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1. Contribution to the publications 

1.1 Contribution to Paper I 

In this work we present a systematic review and meta-analysis of diagnostic (i.e., 

distinguishing CHR from healthy individuals) and prognostic models (prediction 

of transition to psychosis or functioning) based on machine learning and Cox 

regression methods. I explored the complex areas of both machine learning and 

early recognition in psychiatry during my PhD, so that the knowledge I gained on 

these two topics allowed the production of an informed and informative meta-

analysis. For this paper, I conducted an extensive online research of pertinent 

manuscripts following the PRISMA guidelines1 using PubMed and Scopus search 

engines. I thoroughly screened in total 1103 articles following inclusion/exclusion 

criteria agreed with co-authors. I was responsible for conceptualization of the 

methodological approach in light of the main aims of our study, i.e.: I) definition 

of predictive models including not only transition, but also functional outcomes, 

II) focus on models developed using established machine learning methods, 

which have a realistic applicability in clinical practice, and III) investigation of 

models’ performance and the potential influence of data modality, algorithm used 

and validation procedures. I drafted the whole manuscript, was primarily involved 

in the revision process and finalized the published article. 

1.2 Contribution to Paper II 

This work has been conducted within the international, large-scale European 

project PRONIA (www.pronia.eu) carried in 10 European early recognition 

centres. I worked as a psychologist for the project in the LMU psychiatric clinic—

the main coordinating centre of the study. I was directly involved in the 

recruitment, neuropsychological testing, MRI scanning, interview, evaluation and 

differential diagnosis of patients with affective and psychosis spectrum disorders. 

I supervised and conducted follow-up examinations (in total 8 through 3 years for 

each participant) for around 50 patients and healthy controls. I conducted 

extensive neuroimaging pipeline testing (CAT12, FreeSurfer) and implementation 

of MRI quality control techniques in order to establish the most stable methods 

for brain surface reconstruction both for my project and for the whole consortium. 

Within a fruitful collaboration with Prof. Sotiras from the USA (Washington 

University) I learned and implemented a novel multivariate method (e.g., Non-

Negative Matrix Factorization2) on my sample of study. I executed, under 

supervision, multiple multi- and univariate analyses on neuroimaging and clinical 

data from, in total, 1105 individuals from the PRONIA cohort. In parallel, I got 

http://www.pronia.eu/
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acquainted in the literature on the research field of interest (i.e., gyrifcation in 

psychiatry), while also collecting evidence on more basic biological mechanisms 

of cortical folding and disruptions thereof in other neurological pathologies. 

Furthermore, I was responsible for concepts and hypotheses generation, critical 

discussion and conclusions driven by the study’s results. The manuscript, 

including tables, figures, supplementary material and full reference list, was 

entirely written by me and improved thanks to the support of supervisors.  
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2. Introduction 

Psychosis is one of the most burdening psychiatric disorders, as measured by  

economic loss, morbidity, and mortality worldwide3. In the past two decades, the 

concepts of early recognition, early intervention and precision psychiatry have 

been introduced to try to detect potential risk pathways and prevent disease 

development4. Cutting-edge methods, such as machine learning, have been of 

central importance in the enduring attempt to construct personalized prognoses 

and have led to the development of several risk calculator models. Precision 

psychiatry needs, however, further basic investigation of potential 

endophenotypes (i.e., genetic/biological markers of a disease) in order to feed 

models with informative data for prediction.  

To this extent, we present our complementary research based on I) a meta-

analysis of the published machine learning-models for prediction in at-risk 

patients (Paper I), and II) investigation of cortical brain folding, or gyrification, as 

a potential marker for psychosis development or functional outcome (Appendix) 

and its broader role in psychopathology (Paper II).  

2.1 Early recognition in psychiatry  

The Clinical High Risk (CHR) concept describes a clinical condition characterized 

by sub-threshold psychotic symptoms and cognitive disturbances. This paradigm 

has facilitated research into the clinical underpinnings of help-seeking individuals 

potentially at risk for developing psychosis5. However, the actual transition rates 

based solely on the CHR readout have still been particularly low6,7, suggesting 

that the symptomatology of risk alone is not able to detect the majority of 

transitions to the overt disease. 

Therefore, research has been trying to discover and understand further 

biological, clinical and biographical risk factors able to both early detect a 

predisposition to the disease and also predict its development. For instance, 

findings have shown that CHR individuals experience more environmental 

adverse events8, show hematological alterations9 and differ from their healthy 

counterparts in the morphology10, electrophysiology11 and resting-state, as well 

as task-related function of their brain12. The complexity of the CHR state calls 

also for powerful methods, which are able to deal with the high dimensionality of 

the data at hand and, at the same time, enable a subject-specific risk estimation.  

To this extent, methodological proceedings have enabled an historical shift of 

paradigm by introducing machine learning to the field and suggesting a realistic 

future for personalized predictive psychiatry.  
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Machine learning is an area of artificial intelligence, which uses advanced 

algorithms that account for the multivariate structure of large, multimodal datasets 

(e.g., patients’ cognitive, clinical, biological and sociodemographic information) to 

detect specific patterns, or structure, in the data13. Algorithms learn these 

patterns and are tuned to recognize the same structure in new, unseen data, so 

that models generalize to independent datasets. This multivariate pattern 

recognition framework can enable both more precise diagnoses (e.g., a 

classification between psychopathologies or between patients and healthy 

individuals) and prognoses (e.g., a prediction of disease development or 

functional outcome). Hence, models constructed with machine learning could be 

applied in psychiatric care to support clinicians’ expertise and help them take 

critical therapeutic decisions. Research in the past two decades has leveraged 

the potential of machine learning and has produced a number of predictive 

models (or risk calculators) for at-risk individuals based on clinical, cognitive, and 

brain imaging data14–17 reaching over 80% accuracy. However, still no published 

model has been applied in real-life clinical practice, mainly because of the still 

unknown degree of their overall accuracy and reliability. 

To clarify the translational potential of the machine learning algorithms, we 

systematically reviewed and meta-analyzed all available diagnostic and 

prognostic models for CHR individuals based on machine learning methods 

(Paper I). Our results showed a relatively good accuracy of models overall and, 

importantly, a comparable performance between those based on clinical 

information (e.g., symptoms) and those based on biological information (e.g., 

brain morphology). Additionally, one important future direction emerging from our 

study was that further basic research on potential biomarkers (i.e., biological 

signs of risk of disease development) is of central importance to improve models’ 

performance.  

One family of biomarkers focuses on structural and functional brain properties, 

usually analyzed using Magnetic Resonance Imaging (MRI). Structural MRI has 

already offered the opportunity to detect disruptions in brain volume or density 

both in first-episode psychosis and at-risk persons10, and differences between 

those who develop the disease and those who do not18. These findings could be 

important to promote the use of neurological information as a supplemental 

diagnostic and prognostic instrument in clinical practice. However, cortical brain 

volume is known to be influenced by several internal and external confounding 

factors like drug consumption, antipsychotic medication, plasticity mechanisms 

or lifestyle characteristics18,19, potentially shadowing the unique underlying 

disease effects. As such, more stable measures may be required if predictions 

from brain MRI measures are to be used in machine learning pipelines.  
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Gyrification could be such a stable candidate because it is the convolutional 

property of the human brain cortex, which is known to be mostly genetically 

driven20, much less sensitive to external factors and to change during lifetime only 

slightly21. Hence, this morphological measure might be very informative of early 

neurodevelopmental processes and disruptions thereof, possibly underlying 

psychiatric diseases or impaired functional outcome. However, further 

investigation of gyrification is required before it can be used as a potential 

predictor of disease.  

2.2 Gyrification 

The cortical folding process is tightly linked to early neurodevelopment because 

it begins around the third semester of fetal life and peaks at about 2 years post 

conception20. Gyrification is genetically determined22, and evidence shows that 

several complex processes play a role in the formation of the individual cortical 

morphology (e.g., biological and biomechanical forces, as well as anabolic and 

metabolic processes23,24). The importance of these structural cortical differences 

for human behavior is supported by severe cognitive impairments in 

gyrencephalic malformations25 and folding abnormalities in several diseases 

accompanied by cognitive dysfunctions (e.g., schizophrenia26, autism27 or 

Williams syndrome28). The intuitive link between the complexity of the convoluted 

cortex and cognition has been also validated both in animals (e.g., species with 

increased gyrification show higher cognitive abilities,29) and in humans30,31.  

In mental diseases, gyrification abnormalities have been found in affective and 

non-affective psychotic syndromes32,33, depression34 and even before the first 

manifestation of psychosis35. Some evidence shows that at-risk individuals differ 

in their gyrification patterns from their healthy counterparts and even that folding 

aberrations might be predictive of a transition to the overt disease35. 

Nevertheless, results remain inconclusive and inconsistent36, possibly because 

of methodological limitations in dealing with a high dimensional data space and 

the still understudied field of gyrification itself.  

One the one hand, traditional statistical methods used to analyze gyrification 

(e.g., general linear models) are based on assumptions and attempt modelling 

the data following a-priori hypotheses, thereby potentially overseeing 

multidimensional and interconnected gyrification patterns. On the other hand, 

traditional statistics focuses on group-level differences allowing only descriptive 

conclusions and not testing the single-subject predictive potential of gyrification. 

Multivariate methods like machine learning enable individual predictions and 

might be more suited to complex neuroimaging data13. The little available 
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evidence on gyrification-based predictive models shows that cortical folding can 

predict negative symptoms trajectories37 and that disorganized folding networks 

are predictive of psychosis transition in CHR individuals38.  However, to the best 

of our knowledge, still no specific investigation of the role of cortical gyrification 

in prediction of transition to psychosis or of functional outcome based on machine 

learning exists.  

In a first step towards a translational gyrification model, we therefore investigated 

the hypothesis that gyrification would predict transition or functional outcomes by 

using machine learning methods in 158 CHR patients (Appendix). Our results 

showed that gyrification could not predict either outcome category significantly 

above chance level. These negative findings suggest either I) a further 

methodological limitation, or II) that cortical folding is not specifically predictive of 

psychotic episodes, but rather plays a greater role in neurodevelopmental insults 

influencing psychiatric diseases regardless of diagnostic category.  

To disentangle these speculations, we further explored the role of cortical 

gyrification in psychiatric risk (Paper II) by:  

I) using a novel and advanced statistical method that could address the 

challenges faced when dealing with high dimensional data that were 

incompletely addressed with standard gyrification pipelines, and 

II) focusing on transdiagnostic disease processes in order to determine 

whether gyrification abnormalities crossed diagnostic boundaries to 

broadly influence functional outcomes (i.e., as opposed to specifically 

influencing outcomes in a psychosis risk group). 

2.3 Methodological proceedings in gyrification research 

The high dimensionality of brain gyrification is usually handled with the use of 

traditional brain atlases based on coarse anatomical characteristics (e.g., borders 

between folds and gyri39,40), whereby the assumption that folding patterns follow 

observable surface boundaries must not necessarily be met.  

One alternative approach is to shift to an investigation of the cortical structural 

co-variance. The concept of co-variation of structural brain morphology has been 

widely recognized in the last two decades and expresses the phenomenon of 

inter-individual cortical differences co-varying with other, topologically distinct, 

brain regions41,42. Structural covariance is highly heritable, relates to behavioral 

variation in the population, and is thought to reflect coordinated developmental 

processes42. Seed- and network-based analyses or Principal Component 

Analyses have been the most popular techniques to investigate structural 
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covariance, yielding important insights into psychopathologies43–46. Only few 

studies have investigated gyrification structural networks in schizophrenia47,48 

and high-risk populations38, highlighting the potential of this measure of inter-

individual variation to better identify the underpinnings of psychiatric 

endophenotypes. One equally promising approach to investigate covariance has 

been newly proposed by Sotiras and colleagues49, who applied Non-Negative 

Matrix Factorization (NNMF) in order to detect patterns of structural covariance 

of cortical thickness in a healthy population. NNMF is an unsupervised 

multivariate technique, which captures a sparse, parts-based representation of 

the data2,50. This method is particularly useful in the neuroimaging context for two 

main reasons: first, it is able to aggregate variance in a parcellation-like way, 

while also accounting for the multivariate nature of cortical features; second, 

NNMF allows subdividing covariance at different resolutions, which reflects the 

hierarchical and modular organization of the human brain cortex. Sotiras and 

colleagues49 demonstrated the importance of cortical thickness-based 

covariance for the understanding of healthy coordinated cortical development. 

Investigating gyrification co-variation might shed light on even earlier 

developmental mechanisms, potentially reflecting the abnormal maturational 

processes leading to psychopathology. The solutions generated from the 

analyses could also be further used in machine learning pipelines in the future.  

2.4 Transdiagnostic disease processes 

In the last decades, psychiatric care has been evolving towards a more process-

based, transdiagnostic approach, as opposed to the traditional diagnose-oriented 

one51. On the one hand, the trans-nosological nature of symptoms and 

comorbidities has been widely recognized; on the other hand, research has been 

pointing to common genetic, neurobiological, as well as pathophysiological 

underpinnings of major psychiatric diseases52–54. A transdiagnostic framework 

might be based on dysfunctions shared across diseases (for instance cognitive 

or functioning disabilities), which, in turn, might be caused by similar insults during 

early neurodevelopment. A more in-depth understanding of these risk factors 

might be of great value for the development of both more precise machine 

learning models, as well as tailored early transdiagnostic interventions55. 

Gyrification might be especially valuable for this challenge because of its 

neurodevelopmental nature and because folding abnormalities have been found 

across several disorders56. Nevertheless, transdiagnostic gyrification and its link 

to putative common disease manifestations—especially in the early phases of 

disease when diagnostic borders are more subtle—are still highly understudied.  
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Therefore, we aimed first at investigating data-driven structural covariance 

patterns of cortical gyrification in a healthy population (N=318) using NNMF, in 

order to overcome potential methodological limitations in the field. Further, we 

used a large clinical sample including individuals with a first episode of psychosis, 

a first episode of depression, and CHR (N=713) to investigate how patterns of 

gyrification are expressed in psychopathology, and whether they relate to 

similarities or differences between patients (Paper II). We found that patients’ 

gyrification differed from that of healthy individuals, and that patterns were highly 

comparable across diagnostic categories. Furthermore, folding abnormalities 

were linked to commonly disrupted psychological mechanisms such as cognition 

and global functioning, and not to disease-specific symptoms.  

Our results support the hypothesis of neurodevelopmental insults affecting the 

folding of the cerebral cortex and leading to psychopathological manifestations 

shared by typically distinct diagnostic categories. This transdiagnostic nature and 

the lack of associations between gyrification and specific symptoms suggests that 

gyrification abnormalities might be too unspecific to signal the manifestation of a 

psychotic episode or functional outcomes after one year, and thus might not be 

predictive when integrated in machine learning models, as we found in our 

analyses (Appendix). In fact, psychosis might be caused by more complex 

interactions of events, including a range of environmental factors48, that are not 

captured by cortical folding. Nevertheless, gyrification might add important 

information within multivariate predictive models (Paper I) by expressing early 

insults on a neurobiological level, which signal common features of mental illness 

such as cognitive or functioning impairments—as we demonstrated in our study 

(Paper II). 

 

In order to successfully build diagnostic and prognostic models, which can be 

integrated in psychiatric clinical practice, research must thus necessarily further 

pursue the challenge of understanding the neurobiological mechanisms leading 

to pathology. A deeper investigation of biomarkers linked to very early 

neurodevelopmental processes such as gyrification might be very useful to shed 

light on transdiagnostic features underlying psychiatric diseases and hence 

contribute to a broader conceptualization of risk in psychiatry. 



 15 

3. Zusammenfassung: 

Das Psychoserisikosyndrom ermöglicht die Untersuchung phänotypischer und 

mechanistischer Faktoren, die das Risiko junger Menschen beeinflussen eine 

Psychose zu entwickeln - eine der belastendsten psychiatrischen Erkrankungen 

weltweit3. Die Erforschung von Biomarkern spielt in der Früherkennung von 

Psychosen eine große Rolle58. Biomarker sind biologische/physiologische oder 

klinische Variablen, die das Risiko eines möglichen Übergangs von einem 

Psychose-Risiko-Syndrom in eine manifeste Psychose reflektieren oder z.B. mit 

Änderungen des Funktionsniveaus assoziiert sind. Mit Hilfe von Biomarkern und 

fortschrittlichen statistischen Methoden, wie Maschinellem Lernen (machine 

learning)13, konnten zahlreiche multivariate diagnostische und prädiktive Modelle 

entwickelt werden, die in Zukunft den klinischen Alltag mittels personalisierter 

Vorhersagen effizienter gestalten könnten. Um machine learning-Modelle auf die 

psychiatrische Versorgung zu übertragen, müssen jedoch zwei entscheidende 

Forschungszweige parallel verfolgt werden: I) Nachweis der Wirksamkeit, 

Zuverlässigkeit und Replizierbarkeit bestehender prädiktiver Modelle und II) die 

Suche nach weiteren aussagekräftigen Biomarkern, die in der personalisierten 

Psychiatrie eingesetzt werden können.  

In der vorliegenden Arbeit stellen wir uns dieser Herausforderung, indem wir I) 

eine systematische Review und Meta-Analyse veröffentlichter diagnostischer und 

prognostischer Modelle für Psychoserisikosyndrome durchführen (Paper I), II) die 

Rolle der Hirngyrifizierung als potentiellen Biomarker für Risikopersonen 

untersuchen (Appendix) und III) die Bedeutung der Gyrifizierung im weiteren 

Rahmen psychiatrischer Erkrankungen und deren Risiko erforschen (Paper II). 

Unsere systematische Review zeigte, dass machine learning-basierte 

diagnostische und prognostische Modelle für Risikopersonen grundsätzlich eine 

gute Genauigkeit (67-78% Sensitivität und 77-78% Spezifität) zeigen, 

unabhängig von den verwendeten Datenmodalitäten oder dem gewählten 

Algorithmus. Hohe Heterogenität in den Studien und ein Publikationsbias 

könnten jedoch unsere Ergebnisse beeinflusst haben, so dass eine eindeutige 

Schlussfolgerung schwer zu ziehen ist.  

Um die Rolle der Hirngyrifizierung als möglichen Biomarker in 

Hochrisikopatienten zu untersuchen, entwickelten wir machine learning Modelle 

zur Prädiktion des Funktionsniveaus einerseits und der Transition in eine klinisch 

manifeste Psychose andererseits, welche Ergebnisse knapp über dem 

Zufallsniveau erreichten (max. ausgeglichene Genauigkeit 53,4%). Dies deutet 

darauf hin, dass die Rolle der Gyrifizierung nicht spezifisch für das 

Psychoserisiko ist, sondern mit neurologischen Entwicklungsprozessen 
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zusammenhängen könnte, die ein breiteres Spektrum psychiatrischer 

Erkrankungen betreffen. 

Um diese Hypothese zu untersuchen, analysierten wir die strukturelle Kovarianz 

der Gyrifizierung in einer großen transdiagnostischen Patientenpopulation, 

bestehend aus Patienten mit einer ersten psychotischen Episode, depressiven 

Patienten und Hochrisikopatienten, im Vergleich mit einer gesunden 

Kontrollpopulation. Hierbei zeigte sich eine reduzierte Gyrifizierung in der 

Patientenpopulation, welche mit entwicklungsbedingten Risikofaktoren 

(Neurokognition und Funktionsfähigkeit) assoziiert war, jedoch nicht mit dem 

Schweregrad der Symptome korrelierte. Diese Faltungsanomalien könnten somit 

das Korrelat früher fehlerhafter neuronaler Entwicklungsprozesse sein, die die 

Vulnerabilität für psychiatrische Erkrankungen erhöhen. 

Wie unsere Ergebnisse zeigen, ist der Weg zu belastbaren prognostischen 

Modellen in der psychiatrischen Diagnostik noch lang und erfordert weitere 

Grundlagenforschung. Hirnmorphologische Maße wie die Gyrifizierung können 

ein besseres Verständnis entscheidender Mechanismen neuronaler 

Entwicklungsprozesse ermöglichen, die einem breiten Spektrum psychiatrischer 

Erkrankungen zu Grunde liegen. 
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4. Abstract (English): 

The Clinical High Risk (CHR) has enabled research into phenotypic and 

mechanistic factors highlighting the potential risk for young individuals to develop 

psychosis—one of the most burdening psychiatric conditions worldwide3. 

Detection of risk for psychosis has been supported by so-called biomarkers, i.e., 

biological readouts of risk, which could potentially signal a transition to the overt 

disease or negative functional outcomes58. Several multivariate diagnostic or 

predictive models based on biomarkers have been developed using advanced 

methods like machine learning13, producing personalized predictions, which 

could support everyday clinical decisions. However, in order to translate machine 

learning models to psychiatric care, two crucial research directions need to be 

followed in parallel to: I) prove the efficacy, reliability and replicability of existing 

predictive models, and II) further investigate particularly meaningful biomarkers 

which can be employed in personalized psychiatry. In the presented work, we 

pursued this challenge by: I) Conducting a systematic review and meta-analysis 

of published diagnostic and prognostic models for CHR (Paper I); II) Investigating 

the potential role of brain gyrification as a biomarker for at-risk individuals 

(Appendix); and III) Further exploring the significance of gyrification in extended 

psychiatric etiology and risk (Paper II). 

In the meta-analysis, we discovered that machine learning- models for CHR 

individuals showed relatively good accuracy (67-78% sensitivity and 77-78% 

specificity) and all models worked equally well, irrespective of data analyzed or 

algorithm chosen. High heterogeneity throughout studies and a publication bias 

could have affected our results, so that we could not draw definite conclusions.  

Machine learning models constructed on gyrification in at-risk individuals could 

predict functional outcome or transition to psychosis only slightly above chance 

level (max. balanced accuracy 53.4%). These results suggested that the role of 

gyrification in risk might not necessarily be specific, but rather linked to 

neurodevelopmental processes affecting a wider range of psychiatric diseases 

(i.e., transdiagnostically). 

To investigate the transdiagnostic neurodevelopmental hypothesis, we analyzed 

gyrification structural covariance in a large transdiagnostic population of first 

episode psychosis and depression and CHR individuals. Our results revealed 

reduced gyrification in patients compared to healthy controls, which was 

associated with developmentally mediated risk factors (i.e., neurocognition and 

functioning), but not current symptoms. Hence, these cortical folding 

abnormalities might reflect early neurodevelopmental insults that increase 

individuals’ vulnerability to psychiatric disorders. 
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Taken together, the road to usable prognostic models for psychiatry is still long 

and requires further basic research. Brain morphological measures such as 

gyrification might facilitate a better understanding of crucial neurodevelopmental 

mechanisms potentially influencing a broader spectrum of psychiatric diseases. 
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5. Paper I 

Individualized diagnostic and prognostic models for patients with 

psychosis risk syndromes: A meta-analytic view on the state of the art.  

Psychosis risk syndromes have been extensively investigated in the past two 

decades with the aim of predicting and possibly preventing transition to the overt 

disorder in help-seeking individuals. Novel statistical methods like machine 

learning and Cox proportional hazard regression have been crucial to develop 

personalized models able to diagnose risk for psychosis and predict a future 

outcome in these individuals based on different data modalities (e.g., 

neurocognitive or neuromorphological characteristics). However, despite their 

great potential, these models have still not been translated into clinical practice.  

To shed light on the current state of published machine learning- and Cox 

regression-based diagnostic and prognostic models, we thoroughly reviewed the 

literature and conducted a meta-analysis on accuracy performances. We 

investigated different methodological approaches and data modalities, 

specifically focusing on performance differences between clinical (i.e., based on 

symptoms, cognition and environmental factors) and biological models (i.e., 

constructed on brain morphology and function).  

We selected 44 articles, including in total 3707 individuals for prognostic and 

1052 for diagnostic studies. Psychosis risk syndromes could be relatively 

accurate diagnosed (78% sensitivity and 77% specificity), while prognostic 

models reached overall a sensitivity and specificity of 67% and 78%, respectively. 

Machine learning models gained a 10% higher sensitivity compared to those 

using Cox regression, however validation techniques also vastly differed between 

the two approaches. These results were not moderated by the type of data 

modality, the algorithm used, or the at-risk population studied. Importantly, we 

detected a publication bias for prognostic studies, which points to inflated results 

reported by studies with smaller sample sizes.  

Our results showed comparable performance between clinical and biological 

models, which calls for improvement in basic research on brain markers of 

disease. Further, findings may be affected by I) heterogeneity in the field, 

including definitions of clinical populations, data domains and machine learning 

algorithms used, and II) degree of methodological validity, reliability and 

generalizability. These factors might hinder the translation of diagnostic and 

prognostic models to clinical practice and need to be thoroughly taken into 

consideration in future research.
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ABSTRACT
BACKGROUND: The clinical high risk (CHR) paradigm has facilitated research into the underpinnings of help-seeking
individuals at risk for developing psychosis, aiming at predicting and possibly preventing transition to the overt
disorder. Statistical methods such as machine learning and Cox regression have provided the methodological
basis for this research by enabling the construction of diagnostic models (i.e., distinguishing CHR individuals from
healthy individuals) and prognostic models (i.e., predicting a future outcome) based on different data modalities,
including clinical, neurocognitive, and neurobiological data. However, their translation to clinical practice is still
hindered by the high heterogeneity of both CHR populations and methodologies applied.
METHODS: We systematically reviewed the literature on diagnostic and prognostic models built on Cox regression
and machine learning. Furthermore, we conducted a meta-analysis on prediction performances investigating
heterogeneity of methodological approaches and data modality.
RESULTS: A total of 44 articles were included, covering 3707 individuals for prognostic studies and 1052 individuals
for diagnostic studies (572 CHR patients and 480 healthy control subjects). CHR patients could be classified against
healthy control subjects with 78% sensitivity and 77% specificity. Across prognostic models, sensitivity reached 67%
and specificity reached 78%. Machine learning models outperformed those applying Cox regression by 10%
sensitivity. There was a publication bias for prognostic studies yet no other moderator effects.
CONCLUSIONS: Our results may be driven by substantial clinical and methodological heterogeneity currently
affecting several aspects of the CHR field and limiting the clinical implementability of the proposed models. We
discuss conceptual and methodological harmonization strategies to facilitate more reliable and generalizable models
for future clinical practice.

Keywords: Biomarkers, Clinical psychobiology, Machine learning, Predictive psychiatry, Psychosis, Translational
medicine
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Psychotic disorders are among the most disabling mental ill-
nesses and represent one of the top 20% causes of socio-
economic burden worldwide (1). Therefore, psychiatric
research has substantially invested in better early detection
strategies for these disorders (2). The clinical high risk (CHR)
concept (3) describes a mental state characterized by sub-
threshold psychotic symptoms that differ quantitatively in their
intensity from those of a full-blown psychosis (Supplement and
Table 1). The CHR paradigm has become a well-established
clinical avenue to early detect and potentially treat the psy-
chosis high-risk states. Based on the CHR paradigm, re-
searchers have investigated the nature of the prepsychotic
phase from both pathophysiological and epidemiological per-
spectives (4,5). However, these efforts have been challenged
by a constantly declining incidence rate of psychosis among
CHR patients (4,6), with roughly one third of not-transitioned
CHR cases still experiencing subthreshold symptoms,

psychosocial impairments (7), and lower level of quality of life
(8). Thus, the CHR designation delineates a mental condition
that is burdensome per se and, in addition, is associated with a
known set of comorbidities (e.g., depression, substance
abuse, anxiety disorders) (9). Therefore, predictive psychiatry
has gradually broadened its scope from detecting disease
transition to encompassing adverse outcomes more broadly
[e.g., functional deficits (10), treatment response (11), persist-
ing negative symptoms (12), psychiatric comorbidities (13)].

Considering that clinical CHR instruments alone detect only
about 47% of transitions after 3 years (14), efforts have been
made to identify potential risk factors for psychosis in several
symptomatological and biological readouts, or biomarkers, of
the disorder (15) so that individualized prognostication may be
enhanced. The presence of environmental adverse events (16),
cognitive impairments (17), neuromorphological (18), and elec-
trophysiological (19) and hematological (20) alterations, as well
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as resting-state (21) and task-related (22) neural activity and
connectivity anomalies, has been consistently reported in people
at risk for psychosis compared with healthy individuals. Some of
these phenotypes have been associated with both disease
course and transition to the overt disease (4). Therefore, the
identification of reliable markers able to distinguish between at-
risk and healthy populations may be potentially useful in clin-
ical practice to monitor disease development and treatment
outcome (23) and to obviate time-consuming CHR assessments.
The two prevailing statistical approaches to address the chal-
lenge of single-subject prediction are machine learning (ML)
methods (e.g., support vector machine, LASSO [least absolute
shrinkage and selection operator] regression, random forest),
which can handle large databases and different data domains
(24,25), and Cox proportional hazard regression, a form of
multivariate survival analysis (26) able to investigate time-to-
conversion trajectories. Recent research applying these
methods has produced prognostic models able to stratify CHR
patients into different risk classes according to their pretest risk
enrichment (27) or a set of combined predictors (28,29), or to
predict patients’ functional outcomes based on different data
modalities with performance accuracies of up to 83% (10,30).
Despite the great potential of these models, their applicability is
still hindered by the methodological heterogeneity in the field.
Indeed, CHR patients are identified by several clinical in-
struments and are characterized by subtypes with different levels
of risk (14). Moreover, models’ generalizability has been
assessed through discrepant validation strategies across
studies, ranging from the less replicable (i.e., single-site cross-
validation [CV]) to the most robust (i.e., validation to external
samples) (25). Thus, methodological approaches still lack stan-
dardized validation strategies testing clinical applicability under
real-world conditions. One way to tackle these issues is to use a
meta-analytic approach to quantitatively investigate models’
performance across different outcomes, algorithms, and data
modalities. Although important contributions to this goal have
been made (5,29,31), to the best of our knowledge, the field is
still lacking such an analysis. Investigating the field’s heteroge-
neity would allow a comprehensive assessment of accuracy and
validity of the existing diagnostic and prognostic models, an
important prerequisite for establishing reliable tools for psycho-
sis risk quantification in clinical care.

