximum Entropy approach to derive the full
distribution of bacterial chromosome configurations directly from Hi-C data. The resulting
model is the least-structured model that is consistent with experimental constraints. To test
the MaxEnt chromosome model, we compare localizations of genomic regions along the long
cell axis to results from independent microscopy experiments. We find a close match on the
mean positions as well as their distributions, validating the predictive power of the MaxEnt
model.

Next, we investigate organizational features that are yet inaccessible to experiment. To
study organization throughout the entire chromosome, we consider two-point correlations in
the locations of genomic regions. We find no long-range correlations in the angular or radial
directions of the cellular confinement, suggesting an absence of long-range order in these
features. By contrast, we find correlations throughout the entire chromosome along the long
cell axis, indicating emergent order. The correlation pattern is explained by the presence of
large genomic clusters, termed Super Domains, that tend to exclude each other along the long
cell axis. Super-resolution experiments measuring chromosome density confirm the clustered
nature of the chromosome.

On a smaller length scale, we find a pattern of local chromosomal extensions that par-
tially correlates with transcriptional activity, but only for one chromosomal arm. Finally,
we quantify the chromosomal localization information per genomic region. We find that this
localization information reaches up to 3 bits at the origin and terminus of replication, which
is equivalent to reducing the positional uncertainly to one cellular octant. We hypothesize
that this information could be used by the cell as a cellular roadmap to localize proteins
and protein droplets. Our MaxEnt method is not organism-specific, and provides a general
approach for inferring the full distribution of spatial chromosome organization across genomic
scales.
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The order and variability of bacterial chromosome organization, contained within the dis-

tribution of chromosome conformations, are unclear. Here, we develop a fully data-driven

maximum entropy approach to extract single-cell 3D chromosome conformations from Hi–C

experiments on the model organism Caulobacter crescentus. The predictive power of our

model is validated by independent experiments. We find that on large genomic scales,

organizational features are predominantly present along the long cell axis: chromosomal loci

exhibit striking long-ranged two-point axial correlations, indicating emergent order. This

organization is associated with large genomic clusters we term Super Domains (SuDs),

whose existence we support with super-resolution microscopy. On smaller genomic scales,

our model reveals chromosome extensions that correlate with transcriptional and loop

extrusion activity. Finally, we quantify the information contained in chromosome organization

that may guide cellular processes. Our approach can be extended to other species, providing

a general strategy to resolve variability in single-cell chromosomal organization.
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Chromosomes carry all information to generate a living cell.
In both prokaryotes and eukaryotes, chromosomal DNA is
highly compacted to fit inside its cellular confinement.

This implies a major organizational problem: the DNA does not
only have to be highly condensed, but its spatial organization also
has to facilitate processes such as transcription and replication. In
many bacteria, the genetic information is stored on a single
chromosome with a contour length three orders of magnitude
larger than the cell. Various proteins regulate bacterial chromo-
some structure1–5, imposing order on its spatial organization and
thereby impacting cellular processes such as transcription6.
However, this order is opposed by thermal7 and active chromo-
somal fluctuations8, as well as inherent cell-to-cell variability9.
The resulting degree of organization of the chromosome remains
unclear. Resolving this organization requires a characterization of
the distribution of single-cell chromosome conformations, posing
a key challenge for experiment and theory10.

The classical picture in which the bacterial chromosome is
arranged as an amorphous polymer has become obsolete thanks
to recent experimental advances11–13. Indeed, fluorescence
microscopy experiments revealed that chromosomal loci localize
to well-defined cellular addresses in various species7,14–16,
including Caulobacter crescentus17. This organization helps steer
chromosome segregation18 and cell division19. In addition, the
level of transcription of several genes depends on their distance to
the pole20. Further insights were obtained by chromosome con-
formation capture 5C/Hi–C experiments21,22, measuring average
pair-wise contacts between loci. These experiments revealed
Chromosomal Interaction Domains (CIDs) of up to 105 base
pairs, comprising loci preferentially interacting within their
domain. Various processes23,24, including transcription25,26,
impact CID organization. On larger genomic scales, locus pairs
on opposite chromosomal arms appear to favor a juxtaposed
arrangement in several species, induced by the loop extrusion
motor SMC (Structural Maintenance of Chromosomes)23,26–31.
However, it remains challenging to faithfully extract the dis-
tribution of 3D chromosome conformations from Hi–C data.
Thus, despite these experimental insights, a complete model for
the spatial organization of the bacterial chromosome across
genomic scales remains elusive.

To exploit advances in Hi–C experiments on various
bacteria23,24,26,29,31,32, a principled data-driven approach is nee-
ded that makes an unbiased inference of the distribution of
chromosome configurations. However, there are several out-
standing challenges that preclude such a fully data-driven
model26,27,33,34. Several approaches rely on an assumed relation
between Hi–C scores and the average spatial distance between
locus pairs to obtain a 3D structure 27,33,35. Other approaches
generate an ensemble of configurations consistent with Hi–C
data, e.g., using iterative maximum likelihood algorithms36.
However, Hi–C maps could be consistent with many underlying
distributions. For eukaryotes, an equilibrium Maximum Entropy
(MaxEnt) distribution selection method was proposed37–39, as
used for protein structure prediction40. However, such an
approach may be unsuitable for chromosomes in living cells,
which exhibit non-equilibrium fluctuations8,41,42. Thus, a rigor-
ous approach to derive a distribution of chromosome con-
formations compatible with non-equilibrium dynamics is still
lacking.

Here, we develop a fully data-driven MaxEnt approach for the
bacterial chromosome based on Hi–C data. This approach infers
the least-structured distribution of chromosome conformations
that fits Hi–C experiments, capturing population heterogeneity at
the single-cell level. Our MaxEnt model does not rely on equili-
brium assumptions, is inferred directly from normalized Hi–C
scores, does not require an assumed Hi–C score-distance relation,

and we determine the coarse-graining scale of our model using
experiments. The MaxEnt model reveals the organization and
variability of the bacterial chromosome across genomic scales.
Using this model, we quantify the localization information in the
cellular location of chromosomal loci that can be used by cellular
processes. Our theoretical framework may be generalized to other
prokaryotic and eukaryotic species, providing a principled
approach to resolve chromosome organization from Hi–C data.

Results
Maximum entropy model inferred from chromosomal contact
frequencies. Our goal is to determine the ensemble of single-cell
chromosome conformations for a heterogeneous cell population
from experimental Hi–C data. To this end, we build on existing
MaxEnt methods for analyzing biophysical data37,38,40,43–49, to
develop a principled approach for inferring the statistics of
chromosome structure in bacteria from experiments.

The microstates {σ} of the system are defined as the set of all
configurations of the chromosome contained within the cellular
confinement. We seek the statistical weights P(σ), chosen to be
consistent with the experimental Hi–C map. In general, however,
a set of experimental constraints does not uniquely determine
P(σ). The MaxEnt approach is based on selecting P(σ) from these
possible solutions by choosing the unique distribution with the
largest Shannon entropy,

S ¼ �∑
σ
PðσÞln PðσÞ; ð1Þ

constituting the least-structured distribution consistent with
experimental data. Put simply, we require that the only structure
present in P(σ) is due to experimental constraints from Hi–C
scores, rather than assumed features of the underlying polymer
model, the interpretation of Hi–C scores, or the ensemble-
generating algorithm. A central assumption of our approach is
that the experimental Hi–C maps contain sufficient information
to constrain the distribution of chromosome conformations.

To apply the MaxEnt method to experimental Hi–C data, we
employ a coarse-grained representation of the chromosome: the
polymer is represented as a discrete circular chain of length N on
a 3D cubic lattice; the chain can self-intersect and is constrained
to the cell-shaped confinement. A subset of the N monomers—
equally spaced along this chain—represents the centers of the
genomic regions, which are defined as the stretch of the DNA
associated with an individual bin of the Hi–C map. Thus, the
dimensions of the coarse-grained representation are set by the
resolution of the available Hi–C data (Supplementary Notes 2,
3.1). This provides an efficient computational framework, while
still capturing key organizational features. Specifically, this
representation is chosen to preserve experimentally measured
distance fluctuations at the coarse-graining scale (see “Methods”
section and Supplementary Notes 1–2). At larger scales, the
statistics of polymer configurations are only constrained by Hi–C
data. Within this representation, a microstate σ= {r1, r2, . . . }=
{r} is defined by the monomer positions ri. Two genomic regions
have a contact probability γ if they occupy the same lattice site,
and 0 otherwise.

To obtain the least-structured distribution of microstates
consistent with experiments, we seek P({r}) that maximizes S
(Eq. (1)) under experimental constraints45,50. The two constraints
we impose are: 1) the model contact frequencies should match
experimental contact frequencies f exptij between genomic regions i

and j (the correspondence between f exptij and Hi–C scores is
discussed in the next section), and 2) the distribution should be
normalized. To this end, we introduce the functional ~S, with one
Lagrange multiplier λij for each experimental constraint and λ0
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ensuring normalization:

~S ¼� ∑
frg

PðfrgÞln PðfrgÞ �∑
ij
λij ∑

frg
PðfrgÞγδri;rj

 

� f exptij

!
� λ0 ∑

frg
PðfrgÞ � 1

 ! ð2Þ

Here, δri;rj is the Kronecker delta. We maximize ~S under these

constraints, setting δ~S
δPðfrgÞ ¼ 0, yielding

PðfrgÞ ¼ 1
Z
exp �∑

ij
λijγδri;rj

� �
; ð3Þ

with Z ¼ exp½1þ λ0�. The λij’s parametrizing P({r}) is determined
by solving

∑
frg

PðfrgÞγδri;rj ¼ f exptij ð4Þ

for each experimental constraint. For typical Hi–C data on a
bacterial chromosome, this amounts to of order 105 constraints26.
These equations can not be solved directly, as they are highly
nonlinear and the state space is very large.

The daunting challenge of finding the Lagrange multipliers can
be overcome by noting that the distribution in Eq. (3) can be
mapped to a statistical mechanics model: a confined lattice
polymer, with a (dimensionless) Hamiltonian

H ¼ 1
2
∑
ij
ϵijδri;rj : ð5Þ

The mapping to Eq. (3) is made by setting ϵij= γλij, where ϵij are
the effective interaction energies between overlapping loci in the
Hamiltonian formulation. Importantly, although a mapping can
be made to a statistical mechanics model, our approach does not
rely on the chromosome being in thermal equilibrium. This is in
contrast to approaches used in refs. 37–39 where a hybrid MaxEnt
procedure is employed combining a physical polymer model with
Hi–C derived constraints, resulting in an energy landscape
description of equilibrium chromosome configurations.

We numerically obtain the inverse solutions of this model
using iterative Monte Carlo simulations (Supplementary Note 3).
Testing this algorithm on contact frequency maps generated from
a set of chosen input ϵij, we find that our algorithm precisely and
robustly recovers the correct input values (Supplementary
Note 4).

Inferring the MaxEnt model directly from normalized Hi–C
scores. A major hurdle in applying data-driven inference
approaches is finding a correspondence between experimental
Hi–C scores and the contact frequencies in a coarse-grained
polymer model. Published Hi–C maps are typically normalized.
This normalization compensates known biases in raw Hi–C data,
for instance, due to the proportionality between the number of
restriction sites in a genomic region and its Hi–C score51. Fur-
thermore, absolute Hi–C scores are hard to interpret because it is
difficult to estimate the conversion factor to physical contact
frequencies. Importantly, however, even if absolute contact scores
could be obtained, a mapping to contact frequencies in a coarse-
grained model is challenging.

We address this conversion issue by treating the conversion
factor as an unknown parameter c in our MaxEnt procedure.

Thus, we write f exptij ¼ c~f
expt
ij , with ~f

expt
ij the normalized experi-

mental Hi–C scores. We absorb the contact probability factor γ
into c (Eq. (2)), setting ~c ¼ c

γ, and require that ~c maximizes the
model entropy (Supplementary Note 3.2), yielding the additional

constraint

∑
ij
ϵij~f

expt
ij ¼ 0: ð6Þ

Thus, we infer the least-structured distribution of chromosome
conformations from normalized Hi–C data, without assuming a
conversion between Hi–C scores and contact frequencies or
average distances between loci.

MaxEnt model of the C. crescentus chromosome quantitatively
captures measured cellular localization. We investigate the
degree of organization of the bacterial chromosome by con-
sidering newborn swarmer cells of the model organism C. cres-
centus. Such newborn swarmer cells contain only a single
chromosome, whose replication has not yet initiated52. To
develop the MaxEnt model for C. crescentus, we first experi-
mentally determine the coarse-graining scale, set by the average
distance between consecutive 10 kb genomic regions (Supple-
mentary Notes 1–2). Subsequently, we infer the parameters of the
MaxEnt model from published experimental Hi–C data (Sup-
plementary Note 5)26. Our inverse algorithm robustly converges
to an accurate description of the Hi–C map: the modeled and
experimental contact maps have an average pair-wise deviation of
6.0% of the total average Hi–C score with a Pearson’s correlation
coefficient of 0.998 (Fig. 1A, B inset).

Our MaxEnt model quantitatively reproduces essential features
of the experimental Hi–C map (Fig. 1A), including the fine
structure of the CIDs, as well as the secondary diagonal, which is
attributed to the alignment of the two chromosomal arms by
SMC30,53–55. The inferred ϵij’s (Fig. 1B) should not be interpreted
as physical interaction energies. Rather, they parametrize the
predicted physical distribution of chromosome configurations P
({ri}). We can directly interpret the organizational features
implied by P({ri}) and use it to sample single-cell configurations
(Fig. 1C).

We test the predictive power of the MaxEnt model by
computing the distribution of axial locations of several loci.
Importantly, we do not assume (polar) cell envelope tethering of
specific loci, such as the origin of replication (ori). We orient cells
by setting the ori pole in the cell-half containing ori. Interestingly,
we find a high degree of axial localization of loci: the average axial
position of loci is roughly linearly organized, and the predicted
positions match previous live-cell microscopy experiments17

(Fig. 2A). By contrast, simulation results of a confined random
polymer—not constrained by Hi–C data—do not exhibit the
linear organization, even when ori is tethered to the cell pole.

The MaxEnt model also predicts distributions of long-axis
positions of chromosomal loci, in remarkable agreement with
prior experiments (Fig. 2B). This comparison with independent
experimental data constitutes a strong validation of our MaxEnt
model. The slight deviation of the position of ori compared to the
experiments (Fig. 2A, B) can be addressed with an extended
MaxEnt model that incorporates the distribution of axial ori
positions as an additional constraint (Supplementary Note 17).
However, other aspects of the predicted chromosomal organiza-
tion are largely unaffected by this modification, and therefore we
will not impose this additional constraint in our analysis.

Large-scale chromosome organization primarily characterized
by long-axis correlations associated with Super Domains.
Large-scale organizational features of the chromosome can be
revealed by measuring various two-point correlation functions.
Earlier models suggested a three-dimensional organization in
which the two chromosomal arms wind around each other with
roughly one helical turn27,33. To test if this organization also
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emerges in our MaxEnt model, we compute two-point correla-
tions of angular orientations. For each chromosome segment, we
assign an orientation vector in the plane perpendicular to the long
axis. We find that angular correlations decay rapidly for genomic
distances ≳0.2 Mb (Fig. 3A lower right). Large-scale helical order
is thus negligible, indicating that a pronounced helical organi-
zation is not required to model the experimental Hi–C map.

The two-point correlation function in radial positions decays
even more rapidly with genomic distance up to ~0.1 Mb (Fig. 3A
upper left), indicating the absence of large-scale order in this
direction. By contrast, two-point correlations in the long-axis
position exhibit a striking structure: we observe positive long-
ranged correlations for pairs of genomic regions on the same
chromosomal arm, whereas correlations in axial positions
between arms are predominantly negative (Fig. 3B upper left).
These long-ranged correlations signify emergent order. Impor-
tantly, such organization is absent for a model with a tethered
origin not constrained by Hi–C data (Fig. 3B, lower right), as well
as for a model with juxtaposed chromosomal arms only
constrained by linearly organized average long-axis positions
(Supplementary Note 16). Moreover, the structure of the long-
axis correlations is inconsistent with global rotational fluctuations
(Supplementary Note 12).

We find that these intra-arm anticorrelations are associated
with large high-density clusters of subsequent genomic regions,
which we term Super Domains (SuDs). SuDs emerge from a
clustering analysis of genomic regions in single-cell conforma-
tions (Supplementary Note 9). The formation of domain-like
structures is revealed by plotting the distance between pairs of loci
for a specific chromosome configuration, with single domains
spanning up to a quarter of the chromosome length (Fig. 4A, B).
On average, 73% of genomic regions are part of a SuD, each

chromosomal arm contains ~4 SuDs, and each SuD contains 48
genomic regions (Supplementary Fig. 21). Compared to CIDs,
they are typically larger with more variable size and genomic
location across chromosome conformations. The variable and
delocalized nature of SuDs is apparent from the average distance
map between genomic regions, indicating no discrete structure
(Fig. 4C). Importantly, SuDs forming on opposing chromosomal
arms tend to spatially exclude each other (Fig. 4B, E): the fraction
of overlap in axial positions is reduced by 26% compared to
randomly paired left and right arm configurations. As a result of
this tendency to spatially exclude, chromosomal regions belong-
ing to SuDs on opposing sections of the two arms, are expected to
fluctuate in an anti-correlated fashion. (Supplementary Note 9).
Thus, this exclusion behavior of opposing SuDs is expected to
generate negative intra-arm correlations for pairs of genomic
regions with similar average axial positions (Supplementary
Note 9).

To experimentally verify signatures of SuDs, we turned towards
SIM (structured illumination microscopy) super-resolution
microscopy and investigated the intracellular distribution of
chromosomal DNA in C. crescentus at the single-cell level. These
experiments reveal that the chromosome exhibits a highly
heterogeneous spatial distribution in the cell, including several
dense cluster-like regions (Fig. 4D). We observe that the number,
size, and location of these high-density regions are found to vary
from cell to cell, consistent with SuD properties derived from our
MaxEnt model. To compare these single-cell experimental results
with theory, we provide computed density plots of chromosomes
based on our MaxEnt model. Specifically, for each chromosome
configuration in our model, we compute a chromosome density
plot at the experimental resolution (see Methods), as shown in
(Fig. 4E). In the computed density plots, we observe high-density

Fig. 1 Maximum entropy model inferred from Hi–C experiments in C. crescentus. A Comparison between experimental contact frequencies fexptij (upper
left corner, adapted from ref. 26) and contact frequencies obtained from our inferred MaxEnt model fmodel

ij (lower right corner). B Associated inferred
effective interaction energies ϵij (lower right corner, white regions indicate ϵij→∞) together with a scatter plot of fexptij vs. fmodel

ij (inset). C Visualization of a
single-cell chromosome configuration predicted by our MaxEnt model; the centers of four distinct chromosome sections are represented in the schematic
by colored spheres.
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regions similar to those obtained in our super-resolution
experiments. Importantly, the high-density regions in the
modeled chromosome density plots correspond to underlying
SuD structures (dashed lines in Fig. 4E). Thus, these results allow
us to establish a connection between the SuDs predicted by our
model and single-cell super-resolution data.

To investigate the influence of cellular processes on long-axis
organization, we perform the two-point correlation and SuD
structure analysis (Supplementary Note 9) on published Hi–C
data of rifampicin-treated cells and a mutant lacking SMC
(Δsmc)26 (Supplementary Note 13). Rifampicin treatment inhibits
transcription, whereas deletion of SMC abolishes the loop-
extrusion activity required to juxtapose the two chromosomal
arms53,56. For both cases, our models predict an average
localization along the long axis similar to those in wild-type cells

(Fig. 2A). However, the predicted long-axis correlations exhibit
marked differences: for rifampicin-treated cells with inhibited
transcription, anticorrelations between chromosomal arms are
less pronounced (Fig. 3C upper left). In contrast, Δsmc cells
display a broad regime with strong anticorrelations between loci
on opposite arms (Fig. 3C lower right). These effects are reflected
in the statistics of SuDs: upon inhibition of transcription, the
SuDs contain 7% more genomic regions per domain than in the
wild type. Despite this increased density, the transcription-
inhibited cells show a similar overlap of SuDs (29% lower than for
randomly paired arms). By contrast, Δsmc cells exhibit a similar
average SuD density to the wild type (50 genomic regions per
cluster on average), but a strong reduction of inter-arm domain
overlap (48% lower than for randomly paired arms). Correspond-
ingly, the anticorrelations between long-axis positions of
chromosomal arms are much stronger for this mutant (Fig. 3C
lower right). Thus, these results suggest that the action of SMC
enhances interactions between SuDs, whereas transcription alters
their density.

Local chromosome extension coincides with high transcrip-
tional activity, but only for one chromosomal arm. The MaxEnt
model provides access to local structural features that may be
difficult to determine experimentally. Specifically, we consider the
local chromosomal extension δi, defined as the average spatial
distance between two neighboring genomic regions of region i
(Supplementary Note 15). Interestingly, the δi-profile exhibits an
overall trend that is lowest at ori and ter (Fig. 5A), indicating that
these regions are intrinsically more compact (Supplementary
Note 15). In addition, pronounced peaks and valleys in the local
extension are revealed at a smaller genomic scale similar to that of
CIDs. The same structure appears for Δsmc cells, although their
chromosome appears to be locally more compact than that of the
wild type. By contrast, in rifampicin-treated cells, peak ampli-
tudes are significantly suppressed, suggesting a link between local
chromosome extension and transcription.

Previous work reported a connection between CID boundaries
and highly transcribed genes26. Based on this observation and
polymer simulations, it was suggested that high transcription
creates plectoneme-free regions, physically separating CIDs. To
further investigate the impact of gene expression activity on local
structure, we compare the locations of local chromosome
extension peaks in our MaxEnt model and the 2% most highly
transcribed genes. Indeed, we observe a significantly increased
overlap between the local chromosome extension peaks and the
locations of highly transcribed genes, compared to a random
distribution of peaks, but only for genes on the forward strand of
the right ori-ter arm (0–2.0 Mb) (Supplementary Note 10). If the
colocalization of local extension peaks by highly transcribed genes
would only depend on the relative direction of transcription and
replication, this should also occur for highly transcribed genes on
backward strands on the left arm, which we do not observe. Thus,
while our results indicate a connection between high local
chromosome extension and the direction of replication and
transcription of highly transcribed genes, the underlying
molecular mechanism is still unclear.

The chromosomal structure provides localization information
in the cell. The inferred structural features of the chromosome
not only yield insights into the cellular organization, but they may
also have functional significance: organizational features of the
chromosome contain spatial information that could guide cellular
processes. This spatial information depends on the degree of
localization of genomic regions. Put simply, the localization
information content of a genomic region increases with the

Fig. 2 Validation of MaxEnt model based on spatial location microscopy
data. A Average scaled long-axis position predicted from MaxEnt models
(solid lines) inferred from various Hi–C data sets (from26), including wild-
type cells (black), rifampicin-treated cells (blue), and Δsmc cells (orange),
together with results from microscopy experiments (adapted from17). Also
shown are simulated data for a random polymer with ori-pole tether (dash-
dotted gray line), and a simulated confined random polymer (dashed gray
line), oriented such that ori is always on the left cell half. B The distribution
of single-cell positions (scaled long-axis position) of chromosomal loci (blue:
ori, red: pilA, green: pleC, orange: podJ), as predicted by the MaxEnt model
(solid lines), together with previous experimental data from microscopy
experiments (bars, adapted from17). To indicate experimental variability, the
solid/transparent bars indicate the minimum/maximum measured by two
different methods: FROS or FISH. To enable a direct comparison between
model and experiment, the model values are distributed over the same
number of bins as the experiment. The dotted lines indicate the distribution
for a confined oriented random polymer as in A.
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precision of its cellular location, i.e., when the spatial distribution
of the genomic region is more sharply peaked around a specific
point in the cell. This localization information (introduced in the
context of developmental patterning57) could for example be used
to position proteins within the cell: a high relative affinity to a
genomic region with high localization information increases the
localization of this protein. This mechanism may be exploited to
position protein droplets58, through nucleation on specific
chromosomal regions, e.g., droplet-like clusters of DNA-binding
chromosome partitioning proteins of the ParB family3.

Using our MaxEnt model, we can quantify how much
localization information (Supplementary Note 14) is encoded
by chromosome organization per genomic region (Fig. 5B). This
chromosomal localization information is largest near ori and ter,
providing 3 bits of localization information, equivalent to

reducing the localization uncertainty to one cellular octant. By
contrast, a random polymer provides only 1 bit, enough to reduce
localization uncertainty to one cell half. For comparison, with our
coarse-grained description, maximal localization information of
approximately 9 bits could be achieved. Thus, while this
localization information metric indicates that the bacterial
chromosome is substantially more ordered than a random
polymer, it also highlights that the chromosome is far from
having a rigid organization with a precise folded structure.

Comparing these results with those for modified conditions, we
find that rifampicin treatment increases chromosomal localiza-
tion information, whereas information is reduced in Δsmc cells,
suggesting that SMC action and transcription have opposing
effects on localization information. This localization information
is just one example of how structural features in the organization

Fig. 3 MaxEnt model predicts large-scale features of chromosome organization. A Upper left corner: two-point correlations in the radial positions
between genomic regions. Lower right corner: two-point correlations in angular orientations around the long axis. B Upper left corner: two-point
correlations between long-axis positions for wild-type cells. Lower right corner: the same correlations for a model not constrained by Hi–C data, but with a
tethered origin (tethered random polymer). C Correlations in the long-axis positions of genomic regions derived from Hi–C data26 obtained for two
modified conditions: cells treated with rifampicin to block transcription (upper left corner), and Δsmc cells (lower right corner).

Fig. 4 Long-axis organization is associated with Super Domain formation. A Distance map for pairs of genomic regions for one chromosomal
configuration. The inferred outlines (Supplementary Note 9) of Super Domains (SuDs) are indicated by a black line, with left/right-arm SuDs shaded blue/
red. B Long axis distribution of genomic regions in SuDs identified in the configuration depicted in A. C Average spatial distances between genomic regions.
D Super-resolution microscopy images of DAPI-stained DNA inside six synchronized C. crescentus swarmer cells. The color code reflects the DAPI
fluorescence signal at each pixel, rescaled so that the maximum is at 1 for each cell. E Chromosome density plot with the same scaling of several randomly
chosen chromosome configurations from our MaxEnt model (with Gaussian blur applied that matches the experimental resolution). Dashed lines indicate
the half-maximum density contour of each SuD (identified by the clustering analysis in Supplementary Note 9), with the line color indicating if a SuD
predominantly forms on the right (0–2 Mb, blue) or left (2–4 Mb red) chromosomal arm.
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of the chromosome can be used to guide cellular processes. The
MaxEnt approach provides a scheme to estimate the information
available to the cell that is contained in the distribution of
chromosome conformations.

Discussion
We established a fully data-driven principled approach to infer
the spatial organization of the bacterial chromosome at the
single-cell level and applied this approach to normalized Hi–C
data of the model organism C. crescentus. The predictive power of
this MaxEnt model is confirmed by prior microscopy
experiments17 showing the distributions of axial positions of
chromosomal loci within the cell. Contrary to previous modeling
approaches, our MaxEnt model does not rely on an assumed
connection between Hi–C scores and average spatial distances21.
Instead, we can predict how these quantities are related: we
recover the approximately linear relation between intra-arm
genomic distance and spatial distance used as an input in
refs. 21,33 (Supplementary Note 11). However, there are sub-
stantial region-to-region deviations in the resulting relation
between Hi–C scores and average spatial distances, together with

significant correlations in distances between genomic regions.
Previous approaches could not account for such deviations and
correlations. This may explain differences in model predictions
such as the helical chromosomal structure suggested in refs. 27,33,
which we do not observe.

By design, the MaxEnt model yields the least-structured dis-
tribution of chromosome conformations consistent with experi-
mental constraints, allowing us to investigate the degree of order
in the bacterial chromosome. To do this, we considered two-point
correlation functions in the cellular positions of genomic regions.
We observe negligible correlations in the radial and angular
coordinates, indicating an absence of organizational order in
these directions. By contrast, there are pronounced long-ranged
correlations along the long cell axis, indicating emergent order.
This order is related to the observation of variable and delocalized
clusters of genomic regions, which we term Super Domains
(SuDs). These SuDs manifest in single-cell conformations and are
consistent with high-density clusters observed in the C. crescentus
chromosome by our super-resolution microscopy experiment
(Fig. 3E). Similar blob-like structures have previously been
observed with (super-resolution) microscopy for the chromosome
of Bacillus subtilis23 and Escherichia coli13, suggesting that SuDs
are also present in other bacteria. Our MaxEnt model indicates a
spatial exclusion of opposing SuDs from different chromosomal
arms, which we associate with the long-ranged anticorrelations in
axial positions. The interplay between SMC complexes and
transcription has been explored in prior work28,59. We find that
transcription and SMC have opposing effects on SuD properties:
inter-arm overlap between domains is reduced by transcription
and increased by SMC, consistent with the idea that SMC links
chromosomal arms23,29,30,53.

At the smaller genomic scale of CIDs, we observe a char-
acteristic pattern of local chromosomal extensions, being most
compact at ori and ter. We speculate that the local compaction of
the ori region may be due to the binding of nucleoid-associated
proteins (NAPs)1,2 such as the ParABS chromosome partitioning
system3,4. The compaction of the ter region might be imposed by
the recently discovered NAP ZapT60, which specifically binds to
this region of the chromosome, or by additional as-of-yet
undiscovered NAPs. Interestingly, peaks in local extension tend
to coincide with highly transcribed genes, but only for the for-
ward strand of the right chromosomal arm (Supplementary
Note 10).

From our MaxEnt model, we obtain an estimate of the chro-
mosomal localization information per genomic region. This
information reaches up to 3 bits around ori and ter, equivalent to
a localization uncertainty in the cell of one cellular octant. We
speculate that such localization information encoded by the
organization of the chromosome could be exploited for sub-
cellular positioning of proteins and protein droplets58 or for the
regulation of transcription of genes, as was observed in20.

Our approach resides in the class of static Maximum Entropy
approaches, which make no assumptions or predictions about the
underlying dynamics, as opposed to dynamical maximum
entropy models or maximum caliber models (see for
instance61,62). Further model limitations are set by the available
input data: organizational features that cannot be faithfully
encoded in population-averaged Hi–C data might be absent in
the MaxEnt model. The resolution of Hi–C data is limited to
10 kb for the data sets analyzed here, implying that any organi-
zational features below this genomic length scale cannot be
explored with our model. However, our approach is not limited to
interpreting Hi–C data and can be extended towards an inte-
grated MaxEnt model, simultaneously constrained by both Hi–C
and microscopy data (Supplementary Note 17). Furthermore, our
approach may be generalized to other prokaryotes, including

Fig. 5 The MaxEnt model reveals local features and localization
information encoded by chromosome organization. A The local
chromosome extension δi as a function of genomic position. δi is defined as
the spatial distance between neighboring genomic regions of site i averaged
over all chromosome conformations. Model predictions are shown for wild-
type cells (black), rifampicin-treated cells (blue), Δsmc cells (orange), and a
pole-tethered random polymer (gray dash-dotted line). The locations of the
top 2% highly transcribed genes are indicated by vertical gray dashed lines,
the locations of CIDs determined in ref. 26 are indicated by red markers.
B Localization information per genomic region in bits for wild-type (black),
Δsmc (orange), rifampicin-treated cells (blue), a random pole-tethered
polymer (dash-dotted line), and a random polymer (dashed line).
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systems with replicating chromosomes and multiple replicons, as
well as eukaryotes, paving the road for unraveling all information
on chromosome conformations at multiple length scales, eluci-
dating single-cell variability and population averages.

Methods
Here, we consider Hi–C data (replicate 1 of the BglII Hi–C data) on C. crescentus
newborn swarmer cells published in ref. 26, which have a single, non-replicating
chromosome. However, due to imperfect synchronization, a small fraction of cells
are included in these experiments in which processes such as chromosome repli-
cation and segregation have initiated, which will be reflected in the Hi–C map27,33.
Before inferring a MaxEnt model, we apply a data-processing scheme to filter out
contributions from cells with replicating chromosomes (See Supplementary
Notes 5–6). However, we also provide a MaxEnt model inferred directly from the
unprocessed Hi–C data (See Supplementary Note 7) and MaxEnt models inferred
from Hi–C data sets for replication-arrested cells25 (See Supplementary Note 8).
While there are small differences between the different models, the central beha-
viors from the MaxEnt model reported in the main text are similar in all cases.

