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Summary

Mass spectrometry-based ancient protein studies offer a window into the evolutionary past
and allow us to deepen our knowledge in the fields of cultural heritage, archaeology and
palaeontology. To unravel evolutionary history, traditionally phenotypic traits of fossils
are investigated to resolve phylogenetic placement of extinct or unknown organisms.
However, phylogenetic analysis is limited for highly fragmented fossil remains due to
their lack of species-specific morphological features. In recent years, with advancements of
analytical technologies, the study of ancient biomolecules—DNA and proteins—in organic
fossil remains has aided phylogenetic reconstruction of several species. Like deoxyribonu-
cleic acids (DNA), proteins comprise genetic information, but are preserved over longer
timescales compared to DNA. Therefore, ancient proteins are a valuable resource for very
old specimens (1+ million years), especially when ancient DNA (aDNA) is already fully
degraded.

Mass spectrometry has evolved to analyse high-throughput data rapidly, accurately
and with high sensitivity, making it the key method to study ancient proteins. However,
despite recent developments and improvements of high-resolution mass spectrometers to
detect proteins in complex mixtures, identification of ancient proteins is still challenging
due to several characteristics specific to ancient proteins. Ancient proteins, but also aDNA,
are typically low abundant, heavily degraded and highly modified due to post-mortem
decay and are accompanied by highly abundant contaminants. These characteristics lead to
low quality measurements of surviving proteins in organic tissues. Additionally, protein se-
quences of unsequenced or extinct species can contain unknown sequence variations due to
their evolutionary distance to extant relatives. Commonly used database search approaches
are not capable of detecting such sequence variations, as they rely on lookup databases of
known protein sequences. The aforementioned challenges cause many acquired protein
measurements to remain unidentified. However, high identification rates of accurately
identified protein sequences is crucial to determine a species phylogenetic placement.

To address this issue, as part of my PhD, I worked on two complementary computa-
tional protein sequence identification approaches: the extension of the database search
engine Andromeda and the development of MaxNovo, a novel spectrum graph-based
de-novo sequencing algorithm, with the aim to explore novel peptide sequences, which
is specifically important for ancient protein studies. Andromeda was extended to include
predicted fragmentation intensities, which adds another layer of sequence context into
the scoring. We successfully demonstrated an increase in peptide identifications by using
the intensity informed Andromeda score in comparison to the conventional Andromeda.
To provide highly accurate peptide fragment intensities, we developed in two machine
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learning models: DeepMass:Prism, based on deep learning, and wiNNer, based on neural
networks. Identification by de-novo sequencing and its possibility to explore novel peptide
sequences is specifically important for ancient protein studies with unknown sequence
variations. We therefore implemented MaxNovo using expert domain knowledge. Whereas
state-of-the-art de-novo algorithms are based on deep learning algorithms, we can show
that MaxNovo performs as well as or better than leading deep learning-based algorithms.

Additionally, I contributed to two ancient protein studies by performing the compu-
tational data analysis, which required additional implementation of a post-processing
workflow for ancient protein sequence reconstruction to obtain sequence variations to
perform phylogenetic analysis to resolve evolutionary relationships. In the first study, we
provided evidence that Homo antecessor is a close sister lineage to subsequent Middle and
Late Pleistocene hominins, including modern humans, Neanderthals and Denisovans. In
the second study, with proteomic analysis of dental enamel from a 1.9 million year old
molar, we revealed that Gigantopithecus blacki is a sister clade to orangutans with a common
ancestor about 12-10 million years ago.
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Chapter 1

Introduction

1.1 Biological systematics and taxonomy

Taxonomy and biological systematics are related concepts and are crucial to studying the
diversification of living forms and their relationships in the past and present. Taxonomy
is the study of identification, naming and classification of biological organisms. Biological
systematics, on the other hand, is the study of resolving evolutionary relationships of differ-
ent organisms and determining common ancestry [Panawala, 2017]. Biological classification
and phylogeny contribute to biological systematic. The biological classification system is
necessary to explain and name all known extinct and extant species.

Around 2,000 BP, Aristotle developed the first biological classification system, which
continued to be the dominating classification method until the 19th century [Cain, 2020].
On the island of Lesbos, he observed the sea and marine life, based on which he derived a
ranking system from simple to complex organisms independent of any evolutionary aspect.
Furthermore, Aristotle distinguished invertebrate from vertebrate animals and differenti-
ated groups further based on their features, for example assigning whales, dolphins and
porpoises to the more closely related mammalians rather than to fishes.

In the 1750s, Carl Linnaeus, known as the “father of modern taxonomy”, formalised
the modern and current system of naming organisms also called the binomial nomenclature
[Cain, 2020, Calisher, 2007]. The Linnaeus system creates a taxonomic hierarchy by grouping
organisms to taxa based on shared characteristics. Such taxa are assigned a certain rank
based on their divergence level. Groups with the same rank can then be aggregated to
form a higher-level group. At all levels latinised names are used e.g. Homo sapiens for the
humans, whereof Homo is the genus and sapiens is the species name (Figure 1.1).

Linnaeus and other early naturalists used ranks to explain taxonomic relationships,
rather than using it for nomenclature purposes, thus, taxon names were more closely
associated with taxa than with ranks [Queiroz, 2012]. However, during the middle of the
19th century the rank-based nomenclature emerged. For example names of certain ranks
are extended by a rank-specific suffix such as the –idae ending for taxa ranked as families.
This nomenclature approach is inefficient for hierarchy changes, because the rank change
of a taxon requires its name changes as well as of all its descendent taxa. Consequently,
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in April 2000, a new phylogenetic nomenclature the International Code of Phylogenetic
Nomenclature, also called PhyloCode has been introduced [Cantino and Queiroz, 2003].
Naming under the PhyloCode is based on phylogenetic relationships rather than on
taxonomic ranks, thus, changes in rank do not affect names.

Figure 1.1: Illustration of the major taxonomic ranks based on the example of human. The
highest taxonomic rank is domain and the lowest is species (e.g., Homo sapiens). At all levels
latinised names are used.

On the other hand, phylogeny is the study of evolutionary history and relationships of or-
ganisms and reveals subsequently the taxonomic identity of an organism. The relationships
are proposed as a result of phylogenetic inference methods that are based on behavioural,
morphological, genetic and biochemical features and are visualized as evolutionary trees,
also called phylogenetic trees [Choudhuri, 2014]. Traditionally, evolutionary relationships
of organisms were resolved by molecular analysis of living organisms and the investiga-
tion of phenotypic traits in fossils of extinct organism [Cappellini et al., 2018]. Improve-
ments of analytical technology over the last few decades have enabled the study of ancient
biomolecules—molecules that are thousands of years old—directly obtained from remains
of extinct organisms or archaeological objects.

1.2 Ancient biomolecules and their evolutionary context

Compared to traditional morphological approaches, molecular analysis of surviving
biomolecules in ancient tissues allows deeper insights into evolutionary history as they
are not limited to physical shapes. Moreover, biomolecular analysis has provided new
insights for example into the genetic divergence from human and apes as well as genetic
relationships between human populations [Cann et al., 1987]. For evolutionary studies,
molecular species identification without shape restriction is especially advantageous be-
cause biomolecules relevant for phylogenetic placement can be still recovered even in heav-
ily fragmented material. Nucleic acids and proteins have provided the highest contribution
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in elucidating evolutionary history. Out of these two, the analysis of deoxyribonucleic acids
(DNA) is a particularly well-known and widely employed approach, albeit not without lim-
itations. The following sections provide an overview of DNA and proteins along with their
ancient aspects.

1.2.1 Deoxyribonucleic acid (DNA)

The DNA contains the genetic instructions for an entire life cycle of cells including their
development, maintenance, reproductions and destruction of cells and is unique for an or-
ganism. DNA consists of a series of nucleotides with one of four nucleobases: cytosine (C),
guanine (G), adenine (A) and thymine (T). Complementary nucleobases (A/T and C/G) of
two polynucleotides bind to each other into base pairs (bp), forming a double helix. DNA is
denoted as a sequence of the single letters of the nucleobases, encompassing all genetic infor-
mation of an organism for both, genes and non-coding DNA. A genome is the compendium
of all genetic material of an organism and is stored in the cell’s nucleus and mitochondria
[McWilliams and Suomalainen, 2019]. The mitochondria are responsible for the energy pro-
duction and harbour the mitochondrial DNA (mtDNA). While the DNA that is stored in
the nucleus (nDNA) contains to equal parts the maternal and paternal DNA, the mtDNA
was thought to contain solely the maternal DNA. However, McWilliams et al. found evi-
dence that in rare cases the paternal mtDNA is also passed on to the offspring. Compared to
nDNA, mtDNA is much smaller. The human nDNA is roughly 3 billion bp long, compris-
ing approximately 20,000 protein-coding genes [Muñoz and Heck, 2014] while the human
mtDNA is roughly 16,600 bp long and contains 37 coding genes [Taanman, 1999]. The study
of the genome or genomics includes structural, functional and evolutional analysis, but also
covers DNA sequencing and its analysis.

By comparing DNA sequences—nuclear as well as mitochondrial—, evolutionary rela-
tionships between different organisms can be determined (Figure 1.2). Differences in the
DNA, such as insertions, deletions and substitutions are indications of evolutionary changes
[Tajima and Nei, 1984]. Substitutions in form of point mutations in the genome are also
called single-nucleotide polymorphisms (SNPs).

Figure 1.2: Two DNA sequences that derived from the same ancestral sequence. Both
offspring sequences developed a different set of point mutations indicated by an asterisk.
Adapted from [Salter, 2004]

The higher the similarity of the organisms’ DNA, the closer the relationship between those
organisms. The mtDNA is the preferred biomolecule for evolutionary studies, because the
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mostly maternal genetic information allows to trace back the maternal lineage without the
disturbance of the maternal and paternal recombination [Cann et al., 1987]. Moreover, by
analysing DNA survival in bone, Alltentoft et al. showed that nuclear DNA had degraded
at least twice as fast as mtDNA [Allentoft et al., 2012].

Differences in DNA can be used for phylogenetic analyses to resolve evolutionary re-
lationships amongst different taxa or species [Choudhuri, 2014]. The following sections
explain the basics of and DNA’s role in phylogenetic tree construction and visualisation.

1.2.1.1 Phylogenetic trees construction

Figure 1.3: Main workflow steps to calculate a phylogenetic tree to determine the systematic
position of an organism.

The construction of phylogenetic trees requires five main steps (Figure 1.3)
[Choudhuri, 2014]. First, an appropriate molecular marker is selected such as DNA,
or specifically genes or proteins. Second, the sequences of the chosen molecular marker are
aligned by a multiple sequence alignment (MSA) algorithm to identify blocks of conserved
residues and sequence variations.

Next, an evolutionary model is selected, which describes the process of genetic vari-
ations by fixed mutations [Arenas, 2015]. Evolutionary models suggest a substitution
probability for nucleotides or amino acids. The simplest substitution model for DNA is
Jukes–Cantor [Jukes, T.H. and Cantor, 1969], which is based on the assumption that all
nucleotides occur and substitute with an equal frequency of 25%. However, mutations
between chemically more similar nucleobases (transitions) are more likely than nucleobases
with different chemical properties (transversions) [Collins and Jukes, 1994]. To account
for these different frequencies, more complex models have been developed such as K80
developed by Kimura et al. [Kimura, 1980]. The F81 model developed by Felsenstein is
based on the assumption that nucleotides occur in different frequencies [Felsenstein, 1981].
For proteins, the most well-known model is the Dayhoff model [Dayhoff et al., 1978].
Dayhoff et al. developed an empirical model by determining accepted point mutations,
which are observed amino acid substitution frequencies derived from closely related protein
sequences. The calculated mutation frequencies of each amino acid are provided as so-called
point accepted mutation (PAM) matrix, where each row and column represents one of the
twenty amino acids.

After the evolutionary model selection, the phylogenetic tree can be calculated based
on the two main approaches: distance-based methods or character-based methods
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[Scott and Gras, 2012]. Distance-based methods are applicable to different distance mea-
sures such as distances based on Euclidean distance calculations and genetic distances from
sequences. Typically, by pairwise comparison a distance matrix is calculated which is used
for phylogenetic tree construction [Choudhuri, 2014]. The two most common distance-based
algorithms are: the neighbor-joining (NJ) algorithm and ”the distance-based algorithm is
the unweighted pair group method with arithmetic mean” (UPGMA), whereof UPGMA
is the simplest one, but NJ is more popular [Kapli et al., 2020]. Overall, distance-based
methods perform poorly for distantly related species.

Character-based methods rely on heritable traits, so-called characters, which are com-
parable across organisms. Examples for such characters are genetic, morphological,
behavioural and molecular attributes [Scott and Gras, 2012]. Character-based algorithms
are more complex than distance-based algorithms. In contrast to distance-based algorithms,
which are based on pairwise sequence comparison, character-based algorithms simultane-
ously compare all sequences by looking at one substitution or site at a time. Additionally,
character-based algorithms include optimisation methods [Choudhuri, 2014].

Common character-based methods are maximum parsimony (MP), maximum likeli-
hood (ML) and Bayesian inference (BI) [Kapli et al., 2020]. The MP approach minimises the
total number of evolutionary steps necessary to explain the given dataset of the organisms
for which the phylogenetic position is questioned [Kannan and Wheeler, 2012]. In contrast
to MP, ML and BI are based on an explicitly stated model, which allows the incorporation
of known features of the process of sequence evolution (e.g. different transition and
transversion rates) [Kapli et al., 2020]. The ML method calculates the probability that the
selected evolutionary model predicts the observed sequences and for each tree topology
the model parameters are optimised to maximise the likelihood [Kapli et al., 2020]. The tree
topology with the highest likelihood represents the best estimate of the true phylogenetic
tree. BI has been introduced in the 1990s for phylogenetic tree reconstruction and has
become very popular [Nascimento et al., 2017]. By using the Markov chain Monte Carlo
(MCMC) algorithm, it generates tree topologies and parameters from their posterior. For
each tree topology a posterior probability is estimated based on the frequency of a certain
topology is suggested by the algorithm. The topology with the highest posterior probability
is chosen as the best estimate of phylogeny [Rannala and Yang, 1996, Kapli et al., 2020]. The
ML and BI are widely used for phylogenetic tree construction.

Finally, the reliability of the estimated tree is assessed by bootstrapping (Figure
1.4), which provides a variability measure to samples’ estimates [Choudhuri, 2014,
Efron and Tibshirani, 1986, Efron, 2000, Kapli et al., 2020]. Baysian methods do not require
bootstrapping, because the calculated posterior probability of the estimated phylogeny
provides the natural measure of confidence [Rannala and Yang, 1996, Kapli et al., 2020].
Phylogenetic analysis bootstrapping is conducted by repeated resampling of the original
data to generate multiple different new subsets. Resampling is performed on random basis,
therefore sequences can occur multiple times in different subsets, whereas others might not
appear. Next, based on all subsets and the original dataset phylogenetic trees are calculated.
The variability is obtained by comparing the topology of the original tree to all bootstrap
trees to access the reliability of the original phylogenetic tree.
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Results of phylogenetic analyses can be visually presented as phylogenetic trees. The
topology describes the structure and composition of all edges and nodes of a tree (Figure
1.5), whereof the nodes represent the taxonomic units that can be species or populations as
well as genes or proteins [Choudhuri, 2014, Scott and Gras, 2012]. An edge, also referred to
as branch, connects two nodes (i.e., taxonomic units) and when displaying the phylogenetic
tree in form of a phylogram (Figure 1.5, A), the branch length is proportional to the
evolutionary divergence and consequently, to the time of the development of evolutionary
relationships between taxonomic units. For example, in a phylogenetic tree constructed
based on DNA sequences, the branch length is a result of occurring nucleotide substitutions
that arise between branching points.

Nodes can be internal or terminal and terminal nodes are also referred to as leaves or
operational taxonomic units (OTUs) [Choudhuri, 2014]. OTUs are the taxonomic units
of interest that are compared to each other to determine their evolutionary relationship.
Internal nodes are hypothetical taxonomic units (HTUs) representing the last common
ancestor (LCA) of the subsequent nodes.

Figure 1.4: Illustration of the bootstrap method performed on common phylogenetic in-
ference methods such as maximum parsimony (MP) and maximum likelihood (ML). The
original data is multiple times randomly resampled by allowing repetition of data or char-
acters. For each of the created new bootstrap datasets a phylogenetic tree is calculated. The
tree topology of the bootstrap trees and the tree calculated based on the original data is
compared to assess the reliability of the original phylogenetic tree [Choudhuri, 2014].
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The emerging descendants or taxa of a single node are classified as sister group or sister
taxa. When they share specific characteristics that uniquely distinguish them from other
taxa, they can be grouped as clade. A clade is composed of a last common ancestor and its
descendants. A taxonomic unit that is exclusive and not part of any clade is called outgroup.
While phylogenetic trees can be presented as unrooted (Figure 1.5, B), an outgroup is
typically added to generate rooted trees. Rooted trees have a last universal common
ancestor (LUCA) functioning as a root node of which all descendants originate from.

Figure 1.5: The topology of a phylogenetic tree is described by the composition of all nodes
and branches. A tree can either be A) rooted or B) unrooted. Rooted trees can be enforced
by adding an outgroup that is evolutionary distant enough to fall outside of the main clade,
which introduces a last universal common ancestor (LUCA). Nodes can be internal and ter-
minal also referred to as hypothetical taxonomic units (HTUs) and operational taxonomic
units (OTUs), respectively. Adapted from [Choudhuri, 2014].

The first ancient DNA based phylogenetic tree was successfully constructed in 1984.
More specifically, ancient mtDNA was sequenced from a quagga, an extinct zebra-like
equid species. Based on mtDNA comparisons of the quagga and three other mammals, the
calculated phylogenetic tree correctly resolves that quagga is most closely related to the
zebra and more closely related to cow than to human [Higuchi et al., 1984]. Since then, many
aDNA studies have followed. Next generation sequencing (NGS), the state-of-the-art DNA
sequencing technology, provides untapped potential for ancient DNA based phylogenetic
analysis [Behjati and Tarpey, 2013, Schuster, 2008].
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1.2.1.2 Ancient DNA limitations

While ancient DNA harbours significant potential to understand evolutionary history, its
characteristics pose several limitations on its applicability for ancient studies. The success
of retrieving aDNA is heavily dependent on the preservation conditions such as moisture,
oxygen and temperature during deposition [Allentoft et al., 2012, Dabney et al., 2013]. The
decay of organic tissue as well as of DNA immediately starts after death due to the lack
of enzymatic repair mechanisms of living cells [Allentoft et al., 2012, Dent et al., 2004].
Soft tissue undergoes the post-mortem process of autolysis and putrefaction followed
by decomposition until the hard tissues such as bone, teeth and cartilage remain. Af-
ter cell death, the DNA is cleaved into fragments by nucleases and micro-organisms
further fragment the DNA during decomposition [Allentoft et al., 2012]. Hence, aDNA ex-
tracted from remains of dead organisms is without exception degraded [Dabney et al., 2013].

Following the pioneering work of Higuichi et al., were phylogenetic relationships
were resolved based on ancient DNA, the potential of aDNA was further explored
[Dorsey and Dill, 1989, Higuchi et al., 1984, Pääbo et al., 1989]. However, damage
to the molecular structure often hindered or limited a detailed aDNA analysis
[Dabney et al., 2013, Francalacci, 1995]. The invention of the polymerase chain reac-
tion (PCR) has abet such studies due to selective amplification of short DNA fragments
despite the risk of amplifying DNA of modern contaminants [Pääbo et al., 1989]. In 1992,
DeSalle et al. claimed to have recovered aDNA from termites [DeSalle et al., 1992] preserved
in amber that are estimated to be 25 million to 30 million years old. One year later, Cano et al.
reported the extraction of aDNA from a 120–135-million-year-old weevil [Cano et al., 1993].
However, follow up studies have raised the concern that the extracted aDNA is a result
of modern environmental DNA contamination (e.g., from human tissue, microbes, plants)
[Pääbo et al., 2004, Pedersen et al., 2015, Peris et al., 2020, Willerslev and Cooper, 2005].
Until 2021, the oldest recovered aDNA was obtained from a horse specimen dated to
be 780-560 thousand years old [Orlando et al., 2013], which was then replaced by aDNA
successfully retrieved from mammoth specimen, which are more than one million years old
[van der Valk et al., 2021].

As long as at least partially intact aDNA can be obtained, it is the preferred biomolecule for
ancient studies, since it provides information in the highest resolution. However, ancient
proteins can provide information on longer temporal scales, when aDNA is already fully
degraded [Wadsworth and Buckley, 2014].
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1.2.2 Proteins

As previously mentioned, the genome contains the information for an organism’s pro-
teins, encoding amino acids as building blocks of proteins. The term proteome was
introduced, in analogy to the genome, to describe the entire set of proteins expressed by
a genome, organelle, cell, tissue or organism at a certain time under defined conditions
[Calvete et al., 2014]. The large-scale characterisation of entire proteomes is called pro-
teomics [Graves and Haystead, 2002].

Based on the standard genetic code there are 20 different amino acids that can be as-
sembled to a sequence by so called peptide bonds (Figure 1.6). The N-terminus of the
resulting sequence is at the amino group and the C-terminus is at the carboxyl group.

Figure 1.6: The chemical reaction between two amino acids results in the formation of
a peptide bond with exclusion of water. The amino group (NH2) represents the N-
terminus and the carboxyl group (COOH) represents the C-terminus of a chain of amino
acids. (https://en.wikipedia.org/wiki/Peptide bond/media/File:Peptidformationball.svg,
Access date: 2021-08-28)

Short sequences are typically called peptides and sequences with a length of 20 or more
are called proteins. The following sections present a brief overview of gene expression that
synthesises proteins and its resulting cellular complexity.

1.2.2.1 From the genome to the transcriptome to the proteome

Proteins are synthesized by a process called gene expression that transcribes a protein-
coding gene to ribonucleic acid (RNA). Subsequently, the RNA is part of the translation
of proteins at ribosomes (Figure 1.7). The composition of all RNA transcripts is called
transcriptome. Like DNA, RNA consists of a chain of nucleotides with four nucleobases:
cytosine (C), guanine (G), adenosine (A) and uracil (U), replacing thymine (T) in the DNA.
RNA is single stranded, as opposed to double stranded DNA, and folded onto itself.
Different types of RNA are involved in gene expression, such as messenger RNA (mRNA)
and transfer RNA (tRNA).

https://en.wikipedia.org/wiki/Peptide_bond##/media/File:Peptidformationball.svg
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mRNA is the result of a process called RNA splicing that removes non-coding regions (Fig-
ure 1.7). Consequently, only protein encoding regions (exons) remain, thus providing the
information on the amino acids in the encoded protein. However, not all exons have to be
included in the resulting mRNA. Different combinations of exons can be synthesised via
alternative splicing, hence giving rise to different protein variations – also called isoforms
– that originate from the same gene. Based on the information in the mRNA, the tRNA
facilitates protein assembly by providing the required amino acids.

Figure 1.7: Brief overview of the gene expression machinery. First, the DNA
is transcribed into RNA, which is then converted to mRNA by alternative splic-
ing, which only consists of exons. Finally, the resulting mRNAs are trans-
lated into proteins (https://sites.google.com/site/bio1040genbio2/chapter-18-regulation-
of-gene-expression/alternative-rna-splicing-and-mrna-degradation, Access date: 2021-08-
28).

1.2.2.2 The complexity of a proteome

The functional diversity and its resulting phenotypes are not uniquely assigned to the
genome. Rather, the genome is the starting point of an exponentially growing complex-
ity driven not only by the transcriptome and proteome, but also the interactions among
molecules in a cell (interactome) (Figure 1.8).

As mentioned previously, alternative splicing increases cellular complexity by giving rise to
a range of protein isoforms based on the same protein-coding gene. Post-translational modi-
fications (PTMs) of proteins into unique proteoforms further increases the complexity. There
are two different types of PTMs in proteins: the covalent modifications and the covalent
cleavage of peptide backbones [Walsh et al., 2005]. Covalent modifications unite all covalent
additions of other molecules to a protein that can either occur on the N- or C-terminal of a
protein or on an amino acid side chain. Furthermore, the attachment of covalent functional

https://sites.google.com/site/bio1040genbio2/chapter-18-regulation-of-gene-expression/alternative-rna-splicing-and-mrna-degradation
https://sites.google.com/site/bio1040genbio2/chapter-18-regulation-of-gene-expression/alternative-rna-splicing-and-mrna-degradation
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groups to a protein can be mediated by specific enzymes (in vivo) or they can occur dur-
ing the sample preparation (in vitro) as artefactual modifications [Liu et al., 2013]. Covalent
modification can also be used to attach specific molecules as tags in relative protein quan-
tification [Thompson et al., 2003]. The covalent cleavage of peptide backbones causes the
breakdown of a protein into peptides (proteolysis) and consequently is involved in activity
and lifetime control mechanisms of each protein in a cell [Walsh et al., 2005].

Figure 1.8: The exponentially growing cellular complexity [Bludau and Aebersold, 2020]

1.2.3 Ancient proteins

Like DNA, protein molecules contain genetic information that allow phylogenetic re-
construction. Given the temporal constraints of aDNA, ancient proteins are essential to
investigating time scales beyond one million years, as they can survive in archaeological
and palaeontological materials for such a long period of time [Andrews et al., 1985]. Bio-
logical substrates with a high mineral component such as bone, dentine or enamel are the
best-preserved tissues and are therefore the focus of most ancient DNA and protein studies.

The calcified tissue bone is found in vertebrates. Of this tissue, 30% are organic
components comprising more than 30 proteins of which type 1 collagen (COL1)
is most abundant [Feng, 2009]. Overall, collagen is the most abundant structural
protein in animals and constitutes in humans one third of all expressed proteins.
The stability of collagen proteins is due to its unique feature: a right-handed bun-
dle of three parallel, left-handed polyproline II-type helices held together by hy-
drogen bonds [Shoulders and Raines, 2009, Cappellini et al., 2018]. However, COL1
is highly conserved, thus not an ideal phylogenetic marker to distinguish species
[Cappellini et al., 2019, Marks, 1988]. Dentine consists of 20% organic matter (by weight) of
which 85-90% are a collagenous matrix. As in bone, COL1 is the most abundant protein in
dentine [Jágr et al., 2012, Salmon et al., 2013].

Dental enamel is the hardest substance in the human body and the most extreme case
of mammalian biomineralization. Measured by weight, only 1-1.5% are organic matter of
which the protein amelogenin constitutes approximately 90%. Amelogenin is expressed by
the gene AMELX, located on the X chromosome. In males, it is also expressed by the gene
AMELY on the Y-chromosome. Hence, it is possible to determine the sex of a specimen
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which is essential when studying the human past [Stewart et al., 2017]. Besides amelogenin,
the enamel proteome also comprises enamelin, ameloblastin and tuftelin as well as the
protease matrix metallopeptidase 20 (MMP20) [Chen and Liu, 2014].

1.3 History of ancient protein sequence identification

First attempts to study ancient protein residues have been made in 1954, about two decades
before the advent of DNA sequencing [Abelson P.H., 1954, Cappellini et al., 2018]. With
the application of immunoassay approaches it became possible to not only identify single
amino acids, but to also target specific epitopes targeted to fossil proteins (Lowenstein,
1981). Nevertheless, results obtained from immunodetection methods were insufficient to
infer evolutionary relationships as they were able to target but not sequence ancient proteins.

An important milestone for ancient protein sequencing was set with the invention of
Edman degradation in 1967 [Edman and Begg, 1967]. However, the success of protein
sequencing depended on high concentrations of purified and undamaged proteins in
the sample, limiting the applicability in ancient protein studies due to the small material
quantity in fossils.

In 2000, mass spectrometry (MS) was first applied to ancient protein studies
[Ostrom et al., 2000] and has since then revolutionized ancient protein studies into a
rapidly emerging field evolving in multiple different directions. The following section will
introduce mass spectrometry, a powerful analytical technique that facilitates sequencing,
identification and quantification of peptides and proteins.
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1.4 Mass spectrometry

The aim of mass spectrometry (MS) analysis is to identify the analytes present in the sample
on a large scale [Han et al., 2008]. In proteomics, these analytes are typically proteins or
peptides that are extracted in a sample preparation step from a biological material and are
identified by measuring their mass-to-charge (m/z) ratio. MS is currently the method of
choice for proteomics studies as it allows for high-throughput analysis of complex protein
mixtures.

A mass spectrometer includes at least three main components (Figure 1.9):

• an ion source that converts the analyte of interest in its intact form into gas phase ions

• a mass analyser that separates ions according to their m/z ratio

• a detector that measures and amplifies the signal of the separated ions to obtain and the
abundance (intensity) of each ion at a certain m/z value

The measured ions are provided as two-dimensional mass spectrum (MS1) with the intensity
as a function of the m/z ratios (Figure 1.9), A).

Figure 1.9: Main steps of a A) mass spectrometry (MS) analysis and a B) tandem mass spec-
trometry (MS/MS) analysis. MS/MS analysis performs an additional fragmentation step,
where the selected analytes are further fragmented to generate a fragmentation pattern that
allows sequence identification.

Identification of an analyte based on the measurement of its m/z is often ambiguous
because several different amino acid sequences can have the same mass and charge state.
To enable complete sequence characterization, the ions are further fragmented in a separate
fragmentation unit (Figure 1.9), B; commonly used fragmentation methods will be explained
in more detail in Section 1.4.3 Fragmentation methods). Like the intact ions, the fragmented
ions are separated by a mass analyser and eventually detected. The output of this so-called
tandem MS (MS/MS) analysis is an MS/MS spectrum, each peak representing a unique
fragment ion along with its intensity.
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Complex mixtures of analytes are typically not subjected to the MS all at once. Instead,
the mixture is first subjected to a reversed-phase high-performance liquid chromatography
(HPLC) that is directly coupled to the MS instrument. HPLC is an analytical method used for
separation, identification and quantification of each component and it involves two phases:
a non-polar stationary and a polar mobile phase [Dorsey and Dill, 1989, Thammana, 2016].
A pump pushes a solvent gradient (mobile phase) of increasing organic content (e.g.,
acetonitrile, methanol) including the sample mixture through a column that is filled with
solid absorbent material (stationary phase). The separation is based on hydrophobic
interaction strength of the solvent to the hydrophobic stationary phase. As a result, hy-
drophilic compounds are eluted first and more hydrophobic peptides are gradually released
[Dorsey and Dill, 1989, Steen and Mann, 2004, Thammana, 2016]. By coupling HPLC to the
mass spectrometer the two-dimensional output is turned into a three-dimensional output
by adding the retention time information to a peak with a certain m/z ratio and intensity.
The following sections provide a detailed description of the main elements of MS.