Our aim was to review the literature on ML-based and Cox
regression–based diagnostic models (i.e., discriminating CHR
individuals from healthy individuals) and prognostic models
(i.e., predictive approaches for transition or negative out-
comes). Furthermore, we performed a meta-analysis of
models’ performance, with the aim of investigating the effects
of 1) data modality, 2) type of algorithm, and 3) validation
paradigms. We expected that our results would elucidate the
complexity of methods and data domains currently used in the
predictive analytics arm of CHR research. This will facilitate a
deeper understanding of the state of the art within the field and
may clarify the bottlenecks impeding clinical translation.

METHODS AND MATERIALS

Literature Search

We conducted a systematic search of published original arti-
cles in English through June 30, 2019, using a range of search

terms in PubMed and Scopus as well as reference lists of the
included articles (Supplement). We selected studies that re-
ported prognostic or diagnostic models constructed using ML
or Cox proportional hazard regression. Concerning diagnostic
models, we included only those that used healthy control
subjects (HCs) as a reference group to enlarge the sample size
by selecting comparable classification models across studies.
CHR included patients with a psychosis risk syndrome cate-
gorized as CHR, ultra high risk (UHR), or at-risk mental states
(Table 1) as well as those with a familial risk (FR) or 22q11.2
deletion syndrome (22q11.2DS). Studies were included if
measures of performance accuracy were reported (i.e., true
positives [TP], false positives [FP], true negatives [TN], and
false negatives [FN]) or if they could be extracted. Results of
the literature search are illustrated in the PRISMA (Preferred
Reporting Items for Systematic Reviews and Meta-analyses)
flowchart (32) (Figure S1).

A comprehensive list of all variables extracted by each
study is reported in the Supplement (second section). Perfor-
mance accuracy measures used for analyses comprised TP,
FN, TN, FP, sensitivity (SE) [TP/(TP 1 FN)], and specificity (SP)
[TN/(TN 1 FP)].

Data Analysis

The meta-analysis of diagnostic models was conducted
following previous work (33). Extracted SE and SP were con-
verted to a confusion matrix tabulated across studies. Publi-
cation bias was assessed with both overall diagnostic odds
ratio and SE. The Deeks et al. (34) method was used to ac-
count for biases associated with unequal proportions of TP
and TN cases (Supplement).

Models were built using the bivariate random effects
modeling of Reitsma et al. (2005) (35) in the mada R package
(version 0.5.8), which permits the analysis of SE and SP
separately by explicitly accounting for correlations between
each measure, incorporating precision estimates arising from
sample size differences (i.e., more precision with higher
weight), and modeling normal distributions of each with a
random effects approach. This bivariate method was used to
produce summary estimates of SE, SP, and confidence in-
tervals (CIs) that were used in forest plots, in addition to the
analysis of moderators using mixed modeling. Moderators
were age, sex, data modality, algorithm, presence of CV, type
of CHR, being a multisite study, and year of publication. For
prognostic studies, we also investigated follow-up time and
prognostic target. Moderator analyses were conducted if a
minimum of 10 models for variable were available to decrease
the standard error and maximize power in case of high
between-study variance (36) and to control for sample size and
CV scheme—the latter factor overlapping with algorithm used.
Results were corrected for false discovery rate. Likelihood ra-
tios and diagnostic odds ratios were produced using a Markov
chain Monte Carlo approach within the mada toolbox. All an-
alyses were conducted with R (version 3.6.0).

RESULTS

The systematic literature search detected 881 articles, from
which 44 were considered eligible after screening for exclu-
sion criteria, for a total of 12 diagnostic models (Table 2 and
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Figure S1) and 32 prognostic models (Table 3 and Figure S1).
The final sample comprised 3707 patients for prognostic
studies (mean age = 20.41 years; w58% male), of which 320
(w9%) were CHR patients investigated for nontransition
outcomes (mean age = 19.25 years; 56% male) and 1052
were used for diagnostic classification (mean age = 23.42
years; w59% male), of which 480 (45%) were HCs. In addi-
tion, 26 studies used ML (all diagnostic studies) and 18 were
conducted with Cox regression (Tables 2 and 3 and
Table S1).

Meta-analytic Results

CHR individuals could be classified against HCs with an
overall SE of 78% (95% CI = 73%–83%) and an SP of 77%

(95% CI = 68%–84%), while across all prognostic models SE
reached 67% (95% CI = 63%–70%) and SP reached 78%
(95% CI = 73%–82%). Prognostic studies showed a publica-
tion bias (R2 = .26, p , .001), whereas diagnostic studies did
not (R2 = .07, p . .05) (Figure S2). Performances of both
models’ categories are illustrated in two summary receiving
operating characteristic curves (Figures 1 and 2) and forest
plots (Figures 3 and 4). Within diagnostic models, moderator
effects of type of CHR and algorithm, data modality, presence
of CV, and being a multisite study were not investigated
because less than 10 models per factor were available (36). We
found no effects of moderator variables in either application
domain (p . .10) (Table S2) even when splitting the sample
based on CV (Supplement).

Table 1. Definitions of Different Psychosis Risk Syndromes Commonly Referred to as CHR States and Descriptions of the
Abbreviations and Respective Clinical Diagnostic Instruments

Concept Description Instruments

CHR Clinical high risk: psychosis risk syndrome operationalized by UHR, BS, or both diagnostic criteria All instruments below

ARMS At-risk mental state: same as the CHR state

UHR Ultra high risk: psychosis risk syndrome described by the fulfillment of APS, BLIP, or GRDS
criteria

SIPS, SOPS, CAARMS

APS Attenuated psychotic symptoms: subthreshold psychotic symptoms

BLIPS Brief limited intermittent psychotic symptoms: full-blown psychotic symptoms present for a
maximum of a week

GRDS Genetic risk and deterioration syndrome: family history of psychosis or schizotypal personality
and drop in functioning or sustained low functioninga

BS Basic symptoms: subjective disturbances of cognitive, affective, and perceptive nature BSABS

COGDIS Cognitive disturbances: 9 BS describing disturbances of cognitive nature SPI-A/SPI-CY

COPER Cognitive-perceptive symptoms: 10 BS describing disturbances of a cognitive-perceptual nature

UPS Unspecific prodromal symptoms: unspecific attenuated symptoms characterizing a low-risk state BSIP

BSABS, Bonn Scale for the Assessment of Basic Symptoms; BSIP, Basel Screening Instrument for Psychosis; CAARMS, Comprehensive
Assessment of the At-Risk Mental State; SIPS, Structured Interview for the Prodromal Syndrome; SOPS, Scale of Prodromal Symptoms; SPI-A/
SPI-CY; Schizophrenia Proneness Instrument–Adult version/Schizophrenia Proneness Instrument–Child and Youth version.

aDrop in functioning is described 1) in the CAARMS as a Social and Occupational Functioning Assessment Scale (SOFAS) score #30%
compared with the previous functioning, within the last year, and for at least 1 month and 2) in the SIPS/SOPS as a 30% decrease in the Global
Assessment of Functioning scale score from premorbid baseline. A sustained low functioning is defined only in the CAARMS as a SOFAS score
#50 in the past year or longer.

Table 2. Summary of Diagnostic Studies Included in the Current Meta-analysis

Study CHR Type Data Modality Algorithm Outcome SE FPR

Bendfeldt et al. (37) UHR, UPS Biological: fMRI SVM Diagnosis 74 0.42

Guo et al. (39) FR Biological: fMRI SVM Diagnosis 60 0.6

Koutsouleris et al. (41) UHR, BS Clinical: cognition SVM Diagnosis 96 0.2

Koutsouleris et al. (43) UHR, BS Biological: sMRI SVM Diagnosis 89 0.2

Liu et al. (53) FR Biological: fMRI SVM Diagnosis 72 0.14

Pettersson-Yeo et al. (47) UHR Biological: sMRI SVM Diagnosis 80 0.27

Scariati et al. (48) 22q11.2DS Biological: fMRI SVM Diagnosis 81 0.12

Studerus et al. (99) UHR, UPS Clinical: cognition Random forest Diagnosis 73 0.23

Tylee et al. (49) 22q11.2DS Biological: DTI SVM Diagnosis 85 0.18

Valli et al. (50) UHR Biological: sMRI SVM Diagnosis 68 0.24

Wang et al. (42) UHR Biological: fMRI SVM Diagnosis 82 0.31

Zhu et al. (46) UHR Biological: fMRI SVM Diagnosis 72 0.53

22q11.2DS, 22q11.2 deletion syndrome; BS, basic symptoms; CHR, clinical high risk; DTI, diffusion tensor imaging; fMRI, functional magnetic
resonance imaging; FPR, false positive rate; FR, familial risk; SE, sensitivity; sMRI, structural magnetic resonance imaging; SVM, support vector
machine; UHR, ultra high risk; UPS, unspecific prodromal symptoms.
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Table 3. Summary of Prognostic Studies Included in the Current Meta-analysis

Study CHR Type Data Modality Algorithm Outcome SE FPR

Amminger et al. (11) UHR Biological: lipids GPC Functioning 83 0.25

Bedi et al. (54) UHR Clinical: speech Convex Hull Transition 100 0

Buchy et al. (100) UHR Clinical: substance use Cox regression Transition 69 0.19

Cannon et al. (101) UHR Clinical: symptoms, family risk,
functioning

Cox regression Transition 67 0.47

Cannon et al. (28) UHR Multimodal: symptoms, environment,
genetic, cognition

Cox regression Transition 67 0.28

Carrión et al. (74) UHR Multimodal: symptoms, environment,
genetic, cognition

Cox regression Transition 58 0.27

Chan et al. (56) UHR, UPS Biological: serum LASSO regression Transition 89 0.34

Clinical: positive symptoms 78 0.4

Multimodal: serum, symptoms 89 0.21

Cornblatt et al. (58) UHR Multimodal: clinical, demographics,
cognition

Cox regression Transition 60 0.03

Das et al. (55) UHR, UPS Biological: cortical gyrification Randomized trees Transition 66 0.03

de Wit et al. (30) UHR, BS Biological: sMRI, gyrification SVM Functioning 67 0.25

Clinical: disorganized speech 76 0.25

Multimodal: sMRI, clinical,
combination

68 0.19

DeVylder et al. (102) UHR Clinical: disorganized communication Cox regression Functioning 58 0.4

Dragt et al. (64) UHR Clinical: disorganized communication Cox regression Transition 50 0.09

Francesconi et al. (59) UHR Clinical: thought content, ToM,
processing, NSS

Cox regression Transition 67 0.03

Fusar-Poli et al. (60) UHR-BLIPS Clinical: disorganizing symptoms LASSO Cox
regression

Transition 24 0.37

Gothelf et al. (38) 22q11.2DS Biological: sMRI SVM Transition 90 0

Hoffman et al. (73) UHR Clinical: cognition Cox regression Transition 89 0.11

Kambeitz-Ilankovic et al. (40) UHR, BS Biological: cortical surface area SVM Functioning 79 0.15

Koutsouleris et al. (41) UHR, BS Clinical: cognition SVM Transition 80 0.25

Koutsouleris et al. (10) UHR, BS Biological: sMRI SVM Functioning (role) 67 0.53

Clinical: functioning 61 0.25

Multimodal: sMRI and functioning 59 0.3

Koutsouleris et al. (10) UHR, BS Biological: sMRI SVM Functioning (social) 80 0.28

Clinical: functioning 70 0.16

Multimodal: sMRI and functioning 83 0.18

Koutsouleris et al. (44) UHR, BS Biological: sMRI SVM Transition 76 0.15

Lavoie et al. (71) UHR Biological: blood antioxidant Cox regression Transition 91 0.33

Mechelli et al. (45) UHR Clinical: disorders of thought content,
attenuated positive symptoms,
functioning

SVM Transition 69 0.39

Functioning 63 0.37

Michel et al. (61) UHR, BS Clinical: SIPS, SPI-A, cognition Cox regression Transition 57 0.45

Nieman et al. (62) UHR, BS Multimodal: symptoms and ERPs Cox regression Transition 78 0.12

Perkins et al. (20) UHR Biological: blood plasma analytes Greedy algorithm Transition 60 0.1

Ramyead et al. (57) UHR, UPS Biological: EEG LASSO Transition 58 0.17

Ruhrmann et al. (65) UHR, BS Clinical: symptoms, sleep, schizotypy,
functioning, education

Cox regression Transition 42 0.02

Tarbox et al. (66) UHR Clinical: alogia, anhedonia/asociality,
suspiciousness

Cox regression Transition 62 0.39

Thompson et al. (67) UHR Clinical: unusual thought content,
functioning, family history, functional
decline

Cox regression Transition 30 0.11

van Tricht et al. (68) UHR Biological: EEG Cox regression Transition 46 0.13

van Tricht et al. (72) UHR, BS Biological: EEG Cox regression Transition 83 0.21
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Effect of Algorithm Choice

A total of 19 ML studies (73%) employed a support vector
machine algorithm (10,30,37–53), while the rest used
Gaussian process (11) or convex hull classification (54),
randomized trees (55), greedy algorithm (20), random forest
(5), or LASSO regression (56,57). All ML models were
computed with CV, whereas studies using Cox regression
applied bootstrapping (28,58–62), reported apparent results
(i.e., the model is tested in the same sample from which it
was derived) (63–68), or lacked a validation procedure.
Among the cross-validated studies, 58% applied leave-one-
out CV, 3 of which nested and 7 of which used k-fold CV (3
in its repeated nested form). Only 1 study applied a leave-
site-out CV (10), that is, a form of internal–external valida-
tion (69). Within prognostic studies, we found a main effect of
CV/algorithm on SE (p = .009; c2

2 = 6.96, p = .031); that is,
cross-validated ML models reached a higher SE (71%, 95%
CI = 67%–74%) than Cox regression ones (61%, 95% CI =
54%–68%) (Figure 4).

Effect of Data Modality

Diagnostic models included the use of functional
(37,39,43,47,48) and structural (46,50,70) magnetic resonance
imaging (MRI) and diffusion tensor imaging (49), and behavioral
models were based on neurocognitive functions (42,43).

Models for prediction of transition to psychosis involved
blood-based (20,56,71), electrophysiological (57,68,72), and
neuroanatomical data using white and/or gray matter volume
(38,44,51) or gyrification measures (55). Clinical models were
trained on prodromal positive and negative symptoms,

functioning, and family risk associated with functional decline;
the neurocognitive modality was based on executive functions
and verbal IQ (41) or speech features (54,73). Multimodal ap-
proaches included different combinations of clinical, neuro-
psychological, and demographic variables as well as genetic
risk (28,51,52,54,74). One model was built on P300 amplitude
from event-related potentials and sociopersonal adjustment
(62). Functional outcomes were predicted with neuroanatom-
ical (63,9,19) and blood-based biomarkers (11), and 2 studies
combined clinical and MRI measures (10,30). There were no
effects of data modality on SE (p = .172) or false positive rate
(p = .606) (Table S2).

Effect of Sample Characteristics

Performance accuracies were not influenced by age and sex of
individuals (p . .10) (Table S2). CHR in 86% of the studies
fulfilled the UHR criteria (75), while 6 models were based on the
genetic risk syndromes 22q11.2DS (38,48,49) or FR (39,52,53).
Because of this imbalance, we could not statistically test the
effects of this variable, yet results did not change when
excluding patients with 22q11.2DS and FR (Supplement).

Furthermore, individuals differed in their outcome defini-
tions. Poor functional outcome was defined on the Global
Assessment of Functioning scale (GAF) (cutoff: 70) (40), the
Social and Occupational Functioning Assessment Scale (score
#50) (45), the GAF modified version (76) defining nonresilience
through a cutoff of #65 (30), or the Global Functioning social/
role scale (,8) (10). In one case (11), treatment response was
operationalized as an increase of $15 points in the GAF. There
were no significant effects on SE or false positive rate driven by

Table 3. Continued

Study CHR Type Data Modality Algorithm Outcome SE FPR

Zarogianni et al. (51) UHR, BS Multimodal: sMRI and cognition SVM Transition 63 0.16

Zarogianni et al. (52) FR Biological: sMRI SVM Transition 76 0.23

Multimodal: sMRI and cognition 100 0.17

22q11.2DS, 22q11.2 deletion syndrome; BLIPS, brief limited intermittent psychotic symptoms; BS, basic symptoms; CHR, clinical high risk; EEG,
electroencephalography; ERP, evoked response potential; FPR, false positive rate; FR, familial risk; GPC, Gaussian process classification; LASSO,
least absolute shrinkage and selection operator; NSS, neurological soft signs; SE, sensitivity; SIPS, Structured Interview for Prodromal Syndromes;
sMRI, structural magnetic resonance imaging; SPI-A, Schizophrenia Proneness Instrument–Adult version; SVM, support vector machine; ToM,
theory of mind; UHR, ultra high risk; UPS, unspecific prodromal symptoms.

Figure 1. Summary receiver operating characteristic curve of diagnostic
studies. FPR, false positive rate.

Figure 2. Summary receiver operating characteristic curve of prognostic
studies. FPR, false positive rate; ML, machine learning.
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prognostic target (p = .570 or .085, respectively) or the duration
of time-to-follow-up examination (p = .637 or .305,
respectively).

DISCUSSION

We conducted a systematic review and meta-analysis on 44
studies reporting prognostic and diagnostic models for a
total of 3707 and 572 CHR individuals, respectively, with the
aim to quantitatively assess their accuracy, validity, and
heterogeneity. Our results point to good model performance
overall and to a higher SE of ML models compared with Cox
regression in prognostic studies. This effect was fully
collinear with that of CV, mainly due to the complete overlap
of this factor with algorithm type. Notably, there were no
significant effects of data modality, CHR or CV type, prog-
nostic target, or any other potential confounding variables
(e.g., age distribution, sex, year of publication, follow-up in-
terval time) on accuracy performance in our data. It is note-
worthy that in prognostic studies we observed a publication
bias, that is, the tendency for studies with smaller sample
sizes to report higher, and potentially inflated, prediction
accuracies (77). This might have affected our results (77) so
that we cannot draw robust conclusions from our meta-
analytical findings.

Methodological Differences and Pitfalls

Prognostic models employing ML outperformed those using
Cox regression by 10% SE. This finding may have resulted
from a complex interplay of cohort-related and methodological
heterogeneity. Notably, there was a complete overlap between
the statistical method chosen and implementation of CV, that
is, all ML models were cross-validated, while only 6 Cox
regression studies applied bootstrapping as the validation
procedure. Because the choice of a reliable validation method
strongly determines both performance and generalizability of
models (25), this methodological discrepancy may have biased
our findings. Validation issues were also present in studies
employing ML for prognostic modeling. First, 53% of these
studies applied CV without nesting and repetitions, which is
known to generate overoptimistic results due to high variability

and information leakage between training and testing data
during model optimization (78). The extended use of this vali-
dation scheme may explain the higher SE found in ML studies.

Second, several Cox regression studies included in this
meta-analysis either did not report probability thresholds or
chose a priori optimal thresholds from the data. While ML’s
lack of homogeneous thresholds is mainly handled via CV
schemes averaging performances across folds and repetitions,
the use of p values or data-derived thresholds without a proper
training–test separation might have inflated Cox regression
models’ performance (63).

Third, preprocessing approaches varied across studies. In
3 cases, for instance, prognostic features were derived from
univariate group comparisons or by applying principal
component analysis outside the CV scheme (20,43,53),
which is a known source of information leakage, because
variance from the training sample data is carried into the test
sample (25). One model was constructed on a nonrandom
sampling of the training set (49), while another model clas-
sified patients at UHR from HCs based on the brain pattern
shared by patients at UHR and with first-episode psychosis
(46). These approaches, as well as the use of stepwise
methods in Cox regression models, entail sample-driven
variance and, therefore, could lead to good predictive per-
formance, but arguably they should be tested for generaliz-
ability in an external dataset. Valuable alternatives are
literature-based feature selection and embedded feature
optimization, where the intrinsic optimal feature configuration
is learned by the model itself (79).

It should be noted that some of the studies included in our
meta-analytic contribution had very low sample sizes. One
study had N , 20, while 2 diagnostic and 21 prognostic
models had, respectively, less than 20 CHR individuals or
CHR with poor outcome. Findings from these studies might
be consistent with literature demonstrating a publication
bias toward increased accuracy with reduced sample size
(80), possibly caused by overfitting. This indicates the need
for future ML research to employ larger, preferably multisite
samples for both diagnostic and prognostic purposes (80).

Taken together, these issues may mirror the heterogeneity
of methodological procedures within the field. Arguably, the

Figure 3. Forest plot of sensitivity and specificity for all diagnostic studies divided by data modality. CI, confidence interval; RE, random effects; RF, random
forest; SVM, support vector machine.
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application of ML techniques to diagnosis and prognosis in
psychiatry is still relatively young (24), so conventions and
standard operating procedures facilitating model comparability
and replicability have not become generally accepted. Our
findings highlight the urgency to develop such guidelines for

the construction of prognostic and diagnostic models (81). As
indicated in Table 4, the most important ones are 1) the
implementation of repeated nested CV, internal–external, or
external validation schemes and 2) the full and strict embed-
ding of all preprocessing or feature engineering procedures

Figure 4. Forest plot of sensitivity and specificity for all prognostic studies divided by algorithm and data modality. CHC, convex hull classification; CI,
confidence interval; GPC, Gaussian process classifier; LASSO, least absolute shrinkage and selection operator regularized regression; RE, random effects; RF,
random forest; SVM, support vector machine.
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within the CV scheme. Researchers, funding organizations,
and journals should support efforts to standardize approaches,
favoring the importance of thorough validation over model
performance per se.

Type of Data Modality

Overall, most models were constructed using biological (44%)
and clinical (38%) data, with only 10 prognostic models based
on more than one data modality. Most diagnostic models used
MRI data (83%), whereas prognostic models showed a higher
variability. Prognostic models of psychosis transition included
molecular, neuroanatomical, electrophysiological, neuropsy-
chological, and clinical data modalities, most of the latter
trained on prodromal positive and negative symptoms, func-
tioning, and FR associated with functional decline. We found
no significant differences in predictive accuracy when
comparing data modalities within and between algorithms.

This result may mirror a real lack of significant differences in
biomarker type when distinguishing the CHR state from the
norm or predicted outcome. However, because only 4 prog-
nostic studies tested the relative and combined predictive
ability of different data modalities on the same individuals
(10,30,52,56), and because data modalities are overall under-
or overrepresented, the currently available studies do not allow
this conclusion to be drawn. Further research directly
comparing performance across data modalities, followed by
meta-analytic evaluation, is warranted.

Alternatively, our results may reflect the complexity of the
multifaceted architecture of psychosis risk (82), which might be
only partly captured by single data modalities. Indeed, a
neuroanatomical biomarker might be informative for genetically
or pathophysiologically driven mechanisms given that genes’
effect may be closer to brain than to behavior (83); on the other
hand, neurocognitive performance might explain more envi-
ronmentally driven variance relating, for example, to socioeco-
nomic status (84). Hence, a multimodal approach may be a

viable way to reconcile and leverage information from single risk
domains. Powerful new methodologies able to combine multiple
sources of data, such as similarity network fusion (85), might be
suitable for this purpose. Indeed, research has shown that a
combination of clinical variables and structural brain imaging
data might represent a promising multimodal framework for
psychosis prediction (10,23,31). Along these lines, Schmidt
et al. (29) devised a 3-stage sequential testing paradigm, which
in theory reaches nearly perfect positive predictive value when
individuals are tested on one multimodal modality (i.e., clinical
and electroencephalography) and two biological data modalities
(i.e., structural MRI and blood based). However, these findings
are simulated, have not been confirmed in empirical studies yet,
and did not follow a thorough meta-analytical approach like the
one implemented here.

Alternatively, similar performance of tested data modalities
may have resulted from the variability induced by higher-order
algorithm–data validation interactions. To thoroughly compare
models originating from different data spaces, methodological
consensus guidelines are urgently needed in the precision
psychiatry field. A strict cross-study standardization, in terms
of both data definitions and algorithm implementations, may
shed light on real phenotypic and neurobiological differences
and thus lead to unique insights into the pathology of emerging
psychosis.

At-Risk State/Sample Differences

Another source of heterogeneity affecting our results may be
due to clinical sample definitions. Most of the at-risk in-
dividuals in our sample fulfilled the UHR criteria, while a mi-
nority (5.7%) had an FR or a 22q11.2DS diagnosis, which
prevented us from quantitatively estimating the effects of risk
group designation. However, it is noteworthy that two of the
instruments operationalizing UHR criteria (i.e., SIPS [Struc-
tured Interview for Prodromal Syndromes] and CAARMS
[Comprehensive Assessment of At-Risk Mental States])

Table 4. Conceptual and Methodological Guidelines for Construction of Diagnostic and Predictive Models Implementable in
Real-Life Clinical Practice

Guidelines Practical Suggestions

Conceptual Guidelines

Harmonization of the CHR definition and
diagnostic instruments

Create a harmonized early recognition instrument that encompasses those at-risk definitions and criteria from
the existing diverse inventories that parsimoniously delineate the CHR state and also are predictive of its
adverse outcomes

Broaden the scope of prediction to
nontransition outcomes

Harmonize social and occupational outcomes, pharmacological and nonpharmacological treatment response
criteria, and definitions of persistence or remission of symptoms and use these end points in future
predictive studies

Methodological Guidelines

Increase in sample size Facilitate collaborative science approaches that enable the harmonization of end-point definitions and the
external validation of predictive models

Get access to open-source databases

Study design harmonization Employ reliable methodologies (CV and external validation are recommended); avoid leave-one-out CV;
implement k-fold CV

Embed all preprocessing or feature engineering procedures within the chosen CV scheme
Enforce preregistration processes (as in clinical trials) to facilitate monitoring of standardized data acquisition,

model discovery, and validation plan

Common modeling platforms and open-
source model libraries

Large-scale, consortium-wide international model benchmarking

CHR, clinical high risk; CV, cross-validation.
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include a genetic risk group (i.e., the genetic risk deteriora-
tion syndrome) and that two studies in our sample included
FRs and deletion syndrome patients with subthreshold psy-
chotic symptoms (49,52). This diagnostic overlap might
create, on the one hand, a further source of variability and, on
the other, a tangible bridge to the well-known heterogeneity
among CHR individuals. This issue was tackled by a recent
study (14) that provided evidence of a differential risk level
within the subcategories of the CHR construct. Hence,
further research should put effort into revising the CHR
paradigm toward a more parsimonious definition based on
one gold-standard clinical instrument and clear-cut biolog-
ical underpinnings.

Furthermore, in our sample, criteria to define transition
to psychosis or poor functional outcome differed both in
their operationalization and in the threshold used within a
specific diagnostic instrument. Another issue in the vari-
ability of outcome definition is dichotomization of contin-
uous variables such as GAF and global functioning, which
has proven to be a potential source of bias in prognostic
models (63,86). It is noteworthy that 1 study (45)
addressed this point by conducting an additional analysis
to investigate the continuous nature of functioning by us-
ing a support vector regression algorithm. The predict-
ability of nontransition outcomes in at-risk individuals is
still relatively unexplored. Therefore, there is a need for
clinical consensus on relevant nontransition outcomes and
how they should be assessed. Additionally, adopting
adaptive risk models, which capture the high extent of
variability of symptoms and risk factors over time (87), may
tackle this complexity and provide more precise mea-
surements of developing negative outcomes, as proposed
by digital phenotyping approaches (88).

Notably, CHR populations differ not only in their clinical
picture but also along demographic and sociocultural di-
mensions (89). For instance, American CHR individuals are
usually younger (w16–18 years) than their European counter-
parts (w22–24 years). Interestingly, recent research has shown
that neuroanatomical development and risk for developing
psychosis are interconnected (90,91). This evidence might also
reveal neurobiological processes leading to neurocognitive
changes in the CHR state (92,93). Overall, our findings suggest
that the gestalt of the CHR state might be successfully
modeled only if multiple behavioral and neurobiological mod-
erators are conjointly considered using standardized multi-
variate methods, thereby fully embracing the complexity of this
risk paradigm.