Our algorithm (Supplementary Notes 3,4) requires two length scales: the
dimensions of the cellular confinement and the lattice spacing. As cellular con-
finement, we use a cylinder capped with hemispheres with the dimensions of a
newborn swarmer cell minus the cell envelope: 0.63 μm× 2.2 μm (Supplementary
Notes 1–2), which is assumed to be the same for all cells. A more detailed
representation of the cellular confinement shape does not appear to affect our main
results (Supplementary Note 17). To set the coarse-graining scale of our MaxEnt
model, we experimentally determined the distribution of spatial distances between
subsequent Hi–C bins. Specifically, the lattice spacing, b, is set by the average
spatial distance between consecutive 10 kb regions (the Hi–C bin size). To deter-
mine this parameter, we probed the physical distance of two loci separated by 10 kb
in five different regions of the chromosome, using an approach comparable to63,64.
To this end, we constructed strains whose chromosomes contained two indepen-
dent arrays of transcription factor binding sites (comprising 10 LacI or TetR
binding sites, respectively) inserted at the proper distance (Supplementary Note 1).
The sub-cellular positions of these arrays were then determined by producing the
respective fluorescently labeled transcription factors (LacI-eCFP and TetR-eYFP) at
very low levels, based solely on the basal activity of the inducible promoter driving
their expression. Swarmer (G1-phase) cells were imaged immediately after isola-
tion, and the localization of the two arrays was determined with sub-pixel precision
by fitting a 2D Gaussian to the acquired images. The Euclidean distances between
the two arrays were calculated, taking into account correction factors for a sys-
tematic shift produced by the set-up (see Methods for further details) and are
shown in (Table S5). The average distance between genomic loci 10 kb apart were
found to be 129 ± 7 nm, implying a lattice spacing b= 88 nm (Supplementary
Note 2). For the selection of cells in Fig. 4D, cells with approximately the average
newborn cell length (2.3 ± 0.2 μm (Supplementary Note 2.2)) were chosen. For each
cell, out of the z-stack, the plane that corresponded to the mid-cell being in focus
was selected. For the calculation of single-cell chromosomal density plots (Fig. 4E),
a Gaussian blur was applied, whereby the resolution in the z-direction (300 nm)
and in the x and y directions (120 nm) were set to match the experimental
resolution.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Data supporting the findings of this manuscript are available from the corresponding
author upon reasonable request. A reporting summary for this article is available as a
Supplementary Information file. A sample of chromosome configurations generated by
the MaxEnt model is available on GitHub65.

Code availability
The code generating the data and implementing the analysis presented in the manuscript
is available on GitHub65.
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1 Experimental procedures on C. crescentus cells
Bacterial strains and growth conditions

All C. crescentus strains used in this study were derived from the synchronizable wild-type CB15N
(NA1000). Cells were grown in peptone-yeast extract (PYE) medium (Pointdexter, 1964) at 28◦C
under aerobic conditions (shaking at 210 rpm). When appropriate, the medium was supplemented
with antibiotics at the following concentrations (µg ml−1 in liquid/solid medium): kanamycin
(30/50), gentamicin (15/20), and spectinomycin (50/100).

1.1 Experimental determination of distances between loci 10 kb apart
Plasmid and strain construction

To measure the distances between chromosomal loci that are located 10 kb apart, C. crescen-
tus strains were constructed whose chromosomes contained binding sites for fluorescently tagged
DNA binding proteins. The bacterial strains, plasmids, and oligonucleotides used in this study
are listed in Tables S1-S4. Escherichia coli TOP10 (Invitrogen) was used as host for cloning pur-
poses. All plasmids were verified by DNA sequencing. Plasmids carrying 10 copies of either lacO
(PCR-amplified from plasmid pLAU43 [1]) or tetO (PCR-amplified from plasmid pLAU44 [1]) were
transferred to C. crescentus by electroporation [2] and integrated at various chromosomal loci by
single-homologous recombination. Subsequently, a two-gene operon encoding LacI-eCFP and TetR-
eYFP was integrated at the xylX locus by phiCr30-mediated phage transduction [2], using a lysate
of a strain transformed with plasmid pHPV472 [3]. Proper chromosomal integration was verified
by colony PCR.

Measurement of distance between pairs of loci 10 kb apart

All microscopy analyses to determine the distance between chromosomal loci were performed on
cells grown in PYE medium containing kanamycin and gentimicin to the mid-exponential phase
(OD 0.4), and subsequently synchronized [4]. Immediately after synchronization, swarmer cells
were immobilized on pads made of 1% agarose in PYE medium. Cells were observed with a Zeiss
Axio Observer.Z1 microscope equipped with an alpha Plan-Apochromat 100x/1.46 Oil Ph3 objec-
tive (Zeiss, Germany). An X-Cite 120PC metal halide light source (EXFO, Canada), combined
with ET-CFP and ET-YFP filter cubes (Chroma, USA), was used for the detection of fluorescent
foci. Images were taken with a pco.edge sCMOS camera (pco, Germany) and recorded with Vi-
siView 2.1.4 (Visitron, Germany). To identify the subpixel localization of the fluorescent foci, a 2D
Gaussian was fitted to each fluorescent focus using the GDSC SMLM plugin [5] 1 for ImageJ2 [6].
In order to correct for systematic shifts between the YFP and CFP channels, fiducials (Tetraspeck
microspheres, 0.5 µm, Invitrogen/Thermo Fischer Scientific, USA) were imaged in the YFP and
CFP channels and analyzed with the same set-up and pipeline.

1.2 Determination of chromosome density via SIM microscopy
In order to investigate the intracellular distribution of the chromosome, C. crescentus wild-type
cells were grown and synchronized as described above. Immediately after synchronization, the cells

1http://www.sussex.ac.uk/gdsc/intranet/microscopy/UserSupport/AnalysisProtocol/imagej/smlm_plugins/
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were incubated with 0.5 µg/ml of the DNA-stain DAPI (4’,6-diamino-2-phenylindole) for 5 min at
28◦C. Cells were then washed (5 min at 4000 g), resuspended in M2 salts buffer [2] and applied
to pads made of 1% agarose in water, before they were imaged with a Zeiss Elyra 7 Lattice SIM
microscope equipped with an alpha Plan-Apochromat 100x/1.46 Oil Objective (Zeiss, Germany).
DAPI was excited with a 405 nm laser and its emission was recorded in the 420-480 nm range.

Supplementary Figure 1: SIM microscopy image example SIM microscopy image of a
single focal plane out of a z-stack shows the DAPI-stained DNA inside multiple C. crescentus cells
immediately after synchronization. The DNA is organized in a heterogeneous fashion, with several
regions of high-density chromosome packing per cell, and shows a clear cell-to-cell variation. The
intensity is rescaled for the entire image, such that the highest measured intensity is 1, and the
lowest is 0. Scale bar: 1 µm. Shown is a representative image of one of the two biological replicates,
which both showed similar results.
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Supplementary Table 1: Strains used in this study.

Strain Genotype/description Construction/Reference

E. coli strains
TOP10 Cloning strain Invitrogen

C. crescentus strains
CB15N Synchronizable wild-type strain Evinger & Agabian (1977) [7]

MvT151 CB15N Pxyl::Pxyl-lacI-ecfp-tetR-eyfp 10x
tetO and 10x lacO spaced 10.0 kb apart at
196◦

Consecutive integration of pMvT149,
pMvT150 and Pxyl-lacI-ecfp-tetR-eyfp into
CB15N

MvT152 CB15N Pxyl::Pxyl-lacI-ecfp-tetR-eyfp 10x
tetO and 10x lacO spaced 10.1 kb apart at
212◦

Consecutive integration of pMvT151,
pMvT152 and Pxyl-lacI-ecfp-tetR-eyfp into
CB15N

MvT170 CB15N Pxyl::Pxyl-lacI-ecfp-tetR-eyfp 10x
tetO and 10x lacO spaced 10.1 kb apart at
21◦

Consecutive integration of pMvT161,
pMvT162 and Pxyl-lacI-ecfp-tetR-eyfp into
CB15N

MvT171 CB15N Pxyl::Pxyl-lacI-ecfp-tetR-eyfp 10x
tetO and 10x lacO spaced 10.0 kb apart at
108◦

Consecutive integration of pMvT163,
pMvT164 and Pxyl-lacI-ecfp-tetR-eyfp into
CB15N

MvT172 CB15N Pxyl::Pxyl-lacI-ecfp-tetR-eyfp 10x
lacO and 10x tetO spaced 10.0 kb apart at
108◦

Consecutive integration of pMvT165,
pMvT166 and Pxyl-lacI-ecfp-tetR-eyfp into
CB15N

MvT179 CB15N Pxyl::Pxyl-lacI-ecfp-tetR-eyfp 10x
tetO and 10x lacO spaced 10.1 kb apart at
311◦

Consecutive integration of pMvT159,
pMvT160 and Pxyl-lacI-ecfp-tetR-eyfp into
CB15N
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Supplementary Table 2: Plasmids used in this study.

Plasmid Description Reference

Basic vectors
pLAU43 Plasmid carrying 240 LacI binding sites (lacO), KanR Lau et al., 2003 [1]

pLAU44 Plasmid carrying 240 TetO binding sites (tetO), GenR Lau et al., 2003 [1]

pHPV472 Plasmid carrying Pxyl-lacI-ecfp tetR-eyfp, SpcR StrR Viollier et al., 2004 [3]

pMCS-2 Integrating plasmid containing multiple cloning site,
KanR

Thanbichler et al., 2007 [8]

pMCS-4 Integrating plasmid containing multiple cloning site,
GenR

Thanbichler et al., 2007 [8]

Plasmids constructed in this work
pMvT149 pMCS-2 including 10x tetO and part of CCNA_02049,

KanR
This study

pMvT150 pMCS-4 including 10x lacO and part of a chromosomal
fragment close to CCNA_02054, GenR

This study

pMvT151 pMCS-2 including 10x tetO and part of a chromosomal
fragment close to CCNA_02228, KanR

This study

pMvT152 pMCS-4 including 10x lacO and part of a chromosomal
fragment close to CCNA_02233, GenR

This study

pMvT159 pMCS-2 including 10x tetO and part of CCNA_03310,
KanR

This study

pMvT160 pMCS-4 including 10x lacO and part of a chromosomal
fragment close to CCNA_03317, GenR

This study

pMvT161 pMCS-2 including 10x tetO and part of CCNA_00217,
KanR

This study

pMvT162 pMCS-4 including 10x lacO and part of a chromosomal
fragment close to CCNA_00226, GenR

This study

pMvT163 pMCS-2 including 10x tetO and part of CCNA_01105,
KanR

This study

pMvT164 pMCS-4 including 10x lacO and part of a chromosomal
fragment close to CCNA_01112, GenR

This study

pMvT165 pMCS-2 including 10x lacO and part of CCNA_01105,
KanR

This study

pMvT166 pMCS-4 including 10x tetO and part of a chromosomal
fragment close to CCNA_01112, GenR

This study
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Supplementary Table 3: Construction of plasmids.

Plasmid Description

pMvT149 a) amplification of 10 tetO motifs from pLAU44 using oMvT789 & oMvT790 (product 433
bp) and 800 bp from NA1000 gDNA using oMvT791 & oMvT792 (product 848 bp)

b) fusion of two inserts with pMCS-2/NdeI+NheI via Gibson Assembly

pMvT150 a) amplification of 10 lacO motifs from pLAU43 using oMvT796 & oMvT797 (product 547
bp) and 800 bp from NA1000 gDNA using oMvT798 & oMvT799 (product 845 bp)

b) fusion of two inserts with pMCS-2/NdeI+NheI via Gibson Assembly

pMvT151 a) amplification of 10 tetO motifs from pLAU44 using oMvT803 & oMvT804 (product 435
bp) and 800 bp from NA1000 gDNA using oMvT805 & oMvT806 (product 843 bp)

b) fusion of two inserts with pMCS-2/NdeI+NheI via Gibson Assembly

pMvT152 a) amplification of 10 lacO motifs from pLAU43 using oMvT808 & oMvT809 (product 548
bp) and 800 bp from NA1000 gDNA using oMvT810 & oMvT811 (product 845 bp)

b) fusion of two inserts with pMCS-2/NdeI+NheI via Gibson Assembly

pMvT159 a) amplification of 10 tetO motifs from pLAU44 using oMvT789 & oMvT839 (product 435
bp) and 800 bp from NA1000 gDNA using oMvT840 & oMvT841 (product 843 bp)

b) fusion of two inserts with pMCS-2/NdeI+NheI via Gibson Assembly

pMvT160 a) amplification of 10 lacO motifs from pLAU43 using oMvT819 & oMvT842 (product 549
bp) and 800 bp from NA1000 gDNA using oMvT843 & oMvT844 (product 851 bp)

b) fusion of two inserts with pMCS-2/NdeI+NheI via Gibson Assembly

pMvT161 a) amplification of 10 tetO motifs from pLAU44 using oMvT789 & oMvT849 (product 436
bp) and 800 bp from NA1000 gDNA using oMvT850 & oMvT851 (product 840 bp)

b) fusion of two inserts with pMCS-2/NdeI+NheI via Gibson Assembly

pMvT162 a) amplification of 10 lacO motifs from pLAU43 using oMvT819 & oMvT854 (product 549
bp) and 800 bp from NA1000 gDNA using oMvT855 & oMvT856 (product 844 bp)

b) fusion of two inserts with pMCS-2/NdeI+NheI via Gibson Assembly

pMvT163 a) amplifation of 10 tetO motifs from pLAU44 using oMvT789 & oMvT859 (product 436
bp) and 800 bp from NA1000 gDNA using oMvT860 & oMvT861 (product 848 bp)

b) fusion of two inserts with pMCS-2/NdeI+NheI via Gibson Assembly

pMvT164 a) amplification of 10 lacO motifs from pLAU43 using oMvT819 & oMvT863 (product 547
bp) and 800 bp from NA1000 gDNA using oMvT864 & oMvT865 (product 851 bp)

b) fusion of two inserts with pMCS-2/NdeI+NheI via Gibson Assembly

pMvT165 a) amplification of 10 lacO motifs from pLAU43 using oMvT819 & oMvT867 (product 548
bp) and 800 bp from NA1000 gDNA using oMvT868 & oMvT861 (product 845 bp)

b) fusion of two inserts with pMCS-2/NdeI+NheI via Gibson Assembly

pMvT166 a) amplification of 10 tetO motifs from pLAU44 using oMvT789 & oMvT869 (product 435
bp) and 800 bp from NA1000 gDNA using oMvT870 & oMvT865 (product 848 bp)

b) fusion of two inserts with pMCS-2/NdeI+NheI via Gibson Assembly
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Supplementary Table 4: Oligonucliotides used in this study.

ID Name Sequence (5’ to 3’)

oMvT789 tetO _CCNA_02049_p1 cgagacgtccaattgcatatgtccctatcagtgatagagaggggaaagg

oMvT790 tetO _CCNA_02049_p2 cgccgctggccaccggatctctatcactgatagggaccttcccttctg

oMvT791 tetO _CCNA_02049_p3 gggaaggtccctatcagtgatagagatccggtggccagcggcgaac

oMvT792 tetO _CCNA_02049_p4 gatcccccgggctgcagctagcgcgcactgaggccgatggcg

oMvT796 lacO _CCNA_02049_p1 gcgagacgtccaattgcatatgttgtgagcggataacaattggagcaag

oMvT797 lacO _CCNA_02049_p2 cttcgaccgctgggacttcttgttatccgctcacaatttgccttttgc

oMvT798 lacO _CCNA_02049_p3 ggcaaattgtgagcggataacaagaagtcccagcggtcgaagaggacg

oMvT799 lacO _CCNA_02049_p4 gatcccccgggctgcagctagcgcctatgacgtgatgagctccaagcac

oMvT803 tetO _CCNA_02228_p1 cgagacgtccaattgcatatgtccctatcagtgatagagaggggaaagg

oMvT804 tetO _CCNA_02228_p2 gacgaccccctactggtcctctctatcactgatagggaccttccc

oMvT805 tetO _CCNA_02228_p3 ggtccctatcagtgatagagaggaccagtagggggtcgtcgaacg

oMvT806 tetO _CCNA_02228_p4 gatcccccgggctgcagctagcccagccccgccgccgacatcg

oMvT808 lacO _CCNA_02228_p1 gcgagacgtccaattgcatatgttgtgagcggataacaattggagcaag

oMvT809 lacO _CCNA_02228_p2 cccaggcaacttgtctttcgttgttatccgctcacaatttgccttttgc

oMvT810 lacO _CCNA_02228_p3 ggcaaattgtgagcggataacaacgaaagacaagttgcctgggc

oMvT811 lacO _CCNA_02228_p4 gatcccccgggctgcagctagcctagcggatcgggcgcgcgaag

oMvT819 lacO _CCNA_01737_p1 gcgagacgtccaattgcatatgttgtgagcggataacaattggagcaag

oMvT839 tetO _nusG_p2 ggtcgaaaagatcgcctgatctctatcactgatagggaccttcccttc

oMvT840 tetO _nusG_p3 ggtccctatcagtgatagagatcaggcgatcttttcgacctgattg

oMvT841 tetO _nusG_p4 gatcccccgggctgcagctagccgcgacagccgccgccgctcc

oMvT842 lacO _CC-3211_p2 gcagccgcgatttccattgagttgttatccgctcacaatttgccttttg

oMvT843 lacO _CC-3211_p3 ggcaaattgtgagcggataacaactcaatggaaatcgcggctgcgg

oMvT844 lacO _CC-3211_p4 ctagtggatcccccgggctgcagctagcctgccaggagacgcggcc

oMvT849 tetO _CC-0217_p2 cagcgcatagcccagcgcgctctctatcactgatagggaccttcccttc

oMvT850 tetO _CC-0217_p3 ggtccctatcagtgatagagagcgcgctgggctatgcgctgac

oMvT851 tetO _CC-0217_p4 cccccgggctgcagctagcctagctccccgccctctcgatcg

oMvT854 lacO _CC-0226_p2 caactatgtcgatgacgagcattgttatccgctcacaatttgccttttg

oMvT855 lacO _CC-0226_p3 caaattgtgagcggataacaatgctcgtcatcgacatagttgctgcg

oMvT856 lacO _CC-0226_p4 ggatcccccgggctgcagctagcgtgatgaccaagaccatgcttctggc

oMvT859 tetO _CC-1053_p2 gcccagatgccggcgcaatctctctatcactgatagggaccttcccttc

oMvT860 tetO _CC-1053_p3 gggaaggtccctatcagtgatagagagattgcgccggcatctgggcc

oMvT861 tetO _CC-1053_p4 gatcccccgggctgcagctagcggcaggatcgaccaccgcgc

oMvT863 lacO _CC-1059_p2 ccagttcgcagagccggcgttgttatccgctcacaatttgccttttgc

oMvT864 lacO _CC-1059_p3 caaaaggcaaattgtgagcggataacaacgccggctctgcgaactggag

oMvT865 lacO _CC-1059_p4 ggatcccccgggctgcagctagctcatgccatccggtagtgtcgggc

oMvT867 lacO _CC-1053_p2 gcccagatgccggcgcaatcttgttatccgctcacaatttgccttttgc

oMvT868 lacO _CC-1053_p3 ggcaaattgtgagcggataacaagattgcgccggcatctgggc

oMvT869 tetO _CC-1059_p2 ccagttcgcagagccggcgtctctatcactgatagggaccttcccttc

oMvT870 tetO _CC-1059_p3 ggaaggtccctatcagtgatagagacgccggctctgcgaactggag
8



2 Data analysis: using experimental distance distributions to
set the coarse-grained representation of the lattice polymer

We require a coarse-grained representation of the bacterial chromosome that is consistent with
experimentally determined statistics beyond the coarse-graining length scale. Furthermore, our
coarse-grained representation should allow for efficient computation. The resolution of the Hi-
C data set (10 kb) sets a natural coarse-graining scale for the polymer, but we require additional
experiments for the statistics at this length-scale: the distribution of spatial distances between pairs
of loci at a 10 kb genomic distance. Here we demonstrate that a lattice polymer representation of
the chromosome captures the statistics at this length scale. In this representation, the measured
average spatial distance between a pair of loci sets the lattice spacing of our representation of the
bacterial chromosome.

2.1 Analysis of experimental distance distributions of pairs of loci in C.
crescentus

From the experimental procedure described in Note 1, a data set of 100 2D distance vectors are
obtained in C. crescentus for five pairs of loci separated by 10 kb. Note, microscopy data only
gives us the projected 2D distances, while the actual distance vectors are in 3D. From the 2D data
set, however, we can infer the underlying distribution of 3D distances. To make this inference, two
effects are considered:

1. Measurement errors. This has two sources: finite localization precision and drift between the
two consecutive images, taken to determine the positions of the two fluorescently (YFP and CFP)
labeled loci using two different fluorescence channels.

The measurement noise due to finite localization precision depends on the intensity of the
fluorescent probe and the brightness of its direct surroundings. We calculated this precision using
the GDSC SMLM plugin to have a standard error of 32.63 nm, with an average variation between
measurements of 0.02 nm.

To account for drift between two consecutive images, we decompose the distance vector within
each pair of foci into an x and y component, and sum these two components separately for all
cells. As the orientations of cells are isotropically distributed, both the x and y component sums
should go to 0 for increasing sample size. However, we find significant deviations from 0, larger than
expected with our finite sampling, indicating a systematic drift estimated to be 35 ± 4nm in the
x-direction, and 52±5nm in the y-direction (error on the mean). We correct for these deviations by
subtracting the systematic drift in the x and y directions from each of the experimentally measured
distance vectors, from which a model for the 3D distance distribution is inferred. This correction
will, however, be an overestimate: for a finite sample size, the x and y component sums will likely
deviate from 0, even in the absence of drift. To account for this bias in the drift estimator, we
simulate finite sampling of 2D distance vectors (using the same number of data points as in the
experiments) from the inferred model for the 3D distance distribution. Note, we require a self-
consistent iterative procedure: the bias in the drift estimator that we correct for, when inferring
the 3D model from measured 2D distances, must be consistent with the bias we determine when
performing a finite sampling of 2D distances from this model.
2. We consider intrinsic variations in 3D distances between the loci, for instance due to thermal
fluctuations of the DNA. We assume that the underlying distribution of relative positions is de-
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Supplementary Table 5: Inferred average distances for the measured pairs of loci. The data sets
MvT171 and MvT172 are for the same loci, just with their markers switched (see Note 1). The
determined distances for each of these pairs are within two standard deviations of each other.

Data set Average 3D distance (nm) Inferred σ (nm)

MvT151 106 ± 7 67

MvT170 134 ± 8 84

MvT171 121 ± 8 76

MvT152 158 ± 9 99

MvT172 132 ± 8 83

MvT179 124 ± 7 78

Inferred average for en-
tire chromosome

Average 3D distance (nm) Variance (nm)

129 ± 7 17

scribed by a 3D Gaussian with a standard deviation and a mean equal to 0. This results in one fit
parameter (σ) for the underlying distribution.

To determine the value of σ for each of the pairs of loci, we also use an iterative procedure: we
start by choosing an initial value of σ, and then simulate the sampling of a large number of 3D
distance vectors from this distribution. We then take a 2D projection of these samples and add the
random measurement error of 32.63 nm (see point 1). Next, we compute the average 2D distance
and compare with the experimentally determined 2D average distance. If these values are not equal,
the value of σ is updated accordingly, and a new round of the iteration begins. This procedure
is repeated until convergence is reached (the average 2D distance is equal to the experimentally
determined 2D average distance).

Once convergence is reached, the mean 3D distance for each pair of loci is calculated through
a forward simulation of random points being drawn from a 3D Gaussian. The error on the mean
inferred 3D distance for a specific pair of loci on the chromosome is determined by bootstrapping
(see Table 5). The average distance for the entire chromosome is taken as the average over the means
of the 5 pairs of loci we studied experimentally, and is determined to be 129±7 nm (standard error
of the mean).

Once the average distances are matched between model and experiment, the distributions of
measured distances can also be compared. This distribution matches well between model and
experiment (Supplementary Fig. 2), supporting the assumption of a 3D gaussian as an underlying
distribution of relative positions between the loci. Once we set the lattice constant of our lattice
polymer to match this average 3D distance, our lattice polymer model approximately captures the
correct statistics for the distance between neighboring chromosomal regions. This validates the
use of a lattice polymer to connect consecutive monomers representing neighboring chromosomal
regions.
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2.2 Setting the dimensions of the lattice spacing and the cellular con-
finement in the model

We employ a polymer model on a cubic lattice. In this representation, the position of each fourth
monomer indicates the unit cell occupied by the center of a Hi-C chromosomal region. The polymer
model is allowed to intersect, since multiple centers of genomic regions could reside in the same unit
cell volume. In fact, two monomers are assigned a contact probability γ only if they simultaneously
occupy the same lattice site. This assumes that the dominant contributions to contacts between
two chromosomal regions are from configurations where their respective centers occupy the same
unit cell. Any excluded volume effects reducing the number of self-overlaps of the coarse-grained
polymer manifest through imposed Hi-C score constraints.

To set the scale of the lattice spacing b in the model, we use the average spatial distance between
consecutive Hi-C chromosomal regions determined in Note 2.1). If we consider distances between
subsequent chromosomal regions, however, coarse-graining effects need to be taken into account:
only seven distances between these regions are possible in the lattice representation (Supplementary
Fig. 4 B): (0,

√
2b, 2b,

√
6b,
√

8b,
√

10b, 4b), which occur with respective relative occurrence fre-
quencies (f1, · · · , f7). In our MaxEnt model, we robustly observe (f1 ≈ 0.092, f2 ≈ 0.50, f3 ≈ 0.13,
f4 ≈ 0.19, f5 ≈ 0.041, f6 ≈ 0.048, f7 ≈ 0.0022). This coarse-graining effect implies a cut-off of
the tail of the underlying Gaussian distribution of 3D distances. To account for this cut-off, we
first sample real-space configurations of consecutive chromosomal regions according to the experi-
mentally determined 3D Gaussian distribution of continuous distances (see Note 2.1), and infer the
statistics in the corresponding lattice model. For each of the seven possible (discretized) distances
in the coarse-grained lattice representation, we thus obtain associated conditional distribution of
real-space distances. The sum of the seven conditional real-space distance distributions, weighted
by their respective relative occurrence frequencies (fi), defines the full distribution of distances be-
tween neighbouring chromosomal regions in the MaxEnt model. We determine the lattice spacing
b = 88 nm, such that the average distance between chromosomal regions in our MaxEnt model
matches the experimentally determined average distance (Note 2.1)). Note, for this lattice spacing,
the distribution of distances between neighbouring chromosomal regions in the MaxEnt model are
also in accordance with our experimentally determined distributions (Supplementary Fig. 2).

The phase space of chromosome states is restricted to those that fit inside a cell, the sampling
thus explores a constrained space (see also [9]). We introduce a confinement formed by a cylin-
der capped by two hemispheres. The dimensions of the confinement are chosen to match typical
dimensions of a newborn swarmer cell. These dimensions are determined by taking a sample of
267 cells from the MvT151 data set, which yields an average length of 2.3 ± 0.2, µm and width
of 0.75 ± 0.04µm, as determined by using the BacStalk software [10]. Subtracting the estimated
width of the cell envelope of 61 nm (based on figure 2 of [11]), we arrive at typical chromosome
confinement dimensions of 2.2 × 0.63µm. With the inferred lattice spacing, this translates to a
confinement of 470 unit cells (25 lattice spacings long and 7 wide). This representation of the cell
could be refined further to include the crescent shape, but we find that such corrections do not
appear to significantly affect the results of our model (see Note 17).
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Supplementary Figure 2: Distributions of 2D projected distances from experiment
and MaxEnt model. Bars: experimentally measured 2D distances (after bias correction, see
Note 2.1). Blue lines: distributions of 2D projected distances from the inferred 3D Gaussian
distribution. For each data set there is one fit parameter σ, chosen such that the average distances
of measured and inferred distributions match. Black markers: Relative frequencies (fi) of each of
the seven possible configurations of two neighboring chromosomal regions of the MaxEnt model with
associated average distances determined from coarse-graining. The pairs of horizontal black lines
at each dot indicate the mean variance of the MaxEnt configuration frequency for all neighboring
pairs of chromosomal regions. The error bar indicates the standard deviation of the underlying
distance distribution for each coarse-grained configuration. Black curve: Inferred 2D distance
distribution between consecutive genomic regions for the entire chromosome for the MaxEnt model.
This distribution is obtained by weighing the inferred distance distribution for each coarse-grained
configuration with the associated relative occupancy frequency within the MaxEnt model. To
enable a direct comparison with experimental data, the inferred measurement noise is applied over
the MaxEnt distance distribution. Note that all MaxEnt data sets are the same in each panel.

3 Inverse Monte Carlo algorithm for MaxEnt chromosome
model

We solve the inverse problem and obtain the Lagrange multipliers εij ’s by an iterative procedure:
we perform a Monte Carlo (MC) simulation (forward algorithm) to sample equilibrium states from
the lattice polymer model with an initial guess for εij . Subsequently, we compare the estimated
contact map, f simij , obtained from this MC simulation, with the target experimental map f exptij .
When the modeled and experimental contacts deviate, the εij ’s are updated (inverse algorithm).
This procedure converges when the modelled normalized contact frequency map matches the Hi-C
data set within a tolerance level, yielding the complete set of parameters εij that defines the MaxEnt
model. The forward and inverse algorithm are described below.

12



90º

kink jump self-loop jump

crankshaft move
x

z

90º

. .

Kink move Loop move

Crankshaft move
Supplementary Figure 3: Illustration of the three polymer moves employed in the
Monte Carlo simulation. The simulation employs a kink move, a crankshaft move and a loop
move.

3.1 Forward algorithm
In our coarse-grained model, the bacterial chromosome of C. crescentus is represented by a circular
lattice polymer with a length of 1620 monomers. Each 4th monomer represents the location of the
center of a genomic region, with three monomers in between to ensure Gaussian statistics between
subsequent centers of genomic regions (see Note S2). The level of coarse-graining can be adapted
to accommodate the resolution of the data on which the model is trained.

The algorithm is initiated with the circular polymer randomly arranged within the confine-
ment. This starting state is obtained by first ’winding up’ the polymer in a square that fits in the
confinement. Subsequently, a simulation with no interaction energies is run for 107 Monte Carlo
moves. The resulting configuration is used as the starting configuration. We simulate the Boltz-
mann distribution of polymer configurations in the MaxEnt model using Monte Carlo simulations.
To sample configurations in the Monte Carlo algorithm, we employ three different polymer moves:
the kink move, the Crankshaft move and the loop move (Supplementary Fig. 3). This move set
preserves circularity and allows an ergodic sampling of the space of polymer configurations, which
is demonstrated in Note 3.3. Moves which would place a monomer outside of the confinement are
forbidden.

A potential move {r} → {r′} is randomly chosen (based on the move set in Supplementary
Fig. 3), and then accepted with a probability Pacc({r′}, {r}) according to the Metropolis criterion:
Pacc({r′}, {r}) = min(1, exp(E({r}) − E({r′}))), provided the configuration stays within the con-
finement. Here, E({r′}) and E({r}) are the energies of the proposed configuration {r′} and current
configuration {r}, respectively. The energies are computed according to the Hamiltonian (Eq. (5)
in main text)

H({r}) =
1

2

∑

ij

εijδri,rj . (S1)

For pairs of genomic regions i, j for which f̃ expt
ij = 0, the corresponding εij is set to a high value at

the start of the simulation, typically 10, which may further increase during iterations of the inverse
algorithm. Note, this initial value is high enough to ensure these contacts do not form in practice.
At the start of the forward simulation, we apply a burn in time of 2×107 MC moves before contact

13



A

B

Supplementary Figure 4: Illustration of the model confinement and chromosome repre-
sentation A The cellular confinement used in the simulations. Each dot represents a lattice point.
B Illustration of the coarse-grained representation of the chromosome, which is shown here in 2D
for simplicity. The chromosome is represented by a lattice polymer, where each fourth monomer
describes the position of the center of a genomic region. The three monomers in between centers
of genomic regions serve to ensure correct distance statistics between subsequent genomic regions.
When two centers of genomic regions overlap, they have a probability γ of forming a contact that
contributes to the Hi-C map.

frequency statistics are calculated. During the inverse algorithm, this burn in time is only applied
to the first forward simulation. For subsequent forward simulations, the final configuration of the
previous forward simulation is used as a starting state.

3.2 Inverse algorithm
As noted in the main text, we learn the MaxEnt model directly from the normalized experimental
Hi-C map. During a forward simulation of the polymer, the contact frequency fmodel

ij of each pair
of monomers is counted. After one round of forward simulation, the simulated contact frequencies
are normalized and compared to the experimental ones. The pairwise interaction energies are then
updated according to

∆εij = α(f̃model
ij − f̃ exp

ij )× 1√
f̃ exp
ij

. (S2)
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Here, α is the learning rate (which we typically set to 0.2), and the last factor is included to speed
up conversion for pairs with a low contact frequency. Note, f̃model

ij and f̃ exp
ij are the normalized

model and experimental contact frequencies, respectively.
Importantly, to impose that the normalized contact frequencies match between model and ex-

periment, we need to determine one remaining parameter: the absolute scale of the model contact
frequencies. This is fixed by main text Eq. 6, which is derived as follows. Writing f exptij = cf̃ exptij

and c̃ = c
γ , the entropy functional becomes

S̃ =−
∑

{r}
P ({r}) lnP ({r})−

∑

ij

λij

(∑

{r}
P ({r})δri,rj

− c̃f̃ exptij

)
− λ0

(∑

{r}
P ({r})− 1

)
(S3)

we require that c̃ maximizes the model entropy, setting δS̃
δc̃ = 0. This yields main text Eq. 6:

∑

ij

λij f̃
expt
ij = 0. (S4)

Ensuring that this condition is satisfied in each iteration step fixes the overall scale of contact
frequencies. In the simulation, this is done by applying an overall shift in the interaction energies
after the update step in Eq. (S2). This overall shift can be derived as follows: we start from Eq. 6,
which imposes

∑
ij εij f̃

expt
ij = 0. In general, a set of εij obtained after the update step in Eq. (S2)

will not satisfy this constraint. We can, however, introduce a shift ∆ε of all εij such that this
condition is satisfied: ∑

ij

(ε′ij −∆ε)f̃ exptij = 0. (S5)

Rewriting, and making use of
∑
ij f̃

expt
ij = Nbin with Nbin is the number of Hi-C bins, yields

∆ε = −
∑
kl ε
′
klf

exp
kl

Nbin
. (S6)

Performing this shift after each update step ensures that the condition in main text Eq. 6 is satisfied
at each iteration of the inverse algorithm.

