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1. Contribution to the publications 

1.1 Contribution to Paper I 

In this work we present a systematic review and meta-analysis of diagnostic (i.e., 

distinguishing CHR from healthy individuals) and prognostic models (prediction 

of transition to psychosis or functioning) based on machine learning and Cox 

regression methods. I explored the complex areas of both machine learning and 

early recognition in psychiatry during my PhD, so that the knowledge I gained on 

these two topics allowed the production of an informed and informative meta-

analysis. For this paper, I conducted an extensive online research of pertinent 

manuscripts following the PRISMA guidelines1 using PubMed and Scopus search 

engines. I thoroughly screened in total 1103 articles following inclusion/exclusion 

criteria agreed with co-authors. I was responsible for conceptualization of the 

methodological approach in light of the main aims of our study, i.e.: I) definition 

of predictive models including not only transition, but also functional outcomes, 

II) focus on models developed using established machine learning methods, 

which have a realistic applicability in clinical practice, and III) investigation of 

models’ performance and the potential influence of data modality, algorithm used 

and validation procedures. I drafted the whole manuscript, was primarily involved 

in the revision process and finalized the published article. 

1.2 Contribution to Paper II 

This work has been conducted within the international, large-scale European 

project PRONIA (www.pronia.eu) carried in 10 European early recognition 

centres. I worked as a psychologist for the project in the LMU psychiatric clinic—

the main coordinating centre of the study. I was directly involved in the 

recruitment, neuropsychological testing, MRI scanning, interview, evaluation and 

differential diagnosis of patients with affective and psychosis spectrum disorders. 

I supervised and conducted follow-up examinations (in total 8 through 3 years for 

each participant) for around 50 patients and healthy controls. I conducted 

extensive neuroimaging pipeline testing (CAT12, FreeSurfer) and implementation 

of MRI quality control techniques in order to establish the most stable methods 

for brain surface reconstruction both for my project and for the whole consortium. 

Within a fruitful collaboration with Prof. Sotiras from the USA (Washington 

University) I learned and implemented a novel multivariate method (e.g., Non-

Negative Matrix Factorization2) on my sample of study. I executed, under 

supervision, multiple multi- and univariate analyses on neuroimaging and clinical 

data from, in total, 1105 individuals from the PRONIA cohort. In parallel, I got 

http://www.pronia.eu/


 8 

acquainted in the literature on the research field of interest (i.e., gyrifcation in 

psychiatry), while also collecting evidence on more basic biological mechanisms 

of cortical folding and disruptions thereof in other neurological pathologies. 

Furthermore, I was responsible for concepts and hypotheses generation, critical 

discussion and conclusions driven by the study’s results. The manuscript, 

including tables, figures, supplementary material and full reference list, was 

entirely written by me and improved thanks to the support of supervisors.  
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2. Introduction 

Psychosis is one of the most burdening psychiatric disorders, as measured by  

economic loss, morbidity, and mortality worldwide3. In the past two decades, the 

concepts of early recognition, early intervention and precision psychiatry have 

been introduced to try to detect potential risk pathways and prevent disease 

development4. Cutting-edge methods, such as machine learning, have been of 

central importance in the enduring attempt to construct personalized prognoses 

and have led to the development of several risk calculator models. Precision 

psychiatry needs, however, further basic investigation of potential 

endophenotypes (i.e., genetic/biological markers of a disease) in order to feed 

models with informative data for prediction.  

To this extent, we present our complementary research based on I) a meta-

analysis of the published machine learning-models for prediction in at-risk 

patients (Paper I), and II) investigation of cortical brain folding, or gyrification, as 

a potential marker for psychosis development or functional outcome (Appendix) 

and its broader role in psychopathology (Paper II).  

2.1 Early recognition in psychiatry  

The Clinical High Risk (CHR) concept describes a clinical condition characterized 

by sub-threshold psychotic symptoms and cognitive disturbances. This paradigm 

has facilitated research into the clinical underpinnings of help-seeking individuals 

potentially at risk for developing psychosis5. However, the actual transition rates 

based solely on the CHR readout have still been particularly low6,7, suggesting 

that the symptomatology of risk alone is not able to detect the majority of 

transitions to the overt disease. 

Therefore, research has been trying to discover and understand further 

biological, clinical and biographical risk factors able to both early detect a 

predisposition to the disease and also predict its development. For instance, 

findings have shown that CHR individuals experience more environmental 

adverse events8, show hematological alterations9 and differ from their healthy 

counterparts in the morphology10, electrophysiology11 and resting-state, as well 

as task-related function of their brain12. The complexity of the CHR state calls 

also for powerful methods, which are able to deal with the high dimensionality of 

the data at hand and, at the same time, enable a subject-specific risk estimation.  

To this extent, methodological proceedings have enabled an historical shift of 

paradigm by introducing machine learning to the field and suggesting a realistic 

future for personalized predictive psychiatry.  
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Machine learning is an area of artificial intelligence, which uses advanced 

algorithms that account for the multivariate structure of large, multimodal datasets 

(e.g., patients’ cognitive, clinical, biological and sociodemographic information) to 

detect specific patterns, or structure, in the data13. Algorithms learn these 

patterns and are tuned to recognize the same structure in new, unseen data, so 

that models generalize to independent datasets. This multivariate pattern 

recognition framework can enable both more precise diagnoses (e.g., a 

classification between psychopathologies or between patients and healthy 

individuals) and prognoses (e.g., a prediction of disease development or 

functional outcome). Hence, models constructed with machine learning could be 

applied in psychiatric care to support clinicians’ expertise and help them take 

critical therapeutic decisions. Research in the past two decades has leveraged 

the potential of machine learning and has produced a number of predictive 

models (or risk calculators) for at-risk individuals based on clinical, cognitive, and 

brain imaging data14–17 reaching over 80% accuracy. However, still no published 

model has been applied in real-life clinical practice, mainly because of the still 

unknown degree of their overall accuracy and reliability. 

To clarify the translational potential of the machine learning algorithms, we 

systematically reviewed and meta-analyzed all available diagnostic and 

prognostic models for CHR individuals based on machine learning methods 

(Paper I). Our results showed a relatively good accuracy of models overall and, 

importantly, a comparable performance between those based on clinical 

information (e.g., symptoms) and those based on biological information (e.g., 

brain morphology). Additionally, one important future direction emerging from our 

study was that further basic research on potential biomarkers (i.e., biological 

signs of risk of disease development) is of central importance to improve models’ 

performance.  

One family of biomarkers focuses on structural and functional brain properties, 

usually analyzed using Magnetic Resonance Imaging (MRI). Structural MRI has 

already offered the opportunity to detect disruptions in brain volume or density 

both in first-episode psychosis and at-risk persons10, and differences between 

those who develop the disease and those who do not18. These findings could be 

important to promote the use of neurological information as a supplemental 

diagnostic and prognostic instrument in clinical practice. However, cortical brain 

volume is known to be influenced by several internal and external confounding 

factors like drug consumption, antipsychotic medication, plasticity mechanisms 

or lifestyle characteristics18,19, potentially shadowing the unique underlying 

disease effects. As such, more stable measures may be required if predictions 

from brain MRI measures are to be used in machine learning pipelines.  
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Gyrification could be such a stable candidate because it is the convolutional 

property of the human brain cortex, which is known to be mostly genetically 

driven20, much less sensitive to external factors and to change during lifetime only 

slightly21. Hence, this morphological measure might be very informative of early 

neurodevelopmental processes and disruptions thereof, possibly underlying 

psychiatric diseases or impaired functional outcome. However, further 

investigation of gyrification is required before it can be used as a potential 

predictor of disease.  