1.4.1 Ion source

The ion source is the compound of a MS that ionises an analyte by adding one or more
charges, in proteomics often by adding protons (protonation), to its molecules to make them
measurable and detectable by electric and magnetic fields. Ion sources can be categorised in
hard ioniser and soft ioniser. Hard ionisers such as the electron ionisation (EI) cause high
fragmentation due to high quantities of residual energy hindering the analysis of labile
biomolecules [Banerjee and Mazumdar, 2012]. This issue was solved with the invention of
the two soft ionisation techniques: electrospray ionisation (ESI) [Yamashita and Fenn, 1984]
and matrix-assisted laser desorption ionisation (MALDI) [Karas and Hillenkamp, 1988].
These techniques are currently the most common ionisation approaches used in proteomics.

In ESI, a solution containing the analyte flows through a small capillary where high
voltage is applied resulting in a fine spray of charged droplets and rapid solvent evapora-
tion. The solvent evaporation increases the electrical charge density at the surface as the
droplet size decreases causing a further subdivision until on average one droplet contains
one macromolecule. In their final stage, the stream ions are submitted to the vacuum of the
mass spectrometer.

Unlike ESI, where analytes are directly vaporised and ionised from a liquid phase,
MALDI sublimates and ionises the analyte out of a dry crystalline matrix directly from
solid into gas phase using high energy pulsed laser beams [Aebersold and Mann, 2003].
The analyte co-crystallises with the matrix material, which strongly absorbs the laser. The
irradiation of the matrix causes rapid heating leading to sublimation of the matrix crystals
including the analyte. By transfer of energy the analyte can be submitted to the mass
spectrometer intact.
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1.4.2 Mass analyser

After the ions, commonly generated by soft ionisers, enter the vacuum of the mass spec-
trometer, the mass analyser separates them based on their m/z values. The most common
mass analysers are time-of-flight, quadrupole, ion trap and Orbitrap. The instruments used
for the studies covered in this thesis are Orbitrap mass spectrometers produced by Thermo
Fisher Scientific.

The time-of-flight (TOF) mass analyser determines the m/z ratios of ions by measur-
ing the time that ions take to cross a field-free flight tube with a certain length after being
accelerated by an electric field of known strength. As equally charged ions have the same
kinetic energy, the m/z value determines the velocity of an ion. Hence, ions with different
m/z values travel with different speed and consequently detected at different time points
[Lane, 2005]. TOF systems are frequently coupled to MALDI.

The quadrupole mass analyser consists of four metal rods equidistantly arranged around
a central axis of which two pairs are equally charged [Lane, 2005]. A continuous ion beam
enters the quadrupole along the central axis. By applying different radio frequencies (RF)
to the rods only ions with a specific m/z ratio will travel through the electric and magnetic
field at the centre of rods and are eventually detected. Ions with other m/z ratios, however,
cannot pass through and will collide with the rods, and thus, are not detected.

In the ion trap mass analyser, ions enter and exit a ring-shaped electrode via separate
cap electrodes located at the top and at the bottom and are trapped until the separation pro-
cess within the sandwiched electrode [Ho et al., 2003]. Like the quadrupole mass analyser,
the ion trap separates the ions by steadily increasing the RF. In contrast to the quadrupole,
however, the ions with the corresponding m/z ratios undergo unstable oscillation and
are released to be detected while the other ions remain trapped in form of a stable oscillation.

The Orbitrap (Figure 1.10) was invented by Makarov in 1999 [Makarov, 2000] and is
the most recent and, in proteomics, most widely used mass analyser. It gained immediate
popularity and impact due to its high resolution and mass accuracy. It consists of a barrel-
like outer electrode and a spindle-like central electrode, in which the ions are trapped by
an orbital motion around the central spindle and oscillate along the length of the electrode.
The frequency of this oscillation is related to the m/z ratio of the ions and can be detected
on the outer electrodes as so-called image current. This image current is finally converted
into a mass spectrum based on Fourier-transformation.

1.4.3 Fragmentation methods

As mentioned previously, MS/MS analysis has an additional fragmentation step to enable
sequence identification based on the analytes’ fragmentation pattern [Sinitcyn et al., 2018a].
In the so-called data-dependent acquisition mode (DDA), the top n most intense MS1 peaks
(precursors) are selected for fragmentation at a given retention time. Alternative acquisition
modes are data-independent acquisition (DIA) and targeted acquisition. DIA is based on
the selection of a constant mass range independent of the measured MS1 spectra. Targeted
acquisition monitors the analysed peptides and only certain peptides based on a target list
are selected for fragmentation.
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Figure 1.10: Illustration of an Orbitrap and its barrel-like outer electrode and a spindle-like
central electrode. The ions are trapped by an orbital motion around the central spindle and
oscillate along the length of the electrode [Eliuk and Makarov, 2015].

The most common fragmentation methods are collisional induced dissociation (CID)
[Mitchell Wells and McLuckey, 2005, Shukla and Futrell, 2000], higher energy collision
induced dissociation (HCD) [Michalski et al., 2012, Olsen et al., 2007] and electron transfer
dissociation (ETD) [Coon et al., 2005, Good et al., 2007]. Depending on the applied method
a different series of fragment ions is created (Figure 1.11).

Figure 1.11: Resulting backbone fragment ion series in respect to the different fragmentation
methods. CID and HCD fragmentation results in a, b- and y-ion series, while ETD fragmen-
tation produces a, c- and z-ion series. Furthermore, the ion types can be grouped into N-
terminal fragment ions (a, b and c) and C-terminal fragment ions (x, y and z). Adapted from
(https://commons.wikimedia.org/wiki/File:Peptide fragmentation.gif, Access date: 2021-
08-28)

https://commons.wikimedia.org/wiki/File:Peptide_fragmentation.gif
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In CID, peptide fragmentation is induced by collisions of the ion with the atoms of
a neutral gas such as helium, argon or nitrogen. The collision leads to a transfor-
mation of the ions’ kinetic energy into internal vibrational energy that is randomly
distributed over all atom bonds, causing breakage to occur on the weakest bond
[Boersema et al., 2009, Han et al., 2008, Sobott et al., 2009]. Typically, the weakest bond
is the peptide bond unless the peptide is modified by a labile PTM such as phosphorylation.
In that case, the covalent bond of the phosphate group is the weakest leading to a so-called
neutral loss. The obtained MS/MS spectra of phosphorylated peptides provide a poor
fragmentation pattern and have a dominating peak that is indicative of a neutral loss
[Boersema et al., 2009].

Both CID and HCD fragmentation provide MS/MS spectra based on N-terminal b-
and C-terminal y-ions. However, HCD uses higher energy for the dissociation generating
higher quality MS/MS spectra in terms of resolution and mass accuracy. Additionally, HCD
produces spectra with highly abundant y-ions and might contain a-ions due to further
fragmentation of b-ions [Michalski et al., 2012].

In proteomics, MS/MS analysis is typically carried out in positive ion mode resulting
in positively charged peptide or precursor ions [Huang and McLuckey, 2010]. Fragmenta-
tion by ETD is fundamentally different than CID and HCD in that it triggers fragmentation
by transferring the electrons from radical anions to multiply protonated peptides. Singly
charged peptides would lose their charge, therefore at least doubly charged peptides are
required. In contrast to CID and HCD, ETD is more suitable for longer and multiple charged
peptides and has further the advantage that labile PTMs such as phosphorylation remain
on the amino acid side chains of peptides [Penkert et al., 2019, Seidler et al., 2010].

The MS/MS analysis produces as output so-called MS/MS spectra, which contains a
list of m/z values and the corresponding intensity values. An MS/MS spectrum represents
the fragmentation pattern of a peptide, which is indicative of the amino acid sequence
[Steen and Mann, 2004].

Therefore, high quality spectra are of great significance to achieve high identification
rates. The quality of an MS/MS spectrum in turn depends on the MS instrument and its
incorporated ion source and mass analyser composition. Hence, before conducting an MS
experiment, it is important to consider the following instrument related quality parameters
[Brenton and Godfrey, 2010]:

•Mass resolving power is the capability of separating two peaks of nearly identical m/z
and is based on the mathematical method “Full Width at Half Maximum” (FWHM)
that calculates the ratio of a peak’s m/z value and the peak’s width that is measured
typically at 50% of the peak height [G. Marshall et al., 2013, Scigelova et al., 2011].

•Mass accuracy determines how good the experimental measurement is in comparison to
the true value (i.e., theoretical mass calculated based on the known elemental formula,
isotopic composition and charge state). Accuracy is the ratio of the m/z measurement
error to the true m/z [Brenton and Godfrey, 2010, Scigelova et al., 2011]. The higher
the mass accuracy the more likely the elemental composition of a measured ion can be
determined.
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• Dynamic range defines the difference between the most abundant and least abundant pro-
teins [Steen and Mann, 2004].

• Sensitivity indicates how much signal intensity can be obtained of the smallest amount of
a targeted analyte [Saah and Hoover, 1997].

• Specificity measures how well target analytes can be distinguished from other proteins
that are present in the sample [Saah and Hoover, 1997].
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1.5 Mass spectrometry-based proteomic strategies for peptide and
protein identification

There are two complementary proteomic MS strategies that can be pursued for characteris-
ing proteins (Figure 1.12): top-down proteomics (TDP) and bottom-up proteomics (BUP).
BUP coupled to HPLC is also referred to as “shotgun proteomics” [Zhang et al., 2013]. The
objective of TDP is the study of intact proteins, whereas in BUP the proteins are digested by
proteases to complex peptide mixtures [Kelleher, 2004]. The main advantage of TDP com-
pared to BUP is the analysis of proteins in their complete form, thus, it can characterise the
complete protein including accurate site localisation of complex PTM confirmations. How-
ever, TDP remains experimentally and computationally challenging due to the complexity
of the acquired data [Brown et al., 2020], which makes BUP the commonly applied approach.

In BUP, the complex peptide mixture can be either analysed by peptide mass finger-
printing (PMF) or MS/MS. In PMF [Thiede et al., 2005], protein identification is based on
the acquired mass pattern of its peptides typically after MALDI-MS analysis and does not
require identification of the amino acid sequence. PMF is a simple approach, but of great
importance due to its capability to distinguish for example collagen proteins of different
species, which is essential for human history to gain insights into prehistoric animal
husbandry by analysing used skin-based materials [Buckley et al., 2010].

Figure 1.12: The two mass spectrometry-based proteomics analysis strategies: top-down
proteomics (TDP) and buttom-up proteomics (BUP). In TDP intact proteins are submitted to
MS analysis whereas in BUP the proteins are digested into a complex peptide mixture. BUP
can be further divided into peptide mass fingerprinting (PMF) and MS/MS analysis. The
MS/MS performs additionally sequence-specific peptide fragmentation.
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BUP reduces spectrum complexity by digesting the proteins to peptides enabling sim-
pler MS analysis. However, the resulting peptides lose their association to the pro-
tein after breakdown causing the challenge of protein inference in MS/MS analysis
[Nesvizhskii and Aebersold, 2005]. Consequently, the protein identification is based on
mapping back the identified peptide sequences to known protein sequences, impeded by
the fact that peptide sequences can match to multiple protein sequences. Typically, HPLC is
directly coupled to MS/MS (LC-MS/MS) which is commonly referred to as typical shotgun
proteomics (Figure 1.13) [Zhang et al., 2013].

Shotgun proteomics has become the standard method for large-scale proteome analy-
sis as it comes with a complete and well matured package. The package comprises sample
preparation protocols, high-resolution MS instruments and a comprehensive selection of
software tools for protein and peptide identification as well as post-processing methods
such as the Perseus computational platform [Tyanova et al., 2016b].

For the aim of the studies as part of this thesis – the identification of ancient peptides
and proteins – MS/MS coupled to HPLC (LC-MS/MS) was chosen because it enables
sequence identification due to the additional peptide fragmentation step. Therefore, the
analytes subjected to LC-MS/MS are complex peptide mixtures.

Figure 1.13: LC-MS/MS workflow or commonly referred to as “typical shotgun proteomics
workflow”. First, the proteins are extracted from an organic material to be further enzy-
matically digested into a complex protein mixture. The protein mixture is separated by a
reversed high-performance liquid chromatography (HPLC) before it is ionized by an elec-
trospray ioniser (ESI) and subjected to tandem MS (MS/MS) analysis. The obtained peptide
fragmentation pattern is used for sequence identification.
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1.6 Peptide and protein sequence identification based on shotgun
proteomics data

After LC-MS/MS analysis, the acquired MS/MS spectra can be computationally analysed
for peptide and protein identification as well as quantification. As this thesis focuses on
the identification of ancient protein and peptide sequences, computational methods for
quantitative proteomics studies are not covered.

Over the years, several different identification approaches have been developed and
can be categorised in spectral library search, sequence database search and de-novo
sequencing 1.14. The identification efficiency of all approaches is highly dependent on
the mass accuracy and resolution of the MS instrument. The better the measurement, the
more informative is the MS/MS spectrum and consequently, leading to a higher rate of
confidently identified peptide sequences.

Figure 1.14: Illustration of the three different identification strategies: spectral library search,
sequence database search and de-novo sequencing.

1.6.1 Spectral library search

In spectral library search [Craig et al., 2006, Yates et al., 1998, Lam et al., 2008,
Stein and Scott, 1994], experimentally acquired MS/MS spectra are compared to a spectral
library, which is a collection of already identified experimental MS/MS spectra of previous
MS measurements. Only peptides that are contained in the library can be identified, which
makes this approach suitable for targeted proteomic studies [Nesvizhskii, 2010], focusing
only on a subset of proteins of interest in a sample [Marx, 2013]. Spectral library search ap-
proaches are not suitable for ancient protein studies, because of insufficient data availability
to generate spectral libraries. More importantly, ancient proteins typically contain sequence
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variations, which are not considered by spectral libraries, thus, the measured peptides
would remain unidentified. Spectral library searching is not within the scope of this thesis,
thus, not further elaborated.

1.6.2 Sequence database search

Sequence database search is the most frequently used method for peptide sequence iden-
tification, which is based on the comparison of experimentally acquired MS/MS spectra
with theoretical MS/MS spectra. The search engine used for the studies that are part of
this thesis is Andromeda, which is incorporated in MaxQuant, a software package for mass
spectrometry-based shotgun proteomics [Cox and Mann, 2008, Tyanova et al., 2016a]. The-
oretical spectra can be computer assisted (in-silico) generated by considering the following
main database search parameters [Sinitcyn et al., 2018a, Tyanova et al., 2016a]:

• a reference protein sequence database defines all target proteins of an organism including
possible contaminants

• an enzyme and its cleavage specificity to determine cleavage sites in a protein sequence
to generate a list of peptide sequences

• a fragmentation method to in-silico calculate the m/z values of the peptides fragmenta-
tion pattern

• a list of fixed or variable PTMs to account for the molecular weight of PTMs that intro-
duces a mass shift in the peptide’s fragmentation pattern

Reference protein sequence databases are FASTA files, text-based files that comprise reference
sequences of which each sequence is defined as single line header followed by the lines
of sequence information. FASTA files can be downloaded from online platforms such
as UniProt [Bateman et al., 2017] or Ensembl [Zerbino et al., 2018]. The reference protein
sequences should be selected with respect to the sample analysed. For example, if a
human-derived sample was analysed, the reference database should contain all known
human proteins.

Next, the protein sequences provided by a FASTA file are split into a list of peptides
based on a certain enzyme and its cleavage specificity that must be in accordance with the
enzyme used during sample preparation. In shotgun proteomic experiments, trypsin is the
most commonly used protease and cleaves proteins on the N-terminal side of arginine (R)
and lysine (K) residues [Steen and Mann, 2004]. Subsequently, for each peptide a theoretical
spectrum is calculated. To calculate the m/z values of each fragment ion to simulate the
peptides fragmentation pattern, the type of ion-series is required which is defined by the
applied fragmentation method in the MS analysis (Section 1.4.3 Fragmentation methods).

If peptides are expected to be modified, the PTMs need to be defined as a search pa-
rameter as a list of fixed or variable PTMs. Fixed modifications are always present on certain
amino acids, thus, inducing a fixed mass shift, whereas variable modifications may or may
not be present. As a result, for fixed modifications only one theoretical spectrum needs to
be generated, while for variable modifications multiple theoretical spectra are generated to
provide the fragmentation pattern of the unmodified peptide and its modified counterpart.
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The experimental MS/MS spectra can be matched to a subset of theoretical spectra,
selected by the peptide mass. Such a match is called peptide spectrum match (PSM). The
search space of a search engine is highly dependent on parameters, such as the number of
variable PTMs or the size of the reference database. The larger the database or the higher
the number of variable PTMs the more peptide candidates are generated leading to an
increased search space [Nesvizhskii, 2010]. Consequently, more false identifications are
introduced, because the probability of obtaining a high scoring PSM by chance increases.
When looking at all theoretically possible amino acid sequence combinations, only a small
portion of sequences is derived from an organism, thus, short peptide sequence can be
considered to be already highly protein-specific [Seidler et al., 2010]. Consequently, pep-
tide candidates with a minimum length of typically seven amino acids are typically selected.

The quality of a PSM is scored via specific scoring functions (see details later in the
section) and the peptide sequence of the theoretical spectrum with the best score is
the suggested sequence for the experimental MS/MS spectrum. Each of the available
database search engines SEQUEST [Washburn, 2015], Mascot [Perkins et al., 1999], MS-GF+
[Kim et al., 2010] or MS Amanda [Dorfer et al., 2014] has its own scoring function that
optimises peptide identification by reflecting the similarity between experimental and
theoretical spectra.

While database search engines only allow mass shifts introduced by defined PTMs,
open search [Chick et al., 2015] and dependent peptide [Savitski et al., 2006] approaches
allow unrestricted searches to look for all possible PTMs or chemical modifications
[Nesvizhskii, 2010, Sinitcyn et al., 2018a].

1.6.2.1 Andromeda

The search engine Andromeda [Cox et al., 2011] employs a binomial probability-based scor-
ing model to calculate the score of a PSM as shown in the following Equation 1.1:

s(q, loss) = −10 log10

n∑
j=k

[

(
n

j

)
(
q

100
)j(1− q

100
)n−j ] (1.1)

where k is the number of matching ions between the total number of n fragment masses
of a theoretical spectrum, and the number of selected peaks q of the experimental MS/MS
spectrum within a mass interval of 100 Th representing the average mass of amino acids.
First, the probability of getting at least k matches out of n theoretical masses by chance is
calculated and the higher k is compared to n, the lower the probability that the matches are
happening randomly. Next, the negative decadic logarithm of the resulting probability is
calculated to obtain the Andromeda score. The final Andromeda score is optimized over a
number of different highest intensity peaks taken from the experimental spectrum and the
incorporation of modification-specific neutral losses such as water or ammonia losses.

For nearly every experimental spectrum, a PSM can be assigned and many of them
have a poor matching quality indicated by low Andromeda scores. Low scoring PSMs are
very likely the result of incorrectly assigned peptide sequences due to coincidentally similar
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fragmentation patterns and as such are false positive (FP) peptide identifications. However,
to distinguish FP and true positive (TP) PSMs with a medium score requires more advanced
separation measures. The following section introduces the concept of false discovery rate,
which assesses the confidence of peptide and protein identifications globally and is the most
accepted validation method for proteomics data.

1.6.2.2 False discovery rate

The false discovery rate (FDR) is an estimation of the error rate of the entire dataset
[Elias and Gygi, 2007, Elias and Gygi, 2010, Käll et al., 2008]. A target-decoy search strategy
is most commonly used to control and estimate the rate of falsely identified experimental
spectra by searching not only against a reference protein database, functioning as a target
database, but also against a decoy database. The purpose of the decoy database is to
introduce intended FP PSMs that might be otherwise considered correct. While the target
database contains real protein sequences, derived from the studied organism, the decoy
database contains nonsense protein sequences that do not occur in nature. Decoy sequences
are typically generated by reversing the target protein sequences, thus, the number of target
and decoy protein sequences are equal. This form of transformation is a simple way of
ensuring similarity between target and decoy sequences in terms of amino acid frequencies,
protein and peptide length distributions and mass distributions of theoretical peptides.

The FDR is estimated by dividing the number of FP identifications by the total num-
ber of PSMs (Figure 1.15) and typically a score threshold is applied to control for a certain
FDR, which is usually 1%. An FDR of 1% means that amongst a list of PSMs, 99% of the
matches are correctly identified while 1% are not. By increasing the FDR also the number of
PSMs will increase, but consequently also the number of FPs [Käll et al., 2007b].

Figure 1.15: Calculation of the false discovery rate (FDR) and posterior error probability
(PEP) based on the mixed score distribution of know incorrect and correct peptide spectrum
matches (PSMs) [Käll et al., 2007b].

In most cases, a threshold is not defined based on the search engine score, but rather based
on the posterior error probability (PEP) or q-value. The PEP and q-value are statistical scores
that are used to validate the reliability of a PSM identification.
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The PEP is the probability that an individually observed PSM is incorrect. For exam-
ple, a PEP value of 10% for a certain PSM means that there is a 90% chance that the
identified sequence was included in the sample that was measured by the MS analysis
[Käll et al., 2007b]. By comparing a mixed score distribution generated by the PSMs that
match either to target or decoy sequences, the PEP can be calculated by dividing the number
of incorrect PSMs at a certain score value by the number of total PSMs having the same
score value (Figure 1.15). For a better separation of true and false positive identifications,
other peptide features, such as the peptide length and number of missed cleavages, can be
considered besides the score value. The PEP approach implemented in MaxQuant is not
only conditional on the score, but also on the aforementioned peptide features including the
charge state and the number of PTMs [Tyanova et al., 2016a].

The q-value is defined as the minimal false discovery rate at which the identification
is considered to be correct [Käll et al., 2008]. To demonstrate an example: a q-value of 0.01
for a PSM means that 1% is the minimal FDR threshold at which the PSM is amongst a list
of identified PSMs. To calculate the q-value of a certain PSM, first all PSMs need to be sorted
by their scores, or more commonly by their PEP values, and the top scoring PSMs are listed
first. Next, a subset of PSMs is defined by selecting PSMs that have a higher score than the
PSM of interest. Based on this subset the q-value is calculated in the same way as the FDR
by dividing the number of FPs by the total number of PSMs.

Importantly, the q-value depends on the data set in which the PSM occurs. This means
that the q-value for a certain PSM can change when the composition of the subset assigned
to the selected PSM changes. A different subset can be the result of changing the search
space (e.g., changing the reference protein sequence or the set of variable PTMs) that is used
by the database search. Thus, the peptide candidates of a certain experimental spectrum
might differ which can subsequently lead to different sequence identification that can either
explain the experimental spectrum better or not.

Instead of calculating the PEP values for each PSM to be able to calculate the q-
values - as it is implemented in MaxQuant - other tools, such as PeptideProphet
[Keller et al., 2002, Choi and Nesvizhskii, 2008] and Percolator [Käll et al., 2007a] use
machine learning for the same aim. For example, Percolator uses a semi-supervised ma-
chine learning model by training support vector machine models to discriminate between
correct and decoy spectrum identifications. Percolator provides as output directly a q-value
for each PSM, which is subsequently used to define the FDR threshold. Based on the set of
FDR-controlled PSMs, proteins can be identified by protein inference and are typically also
FDR controlled. MaxQuant provides the identified proteins in the form of protein groups,
since peptide sequences can be shared by different proteins [Tyanova et al., 2016a].

Database search engine analysis controlled for FDR on different levels, such as the PSM and
protein level, is currently the most commonly used and reliable approach in the proteomics
research. However, besides the quality of the MS measurements, the identification success
is strongly dependent on the content of the reference database, restricting the possibility of
discovering new peptides. If proteins are not part of the reference database, but are present
in the sample there is no chance that the according experimental MS/MS spectrum can be
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correctly identified. Computational approaches based on de-novo sequencing tackle this
challenge by database independent identification.

1.6.3 De-novo sequencing

By applying de-novo sequencing approaches, the measured peptides in the form of ac-
quired MS/MS spectra of a typical shotgun proteomics experiment are identified uniquely
based on the MS/MS spectrum and its fragmentation pattern without the need of any
reference database. This independent way of identification offers the great possibility to
explore novel peptide sequences such as protein sequence variants as a result of alter-
native splicing. Furthermore, de-novo sequencing allows protein analysis of organisms
with unsequenced genomes. Important other applications include monoclonal anti-
body sequencing [Tran et al., 2016] and comprehensive sequencing of the HLA peptides
[Khodadoust et al., 2017, Ternette et al., 2016].

The peptide sequence can be determined directly by converting the mass difference of
consecutive ions in a spectrum to amino acids, which ideally are all from the same ion-
series. Complementary ion-pairs are beneficial, since they not only provide additional
sequence information, but also give rise to the precursor ion mass based on the sum of their
masses [Seidler et al., 2010].

The brute force approach was one of the first approaches used to obtain the peptide
sequence based on the MS/MS spectrum content. Based on the precursor mass, all amino
acid combinations are generated. For each combination a score is calculated and the
highest scoring combination is accepted as the identified sequence [Allmer, 2011]. However,
de-novo sequencing based on brute force has limitations, because the number of sequence
combinations increases exponentially with increasing precursor masses. This exponential
growth leads to a combinatory explosion, which is heavily restricted by available comput-
ing power. Therefore, alternative de-novo sequencing approaches have been investigated,
which are based on different methods such as graph theory, dynamic programming, hidden
Markov model and machine learning. Amongst others, recent de-novo algorithms are
Novor [Ma, 2015], DeepNovo [Tran et al., 2017] and PointNovo [Qiao et al., 2021], which are
all based on machine learning approaches.

The success of peptide identification by de-novo sequencing is strongly dependent on
the quality of the acquired MS/MS spectrum. MS/MS spectra of peptides with a high
fragmentation efficiency, i.e., a high coverage of the fragment ion series with high intensi-
ties, are more likely to be correctly sequenced than low abundant peptides providing poor
fragmentation efficiency. In addition, poor fragmentation efficiency can cause incomplete
ion-series. Complete sequencing is also hindered, when the sequence contains non-standard
amino acids (e.g., amino acids that are not encoded in the genetic code such as selenocys-
teine or pyrrolysine) or uncommon PTMs, because they are not considered in the algorithm
[Seidler et al., 2010]. Additionally, the higher the accuracy, the better the information about
the elemental composition, which is specifically important to be able to distinguish amino
acids with similar masses (e.g., K and Q).
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However, complete peptide sequencing in a reference database independent manner is
rather the exception. MS/MS spectra are mostly sequenced incompletely and the identi-
fied sequence is referred to as ‘sequence tags’. Such sequence tags are used in homology-
based approaches, which are a combination of de-novo sequencing and database search.
This combined identification approach can identify peptides that do not exactly match to a
reference sequence database. Implemented algorithms are GutenTag [Tabb et al., 2003], MS-
Homology [Kayser et al., 2004] and SPIDER [Han et al., 2005].
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1.7 Applications of ancient proteins

The study of ancient proteomes by applying MS-based approaches is termed palaeo-
proteomics. In 2000, the continuous analytical and computational advancements of MS
enabled the first analysis of ancient proteins, when osteocalcin (OC) of an ancient bone
was successfully identified based on PMF using MALDI-TOF MS [Ostrom et al., 2000].
Since then, the emerge of palaeoproteomics has led to an increase in ancient protein
studies in a diverse range of fields and application: cultural heritage objects, archaeolog-
ical studies and evolutionary studies [Dallongeville et al., 2016, Hendy, 2021, Welker, 2018b].

Cultural heritage objects are key to understanding the culture of each other’s society
to foster relations and communication. Many of these objects are based on organic com-
pounds (e.g., paint binders, manuscripts, leather objects) and hence, are rich in proteins.
Therefore, palaeoproteomics lends itself as a valuable tool to study these objects.

In art history, paintings have been the subject of several studies [Dallongeville et al., 2016],
with the aim to identify the protein composition of paints used in different layers. The
protein composition provides valuable information for art historians [Zadrozna et al., 2003],
because they gain insights into the artistic technique or history of the object as well as
insights into society’s life style. Especially important for museum conservators, the iden-
tification of used materials and their biological source also sheds light on its degradation
process which is essential for the selection of suitable preservation and conservation
techniques.

Paint typically consists of a colour pigment and an organic binder [Tokarski et al., 2006]. In
paintings based on tempera, the binding material is usually a glutinous material such as egg
yolk whereas in oil paintings oil-based binders are applied. In the early 2000s, the proteins
of the binder in colour layers of a painting from the 19th century were successfully identified
by PMF and the results suggest the use of rabbit glue as protein binder [Hynekl et al., 2004].
With improving methodologies and the application of MS/MS, it became possible to
identify egg white and egg yolk proteins [Tokarski et al., 2006]. One of the studied old art
paintings was the Benedetto Bonfigli’s triptych, The Virgin and Child, St. John the Baptist,
St. Sebastian (XVth century) that is shown in Figure 1.16, A.

The improved methodology for ancient protein studies and its success opened up
new applications of MS-based ancient protein analysis to archaeology [Hendy, 2021].The
first species identification of faunal remains based on Zooarchaeology by Mass Spec-
trometry (ZooMS) was published in 2010 [Buckley et al., 2010]. ZooMS aims to provide
a cheap and fast method to distinguish species (e.g., sheep and goat) based on collagen
peptide sequencing typically analysed with PMF using MALDI-MS, which is partic-
ularly useful to enable identification of species that are morphologically very similar
[Zeder and Pilaar, 2010, Zeder and Lapham, 2010] or where remains are highly fragmented.
The species can be distinguished based on the generated mass fingerprints of the analysed
collagen peptide sequence by comparing it to reference sequences of known species. A
limitation of ZooMS can be insufficient sequence variability based on evolutionary distance,
thus, it is typically possible to distinguish between family, but discrimination becomes chal-
lenging on the species-level [Hendy, 2021]. ZooMS has been extensively applied for species
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identification of faunal assemblages, which provides insights into past subsistence practices
and ecologies. For example, MS/MS analysis by MALDI-TOF/TOF have advanced the
understanding of domestication by the identification of well-preserved food remains and its
ingredients [Hong et al., 2012]. Hong et al. studied the ancient proteins from food residues
taken from a pottery bowl (Figure 1.16, B, C) at cemetery sites located in the Turpan Basin,
China, and successfully identified milk additives such as bovine milk or curd. Species
identification of food remains allows to draw conclusions about animal domestication,
providing insights into ancient farming practices.