We iterate the inverse algorithm until the Pearson’s correlation coefficient between the simulated
normalized contact frequencies and the experimental data is above 0.98. This is the correlation
coefficient of contact frequencies between repeat experiments reported in [12]. In practice, we can
obtain even higher correlation coefficients of 0.998, as stated in the main text. With each subsequent
forward simulation, the number of Monte Carlo steps is multiplied by

√
n, with n the iteration step.

The inverse algorithm is typically started with ∼ 360 million steps, and run for ∼ 100 iterations.

3.3 Ergodicity of forward algorithm
Next, we demonstrate that the algorithm is ergodic. A circular path of the polymer can be repre-
sented as a sequence of N steps along the lattice, where each step is either up (U), down (Ū), right
(R), left (R̄), in (I) or out (Ī). We denote the total number of steps of type x by N(x). Circularity
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of the path implies that N(U) = N(Ū), N(R) = N(R̄) and N(I) = N(Ī). Furthermore, we will
divide the steps in types, where (U) and (Ū) are type 1, (R) and (R̄) are type 2, and (I) and (Ī)
are type 3. An individual path can then be described as a sequence of steps, for example

[ U , R̄ , I , R , Ū , · · · ]. (S7)

Here, each of the steps is colored by type. In the following we will also consider the sequence within
each type. For our example, the sequences for the three types are:

• Type 1: [ U , Ū , · · · ]

• Type 2: [ R̄ , R , · · · ]

• Type 3: [ I , · · · ]

We now consider the action of each of the polymer moves on a sequence of steps.

• The kink move interchanges two subsequent steps of a different type. Using only this move,
any sequence of type 1, type 2 and type 3 steps can be created from a starting sequence that
doesn’t change the number of each type. Put differently, using the representation in (S7),
any sequence of red, green and blue can be created that conserves the original counts of each
color. Within each type, the sequence of the possible steps (e.g. U and Ū), however, cannot
be changed with this move.

• The crankshaft move takes a motif of the form [A,B, Ā] and alters this to one of three
possible motifs: (i) [Ā, B,A], or (ii) [C,B, C̄], or (iii) [C̄, B,C]. The first alteration changes
the sequence of steps within a type. Combining this alteration with the kink move, any
sequence of steps within each type can be created, provided that there is at least one set of
steps of a different type.

Alteration (ii) and (iii) change the number of steps of each type: N(A) + N(Ā) is reduced
by 2, and N(C) + N(C̄) is increased by 2. Combining this with the kink move, any set of
counts of each of the types can be created, provided that polymer length and circularity are
preserved, and that in the initial state not all steps are of the same type.

Combining all three alterations with the kink move, from any starting sequence any final
sequence can be created that conserves polymer length and circularity, as long as the starting
and final sequence have moves of at least two different types.

• The loop move takes a motif of the form [A, Ā] and alters it to either (i) [Ā, A] or (ii)[B, B̄]
or (iii) [B̄, B]. Alteration (i) enables any change of the sequence within a type when the entire
initial sequence is of the same type. Alterations (ii) and (iii) allow the conversion from a state
of only one type to a state of two types.

Combining the loop move with the kink and crankshaft moves, from any starting sequence
any final sequence can be created that conserves polymer length and circularity. Thus, an
ergodic sampling of the space of polymer configurations is ensured.

Note I: The presence of a confinement introduces a parity on the lattice sites: sites that can be
occupied by an even monomer through these 3 moves cannot be occupied by an uneven monomer,
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and vice versa. Either choice of parity can be seen as a separate coarse-grained model, as the unit
cell locations shift depending on this choice.

Note II: A confinement could be chosen that ‘traps’ a portion of the polymer in place, making
the phase space reachable using the three moves dependent on the initial state. For our confinement
consisting of a cylinder with rounded edges such a trapping is not present, thus ergodicity is still
preserved.

Note III: ergodicity is already ensured if only the loop and kink moves are used: the crankshaft
move can be constructed as a combination of the two. However, the crankshaft move allows for a
faster exploration of phase space and is thus also included.

4 Testing the inverse Monte Carlo algorithm
To test the performance of our inverse algorithm, we generated trial data sets by running a forward
simulation for a chosen set of input effective interaction energies εinij (upper left Supplementary
Fig. 5A). The resulting simulated contact map, f inij , exhibits intricate features, including domain-
like structures along the main diagonal and a fainter second diagonal (upper left Supplementary
Fig. 5B). Subsequently, we treat this contact map as an experimental data set, which we use as
an input to our iterative inverse scheme. We find that our inverse scheme rapidly and accurately
retrieves the correct energies, εmodel

ij ≈ εinij , and contact frequencies, fmodel
ij ≈ f inij , demonstrating

that this scheme adequately solves the inverse problem (Supplementary Fig. 5A-C).

B C

Supplementary Figure 5: Demonstration of numerical inverse algorithm for MaxEnt
chromosome model. A Upper left: input effective interaction energies εinij . Lower right: effective
interaction energies retrieved by the MaxEnt model. B Upper left: simulated contact frequencies
f inij using εinij . Lower right: contact frequencies of the MaxEnt model, using f inij as an input. C
The average relative contact frequency deviation: 〈f in

ij − fmodel
ij 〉/〈fmodel

ij 〉 vs. iteration number of
inverse algorithm.

5 Hi-C data filtering
Before the Hi-C data from Ref. [12] can be used to train our single-chromosome MaxEnt model, we
need to account for the presence of a small fraction of replicating cells due to imperfect synchro-
nization. Most notably, there is a local increase in Hi-C scores between the ori and ter genomic
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regions, which is attributed to a small fraction of cells that have partially replicated their chromo-
some and segregated their newly formed ori regions towards the other pole, where the ter region of
the initial chromosome is located [13, 14]. Although this increase is not readily visible on a linearly
scaled Hi-C map (Supplementary Fig. 6A, upper left), it is clearly visible on a logarithmic scale
(Supplementary Fig. 6A, lower right). Importantly, in experiments where replication is inhibited
prior to synchronization, such an increase in contacts between the ori and ter genomic regions is
not observed [15] (Supplementary Fig. 6B). In Ref. [15], two Hi-C experiments were performed on
swarmer cells that could not undergo replication or cell division: on cells depleted of dnaA, and
cells overexpressing ctrA(D51E)∆3Ω.

5.1 DNA replication inhibited Hi-C datasets
In the cells depleted of DnaA, the only copy of dnaA, whose product activates the initiation of
replication, is driven by an IPTG-regulated promoter. Growth in medium lacking IPTG produced
a population of cells that contained only a single, unreplicated copy of the chromosome. Cells
were suspended in PYE medium without IPTG to deplete DnaA for 90 min before synchroniza-
tion [15]. The data set analyzed here is for cells that were formadehyde fixed immediately after
synchronization (90 min after IPTG withdrawal).

In the cells overexpressing the hyperactive and non-degradable CtrA variant ctrA(D51E)∆3Ω,
chromosome replication is inhibited by constitutive binding of CtrA close to the origin of replication.
ctrA(D51E)∆3Ω is expressed from an xylose-inducible promoter on the high copy number pJS14
plasmid in the presence of the chromosomal copy of wild-type ctrA. Cells were suspended in PYE
medium plus xylose for 60 min before synchronization [15]. The data set analyzed here is for cells
that were formadehyde fixed at 0 hr post synchronization (60 min after xylose addition).

For both the DnaA-depleted cells and the cells overexpressing ctrA(D51E)∆3Ω, average Hi-C
scores are found to monotonicaly decrease with inter-arm genomic distance until a noise floor is
reached, and to exhibit three distinct scaling regimes (Supplementary Fig. 6C). By contrast, for
the wild-type synchronized swarmer cells from Ref. [12], an increase in average Hi-C scores for the
largest inter-arm genomic distances is observed (Supplementary Fig. 6F). If we train a MaxEnt
model directly on this data, this single-chromosome model will interpet these ori -ter contacts as
inter-chromosomal contacts, resulting in a weaker localization of the ter region (Supplementary
Note 7). Here, we propose a filtering procedure to process the wild-type data such that we can
infer a reliable single-chromosome MaxEnt model, even in the presence of a small fraction of non-
synchronized cells.

5.2 Filter procedure
The goal of our data processing procedure is to filter out the contribution of the newly replicated
ori from the wild-type data set, using the two data sets for replication-inhibited cells as a bench-
mark. The advantages of filtering the wild-type dataset, rather than applying the analysis to the
replication-inhibited cells, are two-fold: First, the experimental procedure to inhibit replication
might affect features of chromosome organization. Second, a filter method allows for the analysis
of data sets for mutants and cells in atypical growth conditions but without replication inhibition,
such as the ∆smc mutant and the rifampicin-treated cells in Ref. [12], using a single chromosome
model. For completeness, the results of applying the MaxEnt method directly to the unfiltered
wild-type data, as well as to the replication-inhibited cell data, are presented in Supplementary

18



Notes 7 and 8. Importantly, we find that all the central conclusions drawn in the Main Text based
on our MaxEnt model trained on the filtered WT data, can also be drawn for a MaxEnt model on
the unprocessed Hi-C data from the replication-inhibited cells.

The procedure to filter out the contribution of the newly replicated ori aims to reproduce three
features observed for replication-inhibited cells: (1) a power law scaling of the average contact
frequencies in regime III (Supplementary Fig. 6C), (2) a proportionality between the mean and
variance of Hi-C scores across inter-arm genomic distance bins (Supplementary Fig. 6D), and (3)
a transition to a noise floor regime for the largest inter-arm genomic distances (Supplementary
Fig. 6C,E). The filtering procedure is as follows. First, the estimated average Hi-C scores for the
single, unreplicated chromosome f single

av (d) are constructed for each inter-arm genomic distance bin,
d, in regime III (Supplementary Fig. 6F, red dashed line) for the wild-type data set (the construction
procedure is detailed in the next paragraph). A rescaling factor µ(d) =

fsingle
av (d)

〈fWT
ij 〉d

is then obtained

between f single
av (d) and the unfiltered wild-type data averages 〈fWT

ij 〉d for a given distance bin d.
This factor µ(d) is subsequently used to rescale individual Hi-C scores of the wild type data set at
each inter-arm genomic distance bin d within regime III. By construction, this rescaling procedure
ensures that the filtered Hi-C scores will not only have the correct estimated average value, but
also the correct estimated variance, preserving the proportionality between average Hi-C scores and
the asscociated variance observed for replication-inhibited cells. Finally, when the average rescaled
contact frequencies fall below the noise floor observed for replication-inhibited cells, Hi-C scores are
determined from the observed noise floor distribution (Supplementary Fig. 6E).

To construct f single
av (d), we need two points a and b on the log-log plot to define the power law

relation associated to regime III. The vertical position of point a is set at 〈fWT
ij 〉d at the onset

of regime III (Supplementary Fig. 6F), beyond which contributions from the newly replicated ori
are assumed to become significant. To position point b, we assume the contributions to 〈fWT

ij 〉d
from inter-chromosomal contacts and the newly replicated ori regions to be equal at the minimum
of 〈fWT

ij 〉d (Supplementary Fig. 6F, dash-dotted line), since this marks the distance beyond which
contributions from the newly replicated ori become dominant. We thus set the vertical position of
point b equal to 〈fWT

ij 〉d/2. Hence, f single
av (d) follows the power law relation consistent with the line

from a to b, extending till point c, where the noise floor level is reached; this noise floor is found to
be at an average Hi-C score of 0.000078 for the replication-inhibited cells(Supplementary Fig. 6F,
point c). Using this procedure, we now also obtain µ(d) between point a and c.

The filter procedure rescales the Hi-C data by µ(d) between points a and c in regime III. Beyond
point c, the noise level is reached, and Hi-C scores are randomly drawn from the observed noise floor
distribution. These noise-floor distributions are constructed by counting all Hi-C scores of the two
replication-inhibited cells with an inter-arm genomic distance above 1.78 Mb, and are consistent
with an underlying Poissonian process (Supplementary Fig. 6E). Importantly, this construction
leaves all Hi-C scores in scaling regimes I and II (Supplementary Fig. 6C) unchanged, and filters
wild-type Hi-C scores in regime III. The resulting filtered Hi-C scores are shown in Supplementary
Fig. 6G and Supplementary Fig. 6H. Finally, we applied the same data processing procedure to two
other replicas of the WT experiments, as shown in Supplementary Fig. 7.

Our data processing procedure ensures that the averages and variances of the contact frequencies
per inter-arm genomic distance bin behave as observed for replication-inhibited cells. However, it
is possible that additional structure is present in the replication-inhibited data, which is lost in
the filtered wild-type data during this data processing procedure. To test this, we compute the
correlation between Hi-C contact scores within each inter-arm genomic distance bin, between (1)
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the filtered wild-type data set, (2) the DnaA-depleted cells and (3) ctrA(D51E)∆3Ω overexpressing
cells. These correlations are a measure for the similarities between the data sets for each inter-
arm genomic distance bin. A correlation of 1 corresponds to two data sets being identical up to a
proportionality constant, whereas a correlation of 0 corresponds to the variations within a genomic
distance bin being linearly independent between data sets. At the onset of regime III (point a), we
find significant correlations between the three datasets (Supplementary Fig. 6I). Importantly, these
correlations do not significantly differ between each of the three pairs of data sets, indicating the
presence of similar structure in the filtered wild-type data set and the replication-inhibited data
sets. For larger inter-arm genomic distances, the correlations between data sets go to zero, as would
be expected at the onset of the noise floor regime (point c).

I II III

D

G H I

E F

C

a

a

b c

c
c

c
ctrA(D51E)Δ3Ω

DnaA
depleted Filtered WT
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Supplementary Figure 6 (previous page): Hi-C data processing procedure A Wild-
type contact frequencies from [12] on a linear scale (upper left triangle) and a logarithmic scale
(bottom right triangle). B Contact frequencies for replication-inhibited swarmer cells directly
after synchronization. Upper left triangle: DnaA-depleted cells; lower right triangle: cells over-
expressing ctrA(D51E)∆3Ω. Both datasets are taken from [15]. C Hi-C score versus inter-arm
genomic distance for DnaA depleted cells (light blue dots). Dark blue dots: averages per inter-
arm genomic distance bin. Orange dots: averages per inter-arm genomic distance bin for cells
overexpressing ctrA(D51E)∆3Ω. Three distinct scaling regimes are identified, indicated by regions
I-III. D Variance of Hi-C scores within an inter-arm genomic distance bin versus the average Hi-C
score of this genomic distance bin for DnaA-depleted cells (blue line) and the cells overexpressing
ctrA(D51E)∆3Ω (orange line). E Probabilities of Hi-C score occurances in the noise floor regime,
taken over pairs of genomic regions with an inter-arm genomic distance of at least 1.78 Mb. Blue
line: DnaA-depleted cells; orange line: cells overexpressing ctrA(D51E)∆3Ω; black dots: averages
per Hi-C score bin; dashed line: distribution for a poissonian process with a mean equal to the
average of the two data sets and λ = 4; dash-dotted line: the same for λ = 5. F Hi-C score versus
inter-arm genomic distance for wild-type cells (grey dots). Black dots: average per inter-arm ge-
nomic distance bin. Dash-dotted line: horizintally aligned with the minimum point of the average
Hi-C scores. Red dashed line: f single

av (d) (from point a to c) and the noise floor beyond point c
(see Supplementary text for more details). G Wild-type Hi-C scores after the filtering procedure
is applied (grey dots) together with the averages per inter-arm genomic distance bin (black dots).
H Wild-type Hi-C score map after the filtering procedure has been applied. Hi-C scores have been
rescaled in the regime between the black and the grey lines. The noise floor region is enclosed withn
the grey lines, where Hi-C scores have been randomly drawn from the distribution in E. I Correla-
tions of contacts within an inter-arm genomic distance bin, between (1) the filtered wild-type data
set, (2) the DnaA-depleted cells and (3) ctrA(D51E)∆3Ω overexpressing cells.

6 Comparison of filter procedure for wild-type replicates
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Supplementary Figure 7: Comparison of data filtering procedure for wild-type repli-
cates A Unfiltered Hi-C scores as a function of inter-arm genomic distance for the three wild-type
replicates published in [12]. The onsets of scaling regimes II and III as introduced in Supplementary
Notes 5 are indicated by black vertical lines. B Hi-C scores versus inter-arm genomic distance for
the three replicates after the filter procedure has been applied. C Upper left: Hi-C scores of the
NcoI dataset before the filter procedure is applied. Lower right: Hi-C scores of the same data set
after the filter procedure has been applied. D Upper left: Hi-C scores of the BglII replicate 2
dataset before the filter procedure is applied. Lower right: Hi-C scores of the same data set after
the filter procedure has been applied.

7 Results for MaxEnt model trained on unfiltered Hi-C data

To further investigate the effect of this data processing on the model results, we reran our analysis
directly on the unprocessed Hi-C data. We find that the localizations of genomic regions (Supple-
mentary Fig. 9), the orientational and radial correlations in positions of regions (Supplementary
Fig. 10) and the local structure (Supplementary Fig. 11) are largely unaffected. The most significant
difference is found in the localization of the ter region, which is now found to move throughout the
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ori half of the cell in a minority of states (Supplementary Fig. 9). This movement of the terminus
has an effect on the long-axis anti-correlations between the ori and ter regions (Supplementary
Fig. 10), resulting in a modified long-axis correlation pattern compared to the filtered Hi-C data
(Main Text Fig. 3B). However, if conditional long-axis correlations are computed, conditioned on
the ori region (here defined as 3.75 Mb - 0.25 Mb) being in one half of the cell, and the ter region
(here defined as 1.75 Mb - 2.25 Mb) being in the other half, the pattern of anti-correlations between
the two juxtaposed chromosomal arms is restored (Supplementary Fig. 10).

A B

Supplementary Figure 8: Results for Main Text Fig. 1, re-analyzed for the unfiltered
Hi-C data of replicate 1 from [12]. A Comparison between experimental contact frequencies
f exptij (upper left corner, adapted from Ref. [12]) and contact frequencies obtained from our inferred
MaxEnt model fmodel

ij (lower right corner). B Associated inferred effective interaction energies εij
(lower right corner, white regions indicate εij →∞) together with a scatter plot of f exptij vs. fmodel

ij

(inset).
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Supplementary Figure 9: Results for Main Text Fig. 2, re-analyzed for the three
replicates from [12]. A Black solid line: average of the three data sets. Grey area: standard
deviation of the three replicates, centered at the average. B Solid lines: averages of the three
replicates. Shaded areas: standard deviations of the three replicates, centered at the average. Bars:
experimental data from microscopy experiments (adapted from [3]). To indicate experimental
variability, the solid/transparent bars indicate the minimum/maximum measured by two different
methods: FROS or FISH.
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Supplementary Figure 10: Two-point correlations for the three replicates from [12].
Plots A and B are for the Ncol replicate. A Upper left corner: two-point correlations in the
radial positions between genomic regions. Lower right corner: two-point correlations in angular
orientations around the long axis. B Upper left corner: two-point correlations between long-axis
positions of genomic regions. Lower right corner: conditional long-axis correlations, conditioned on
the ori region (here defined as 3.75 Mb - 0.25 Mb) being in one half of the cell, and the ter region
(here defined as 1.75 Mb - 2.25 Mb) being in the other half. C and D: same as A and B, for BglIl
replicate 1. E and F: same as A and B, for BglIl replicate 2.
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A B

Supplementary Figure 11: Results for Main Text Fig. 5, re-analyzed for the three
replicates from [12]. A The local chromosome extension δi as a function of genomic position.
Black solid line: average of the three replicates. Grey areas: standard deviation of the three
replicates, centred at the average. B Localization information per genomic region in bits. Black
solid line: average of the three replicates. Grey areas: standard deviation of the three replicates,
centred at the average.
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8 Results for MaxEnt model trained on replication-inhibited
cells

8.1 DnaA-depleted cells

A B

Supplementary Figure 12: Results for Main Text Fig. 1, re-analyzed for the DnaA-
depleted cell data set from [15]. A Comparison between experimental contact frequencies
f exptij (upper left corner, adapted from Ref. [15] and contact frequencies obtained from our inferred
MaxEnt model fmodel

ij (lower right corner). B Associated inferred effective interaction energies εij
(lower right corner, white regions indicate εij →∞) together with a scatter plot of f exptij vs. fmodel

ij

(inset).
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Supplementary Figure 13: Results for Main Text Fig. 2, re-analyzed for the DnaA-
depleted cell data set from [15]. A Black solid line: average long-axis positions of genomic
regions for DnaA-depleted cells predicted by the MaxEnt model. B Solid lines: distribution of
long-axis positions of chromosomal loci (blue: ori, red: pilA, green: pleC, orange: podJ ) for
DnaA-depleted cells predicted by the MaxEnt model, , together with previous experimental data
from microscopy experiments (bars, adapted from [3]). To indicate experimental variability, the
solid/transparent bars indicate the minimum/maximum measured by two different methods: FROS
or FISH.

A BRadial

Angular

Supplementary Figure 14: Results for Main Text Fig. 3, re-analyzed for the DnaA-
depleted cell data set from [15]. A Upper left corner: two-point correlations in the radial
positions between genomic regions. Lower right corner: two-point correlations in angular orien-
tations around the long axis. B Two-point correlations between long-axis positions of genomic
regions.

8.2 Cells overexpressing ctrA(D51E)∆3Ω
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Supplementary Figure 15: Results for Main Text Fig. 5, re-analyzed for the DnaA-
depleted cell data set from [15]. A Black solid line: the local chromosome extension δi as a
function of genomic position for DnaA-depleted cells as predicted by the MaxEnt model. B Black
solid line: localization information per genomic region for DnaA-depleted cells as predicted by the
MaxEnt model.

A B

Supplementary Figure 16: Results for Main Text Fig. 1, re-analyzed for the
ctrA(D51E)∆3Ω overexpressing cell data set from [15]. A Comparison between experi-
mental contact frequencies f exptij (upper left corner, adapted from Ref. [15] and contact frequencies
obtained from our inferred MaxEnt model fmodel

ij (lower right corner). B Associated inferred ef-
fective interaction energies εij (lower right corner, white regions indicate εij →∞) together with a
scatter plot of f exptij vs. fmodel

ij (inset).
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Supplementary Figure 17: Results for Main Text Fig. 2, re-analyzed for the
ctrA(D51E)∆3Ω overexpressing cell data set from [15]. A Black solid line: average
long-axis positions of genomic regions for ctrA(D51E)∆3Ω overexpressing cells predicted by the
MaxEnt model. B Solid lines: distribution of long-axis positions of chromosomal loci (blue: ori,
red: pilA, green: pleC, orange: podJ ) for ctrA(D51E)∆3Ω overexpressing cells predicted by the
MaxEnt model, together with previous experimental data from microscopy experiments (bars,
adapted from [3]). To indicate experimental variability, the solid/transparent bars indicate the
minimum/maximum measured by two different methods: FROS or FISH.

A BRadial

Angular

Supplementary Figure 18: Results for Main Text Fig. 3, re-analyzed for the
ctrA(D51E)∆3Ω overexpressing cell data set from [15]. A Upper left corner: two-point
correlations in the radial positions between genomic regions. Lower right corner: two-point corre-
lations in angular orientations around the long axis. B Two-point correlations between long-axis
positions of genomic regions.
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Supplementary Figure 19: Results for Main Text Fig. 5, re-analyzed for the
ctrA(D51E)∆3Ω overexpressing cell data set from [15]. A Black solid line: the local chro-
mosome extension δi as a function of genomic position for DnaA-depleted cells as predicted by the
MaxEnt model. B Black solid line: localization information per genomic region for DnaA-depleted
cells as predicted by the MaxEnt model.
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9 Analysis of genomic Super Domains

9.1 Super Domain definition and long-axis exclusion analysis
To define genomic Super Domains (SuDs), we first choose a cluster radius r. For each genomic
region i, we consider a specific configuration of the chromosome and then calculate the length ` of
the set of subsequent genomic regions (in both directions along the chromosome) that lie within the
radius r from the position of genomic region i (illustrated by the black line in Main Text Fig. 4A).
We observe that for each configuration of the chromosome, the genomic regions separate into a
small number of domains, indicated by the blue and red areas in Main Text Fig. 4A. We identify a
domain with each local maximum in ` (indicated by L1− L3 and R1−R3 in Main Text Fig. 4B);
the peak location represents the genomic region at the center of a SuD and the peak value indicates
the number of genomic regions within the domain.

To determine a natural choice for r, we perform a parameter sweep over r and consider the
change in the average value of ` with r: d¯̀/dr. We find that for the MaxEnt models on wild-type,
rifampicin-treated and ∆smc cells, d¯̀/dr initially increases with r, and then becomes approximately
constant (Supplementary Fig. 20). For models unconstrained by Hi-C data (the ‘random polymer’,
and the ‘tethered random polymer’), such a transition to a plateau regime is not present. We
interpret the transition to this plateau regime in the MaxEnt models as the genomic length scale
at which the linear organization of the chromosome along the cell length starts dominating local
fluctuations of loci(Main Text Fig. 2A&B). We take the crossover point between these two regimes
to be r = 264 nm, indicated by the grey dashed line in Supplementary Fig. 20.

To quantify the degree of long-axis exclusion between SuDs, the distribution of long-axis posi-
tions of the genomic regions contained in each domain is computed (Main Text Fig. 4B). A long-axis
position is assigned to a Super Domain based on the highest-occupied long axis coordinate of this
cluster. The degree of overlap of long-axis positions is then computed for randomly paired left and
right arm configurations and for correctly matched pairs.

9.2 Super Domain properties
To quantify the distribution of SuD sizes and locations, we determined the average number of SuDs
on each chromosomal arm, the average SuD size across genomic regions and the distribution of SuD
center locations across the genome. The results are shown in Supplementary Figure 21. An illus-
tration of the expected link between SuDs and the inferred anticorrelations between chromosomal
arms is shown in Supplementary Figure 22
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Supplementary Figure 20: Super Domain cluster analysis. Derivative of the average cluster
size as a function of the cutoff radius r, for wild-type cells (black), rifampicin-treated cells (blue),
a ∆smc mutant (orange), a tethered random polymer (dash-dotted line) and a random polymer
(dashed line). The vertical dashed line indicates the chosen cutoff value.

A

D E

B C
Wild-type Rifampicin treated Δsmc

Supplementary Figure 21: Super Domain properties. Distribution of the number of Super
Domains across configurations for the left arm (blue) and the right arm (orange) for wild-type cells
(A), rifampicin-treated cells (B) and a ∆smc mutant (C). D Average size of the SuD a genomic
region is part of, given that it is part of a SuD, as a function of genomic position. E Probability of
a cluster center being within 50 kb of a genomic region, as a function of genomic position.
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Supplementary Figure 22: Illustration of SuDs inducing anticorrelations between
chromosomal arms. In this illustration, genomic regions r1 and r2 lie on different chromosomal
arms but have the same average long-axis position (dashed line). The SuD that region r1 is part
of, has a tendency to avoid the SuD that region r2 is part of (given that both regions are part of a
SuD). This is expected to induce anticorrelations in the long-axis positions of regions r1 and r2.
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10 Overlap analysis between local chromosome extension peaks
and highly transcribed genes

To investigate the connection between peaks in the local extension profile and the locations of highly
transcribed genes, we first construct a (nonlinear) trend line through the chromosome extension
profile. This line is constructed by repeatedly applying a Gaussian smoothing filter over the data,
incorporating periodic boundary conditions. The Gaussian smoothing is implemented by repeatedly
applying a moving average over groups of 3 subsequent genomic regions. We find that 250 repeats
to result in a satisfactory balance between smoothing out local peaks and keeping the larger-scale
trend (grey line in Supplementary Figure 23A). Next, we select the subset of local extension peaks
that lie a factor α above the trend line. We perform a sweep over α and calculate for each choice of
α the fraction of incorporated peaks that coincide with the locations of highly transcribed genes.
Additionally, for each α we simulate a number of randomly positioned peaks equal to the number
of incorporated peaks. From this simulation, we calculate the expected fraction of overlap and the
95% confidence intervals.

We find that the fraction of overlap is significantly higher than expected for randomly positioned
local extention peaks, if up to the 9 highest peaks are considered (Supplementary Figure 23B). If
more peaks are incorporated, the fraction of overlap gradually decays to the level expected for
random positions. Repeating this analysis for the right (0-2 Mb) and left (2-4 Mb) chromosomal
arms seperately, we find that the fraction of overlap is only significantly higher than a random guess
for the highest peaks of the right arm (Supplementary Figure 23C). For the left arm, by contrast,
the fraction of overlap is close to the value expected by random guess for all values of α.
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Supplementary Figure 23: Analysis of the degree of overlap between peaks in local
chromosome extension and the locations of highly transcribed genes. A Wild-type lo-
cal chromosome extension profile (black line), together with a trend line obtained from Gaussian
smoothing (grey line) and the locations of highly transcribed genes (HTGs) (vertical dashed lines).
B Green solid line: fraction of local extension peaks that coincide with the location of a highly tran-
scribed gene, as a function of the cutoff factor α. The dashed line indicates the expected fraction
of overlap for randomly chosen locations of peaks, the light green area indicates the 95% confidence
interval around this expected fraction. The grey line indicates the number of peaks included for a
given cutoff factor (indicated on the right axis). C The same analysis as in B, performed separately
for the right (0-2 Mb, blue) and left (2-4Mb, red) chromosomal arms. D,E The same analyses as
in B and C, using only the positions of HTGs located on the forward strand of the chromosome.
F,G The same analyses as in B and C, using only the positions of HTGs located on the reverse
strand of the chromosome.
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11 Relation between Hi-C scores and average distance and
distance correlations

Previous modelling approaches for the C. crescentus chromosome used average distance based
models to find typical chromosome configurations [13, 14]. In these approaches, an experimentally
determined average linear relation between intra-arm genomic distances and average spatial dis-
tances was used to derive a functional relation between Hi-C contact scores and average spatial
distances. Our MaxEnt model does not require this assumption, instead we can use the model to
predict the relation between Hi-C scores and average distances. Interestingly, our MaxEnt model
predicts an approximately linear relation between Hi-C scores and average distances, but with sig-
nificant deviations from this average trend for individual pairs of genomic regions (Supplementary
Figure 25A). Moreover, there are substantial deviations from a linear trend for small and large
genomic distances. Finally, we also observe significant variations around an average trend for Hi-C
scores versus spatial distances (Supplementary Figure 25B).

In addition to these variations in average spatial distances, we also find significant correlations
in deviations from these averages for individual configurations throughout the entire chromosome
(Supplementary Figure 25). In previously used approaches [13, 14] such correlations could not be
taken into account, which could explain the difference in predictions from our MaxEnt model.

A B

Supplementary Figure 24: Variations of average distance statistics between individual
pairs of genomic regions. A Average spatial distance versus genomic distance predicted by the
MaxEnt model. B Average spatial distance versus the logarithm of the Hi-C score predicted by the
MaxEnt model.
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Supplementary Figure 25: Correlations between distances of all pairs of genomic
regions, and the distance between three sample pairs. The chosen sample pairs are: A
genomic regions at (1.0Mb, 1.1Mb), B genomic regions at (1.55Mb, 2.5Mb), C genomic regions at
(3.0Mb, 3.5Mb).

12 A global rotation does not produce the observed long-axis
correlation pattern

To illustrate the features of a long-axis correlation map that would be induced by a global rotation,
we simulated the effects of such rotational fluctuations. Specifically, we took a set of configurations
from our model, and generated an ensemble of new configurations by performing a rotational
fluctuation with a random magnitude of all genomic regions along the polymers axial coordinate
within each configuration. The magnitude of this rotation was drawn from a zero-average normal
distribution, with the standard deviation σ treated as a free parameter. For this new ensemble
of configurations, including global rotation fluctuations, the long-axis correlations were calculated
between all genomic regions. The resulting long-axis correlation maps for this rotational model for
four choices of the standard deviation are shown in Supplementary Figure 26.