Limitations

Our meta-analysis was driven by the primary aim to evaluate
the potential applicability of diagnostic and prognostic models
in real-life clinical practice. Therefore, we focused only on the
two currently prevailing methodological approaches (i.e., ML
and Cox regression). Importantly, we might have missed sig-
nificant results by excluding other more traditional statistical
methods such as logistic regression (15,63), which has often
been implemented for prognostic purposes (15,63), eventually
showing higher performance than ML (94). Nevertheless, ML
approaches enable the investigation of the intrinsic complexity

of specific data types (e.g., brain features) and are devised for
better generalizability.

Another limitation might be the lack of investigation into
symptomatology, treatment, substance use, or additional
comorbidities, which was due to missing or inconsistent
information for several studies. Indeed, already in patients
with first-episode psychosis, antipsychotic treatment has
been shown to have neuroanatomical effects (95), and
continuous cannabis use has been shown to lead to worse
outcomes (96). It is also plausible that the high variability of
symptoms and clinical comorbidities in the CHR population
(13) has further introduced spurious variance in our analyses.

Furthermore, the CHR paradigm has proven to have intrinsic
limitations. On the one hand, its predictive power might be
partly driven by the so-called pretest risk enrichment; that is,
the assessment of at-risk criteria in a specific constellation of
help-seeking individuals (97,98). On the other hand, it might
not capture the full extent of risk in the population, as a recent
study pointed out by reporting that most transitions occurred
in patients with an unclear psychiatric diagnosis or no CHR
status (9). Because most prognostic models have been
developed for the CHR state, their usefulness outside of this
category should be intensively investigated.

Lastly, given the heterogeneity of our data and the publi-
cation bias detected, our meta-analysis is inherently limited to
a description of, not an ultimate decision on, which diagnostic
and prognostic models are sufficiently reliable to be applied in
clinical settings.

Conclusions

A comprehensive paradigm shift is required to enable the
clinical application of diagnostic and prognostic models for the
CHR state. First, the field requires study design harmonization,
which demands reliable methodological approaches such as
CV or external validation to ensure generalizability. An
approach to enhance the studies’ potential for real-life imple-
mentation could be a preregistration process similar to clinical
trials, during which their validity in terms of standardized data
acquisition, model discovery, and validation could be moni-
tored. Furthermore, large-scale international model bench-
marking at the level of external model validation can be
achieved only by constructing common modeling platforms
and open source model libraries. The National Institute of
Mental Health’s Harmonization of At-Risk Multisite Observa-
tional Networks for Youth (HARMONY) is a first step in the
above direction. Consortium-wise coordinated work will also
allow strategic methodological testing; that is, controlled
comparison of algorithms, preprocessing and feature optimi-
zation pipelines, and multiple data modalities (for an overview
of conceptual and methodological guidelines, see Table 4).
Multimodal ML carries the challenging responsibility to better
disentangle the complex architecture of psychosis risk within a
clinical consensus environment. This should involve efforts to
unify the CHR definition, both theoretically and practically, and
also to embrace relevant nontransition outcomes to broaden
the prognostic scope. Future studies are warranted to inves-
tigate whether harmonizing procedures within precision psy-
chiatry will lead to more reliable and reproducible translational
research in the field.
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Individualized Diagnostic and Prognostic Models for Patients With Psychosis Risk 

Syndromes: A Meta-Analytic View on the State of the Art 

 

SUPPLEMENTARY INFORMATION 

 

Literature search 

A comprehensive search of the published literature was conducted in the search engine 

Scopus using the following search string: ALL ((""risk for psychosis" OR "risk of psychosis" 

OR "at risk mental state*" OR "psychosis like" OR "risk state for psychosis" OR "brief limited 

intermitted psycho*" OR “psychosis prodrome” OR "psychosis risk syndrome") AND 

(“biomarker*” OR "predict*" OR "classif*" OR "outcome" OR "prognos*" OR "diagnos*" OR 

"transit*" OR "psychosis development" OR "psychosis onset") AND ("machine learning" OR 

"support vector machine" OR "SVM" OR "multivariate pattern recognition" OR "multivariate 

pattern analys*" OR "multivariate regression" OR "cox regression" OR "cox hazard")) AND 

LANGUAGE(english) AND PUBYEAR > 2000. Articles were considered only until June 30th 

2019. The search in PubMed was more specific in order to enlarge the articles’ catchment 

pool, and thus included also the following search terms: "at risk for psychosis", "high risk for 

psychosis", "high risk of psychosis", "at risk mental state*", "ARMS", "ultra high risk for 

psychosis, "UHR", "clinical high risk for psychosis”, "psychosis like", "clinical high risk state 

for psychosis", "CHR" "familial high risk", "genetic risk", "brief limited intermitted psycho* 

symptoms", "BLIPS", “psychosis prodrome”, "psychosis risk syndrome", “neuroimaging”, 

"neuroanatomic*", "gray matter", "grey matter", "white matter", "cortical", "brain", "magnetic 

resonance imaging", "MRI", "functional MRI", "fMRI", "resting state", "diffusion tensor 

imaging", "DTI", "EEG", “neuropsychol*”, "neurocogni*", "cognit*", "attentio*", "language", 

"linguist*", "memory", "task switch*", "social cognit*", "intelligen*", "education*", “genetic*”, 

"polygenic", "polygenic risk score*", "stress*", "trauma*", "childhood trauma", "fatty acids", 

"obstetric complication*", "schizotypy", "substance use", and "environm*".  

When reporting results, we followed the listed rules in order to allow comparability with other 

studies and further analyses: (I) In case of multimodal models (i.e., a combination of 

predictive variables), we additionally reported results from the single data modalities only if 

these could be similarly categorized to those in other studies; (II) neuroimaging models were 

reported only according to whole-brain analyses’ results (1); (III) in case several accuracy 

results were presented based on different features in the same data modality, we calculated 

and reported the performance’s average following previous research (2). The same 
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approach was used for one study (3) reporting results at different thresholds. In case there 

was more than 20% sample overlap between studies, we selected the most recent study 

with the biggest dataset. However, we included models constructed on the same sample if 

either the prognostic target or the data modality differed between them. Studies were 

excluded if the follow-up data was not complete and thus transition rate based on 

assumptions. One study needed to be excluded (4) because focusing on a sample of 

individuals undergoing CHR examination, thus not yet categorized as at-risk.  

 

Data extraction 

The following variables were extracted: title, authors, year of publication, demographic 

information (i.e., sample size, sex, age, at-risk category and diagnostic instruments for the 

risk status), type of data modality (i.e., biological, including neuroimaging and metabolites; 

clinical, including symptoms, functioning, neuropsychological and environmental measures; 

multimodal, a combination of different biomarker types), algorithm type, and cross-validation 

(CV) scheme, when applied. Prognostic target (i.e., transition or functioning) and time to 

follow-up were extracted for prognostic studies. Inconsistencies in the extraction results 

were discussed between R.S., D.D. and N.K. 
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Full‐text articles  
screened 
(n = 223) 

Full‐text articles excluded 
because not original articles 

(n = 120) 

Full‐text articles assessed 
for eligibility 

(n = 103, nD = 29, nP = 74) 

Full‐text articles excluded 
(n = 59): 

no CHR group (n=10, nD=2, 
nP=8) 
no ML or Cox model (n=7, 
nD=2, nP=5) 
no accuracy measures (n=35, 
nD=2, nP=33) 
no comparable sample (nD=2) 
sample overlap (nD=2) 
follow‐up data unknown (nP=2) 
multiclass classifier (nD=1) 

Studies included in the 
final analyses  

(n = 44, nD = 12, nP = 32) 

Articles initially excluded 
(n = 645) 

Figure S1: Flowchart illustrating details of the systematic literature search following the PRISMA
guidelines (19). Abbreviations: nD: number of diagnostic articles; nP: number of prognostic articles 
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Prognostic models 

Study 
Non-converters Converters 

CHR type CHR criteria 
Data 

modality 
Algorithm 

Cross-
Validation 

Outcome 
Follow-up 
(months) 

SE SP BAC PPV NPV PSI 
N Age y Males N Age y Males 

Amminger 2015 12 16.7 n.r. 28 15.8 n.r. UHR SIPS Biological GPC LOOCV Functioning 12 83 75 79 89 65 54 

Bedi 2015 29 21.2 66% 5 22.2 80% UHR SIPS Clinical Convex Hull LOOCV Transition 30 100 100 100 100 100 100 

Buchy 2014 141 19.8 58% 29 19.7 48% UHR SIPS Clinical 
Cox 

regression 
No Transition 48 69 81 75 43 33 35 

Cannon 2008 209 n.r. n.r. 82 n.r. n.r. UHR SIPS Clinical 
Cox 

regression 
No Transition 30 67 53 60 34 80 16 

Cannon 2016 512 n.r. n.r. 84 n.r. n.r. UHR SIPS Multimodal 
Cox 

regression 
No Transition 24 67 72 70 28 93 21 

Carrión 2016 164 n.r. n.r. 12 n.r. n.r. UHR SIPS Multimodal 
Cox 

regression 
No Transition 24 58 73 66 14 96 10 

         Biological     89 66 78 45 95 40 

Chan 2015 58 22 61% 18 20 57% UHR, UPS CAARMS Clinical 
LASSO 

regression 
10-fold CV Transition 24 78 60 69 38 90 27 

         Multimodal     89 79 84 57 96 53 

Cornblatt 2015 66 n.r. n.r. 26 n.r. n.r. UHR SIPS Multimodal 
Cox 

regression 
No Transition 36 60 97 79 89 86 75 

Das 2018 63 24 78% 16 26 50% UHR, UPS BSIP Biological 
Randomized 

trees 
5-fold CV Transition 20 66 97 82 85 92 77 

         Biological     67 75 71 66 76 42 

de Wit 2017 24 15.4  76% 17 15.9 58% UHR, BS SIPS, SPI-A Clinical SVM LOOCV Functioning 72 76 75 76 68 82 50 

         Multimodal     68 81 75 72 78 50 

DeVylder 2014 74 20.1 81% 26 20 76% UHR SIPS Clinical 
Cox 

regression 
No Functioning 30 58 60 59 34 80 14 

Dragt 2011 53 18.9  62%  19 20.3 74% UHR SIPS Clinical 
Cox 

regression 
No Transition 36 50 91 71 67 84 50 

Francesconi 
2017 

95 24.4 52% 21 24.1 57% UHR CAARMS Clinical 
Cox 

regression 
No Transition 36 67 97 82 83 93 76 

Fusar-Poli 2017 525 n.r. n.r. 185 n.r. n.r. UHR-BLIPS SIPS Clinical 
LASSO Cox 
regression 

k-fold CV Transition 48 24 93 58 53 94 30 

Gothelf 2011 9 n.r. n.r. 10 n.r. n.r. 22q11.2DS - Biological SVM LOOCV Transition 60 90 100 95 100 90 90 

Hoffman 2007 9 n.r. n.r. 19 n.r. n.r. UHR SIPS Clinical 
Cox 

regression 
No Transition 24 89 89 89 80 94 74 
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Kambeitz-
Ilankovic 2016 

13 23.2 62%  14 23.5* 79% UHR, BS SIPS, SPI-A Biological SVM 
Nested 
LOOCV 

Functioning 48 79 85 82 85 79 64 

Koutsouleris 
2012 

20 25.8 70% 15  22.8 73% UHR, BS SIPS, SPI-A Clinical SVM 
Repeated 
double CV 

Transition 48 80 75 78 71 83 54 

         Biological     67 47 57 65 49 14 

Koutsouleris 
2018 

47 24.4 47% 69 23.7 52% UHR, BS SIPS, SPI-A Clinical SVM 
Nested 
LSOCV 

Functioning 12 61 75 68 78 57 35 

         Multimodal     59 70 65 74 54 28 

         Biological     80 72 76 79 73 52 

Koutsouleris 
2018 

50 24.5 48% 66 23.6 52% UHR, BS SIPS, SPI-A Clinical SVM 
Nested 
LSOCV 

Functioning 12 70 84 77 85 68 53 

         Multimodal     83 82 83 86 79 64 

Koutsouleris 
2015 

33 24.6 61% 33 25 73% UHR, BS SIPS, SPI-A Biological SVM 
Repeated 
double CV 

Transition 53 76 85 81 84 78 61 

Lavoie 2017 21 16.4 29% 15 14.9 33% UHR CAARMS Biological 
Cox 

regression 
No Transition 84 91 67 79 66 91 58 

Mechelli 2017 
99 19.4 49% 99 19.5 49% 

UHR CAARMS Clinical SVM LOOCV 
Transition 

90 
69 61 65 64 66 30 

48 19.7 46% 48 19.7 46% Functioning 63 63 63 63 63 26 

Michel 2014 53 25.3  64%  44 24.1 66% UHR, BS SIPS, SPI-A Clinical 
Cox 

regression 
No Transition 24 57 55 56 51 61 12 

Nieman 2014 43 19 63% 18 20.3 72% UHR, BS SIPS, SPI-A Multimodal 
Cox 

regression 
No Transition 36 78 88 83 73 91 64 

Perkins 2015 40 19.5 63% 32 19.2 70% UHR SIPS Biological 
Greedy 

algorithm 
5-fold CV Transition 24 60 90 75 83 74 57 

Ramyead 2016 35 25.8 66%  18 26.7 56% UHR, UPS BSIP Biological LASSO 
Repeated 
nested CV 

Transition 36 58 83 71 64 79 43 

Ruhrmann 2010 146 n.r. n.r. 37 n.r. n.r. UHR, BS SIPS, SPI-A Clinical 
Cox 

regression 
No Transition 18 42 98 70 84 87 71 

Tarbox 2013 192 17.9 61% 78 18.4 55% UHR SIPS Clinical 
Cox 

regression 
No Transition 30 62 61 62 39 80 19 

Thompson 2011 63 19.3 49% 41 19.5 49% UHR CAARMS Clinical 
Cox 

regression 
No Transition 28 30 89 60 64 68 30 

van Tricht 2010 43 19.3 67% 18 20.4 72% UHR SIPS Biological 
Cox 

regression 
No Transition 36 46 87 67 60 79 39 

van Tricht 2014 91 22.0  64%  22 21.8 64% UHR, BS SIPS, SPI-A Biological 
Cox 

regression 
No Transition 18 83 79 81 49 95 44 

Zarogianni 2017 22 23.9  56%  13 26.8 33% UHR, BS SIPS, SPI-A Multimodal SVM 
nested 
LOOCV 

Transition 48 63 84 74 70 79 49 
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Zarogianni 
2017b 57 20.1 65% 17 20.8 35% FR  - 

Biological 
SVM 

nested 
LOOCV 

Transition 77 
76 77 77 50 91 41 

Multimodal 100 83 92 64 100 64 

Classification models 

Study 
Healthy Controls CHR 

CHR type 
CHR 

instruments 
Data 

modality 
Algorithm 

Cross-
Validation 

Outcome  SE SP BAC PPV NPV PSI 
N Age y Males N Age y Males 

Bendfeldt 2015 19 n.r. n.r. 19 n.r. n.r. UHR, UPS BSIP Biological SVM LOOCV Diagnosis - 74 58 66 64 69 33 

Guo 2014 60 27.2 58% 28 25.8 54% FR - Biological SVM LOOCV Diagnosis - 60 94 77 56.4 3.6 66 

Koutsouleris 
2012 

48 26  60%  30 24.7 67% UHR, BS SIPS, SPI-A Clinical SVM 
Repeated 
double CV 

Diagnosis - 96 80 88 88 93 81 

Koutsouleris 
2009 

25 n.r. n.r. 45 n.r. 
76%, 
62% 

UHR, BS SIPS, SPI-A Biological SVM 5-fold CV Diagnosis - 89 80 85 89 80 69 

Liu 2012 25 25.5  55%  22 25.6 56% FR - Biological SVM LOOCV Diagnosis - 72 86 79 85 73 58 

Pettersson-Yeo 
2013 

19 23.3 47% 19 22.4 47% UHR CAARMS Biological SVM LOOCV Diagnosis - 80 73 77 75 78 53 

Scariati 2014 41 18.2  49%  42 18.2 57% 22q11.2DS - Biological SVM LOOCV Diagnosis - 81 88 85 87 82 69 

Studerus 2018 101 25 57% 101 25.4 70% UHR, UPS BSIP Clinical 
Random 

forest 
10-fold CV Diagnosis - 73 77 75 76 74 50 

Tylee 2017 56 21 53%  30 20.9 54% 22q11.2DS - Biological SVM 5-fold CV Diagnosis - 85 82 84 90 75 64 

Valli 2016 25 25.1 56% 25 23.8 72% UHR CAARMS Biological SVM LOOCV Diagnosis - 68 76 72 74 70 44 

Wang 2016 37 20.8  49%  34 21.5 62% UHR CAARMS Biological SVM LOOCV Diagnosis - 82 69 76 71 81 51 

Zhu 2019 74 21.4 51% 71 22 58% UHR SIPS Biological SVM 5-fold CV Diagnosis - 77 47 62 60 66 26 

 

Table S1: Summary of the studies included in the present meta-analysis. Abbreviations: 22q11.2DS: 22q11.2 deletion syndrome, ARMS: At 
Risk Mental State, BAC: balanced accuracy, BS: basic symptoms, BSIP: Basel Screening Instrument for Psychosis, CAARMS: Comprehensive 
Assessment of at Risk Mental States, CHR: Clinical High Risk, CV: cross-validation, FR: familial risk, GPC: Gaussian process classification, LASSO: 
least absolute shrinkage and selection operator, LOOCV: leave-one-out cross-validation, LSOCV: leave-one-site-out cross-validation, NPV: negative 
predictive value, n.r.: not reported, PPV: positive predictive value, PSI: prognostic summary index, SE: sensitivity, SIPS: Structure Interview for 
Psychosis-Risk Syndromes, SP: specificity, SPI-A: Schizophrenia Proneness Instrument-Adult version, SVM: support vector machine, UHR: Ultra 
High Risk, UPS: unspecific prodromal symptoms. 
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Clinical characteristics of CHRs 

CHRs in about 86% of the studies fulfilled the UHR criteria (5),  operationalized by either the 

Structured Interview for Psychosis–Risk Syndromes (SIPS (6)), the Comprehensive 

Assessment of at Risk Mental States (CAARMS (7)), or the Basel Screening Instrument for 

Psychosis (BSIP (8)) (see (9) for a comprehensive review). Of those studies, 34% also 

included individuals fulfilling basic symptoms (BS, based on the Schizophrenia Proneness 

Instruments (10) or the Bonn Scale for the Assessment of Basic Symptoms (BSAB-S, (11)) 

or unspecific prodromal symptoms (UPS) based on the BSIP.  

Moreover, in order to maximize our meta-analytical sample size, we included three studies 

on 22q11.2 deletion syndrome (12–14) and three on persons with familial risk for psychosis 

(3, 15, 16), i.e., having a first degree relative with a psychotic disorder. 22q11.2 deletion 

syndrome is a genetic disease caused by a chromosomic deletion and leading to both 

hereditary disfunctions (e.g., congenital heart disease) and later-onset behavioral and 

psychiatric illnesses, one of which being psychosis (17). Moderator analyses for type of CHR 

(i.e., either clinically assessed versus FR or based on different clinical subgroups) were not 

conducted because of the sample’s heterogeneity. 

 

Investigation of publication bias 

Publication bias was investigated by calculating the effective sample size (ESS) and plotting 

the inverse square root of this term against the logarithm of the DOR (lnDOR); the bias can 

be then assessed with a regression between the measures, weighted by the ESS. 

Publication bias on SE was investigated using funnel plots with both the inverse square root 

of ESS and the raw sample size.   
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Supplementary analyses 

Sample-split based on Cross-Validation 

Within prognostic studies, we found a significant interaction effect of sample size and cross-

validation (CV) on sensitivity (p = .009, see main results in the manuscript). Because the CV 

factor completely overlapped with the models’ algorithm (i.e., all ML studies performed CV, 

while no study using Cox did), we decided to further investigate heterogeneity by splitting 

the sample of prognostic models based on application of CV. We computed bivariate 

regressions with the following moderators: age, sex, year of publication, time to follow-up 

and prognostic target (the latter two for ML models only). Analyses of the effects of data 

modality or CHR type, type of CV scheme or being a multisite study could not be computed 

because there were less than 10 models for each variable (18). The only effect surviving 

correction for multiple comparisons was that of time to follow-up examination on sensitivity 

performance when controlling for sample size in Cox, or not cross-validated, models (p = 

.003, χ2
(2) = 6.85, p = 0.03, see Table S2 and Figure S3).  
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Classification studies 

 Sensitivity False Positive Rate (1-Specificity) 

Covariates Estimate z p 95%-CI Estimate z p 95%-CI 

Age (years) -0.092 -1.072 0.1247 -0.164 0.025 -0.07 -1.449 0.284 -0.26 0.076 

Sex (% males) 0.02 1.168 0.243 0 0.052 -0.012 -0.452 0.651 -0.063 0.04 

Year of publication 0.058 0.3 0.765 -0.319 0.434 -0.264 -1.271 0.204 -0.671 0.143 

Prognostic studies 

 Sensitivity False Positive Rate (1-Specificity) 

Covariates Estimate z p 95%-CI Estimate z p 95%-CI 

Age (years) -0.013 -0.44 0.66 -0.07 0.045 -0.035 -0.825 0.409 -0.118 0.048 

Sex (% males) -0.007 -0.782 0.434 -0.025 0.01 -0.016 -1.333 0.183 -0.04 0 

Year of publication 0.03 0.843 0.399 -0.04 0.101 0.032 0.598 0.55 -0.073 0.137 

Data modality (clinical) -0.263 -1.367 0.172 -0.639 0.114 0.146 0.516 0.606 -0.408 0.699 

Algorithm/CV 0.451 2.627 0.009 0.115 0.788 0.345 1.34 0.18 -0.16 0.85 

Follow-up interval (months) 0.002 0.471 0.637 -0.005 0.008 0.005 1.025 0.305 -0.005 0.015 

Prognostic target -0.112 -0.568 0.57 -0.496 0.273 0.487 1.721 0.085 -0.068 1.043 

Multisite studies -0.005 -0.028 0.978 -0.354 0.344 -0.306 -1.095 0.274 -0.852 0.241 

Machine learning/CV studies 

 Sensitivity False Positive Rate (1-Specificity) 

Covariates Estimate z p 95%-CI Estimate z p 95%-CI 

Age (years) -0.008 -0.217 0.828 -0.079 0.063 0.006 2.303 0.021* 0.001 0.011 

Sex (% males) -0.014 -1.304 0.192 -0.034 0 -0.024 -2.119 0.034* -0.045 0 

Year of publication -0.097 -1.328 0.184 -0.24 0.046 -0.05 -0.591 0.554 -0.216 0.116 

Follow-up interval (months) -0.001 -0.235 0.814 -0.007 0.002 0.002 0.51 0.61 -0.006 0.009 
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Prognostic target -0.095 -0.503 0.615 -0.463 0.274 0.236 1.07 0.284 -0.197 0.669 

Cox regression/not CV studies 

 Sensitivity False Positive Rate (1-Specificity) 

Covariates Estimate z p 95%-CI Estimate z p 95%-CI 

Age (years) -0.017 -0.349 0.727 -0.112 0.078 -0.037 -0.42 0.675 -0.207 0.134 

Sex (% males) -0.006 -0.326 0.745 -0.043 0.03 0.002 0.082 0.935 -0.051 0.05 

Year of publication 0.087 2.031  0.042* 0.003 0.172 0.053 0.0633 0.527 -0.111 0.217 

Follow-up interval (months) 0.029 2.983   0.003** 0.01 0.047 0.012 0.772 0.44 -0.019 0.043 

Multisite studies 0.263 0.769 0.442 -0.408 0.935 -0.694 -1.141 0.254 -1.886 0.498 

 
Table S2: Moderator analyses. *not significant after False Discovery Rate (FDR) correction; **significant after FDR correction. Abbreviations: CHR: 
Clinical High Risk; CV: cross-validation. 
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Exclusion of 22q11.2DS and FR 

22q11.2DS and subjects with FR are conceptually different types of risk definitions and are 

either potentially separate syndromes (e.g., 22q11.2DS) or are a single component of a 

larger clinical high-risk definition (e.g., familial risk). To investigate the effects of their 

exclusion on the meta-analytic results, we excluded them and repeated the bias analysis 

and receiver operator characteristic (ROC) curves (Figures S4 and S5). Results 

demonstrated an R squared change of 0.01 for both diagnostic (Figure S4, A) and prognostic 

(Figure S4, B) studies. ROC curves demonstrated minimal changes in sensitivity and false-

positive rates. 

 

 

 

Figure S4: Comparison of original bias plots and plots after exclusion of studies
related to 22q.11 syndrome and familial risk. A) diagnostic bias minimally
changes between the original analysis (left) and when the studies are excluded
(right); B) prognostic bias also minimally changes. 
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6. Paper II 

Novel gyrification networks reveal links with psychiatric risk factors in early 

illness 

Evidence of altered gyrification has been found in clinical populations diagnosed 

with schizophrenia, depression, and psychosis risk states. Such findings may 

reflect a developmental-related, transdiagnostic, signature, but this hypothesis 

has not been investigated yet and existing studies may be methodologically 

limited.  

Thus, we aimed to derive gyrification-specific covariance maps in order to 

investigate associations with symptoms, cognition, and functioning in a sample 

of individuals in early illness stages. A recently introduced, data-driven method, 

Orthogonal Projective Non-Negative Matrix Factorization, delineated gyrification-

based Patterns of Structural Covariance (PSC) in 308 healthy controls. The PSC-

map was applied to a sample of patients with recent onset psychosis or 

depression, and clinical high-risk for psychosis (N=713). Gyrification differences 

compared to controls were determined, and associations with diagnosis, 

symptoms, cognition, and functioning were investigated using linear models.  

We detected 18 PSCs in controls, the majority of which were externally validated 

in an independent healthy sample (N=84). PSCs differed between patients and 

controls in temporal-insular, lateral occipital, and lateral fronto-parietal areas 

(pFDR<0.01). Gyrification abnormalities were observable in high-risk, psychotic, 

and early depression patients. Altered cortical folding demonstrated associations 

with cognitive domains and role functioning, but not with symptomatology.  

Our findings highlight a sparse representation of cortical gyrification in controls, 

which is altered in early psychiatric illnesses and high-risk individuals and is not 

associated with symptom severity. A neurodevelopmentally-linked signature was 

suggested by relationships with cognition and lifetime role functioning. Further 

studies are required to delineate how and to what extent gyrification might add 

important information within predictive models by expressing early insults at a 

neurobiological level, which signal common features of mental illness. 
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Abstract

Adult gyrification provides a window into coordinated early neurodevelopment when disruptions predispose individuals to
psychiatric illness. We hypothesized that the echoes of such disruptions should be observed within structural gyrification
networks in early psychiatric illness that would demonstrate associations with developmentally relevant variables rather
than specific psychiatric symptoms. We employed a new data-driven method (Orthogonal Projective Non-Negative Matrix
Factorization) to delineate novel gyrification-based networks of structural covariance in 308 healthy controls. Gyrification
within the networks was then compared to 713 patients with recent onset psychosis or depression, and at clinical high-risk.
Associations with diagnosis, symptoms, cognition, and functioning were investigated using linear models. Results
demonstrated 18 novel gyrification networks in controls as verified by internal and external validation. Gyrification was
reduced in patients in temporal-insular, lateral occipital, and lateral fronto-parietal networks (pFDR

<0.01) and was not
moderated by illness group. Higher gyrification was associated with better cognitive performance and lifetime role
functioning, but not with symptoms. The findings demonstrated that gyrification can be parsed into novel brain networks
that highlight generalized illness effects linked to developmental vulnerability. When combined, our study widens the
window into the etiology of psychiatric risk and its expression in adulthood.

Key words: clinical high risk, cortical folding, depression, psychosis, structural covariance

Introduction

Gyrification (i.e., the degree of cortical folding) is a fundamental
property of the human brain, which primarily arises from a
complex interplay of both genetic and biological (Borrell 2018),
as well as biomechanical factors (Kroenke and Bayly 2018) acting
during early cortical development that peaks at week 66/80
post-conception (Llinares-Benadero and Borrell 2019). Recent
evidence also shows that glial cells formation and migration in
the cortex and subcortical white matter influences to a great
extent the formation of cortical folds (Rash et al. 2019). Associa-
tions with structural and functional connectivity reflect these
interactions (White and Hilgetag 2011), while also highlight-
ing the contribution of environmental factors that influence a
protracted developmental course extending throughout adoles-
cence (Cao et al. 2017). Beyond the consistently homogeneous
primary gyri (i.e., convex ridges) and sulci (i.e., concave grooves)
(Lohmann et al. 2008), whose morphology is only impacted by
severe neurodevelopmental disorders (Barkovich 2010), this con-
tinued complex interplay is reflected in more fine-grained fold-
ing patterns showing high interindividual variability (Glasser
et al. 2017) that is related to psychiatric illness (Guo et al. 2015).