2.2 Gyrification 

The cortical folding process is tightly linked to early neurodevelopment because 

it begins around the third semester of fetal life and peaks at about 2 years post 

conception20. Gyrification is genetically determined22, and evidence shows that 

several complex processes play a role in the formation of the individual cortical 

morphology (e.g., biological and biomechanical forces, as well as anabolic and 

metabolic processes23,24). The importance of these structural cortical differences 

for human behavior is supported by severe cognitive impairments in 

gyrencephalic malformations25 and folding abnormalities in several diseases 

accompanied by cognitive dysfunctions (e.g., schizophrenia26, autism27 or 

Williams syndrome28). The intuitive link between the complexity of the convoluted 

cortex and cognition has been also validated both in animals (e.g., species with 

increased gyrification show higher cognitive abilities,29) and in humans30,31.  

In mental diseases, gyrification abnormalities have been found in affective and 

non-affective psychotic syndromes32,33, depression34 and even before the first 

manifestation of psychosis35. Some evidence shows that at-risk individuals differ 

in their gyrification patterns from their healthy counterparts and even that folding 

aberrations might be predictive of a transition to the overt disease35. 

Nevertheless, results remain inconclusive and inconsistent36, possibly because 

of methodological limitations in dealing with a high dimensional data space and 

the still understudied field of gyrification itself.  

One the one hand, traditional statistical methods used to analyze gyrification 

(e.g., general linear models) are based on assumptions and attempt modelling 

the data following a-priori hypotheses, thereby potentially overseeing 

multidimensional and interconnected gyrification patterns. On the other hand, 

traditional statistics focuses on group-level differences allowing only descriptive 

conclusions and not testing the single-subject predictive potential of gyrification. 

Multivariate methods like machine learning enable individual predictions and 

might be more suited to complex neuroimaging data13. The little available 
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evidence on gyrification-based predictive models shows that cortical folding can 

predict negative symptoms trajectories37 and that disorganized folding networks 

are predictive of psychosis transition in CHR individuals38.  However, to the best 

of our knowledge, still no specific investigation of the role of cortical gyrification 

in prediction of transition to psychosis or of functional outcome based on machine 

learning exists.  

In a first step towards a translational gyrification model, we therefore investigated 

the hypothesis that gyrification would predict transition or functional outcomes by 

using machine learning methods in 158 CHR patients (Appendix). Our results 

showed that gyrification could not predict either outcome category significantly 

above chance level. These negative findings suggest either I) a further 

methodological limitation, or II) that cortical folding is not specifically predictive of 

psychotic episodes, but rather plays a greater role in neurodevelopmental insults 

influencing psychiatric diseases regardless of diagnostic category.  

To disentangle these speculations, we further explored the role of cortical 

gyrification in psychiatric risk (Paper II) by:  

I) using a novel and advanced statistical method that could address the 

challenges faced when dealing with high dimensional data that were 

incompletely addressed with standard gyrification pipelines, and 

II) focusing on transdiagnostic disease processes in order to determine 

whether gyrification abnormalities crossed diagnostic boundaries to 

broadly influence functional outcomes (i.e., as opposed to specifically 

influencing outcomes in a psychosis risk group). 

2.3 Methodological proceedings in gyrification research 

The high dimensionality of brain gyrification is usually handled with the use of 

traditional brain atlases based on coarse anatomical characteristics (e.g., borders 

between folds and gyri39,40), whereby the assumption that folding patterns follow 

observable surface boundaries must not necessarily be met.  

One alternative approach is to shift to an investigation of the cortical structural 

co-variance. The concept of co-variation of structural brain morphology has been 

widely recognized in the last two decades and expresses the phenomenon of 

inter-individual cortical differences co-varying with other, topologically distinct, 

brain regions41,42. Structural covariance is highly heritable, relates to behavioral 

variation in the population, and is thought to reflect coordinated developmental 

processes42. Seed- and network-based analyses or Principal Component 

Analyses have been the most popular techniques to investigate structural 
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covariance, yielding important insights into psychopathologies43–46. Only few 

studies have investigated gyrification structural networks in schizophrenia47,48 

and high-risk populations38, highlighting the potential of this measure of inter-

individual variation to better identify the underpinnings of psychiatric 

endophenotypes. One equally promising approach to investigate covariance has 

been newly proposed by Sotiras and colleagues49, who applied Non-Negative 

Matrix Factorization (NNMF) in order to detect patterns of structural covariance 

of cortical thickness in a healthy population. NNMF is an unsupervised 

multivariate technique, which captures a sparse, parts-based representation of 

the data2,50. This method is particularly useful in the neuroimaging context for two 

main reasons: first, it is able to aggregate variance in a parcellation-like way, 

while also accounting for the multivariate nature of cortical features; second, 

NNMF allows subdividing covariance at different resolutions, which reflects the 

hierarchical and modular organization of the human brain cortex. Sotiras and 

colleagues49 demonstrated the importance of cortical thickness-based 

covariance for the understanding of healthy coordinated cortical development. 

Investigating gyrification co-variation might shed light on even earlier 

developmental mechanisms, potentially reflecting the abnormal maturational 

processes leading to psychopathology. The solutions generated from the 

analyses could also be further used in machine learning pipelines in the future.  

2.4 Transdiagnostic disease processes 

In the last decades, psychiatric care has been evolving towards a more process-

based, transdiagnostic approach, as opposed to the traditional diagnose-oriented 

one51. On the one hand, the trans-nosological nature of symptoms and 

comorbidities has been widely recognized; on the other hand, research has been 

pointing to common genetic, neurobiological, as well as pathophysiological 

underpinnings of major psychiatric diseases52–54. A transdiagnostic framework 

might be based on dysfunctions shared across diseases (for instance cognitive 

or functioning disabilities), which, in turn, might be caused by similar insults during 

early neurodevelopment. A more in-depth understanding of these risk factors 

might be of great value for the development of both more precise machine 

learning models, as well as tailored early transdiagnostic interventions55. 

Gyrification might be especially valuable for this challenge because of its 

neurodevelopmental nature and because folding abnormalities have been found 

across several disorders56. Nevertheless, transdiagnostic gyrification and its link 

to putative common disease manifestations—especially in the early phases of 

disease when diagnostic borders are more subtle—are still highly understudied.  
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Therefore, we aimed first at investigating data-driven structural covariance 

patterns of cortical gyrification in a healthy population (N=318) using NNMF, in 

order to overcome potential methodological limitations in the field. Further, we 

used a large clinical sample including individuals with a first episode of psychosis, 

a first episode of depression, and CHR (N=713) to investigate how patterns of 

gyrification are expressed in psychopathology, and whether they relate to 

similarities or differences between patients (Paper II). We found that patients’ 

gyrification differed from that of healthy individuals, and that patterns were highly 

comparable across diagnostic categories. Furthermore, folding abnormalities 

were linked to commonly disrupted psychological mechanisms such as cognition 

and global functioning, and not to disease-specific symptoms.  