We see that for σ = 0.2Mb, the magnitude of correlations in the rotation model (Supplementary
Figure 26A, upper left) is comparable to those observed in the original MaxEnt model (Main Text
Fig. 3B, upper left). Importantly however, the anticorrelations in the rotation model are present
between all genomic regions on opposite stretches of the chromosome. Thus, in this case, we see
anti-correlation both between opposing genomic regions on the left and right chromosome arm and
between opposing genomic regions near ori and ter. This is in contrast to the pattern observed in
the original MaxEnt model, where the anticorrelations are only present between juxtaposed genomic
regions lying on opposite sides of the left and right chromosome arms and opposing genomic regions
near ori and ter exhibit positive correlations (Main Text Fig. 3B, upper left). For larger values of
σ, the anticorrelation pattern in the rotation model initially remains qualitatively the same as for
low σ, but the magnitude of correlations increases (Supplementary Figure 26A, lower right). For
even larger values of σ, the long-axis correlation pattern starts to qualitatively change: the region
of anticorrelation between ori and ter becomes larger (Supplementary Figure 26B). Furthermore,
the magnitude of anticorrelations is much higher for these values of σ than observed in the original
MaxEnt model.
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Supplementary Figure 26: Long-axis correlations for chromosome configurations with
global rotational fluctuations. A) Upper left: long-axis correlations for model configurations
with global rotational fluctuations along the polymer axis, drawn from a normal distribution with
σ=0.2Mb. Lower right: the same for σ=0.3Mb. B) Upper left: same for σ=0.7Mb, lower right:
same for σ=1Mb.

13 MaxEnt models for ∆smc cells and rifampicin-treated cells
We apply the same approach to perform a Hi-C data analysis and MaxEnt model inference for
rifampicin-treated cells and ∆smc cells. The prepossessing of Hi-C data is shown in Figs. 27 and 28,
and the corresponding MaxEnt models are shown in Figs. 29 and 30. We show the results for the
long-axis localization in Supplementary Figure 31 together with previously published experimental
data, and various correlation functions are depicted in Supplementary Figure 32.

A B

Supplementary Figure 27: Hi-C scores for rifampicin-treated cells before and after
correction. Hi-C scores of rifampicin-treated cells before correction (upper left triangle), and
after correction (lower right triangle) on a linear scale (A) and a logarithmic scale (B).
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Supplementary Figure 28: Hi-C scores for ∆smc cells before and after correction.
Hi-C scores of ∆smc cells before correction (upper left triangle), and after correction (lower right
triangle) on a linear scale (A) and a logarithmic scale (B).

A B

Supplementary Figure 29: Maximum entropy model inferred for rifampicin-treated
cells. A Comparison between experimental contact frequencies f exptij (upper left corner, adapted
from Ref. [12]) and contact frequencies obtained from our inferred MaxEnt model fmodel

ij (lower right
corner). B Inferred effective interaction energies εij (lower right corner) together with scatterplot
of f exptij vs. fmodel

ij (inset).
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Supplementary Figure 30: Maximum entropy model inferred for ∆smc cells. A com-
parison between experimental contact frequencies f exptij (upper left corner, adapted from Ref. [12])
and contact frequencies obtained from our inferred MaxEnt model fmodel

ij (lower right corner). B
Inferred effective interaction energies εij (lower right corner) together with scatterplot of f exptij vs.
fmodel
ij (inset).
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Supplementary Figure 31: Distribution of long-axis positions for ∆smc and rifampicin-
treated cells. Comparison between inferred long-axes localization distributions for wild-type cells
(dashed lines) and ∆smc mutants (A, solid lines) and rifampicin-treated cells (B, solid lines).
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Supplementary Figure 32: Radial and angular correlations for ∆smc and rifampicin-
treated cells. Correlations in the radial positions (upper left corner) and orientations around the
long axis (lower right corner) between all pairs of genomic regions, for rifampicin-treated cells (A)
and ∆smc mutants (B).
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14 Estimates of localization information
To compute the localization information for a genomic region, we first calculate the average occupa-
tion P s,i of each unit cell s for each genomic region i during a forward simulation. The localization
entropy Siloc in bits of site i is then calculated by [16]

Siloc = −
∑

s

P s,i log2 P
s,i. (S8)

The positional information is calculated by subtracting Siloc from the localization entropy of a flat
distribution.

A possible issue with calculating positional information within a coarse-grained model, is that
the obtained value is an underestimate. This is the case if the localization is confined to a region
approximately the size of a unit cell. Since we find the localizations of genomic regions to be
significantly larger than this (Main Text Fig. 2B), we do not expect our estimate to be sensitive to
the course graining scale.

15 Local extension interval and origin of ori and ter exten-
sions

Supplementary Figure 33: Change of local extension with genomic distance Local
extensions, defined as the average distance between the nth nearest neighbours of a genomic region,
shown for n = 1 up to n = 4. The value of n = 2 is shown in the main text as its features are more
prominent than those for n = 1, but less smoothened out than for higher values of n. The locations
of the peaks are largely identical between these different choices for n.

A possible explanation for the low local extension of the ori and ter regions, would be the
turning around of the average long-axis positions at these regions. As the local extension of a
region is calculated as the average geometric distance between its nth neighbours, such an effect
could cause the observed low local extension. To test if this is the case, we make use of the presence
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of variations in the positions of the ori and ter ; for a subset of states, these will not be the furthest
regions along the long axis. If the inferred low local extension is indeed due to a ‘turning around’
of the chromosome at the ori and ter, the local extension would be expected to be higher for this
subset of states.

Taking a conditional average of the local extension of the ori over states where the previous 5
or subsequent 5 genomic regions all have an equal or lower long-axis position than the ori region,
we find an increase of only 2% compared to an average over all states. For the ter region, we find
the same statistics (2% increase if either set of 5 neighboring regions has a higher or equal long-axis
position than the ter). Thus, the inferred local density of the ori and ter regions reflect the intrinsic
extensions of these regions, rather than artefacts due to a turning around of the average long axis
positions at these sites.

16 Linear spatial organization of a polymer with juxtaposed
chromosomal arms

To investigate organizational features of a polymer with juxtaposed arms, but no additional struc-
ture, we derive a MaxEnt model taking average long-axis positions as the only constraints. This
model we term the linearly organized polymer model. To enable a direct comparison to MaxEnt
models learned from Hi-C data, we take the average long-axis positions predicted from these models
and use these as constraints for the linearly organized polymer. This allows us to investigate to
what extent features of the MaxEnt model based on Hi-C data are due to its linear organization
throughout the cell. For the linearly organized polymer model, the entropy functional takes the
following form:

S̃ =−
∑

{r}
P ({r}) lnP ({r})−

∑

i

λi

(∑

{r}
P ({r})zi(r) −〈zi〉cons

)
− λ0

(∑

{r}
P ({r})− 1

)
. (S9)

Here, zi(r) denotes the long-axis position of region i in configuration r, and 〈zi〉cons denotes the
imposed average long-axis position of region i. Extremizing this entropy functional and solving for
P ({r}) yields

P ({r}) =
1

Z
exp

[
−
∑

i

λizi(r)

]
, (S10)

with Z = exp[1 + λ0] as in the main text. The solutions for λi were found with an iterative Monte
Carlo algorithm similar to the one presented in 3, where the update of λi at each iteration of the
inverse algorithm is now proportional to 〈zi〉cons−〈zi〉model. The resulting organizational properties
of the linearly organized polymer model are presented in Supplementary Figure 34.
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Supplementary Figure 34: Model results for the linearly organized polymer model. A)
Average localization profile used as a constraint of the linearly organized polymer (line) together with
the experimental FISH [3] data shown in Main Text Fig. 2A. (dots). B)) Radial correlations (upper
left triangle) and angular correlations (lower right triangle) for the linearly organized polymer. C))
Long-axis correlations for the linearly organized polymer. D)) Results for the local extension as
in Main Text Fig. 5A, together with those for the linearly organized polymer. E)) Results for the
localization information as in Main Text Fig. 5B, together with those for the linearly organized
polymer.
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17 Independence of results for modified MaxEnt models
To test if our results are robust under minor model modifications, we inferred two alternative
MaxEnt models: one with a slightly curved confinement, and one with a tethered ori. The former
incorporates the typically observed C. crescentus cell shape, the latter enforces the experimentally
measured long-axis distribution of the position of the ori locus. The inferred models are shown in
Figs. 36 and 37.

2.2μm

0.63μm

Supplementary Figure 35: Top view of the curved cell shape used for analyses pre-
sented in this Note. A lattice spacing corresponds to 88nm, as in the Main Text model.

A B

Supplementary Figure 36: Results for Main Text Fig. 1, re-analyzed for a model with
tethered ori. A Comparison between experimental contact frequencies f exptij (upper left corner,
adapted from Ref. [12] and contact frequencies obtained from our inferred MaxEnt model fmodel

ij

(lower right corner). B Associated inferred effective interaction energies εij (lower right corner,
white regions indicate εij →∞) together with a scatter plot of f exptij vs. fmodel

ij (inset).
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Supplementary Figure 37: Results for Main Text Fig.1, re-analyzed for a model with
a curved cell A Comparison between experimental contact frequencies f exptij (upper left corner,
adapted from Ref. [12] and contact frequencies obtained from our inferred MaxEnt model fmodel

ij

(lower right corner). B Associated inferred effective interaction energies εij (lower right corner,
white regions indicate εij →∞) together with a scatter plot of f exptij vs. fmodel

ij (inset).

Tethered ori Curved cellA B C
pilA

(3.17 Mb)
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(0 Mb)

pleC
(2.69 Mb)

podJ
(2.25 Mb) ter

Main text model

Supplementary Figure 38: Results for Main Text Fig. 2, re-analyzed for a model with
a tethered ori and a curved cell. A Average scaled long-axis position predicted from MaxEnt
models (solid lines) inferred for various MaxEnt models, including the model described in the main
text (black), a model for a curved cell (green), and a model with a tethered ori (red), together with
results from microscopy experiments (adapted from [3]). B Solid lines: localizations for a MaxEnt
model with a tethered ori. Dashed lines: Maxent model results as presented in Main Text Fig. 2.
C Solid lines: localizations for a MaxEnt model with a curved cell. Dashed lines: Maxent model
results as presented in Main Text Fig. 2.
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A B

Supplementary Figure 39: Long-axis correlations and average distances for Maxent
models with a curved cell and a tethered ori. A Long-axis correlations for a Maxent model
with a curved cell (top left) and a tethered ori (bottom right). B Average distances for a Maxent
model with a curved cell (top left) and a tethered ori (bottom right).

A B

Main text model

Main text model

Supplementary Figure 40: Results for Main Text Fig. 5, re-analyzed for a model with
a tethered ori and a curved cell. A The local chromosome extension δi as a function of genomic
position. Model prediction are shown for the model described in the main text (black), a model
for a curved cell (green), and a model with a tethered ori (red). B Localization information per
genomic region in bits for the model described in the main text (black), a model for a curved cell
(green), and a model with a tethered ori (red).
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2.2 Epilogue: Analytical contact frequencies for a lattice polymer 73

2.2 Epilogue: Analytical contact frequencies for a lattice
polymer subject to pairwise interaction energies

During the development of the Monte Carlo algorithm used in this chapter, we also derived
analytical expressions for contact frequencies of a lattice polymer subject to pairwise inter-
actions. These analytical expressions proved useful in validating the Monte Carlo algorithm
by checking if the forward algorithm converged to the correct results for a given set of input
energies. We present the developed analytics in this chapter epilogue.

Contact frequencies for a free circular lattice polymer in 2D

We consider a circular polymer in 2 dimensions on a square lattice. We can construct such
a polymer by starting on a lattice site which we call the origin. From there, a series of N
consecutive moves are made, where each move can be in four directions: up (u), down (d),
left (l) and right (r). To ensure that the polymer forms a loop (i.e. that the last line returns
at the origin again), the number of up moves must equal the number of down moves, and the
number of right moves must equal the amount of left moves. Furthermore, it must hold that
Nu + Nd + Nr + Nl = N , with Nu, Nd, Nr, Nl representing the total number of up, down,
right and left moves respectively.

We now derive an expression for the number of possible polymers we can construct in this
way. To do this, we first realize that for a polymer with a number of up moves given by Nu

has

• Nu down moves
• N

2 −Nu left moves
• N

2 −Nu right moves.

When the number of up moves Nu is specified, the number of down, left and right moves are
thus automatically determined as well. The question is then in how many ways these moves
can be ordered.

Firstly, the number of ways we can distribute Nu up moves over N total moves, is given
by
(
N
Nu

)
. The number of down moves (also given by Nu) we can then distribute over the

remaining N − Nu moves in
(
N−Nu

Nu

)
ways. Subsequently, the N

2 − Nu left moves we can

distribute in
(N−2Nu

N
2
−Nu

)
ways. The places of the right-moves are uniquely determined after this.

Putting this together, the total number of configurations (or multiplicity) Mtot(N) of our
polymer of length N is given by

Mtot(N) =

N/2∑

Nu=0

(
N

Nu

)
×
(
N −Nu

Nu

)
×
(
N − 2Nu
N
2 −Nu

)
. (2.1)

Evaluating this expression, we obtain

Mtot(N) =

N/2∑

Nu=0

N !

Nu! (N −Nu)!
× (N −Nu)!

Nu! (N − 2Nu)!
× (N − 2Nu)!

(N2 −Nu)! (N2 −Nu)!
(2.2)

=

N/2∑

Nu=0

N !

(Nu! )2((N2 −Nu)! )2
. (2.3)
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Evaluating the summation using Mathematica, the following expression is obtained:

Mtot(N) =
4N ((1+N

2 − 1)! )2

π((N2 )! )2
. (2.4)

We now consider the subset of states of the system where there is an overlap between two
sites that are a distance of d sites apart, as measured along the filament. This subset we can
consider as comprising two circular polymers; one of length d and one of length N − d. The
total number of states Mo

tot of this system is equal to the product of the number of states of
each of these to smaller loops. It is thus given by

Mo
tot(N, d) =

4(N−d)((1+N−d
2 − 1)! )2

π((N−d2 )! )2
× 4d((1+d

2 − 1)! )2

π((d2)! )2
. (2.5)

If we now divide equation (2.5) by equation (2.4), we obtain the fraction of time two sites at
a distance of d overlap, i.e. their contact frequency. This contact frequency fc(N, d) is given
by

fc(N, d) =
((N−d2 − 1

2)! )2 × ((d2 − 1
2)! )2 × ((N2 )! )2

π((N−d2 )! )2 × ((d2)! )2 × ((N2 − 1
2)! )2

. (2.6)

We can approximate this expression using the fact that
(x− 1

2
)!

x! can be expanded as
√

1
x −

( 1
x

)3/2

8 + ... at x→∞. The expression for the contact frequency then becomes

fc(N, d) ≈ 1

π

2N

d(N − d)
. (2.7)
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Contact frequencies for a circular polymer with one pair of sites (i, j) with
an interaction energy

Figure 2.1: A polymer with one pair of sites i, j with an interaction energy Eij .

Consider a circular polymer on a lattice with one pair of sites, i and j, that upon overlapping
result in an energy gain of Eij . To derive an expression for the contact frequencies of this
polymer, we first write down the partition function. Each of the configurations of the polymer
with an overlap between sites i and j has a weight of eEij , whereas all other conformations
have a weight of 1 (corresponding to a state with zero energy). We can thus write for the
partition function

Z = fc(N, dij)e
Eij + (1− fc(N, dij)). (2.8)

Here, dij is the shortest distance along the polymer between sites i and j. Note that we use
the fraction of states with an overlap between i and j, and not the total number of states,
as a prefactor for the weight eEij . We use this rather than the total number of states to
facilitate computation, which leaves expectation values unchanged as long as this replacement
is consistently applied.
We now compute the contact frequencies for a few categories of monomer pairs.

Contact frequencies between sites i and j

To get the contact frequencies between sites i and j, we want to single out exactly those states
with a weight of eEij . This frequency P (Cij) is thus given by

P (Cij) =
1

Z
fc(N, dij)e

Eij . (2.9)

Contact frequencies between two sites that are on the same side of i and j

Figure 2.2: A polymer with one pair of sites i, j with an interaction energy Eij where we consider the contact frequency
between two sites k, l that are on the same side of i and j.
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For two sites k and l that are on the same side of sites i and j (i.e. it is possible to walk
from site k to l along the polymer without coming across site i or j) we can distinguish the
configurations in two classes: 1) those with a contact between i and j and 2) those without
this contact. Weighing each of these cases by the prefactor obtained in (2.9) we obtain

P (Ckl) = P (Cij)× P (Ckl|Cij) + (1− P (Cij))× P (Ckl|NCij). (2.10)

Here, P (Ckl|Cij) represents the contact frequency between sites k and l, given that sites i
and j are in contact. It can be calculated using the expression for fc(N, dij) given in equation
(2.6) - with the adjustment that for N we now take the length of the loop that includes sites
k and l and is enclosed by sites i and j. For dij we then take the distance between i and j
within this loop.
Similarly, P (Ckl|NCij) represents the contact frequency between sites k and l given that sites
i and j are not in contact. This quantity can be calculated as

P (Ckl|NCij) = fc(N, dkl)
1− fc(N ′, d′ij |Ckl)

1− fc(N, dij)
(2.11)

Here, fc(N, dkl) represents the contact frequency between sites k and l for a free circular
polymer (without interaction energies). This quantity has a correction factor to account for
the fact that we are only considering conformations in which there is no contact between
sites i and j. Within this correction factor, the term fc(N

′, d′ij |Ckl) represents the contact
frequency between sites i and j for a free circular polymer given that sites k and l are in
contact. N ′ then represents the length of the loop that includes sites k and l and is enclosed
by sites i and j. The term d′ij then represents the distance between i and j within this loop.

This correction factor can be derived as follows. The quantity P (Ckl|NCij) can be calcu-
lated as

P (Ckl|NCij) =
M(Ckl)−M(Ckl, Cij)

Mtot −M(Cij)
(2.12)

Here, M(Ckl) is the multiplicity of all states that include a contact between sites k and l,
M(Ckl, Cij) is the multiplicity of all states that include a contact between sites k and l and
between sites i and j. The logic here is that we first calculate the total number of states,
and then subtract the number of states in which there is a contact between i and j. This
expression can be rewritten to

P (Ckl|NCij) =
M(Ckl)

Mtot
×

1− M(Ckl,Cij)
M(Ckl)

1− M(Cij)
Mtot

(2.13)

This expression is the same as equation (2.11), if the contact frequency notation is used.
Note that for sufficiently large distances between i and j along the polymer, we can safely
approximate P (Ckl|NCij) ≈ fc(N, dkl).

Contact frequencies between two sites that are on opposite sides of i and j

Calculating the contact frequencies for two sites that are on opposite sides of i and j is ana-
lytically highly nontrivial. For two sites k and l that are both close to sites i and j we can
however make an approximation. As long as for both k and l it holds that the distance to the
point of overlap of i and j is much smaller than the size of the loop enclosed by i and j that
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Figure 2.3: A polymer with one pair of sites i, j with an interaction energy Eij where we consider the contact frequency
between two sites k, l that are on opposite sides of i and j.

it is part of, we can treat the contact frequency between k and l as that of two free random
walks on the lattice. The contact frequencies for these we can obtain as follows.

Consider two free polymers on the lattice, of lengths L1 and L2. The number of states
in which the endpoints meet is given by Ctot(L1 +L2). The total number of states these two
polymers can be in is given by 4(L1+L2). The contact frequency for these two polymers is
given by the fraction of these two, i.e. by

P (Ckl|Cij) =
((1+L1+L2

2 − 1)! )2

π((L1+L2
2 )! )2

. (2.14)

This can be approximated as

P (Ckl|Cij) =
2

π

1

L1 + L2
, (2.15)

which we would also obtain if we make the approximation N >> d in equation (2.7).
The full equation for the contact probability for the two sites on opposite sides of i and j is
again

P (Ckl) = P (Cij)× P (Ckl|Cij) + (1− P (Cij))× P (Ckl|NCij). (2.16)

The correction factor included in the expression for P (Ckl|NCij) is however slightly different
now: it is given by

P (Ckl|NCij) = fc(N, dkl)
1− P (Cij |Ckl)
1− fc(N, dij)

. (2.17)

If for the quantity P (Cij |Ckl) we again use the approximation used to obtain equation (2.14),
we can set

P (Cij |Ckl) = P (Ckl|Cij) (2.18)

And thus plug equation (2.14) into equation (2.17).
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Adding several sites with interaction energies

The most general case: arbitrary interaction energies between all sites

Consider the most general case, where we have an interaction energy Eij between all pairs of
sites i, j. The partition function for this system is as follows:

Z = MN +
1

2

∑

i,j

Mije
Eij +

1

8

∑

i,j,k,l

Mij,kle
(Eij+Ekl) + · · · (2.19)

The partition function is written out successively in states with zero contacts, with one con-
tact, two contacts, etc. This allows us to group all microstates according to the energy of
the microstate. The prefactors C are equal to the number of microstates corresponding to
a certain contact. Thus, MN is the number of states of the polymer for which there are no
contacts, Mij is the number of states of the polymer in which there is only a contact between
sites i and j, and Mij,kl is the number of states in which there is only a contact between i
and j and between k and l.

The problem with this general approach is finding these numbers M . Just considering the first
term, finding the value of MN amounts to finding the number of possible configurations for a
self-avoiding circular lattice polymer of length N . Even in 2D this remains an open problem
[129]. Instead of trying to solve for the contact frequencies for a general set of interactions,
we therefore consider a few special cases that are more easily solvable.

Non-crossing interaction energies

One set of energies for which contact frequencies are more readily computed, is a set in which
there are no crossing interaction energies; for each nonzero Eij (with i < j) in the set all
Ekl must be zero if k < i, i < l < j or i < k < j, j < k. An illustration of such a set of
non-crossing interaction energies is given in figure 2.4.

Figure 2.4: A circular polymer with only non-crossing interaction energies between sites. The pairs of sites with
interaction energies between them are denoted by dashed lines.

What makes this set of interaction energies convenient, is that each possible combination
of contacts between sites with interaction energies results in a configuration that is a series of
closed loops. Within each of these loops, contact frequencies can be obtained exactly using
equation (2.6). To calculate contact frequencies for the system as a whole, all that remains
is to calculate the multiplicity of each possible combination of contacts between sites with
interaction energies, and to calculate their statistical weight due to the energy gain from these
contacts. We write down this calculation as follows.
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Consider a set Eij , Ekl, ..., Eyz of sites with interaction energies between them. We can
calculate the contact frequency between a pair of neutral sites a and b by considering all
possible combinations of contacts between sites with interaction energies. For each of these
combinations, we can calculate the contact probability between a and b, given this specific
combination of contacts. This conditional contact probability must then be weighted by the
probability to be in a state with this specific combination of contacts between interaction
sites. The expression for the contact probability between a and b is thus as follows:

P (Cab|Eij , Ekl, ..., Eyz) =P (Cab|Cij , Ckl, ..., Cyz)× P (Cij , Ckl, ..., Cyz|Eij , Ekl, ..., Eyz)
+ P (Cab|NCij , Ckl, ..., Cyz)× P (NCij , Ckl, ..., Cyz|Eij , Ekl, ..., Eyz)
+ P (Cab|Cij , NCkl, ..., Cyz)× P (Cij , NCkl, ..., Cyz|Eij , Ekl, ..., Eyz)
+ · · · (all possible combinations of contacts)

+ P (Cab|NCij , NCkl, ..., NCyz)× P (NCij , NCkl, ..., NCyz|Eij , Ekl, ..., Eyz).
(2.20)

As previously, Cij denotes a contact between sites i and j and NCij denotes no contact be-
tween sites i and j. We now proceed to calculating the terms on the right hand side of equa-
tion (2.20). We start with the probabilities of the form P (Cij , Ckl, ..., Cyz|Eij , Ekl, ..., Eyz),
for which we first need an expression for the partition function.

Partition function for the non-crossing system

We can construct the partition function for the non-crossing system by sequentially going over
all possible combinations of contacts between sites with interaction energies. For each possible
combination, we calculate its multiplicity and weigh it by the Bolzmann factor associated
with this combination. We divide the entire partition function by the total multiplicity of
the free polymer to reduce the size of all individual terms, which make its computation more
efficient. This does not change the outcomes of any expectation values we calculate, as long
as we employ this prefactor in the calculation of expectation values as well. The resulting
expression for the partition function is:

Z =
1

Mtot

[
eEij ·M(Cij) ·

(
1− M(Cij , · · · , Cyz)

M(Cij)

)

+ eEkl ·M(Ckl) ·
(

1− M(Cij , · · · , Cyz)
M(Ckl)

)

+ · · ·

+ eEij+Ekl ·M(Cij , Ckl) ·
(

1− M(Cij , · · · , Cyz)
M(Cij , Ckl)

)

+ · · · (all possible combinations of contacts)

+ eEij+···+Eyz ·M(Cij , · · · , Cyz)
]
. (2.21)

The factors (1 − M(...)
M(...)) in each term are derived in the same way as the correction factor

discussed in section 2.2. They constitute correction factors to account for the fact that if a



80 2. Learning the full distribution of bacterial chromosome conformations

specific set of contacts is considered, all the other sets of sites with interaction energies are
explicitly taken not to be in contact. The numerator of M(...)

M(...) is the multiplicity of states
with all sites with interaction energies being in contact, the denominator is the multiplicity
of states where the set of sites considered for that term are in contact, without imposing
constraints on any other pairs of sites.

Probabilities for sets of contacts between interaction energy sites

Using the partition function from Eq. 2.21, we can now write down expressions for the con-
tact probabilities P (Cij , NCkl, ..., Cyz|Eij , Ekl, ..., Eyz), · · ·. For example, the expression for
P (Cij , NCkl, ..., Cyz|Eij , Ekl, ..., Eyz) becomes

P (Cij , NCkl, ..., Cyz|Eij , Ekl, ..., Eyz) =
1

Z
eEij+Emn+...+Eyz ·M(Cij , Cmn, ..., Cyz)×

×
(

1− M(Cij , · · · , Cyz)
M(Cij , Cmn, ..., Cyz)

)
. (2.22)

To calculate these expressions, the multiplicities M(...) and the conditional probabilities
P (Cab|Cij , Ckl, ..., Cyz), ... need to be determined. For a set of non-crossing interactions this
can be done due to the way the polymer decomposes to a set of tethered rings that do not
interact. In the following section this principle is illustrated using a few example configura-
tions.

Solving for contacts in a system of non-crossing interaction energies

Using the assumption of non-crossing interaction energies, we can obtain expressions for the
different fractions of multiplicities included in equation (2.21). The procedure for obtaining
these values is as follows.
Given a fraction

M(Cij ,...,Cvw)
M(Ckl,...,Crs) , we first let the indices of each C be ordered with the smallest

first and the largest second. Then, within each M(...) we order the C’s by the first index
in ascending order. After this, we compare the sequence of C’s in the numerator and the
denominator, going from left to right. Each time we encounter a consecutive series of C’s
that are contained in the numerator, but not in the denominator, this gives a contribution to

the value of
M(Cij ,...,Cvw)
M(Ckl,...,Crs) . We illustrate the way this contribution is calculated in Figure 2.5,

where a hypothetical term M(C1,C2,C3,C4)
M(C1,C3) in Z is depicted.

For example in Figure 2.5, we see that contacts C2 and C4 are not enforced in the denom-
inator, resulting in two larger loops of lengths L2 + L3 and L4 + L5 being formed there. To
calculate the fraction of multiplicities, we simply compute the combined multiplicity of the 5
loops included in the numerator, and the combined multiplicity of the 3 loops included in the
denominator, and divide the two. Using equation (2.4) for each of the loops separately and
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Figure 2.5: An illustration of a fraction of multiplicities that could appear in the expression for Z. In this case the

fraction would be
M(C1,C2,C3,C4)

M(C1,C3)

.

then multiplying the results, we obtain

M(C1, C2, C3, C4)

M(C1, C3)
=
M(L1)

M(L1)
× M(L2)M(L3)

M(L2 + L3)
× M(L4)M(L5)

M(L4 + L5)

= 1× ((L2−1
2 )! )2((L3−1

2 )! )2((L2+L3
2 )! )2

π((L2
2 )! )2((L3

2 )! )2((L2+L3−1
2 )! )2

× ((L4−1
2 )! )2((L5−1

2 )! )2((L4+L5
2 )! )2

π((L4
2 )! )2((L5

2 )! )2((L4+L5−1
2 )! )2

(2.23)

≈ 1

π2

4(L2 + L3)(L4 + L5)

L2 · L3 · L4 · L5
. (2.24)

If we now instead consider the case where contacts C2 and C3 are omitted from the denom-
inator, we obtain configurations as illustrated in figure 2.6. The corresponding fraction of
multiplicities are then given by

M(C1, C2, C3, C4)

M(C1, C4)
=
M(L1)

M(L1)
× M(L2)M(L3)M(L4)

M(L2 + L3 + L4)
× M(L5)

M(L5)

= 1× ((L2−1
2 )! )2((L3−1

2 )! )2((L4−1
2 )! )2((L2+L3+L4

2 )! )2

π2((L2
2 )! )2((L3

2 )! )2((L4
2 )! )2((L2+L3+L4−1

2 )! )2
× 1 (2.25)

≈ 1

π2

4(L2 + L3 + L4)

L2 · L3 · L4
. (2.26)

The general recipe for calculating these fractions of multiplicities follows the patterns of
these two examples. Given an uninterrupted sequence Cn, ..., Cn′ in the numerator that does
not appear in the denominator, the fraction of multiplicities gains approximately a factor of

1

π(n′−n)

2(n′−n)(Ln + ...+ L(n‘+1))

Ln × · · · × L(n‘+1)
. (2.27)

Using this procedure to calculate fractions of multiplicities, all terms in expression (2.21)
for the partition function can be calculated. Now that we have a way to obtain Z, the
probabilities in equation (2.20) can be calculated.
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Figure 2.6: A second illustration of a fraction of multiplicities that could appear in the expression for Z. In this case

the fraction would be
M(C1,C2,C3,C4)

M(C1,C4)

.

Figure 2.7: Illustration of the conditional contact probability P (Cab|C1, NC2, NC3, C4). Pairs of sites with dash-dotted
lines between them represent sites with interaction energies that are explicitly taken to not be in contact, the two sites
with dashed lines between them are the sites for which we would like to calculate the conditional contact probability.
The quantities L1, ..., L5 are the lengths of the loops that would be formed if all sites with interaction energies would
be in contact.

Contact probabilities for the non-crossing system

To evaluate equation (2.20), we require expressions for all the conditional probabilities P (Cab|Cij , NCkl, ..., Cyz), · · ·
and P (Cij , NCkl, ..., Cyz|Eij , Ekl, ..., Eyz), · · ·. In figure 2.7 a schematic is drawn for the con-
ditional contact probability P (Cab|C1, NC2, NC3, C4). To calculate this probability, we cal-
culate the contact frequency between a and b given that they are part of a loop enclosed by
C1 and C4. This is then multiplied by a correction factor to take into account that pair 2 and
pair 3 are not in contact. Writing this out we obtain

P (Cab|C1, NC2, NC3, C4) =

=
M(Cab)−M(Cab, C2, C3)−M(Cab, C2, NC3)−M(Cab, NC2, C3)

Mtot −M(C2, C3)−M(C2, NC3)−M(NC2, C3)

=
M(Cab)−M(Cab, C2, C3)−M(Cab, C2) +M(Cab, C2, C3)−M(Cab, C3) +M(Cab, C2, C3)

Mtot −M(C2, C3)−M(C2) +M(C2, C3)−M(C3) +M(C2, C3)

=
M(Cab) +M(Cab, C2, C3)−M(Cab)−M(Cab, C3)

Mtot +M(C2, C3)−M(C2)−M(C3)

=
M(Cab)

Mtot
×


1− M(Cab,C2)+M(Cab,C3)−M(Cab,C2,C3)

M(Cab)

1− M(C2)+M(C3)−M(C2,C3)
Mtot


 (2.28)

For each of the fractions of multiplicities included in equation (2.28) we can now obtain an
expression in terms of the loop lengths, in the same way as has been done in section 2.2. This
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way we obtain

P (Cab|C1, NC2, NC3, C4) =

=
2

π

(L1 + L2)

L1 · L2
×




1− 2
π

(
L1+L2+L3
(L1+L2)·L3

+ L4+L5+L6
(L5+L6)·L4

− 2
π
L1+L2+L3
(L1+L2)·L3

L4+L5+L6
(L5+L6)·L4

)

1− 2
π

(
Ltot

(L1+L2)·(L3+L4+L5+L6) + Ltot
(L1+L2+L3+L4)·(L5+L6) + 2

π
Ltot

(L1+L2)·(L3+L4)·(L5+L6)

)


 .

(2.29)

Here we have used the notation Ltot = L1 + L2 + L3 + L4 + L5 + L6. Analogous expressions
for other combinations of contacts can be obtained using the same procedure.
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Chapter 3

The spatial organization of a replicating bac-
terial chromosome, learned with a fully data-
driven approach
In collaboration with Chase P. Broedersz, Grzegorz Gradziuk, Janni Harju, Imesha R. Mudiyanse-
lage, Muriel C.F. van Teeseling and Lucas Tröger

Summary

In the previous chapter, we saw how a Maximum Entropy chromosome model provides access
to chromosome organization across genomic scales. This revealed a host of organizational
features, from Super Domains to local extension patterns to the localization information
contained by each genomic region. This model was constructed for a single, unreplicated
chromosome, however in bacteria, replication is a ubiquitous chromosomal state. For a full
understanding of spatial chromosome organization, a description of organization during repli-
cation is essential.