Pertinent current questions relate to the morphology of
gyrification abnormalities in mental illness, their psychiatric
manifestation, and their origin. For example, both increased and
decreased gyrification have been found in established psychoses
(Palaniyappan et al. 2011; Nanda et al. 2014; Matsuda and Ohi
2018) and across depression and bipolar disorder (Depping et al.
2018). While there may be relationships between gyrification
and illness-specific psychiatric symptoms (Matsuda and Ohi
2018), transdiagnostic cognitive disturbances with a putative
neurodevelopmental basis could also mediate these relation-
ships (Cao et al. 2017; Popovic et al. 2020). This hypothesis is
supported by associations between gyrification and cognitive
ability across species (Pillay and Manger 2007; Gautam et al.
2015; Gregory et al. 2016), the coexistence of cognitive and

gyrification abnormalities in neurodevelopmental disorders
(Kippenhan et al. 2005; Wallace et al. 2013) and adults born very
preterm (Papini et al. 2020), and by relationships found between
fronto-temporal folding and cognition in affective psychoses
(Rodrigue et al. 2018). Neurodevelopmental contributions are
also suggested by folding differences in individuals at clinical
high-risk for psychosis (Sasabayashi et al. 2017) who develop a
first episode (Das et al. 2018) and by the effects of perinatal stress
on altered gyrification and mood disturbances (Mareckova et al.
2020). Notably, no study has yet investigated how gyrification
relates to other clinical aspects usually impaired in mental
illnesses, such as everyday functioning across the lifetime (i.e.,
social and occupational). Late adolescence and early adulthood
might be the most informative timeframes to investigate such
transdiagnostic cognitive and functioning phenomena because
of the high comorbidity rate of symptoms, especially in the
initial phases of psychiatric illness (Musliner et al. 2019; Thapar
and Riglin 2020). However, existing results remain inconclusive,
differing both quantitatively and qualitatively across studies
(Matsuda and Ohi 2018).

A potential reason for inconsistent results could be the use
of techniques that cannot harness the highly interconnected
gyrification systemof the brain, such as traditional brain atlases,
which are based on coarse anatomical characteristics, or mass
univariate vertex-wise approaches. Whole-brain structural
covariance methods (Alexander-Bloch et al. 2013; Evans 2013)
might be more powerful in this regard because they are known
to produce cortical maps that are highly heritable, related
to behavioral variation, and have their origin in coordinated
developmental processes (Alexander-Bloch et al. 2013). Seed-
based techniques have been the most popular in this domain
where an existing brain atlas is used to discover relationships
between nodes (Bassett et al. 2008; Yeh et al. 2010; Van Den
Heuvel et al. 2013; Wang et al. 2016), yielding insights regard-
ing gyrification in patients with established schizophrenia
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(Palaniyappan et al. 2015, 2016). However, these studies involve
an assumption that traditional atlases (e.g., the Desikan-
Killiany) are valid for gyrification networks and this may not be
the case. Hypothesis-free, data-driven techniques may thus be
best suited to obtain gyrification-specific maps. A preliminary
study has been conducted using principal components analysis
(PCA) (Das et al. 2018), but this technique is limited both in
terms of replicability and by its fuzzy representation of variance,
which cannot define clear boundaries between components
(Sotiras et al. 2015).

In this study, we first aimed to delineate gyrification
covariance patterns in healthy control individuals using a
novel Non-Negative Matrix Factorization (NNMF) technique,
following research investigating cortical thickness (Sotiras et al.
2017). NNMF produces a parsimonious “alphabet” of clearly
separated and well-defined variance components (Yang and
Oja 2010; Sotiras et al. 2015), thus overcoming limitations of
other dimensionality reduction methods by enhancing results’
interpretability. We then aimed to assess developmental and
sex effects on data-driven components, before investigating
gyrification disruptions in early stages of psychosis and
depression (i.e., recent-onset psychosis, ROP, and recent-onset
depression, ROD) and in clinical high-risk (CHR) individuals.
Merging these three unique patient populations allowed us to
investigate whether potential gyrification abnormalities were
shared across clinical manifestations and/or comorbidities.
Further, we explored the specificity of the abnormalities in
patients in relationship to diagnosis, symptom severity (i.e.,
psychosis, depression, and subjective cognitive disturbances),
cognition, and occupational and social functioning.We expected
to find novel gyrification covariance patterns in controls that
demonstrated shared spatial abnormalities across clinical
groups and were associated with cognition and functioning.

Materials and Methods

Participants

A total of 413 healthy controls and 901 patients with ROP, ROD, or
CHR were recruited within the PRONIA study (www.pronia.eu),
an international longitudinal project conducted across seven
European sites (Supplementary Information, Koutsouleris et al.
2018). Previous work on the PRONIA sample investigated gray
matter volume for diagnostic and prognostic purposes (Kout-
souleris et al. 2018, 2020; Upthegrove et al. 2020) and its asso-
ciations with childhood trauma (Popovic et al. 2020). A sub-
sample of 329 controls and 754 patients was selected from five
out of seven sites (Munich, Cologne, Basel, Turku, and Udine)
based on the availability of surface-based neuroimaging data
and the need to match sex and age during site correction (see
Supplementary Information). The two excluded sites (Milan and
Birmingham) were used as external validation (Supplementary
Information). Following magnetic resonance imaging (MRI) pro-
cessing and quality control (i.e., 45 surfaces visually inspected
and 21 excluded, see Supplementary Information), 308 controls
and 713 patients constituted the final sample (Supplementary
Figure 1; Table 1). All participants provided written informed
consent and the study protocol was approved by each ethical
committee.

Neuropsychological and Clinical Assessments

Patients underwent a comprehensive neuropsychological bat-
tery (Koutsouleris et al. 2018, Supplementary Information and

Supplementary Table 8). To reduce multiple testing and build
interpretable neurocognitive factors, we derived six cognitive
domain scores and a global score of cognition following a
similar approach to MATRICS (Nuechterlein et al. 2008). Data
were checked for operator errors and outliers (i.e., 3 SD away
from mean), and verbal learning scores were harmonized
between the sites (Supplementary Information). Social cogni-
tion, working memory, speed of processing, verbal learning,
reasoning, and attention summary scores were calculated. After
standardization, a score of global cognition was computed
by calculating the aggregate average across the six cognitive
scores. In patients, social and role functioning were measured
using the Global Functioning: Social Scale (GF:S) and Global
Functioning: Role Scale (GF:R)(Cornblatt et al. 2007). Symptoms
were evaluated using the Beck Depression Inventory (BDI)(Beck
and Steer 1984), the Structured Interview for Psychosis-Risk
Syndromes (SIPS)(Miller et al. 2003), from which the sum score
was calculated separately for the positive (P), negative (N),
disorganized (D), and general (G) symptoms items, and the
“cognitive disturbances” items (COGDIS) from the Schizophrenia
Proneness Instrument-Adult version (SPI-A(Schultze-Lutter
et al. 2007); Supplementary Information).

MRI Data Acquisition and Processing

Participants were scanned using 3 T MRI scanners except for
one site (Milan), which used a 1.5 T machine (Koutsouleris et al.
2018, Supplementary Table 2). Structural scans were visually
inspected for motion artifacts and neuroanatomical abnormali-
ties. The FreeSurfer software package (v6.0.0, https://surfer.nmr.
mgh.harvard.edu/) was used to reconstruct the cortical surfaces
from the T1-weighted structural MRI scans (Dale A.M., Fischl B.
1999; Fischl 2012, Supplementary Information). Quality control
consisted in targeted inspection of the Euler number (Rosen et al.
2018) distribution in the sample followed by exclusion of scans
(Supplementary Figure 2, Supplementary Information). Gyrifi-
cation was calculated vertex-wise on each 3D cortical mesh
using the local gyrification index (LGI, Schaer et al. 2012). This
measure represents a ratio of the buried surface compared to
a flat surface and its values range from 1, i.e., low gyrification,
to 5, i.e., high gyrification. The LGI meshes were resampled
to the fsaverage6 template (40.962 vertices per hemisphere) in
order to reduce dimensionality, and then smoothedwith a 5mm
Gaussian filter kernel (as usual for LGI, e.g., Sasabayashi et al.
2017).

Site Effects

The ComBat harmonization technique was used to mitigate site
effects (Johnson et al. 2007). ComBat is an empirical Bayesian
framework that removes site-effects variance while retaining
age and sex effects to specifically investigate them in further
analyses. To also maintain disease effects in the patient sam-
ple, ComBat was applied to the resampled and smoothed LGI-
meshes in the controls before the estimates derived from the
correction were applied, without modification, to the patients
(Supplementary Information).

Non-Negative Matrix Factorization

We applied the orthonormal projective variant of NNMF (opN-
NMF, Sotiras et al. 2015), following Sotiras and colleagues (Soti-
ras et al. 2017), to the ComBat-corrected LGI maps of controls

www.pronia.eu
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab288#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab288#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab288#supplementary-data
https://surfer.nmr.mgh.harvard.edu/
https://surfer.nmr.mgh.harvard.edu/
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab288#supplementary-data
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Table 1 Sociodemographic and clinical information of the analyzed sample

PAT study-groups HC vs. PAT

HC Pooled PAT CHR ROD ROP F/X 2 p t/X 2/z p

N (%) 308 713 224 (31.4) 226 (31.7) 263 (36.9) 21.331 0.006

Age, mean (SD) 25.7 (6.1) 25.2 (5.9) 24.2 (6.0) 25.4 (5.6) 25.8 (5.9) 4.623 0.010 1.231 0.219
Sex, females (%) 183 (59.4) 326 (45.7) 113 (50.4) 110 (48.7) 103 (39.2) 7.366 0.025 16.132 <0.001

Handedness,mean (SD)1 76.2 (44.5) 68.8 (54.0) 66 (49.7) 73 (57.5) 67.8 (54.0) 0.848 0.429 2.011 0.045
Ethnicity, N (%)
Caucasian 283 (92.8) 584 (86.4) 186 (83.0) 195 (86.3) 203 (77.2) 19.814 0.003 9.566 0.023
Asian 4 (1.3) 22 (3.3) 3 (1.3) 2 (0.9) 17 (6.5)
African 1 (0.3) 11 (1.6) 3 (1.3) 2 (0.9) 6 (2.3)
other 17 (5.6) 59 (8.7) 18 (8.0) 15 (6.6) 26 (9.9)
Urbanicity, N (%)
> 500000 108 (35.4) 322 (47.9) 74 (33.0) 123 (54.4) 125 (47.5) 33.670 <0.001 13.901 0.003

100000–500 000 83 (27.2) 158 (23.5) 57 (25.4) 31 (13.7) 70 (26.6)
10 000–100 000 73 (23.9) 126 (18.8) 55 (24.6) 39 (17.3) 32 (12.2)
<10000 41 (13.4) 66 (9.8) 23 (10.3) 21 (9.3) 22 (8.4)
Education, years (SD) 15.5 (3.3) 14.0 (5.4) 13.5 (3.2) 14.4 (3.0) 14.2 (7.8) 1.704 0.183 4.343 <0.001

Employment 2, N (%)
Managers 1 (0.2) 9 (2.2) 3 (1.3) 1 (0.4) 5 (1.9) 19.501 0.244 39.910 <0.001

Professionals 12 (2.0) 67 (16.1) 19 (8.5) 25 (11.1) 23 (8.7)
Technicians 133 (21.8) 78 (18.7) 14 (6.3) 35 (15.5) 29 (11.0)
Clerical support workers 111 (18.2) 21 (5.03) 7 (3.1) 6 (2.7) 8 (3.0)
Service and sales workers 36 (5.9) 91 (21.8) 30 (13.4) 28 (12.4) 33 (12.5)
Agricoltural, forestry, fishery 121 (19.8) 3 (0.7) 0 (0) 2 (0.9) 1 (0.4)
Craft, trades workers 5 (0.8) 47 (11.3) 13 (5.8) 14 (6.2) 20 (7.6)
Plant/machine operators 52 (8.5) 10 (2.4) 4 (1.8) 3 (1.3) 3 (1.4)
Elementary occupations 13 (2.1) 91 (21.8) 29 (12.9) 19 (8.4) 43 (16.3)
Never employed, N (%) 126 (20.7) 237 (33.2) 143 (63.8) 149 (65.9) 184 (70.0) 2.146 0.342 0.587 0.444
Relationship status, N(%)
single 136.0 (44.6) 474 (70.2) 147 (65.6) 144 (63.7) 183 (69.6) 4.909 0.555 73.620 <0.001

married 17.0 (5.6) 40 (5.9) 9 (4.0) 15 (6.6) 16 (6.1)
partnership 149.0 (48.9) 148 (21.9) 51 (22.8) 51 (22.6) 46 (17.5)
separated/divorced 3.0 (1.0) 13 (1.9) 3 (1.3) 4 (1.8) 6 (2.3)
Functioning, mean (SD)
GF:R current 8.5 (0.7) 5.5 (1.7) 5.6 (1.7) 5.9 (1.7) 4.9 (1.7) 45.390 <0.001 23.467 <0.001

GF:R L past year 8.2 (0.8) 5.1 (1.7) 5.4 (1.6) 5.5 (1.6) 4.5 (1.7) 58.595 <0.001 23.572 <0.001

GF:R H past year 8.6 (0.7) 7.0 (1.4) 7.0 (1.1) 7.4 (1.3) 6.7 (1.6) 25.429 <0.001 17.809 <0.001

GF:R H lifetime 8.6 (0.7) 7.9 (0.9) 7.9 (0.8) 8.1 (0.9) 7.8 (1.0) 18.798 <0.001 12.044 <0.001

GF:S current 8.5 (0.7) 6.0 (1.4) 6.2 (1.3) 6.2 (1.3) 5.6 (1.5) 31.338 <0.001 23.073 <0.001

GF:S L past year 8.2 (0.8) 5.5 (1.4) 5.8 (1.3) 5.8 (1.3) 5.0 (1.6) 43.528 <0.001 23.426 <0.001

GF:S H past year 8.6 (0.7) 7.0 (1.3) 7.1 (1.2) 7.2 (1.2) 6.7 (1.3) 16.401 <0.001 19.371 <0.001

GF:S H lifetime 8.7 (0.7) 7.8 (0.9) 7.8 (0.9) 7.9 (0.9) 7.8 (0.9) 4.829 0.089 14.282 <0.001

Symptoms, mean (SD)
SIPS-P NA 8.9 (7.2) 8.1 (2.0) 1.8 (4.3) 15.7 (5.5) 612.727 <0.001 NA NA
SIPS-N NA 10.4 (6.6) 10.1 (5.6) 9.9 (6.6) 11.1 (7.4) 2.226 0.109 NA NA
SIPS-D NA 3.7 (3.4) 3.4 (2.1) 2.2 (2.8) 5.2 (4.2) 50.861 <0.001 NA NA
SIPS-G NA 7.6 (4.1) 7.8 (3.7) 8.0 (4.0) 7.1 (4.5) 2.810 0.061 NA NA
COGDIS sum NA 7.6 (8.0) 9.5 (4.8) 3.0 (6.9) 9.9 (9.3) 60.923 <0.001 NA NA
BDI NA 23.6 (12.1) 25.4 (12.1) 25.7 (11.2) 20.2 (12.1) 14.467 <0.001 NA NA
Cognition,mean (SD)
Social cognition3 19.4 (2.1) 18.7 (2.5) 18.9 (2.2) 19.3 (2.1) 18.1 (2.9) 12.955 <0.001 4.144 <0.001

Working memory4 17.9 (3.8) 16.0 (4.0) 16.6 (4.2) 16.4 (4.0) 15.0 (3.6) 12.280 <0.001 7.093 <0.001

Verbal fluency5 25.8 (5.7) 22.1 (6.6) 22.8 (6.7) 23.4 (6.3) 20.2 (6.3) 16.129 <0.001 8.381 <0.001

TMT-A 27.5 (9.0) 31.7 (12.1) 31.5 (10.9) 29.1 (11.4) 34.1 (13.2) 9.673 <0.001 −5.278 <0.001

DSST 65.7 (10.4) 57.0 (13.5) 59.7 (11.9) 61.5 (12.6) 50.6 (13.2) 49.093 <0.001 9.932 <0.001

Verbal learning6 61.1 (6.9) 56.8 (9.5) 58.2 (8.5) 58.6 (8.4) 54.0 (10.5) 17.602 <0.001 7.076 <0.001

Reasoning7 21.2 (3.2) 19.9 (4.1) 20.4 (3.6) 20.5 (3.7) 18.8 (4.5) 12.112 <0.001 4.721 <0.001

CPT-IP (N correct) 274.4 (13.0) 265.8 (17.3) 268.6 (18.3) 269.7 (14.0) 259.9 (17.3) 23.632 <0.001 7.716 <0.001

CPT-IP (N errors) 10.3 (6.0) 11.4 (7.0) 12.1 (6.5) 10.8 (7.6) 11.4 (6.8) 1.676 0.188 −2.375 0.018
Medication, N (%)
Antipsychotics (AP) NA 104 (14.6) 14 (6.3) 5 (2.2) 85 (32.3) 299.510 <0.001 NA NA
Antidepressants (AD) NA 146 (20.5) 54 (24.1) 83 (36.7) 9 (3.4) NA NA
AP+AD NA 38 (5.3) 11 (4.9) 16 (7.1) 11 (4.2) NA NA
Anxiolytics/Sedatives (Anx) NA 13 (1.8) 6 (2.7) 6 (2.7) 1 (0.4) NA NA
AP+Anx NA 65 (9.1) 6 (2.7) 0 (0) 59 (22.4) NA NA
AD+Anx NA 49 (6.9) 10 (4.5) 34 (15.0) 5 (1.9) NA NA
AP+AD+Anx NA 28 (3.9) 10 (4.5) 4 (1.8) 14 (5.3) NA NA

Bold values represent significance after correction for multiple comparisons (False Discovery Rate, FDR<0.01). Abbreviations: GF: Global Functioning Role (R) or
Social (S), [0:10], higher scores indicate better functioning; L: lowest; H: highest; y: year; SIPS-P and N: Structured Interview for Prodromal Syndromes-Positive or
Negative scale. Displayed are composite scores for all four subscales (i.e., sum of five Positive, six Negative, four Disorganized symptoms, and four items for General
psychopathology) [0:6], higher scores indicate higher symptom severity; COGDIS: Schizophrenia Proneness Instrument, Cognitive Disturbances (sum of nine items);
BDI: Beck’s Depression Inventory; TMT-A: Trail-Making Test-A; DSST: Digit-Symbol Substitution Test; CPT-IP: Continuous Performance Test-Identical Pairs; HC: Healthy
Control; PAT: patients; CHR: Clinical High Risk; ROD: Recent Onset Depression; ROP: Recent Onset Psychosis. 1: Edinburgh Handedness score, [−100;100], higher scores
indicatemore pronounced right-handedness; 2: ISCO, International Standard Classification of occupation (www.ilo.org/public/english/bureau/stat/isco/isco08) [1–9]; 3:
measured with Diagnostic Analysis of Nonverbal Accuracy (DANVA); 4: measured with forward + backward Digit Span; 5 : correct words in Verbal Fluency (phonemic);
6: sum of 5-Rey Auditory Verbal Learning Test repetitions; 7: Matrix Reasoning subtest from the Wechsler Adult Intelligence Scale. Notes: cognition scores are those
used to build the seven cognitive domains (refer to text).

www.ilo.org/public/english/bureau/stat/isco/isco08
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to detect Patterns of Structural Covariance (PSCs, see Supple-
mentary Information). opNNMF is an unsupervisedmultivariate
method that deconstructs a data matrix based on a nonnegative
combination of its parts, or components. This method is partic-
ularly useful in the neuroimaging context for two main reasons:
first, unlike PCA, it can aggregate variance in a parcellation-like
way, in line with the hierarchical and modular organization of
the human brain cortex. Second, it can generalize well to unseen
data (Sotiras et al. 2015). To establish the optimal number of
PSCs, we quantified the PSC goodness of fit using the recon-
struction error (i.e., the amount of reconstructed variance in
the data not explained by the components; Sotiras et al. 2017)
and PSC generalizability using split-half analyses (i.e., applying
NNMF independently on two randomly generated subsamples
and calculating the components’ degree of overlap) (Supplemen-
tary Information, Supplementary Figure 6). The NNMF compo-
nent solution was also externally validated in the two held-
out sites by calculating the inner product between all com-
ponents to identify maximal overlap and by visual inspection
(Supplementary Information). The PSC maps were then applied
to patients and themean gyrification values for each component
were extracted from both patients and controls (Supplementary
Information, Supplementary Figure 1).

Investigation of Group and Clinical and
Neuropsychological Associations

The associations between age, sex, and site and PSC gyrification
values for controls and patientswere first estimated using corre-
lations, t-tests, and analyses of variance. Group effects (controls
vs. patients, independent variable) were then investigated by
fitting linear models for each PSC (dependent variable) with
age and sex as covariates. We further investigated quadratic
age effects and age-by-group interaction effects (Supplemen-
tary Information) and explored the contribution of each PRO-
NIA study-group (i.e., ROP, ROD, CHR) (Supplementary Informa-
tion). Supplemental analyses explored the potential confound-
ing effect of scan quality (Supplementary Information).

PSCs showing a significant group effect (False Discovery Rate,
FDR-correction P<0.01, following Gregory et al. 2016) were then
investigated using linear models to determine relationships
with symptoms, cognition, and functioning in the patient sam-
ple. Supplementary analyses were conducted to test the poten-
tial confounding effects of MRI scan quality, education, and pre-
morbid intelligence quotient (IQ) in order to investigate cognitive
and functioning specificity (Supplementary Information). The
same analyses were also performed in the control sample to
investigate potential disease-independent associations between
PSCs, cognition, and functioning. All analyses ran in Matlab
(version R2020a) and results were FDR corrected (P< 0.01).

Data Availability

The code and models that support the findings of the current
study are available on request from the corresponding author.
The datasets generated and analyzed are not publicly avail-
able due to data restriction policies defined in the participants’
signed informed consent.

Results

Controls and patients differed in their sex and urbanicity
distribution, educational and employment level, relationship

status, and all functioning and cognitive domains, except for
error numbers in the continuous performance test (CPT; P

valuesFDR
< 0.003, Table 1). No difference was found for age,

handedness, and ethnicity (P valuesFDR
> 0.02). The three clinical

study groups differed from each other in terms of ethnicity,
urbanicity, all functioning subscales (except GF:S highest
lifetime), positive and depressive symptoms, COGDIS, cognitive
abilities (except in CPT error numbers) and medication intake
(P valuesFDR

< 0.006). Between the three study-groups, age,
sex, handedness, education, employment and relationship
status, and negative and general symptoms were similar (P
valuesFDR

> 0.01). Site distribution of the pooled sample and
sociodemographic information are reported in Supplementary
Table 1.

Patterns of Structural Covariance

A total of 18 components best fit the gyrification data (Fig. 1,
Supplementary Information). PSCs were spatially distinct and
differed from structural and functional brain parcellations
(Supplementary Information, Supplementary Figures 4 and
5). Figure 2 shows the cortical ribbon coverage when all PSCs
are projected on the brain (see Supplementary Figure 8 for an
individual representation of components). In the two completely
held-out sites, 72% of components exhibited an inner product
above 0.5 (Supplementary Figure 10) and were visually highly
similar (Supplementary Figure 9). The mean inner product
across PSC solutions was no different to the discovery sample
split-half analysis result used to define the component solution
(i.e., 0.622 and 0.623, respectively, P=0.493; Supplementary
Information). Post hoc analyses revealed significant associations
of gyrification in controls across all PSCs with age (r ranging
[−0.18;−0.55], pFDR

< 0.01) and sex (t range [1.94;7.11], pFDR
< 0.01)

with no site differences (all pFDR
> 0.01, Supplementary Table 5).

In patients, similar demographic relationships were found (age:
r range [−0.143;−0.475], pFDR

< 0.001; sex: t range [2.10;10.70],
pFDR

< 0.01); three PSCs showed site effects (left PSC 6 and
bilateral 17; Supplementary Table 6). Quadratic effects of age
on gyrification were detected for five PSCs (i.e., PSC 3 and 9, and
right PSC 18, Supplementary Information), however, the addi-
tional explained variance when adding the age quadratic term
in linear models was minimal (Supplementary Information). No
interactions between age and group were found in the pooled
patient sample or within study-groups.No associations between
PSCs in the patient sample and medication were found.

Effect of Group

A total of 14 gyrification components showed significant
differences between controls and patients (models adjusted
R2 [0.123;0.289]; maximum partial correlation coefficient for the
specific effect of group −0.157, models’ pFDR [2.07E-29;1.57E-75];
coefficients’ t-values from −2.98 to −5.08; coefficients’ pFDR

[0.003;4.60E-07], Supplementary Table 9). This pattern included,
bilaterally, a temporal-insular area (PSC1 and 2, 5 left and 10
right and 12), a lateral occipital area (PSC 6 left and 5 right),
and a lateral fronto-parietal area (PSC 7 left and 3 right). Within
the right hemisphere, fronto-parietal (PSC 9, 13 and 18) and
cingular gyrus areas (PSC 16) also differed between controls and
patients (Fig. 3). These results were not influenced by MRI scan
quality (Supplementary Information, Supplementary Table 10).
The pattern of reduced gyrification in patients could almost
completely be replicated in the external validation sample

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab288#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab288#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab288#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab288#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab288#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab288#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab288#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab288#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab288#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab288#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab288#supplementary-data
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Figure 1. Split-half reproducibility (A) and reconstruction error (B) analyses. A: The median and mean inner product of the two independently estimated sets of

components in the split-halves (y-axis) is represented as a function of the number of components estimated (x-axis). B: The gradient of the reconstruction error is

reported as a function of the number of components estimated. Abbreviations: PSC: Pattern of Structural Covariance.

Figure 2. 18 gyrification-based Patterns of Structural Covariance (PSC) over-

lapped on an inflated brain surface. RH: right hemisphere, LH: left hemisphere.

Themedial part of the brain is displayed on the left, the lateral on the right. Same

colors correspond to the same PSC mapping bilaterally.

(Supplementary Information, Supplementary Table 11). Post hoc
analyses of significant components demonstrated significance
across all groups at a threshold of pFDR

<0.05, though marginal
increases in effect size coupled with moderate significance
increases were apparent for ROP and CHR for some PSCs
(Supplementary Information, Supplementary Table 21). There
were no differences between the ROD, ROP, and CHR groups in
pair-wise comparisons (Supplementary Information).

Associations with Cognitive and Clinical Measures

In patients, significant associations between 12/14 PSCs
were found for cognition and functioning domains (Fig. 4,
Supplementary Information, Supplementary Tables 12, 16). For
cognition, four temporal components (i.e., superior temporal

Figure 3. Effects of group (Healthy Controls, HC vs patients, PAT) resulting

from the comparison of 29 gyrification Patterns of Structural Covariance (PSCs)

between HC and PAT. The color table represents P values for each ROI. Only P

values lower than 0.01 (uncorrected) are shown. ROIs are overlaid on an inflated

common surface. RH: right hemisphere; LH: left hemisphere. The medial part of

the brain is displayed on the left, the lateral on the right.

gyrus, pars orbitalis and triangularis, and insula: PSC 1, 2 and 12)
explained up to 3.8% of variance for working memory, speed of
processing, reasoning, and global cognition (r range [0.116;0.196],
pFDR

< 0.002). Additionally,workingmemorywas associatedwith
the right angular gyrus and lateral occipital lobe (PSC 10 and
5, respectively r = 0.151, pFDR

< 0.001 and r=0.125, pFDR =0.001),
and global cognition with the left angular and medial temporal
gyrus (PSC 5, r = 0.122, pFDR =0.003). Results were not explained
by either quality of MRI scans (Supplementary Information,
Supplementary Table 13), or the patients’ educational level
(Supplementary Information, Supplementary Table 14). Cogni-
tive associations were found at a threshold of pFDR

< 0.05 when
controlling for premorbid IQ (r range [0.109;0.135], pFDR

< 0.008,

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab288#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab288#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab288#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab288#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab288#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab288#supplementary-data
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Figure 4. Associations between gyrification components and functioning and neurocognitive domains. The circular plot (left side) represents associations between

components and neurocognitive (in blue) and functioning (in orange) domains, with thicker lines reflecting higher effect sizes/lower P values (FDR correction P< 0.01).

Gray domains are those not significant in the analyses. The right panel displays the components associated with functioning and neurocognitive domains overlaid on

a common cortical surface. Colors on the brains correspond to those in the plot. Abbreviations: PSC: Pattern of Structural Covariance; SocCog: social cognition; WM:

working memory; SoP: speed of processing; VerLearn: verbal learning; Global: global cognition; GF:R/S: global functioning: Role/Social; lifetime: the highest functioning

lifetime; low: lowest; high: highest; y: year; SIPS-P/N: Structured Interview for the Prodromal Syndrome, Positive/Negative symptoms; BDI: Beck Depression Inventory.

Supplementary Information, Supplementary Table 15, Supple-
mentary Figure 11).