Our results support the hypothesis of neurodevelopmental insults affecting the 

folding of the cerebral cortex and leading to psychopathological manifestations 

shared by typically distinct diagnostic categories. This transdiagnostic nature and 

the lack of associations between gyrification and specific symptoms suggests that 

gyrification abnormalities might be too unspecific to signal the manifestation of a 

psychotic episode or functional outcomes after one year, and thus might not be 

predictive when integrated in machine learning models, as we found in our 

analyses (Appendix). In fact, psychosis might be caused by more complex 

interactions of events, including a range of environmental factors48, that are not 

captured by cortical folding. Nevertheless, gyrification might add important 

information within multivariate predictive models (Paper I) by expressing early 

insults on a neurobiological level, which signal common features of mental illness 

such as cognitive or functioning impairments—as we demonstrated in our study 

(Paper II). 

 

In order to successfully build diagnostic and prognostic models, which can be 

integrated in psychiatric clinical practice, research must thus necessarily further 

pursue the challenge of understanding the neurobiological mechanisms leading 

to pathology. A deeper investigation of biomarkers linked to very early 

neurodevelopmental processes such as gyrification might be very useful to shed 

light on transdiagnostic features underlying psychiatric diseases and hence 

contribute to a broader conceptualization of risk in psychiatry. 
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3. Zusammenfassung: 

Das Psychoserisikosyndrom ermöglicht die Untersuchung phänotypischer und 

mechanistischer Faktoren, die das Risiko junger Menschen beeinflussen eine 

Psychose zu entwickeln - eine der belastendsten psychiatrischen Erkrankungen 

weltweit3. Die Erforschung von Biomarkern spielt in der Früherkennung von 

Psychosen eine große Rolle58. Biomarker sind biologische/physiologische oder 

klinische Variablen, die das Risiko eines möglichen Übergangs von einem 

Psychose-Risiko-Syndrom in eine manifeste Psychose reflektieren oder z.B. mit 

Änderungen des Funktionsniveaus assoziiert sind. Mit Hilfe von Biomarkern und 

fortschrittlichen statistischen Methoden, wie Maschinellem Lernen (machine 

learning)13, konnten zahlreiche multivariate diagnostische und prädiktive Modelle 

entwickelt werden, die in Zukunft den klinischen Alltag mittels personalisierter 

Vorhersagen effizienter gestalten könnten. Um machine learning-Modelle auf die 

psychiatrische Versorgung zu übertragen, müssen jedoch zwei entscheidende 

Forschungszweige parallel verfolgt werden: I) Nachweis der Wirksamkeit, 

Zuverlässigkeit und Replizierbarkeit bestehender prädiktiver Modelle und II) die 

Suche nach weiteren aussagekräftigen Biomarkern, die in der personalisierten 

Psychiatrie eingesetzt werden können.  

In der vorliegenden Arbeit stellen wir uns dieser Herausforderung, indem wir I) 

eine systematische Review und Meta-Analyse veröffentlichter diagnostischer und 

prognostischer Modelle für Psychoserisikosyndrome durchführen (Paper I), II) die 

Rolle der Hirngyrifizierung als potentiellen Biomarker für Risikopersonen 

untersuchen (Appendix) und III) die Bedeutung der Gyrifizierung im weiteren 

Rahmen psychiatrischer Erkrankungen und deren Risiko erforschen (Paper II). 

Unsere systematische Review zeigte, dass machine learning-basierte 

diagnostische und prognostische Modelle für Risikopersonen grundsätzlich eine 

gute Genauigkeit (67-78% Sensitivität und 77-78% Spezifität) zeigen, 

unabhängig von den verwendeten Datenmodalitäten oder dem gewählten 

Algorithmus. Hohe Heterogenität in den Studien und ein Publikationsbias 

könnten jedoch unsere Ergebnisse beeinflusst haben, so dass eine eindeutige 

Schlussfolgerung schwer zu ziehen ist.  

Um die Rolle der Hirngyrifizierung als möglichen Biomarker in 

Hochrisikopatienten zu untersuchen, entwickelten wir machine learning Modelle 

zur Prädiktion des Funktionsniveaus einerseits und der Transition in eine klinisch 

manifeste Psychose andererseits, welche Ergebnisse knapp über dem 

Zufallsniveau erreichten (max. ausgeglichene Genauigkeit 53,4%). Dies deutet 

darauf hin, dass die Rolle der Gyrifizierung nicht spezifisch für das 

Psychoserisiko ist, sondern mit neurologischen Entwicklungsprozessen 
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zusammenhängen könnte, die ein breiteres Spektrum psychiatrischer 

Erkrankungen betreffen. 

Um diese Hypothese zu untersuchen, analysierten wir die strukturelle Kovarianz 

der Gyrifizierung in einer großen transdiagnostischen Patientenpopulation, 

bestehend aus Patienten mit einer ersten psychotischen Episode, depressiven 

Patienten und Hochrisikopatienten, im Vergleich mit einer gesunden 

Kontrollpopulation. Hierbei zeigte sich eine reduzierte Gyrifizierung in der 

Patientenpopulation, welche mit entwicklungsbedingten Risikofaktoren 

(Neurokognition und Funktionsfähigkeit) assoziiert war, jedoch nicht mit dem 

Schweregrad der Symptome korrelierte. Diese Faltungsanomalien könnten somit 

das Korrelat früher fehlerhafter neuronaler Entwicklungsprozesse sein, die die 

Vulnerabilität für psychiatrische Erkrankungen erhöhen. 

Wie unsere Ergebnisse zeigen, ist der Weg zu belastbaren prognostischen 

Modellen in der psychiatrischen Diagnostik noch lang und erfordert weitere 

Grundlagenforschung. Hirnmorphologische Maße wie die Gyrifizierung können 

ein besseres Verständnis entscheidender Mechanismen neuronaler 

Entwicklungsprozesse ermöglichen, die einem breiten Spektrum psychiatrischer 

Erkrankungen zu Grunde liegen. 
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4. Abstract (English): 

The Clinical High Risk (CHR) has enabled research into phenotypic and 

mechanistic factors highlighting the potential risk for young individuals to develop 

psychosis—one of the most burdening psychiatric conditions worldwide3. 

Detection of risk for psychosis has been supported by so-called biomarkers, i.e., 

biological readouts of risk, which could potentially signal a transition to the overt 

disease or negative functional outcomes58. Several multivariate diagnostic or 

predictive models based on biomarkers have been developed using advanced 

methods like machine learning13, producing personalized predictions, which 

could support everyday clinical decisions. However, in order to translate machine 

learning models to psychiatric care, two crucial research directions need to be 

followed in parallel to: I) prove the efficacy, reliability and replicability of existing 

predictive models, and II) further investigate particularly meaningful biomarkers 

which can be employed in personalized psychiatry. In the presented work, we 

pursued this challenge by: I) Conducting a systematic review and meta-analysis 

of published diagnostic and prognostic models for CHR (Paper I); II) Investigating 

the potential role of brain gyrification as a biomarker for at-risk individuals 

(Appendix); and III) Further exploring the significance of gyrification in extended 

psychiatric etiology and risk (Paper II). 

In the meta-analysis, we discovered that machine learning- models for CHR 

individuals showed relatively good accuracy (67-78% sensitivity and 77-78% 

specificity) and all models worked equally well, irrespective of data analyzed or 

algorithm chosen. High heterogeneity throughout studies and a publication bias 

could have affected our results, so that we could not draw definite conclusions.  