In this chapter, we expand our MaxEnt chromosome model to describe a replicating
chromosome. We make use of Hi-C data sets at various times throughout the replication
cycle, and modify the model phase space to match the replication progress at each time
point. We find that only using Hi-C data is not sufficient to produce a model with predictive
power; in this case we find a solution where the chromosomes do not segregate. In addition
to the Hi-C constraints, we therefore impose the mean distance between replicated origins of
replication (ori), as obtained via fluorescence microscopy. The choice of ori as the constrained
region is biologically motivated; the newly replicated ori is known to be actively pulled across
the cell, inducing chromosome segregation.

To validate the replicating MaxEnt model, we compare localizations of genomic regions
across the chromosome and throughout the replication cycle between model and fluorescence
microscopy. In making this comparison, we correct for a systematic bias in the experimental
results due to the indistinguishability of fluorescent foci at short distance. We find that
model and experiment closely match across comparisons, validating the predictive power of
the replicating MaxEnt model.

Next, we investigate organizational features that are yet inaccessible to experiment. Our
replicating MaxEnt model predicts a persistence of linear chromosomal organization through-
out the replication cycle. A model containing only constraints on the ori positions, termed the
ori pulling model, reveals that the linear organization of the replicating chromosomal segments
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is largely explained by the pulling of replicated ori ’s to opposite cell poles. The ori pulling
model however fails to produce a linear organization within the unreplicated chromosome,
which could be explained by the absence of SMC (Structural Maintenance of Chromosomes)
proteins within this model, which induce a juxtaposition of chromosomal arms. Lastly, we
discuss a few examples of more detailed organizational features that can be explored using
the replicating MaxEnt model. The replicating MaxEnt model thus provides a principled ap-
proach to resolving spatial chromosome organization throughout the replication cycle, giving
access to a wealth of organizational features and their change over time.

3.1 Introduction

Life requires the faithful replication of genetic material and the transfer of genomic copies to
next generations. In bacteria, this genetic material is stored in a single circular chromosome,
which is compacted by several orders of magnitude to fit inside its cellular confinement.
During the replication process, the highly compacted chromosome must continue to facilitate
transcription, replication, and segregation, and finally be faithfully passed on to daughter cells.
The spatial organization of the chromosome during the replication process remains unclear;
resolving this requires a characterization of the full distribution of single-cell chromosome
configurations across the replication cycle, posing a major challenge for experiment and theory.

The phase of bacterial chromosome replication, termed the C period, is one of the most
ubiquitous cell cycle phases under nutrient-rich conditions. In fact, for these conditions Es-
cherichia coli and Bacillus subtilis are found to continuously replicate, with multifork repli-
cation allowing for a mass doubling time shorter than the chromosomal replication time [130].
In Caulobacter crescentus, multifork replication is not observed [131], however initiation of
replication is observed shortly after synchronization of newborn swarmer cells [132]. Thus, for
a full understanding of bacterial chromosome organization, a characterization of chromosome
states during replication is essential.

Here, we study spatial chromosome organization throughout the replication cycle in C.
crescentus. For this bacterium, newborn swarmer cells, which contain a single, unreplicated
chromosome, initiate replication after the formation of a stalk at the cell pole [131]. At the
onset of replication, two replication forks simultaneously move from the origin of replica-
tion (ori) to the terminus (ter), with one fork moving along each chromosomal arm [133].
Chromosomal segregation occurs in parallel with replication, where the newly replicated ori
is actively transported via the ParBS system from the pole where the unreplicated ori is
initially tethered to the opposite cell pole [51, 134, 135]. Division is regulated to be initiated
after replication of the two chromosomes is completed [136].

In probing spatial chromosome organization in bacteria, a key experimental technique
is Hi-C chromosome conformation capture [58, 59, 63–66], which yields average contact fre-
quencies between pairs of genomic regions across the chromosome. This provides a wealth
of information on organizational features, however, extracting the full distribution of three-
dimensional chromosome configurations from this data is challenging. For non-replicating
chromosomes, several approaches have been developed to perform such an inference, either
by converting Hi-C scores to average distances [71–73], employing an equilibrium polymer
model with pairwise interaction energies [74–76], or generating an ensemble of chromosome
states that is consistent with experimental contact frequencies [77]. In [69] we developed a
principled, fully data-driven Maximum Entropy approach to derive the full distribution of
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chromosome configurations directly from Hi-C data, providing access to single-cell organiza-
tional features across genomic scales. This approach does not require any assumptions on a
Hi-C score distance relation, is compatible with a chromosome out of thermal equilibrium,
and is designed to find the least-structured ensemble that is consistent with experimental
constraints.

The interpretation of Hi-C data for a replicating population of cells in terms of a repli-
cating chromosome model is relatively unexplored terrain. In [137], consensus chromosome
structures at different replication stages were constructed for E. coli using mixed-population
Hi-C data containing cells at all replication stages. In this approach, each replication stage
was learned separately on the same input data, and an assumed relation between Hi-C scores
an average distances was employed. Furthermore, and assumption was made that Hi-C scores
are dominated by interchromosomal contacts within each of the replicated segements. It is
however unclear if Hi-C data from a mixed population is suitable as an input for a single
replication state model. Furthermore, the assumed relation between Hi-C scores and average
distances contains several weakening assumptions [69], and it is also unclear if interchromo-
somal contacts indeed dominate Hi-C scores. Therefore, a replicating chromosome model
learned in a principled way, taking the full distribution of chromosome configurations into
account is still lacking.

To elucidate spatial chromosomal organization during the replication process, we develop
a fully data-driven Maximum Entropy model for a replicating C. crescentus chromosome. We
build upon our approach developed for an unreplicated chromosome in the previous chapter,
where we expand the model phase space to capture replication progression, and employ con-
straints from previously published Hi-C data [58] and fluorescence microscopy for a series of
time points along the cell cycle. Our model constitutes a principled approach to derive the
full distribution of chromosome configurations across the replication cycle, yielding insight
into organizational features over space and time.

3.2 Results

3.2.1 Learning the Maximum Entropy model of a replicating chromosome

Here we develop a Maximum Entropy (MaxEnt) model for the spatial and temporal organiza-
tion of a chromosome progressing through the replication cycle, constrained by chromosome
capture experiments and live cell microscopy data. MaxEnt models have been used in a
variety of biological contexts [74, 75, 81–85] to obtain the least-structured statistical model
consistent with data. Recently [69], we developed a MaxEnt model for the spatial organization
of a single, non-replicating bacterial chromosome. This provides a principled approach for
inferring the statistics of chromosome structure in bacteria directly from experimental data.
Here we expand this approach to describe a replicating chromosome in a growing cell. The
model constraints consist of Hi-C data collected at various discrete time points during the cell
cycle, as well as chromosomal localization data from live cell microscopy. The key idea of our
generalized model is to apply these stroboscopic constraints to a MaxEnt chromosome model
where the model phase space, determined by the cell size and progression of chromosomal
replication, is constructed to match inferred cellular properties at each time point.

The derivation of the MaxEnt model of chromosome conformations corresponds to finding
the probability distribution P ({r}, t) of chromosome states {r} at cell cycle progression time
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t that maximizes the Shannon entropy, given by

S(t) = −
∑

{r}

P ({r}, t) lnP ({r}, t), (3.1)

while satisfying time-dependent experimental constraints. This constrained maximization
ensures that the least-structured model is found that is consistent with experimental data.

To construct a MaxEnt model for a replicating chromosome, we first define the set of
allowed chromosome states {r}. We employ the coarse-grained representation of the chro-
mosome as a chain on a 3D cubic lattice within a cell-shaped confinement as described in
[69], where the coarse-graining scale is set by the resolution of the Hi-C experiment. Within
this description, a subset of N monomers evenly spread along the chain represents the lo-
cations of the genomic regions corresponding to each Hi-C bin. Two genomic regions have
a contact probability γ if they occupy the same lattice site, in the sense that the proxim-
ity of the regions in space would lead to a count in a Hi-C experiment for this pair, and 0
otherwise. To capture the DNA replication process, we now generalize this description by
including two replication forks, at positions M(t) and N −M(t). The replication forks are
connected by three chromosomal segments: one segment of length N − 2M(t) representing
the unreplicated portion of the chromosome, and two segments of length 2M(t) represent-
ing the two identical copies of the replicated chromosome. Within this representation, a
microstate σ = {r1, r2, ..., rM , rM+1, r

′
M+1, ..., rN−M−1, r

′
N−M−1, rN−M , ..., rN} = {r} is de-

fined by the monomer positions ri for the unreplicated portion of the chromosome, and the
pairs of monomer positions rj ,r

′
j for the two copies of each genomic region on the repli-

cated chromosome. To reflect cellular growth over the course of replication, the size of the
cell-shaped confinement is made dependent on the cell cycle progression (SI 2.3).

For the MaxEnt model for an unreplicated chromosome at t = 0, Eq. 3.1 was maximized
while enforcing the model contact frequencies to match experimental contact frequencies for
each monomer pair. For a replicating chromosome however, the cell cycle dependent Hi-C data
f expt
ij (t) does not distinguish between identical regions on each of the replicated chromosome

copies. This forms one of the biggest challenges in interpreting Hi-C data on replicating chro-
mosomes. To reflect this agnosticism intrinsic to the Hi-C data, we define the model contact
frequencies fmodel

ij (t) as the combined frequency of the possible interchromosomal contacts
(ri, rj), (r′i, r

′
j) and intrachromosomal contacts (r′i, rj), (ri, r

′
j). The first set of constraints we

enforce on the replicating MaxEnt model is thus as follows:

∑

{r}

P ({r}, t)γ(δri,rj + δr′i,rj + δri,r′j + δr′i,r′j )
!

= f expt
ij (t), (3.2)

for each i, j, where δri,rj is the kronecker delta. If a genomic region j is unreplicated, δri,r′j
and δr′i,r′j are equal to zero.

Imposing only Hi-C constraints turns out to be insufficient to obtain a MaxEnt model
with predictive power: for this scenario, we find a solution where the replicated chromosome
does not segregate (Appendix 3.4.4). This implies that the Hi-C data alone does not contain
enough information to sufficiently constrain a replicating chromosome model, which is likely
connected to the indistinguishability of inter- and intrachromosomal contacts within exper-
iment. In addition to the Hi-C constraints, we therefore apply a positional constraint: the
mean separation between replicated origin of replication (ori) regions should match experi-
ment. The choice for ori as a constrained region is biologically motivated: in C. crescentus,
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the ori is tethered to the cell pole [138, 139], and after replication the newly replicated ori is
actively pulled to the opposite cell pole via the ParBS system, driving chromosome segrega-
tion [51, 134, 135]. This constraint is therefore a promising candidate to induce segregation
within the MaxEnt model. We thus impose:

∑

{r}

P ({r}, t)dori({r}) !
= 〈dexpt

ori 〉(t), (3.3)

where dori({r}) is the distance between the two ori copies projected along the long cell axis,
and 〈dexpt

ori 〉(t) is the experimentally measured mean long-axis ori distance.
To maximize Eq. 3.1 under constraints 3.3 and 3.2, we introduce the functional S̃(t),

with one Lagrange multiplier λij(t) for each Hi-C constraint, one Lagrange multiplier α(t)
enforcing the separation between ori ’s, and λ0(t) ensuring normalization:

S̃(t) =−
∑

{r}

P ({r}, t) lnP ({r}, t)−
∑

ij

λij(t)

(∑

{r}

P ({r}, t)γ(δri,rj + δr′i,rj + δri,r′j + δr′i,r′j )− f expt
ij (t)

)

− α(t)

(∑

{r}

P ({r}, t)dori({r})− 〈dexpt
ori 〉(t)

)
− λ0(t)

(∑

{r}

P ({r}, t)− 1

)
. (3.4)

Setting ∂S̃
∂P ({r},t)

!
= 0 we obtain:

P ({r}, t) =
1

Z
exp

[
−
∑

ij

λij(t)γ(δri,rj + δr′i,rj + δri,r′j + δr′i,r′j )− α(t)dori({r})
]
, (3.5)

where Z = exp[1 + λ0]. This gives us the form of the probability distribution P ({r}, t),
where the values of the λij(t) and α(t) are determined by imposing constraints 3.3 and 3.2.
Analogously to [69], a solution to this large set of highly nonlinear equations can be found by
mapping Eq. 3.5 to an equilibrium polymer model. This equilibrium polymer model contains
pairwise interaction energies εij(t) = γλij(t), and a separation energy εsep(t) = α(t) that cou-
ples to the distance between replicated ori ’s. This equilibrium polymer model is numerically
solved using iterative Monte Carlo simulations for each time t as in [69], with a modification
to representatively sample replicating chromosome configurations (Appendix 3.4.3).

3.2.2 Applying the replicating MaxEnt model to Hi-C data on replicating
Caulobacter crescentus cells

We apply our replicating MaxEnt model to experimental Hi-C data sets on replicating Caulobac-
ter crescentus cells from [58]. Here, cell populations were synchronized to isolate swarmer
cells, which initially contain a single unreplicated chromosome. Subsequently, at regular in-
tervals after synchronization, Hi-C data was generated for this population of developing cells.
Thus, each generated Hi-C data set contains cells at a similar cell cycle stage and replication
fork progression.

Before our MaxEnt method can be applied to these data, known systematic biases in
the raw data need to be corrected for, due to for instance the proportionality between the
number of restriction sites in a genomic region and its Hi–C score [70]. For swarmer cells,
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Figure 3.1: Maximum entropy model inferred for a replicating chromosome in C. crescentus. A Schematic
of the MaxEnt inference procedure. B Ratios of total raw Hi-C counts per genomic region compared to t = 0 for three
cell cycle times. The resulting profile is used to estimate the mean replication fork position (Appendix 3.4.2), indicated
by the dashed vertical lines for each time point. C Black dots: measured mean distances between the two copies of ori
obtained for each time since synchronization. Error bars indicate the error on the mean. Shaded areas: measured upper
and lower standard deviations. Crosses: mean ori distances for the converged MaxEnt model. Grey line: mean cell
length at each cell cycle time (Appendix 3.4.2). D Comparison between bias-corrected experimental contact frequencies

fexptij (upper left corners) (Appendix 3.4.2), based on Hi-C data from [140]) and contact frequencies obtained from

our inferred MaxEnt model fmodel
ij (lower right corners) for six replication cycle times. Inferred mean replication fork

positions (Appendix 3.4.2) are indicated by the dashed lines. E Sample configurations of a replicating chromosome,
shown for 6 times since synchronization. Blue sphere: old ori, yellow sphere: new ori, black sphere: ter, smaller red
spheres: replication fork positions. The old and new chromosomes are determined as in Fig. 3.2.

such a correction is performed by normalization of the Hi-C map. This normalization assumes
that the total contact frequency per genomic region is the same for all regions. This implies
that ∑

i

f expt
ij (0) = c (3.6)

for each column j. For later cell cycle stages however, such normalization is not expected
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to yield accurate contact frequencies, since the two copies of replicated regions together are
expected to generate more contacts on average than single unreplicated regions.

Here we develop a bias correction procedure for later cell cycle stages, by using the Hi-C
data for swarmer cells as a benchmark. Assuming that the systematic biases per genomic
region are conserved throughout replication, we can rescale the total raw Hi-C count of each
genomic region at a time t by the raw count measured for swarmer cells. Specifically, we
assume that the raw contact counts at time t can be written as

f raw
ij (t) = bibjf

expt
ij (t)Ncells(t), (3.7)

with bi ∈ [0, 1] the crosslinking bias of site i, and Ncells(t) the number of cells included in the
measurement at time t. The sum over column i in the raw data we can now approximate as

∑

i

f raw
ij (t) ≈ bjNcells(t)bav

∑

i

f expt
ij (t), (3.8)

where we assume that the crosslinking bias bi is uncorrelated with f expt
ij (t), and bav represents

the average value of bi over all Hi-C bins. Using Eq.3.8 together with Eq.3.6, we can write
the column sums of f expt

ij (t) as

∑

i

f expt
ij (t) = c(t)

∑
i f

raw
ij (t)∑

i f
raw
ij (0)

, (3.9)

where we identify c(t) = c
Ncells(0)

Ncells(t) . Thus, we obtain the column sums of the unbiased contact

frequencies f expt
ij (t) up to an overall scale factor c(t) for each time point. From these column

sums we construct input contact frequencies f̃ expt
ij (t) (Appendix 3.4.2), which are related to

the f expt
ij (t) via f̃ expt

ij (t) = 1
c(t)f

expt
ij (t).

To deal with the unknown scale factor c(t), we employ the approach from [69] and treat
c(t) as an unknown parameter in the MaxEnt model. Absorbing γ into c(t), and setting

c̃(t) = c(t)
γ , we extremize Eq. 3.4 with respect to c̃(t), to obtain

∑

ij

εij(t)f̃
expt
ij (t) = 0, (3.10)

which is analogous to the condition for an unreplicated chromosome.
To construct the model phase space, for each input Hi-C map f̃ expt

ij (t) the mean replication
fork position M needs to be determined. We do this directly from the Hi-C data, by using
variations in the column sums

∑
i f̃

expt
ij (t) of the bias-corrected data. For times around the

middle of the cell cycle, we observe these column sums to form a plateau around ori, with a
transition to a plateau at a lower value around ter (Fig. 3.1B). The inflection point of this
transition is taken as the mean replication fork position (Appendix 3.4.2).

The constraints on the mean ori distance 〈dexpt
ori 〉 for each replication stage we obtain

via fluorescence microscopy. Following the procedure described in [58], we synchronized C.
crescentus swarmer cells, which initially contain a single, unreplicated chromosome. Subse-
quently, we measured the mean distance between two fluorescently labelled ori loci at each
cell cycle time for which a Hi-C data set was generated in [58] (Fig.3.1C, (Appendix 3.4.1).
The obtained mean distances for each time point are used as model constraints.
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With this model construction, we learn the replicating MaxEnt model for the six available
Hi-C data sets from [58], which are evenly spread along the replication cycle. In all cases,
the MaxEnt model converges to the input contact frequencies with high accuracy, reach-
ing a Pearson’s correlation coefficient of at least 0.98 in all cases (Fig. 3.1D). Through this
model, we have access to the full distribution of single-cell chromosome configurations at each
measurement time t, a sample of which is shown in Fig. 3.1E.

3.2.3 The replicating MaxEnt model closely matches chromosomal local-
ization measurements

To validate our replicating MaxEnt model, we employ fluorescent microscopy to measure the
time-dependent cellular localizations of eight genomic loci positioned roughly evenly along
the chromosome. For each Hi-C time point, we thus obtain an ensemble of locus positions
projected along the long cell axis. Before comparing localization statistics between model
and experiment, a few analysis steps are performed: Firstly, to quantify mean long-axis
localizations, an orientation of the cells needs to be chosen; the two cell poles are identical
within the model, and are often indistinguishable in experiment. This orientation we do as
follows. If a cell contains a single locus, the mean distance of this locus to the nearest cell
pole is calculated. If the cell contains two loci, a distinction is made between the near and
far chromosomal locus. The near locus sits closest to a cell pole, and the corresponding pole
is termed the near pole. For both the near and the far locus, the mean distance to the near
pole is calculated. An illustration of this orientation procedure is shown in Fig. 3.2A.

This orientation procedure thus yields separate statistics for cells containing either one
or two copies of a chromosomal locus. The MaxEnt model contains only one of these cat-
egories at each time point, however in experiment a mix of focus counts is often observed
(Appendix 3.4.5). To compare experimental localizations to the MaxEnt model despite these
observed mixed populations, we compute conditional averages. For loci where the calculated
mean replication fork position has not passed yet, an average is computed over all measured
cells with one fluorescent focus. Conversely, if the mean replication fork position is calculated
to have passed a tagged locus, an average is computed over all measured cells containing two
foci.

A direct comparison between experimental and model locus counts is complicated by sev-
eral factors: 1) imperfect synchronization of cell cycles, 2) imperfect labelling of tagged loci,
and 3) indistinguishability of two loci if they are too close together on the experimental image
(Appendix 3.4.5). The indistinguishability of fluorescent foci at short distance introduces a
systematic bias in experimentally determined localizations, as short distances are removed
from the statistics of cells containing two foci. To directly compare MaxEnt localizations to
experiment despite this bias, we compute a bias-corrected MaxEnt prediction that emulates
this indistinguishability at short distance. The cutoff distance for the onset of indistinguisha-
bility we obtain directly from experimental distance statistics between foci (Appendix 3.4.5).

With these procedures for cellular orientation, conditional averaging on the number of foci,
and bias correction in the MaxEnt localization prediction, we compare localization profiles
between model and experiment (Fig. 3.2). We find a close match for mean positions as well
as standard deviations across genomic positions and across the replication cycle. The largest
deviation between model and experiment is seen for the tagged locus at 134◦after replication
(top right Fig. 3.2). Surprisingly, the measured distance between these loci deviates from the
general trend of decreasing average distance with decreased distance from ter. This deviation
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from the overall trend could indicate that the localization of this site is affected by interactions
with membrane-bound proteins; such direct interactions of chromosomal loci with membrane-
bound proteins have been shown in Escherichia coli in [141]. Taken together, these results
show that independent microscopy experiments provide strong validation for the predictive
power of the replicating MaxEnt model.
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Figure 3.2: Validation of MaxEnt model based on genomic localizations from microscopy data. A Illustra-
tion of the orientation procedure used to compare localizations of genomic regions between measurement and MaxEnt
model. Left: If the mean replication fork position has not passed the genomic region yet, the mean distance of the
unreplicated region (black) to the nearest pole is calculated. In this case, only measured cells containing one focus are
included. Right: If the mean replication fork position has passed the genomic region, the copy closest to a cell pole is
identified as the ‘near locus’ (green), and the pole it is closest to is termed the ‘near pole’. The other region is then
termed the ‘far locus’ (purple). The distance of both loci to the near pole is calculated. In this case, only measured
cells containing two foci are included. B Comparison of localizations between measurement (solid lines), bias-corrected
MaxEnt prediction (crosses) and MaxEnt model (circles) for 7 chromosomal regions, with the chromosomal location
indicated in the top left corner. For the bias-corrected MaxEnt prediction, a correction is made to account for the
indistinguishability of fluorescent foci at short distance in experiment (Appendix 3.4.5). Vertical lines: measurement
error on the mean. Shaded ares: measured standard deviations. Black bars: standard deviations from bias-corrected
MaxEnt model. The meeting point of the dashed lines corresponds to the mean time at which a region is replicated
(Appendix 3.4.2).

3.2.4 The replicating MaxEnt model yields full chromosomal localization
profiles across replication stages

With our replicating MaxEnt model, we now have access to the full distribution of chro-
mosome configurations across the replication cycle. To gain insight into its predictions on
organization, we first consider the localization along the long cell axis of the entire chromo-
some. In contrast to the single-locus localizations of the previous section, this gives us insight
into the simultaneous dynamic organization of the chromosome as a whole.

To characterize spatial chromsome organization of the replicating chromosome, we first
note that the two copies of replicated chromosomal segments are treated identically within the
MaxEnt model. Despite this equivalence, we can introduce a distinction between replicated
segments by categorizing them based on the locations of genomic regions on these segments.
We perform this categorization based on known organizational features of the old and new
chromosomal regions. Fluorescent microscopy experiments have shown that the newly repli-
cated ori migrates from the pole at which it is initially tethered to the opposite cell pole,
where the terminus initially resides [142]. Upon completion of replication, the old chromo-
some typically extends over a longer distance than the new chromosome, in preparation for
asymmetric division where the new chromosome is passed on to the smaller cell [132]. To
distinguish between replicated chromosome copies in the MaxEnt model in a biologically
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Figure 3.3: Long-axis localization predicted by the replicating MaxEnt model A The two replicated chromo-
some segments are divided into the new and old chromosome. The ori on the new chromosome shares its cell half with
ter, whereas the ori on the old chromosome does not. In case both ori ’s are in the same cell half, the orientation of
Fig. 3.2A is used, where the near ori is identified als the old ori, and the far ori as the new ori. B Top: mean long-axis
positions of the old (blue), new(orange) and unreplicated (black) chromosomes for each time since synchronization,
indicated by the line transparencies. The grey lines at the top left indicate the mean cell length at each time point,
with the transparancy again indicating the time since synchronization. Middle: same as top panel, but for a model
where only the mean distance between replicated ori ’s is used as a constraint. Bottom: the difference in mean long-axis
positions between the MaxEnt model and the ori pulling model. C The full distribution of long-axis positions for the
MaxEnt model at 45 minutes after synchronization. The occupation probability is indicated by the color intensity. The
solid lines indicate the mean long-axis positions.

meaningful way, we categorize them based on similar features. We define the old ori as the
ori that lies in the opposite cell half to ter, and define the new ori as the ori that lies in the
same cell half as ter. In the rare case where both ori ’s lie in the same cell half, the orientation
of Fig. 3.2 is used, where we identify the old ori with the near locus, and the new ori with
the far locus. Subsequently, we term the replicated chromosome segment that is connected
to the old ori the old chromosome, and the chromosome segment connected to the new ori
the new chromosome. An illustration of this orienting method is shown in Fig. 3.3A.

Computing chromosomal localizations using the old/new categorization scheme, we find
several striking organizational features. The combined old and unreplicated chromosome
maintains a linear organization throughout the entire cell cycle, with the mean distance be-
tween ori and ter increasing slightly as the cell grows. By contrast, the new and unreplicated
chromosome combined exhibit a reversed linear organization at the replication fork position,
with a colocalization of a linearly organized unreplicated region and a linearly organized new
chromosome. Furthermore, for earlier time points the new chromosome extends over a longer
stretch of cell length than the old chromosome. The MaxEnt model also gives us access to
the full distribution of long-axis positions for each genomic locus, which we find to be tightly
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localized around the mean values (Fig. 3.3C).

These findings are consistent with and expand upon aspects of replicating chromosome
organization reported previously for C. crescentus. In [142], fluorescence microscopy revealed
that the two copies of ori-proximal regions each maintain a linear organization at their respec-
tive cell poles shortly after being replicated. Our results suggest that this linear organization
is maintained over the entire cell cycle throughout the replicated chromosomal segments, and
is also preserved for the unreplicated segment of the chromosome. In [133], the two replication
forks were found to closely colocalize, and gradually progresses towards midcell during repli-
cation, which is consistent with our localization results (Fig. 3.3B). Based on these findings,
a model was proposed where the newly replicated DNA clusters at its cell pole and excludes
the unreplicated chromosome, moving the terminus closer to midcell. Our results however
suggest that the new chromosome is evenly spread along the long cell axis region it occupies,
and partially shares cell space with the unreplicated chromosome. We do find that the termi-
nus moves closer to midcell during replication, but predict this due to the combined old and
unreplicated chromosome approximately maintaining its dimensions while the cell grows.

To understand to what extent our observed localization profiles are a physical consequence
of the segregation force that pulls the two ori ’s apart, we learned a model where only the
mean separation between replicated ori ’s is enforced, termed the ori pulling model. For the
ori pulling model, we employ the same coarse-graining of the chromosome as for the repli-
cating MaxEnt model, resulting in a model that is consistent with measured chromosome
compaction at the Hi-C bin length scale [69], but is not subject to any constraints at larger
length scales. We find that for this model, the linear organization of the replicated regions
is maintained to some extent, although the mean long-axis positions decay to midcell faster
(Fig.3.3B). By contrast, the unreplicated region shows a strong deviation between the two
models, with a linear organization absent, especially for earlier cell cycle times. This suggests
that the pulling of ori explains the localization profile of the replicated regions to a large
extent, but is insufficient to explain the linear organization of the unreplicated chromosome
segment. One explanation could be the absence of the loop extrusion motors SMC (Struc-
tural Maintenance of Chromosomes) [36, 39, 41, 143] in the ori pulling model, which induce
a juxtaposed arrangement of chromosomal arms and may play a role in amplifying linear
organization.

3.3 Outlook

With the replicating MaxEnt model, we can start exploring a wealth of organizational fea-
tures throughout the replication cycle that are inaccessible to experiment. One example of
such a feature is the pattern of inter- and intrachromsomal interactions between each of the
replicated chromosome segments. Whereas in experimental Hi-C maps no distinction can be
made between copies of replicated regions, within the MaxEnt model we can analyse each
chromosomal segment individually. Furthermore, with experimental Hi-C data we cannot
compare interactions over time, since each Hi-C map is subject to an unknown overall scale
factor c(t) (Eq. 3.9) With the replicating MaxEnt model however, we can directly compare the
magnitude of interactions, since for each time point we obtain interactions up to a geometrical
factor γ, which is identical for all time points.

As an illustration of such an analysis, we compute intrachromosomal contact maps for
both the old and the new chromosome, as well as the intrachromosomal contact map between
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Figure 3.4: Probing chromosomal interaction patterns with the MaxEnt model. Results on panels A-D are
shown for the MaxEnt model 45 minutes after replication. A Top left: model contact frequencies within the combined old
and unreplicated chromosome. Bottom right: model contact frequencies within the new chromosome. B Model contact
frequencies between (1) the combined old and replicated chromosome (horizontal axis) and (2) the new chromosome
(vertical axis). C Direct comparison between contact frequencies on the old chromosome and the new chromosome. D
Mean contact frequency P (s) as a function of genomic distance s, shown for the old chromosome (blue), new chromosome
(orange), unreplicated chromosome (black), as well as the mean contact frequency of the same regions on the unreplicated
chromosome (blue&orange dashes for the replicated region, black dashes for the unreplicated region). E Relative change
of P(s) on the replicated chromosome compared to the same segment at 0 minutes. F Relative change of P(s) on the
unreplicated chromosome compared to the same segment at 0 minutes.

them (Fig. 3.4A). We find the interchromosomal contact maps to be highly correlated be-
tween replicated segments (Fig. 3.4C): we obtain a Person’s r of at least 0.9 for each time
point. For each of these contact maps, we also obtain the average contact frequency as a
function of genomic distance, known as the P (s) curve (Fig. 3.4D). Comparing P(s) curves
between the replicated chromosomal segments and the same segments for t = 0, we find that
the interactions within the replicated chromosome are systematically decreased (Fig. 3.4E).
This effect is strongest directly after replication, and slowly moves back to the unreplicated
chromosome values for later times. Comparing contact frequencies of the unreplicated chro-
mosomal segment over time, we find that they systematically increase, with the strongest
increase seen for the latest time point (Fig. 3.4F). This could suggest a compactification of
the unreplicated chromosome as the replication fork progresses, and an opening up of the
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chromosome after replication.
These are just a few features we can explore with the replicating MaxEnt model, but there

are many more. Our model provides access to patterns of local extension and compaction of
the chromosome, changes in chromosomal clustering and the Super Domain properties, and
allows the study of chromosomal correlations and higher-order structure over time. Thus, the
replicating MaxEnt model offers a window into the intricaties of chromosome organization
over the replication cycle, with many further properties still waiting to be explored.

Acknowledgements: We thank the labs of Lucy Shapiro and Patrick Viollier for gener-
ous sharing of C. crescentus strains.
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3.4 Appendix

3.4.1 Experimental procedures on C. crescentus cells

Bacterial strains and growth conditions

The C. crescentus strains used in this study (Table 3.1) were derived from the synchroniz-
able wild-type CB15N (NA1000). Cells were grown in peptone-yeast extract (PYE) medium
(Pointdexter, 1964) at 28◦C under aerobic conditions (shaking at 190 rpm).

Synchronization of C. crescentus cultures

In order to analyze C. crescentus cells in a specific phase of their cell cycle, corresponding
to a specific stage in their replication and segregation process, we synchronized the cells
according to the protocol established in [144]. In brief, C. crescentus cells were grown to
early exponential phase (OD ∼0.1) in PYE and induced for 2h with 2 µM xylose in order
to express YFP and CFP that bind their respective arrays at specific chromosomal loci (see
Table 3.1). Afterwards, cells were pelleted, resuspended in M2 salts buffer [145] and mixed
1:1 with Percoll. In a density centrifugation step, the newborn swarmer cells were separated
from the stalked cells. The swarmer cells were collected and washed once in M2 salts, before
being released into PYE (including 2 µM xylose) and allowed to grow at 28◦C until they were
analyzed by microscopy.

Experimental determination of cell sizes and intracellular locations of chromoso-
mal loci throughout the cell cycle

To determine the dimensions of C. crescentus cells, as well as the copy number and intra-
cellular location of specific fluorescently-labeled chromosomal loci at specific time points in
their cell cycle, we subjected cells at specific time points after synchronization (see above)
to fluorescence microscopy. To this end, cells were immobilized on pads made of 1% agarose
in water and observed with a Nikon Ti2 Eclipse microscope. The microscope was equipped
with an alpha Plan Apo λ 100x/1.45 Oil (∞)/0.17 WD 0.13 Ph3 objective (Nikon, Japan), a
Spectra X Light Engine (Lumencor, USA) light source and a CFP-2432C and a YFP-2427B
filter (Semrock, USA). Images were collected with an Orca-flash4.0LT Plus C11440-42U30
camera (Hamamatsu, Japan) and recorded with NIS Elements 5.30.02 (Nikon, Japan).