Figure 1.16: A) Benedetto Bonfigli’s triptych, The Virgin and Child. St. John the Bap-
tist. St. Sebastian (Italian School, XVth century), Petit Palais museum, Avignon, France.
©CRRMF. [Tokarski et al., 2006] B,C) Ancient proteins were extracted from remaining black
food residues taken from a pottery bowl [Hong et al., 2012]. D) Dental enamel and dentine
proteins were extracted from the molar assigned to a Stephanorhinus [Cappellini et al., 2019].

Ancient protein studies have also shed light on the domestication of cereals in early farming
and dietary habits. For example, Colonese et al. identified wheat proteins when studying
the remaining proteins of well-preserved Early Bronze Age wooden containers from the
Swiss Alps [Colonese et al., 2017]. Another analysis with the aim to gain insights into the
dietary habits of humankind was performed on the stomach content of the 5,300-year-old
glacier mummy, usually also referred to as “Ötzi the Iceman” [Maixner et al., 2018]. By
combining aDNA and ancient proteomics analysis approaches, it was possible to identify
traces of meat and cereals in Ötzi’s last meal.

Ancient proteins are not only very valuable to extend our knowledge in the field
of cultural heritage and archaeology, but also to better understand human evolution
[Welker, 2018b]. Since the first time Neanderthal mtDNA was successfully sequenced
[Krings et al., 1997] in 1997 and with the introduction and advancements of high-
throughput sequencing methods, large-scale research on extinct hominins has become pos-
sible [Marciniak and Perry, 2017]. Complete genome sequencing of different Neanderthal
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specimen [Castellano et al., 2014, Green et al., 2010, Prüfer et al., 2014] provide important se-
quence variation information to further understand hominin population structure, size, and
movements [Kuhlwilm et al., 2016, Rogers et al., 2017]. Additionally, “Denisovans” have
been discovered as a sister-clade to Neanderthals [Krause et al., 2010, Meyer et al., 2012].

However, due to the biomolecular degradation, no ancient hominin DNA older than
0.43 million years has been recovered [Meyer et al., 2016]. In 2015, evolutionary re-
lationships of extinct species were successfully elucidated by obtaining amino acid
sequences of ancient bone proteins (mainly of collagen type 1) with shotgun proteomics
[Buckley et al., 2015, Cleland et al., 2016, Welker et al., 2015].

Besides the bone tissue, other tissue such as dental enamel and dentine have been ex-
plored. A recent study has shown, that it is possible to address the taxonomic placement of
the Eurasian Pleistocene Rhinocerotidae by applying shotgun proteomics to a ∼1.77 million
years old dental enamel and dentine of a Stephanorhinus specimen (Figure 1.16, D) excavated
from the Dmanisi archaeological site in Georgia [Cappellini et al., 2019].

1.8 Challenges of ancient protein sequence identification

The success of recent ancient protein studies and the application to a variety of organic
materials covering different time periods have provided valuable insights advancing our
understanding about the past. However, there are important challenges in every step of
ancient proteomics experiments that need to be considered.

Proteomics experiments require destructive sampling to extract the proteins from bio-
logical materials. Analysis of modern samples such as cell lines can be mostly repeated. For
example, cell lines such as the HeLa cells [Masters, 2002], the first continuous cancer cell line
- isolated from an aggressive glandular cervical cancer of a woman called Henrietta Lacks,
can be reproduced. However, objects form cultural heritage, archaeology and palaeontology
are precious, unique and most importantly limited. Therefore, before conducting a pro-
teomics experiment that requires destructive sampling, it is important to ensure the success
of the analysis but also that the knowledge gain is worth the permanent loss of the material.
The success of obtaining proteins from the material under study is not only dependent on
the age, but also on the preservation condition.

Organic compounds are preserved better in environments that provide cool, dry, dark,
anaerobic and slightly alkaline conditions (pH of 7.8) [Bollongino et al., 2008]. Even though
proteins are more resistant to degradation than DNA, diagenesis still affects protein
sequences, so that ancient materials tend to contain shorter and altered peptide fragments
[Bada et al., 1973, Barker, 1981, Schroeder and Bada, 1976]. Based on the aforementioned
preservation conditions, burial deposition has the advantage of providing a good preser-
vation environment. However, the surrounding microbial can cause high contamination.
Thus, the obtained sample for a proteomics analysis usually contains on the one hand
low abundant proteins in low concentrations and on the other hand highly abundant
contaminant proteins.
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In addition, contamination can also be induced during excavation, storage and analy-
sis [Hendy et al., 2018], for example by human tissue or clothes made of proteinaceous
material during sample preparation. Contamination of modern human tissue is specifically
critical when working with ancient material that is suspected to be of human origin. To not
mask the protein sequence obtained from an object of interest by that of contaminants, it is
most important to take highest precautions during sampling, measuring as well as in the
computational analysis, to be able to distinguish endogenous proteins from contaminants.

In comparison to the modern counterpart, ancient proteins have typically an increased
number of PTMs, which can either be biological, such as glycosylation [Ozcan et al., 2014],
phosphorylation [Cappellini et al., 2019] and hydroxylation [Ehrlich et al., 2010] but also
introduced by diagenesis, ageing or other environmental factors such exposure to light
and oxygen. PTMs related to ageing and diagenesis are oxidation [Mackie et al., 2018],
glycation [Cleland et al., 2015] and deamidation [Schroeter and Cleland, 2016]. Particularly
important is the modification deamidation located on the amino acids asparagine (Asn)
and glutamine (Gln). Deamidation can occur enzymatically in living organisms, but
also non-enzymatically over time and is therefore often considered as an indicator for
protein damage [Robinson and Robinson, 2001]. Consequently, based on deamidation,
endogenous proteins obtained from the ancient material can be distinguished from contam-
inants by comparing their deamidation rates, which is typically higher in ancient samples
[Cappellini et al., 2019, Ramsøe et al., 2020].

Despite recent developments and improvements of high-resolution mass spectrometers to
detect proteins in complex mixtures, identification of ancient proteins is still challenging
due to the low abundance and concentration of ancient proteins in a sample compared
to the high abundance of accompanying contaminants. Database search engines (Section
1.6.2 Sequence database search) are the most frequently used identification approach to
determine the sequence from shotgun proteomics experiments. The resulting MS/MS
spectra of the measured ancient peptide mixture usually provide a poor fragmentation
pattern with low intensities. The identification of such spectra usually leads to low scoring
PSMs due to insufficient matching ions. Additionally, a set of PTMs needs to be included
in the search, which leads to an enormous increase in search space and, as a result, the
increase of FP identifications. The overall number of FP is controlled by the FDR (Section
1.6.2.2 False discovery rate). Nevertheless, this leads to a decrease of identified sequences.
Moreover, protein sequences of unsequenced organisms or extinct species might not be
identified by current database search algorithms, as they may be evolutionarily distinct,
even from close extant relatives [Welker, 2018b].

As mentioned previously, an alternative identification approach is de-novo sequenc-
ing to be able to identify un-sequenced organism (Section 1.6.3 De-novo sequencing).
However, de-novo sequencing even on modern sample provides mainly incomplete tag
sequences, due to insufficient obtained fragmentation patterns. The application of hybrid
approaches, which are a combination de-novo sequencing and database search, can increase
the identification rate by using the tag as lookup to find homologous sequences in the
database.
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For taxonomic placement, it is important to provide reliable sequence identifications.
However, current identification approaches are optimised to identify protein sequences
of modern samples. Therefore, they do not cover all aspects that are important for the
identification of ancient protein. For example, deamidation converts asparagine (Asn) and
glutamine (Gln) to aspartic acid (Asp) and glutamic acid (Glu), respectively, and due to
their similar masses, no distinction can be made.

Ancient proteomics is an emerging field that provides valuable insights into the past
of humans, animals and plants in several fields, such as cultural heritage, archaeology and
evolutionary history. Despite recent successes, it is still challenging to achieve high identifi-
cation rates, due to advanced diagenesis of ancient proteins. While it is possible to achieve
an identification rate of 40% of all acquired MS/MS spectra in modern datasets, such as the
cell line HeLa [Masters, 2002] by applying high-resolution shotgun proteomics, only 10% or
less PSMs can be identified in ancient datasets. Therefore, many acquired MS/MS spectra
remain unidentified stressing the need of improved identification algorithms.



Chapter 2

Purpose and structure of the thesis

To further advance palaeoproteomic methods, the work described in this thesis aims to
improve the performance of the database search engine Andromeda, incorporated in the
MaxQuant software package for shotgun proteomics data analysis, which is the most
frequently used tool in the proteomics community. More specifically, the goal was the
development of a novel scoring method that improves the identification by including
predicted fragmentation ion intensities of theoretical spectra (Chapter 3 – Publication 1).

Identification by database search engines is the standard approach for protein and
peptide identification, facilitated by the availability of large reference protein sequence
databases of already sequenced organisms. However, protein sequences of unsequenced
or extinct species typically contain sequence variation due to their evolutionary distance to
modern species. These variations prohibit exact matching to the sequences of a reference
database, which causes many measured peptides to remain unidentified. To tackle this
challenge, I was working on MaxNovo, a novel de-novo sequencing algorithm imple-
mented in MaxQuant to provide reliable complete and in-complete sequence identifications
independent of any reference knowledge (Chapter 4 – Publication 2).

The two following chapters are ancient studies related to evolutionary history. In the
first study (Chapter 5 – Publication 3), the phylogenetic relationships of Homo antecessor
from the excavation site Atapuerca in Spain and of Homo erectus from the excavation site
Dmanisi in Georgia were investigated. In the second study (Chapter 6 – Publication 4),
we applied an ancient proteomics experiment to analyse the dental enamel proteome of
Gigantophitecus blacki, a giant hominid from Southeast Asia dated to be ∼1.9 million years
old.

List of publications that are part of this thesis:

1. Tiwary, S., Levy, R., Gutenbrunner, P. et al. High-quality MS/MS spectrum prediction
for data-dependent and data-independent acquisition data analysis. Nat Methods 16,
519–525 (2019). https://doi.org/10.1038/s41592-019-0427-6

2. Gutenbrunner, P. et al. Spectrum graph-based de-novo sequencing algorithm
MaxNovo achieves high peptide identification rates in collisional dissociation MS/MS
spectra (submitted to bioRxiv, MCP)
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3. Welker, F., Ramos-Madrigal, J., Gutenbrunner, P. et al. The dental proteome of Homo
antecessor. Nature 580, 235–238 (2020). https://doi.org/10.1038/s41586-020-2153-8

4. Welker, F., Ramos-Madrigal, J., Kuhlwilm, M. et al. Enamel proteome shows
that Gigantopithecus was an early diverging pongine. Nature 576, 262–265 (2019).
https://doi.org/10.1038/s41586-019-1728-8

A description of my contribution to each publication can be found in a dedicated contribu-
tion chapter, which is placed after the discussion.
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3.1 Abstract

Peptide fragmentation spectra are routinely predicted in the interpretation of mass-
spectrometry-based proteomics data. However, the generation of fragment ions has not been
understood well enough for scientists to estimate fragment ion intensities accurately. Here,
we demonstrate that machine learning can predict peptide fragmentation patterns in mass
spectrometers with accuracy within the uncertainty of measurement. Moreover, analysis of
our models reveals that peptide fragmentation depends on long-range interactions within a
peptide sequence. We illustrate the utility of our models by applying them to the analysis
of both data-dependent and data-independent acquisition datasets. In the former case, we
observe a q-value-dependent increase in the total number of peptide identifications. In the
latter case, we confirm that the use of predicted tandem mass spectrometry spectra is nearly
equivalent to the use of spectra from experimental libraries.
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acquisition data analysis

3.2 Introduction

Peptide identification by fragmentation is a fundamental part of bottom-up mass-
spectrometry-based proteomics [Cottrell, 2011, Sinitcyn et al., 2018a]. Peptide molecules
are fragmented with the aid of one of several technologies, including collision-
induced dissociation [Mitchell Wells and McLuckey, 2005] (CID), higherenergy collisional
dissociation[Olsen et al., 2007] (HCD) and electron transfer dissociation [Coon et al., 2005,
Good et al., 2007], producing a pattern of fragments that is indicative of the amino acid se-
quence [Steen and Mann, 2004]. The frequency with which a peptide backbone bond breaks
determines the relative signal intensities in a fragmentation spectrum. Theoretically, the
intensities can be calculated from first principles by quantum chemistry. However, for
molecules as large as peptides, this is too computationally expensive to be practical. Simpler
models, such as the mobile proton hypothesis [Boyd and Somogyi, 2010], exist for qualita-
tive considerations, but they are not precise enough to be beneficial to the peptide identifi-
cation process. Hence, the intensity information contained in fragmentation spectra remains
underused in many peptide identification strategies.

This problem is an ideal situation in which to employ machine learning. It can learn the rela-
tionship between sequence and fragment abundances based on a large dataset of training ex-
amples, without explicit knowledge of the physical mechanisms behind it. Furthermore, the
predictive models do not have to remain black boxes, but can be examined with specialized
methods that identify features or combinations thereof that are most relevant for making
a prediction. While fragment intensity prediction has been attempted before using a vari-
ety of methods [Arnold et al., 2006, Degroeve et al., 2013, Dong et al., 2014, Park et al., 2017],
they have had limited success. Here, we present a deep learning [LeCun et al., 2015] method
whose accuracy is close to the theoretical limitation. Furthermore, we demonstrate its util-
ity by integrating it into data-dependent acquisition [Wolters et al., 2001] (DDA) and data-
independent acquisition [Doerr, 2014] (DIA) computational proteomics workflows, and our
results suggest that both can benefit from the improved spectrum prediction.

We developed two different regression strategies to model peak intensities. The first one,
termed DeepMass:Prism, is a deep learning approach using a bidirectional recurrent neural
network (RNN). Its predictive performance reaches the theoretical limit set by the repro-
ducibility of technical replicates. The second approach, termed wiNNer (window-based
neural network being easily retrainable), follows a classical sliding sequence window-based
machine learning strategy. The latter model is less accurate than DeepMass:Prism. How-
ever, it has the advantage of being less computationally expensive to train, which makes ad
hoc model creation for a given dataset more feasible. For both strategies, a single model can
accommodate peptides of any length, unlike in other approaches[Degroeve et al., 2013]. In
the deep learning approach, a single model can also accommodate multiple fragmentation
types, or other dataset-specific information such as the fragmentation energy
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Data. For evaluating the DeepMass:Prism model, we obtained 25 raw datasets from the
PRIDE MS repository [Vizcaı́no et al., 2016]. The data span five organisms (Homo sapiens,
Mus musculus, Escherichia coli, Saccharomyces cerevisiae and Arabidopsis thaliana), and con-
tain 4,624 liquid chromatography–mass spectrometry runs (Supplementary Table 3.1). The
datasets were processed using MaxQuant v.1.5.8.7. The datasets comprise ∼60 million
MS/MS spectra in total (Supplementary Fig. 3.7), with 1.4 million unique sequence/charge
state/fragmentation method/mass analyzer combinations. For each unique combination, a
single representative MS/MS spectrum was used corresponding to the one with the best An-
dromeda score. Spectra with Andromeda scores below 100 were discarded. The unique com-
binations were randomly split into training, validation and testing sets with the ratio 90:5:5.
The intensity values were normalized to a 0–10,000 range and were not log-transformed.

For evaluating the wiNNer model, we used the ProteomeTools dataset [Zolg et al., 2017]
(PXD004732). Different models were generated for CID+2, CID+3, HCD+2 and HCD+3,
and for each one peptide sequence features were split into training, validation and testing
sets with the ratio 90:5:5. All models contain unique peptides, which were selected taking
the maximum Andromeda score; if this score was under 100, the peptide was discarded.
Intensity values were normalized to 0–1 and then log-transformed using log2(1 + Intensity x
10,000).

Details of the RNN. Our model takes as an input a peptide amino acid sequence with its
associated metadata, and returns intensities of different fragment ion types (that is, y and b
ions with and without neutral losses) at each position along the input sequence (Fig. 3.1).
The architecture of our neural network comprises two main modules: layers of recurrent
cells (encoder) and layers of fully connected neurons (decoder). The encoder contains three
bidirectional layers of long short-term memory [Hochreiter and Schmidhuber, 1997] (LSTM)
cells and emits a fixed-length representation of the input peptide. The fixed-length rep-
resentation is concatenated to corresponding metadata (that is, precursor peptide length,
charge state, fragmentation method and mass analyzer type) and then input into the de-
coder. Finally, the decoder outputs intensities of different fragment ion types at each po-
sition of the input sequence. Bidirectional LSTM cells and regular perceptron units with
the rectifier activation function [Hahnioser et al., 2000] were used to build the RNN and
fully connected modules, respectively. The neural network was implemented in Tensor-
flow v.1.7.0 [Abadi et al., 2016]. The learning and dropout rates, the number of layers, the
number of hidden units in each module and the batch size hyper-parameters were opti-
mized using Google Vizier [Golovin et al., 2017] and the validation dataset. The model was
trained on GPUs using the Adam optimization method [Kingma and Ba, 2015]. The best
model contained 3 bidirectional LSTM layers with 384 hidden units in each layer, and 4 fully
connected layers with 768 neurons in each layer. Examples for the best and worst five pre-
dictions of the model can be found in Supplementary Fig. 3.16. A tab-separated text file with
all spectrum predictions for the tryptic peptides in the human proteome (charge=2, HCD)
can be downloaded from the PRIDE dataset PXD010382 (uniprot-filtered-reviewed-human-
peptides-ftms-hcd-charge2.tsv).
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Details of the sliding-window-based machine learning. For the conventional machine
learning approach on sequence windows, we use as feature space the adjacent amino acids
around the backbone bond for which the y- and b-ion intensities should be predicted. In
addition, the amino acids directly on the peptide N and C termini, as well as the distance
of the bond to the termini and the length of the peptides, are used. Each amino acid feature
was converted to 21 binary features by one-hot encoding. The 21st state represents cases in
which the sliding window extends over a terminus of the peptide. The intensities of a single
peptide were normalized by the maximum over y and b ions, and intensities for missing
peaks were set to zero. For each fragment series, each backbone segment between two adja-
cent amino acids corresponds to an instance for the machine learning algorithm. Distances
and peptide lengths were normalized so that they ranged from zero to one. In the wiNNer
method we trained separate regression models for each combination of precursor charge and
fragmentation type, and report results for CID+2, CID+3, HCD+2 and HCD+3.

To evaluate the wiNNer model, we calculated the PCC between true and predicted peak
intensities for each peptide in the testing dataset. We used Keras (https://keras.io) v.2.0.8,
a high-level neural network application programming interface, to train a simple two-layer
neural network model. TensorFlow v.1.3.0 was used as backend in Keras. The architecture
of the neural network includes two hidden layers. The model was trained for y and b ions in
the same neural network model; hence there are two output units. The input layer contains
549 features for a window size of 24. We repeated this analysis for sequence window sizes
of 4, 8, 16 and 24 residues, the result of which is shown for CID+2 in Supplementary Fig.
3.13. The PCC increases monotonically with window size for all combinations of precursor
charge and fragmentation type. Hence, we selected a window size of 24 for further analy-
sis. Note that most peptides completely fit into the window since they are shorter than 24
residues. The number of hidden layers used for this window size is 312. Batch size, number
of epochs, dropout and learning rate were optimized for all of the models separately. To test
the window-based model, we used the independent test data taken from the 25 datasets, as
shown in Supplementary Fig. 3.7. The PCCs of CID+2, CID+3, HCD+2 and HCD+3 models
were 0.898, 0.793, 0.882 and 0.762, respectively. All four wiNNer models performed better
than MS2PIP, as shown in Supplementary Fig. 3.17.

In addition to the neural network model, we explored support vector regression (SVR) and
random forests from scikit-learn (http://scikit-learn.org, v.0.19.1) as machine learning al-
gorithms. Because of practical limitations in training set size, we had to train the SVR on
batches of 100,000 instances, the outputs of which were averaged. A radial basis function
kernel was used, for which the width parameter was tuned in cross-validation. Then we
trained a random forest in which we could use all training instances in one model. As a
further option, we put a random forest layer on top of the output of SVR. Among all of these
options, the neural network approach showed the best performance. For the comparison of
different machine learning approaches, CID+2 was used with a sliding window size of 8,
which reduced the computing power needed as compared with the optimal window size of
24. This is why performance is lower here on average compared with the final model. How-
ever, we believe that relevant conclusions can be drawn for relative comparisons between
machine learning methods.

https://keras.io
http://scikit-learn.org, v.0.19.1
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Benchmarking and comparison with known methodologies. Using the validation and test-
ing datasets, we compared the performance of our models with that of MS2PIP, taking into
account only singly charged y- and b-ion series. Although DeepMass:Prism is capable of
predicting peak intensities of fragments with neutral losses of water and ammonia, we had
to base the comparisons on y- and b-ion peak intensities owing to the limitations of the
other predictor. The MS2PIP server (https://iomics.ugent.be/ms2pip) with default settings
was used for all analyses. We also compared the performances of our models with the best
possible theoretical performance. We determined this by calculating the technical variability
between spectra in our validation and testing sets against their random replicate observation
in the entire dataset.

Plasma sample processing. EDTA plasma samples collected from three healthy patients
were pooled together and then clarified by centrifugation at 17,000g for 10min at 4°C.
Aliquots were prepared and stored at -80 °C. Immediately before processing, plasma aliquots
were thawed at room temperature. Subsequently, four replicate samples were prepared
following the Biognosys Sample Preparation Pro Kit. Each sample was transferred into a
LoBind tube (Eppendorf), dried by vacuum centrifugation and then stored at -80 °C.

Mass spectrometry for plasma samples. Dried peptide samples were resuspended by the
addition of 20µl of 0.1% formic acid in water and water bath sonication for 10min. Sam-
ples were subjected to centrifugation at 17,000g for 5min at 4°C. Subsequently, 18µl was
transferred into a new LoBind tube (Eppendorf) followed by the addition of 2µl of 10x
iRT (indexed retention time) solution (Biognosys). Liquid chromatography–tandem mass
spectrometry experiments were performed using 1-µl injections. Samples were subjected
to reversed-phase chromatography with an Easy-nLC 1000 HPLC (Thermo Scientific) con-
nected in-line with a Q Exactive Plus (Thermo Scientific) mass spectrometer. External mass
calibration was performed before analysis. A binary solvent system consisting of buffer
A (0.1% formic acid in water (v/v)) and buffer B (0.1% formic acid in 95% acetonitrile
(v/v)) was employed. The mass spectrometer was outfitted with a nanospray ionization
source (Thermo Nanoflex source). The liquid chromatography was performed using a
PepMap100 3-µm C18 (75µm×2cm) trapping column followed by a PepMap RSLC 2-µm
C18 (75µm×25cm) analytical column. For both DDA and DIA experiments, the same 120-
min biphasic method was used, consisting of a gradient from 4% to 25% buffer B for 105min
followed by 25% to 35% for 15min, at a flow rate of 300nl min-1.

DDA of plasma samples. Each full-scan mass spectra was recorded in positive ion mode
over the m/z scan range of 375–1,700 in profile mode at a resolution of 70,000. The automatic
gain control (AGC) target was 3× 106 with a maximum injection time of 50ms. The 12 most
intense peaks were selected for HCD fragmentation. Tandem spectra were collected at a
resolution of 17,500 with an AGC target of 1 × 105 and maximum injection time of 60ms.
Dynamic exclusion and charge state screening were enabled, rejecting ions with an unknown
or +1 charge state. An isolation window of 1.5 and normalized collision energy of 28 were
used when triggering a fragmentation event.

DIA of plasma samples. Two scan groups were employed. First, using the selected-ion-
monitoring scan group, we recorded a full-scan mass spectrum in positive ion mode over
the m/z scan range of 400–1,200 in profile mode at a resolution of 70,000. The AGC target

https://iomics.ugent.be/ms2pip
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was 3 × 106 with a maximum injection time of 100ms. Next, the DIA scan group was used
to acquire 32 DIA segments of 15Da each at a resolution of 35,000. The AGC target was
1×106 with a maximum injection time of 120ms. An isolation window of 20 and normalized
collision energy of 28 were used when triggering a fragmentation event. A global inclusion
list was used to define each DIA segment.

Mass spectrometric data analysis of plasma samples. DDA data were processed with Pro-
teome Discoverer (v.2.1), using Mascot as search algorithm. Fixed modifications included
cysteine carbamidomethylation, and variable modifications included methionine oxidation
and N-terminal acetylation. The files were searched against the human UniProt proteome
database (downloaded 17 February 2016). DIA data were processed with Spectronaut (v.11,
Biognosys) using default settings.

DeepMass:Prism model interpretation. To interpret our model, we applied the method of
integrated gradients. Integrated gradients attributes the predicted output of a neural net-
work to the set of input features (analogous to inspecting the product of the input features
and coefficients in a linear model). For a given peptide sequence and precursor metadata,
this method indicates the influence between each amino acid residue in the peptide sequence
and the predicted intensity of each spectrum peak. Residues can either positively or nega-
tively influence a peak’s predicted intensity. Essentially, this provides a square N ×N attri-
bution matrix denoting the influence of residue i on peak j, where N is the peptide length
(Supplementary Fig. 3.11). The diagonal elements of this matrix represent the degree to
which the peak intensity is influenced by the identity of the residue at the cleavage site,
while off-diagonal elements denote long-range interactions, where a peak’s intensity is in-
fluenced by the identity of a distant residue. To focus on the influence of peptide identity,
we held constant the precursor-level metadata and did not calculate gradients at the con-
text. Specifically, for all peptides analyzed, we assumed a +2 charge state, fragmentation by
HCD and Fourier transform mass spectrometry mass analyzer. The sum along a column of
the attribution matrix equals the predicted intensity of the represented peak. Columns of
this matrix were normalized by their maximum value such that the most positive attribu-
tion to peak intensity had value 1.0; other attributions were scored relative to this value. As
peak values are non-negative, all columns have at least 1 element equal to 1.0, yet negative
attributions can decrease below -1.0 in extreme cases.

To determine distances between interactions (Supplementary Fig. 3.12), we used an attribu-
tion threshold of ±0.7; any normalized value more extreme than this threshold was consid-
ered a major attribution. The directed distances between this major attribution and cleav-
age site were determined such that positive distances corresponded to instances where the
attributed residue was situated downstream of bond cleavage (toward the C terminus). Fi-
nally, distances were normalized to the length of each particular peptide, such that a distance
of ±1.0 corresponded to a full fragment ion length.

To determine the influence of specific amino acids on peptide fragmentation, we repeated the
analysis on a per-residue basis (Supplementary Fig. 3.18). Specifically, for each amino acid,
we calculated the distribution of distances of major attributions. Except in a few notable
exceptions, amino acids did not greatly deviate from the general trend already described
(Fig. 3.4). Nonetheless, we saw relevant clustering of per-residue profiles in the positive
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attribution of b ions. Broadly, we observed hydrophilic amino acids clustering distinctly
from large hydrophobic amino acids. Proline is expected to show distinct behavior because
of the well-known proline effect [Hunt et al., 1986]. Indeed, it represents a notable outlier,
and had substantially longer-reaching positive influence on predicted intensities up- and
downstream (Supplementary Fig. 3.18, upper-right plot). Similarly, among negative attribu-
tion profiles, we identified two trends. First, branched-chain amino acids and proline had
an influence relatively concentrated at the cleavage site, and second, they had a smoother
distribution of influence downstream; asparagine was a notable outlier, with its strongest
influence on peaks just upstream of it.

Evaluation of intensity prediction models in Andromeda scoring per-
formance. We analyzed published HeLa whole-cell lysate data, ob-
tained from Kelstrup et al. [Kelstrup et al., 2018] (list of raw files:
20161213 NGHF DBJ SA Exp3A HeLa 1ug 60min 15000 01.raw,
20161213 NGHF DBJ SA Exp3A HeLa 1ug 60min 15000 02.raw,
20161213 NGHF DBJ SA Exp3A HeLa 1ug 60min 15000 03.raw).

To compare the identification of MS/MS spectra using the conventional Andromeda scoring
and the intensity-informed scoring, we predicted intensities for all candidate PSMs using
DeepMass:Prism, wiNNer or MS2PIP. For the search configuration parameters, Trypsin/P
was specified as enzyme, carbamidomethylation of cysteine was specified as a fixed mod-
ification and no variable modifications were selected. Protein FDR control was disabled to
report results dependent on a q value on the PSM level. The examples in Supplementary
Figs. 3.19 and 3.20) were taken from dataset PXD004732 in the PRIDE archive (Proteome-
Tools).

When comparing the Andromeda scores without and with using intensity prediction
on a dataset consisting of synthetic peptides and, hence, with known ground truth
[Zolg et al., 2017], we saw several examples for which the correct PSM was not the highest-
scoring one for that MS/MS spectrum when the conventional Andromeda score was used
but became the highest-scoring PSM when the intensity-informed Andromeda score was
used (Supplementary Figs. 3.19 and 3.20). As illustrated in Supplementary Figs. 3.19 and
3.20), examples where the highest-scoring PSM changed after including intensity informa-
tion included cases where two adjacent amino acids were swapped and cases where a com-
pletely new peptide sequence became the top-scoring PSM.

Retention time prediction. We constructed an RNN model with a bidirectional LSTM layer
with 40 hidden units, followed by another LSTM layer with 20 hidden units. The last output
in the output sequence was then fed into 2 dense layers, the first with 20 hidden neurons
and hyperbolic tangent activation function, and the last with 1 neuron and linear activation
function. The input to the model is a onehot-encoded sequence of amino acid residues, and
the output is a predicted iRT value for the input peptide. We used the Adam optimizer and
mean squared error as the loss function, and applied the dropout rate of 0.2 to each layer.
The model was implemented using the Keras library and Tensorflow backend. The model
was trained on data collected in-house from three different samples: human plasma, HeLa
cell lysate and yeast cell lysate. The 69,680 peptide-charge pairs were split into training, vali-
dation and test set in a 75:20:5 ratio. It is worth noting that this model is not complete yet—it
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was built to assess the maximum possible peptide identification rate when a spectral library
is completely generated in silico (that is, predicting both fragment ion intensities and reten-
tion times for each peptide sequence). As the model was trained using a limited number
of samples that were subjected to liquid chromatography conditions identical to the DDA
and DIA data obtained for plasma samples, we have not evaluated how well the model will
generalize (that is, different liquid chromatography and column systems). It is even conceiv-
able that the future model will have to be fine-tuned on each liquid chromatography–mass
spectrometry setup independently.