Machine learning models constructed on gyrification in at-risk individuals could 

predict functional outcome or transition to psychosis only slightly above chance 

level (max. balanced accuracy 53.4%). These results suggested that the role of 

gyrification in risk might not necessarily be specific, but rather linked to 

neurodevelopmental processes affecting a wider range of psychiatric diseases 

(i.e., transdiagnostically). 

To investigate the transdiagnostic neurodevelopmental hypothesis, we analyzed 

gyrification structural covariance in a large transdiagnostic population of first 

episode psychosis and depression and CHR individuals. Our results revealed 

reduced gyrification in patients compared to healthy controls, which was 

associated with developmentally mediated risk factors (i.e., neurocognition and 

functioning), but not current symptoms. Hence, these cortical folding 

abnormalities might reflect early neurodevelopmental insults that increase 

individuals’ vulnerability to psychiatric disorders. 
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Taken together, the road to usable prognostic models for psychiatry is still long 

and requires further basic research. Brain morphological measures such as 

gyrification might facilitate a better understanding of crucial neurodevelopmental 

mechanisms potentially influencing a broader spectrum of psychiatric diseases. 
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5. Paper I 

Individualized diagnostic and prognostic models for patients with 

psychosis risk syndromes: A meta-analytic view on the state of the art.  

Psychosis risk syndromes have been extensively investigated in the past two 

decades with the aim of predicting and possibly preventing transition to the overt 

disorder in help-seeking individuals. Novel statistical methods like machine 

learning and Cox proportional hazard regression have been crucial to develop 

personalized models able to diagnose risk for psychosis and predict a future 

outcome in these individuals based on different data modalities (e.g., 

neurocognitive or neuromorphological characteristics). However, despite their 

great potential, these models have still not been translated into clinical practice.  

To shed light on the current state of published machine learning- and Cox 

regression-based diagnostic and prognostic models, we thoroughly reviewed the 

literature and conducted a meta-analysis on accuracy performances. We 

investigated different methodological approaches and data modalities, 

specifically focusing on performance differences between clinical (i.e., based on 

symptoms, cognition and environmental factors) and biological models (i.e., 

constructed on brain morphology and function).  

We selected 44 articles, including in total 3707 individuals for prognostic and 

1052 for diagnostic studies. Psychosis risk syndromes could be relatively 

accurate diagnosed (78% sensitivity and 77% specificity), while prognostic 

models reached overall a sensitivity and specificity of 67% and 78%, respectively. 

Machine learning models gained a 10% higher sensitivity compared to those 

using Cox regression, however validation techniques also vastly differed between 

the two approaches. These results were not moderated by the type of data 

modality, the algorithm used, or the at-risk population studied. Importantly, we 

detected a publication bias for prognostic studies, which points to inflated results 

reported by studies with smaller sample sizes.  

Our results showed comparable performance between clinical and biological 

models, which calls for improvement in basic research on brain markers of 

disease. Further, findings may be affected by I) heterogeneity in the field, 

including definitions of clinical populations, data domains and machine learning 

algorithms used, and II) degree of methodological validity, reliability and 

generalizability. These factors might hinder the translation of diagnostic and 

prognostic models to clinical practice and need to be thoroughly taken into 

consideration in future research.



Archival Report

Individualized Diagnostic and Prognostic Models
for Patients With Psychosis Risk Syndromes: A
Meta-analytic View on the State of the Art
Rachele Sanfelici, Dominic B. Dwyer, Linda A. Antonucci, and Nikolaos Koutsouleris

ABSTRACT
BACKGROUND: The clinical high risk (CHR) paradigm has facilitated research into the underpinnings of help-seeking
individuals at risk for developing psychosis, aiming at predicting and possibly preventing transition to the overt
disorder. Statistical methods such as machine learning and Cox regression have provided the methodological
basis for this research by enabling the construction of diagnostic models (i.e., distinguishing CHR individuals from
healthy individuals) and prognostic models (i.e., predicting a future outcome) based on different data modalities,
including clinical, neurocognitive, and neurobiological data. However, their translation to clinical practice is still
hindered by the high heterogeneity of both CHR populations and methodologies applied.
METHODS: We systematically reviewed the literature on diagnostic and prognostic models built on Cox regression
and machine learning. Furthermore, we conducted a meta-analysis on prediction performances investigating
heterogeneity of methodological approaches and data modality.
RESULTS: A total of 44 articles were included, covering 3707 individuals for prognostic studies and 1052 individuals
for diagnostic studies (572 CHR patients and 480 healthy control subjects). CHR patients could be classified against
healthy control subjects with 78% sensitivity and 77% specificity. Across prognostic models, sensitivity reached 67%
and specificity reached 78%. Machine learning models outperformed those applying Cox regression by 10%
sensitivity. There was a publication bias for prognostic studies yet no other moderator effects.
CONCLUSIONS: Our results may be driven by substantial clinical and methodological heterogeneity currently
affecting several aspects of the CHR field and limiting the clinical implementability of the proposed models. We
discuss conceptual and methodological harmonization strategies to facilitate more reliable and generalizable models
for future clinical practice.

Keywords: Biomarkers, Clinical psychobiology, Machine learning, Predictive psychiatry, Psychosis, Translational
medicine
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Psychotic disorders are among the most disabling mental ill-
nesses and represent one of the top 20% causes of socio-
economic burden worldwide (1). Therefore, psychiatric
research has substantially invested in better early detection
strategies for these disorders (2). The clinical high risk (CHR)
concept (3) describes a mental state characterized by sub-
threshold psychotic symptoms that differ quantitatively in their
intensity from those of a full-blown psychosis (Supplement and
Table 1). The CHR paradigm has become a well-established
clinical avenue to early detect and potentially treat the psy-
chosis high-risk states. Based on the CHR paradigm, re-
searchers have investigated the nature of the prepsychotic
phase from both pathophysiological and epidemiological per-
spectives (4,5). However, these efforts have been challenged
by a constantly declining incidence rate of psychosis among
CHR patients (4,6), with roughly one third of not-transitioned
CHR cases still experiencing subthreshold symptoms,

psychosocial impairments (7), and lower level of quality of life
(8). Thus, the CHR designation delineates a mental condition
that is burdensome per se and, in addition, is associated with a
known set of comorbidities (e.g., depression, substance
abuse, anxiety disorders) (9). Therefore, predictive psychiatry
has gradually broadened its scope from detecting disease
transition to encompassing adverse outcomes more broadly
[e.g., functional deficits (10), treatment response (11), persist-
ing negative symptoms (12), psychiatric comorbidities (13)].