In the functioning domain, the left and right PSC 12 explained
approximately 1.7% of variance of the patients’ highest social
functioning lifetime and the lowest role functioning in the past
year (pFDR

< 0.001), respectively. Remaining significant associ-
ations were found specifically in the highest role functioning
lifetime for 12 PSCs (r range [0.137;0.195], all pFDR

< 0.001, Fig. 4,
Supplementary Table 16). When controlling for premorbid IQ,
three PSCs survived at a threshold of pFDR

< 0.01, while results
were overlapping for pFDR

< 0.05 (Supplementary Information,
Supplementary Table 18, Supplementary Figure 11). These rela-
tionships were not completely explained by educational level
(Supplementary Information, Supplementary Table 17) or MRI
scan quality (Supplementary Information, Supplementary Table
19). Associations with the cognitive and functioning domains
could not be replicated in the validation cohort—potentially
because of the smaller sample size. We found no significant
associations with symptoms (Supplementary Table 20). In
controls, no associations survived multiple comparisons cor-
rection, neither in the cognitive, nor in the functioning domain

(all pFDR
> 0.01, Supplementary Information, Supplementary

Table 22).

Discussion

Novel and distinct gyrification covariance components were
found, with a specific pattern of abnormality in early mental
illness that was evident across all diagnostic groups and was
not associated with symptoms. As hypothesized, the compo-
nents showed rather small but significant associations with
cognitive domains and functioning, which were not completely
explained by premorbid intelligence, suggesting illness-related
effects. While both age and sex effects were observed, we did
not detect a specific interaction with diagnosis but did find
increases of effect size when compared to controls in the psy-
chosis and psychosis-prone study groups. These results point
to transdiagnostic neurodevelopmental effects on gyrification
occurring before late adolescence, which may precede the onset
of illness.

Gyrification components were stable, replicable to some
extent in new sites, demonstrated hemispheric symmetry, and

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab288#supplementary-data
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https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab288#supplementary-data
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https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab288#supplementary-data
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were substantially novel. Quantitative comparisons indicated
differences to traditional atlases (Supplementary Information,
Supplementary Figure 4) and newer functional parcellations
(Thomas Yeo et al. 2011) (Supplementary Figure 5), while
qualitative comparisons indicated differences to thickness-
based PSCs (Sotiras et al. 2017) and genetically derived structural
brain networks (Chen et al. 2013).When compared to commonly
used atlases in previous gyrification work (e.g., Desikan-
Killiany), PSCs critically crossed gyral boundaries highlighting
the importance of data-drivenmethods for gyrification research
as opposed to traditional atlases. Hemispheric symmetry
indicated shared structural and functional relationships, while
some important exceptions highlighted known lateralized areas,
e.g., Broca’s area (Knecht 2000; Toga and Thompson 2003).
Expected linear negative relationships with age were found
for the components based on hypotheses related to cortical
restructuring processes during adolescence and in adult life
(Klein et al. 2014; Cao et al. 2017), which occur against a
background of early neurodevelopmental gyrogenesis (Llinares-
Benadero and Borrell 2019). Given our restricted age window,
the results reinforce research highlighting the importance of
ongoing gyrification during adolescence and adulthood.

Decreased gyrification was found in patients, covering tem-
poral, parieto-frontal, occipital, and insular areas bilaterally, and
parieto-frontal and cingulate areas on the right hemisphere.
The results are in line with previous research using traditional
vertex-wise or atlas-based techniques, where hypogyrification
has been detected in the temporal, insular, and frontal areas
in schizophrenia (Palaniyappan and Liddle 2012), depression
(Depping et al. 2018), and first-episode psychosis (Palaniyappan
et al. 2013). Similar folding abnormalities were also found in a
recent study investigating individuals at high-risk for psychosis
(Sasabayashi et al. 2017), implicating bilateral supramarginal
gyri, rostral middle frontal gyri, lateral occipital gyri, in addition
to specific associations with the right pre- and postcentral gyri,
superior frontal gyri, paracentral lobules, and cingulate. Our
findings also add to this research field by providing a clearly
defined gyrification covariance map that could be used in fur-
ther studies, enabling a finer investigation of cortical geometry
in both healthy and clinical populations. Furthermore, results
also highlight a transdiagnostic signature of abnormal cortical
folding,with slightlymore evident disruptions in early psychosis
and its risk, potentially suggesting a more distinctive neurode-
velopmental component in this diagnostic group than in mood
disorders (Craddock and Owen 2010). Altered gyrification in
patients was not specific to current symptomatology, which has
been reported in depression (Depping et al. 2018) and in cases of
rare genetic disorders demonstrating disrupted gyrificationwith
no symptoms (Caverzasi et al. 2019).

Of the several mechanisms, which are thought to be
responsible for the gyrogenesis (e.g., axonal tension, differential
growth, synaptogenesis; Llinares-Benadero and Borrell 2019),
the involvement of radial glial cells during neurodevelopment
(Rash et al. 2019) might play a particularly relevant role in
psychopathology (Kato et al. 2017; Dietz et al. 2020). Disruptions
of progenitor glial cells’ differentiation might in fact impact
both patterns of cortical convolution and neurotransmission,
which, in turn, might reflect pathophysiological manifestations
of abnormal development. This cascade might start from
gene expression levels involved in both pre- and post-natal
cortex development, which have shown to be associated with
cortical thickness profiles across disorders (Patel et al. 2021).
Recent studies also point to a shared genetic liability across
psychiatric disorders (Musliner et al. 2019), which supports

our transdiagnostic findings of disrupted gyrification. Our
findings thus reinforce the need to further investigate the
neurobiological underpinnings of cortical folding networks
throughout the lifespan within and across psychiatric disorders.

A bilateral cortical area covering the insula, pars orbitalis,
triangularis, and opercularis (i.e., left PSC 2 and right 1) was
also associated with multiple cognitive domains in patients—
working memory, speed of processing, reasoning, and global
cognition—with a mediation effect of premorbid IQ. These
results are in line with limited previous research in established
illness showing increased cortical curvature in schizophrenia
related to lower premorbid and current intelligence (Jessen et al.
2019). Rather weak multivariate associations were also found
between gyrification in frontotemporal areas (left pars orbitalis
and triangularis, right pars opercularis and orbitalis, and insula)
and general cognitive ability in bipolar, schizoaffective, and
schizophrenic patients (Rodrigue et al. 2018). Interestingly,
similar gyrification–cognition relationships detected in this
study have been shown in healthy midlife individuals, where
positive associations are found between gyrification and
executive functions in lateral frontal cortex (Gautam et al. 2015),
global cognition and superior temporal gyrus, as well as insular
cortex and postcentral gyrus (Lamballais et al. 2020). Moreover,
positive but weak associations with general intelligence have
been demonstrated in children and adolescents (Gregory et al.
2016; Chung et al. 2017; Mathias et al. 2020). Of note,we found no
cognitive associations in healthy young adults. On the one hand,
it is possible that interindividual differences in gyrification–
cognition relationships exist also for this different age range, but
are too weak to be detectable, whereas they may be observable
in psychiatric disorders due to being more pronounced as a
result of illness and neurodevelopmental insults. On the other
hand, associations found could point to unstable relationships
between cortical convolution and cognitive abilities overall
(Mathias et al. 2020). These might for instance be detectable
only for subtypes of the population (Dwyer et al. 2020), or,
although less plausible, only for specific cognitive domains.
Further research is warranted to investigate whether and to
what extent gyrification may mirror cognition in the healthy
brain by comparing a broad spectrum of cognitive constructs in
multicenter cohorts covering the full lifespan.

The consistent involvement of Broca’s area (and its con-
tralateral equivalent) across cognitive domains might be due
to its recognized double functional nature integrating both
language-specific and multiple-demand networks participating
in attention, working memory, planning and fluid intelligence
(Fedorenko and Blank 2020). Bilateral insula associations may
indicate both its involvement in feeling states and saliency,
and its indirect connection with cognitive processes controlled
prevalently in subregions of the prefrontal cortex (Namkung
et al. 2017). The insular role both in emotional states and
in motivational/cognitive processes might be one potential
explanation for its disruptions found across a number of
different psychiatric disorders (Goodkind et al. 2015; Namkung
et al. 2017). Interestingly, the lack of insular relationships
with symptoms in our study might point to gyrification
abnormalities, which appear to be specific to the cognitive
domain.

For the first time, we also detected a distributed pattern of
gyrification-based PSCs (including fronto-temporal and lateral
occipital areas bilaterally and pre-frontal, parietal and cingular
areas on the right hemisphere) that was specifically correlated
with the highest lifetime role functioning in the patient
sample. Importantly, our results were only partly explained

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab288#supplementary-data
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by premorbid intelligence, thus suggesting a specific cortical
folding signature linked to the individual functioning and not
driven by general cognition. When combined with the cognitive
findings, these results may highlight the effects of abnormal
gyrification on premorbid cognition and functioning over the
lifetime that confer transdiagnostic risk to psychiatric illness
during critical periods in adolescence and young adulthood.
Such vulnerability is likely to be mediated by disruptions
in coordinated, or synchronized, developmental processes,
caused by pleiotropic genetic mechanisms, environmental
factors, or insults before and during gyrogenesis (Alexan-
der-Bloch et al. 2013). This hypothesis is supported by the
lack of disrupted developmental pathways in our patient
sample and suggests that future studies need to focus on
younger at-risk samples (e.g., genetic risk samples) to identify
candidate gyrification mechanisms that may be amenable
to developmental interventions. Further research exploring
which sulci are more evolutionary driven and therefore less
prone to plastic reorganization (Schmitt et al. 2008; Rollins
et al. 2020) would also be indicated in addition to multimodal
covariance studies to assess the developmental interactions of
different morphological measures (e.g., volume, density, and
thickness).

Our study has some limitations. First, as in most factor anal-
yses, the number of components chosen to best represent the
variance decomposition, although normally supported by stabil-
ity metrics, was ultimately selected by the investigators. Many
other solutions might as well be explanatory of gyrification pat-
terns. However, in our sample, a smaller number of PSCs showed
a lower grade of resolution (Supplementary Information), with
similar PSC being fused in spreader components. Second, the
variance explained in our clinical and neuropsychological mod-
els was low, in line with previous findings (Mathias et al. 2020)
and, in general, research in psychology (Schäfer and Schwarz
2019). Third, our replication might have been hindered either
by residual site effects (potentially caused by coil differences),
or the sample size of the controls. Although the PSCs were
promisingly partly generalizable to an independent subsample,
further replication of our gyrification components in larger sam-
ples is required to validate their future use. Future investigation
of the role of other psychopathologies in the transdiagnostic
signature observed in our study is also highly warranted. Finally,
even though our study lacks a deep biological investigation of
cortical folding from a mechanistic perspective, it nevertheless
represents an important step forward in the field that could
lead to mechanistic studies (e.g., in combination with diffusion
tensor imaging).

Our work adds knowledge to previous gyrification research
by establishing a novel covariance map, whose components
revealed cortical folding abnormalities in early psychosis, risk-
states and, to a lesser extent, depression, irrespective of the psy-
chopathological features. Relationships between cortical fold-
ing and cognition suggested a neurodevelopmental origin that
was supported by a further association with role functioning.
When combined, our results highlight the importance of study-
ing gyrification before late adolescence to delineate genetic,
developmental, and environmental mechanisms that poten-
tially influence thismorphologicalmeasure and put adolescents
and young adults at risk of mental illness.

Supplementary Material

Supplementary material can be found at Cerebral Cortex online.
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SUPPLEMENTAL METHODS 

Study sample 

Participants were healthy controls and patients recruited in 7 European cities out of 5 countries 
for the longitudinal European project PRONIA (www.pronia.eu). Specifics about recruitment 
procedures and assessments have been described elsewhere (Koutsouleris et al. 2018).  
Briefly, general inclusion criteria were age between 15 and 40 years, sufficient language skills 
for participation as well as capacity to provide informed consent/assent. General exclusion 
criteria were an IQ below 70, current or past head trauma with loss of consciousness (> 5 
minutes), current or past known neurological or somatic disorders potentially affecting the 
structure or functioning of the brain, current or past alcohol dependence, or polysubstance 
dependence within the past six months, and any medical indication against MRI.  
Specific controls’ exclusion criteria were any current or past DSM-IV axis disorder, a positive 
familial history (1st degree relatives) for affective or non-affective psychoses and an intake of 
psychotropic medications or drugs more than 5 times/year and in the month before inclusion. 
Patients comprised persons with a clinical high-risk state for psychosis (CHR), a recent onset 
psychosis (ROP) and a recent onset depression (ROD). CHR were included if they fulfilled 
either cognitive disturbances criteria assessed using the Schizophrenia Proneness Instrument 
(SPI-A,(Schultze-Lutter et al. 2007, 2012)) and/or 2) ultra-high-risk (UHR) criteria for psychosis 
based on the Structured Interview for Psychosis-Risk Syndromes (SIPS,(Miller et al. 2003)). 
CHR exclusion criteria were antipsychotic medication for more than 30 cumulative days at or 
above minimum dosage of the “first-episode psychosis“ range of DGPPN S3 (“Deutsche 
Gesellschaft für Psychiatrie und Psychotherapie, Psychosomatik und Nervenheilkunde e. V.”, 
German Association for Psychiatry, Psychotherapy and Psychosomatics) guidelines and any 
intake of antipsychotic medication within the past 3 months before clinical baseline 
assessments at or above the same minimum dosage. ROP participants had to meet the 
following two criteria: I) affective or non-affective psychotic episode according to criteria of the 
Diagnostic and Statistical Manual of Mental Disorders, Text Revision (DSM-IV-TR) fulfilled in 
the past 3 months and II) onset of psychosis within past 24 months. ROP were excluded if their 
antipsychotic medication intake was longer than 90 cumulative days with a daily dose rate at 
or above the cited minimum dosage. ROD inclusion criteria were I) DSM-IV-TR major 
depressive episode (lifetime), II) major depressive disorder criteria fulfilled within past three 
months and III) duration of first depressive episode no longer than 24 months. Specific ROD 
exclusion criteria were: 1) more than 1 major depressive episode, 2) antipsychotic medication 
for > 30 cumulative days at or above the cited minimum dosage, and III) any intake of 
antipsychotic medication within the past 3 months before baseline assessments at or above the 
cited minimum dosage.  
All participants provided written informed consent and the study protocol was approved by each 
ethical committee.  
The full dataset at the start of analyses included 1492 persons (454 controls subjects and 1038 
patients), of which 423 controls and 951 patients being recruited in the original 7 sites (i.e., 
Munich, Basel, Cologne, Birmingham, Milan, Turku and Udine) and the remaining 118 in three 
sites, which newly became part of the PRONIA consortium (i.e., Bari, Münster and Düsseldorf). 
We focused on the original PRONIA 7 sites-sample in order to maximize sample size for each 
site. At the time the present analyses started, neuroimaging data was available for 413 controls 
and 901 patients. In the controls, in order to match persons for age and sex and keep a relatively 
similar sample size across the sites, we further excluded participants from Milan and 
Birmingham; the first center because of the significantly smaller number of controls (i.e., 33 
controls) and the second because of the significantly lower age range in the sample compared 
to Munich and Turku (i.e., mean age 25.12, SD 5.98). However, we used these two controls 



 
3 

held-out samples to externally validate our components solution (see below). In following this 
strategy, we effectively balanced the sample sizes, age and sex ranges across centers without 
enforcing a one-to-one matching strategy. The matched sample comprised thus 329 controls. 
In order to enable the external application of ComBat for site correction based on the controls 
sample (see ComBat section below for more information on this approach), patients recruited 
in the two mentioned PRONIA sites were excluded as well. Hence, 754 patients were included 
(see Supplementary Figure 1). We had to exclude further participants (21 controls and 41 
patients) after running the cortical surface reconstruction pipeline (see MRI data processing 
section) and the neuroimaging quality control assessments (see MRI Quality control procedures 
section) because of poor image quality which led to FreeSurfer reconstruction errors or 
gyrification calculation failure (see details in next sections). Hence, our final sample was of 308 
controls and 713 patients: 224 CHR, 263 ROP and 226 ROD (Supplementary Figure 1). 
Information on sociodemographics, functioning and cognition for patients and controls and, 
additionally, clinical variables for patients (the latter subdivided by study-group) is listed in Table 
1. Additionally, distribution of the sample in sites and respective age, sex, handedness and 
education characteristics can be found in Supplementary Table 1. Between sites, there were 
no significant age (F(307)=1.27, p=0.28), sex (χ2(9)=5.41, p=0.25) handedness (F(280)=0.32, 
p=0.87) or education (F(282)=0.78, p=0.54) differences in controls, while patients showed a 
significant difference in education only (F(661)=2.96, p=0.02).  
 
MRI data acquisition  

When setting up the PRONIA study, we decided to generate an MRI database that would 
represent the MR scanner sequence heterogeneity encountered in clinical real-world. A minimal 
harmonization protocol was used that required the PRONIA sites to only 1) acquire isotropic or 
nearly isotropic voxel sizes of preferably 1 mm resolution, 2) set the Field Of View (FOV) 
parameters accordingly to guarantee the full 3D coverage of the brain including all parts of the 
cerebellum, and 3) define the relaxation time (TR) and echo time (TE) as well as other imaging 
parameters in a way that would maximize the contrast between cortical ribbon and the white 
matter and enhance the signal-to-noise ratio in the images. Supplementary Table 2 reports the 
acquisition parameters for all scanners of all PRONIA sites. At each site, all images were 
visually inspected for neuroanatomical abnormalities by experienced neuroradiologists, 
automatically defaced, and anonymized using an in-house FreeSurfer-based script prior to data 
centralization. 
 
MRI data processing and gyrification calculation 

All images were processed with the FreeSurfer software package (v. 6.0.0, 
https://surfer.nmr.mgh.harvard.edu/). The pipeline consists of the following main steps: bias 
field correction, labeling of the white matter and splitting the two hemispheres, removal of 
cerebellum and brainstem, formation of a triangular mesh that covers the external boundary of 
white and grey matter relying on voxel intensities, deformation and expansion of the mesh 
towards the pial surface and topology correction to fix structural abnormalities. In addition to 
the FreeSurfer default parameters, we added the following flags: -cw256, -3T, -multistrip and -
clean-bm. -cw256 was included for images which have a FOV > 256 (in the PRONIA case, 
Turku), in order to conform the images to dimensions of 256^3. The -3T flag enables two 
specific options in recon-all for images acquired with a 3T scanner: 3T-specific Non-Uniform 
intensity correction parameters are used in the normalization stage, and the Schwartz 3T atlas 
is used for Talairach alignment. The -multistrip option was chosen to optimize the pre flooding 
height used by the watershed algorithm during the skull stripping step to find a boundary 
between the brain and skull. The FreeSurfer mri_watershed program uses a default pre flooding 
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height of 25 percent and, in general, a larger number will make the algorithm more conservative 
(i.e., if part of the brain has been removed), while a smaller one more aggressive (i.e., part of 
the skull has been left behind). This flag instructs the algorithm to run several different 
watershed thresholds simultaneously (i.e., 5,10,20,30) and to choose automatically the one that 
produces the best result. Finally, the -clean-bm flag enables the overwriting of the new edits on 
the old brainmask.mgz volume (https://surfer.nmr.mgh.harvard.edu/fswiki/).  
After quality control assessments (see next section), gyrification meshes (163.842 vertices per 
hemisphere) were extracted using the Local Gyrification Index (LGI) approach (Schaer et al. 
2012), resampled to the fsaverage6 surface (40.962 vertices per hemisphere) and smoothed 
with a 5mm full width and a half maximum (FWHM) isotropic Gaussian filter kernel. The Free-
Surfer cortical reconstruction failed for 10 controls and 20 patients, due to artefacts which 
hindered the correct distinction between white and grey matter. The LGI calculation failed for 5 
controls and 6 patients, hence in total 15 controls and 26 patients needed to be excluded from 
the final sample.  
 
MRI quality control procedures 

Quality control procedures consisted in extraction and investigation of the Euler number 
distribution for both the controls and the patient sample (Supplementary Figure 2). The Euler 
number is a quality measure provided by FreeSurfer, which gives a reliable estimation of the 
complexity of the cortical reconstruction and effectively detects outliers (Rosen et al. 2018). The 
highest Euler number would be 1, with the larger negative deviation from the unity meaning a 
more complex cortical surface, hence a higher chance that the reconstruction is flawed. 
However, it has been shown that the Euler number also highly correlates with cortical thickness 
per se (5), which, in the case of gyrification, could lead to an exclusion of just more complex 
(i.e., gyrified) cortices. We thus visually inspected all cortical surfaces deviating ≤ than 2 SD 
from the mean in order to detect only those, which did not reach a good quality standard 
according to the ADNI guidelines (http://adni.loni.usc.edu/methods/mri-tool/). Eight cortical 
surfaces for controls and 37 for patients, whose Euler number was lower than 2 SD from the 
mean, were visually inspected and, in total, 6 from controls and 15 from patients excluded.  
 
 
ComBat 

To tackle the site effects issue, which is highly common and expected in large consortia such 
as PRONIA, we applied ComBat (‘‘combating batch effects when combining batches”). ComBat 
is an empirical Bayes estimation method originally implemented to harmonize genetic data from 
different recruiting sites (Johnson et al. 2007). ComBat has been applied to several 
neuroimaging data modalities (e.g., (Fortin et al. 2017, 2018)) and has been proved efficient, 
especially in disentangling site effects from variance of biological nature (e.g., age, sex or 
disease), which can be retained. ComBat was implemented in Matlab (version R2020a; 
https://github.com/Jfortin1/ComBatHarmonization) and was applied to the resampled and 
smoothed LGI cortical maps in the control population using default settings. After the correction, 
no site-effects were detected in the resulting Patterns of Structural Covariance (PSC) 
(Supplementary Table 4). One of the advantages of this approach is that it gives the opportunity 
to retain biological variance in the sample (e.g., age and sex) while modelling and correcting 
for site effects. Disease effects could potentially also be modelled and spared from the 
correction, nevertheless, to lower the chances of losing any psychopathological variance, we 
decided to follow a more conservative approach: The estimates derived from the application of 
ComBat to the controls sample were applied, separately and with no modifications, to the 
patient sample.  
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Non-Negative Matrix Factorization and extraction of gyrification values 

The orthonormal projective variant of Non-Negative Matrix Factorization (opNNMF) results in a 
sparse representation of the data—in our study of gyrification-based brain cortical meshes. The 
projectivity constraint was chosen specifically for its capacity to further enhance the sparseness 
of the PSCs by forcing every component to capture a distinct source of variation in the data—
this leads to a distributed representation of gyrification across the brain. This property is 
especially valuable in the neuroimaging field, where a parts-based cortical map supports 
interpretation of, for instance, known distinct brain areas associated with specific functions. 
Moreover, each individual in the analysis’ sample is assigned with a vector of K weights, or 
loading coefficients, (with K being the number of components chosen), representing the relative 
contribution of the Kth component to the whole cortical gyrification reconstruction for that 
subject.  
Weights are, however, expressed in arbitrary units, which hinders potential interpretation 
regarding the underlying gyrification. Therefore, we implemented a straightforward approach to 
extract the original gyrification values for our 18-PSC solution in order to 1) relate to more 
interpretable values, and 2) to facilitate replicating the components by just sharing the maps 
(applicable to any gyrification mesh) and not needing to apply the models. First, the 18 resulting 
PSC maps (40.962 vertices for each component) were thresholded using the following 
calculation: (maximum value – minimum value) / 2. This threshold is also used for visualization 
of components, so that the resulting clusters completely overlap with their visual representation. 
This procedure was followed separately for the left and right hemisphere, as the PSCs do not 
exactly map in the same regions bilaterally.  
Four components for the left (PSC 1, 10, 13 and 18) and three for the right hemisphere (PSC 
2, 6 and 7) were asymmetrical, i.e., the structural covariance is concentrated on only one 
hemisphere. In fact, the surface mesh coverage after thresholding was much smaller for these 
components than the other PSCs (i.e., less than 10% of the full map compared to the largest 
PSC), which pointed to a weaker representation of covariance on the hemisphere. To assure a 
spatial balance throughout all components, as well as to avoid increasing the number of 
comparisons, these PSCs were excluded from further analyses. 
The remaining binarized maps were used to calculate the mean gyrification values for each 
PSC across all controls, similar to the known parcellation, or Region of Interest (ROI) 
approaches. The ROI maps could then be applied to the patient sample, so that each individual 
was assigned, in total, 29 PSC-gyrification values (14 for the left and 15 for the right 
hemisphere), which could be compared in terms of absolute gyrification values. We investigated 
the associations between these PSCs and the original PSC-derived loading coefficients in the 
controls in order to determine if loading patterns were positively correlated with absolute 
gyrification values. Supplementary Table 3 shows correlations between the 18 loading 
coefficients-PSC and the 18 derived gyrification-PSCs for left and right hemisphere. All 
correlations were significant after correction for multiple comparisons (all p-values <0.0001), 
with r ranging from 0.218 to 1 for the left and 0.728 to 1 for the right hemisphere.  
 
Neurocognitive battery 

The neurocognitive assessment included following tests: Continuous-Performance Test – 
Identical Pairs (adapted tablet version, CPT-IP;(Cornblatt et al. 1988)), Diagnostic Analysis of 
Non-Verbal Accuracy (adapted tablet version, DANVA;(Nowicki and Duke 1994)), Auditory Digit 
Span forward and backward (adapted from the PEBL battery, DS;(Wechsler et al. 2008)), Digit-
Symbol- Substitution Test (BACS battery, DSST;(Wechsler et al. 2008)), Rey Auditory Verbal 
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Learning Test (RAVLT; (McMinn et al. 1988)), Rey-Osterrieth complex figure (ROCF;(Osterrieth 
1944)), Salience Attribution Task (adapted version, SAT;(Roiser et al. 2010)), Self-Ordered 
Pointing Task (adapted version, SOPT;(Ross et al. 2007)), Trail-Making Test A and B (TMT-A/-
B;(Sánchez-Cubillo et al. 2009)), Verbal Fluency test phonemic and semantic (VF;(Harrison et 
al. 2000)) and the Matrix Reasoning and Vocabulary subtests from the Wechsler Adult 
Intelligence Scale, 4th ed. (WAIS-IV;(Wechsler et al. 2008)). Moreover, as the RAVLT was not 
available in Finnish, the revised version of the Hopkins Verbal Learning Test (HVLT-
R;(Benedict et al. 2003)) was included in Turku’s neuropsychological battery (Supplementary 
Table 8). Premorbid Intelligence Quotient (IQ) was estimated using the Vocabulary subtest from 
the WAIS-IV. For individuals with foreign backgrounds who were not able to complete the test, 
we administered the General Knowledge subtest from the WAIS-IV. 
 
Harmonization of verbal learning scores 

As already introduced, verbal learning in the PRONIA consortium is mainly measured with the 
RAVLT (McMinn et al. 1988), with Turku being the only site administering the HVLT-R (Benedict 
et al. 2003). A harmonization of the two scales presents 3 main challenges represented by the 
following differences between the two tests: 1) number of items (12 for HVLT-R and 15 for 
RAVLT), 2) number of trials (3 repetitions for HVLT-R and 5 for RAVLT), and 3) a semantic 
subgrouping for HVLT-R, but not for RAVLT. To harmonize measures, we recruited 36 healthy 
volunteers from 5 out of 7 PRONIA sites (i.e., Munich, Milan, Udine, Cologne and Birmingham, 
mean age 23.17, SD 6.22, 61.1% males) and administered both tests, counterbalancing the 
order, within at least 2 hours. Not to lose any information from the RAVLT test and relying on 
the known floor effects shown after its third trial (Tierney et al. 1994), we calculated the sum of 
the 5 RAVLT-repetitions and built a linear regression model as such: RAVLT-sum5 = a * HVLT-
R-sum3 + b, with a = 25.51264904, slope and b = 1.191092045, intercept of the regression. 
Using this translator, the HVLT-R data from Turku’s participants could be transformed in the 
sum of RAVLT’s 5 repetitions. 
 
Neuropsychological tests used to construct the cognitive scores 

In order to avoid multiple testing, we calculated 6 main cognitive domain scores and one 
composite score for global cognition following a highly comparable approach to that of the 
Measurement and Treatment Research to Improve Cognition in Schizophrenia (MATRICS 
(Nuechterlein et al. 2008)) recommendations. Available PRONIA neuropsychological tests (see 
Supplementary Table 8 and below for detailed description) were used to calculate 6 out of 7 
cognitive domains from MATRICS: social cognition, working memory, speed of processing, 
verbal learning, reasoning and attention. We did not include visual learning (as in the original 
MATRICS) in the cognitive scores’ computation because no test in the PRONIA 
neuropsychological battery could be compared to either the Neuropsychological Assessment 
Battery, shape learning subtest (Zgaljardic and Temple 2010), or the Brief Visuospatial Memory 
Test-revised (Zgaljardic and Temple 2010).  
Social cognition deviated from the tests selected in MATRICS and was calculated using the 
DANVA. Working memory was computed by summing the forward and backward trials of the 
ADS—a very similar test to the digit sequencing subtest of the BACS included in MATRICS. To 
calculate a composite score of speed of processing, we relied on three tests also used in 
MATRICS and averaged two graphomotor tests (i.e., the TMT-A and the DSS) and one verbal 
test (i.e., semantic VF, correct words in 60 seconds). To calculate verbal learning, we took the 
sum of the first 3 RAVLT trials, in order to enhance similarity with the HVLT-R in MATRICS, 
which only has three repetitions. Reasoning was assessed with the Matrix subtest from WAIS 
IV, raw scores, while Attention using the CPT-IP, as in MATRICS. After Z-score transformation 
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of the cognitive domains based on the controls sample, we computed a composite score of 
Global Cognition by calculating the aggregate average across the 6 standardized scores. 
 