To evaluate the full potential for generating spectral libraries completely by computation
(that is, peptide fragment ion abundances and peptide retention time information are gener-
ated in silico), we predicted both precursor peptide retention times and MS/MS spectra. This
combined model we termed DeepMass:Drip. It predicts iRT-calibrated retention times with
high accuracy (R2 of 0.97 and a median error of 4.84 as compared with R2 of 0.88 and me-
dian error of 8.68 for SSRCalc [Krokhin, 2006]). To evaluate this method, we first generated
a spectral library using DeepMass:Prism+Drip (that is, predicting fragment ion intensities
and retention times for each of the 7,441 peptides from the DDA library). After performing
Spectronaut searches, we quantified on average 4,957 peptides, 291 (5.5%) peptides fewer
than the DDA library (Fig. 3.4). Here, too, peptides unidentified by DeepMass:Prism+Drip
had low-confidence Spectronaut scores during the DDA library searches, with 118 (41%)
peptides having q values worse than 10−3 (Supplementary Fig. 3.15).

Statistics. In box plots, each box extends from the lower to upper quartile values of the data,
with a line at the median. The whiskers extend to 1.5 multiples past the interquartile range
between the low and high quartiles. Data points beyond these ranges are considered outliers
and are plotted as individual data points. Numbers of data points used in each box plot are
provided in the respective figure legends. The q values for PSM FDRs were estimated in
MaxQuant with its standard targetdecoy search strategy.

Reporting Summary. Further information on research design is available in the Nature Re-
search Reporting Summary linked to this article.

Data availability

The mass spectrometry proteomics data including summary tables have been deposited to
the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identi-
fier PXD010382.

Code availability

We offer the trained DeepMass:Prism model for use via the Google Cloud ML plat-
form (https://github.com/verilylifesciences/deepmass/tree/master/prism). To obtain the
trained DeepMass:Prism model to run locally, please contact the corresponding authors. A
user-friendly interface will be made available in the future MaxQuant releases.

https://www.nature.com/articles/s41592-019-0427-6#MOESM2
https://www.nature.com/articles/s41592-019-0427-6#MOESM2
https://www.ebi.ac.uk/pride/archive/projects/PXD010382
https://github.com/verilylifesciences/deepmass/tree/master/prism
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Bidirectional RNN for spectral prediction. The problem of accurately predicting tandem
mass spectra has long eluded conventional machine learning approaches for several rea-
sons. First, because peptide sequences vary in length, they are incompatible with many
algorithms that take fixed-length representation as an input. Second, different fragmenta-
tion and acquisition methods can be used to generate and acquire tandem mass spectra,
each producing considerably different results. Moreover, precursor peptides are fragmented
into different types of ions, where the abundance of any one ion type can be dependent on
another. Training multiple models for each fragmentation method and ion type does not
take advantage of such dependencies. Lastly, with large, publicly available mass spectrome-
try repositories, training of conventional algorithms (for example, support vector machines)
becomes difficult, but complex, nonlinear approaches of deep learning become viable. Tak-
ing all of this into consideration, we selected RNNs [Graves et al., 2009]. RNNs are a class
of artificial neural networks that are designed to work with sequential information, can ac-
cept inputs at different levels (for example, amino acid, peptide fragment and machine type)
and of different types (for example, amino acid identities or their physicochemical proper-
ties), can predict multiple values simultaneously and can support training on datasets with
millions of entries (3.3 Methods and Fig. 3.1).

Metadata

P E P Ainput 
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layer

FC 
layer
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Figure 3.1: Bidirectional RNN architecture for the prediction of fragment intensities. The
neural network contains two basic modules: an RNN encoder and a perceptron decoder. The
encoder takes a one-hot-encoded peptide sequence as an input and outputs its fixed-length
representation vector. The sequence representation vector is then combined with metadata
features and input into the decoder. The decoder contains a set of fully connected layers
that outputs intensities of different fragment ion types (for example, y and b ions) at each
position in the input peptide sequence. FC, fully connected.
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Predictive performance of the bidirectional RNN. The datasets that are used for measur-
ing the predictive performance are described in detail in the Methods. In brief, 25 complete
datasets containing more than 60 million tandem mass spectrometry (MS/MS) spectra were
used for training, testing and validation (Supplementary Fig. 3.7 and Supplementary Ta-
ble 3.1). We first evaluated the performance of DeepMass:Prism against that of MS2PIP (ref.
[Degroeve et al., 2013]) using the Pearson correlation coefficient (PCC) between true and pre-
dicted intensities for each peptide. When we compared all peptides in our testing set, we
found that the accuracy of our model was markedly better than that of MS2PIP, with a PCC
of 0.944 versus 0.871 (Fig. 3.2). We also calculated the PCC of repeatedly collected mass
spectra of the same peptides to quantify technical variability in our dataset. Interestingly,
our model’s PCC nearly approached the theoretical maximum imposed by this measure-
ment reproducibility of 0.976 (Fig. 3.2 and Supplementary Fig. 3.8).
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Figure 3.2: Comparing the performance of fragment ion intensity predictions for the dif-
ferent machine learning strategies. The box plots show distributions of PCCs between ac-
tual and predicted y- and b-ion peak intensities for each peptide in our testing dataset. The
box plots contain 69,888, 69,888, 65,996 and 62,486 unique PSMs from the independent test-
ing datasets for DeepMass:Prism, wiNNer, MS2PIP and technical variability, respectively.
Each box extends from the lower to upper quartile values of the data, with a line at the me-
dian. The whiskers extend to 1.5 multiples past the interquartile range between the low and
high quartiles. Data points beyond these ranges are considered outliers and are plotted as
diamonds.

DeepMass:Prism was highly accurate across CID and HCD fragmentation methods (median
PCCs across all peptides in our testing dataset of 0.958 and 0.925, respectively; Supplemen-
tary Fig. 3.8) and for Fourier transform mass spectrometry and ion trap mass spectrometry
mass analyzers (median PCCs of 0.924 and 0.949, respectively). The model was also accurate
for precursor ion charges from 1 to 3 (median PCCs of 0.931, 0.952 and 0.901, respectively),
with performance dropping at higher charges because of the lack of data. The length of the
peptide only slightly affected the performance, with PCC for peptides with 5–10 amino acids
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being only marginally better than that for peptides with 30–35 residues (0.964 and 0.908, re-
spectively). Similarly, the Andromeda score of a peptide-spectrum match (PSM) minimally
affected the performance, with PCC for PSMs with a score of 200 being slightly lower than
that for PSMs with a score of 700 (0.937 and 0.954, respectively). Finally, metadata features
are crucial for accurate predictions; a model that does not take any metadata as inputs per-
forms poorly (median PCC of 0.810; Supplementary Fig. 3.9).

Sliding-window-based prediction. Another way to construct a regression model that can be
applied to peptides of variable sequence length is to use a sliding-window-based approach.
Prediction of local protein properties on protein sequence windows has a long tradition and
has been applied, for instance, to predict secondary structure, solvent accessibility and trans-
membrane regions [Garnier et al., 1996, Rost et al., 1994]. The feature space is constructed
from a sequence window centered on the backbone bond that is fragmented, extending k
amino acids to the left and to the right from the backbone bond under consideration (Fig.
3.3). Amino acids at the N and C termini, their corresponding distance to the target bond
and length of the peptide were also included in the feature space.
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Figure 3.3: Sliding-window-based regression model for prediction of fragment intensi-
ties. A symmetrical sliding window is placed around the target peptide bond for which
the b- and y-ion intensity should be predicted (red boxes). Amino acids in the window are
translated into 0/1 variables by one-hot encoding. Additional features, including the amino
acids at the N and C termini, the distances of the bond to the termini and the peptide length,
are added to the feature space. This process is repeated for each position in the input peptide
sequences. A fully connected two-hidden-layer neural network is then trained and outputs
the logarithmic b- and y-ion intensities.
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We applied three types of machine learning algorithms to this feature space: support vec-
tor machines [Vapnik, 1995, Drucker et al., 1997], random forests [Breiman, 2001] and a two-
hidden-layer neural network. Of the three approaches, the neural network strategy wiNNer
showed the best performance (Supplementary Fig. 3.10). Although wiNNer did not reach
the prediction accuracy of DeepMass:Prism (Fig. 3.2), it performed better than the best exist-
ing conventional machine learning method for all tested combinations of precursor charge
and fragmentation type. And, similar to DeepMass:Prism, with wiNNer only one model
was needed to cover peptides of various lengths. Overall, this approach could be advanta-
geous in situations where fast training is needed, such as when dataset-specific models are
needed for the analysis of laboratory-specific proteomics data.

Interpretation of the DeepMass:Prism model. We first explored the agreement between
the outputs of our RNN model and observed fragmentation efficiencies between different
amino acid pairs [Shao et al., 2014] (Supplementary Fig. 3.11). For a set of A-A-A-[X]-[Z]-
A-AA-R peptides, where [X]-[Z] represents all possible combinations of amino acid residue
pairs, we predicted the fragmentation efficiencies between the [X]-[Z] residue pair (Supple-
mentary Fig. 3.11). Similar to the previous findings, our model reported notably higher
fragmentation efficiency between [X]-Pro residues (where [X] can be any other residues),
for both y- and b-ion types. The model also correctly predicted less efficient fragmentation
between [X]-[Z] residue pairs where [X] is a hydrophobic residue. Furthermore, the model
also correctly identified an increased fragmentation efficiency for b ions between His-[Z]
pairs (Supplementary Fig. 3.11).

We next tested whether residues further up- or downstream from the site of fragmentation
also contribute to the peak intensity assignment. Such long-range ‘interactions’ in peptide
fragmentation have not been extensively studied, even though they can be observed in our
dataset (Supplementary Fig. 3.12). For example, analysis of 63 pairs of peptides with a single
residue mismatch showed notable differences in b-ion intensities 5–10 residues toward the C
terminus from the mismatch site, while y-ion intensities showed less variability. Moreover,
the fact that the window-based approaches that use small window sizes (Supplementary
Fig. 3.13) performed poorly further supports the existence of these long-range interactions.

Based on these findings, we used our model to study long-range interactions. After ran-
domly selecting 1,000 peptides from the independent testing set, we calculated the inte-
grated gradients [Mukund Sundararajan, Ankur Taly, 2017] over each position of the input
peptide sequence and each ion type. Using these gradients, we attributed each peak’s pre-
dicted intensity to the summed influence of every amino acid residue in the precursor frag-
ment (Fig. 3.4); residues are able to positively or negatively influence any peak intensity.
Finally, for each intensity prediction, we termed the most influential residues ‘major attribu-
tions’ (3.3 Methods), which can have both signs.

We found abundant evidence of long-range interactions, that is, major attributions not adja-
cent to the site of cleavage (Fig. 3.4 and Supplementary Fig. 3.14). Specifically, within b ions,
major positive attributions were abundant toward the N terminus from the target residue,
up to 75% of the length of the precursor peptide. While major negative attributions were
notably less common, we observed many negative attributions a similar distance toward
the C terminus from the target residue. We observed a different pattern in y ions: positive
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and negative attributions were more even on either side of the target residue. Nonetheless,
while positive attributions were broadly spread about the length of the fragment, negative
attributions were more tightly concentrated at the cleavage site, with a smaller cluster near
the C terminus (an analysis on a per-residue basis is described in the 3.3 Methods section).
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Figure 3.4: Interpretation of the DeepMass:Prism model. Left, y ions; right, b ions. Top: to
help illustrate how the DeepMass:Prism prediction model works, the output for an example
peptide sequence, SKLDNTVAEIEGLEATIENLKR, is plotted in an attribution table, which
correlates the relationship between a position along the peptide sequence with the observed
fragment ions. At the top are the scaled predicted peak intensities of the fragment ions
corresponding to cleavage of the target residue at that position. Each pixel (i, j) in a heat
map corresponds to the influence of residue i on peak intensity j. Blue pixels correspond
to positive influence, and red to negative; values across each column j are normalized by
the maximum value in that column. Bottom: histogram plots illustrate the distribution of
distance between peak intensity and major attributions. Major attributions are attribution
values with absolute values greater than or equal to 0.7 (based on heat map pixels in the top
panel). Directional distances are normalized by peptide length; positive distances indicate a
residue influencing cleavage toward the C terminus. Similar plots, but with unnormalized
distances, are shown in Supplementary Fig. 3.14.
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DIA spectrum matching to predicted spectra. An accurate prediction of MS/MS peptide
spectra is expected to benefit areas in which reference spectral libraries are utilized (and
generated) for data analysis, as is the case for DIA and selected/multiple reaction monitor-
ing [Schubert et al., 2015, Wu et al., 2016]. The most common approach to analyze DIA data
requires using a spectral library to determine the peptide identity. Although some library-
free methods exist, such as DIA-Umpire [Tsou et al., 2015] and DirectDIA, they are typically
less sensitive than library-based methods. Accordingly, this necessitates performing a series
of DDA experiments to build a sample-specific reference library. Given the stochastic nature
of DDA, a single liquid chromatography–tandem mass spectrometry run is usually incom-
plete. Instead, replicate runs, and even sample fractionation, are typically required, further
increasing experimental costs. Here, we tested whether in silico–generated spectral libraries,
created using DeepMass:Prism, could replace those that are produced experimentally.

To evaluate this strategy, we processed a pooled human plasma sample into peptides using
the Biognosys Sample Preparation Pro Kit, producing four replicate samples. We collected
DIA data in triplicate for each sample, as well as DDA data in duplicate for one sample. A
sample-specific spectral library was generated from the DDA data with Proteome Discoverer
(3.3 Methods), and the DIA data were processed using Spectronaut [Bruderer et al., 2017].
The spectral library contained 7,441 peptides, of which 5,248 (71.0%) were identified and
quantified on average (Fig. 3.5 and Supplementary Fig. 3.15). We then used DeepMass:Prism
to generate an in silico spectral library for the same set of peptides and used it in another
Spectronaut search. Specifically, the peak intensities for fragment ions for each of the 7,441
peptides from the DDA library were replaced with values from DeepMass:Prism. However,
retention time information was preserved from the DDA-generated spectral library. In an
ideal scenario, this approach would identify the same number of peptides as when using
the experimental generated library, and we came close—we identified and quantified on
average 5,181 peptides, only 103 (1.9%) peptides fewer (Fig. 3.5), and with a high overlap
(5,131 peptides or 97.1%). We repeated the analysis with a model that also predicted peptide
retention time information in silico, with similar results (3.3 Methods).

Interestingly, the 103 peptides unidentified by DeepMass:Prism typically had low-
confidence Spectronaut scores, with 46 peptides (45%) having q values worse than 10-3 in the
DDA spectral library searches (Supplementary Fig. 3.15). Importantly, we observed highly
correlated peptide abundance quantification in Spectronaut searches between the experi-
mental library and the in silico library (PCC of 0.99; Supplementary Fig. 3.15c). As a control,
we also generated a spectral library by predicting fragment intensities using MS2PIP (and
preserving retention time information from the DDA data). We observed a much lower pep-
tide identification rate compared with that for DDA libraries (on average, 3,976 or 75.8% pep-
tides were identified; PCC of 0.96). Some of the difference between the numbers of peptides
identified by MS2PIP- versus DeepMass:Prism-based libraries can be attributed to MS2PIP’s
lack in predicting spectra for peptides with modifications. However, even after the removal
of methionine oxidation, the DeepMass:Prismbased library identified 4,661 peptides (17.2%
more than MS2PIP).
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Figure 3.5: Application to spectral library generation for DIA data analysis. The bar plot
compares the average number of identified and quantified peptides in plasma samples when
using spectral libraries generated with MS2PIP, DeepMass:Prism, DeepMass:Prism includ-
ing retention time prediction and the standard approach (that is, DDA experiments).

Application to DDA peptide search engine scores. Intensity information in MS/MS spectra
is highly informative and is expected to help in finding the correct PSM for a given MS/MS
spectrum. Despite this, most search engines make no or little usage of the intensity informa-
tion. For instance, the Andromeda search engine [Cox et al., 2011] uses peak intensities only
to give higher weights for matches to the high-intensity peaks. However, it does not utilize
expectations of peak intensities as they relate to sequence context when scoring PSMs. Here,
we show that scoring PSMs can benefit from predicted fragment ion intensity information.
We integrated intensity predictions into the Andromeda scoring function in the following
way: the Andromeda score of a given PSM was replaced by a maximum of several attempts
to score the same spectrum. One of these scores was the original Andromeda score. We
then calculated the score on subsets of the ions in theoretical spectra, always taking a certain
number of top intensity peaks (by default we took the top 3, 5, 7, 10 and 13 peaks) from
the theoretical spectrum with intensities predicted by DeepMass:Prism. This strategy was
similar to focusing on only the most intense transitions in the analysis of the selected re-
action monitoring data. Naively, one may expect that reducing the number of theoretical
peaks would reduce the number of matching fragments and hence reduce the score. Despite
this, the Andromeda score of a match may still increase, even if the number of matches de-
creases, if the summed probability of finding this many or more matches by chance, given
the number of provided theoretical fragments, decreases [Cox et al., 2011].
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We compared the performances for a complex sample, in this case HeLa whole-cell lysate.
Overall, we found that including intensity predictions increased both the PSM and peptide
identification rates. We then compared the relative performance among DeepMass:Prism,
wiNNer and MS2PIP by varying the PSM-level false discovery rate (FDR) in MaxQuant,
which corresponds to scanning the q value (Fig. 3.6). Over the whole range of q values
tested, there was a gain in PSM identifications when we used DeepMass:Prism and wiNNer,
both of which outperformed MS2PIP (Fig. 3.6a). In particular, improvements through in-
tensity prediction were the largest in the high-specificity range (that is, q value <0.01) (Fig.
3.6b). Note that the improvements in MS/MS identification rates are on top of already high
rates of 50% for the conventional Andromeda search (Fig. 3.6c). In terms of gains in unique
peptide sequences, DeepMass:Prism also outperformed wiNNer and MS2PIP (Fig. 3.6d). Fi-
nally, DeepMass:Prism also outperformed wiNNer and MS2PIP in the number of identified
protein groups (at 1% protein-level and PSM-level FDR), with a gain of 3.9% versus 2.3%
and 2.1%, for wiNNer and MS2PIP, respectively.
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Figure 3.6: Application to PSM scoring for DDA data analysis. Identification-rate improve-
ments on a complex HeLa dataset as a function of q value are shown for MS2PIP, wiNNer and
DeepMass:Prism. The q values are calculated based on target-decoy search in MaxQuant. a,
The percentage increase in PSMs compared with Andromeda searches without intensity pre-
diction. The q value ranges from 0% to 10%. The curves are based on 146,606, 146,411 and
145,160 forward PSMs for DeepMass:Prism, wiNNer and MS2PIP, respectively. b, Same as a,
but zoomed into the q value range from 0% to 1% and based on 127,806, 127,024 and 125,046
forward PSMs for DeepMass:Prism, wiNNer and MS2PIP, respectively. c, Coverage (that is,
the percentage of identified MS/MS spectra) as a function of q value, without using intensity
prediction and when using each of the three prediction models. d, The percentage increase
in unique peptides compared with Andromeda searches without intensity predictions. The
curves are based on 42,505, 42,335 and 41,793 peptides for DeepMass:Prism, wiNNer and
MS2PIP, respectively



52
3. High-quality MS/MS spectrum prediction for data-dependent and data-independent

acquisition data analysis

3.5 Discussion

Through the use of machine learning, we demonstrate that MS/MS spectrum predic-
tion can be nearly as accurate as the limits of technical reproducibility. Importantly, this
can be taken advantage of in both DDA and DIA computational workflows to improve
peptide identification rates and reduce the reliance on spectral libraries. Further, the
deep learning regression models described here are highly interpretable, capturing how
sequence features, including the interactions across multiple amino acid residues, con-
tribute to peptide fragment ion abundance and the mobile proton hypothesis. Addition-
ally, although the conventional window-based machine learning approach we described
has slightly inferior predictive performance, it is less computationally intense to train. For
both DDA and DIA application, integration of intensity prediction into the MaxQuant
[Cox and Mann, 2008, Tyanova et al., 2016a] environment is currently ongoing.

So far, we have restricted the spectrum predictions to peptides that are not carrying modifi-
cations, except for methionine oxidation. However, the generalization to PTMs is straight-
forward. The modified residues can be encoded as the 21st, 22nd and so on amino acids.
Modification-specific neutral losses other than water and ammonia will need to be added for
some modifications, as for instance serine and threonine phosphorylation. Non-tryptic pep-
tides can already be accommodated with the current model, and predictions can currently
being made for them. However, since the training dataset was from shotgun proteomics data
submitted to the PRIDE database [Vizcaı́no et al., 2016], it is biased toward tryptic peptides,
and DeepMass:Prism performs better for these. As more data for nontryptic peptides and
more machine types become available, we will update our models to improve predictions
for all peptides.

While these models to predict peptide fragment intensities will benefit peptide search en-
gines, we anticipate that their greatest impact will be through providing in silico–based
spectral libraries. For example, if an existing spectral library was generated using a frag-
mentation mode different from the data that needed to be analyzed, a new library could
be generated in silico rather than experimentally. When it comes to the content of a spec-
tral library, approaches are needed to construct a list of peptides based on previous knowl-
edge. For example, if plasma samples are analyzed, proteins and peptides from the Plasma
Proteome Database [Nanjappa et al., 2014] could be used to construct the library. Another
potential application will be to supplement an existing experimental library with a small
number of hypothesis-driven peptides, such as peptides that harbor genetic variants, tumor
mutations or post-translational modifications, expanding the range of interesting scientific
and clinical questions beyond measuring the levels of proteins in a sample. A further op-
tion for analyzing cellular or tissue proteomes will be to construct an in silico library for the
entire proteome. Such a spectral library could be supported by both RNA-sequencing data
and peptide observability predictions [Mallick et al., 2007, Sanders et al., 2007]. We continue
to explore these strategies and envisage a time when predicted spectral libraries will become
a necessary and beneficial tool for proteomics and proteogenomics.
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3.6 Author’s contribution

For accurate peptide and protein identification of MS-based proteomics data using database
search engines, not only the quality of the acquisition data is of importance but also the
in-silico generated theoretical MS/MS spectra, representing the peptide sequences of a
reference database. The intensity values of calculated m/z ratios are typically set to a
constant value given the mathematical challenge to determine the frequency with which a
peptide backbone breaks.

My main contribution to this publication was the extension of the database search en-
gine Andromeda to replace the constant intensity values with predicted intensity values of
ions. The predicted intensities of theoretical add another layer of peptide sequence context
to the scoring and, thus, increase the identification rate. To achieve this, I contributed to
the modification of the Andromeda score, tested the algorithm and developed required
adaptations. For the inclusion of intensity values in the scoring, I extended MaxQuant to
provide an interface to read the predicted intensity values from an external file or directly
from the intensity prediction model.

Additionally, I validated the extended scoring method based on a synthetic dataset to
compare the results to a known ground truth and to a biological dataset. For the validation
process, I extended the functionality of MaxQuant to provide intermediate outputs of the
top 15 PSMs for each experimental spectrum to be able to predict the intensity values of
their sequences. Further, I benchmarked the intensity prediction models—DeepMass:Prism
and wiNNer—to state-of-the-art models based on the extended Andromeda score. For the
benchmark, I also provided the MS2PIP intensity predictions. Finally, I was part of the
dataset selection and analysis for the development process of our deep learning model
(DeepMass:Prism) and our neural network model (wiNNer).

The work described in this publication successfully applied machine learning tech-
niques to predict the fragment ion intensity values with high accuracy. We demonstrated
that the inclusion of predicted intensities into the Andromeda score calculation increases
the number of identified spectra at 1% FDR. In particular, improvements through intensity
prediction were with nearly 20% gain largest within the high-specificity range (q-value
<0.01).
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Figure 3.7: Summary of training, validation and testing datasets. The charts show distri-
bution of various peptide and acquisition properties in our training dataset (based on total
of 1,263,431 unique sequence/charge/fragmentation/mass analyzer peptide combinations).
Note that all counts on the vertical axes are on a logarithmic scale.
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Figure 3.8: Performance of DeepMass:Prism. The box plots show distributions of correla-
tion coefficients (PCC) between actual and predicted y- and b-ion peak intensities for each
peptide in our testing dataset, stratified by peptide charge and length, and by mass analyzer
and fragmentation type. Each box extends from the lower to upper quartile values of the
data, with a line at the median. The whiskers extend to 1.5-multiple past the interquartile
range between the low and high quartiles. Values beyond these ranges are considered out-
liers, and are plotted as diamonds. Precursor counts represented by each box (N) are listed
in tables below each box plot.
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Figure 3.9: Performance of DeepMass:Prism with and without metadata. The box plots
show distributions of correlation coefficients (PCC) between actual and predicted y- and b-
ion peak intensities for each peptide in our testing dataset, based on our final model with
metadata features (precursor length, precursor charge, mass analyzer, fragmentation type;
right), and a model with no metadata features (left). Each box extends from the lower to
upper quartile values of the data, with a line at the median. The whiskers extend to 1.5-
multiple past the interquartile range between the low and high quartiles. Values beyond
these ranges are considered outliers, and are plotted as diamonds. The number of precursor
(N) in both distributions is 69,888.

Figure 3.10: Sliding window-based approach using different machine learning algo-
rithms. Distribution of PCCs of the window-based approach using different machine learn-
ing algorithms such as support vector regression (SVR), random forest (RF), RF layer on top
of the output of SVR (SVR+RF) and two layer neural networks (NN). The comparison was
done on CID+2 model and window size 8. Each box extends from the lower to upper quar-
tile values of the data, with a line at the median. The whiskers extend to 1.5-multiple past
the interquartile range between the low and high quartiles. Values beyond these ranges are
considered outliers, and are plotted as diamonds. The boxplots contain 9,214 unique PSMs
from the ProteomeTools dataset (PXD004732).
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Figure 3.11: Fragmentation efficiency between residue pairs. Fragmentation efficiencies
were calculated for b- and y- fragment ions generated between [X] (y-axis) and [Z] (x-axis)
residues in A-AA-[X]-[Z]-A-A-A-R peptides, for both CID and HCD fragmentation. The
fragmentation efficiency is defined as a predicted peak intensity, normalized by the total sum
of peak intensities of the same ion type. Similar to the previous findings [Shao et al., 2014],
our model reports significantly higher fragmentation efficiency between [X]-Pro residues
(where [X] can be any other residues), for both y- and bion types. The model also correctly
predicts less efficient fragmentation between [X]-[Z] residue pairs where [X] is a hydropho-
bic residue. Furthermore, the model also correctly identified an increased fragmentation
efficiency for b-ions between His-[Z] pairs.
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Figure 3.12: Long-range interactions in the training data. In our dataset we found 63 pep-
tide pairs with a single residue mismatch, but the same precursor charge, fragmentation,
and mass analyzer types. We evaluated the effect of a position more than one residue away
from the site of fragmentation by measuring standard deviations in peak intensities across
all 63 peptide pairs (for example, between the y3-ion intensity in spectra for both peptides in
the pair). The box plots show distributions of peak intensities when looking at positions that
are N residues (x-axis) away from the site of the mismatch. Each box extends from the lower
to upper quartile values of the data, with a red line at the median. The whiskers extend to
1.5-multiple past the interquartile range between the low and high quartiles. Data points
beyond these ranges are considered outliers, and are plotted as diamonds. The numbers of
pairs (N) for each box are shown in the table below the box plots.
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Figure 3.13: Window size dependent performance of the sliding window approach. Dis-
tribution of PCCs for MS2PIP and for the window-based neural network model for sliding
window sizes of 4, 8, 16 and 24 residues on CID+2 model. The predictive performance
increases monotonically with window size. The window-based neural network model out-
performs MS2PIP at sufficiently large window sizes. by deleting or overwriting this text;
captions may run to a second page if necessary. Each box extends from the lower to upper
quartile values of the data, with a line at the median. The whiskers extend to 1.5-multiple
past the interquartile range between the low and high quartiles. Values beyond these ranges
are considered outliers, and are plotted as diamonds. The boxplots contain 9214 unique
PSMs from the ProteomeTools dataset (PXD004732).
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Figure 3.14: Interpretation of the DeepMass:Prism model. Distributions of distance be-
tween peak intensity and major attributions are shown for y (top) and b (bottom) ions. Major
attributions are attribution values (heat map pixels in top panels of Fig. 3.4) with absolute
values greater than or equal to 0.7. Directional distances are in amino-acid residue counts
from the cleavage site.
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Figure 3.15: Application to spectral library generation for DIA data analysis. Left: The
scatter plots show the correlation between log-transformed peptide peak intensities as iden-
tified using spectral libraries based on DDA experiments and on MS2PIP (top), Deep-
Mass:Prism (middle), or DeepMass:Prism+Drip (bottom). Pearson correlation coefficients
are shown in the upper-left corner of each correlation plot. Right (top): The histograms
show the distributions of logtransformed Q-values for peptides detected in DDA-based
spectral library searches, but that were missed in searches with spectral libraries based
on MS2PIP, DeepMass:Prism, and DeepMass:Prism+Drip. As illustrated, a majority of the
missed peptides have a Qvalue worse than 10−3. Right (bottom): The histogram shows
the distributions of log-transformed peak intensities for peptides detected with the DDA-
based spectral library, but missed in results with spectral libraries based on MS2PIP, Deep-
Mass:Prism, and DeepMass:Prism+Drip. The numbers of data points (N) in these plots are
based on the number of identified peptides: 5,248, 5,181, 3,976 for the DeepMass:Prism-,
DeepMass:Prism+Drip-, and MS2PIP-based spectral libraries, respectively. The Q-values in
the upperright chart are as reported by Spectronaut.
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Figure 3.16: Top and bottom 5 predictions by DeepMass:Prism from our testing set. The
five best and worst predictions are shown. For each example, the predicted MS/MS spectra
and the actual MS/MS spectra are shown above and below the x-axis, respectively. Badly
predicted spectra tend to have highly intense fragments at the beginning or the end of a
series. The correlation analyses with the peptides from the testing sets were only performed
once.
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Figure 3.17: Performance of the sliding window approach split by precursor charge and
fragmentation type. Distribution of PCCs for the sliding window-based neural network
model with a window size of 24 (orange) and MS2PIP (blue) for comparison. The neural
network approach results in better performance in all subclasses. Each box extends from
the lower to upper quartile values of the data, with a line at the median. The whiskers ex-
tend to 1.5-multiple past the interquartile range between the low and high quartiles. Values
beyond these ranges are considered outliers, and are plotted as diamonds. The boxplots
contain 9,214, 9,317, 6,540 and 6,773 unique PSMs, respectively, for CID+2, HCD+2, CID+3
and HCD+3 test data from the ProteomeTools dataset (PXD004732).