Considering that clinical CHR instruments alone detect only
about 47% of transitions after 3 years (14), efforts have been
made to identify potential risk factors for psychosis in several
symptomatological and biological readouts, or biomarkers, of
the disorder (15) so that individualized prognostication may be
enhanced. The presence of environmental adverse events (16),
cognitive impairments (17), neuromorphological (18), and elec-
trophysiological (19) and hematological (20) alterations, as well
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as resting-state (21) and task-related (22) neural activity and
connectivity anomalies, has been consistently reported in people
at risk for psychosis compared with healthy individuals. Some of
these phenotypes have been associated with both disease
course and transition to the overt disease (4). Therefore, the
identification of reliable markers able to distinguish between at-
risk and healthy populations may be potentially useful in clin-
ical practice to monitor disease development and treatment
outcome (23) and to obviate time-consuming CHR assessments.
The two prevailing statistical approaches to address the chal-
lenge of single-subject prediction are machine learning (ML)
methods (e.g., support vector machine, LASSO [least absolute
shrinkage and selection operator] regression, random forest),
which can handle large databases and different data domains
(24,25), and Cox proportional hazard regression, a form of
multivariate survival analysis (26) able to investigate time-to-
conversion trajectories. Recent research applying these
methods has produced prognostic models able to stratify CHR
patients into different risk classes according to their pretest risk
enrichment (27) or a set of combined predictors (28,29), or to
predict patients’ functional outcomes based on different data
modalities with performance accuracies of up to 83% (10,30).
Despite the great potential of these models, their applicability is
still hindered by the methodological heterogeneity in the field.
Indeed, CHR patients are identified by several clinical in-
struments and are characterized by subtypes with different levels
of risk (14). Moreover, models’ generalizability has been
assessed through discrepant validation strategies across
studies, ranging from the less replicable (i.e., single-site cross-
validation [CV]) to the most robust (i.e., validation to external
samples) (25). Thus, methodological approaches still lack stan-
dardized validation strategies testing clinical applicability under
real-world conditions. One way to tackle these issues is to use a
meta-analytic approach to quantitatively investigate models’
performance across different outcomes, algorithms, and data
modalities. Although important contributions to this goal have
been made (5,29,31), to the best of our knowledge, the field is
still lacking such an analysis. Investigating the field’s heteroge-
neity would allow a comprehensive assessment of accuracy and
validity of the existing diagnostic and prognostic models, an
important prerequisite for establishing reliable tools for psycho-
sis risk quantification in clinical care.

Our aim was to review the literature on ML-based and Cox
regression–based diagnostic models (i.e., discriminating CHR
individuals from healthy individuals) and prognostic models
(i.e., predictive approaches for transition or negative out-
comes). Furthermore, we performed a meta-analysis of
models’ performance, with the aim of investigating the effects
of 1) data modality, 2) type of algorithm, and 3) validation
paradigms. We expected that our results would elucidate the
complexity of methods and data domains currently used in the
predictive analytics arm of CHR research. This will facilitate a
deeper understanding of the state of the art within the field and
may clarify the bottlenecks impeding clinical translation.

METHODS AND MATERIALS

Literature Search

We conducted a systematic search of published original arti-
cles in English through June 30, 2019, using a range of search

terms in PubMed and Scopus as well as reference lists of the
included articles (Supplement). We selected studies that re-
ported prognostic or diagnostic models constructed using ML
or Cox proportional hazard regression. Concerning diagnostic
models, we included only those that used healthy control
subjects (HCs) as a reference group to enlarge the sample size
by selecting comparable classification models across studies.
CHR included patients with a psychosis risk syndrome cate-
gorized as CHR, ultra high risk (UHR), or at-risk mental states
(Table 1) as well as those with a familial risk (FR) or 22q11.2
deletion syndrome (22q11.2DS). Studies were included if
measures of performance accuracy were reported (i.e., true
positives [TP], false positives [FP], true negatives [TN], and
false negatives [FN]) or if they could be extracted. Results of
the literature search are illustrated in the PRISMA (Preferred
Reporting Items for Systematic Reviews and Meta-analyses)
flowchart (32) (Figure S1).

A comprehensive list of all variables extracted by each
study is reported in the Supplement (second section). Perfor-
mance accuracy measures used for analyses comprised TP,
FN, TN, FP, sensitivity (SE) [TP/(TP 1 FN)], and specificity (SP)
[TN/(TN 1 FP)].

Data Analysis

The meta-analysis of diagnostic models was conducted
following previous work (33). Extracted SE and SP were con-
verted to a confusion matrix tabulated across studies. Publi-
cation bias was assessed with both overall diagnostic odds
ratio and SE. The Deeks et al. (34) method was used to ac-
count for biases associated with unequal proportions of TP
and TN cases (Supplement).

Models were built using the bivariate random effects
modeling of Reitsma et al. (2005) (35) in the mada R package
(version 0.5.8), which permits the analysis of SE and SP
separately by explicitly accounting for correlations between
each measure, incorporating precision estimates arising from
sample size differences (i.e., more precision with higher
weight), and modeling normal distributions of each with a
random effects approach. This bivariate method was used to
produce summary estimates of SE, SP, and confidence in-
tervals (CIs) that were used in forest plots, in addition to the
analysis of moderators using mixed modeling. Moderators
were age, sex, data modality, algorithm, presence of CV, type
of CHR, being a multisite study, and year of publication. For
prognostic studies, we also investigated follow-up time and
prognostic target. Moderator analyses were conducted if a
minimum of 10 models for variable were available to decrease
the standard error and maximize power in case of high
between-study variance (36) and to control for sample size and
CV scheme—the latter factor overlapping with algorithm used.
Results were corrected for false discovery rate. Likelihood ra-
tios and diagnostic odds ratios were produced using a Markov
chain Monte Carlo approach within the mada toolbox. All an-
alyses were conducted with R (version 3.6.0).

RESULTS

The systematic literature search detected 881 articles, from
which 44 were considered eligible after screening for exclu-
sion criteria, for a total of 12 diagnostic models (Table 2 and
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Figure S1) and 32 prognostic models (Table 3 and Figure S1).
The final sample comprised 3707 patients for prognostic
studies (mean age = 20.41 years; w58% male), of which 320
(w9%) were CHR patients investigated for nontransition
outcomes (mean age = 19.25 years; 56% male) and 1052
were used for diagnostic classification (mean age = 23.42
years; w59% male), of which 480 (45%) were HCs. In addi-
tion, 26 studies used ML (all diagnostic studies) and 18 were
conducted with Cox regression (Tables 2 and 3 and
Table S1).

Meta-analytic Results

CHR individuals could be classified against HCs with an
overall SE of 78% (95% CI = 73%–83%) and an SP of 77%

(95% CI = 68%–84%), while across all prognostic models SE
reached 67% (95% CI = 63%–70%) and SP reached 78%
(95% CI = 73%–82%). Prognostic studies showed a publica-
tion bias (R2 = .26, p , .001), whereas diagnostic studies did
not (R2 = .07, p . .05) (Figure S2). Performances of both
models’ categories are illustrated in two summary receiving
operating characteristic curves (Figures 1 and 2) and forest
plots (Figures 3 and 4). Within diagnostic models, moderator
effects of type of CHR and algorithm, data modality, presence
of CV, and being a multisite study were not investigated
because less than 10 models per factor were available (36). We
found no effects of moderator variables in either application
domain (p . .10) (Table S2) even when splitting the sample
based on CV (Supplement).