In order to extract the cellular dimensions and intracellular positions of the fluorescently-
labeled loci, cells were segmented based on the phase contrast channel using MicrobeJ [146].
To be able to monitor cell cycle progression in each subset, both cell lengths and the per-
centage of cells showing constrictions (as detected via MicrobeJ’s feature constriction option)
were followed for each timepoint after synchronization for each strain. Fluorescent maxima
were detected using the maxima detection, which determines the localizations of the maxima
relative to the poles of the cell at sub-pixel resolution using a Gaussian fit.
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Table 3.1: C. crescentus strains used in this study

Strain Genotype/description Reference

CB15N Synchronizable wild-type strain Evinger & Agabian (1977)
[147]

MvT171 CB15N Pxyl::Pxyl-lacI-cfp-tetR-yfp10x tetO
and 10x lacO spaced 10.0 kb apart at 108◦

Messelink et al (2021) [69]

Tn3 CB15N Pxyl::Pxyl-lacI-cfp-tetR-yfp (lacO)n in-
tegrated at the ori and (tetO)n integrated at
bp 957206 (86◦)

Viollier et al. (2004) [142]

Tn4 CB15N Pxyl::Pxyl-lacI-cfp-tetR-yfp (lacO)n in-
tegrated at the ori and (tetO)n integrated at
bp 2026048 (182◦)

Viollier et al. (2004) [142]

Tn8 CB15N Pxyl::Pxyl-lacI-cfp-tetR-yfp (lacO)n in-
tegrated at the ori and (tetO)n integrated at
bp 1498826 (134◦)

Viollier et al. (2004) [142]

Tn11 CB15N Pxyl::Pxyl-lacI-cfp-tetR-yfp (lacO)n in-
tegrated at the ori and (tetO)n integrated at
bp 3029646 (272◦)

Viollier et al. (2004) [142]

Tn49 CB15N Pxyl::Pxyl-lacI-cfp-tetR-yfp (lacO)n in-
tegrated at the ori and (tetO)n integrated at
bp 596575 (54◦)

Viollier et al. (2004) [142]

Tn72 CB15N Pxyl::Pxyl-lacI-cfp-tetR-yfp (lacO)n in-
tegrated at the ori and (tetO)n integrated at
bp 2673431 (239◦)

Viollier et al. (2004) [142]

Tn85 CB15N Pxyl::Pxyl-lacI-cfp-tetR-yfp (lacO)n in-
tegrated at the ori and (tetO)n integrated at
bp 433392 (39◦)

Viollier et al. (2004) [142]

Tn102 CB15N Pxyl::Pxyl-lacI-cfp-tetR-yfp (lacO)n in-
tegrated at the ori and (tetO)n integrated at
bp 3645906 (329◦)

Viollier et al. (2004) [142]
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3.4.2 Model construction

As detailed in the Main Text, to construct the replicating MaxEnt model, the following input
data are needed for each cell cycle progression time:

1. bias-corrected Hi-C data,

2. the mean replication fork position,

3. the mean cell length,

4. the mean separation between replicated ori ’s.

Input 4 is obtained as described in Sec. 3.4.1. In this section, we describe how inputs 1-3 are
obtained.

Input Hi-C data

For the input Hi-C data, the raw Hi-C counts cannot be used directly: these may contain
biases due to varying crosslinker affinities between genomic regions, and to a lesser extent
differences in GC content and the mappability of individual reads [58]. To remove such biases
for the data set at t = 0 minutes after synchronization, a normalization procedure rescaling
the Hi-C map such that all rows and columns add to 1 was applied in [58]. For Hi-C maps
for later times after synchronization, we make use of the column sums in the raw data set at
t = 0. The rescaling factor fi applied to each column i in the data set at t = 0 encodes the
read count bias of site i. Thus, for each data set at time t, dividing the sums of each column i
by the sums of column i in the data set at t = 0, we obtain the bias-corrected relative column
sums σcorr

i of each column i (Fig. 3.5). This procedure assumes that biases in crosslinker
affinities and mappability of individual reads remain constant throughout the cell cycle.

To construct an input contact frequency data set f expt
ij (t) that matches these bias-corrected

column sums σcorr
i , we make use of an iterative procedure [58]. First, for a given cell cycle

time t we calculate the sum of the entire Hi-C matrix Σ(t) =
∑

i,jmij(t), and the sum of
each column σi(t) =

∑
jmij(t). Each Hi-C matrix entry mij(t) we then rescale according

to mij(t) → mij(t)
fifj

σi(t)σj(t)Σ(t). This procedure is repeated until the target column sums

are matched within an average relative deviation of 1 in 100000, which typically takes 15
iteration steps. Lastly, the entire Hi-C matrix is rescaled such that the sum of all entries
equals the number of columns. The resulting input Hi-C maps f expt

ij (t) for each cell cycle
time t are shown in Fig. 3.6.
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Figure 3.5: Column sums for the input contact frequencies fexpt
ij (t), together with smoothed derivatives.

A-F: column sums
∑

j f
expt
ij (t) for each genomic position i and each cell cycle progression time t. G-L: derivatives

of the curves shown in (A-F), after applying a Gaussian smoothing with a sigma of 350kb. Dashed lines indicate the
estimated replication fork positions for each chromosomal arm.

Replication fork position

To estimate the mean replication fork position for each Hi-C data set, we use the bias-
corrected column sums σcorr

i calculated in Sec. 3.4.2. Due to a higher copy number of genomic
regions per cell after replication, we expect the Hi-C score to be higher for regions where the
replication fork has passed. Considering the column sums for the bias-corrected Hi-C data
sets, we indeed find a clear transition between two Hi-C score regimes for the data sets at 30,
45 and 60 minutes after synchronization (Fig. 3.5).

Smoothing the column sums and taking a numerical derivative, we find an inflection
point, which we interpret as the mean replication fork position (Fig. 3.5). Combining the
estimated mean replication fork positions for the Hi-C data sets at 30,45, and 60 minutes
after synchronization, we find that the inferred locations lie closely along a linear fit for
both chromosomal arms 3.7. Importantly, the replication progress for both chromosomal
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Figure 3.6: Input Hi-C maps. A-F: Input Hi-C maps fexptij (t) for C. crescentus cells for each cell cycle progression

time, obtained via the bias correction procedure described in Sec. 3.4.2, applied to data from [58]. Upper left triangles:
linear scale. Lower right triangles: logarithmic scale.

Figure 3.7: Inferred progress of the mean replication fork position Orange/blue dots: mean replication fork
positions determined for the right/left chromosomal arms, as shown in Fig 3.6. Orange/blue lines: linear fits through
the obtained mean fork positions for the right/left arms. Black dots: average of the two linear fits, shown for each
time since synchronization for which a Hi-C data set was obtained by [58]. These averages are the positions used in the
MaxEnt model construction.

arms is determined independently. Thus the close agreement between the two arms provides
additional support for the accuracy of the inferred replication progress. The mean of the
linear fits for both arms at each time since synchronization is used for the MaxEnt model
construction.

Cell size

To determine the mean cell size associated with each replication fork position, we make
use of the fluorescent microscopy images described in Section 3.4.1. For each time since
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synchronization, the mean cell length is determined (blue dots in Fig. 3.8). From this, the
estimated cell envelope width [69] is subtracted, yielding the confinement lengths used as
model inputs (black dots in Fig. 3.8). For the confinement width, a cylinder with rounded
caps as used in [69] is applied, with the confinement width of 0.63 µm assumed to be constant
throughout the cell cycle.

Figure 3.8: Mean cell lengths at each time since synchronization Blue dots: mean cell lengths determined for
each time since synchronization. The error bars indicate two times the error on the mean. Black dots: cell lengths used
as MaxEnt model inputs, with the estimated cell envelope width subtracted from the mean cell lengths.

3.4.3 Monte Carlo simulation

The Monte Carlo simulation of the lattice polymer is performed as in [69], with one extra
move included to change the replication fork position. The added ‘fork move’, illustrated
in Fig. 3.9, together with the loop move, kink move, and crankshaft move, forms the set of
moves randomly chosen from at each step of the Monte Carlo simulation.

The addition of the fork moves preserves ergodicity, which we can see as follows. Consid-
ering the unreplicated portion of the chromosome and one of the replicated segments, which
for convenience we name replicated segment 1, these together have the topology of a single
unreplicated chromosome. This subset of monomers, which we term subset S, can be modi-
fied in the same way as the unreplicated chromosome in [69], which was shown to be ergodic
under the loop, kink, and crankshaft moves, with the exception of the replication fork site M
which is only modified by the fork move. From the perspective of subset S however, the fork
move simply behaves as either a kink move or a loop move, with the constraint that the first
monomer of replicated segment 2 is in the right position to allow these moves.

This constraint is satisfied as long as it is possible to put the first monomer of replicated
segment 2 at each of the six possible sites around the replication fork site by a sequence of
polymer moves. Here, replicated segment 2 can be considered as a linear polymer with fixed
endpoints, where each of its monomers is subject to the kink, loop and crankshaft moves.
Thus, segment 2 is subject to ergodic sampling. The only case where it is not possible to put
the first monomer of replicated segment 2 at any position around site M , is therefore if the
replicated segments are completely stretched, i.e. the L1 norm of the distance vector between
the replication forks is equal to 2M . As this is longer than our confinement length for all cell
cycle times considered here, this exception is not relevant for our model. Thus, for our subset
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Figure 3.9: Illustration of the fork move used in the Monte Carlo algorithm. The fork move is performed on
the junction site M (red) if two of the three connected monomers overlap (orange and blue), and the third monomer
(grey) is at a 90◦angle to the other two.

S we can consider the replication fork site M to effectively move according to the kink and
loop moves.

As the crankshaft move can be constructed as a combination of loop and kink moves, the
replication fork site M is effectively subject to the same moves as the other monomers in
subset S, and thus the monomers in subset S are subject to an ergodic sampling of states.
As segment 1 and segment 2 are identical, both possible subsets that can be constructed are
subject to ergodic sampling, thus this also holds for the chromosome as a whole.

3.4.4 MaxEnt model trained only on Hi-C data

In [69], a MaxEnt model for unreplicating C.crescentus cells was developed with Hi-C data as
the only imposed constraint. Imposing only Hi-C constraints on our replicating chromosome
model, we find that the model solution does not exhibit chromosomal segregation (Fig. 3.10).
Thus, an additional constraint on the mean separation between replicating ori ’s is imposed,
as detailed in the Main Text.

Figure 3.10: Average long-axis localizations for a MaxEnt model trained only on Hi-C data. Average long-
axis positions shown for the old chromosome (blue), new chromosome (orange) and unreplicated chromosome (black).
The transparency of the lines indicates the cell cycle progression time. The cellular orientation and the assignment of
old and new chromosomes are done as in Main Text Fig. 3.
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3.4.5 Correcting for indistinguishability of fluorescent foci at short dis-
tance

As described in the Main Text, we perform a conditional averaging on experimentally mea-
sured localizations to directly compare experimental and model predictions. This conditional
averaging is required as the MaxEnt model contains either exactly one or exactly two copies
of a chromosomal region at a given time point, whereas intermediate average values are typ-
ically observed in experiment. This discrepancy is attributed to a combination of imperfect
synchronization of cells and imperfect label detection. One contribution to the imperfect label
detection is the indistinguishability of fluorescent foci at short distance, which results in a
systematic bias in inferred mean label positions. In this section we estimate the magnitude
of this bias, and describe how we compute a modified MaxEnt localization prediction that
incorporates the experimental bias.

Estimating the distance at which fluorescent foci become indistinguishable

To estimate the distance at which fluorescent foci become indistinguishable, we construct a
histogram of observed pairwise focus distances 3.11. In this histogram, we find a sudden cutoff
to zero counts for distances below 0.32 µm. This cutoff is consistent with our assumption of
indistinguishability of fluorescent foci at short distance. The observed minimum distance of
0.32 µm is used as a cutoff value in the calculation of bias-corrected MaxEnt localizations
(SI 3.4.5).

Figure 3.11: Histogram of measured focus distances at 86◦. Data are taken from all time points from the Tn3
data set. The dashed vertical line indicates the smallest observed distance, equal to 0.32 µm, which is used as input for
the bias-corrected MaxEnt localization prediction (SI 3.4.5).

Calculating corrected MaxEnt localization profiles

To calculate the bias-corrected MaxEnt localization profiles shown in Main Text Fig. 2, we
generate an ensemble of MaxEnt chromosome configurations for each time point. For each
configuration, we compute 2D distances between the experimentally tagged regions, projected
along the cell length and cell width coordinates. Only loci pairs who’s projected 2D distance
is above the threshold determined in Sec. 3.4.5, are included to obtain the bias-corrected
localization profiles shown in Main Text Fig. 2.
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Fraction of cells with two labels over time

In Fig. 3.12, the measured fractions of cells with two foci are shown for all measurement
conditions, together with the MaxEnt prediction taking the indistinguishability of foci at short
distance into account. The results suggest that this indistinguishability strongly contributes
to the observed fractions. Furthermore, we find that the onset of replication for tagged regions,
taken as the onset of non-zero fractions, matches well between model and experiment.

134°86°54°39°

182°239°272°329°

Figure 3.12: Fraction of cells with two foci for each measured locus, together with MaxEnt prediction.
Blue solid lines: measured fraction of cells with two ori ’s. Blue dashed lines: predicted measured fraction by the MaxEnt
model, given the indistinguishability of two foci at short distance. Blue dotted lines: locus counts in the MaxEnt model.
Yellow solid lines: measured fraction of cells with two copies of the locus indicated at the top left. Yellow dashed lines:
predicted fraction for the same region by the MaxEnt model. Yellow dotted lines: locus counts of the same region in the
MaxEnt model. The shaded areas indicate the error margins (2*SEM) on the experimental data, calculated by assuming
binomial sampling.



Chapter 4

The unusual single-cell growth of Corynebac-
terium glutamicum

Chapter summary

In this chapter, we shift perspective from the organization of a replicating chromosome
throughout the cell cycle, to the growth of its enclosing cell. Replication must be tightly
coordinated with cellular growth, to ensure a conserved chromosome density across genera-
tions and a faithful transfer of genetic material to each daughter cell. So far, single bacterial
cells have been found to grow predominantly exponentially, which implies the need for tight
growth regulation mechanisms to ensure cell size homeostasis. In this chapter, we investigate
the single-cell growth behaviour of Corynebacterium glutamicum, which has several highly
atypical growth characteristics. The cell wall forms a thick meshwork around the cell, and
cell wall growth occurs exclusively at the cell poles. Furthermore, C. glutamicum lacks many
common growth-regulatory mechanisms. Therefore, it is a promising candidate to search for
novel single-cell growth modes.

From detailed single-cell microscopy experiments, we obtain growth statistics over time
and across generations. Extracting single-cell growth behaviour from this is challenging how-
ever, due to noise and intrinsic variability from cell to cell. We develop an inference procedure
to extract average single-cell elongation profiles, using the noise-reducing properties of multi-
cell averaging, while carefully avoiding inspection bias effects. Our method is validated with
simulated cells following various single-cell growth modes in the presence of noise.

From this inference procedure, we learn that single C. glutamicum cells do not follow
the generally observed exponential single-cell growth. Rather, cells initially increase their
elongation rate, but transition to a regime of approximately linear growth for later growth
times. To understand this growth behaviour, we model single-cell growth as being rate-
limited by the apical growth mechanism, termed the Rate-Limiting Apical Growth (RAG)
model. Within this model, the initial acceleration of growth is due to the maturation of the
new cell pole, while a linear growth regime is reached once the new pole has matured. We find
this model be consistent with the observed elongation rate curves. Elongation measurements
on a ∆rodA mutant, where part of the apical cell wall insertion mechanism is inhibited, reveal
an overall downward shift of elongation rates, as would be expected based on the RAG model.

To investigate the implications of asymptotically linear growth for cell size regulation, we
simulate a population of growing cells performing either exponential or linear growth, with
all growth parameters taken directly from our data set. We find that while asymptotically
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linear growth results in a relatively narrow distribution of cell sizes, whereas exponential
growth with the same parameters yields a long-tailed distribution of cell lengths. This offers
an evolutionary explanation for C. glutamicum’s lack of of many common size-regulation
mechanisms.
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Walczak, École Normale

Supérieure, France

Copyright Messelink et al. This

article is distributed under the

terms of the Creative Commons

Attribution License, which

permits unrestricted use and

redistribution provided that the

original author and source are

credited.

Single-cell growth inference of
Corynebacterium glutamicum reveals
asymptotically linear growth
Joris JB Messelink1†, Fabian Meyer2,3†, Marc Bramkamp2,3*, Chase P Broedersz1,4*

1Arnold-Sommerfeld-Center for Theoretical Physics, Ludwig-Maximilians-Universität
München, Munich, Germany; 2Ludwig-Maximilians-Universität München, Fakultät
Biologie, Planegg-Martinsried, Germany; 3Christian-Albrechts-Universität zu Kiel,
Institut für allgemeine Mikrobiologie, Kiel, Germany; 4Department of Physics and
Astronomy, Vrije Universiteit Amsterdam, Amsterdam, Netherlands

Abstract Regulation of growth and cell size is crucial for the optimization of bacterial cellular

function. So far, single bacterial cells have been found to grow predominantly exponentially, which

implies the need for tight regulation to maintain cell size homeostasis. Here, we characterize the

growth behavior of the apically growing bacterium Corynebacterium glutamicum using a novel

broadly applicable inference method for single-cell growth dynamics. Using this approach, we find

that C. glutamicum exhibits asymptotically linear single-cell growth. To explain this growth mode,

we model elongation as being rate-limited by the apical growth mechanism. Our model accurately

reproduces the inferred cell growth dynamics and is validated with elongation measurements on a

transglycosylase deficient DrodA mutant. Finally, with simulations we show that the distribution of

cell lengths is narrower for linear than exponential growth, suggesting that this asymptotically

linear growth mode can act as a substitute for tight division length and division symmetry

regulation.

Introduction
Regulated single-cell growth is crucial for the survival of a bacterial population. At the population

level, fundamental laws of growth were discussed as early as the beginning of the 20th century, and

distinct population growth phases were identified and attributed to bacterial growth (Lane-Clay-

pon, 1909; Buchanan, 1918; Monod, 1949). At the time, however, growth behavior at the single-

cell level remained elusive. This changed only over the last decade, as evolving technologies enabled

detailed measurements of single-cell growth dynamics. Extensive work was done on common model

organisms, including Escherichia coli, Bacillus subtilis, and Caulobacter crescentus, revealing that

averaged over the cell cycle, single cells grow exponentially for these species (Taheri-Araghi et al.,

2015; Mir et al., 2011; Iyer-Biswas et al., 2014; Yu et al., 2017; Godin et al., 2010).

Single-cell exponential growth is expected if cellular volume production is proportional to the

protein content (Amir, 2014), as shown to be the case for E. coli (Belliveau et al., 2020). Impor-

tantly, however, such a proportionality will only be present if cellular volume production is rate-limit-

ing for growth. Cells with different rate-limiting steps could display distinct growth behavior.

Recently, detailed analysis of the mean growth rate throughout the cell cycle revealed deviations

from pure exponential growth. For B. subtilis (Nordholt et al., 2020), a biphasic growth mode was

observed, where a phase of approximately constant elongation rate is followed by a phase of

increasing elongation rate. For E. coli, a new method provides evidence for super-exponential in the

later stages of the cell cycle (Kar et al., 2021).
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A promising candidate for uncovering strong deviations from exponential growth is the Gram-

positive Corynebacterium glutamicum. This rod-shaped bacterium grows its cell wall exclusively at

the cell poles, allowing, in principle, for deviations from exponential single-cell growth (Figure 1).

The dominant growth mode depends on the rate-limiting step for growth, which is presently

unknown for this bacterium. Non-exponential growth modes may have important implications for

growth regulatory mechanisms: while exponential growth requires checkpoints and regulatory sys-

tems to maintain a constant size distribution (Mir et al., 2011), such tight regulation might not be

needed for other growth modes.

Corynebacterium glutamicum is broadly used as a production-organism for amino-acids and vita-

mins and also serves as model organism for the taxonomically related human pathogens Corynebac-

terium diphteriae and Mycobacterium tuberculosis (Hermann, 2003; Antoine et al., 1988;

Schubert et al., 2017). A common feature of Corynebacteria and Mycobacteria is the existence of a

complex cell envelope. The cell wall of these bacteria is a polymer assembly composed of a classical

bacterial peptidoglycan (PG) sacculus that is covalently bound to an arabinogalactan (AG) layer

(Alderwick et al., 2015). Mycolic acids are fused to the arabinose and form an outer membrane like

Figure 1. Growth mode analysis for four possible rate-limiting steps for cellular volumegrowth in the apically growing C. glutamicum. Here, V is the

cellular volume, A is the cell wall area, and C tð Þ is the concentration of membrane building blocks in the cytoplasm. A constant cell width is assumed

throughout, implying dA

dt
/ dV

dt
. A fixed production capacity per unit volume is assumed for the rate-limiting steps ’cell mass production’ and ’formation of

cell wall building blocks’. For the rate-limiting step ’assembly of cell wall’, a constant insertion area at the cell poles is assumed. For an analysis of the

single-cell growth mode if cell wall building block formation is the rate-limiting step for growth, see Appendix 1. Cell mass production, specifically

ribosome synthesis, has previously been indicated as the rate-limiting step for growth in E. coli (Belliveau et al., 2020; Scott et al., 2010; Amir, 2014).

Linear growth is observed if the rate-limiting step for volume growth is the cell wall assembly (shown here in a simplified representation). The protein

DivIVA serves as a scaffold at the curved membrane of the cell pole for the recruitment of the Lipid-II flippase MurJ and several mono- and bi-

functional trans-peptidases (TP) and -gylcosylases (TG). In the process of elongation, peptidoglycan (PG) precursors are integrated into the existing PG

sacculus, which serves as a scaffold of the synthesis of the arabinogalactan-layer (AG) and the mycolic-acid bilayer (MM).
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bilayer, rendering the cell surface highly hydrophobic (Puech et al., 2001). The mycolic acid mem-

brane (MM) is an efficient barrier that protects the cells from many conventional antibiotics.

C. glutamicum’s growth and division behavior is vastly different to that of classical model species.

In contrast to rod-shaped firmicutes and g-proteobacteria, where cell-wall synthesis is dependent on

the laterally acting MreB, members of the Corynebacterianeae lack a mreB homologue and elongate

apically. This apical elongation is mediated by the protein DivIVA, which accumulates at the cell

poles and serves as a scaffold for the organization of the elongasome complex (Letek et al., 2008;

Hett and Rubin, 2008; Sieger et al., 2013; Figures 1 and 2A,B). Furthermore, a tightly regulated

division-site selection mechanism is absent in this species. Without harboring any known functional

homologues of the Min- and nucleoid occlusion (Noc) system, division typically results in unequally

sized daughter cells (Donovan et al., 2013; Donovan and Bramkamp, 2014). Lastly, the spread in

growth times between birth and division is much wider than in other model organisms, suggesting a

weaker regulation of this growth feature (Donovan et al., 2013). These atypical growth properties

suggest that this bacterium is an interesting candidate to search for novel growth modes. To reveal

the underlying growth regulation mechanisms, it is necessary to study the elongation dynamics of C.

glutamicum.

Here, we measure the single-cell elongations within a proliferating population of C. glutamicum

cells, and develop an analysis procedure to infer their growth behavior. We find that C. glutamicum

deviates from the generally assumed single-cell exponential growth law. Instead, these Corynebacte-

ria exhibit asymptotically linear growth. We develop a mechanistic model, termed the rate-limiting

apical growth (RAG) model, showing that these anomalous elongation dynamics are consistent with

the polar cell wall synthesis being the rate-limiting step for growth. Finally, we demonstrate a con-

nection between mode of growth and the impact of single-cell variability on the cell size distribution

of the population. For an asymptotically linear grower, these variations have a much smaller impact

on this distribution than they would for an exponential grower, which may suggest an evolutionary

explanation for the lack of tight regulation of single-cell growth in C. glutamicum.

Results

Measuring elongation trajectories using microfluidic experiments
To measure the development of single C. glutamicum cells over time, we established a workflow

combining single-cell epifluorescence microscopy with semi-automatic image processing. Cells were

grown in a microfluidic device. We used wild type cells and cells expressing the scaffold protein Div-

IVA as a translational fusion to mCherry. DivIVA is used as a marker for cell cycle progression, since

it localizes to the cell poles and to the newly formed division septum in C. glutamicum (Letek et al.,

2008; Donovan et al., 2013).

For the choice of microfluidic device, we deviate from the commonly used Mother Machine

(Long et al., 2013), which grows bacteria in thin channels roughly equaling the cell width. The

Mother Machine is not ideally suited for C. glutamicum growth, as the characteristic V-snapping at

division could lead to shear forces and stress during cell separation, affecting growth (Zhou et al.,

2019). Indeed, in some cases, the mother machine has been shown to affect growth properties even

in cells not exhibiting V-snapping at division, due to mechanical stresses inducing cell deformation

(Yang et al., 2018). Therefore, we instead used microfluidic chambers that allow the growing colony

to expand without spatial limitations into two dimensions for several generations (Figure 2C,D,

Materials and methods). Within the highly controlled environment of the microfluidic device, a

steady medium feed and a constant temperature of 30˚C was maintained. We extracted bright-field-

and fluorescent-images over 3-min intervals, which were subsequently processed semi-automatically

with a workflow developed in FIJI and R (Schindelin et al., 2012; R Development Core Team,

2003). For each individual cell per time-frame, the data set contains the cell’s length, area and esti-

mated volume, the DivIVA-mCherry intensity profile, and information about generational lineage

(Figure 2E–G). We used these data sets to further investigate the growth behavior of our bacterium.

Thus, using this procedure, we obtained data sets containing detailed statistics on single-cell growth

of C. glutamicum.

For subsequent analysis, the measured cell lengths were used, because of their low noise levels

as compared to other measures (Appendix 2—figure 1B). Importantly, the increases in cell length
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Figure 2. Experimental procedure and image analysis. (A, left) Phase contrast image of C. glutamicum in logarithmic growth phase, indicating the

variable size of daughter cells. (A, right) HADA labeling of nascent peptidoglycan (PG), indicating the asymmetric apical growth where the old cell-pole

always shows a larger area covered compared to the new pole. The labeling also reveals the variable septum positioning; Scale bar: 2 mm (B) Schematic

showing the generation-dependent sites of PG synthesis in C. glutamicum, including the maturation of a new to an old cell-pole. (C) Illustration of the

microfluidic device for microscopic monitoring of a growing colony. (D) Example screen-shot of the developed method to extract individual cell cycles

from a multi-channel time-lapse micrograph. The left panel shows a merging of the bright-field channel and the mCherry-tagged DivIVA together with

an individual ID# that is assigned to cells right after division. The black dots in the right panel indicate the new cell pole. (E) Example of an extracted

individual cell cycle from birth (left) until prior to division (right), showing the bright-field (top), the orientation (middle) and the localization of mCherry-

tagged DivIVA (bottom). (F) Example of the developed single cell analysis algorithm, measuring the length according to the cell’s geometry, as well as

the cell’s area and the septum position relative to the new pole. (G) Dendrogram providing the rationale for identification of single cells in a growing

colony.
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are proportional to the increases in cell area (Appendix 2—figure 1A), suggesting that cellular

length increase is also proportional to the volume increase. This proportionality is expected since

the rod-shaped C. glutamicum cells insert new cell wall material exclusively at the poles, while main-

taining a roughly constant cell width over the cell cycle (Schubert et al., 2017; Daniel and Erring-

ton, 2003).

Population-average test suggests non-exponential growth for C.
glutamicum
A standard way of characterizing single-cell bacterial growth, is to determine the average relation

between birth length lb and division length ld (Amir, 2014). For C. glutamicum, we find an approxi-

mately linear relationship between these birth and division lengths, with a slope of 0.91±0.16

(2xSEM, Figure 3A). This indicates that on a population level, C. glutamicum behaves close to the

adder model, in which cells on average grow by adding a fixed length before dividing (Jun and

Taheri-Araghi, 2015; Amir, 2014).

To investigate the growth dynamics from birth to division, we first tested if our cells conform to

the generally observed exponential mode of single-cell growth. To this end, we applied a previously

developed analysis on bacterial elongation data (Logsdon et al., 2017), by plotting ln ld

lb

� �

versus the

growth time (Figure 3B). For an exponential grower, with the same exponential growth rate a for all

cells, the averages of ln ld

lb

� �

per growth time bin are expected to lie along a straight line with slope

a intersecting the origin. By contrast, there appears to be a systematic deviation from this trend,

with cells with shorter growth times lying above this line and cells with longer growth times lying

below it, suggesting non-exponential elongation behavior. However, the significance and implica-

tions of these deviations for single-cell growth behavior are not clear from this analysis. There are

several quantities that could be highly variable between cells that are averaged out in this represen-

tation, such as possible variations in exponential growth rate as a function of birth length, or varia-

tions in growth mode over time. Furthermore, it was recently shown that exponentially growing cells

can appear non-exponential with this test in the presence of noise in the exponential growth rate

(Kar et al., 2021). Thus, a more detailed analysis of the growth trajectories is needed to rule out

exponential growth, and to quantitatively characterize the growth dynamics.

Figure 3. Population-level and single-cell level growth analysis. (A) Birth length lb plotted against division length ld for all measured cells, together with

a linear fit (blue line), which has a slope of 0.91±0.16. Gray solid line: best fit assuming a pure sizer (slope 0). Gray dashed line: best fit assuming a pure

adder (slope 1). The 95% confidence intervals of the linear fit, obtained via bootstrapping, are indicated by the blue shaded region. (B) Generation time

versus ln ld

lb

� �

for all cells (blue dots) and the average per generation time (orange squares), with the standard error of the mean shown for all generation

times for which at least three data points are available. The orange line represents a linear fit through the generation time averages that passes through

the origin. For exponential growth, the averages would lie along this line, and the slope would be equal to the exponential growth rate. (C) Growth

trajectory for a single cell (upper panel), together with its derivative for each measurement interval (lower panel). Fits to the derivative are shown for

linear growth (black dash-dotted line) and exponential growth (red dashed line).
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The variability of key growth parameters is not easily extracted from individual growth trajectories

due to the inherent stochasticity of the elongation dynamics and measurement noise (Figure 3C). In

fact, it has been estimated that to distinguish between exponential and linear growth for an individ-

ual trajectory, the trajectory needs to be determined with an error of ~6% (Cooper, 1998). Distin-

guishing subtler growth features may require an even higher degree of accuracy, which is presently

experimentally unavailable (Appendix 3). Therefore, an analysis method is needed that is less noise-

sensitive than an inspection of the single-cell trajectories, but simultaneously does not average out

potentially relevant growth features such as time-dependence and birth length variability.

Figure 4. Average elongation curve inference procedure. (A) For each cell, the length L tð Þ at different times t since birth is plotted as a function of birth

length lb. A linear fit of the resulting ‘wave front’ is performed for each time t. This allows us to determine average cell length L t; lbð Þ at time t as a

function of birth length lb. (B) 3D representation of the inference method of average length trajectories, with the added length L t; lbð Þ � lb on the z-axis.

Elongation trajectories for individual cells are indicated in gray, linear fits through all cell lengths at each timestamp are indicated by green lines. The

orange lines represent four sample average length trajectories, obtained by connecting all values of the green lines associated with one birth length.

Dotted lines represent regimes where averages are biased due to dividing cells. (C) Average elongation trajectories obtained from the fits shown in (A)

for a range of birth lengths, starting at 1.9 mm with steps of 0.1 mm (solid lines). The dashed lines represent regions where the inferred elongation

curves are biased due to dividing cells, and are excluded from subsequent analysis. (D) Cumulative fraction of cells divided as a function of grow time.

(E) Elongation trajectories for cells with birth lengths close to 2.5 mm (purple dashed lines) and birth lengths close to 2.1 mm (black dashed lines)

together with their respective inferred average trajectories (purple solid line and black solid line).
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Growth-inference method yields average elongation rate curves
To obtain quantitative elongation rate curves as a function of time and birth length, despite the high

degree of individual variation, we developed a data analysis procedure that exploits the noise-reduc-

ing properties of multiple-cell conditional averaging. The key idea is to obtain an average depen-

dence of the cellular length L t; lbð Þ on the time t since birth and birth length lb, by first obtaining the

average dependence of L t; lbð Þ on lb for each discrete value of t individually. This yields an average

elongation curve for each birth length lb, without the need to perform inference on noisy L tð Þ single-
cell curves.

The analysis procedure is as follows. First, for all cells in our data set, we determine the time since

birth t, the cellular length L at time t, and the birth length lb: Subsequently, we relate the length at

time t to the birth length, yielding a series of scatter plots for each measurement time (Figure 4A).

Importantly, these scatterplots suggest a simple apparently linear relationship between L and lb. For

each such plot, we thus make a linear fit through the data, yielding a family of curves for each time

since birth t (Figure 4B). Higher-order fitting functions result in a negligible improvement of the

goodness-of-fit, while increasing the mean error on inferred elongation rates (Appendix 2—figure

3). Note that for both purely linear and purely exponential growth, would depend linearly on: for lin-

ear growth L t; lbð Þ ¼ at þ lb, whereas for exponential growth L t; lbð Þ ¼ lb exp atÞð (Appendix 2—fig-

ure 3). From the family of relations, we compute a series of points Lðt0; lbÞ; Lðt1; lbÞ; Lðt2; lbÞf g
yielding the average growth trajectory of a cell starting out at length lb (Figure 4C). Note, we must

remove a bias in the lb associated with each average trajectory, arising from measurement noise in

the cell lengths at birth (Appendix 4). In summary, this procedure allows us to obtain an unbiased

interference of the average elongation trajectories as a function of the cell’s birth length.