3.8 Supplementary information 65

Figure 3.18: Per-residue distances of major attributions. Each row represents a single his-
togram of the type displayed in Fig. 3.3, on a per-residue basis. Specifically, each row repre-
sents the distribution of distances over which a given residue has a strong influence (absolute
attribution value ≥ 0.7) on a peak’s predicted intensity. Each row is frequency-normalized
such that the area under the distribution sums to 1.0. Rows of each set of distributions
were clustered via single linkage of PCC. Most rows resemble the overall trend, and notable
exceptions are discussed in the text. The distributions in the heatmaps are based on 1000
randomly selected peptide sequences.
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Figure 3.19: Example I for correct PSM recovery by intensity prediction. Including in-
tensity predictions for theoretical spectra in the Andromeda score calculation enables the
correct PSM to move from the second best score to the top scoring position. For example,
before considering intensity predictions, the sequence of two adjacent amino acids is incor-
rect (a), but when including intensity information in the score, the sequence with the correct
order becomes the highest-scoring PSM (b).
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Figure 3.20: Example II for correct PSM recovery by intensity prediction. Including inten-
sity predictions for theoretical spectra in the Andromeda score calculation enables a com-
pletely different peptide sequence to become the top-scoring PSM. For example, before con-
sidering intensity predictions, the peptide sequence matched to a particular MS/MS spec-
trum was low but passing (a); however, after including intensity predictions, a new sequence
with more matches to higher intense peaks and a more complete ion-series identification was
obtained (b).
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Species PRIDE ID Instrument

PXD003668 Q Exactive

PXD004977 Q Exactive Plus

PXD001608 Q Exactive

PXD004732 Orbitrap Fusion ETD

PXD002549 Q Exactive

PXD001250 Q Exactive

PXD002452 LTQ Orbitrap Velos

PXD005485 LTQ Orbitrap Velos

PXD001636 LTQ Orbitrap Velos

PXD004087 Q Exactive

PXD001695 Q Exactive, LTQ Orbitrap

PXD000955 LTQ Orbitrap

PXD005041 Q Exactive

PXD003472 Q Exactive, LTQ Orbitrap Velos

PXD001865 LTQ Orbitrap

PXD002607 LTQ Orbitrap Velos

PXD002908 LTQ Orbitrap

PXD003002 LTQ Orbitrap Velos

PXD004276 LTQ Orbitrap

PXD003189 LTQ Orbitrap

PXD003583 Q Exactive

PXD004321 Q Exactive

PXD005126 Q Exactive

PXD002912 LTQ Orbitrap Velos

PXD002785 Q Exactive

Homo sapiens

Mus musculus

Saccharomyces cerevisiae

Arabidopsis thaliana

E.coli

Table 3.1: PRIDE datasets used for the DeepMass:Prism model
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4.1 Abstract

We describe MaxNovo, a novel spectrum graph-based peptide de-novo sequencing algo-
rithm integrated into the MaxQuant software. It identifies complete sequences of peptides
as well as sequence tags that are incomplete at one or both of the peptide termini. MaxNovo
searches for the highest-scoring path in a directed acyclic graph representing the MS/MS
spectrum with peaks as nodes and edges as potential sequence constituents consisting of
single amino acids or pairs. The raw score is a sum of node and edge weights, plus several
reward scores, for instance, for complementary ions or protease compatibility. For search-
engine identified peptides, it correlates well with the Andromeda search engine score. We
use a particular score normalization and the score difference between the first and second-
best solution to define a combined score that integrates all available information. To evaluate
its performance, we use a human cell line dataset and take as ground truth all Andromeda-
identified MS/MS spectra with an Andromeda score of at least 100. MaxNovo outperforms



70
4. Spectrum graph-based de-novo sequencing algorithm MaxNovo achieves high peptide

identification rates in collisional dissociation MS/MS spectra

other software in particular in the high-sensitivity range of precision-coverage plots. We
also identify incomplete sequence tags and study their statistical properties. Next, we apply
MaxNovo to ion mobility-coupled time of flight data. Here we achieve excellent perfor-
mance as well, except for potential swaps of the two amino acids closest to the C-terminus,
which are not well resolved due to the low end of the mass range in MS/MS spectra in
this dataset. We demonstrate the applicability of MaxNovo to palaeoproteomics samples
with a Late Pleistocene hominin proteome dataset that was generated using three proteases.
Interestingly, we did not use any machine learning in the construction of MaxNovo, but im-
plemented expert domain knowledge directly in the definition of the score. Yet, it performs
as good as or better than the leading deep learning-based algorithm.
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4.2 Introduction

De-novo sequencing [Taylor and Johnson, 1997, Dančı́k et al., 1999] has the goal of determin-
ing the amino acid sequence of a peptide directly from its tandem mass spectrum without
making use of a peptide sequence database. Potential fields of applications in proteomics
are widespread and include the study of ancient samples [Cappellini et al., 2018], identifi-
cation of HLA peptides [Ternette et al., 2016, Khodadoust et al., 2017, Laumont et al., 2018],
monoclonal antibody sequencing [Bandeira et al., 2008b, Tran et al., 2016], and detec-
tion of endogenous, non-ribosomal peptides [Bandeira et al., 2008a]. From early on it
was found advantageous to represent the spectrum as a graph [Dančı́k et al., 1999] in
which the fragment peaks correspond to nodes which are connected by edges, whenever
the mass difference is interpretable as a mass of one or more amino acids, and hence
the connected peaks are adjacent in an ion series. Optimal paths in these graphs are
then determined with diverse computational methods including dynamic programming
[Chen et al., 2001], hidden Markov models [Fischer et al., 2005] and probabilistic network
modeling [Frank and Pevzner, 2005]. More recently, deep learning was applied to the
problem [Tran et al., 2017, Karunratanakul et al., 2019, Tran et al., 2019, Yang et al., 2019,
Qiao et al., 2021], which has led to the best performing methods to date.

The MaxNovo algorithm described in this manuscript makes use of the spectrum graph rep-
resentation as well. It performs an exhaustive search for the best path using a cost function
that is designed in a way such that the resulting score is similar to the Andromeda18 search
engine score, in cases where the database search led to an identification as well. MaxNovo
is fully integrated in MaxQuant [Cox et al., 2011, Sinitcyn et al., 2018b] which allows to
make use of results obtained from the search engine-based workflow, as for instance the
accurate calibrated precursor masses and the three-dimensional MS1 features and isotope
patterns. On an Orbitrap HeLa benchmark dataset, we show that MaxNovo performs well
in terms of total number of correct de-novo identifications with controlled number of wrong
identifications. It outperforms other software, as, for instance PEAKS [Ma et al., 2003], in
the high specificity region. Further studies on tims-TOF Pro data, as well as an ancient
proteomics application, demonstrate MaxNovo’s applicability to diverse mass spectrometry
proteomics data sets.
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4.3 Methods

4.3.1 HeLa dataset

Mass spectrometric raw data from a HeLa cell line was obtained from the PRIDE repository
PXD006932 [Kelstrup et al., 2018]. What we refer to as ‘single-shot’ dataset are the three bi-
ological replicates measured on a Q Exactive HF-X using an Orbitrap resolution setting of
15000 (Thermo Fisher Scientific, Bremen, Germany). ‘Fractionated data’ are the 46 fractions
obtained by Q Exactive HF-X using an Orbitrap resolution setting of 7500. The MaxQuant
runs for both the single shot and the fractionated data were done against the H. sapiens pro-
teome (UP000005640), including isoforms, and downloaded from UniProt on 07/04/2021.
In total six separate MaxQuant runs were performed for the single shot data. One run with
all five scores (complement score, protease score, water-loss score, ammonia-loss score, a2
score) contributing to the calculation of the raw score and other five runs with each one of
the score contributions omitted. For the fractionated data only one MaxQuant run was made
with the default calculation of the raw score including all five scores. Default values for all
parameters were used in the MaxQuant analysis.

4.3.2 Tims-TOF pro dataset

HeLa DDA data acquired on a tims-TOF Pro instrument was downloaded from the PRIDE
repository PXD022582 [Sinitcyn et al., 2021] and was searched with MaxQuant against
the H. sapiens proteome (UP000005640) including isoforms downloaded from UniProt on
07/04/2021. In the MaxQuant analysis for all parameters default values were used. To
switch on tims-TOF analysis the parameter ‘Type’ was set to TIMS-DDA

4.3.3 Ancient dataset

Mass spectrometric raw data from a hominin bone specimen was obtained from the PRIDE
repository PXD018264 [Lanigan et al., 2020]. The three biological replicates from the sam-
ples digested with the proteases trypsin, chymotrypsin, and Glu-C, were grouped per pro-
tease and searched in MaxQuant in three separate runs using different proteome databases.
One MaxQuant run was searched against the H. sapiens proteome (UP000005640) down-
loaded from UniProt on 05/08/2021. Two subsequent MaxQuant runs were made, one
against the Gorilla gorilla gorilla proteome (UP000001519) and one against the Pan troglodytes
(UP000002277), both downloaded from UniProt on 04/08/2021. All three Uniprot databases
contain one protein sequence per gene. In the MaxQuant analysis the default settings were
applied except for the following settings: No fixed modification was selected and as vari-
able post-translational modification oxidation of Methionine, deamidation of asparagine and
glutamine, hydroxylation of proline, and carbamidomethylation of cysteine. The minimum
peptide length was set to eight (default value is seven) and the minimum score for unmodi-
fied peptides was set to 40 (default is 0). The Glu-C specificity was configured to also include
C-terminal cleavage after glutamine (Q), alongside C-terminal cleavage of glutamic acid (E)
and aspartic acid (D) as it was defined in the original publication.
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4.3.4 Pre-processing of MS/MS spectra for MaxNovo search

All MS/MS spectra are subject to the standard pre-processing that is also applied before sub-
mitting spectra to the Andromeda search. Isotope patterns are found based on correlation
to the averagine model [Senko et al., 1995]. In case at least two peaks were put together in
an isotope pattern, the corresponding monoisotopic peak replaces them with the summed
intensity of the member peaks. In case the charge determined from the isotope pattern is
larger than one, the peak is added as a singly charged version. If more than one charge state
was found for a fragment (within a user definable tolerance), these are summed up into a
single peak.

4.3.5 NOVOR data preparation and analysis

The single-shot and fractionated HeLa raw files were converted to the mgf file format
with ProteoWizard [Chambers et al., 2012] version 3.0.11579 for processing with Novor
[Ma, 2015] (Version v1.06.0634, Java SDK 16). The protease is trypsin, which is the only
supported option. HCD was selected as fragmentation method and FT as mass analyzer.
The precursor error tolerance was set to 15 ppm and the error tolerance for fragment ions to
0.02 Da.

4.3.6 PEAKS data analysis

Both HeLa datasets, single-shot and fractionated, were analyzed by the de-novo algorithm
in the PEAKS software [Zhang et al., 2012] (version PEAKS X Pro, Peaks Studio 10.6 build
20201221). For the de-novo search, the instrument ‘Orbitrap (Orbi-Orbi)’ was selected which
has set by default the parent mass error tolerance to 15 ppm and the fragment mass error tol-
erance to 0.02 Da. Trypsin was defined as digestion enzyme and its cleavage specificity was
configured that it cleaves after arginine and lysine also if a proline follows. As fixed modifi-
cation carbamidomethylation of cysteine was included and as variable modifications oxida-
tion of methionine and acetylation of protein N-term. For the maximal number of variable
PTMs the default value of three is selected. We increased the number of reported candidates
per spectrum from five up to ten. The parameter “Feature association for chimera scans”
in the data-refinement section was deactivated, since co-eluting peptides are not within the
scope of our benchmark setup. For the top scoring de-novo sequence comparison, the de-
novo sequence with the highest de-novo score was selected. In case of multiple de-novo
sequences having the same top de-novo score, all sequences are taken as top sequence.

4.3.7 Benchmark based on the HeLa datasets

For both HeLa datasets, single-shot and fractionated, as ground truth the identified MS/MS
spectra based on the Andromeda database search engine at 1% PSM and 1% Protein FDR
(default settings) were taken which were further filtered by an Andromeda score greater than
or equal to 100. All isoleucine in the database sequence as well as de-novo sequence were
replaced by leucine. The de-novo identified MS/MS spectra of each of the tools MaxNovo,
PEAKS and Novor are joined based on the raw file name and scan number information.
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4.3.8 BLAST search

The de-novo sequence identifications, which were not identified by the Andromeda database
search engine, were validated by an iterative local BLAST (version 2.11) search. Only com-
pletely de-novo sequenced MS/MS spectra were considered and filtered to have a com-
bined score of at least 91.715. Next, for each de-novo sequence all combinations, up to a
maximal number of 300, were generated and submitted to four separate BLAST searches
each using a different database. For the first three searches blastp was performed by set-
ting the following parameters: window size = 40, word size = 2, evalue 1000, max hsps =
1, -threshold 11 and against one of the following databases: 1) Swiss-Prot filtered by only
human, 2) Swiss-Prot filtered by only Bos Taurus and 3) Swiss-Prot. The fourth search
was a tblastn search against a manually generated HeLa nucleotide database based on
RNA-seq data [Zarnack et al., 2013, Seo et al., 2016] (ERR127306 1.fastq, ERR127306 2.fastq,
ERR127307 1.fastq, ERR127307 2.fastq). All BLAST results were filtered to have for each
submitted de-novo sequence identification the best BLAST hit. In case a de-novo sequence
identification was validated by multiple database hits the following database priority was
applied: 1) Swiss-Prot human, 2) HeLa RNA-seq, 3) Swiss-Prot Bos taurus and 4) Swiss-Prot.

4.3.9 Software and data availability

MaxNovo is integrated into the MaxQuant software from version 2.0.3.0 onward and can
be downloaded from https://www.maxquant.org/maxquant/. A user guide on how to run
MaxNovo in MaxQuant is provided as part of the 4.8 Supplementary Information, Supple-
mentary Table 4.2 contains a list of MaxQuant parameters relating to MaxNovo with their
explanations. Supplementary Table 4.3 describes all new MaxNovo associated columns in
the ‘msmsScans.txt’ output file. The re-analyzed MS proteomics data have been deposited to
the ProteomeXchange Consortium (http://proteomecentral.proteomexchange.org) via the
PRIDE partner repository.
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4.4 Results and discussion

MaxNovo spectrum graph

Input for the MaxNovo algorithm are individual MS/MS spectra in which the fragment
peaks are de-isotoped and transformed to charge state one (Fig. 4.1a), in the same way as
MS/MS spectra are prepared in MaxQuant for the peptide database search with Andromeda
18 (see 4.3 Methods). Hence, the MaxNovo algorithm assumes that fragment ions are singly
charged. The precursor masses are derived from three-dimensional features, spanned by
m/z, retention time and signal intensity, after the standard nonlinear mass calibration in
MaxQuant has been applied, leading to high accuracy mass estimates for the precursor ions.
For each MS/MS spectrum, we construct a graph with the peaks in the spectrum as nodes
(Fig. 4.1b). The nodes that correspond to peaks in the MS/MS spectrum we call ‘internal
nodes’. Four additional nodes are added to the graph, which represent the N-terminus and
the C-terminus each twice, once for being reached at low masses, corresponding to the be-
ginning of an ion series, and once for being reached at high masses, corresponding to the
end of an ion series.

We then build a directed acyclic graph (DAG) by placing edges between vertices from lower
to higher mass. This is based on the 20 common amino acids, and modified versions of some
amino acids, which can be specified by the user as fixed and variable modifications. An edge
is placed between two internal nodes if their mass difference fits a single amino acid mass or
the sum of two amino acid masses (Fig. 4.1c). Mass steps that have equal mass or are so close
in mass that they are not discernible based on the data are grouped together and treated as
the same amino acid (as, for instance leucine and isoleucine). Similarly, as for internal nodes,
for the termini we connect the beginning node with internal nodes that can be reached with
a single or a double amino acid step, considering the appropriate terminal masses for the y
or b ion series. It is only known to which ion series (e.g. y or b) a path through the network
belongs by arriving at one of the terminal nodes. By default, we require a mass difference
between two edges to match with a maximal error of 25 ppm. Then weights are assigned to
edges and nodes as defined in the next subsection. In this graph, we perform an exhaustive
search for the path with the highest raw score (Fig. 4.1d) based on a recursive algorithm.
Either the best path represents the y or the b series, depending on which of the two achieves
a better score. In case the path with the highest raw score does not reach the termini at one
end, a second search for a best path is performed, with the constraint to fill the missing mass.
This is necessary for the case that y and b series are not overlapping.
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Figure 4.1: Schematics of the MaxNovo spectrum graph. a. Starting point for the algorithm
is the processed MS/MS spectrum with de-isotoped fragments transferred to charge equals
one, and the accurate precursor mass obtained from three-dimensional MS1 features after
their nonlinear recalibration. b. Each peak in the processed spectrum becomes a potential
‘internal node’ of the spectrum graph. Four ‘terminal nodes’ are added, corresponding to N-
or C- terminus reached at low or high masses. c. A directed edge from low to high mass is
put between two nodes, whenever their mass difference fits single or paired amino acids. d.
The path with the highest raw score is found in an exhaustive search. It may start and end
with terminal or external nodes. The raw score is the sum of weights of traversed nodes and
edges plus several reward scores as described in the main text.
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MaxNovo raw score

Each path through the spectrum DAG gets a raw score assigned. The path in this graph
with the highest raw score is defined to be the result of the de-novo search for this MS/MS
spectrum and this highest score is the MaxNovo raw score for this spectrum. Either the
best path can connect both termini, in which case the complete peptide has been sequenced,
or it can be incomplete at one or both of the termini. Hence, the MaxNovo algorithm is a
combination of complete de-novo sequencing algorithm and sequence tag finding algorithm
within one unified scoring scheme. The raw score assigned to each path consists of six
contributions:

rawscore =direct path score+ complement score+ protease score+

a2 score+ water loss score+ ammonia loss score

which correspond to specific rewards or penalties. The direct path score is the sum of scores
defined on the edges and nodes that constitute the path and is scoring one main ion series,
which is supposedly the one that contributes most to the identification. Therefore, the path
represents either part of, or the complete b-series or part of, or the complete y-series. It is
not supposed to mix contributions from N-terminal or C-terminal series, since it receives
contributions from a path consisting of steps that correspond to single amino acid or amino
acid pair mass differences within one ion series. Two-amino-acid steps are allowed in order
to be able to have complete solutions connecting the termini also when one or several peaks
in a series are missing. By default, we allow up to two two-steps in a path. Each node
visited by the path contributes -log10 ((g + 1) / 100) to the score, where g is the number of
peaks in a 100 Da interval centered on the current peak which have a higher intensity than
the current peak. This contribution assigns a higher reward to peaks with a high intensity
relative to other peaks in the surrounding 100 Da interval. A traversed edge contributes
-log10 (s), where s is the number of potential steps of the type that was actually taken that
could have been taken from the current node. This can have two values: if a single step was
taken, then it is the total number of single steps available, and if a two-step was taken, this
is the total number of two-steps. Essentially, this is a penalty on how many mass differences
were tried in order to reach the next node. For instance, there are more potential two-steps
than there are single-steps, which get down-weighted accordingly. Overall, a path length
dependent score contribution of -log10 (n) is added to the total direct path score, where n is
the total number of steps in the path.

The complement score looks for the presence of nodes corresponding to complementary
ions to the ions found in the direct path. For instance, if the path describes b-ions, these
complementary ions correspond to y-ions that each match with one of the b-ions as a
complementary pair. The roles of y and b ions could also be the opposite. For each
complementary peak found, a contribution -log10 ((g + 1) / 100) / 4 is added, similarly as
the node weight in the direct path score. Additionally, if a complementary ion is found that
resolves the order of the amino acids in a two-step of the direct path a corresponding score
contribution is added that equals to the situation as if the resolving peak was found in the
direct path. The protease score adds a reward in case the path reaches a terminus at which
an expectation is met regarding the protease used for digesting proteins to peptides in the
sample preparation. For instance, in the case of trypsin, a path reaching the C-terminus
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would be rewarded if the last step were either an arginine or a lysine, in case it is a single
amino acid step, or it contains these amino acids, in case it is a two amino acid step. The
a2 score adds a contribution in case the a2 ion is found. This is only possible in case the
sequence path is continued to the N-terminus in order to know that it follows the b-series.
The water loss score checks for the presence of one of the amino acids D, E, S or T in the
path traversed so far. In case any of these is present, it is checked if peaks are present at the
expected position(s) for water losses. The ammonia loss score similarly checks for peaks at the
characteristic masses for ammonia losses based on the presence of K, N, Q or R in the so far
identified sequence.

For convenience, we provide brief definitions of these scores and scores defined in
subsequent subsections in Table 4.1. In Fig. 4.2 we show a scatter plot of the raw score and
the Andromeda score for identified spectra in the single-shot HeLa dataset, which have
a Pearson correlation of 0.71, which reduces to 0.60 when no Andromeda score filter is
applied. In the construction of the raw score, the main purpose was that it reflects well the
total evidence that is present in a spectrum for the peptide sequence that it claims to have
found. This is confirmed by the good correlation with the Andromeda score.
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Figure 4.2: Scatter plot of the raw score against the Andromeda score. Data is filtered for
Andromeda score >100. Data points are colored by their density. The Pearson correlation is
0.71.

Normalized score, gap score and combined score

The raw score introduced in the previous section is optimized for finding the best solution,
either a sequence tag or a full-length sequence, for a given MS/MS spectrum. However, it is
not made for comparing two optimal solutions in two different MS/MS spectra. The ability
to compare scores across different spectra is, however, crucial for obtaining confidence in
an identification and for estimating the percentage of false positives. To see this in a better
way, we define as a dataset with essentially known ground truth all MS/MS spectra in the
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HeLa dataset that were identified in the MaxQuant analysis with default protein and PSM
level false discovery rates (FDRs) of 1% each, and additionally filter the spectra to have an
Andromeda score of at least 100. We consider these spectra as our ground truth and the
aim of the de-novo sequencing algorithm is to identify as many peptide sequences of these
correctly, if possible the complete sequence for each, and otherwise as many amino acids as
possible in a sequence tag. For now, we restrict ourselves to identifying complete peptide
sequences.

We will frequently use precision-coverage plots, which are created by ranking the
spectra according to a given score. A de-novo identification is counted as correct only if it
completely agrees with the Andromeda sequence. If there is only one deviation, the whole
peptide counts as incorrect. For a given score threshold we define precision as the number
of correctly identified sequences divided by all spectra with a score above the threshold.
With coverage, we mean the number of correctly identified spectra above the threshold
divided by the total number of spectra in the ground truth. Our definition of coverage
measures how many spectra from the whole ground truth have been correctly identified
with a complete sequence.

If we calculate such a precision-coverage plot for the raw score defined in the previ-
ous subsection (green curve in Fig. 4.3a) we see that the performance is not ideal. In
particular, in the high specificity range on the left side, no good precision values are
achieved. In order to fix this problem, we define the normalized score, which is the raw
score divided by the precursor mass. It is a measure for sequence evidence per length. In
particular, in a situation where there is good sequence evidence only in parts of the sequence
and lack of it otherwise, the normalized score will not be particularly high. Indeed, the
normalized score has better precision-coverage characteristics (purple curve in Fig. 4.3a).
As ‘complete score’, we define it to be equal to the normalized score in case it suggests a
full-length peptide sequence and zero otherwise (blue curve in Fig. 4.3a). Another aspect
of potential relevance for judging the correctness of a de-novo sequence is how well the
second-best solution scores compared to the best. If the score difference between the two
highest solutions is small, there is a certain likelihood that the second-best solution is the
correct one, while if this gap is large, this strengthens the plausibility of the top-scoring
solution. The precision-coverage curve based on this gap score (red curve in Fig. 4.3a)
results in a similar area under the curve as the complete score. Since the gap score and
the complete score measure different aspects of the identification, it should be beneficial
to combine the two scores. Indeed, we define the combined score as the sum of the two
ranks of the complete score and the gap score and it achieves the best precision-coverage
characteristics of all scores (orange curve in Fig. 4.3a). The combined score is hence the
method of choice for finding complete sequences, and it is implicitly meant when referring
to the MaxNovo score without further specification.
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Figure 4.3: Precision-coverage plots of several MaxNovo scores. a. Data was obtained from
the single-shot HeLa dataset with all identified MS/MS spectra with an Andromeda score
of at least 100. Only full peptide sequences without any amino acid mistake are counted as
correct. The curves correspond to raw score (green), normalized score (purple), complete
score (blue), gap score (red) and combined score (yellow). b. The combined score is shown
again as baseline (color). For the other curves, each time one score contribution has been
omitted.

Next, we investigated what the benefits are of the individual additive contributions to the
raw score is to the overall performance. As the baseline, we take the precision-coverage
curve based on the combined score (yellow curve in Fig. 4.3b). Then we remove each of the
contributions to the raw score except the direct path score one at a time and record precision-
coverage curves for these as well. In the high-specificity region, the strongest effect came
from the scoring of the a2 ion. Conversely, the inclusion of the complementary ion series
(the b-series ions in case the main series scored by the direct-path score is the y series) made
a big difference in the low specificity region. Water loss, ammonia loss and protease score all
contribute in less significant and similar amounts.

Benchmark and comparison to other software

In order to compare the performance of MaxNovo to other software we analyzed the same
data with the PEAKS and Novor algorithms (see 4.3 Methods). Fig. 4.4 shows precision-
coverage plots for all three programs. While Novor is less performant, the other two are
close in performance. Up to coverage 0.35, the curve for MaxNovo is on top. The PEAKS
curve reaches farther to the right end, meaning it finds slightly more sequences with low cer-
tainty and the respective areas under the curves are very similar for PEAKS and MaxNovo.
We conclude that these two software platforms are showing comparable performances with
MaxNovo performance being better in the higher specificity region.
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Figure 4.4: Performance comparison of the combined score. Precision-coverage curve com-
paring the combined score of MaxNovo with PEAKS and Novor.

Incomplete sequences

To measure the performance on incomplete sequences, we recorded precision-coverage
plots using the normalized score and we counted as correct, when the predicted sequence
agrees completely with the Andromeda sequence or a sub-sequence of it (Fig. 4.5a). This
we do for the single shot and the fractionated HeLa datasets separately. We find that we
obtain curves that are similar to each other above a precision of 0.8 and are deviating below
that. Next, we determine what the expected precision of the results is at a given normalized
score threshold (Fig. 4.5b). The curves for fractionated and single-shot data agree well in
particular at larger score values, which indicates that the dependency of the precision on the
score could be generalizable. For instance, a precision of 0.8 corresponds to a normalized
score threshold of approximately ten.

Fig. 4.5c shows histograms of N- and C-terminal missing masses, having medians of
692.3 and 258.1 Da, respectively in the fractionated dataset. The y-axis of the histogram is
in logarithmic scale and one can see that higher masses are much less frequent. A density
scatter plot of peptide sequence length vs. tag length (Fig. 4.5d) is dominated by the
values on the diagonal corresponding to full-length sequences. The distribution of partial
sequences has a median length of twelve.
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Figure 4.5: Incomplete sequences. a. Precision-coverage curve based on the MaxNovo
normalized score including complete and incomplete sequences calculated for the single-
shot and the fractionated dataset. A minimum tag length of seven was applied. b. The
precision values from panel a are plotted against the normalized score. c. Histograms of N-
and C-terminal missing masses for the fractionated HeLa dataset (all MS/MS spectra with
missing terminal mass >0). d. Density plot of tag length vs. peptide sequence length of all
MS/MS spectra that have also been identified by Andromeda.
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New identifications

Next, we focus on the sequences in the fractionated HeLa dataset that have not been identi-
fied by the Andromeda search engine. 15.2%, or 135,908 in total, of the complete sequences
or sequence tags that are at least seven amino acids long are from MS/MS spectra that have
not been identified by Andromeda. We perform a multi-tier BLAST search against protein
databases containing all human proteins, proteins derived from the HeLa genome, the Bos
taurus proteome and finally against a SwissProt database containing all species. We further
filtered the non-identified MS/MS spectra by a combined score of 91.715 to allow an error
rate of 10%, which results in 28,126 sequences that are submitted to BLAST. 28,123 sequences
find a match with the same length in at least one of the four tiers. Out of these, 18,492 (65.8%)
are matching exactly, while the remaining ones have at least one substitution (Fig. 4.6a). We
further classify the sequences without mismatch in Fig. 4.6b.

Figure 4.6: New identifications. a. Number of MS/MS spectra in the fractionated HeLa
dataset whose full-length de-novo prediction was matched by BLAST with the specified
number of substitutions. b. The de-novo sequences from panel a that were matched without
substitutions are classified according to the sequence database that they were matching to.

Tims TOF data

We next applied MaxNovo to a HeLa dataset acquired on a tims-TOF Pro instrument. The
precision-coverage plot based on the combined score (Fig. 4.7) shows at first less perfor-
mance than in Fig. 4.3. However, most of the wrong de-novo sequences have only a swap
of the two C-terminal amino acids and are otherwise correct. This is due to the lower mass
range limit in the MS/MS spectra of 200 Da in this particular dataset. If we ignore the order
of the two C-terminal amino acids, we obtain a much better precision-coverage curve (Fig.
4.7). Hence, it is recommended to use a lower mass range limit for MS/MS spectra or to
ignore the order of the last two amino acids in each peptide.
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Figure 4.7: timsTOF Pro data. Precision-coverage curve for the timsTOF Pro data based on
the combined score once checking complete correctness of the sequence and once ignoring
the two C-terminal amino acids.