The PRONIA neuropsychological tests used for the calculation of the sores were the following: 
1. Diagnostic Analysis of Non-Verbal Accuracy, Affective Faces trial (DANVA-2-AF;(Nowicki 
and Duke 1994)): Simple socio-cognitive test, consisting in the recognition of 24 emotional face 
expressions (i.e., classified as: ‘Happy’, ‘Sad’, ‘Angry’, or ‘Fearful’). DANVA-2-AF was 
administered and scored with tablet support, resulting in a 0-24 total score (number of correct 
responses). 
2. Auditory Digit Span, Forward & Backward trials (ADS-F&B;(Wechsler et al. 2008)): Test of 
verbal short-term memory and verbal working memory. In a first, forward, set of trials 
participants listened to sequences of numbers, progressively increasing in length (16 trials, 
from two to nine digits), and they had to repeat them in the same order to the examiner. In a 
second, backward, set of repetitions in reverse order was requested (14 trials, from two to eight 
digits). Numbers were presented at one digit per second rate by a recorded male voice, while 
the examiner registered responses on the tablet during administration with automatic scoring 
and stimuli presentation. Each condition was interrupted in case of two errors on a list of the 
same length. ADS-F&B resulted in a total score, corresponding to the number of correct 
responses (theoretical range: 0-30), and in a score for the backward trials only (0-14), intended 
as verbal working memory measure.  
3. Verbal Fluency, Phonemic & Semantic trials (VF-P&S; (Harrison et al. 2000)): Test of verbal 
fluency. Participants were asked to produce as many words as possible within one minute. In 
the phonemic condition words should begin with a given letter (dependent on assessment 
language); in the semantic condition names of ‘animals’ were requested. The produced words 
were audio recorded and a rater registered the number of correct responses, of repetitions, and 
of errors (e.g., fantastic animals) after the administration. The total test scores correspond to 
the number of correct words produced in each condition.  
4. Rey Auditory Verbal Learning Test (RAVLT;(McMinn et al. 1988)): Auditory verbal learning 
task consisting in learning a list of 15 semantically unrelated words (List-A) in five consecutive 
repetitions (immediate memory trials), and in their retention over a 30-minutes time interval 
(delayed memory trial). Before each immediate memory trial, List-A was presented at one word 
per second rate by a recorded male voice. After the fifth trial, a different list (List-B) was 
presented and recalled (Interference trial), then participants were requested to recall List-A 
again, without re-presenting it (Post-interference trial). Since RAVLT was not available in 
Finnish, the revised version of the Hopkins’ Verbal Learning Test (HVLT-R;(Benedict et al. 
2003)) was included in the Finnish version of the neuropsychological battery. HVLT-R includes 
a single 12-word list, repeated three times instead of five, without interference and post-
interference trials. To avoid interferences, only non-verbal tests from the neuropsychological 
battery were administered before the delayed memory trial. The examiner registered responses 
on the tablet during administration, with automatic scoring number of correct words, repetitions, 
out-of-lists words, and interferences (i.e., words from incorrect list; for RAVLT only). To 
summarize verbal learning performances in the tests, the total number of correct words in 
immediate memory trials were considered, together with a measure of slope in performances. 
Also, we considered the number of correct words produced after the first presentation of List-A 
(and of List-B, for RAVLT only) as measure of short-term verbal memory, while that for delayed 
memory trial (and the post-interference one, for RALVT only) was intended as a measure of 
long-term verbal memory. 
5. Trail Making Task, A & B trials (TM-A&B;(Sánchez-Cubillo et al. 2009)): Test of processing 
speed, also requiring sequencing, graphomotor capacity, visual attention, search ability and 
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flexibility. The test started with a simpler request (consisting in connecting in sequence 25 
numbered stimuli scattered on a sheet of paper; part A), followed by a more complex one (in 
which participants needed to concurrently consider two different sequences, numbers and 
letters; part B). TM-A&B was administered in paper-pencil format with tablet support (i.e., to 
register the time taken to complete each part). During the test, the examiner registered any 
error (e.g., connect two wrong stimuli) or rules violation (e.g., lift the pencil from the paper), 
immediately correcting participants. The main score of the test was the difference in seconds 
needed to complete part B and part A (switch time linked to task complexity). Time needed to 
complete part A was also considered, as measure of processing speed and graphomotor skills 
in a simple task. 
6. Continuous Performance Test, Identical Pairs version (CPT-IP;(Cornblatt et al. 1988)): Test 
of selective and sustained visual attention. The participants were asked to watch at a series of 
300 four-digits number, presented at the rate of one per second, and to respond as fast as 
possible when the number presented is identical to the preceding one. Stimuli were constituted 
by: targets (numbers identical to the preceding one; 61 trials), distractors (numbers similar, but 
not identical, to preceding one; e.g., composed by the same digits in a different order; 59 trials), 
and fillers (number not-related to the preceding one; 180 trials). Different kinds of stimuli were 
randomly distributed in six 50-trials intervals. CPT-IP was administered and scored with tablet 
support. Reaction time and response list were recorded, so that each response was classifiable 
as: Hit response (response to a target), Commission error (false alarm response to a distractor), 
Random/Distraction error (false alarm response to a filler), Missing response (no-response to 
a target) and Correct rejection (no-response to a distractor or a filler). The test provided also a 
Reaction time (RT) measure, taken for Hit responses, and two Sensitivity index (d’) responses, 
for Hits on Commission errors on and for Hits on Random/Distraction errors. For RT and both 
d’, we also considered 50-trials slopes in performances. 
7. Digit Symbol Substitution Test (DSST;(Wechsler et al. 2008) ): Test of sustained attention, 
working memory, and processing speed. The participants were presented with a table 
univocally associating nine symbols to as many digits, together with an answer sheet listing 
110 symbols, randomly arranged by rows. The task required writing the correct digit below each 
symbol, proceeding in order. The time limit was fixed at 90 seconds. The DSST was 
administered in paper-and-pencil, using tablet to give the stop signal. Test score was the 
difference between the number of correct responses and that of errors. 
 
Description of clinical instruments 

The associations between PSCs and clinical variables were investigated by choosing 
instruments which describe 1) positive, negative, disorganization and general symptoms, 2) 
subjective cognitive disturbances, and 3) depressive symptoms. For this purpose, we took the 
SIPS (Miller et al. 2003), the ‘cognitive disturbances’ subscale (COGDIS) derived from the SPI-
A (Schultze-Lutter et al. 2007), containing 9 basic symptoms that describe subjective 
disturbances of cognitive nature, and the sum score of the Beck’s Depression Inventory (BDI, 
(Beck and Steer 1984)) self-rating instrument.  
The SIPS contains 5 main positive (P), 6 negative (N), 4 disorganization (D) and 4 general (G) 
symptoms items. The choice of this questionnaire was based on its transferability also to CHR 
subjects (while for instance the PANSS is considered to be less sensitive instrument in this 
study population (Schultze-Lutter et al. 2013)). Because ceiling effects might be expected when 
taking single items only, as the items’ scale ranges from 1 to 6—6 being the full-psychotic 
level—we calculated composite scores by summing the main items. As a sanity-check, we 
investigated the distribution of SIPS-P composite scores in the patient population, noticing no 
ceiling effects (Supplementary Figure 3).  
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SUPPLEMENTAL ANALYSES 

Selection of the best-fitting PSC solution 

To evaluate the NNMF performance, we calculated the residual, or gradient, of the 
reconstruction error for a range of PSC resolutions (i.e., even numbers from 2 to 100). The 
reconstruction error decreases monotonically with higher number of components, while its 
gradient signalizes the point where a relatively smaller additional decrease is observed, thus 
representing the PSC solution, which fits most of the variance in the data (Figure 1B). 
To test the reproducibility of the components obtained, we randomly split the controls sample 
in two halves with similar age, sex and site distribution (age: t(306)=0.5, p=0.56; sex: χ2(3)=0.65, 
p=0.41; site: χ2(9)=4.9, p=0.29) and reconstructed 2 to 100 components for each half, 
independently. The degree of spatial overlap was calculated using the inner product (mean and 
median shown in Figure 1A). The median and mean inner product showed 2 main peaks at the 
2- and 18-PSC solution. The inner product tends to be higher when less and larger components 
are estimated, because the spatial overlap is, by chance, stronger. Thus, we excluded the 2-
PSC solution and investigated the 18-PSC one further. For completeness, both the 2-PSC and 
the 10-PSC (an additional, though lower peak in the reproducibility plot, Figure 1A) are 
represented in Supplementary Figure 7. When 2 components are estimated, most of the 
bilateral lateral cortex and the medial temporal lobe, perirhinal and enthorinal cortex, 
parahippocampal and fusiform gyrus are represented in PSC 1, while the second component 
reflects the asymmetrical tendency towards the right hemisphere we found in our chosen 
solution and in further analyses. The 10-PSC solution highly resembles some of our 18 
gyrification components, advocating for the stability of the method. Supplementary Figure 6 
shows the 18-components solution for both split-halves samples. Noteworthy, most of the 
components are almost indistinguishable between the two samples, with few exceptions: PSC 
1 and 2 in split1 and 10 and 6 in split2 map the same area asymmetrically, while PSC 1 in split2 
and PSC 3 in split2 are bilateral. PSC 17 in split2 is unique. Supplementary Figure 8 represents 
the 18 PSCs. Our gyrification components diverge from the known gyral and sulcal patterns of 
traditional atlases (see Comparison with structural and functional atlas below and 
Supplementary Figure 4 and 5).  
 

Comparison with structural and functional atlases 

In order to investigate whether our gyrification-based PSCs are associated with I) a known and 
often used structural atlas based on gyral and sulcal morphometry and II) established networks 
reflecting the cortical organization based on resting-state functional connectivity, we calculated 
the spatial overlap between our PSCs and, respectively, the 35 parcels from the Desikan-
Killiany atlas (9), and the 17 functional networks identified by Yeo et al. (10). The spatial overlap 
was estimated by binarizing both the PSC and the 35 parcels and 17-networks maps and 
calculating the percentage of overlapping vertices.  
Supplementary Figure 4 shows the spatial overlap between the 18 PSC and the 35 parcels of 
the Desikan-Killiany atlas. We notice high overlap between small Desikan-parcels and the 
PSCs. However, the majority of the gyrification components shows wider surface coverage and 
thus only partially coincide with the parcels. For instance, parcel 10 overlaps for 92.4% with 
PSC4 because of the low area covered compared to the PSC. Yeo networks, reflecting the 
cortical organization based on resting-state functional connectivity, overlap to a lesser extent 
with the 18 PSC (Supplementary Figure 5). This might result from the intrinsic nature of 
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functional connectivity, which comprises multiple brain areas for each network, whereas the 
PSCs are sparser and locally distinguishable. This double comparison suggests that our 
gyrification-driven parcellation of the cortex deviates from the known structural and functional 
atlases. 
 

External validation 

In order to externally validate our 18-PSCs solution, we applied the NNMF pipeline on the 
healthy controls recruited in the two held-out sites (i.e., Birmingham and Milan, N=84 cortical 
surfaces, which went through the LGI calculation and the quality control procedure). We first 
applied ComBat as for the main analyses in the pooled controls sample to the resampled and 
smoothed LGI-meshes of the two held-out sites, retaining effects of age and sex. Notably, these 
two subsamples presented both strong demographic (i.e., age effects, t = -3.703, p<0.001) and 
scanner differences, as Milan and Birmingham used a 1.5T and a 3T scanner, respectively. 
Therefore, ComBat was not completely effective in controlling for site effects. Second, we ran 
the NNMF pipeline with the same settings as for the pooled analyses, selecting specifically the 
18-PSC solution.  
We compared the original and replication PSCs qualitatively (Supplementary Figure 9) and 
quantitatively using the inner product calculation, following the approach used to choose the 
best fitting PSC solution (see section Selection of the best fitting PSC solution). The inner 
product expresses the degree on spatial overlap of the gyrification components and thus is an 
objective criterion to evaluate replication’s performance.  
Results show that 13 PSCs out of 18 (i.e., 72%) showed an inner product above 0.5 (i.e., 
[0.52:0.97]), while the rest 5 remain under the 0.5 range (i.e., [0.34:0.47]). The mean maximum 
inner product for all PSCs was 0.62, which was in line with our split-half analyses results leading 
to the choice of the PSC solution (i.e., mean inner product of 0.623; t(17)=-0.01, p=0.493; Figure 
1, main manuscript). Of note, the inner product estimates the exact overlap in space of 
components’ values on the cortical ribbon, hence, in our case, it was potentially unlikely to 
reach high precision when taking into consideration the high dimensionality of the cortical 
mesh—i.e., ~80.000 vertices. However, the qualitative comparisons of both the split-half 
analyses (Supplementary Figure 6) and the PSC-replication (Supplementary Figure 9) show 
highly similar components, suggesting the strength of the NNMF technique in detecting a highly 
comparable underlying signature in independent gyrification data.  
To test whether the pattern of reduced gyrification found in the patients of the discovery sample 
could also been replicated in the external sample, we used the ROI-approach described in the 
section Non-Negative Matrix Factorization and extraction of gyrification values. In brief, we 
extracted the 18 gyrification components (calculated in the discovery sample) in the replication 
dataset—i.e., 84 healthy controls and 147 patients—and subsequentially ran linear models to 
predict the effect of group (i.e., healthy controls vs. patients) controlling for age and sex. Results 
are presented in Supplementary Table 11 and show a very similar pattern of reduced 
gyrification in patients from the external validation sample as compared to healthy controls from 
the same sample. Specifically, 12 out of 14 PSCs showing significant differences between 
healthy and psychiatric individuals (pFDR<0.01, in bold) overlap with the original PSCs showing 
group effects in the discovery sample, while 4 more PSCs in the external validation sample 
show a group effect. Effect sizes ranging from [-0.185:-0.294] are slightly stronger than in the 
original analyses. These results are promising and suggest that patients from independent 
clinical cohorts show a highly comparable pattern of lower gyrification in NNMF-based structural 
covariance components.  
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We could not find any significant associations between replication-PSCs and cognitive 
domains, potentially because of both the smaller sample size in the replication dataset, and the 
rather weak effects found on gyrification related to behavioral measures, as reported in recent 
literature (Mathias et al. 2020) and empirically found in our study. 
 

Associations with age and sex 

Age and sex associations on the 18 PSC-loading coefficients for controls were investigated 
using correlations and t-tests and are shown in Supplementary Table 4. Furthermore, in order 
both to relate to interpretable gyrification patterns, and to investigate associations in the patient 
sample, age and sex effects were estimated on the 29 gyrification-PSCs derived from the 18-
PSC solution (Supplementary Table 5 and 6).  
We explored the potential impact of non-linear age effects on gyrification by augmenting the 
linear models (prediction of each PSC with group—controls vs. patients—age and site as 
covariates) with age2 and comparing the original with the augmented models using ANOVAs 
(p-values corrected FDR<0.01). Following a similar approach, we investigated whether there 
were differential developmental trajectories in gyrification in patients compared to controls, and 
whether these differences were specific to study-groups. To test this hypothesis, interaction 
effects of age-by-group (controls vs. patients) and age-by-study-groups (CHR, ROD, ROP) 
were added to the linear models and the augmented models were compared to the original 
ones.  
Quadratic age significantly influenced five (bilateral PSC 3 and 9 and right PSC 18) out of 29 
linear models (all five pFDR<0.006). However, the gained explained variance when considering 
quadratic models was neglectable, with a R2 gain ranging from 0.3% to 0.7%, while the specific 
effect of group for those models originally showing group effects (i.e., right PSC 3, 9 and 18) 
was maintained (all pFDR for the group variable <0.0006). We found no interactions of age with 
group, neither when considering the pooled patient sample, nor when investigating the study-
groups (all pFDR resulting from ANOVAs>0.3). 
 
Potential confounding factors  

Associations between gyrification-PSC and cognitive and clinical measures in the patient 
sample could be potentially explained by other influencing factors, such as quality of MRI scans 
or the patients’ educational level. Specifically, the Euler number is a measure of the cortical 
complexity resulting from surface reconstruction and is thought to be a proxy of scan quality 
(Rosen et al. 2018). However, it has also been shown that the Euler number correlates highly 
and heterogeneously with cortical thickness per se, age and symptoms in patient populations 
(Rosen et al. 2018; Zabihi et al. 2019). As gyrification is also an indirect measure of cortical 
complexity, the Euler number might in fact be too collinear with many measures of interest in 
our study. In order to corroborate this hypothesis, we investigated correlations between the 
Euler number and our PSCs both in the healthy and the patient sample, as well as individuals’ 
age, because a good scan quality measure should mirror mainly MRI scan abnormalities and 
not be associated with other biological variance of interest. Supplementary Table 7 depicts very 
strong associations between the Euler number and both the gyrification-based PSCs (all p-
values < 0.0002, with r ranging from -0.208 to -0.436) and age, in patients (r=0.165, p=9.01E-

06) and controls (r=0.322, p=6.78E-09). In light of these results, we conclude that the use of the 
Euler number as a scan quality proxy might be restricted to an initial flagging of the extreme 
deviant cortical cortices. Indeed, this measure is strongly associated with several variables of 
interest (i.e., age, disease, and gyrification) and thus should be used cautiously in specific 
analyses. 
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Effects of MRI scan quality were therefore investigated by taking 1) the weighted average 
Image Quality Rating (IQR), i.e., a CAT12 toolbox (http://www.neuro.uni-jena.de/cat12/CAT12-
Manual.pdf)-based quality index combining NCR (Noise Contrast Ratio), ICR (Inhomogeneity 
Contrast Ratio) and RES (RMS resolution), 2) the Signal to Noise Ratio and 3) the Contrast to 
Noise Ratio, both the latter ones also resulting from the CAT12 volume reconstruction pipeline. 
Education was measured by summing the person’s total years of education. We repeated 
statistical analyses augmenting the linear models with the three measures of MRI scan quality 
and years of education as terms in the regressions.  
Results for the linear models investigating effect of group (i.e., controls vs. patients) remained 
comparable to the original results (Supplementary Table 9) after controlling for each of the other 
3 quality measure in the linear model (Supplementary Table 10), with 1) same results for the 
IQR, 2) 92.8% overlap for SNR, and 3) the CNR case detecting more specific relationships (i.e., 
four PSCs survived correction for multiple comparisons), yet all other PSCs showing trends to 
significance (Supplementary Table 10).  
We also investigated whether MRI quality measures interfere with the cognition and functioning 
results, by controlling the linear models for each of the 3 quality measures cited. For the 
cognition domain, as can be observed in Supplementary Table 14, results for models with the 
three quality measures were highly comparable to the original ones (Supplementary Table 12), 
with two additional significant associations (i.e., right PSC 1 and PSC 12 with attention for SNR), 
and one association not surviving multiple comparisons correction in the CNR-linear models, 
yet showing a clear trend (i.e., left PSC 12 with working memory, p=0.004). Similarly, results 
within the functioning domain when correcting for scan quality (Supplementary Table 19) were 
highly overlapping with the original models (Supplementary Table 16). The main detected 
differences were 1) significance for the left PSC 6 in the linear models with both CNR and SNR 
to predict GF:R highest past year, and 2) the right PSC 12 did not survive multiple comparison 
correction in the relationship with GF:R lowest past year, though showing a clear trend (p=0.004 
for CNR and 0.001 for SNR). Hence, we can conclude that MRI scan quality did not significantly 
affect relationships between PSC and cognitive/clinical variables. 
In order to investigate whether the patients’ educational level might explain associations found 
between our PSCs and cognitive or functioning domains, we investigated correlations between 
patients’ PSCs and education, and repeated cognition- and functioning-linear models adding 
years of education as an additional covariate. Results showed that, in patients, education was 
not correlated with any of the PSCs (all p>0.004, FDR-corrected). Linear models’ results are 
reported in Supplementary Table 14 for cognition and Supplementary Table 17 for functioning 
and depict an almost complete overlap with our original results. Only one additional PSC (i.e., 
right PSC 12) was significant for working memory and attention and one PSC (the right PSC 9) 
lost its significance in the functioning model (p=0.002, all p-values FDR-corrected p<0.01 and 
all linear models’ overall p-values were significant).  
We further investigated the influence of premorbid intelligence (calculated using IQ, see 
supplemental section ‘Neurocognitive battery’) on the associations found between PSCs and 
both cognitive and functioning domains. Post-hoc partial correlations (correcting for age, sex 
and IQ) were calculated between the 14 PSCs showing a group effect and cognitive and 
functioning domains. When correcting multiple comparisons with the stringent threshold used 
throughout analyses (pFDR<0.01), no cognitive associations survived, while relationships with 
functioning were more specific, i.e., 3 out of the original 12 PSCs were associated with GF:R 
highest lifetime (left PSC 6 and 12 and right PSC 16, p<0.0002, Supplementary Table 18). 
However, when using a more lenient correction threshold of pFDR<0.05, four temporal PSCs 
(left 1, right 2 and bilateral 12) were associated with speed of processing, reasoning and global 
cognition (p<0.008, Supplementary Table 15), while all functioning results highly resembled the 
original analyses, except for the right PSC 9, showing only a trend to significance (p=0.008, 
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Supplementary Table 18). An overview of all analyses on clinical and neuropsychological 
associations, as well as a comparison with the models investigating the role of IQ in these 
relationships, is depicted in Supplementary Figure 10.  
 
Investigation of clinical study groups 

The linear models on effect of group revealed a set of PSCs, which differed between controls 
and the patient group. However, it might be plausible that the effects observed were mainly 
driven by a specific group of patients, for instance those experiencing the most burdening 
symptoms. In PRONIA, patients have been recruited following three study-specific diagnostic 
categories (see Study sample) and are divided in ROD, CHR and ROP. We investigated this 
hypothesis by fitting 3 post-hoc linear models for the 14 PSCs showing a group effect 
(dependent variables) with group (i.e., controls vs. patients) and age and sex as covariates and 
correcting each time for 2 out of the 3 study-groups, thus investigating effects of the left-out 
study group on the pooled group effect. 
Results can be observed in Supplementary Table 21. Individuals with a first episode psychosis 
showed the most significant and spread effects (partial r range [-0.148:-0.059], p range [0.01:6E-

6]), with 11 significant PSCs out of the 14 originally detected (pFDR <0.01). In CHR effects were 
comparable (partial r range [-0.134:-0.048]), though less PSCs survived correction (p range 
[0.013:1 E-5]). In the first episode depression group, no PSCs survived correction for multiple 
comparisons at pFDR <0.01, however effects could be detected at the more lenient pFDR<0.05 
correction threshold for all 14 PSCs (partial r range [-0.105:-0.071], p range [0.023:7 E-4]). 
Furthermore, we investigated differences between the three study-groups in the 14 PSCs fitting 
a linear model for the effect of study-group (independent variable) on each PSC (dependent 
variable) and correcting for age and sex. Results showed no significant differences between 
ROD, CHR and ROP (p values uncorrected range: [0.848:0.094]. Hence, although we notice a 
staging effect of disease in the psychosis and psychosis-prone study groups, this pattern 
suggests that each study-group alone expresses an overlapping disease signature, and that 
the pooled patient group effect cannot be completely explained by one psychopathology alone.  
 
Associations between PSCs and clinical and cognitive measures in healthy controls 

We repeated all statistical analyses ran in the transdiagnostic patient group in the controls 
sample to investigate potential disease-independent associations between the PSCs and the 
same cognitive and clinical measures investigated in patients. The linear models included age, 
sex and each of the 14 PSCs that was identified as significant in the group analysis as 
independent variables to predict each 7 cognitive domains (dependent variables), and the 8 
GF-subscales. Results were FDR-corrected for multiple comparisons (p-FDR<0.01) and none 
of the associations survived correction. A few trends for associations in the cognitive domain 
could be observed (Supplementary Table 22); those between the left PSC 2 and the right PSC 
1 and global cognition resemble those found in the patient sample, while other not significant 
results are not aligned with the original analyses. 
.  
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Supplementary Figure 1. Analyses outline. Abbreviations: NNMF: Non-Negative Matrix Factorization; 
PSC: Pattern of Structural Covariance; HC: Healthy Controls; PAT: patients. 
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Supplementary Figure 3. Distribution of SIPS-P sum items in the patients’ population. Abbreviations: 
SIPS-P: Structured Interview for the Prodromal Syndrom, sum of P-items; CHR: Clinical High Risk; ROD: 
Recent Onset Depression; ROP: Recent Onset Psychosis 
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Supplementary Figure 4. Spatial overlap between the 18 PSCs and the 35 parcels from the structural Desikan-Killiany atlas. Displayed is the overlap between the 18 PSC 
(Y-axis) and the 35 parcels from the Desikan-Killiany structural atlas (X-axis) for the left hemisphere. The tables’ values represent percentages of vertices overlap, where warmer 
colors mean higher overlap (see figure legend for percentages). Abbreviations: PSC: Patterns of Structural Covariance.
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Supplementary Figure 5. Spatial overlap between the 18 PSCs and the 17 networks from the Yeo-functional connectivity atlas. Displayed is the overlap between the 18 
PSC (Y-axis) and the 17 Yeo-functional networks atlas (X-axis) for the left hemisphere. The tables’ values represent percentages of vertices overlap, where warmer colors mean 
higher overlap (see figure legend for percentages). Abbreviations: PSC: Patterns of Structural Covariance. 
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Supplementary Figure 6. 18 Patterns of Structural Covariance (PSC) in the randomly split HC sample. 
Split1 and 2 are depicted on the left and right side, respectively. PSCs are projected on a template brain (pial 
surface) and warmer colors represent higher covariance. Left side: lateral left and right view, right side: medial 

left and right view. The correspondent PSC number is indicated in the upper left corner.
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Supplementary Figure 7. 2-PSC and 10-PSC solutions. A: 2-PSC solution, B: 10-PSC solution. PSCs are 
projected on a template brain (pial surface) and warmer colors represent higher covariance. Left side: lateral left and 
right view, right side: medial left and right view. The correspondent PSC number is indicated in the upper left corner. 
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Supplementary Figure 8. 18 gyrification-based Patterns of Structural Covariance. PSCs are projected on a 
template brain (pial surface) and warmer colors represent higher gyrification structural covariance between 
individuals. Left side: lateral left and right view, right side: medial left and right view. The correspondent PSC number 
is indicated in the upper left corner.  
PSC1 and 2: right and left superior temporal gyrus, pars orbitalis and triangularis and insula. PSC3: part of the 
superior parietal lobule and the intraparietal sulcus bilaterally. PSC4: bilateral posterior cingulate, precuneus, 
occipital visual areas. PSC5: bilateral angular gyrus and the medial temporal sulcus and gyrus, mainly on the left 
hemisphere. PSC6 and 10: asymmetrical occipital cortex, angular and inferior temporal gyrus. PSC7 and 13: 
asymmetrical area crossing horizontally the left and right inferior precentral gyrus, the inferior frontal sulcus and the 
inferior frontal gyrus. PSC8: bilateral medial temporal lobe, perirhinal and enthorinal cortex, parahippocampal and 
fusiform gyrus. PSC9: bilateral dorsolateral prefrontal cortex. PSC11: bilateral ventromedial prefrontal cortex. 
PSC12: bilateral medial and superior temporal gyrus. PSC14: mainly left frontal and parietal lobe, part of the primary 
somatosensory areas and the superior parietal lobule. PSC15: bilateral occipital pole and the parietoccipital sulcus. 
PSC16: bilateral medial prefrontal cortex, motor and premotor cortex, cingulate. PSC17: bilateral lateral frontopolar 
cortex. PSC18: right posterior part of the middle frontal gyrus. 
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Supplementary Figure 9. External validation of the 18-PSC solution on the two held-out PRONIA 
sites. The original pooled HC sample and the validation sample (Milan and Birmingham, N=84) are 
depicted on the left and right side, respectively. PSCs are projected on a template brain (pial surface) 
and warmer colors represent higher covariance. Left side: lateral left and right view, right side: medial 
left and right view. The correspondent PSC number is indicated in the upper left corner. Red numbers 
represent non-matching PSCs.  
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Supplementary Figure 10. Inner product distribution. The graph plots the maximum inner product values (X-axis) 
for each of the 18 PSCs (Y-axis) and represents the distribution of spatial overlap between the original Pattern of 
Structural Covariance (PSC) extracted from the discovery sample and the PSCs calculated in the external validation 
sample. The inner product ranges from 0 (low overlap) to 1 (perfect overlap). 
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A B

Supplementary Figure 11. Comparison of neurocognitive and clinical results with and without correction for IQ. The circular plots represent associations between components 
and neurocognitive (in blue) and functioning (in orange) domains, with thicker lines reflecting higher effect sizes/lower p-values. Grey domains are those not significant in the analyses.  
A: associations resulting from linear models for effect of PSCs on cognition/functioning with age and sex (FDR correction p<0.01). B: associations resulting from linear models for effect 
of PSCs on cognition/functioning with age, sex and IQ (FDR correction p<0.05). For a visual display of significant components overlaid on a common cortical surface please refer to 
Figure 4. Same colors correspond to symmetrical PSCs. Abbreviations: PSC: Pattern of Structural Covariance; SocCog: social cognition; WM: working memory; SoP: speed of 
processing; VerLearn: verbal learning; Global: global cognition; GF:R/S: global functioning: Role/Social; lifetime: the highest functioning lifetime; low: lowest; high: highest; y: year; SIPS-
P/N: Structured Interview for the Prodromal Syndrome, Positive/Negative symptoms; BDI: Beck Depression Inventory. 
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Supplementary Table 1. Sociodemographic information for the controls’ and patients’ sample, subdivided by site.  