Table 1. Definitions of Different Psychosis Risk Syndromes Commonly Referred to as CHR States and Descriptions of the
Abbreviations and Respective Clinical Diagnostic Instruments

Concept Description Instruments

CHR Clinical high risk: psychosis risk syndrome operationalized by UHR, BS, or both diagnostic criteria All instruments below

ARMS At-risk mental state: same as the CHR state

UHR Ultra high risk: psychosis risk syndrome described by the fulfillment of APS, BLIP, or GRDS
criteria

SIPS, SOPS, CAARMS

APS Attenuated psychotic symptoms: subthreshold psychotic symptoms

BLIPS Brief limited intermittent psychotic symptoms: full-blown psychotic symptoms present for a
maximum of a week

GRDS Genetic risk and deterioration syndrome: family history of psychosis or schizotypal personality
and drop in functioning or sustained low functioninga

BS Basic symptoms: subjective disturbances of cognitive, affective, and perceptive nature BSABS

COGDIS Cognitive disturbances: 9 BS describing disturbances of cognitive nature SPI-A/SPI-CY

COPER Cognitive-perceptive symptoms: 10 BS describing disturbances of a cognitive-perceptual nature

UPS Unspecific prodromal symptoms: unspecific attenuated symptoms characterizing a low-risk state BSIP

BSABS, Bonn Scale for the Assessment of Basic Symptoms; BSIP, Basel Screening Instrument for Psychosis; CAARMS, Comprehensive
Assessment of the At-Risk Mental State; SIPS, Structured Interview for the Prodromal Syndrome; SOPS, Scale of Prodromal Symptoms; SPI-A/
SPI-CY; Schizophrenia Proneness Instrument–Adult version/Schizophrenia Proneness Instrument–Child and Youth version.

aDrop in functioning is described 1) in the CAARMS as a Social and Occupational Functioning Assessment Scale (SOFAS) score #30%
compared with the previous functioning, within the last year, and for at least 1 month and 2) in the SIPS/SOPS as a 30% decrease in the Global
Assessment of Functioning scale score from premorbid baseline. A sustained low functioning is defined only in the CAARMS as a SOFAS score
#50 in the past year or longer.

Table 2. Summary of Diagnostic Studies Included in the Current Meta-analysis

Study CHR Type Data Modality Algorithm Outcome SE FPR

Bendfeldt et al. (37) UHR, UPS Biological: fMRI SVM Diagnosis 74 0.42

Guo et al. (39) FR Biological: fMRI SVM Diagnosis 60 0.6

Koutsouleris et al. (41) UHR, BS Clinical: cognition SVM Diagnosis 96 0.2

Koutsouleris et al. (43) UHR, BS Biological: sMRI SVM Diagnosis 89 0.2

Liu et al. (53) FR Biological: fMRI SVM Diagnosis 72 0.14

Pettersson-Yeo et al. (47) UHR Biological: sMRI SVM Diagnosis 80 0.27

Scariati et al. (48) 22q11.2DS Biological: fMRI SVM Diagnosis 81 0.12

Studerus et al. (99) UHR, UPS Clinical: cognition Random forest Diagnosis 73 0.23

Tylee et al. (49) 22q11.2DS Biological: DTI SVM Diagnosis 85 0.18

Valli et al. (50) UHR Biological: sMRI SVM Diagnosis 68 0.24

Wang et al. (42) UHR Biological: fMRI SVM Diagnosis 82 0.31

Zhu et al. (46) UHR Biological: fMRI SVM Diagnosis 72 0.53

22q11.2DS, 22q11.2 deletion syndrome; BS, basic symptoms; CHR, clinical high risk; DTI, diffusion tensor imaging; fMRI, functional magnetic
resonance imaging; FPR, false positive rate; FR, familial risk; SE, sensitivity; sMRI, structural magnetic resonance imaging; SVM, support vector
machine; UHR, ultra high risk; UPS, unspecific prodromal symptoms.
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Table 3. Summary of Prognostic Studies Included in the Current Meta-analysis

Study CHR Type Data Modality Algorithm Outcome SE FPR

Amminger et al. (11) UHR Biological: lipids GPC Functioning 83 0.25

Bedi et al. (54) UHR Clinical: speech Convex Hull Transition 100 0

Buchy et al. (100) UHR Clinical: substance use Cox regression Transition 69 0.19

Cannon et al. (101) UHR Clinical: symptoms, family risk,
functioning

Cox regression Transition 67 0.47

Cannon et al. (28) UHR Multimodal: symptoms, environment,
genetic, cognition

Cox regression Transition 67 0.28

Carrión et al. (74) UHR Multimodal: symptoms, environment,
genetic, cognition

Cox regression Transition 58 0.27

Chan et al. (56) UHR, UPS Biological: serum LASSO regression Transition 89 0.34

Clinical: positive symptoms 78 0.4

Multimodal: serum, symptoms 89 0.21

Cornblatt et al. (58) UHR Multimodal: clinical, demographics,
cognition

Cox regression Transition 60 0.03

Das et al. (55) UHR, UPS Biological: cortical gyrification Randomized trees Transition 66 0.03

de Wit et al. (30) UHR, BS Biological: sMRI, gyrification SVM Functioning 67 0.25

Clinical: disorganized speech 76 0.25

Multimodal: sMRI, clinical,
combination

68 0.19

DeVylder et al. (102) UHR Clinical: disorganized communication Cox regression Functioning 58 0.4

Dragt et al. (64) UHR Clinical: disorganized communication Cox regression Transition 50 0.09

Francesconi et al. (59) UHR Clinical: thought content, ToM,
processing, NSS

Cox regression Transition 67 0.03

Fusar-Poli et al. (60) UHR-BLIPS Clinical: disorganizing symptoms LASSO Cox
regression

Transition 24 0.37

Gothelf et al. (38) 22q11.2DS Biological: sMRI SVM Transition 90 0

Hoffman et al. (73) UHR Clinical: cognition Cox regression Transition 89 0.11

Kambeitz-Ilankovic et al. (40) UHR, BS Biological: cortical surface area SVM Functioning 79 0.15

Koutsouleris et al. (41) UHR, BS Clinical: cognition SVM Transition 80 0.25

Koutsouleris et al. (10) UHR, BS Biological: sMRI SVM Functioning (role) 67 0.53

Clinical: functioning 61 0.25

Multimodal: sMRI and functioning 59 0.3

Koutsouleris et al. (10) UHR, BS Biological: sMRI SVM Functioning (social) 80 0.28

Clinical: functioning 70 0.16

Multimodal: sMRI and functioning 83 0.18

Koutsouleris et al. (44) UHR, BS Biological: sMRI SVM Transition 76 0.15

Lavoie et al. (71) UHR Biological: blood antioxidant Cox regression Transition 91 0.33

Mechelli et al. (45) UHR Clinical: disorders of thought content,
attenuated positive symptoms,
functioning

SVM Transition 69 0.39

Functioning 63 0.37

Michel et al. (61) UHR, BS Clinical: SIPS, SPI-A, cognition Cox regression Transition 57 0.45

Nieman et al. (62) UHR, BS Multimodal: symptoms and ERPs Cox regression Transition 78 0.12

Perkins et al. (20) UHR Biological: blood plasma analytes Greedy algorithm Transition 60 0.1

Ramyead et al. (57) UHR, UPS Biological: EEG LASSO Transition 58 0.17

Ruhrmann et al. (65) UHR, BS Clinical: symptoms, sleep, schizotypy,
functioning, education

Cox regression Transition 42 0.02

Tarbox et al. (66) UHR Clinical: alogia, anhedonia/asociality,
suspiciousness

Cox regression Transition 62 0.39

Thompson et al. (67) UHR Clinical: unusual thought content,
functioning, family history, functional
decline

Cox regression Transition 30 0.11

van Tricht et al. (68) UHR Biological: EEG Cox regression Transition 46 0.13

van Tricht et al. (72) UHR, BS Biological: EEG Cox regression Transition 83 0.21
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Effect of Algorithm Choice