Application to ancient sequences

Ancient proteomes present a challenging application of de-novo and error-tolerant search
approaches, both because comparative genomes of closely-related species are frequently not
available and because the determination of sequence variation is essential when phyloge-
netic analysis is the main purpose of the proteomic study. Ancient proteomes contain a large
number of variable PTMs [Cappellini et al., 2019], many of which might only be present at
low frequencies, and have increasing rates of peptide bond hydrolysis for older samples,
making the occurrence of semi-specific and non-specific peptides in resulting datasets much
more likely [Chen et al., 2019]. Finally, dentine and bone proteomes are dominated by colla-
gen type I, which is heavily hydroxylated, increasing search complexity as well as the pres-
ence of incomplete fragmentation series, particularly around proline positions. We therefore
tested MaxNovo performance against a Late Pleistocene hominin proteome dataset that was
previously generated using three proteases in parallel [Lanigan et al., 2020]. We observe
that, as for modern data (Fig. 4.5d), de-novo sequence tag lengths are on average shorter
when compared to the Andromeda-derived sequence solution (Fig. 4.8a). Likewise, as with
PEAKS [Welker, 2018a], the probability that a top-ranking full-length MaxNovo solution ex-
ists and is correct for a given spectrum is highly dependent on peptide amino acid length,
although the MaxNovo scores provide the possibility to apply stringent selection criteria
and partly remove this dependency (Fig. 4.8b). Despite this, MaxNovo correctly resolved
the true peptide sequence when presented with protein sequence databases of chimpanzee
(Pan, Fig. 4.8c) and gorilla (Gorilla, Fig. 4.8d), including PSMs containing diagenetic modifi-
cations (deamidation) and proline hydroxylation.
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Figure 4.8: Validation on ancient samples. a. Density plot of tag length (MaxNovo) vs.
peptide sequence length (Andromeda) for PSMs where the de-novo solution contains the
database search sequence solution (n=1,726). b. Correctness of MaxNovo top-ranking se-
quence solutions are highly dependent on peptide sequence length (black, n=14,249). Fil-
tering for combined scores over 75 increases average correctness moderately for longer pep-
tides (red, n=5,703) , but significantly when only taking into account normalized scores >10
(blue, n=1,427). c. Example of a successfully resolved MaxNovo PSM containing asparagine
deamidation (combined score = 98.9451, GluC digest). d. Example of a successfully resolved
MaxNovo PSM containing proline hydroxylation (combined score = 98.907, GluC digest).
For both c and d, a protein sequence alignment across COL1A2 is given, indicating rele-
vant positions with SAP in Gorilla (c, A279S) and Pan (d, A564T). Coordinates in reference to
UniProt accession number P08123.
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Score Description
raw score This is the score assigned to each path, which is the sum of the six

following score. The optimal path is found maximizing this score in an
exhaustive search over all paths.

direct path score Score summing up weights that are collected along the path with con-
tributions from traversed nodes and edges.

complement score Score contribution of ions that are complementary to the ions in the
direct path.

protease score Reward for terminal parts of the sequence that are in agreement with
the specified protease that was used for generating peptides from pro-
teins.

a2 score Reward for the presence of an a2 ion.
water loss score Reward for the presence of ions resulting from the loss of a water

molecule in case the main path contains any of the amino acids D, E, S
or T.

ammonia loss score Reward for the presence of ions resulting from the loss of an ammonia
molecule in case the main path contains any of the amino acids K, N, Q
or R.

normalized score This is the raw score divided by the precursor mass. While the raw
score adds up the total spectral evidence for a peptide, the normalized
score rather corresponds to the spectral evidence per peptide length.

complete score The complete score equals the normalized score, in case the sequence
goes from terminus to terminus, i.e. is completely sequencing the pep-
tide. Otherwise the complete score equals zero.

gap score The gap score is the difference in raw scores between the best and the
second-best scoring solution. If there is no second-best solution, the
gap score equals the raw score.

combined score The combined score is a combination of the complete score and the gap
score. Both of these scores are ranked, Then the sum of the two ranks
is taken and normalized to lie between 0 and 100.

Table 4.1: Definition of scores used in this publication. The scores with their names in
italic are additive contributions to the raw score. The combined score is the score of choice
for ranking full-length sequences. Incomplete sequence tags are best ranked using the nor-
malized score.
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4.5 Conclusion

We introduced MaxNovo, a novel de-novo sequencing algorithm that is integrated into the
MaxQaunt software. It shows a performance, in terms of sequence identifications, which is
as good as or better than software that is currently in use. It is interesting to observe, that
no machine learning was used in its construction, but that we rationalized a scoring func-
tion based on expert knowledge on peptide fragmentation spectra. Based on its integration
into the MaxQuant environment, we can expect MaxNovo to make significant introductions
to the recovery of peptide sequences of relevance in clinical, biological, and evolutionary
settings.
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4.6 Author’s contribution

MaxNovo is a novel spectrum graph-based peptide de-novo sequencing algorithm imple-
mented in MaxQuant, allowing for reference database-independent identification. It pro-
vides peptide sequences of completely as well incompletely sequenced spectra including
mass information for the remaining terminal sequence.

I worked on the implementation and optimisation of the MaxNovo de-novo sequencing al-
gorithm. Furthermore, I individually inspected a range of MS/MS spectra identified by
MaxNovo to text and improve the algorithm’s sequencing performance. I selected spectra
to reflect various characteristics that pose challenges to de-novo sequencing.

The identified de-novo sequence is provided as sequence pattern allowing multiple amino
acids or amino acid pairs for a single position due to isobaric masses of certain amino acids
or amino acid pairs. I provided a de-novo sequence parser to be able to retrieve all possible
sequence combinations of a single identified de-novo sequence to be able to validate the
performance of MaxNovo.

For the validation of the MaxNovo algorithm, I selected two HeLa benchmark datasets for
which I performed the MaxNovo, Novor and PEAKS analysis. Furthermore, I set up a lo-
cal BLAST search and a computational post-processing workflow to identify high scoring
de-novo sequences, previously unidentified by the Andromeda search engine. Finally, I pro-
cessed the ancient hominin bone data and provided the results for downstream analysis.

The study demonstrated that MaxNovo performs as well as or better than state-of-the-art
deep learning-based de-novo sequencing algorithms and outperforms the benchmarked al-
gorithms in the high-sensitivity range of precision-coverage plots.
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peptide identification rates in collisional dissociation MS/MS spectra

Petra Gutenbrunner1,2, Pelagia Kyriakidou1, Frido Welker & Jürgen Cox1,4*
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4.8.1 A user guide on how to run MaxNovo in MaxQuant

MaxNovo is integrated into the MaxQuant environment. You can download MaxQuant from
https://maxquant.org/maxquant/. You must make sure to install .NET Core 3.1 SDK x64
from https://dotnet.microsoft.com/download/dotnet/3.1.

1. Load your raw files and set your experiment design.

https://maxquant.org/maxquant/
https://dotnet.microsoft.com/download/dotnet/3.1
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2. Go to “Global parameters” tab→ “Sequences” tab and load your FASTA file(s).

3. Go to “Global parameters” tab→ “Identification” tab.
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3. a. Scroll down till you find the “De-novo sequencing” checkbox.

3. b. Enable the De-novo sequencing by clicking on it.

3.c. Set the MaxNovo parameters that appeared after clicking on the “De-novo sequenc-
ing” checkbox.

Please find the description of each one of the parameters at the Supplementary Table 4.2 in
the Supporting Information.
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4. Press start to start a MaxQuant run with the MaxNovo denovo identification enabled.

After MaxQuant finishes navigate to the “combined” folder that MaxQuant created and then
to the “txt” folder. In the “txt” folder there is a file called “msmsScans.txt” where you can
find all the additional de-novo information from your experiment. Please find the descrip-
tion of each one of the columns at the Supplementary Table 4.3 in the Supporting Informa-
tion.
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Supplementary Table 4.2

Description of the de-novo parameters in MaxQuant. Find these parameters in MaxQuant
when you enable the de-novo algorithm under Global parameters → Identification → De-
novo sequencing.

Parameter Default value Description
Include variable modi-
fications

true When checked, the variable modifications
(specified under Group-specific parameters →
Modifications → Variable modifications) are
considered when MaxNovo runs.

Use calibrated masses true When checked, the masses are the ones after the
re-calibration step.

Complete sequence true When checked, if the de-novo sequence is not
completely resolved, a complementary ion se-
ries is looked up that can extend it.

Min. norm. Extension
score

0 the minimum normalized score the extended se-
quence has to have in order for the de-novo se-
quence to be extended (in case incomplete).

Max. number of steps 750000 The upper limit of steps in a path that are
tested in the exhaustive search along the di-
rected acyclic graph representing each MS/MS
spectrum.

Protease reward 2 The weight of the contribution of the ”protease
score” in the calculation of the ”raw score”.

Protease reward tof 2 The weight of the contribution of the ”protease
score” in the calculation of the ”raw score” for
timsTOF data.

AG penalty 0.5 Sore penalty for picking AG instead of Q.
GG penalty 0.5 Sore penalty for picking GG instead of N.
Use complement score true When checked, complement score contributes

to the calculation of the ”raw score”.
Use protease score true When checked, protease score contributes to the

calculation of the ”raw score”.
Use water loss score true When checked, water-loss score contributes to

the calculation of the ”raw score”.
Use ammonia loss
score

true When checked, ammonia-loss score contributes
to the calculation of the ”raw score”.

Use a2 score true When checked, a2 score contributes to the calcu-
lation of the ”raw score”.

Table 4.2
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Supplementary Table 4.3

Description of the new de-novo associated columns in the “msmsScans.txt” output file from
MaxQuant.

Column name Description
DN sequence The de-novo AA regex sequence that corresponds to the one with

the biggest raw score among all de-novo AA regex sequences for the
specific MS/MS scan.

DN length The length of the sequence that is stored in the column “DN se-
quence”.

DN min levenshtein
distance

The minimum Levenshtein distance between the identified An-
dromeda sequence(column: “Sequence”) and the de-novo sequences
resulting from the de-novo regex (column: “DN sequence”). Leven-
shtein distance between two peptide sequences is the minimum num-
ber of single-amino acid edits (insertions, deletions, or substitutions)
required to change one sequence into the other. The MS/MS scans
with no identified Andromeda sequence or no de-novo sequence or
missing both will have DN min levenshtein distance equal to -1.

DN extension se-
quence

Sequence that was attached to the incomplete main path sequence in
a second search for explaining the missing mass at a terminus.

DN extended Whether or not a second search for explaining the missing mass at a
terminus was successful.

DN complete When marked with ’+’ the de-novo regex sequence (column: “DN
sequence”) is full length with no mass missing.at the N- or/and C-
terminal.

DN raw score This is the score assigned to the de-novo regex sequence (column:
“DN sequence”) and it is the sum of other 6 scores. Raw score =
direct path score+complement score+protease score+A2 score+water-
loss score+ammonia-loss score

DN extension score Score that was achieved in a second search for explaining the missing
mass at a terminus.

DN extension norm.
score

Normalized score that was achieved in a second search for explaining
the missing mass at a terminus.

DN (normalized) score This is the raw score divided by the precursor mass.
DN complete score The complete score equals the normalized score, in case the sequence

goes from terminus to terminus, i.e. is completely sequencing the
peptide. Otherwise the complete score equals zero.

DN combined score The combined score is a combination of the complete score and the
gap score. Both of these scores are ranked, and then the sum of the
two ranks is taken and normalized to lie between 0 and 100.

DN nterm mass The mass that is missing at the N-terminal of the de-novo sequence
tag. The sum of the de-novo sequence tag mass and the DN nterm
mass is equal to the precursor mass associated with the specific
MS/MS scan.
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DN cterm mass The mass that is missing at the C-terminal of the de-novo sequence
tag. The sum of the de-novo sequence tag mass and the DN cterm
mass is equal the precursor mass associated with the specific MS/MS
scan.

DN missing mass The sum of DN nterm mass and DN cterm mass.
DN nterm delta score The score difference between the solution and the best solution that

is not allowed to connect to the N-terminus.
DN cterm delta score The score difference between the solution and the best solution that

is not allowed to connect to the C-terminus.
DN term delta score The maximum of the above two scores.
DN full length delta
score

The difference in raw scores between the best and the second-best
scoring solution. If there is no second-best solution, the gap score
equals the raw score.

DN protease score The reward for terminal parts of the sequence that are in an agree-
ment with the specified protease that was used for generating pep-
tides from proteins.

DN complement score The score contribution of ions that are complementary to the ions in
the direct path.

DN a2 score The reward for the presence of an a2 ion.
DN water loss score The reward for the presence of ions resulting from the loss of a water

molecule in case the main path contains any of the amino acids D, E,
S, or T.

DN ammonia loss
score

The reward for the presence of ions resulting from the loss of an am-
monia molecule in case the main path contains any of the amino acids
K, N, Q, or R.

DN agrees with an-
dromeda

When marked with ’+’ the de-novo regex sequence (column: “DN se-
quence”) matches the sequence from the database search (column:
“Sequence”) that passed the PSM FDR control (Column: “Identi-
fied”==”+”). Here a “match” is considered even if the de-novo regex
sequence is a subsequence of the database search one.

DN agrees with an-
dromeda complete

When marked with ’+’ the de-novo regex sequence (column: “DN se-
quence”) matches the sequence from the database search (column:
“Sequence”) that passed the PSM FDR control (Column: “Identi-
fied”==”+”). Here a “match” is considered only the full-length
match.

DN all sequences All the de-novo AA regex sequences associated with a specific
MS/MS scan separated by “;” sorted by their normalized score in
descending order.

DN all scores The normalized score of all the de-novo AA regex sequences asso-
ciated with a specific MS/MS scan separated by “;” in descending
order.
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DN all agrees “+” or “-” separated by “;” for each one of the de-novo regex se-
quences (column: “DN all sequences”) in the same order. When
marked with ’+’ the de-novo regex sequence matches the sequence
from the database search (column: “Sequence”). Here a “match” is
considered even if the de-novo regex sequence is a subsequence of
the database search one.

DN any agrees When marked with ’+’ any of the de-novo regex sequences (column:
“DN all sequences”) matches the sequence from the database search
(column: “Sequence”). Here a “match” is considered even if the de-
novo regex sequence is a subsequence of the database search one.

DN number of steps The number of different steps that correspond to the path associated
with the de-novo regex sequence (column: “DN sequence”).

DN is dominantly y It is true if the main path corresponds to the y ion series. This is
known for sequences that connect to at least one terminus.

Table 4.3

Three different kinds of brackets (round, square, and curly) can be found in a regex de-novo-
sequence. The round brackets “()” contain the modification of the amino acid that is located
on the left side of the brackets. For example M(Oxidation (M)). The square brackets “[]”
contain two amino acids that their order cannot be distinguished by MaxNovo due to the
absence of fragment ion peaks in the MS/MS scan. For example [WR] can be either WR or
RW. The curly brackets “” contain amino acids that are separated by the pipe character “—”.
The separated by “—” amino acids are equally possible to be at that position because they
are isobaric or almost isobaric (up to mass tolerance error). For example I—L can be either I
or L.
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Lordkipanidze10,17, Fernando Racimo18, Carles Lalueza-Fox7, José Marı́a Bermúdez de
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5.1 Abstract

The phylogenetic relationships between hominins of the Early Pleistocene epoch in Eura-
sia, such as Homo antecessor, and hominins that appear later in the fossil record during the
Middle Pleistocene epoch, such as Homo sapiens, are highly debated [Gabunia et al., 2000,
Zhu et al., 2018, Stringer, 2016, Hublin, 2009, Rightmire, 1998]. For the oldest remains,
the molecular study of these relationships is hindered by the degradation of ancient
DNA. However, recent research has demonstrated that the analysis of ancient proteins
can address this challenge [Cappellini et al., 2019, Chen et al., 2019, Welker et al., 2019].
Here we present the dental enamel proteomes of H. antecessor from Atapuerca (Spain)
[Bermúdez de Castro et al., 1997, Carbonell et al., 1995] and Homo erectus from Dmanisi
(Georgia) [Gabunia et al., 2000], two key fossil assemblages that have a central role in mod-
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els of Pleistocene hominin morphology, dispersal and divergence. We provide evidence that
H. antecessor is a close sister lineage to subsequent Middle and Late Pleistocene hominins,
including modern humans, Neanderthals and Denisovans. This placement implies that the
modern-like face of H. antecessor—that is, similar to that of modern humans—may have a
considerably deep ancestry in the genus Homo, and that the cranial morphology of Nean-
derthals represents a derived form. By recovering AMELY-specifc peptide sequences, we
also conclude that the H. antecessor molar fragment from Atapuerca that we analysed be-
longed to a male individual. Finally, these H. antecessor and H. erectus fossils preserve evi-
dence of enamel proteome phosphorylation and proteolytic digestion that occurred in vivo
during tooth formation. Our results provide important insights into the evolutionary re-
lationships between H. antecessor and other hominin groups, and pave the way for future
studies using enamel proteomes to investigate hominin biology across the existence of the
genus Homo.
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5.2 Introduction

Since 1994, over 170 human fossil remains have been recovered from level TD6 of the Gran
Dolina site of the Sierra de Atapuerca [Carbonell et al., 1995] (Burgos, Spain) (Extended
Data Fig. 5.4, Supplementary Information). These fossils have been dated to the late Early
Pleistocene epoch and exhibit a unique combination of cranial, mandibular and dental fea-
tures [Bermúdez de Castro et al., 1997, Duval et al., 2018]. To accommodate the variation ob-
served in the human fossils from TD6, a new species of the genus Homo – H. antecessor – was
proposed in 1997 [Bermúdez de Castro et al., 1997]. The relationship of this species to earlier
or later hominins in Eurasia–such as the H. erectus specimens from Dmanisi or Neanderthals,
Denisovans and modern humans, respectively–have been the subject of considerable debate
[Stringer, 2016, Hublin, 2009, Freidline et al., 2013, Lacruz et al., 2013]. These issues remain
unresolved owing to the fragmentary nature of hominin fossils at other sites, and the failure
to recover ancient DNA in Eurasia that dates to the Early, and most of the Middle, Pleis-
tocene epoch.

By contrast, recent developments in the extraction and tandem mass spectrometric analysis
of ancient proteins have made it possible to retrieve phylogenetically informative protein
sequences from Early Pleistocene contexts [Cappellini et al., 2019, Welker et al., 2019]. We
therefore applied ancient protein analysis to a H. antecessor molar from sublevel TD6.2 of
the Gran Dolina site of the Sierra de Atapuerca (specimen ATD6-92) (Extended Data Fig.
5.5a). This specimen, identified as an enamel fragment of a permanent lower left first or
second molar, has been directly dated to 772–949 thousand years ago (ka) using a combi-
nation of electron spin resonance and U-series dating [Duval et al., 2018]. In addition, we
sampled dentine and enamel from an isolated H. erectus upper first molar (specimen D4163)
(Extended Data Fig. 5.5b) from Dmanisi (Georgia) that has been dated to 1.77 million years
ago (Ma) [Gabunia et al., 2000, Ferring et al., 2011, Lordkipanidze et al., 2013], as amino acid
racemization analysis of this specimen indicated the presence of an endogenous protein
component in the intracrystalline enamel fraction of the tooth (Extended Data Fig. 5.6, Sup-
plementary Information). On both specimens, we performed digestion-free peptide extrac-
tion optimized for the recovery of short, degraded protein remains [Cappellini et al., 2019].
Nanoscale liquid chromatography–tandem mass spectrometry (nanoLC–MS/MS) acquisi-
tion was replicated in two independent proteomic laboratories (Extended Data Table 5.1),
implementing common precautions and analytical workflows to minimize protein contam-
ination (5.3 Methods). We compared the proteomic datasets retrieved from the Pleistocene
hominin tooth specimens with those generated from a positive control, a recent human pre-
molar (Ø1952; which is from a male individual and is approximately three centuries old), as
well as previously published Holocene teeth [Stewart et al., 2017] (5.3 Methods, 5.10 Supple-
mentary Information). Finally, to validate our enamel peptide spectrum matches, we per-
formed machine-learning-based MS/MS spectrum intensity prediction using the wiNNer
algorithm [Tiwary et al., 2019].
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5.3 Methods

No statistical methods were used to predetermine sample size. The experiments were not
randomized and investigators were not blinded to allocation during experiments and out-
come assessment.

Site location and specimen selection

Recent human control specimens

We analysed Ø1952, a human premolar recovered in an archaeological excavation in Copen-
hagen (Almindeligt Hospital Kirkegård, excavated in 1952, from kisse ‘2’). The tooth is ap-
proximately three centuries old, as the cemetery was in use from approximately ad 1600 to
approximately ad 1800, and originates from a male individual. We also re-analysed previ-
ously published data [Stewart et al., 2017] related to specimens that are dated to between
approximately 5,700 and 200 years ago; of these specimens, we took SK339 as a recent exam-
ple in our comparative figures (a male individual from Fewston (UK) dated to the nineteenth
century ad).

Atapuerca

One fragmentary permanent lower left first or second molar (ATD6-92; field number
and museum accession number at CENIEH) was used for ancient protein analysis (Ex-
tended Data Fig. 5.5a, 5.10 Supplementary Information). ATD6-92 originates from sub-
level TD6.2 of the Gran Dolina cave site. Sublevel TD6.2 contains a large number of fau-
nal remains, about 170 hominin fossils and about 830 archaeological artefacts. All ho-
minin specimens from sublevel TD6.2, including ATD6-92, are attributed to H. antecessor
[Bermúdez de Castro et al., 1997]. ATD6-92 has recently been directly dated through elec-
tron spin resonance, laser-ablation inductively coupled plasma mass spectrometry U-series
and bulk U-series dating [Duval et al., 2018]. Together with previous chronological research
at the site, these analyses constrain the age of ATD6-92 to 772–949 thousand years old
[Duval et al., 2018].

Dmanisi

One fragmentary permanent upper first molar (D4163; field number and museum accession
number at the Georgian National Museum) was used for ancient protein analysis (Extended
Data Fig. 5.5b, 5.10 Supplementary Information). D4163 derives from layer B1 in excava-
tion block M6 (Dmanisi). Layer B1 at Dmanisi contains one of the richest palaeontological
assemblages attributed to the Eurasian Early Pleistocene epoch, including several hominin
crania. Below, we refer to these specimens as H. erectus (Dmanisi). They represent the ear-
liest hominin fossils outside Africa, and are dated to 1.77 Ma [Ferring et al., 2011]. Faunal
material from the site previously demonstrated ancient protein survival for most specimens,
but a total absence of ancient DNA [Cappellini et al., 2019] (Fig. 5.3).
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Amino acid racemization

Chiral amino acid analysis was undertaken on one Pleistocene sample from the hominin
tooth (D4163) to test the endogeneity of the enamel protein through its degradation patterns.
The tooth chip was separated into the enamel and dentine portions, and each was powdered
with an agate pestle and mortar. All samples were prepared using previously published pro-
cedures [Penkman et al., 2008], modified to be optimized for enamel, using a bleach time of
72 h to isolate the intracrystalline protein, demineralization in HCl, KOH neutralization and
formation of a biphasic solution through centrifugation [Dickinson et al., 2019]. Two sub-
samples were analysed from each portion: one fraction was directly demineralized and the
free amino acids analysed, and the second was treated to release the peptide-bound amino
acids, thus yielding the total hydrolysable amino acid fraction. Samples were analysed in
duplicate by reversed-phase high-performance liquid chromatography, with standards and
blanks analysed alongside samples. During preparative hydrolysis, both asparagine (Asn)
and glutamine (Gln) undergo rapid irreversible deamidation to aspartic acid (Asp) and glu-
tamic acid (Glu), respectively [Hill, 1965]. It is therefore not possible to distinguish between
the acidic amino acids and their derivatives, and they are reported together as Asx and Glx,
respectively. Additional descriptions of the methods, as well as additional results, are given
in the Supplementary Information.

Proteomic extraction and nanoLC–MS/MS

Protein extraction

Protein extraction was conducted on enamel samples (from the Atapuerca H. antecessor,
Dmanisi H. erectus and Ø1952) and a dentine sample (Dmanisi), using one of three pro-
tocols. In brief, the first extraction method used HCl for demineralization, but included
no subsequent reduction, alkylation or digestion. The second extraction method used a
more standard approach, in which the pellet left from the demineralization in extraction one
was reduced, alkylated and digested with LysC and trypsin. The third extraction method
used TFA for demineralization, and had no subsequent reduction, alkylation or digestion.
The first and third extraction approaches provided more extensive peptide recovery in an-
cient enamel proteomes [Cappellini et al., 2019] compared to the second extraction approach
[Mackie et al., 2018]. Further details can be found in the 5.10 Supplementary Information
and a previous publication [Cappellini et al., 2019]. Ø1952 was processed using extraction
methods one and three. No proteinase and phosphatase inhibitors were used during extrac-
tion, as we assumed that catalytically active enzymes were not present in our specimens and
the high acidic conditions during our extraction would have irreversibly denatured any pro-
teases possibly present as contaminants in our reagents. Extended Data Table 5.1 provides a
breakdown of the use of specific extraction methods, hominin samples and hominin tissues.

NanoLC–MS/MS analysis.

Shotgun proteomic data were obtained on peptide extracts of both hominins at separate fa-
cilities at the Novo Nordisk Centre for Protein Research (University of Copenhagen) and the
Proteomics Unit (Centre for Genomic Regulation, Barcelona Institute of Science and Technol-
ogy). Full peptide elutions were injected, in some cases across replicate runs in both Copen-
hagen and Barcelona. In brief, samples processed in Copenhagen were suspended in 0.1%
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trifluoroacetic acid, 5% acetonitrile, and analysed on a Q-Exactive HF or HF-X mass spec-
trometer (Thermo Fisher Scientific) coupled to an EASYnLC 1200 (Thermo Fisher Scientific).
The HF or HF-X mass spectrometer was operated in positive ion mode with a nanospray
voltage of 2 kV and a source temperature of 275 °C. Data-dependent acquisition mode was
used for all mass spectrometric measurements. Full mass spectrometry scans were done at a
resolution of 120,000 with a mass range of m/z 300–1,750 and 350–1,400 for the HF and HF-X
mass spectrometers, respectively, with detection in the Orbitrap mass analyser. Fragment ion
spectra were produced at a resolution of 60,000 via high-energy collision dissociation (HCD)
at a normalized collision energy of 28% and acquired in the Orbitrap mass analyser. In addi-
tion, test runs for the Dmanisi sample were performed at a shorter gradient (Supplementary
Information). In Barcelona, samples were dissolved in 0.1% formic acid and analysed on
a LTQ-Orbitrap Fusion Lumos mass spectrometer (Thermo Fisher Scientific) coupled to an
EASY-nLC 1000. The mass spectrometer was operated similarly to the parameters stated for
the HF and HF-X mass spectrometers in Copenhagen, except the nanospray voltage was 2.4
kV and full mass spectrometry scans with 1 micro scan were used over a mass range of m/z
350–1,500. Further details of the LC–MS/MS analysis can be found in the Supplementary
Information.

Proteomic data analysis

Protein sequence database construction

We constructed an initial Hominidae sequence database containing protein sequences
of all major and minor enamel proteins derived from all extant great apes, a hylo-
batid (Nomascus leucogenys) and a macaque (Macaca mulatta). Additionally, we added
protein sequences translated from extinct Late Pleistocene hominins [Meyer et al., 2016,
Castellano et al., 2014], and sequences from Gorilla beringei, Pongo pygmaeus and Pongo tapan-
uliensis [De Manuel et al., 2016, Nater et al., 2017, Prado-Martinez et al., 2013]. For each pro-
tein, we reconstructed the protein sequence of ancestral nodes in the Hominidae family
through PhyloBot [Hanson-Smith and Johnson, 2016] to minimize cross-species proteomic
effects [Welker, 2018a], and added missing isoform variation on the basis of the isoforms
present for each protein in the human proteome as given by UniProt (5.10 Supplementary
Information). Furthermore, we downloaded the entire human reference proteome from
UniProt (4 September 2018) for a single separate search to allow matches to proteins pre-
viously not encountered in enamel proteomes. To each constructed database, we added a
set of known or possible laboratory contaminants to allow for the identification of possible
protein contaminants [Hendy et al., 2018].

Proteomic software, settings and false-discovery rate

Raw mass spectrometry data were searched for each specimen and tissue separately in either
PEAKS [Zhang et al., 2012] (v.7.5) or MaxQuant [Cox and Mann, 2008] (v.1.5.3.30). No fixed
modifications were specified in any search. For PEAKS, variable posttranslational modifica-
tions were set to include proline hydroxylation, glutamine and asparagine deamidation, oxi-
dation (M), phosphorylation (STY), carbamidomethylation (C) and pyroglutamic acid (from
Q and E). For MaxQuant, the following variable post-translation modifications were addi-
tionally included: ornithine formation (R), oxidation (W), dioxidation (MW), histidine to
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aspartic acid (H > D), and histidine to hydroxyglutamate. Searches were conducted with
unspecific digestion. For PEAKS, precursor mass tolerance was set to 10 ppm and fragment
mass tolerance to 0.05 Da, and the false-discovery rate of peptide spectrum matches was set
to equal ≤1.0%. For MaxQuant, default settings of 20 ppm for the first search and 4.5 ppm
for the final search were used, a fragment mass tolerance of 20 ppm, and peptide spectrum
match (PSM) and protein false-discovery rate was set to 1.0%, with a minimum required
Andromeda score of 40 for all peptides. Protein matches were accepted with a minimum of
two unique peptide matches in either the PEAKS or MaxQuant search. Proteins that con-
form to these criteria are detailed in Extended Data Table 5.2. Example MS/MS spectra
from the MaxQuant search and overlapping sites of phylogenetic interest (single amino acid
polymorphisms) are included as Supplementary Data 1.

Data search iterations

For both the proteomes of Dmanisi and Atapuerca specimens, we conducted two separate
initial searches. First, we conducted a search in PEAKS against the entire human proteome.
Only standard enamel proteins were identified in these searches, allowing us to continue
with more specific searches. For the Dmanisi dentine sample, this first search resulted in
a small number of peptides matching to collagen type I only. On the basis of the limited
amount of sequence data, no further analysis of the Dmanisi dentine data was therefore
conducted. Second, for the enamel data, we conducted a search in PEAKS and MaxQuant
against the entire enamel proteome database of all extant and extinct Hominidae. This search
was used to observe single amino acid polymorphisms outside the known sequence varia-
tion in PEAKS and MaxQuant through the de novo, error-tolerant and/or dependent pep-
tide approaches implemented in each of these search engines. These initial searches indicate
overall good protein preservation in both samples and the presence of peptide matches to
Pan- and Homo-derived proteins only.

On the basis of these two initial searches, a novel protein sequence database was used that
only includes sequences from the genus Pan, the genus Homo, their predicted ancestral se-
quences and novel protein sequences observed for both the Dmanisi or Atapuerca samples.
Final searches and subsequent data analysis were conducted against this database using the
above search and post-translational modification settings. Positions supported by insuffi-
cient spectral data were replaced by ‘X’, in resulting peptide alignments before phylogenetic
analysis.

Data analysis of Ø1952 and the previously published16 dataset was conducted only in
MaxQuant against a database restricted to H. sapiens. All other search settings and database
restrictions were similar between these two recent human controls and the ancient hominin
proteomes.