Abbreviations: y=years; SD: standard deviation; HC: healthy controls; PAT: patients. Notes: a: Edinburgh Handedness Score. 

 
 
Supplementary Table 2. MRI Acquisition parameters in the PRONIA consortium.  

Site Model Field 
strength 

Coil 
channels 

Flip 
angle 

TR 
(ms) 

TE 
(ms) 

Voxel size 
(mm) 

FOV Slice 
num. 

Munich Philips 
Ingenia 

3T 32 8 9.5 5.5 0.97 x 0.97 x 1.0 250 x 250 190 

Milan Philips 
Achieva 
Intera 

1.5T 8 12 8.1 3.7 0.93 x 0.93 x 1.0 240 x 240 170 

Basel SIEMENS 
Verio 

3T 12 8 2000 3.4 1.0 x 1.0 x 1.0 256 x 256 176 

Cologne Philips 
Achieva 

3T 8 8 9.5 5.5 0.97 x 0.97 x 1.0 250 x 250 190 

Birmingham Philips 
Achieva 

3T 32 8 8.4 3.8 1.0 x 1.0 x 1.0 288 x 288 175 

Turku Philips 
Ingenuity 

3T 32 7 8.1 3.7 1.0 x 1.0 x 1.0 256 x 256 176 

Udine Philips 
Achieva 

3T 8 12 8.1 3.7 0.93 x 0.93 x 1.0 240 x 240 170 

 
  

 Pooled 
sample Munich Basel Cologne Turku Udine X2/F p 

N (%) 
HC 308 63 (20.5) 59 (19.2) 70 (22.7) 47 (15.3) 69 (22.4)  
PAT 713 357 (50.1) 68 (9.5) 139 (19.5) 90 (12.6) 59 (8.3) 

Mean age 
[y] (SD) 

HC 25.7 (6.1) 26.6 (6.9) 25.3 (5.6) 24.6 (5.5) 26.7 (5.4) 25.5 (6.6) 1.27 0.28 
PAT 25.2 (5.9) 25.0 (6.0) 24.4 (5.2) 25.0 (5.5) 26.0 (5.7) 26.0 (6.7) 1.20 0.31 

Sex, female 
(%) 

HC 183 (59.4) 41 (22.4) 34 (18.6) 34 (18.6) 31 (16.9) 43 (23.5) 5.41 0.25 
PAT 326 (45.7) 153 (46.9) 26 (8.0) 67 (20.6) 50 (15.3) 30 (9.2) 7.19 0.13 

Handedness 
mean (SD)a 

HC 76.2 (44.5) 74.0 (47.8) 77.7 (41.4) 78.7 (39.3) 79.8 (36.4) 71.7 (53.4) 0.32 0.86 
PAT 68.8 (54.0) 68.4 (56.8) 57.8 (63.9) 74.3 (42.9) 66.7 (51.3) 73.8 (50.7) 1.06 0.38 

Education 
years (SD) 

HC 15.5 (3.3) 15.3 (3.8) 15.0 (3.1) 15.8 (3.3) 15.5 (2.3) 16.0 (3.7) 0.78 0.54 
PAT 14.0 (5.4) 14.2 (7.0) 12.4 (3.3) 15.0 (3.2) 13.5 (2.5) 13.9 (2.8) 2.96 0.02 

Figure S SEQ Figure \* ARABIC 2. Euler number distribution in the HC (N=314) 
and PAT sample (N=728).   
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Supplementary Table 3. Correlations between the 18 loading coefficients-PSC and the 
extracted gyrification-PSCs. 

PSCs gyrification-PSCs - left  gyrification-PSCs - right  
 r p r p 

PSC 1 0.818 2.52E-75 1.000 0 
PSC 2 1.000 0 0.770 1.31E-61 
PSC 3 0.916 1.61E-123 0.981 3.33E-221 
PSC 4 0.949 4.45E-156 0.959 7.31E-170 
PSC 5 0.961 3.19E-173 0.890 3.21E-106 
PSC 6 0.990 2.08E-264 0.728 3.63E-52 
PSC 7 0.996 0 0.837 4.04E-82 
PSC 8 0.929 2.47E-134 0.922 1.72E-128 
PSC 9 0.935 9.29E-140 0.894 5.31E-109 
PSC 10 0.218 1.12E-04 0.993 4.72E-283 
PSC 11 0.913 2.58E-121 0.947 2.29E-152 
PSC 12 0.950 1.55E-156 0.885 1.86E-103 
PSC 13 0.700 1.18E-46 0.989 1.26E-257 
PSC 14 0.983 1.67E-225 0.802 2.25E-70 
PSC 15 0.905 9.99E-116 0.918 3.06E-125 
PSC 16 0.938 9.30E-143 0.982 9.91E-223 
PSC 17 0.942 1.69E-147 0.867 1.57E-94 
PSC 18 0.728 5.20E-52 0.993 1.34E-286 

All p-values are FDR (p<0.01) corrected for multiple comparisons. Abbreviations: 
PSC, Pattern of Structural Covariance 

 

 
Supplementary Table 4. Effects of age, sex and site on loading coefficients-PSC in HC. 

PSCs Age Sex Site 
 r p t p F p 

PSC 1 -0.342 7.00E-10 6.381 6.52E-10 0.556 0.695 
PSC 2 -0.363 5.17E-11 7.042 1.25E-11 0.706 0.588 
PSC 3 -0.561 5.73E-27 4.530 8.45E-06 1.033 0.390 
PSC 4 -0.227 5.93E-05 6.117 2.91E-09 0.412 0.800 
PSC 5 -0.436 1.08E-15 4.648 4.99E-06 0.412 0.800 
PSC 6 -0.463 9.51E-18 3.831 1.55E-04 0.547 0.702 
PSC 7 -0.550 8.48E-26 4.188 3.69E-05 0.815 0.516 
PSC 8 -0.270 1.57E-06 7.282 2.79E-12 0.771 0.545 
PSC 9 -0.476 7.45E-19 4.344 1.90E-05 0.628 0.643 
PSC 10 -0.456 3.23E-17 5.070 6.91E-07 0.983 0.417 
PSC 11 -0.466 5.49E-18 2.417 0.016 0.355 0.841 
PSC 12 -0.371 1.79E-11 5.224 3.24E-07 0.538 0.708 
PSC 13 -0.434 1.51E-15 3.262 0.001 0.764 0.549 
PSC 14 -0.459 1.80E-17 4.406 1.46E-05 0.692 0.598 
PSC 15 -0.374 1.10E-11 4.637 5.25E-06 0.577 0.679 
PSC 16 -0.461 1.22E-17 4.197 3.55E-05 0.926 0.449 
PSC 17 -0.481 2.87E-19 3.891 1.23E-04 0.958 0.431 
PSC 18 -0.511 6.55E-22 4.743 3.24E-06 1.502 0.202 

Abbreviations: PSC, Pattern of Structural Covariance 
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Supplementary Table 5. Effects of age, sex and site on gyrification-PSCs in HC. 

PSCs Age Sex Site 
 r p t p F p 

PSC 2 L -0.356 1.21E-10 7.115 8.00E-12 0.722 0.577 
PSC 3 L -0.514 3.91E-22 4.244 2.92E-05 0.746 0.561 
PSC 4 L -0.220 1.00E-04 5.953 7.19E-09 0.342 0.849 
PSC 5 L -0.381 4.32E-12 4.176 3.88E-05 0.297 0.880 
PSC 6 L -0.428 3.66E-15 3.549 4.47E-04 0.552 0.698 
PSC 7 L -0.541 7.62E-25 4.126 4.76E-05 0.836 0.503 
PSC 8 L -0.206 2.72E-04 6.985 1.78E-11 0.458 0.766 
PSC 9 L -0.436 9.49E-16 4.019 7.37E-05 0.632 0.640 
PSC 11 L -0.384 3.06E-12 2.017 0.045 0.343 0.849 
PSC 12 L -0.329 3.48E-09 4.847 1.99E-06 0.554 0.697 
PSC 14 L -0.421 1.18E-14 3.753 2.09E-04 0.651 0.627 
PSC 15 L -0.281 5.48E-07 3.903 1.17E-04 0.522 0.720 
PSC 16 L -0.355 1.46E-10 2.962 0.003 0.927 0.448 
PSC 17 L -0.415 3.15E-14 3.111 2.04E-03 0.846 0.497 
PSC 1 R -0.333 2.13E-09 6.420 5.18E-10 0.559 0.693 
PSC 3 R -0.545 3.28E-25 4.411 1.43E-05 1.058 0.377 
PSC 4 R -0.182 0.001 5.417 1.23E-07 0.461 0.764 
PSC 5 R -0.403 1.92E-13 4.190 3.66E-05 0.597 0.665 
PSC 8 R -0.211 1.89E-04 6.825 4.73E-11 0.859 0.489 
PSC 9 R -0.390 1.33E-12 3.325 9.93E-04 0.356 0.840 
PSC 10 R -0.431 2.32E-15 4.973 1.10E-06 0.974 0.422 
PSC 11 R -0.424 6.72E-15 1.936 0.054 0.140 0.967 
PSC 12 R -0.295 1.35E-07 4.418 1.38E-05 0.362 0.836 
PSC 13 R -0.395 5.91E-13 2.553 0.011 0.686 0.602 
PSC 14 R -0.350 2.74E-10 3.935 1.03E-04 0.404 0.806 
PSC 15 R -0.315 1.59E-08 4.229 3.10E-05 0.492 0.741 
PSC 16 R -0.472 1.64E-18 4.305 2.25E-05 0.805 0.523 
PSC 17 R -0.393 7.83E-13 3.378 8.25E-04 0.824 0.511 
PSC 18 R -0.481 3.18E-19 4.595 6.32E-06 1.459 0.215 

Bold values do not survive multiple comparisons’ correction. Abbreviations: PSC, 
Pattern of Structural Covariance; L, left hemisphere; R, right hemisphere. 
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Supplementary Table 6. Effects of age, sex and site on gyrification-PSCs in PAT. 

PSCs Age Sex Site 
 r p t p F p 
PSC 2 L -0.275 8.41E-14 9.152 5.81E-19 0.631 0.640 
PSC 3 L -0.447 3.08E-36 5.635 2.52E-08 2.454 0.045 
PSC 4 L -0.139 1.89E-04 8.896 4.74E-18 2.680 0.031 
PSC 5 L -0.287 5.45E-15 5.596 3.13E-08 3.295 0.011 
PSC 6 L -0.324 7.36E-19 5.912 5.23E-09 4.508 0.001 
PSC 7 L -0.442 1.85E-35 4.878 1.33E-06 1.127 0.342 
PSC 8 L -0.180 1.32E-06 10.701 7.03E-25 2.497 0.042 
PSC 9 L -0.379 8.59E-26 2.869 0.004 0.237 0.917 
PSC 11 L -0.334 4.39E-20 3.558 3.99E-04 2.345 0.053 
PSC 12 L -0.234 2.41E-10 8.919 3.93E-18 3.253 0.012 
PSC 14 L -0.366 5.00E-24 3.256 0.001 1.533 0.191 
PSC 15 L -0.184 7.46E-07 2.098 0.036 1.195 0.312 
PSC 16 L -0.324 6.19E-19 4.853 1.49E-06 2.360 0.052 
PSC 17 L -0.354 1.71E-22 4.314 1.83E-05 5.083 0.000 
PSC 1 R -0.286 6.17E-15 8.532 8.61E-17 1.049 0.381 
PSC 3 R -0.477 8.20E-42 5.807 9.57E-09 0.686 0.602 
PSC 4 R -0.161 1.50E-05 7.480 2.20E-13 2.645 0.033 
PSC 5 R -0.245 3.08E-11 5.362 1.11E-07 2.929 0.020 
PSC 8 R -0.185 6.75E-07 9.667 7.48E-21 2.922 0.020 
PSC 9 R -0.371 1.14E-24 2.780 0.006 0.716 0.581 
PSC 10 R -0.329 2.00E-19 5.735 1.44E-08 1.182 0.317 
PSC 11 R -0.332 8.12E-20 3.991 7.25E-05 1.819 0.123 
PSC 12 R -0.226 1.06E-09 8.929 3.63E-18 2.860 0.023 
PSC 13 R -0.330 1.49E-19 2.852 0.004 2.004 0.092 
PSC 14 R -0.347 1.32E-21 2.373 0.018 0.926 0.448 
PSC 15 R -0.194 1.80E-07 2.140 0.033 2.045 0.086 
PSC 16 R -0.395 4.36E-28 5.586 3.32E-08 1.754 0.136 
PSC 17 R -0.296 7.12E-16 3.070 0.002 4.079 0.003 
PSC 18 R -0.451 5.11E-37 5.172 3.02E-07 1.192 0.313 

Bold values do not survive multiple comparisons’ correction. Abbreviations: PSC, Pattern 
of Structural Covariance; L, left hemisphere; R, right hemisphere. 

 

  

Figure S SEQ Figure \* ARABIC 7. 18 gyrification-based Patterns of Structural Covariance. PSCs are projected on a 
template brain (pial surface) and warmer colors represent higher covariance. Left side: lateral left and right view, right side: 
medial left and right view. The correspondent PSC number is indicated in the upper left corner. 
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Supplementary Table 7. Correlations between the PSCs, Euler number and age in 

controls and patients. 

PSCs Euler number  – HC Euler number  – PAT 
 r p r p 

PSC 2 L -0.3489 3.03E-10 -0.2642 7.49E-13 
PSC 3 L -0.4134 3.83E-14 -0.3405 8.24E-21 
PSC 4 L -0.3058 4.33E-08 -0.1772 1.92E-06 
PSC 5 L -0.3349 1.66E-09 -0.3305 1.24E-19 
PSC 6 L -0.4251 6.03E-15 -0.3811 4.67E-26 
PSC 7 L -0.4366 9.18E-16 -0.3669 3.82E-24 
PSC 8 L -0.3428 6.41E-10 -0.2785 3.64E-14 
PSC 9 L -0.3640 4.43E-11 -0.2732 1.13E-13 
PSC 11 L -0.3377 1.19E-09 -0.2812 2.00E-14 
PSC 12 L -0.3129 2.01E-08 -0.2674 3.88E-13 
PSC 14 L -0.3704 1.89E-11 -0.2880 4.36E-15 
PSC 15 L -0.3649 3.92E-11 -0.2183 3.86E-09 
PSC 16 L -0.3126 2.08E-08 -0.2840 1.07E-14 
PSC 17 L -0.2983 9.47E-08 -0.2485 1.72E-11 
PSC 1 R -0.3003 7.73E-08 -0.2835 1.21E-14 
PSC 3 R -0.3589 8.58E-11 -0.3366 2.39E-20 
PSC 4 R -0.2085 2.29E-04 -0.1779 1.75E-06 
PSC 5 R -0.3581 9.48E-11 -0.2685 3.06E-13 
PSC 8 R -0.2833 4.28E-07 -0.2922 1.69E-15 
PSC 9 R -0.2401 2.06E-05 -0.2802 2.51E-14 
PSC 10 R -0.3454 4.67E-10 -0.2810 2.09E-14 
PSC 11 R -0.3201 9.14E-09 -0.2919 1.80E-15 
PSC 12 R -0.2422 1.73E-05 -0.3041 1.02E-16 
PSC 13 R -0.3465 4.09E-10 -0.2633 9.09E-13 
PSC 14 R -0.2558 5.43E-06 -0.2139 8.03E-09 
PSC 15 R -0.2738 1.07E-06 -0.1826 9.21E-07 
PSC 16 R -0.3242 5.74E-09 -0.3243 6.36E-19 
PSC 17 R -0.2823 4.74E-07 -0.2633 9.08E-13 
PSC 18 R -0.3469 3.87E-10 -0.3648 7.20E-24 

     
age 0.3227 6.78E-09 0.1654 9.01E-06 

 
Bold values represent significant correlations (after FDR correction p<0.01). 
Abbreviations: PSC: Patterns of Structural Covariance; HC: healthy controls; 
PAT: patients.   
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Supplementary Table 8. Information on neuropsychological tests used in the PRONIA study. 

Test name Cognitive domain Administration 

Rey-Osterrieth Complex Figure 
(ROCF) 

Visual-spatial construction; visual-
spatial memory (both short- and 
long-term) 

Paper-pencil format with tablet 
support 

Diagnostic Analysis of Non-Verbal 
Accuracy (DANVA-2-AF) a Social cognition Tablet-based 

Auditory Digit Span, Forward & 
Backward trials (ADS-F&B) a 

Verbal short-term memory and verbal 
working memory 

Auditory presentation of numbers by 
recorded (male) voice 

Verbal Fluency, Phonemic & 
Semantic trials (VF-P/S) a 

Verbal fluency in a phonemic ('S'-
words) and a semantic ('Animals') 
condition 

Named words were recorded and 
written down by examiner 

Rey Auditory Verbal Learning Test 
(RAVLT) a, b Short- and long-term verbal memory Auditory presentation of word list by 

recorded (male) voice 

Trail Making Task, A and B trials 
(TMT-A/B) a 

Processing speed, sequencing, 
graphical-motor capacity, visual 
attention and search ability, flexibility 

Paper- pencil format 

Continuous Performance Test, 
Identical Pairs version (CPT-IP) a 

Selective and sustained visual 
attention Tablet-based 

Self-Ordered Pointing Test (SOPT) Short-term visual-spatial memory 
and working memory Tablet-based 

Digit Symbol Substitution Test 
(DSST) a 

Sustained attention, working memory 
and processing speed Paper- pencil format 

Salience Attribution Task (SAT-SV) Explicit and implicit, adaptive and 
aberrant salience Tablet-based 

Wechsler Adult Intelligence Scale 
(WAIS-III) a   

Vocabulary Premorbid verbal intelligence Paper-pencil format 

Matrices Visual processing and abstract 
reasoning Paper-pencil format 

Tests are presented in order of administration. Notes: a test used to construct the cognitive scores, b test substituted by the 
Hopkins Verbal Learning Test-Revised for Turku. 
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Supplementary Table 9. Linear models for effect of group (controls vs. patients) with PSC, age and sex. 

PSCs Est. SE t r - group p Adj. R2 F model’s p 
PSC 2 L -0.100 0.022 -4.486 -0.139 8.10E-06 0.198 85.198 3.52E-49 
PSC 5 L -0.055 0.015 -3.688 -0.115 2.38E-04 0.142 57.129 3.93E-34 
PSC 6 L -0.031 0.009 -3.564 -0.111 3.83E-04 0.167 69.011 1.26E-40 
PSC 7 L -0.030 0.010 -2.983 -0.093 0.003 0.255 117.320 3.02E-65 
PSC 12 L -0.070 0.019 -3.759 -0.117 1.80E-04 0.155 63.150 1.91E-37 
PSC 1 R -0.100 0.021 -4.729 -0.147 2.58E-06 0.186 78.828 7.50E-46 
PSC 3 R -0.038 0.010 -3.784 -0.118 1.63E-04 0.289 139.132 1.57E-75 
PSC 5 R -0.045 0.015 -3.053 -0.095 0.002 0.123 48.696 2.07E-29 
PSC 9 R -0.053 0.015 -3.474 -0.108 5.33E-04 0.156 63.917 7.29E-38 
PSC 10 R -0.026 0.009 -3.080 -0.096 0.002 0.174 72.723 1.29E-42 
PSC 12 R -0.086 0.017 -5.075 -0.157 4.60E-07 0.149 60.429 5.93E-36 
PSC 13 R -0.048 0.014 -3.305 -0.103 9.82E-04 0.135 54.107 1.89E-32 
PSC 16 R -0.020 0.006 -3.325 -0.104 9.14E-04 0.215 93.887 1.22E-53 
PSC 18 R -0.038 0.011 -3.574 -0.111 3.68E-04 0.248 113.200 3.00E-63 

Displayed are the 14 significant PSCs. Abbreviations: PSC: Patterns of Structural Covariance, L: left, R: right Est.: 
estimate, SE: standard error, t: t-stat, r - group: partial correlation coefficient for the group effect; p: p-value for the 
specific contribution of PSC in the model, Adj. R2: model’s adjusted R2, F: F-test, model’s p: p-value for the whole linear 
model with age, sex and PSC. 

 

 

Supplementary Table 10. P-values for linear models for effect of group (i.e., HC vs PAT) with age, sex and 
scan quality measures. 

PSC IQR CNR SNR 
PSC 2 L 5.16E-06 4.81E-04 6.31E-05 
PSC 5 L 1.81E-04 0.004 0.002 
PSC 6 L 2.61E-04 0.004 0.003 
PSC 7 L 0.002 0.086 0.025 
PSC 12 L 1.45E-04 2.06E-04 1.54E-04 
PSC 1 R 2.02E-06 9.29E-06 8.32E-07 
PSC 3 R 1.25E-04 0.005 8.73E-04 
PSC 5 R 0.002 0.004 0.002 
PSC 9 R 4.46E-04 0.018 0.001 
PSC 10 R 0.001 0.012 0.002 
PSC 12 R 3.93E-07 1.00E-05 1.12E-06 
PSC 13 R 8.34E-04 0.014 0.002 
PSC 16 R 6.70E-04 0.008 0.003 
PSC 18 R 2.24E-04 0.007 0.001 

Displayed are the significant PSCs for linear models for effect 
of group (HC vs patients). Bold values represent significant p-
values in the models augmented with each scan quality 
measure (FDR-correction p<0.01). Abbreviations: PSC: 
Patterns of Structural Covariance; L: left, R: right; IQR: weighted 
average Image Quality Rating; CNR: Contrast to Noise Ratio; 
SNR: Signal to Noise Ratio.  
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Supplementary Table 11. Partial correlations for effect of group (controls vs. patients) with PSC, age and sex in the 
external validation sample. 

PSC r p 
PSC2 L -0.185 0.005 
PSC3 L -0.160 0.015 
PSC4 L -0.017 0.802 
PSC5 L -0.227 0.001 
PSC6 L -0.212 0.001 
PSC7 L -0.230 <0.001 
PSC8 L -0.119 0.073 
PSC9 L -0.151 0.022 
PSC11 L -0.294 <0.001 
PSC12 L -0.204 0.002 
PSC14 L -0.200 0.002 
PSC15 L -0.154 0.020 
PSC16 L -0.211 0.001 
PSC17 L -0.135 0.041 
PSC1 R -0.211 0.001 
PSC3 R -0.202 0.002 
PSC4 R -0.100 0.132 
PSC5 R -0.151 0.022 
PSC8 R -0.160 0.015 
PSC9 R -0.200 0.002 
PSC10 R -0.209 0.001 
PSC11 R -0.188 0.004 
PSC12 R -0.251 <0.001 
PSC13 R -0.218 0.001 
PSC14 R -0.154 0.020 
PSC15 R -0.166 0.012 
PSC16 R -0.229 <0.001 
PSC17 R -0.169 0.010 
PSC18 R -0.166 0.012 

Displayed are the partial correlations (correction for age and sex) for effect of group (controls vs. patients) on PSC 
components in the external validation sample. Bold values represent significant p-values for group effect in the models, 
which overlap with original results in the discovery sample, while blue values indicate terms, which do not overlap with 
the previous analyses (FDR-correction p<0.01). Abbreviations: r: correlation coefficient; p: p-value; PSC: Patterns of 
Structural Covariance, L: left, R: right.  
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Supplementary Table 12. Linear models to predict cognitive domains with PSCs, age and sex. 

 Working Memory 
PSCs Est. SE t r - PSC p Adj. R2 F p 

PSC 2 L 0.445 0.116 3.837 0.148 1.37E-04 0.027 7.070 1.11E-04 
PSC 12 L 0.422 0.141 2.996 0.116 0.003 0.019 5.137 0.002 
PSC 1 R 0.403 0.124 3.250 0.126 0.001 0.021 5.670 7.75E-04 
PSC 5 R 0.557 0.173 3.217 0.125 0.001 0.021 5.599 8.55E-04 
PSC 10 R 1.176 0.299 3.930 0.152 9.41E-05 0.028 7.313 7.92E-05 

 Speed of Processing 
PSCs Est. SE t r - PSC p Adj. R2 F p 

PSC 2 L 0.422 0.091 4.655 0.182 3.95E-06 0.045 10.983 4.89E-07 
PSC 12 L 0.392 0.139 2.826 0.166 0.005 0.025 6.343 0.000 
PSC 1 R 0.342 0.247 1.385 0.143 0.167 0.015 4.285 0.005 
PSC 12 R 0.226 0.211 1.072 0.135 0.284 0.014 4.023 0.008 

 Reasoning 
PSCs Est. SE t r - PSC p Adj. R2 F p 

PSC 2 L 0.5544 0.1170 4.7394 0.186 2.66E-06 0.0383 9.3571 4.67E-06 
PSC 12 L 0.4774 0.1447 3.3000 0.131 0.0010 0.0209 5.4665 0.0010 
PSC 1 R 0.5296 0.1259 4.2070 0.166 2.97E-05 0.0312 7.7557 4.31E-05 

 Global Cognition 
PSCs Est. SE t r - PSC p Adj. R2 F p 

PSC 2 L 2.5224 0.5176 4.8729 0.197 1.41E-06 0.0386 8.9479 8.36E-06 
PSC 5 L 2.3782 0.7941 2.9947 0.122 0.0029 0.0149 3.9973 0.0078 
PSC 12 L 2.5234 0.6367 3.9634 0.161 8.29E-05 0.0259 6.2553 0.0003 
PSC 1 R 2.5730 0.5590 4.6030 0.186 5.10E-06 0.0346 8.0909 2.74E-05 
PSC 12 R 2.9770 0.7165 4.1552 0.168 3.73E-05 0.0283 6.7770 0.0002 

Displayed are the significant PSCs for each linear model with cognitive domains. Abbreviations: PSC: Patterns of 
Structural Covariance, L: left, R: right Est.: estimate, SE: standard error, t: t-stat, r-PSC: partial correlation coefficient 
for the effect of PSC; p: p-value for the specific contribution of PSC in the model, Adj. R2: model’s adjusted R2, F: F-
test. model’s p: p-value for the whole linear model with age, sex and PSC. 
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Supplementary Table 13. P-values for linear models for effect of PSC on cognitive domains with age, sex 
and quality measures. 

PSC IQR 
 SocCog WM SoP VerLearn Reas Attention Global 

PSC 2 L 0.146 1.1E-04 5.0E-06 0.017 2.1E-06 0.005 1.1E-06 
PSC 5 L 0.830 0.006 0.006 0.019 0.062 0.004 0.002 
PSC 12 L 0.439 0.002 3.4E-05 0.400 8.4E-04 0.007 6.5E-05 
PSC 1 R 0.092 0.001 3.1E-04 0.054 3.3E-05 0.002 5.6E-06 
PSC 5 R 0.513 0.001 0.035 0.048 0.022 0.089 0.008 
PSC 10 R 0.736 7.3E-05 0.134 0.020 0.079 0.318 0.023 
PSC 12 R 0.531 0.011 1.0E-03 0.074 0.013 0.001 2.1E-05 

PSC CNR 
 SocCog WM SoP VerLearn Reas Attention Global 
PSC 2 L 0.217 2.3E-04 3.0E-06 0.013 2.2E-06 0.005 1.7E-06 
PSC 5 L 0.959 0.013 0.004 0.015 0.075 0.004 0.003 
PSC 12 L 0.542 0.004 3.1E-05 0.429 0.002 0.016 2.2E-04 
PSC 1 R 0.125 0.002 2.0E-04 0.042 3.6E-05 0.001 9.1E-06 
PSC 5 R 0.468 0.002 0.029 0.023 0.027 0.093 0.011 
PSC 10 R 0.637 1.6E-04 0.092 0.013 0.076 0.339 0.027 
PSC 12 R 0.706 0.019 7.5E-04 0.079 0.037 0.002 1.1E-04 

PSC SNR 
 SocCog WM SoP VerLearn Reas Attention Global 
PSC 2 L 0.241 1.4E-04 2.5E-06 0.010 1.7E-06 0.003 9.8E-07 
PSC 5 L 0.960 0.009 0.004 0.012 0.058 0.003 0.002 
PSC 12 L 0.543 0.003 3.0E-05 0.385 0.001 0.012 1.2E-04 
PSC 1 R 0.144 0.001 1.6E-04 0.032 3.3E-05 9.7E-04 5.7E-06 
PSC 5 R 0.461 0.001 0.027 0.019 0.020 0.075 0.007 
PSC 10 R 0.662 9.4E-05 0.084 0.011 0.067 0.293 0.021 
PSC 12 R 0.743 0.010 6.8E-04 0.056 0.026 0.001 4.6E-05 

Displayed are the significant PSCs for each linear model with cognitive domains. Bold values represent 
significant p-values in the models augmented with quality measures, which overlap with original results. 
Grey italic values indicate terms, which do not overlap with the previous analyses without quality 
measures. Blue italic values indicate originally significant terms, which are no longer significant (FDR-
correction p<0.01). Abbreviations: PSC: Patterns of Structural Covariance, L: left, R: right; IQR: 
weighted average Image Quality Rating; CNR: Contrast to Noise Ratio; SNR: Signal to Noise Ratio; 
SocCog: social cognition, WM: working memory, SoP: speed of processing, VerLearn: verbal learning, 
Reas: reasoning; Global: Global Cognition. 