A total of 19 ML studies (73%) employed a support vector
machine algorithm (10,30,37–53), while the rest used
Gaussian process (11) or convex hull classification (54),
randomized trees (55), greedy algorithm (20), random forest
(5), or LASSO regression (56,57). All ML models were
computed with CV, whereas studies using Cox regression
applied bootstrapping (28,58–62), reported apparent results
(i.e., the model is tested in the same sample from which it
was derived) (63–68), or lacked a validation procedure.
Among the cross-validated studies, 58% applied leave-one-
out CV, 3 of which nested and 7 of which used k-fold CV (3
in its repeated nested form). Only 1 study applied a leave-
site-out CV (10), that is, a form of internal–external valida-
tion (69). Within prognostic studies, we found a main effect of
CV/algorithm on SE (p = .009; c2

2 = 6.96, p = .031); that is,
cross-validated ML models reached a higher SE (71%, 95%
CI = 67%–74%) than Cox regression ones (61%, 95% CI =
54%–68%) (Figure 4).

Effect of Data Modality

Diagnostic models included the use of functional
(37,39,43,47,48) and structural (46,50,70) magnetic resonance
imaging (MRI) and diffusion tensor imaging (49), and behavioral
models were based on neurocognitive functions (42,43).

Models for prediction of transition to psychosis involved
blood-based (20,56,71), electrophysiological (57,68,72), and
neuroanatomical data using white and/or gray matter volume
(38,44,51) or gyrification measures (55). Clinical models were
trained on prodromal positive and negative symptoms,

functioning, and family risk associated with functional decline;
the neurocognitive modality was based on executive functions
and verbal IQ (41) or speech features (54,73). Multimodal ap-
proaches included different combinations of clinical, neuro-
psychological, and demographic variables as well as genetic
risk (28,51,52,54,74). One model was built on P300 amplitude
from event-related potentials and sociopersonal adjustment
(62). Functional outcomes were predicted with neuroanatom-
ical (63,9,19) and blood-based biomarkers (11), and 2 studies
combined clinical and MRI measures (10,30). There were no
effects of data modality on SE (p = .172) or false positive rate
(p = .606) (Table S2).

Effect of Sample Characteristics

Performance accuracies were not influenced by age and sex of
individuals (p . .10) (Table S2). CHR in 86% of the studies
fulfilled the UHR criteria (75), while 6 models were based on the
genetic risk syndromes 22q11.2DS (38,48,49) or FR (39,52,53).
Because of this imbalance, we could not statistically test the
effects of this variable, yet results did not change when
excluding patients with 22q11.2DS and FR (Supplement).

Furthermore, individuals differed in their outcome defini-
tions. Poor functional outcome was defined on the Global
Assessment of Functioning scale (GAF) (cutoff: 70) (40), the
Social and Occupational Functioning Assessment Scale (score
#50) (45), the GAF modified version (76) defining nonresilience
through a cutoff of #65 (30), or the Global Functioning social/
role scale (,8) (10). In one case (11), treatment response was
operationalized as an increase of $15 points in the GAF. There
were no significant effects on SE or false positive rate driven by

Table 3. Continued

Study CHR Type Data Modality Algorithm Outcome SE FPR

Zarogianni et al. (51) UHR, BS Multimodal: sMRI and cognition SVM Transition 63 0.16

Zarogianni et al. (52) FR Biological: sMRI SVM Transition 76 0.23

Multimodal: sMRI and cognition 100 0.17

22q11.2DS, 22q11.2 deletion syndrome; BLIPS, brief limited intermittent psychotic symptoms; BS, basic symptoms; CHR, clinical high risk; EEG,
electroencephalography; ERP, evoked response potential; FPR, false positive rate; FR, familial risk; GPC, Gaussian process classification; LASSO,
least absolute shrinkage and selection operator; NSS, neurological soft signs; SE, sensitivity; SIPS, Structured Interview for Prodromal Syndromes;
sMRI, structural magnetic resonance imaging; SPI-A, Schizophrenia Proneness Instrument–Adult version; SVM, support vector machine; ToM,
theory of mind; UHR, ultra high risk; UPS, unspecific prodromal symptoms.

Figure 1. Summary receiver operating characteristic curve of diagnostic
studies. FPR, false positive rate.

Figure 2. Summary receiver operating characteristic curve of prognostic
studies. FPR, false positive rate; ML, machine learning.
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6. Paper II 

Novel gyrification networks reveal links with psychiatric risk factors in early 

illness 

Evidence of altered gyrification has been found in clinical populations diagnosed 

with schizophrenia, depression, and psychosis risk states. Such findings may 

reflect a developmental-related, transdiagnostic, signature, but this hypothesis 

has not been investigated yet and existing studies may be methodologically 

limited.  

Thus, we aimed to derive gyrification-specific covariance maps in order to 

investigate associations with symptoms, cognition, and functioning in a sample 

of individuals in early illness stages. A recently introduced, data-driven method, 

Orthogonal Projective Non-Negative Matrix Factorization, delineated gyrification-

based Patterns of Structural Covariance (PSC) in 308 healthy controls. The PSC-

map was applied to a sample of patients with recent onset psychosis or 

depression, and clinical high-risk for psychosis (N=713). Gyrification differences 

compared to controls were determined, and associations with diagnosis, 

symptoms, cognition, and functioning were investigated using linear models.  

We detected 18 PSCs in controls, the majority of which were externally validated 

in an independent healthy sample (N=84). PSCs differed between patients and 

controls in temporal-insular, lateral occipital, and lateral fronto-parietal areas 

(pFDR<0.01). Gyrification abnormalities were observable in high-risk, psychotic, 

and early depression patients. Altered cortical folding demonstrated associations 

with cognitive domains and role functioning, but not with symptomatology.  

Our findings highlight a sparse representation of cortical gyrification in controls, 

which is altered in early psychiatric illnesses and high-risk individuals and is not 

associated with symptom severity. A neurodevelopmentally-linked signature was 

suggested by relationships with cognition and lifetime role functioning. Further 

studies are required to delineate how and to what extent gyrification might add 

important information within predictive models by expressing early insults at a 

neurobiological level, which signal common features of mental illness. 
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Appendix: Gyrification-based predictive models 

 

Methods  

A total of 158 CHR individuals (mean age: 23.87, SD: 5.43; 49.4% females) were 

recruited as part of the PRONIA consortium (see Supplementary Material of 

Paper II for further information). Twenty-three patients transitioned to psychosis 

after one year (Table 1).  

 

 

Table 1. Basic demographic information of the study sample.  

N 158 

Age [years, mean] (SD) 23.87 (5.43) 

Sex [females, N] (%) 78 (49.4) 

Psychosis Transition [N] (%) 23 (14.6) 

GF-R Baseline [mean] (SD) 

1year Follow-up  

6.0 (1.59) 

6.55 (1.74) 

GF-S Baseline [mean] (SD) 

1year Follow-up  

6.34 (1.44) 

6.89 (1.44) 

Abbreviations: GF: Global Functioning Role (R) or Social (S), [0:10],higher scores indicate better 
functioning. 

 

 

Cortical surfaces were reconstructed from structural MRI images using the 

FreeSurfer software package (v. 6.0.0, https://surfer.nmr.mgh.harvard.edu/). 