Peptide sequence and single amino acid polymorphism validation

To validate the PSMs covering single amino acid polymorphisms of interest, we per-
formed peptide spectrum intensity prediction and validation on our dataset using wiNNer
[Tiwary et al., 2019]. Data from the ancient specimens (Dmanisi H. erectus and Atapuerca H.
antecessor) were divided into a subset that contained phylogenetically informative peptide
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sequences and a larger subset that did not contained these peptides. A training dataset was
prepared by taking a subset of the latter peptides, and adding a previously published dataset
of enamel proteomes from Dmanisi fauna [Cappellini et al., 2019]. We built two models, one
for HCD +2 spectra and one for HCD +3 spectra. We took into account the large number of
variable modifications observed in our ancient enamel proteomes, and split the retained data
for each model into subsets for training, validation and testing (80:10:10). We then obtained
Pearson correlation coefficients for the predicted and true fragment intensities in the test
dataset and the phylogenetically informative spectra. The architecture of wiNNer was built
using Keras (version 2.0.8; https://keras.io) and Tensorflow (version 1.3.0). The wiNNer
analysis indicated close correspondence between predicted and true fragment ion intensi-
ties (Pearson correlation coefficient medians between 0.85 and 0.76 for different subsets of
the data), indicating adequate peptide sequence identification for all our peptides, includ-
ing phylogenetically informative positions and the variable post-translational modifications.
The wiNNer model can be accessed on GitHub (https://github.com/cox-labs/wiNNer.git).
Additional methodological details of the wiNNer architecture are given in the Supplemen-
tary Information.

Protein damage analysis

Ancient proteins can be modified diagenetically in a variety of ways compared to their mod-
ern counterparts. We quantify glutamine and asparagine deamidation following a previ-
ously publication [Mackie et al., 2018] for MaxQuant output, based on MS1 spectral intensi-
ties and protein-based bootstrapping (1,000 bootstraps). Further details can be found in the
previous publication [Mackie et al., 2018]. We observe that both glutamines and asparagines
are almost all deamidated to glutamic acid and aspartic acid, respectively (Extended Data
Fig. 5.9a–c). In addition, peptide length distributions were obtained for datasets presented
here and elsewhere [Cappellini et al., 2019, Welker et al., 2019], demonstrating a shortening
of average peptide length and overall peptide length distributions for older samples (Ex-
tended Data Fig. 5.9d).

Protein in vivo modification analysis

The existing literature on enamel and enamel proteome biomineralization describes
three processes that are key to the maturation of the enamel proteome: protein hy-
drolysis by MMP20 and KLK4 [Chun et al., 2010, Yamakoshi et al., 2006, Iwata et al., 2007,
Nagano et al., 2009], in vivo phosphorylation of serine residues [Cappellini et al., 2019,
Welker et al., 2019, Tagliabracci et al., 2012] and expression of different isoforms of AMELX,
AMBN and AMTN [Chun et al., 2010, Nagano et al., 2009, Fukae et al., 1996]. We sought to
explore the presence of both in vivo protein hydrolysis and serine phosphorylation modifi-
cations in our Pleistocene hominin proteomes.

For protein hydrolysis by MMP20 and KLK4, we made use of the Atapuerca digestion-
free dataset and the described locations of AMBN, AMELX and AMELY, and ENAM
cleavage by MMP20 and KLK4 [Chun et al., 2010, Yamakoshi et al., 2006, Iwata et al., 2007,
Nagano et al., 2009]. We compared the experimentally observed cleavage sites to a random
cleavage model of each protein separately and tested whether the cleavage sites are present
in a larger portion of PSMs in the ancient sample. Here we can indeed show an increased

https://keras.io
https://github.com/cox-labs/wiNNer.git
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presence of PSMs with termini at, or close to, known MMP20 and KLK4 cleavage locations
(Extended Data Fig. 5.10). This corresponds with our observation that protein regions with
continuous sequence coverage correspond to known proteolytic fragments after MMP20 and
KLK4 activity (Extended Data Fig. 5.7).

Phosphorylation of serines (S), threonines (T) and tyrosines (Y) was assessed using Icelogo
[Colaert et al., 2009] sequence motif analysis. This analysis was based on the MaxQuant re-
sults, from which only identified phosphorylation sites with a localization probability of
≥ 0.95 were selected. STY sites with no phosphorylation or localization probabilities ≤
0.95 were taken as the non-phosphorylated background, and a sequence motif window of 7
amino acids on either side of the STY was selected.

Sequence motif analysis indicates a strong preference for the phosphorylation of S with a
glutamic acid (E) on the +2 position (S-X-E motif) (Fig. 5.1a, b) in both hominin enamel
proteomes. This substrate motif and the S-X-phosphorylated S motif are recognized by the
kinase FAM20C, which is known to be active in vivo on extracellular proteins involved in
biomineralization [Tagliabracci et al., 2012], and has previously been reported for ancient,
non-hominin enamel proteomes as well [Cappellini et al., 2019, Welker et al., 2019].

To compare phosphorylation occupancy between the Dmanisi and Atapuerca enamel pro-
teomes, we performed a separate MaxQuant database search (5.10 Supplementary Informa-
tion) and restricted our analyses to amino acid positions covered by phosphorylated and
nonphosphorylated peptides, observed in both hominins and quantified through label-free
quantification.

Phylogenetic analysis

Comparison between the ancient protein sequences and modern reference proteins

We compared the reconstructed ancient protein sequences from the Dmanisi H. erectus and
Atapuerca H. antecessor with protein sequences from great apes [De Manuel et al., 2016,
Prado-Martinez et al., 2013], three Neanderthals [Prüfer et al., 2014, Castellano et al., 2014,
Prüfer et al., 2017], a Denisovan [Meyer et al., 2012] and a panel of present-day humans, in-
cluding 256 samples from the Simons Genome Diversity Panel [Mallick et al., 2016] and 41
high-coverage individuals from the 1000 Genomes Project [The 1000 Genomes Project, 2015].
Altogether, our reference data represent worldwide human and great ape variation (Supple-
mentary Tables 5.9, 5.10). Additionally, we included protein sequences from macaque (M.
mulatta) and gibbon (N. leucogenys) to root phylogenetic trees. The protein sequences were
retrieved from the UniProt database or reconstructed from the reference whole-genome se-
quences as described in Supplementary Methods.

The ancient and reference protein sequences were aligned using mafft [Katoh, 2002]. We
aligned the sequences of each protein separately and obtained an alignment for each of the
ancient individuals independently (Supplementary Table 5.11). The isobaric amino acids
leucine (L) and isoleucine (I) cannot be distinguished with the experimental procedure used
for this study. Therefore, we have to take the following precautions to avoid unintentional
sequence differences. If either I or L was present at a specific amino acid position in the
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reference protein sequences, we replaced all corresponding amino acids in the ancient pro-
tein sequences with the amino acid that is present. Alternatively, if both amino acids are
present in the reference protein sequence, we replace all I to L for all sequences. We used
sequence information for seven proteins (ALB, AMBN, AMELX, AMELY, COL17α1, ENAM
and MMP20) for the H. antecessor individual and six proteins for the H. erectus individual
(ALB, AMBN, AMELX, COL17α1, ENAM and MMP20) with a total of 22.08% and 22.14%
non-missing sites, respectively (Supplementary Table 5.11). We were able to recover a unique
single amino acid polymorphism for H. antecessor; however, for H. erectus no unique single
amino acid polymorphism was detected (Supplementary Tables 5.11-5.13, Supplementary
Figs. 5.21-5.23).

Phylogenetic reconstruction

We built phylogenetic trees using our protein sequence alignments following three
approaches: a maximum likelihood approach using PhyML v.3 [Guindon et al., 2010],
and two Bayesian approaches using mrBayes [Ronquist et al., 2012] and BEAST
[Bouckaert et al., 2019].

For the maximum likelihood approach, we built maximum likelihood trees for each protein
independently and for a concatenated alignment consisting of all of the available protein
sequences for each of the ancient samples (Supplementary Figs. 5.24, 5.25). We used PhyML
v.3 and the parameters described in the Supplementary Information section 5.10.2.3.5a to
build and optimize the tree topologies, branch length and substitutions rates for each of the
alignments. Support for each bipartition was obtained based on 100 non-parametric boot-
strap replicates. We evaluated the effect of significant missingness in the ancient samples
on the inferred topology. Finally, we looked at the effect of varying which of the subset of
present-day human samples was included in the tree (Supplementary Information section
5.10.2.3.5b, c).

For the Bayesian approach using mrBayes, to assess the robustness of the maximum like-
lihood inference results, we performed Bayesian phylogenetic inference on the basis of the
concatenated alignments using mrBayes 3.2 and the parameters described in Supplementary
Information section 5.10.2.3.5d (Extended Data Fig. 5.11, Supplementary Fig. 5.27). Bayesian
inference was performed using the CIPRES Science Gateway [Miller et al., 2010].

For the Bayesian approach using BEAST, we used BEAST 2.5 to obtain a time calibrated
tree for the seven proteins used for H. antecessor. For this analysis, we used concatenated
alignments including the Neanderthals, the Denisovan, seven randomly chosen H. sapiens
individuals and a single individual per great ape species. The alignment was partitioned by
gene and a coalescent constant population model was used for the tree prior. The dates of
the ancient samples included in the analysis (Vindija Neanderthal, 52 ka [Prüfer et al., 2017];
Altai Neanderthal, 112 ka [Prüfer et al., 2014]; Denisovan, 72 ka [Meyer et al., 2012] and H.
antecessor, 860.5 ka [Duval et al., 2018]) were used as tip dates for calibration. For each par-
tition, we used the Jones–Taylor–Thornton substitution model with four categories for the
gamma parameter, for which we allowed the Markov chain Monte Carlo chain to sample
the shape of the gamma distribution (with an exponentially distributed prior) and assigned
independent clock models. Additionally, we set a prior for the divergence time of great
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apes to 23.85 ± 2.5 Ma (normally distributed) [Besenbacher et al., 2019], and rooted the tree
using the macaque (M. mulatta). The overall topology of the tree was estimated for the
seven partitions jointly. The convergence of the algorithm was assessed using Tracer v.1.7.0
[Rambaut et al., 2018]. Finally, we repeated this analysis with 100 alignments, each of them
consisting of 7 present-day humans chosen randomly. Although the topology within the
clade consisting of present-day humans, Neanderthals and Denisovan was not consistent
across the replicates, 99 of the replicates consistently place the H. antecessor sequence as an
outgroup to this clade (Fig. 5.2a).

Further details on phylogenetic analysis and results can be found in the 5.10 Supplementary
Information. Example MS/MS spectra from the MaxQuant search and overlapping sites of
phylogenetic interest (single amino acid polymorphisms) for both hominins are included as
Supplementary Data 1.

Reporting summary

Further information on research design is available in the Nature Research Reporting Sum-
mary linked to this paper.

Data availability

Mass spectrometry proteomics data have been deposited in the ProteomeXchange Consor-
tium (http://proteomecentral.proteomexchange.org) via the PRIDE partner repository with
the dataset identifier PXD014342. Generated ancient protein consensus sequences used
for phylogenetic analysis for H. antecessor (Atapuerca) and H. erectus (Dmanisi) hominins
can be found in the Supplementary Data 2, which is formatted as a .fasta file. Full pro-
tein sequence alignments used during phylogenetic analysis can be accessed via Figshare
(https://doi.org/10.6084/m9.figshare.9927074). Amino acid racemization data are avail-
able online through the NOAA database. The wiNNer model can be accessed on GitHub
(https://github.com/cox-labs/wiNNer.git).

Online content

Any methods, additional references, Nature Research reporting summaries, source data,
extended data, supplementary information, acknowledgements, peer review information;
details of author contributions and competing interests; and statements of data and code
availability are available at https://doi.org/10.1038/s41586-020-2153-8.
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5.4 Results

The results show that the wiNNer model retrained for randomly cleaved and heavily modi-
fied peptides provides a predictive performance similar to that of the wiNNer model trained
on modern, trypsin-digested samples, assuring accurate sequence identification for the phy-
logenetically informative peptides (median Pearson correlation coefficients of ≥0.76) (5.3
Methods, Supplementary Fig. 5.17, 5.10 Supplementary Information).

Protein recovery from the Dmanisi dentine sample was limited to sporadic collagen type
I fragments, and therefore in-depth analysis of this material was not further pursued. By
contrast, we recovered ancient proteomes from both hominin enamel samples. We found
that the composition of these proteomes is similar to that of the recent human specimen
that we processed as a positive control, as well as to previously published proteomes
from ancient enamel [Cappellini et al., 2019, Stewart et al., 2017, Castiblanco et al., 2015,
Asaka et al., 2009] (Extended Data Table 5.2, Supplementary Table 5.8). The enamel-specific
proteins include amelogenin (both AMELX and AMELY isoforms), enamelin (ENAM),
ameloblastin (AMBN), amelotin (AMTN) and the enamel-specific protease matrix metal-
loproteinase 20 (MMP20). Serum albumin (ALB) and collagens (COL1α1, COL1α2 and
COL17α1) are also present. For the enamel-specific proteins, the peptide sequences that we
retrieved cover approximately the same protein regions in all of the specimens that we anal-
ysed (Extended Data Fig. 5.7). Although destructive, our sampling of Pleistocene hominin
teeth resulted in higher protein sequence coverage than acid-etching of Holocene enamel
surfaces [Stewart et al., 2017, Porto et al., 2011] (Supplementary Fig. 5.18). The AMTN-
specific peptides largely derive from a single sequence region involved in hydroxyapatite
precipitation through the presence of phosphorylated serines [Gasse et al., 2015]. Finally, the
observation of the AMELY-specific peptides (which is coded on the non-recombinant portion
of the Y chromosome) demonstrates that the H. antecessor molar that we studied belonged to
a male individual [Stewart et al., 2017] (Extended Data Fig. 5.8).

Besides proteome composition and sequence coverage, several further lines of evidence in-
dependently support the endogenous origin of the hominin enamel proteomes. Unlike ex-
ogenous trypsin, keratins and other human-skin contaminants that we identified, the enamel
proteins have high deamidation rates (Extended Data Fig. 5.9) – above the rate observed for
the recent human specimens (Supplementary Fig. 5.19). Both Pleistocene hominins have
average peptide lengths that are shorter than those observed for our recent human controls
(Extended Data Fig. 5.9d). The average peptide length is shorter in the Dmanisi hominin,
but longer in the younger Atapuerca hominin (Extended Data Fig. 5.9d). By contrast, we
observe that the peptide lengths in enamel from the Dmanisi hominin are indistinguishable
from those of the faunal remains from the same site. Together, our protein data are therefore
consistent with theoretical and experimental [Cappellini et al., 2019, Demarchi et al., 2016]
expectations for samples of their relative age.

In addition to diagenetic modifications, we observe two kinds of in vivo modification in our
recent and ancient enamel proteomes. First, we detect serine (S) phosphorylation within
the S-X-E motif (Fig. 5.1a, b). This motif, as well as the S-X-phosphorylated S motif, is
recognized by the FAM20C secreted kinase, which is active in the phosphorylation of extra-
cellular proteins [Tagliabracci et al., 2012, Hu et al., 2005]. The presence of phosphoserine in
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fossil enamel and its location in the S-X-E and/or S-X-phosphorylated S motifs has also
previously been observed in other Pleistocene enamel proteomes [Cappellini et al., 2019,
Glimcher et al., 1990]. Phosphorylation occupancy can be computed successfully for ancient
and recent samples, and reveals differences in the ratios of phosphorylated peptides be-
tween samples (Fig. 5.1c, Supplementary Table 5.7). Second, the peptide populations that
we retrieve primarily cover the ameloblastin, enamelin and amelogenin sequence regions,
representing cleavage products deriving from in vivo activity of the proteases MMP20 and –
subsequently – kallikrein 4 (KLK4) (Extended Data Fig. 5.7, 5.3 Methods). The peptide pop-
ulations are also enriched in N and C termini that correspond to known MMP20 and KLK4
cleavage sites (Extended Data Fig. 5.10, Supplementary Fig. 5.20). FAM20C phosphoryla-
tion and MMP20 and KLK4 proteolysis are the two main processes that occur in vivo during
enamel biomineralization. Our observation of products deriving from both processes opens
up the possibility of studying in vivo processes of hominin tooth formation across the Pleis-
tocene epoch.
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Figure 5.1: Phosphorylation of hominin enamel proteomes. a, Phosphorylation sequence
motif analysis of H. antecessor specimen ATD6-92. b, Phosphorylation sequence motif anal-
ysis of H. erectus specimen D4163. c, Phosphorylation occupancy comparison, expressed as
log2-transformed summed intensity ratio of modified and unmodified peptides, for amino
acid sites for which data are available for at least two specimens. y axis labels indicate the
position of the phosphorylated amino acids for each protein (UniProt accession numbers
Q9NP70 (AMBN), Q99217 (AMELX) and Q9NRM1 (ENAM)). SK339 denotes an archaeolog-
ical specimen from a modern human, which is approximately three centuries old (see ‘Recent
human control specimens’ in the 5.3 Methods for details).
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Homo antecessor is known only from the Gran Dolina TD6 assemblage in Ata-
puerca [Bermúdez de Castro et al., 1997]. Its relationship with other European Mid-
dle Pleistocene fossils is heavily debated [Stringer, 2016, Hublin, 2009, Rightmire, 1998,
Wagner et al., 2010, Martinón-Torres et al., 2007]. It remains contentious as to whether H.
antecessor represents the last common ancestor of H. sapiens, Neanderthals and Denisovans
[Bermúdez de Castro et al., 1997], or whether it represents a sister lineage to the last com-
mon ancestor of these species [Bermúdez de Castro et al., 2017, Gómez-Robles et al., 2013].
We address this issue by conducting phylogenetic analyses on the basis of our ancient pro-
tein sequences from H. antecessor (ATD6-92), a panel of present-day great ape genomes and
protein sequences translated from archaic hominin genomes (5.3 Methods).

We built several phylogenetic trees using maximum likelihood and Bayesian methods (Fig.
5.2a, Supplementary Figs. 5.24 - 5.27). In these trees, the H. antecessor sequence represents a
sister taxon that is closely related to, but not part of, the group composed of Late Pleistocene
hominins for which molecular data are available (Fig. 5.2a, Supplementary Figs. 5.24, 5.26,
5.27). The enamel protein sequences do not resolve the relationships between H. sapiens,
Neanderthals and Denisovans owing to the low number of informative single amino acid
polymorphisms.

However, pairwise divergence of the amino acid sequences between H. antecessor and the
clade containing H. sapiens, Neanderthals and the Denisovan is larger than the divergence
between the members of this clade (Fig. 5.2b, Supplementary Fig. 5.23, 5.10 Supplementary
Information). The concatenated gene tree may be subjected to incomplete lineage sorting,
and we have too little sequence data to discard this possibility at the moment. However,
if we use the concatenation of available gene trees as a best guess for the population tree,
and assume that such a population tree is a good descriptor of the relationships among an-
cient hominins, then our results support the placement of H. antecessor as a closely related
sister taxon of the last common ancestor of H. sapiens, Neanderthals and Denisovans. The
phylogenetic position of H. antecessor agrees with a divergence of the H. sapiens and Nean-
derthal + Denisovan lineages between 550 and 765 ka [Meyer et al., 2016, Prüfer et al., 2014],
as ATD6-92 has been dated to 772–949 ka [Duval et al., 2018]. This is further supported by
recent reconsiderations of the morphology of H. antecessor in relation to Middle and Late
Pleistocene hominins [Gómez-Robles et al., 2013].
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Figure 5.2: Phylogenetic analysis of H. antecessor ATD6-92. a, a, Maximum credibility
tree estimated using BEAST and a concatenated alignment of seven protein sequences re-
covered for the ancient sample. Posterior Bayesian probabilities are indicated at nodes with
a probability of ≤ 1. Horizontal error bars at each node indicate the 95% highest poste-
rior density intervals for the split time estimates. The position of H. antecessor is consistent
with that obtained via maximum likelihood (Supplementary Fig. 5.24) and Bayesian (Sup-
plementary Fig. 5.27) analyses. ERZ and HG codes in parentheses after H. sapiens refer to
identifiers for data from the Simons Genome Diversity Panel [Mallick et al., 2016] and 1000
Genomes Project [The 1000 Genomes Project, 2015], respectively (see ‘Comparison between
the ancient protein sequences and modern reference proteins’ in the 5.3 Methods for details).
b, Histograms of the divergence times obtained for the split between H. antecessor and the
H. sapiens, Neanderthal and Denisovan clade (HND) (red), the HND–HND split (blue), and
the Pan–(HND + H. antecessor) split (grey). Divergence times in a and b are shown as a
percentage of the time since the divergence of all great apes.
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Figure 5.3: Skeletal proteome preservation in the Middle and Early Pleistocene
epoch (0.12–2.6 Ma) For each sample, the presence (green) or absence (blank) of
endogenous DNA, collagens, non-collagenous proteins (NCPs) or an enamel pro-
teome is given. Only samples for which mammalian proteomes are published are
considered [Cappellini et al., 2019, Chen et al., 2019, Welker et al., 2019, Welker et al., 2017,
Hill et al., 2015, Wadsworth and Buckley, 2014, Orlando et al., 2013]. Hominin samples are
indicated with squares, other mammalian samples are indicated with circles. Selected spec-
imens have their separate molecular components joined, and are named. Xiahe refers to the
Xiahe mandible [Chen et al., 2019]; the Thistle Creek Equus refers to a horse metapodial from
the Canadian permafrost [Orlando et al., 2013].
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5.5 Discussion

Homo antecessor has tentatively been proposed as the last common ancestor of Neanderthals
and modern humans [Bermúdez de Castro et al., 1997]. The similarities observed between
the modern-like mid-facial topography of H. antecessor and H. sapiens – including a mod-
ern pattern of coronal orientation of the infraorbital surface, the sloping and directional-
ity of this plane, as well as the anterior flexion of the maxillary surface and arching of
the zygomatic-alveolar crest – were key in this proposal [Bermúdez de Castro et al., 1997,
Lacruz et al., 2019]. Additional studies of the face of ATD6-69 have confirmed that H. ante-
cessor exhibits the oldest known modern-like face in the fossil record [Freidline et al., 2013,
Lacruz et al., 2013]. The phylogenetic placement of H. antecessor implies that this modern-
like face – as represented by H. antecessor – must have a considerably deep ancestry in the
genus Homo. Findings made between 2003 and 2005 have shown that the H. antecessor hy-
podigm includes some features that were previously considered Neanderthal autapomor-
phies [Bermúdez de Castro et al., 2017]. Our results suggest that these features appeared in
Early Pleistocene hominins, and were retained by Neanderthals and lost by modern humans.

By contrast, the phylogenetic tree built with the H. erectus specimen from Dmanisi has only
moderate resolution (Extended Data Fig. 5.11, Supplementary Fig. 5.22), despite deeper
shotgun protein sequencing for this specimen (Extended Data Table 5.1). This partly in-
conclusive result might be due to the shorter average peptide lengths compared to the At-
apuerca H. antecessor specimen (Extended Data Fig. 5.9d, 5.3 Methods) and an absence of
uniquely segregating single amino acid polymorphisms (Supplementary Table 5.11). Al-
though our H. erectus data from Dmanisi demonstrate that ancient hominin proteins can be
reliably obtained from the Early Pleistocene epoch, they also highlight the current limits of
ancient protein analysis when applied to the phylogenetic placement of Early Pleistocene
hominin remains.

Our dataset provides a unique molecular resource of hominin biomolecular sequences from
Early and Middle Pleistocene hominins, and represents – to our knowledge – the oldest an-
cient hominin proteomes presented to date. Comparison of hominin and fauna proteomes
from different skeletal tissues reveals that the dental enamel proteome outlasts dentine and
bone proteome preservation (Fig. 5.3). Here the prolonged survival of hominin enamel pro-
teomes is exploited to show that H. antecessor represents a hominin taxon closely related
to the last common ancestor of H. sapiens, Neanderthals and Denisovans. In addition, our
datasets demonstrate that in vivo proteome modifications, such as serine phosphorylation,
survive over time scales of hundreds of thousands of years. Current research therefore sug-
gests that dental enamel, the hardest tissue in the mammalian skeleton, is the material of
choice for the analysis of hominin evolution in deep time.
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5.6 Author’s contribution

The phylogenetic relationships of early hominins, specifically of the Early Pleistocene epoch
in Eurasia and the Middle Pleistocene epoch, are highly debated due to the lack of morpho-
logical features and fully degraded aDNA of fossil remains. Therefore, we performed an
ancient protein analysis to an enamel fragment of Homo antecessor and to dentin and enamel
of a Homo erectus molar.

My contribution to this publication was strongly focussed on the performed data analy-
sis obtained from a LC-MS/MS experiment. First, I performed a MaxQuant data analysis,
which included identification not only by the database search engine Andromeda, but also
from the MaxNovo de-novo sequencing algorithm (Chapter 4 - Publication 2) and the de-
pendent peptide algorithm. This analysis enabled the identification of peptides and protein
sequences and their sequence variations.

Furthermore, I developed a post-processing pipeline that uses the obtained MaxQuant re-
sults for protein sequence reconstruction. The pipeline facilitates phylogenetic analysis by
extracting sequence variations. For the development of sequence reconstruction, I aligned
all identified sequences to a reference protein sequence. Based on this alignment, I was able
to reconstruct a protein sequence that incorporates the identified and validated sequence
variations, which were further validated and subsequently used for phylogenetic analysis.

Additionally, I performed the phosphorylation occupancy analysis to investigate the quan-
tity of phosphorylation that occurred in vivo during tooth formation. Finally, for the vali-
dation of identified peptide sequences with our machine learning (Chapter 3 – Publication
1; wiNNer), I performed MaxQuant analysis of several ancient datasets to provide sufficient
training data.

For Homo antecessor, we successfully obtained sufficient sequence coverage of the enamel-
specific proteins to provide evidence that Homo antecessor is a close sister lineage to subse-
quent Middle and Late Pleistocene hominins, including modern humans, Neanderthals and
Denisovans.
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5.8 Extended data figures

Figure 5.4: Location and stratigraphy of the hominin fossils studied. a, Geographic loca-
tion of Gran Dolina and Dmanisi. Base map was generated using public domain data from
www.naturalearthdata.com. b, Summarized stratigraphic profile of Gran Dolina, including
the location of hominin fossils in layers ‘Pep’ and ‘Jordi’ of sublevel TD6.2.

Figure 5.5: Hominin specimens studied. a, ATD6-92 in buccal view. The fragment repre-
sents a portion of a permanent lower left first or second molar. b, D4163 in occlusal view.
The specimen is a fragmented right upper first molar. Scale bar differs between a and b.



120 5. The dental proteome of Homo antecessor

Figure 5.6: Amino acid racemization of D4163. a, b, The extent of intracrystalline racem-
ization in enamel for the free amino acid (FAA) (x axis) fraction and the total hydrolysable
amino acids (THAA) (y axis) fraction for aspartic acid plus asparagine (here denoted Asx) (a),
and glutamic acid plus glutamine (here denoted Glx) (b), demonstrates endogenous amino
acids breaking down within a closed system. The hominin value is displayed in relation
to values for enamel samples from other fauna from Dmanisi [Cappellini et al., 2019] (blue
squares) and a range of previously obtained Pleistocene and Pliocene Proboscidea from the
UK [Dickinson et al., 2019] (grey diamonds). Fauna are shown for comparison, but different
rates in their protein breakdown mean that they will show different extents of racemization.
The x and y axis are on different scales.
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Figure 5.7: Sequence coverage for five enamel-specific proteins across Pleistocene samples
and recent human controls. For each protein, the bars span protein positions covered, with
positions remapped to the human reference proteome. The top row indicates the position of
a selection of known MMP20 and KLK4 cleavage products of the enamel-specific proteins
AMELX [Nagano et al., 2009], AMBN [Chun et al., 2010] and ENAM [Fukae et al., 1996].
Several in vivo proteolytic degradation fragments of ENAM share the same N terminus,
but have unknown C termini [Yamakoshi et al., 2006]. Dotted line for AMBN indicates a
putative cleavage product based on known MMP20 (squares) and KLK4 (circles) in vivo
cleavage positions. For AMTN, serines (S) at positions 115 and 116 (indicated by asterisks)
are conserved among vertebrates and involved in mineral-binding [Gasse et al., 2015]. Ad-
ditional cleavage products as well as MMP20 and KLK4 cleavage sites are known in all
enamel-specific proteins. SK339 [Stewart et al., 2017] and Ø1952 are two recent human con-
trol samples (5.3 Methods). AA, amino acids; Steph., Stephanorhinus [Cappellini et al., 2019];
TRAP, tyrosine-rich amelogenin polypeptide.
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Figure 5.8: Homo antecessor specimen ATD6-92 represents a male hominin. a, Mass spec-
trum of an AMELY-specific peptide from the recent human control Ø1952. b, Mass spec-
trum of the same AMELY-specific peptide from H. antecessor. c, Alignment of a selection of
AMELY- and AMELX-specific peptide fragment ion series deriving from H. antecessor. The
alignment stretches along human AMELX isoform 1, positions 37 to 52 only (Uniprot acces-
sion numbers Q99217 (AMELX), Q99218 (AMELY)). See Supplementary Fig. 5.16 for another
example of an AMELY-specific MS2 spectrum.
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Figure 5.9: Enamel proteome damage. a, b, Glutamine (Q) and asparagine (N) deamida-
tion of enamel-specific proteins from H. antecessor (Atapuerca) (a), and H. erectus (Dmanisi)
(b). Values are based on 1,000 bootstrap replications of protein deamidation. c, Relation-
ship between mean asparagine (N) and glutamine (Q) deamidation for all proteins in both
the Atapuerca and Dmanisi hominin datasets. Error bars represent 95% confidence inter-
val window of 1,000 bootstrap replications of protein deamidation. Dashed line is x = y. d,
Peptide length distribution of H. antecessor (Atapuerca), H. erectus (Dmanisi), four previously
published enamel proteomes [Cappellini et al., 2019, Welker et al., 2019, Stewart et al., 2017]
and one additional human Medieval control sample (Ø1952). For a, b and d, the number
of peptides (n) is given for each violin plot. The box plots within the violin plots define
the range of the data (whiskers extend to 1.5× the interquartile range), outliers (black dots,
beyond 1.5× the interquartile range), 25th and 75th percentiles (boxes), and medians (cen-
tre lines). P values of two-sided t-tests conducted between sample pairs are indicated. No
independent replication of these experiments was performed.
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Figure 5.10: Survival of in vivo MMP20 and KLK4 cleavage sites in the Atapuerca enamel
proteome. a, Experimentally observed cleavage matrices for ameloblastin (AMBN), enam-
elin (ENAM) and amelogenin (AMELX and AMELY) (Methods). Fold differences are colour-
coded by comparing observed PSM cleavage frequencies to a random cleavage matrix for
each protein separately [Chen et al., 2019]. b, Fold differences for all observed cleavage pairs
per protein. Red filled circles represent MMP20, KLK4 and signal peptide cleavage sites
mentioned in the literature [Yamakoshi et al., 2006, Iwata et al., 2007, Nagano et al., 2009,
Fukae et al., 1996]. Red open circles indicate cleavage sites located up to two amino acid
positions away from such sites. c, PSM coverage for each protein. The signal peptide (thick
horizontal bar labelled ‘sig’), known MMP20 and KLK4 cleavage sites (vertical bars), and
O- and N-linked glycosylation sites (asterisks) are also indicated. For AMELX, peptide po-
sitions for all three known isoforms were remapped to the coordinates of isoform 3, which
represents the longest isoform (UniProt accession Q99217-3). The x and y axes differ between
the three panels of c.
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Figure 5.11: Phylogenetic position of D4163 through Bayesian analysis. Nomascus
leucogenys and M. mulatta were used as outgroups.
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5.9 Extended data tables

Table 5.1: Extraction and mass spectrometry details of analyses conducted on both an-
cient hominin specimens. QE-HF, Q Exactive HF (or HF-X) hybrid quadrupole-Orbitrap
mass spectrometer (Thermo Fisher Scientific). Fusion Lumos, LTQ-Orbitrap Fusion Lumos
mass spectrometer (Thermo Fisher Scientific). *Extraction method 1: demineralization in
HCl, with no subsequent proteolytic digestion. Extraction method 2: demineralization in
HCl, reduction, alkylation and digestion with LysC and trypsin. Extraction method 3: dem-
ineralization in TFA, with no subsequent proteolytic digestion. See 5.10 Supplementary In-
formation for further details.
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Table 5.2: Ancient hominin enamel proteome composition and coverage. Proteins are in-
cluded only if two or more unique peptides were observed in either the PEAKS or MaxQuant
searches. Primary accession refers to the H. sapiens entry in UniProt. Protein sequence
coverage in the final column indicates the coverage obtained after combining PEAKS and
MaxQuant peptide recovery. For ‘coverage (AA)’ columns, numbers in parentheses refer
to the number of amino acid (AA) positions uniquely identified in PEAKS or MaxQuant
searches. For AMELX and AMELY, coverage statistics combine counts for all isoforms
present, whereas peptide counts refer only to the highest-ranking isoform or database entry.
Direct comparisons between PEAKS and MaxQuant are uninformative owing to fundamen-
tal differences in spectral identification, protein and/or peptide assignment, and peptide
counting approaches. *Combined coverage calculated against the longest isoforms for each
protein.
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5.10 Supplementary information

5.10.1 Anthropological background

5.10.1.1 Atapuerca

Marı́a Martinón-Torres, Juan Luis Arsuaga, Eudald Carbonell, José Marı́a Bermúdez de Cas-
tro

The Sierra de Atapuerca is placed about 15 km east of the city of Burgos in Northern Spain
(3° 41´5922´´ W, 42° 20´27´´ N). It is a small hill with an area of about 25 km2 and a maximum
altitude of 1082 meters, placed between the basins of the river Duero to the southwest and
the river Ebro to the northeast. The Sierra de Atapuerca has a strategic position at the end of
the so-called Bureba corridor (Fig. 5.12), a relatively narrow passage between the Cordillera
Cantábrica range (to the north) and the Sierra de la DemandaIberian range (located towards
the south). The Bureba corridor was probably an important passage for the migrations of dif-
ferent species between Mediterranean areas and the interior of the Iberian Peninsula during
the Pleistocene.