Elongation rate inference reveals asymptotically linear growth mode
Our inference approach yields the functional dependence of the average added length on growth

time and birth length. We find that the average length steadily increases initially, but levels off and

shows pronounced fluctuations for larger growth times (Figure 4C). This late-time behavior (dashed

lines in Figure 4C) is caused by decreasing cell numbers due to division events (Figure 4D), which

also introduces a bias in the averaging procedure. After the first division event, the average inferred

growth would be conditioned on the cells that have not divided yet. For a given birth length, faster-

Figure 5. Inferred average elongation rates. (A) Average elongation rates for four birth lengths (dots), for the

DivIVA-labeled cells. The 2s confidence intervals obtained by bootstrapping are indicated by the shaded areas.

Vertical dashed lines: average onset of septum formation per birth length. (B) Average elongation rate trajectories

for the wild-type cells, confidence intervals shown as in (A). Inset: average elongation trajectories as a function of

the time until division. (C) Average elongation rate trajectories for the DrodA mutant, confidence intervals shown

as in (A).
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growing cells divide earlier than slower-growing cells (Appendix 2—figure 2) causing this condi-

tional average to underestimate cellular elongation rates for the whole population after the first divi-

sion. Because our aim is to infer elongation curves that characterize the whole population, ranging

from slow to fast growers, for further analysis only the part of each trajectory before the first division

event is used (Figure 4D). Sub-population elongation curves can also be obtained that extend past

the first division event, but only if the entire analysis for these curves is performed only on these

slower-dividing cells (Appendix 2—figure 4).

We obtain elongation rate curves by taking a numerical derivative of smoothed growth trajecto-

ries (Appendix 5). To determine the associated error margins of the elongation rates, we use a cus-

tom bootstrapping algorithm (Efron, 1979). The resulting 2s bounds are shown as semitransparent

bands. Despite the high noise level of individual elongation trajectories, the inferred average elonga-

tion rates have an error margin of around 8%. Thus, our approach robustly infers average elongation

trajectories from single-cell growth data. Elongation rates of cells with larger birth length are consis-

tently higher than the elongation rates of cells with smaller birth length. Strikingly, the elongation

rate curves initially increase, but then gradually level off toward a linear growth mode (Figure 5). We

note a slight difference in the cell elongation rates between the strain expressing DivIVA-mCherry

(Figure 5A) and wild type cells (Figure 5B). Importantly, this difference does not qualitatively

change the mode of growth, but does show that a translational fusion to DivIVA tends to lower elon-

gation rates. This likely reflects a disturbance in the interaction between RodA or bifunctional PBPs

and the DivIVA-mCherry fusion protein, indicating that the DivIVA-mCherry fusion is not fully func-

tional. This is consistent with findings we reported earlier (Donovan et al., 2013).

To further test if the linear growth mode persists until division, we adapt our inference procedure

to obtain average elongation curves L t � td; ldð Þ as a function of the time until division t � td and divi-

sion length ld. The construction is analogous to that of L t; lbð Þ (Appendix 6). Calculating the corre-

sponding elongation rate curves, we find that that linear growth indeed extends until the division

time across division lengths (inset Figure 5B,SI, Appendix 6—figure 1). Note that with this construc-

tion, elongation rates become biased once t � tdj j exceeds the shortest single-cell total growth time.

Hence, for our analysis we only consider elongation rate curves until this point.

To test the performance of our proposed inference method, we simulated a population of grow-

ing cells with a presumed growth mode from which we sample cells lengths as in our experiments,

including measurement noise (Appendix 3). We ran simulations for cells performing linear growth,

exponential growth, and the growth mode inferred here for DivIVA-labeled cells (Figure 5A). We

find that our inference method is able to recover the input growth mode with high precision in all

cases (Appendix 4, Appendix 7), demonstrating the accuracy and internal consistency of our infer-

ence method.

Onset of the linear growth regime does not consistently coincide with
septum formation
A central feature of the obtained elongation rate curves is a transition from an accelerating to a lin-

ear growth mode after approximately 20–25 min (Figure 5). One possibility is that this levelling off is

connected with the onset of division septum formation. Given that the FtsZ-dependent divisome

propagates the invagination of the septum under the consumption of cell wall precursors (e.g. Lipid-

II), we hypothesized that the appearance of the additional sink for cell-wall building blocks could

lead to coincidental leveling-off of the elongation rates (Scheffers and Tol, 2015). To test this

hypothesis, we used the moment of a sharp increase in the average DivIVA-mCherry signal at the

cell center as a proxy for the moment of onset of septum formation (Appendix 2—figure 7): the

inward growing septum introduces a negative curvature of the plasma membrane, leading to the

accumulation of DivIVA (Lenarcic et al., 2009; Strahl and Hamoen, 2012). We observe that the

onset of septum formation does not consistently coincide with the moment at which the elongation

rate levels off (Figure 5A): for smaller cells, the onset of septum formation occurs much later. There-

fore, it seems implausible that the observed linear growth regime is due the septum acting as a sink

for cell-wall building blocks.
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Polar cell wall formation is the rate-limiting step for growth, leading to
a linear growth regime
To provide insight into the anomalous single-cell growth behavior, we model single-cell elongation

as being rate-limited by the apical cell wall formation mechanism. To formulate this rate-limiting api-

cal growth (RAG) model, we first consider the biochemical pathway that leads to cell wall formation

in C. glutamicum, as illustrated in Figure 1. The key process for cell wall formation in C. glutamicum

is polar peptidoglycan (PG) synthesis. PG intermediates are provided by the substrate Lipid-II, and

the integration of new material into the PG-mesh is mediated by transglycosylases (TGs) located at

the cell pole. At the TG sites, Lipid-II is translocated across the plasma membrane by the Lipid-II flip-

pase MurJ (Sham et al., 2014; Kuk et al., 2017; Butler et al., 2013). After PG building blocks pro-

vided by Lipid-II are incorporated into the existing cell wall by transglycolylation, transpeptidases

(TP) conduct the crosslinking of peptide subunits, which contributes to the rigidity of the cell wall

(Scheffers and Pinho, 2005; Valbuena et al., 2007; Schleifer and Kandler, 1972). During growth,

the area of the PG sacculus, and thus the number of TG sites, is extended by RodA and bifunctional

penicillin binding proteins (PBPs), recruited by DivIVA (Letek et al., 2008; Sieger et al., 2013).

To model this growth mechanism, we assume that the rate of new cell wall formation is propor-

tional to the number of TG sites. We describe the interaction between Lipid-II and TG sites by

Michaelis-Menten kinetics (Figure 6A). Specifically, if the cell length added per unit time is propor-

tional to the cell wall area added per unit time, we find

dL tð Þ
dt

¼ a
C tð ÞN tð Þ
KmþC tð Þ (1)

with L tð Þ the cell length at time t, C tð Þ the concentration of Lipid-II, Km the Michaelis constant for this

reaction, and a is a proportionality constant.

To gain insight into the cell-cycle-dependence of NðtÞ and CðtÞ, we made use of the cyan fluores-

cent D-alanine analogue HADA (see Materials and methods) to stain newly inserted peptidoglycan.

Exponentially growing C. glutamicum cells were labeled with HADA for 5 min before imaging. The

HADA stain will mainly appear at sites of nascent PG synthesis. As expected, HADA staining resulted

in a bright cyan fluorescent signal at the cell poles and at the site of septation. Still images were

obtained with fluorescence microscopy and subjected to image analysis (Figures 2A and

6B, Materials and methods).

We first verify that the HADA intensity profile at the cell poles can be used as a measure for the

peptidoglycan insertion rate. To do this, we assume that the HADA intensity profile has two relevant

contributions: fluorescent probe present in the cell plasma, and fluorescent probe attached to newly

inserted peptidoglycan. We use the minimum of the HADA intensity profile, consistently located

around mid-cell in non-dividing cells, as an estimate of the contribution from the cell plasma in each

cell, and subtract this from the entire cellular profile to obtain the corrected HADA profile (Appen-

dix 2—figure 8). We then define the polar regions where we use the corrected HADA intensity to

measure newly inserted peptidoglycan as the portions of the cell within 0.78 mm of the cell tips. Our

results are, however, not strongly dependent on this polar region definition (Appendix 2—figure

10). Subsequently, we compute a moving average of the corrected polar HADA intensity as a func-

tion of cell length (Figure 6C). These polar HADA intensities are approximately proportional to the

inferred average single-cell elongation rates (Appendix 8), as shown in the inset of Figure 6C. Thus,

the polar HADA intensities can be used as a measure for the cellular elongation rate. Assuming a

proportional relationship between elongation rate and peptidoglycan insertion rate, this implies the

polar HADA intensities are also approximately proportional to the peptidoglycan insertion rate.

Deviations of ~10% from proportionality within the error margins observed over the range of tip

intensities do not affect subsequent conclusions from the HADA intensity data.

Analyzing the HADA intensity profile for smaller segments within the polar region, we find that

the increase in intensity is unevenly distributed (Figure 6D). Close to the cell tip, the HADA intensity

remains approximately constant across cell lengths, whereas a linear increase over cell lengths is

seen further from the tip. Considering the implications of these measured intensities for CðtÞ and

NðtÞ within our model in Equation (1), we argue for a scenario where either CðtÞ is constant or

CðtÞ � Km. Our reasoning is as follows. From Equation (1), we see that the approximately constant

intensity at the cell tip can be produced in two ways: (1) CðtÞ � Km or CðtÞ is constant across cell
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Figure 6. Modeling of average elongation rates using HADA staining results. (A) Schematic depicting cell wall formation via Lipid-II and

transgrlycosylases (TG’s). The corresponding Michaelis-Menten equation describes the change of length over time as function of the Lipid-II

concentration C tð Þ and the number of the TG sites N tð Þ. (B) Demograph of C. glutamicum cells stained with HADA. Cell are ordered by length, with the

stronger signal oriented downwards. (C) Average elongation rate as a function of cell length (red), predicted from obtained average elongation rate

curves (Appendix 8), together with the average HADA staining intensity at the cell pole after background correction (blue). The cell pole is defined here

as the region within 0.77 mm (60 pixels) of the cell tip. The shaded regions indicate the 2XSEM bounds. For both curves, a moving average over cells

within 0.7 mm of each x-coordinate is applied over the underlying data. Inset: predicted average elongation rate versus average HADA staining intensity

(blue dots). A linear fit through the result (red line) is consistent with a proportional relationship. (D) Average HADA intensity as a function of cell length,

shown for four regions close to the cell tip. A moving average over cells within 0.7 mm of each x-coordinate is applied over the underlying data. (E-G)

Dots: average elongation rate curves as shown in Figure 5A. Solid lines: best fit of elongation model from Equation (2), which assumes constant

transglycosylase recruitment. Dashed lines: best fit of elongation model from Equation (3), which assumes an exponential increase of transglycosylase

recruitment.
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lengths, and the number of transglycosylases at the tip NtipðtÞ is constant, or (2) NtipðtÞ and CðtÞ anti-
correlate in such a way to produce constant insertion.

However, we consider constant Ntip tð Þ as biologically the most plausible scenario. This is sup-

ported by noting that the concentration of Lipid-II is the same directly before and after division, such

that C tð Þ, and by implication Ntip tð Þ, is similar for the shortest and the longest cell lengths (Appen-

dix 2—figure 9). In our subsequent analysis, we will therefore assume that either C tð Þ is constant, or
C tð Þ � Km. This implies that dL tð Þ

dt
in Equation (1) is directly proportional to N tð Þ.

To derive an expression for N tð Þ, we first note that the old and new cell pole in the cell need to

be treated differently. We assume the number of polar TG-sites to saturate within one cellular life-

cycle, such that the new pole initiates with N tð Þ below saturation, while the old pole – inherited from

the mother cell – is saturated. Letting the number of TG sites increase proportional to the number of

available sites, we arrive at the following kinetic description for N tð Þ

dNðtÞ
dt

¼ b N
max�NðtÞð Þ (2)

Here, Nmax is the maximum number of sites at the cell poles, and b is a rate constant. This result,

together with Equation (1), defines our RAG model. The predicted elongation rates provide a good

fit to the experiment for all studied genotypes (Figure 6E–G), although the data appear to exhibit a

stronger inflection.

Instead of assuming a constant recruitment of TG enzymes, we can construct a more refined

model that takes TG recruitment dynamics into account. There is evidence that transglycosylase

RodA and PBPs are recruited to the cell pole via the curvature-sensing protein DivIVA (Letek et al.,

2008; Sieger et al., 2013). As shown in Lenarcic et al., 2009, DivIVA also recruits itself, leading to

the exponential growth of a nucleating DivIVA cluster. Therefore, we let the recruitment rate of TG

enzymes be proportional to the number of DivIVA proteins NDðtÞ ¼ NDð0Þegt. This results in a modi-

fied kinetic description for N tð Þ (Equation (2)):

dNðtÞ
dt

¼ begt Nmax�NðtÞð Þ (3)

This refined model can capture more detailed features of the measured elongation rate curves

(Figure 6E–G), including the stronger inflection, with an additional free parameter, g, encoding the

self-recruitment rate of DivIVA.

The central assumption of our RAG model is that the growth of the cell poles, mediated via accu-

mulation of TG enzymes, is the rate-limiting step for cellular growth. To test this assumption, we

repeated our experiment with a rodA knockout (Sieger et al., 2013). The SEDS-protein RodA is a

mono-functional TG (Meeske et al., 2016; Emami et al., 2017; Sjodt et al., 2018), whose deletion

results in a phenotype with a decreased population growth rate in the shaking-flask (Sieger et al.,

2013). The cells’ viability is nonetheless backed up by the presence of bifunctional class A PBPs

capable of catalyzing transglycoslyation and transpeptidation reactions. We expect this knockout to

lower the efficiency of polar cell wall formation, thus slowing down the rate-limiting step of growth.

Specifically, we expect the knockout of rodA to mainly affect the efficiency of Lipid-II integration

into the murein sacculus. Within our RAG model, this translates to a lowering of the cell wall produc-

tion per transglycosylase site a. This would imply elongation rate curves of similar shape for the

DrodA mutant, only scaled down by a factor aWT=aDrodA. Indeed, we observe such a scaling down of

the elongation rate curves (Figure 5C), lending further credence to our model for C. glutamicum

growth.

A striking feature observed across growth conditions and birth lengths, is the onset of a linear

growth regime after approximately 20 min (Figure 5A–C). The robustness of this timing can be

understood from the RAG model: the regime of linear growth is reached via an exponential decay of

the number of available TG sites until saturation is reached. This exponential decay makes the

moment of onset of the linear growth regime relatively insensitive to variations in Nð0Þ and N
max.

Specifically, from Equation (2), it can be shown that the difference between N tð Þ and N
max is halved

every lnð2Þb minutes, which amounts to ~8 min given fitted value of b (Appendix 9—table 1).

Finally, our RAG model makes a prediction for the degree of transglycosylase saturation of the

cell poles at birth, relative to the saturation in the linear growth regime. We find that this saturation
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is comparable between wild-type and the DrodA mutant (~65% on average), but significantly higher

for DivIVA-labeled cells (~80% on average) (Appendix 9—tables 1 and 2). Note that the percentage

of the saturation levels are relative values and do not suggest that in the DivIVA-mCherry fusion

more transglycosylase sites are present in absolute numbers.

Birth length distribution of linear growers is more robust to single-cell
growth variability
After obtaining average single-cell growth trajectories, we next asked how this growth behavior at

the single cell level affects the growth of the colony. It was shown that asymmetric division and noise

in individual growth times results in a dramatic widening of the cell-size distribution for a purely

exponential grower (Marantan and Amir, 2016). For an asymptotically linear grower, however, we

would expect single-cell variations to have a much weaker impact.

To quantify the difference between asymptotically linear growth and hypothetical exponential

growth for C. glutamicum, we performed population growth simulations for both cases. For the

asymptotically linear growth, we assumed the elongation rate curves obtained from our model. For

exponential growth, we assumed the final cell size to be given by ld ¼ lb expðaðtt þ DtÞÞ þ Dl, with a

the exponential elongation rate, tt the target growth time, Dt a time-additive noise term and Dl a

size-additive noise term. All growth parameters necessary for the simulation were obtained directly

from the experimental data (Appendix 10). From this simulation, the distribution of initial cell lengths

was determined for each scenario.

The resulting distribution of birth lengths for the asymptotically linear growth case closely

matches the experimentally determined distribution (Figure 7). By contrast, the distribution for

exponential growth is much wider, and exhibits a broad tail for longer cell lengths. This suggests a

strong connection between growth mode and the effect of individual growth variations on popula-

tion statistics. C. glutamicum has a high degree of variation of division symmetry (Appendix 10—fig-

ure 1C) and single-cell growth times, but due to the asymptotically linear growth mode, the

population-level variations in cell size are still relatively small. This indicates that linear growth can

act as a regulator for cell size.

Figure 7. Simulation of population growth for asymptotically linear and exponential growth. Left: birth length

distribution for simulated asymptotically linear growth (blue dash-dotted line), and for simulated exponential

growth (orange dashed line). For both simulations, all relevant growth parameters and distributions are obtained

directly from the experimental data. Black dots: experimental birth length distribution. Right: sample of 11 cells

from the exponential and asymptotically linear growth simulations, color coded according to length.
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Discussion
By developing a novel growth trajectory inference and analysis method, we showed that C. glutami-

cum exhibits asymptotically linear growth, rather than the exponential growth predominantly found

in bacteria. The obtained elongation rate curves are shown to be consistent with a model of apical

cell wall formation being the rate-limiting step for growth. The RAG model is further validated by

experiments with a DrodA mutant, in which the elongation rate curves look functionally similar, but

with a downward shift compared to wild type (Figure 5B,C), as expected based on our model. For

C. glutamicum, apical cell wall formation is a plausible candidate for the rate-limiting step of growth,

because synthesis of the highly complex cell wall and lipids for the mycolic acid membrane is cost

intensive and a major sink for energy and carbon in Corynebacteria and Mycobacteria

(Brennan, 2003).

An analysis of elongation rates as a function of time and birth length has previously been done in

B. subtilis by binning cells based on birth length (Nordholt et al., 2020). Applying this method to

our data set yields elongation rates averaged over cells within a binning interval (Appendix 2—fig-

ure 5). Averaging our inferred elongation rates over the same bins, we find the two methods to yield

consistent results. The binning method, however, involves a tradeoff: a smaller bin width results in a

larger error on the inferred elongation rates, whereas a larger bin width averages out all variation

within a larger birth length interval. Our method does not suffer from this binning-related tradeoff,

and it provides detailed elongation rate curves at any given birth length. In other recent work

(Kar et al., 2021), average growth rate curves were calculated as a function of cell phase. Our

method provides additional detail by extracting the dependence of elongation rate on birth length

as well as time since birth.

Our proposed growth model shares some similar features to recent experimental observations on

polar growth in Mycobacteria (Hannebelle et al., 2020). Polar growth was shown to follow ’new end

take off’ (NETO) dynamics (Hannebelle et al., 2020), in which the new cell pole makes a sudden

transition from slow to fast growth, leading to a bilinear polar growth mode. In our proposed growth

model for C. glutamicum however, the new pole gradually increases its average elongation rate

before saturating to a constant maximum. The deviation of C. glutamicum from NETO dynamics can

also be seen by comparing each of the pole intensities in the HADA staining experiment, which does

not show any signatures of NETO-like growth (Appendix 2—figure 11). It remains unclear which

molecular mechanisms produce the differences in growth between such closely related species.

However, the mode of growth described here for C. glutamicum might well be an adaption to

enable higher growth rates.

To investigate the implications of our inferred single-cell growth mode for cell-size homeostasis

throughout a population of cells, we performed simulations of cellular growth and division over

many generations. We found that our asymptotically linear growth model accurately reproduces the

experimental distribution of cell birth lengths. By contrast, a model of exponential growth predicts a

much broader distribution with a long tail for larger birth lengths. This indicates a possible connec-

tion between mode of growth and permissible growth-related noise levels for the cell. Indeed, if sin-

gle-cell growth variability is reduced by a factor 3, the distributions corresponding to both growth

modes show a similarly narrow width (Appendix 10—figure 2). However, an asymptotically linear

grower is able to maintain a narrow distribution of cell sizes even for higher noise levels, whereas for

an exponential grower this distribution widens dramatically (Figure 7).

The enhanced robustness of the length distribution of linear growers is interesting from an evolu-

tionary point of view. Most rod-shaped bacteria use sophisticated systems, such as the Min system,

to ensure cytokinesis precisely at midcell (Bramkamp et al., 2009; Lutkenhaus, 2007). Bacteria

encoding a Min system grow by lateral cell wall insertion. In contrast, rod-shaped bacteria in the

Actinobacteria phylum such as Mycobacterium or Corynebacterium species, grow apically and do

not contain a Min system, nor any other known division site selection system (Donovan and Bram-

kamp, 2014). C. glutamicum rather couples division site selection to nucleoid positioning after chro-

mosome segregation via the ParAB partitioning system (Donovan et al., 2013), and has a broader

distribution of division symmetries. We speculate that due to C. glutamicum’s distinct growth mech-

anism, a more precise division site selection mechanism is not necessary to maintain a narrow cell

size distribution.
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The elongation rates reported in this work reflect the increase in cellular volume over time. How-

ever, the increase in cell mass is not necessarily proportional to cellular volume. In exponentially

growing E. coli, the cellular density was recently reported to systematically vary during the cell cycle,

while the surface-to-mass ratio was reported to remain constant (Oldewurtel et al., 2019). It is

unknown how single-cell mass increases in C. glutamicum, but it would follow exponential growth if

mass production is proportional to protein content. This raises the question how linear volume

growth and exponential mass growth are coordinated. The presence of a regulatory mechanism for

cell mass production that couples to cell volume is implied by the elongation rate curves obtained

for the DrodA mutant. As the elongation rate is lower in this mutant, average mass production needs

to be lowered compared to the WT in order to prevent the cellular density from increasing

indefinitely.

Our growth trajectory inference method is not cell-type specific, and can be used to obtain

detailed growth dynamics in a wide range of organisms. The inferred asymptotically linear growth of

C. glutamicum deviates from the predominantly found exponential single-cell bacterial growth, and

suggests the presence of novel growth regulatory mechanisms.

Materials and methods

Key resources table

Reagent type (species) or
resource Designation Source or reference Identifiers Additional information

Gene (include species
here)

‘divIVA’; ‘rodA’ KEGG ‘cg2361’; ‘cg0061’

Strain, strain background
(Corynebacterium
glutamicum)

‘ATCC 13032’;
‘RES 167’

‘ATCC’; ‘Tauch et al.,
2002’

‘13032’;”RES 167’

Genetic reagent
(Corynebacterium
glutamicum)

‘RES 167 divIVA::divIVA-
mCherry’;”RES 167 D rodA,
divIVA::divIVA-mCherry’

‘Donovan et al., 2012’;
‘Sieger et al., 2013’

‘CDC010’;
‘BSC002’

Chemical compound, drug HADA stain Tocris Bioscience 6647/5

Software, algorithm MorpholyzerGT This paper see Materials and methods

Other CellASIC microfluidic
System

Millipore B04A

Culture and live-cell time-lapse imaging
Exponentially growing cells of C. glutamicum WT, C. glutamicum divIVA::divIVA-mCherry and C. glu-

tamicum divIVA::divIVA-mCherry DrodA respectively, grown in BHI–medium (Oxoid) at 30˚C and 200

rpm shaking, were diluted to an OD600 of 0.01. According to the manufacturer’s manual cells were

loaded into a CellASIC- microfluidic plate type B04A (Merck Milipore) and mounted on a Delta

Vision Elite microscope (GE Healthcare, Applied Precision) with a standard four-color InSightSSI

module and an environmental chamber heated to 30˚C. Images were taken in a three-minute interval

for 10 hr with a 100�/1.4 oil PSF U-Plan S-Apo objective and a DS-red-specific filter set (32% trans-

mission, 0.025 s exposure).

Staining of newly inserted peptidoglycan and visualization in
demographs
For the staining of nascent PG, 1 ml of exponentially growing C. glutamicum ATCC 13032 cells, culti-

vated in BHI–medium (Oxoid) at 30˚C and 200 rpm, were harvested, washed with PBS and resus-

pended in 25 ml PBS, together with 0.25 ml of 5 mM HADA dissolved in DMSO. The cells were

incubated at 30˚C in the dark for 5 min, followed by a two-time washing step with 1 ml PBS and

finally resuspended in 100 ml PBS. To obtain still- phase-contrast and fluorescent micrographs, 2 ml

of the cell suspension were immobilized on an agarose pad. For microscopy, an Axio Imager (Zeiss)

equipped with EC Plan-Neofluar 100x/1.3 Oil Ph3 objective and a Axiocam camera (Zeiss) was used

together with the appropriate filter sets (ex: 405 nm; em: 450 nm). For single-cell analysis and the
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visualization in demographs, custom algorithms, developed in FIJI and R (Schindelin et al., 2012;

R Development Core Team, 2003), were used. The code is available upon request.

Image analysis
For image analysis, a custom-made algorithm was developed using the open-source programs FIJI

and R (Schindelin et al., 2012; R Development Core Team, 2003). During the workflow unique

identifiers to single-cell cycles are assigned. The cell outlines are determined manually. Individual

cells per timeframe are extracted then from the raw image and further processed automatically. The

parameters length, area and relative septum position are extracted and stored together with the

genealogic information and the timepoint within the respective cell cycle. The combination of image

analysis and cell cycle dependent data structuring yields a list that serves as a base for further analy-

sis. The documented code is available at: https://github.com/Morpholyzer/MorpholyzerGeneration-

Tracker (copy archived at swh:1:rev:

d01d362ea53b9be6027f29fb85668a0ed418398a, Morpholyzer, 2021).
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Appendix 1

Single-cell growth mode for apical cell wall formation as a rate-limiting
step for growth
To study growth limited by polar cell wall formation, we start by considering the Michaelis-Menten

equation describing this formation process (Main Text Equation (1)):

dL tð Þ
dt

¼ a
C tð ÞN tð Þ
KmþC tð Þ ; (A1)

with L tð Þ the cell length at time t, C tð Þ the concentration of cell wall building blocks in the cytosol,

N tð Þ the number of transglycosylases at the cell pole, Km the Michaelis constant for this reaction,

and a a proportionality constant.

In Main Text Figure 1, we consider two scenarios. (1) Abundant availability of cell wall building

blocks, that is C tð Þ � Km, and (2) scarcity of cell wall building blocks, that is, C tð Þ< Km.

A1.1 Building block insertion as a rate-limiting step for growth

In scenario (1), Equation (A1) reduces to dL tð Þ
dt

¼ aN tð Þ. In the regime of a constant number of trans-

glycosylases at the pole, this implies that dL tð Þ
dt

is constant, resulting in linear growth.

A1.2 Building block availability as a rate-limiting step for growth

In scenario (2), the dynamics of building block creation, usage, and dilution need to be considered

to determine the cellular elongation rate behavior. For the number of building blocks in the cytosol

as a function of time n tð Þ, we can write the following differential equation:

dn tð Þ
dt

¼ aV tð Þ � b
dV tð Þ
dt

: (A2)

Here, a encodes building block production rate per unit volume, and b encodes building block

usage by the cell wall formation mechanism, making use of dA tð Þ
dt

/ dV tð Þ
dt

. To connect Equation (A2) to

Equation (A1), we note that C tð Þ ¼ n tð Þ
V tð Þ. Restricting ourselves to the regime C tð Þ� Km, we can

rewrite Equation (A1) to

dV tð Þ
dt

¼ c
n tð Þ
V tð Þ ; (A3)

where we made use of dL tð Þ
dt

/ dV tð Þ
dt

: Here, c encodes the proportionality between volume increase

and the concentration of building blocks.

Combining Equation (A2) with Equation (A3), we obtain a set of coupled nonlinear differential

equations governing the time-evolution of V tð Þ: These equations have no simple analytic solution;

however, we can numerically explore the dependence of V tð Þ on the differential equation parame-

ters. To do this, we first absorb c into n tð Þ, leaving us with two free parameters and two boundary

conditions. The boundary conditions we set by imposing V 0ð Þ ¼ 1 and V 1ð Þ ¼ 2. In Appendix 1—fig-

ure 1A, we see that depending on the choice for a and b we can have either sublinear, approxi-

mately linear, or superlinear growth. This demonstrates that the single-cell growth mode is

dependent on the physiology of building block creation and depletion in the cell.
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Appendix 1—figure 1. Elongation curves assuming building block availability is the limiting step for

growth. (A) Numerically obtained solutions for V tð Þ, from the set of coupled differential equations

Equation (A2) and Equation (A3). For all solutions, V 0ð Þ ¼ 1 and V 1ð Þ ¼ 2 are imposed. (B)

Solutions as in (A), but with the additional constraint that the concentrations before and after

division are the same, i.e. C t ¼ 0ð Þ ¼ C t ¼ tdivð Þ. Solid lines: solutions for V tð Þ: Dashed lines:

corresponding dV tð Þ
dt

, which are proportional to the concentration C tð Þ per Equation (A3).

We can further constrain the solution space by demanding that the concentration of building

blocks C tð Þ ¼ n tð Þ
V tð Þ is the same at birth and division. In this scenario, the observed variation in elonga-

tion curves is smaller (solid lines Appendix 1—figure 1B), however the corresponding elongation

rates (dashed lines Appendix 1—figure 1B) still show marked qualitative differences between

parameter choices.
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Appendix 2

Supplementary figures

Appendix 2—figure 1. Comparing cell length and cell area measurements. (A) Length added versus

area added over the cell lifetime for all cells included in our analysis (blue dots), together with

averaged values at 0.2 mm intervals (orange squares) and 95% confidence intervals (orange vertical

lines). The results are consistent with a proportional relationship (orange line). (B) Histogram of the

normalized increase at first measurement interval using cell lengths (blue) and areas (orange). For

the cellular lengths, this quantity is defined as L t¼3minð Þ�L t¼0ð Þ
lbh i , whereas for the areas it is defined as

A t¼3minð Þ�A t¼0ð Þ
Abh i , with A tð Þ the area at time t and Ab the birth area. The wider distribution for the areas

suggests a higher measurement noise for this quantity. (C) Area growth rate for DivIVA-labeled cells

using estimated cell areas. The trajectories are consistent with those obtained from cell lengths

(Main Text Figure 5A).
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Appendix 2—figure 2. Mean elongation rate versus generation time for cells in four different birth

size bins. Linear fits are indicated by solid lines. As generation times within a birth size bin tend to

be shorter for faster-growing cells, the elongation rate curves obtained with our method become

biased after the first division event. This justifies only using the part of the elongation rate curves

until the first division event for further analysis.

Appendix 2—figure 3. Elongation rate curves for different orders of the wave front fit of Main Text

Figure 3A: Linear (A), quadratic (B), and cubic (C). (D) c2 of the fit of the wave front of Main Text

Figure 3A for different fitting orders, together with the mean error on the elongation rate curves.

Appendix 2—figure 3 continued on next page
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Appendix 2—figure 3 continued

The negligible improvement of the goodness-of-fit after the first order justifies the use of a linear fit

for further analysis.

Appendix 2—figure 4. Conditional elongation rate curves, conditioned on DivVIA-labeled cells that

have a generation time larger than a set cutoff value: 48 min (A), 51 min (B), 54 min (C) and 57 min

(D). The inferred elongation rate curves still display similar growth behavior to the unconditioned

population (Main Text Figure 5A), but exhibit an overall downwards shift with increasing cutoff

times. For larger cutoff times, the number of cells included decreases, resulting in larger errors on

the inferred elongation rates. The linear growth phase observed until the cutoff time for the

unconditioned population is seen to persist for longer grow times.
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Appendix 2—figure 5. Elongation rate curves obtained through a binning procedure. Cells are

divided into birth length bins, and for each bin the average length as a function of grow time is

calculated. The resulting elongation curves are smoothened according to the same procedure as the

elongation curves presented in the main text (see Appendix 5). From the smoothened elongation

curves, elongation rates are calculated as a function of grow time. Results are shown for a bin width

of 0.1 mm (A), 0.2 mm (B), 0.3 mm (C), 0.4 mm (D), where each lb indicates the center of the birth

length bin.

Appendix 2—figure 6. A linear fit through the cell lengths at each time step would be enough to

describe exponential growth (A, offset is zero for all time stamps) as well as linear growth (B, slope

is equal to 1 for all time stamps). C. glutamicum (C) matches neither of these growth modes.
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Appendix 2—figure 7. The average DivIVA-mCherry signal from the cell center over time is shown

for DivIVA-labeled cells (A) and DrodA DivIVA-labeled cells (B). The cell center is here defined as the

region between 20% and 80% of the total cell length. The onsets of septum formation, derived from

the DivIVA signal-mCherry signal, are indicated by the dashed lines; these do not consistently

coincide with the levelling off of elongation rates (Main Text Figure 5A). This is inconsistent with the

leveling off being due to a competition between polar growth and septum formation.

Appendix 2—figure 8. Calculation of corrected polar HADA intensity, illustrated for two HADA pro-

files. Solid line: HADA intensity profile. Dashed horizontal line: minimum of HADA profile. Dashed

vertical lines: boundary of polar region. Shaded area: calculated total polar intensity. Results shown

for a cell with a length of 2.3 mm (A) and 4.4 mm (B).