 

Supplementary Table 14. P-values for linear models for effect of PSC on cognitive domains with age, sex and 
education. 

PSCs SocCog WM SoP VerLearn Reas Attention Global 
PSC 2 L 0.105 5.50E-05 3.80E-06 0.018 3.19E-06 0.003 4.46E-07 
PSC 5 L 0.705 0.007 0.004 0.030 0.049 0.003 0.002 
PSC 12 L 0.280 8.04E-04 2.45E-05 0.265 6.51E-04 0.006 1.71E-05 
PSC 1 R 0.098 0.003 4.72E-04 0.082 8.77E-05 0.002 1.22E-05 
PSC 5 R 0.655 9.01E-04 0.025 0.076 0.023 0.079 0.009 
PSC 10 R 0.614 2.30E-04 0.072 0.028 0.064 0.346 0.028 
PSC 12 R 0.469 0.003 5.74E-04 0.019 0.014 6.11E-04 4.76E-06 

Displayed are the significant PSCs for each linear model with cognitive domains. Bold values represent significant p-values 
in the models augmented with education, which overlap with original results, while grey italic values indicate significant 
terms not detected in the previous analyses without education (FDR-correction p<0.01). Abbreviations: PSC: Patterns of 
Structural Covariance, L: left, R: right; SocCog: social cognition, WM: working memory, SoP: speed of processing, 
VerLearn: verbal learning, Reas: reasoning; Global: Global Cognition.  
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Supplementary Table 15. P-values for linear models for effect of PSC on cognitive domains with age, sex and IQ. 

PSCs SocCog WM SoP VerLearn Reas Attention Global 
PSC 2 L 0.464 0.051 0.004 0.487 8.40E-04 0.184 0.002 
PSC 5 L 0.804 0.136 0.052 0.109 0.339 0.047 0.030 
PSC 12 L 0.806 0.091 0.002 0.594 0.040 0.107 0.009 
PSC 1 R 0.327 0.144 0.054 0.614 0.005 0.058 0.003 
PSC 5 R 0.511 0.026 0.324 0.200 0.142 0.436 0.103 
PSC 10 R 0.966 0.006 0.932 0.109 0.337 0.986 0.182 
PSC 12 R 0.714 0.132 0.012 0.268 0.111 0.022 0,002 

Displayed are the significant PSCs for each linear model with cognitive domains. Bold values represent significant p-values 
in the models augmented with IQ, which overlap with original results when applying FDR-correction p<0.05. Blue italic 
values indicate originally significant terms, which are no longer significant. Abbreviations: PSC: Patterns of Structural 
Covariance, L: left, R: right; SocCog: social cognition, WM: working memory, SoP: speed of processing, VerLearn: verbal 
learning, Reas: reasoning; Global: Global Cognition. 

 

 
Supplementary Table 16. Linear models to predict Global Functioning (GF) domains with PSCs, age and 
sex. 

 GF:R lowest past year 
PSC Est. SE t r - PSC p Adj. R2 F p 

PSC 12 R 0.9151 0.2678 3.4167 0.130 0.0007 0.0240 6.5570 0.0002 
 GF:S highest lifetime 

PSC Est. SE t r - PSC p Adj. R2 F p 
PSC 12 L 0.4478 0.1233 3.6309 0.138 0.0003 0.0473 12.2313 8.42E-08 

 GF:R highest lifetime 
PSCs Est. SE t r - PSC p Adj. R2 F p 

PSC 2 L 0.446 0.100 4.456 0.169 9.78E-06 0.063 16.260 3.25E-10 
PSC 5 L 0.650 0.152 4.279 0.162 2.15E-05 0.061 15.723 6.80E-10 
PSC 6 L 1.361 0.263 5.168 0.195 3.12E-07 0.072 18.640 1.26E-11 
PSC 12 L 0.562 0.122 4.626 0.175 4.47E-06 0.065 16.795 1.56E-10 
PSC 1 R 0.483 0.106 4.546 0.172 6.47E-06 0.064 16.542 2.21E-10 
PSC 3 R 0.828 0.226 3.667 0.140 2.65E-04 0.054 14.035 6.94E-09 
PSC 5 R 0.569 0.149 3.814 0.145 1.49E-04 0.056 14.418 4.10E-09 
PSC 9 R 0.533 0.149 3.583 0.137 3.64E-04 0.054 13.824 9.30E-09 
PSC 10 R 1.036 0.260 3.989 0.152 7.36E-05 0.058 14.891 2.14E-09 
PSC 12 R 0.551 0.138 4.002 0.152 6.98E-05 0.058 14.926 2.03E-09 
PSC 16 R 1.768 0.374 4.721 0.179 2.85E-06 0.066 17.105 1.02E-10 
PSC 18 R 0.826 0.217 3.803 0.145 1.56E-04 0.056 14.388 4.27E-09 

Displayed are the significant PSCs for each linear model with functioning domains. Abbreviations: GF:R: GF role, 
GF:S: GF social, PSC: Patterns of Structural Covariance, L: left, R: right, Est.: estimate, SE: standard error, t: t-
stat, r-PSC: partial correlation coefficient for the effect of PSC; p: p-value for the specific contribution of PSC in the 
model, Adj. R2: model’s adjusted R2, F: F-test; model’s p: p-value for the whole linear model with age, sex and 
PSC. 
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Supplementary Table 17. Linear models to predict Global Functioning (GF) domains with PSCs, age and sex 
and education. 

PSCs GF:R 
curr 

GF:R L 
past y 

GF:R H 
past y 

GF:R 
lifetime 

GF:S 
curr 

GF:S L 
past y 

GF:S H 
past y 

GF:S 
lifetime 

PSC 2 L 0.057 0.025 0.021 2.1E-05 0.478 0.391 0.041 0.020 
PSC 5 L 0.056 0.098 0.027 3.5E-05 0.921 0.504 0.459 0.113 
PSC 6 L 0.083 0.193 0.002 6.0E-07 0.436 0.655 0.160 0.005 
PSC 12 L 0.102 0.063 0.015 2.1E-06 0.347 0.402 0.013 2.0E-04 
PSC 1 R 0.183 0.024 0.071 4.2E-05 0.098 0.054 0.097 0.090 
PSC 3 R 0.270 0.368 0.150 6.6E-04 0.374 0.210 0.884 0.412 
PSC 5 R 0.385 0.288 0.016 3.8E-04 0.425 0.243 0.448 0.595 
PSC 9 R 0.147 0.136 0.033 0.002 0.499 0.341 0.053 0.042 
PSC 10 R 0.920 0.804 0.186 1.8E-04 0.749 0.917 0.752 0.457 
PSC 12 R 0.007 7.4E-04 0.022 6.5E-05 0.121 0.006 0.026 0.028 
PSC 16 R 0.071 0.122 0.011 7.7E-06 0.616 0.667 0.044 0.030 
PSC 18 R 0.095 0.084 0.056 4.8E-04 0.166 0.217 0.098 0.078 

Displayed are the significant PSCs for each linear model with functioning domains. Bold values represent significant 
p-values in the models augmented with education, which overlap with original results, while grey italic values indicate 
not significant terms, detected in the previous analyses without education (FDR-correction p<0.01). Abbreviations: 
GF:R: GF role, GF:S: GF social, PSC: Patterns of Structural Covariance, L: left, R: right, L: lowest; H: highest; y: year.  

 

 

Supplementary Table 18. Linear models to predict Global Functioning (GF) domains with PSCs, age and sex 
and IQ. 

PSCs GF:R 
curr 

GF:R L 
past y 

GF:R H 
past y 

GF:R 
lifetime 

GF:S 
curr 

GF:S L 
past y 

GF:S H 
past y 

GF:S 
lifetime 

PSC 2 L 0.106 0.053 0.133 0.002 0.684 0.544 0.120 0.014 
PSC 5 L 0.038 0.064 0.054 3.98E-04 0.856 0.437 0.603 0.080 
PSC 6 L 0.121 0.226 0.012 1.08E-05 0.658 0.990 0.393 0.011 
PSC 12 L 0.278 0.154 0.099 2.37E-04 0.802 0.829 0.072 0.001 
PSC 1 R 0.310 0.044 0.170 7.85E-04 0.211 0.115 0.201 0.053 
PSC 3 R 0.431 0.523 0.405 0.004 0.832 0.498 0.642 0.492 
PSC 5 R 0.375 0.240 0.016 7.89E-04 0.612 0.398 0.415 0.479 
PSC 9 R 0.557 0.487 0.166 0.008 0.755 0.774 0.254 0.034 
PSC 10 R 0.841 0.954 0.380 0.002 0.893 0.694 0.877 0.728 
PSC 12 R 0.040 0.005 0.047 0.001 0.393 0.045 0.064 0.084 
PSC 16 R 0.165 0.191 0.038 2.30E-04 0.973 0.920 0.067 0.017 
PSC 18 R 0.258 0.248 0.194 0.004 0.435 0.409 0.289 0.074 

Displayed are the significant PSCs for each linear model with functioning domains. Bold values represent significant 
p-values in the models augmented with IQ, which overlap with original results when applying FDR-correction p<0.05. 
Grey bold values indicate terms which additionally survive FDR-correction p<0.01. Abbreviations: GF:R: GF role, 
GF:S: GF social, PSC: Patterns of Structural Covariance, L: left, R: right, L: lowest; H: highest; y: year.  
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Supplementary Table 19. Linear models to predict Global Functioning (GF) domains with PSCs, age and sex and 
scan quality measures. 

PSC IQR 

 GF:R 
curr 

GF:R L 
past y 

GF:R H 
past y 

GF:R 
lifetime 

GF:S 
curr 

GF:S L 
past y 

GF:S H 
past y 

GF:S 
lifetime 

PSC 2 L 0.052 0.021 0.010 1.0E-05 0.453 0.331 0.038 0.010 
PSC 5 L 0.046 0.068 0.014 2.2E-05 0.883 0.690 0.414 0.068 
PSC 6 L 0.086 0.183 0.002 3.3E-07 0.347 0.462 0.137 0.003 
PSC 12 L 0.126 0.058 0.007 4.8E-06 0.459 0.405 0.017 3.9E-04 
PSC 1 R 0.132 0.015 0.025 6.7E-06 0.069 0.039 0.068 0.048 
PSC 3 R 0.230 0.285 0.086 2.8E-04 0.373 0.142 0.878 0.428 
PSC 5 R 0.278 0.193 0.006 1.6E-04 0.332 0.176 0.325 0.501 
PSC 9 R 0.130 0.122 0.020 3.8E-04 0.401 0.223 0.034 0.018 
PSC 10 R 0.800 0.656 0.127 7.8E-05 0.640 0.763 0.694 0.416 
PSC 12 R 0.011 6.9E-04 0.008 7.4E-05 0.173 0.007 0.024 0.055 
PSC 16 R 0.059 0.077 0.004 3.0E-06 0.581 0.453 0.026 0.014 
PSC 18 R 0.067 0.066 0.036 1.6E-04 0.120 0.149 0.087 0.057 

PSC CNR 

 GF:R 
curr 

GF:R L 
past y 

GF:R H 
past y 

GF:R 
lifetime 

GF:S 
curr 

GF:S L 
past y 

GF:S H 
past y 

GF:S 
lifetime 

PSC 2 L 0.117 0.059 0.009 6.5E-06 0.676 0.606 0.087 0.019 
PSC 5 L 0.075 0.122 0.014 3.2E-05 0.981 0.486 0.556 0.104 
PSC 6 L 0.102 0.238 8.7E-04 6.0E-07 0.360 0.532 0.142 0.008 
PSC 12 L 0.192 0.103 0.006 6.8E-06 0.581 0.551 0.026 0.001 
PSC 1 R 0.310 0.055 0.036 1.2E-05 0.143 0.105 0.169 0.086 
PSC 3 R 0.456 0.659 0.151 5.9E-04 0.534 0.350 0.880 0.433 
PSC 5 R 0.410 0.293 0.009 2.2E-04 0.369 0.271 0.530 0.601 
PSC 9 R 0.280 0.306 0.039 5.6E-04 0.699 0.597 0.113 0.030 
PSC 10 R 0.932 0.980 0.195 2.3E-04 0.821 0.882 0.964 0.572 
PSC 12 R 0.033 0.004 0.011 1.2E-04 0.346 0.031 0.067 0.091 
PSC 16 R 0.105 0.156 0.009 7.7E-06 0.755 0.735 0.059 0.022 
PSC 18 R 0.142 0.173 0.047 1.8E-04 0.206 0.352 0.187 0.067 

PSC SNR 

 GF:R 
curr 

GF:R L 
past y 

GF:R H 
past y 

GF:R 
lifetime 

GF:S 
curr 

GF:S L 
past y 

GF:S H 
past y 

GF:S 
lifetime 

PSC 2 L 0.072 0.031 0.007 3.8E-06 0.565 0.471 0.059 0.015 
PSC 5 L 0.064 0.096 0.013 2.4E-05 0.913 0.578 0.474 0.097 
PSC 6 L 0.096 0.209 8.4E-04 4.2E-07 0.322 0.435 0.106 0.007 
PSC 12 L 0.168 0.080 0.006 4.7E-06 0.517 0.445 0.017 0.001 
PSC 1 R 0.195 0.026 0.026 6.6E-06 0.103 0.068 0.120 0.070 
PSC 3 R 0.322 0.460 0.122 3.7E-04 0.432 0.251 0.961 0.380 
PSC 5 R 0.340 0.220 0.008 1.5E-04 0.313 0.205 0.432 0.564 
PSC 9 R 0.147 0.153 0.025 3.2E-04 0.556 0.458 0.079 0.021 
PSC 10 R 0.904 0.790 0.165 1.5E-04 0.721 0.985 0.917 0.521 
PSC 12 R 0.017 0.001 0.008 6.5E-05 0.247 0.014 0.035 0.074 
PSC 16 R 0.068 0.099 0.007 5.1E-06 0.666 0.634 0.045 0.018 
PSC 18 R 0.075 0.081 0.034 9.4E-05 0.139 0.218 0.112 0.053 

Displayed are the significant PSCs for each linear model with functioning domains. Bold values represent 
significant p-values in the models augmented with quality measures (i.e., IQR, CNR and SNR), which 
overlap with original results, while grey italic values indicate terms, which do not overlap with the previous 
analyses without quality measures. Blue italic values indicate originally significant terms, which are no 
longer significant (FDR-correction p<0.01). Abbreviations: IQR: weighted average Image Quality Rating; 
CNR: Contrast to Noise Ratio; SNR: Signal to Noise Ratio; GF:R: GF role, GF:S: GF social, PSC: Patterns 
of Structural Covariance, L: left, R: right, L: lowest; H: highest; y: year.  
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Supplementary Table 20. Associations between clinical variables and PSCs. 
 

SIPS-P SIPS-N SIPS-D SIPS-G COGDIS BDI  
r p r p r p r p r p r p 

PSC 2 L -0.080 0.039 -0.025 0.521 0.002 0.950 -0.079 0.264 -0.111 0.039 -0.018 0.661 
PSC 5 L -0.016 0.671 0.001 0.974 0.064 0.100 -0.022 0.095 -0.049 0.561 0.023 0.568 

PSC 6 L -0.016 0.682 -0.035 0.364 0.068 0.082 -0.003 0.367 -0.022 0.938 0.008 0.847 

PSC 7 L -0.030 0.431 0.026 0.498 0.037 0.340 -0.025 0.475 -0.039 0.519 0.027 0.509 
PSC 12 L -0.089 0.022 -0.019 0.624 0.012 0.755 -0.072 0.732 -0.105 0.060 -0.017 0.674 

PSC 1 R -0.077 0.046 -0.028 0.471 0.024 0.530 -0.053 0.429 -0.054 0.167 -0.032 0.436 

PSC 3 R -0.054 0.163 -0.013 0.731 0.009 0.810 -0.050 0.548 -0.066 0.197 -0.028 0.486 
PSC 5 R 0.021 0.590 -0.015 0.704 0.058 0.132 -0.011 0.378 -0.008 0.771 0.021 0.609 

PSC 9 R 0.014 0.727 -0.044 0.258 0.056 0.153 -0.013 0.992 -0.006 0.735 -0.068 0.096 

PSC 10 R -0.030 0.443 0.014 0.712 0.023 0.548 -0.019 0.075 -0.036 0.622 0.039 0.337 
PSC 12 R -0.110 0.004 -0.037 0.335 -0.017 0.663 -0.115 0.768 -0.118 0.003 -0.037 0.360 

PSC 13 R -0.041 0.291 -0.025 0.523 -0.016 0.680 -0.015 0.212 -0.026 0.691 -0.010 0.799 

PSC 16 R -0.026 0.508 -0.032 0.412 0.066 0.091 -0.047 0.212 -0.059 0.225 -0.013 0.755 
PSC 18 R -0.024 0.534 0.016 0.676 0.044 0.258 -0.027 0.827 -0.017 0.488 -0.033 0.417 

Depicted are partial correlations (correction for age and sex) between the 14 significant PSC components and the clinical 
variables. Abbreviations: r: correlation coefficient; p: p-value; PSC: Pattern of Structural Covariance; L: left; R: right; SIPS: 
Structured Interview for the Psychosis-Risk Syndrome, P, N, D, G: positive, negative, disorganized and general symptoms, 
respectively; COGDIS: Cognitive Disturbances from the Schizophrenia Proneness Instrument-Adult version; BDI: Beck’s 
Depression Inventory. 
 
 
Supplementary Table 21. P-values for linear models for effect of study group (i.e., HC vs ROD, CHR and ROP) with 
age and sex. 

PSC ROD CHR ROP 

 r p r p r p 

PSC 2 L -0.076 0.015 -0.134 1.80E-05 -0.121 1.09E-04 

PSC 5 L -0.081 0.010 -0.110 4.54E-04 -0.084 0.008 

PSC 6 L -0.088 0.005 -0.075 0.017 -0.100 0.001 

PSC 7 L -0.071 0.023 -0.063 0.045 -0.086 0.006 

PSC 12 L -0.076 0.015 -0.095 0.003 -0.106 6.89E-04 

PSC 1 R -0.092 0.003 -0.114 2.61E-04 -0.141 6.39E-06 

PSC 3 R -0.078 0.013 -0.068 0.030 -0.131 2.87E-05 

PSC 5 R -0.095 0.002 -0.073 0.020 -0.060 0.056 

PSC 9 R -0.093 0.003 -0.086 0.006 -0.080 0.011 

PSC 10 R -0.085 0.007 -0.048 0.127 -0.094 0.003 

PSC 12 R -0.105 0.001 -0.119 1.35E-04 -0.148 2.10E-06 

PSC 13 R -0.076 0.015 -0.055 0.078 -0.111 3.77E-04 

PSC 16 R -0.082 0.009 -0.093 0.003 -0.073 0.021 

PSC 18 R -0.078 0.013 -0.059 0.059 -0.125 6.84E-05 
Depicted are partial correlations (corrected for age, sex and study-group) between the 14 significant PSC components 
and group (HC vs. PAT) and p-values deriving from linear models for group effect (HC vs. PAT) with age, sex and 
study-group. Blue italic values represent significant associations at FDR-correction threshold p<0.05. Abbreviations: 
ROD: recent onset depression, CHR: clinical high risk, ROP: recent onset psychosis, PSC: pattern of structural 
covariance, L: left hemisphere, R: right hemisphere, r: partial correlation coefficient, p: p-value.  
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Supplementary Table 22. Associations between PSCs and cognitive domains in the healthy control sample. 

 SocCog WM SoP VerLearn Reas Attention Global 

 r p r p r p r p r p r p r p 

PSC 2 L 0.084 0.145 0.069 0.236 0.104 0.076 0.027 0.645 0.081 0.176 0.090 0.121 0.119 0.015 

PSC 5 L 0.007 0.904 0.035 0.546 0.013 0.822 0.085 0.143 0.051 0.394 0.040 0.493 0.013 0.404 

PSC 6 L 0.018 0.762 0.027 0.644 0.041 0.488 0.074 0.205 0.016 0.784 0.018 0.751 0.026 0.764 

PSC 7 L 0.008 0.895 0.040 0.496 0.048 0.409 0.109 0.059 0.021 0.728 0.032 0.578 0.007 0.963 

PSC 12 L 0.035 0.546 0.094 0.104 0.068 0.248 0.046 0.429 0.008 0.896 0.043 0.462 0.071 0.108 

PSC 1 R 0.086 0.137 0.078 0.180 0.083 0.158 0.006 0.919 0.049 0.416 0.160 0.006 0.137 0.014 

PSC 3 R 0.008 0.884 0.010 0.869 0.016 0.782 0.113 0.050 0.014 0.813 0.037 0.520 0.009 0.946 

PSC 5 R 0.010 0.862 0.071 0.224 0.008 0.894 0.017 0.765 0.045 0.450 0.116 0.045 0.082 0.110 

PSC 9 R 0.155 0.007 0.058 0.322 0.108 0.065 0.058 0.321 0.067 0.264 0.069 0.236 0.133 0.032 

PSC10 R 0.021 0.718 0.031 0.589 0.033 0.574 0.013 0.827 0.005 0.927 0.052 0.373 0.028 0.433 

PSC12 R 0.022 0.704 0.116 0.045 0.011 0.857 0.006 0.923 0.066 0.272 0.089 0.124 0.083 0.074 

PSC13 R 0.017 0.768 0.042 0.472 0.007 0.911 0.068 0.245 0.083 0.167 0.107 0.066 0.064 0.166 

PSC16 R 0.011 0.853 0.067 0.250 0.008 0.897 0.019 0.749 0.093 0.119 0.067 0.247 0.072 0.249 

PSC18 R 0.095 0.102 0.040 0.492 0.030 0.613 0.052 0.369 0.090 0.133 0.067 0.251 0.063 0.166 

Displayed are the partial correlations (correction for age and sex) between the 14 significant PSC components and the 
cognitive domains for the healthy controls sample. No associations were significant. Blue values indicate terms showing 
trends to significance. Abbreviations: r: correlation coefficient; p: p-value; SocCog: Social cognition; WM: working memory; 
SoP: Speed of Processing; VerLearn: verbal learning; Reas: reasoning; Global: global cognition; PSC: Patterns of 
Structural Covariance, L: left, R: right.   
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Appendix: Gyrification-based predictive models 

 

Methods  

A total of 158 CHR individuals (mean age: 23.87, SD: 5.43; 49.4% females) were 

recruited as part of the PRONIA consortium (see Supplementary Material of 

Paper II for further information). Twenty-three patients transitioned to psychosis 

after one year (Table 1).  

 

 

Table 1. Basic demographic information of the study sample.  

N 158 

Age [years, mean] (SD) 23.87 (5.43) 

Sex [females, N] (%) 78 (49.4) 

Psychosis Transition [N] (%) 23 (14.6) 

GF-R Baseline [mean] (SD) 

1year Follow-up  

6.0 (1.59) 

6.55 (1.74) 

GF-S Baseline [mean] (SD) 

1year Follow-up  

6.34 (1.44) 

6.89 (1.44) 

Abbreviations: GF: Global Functioning Role (R) or Social (S), [0:10],higher scores indicate better 
functioning. 

 

 

Cortical surfaces were reconstructed from structural MRI images using the 

FreeSurfer software package (v. 6.0.0, https://surfer.nmr.mgh.harvard.edu/). 

Local gyrification Index (LGI)59 was calculated across the whole cortical mesh 

(Supplementary Material of Paper II).  

We built supervised machine learning models based on a Support Vector 

Machine algorithm using the in-house software NeuroMiner 

(http://proniapredictors.eu/neurominer/), which ensures a strict validation 

procedure through a nested cross-validation design15. Models were trained and 

tested to I) predict transition at follow-up (i.e., one year after study inclusion), and 

II) predict role and social functioning outcome at follow-up using the Global 

Functioning scale at a cut-off of 7 (GF:R and GF:S60)14. As part of the machine 

learning pipeline, patients’ gyrification meshes underwent preprocessing steps as 

follows: 1) age and sex correction using partial correlation analysis, 2) site 

correction thresholding for between-scanner voxel reliability14 at the 25%, 50% 

http://proniapredictors.eu/neurominer/
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and 75% percentile, 3) dimensionality reduction using Principal Component 

Analysis (PCA; 10, 20, 40, 80 and 160 eigenvariates) and 4) standardization 

using median and winsorization. We used a linear, non-kernelized L2-

regularized, L1-loss SVM algorithm and employed wrapper-based feature 

selection strategies to extract the most predictive features among the large 

gyrification mesh. Model optimization included hyperparameter combination (i.e., 

map percentile thresholds, PCA dimensions and SVM’s C regularization 

parameter range of 2
[−4

∈ℤ
→ +4]

) across all k=50 (=5 repetitions × 10 folds) available 

models in the training partition. The wrapper-based feature selection strategy was 

based on a greedy sequential forward search (SFS) at each SVM C regularization 

parameter, stopping when 80% of the features had been selected. Models’ 

effectiveness was calculated based on the Balanced Accuracy (BAC) resulting 

from the test partition. Machine learning pipeline is represented in Figure 1. 

 

 

 

Figure 1. Machine learning pipeline in NeuroMiner. 

 

 

Results  

The SVM algorithm could not predict a transition to psychosis above chance 

based on gyrification patterns (BAC: 45.9%, sensitivity: 38.5% specificity: 53.3%) 

and the classification didn’t reach statistical significance (Wilcoxon test Z=-1.60, 

p=.11). Similar results were found for prediction of functional outcome at 1 year 

follow-up, both for the social subscale (BAC: 50.0%, Z=-0.3, p=0.76) and the role 

subscale (BAC: 53.6, Z=0.3, p=0.73). Results are summarized in Table 2:  

 

Preprocessing

• Site Correction: G-mask, 

feature ranking at 

thresholds: 25, 50, 75%

• Dimensionality Reduction: 

PCA (dimensions: 10, 20, 

40, 80, 160)

• Standardization using 

median & winsorization

Greedy Feature Selection

Forward Wrapper

stopping at 80% of features

Support Vector Machine (SVM)

Weighted hyperparameter

Slack parameter: 2-4 to 24

Nested Cross-Validation

CV1: 10 Folds, 5 Permutations

CV2: 10 Folds, 1 Permutation
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Table 2. Machine learning results 

 Transition GF:S follow-up GF:R follow-up 

Balanced accuracy [%] 45.9 50.0 53.6 

Sensitivity [%] 38.5 50.0 55.6 

Specificity [%] 53.3 50.0 51.7 

Positive predictive value [%] 6.8 34.7 63.3 

Negative predictive value [%] 90.6 65.3 43.7 

Abbreviations: GF: Global Functioning Role (R) or Social (S), [0:10],higher scores indicate better 
functioning. Positive and negative predictive value were calculated in NeuroMiner from the initial 
true/false positive and true/false negative matrix. 

 

 

Conclusion 

Gyrification patterns in CHR individuals were not informative of a future transition 

to the overt disease, nor they could predict functional outcome after one year. 

These negative findings suggest that gyrification might be influenced both by 

early neurodevelopmental factors and by re-wiring processes during 

adolescence, which might be detectable throughout several psychiatric diseases, 

rather than in samples of at-risk subjects wherein the etiology and ultimate 

prognosis is unknown.  

In order to better investigate differences in cortical folding and address the role 

of gyrification as neuroanatomical biomarker for psychosis, future research 

should focus further on transdiagnostic psychiatric populations in the early stages 

of disease. The high complexity of this cortical measure also calls for more 

advanced multivariate statistical approaches, which might be able to better 

capture subtler morphological patterns. We tackled this challenge by using 

cutting-edge methods to extract structural covariance at the neuroanatomical 

level, as well as by investigating larger and more heterogenous psychiatric 

samples at early disease stages (Paper II). 
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