Local gyrification Index (LGI)59 was calculated across the whole cortical mesh 

(Supplementary Material of Paper II).  

We built supervised machine learning models based on a Support Vector 

Machine algorithm using the in-house software NeuroMiner 

(http://proniapredictors.eu/neurominer/), which ensures a strict validation 

procedure through a nested cross-validation design15. Models were trained and 

tested to I) predict transition at follow-up (i.e., one year after study inclusion), and 

II) predict role and social functioning outcome at follow-up using the Global 

Functioning scale at a cut-off of 7 (GF:R and GF:S60)14. As part of the machine 

learning pipeline, patients’ gyrification meshes underwent preprocessing steps as 

follows: 1) age and sex correction using partial correlation analysis, 2) site 

correction thresholding for between-scanner voxel reliability14 at the 25%, 50% 

http://proniapredictors.eu/neurominer/
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and 75% percentile, 3) dimensionality reduction using Principal Component 

Analysis (PCA; 10, 20, 40, 80 and 160 eigenvariates) and 4) standardization 

using median and winsorization. We used a linear, non-kernelized L2-

regularized, L1-loss SVM algorithm and employed wrapper-based feature 

selection strategies to extract the most predictive features among the large 

gyrification mesh. Model optimization included hyperparameter combination (i.e., 

map percentile thresholds, PCA dimensions and SVM’s C regularization 

parameter range of 2
[−4

∈ℤ
→ +4]

) across all k=50 (=5 repetitions × 10 folds) available 

models in the training partition. The wrapper-based feature selection strategy was 

based on a greedy sequential forward search (SFS) at each SVM C regularization 

parameter, stopping when 80% of the features had been selected. Models’ 

effectiveness was calculated based on the Balanced Accuracy (BAC) resulting 

from the test partition. Machine learning pipeline is represented in Figure 1. 

 

 

 

Figure 1. Machine learning pipeline in NeuroMiner. 

 

 

Results  

The SVM algorithm could not predict a transition to psychosis above chance 

based on gyrification patterns (BAC: 45.9%, sensitivity: 38.5% specificity: 53.3%) 

and the classification didn’t reach statistical significance (Wilcoxon test Z=-1.60, 

p=.11). Similar results were found for prediction of functional outcome at 1 year 

follow-up, both for the social subscale (BAC: 50.0%, Z=-0.3, p=0.76) and the role 

subscale (BAC: 53.6, Z=0.3, p=0.73). Results are summarized in Table 2:  

 

Preprocessing

• Site Correction: G-mask, 

feature ranking at 

thresholds: 25, 50, 75%

• Dimensionality Reduction: 

PCA (dimensions: 10, 20, 

40, 80, 160)

• Standardization using 

median & winsorization

Greedy Feature Selection

Forward Wrapper

stopping at 80% of features

Support Vector Machine (SVM)

Weighted hyperparameter

Slack parameter: 2-4 to 24

Nested Cross-Validation

CV1: 10 Folds, 5 Permutations

CV2: 10 Folds, 1 Permutation
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Table 2. Machine learning results 

 Transition GF:S follow-up GF:R follow-up 

Balanced accuracy [%] 45.9 50.0 53.6 

Sensitivity [%] 38.5 50.0 55.6 

Specificity [%] 53.3 50.0 51.7 

Positive predictive value [%] 6.8 34.7 63.3 

Negative predictive value [%] 90.6 65.3 43.7 

Abbreviations: GF: Global Functioning Role (R) or Social (S), [0:10],higher scores indicate better 
functioning. Positive and negative predictive value were calculated in NeuroMiner from the initial 
true/false positive and true/false negative matrix. 

 

 

Conclusion 

Gyrification patterns in CHR individuals were not informative of a future transition 

to the overt disease, nor they could predict functional outcome after one year. 

These negative findings suggest that gyrification might be influenced both by 

early neurodevelopmental factors and by re-wiring processes during 

adolescence, which might be detectable throughout several psychiatric diseases, 

rather than in samples of at-risk subjects wherein the etiology and ultimate 

prognosis is unknown.  

In order to better investigate differences in cortical folding and address the role 

of gyrification as neuroanatomical biomarker for psychosis, future research 

should focus further on transdiagnostic psychiatric populations in the early stages 

of disease. The high complexity of this cortical measure also calls for more 

advanced multivariate statistical approaches, which might be able to better 

capture subtler morphological patterns. We tackled this challenge by using 

cutting-edge methods to extract structural covariance at the neuroanatomical 

level, as well as by investigating larger and more heterogenous psychiatric 

samples at early disease stages (Paper II). 



 105 

Acknowledgements 

A mia nonna Mina.  

Grazie per avermi insegnato a non arrendermi mai  

e a combattere sempre con il sorriso. 

 

This doctoral thesis is the result of years of research, commitment, pitfalls, dedication, 

but also luck and privilege. None of this could have been possible without me being a 

healthy, European woman who has a wealthy supportive family and had access to 

education. I hope society will give in the future the same opportunities I had also to those 

less privileged than me, because good research and discoveries are only to be found 

with diversity and inclusiveness.  

 

I would like to thank my supervisor, Prof. Koutsouleris, for his enduring support and 

mentorship. Nikos, you have been an amazing teacher and have inspired me with your 

vision and talent. Thank you for welcoming me in your group with kindness and 

accompanying me throughout my personal and career growth.  

Thank you, Dom, my supervisor and mentor. It has been a wonderful experience to learn 

from and with you during this journey. You have shown me how to really push forward 

and I will always be among grateful for your supervision. Thank you for believing in me. 

In the PRONIA group and Neurodiagnostic Application lab I found some of my very best 

friends in Munich. Thank you for showing me what outstanding things a group can 

achieve. You are all incredible people and I wish you all the joy and success life can give 

you. Johanna, Linda, Mafe, Shalaila: I would not have been able to succeed in this 

challenge without having you by my side. Thank you for being such amazing women, I 

will always cherish and love you.  

Nora, meine Ci. Danke für alles, was wir schon zusammen erlebt haben, und auch schon 

für was noch kommt. Immer werden wir so bleiben, lachen über schlechte Zeiten. Deine 

Schmerzen sind auch meine, Jahr für Jahr.  

Basti, mein sicherer Hafen. Danke für die Abendessen, die du vorbereitet hast, während 

ich lange gearbeitet habe, für das stressabbauende Lachen, für deine Geduld und dass 

du immer mein größter Fan bist. Mit dir habe ich Ruhe und Glück in meinem Leben 

gefunden.  

Mamma, papà e Giacomo. Grazie per il vostro supporto e l’amore incondizionato che mi 

date ogni giorno. Questi anni di studio e di ricerca separata da voi mi hanno mostrato 

quanto voi siate la cosa a me più cara al mondo.  


	Affidavit
	List of contents
	Abbreviations
	Publication list
	1. Contribution to the publications
	1.1 Contribution to Paper I
	1.2 Contribution to Paper II

	2. Introduction
	2.1 Early recognition in psychiatry
	2.2 Gyrification
	2.3 Methodological proceedings in gyrification research
	2.4 Transdiagnostic disease processes

	3. Zusammenfassung:
	4. Abstract (English):
	5. Paper I
	6. Paper II
	7. References
	Appendix: Gyrification-based predictive models
	Acknowledgements