Appendix 2—figure 9. Average properties of wild-type cells as a function of length. Values are

shown over the range of observed lengths in the HADA staining experiment, using a moving

average with the same width (±0.7 mm) as in Main Text Figure 6C. (A) Red line: average time until

division, together with the two standard deviation bounds (red shaded area). Orange line: average

Appendix 2—figure 9 continued on next page
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Appendix 2—figure 9 continued

time since birth, together with two standard deviation bounds (orange shaded area). (B) Blue line:

average birth length for each birth length bin (blue line), together with the two standard deviation

bounds (blue shaded area).

Appendix 2—figure 10. Proportionality between average pole intensity and predicted average

elongation rate for different polar region definitions. Average elongation rate as a function of cell

length (red), predicted from obtained average elongation rate curves, together with the average

HADA staining intensity at the cell pole after background correction (blue). Results are shown for a

polar region defined to be within 0.51 mm (A) and 1.0 mm (B) of the cell tip.

Appendix 2—figure 11. Ratio of intensities between the weaker and the stronger pole of each cell

in the HADA staining experiment. Polar intensities are calculated as described in Appendix 2—

figure 8. Here, Iweak denotes the intensity of the cell pole with the weaker HADA intensity signal,

and Istrong denotes the intensity of the pole with the stronger signal. For NETO-like growth

(Hannebelle et al., 2020), a clustering of values around 0 (before new end take off) and 1 (after new

end take off) would be expected, which is not observed here.
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Appendix 3

Measurement noise estimate
To obtain an estimate for the measurement noise from our time-series growth data, we make use of

length measurements at subsequent time intervals. For short enough time intervals, the variance of

the length differences between intervals can be used as a measure of the measurement noise. How-

ever, since we expect cellular growth to also significantly contribute to this variance within the 3 min

measurement interval, we have to separate out the two contributions.

To separate out the two contributions to the variance in subsequent length measurements, we

write this variance as

Var lm tþDtð Þ� lm tð Þð Þ ¼ Var l tþDtð Þ� l tð Þð Þþ 2s2

n (A7)

with lm tð Þ the measured length at time t, l tð Þ the actual length at time t, and sn the standard devia-

tion of the measurement noise. This expression can be derived by noting that for a single elongation

trajectory, we have

lm tþDtð Þ� lm tð Þ ¼ l tþDtð Þþ �� l tð Þþ �ð Þ ¼ l tþDtð Þ� l tð Þþ
ffiffiffi

2

p
�; (A8)

with � the measurement noise. A solution for sn can be found if the functional form of

Var l tð Þ; l tþDtð Þð Þ is known, by obtaining values for multiple Dt and treating sn as a fitting parameter.

To obtain this functional form, we make use of the observed linear growth regime after ~20 min

(Main Text Figure 5). We observe that the elongation rate is approximately constant in this regime

for cells of all birth lengths, and now assume that this is also true for cells individually within this

regime. The contrary would imply that non-constant single-cell elongation rates precisely cancel out

across time and birth lengths to produce linear growth, which seems biologically implausible.

For linearly growing single cells, the standard deviation of l t þ Dtð Þ � l tð Þ is proportional to Dt,

implying that the term Var l tð Þ; l t þ Dtð Þð Þ is of the form

Var l tþDtð Þ� l tð Þð Þ ¼ cDt
2; (A9)

with c an unknown parameter. To simultaneously obtain c and sn, we fit Equation (A7) under substi-

tution of Equation (A9) to the DivIVA-labeled cell data over the regime between the onset of linear

growth (18 min, black dashed line Appendix 3—figure 1) and the first division event (36 min, gray

dashed line Appendix 3—figure 1). From this fit, we obtain the estimates sn ¼ 0.060 � 0.018 �m

and c¼ 4:5x10�5� 0:47xm2 min�2, where the error margins are determined via bootstrapping. This

value of sn is used in the correction procedure for assigned birth lengths described in Appendix 4.
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Appendix 3—figure 1. Estimation of measurement noise procedure. Blue dots: variance of lm tð Þ �
lm 0ð Þ as a function of grow time for the DivIVA-labeled cells, with lm tð Þ the measured cellular length

at grow time t. A fit of Equation (A7) under substitution of Equation (A9) (blue line) is made to the

points between the onset of linear growth (black dashed line) and the moment of first division (gray

dashed line). The value of the extrapolated fit (blue dashed line) at t=0 is equal to 2s2

n, with sn the

standard deviation of the measurement noise. The 95% confidence intervals of the model fit (blue

shaded area) are obtained via bootstrapping.
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Appendix 4

Bias correction procedure for assigned birth lengths
Before calculating average elongation rate curves, a statistical bias arising in the assignment of birth

lengths to each curve needs to be corrected for. This bias is not specific to the inference method

introduced in this paper, but arises in any procedure involving the assignment of lengths to a cells

within a population, if there is noise in the measurement of individual cell lengths.

Due to measurement noise, cells will be assigned to birth lengths that systematically differ from

their actual birth lengths. Specifically, given that the birth lengths in the population follow a symmet-

ric, unimodal distribution, cells with a measured birth length larger than the population mean will on

average be assigned a birth length that is larger than their actual length. Conversely, cells with a

birth length smaller than the population mean will on average be assigned a birth length that is

smaller.

The magnitude of the systematic deviation in the assignment of birth lengths is calculated as fol-

lows. Given that the cellular birth lengths follow a Gaussian distribution PlðlbÞ with mean �l and stan-

dard deviation sl, and the measurement noise follows a Gaussian distribution PnðDlÞ with mean 0

and standard deviation sn, the distribution of measured lengths will again be a Gaussian, with mean

�m ¼ �l and standard deviation sm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2

l
þ s2

n

q

.

For a given measured birth length lm, we now consider the probability distribution of correspond-

ing actual birth lengths Pl lbjlmð Þ. This distribution is given by

Pl lbjlmð Þ ¼ Pl lbð ÞPn lm� lbð Þ: (A4)

The product of two Gaussian distributions is again Gaussian, with a mean equal to

lbjlmh i ¼ s2

n
�l þ s2

l

R

lbPn lm� lbð Þdlb
s2
n
þs2

l

¼ s2

n
�l þs2

l
lm

s2
n
þs2

l

: (A5)

Equation (A5) thus provides the transformation needed to remove the systematic bias in the

assignment of birth lengths, and to determine the most likely birth length lb to a cell with a mea-

sured birth length lm. For an estimation of the experimental measurement noise, see Appendix 3.

For the length increase since birth, there is no systematic bias once the bias in birth length has

been removed. We can see this as follows. For each single-cell elongation trajectory, the measured

length lm tð Þ at time t is given by

lm tð Þ ¼ lb þDlt þ �; (A6)

with � the measurement noise and Dlt the length increase since birth at time t. As the measurement

noise � has a zero mean, there is no systematic bias in length increases after birth, provided that we

have an unbiased estimate for the birth length lb.

To test the derived correction procedure for assigned birth lengths, we performed a simulation of

a population of growing cells, with the length measurement subject to noise. The measurement

noise was sampled from a Gaussian, with the same standard deviation as estimated for experiment

(Appendix 3). The single-cell growth mode was chosen as an input parameter. We analyzed two

choices for input growth mode: linear (Appendix 4—figure 1A,C, dashed lines) and exponential

(Appendix 4—figure 1B,D, dashed lines), with elongation rates comparable in magnitude to mea-

sured elongation rates.
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Appendix 4—figure 1. Elongation rate inference on simulated data sets, with and without bias cor-

rection procedure for assigned birth lengths. For all panels: dashed lines: input elongation rates.

Dots: mean inferred average elongation rates, obtained by applying our inference procedure to

1000 simulated data sets. Shaded areas: 2s bounds on the inferred elongation rates. For all

simulated data sets, the measurement noise is drawn from a Gaussian distribution with a standard

deviation of 0.075 mm, matching the estimated experimental noise (Appendix 4). The population

size and birth length distribution are chosen to match those observed for the DivIVA-labeled cells.

Simulation conditions: (A) Linear input elongation rates constructed by setting l tð Þ ¼ lb þ 0:26lbt. No

bias correction procedure for assigned birth lengths is applied. (B) Exponential input elongation

rates constructed by setting l tð Þ ¼ lbe
0:26t : No bias correction procedure for assigned birth lengths

is applied. (C) Input elongation rates as in (A). The bias correction procedure for assigned birth

lengths is applied. (D) Input elongation rates as in (B). The bias correction procedure for assigned

birth lengths is applied.

For each single-cell growth mode, we applied our elongation rate inference procedure to simu-

lated cell lengths subject to measurement noise. Without correcting for a bias in assigned birth

lengths, we find a systematic deviation between inferred elongation rates and input elongation rates

in both cases (Appendix 4—figure 1A,B). With the implementation of the correction for assigned

birth lengths, the input elongation rates are, however, accurately recovered (Appendix 4—figure

1C,D).

Minor deviations from the input elongation rates can still be seen for exponentially growing cells

(Appendix 4—figure 1D), arising from applying a Gaussian smoothing to elongation curves that are

locally nonlinear due to limited time resolution. However, this effect is small compared to the uncer-

tainty on the inferred elongation rates.
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Appendix 5

Smoothing of elongation curves
We obtain elongation rate curves (Main Text Figure 5 and Figure 6C) by taking a numerical deriva-

tive of smoothed growth trajectories. For the smoothing, a Gaussian smoothing procedure was

used. In this procedure, a moving average is applied twice over groups of three subsequent time

stamps of average elongation curves. As a check of the validity of the smoothing procedure, we also

compare elongation rates before and after smoothing (Appendix 5—figure 1).

Appendix 5—figure 1. Average elongation rate curves obtained after Gaussian smoothing of the

inferred average elongation curves (dots), together with average elongation rate curves obtained

from unsmoothed average elongation curves (dashed lines).
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Appendix 6

Calculating mean elongation curves as a function of time until division
The construction of the average elongation curves L t � td; ldð Þ as a function of the time until division

t � td and division length ld is as follows. We relate the length at time t � td to the division length ld

for all cells, and use linear fits to obtain a family of curves Lt�td
ldð Þ for each t � td: From this family of

relations Lt�td
ldð Þ, we can subsequently compute L t � td; ldð Þ for any choice of ld. The resulting mean

elongation rate curves are shown in Appendix 6—figure 1.

Appendix 6—figure 1. Inferred elongation rates as a function of the time until division, shown for

DivIVA-labeled cells (A), wild-type cells (B) and the DrodA mutant (C). To obtain these curves, the

elongation rate inference procedure described in the Main Text was applied, with the modification

that L t � tdiv; ldð Þ was calculated, rather than L t; lbð Þ. This yields average elongation rate curves as a

function of division length, which are unbiased until the growth time of the shortest-lived cell (left

endpoints of the elongation rate curves). The inferred linear growth regime for later grow times

persists until division.

Messelink, Meyer, et al. eLife 2021;10:e70106. DOI: https://doi.org/10.7554/eLife.70106 32 of 38

Research article Microbiology and Infectious Disease Physics of Living Systems



Appendix 7

Testing the elongation rate inference procedure
To test our elongation rate inference procedure, we generated a simulated data set with elongation

rates as inferred by our inference procedure for DivIVA-labeled cells (Main Text Figure 5). The distri-

bution of birth lengths and division lengths of the simulated cells are taken to match the experimen-

tally observed distributions. On each simulated data point, a measurement noise as determined in

Appendix 3 is applied. On the simulated data set subject to noise, we apply the assigned birth

length correction procedure as described in Appendix 4, and subsequently apply our elongation

rate inference procedure. We find that the input elongation rates are accurately recovered (Appen-

dix 7—figure 1), demonstrating the internal consistency of our inference approach.

Appendix 7—figure 1. Recovery of inferred elongation rates from simulated growth Dashed lines:

input elongation rates, as inferred for DivIVA-labeled cells (Main Text Figure 5A). Dots: average of

elongation rates inferred from simulated growth experiment. Shaded areas: 95% confidence

intervals inferred from simulated growth experiment, obtained via bootstrapping.
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Appendix 8

Prediction of average elongation rate as a function of cell length
To calculate the predicted average elongation rates shown in Main Text Figure 6C, we make use of

our time-series data for wild-type cells, and the inferred mean elongation rates shown in Main Text

Figure 5B.

We start by calculating the time-averaged elongation rate �l0 i for each cell i in the wild-type data

set, where the prime denotes a time derivative, by dividing the length added between birth and divi-

sion by the total growth time. We then assume that the elongation rate for a cell at a time t is

approximately given by a rescaling of the population-averaged elongation rates L
0
t; lbð Þ by the time-

averaged elongation rate of the cell �l0 i. Specifically, we calculate the estimated elongation rate at

time t by

l
0
i
tð Þ ¼ L

0
t; lbð Þ

�l0 ini
Pt

i

div

t¼0
L0 t; lbð Þ

; (A10)

with ni the number of time intervals in the growth trajectory of cell i, and t
i

div its division time. For

times t later than the first population division event Tdiv, we obtain a value for L0 t; lbð Þ by extrapolat-

ing the linear growth regime, setting L
0
t; lbð Þ = < L

0
t; lbð Þ>20min<t<Tdiv .

From the ensemble l
0
i
tð Þ

� 	

of estimated elongation rates of all cells at each time since birth, we

calculate the average elongation rate as a function of cell length by taking a moving average over

the corresponding measured li tð Þf g. The standard error on the mean is calculated from the standard

deviation and the number of cells of each moving average bin.

Messelink, Meyer, et al. eLife 2021;10:e70106. DOI: https://doi.org/10.7554/eLife.70106 34 of 38

Research article Microbiology and Infectious Disease Physics of Living Systems



Appendix 9

RAG model fitting procedure
The model fits shown in Main Text Figure 6E–G are obtained via the ParametricNDSolve function in

Mathematica. The obtained parameter values are shown in Appendix 9—tables 1 and 2.

Appendix 9—table 1. Parameter values obtained by fitting Main Text Equation (2) to inferred

elongation rate curves.

The values shown in column 4 and 6 are an average over the four birth lengths of each condition.

Genotype lb [�m] b [t�1] bh i [t�1] N t¼0ð Þ
Nmax

N t¼0ð Þ
Nmax

D E

wild-type 2.1 0.088 0.085 0.67 0.62

2.3 0.068 0.62

2.5 0.093 0.62

2.7 0.089 0.58

divIVA::divIVA-mCherry 2.0 0.109 0.088 0.69 0.80

2.2 0.100 0.77

2.4 0.087 0.84

2.6 0.054 0.88

divIVA::divIVA-mCherry DrodA 1.7 0.063 0.087 0.61 0.64

1.9 0.094 0.65

2.1 0.084 0.64

2.3 0.11 0.65

Appendix 9—table 2. Parameter values obtained by fitting Main Text Equation (3) to inferred

elongation rate curves.

The values shown in columns 5 and 7 are an average over the four birth lengths of each condition.

Genotype lb [�m] b [t�1] g [t�1] <begt>t<20min [t�1] N t¼0ð Þ
Nmax

N t¼0ð Þ
Nmax

D E

wild-type 2.1 0.016 0.162 0.13 0.72 0.67

2.3 0.039 0.086 0.67

2.5 0.058 0.080 0.65

2.7 0.082 0.050 0.62

divIVA::divIVA-mCherry 2.0 0.072 0.06 0.14 0.71 0.82

2.2 0.050 0.09 0.79

2.4 0.025 0.14 0.86

2.6 0.005 0.25 0.92

divIVA::divIVA-mCherry DrodA 1.7 0.023 0.094 0.12 0.67 0.68

1.9 0.039 0.092 0.69

2.1 0.064 0.050 0.67

2.3 0.064 0.100 0.68
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Appendix 10

Population simulation method
The goal of the population growth simulations is to obtain the distribution of cellular birth lengths

assuming two different growth modes: asymptotically linear and exponential elongation. Both simu-

lations extract all necessary growth parameters and distributions from the experimental data. For

the asymptotically linear growth mode, the simulation serves as a check whether the assumed

growth mode indeed recovers the correct cellular length distribution. For the exponential growth

scenario, the simulation reveals the cellular length distribution an exponential grower would have if

it had inherent noise levels similar to C. glutamicum allowing for a fair comparison. Both simulations

start with a single cell and continue for 20 generations, after which the birth lengths of the last gen-

eration are binned and plotted. Repeated simulations with different lengths of the starting cell do

not show discernable differences.

Exponential growers
For the exponential growers, cells are assumed to elongate according to

l tð Þ ¼ lb exp atð Þ þ z tð Þ (A11)

The exponential growth rate a is chosen as the slope of the linear fit of ln ld

lb

� �

versus td that inter-

sects the origin, as shown in Main Text Figure 3B. A size-additive noise term is indicated by zðtÞ,
which will be specified below at the time of division. For a cell with a given birth length lb, the target

final length lt is determined via a linear fit of lb versus ld, as shown in Main Text Figure 3A. The tar-

get growth time tt is then given by tt ¼ 1

a
ln lt

lb

� �

. A time additive noise term Dt is added to tt according

to experimentally observed growth time variations (Appendix 10—figure 1D). Additionally, a size-

additive noise term Dl encodes the division length variation due to zðtÞ, which is also directly

obtained from experiment (Appendix 10—figure 1E).

The full expression for the division length ld is then given by

ld ¼ lbexpðaðtt þDtÞÞþDl (A12)

At division, the characteristic V-snap of C. glutamicum occurs, separating the two daughter cells.

During this V-snap, the length of the daughter cells rapidly increases: the average measured birth

length is 0.57 times the average measured division length (2.3 mm and 4.0 mm respectively), instead

of the expected ratio of 0.5. To account for this V-snap effect, we calculate the distribution of added

lengths during the V-snap. We find that the average added length depends on the division length:

longer cells add less length during the V-snap than shorter cells (Appendix 10—figure 1B). To take

this length dependence into account, we subdivide the data set into three division length bins, and

obtain a distribution of added lengths during the V-snap for each bin. When a simulated cell divides,

an added length during V-snap is randomly drawn from the distribution corresponding to its division

length.

After division, the length asymmetry of the two daughter cells is chosen by drawing a random

value from the experimentally observed division asymmetry distribution (Appendix 10—figure 1C)

corresponding to the obtained division length. This distribution is found to be narrower for the

shortest birth lengths (Appendix 10—figure 1C), thus two distributions are used.

Asymptotically linear growers
For asymptotically linear growers, cells are assumed to elongate according to

lðtÞ ¼ lb þltþgðexpð�btÞ� 1ÞþhðtÞ; (A13)

which is obtained by inserting Main Text Equation 3 into Main Text Equation 1, integrating and

grouping constant terms into l and g. An additive noise term hðtÞ is added to this to account for sin-

gle-cell variability around the inferred average growth trajectory. We assume the cells to have the
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same target final length lt as in the exponentially growing scenario, determined via a linear fit of lb
versus ld. For cells close to observed division times, the term proportional to g can be approximated

as being constant in time, simplifying the growth mode to linear growth (Main Text Figure 5A). A

time-additive noise term Dt will then act as size-additive noise and can thus be absorbed into one

additive noise term Dl, obtained from the experimental distribution of final sizes ld around the target

final sizes (Appendix 10—figure 1F). The expression for the division length is thus given by

ld ¼ lt þDl: (A14)

The division asymmetry and V-snap effect are incorporated in the same way as for the exponen-

tial grower simulation.

Appendix 10—figure 1. Input used for simulations of exponential and asymptotically linear growth.

For both simulations, a linear fit of the division length versus birth length is used to define a target

length (A). The length added during the V-snap at division is randomly drawn from the distribution

corresponding to the division length of the simulated cell (B). The experimental data is divided into

three subpopulations according to division length (red, green, and orange distributions), as the

average length added during V-snap decreases with division length (dashed lines). The asymmetry

of the daughter cells is randomly drawn from the distribution corresponding to the combined length

of the simulated daughters (C). As the asymmetry is lower for the smallest daughter cells, the

experimental data is divided into two subpopulations (red and green distributions). For the

simulation of exponential growth, two noise sources are needed as input. The time-additive noise is

randomly drawn from the distribution of deviations from target growth times (D). This distribution is

obtained from the deviations of single-cell growth times from the average of their birth length bin.

All growth variability not captured by growth time variations is calculated for four narrow birth

length bins (blue, orange, green, and red points) (E). From the distribution of deviations of added

lengths from a linear fit for each initial size bin, a size-additive noise term is randomly drawn. For the

linear growth simulation, only a single additive noise term is required, which is randomly drawn from

the distribution of deviations of cells lengths at division from the target division length (F).
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Appendix 10—figure 2. Birth length distributions as in Main Text Figure 7, but with single-cell vari-

ability in division symmetry, growth time, and (residual) length deviation reduced by a factor 3. The

second peak in the length distribution of exponential growth is attributed to the large time

deviation of one single cell seen in Appendix 10—figure 1D.
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148 4. The unusual single-cell growth of Corynebacterium glutamicum



Conclusions & outlook

In this thesis we investigated spatial chromosome organization and cell size throughout the
bacterial cell cycle. Using a Maximum Entropy inference procedure, we uncovered organiza-
tional features across genomic scales, firstly for an unreplicating chromosome, and then for
several stages throughout the replication cycle. We then uncovered a novel bacterial single-cell
growth mode, which was found to act as a regulator for cell size at the population level.

The Maximum Entropy chromosome model developed in chapter 2 constitutes a principled
approach to infer the full distribution of chromosome configurations directly from experimen-
tal Hi-C data. We saw how the MaxEnt model for Caulobacter crescentus correctly predicts
genomic localizations along the long cell axis, despite the model input only consisting of
two-point contact frequencies. The MaxEnt model predicted a striking pattern of positional
correlations along the long cell axis, which were explained by large genomic clusters termed
Super Domains (SuDs), which tend to exclude each other if they lie on opposite chromoso-
mal arms. On smaller genomic scales, we found a pattern of local extensions that correlates
with the locations of highly-transcribed genes, but only for one chromosomal arm. Lastly,
we quantified the localization information contained by each genomic region, which could be
used by the cell to localize proteins and protein droplets.

In chapter 3, we expanded the approach from chapter 2 to describe a replicating chro-
mosome. We made use of Hi-C data collected at various times throughout the cell cycle
in C. crescentus, and adapted our model phase space to describe a replicating chromosome.
A model trained only on Hi-C data turned out to be insufficiently constrained: this model
yielded a replicating chromosome that does not segregate, which is likely due to the Hi-C
data not distinguishing between inter- and intrachromosomal contacts. Thus, we added an
additional constraint on the separation of replicated origins of replication (ori), motivated by
the biologically observed active pulling of the newly replicated ori, which induces segregation.
The resulting model was found to predict measured localizations of genomic regions with high
accuracy across the chromosome. Furthermore, the replicating MaxEnt model provides in-
sight into organizational features not yet accessible to experiment. We found a persistence of
linear organization throughout the replicated chromosome, for all replication stages. A model
containing only constraints on the positions of the replicated ori ’s, termed the ori pulling
model, showed that the linear organization of the replicated segment of the chromosome is
largely explained by the pulling of ori. The linear organization of the unreplicated chromo-
some was not reproduced by this model however, which could be explained by the absence
of loop extrusion motors in the ori pulling model. The replicating MaxEnt model provides
access to many more organizational features yet to be explored, a few of which were discussed
at the end of the chapter.

In chapter 4, we shifted perspective from the chromosome inside a growing cell to the di-
mensions of the cell itself. We studied single-cell elongation over time in the atypically growing
Corynebacterium glutamicum, which forms a new cell wall exclusively at the cell poles, has a
thick meshed cell wall structure, and lacks many common size regulation mechanisms. These
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properties make this bacterium a promising candidate for uncovering novel single-cell growth
modes that deviate from the commonly found exponential single-cell growth. From detailed
single-cell measurements, we inferred average elongation rates despite noise and intrinsic vari-
ability in single-cell growth. Our inference procedure achieves this by using the noise-reducing
properties of multi-cell averaging, while carefully avoiding inspection bias effects. We found
that C. glutamicum deviates from the commonly observed exponential single-cell growth;
mean elongation rates initially increase, but then level off to a linear growth regime. We
found that this growth mode is consistent with the apical cell wall formation mechanism be-
ing the rate-limiting step for growth. Lastly, with population growth simulations we showed
that asymptotically linear growth acts as a cell size regulation mechanism at the population
level, offering an evolutionary explanation for the lack of many common growth regulation
mechanisms in this bacterium.

This work leaves open several avenues for further exploration. In chapter 2, we saw that
the MaxEnt model predicts the presence of large genomic clusters, termed Super Domains,
while superresolution experiments confirmed the clustered nature of the chromosome. It is
however still unclear if there is any substructure within the SuDs, although super-resolution
experiments on B. subtilis [63] and E. coli [148] revealing similar structures would suggest
this. In B. subtilis, high-density chromosomal regions (HDRs) were found to change their
cellular positioning in the absence of ParB or SMC, and the number of HDRs appeared
proportional to the estimated genomic content throughout the cell cycle and across growth
conditions[63]. In E. coli, blob-like Mbp-size domains were observed in a chromosome within
a broadened cell, which undergo major dynamic rearrangements at the minute timescale [148].
An interesting extension would be to search for similar features within the MaxEnt model
for C. crescentus, as well as via direct experimental measurement. This would enhance our
insight into large-scale organization in C. crescentus, but also shed light on the similarities
between large-scale cluster organizations in different bacteria.

Although we learned a MaxEnt model for C. crescentus, our approach can readily be
adapted to study other bacterial species and growth conditions. Single-chromosome Hi-C
data sets have been published for C. crescentus cells under nutrient starvation [67], depletion
of ParA and ParB [40], and replication-inhibited cells with increasing cell lengths [40]. For
Bacillus subtilis, single-chromosome data has also been obtained for a mutant with a single
ParS site [39]. With our MaxEnt approach, we can investigate chromosomal organization for
these species and conditions in detail.

For the inference of chromosome structure from Hi-C data, a class of approaches has pre-
viously been developed that converts Hi-C scores to average distances, from which consensus
structures are then calculated [72, 73, 149]. For C. crescentus, we found in chapter 2 that
such distance-based models and the MaxEnt model do not agree on all organizational features;
in [72, 149] a helical chromosomal structure was predicted, which is not observed within the
MaxEnt model. This discrepancy may be explained by substantial region-to-region deviations
from the mean relation between Hi-C scores and average distances, as well as significant cor-
relations in the distances between genomic regions as predicted by the MaxEnt model. This
raises the question however: under which conditions do distance-based models yield reliable
predictions on consensus structures? A study employing various computationally generated
chromosome ensembles and corresponding Hi-C maps could shed light on the necessary cir-
cumstances for the input model to be recovered, for distance-based methods as well as the
MaxEnt model.

In our work on a replicating C. crescentus chromosome in chapter 3, we left several aspects
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of organization unexplored. It would be interesting to study the properties of SuDs throughout
the replication cycle, especially close to the replication fork position. Furthermore, with this
model we can study patterns of local extension over time, which are likely affected by the
pulling of the replicated ori. Lastly, quantifying localization information over time could
provide insight into changes in the degree of order in the chromosome over time, as well
as localization patterns that could be formed via the specific binding of proteins or protein
droplets to genomic regions.

A promising expansion of the replicating chromosome model, is the adaption to Hi-C
data sets for unsynchronized cells. For many bacteria, a synchronization as performed for
C. crescentus is not possible, thus for these cases Hi-C data can only be obtained for a
mixed population across cell cycle stages. Such mixed-population Hi-C data sets have been
obtained for Escherichia coli [59], Bacillus subtilis [62, 63], the genome-reduced Mycoplasma
pneumoniae [64], Vibrio cholerae [65], and Corynebacterium glutamicum [66]. An extension of
the MaxEnt model for such mixed populations will require a modification of the model phase
space to describe a distribution of replication stages and cell sizes. An important question
for this extension, is whether Hi-C data contains enough information to sufficiently constrain
a model of a mixed population. For our stroboscopic replicating chromosome model for C.
crescentus in chapter 3, we already saw that a positional constraint on the replicated ori
distances is required to yield a model with predictive power. It is therefore possible that such
positional constraints are also required for a mixed MaxEnt model, and potentially additional
types of constraints could also be needed. Overcoming these challenges will however provide
insight into spatial chromosome organization across a wealth of bacterial species throughout
the replication cycle.

At the start of chapter 4, we discussed how different rate-limiting steps for single-cell
bacterial growth imply different growth modes. We then saw how the inferred asymptotically
linear elongation rates for C. glutamicum are consistent with a model of the apical cell wall
formation mechanism being the rate-limiting step for growth. This does not imply however
that this mechanism is rate-limiting across growth conditions. In fact, under systematic
lowering of the nutrient concentration a tipping point might be expected, where nutrient
uptake becomes rate-limiting. This would imply a switch to exponential growth, which in
turn could entail a sudden widening of of the cell size distribution. Detailed experiments over
a range of nutrient conditions could reveal such a speculated nutrient-induced phase transition
of the bacterial growth mode, and possibly uncover novel growth regulatory mechanisms.

While for rich nutrient conditions we found C. glutamicum’s cell length to grow asymptot-
ically linearly, the increase in cell mass is not necessarily bound to this growth mode. In [150],
dry-mass density was found to vary significantly throughout the cell cycle in E. coli and C.
crescentus, as cells were shown to expand their surface, rather than volume, in proportion
to biomass growth. Whether this proportionality also holds for the asymptotically linearly
growing C. glutamicum is an open question; it would be broken however if mass production is
proportional to protein content, as this implies an exponential mass increase. Thus, measur-
ing the dry-mass increase over time in C. glutamicum could shed light on how linear volume
growth and exponential mass growth are coordinated.

In a broader context, this work illustrates how principled inference methods can create
deep understanding of biological mechanisms directly from experimental data. The proclama-
tion ‘mathematics is biology’s next microscope’ [151] rings true in this work, with chromosome
organization and cellular growth further illuminated by the light of analytical inference.
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[143] Bürmann, F. & Gruber, S. SMC condensin: Promoting cohesion of replicon arms. Nature Structural
and Molecular Biology 22, 653–655 (2015).

[144] Tsai, J. W. & Alley, M. R. Proteolysis of the Caulobacter McpA chemoreceptor is cell cycle regulated
by a ClpX-dependent pathway. J. Bacteriol. 183, 5001–5007 (2001).

[145] Ely, B. Genetics of Caulobacter crescentus. Methods Enzymol. 204, 372–384 (1991).

[146] Ducret, A., Quardokus, E. M. & Brun, Y. V. Microbej, a tool for high throughput bacterial cell detection
and quantitative analysis. Nature microbiology 1, 1–7 (2016).

[147] Evinger, M. & Agabian, N. Envelope associated nucleoid from Caulobacter crescentus stalked and
swarmer cells. J. Bacteriol. 132, 294–301 (1977).

[148] Wu, F. et al. Direct imaging of the circular chromosome in a live bacterium. Nature Communications
10, 2194 (2019).

[149] Umbarger, M. A. et al. The Three-Dimensional Architecture of a Bacterial Genome and Its Alteration
by Genetic Perturbation. Molecular Cell 44, 252–264 (2011).

[150] Oldewurtel, E. R., Kitahara, Y. & van Teeffelen, S. Robust surface-to-mass coupling and turgor-
dependent cell width determine bacterial dry-mass density. Proceedings of the National Academy of
Sciences 118, e2021416118 (2021).

[151] Cohen, J. E. Mathematics Is Biology’s Next Microscope, Only Better; Biology Is Mathematics’ Next
Physics, Only Better. PLoS Biology 2, e439 (2004).



Acknowledgements

First of all, I want to thank my supervisor Chase Broedersz for your enthusiasm and support
during this scientific journey. Under your guidance, I developed into a mature scientist. You
pushed me to never stop asking: what is the big deal? Why are your results important? Why
should we care? Maintaining this big-picture view has made my research more relevant, more
interesting, and more fulfilling. You also taught me how to think rigorously and critically
about science and my own research, how to write well to maintain clarity and interest, and
developed my skills in giving captivating and memorable talks.

My graduate school QBM I want to thank for helping me come to Munich, and starting
my transition from a pure theoretical physicist to an interdisciplinary scientist at the interface
of physics and biology with helpful courses and lectures. What I cherish most of all though
is the group of friends I’ve made through the QBM program. I want to thank David, David,
Alex, Kimbu, Zhenya and Lina for forming such a close friend group. You made Munich feel
like home. I relished all the trips and holidays together, the countless evenings hanging out
and chatting at a restaurant, bar, or at a dinner party at home. I also want to thank David
for all the small day-to-day interactions at university, all the adventures, stupid discussions,
and close friendship.

I also want to thank all the flatmates I’ve lived with over the last years; thank you Kimbu,
Alex, Vanessa, Olaf, Joeri, Max and Søren for giving me a cozy home base. It was great to
always find someone at home up for a chat or some casual banter. During the covid-19
lockdown periods, the WG kept things fun & cozy, and in a way pulled all of us through
it. Also during the intense final sprint of this thesis, it was very nice to experience so much
support from you guys.

Marc Bramkamp and Fabian Meyer I want to thank for taking me into the world of
microbiology, taking the time to explain countless biological details, and experiencing what
it’s like to really fuse physics approaches and biological knowledge. Our project was a clear
case of the result being more than the sum of its parts.
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