Figure 5.12: Location of the Sierra de Atapuerca in the Iberian Peninsula. Note that the Sierra
de Atapuerca is located at the end of the Bureba corridor, which connects the basin of the
Ebro River with the Castellana Plateau and the Duero river basin.

The Sierra de Atapuerca is made of Mesozoic limestone and from a structural point of
view belongs to the Iberian range [Olivé et al., 1990, Pineda and Arce, 1997]. The study
of the geomorphology revealed that the Sierra de Atapuerca is an NNW-SSE anticline
verging on the NE. This structure forms an anticline ridge made up of Upper Creta-
ceous limestone, dolomites, and calcarenites [Pérez-González et al., 1995]. The core of the
anticline is made up of Keuper (Upper Triassic) shales and Triassic-Jurassic dolomites
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[Parés and Pérez-González, 1999]. The karst system, where the archaeological and paleonto-
logical sites are located, developed in the Upper Cretaceous. Unconformably overlying the
Cretaceous limestone are calcareous conglomerates and red sandstone of Oligocene in age
[Olivé et al., 1990, Pineda and Arce, 1997]. Additional information on the geomorphology of
the Sierra de Atapuerca can be found in Zazo et al. [Zazo et al., 1983], and Parés and Pérez-
González [Parés and Pérez-González, 1995]. Ortega-Martı́nez [Ortega-Martı́nez, 2009] car-
ried out the main description of the multilevel karst system. The construction of a railway
trench at the southern slope of the Sierra de Atapuerca at the end of the XIX century, as well
as the opening of a quarry during the mid-XX century in the abandoned trench, revealed the
presence of some karstic fillings containing archaeological and paleontological information.
From 1978 onwards, a systematic excavation of these fillings has produced rich archaeo-
logical and fossil records. One of the most important cavities is Gran Dolina. This cavity
is 28 meters deep and is fully infilled with Early and Middle Pleistocene sediments. The
first description of the Gran Dolina infilling was carried out by Gil et al. [Gil et al., 1987].
These authors describe eleven main lithostratigraphic levels, TD1 to TD11 (from bottom
to top; Fig. 5.13). Later, Parés and Pérez-González [Parés and Pérez-González, 1999] and
Parés and Pérez- González [Parés and Pérez-González, 1995] published a more detailed de-
scription of the stratigraphy of Gran Dolina. The finding of Early Pleistocene human fossil
remains in level TD6 was very important for the scientific Atapuerca project. This finding,
made in 1994 during the excavation of an archaeological pit of less than six square meters
[Carbonell et al., 1999a], initiated the systematic excavation and study of the fossiliferous fill-
ing of the Gran Dolina. An exhaustive stratigraphic study of the TD6 level has been carried
out by Campaña et al. [Campaña et al., 2016].

Figure 5.13: Stratigraphic profile of deposits and levels at the Gran Dolina cave site. A
detailed view of the sublevels of TD6 can be found in 5.1b. This figure has been made by
Jordi Rosell.
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5.10.1.1.1 Atapuerca TD6.2 sublevel
The TD6 level has been divided in three sublevels: TD6.1, TD6.2, and TD6.3
[Campaña et al., 2016, Bermúdez de Castro et al., 2012] (Fig. 5.4). The human fossils, as
well as more than 830 artefacts and several thousands of micro- and macromammal
fossil remains [Cuenca-Bescós et al., 1999, van der Made, 1999, Garcı́a and Arsuaga, 1999,
Carbonell et al., 1999b, Bermúdez de Castro et al., 1999], come from the sublevel TD6.2
[Parés and Pérez-González, 1999, Parés and Pérez-González, 1995]. Parés and Pérez-
González [Parés and Pérez-González, 1999, Parés and Pérez-González, 1995] and more re-
cently Álvarez Posada [Álvarez-Posada et al., 2018] observed a polarity reversal between
TD7 and TD8, interpreted as the Matuyama/Brunhes boundary, meaning that levels TD8
to TD11 were deposited during the Middle Pleistocene, whereas levels TD7 to TD1 were
deposited during the Early Pleistocene. The combination of the paleomagnetic data and
ESR/U-series ages suggests an age range between 0.78 and 0.86 million years ago (Ma)
for the TD6 level [Falguères et al., 1999]. Thermoluminiscence (TL) dates on samples taken
at the TD7 level, one meter below the Brunhes/Matuyama boundary, give a weighted
mean age of 0.96 ± 0.12 million years ago (Ma) for TD7 [Berger et al., 2008]. The ESR
dating applied to optically bleached quartz grains from TD6 gives dates between 0.60
± 0.09 Ma and 0.95 ± 0.09 Ma [Moreno et al., 2015]. These authors also obtained dates
of 0.73± 0.13 Ma and 0.85 ± 0.14 Ma for the TD7 level, from samples taken under the
Matuyama/Brunhes boundary. Using thermally transferred OSL (TT-OSL) dating of in-
dividual quartz grains, Arnold et al. [Arnold and Demuro, 2015] obtained a weighted
mean age of 0.84 ± 0.06 Ma for the TD6 level. Arnold and Demuro [Arnold et al., 2015]
have undertaken a series of TT-OSL suitability assessments on known-age samples from
TD6. Using this method, they obtained a weighted average age of 0.85 ± 0.04 Ma for
TD6.3. The first direct Electron Spin Resonance (ESR) dating study of Homo antecessor us-
ing one hominin tooth has provided an age estimate ranging from 0.72 Ma to 0.95 Ma
[Duval et al., 2018]. Finally, a recent paleomagnetic study of the interior facies of TD1 places
the TD6.2 hominins between the Matuyama/Brunhes boundary and the Jaramillo subchron
[Parés et al., 2018]. Summarizing, and taking into account the biostratigraphic information
from TD6 [Cuenca-Bescós et al., 1999, Cuenca-Bescós et al., 2015], we consider that the TD6
hominins can be assigned to the Marine Isotope Stage 21 (MIS 21).

5.10.1.1.2 ATD6-92
We sampled an isolated lower left first or second molar (ATD6-92). The specimen was ex-
cavated from square F14, sublevel TD6.2, in 2004. The fragment contains both enamel and
dentine, although the root and dentine interior is largely absent. ATD6-92 derives from a
stratigraphic unit containing over one hundred and seventy hominin fossils, all of which
have been attributed to Homo antecessor. The specimen has been µCT scanned previously,
as well as directly dated using a combination of Electron Spin Resonance (ESR), LA-ICP-MS
U-series analysis, and bulk U-series dating [Duval et al., 2018]. The dating analysis con-
strains the age of the tooth to between 624-949 thousand years ago (ka). As sublevel TD6.2
has reversed polarity, as indicated by paleomagnetic data, this age range can be shortened
to 772-949 ka, and is in full agreement with other lines of chronological evidence for Gran
Dolina TD6 [Duval et al., 2018, Falguères et al., 1999, Arnold and Demuro, 2015] (see above).



5.10 Supplementary information 131

5.10.1.2 Dmanisi

Ann Margvelashvili, David Lordkipanidze

The archaeological and paleontological site of Dmanisi, Georgia, is located in the South Cau-
casus, 55 km southwest of Tbilisi (41°20’10”N and 44°20’38”E). The site is situated on the
promontory that overlooks the confluence of the Mashavera and Pinesauri rivers. Lower
Pleistocene deposits are set between the Medieval ruins and above the 1.85-Ma Mashavera
Basalt which originated from the Javakheti volcanic highland. Hominin fossils attributed to
Homo erectus ergaster georgicus (Dmanisi) derive from the layer B1, which is dated to between
1.78 and 1.76 Ma, based on 40Ar/39Ar dates, paleomagnetism, and paleontologic constraints
[Ferring et al., 2011]. Besides the uniquely well-preserved and numerous hominin fossils,
the site has produced a rich paleontological assemblage, from some of which the recovery of
ancient enamel proteins was possible. These specimens were discovered in different excava-
tion blocks and/or have different preservation conditions [Cappellini et al., 2019].

5.10.1.2.1 D4163
The isolated molar D4163 was discovered in M6, an excavation area located about 50 m
northwest from Block II, where the majority of the hominin bones have been recovered. The
excavations of M6 ceased after 2008, when the section reached the Mashavera basalt. The
tooth was found in layer B1. This layer is dated to 1.77 Ma and correlates with the earliest
Upper Matuyama chron, as it displays reversed polarity [Ferring et al., 2011]. B1 ashes of
all excavation blocks in Dmanisi have distinctive laminated calcretes – retarded or arrested
water percolations - whereas these calcretes are absent in M6 [Ferring et al., 2011].

D4163 is a right upper first molar. It is poorly preserved, with half of the crown missing
and the third root broken off (Fig. 5.5b). The tooth is worn down (grade 4-5 according to
Molnar 1971 [Molnar, 1971]). There is also the clear presence of taphonomic modifications
of the dental surfaces. Together, these have resulted in the obliteration of the cusp shapes
of the occlusal surface. Therefore, the fissure morphology of the occlusal surface is not ob-
servable, as the grooves are absent due to wear, taphonomy, and missing parts of the crown.
The occlusal outline is asymmetrical, as far as can be assessed from the preservation state.
The tooth is rather rhomboidal, instead of square. The remnants of a flat wear patch (con-
tact point) are present on the distal surface of the crown. A more concaved wear patch can
be traced on the mesial surface as well. Only two major cusps are present (paracone and
metacone) with a faint buccal groove running between them. A shallow central fossa is
present as well. The paracone is larger than the metacone, which is different from the other
Dmanisi first molars. However, even though half of the crown is missing, it can be assumed
that the bucco-lingual dimensions are larger than the mesio-distal dimensions. This pat-
tern resembles the pattern observed for the first and second molars of the D4500 cranium
[Lordkipanidze et al., 2013]. Similarity between the D4500 molars and D4163 also include
the massive roots present on all these specimens. The roots slightly angle distally, and trifur-
cation is in the cervical third of the root. The roots are set widely apart from each other. The
largest root (lingual/palatinal) is broken off. The bucco-distal root is the longest, whereas
the bucco-mesial root is shorter, more triangular, and compressed mesio-distally. The molar
does not fit to any current Dmanisi individuals or their associated mandibles. It is therefore
likely that D4163 belongs to another Homo erectus (Dmanisi) individual.
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5.10.2 Supplementary methods and results

5.10.2.1 Amino Acid Racemization

Marc R. Dickinson, Kirsty Penkman

5.10.2.1.1 Amino acid racemization methods
Chiral amino acid analysis was undertaken on one Pleistocene sample from the hominin
tooth from Dmanisi to test the endogeneity of the enamel protein through its degradation
patterns. The current technique of amino acid analysis developed for geochronological
purposes[Penkman et al., 2008] combines a reverse-phase high-pressure liquid chromatog-
raphy (RP-HPLC) method of analysis[Kaufman and Manley, 1998] with the isolation of an
‘intracrystalline’ fraction of amino acids by bleach treatment[Sykes et al., 1995]. This com-
bination of techniques results in the analysis of D/L values of multiple amino acids from
the chemically protected (closed system) protein fraction within the biomineral, thereby en-
abling both decreased sample mass and increased reliability of the analysis.

The tooth chip was separated into the enamel and dentine portions and each powdered
with an agate pestle and mortar. All samples were prepared using modified procedures of
Penkman et al. [Penkman et al., 2008], but optimized for enamel, using a bleach time of 72
hours to isolate the intra-crystalline protein [Dickinson et al., 2019]. Two subsamples were
analyzed from each portion: one fraction was directly demineralized and the free amino
acids analyzed (referred to as the ’free’ amino acids, FAA, F), and the second was treated
to release the peptide-bound amino acids, thus yielding the ‘total hydrolysable’ amino acid
fraction (THAA, H*). After demineralization of the enamel, the pH of the solution was
raised with KOH and then centrifuged for 5 min at 13,000 rpm, whereupon a biphasic so-
lution formed [Dickinson et al., 2019]. The supernatant was extracted and dried via cen-
trifugal evaporation. Samples were analyzed in duplicate by RP-HPLC, with standards and
blanks run alongside samples. During preparative hydrolysis, both asparagine (Asn) and
glutamine (Gln) undergo rapid irreversible deamination to aspartic acid (Asp) and glutamic
acid (Glu), respectively [Hill, 1965]. It is therefore not possible to distinguish between the
acidic amino acids and their derivatives and they are reported together as Asx and Glx re-
spectively. The secondary amino acids proline and hydroxyproline are not detectable in
the chiral amino acid analysis used her, and are therefore not reported below. The DL ra-
tios of aspartic acid/asparagine, glutamic acid/glutamine, phenylalanine and alanine (D/L
Asx, Glx, Phe and Ala) are assessed to provide an overall estimate of intra-crystalline pro-
tein decomposition (IcPD). In a closed system, the amino acid ratios of the FAA and the
THAA subsamples should be highly correlated, enabling the recognition of compromised
samples (e.g. Preece & Penkman, 2005 [Preece and Penkman, 2005]; Dickinson et al., 2019
[Dickinson et al., 2019]). The D/L of all the amino acids will increase with time, but each
amino acid racemises at a different rate, therefore providing different resolution over differ-
ent timescales.
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5.10.2.1.2 Amino acid racemization results
The amino acid composition of the hominin enamel differs from dentine, but closely resem-
bles that of enamel from other taxa from Dmanisi [Cappellini et al., 2019] (e.g. Megacerini;
Fig. 5.14), indicating the amino acids studied are derived from the same proteins entrapped
within the intra-crystalline fraction of enamel. In a closed system, all of the products of pro-
tein degradation should be retained, so the racemization of the FAA and THAA should be
highly correlated over geological time. More labile amino acids, such as those that are un-
bound (FAA) are more likely to leach out of an open system, so open system behavior tends
to result in data points falling away from the general closed system trend. Unfortunately,
there is currently no directly comparative enamel data from the same species, but we have
compared the hominin enamel both to other species from Dmanisi, and to Proboscidea data
from the UK, for which there is a larger dataset (Extended Data Fig. 5.6).

Figure 5.14: THAA amino acid compositions of enamel and dentine from the hominin
tooth D4163. A profile of a Megacerini enamel sample from Dmanisi is shown for compari-
son (taken from Cappellini et al., 2019 [Cappellini et al., 2019]). The amino acid composition
of the hominin enamel closely resembles that of the Megacerini enamel.
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Whilst taxonomic effects influence the rates of racemization (so different taxa will have a
different extent of racemization, despite being the same age), it is likely that the relative
relationship between the racemization of FAA and THAA is similar enough between taxa
to identify if significant leaching/contamination of the original protein has occurred. The
FAA and THAA racemization values from the hominin enamel plot along the same trajec-
tory as those from Proboscidea enamel, indicating that the intra-crystalline enamel amino
acids from the hominin tooth are endogenous and show closed system behavior. The ex-
tent of racemization in all four amino acids studied is comparable to other taxa from the
Dmanisi deposits of the same age (Extended Data Fig. 5.6), but slightly higher, indicating
that hominin enamel amino acids racemise at a faster rate. This fast rate of degradation is
also consistent with the high percentage of FAA, implying higher rates of hydrolysis (Sup-
plementary Fig. 5.15). The extent of racemization and hydrolysis in the hominin enamel
indicates a great antiquity, which is consistent with 1.8 Ma amino acids from this region. In
summary, the protein composition, level of peptide bond hydrolysis, and extent of racemiza-
tion in the hominin sample is consistent with the isolation of a closed system of endogenous
protein from the intracrystalline fraction of the enamel.

Figure 5.15: Absolute concentrations of the free and bound amino acids. Bound amino acid
concentrations have been calculated by subtracting the FAA from the THAA concentrations.
If the calculation results in a negative number, the bound concentration is assumed to be
zero; this approach is likely to slightly overestimate the %FAA due to amino acid breakdown
during the hydrolysis step for the THAA.

5.10.2.2 Proteomic Analysis

Frido Welker, Petra Gutenbrunner, Shivani Tiwary, Meaghan Mackie, Rosa Rakownikov Jer-
sie Christensen, Cristina Chiva, Pere Gelabert, Eduard Sabido, Jurgen Cox, Jesper V. Olsen,
Enrico Cappellini
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5.10.2.2.1 Protein extraction

We attempted protein analysis on enamel fragments from both hominins and our recent hu-
man control (Ø1952), and in addition also conducted protein extractions on a dentine sample
from the Dmanisi hominin. Enamel powders might contain traces of dentine, as no dedi-
cated chemical or physical separation was attempted after drilling. We did not perform sub-
superficial acid-etching of exposed enamel surfaces [Stewart et al., 2017, Porto et al., 2011,
Stewart et al., 2017]. Three separate protocols were utilized. See Extended Data Table 5.1 for
further details on the division of extraction approaches across samples.

Extraction method 1. Approximately 250 mg of enamel was demineralized in 1.2 M HCl
at 4°C, changing and saving the HCl supernatant every 24 hours. The peptides sus-
pended in the HCl demineralization fractions were then directly cleaned, concentrated
and immobilized, skipping reduction, alkylation and digestion steps, using in house
assembled C18 solid-phase extraction Stage-Tips, using previously published methods
[Cappellini et al., 2019].

Extraction method 2. After the demineralization of the Dmanisi sample from Extrac-
tion method 1, there were some remnants of the sample that did not appear to be
mineral, and therefore digestion on this fraction was performed using a guanidine hy-
drochloride (GuHCl) solution, in case some protein could be extracted, following Mackie
et al. [Mackie et al., 2018]. In short, the sample was reduced and alkylated using 2-
Chloroacetamide (CAA) and Tris (2-carboxyethyl) phosphine (TCEP) within a GuHCl solu-
tion and incubated at 80°C. Subsequently, the sample was digested with the enzymes rLysC
and Trypsin (Promega) overnight. Samples were then acidified to under pH 2 using 10% TFA
in ultrapure water. Peptides were collected and cleaned on C18 Stage-Tips, as in method 1.

Extraction method 3. A single sample of the Dmanisi Homo erectus was demineralized in 10%
TFA Peptide clean-up on C18 StageTips followed the details outlined for Extraction method
1.

5.10.2.2.2 LC-MS/MS analysis

Protein extractions were analyzed in two independent laboratories. First, extracts were all
analyzed at the Novo Nordisk Centre for Protein Research, University of Copenhagen (Den-
mark). Second, a significant subset of extracts were also analyzed at the Proteomics Unit of
the Centre for Genomic Regulation, Pompeu Fabra University (Barcelona, Spain). Several of
the extracts were also analyzed multiple times on the same instrument at the same facility,
providing further depth to our proteomic data (Extended Data Table 5.1). For all analyses,
injection blanks preceded and followed sample injections to minimize the risk of sample
carry-over between runs. Furthermore, whenever possible, ancient enamel proteomes were
only injected after extensive cleaning of the MS.

Copenhagen (Denmark). Samples were analysed using in an EASY-nLC 1200 (Thermo
Fisher Scientific (Proxeon), Odense, Denmark) coupled to either a Q-Exactive HF or HF-
X (Thermo Fisher Scientific, Bremen, Germany) orbitrap mass spectrometer. The peptides
were eluted from the StageTips using 20 µL 40% acetonitrile (ACN) and subsequently 10 µL
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60% ACN into a 96 well plate. For the Atapuerca sample, a quarter of the eluted sample was
dried and sent to Barcelona. In Copenhagen, after elution, all samples were vacuum cen-
trifuged at 40°C until approximately 3 µL was left. The remainder of the Atapuera samples
were then rehydrated with 10 µL of 0.1% TFA, 5% ACN. The Dmanisi samples were rehy-
drated with 9 µL of 0.1% TFA, 5% ACN, 4 µL of which being saved and sent to Spain. Dif-
ferent LC and MS methods were used in Copenhagen based on the instrument and column
length. In addition, for the Dmanisi runs, a short test run of each sample was also performed
before the main analysis. Columns were either 15 or 50 cm PicoFrit® columns (75 µm inner
diameter) in-house packed with 1.9 µm C18 beads (Reprosil-AQ Pur, Dr. Maisch). Buffer B
consisted of 80% acetonitrile and buffer A of milliQ water, both containing 0.1% TFA. Tables
5.3-5.5 summarise the different LC and MS methods used in Copenhagen.

Table 5.3: nLC operation parameters for samples when coupled to a Q-Exactive HF or
Q-Exactive HF-X mass spectrometer (Copenhagen).
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Table 5.4: Mass spectrometer full scan operation parameters for samples on the Q-Exactive
HF and QExactive HF-X (Copenhagen). Resolution is at m/z 200. IT: injection time, ACG:
auto gain control target.

Table 5.5: Mass spectrometer fragment scan operation parameters for samples on the Q-
Exactive HF and Q-Exactive HF-X (Copenhagen). Resolution is at m/z 200. IT: injection
time, NCE: normalized collision energy, ACG: auto gain control target, DE: dynamic exclu-
sion.

Barcelona (Spain). Samples were dissolved in 0.1% formic acid and analyzed by LC-MSMS
using a LTQ-Orbitrap Fusion Lumos mass spectrometer (Thermo Fisher Scientific, San Jose,
CA, USA) coupled to an EASY-nLC 1000 (Thermo Fisher Scientific (Proxeon), Odense, Den-
mark). Peptides were loaded directly onto the analytical column and separated by reversed-
phase chromatography using a 50-cm column with an inner diameter of 75 µm, packed
with 2 µm C18 particles (Thermo Scientific, San Jose, CA, USA). Chromatographic gradi-
ents started at 95% buffer A and 5% buffer B with a flow rate of 300 nl/min for 5 minutes
and and gradually increased to 22% buffer B and 78% A in 105 min and then to 35% buffer
B and 65% A in 15 min. After each analysis, the column was washed for 10 min with 10%
buffer A and 90% buffer B. Buffer A: 0.1% formic acid in water. Buffer B: 0.1% formic acid in
acetonitrile.

The mass spectrometer was operated in positive ionization mode with nanospray voltage set
at 2.4 kV and source temperature at 275°C. Ultramark 1621 was used for external calibration
of the FT mass analyzer prior the analyses, and an internal calibration was performed using
the background polysiloxane ion signal at m/z 445.1200. The acquisition was performed in
data-dependent acquisition (DDA) mode and full MS scans with 1 micro scans at resolution
of 120,000 were used over a mass range of m/z 350-1500 with detection in the Orbitrap mass
analyzer. Auto gain control (AGC) was set to 4E5 and charge state filtering disqualifying
singly charged peptides was activated. In each cycle of data-dependent acquisition analy-
sis, following each survey scan, the most intense ions above a threshold ion count of 10000
were selected for fragmentation. The number of selected precursor ions for fragmentation
was determined by the “Top Speed” acquisition algorithm and a dynamic exclusion of 60
seconds. Fragment ion spectra were produced via high-energy collision dissociation (HCD)
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at normalized collision energy of 28% and acquired in the Orbitrap mass analyzer. AGC was
set to 3E4, and an isolation window of 1.6 m/z and maximum injection time of 100 ms were
used. All data were acquired with Xcalibur software v4.1.31.9. Several blank samples were
injected before and after each sample to avoid sample carryover.

Figure 5.16: Examples of LC-MS/MS spectra of Homo antecessor. a, Ancestral SAP (L179M)
in AMELY present in Homo antecessor. Stagetip number: 1069. Scan number: 31841. b, Homo
antecessor-derived SAP (L1089P) in COL17α1. Stagetip number: 1069. Scan number: 31158.
c, Derived SAP (T64N) in ENAM shared with Homo sapiens, Neanderthals, and Denisovans.
Stagetip number: 1069. Scan number: 18166. d, AMELY-specific peptide. Stagetip number:
1069. Scan number: 9847. Note the presence of deamidation (de) and oxidation (ox, di) mod-
ifications in a, c, and d. Informative positions are highlighted (red star). Spectral acquisition
was replicated across multiple extractions and injections for each informative position.
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5.10.2.2.3 Protein sequence database
We constructed an initial Hominidae sequence database containing protein sequences
of all major and minor enamel proteins derived from all extant great apes, a hylo-
batid (Nomascus leucogenys), and a macaque (Macaca mulatta). Additionally, we added
protein sequences translated from extinct Late Pleistocene hominins [Meyer et al., 2016,
Castellano et al., 2014], and sequences from Gorilla beringei, Pongo pygmaeus, and Pongo tapan-
uliensis [De Manuel et al., 2016, Nater et al., 2017, Prado-Martinez et al., 2013]. See 5.10.2.3.1
and 5.10.2.3.2 for details on the prediction of protein sequences for published genomes
of great apes and extinct hominins. Accession numbers for UniProt or Genbank acces-
sions of extant great apes and humans can be found in Supplementary Table 5.6. For
each protein, we reconstructed the protein sequence of ancestral nodes in the Hominidae
family through PhyloBot [Hanson-Smith and Johnson, 2016] to minimize cross-species pro-
teomic effects [Welker, 2018a], and added missing isoform variation based on the isoforms
present for each protein in the human proteome as given by UniProt. Ancestral Sequence
Recontruction (ASR) was conducted across the entire Hominoidea phylogeny using Phy-
loBot [Hanson-Smith and Johnson, 2016]. Input sequences were constrained phylogeneti-
cally to (Macaca,(Nomascus,((Pongo abelii, Pongo pygmaeus),Gorilla,(Homo,((Pan paniscus, Pan
troglodytes)))))). After obtaining protein sequences of extant, extinct, and ancestral nodes
across Hominoidea, we imputed isoform variation known to exist for AMELX, AMELY,
AMBN, AMTN, KLK4 and TUFT1 as we realized that isoforms for most of these proteins
are not present in all great ape reference sequences available in UniProt. We assumed that
alternative splicing would be placed identically for all great apes, took those protein posi-
tions from the human reference sequences (which does have isoform variation for each of
these proteins), and placed them on the non-human great ape and ASR sequences. These
manually created great ape and ASR isoforms were added to the protein sequence database,
with sequence names appended with “ManIso2” and/or “ ManIso3”. Furthermore, we
downloaded the entire human reference proteome from UniProt (downloaded 04.09.2018)
for a single separate search to allow matches to proteins previously not encountered in
enamel proteomes. To each constructed database we added a set of known or possible
laboratory contaminants, to allow for the identification of possible protein contaminants
[Hendy et al., 2018].

Table 5.6: Accession numbers of publicly available protein sequences utilized in database
construction and phylogenetic analysis.
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5.10.2.2.4 wiNNer peptide sequence and SAP validation

Dataset. The wiNNer model was trained for the prediction of the phylogenetically informa-
tive peptide sequences in the ancient samples (Dmanisi Homo erectus and Atapuerca Homo
antecessor). Ancient samples (Dmanisi Homo erectus and Atapuerca Homo antecessor) were
divided into phylogenetically informative peptide sequences and the subset not containing
such phylogenetically informative peptides. A training dataset was prepared by taking a
subset of the latter peptides, and adding a previously published dataset of enamel proteomes
from Dmanisi fauna [Cappellini et al., 2019]. The dataset only has HCD fragmentation, so
we build two models. HCD+2 contains 5,555 unique modification-specific peptides, and
HCD+3 contains 692 unique modification-specific peptides. For each unique modification-
specific peptide, the spectrum with the highest Andromeda score was taken. Spectra with an
Andromeda score below 50 were discarded. The retained data for each model was split into
a division of 80:10:10 for training, validation and test sets, respectively. We kept test data
for evaluating the wiNNer model by calculating the Pearson correlation coefficient (PCC)
between true and predicted intensities for each peptide.

The training data has non-tryptic peptides. In addition, variable modifications such
as Oxidation (M), Deamidation (NQ), Gln→pyro-Glu, Glu→pyro-Glu, Oxidation (P),
Carbamidomethyl (C), Dioxidation (MW), Oxidation (W), His→GluOH (H), His→Asp
(H), Arg Ornithine, Phospho (STY) and Phospho (S) were added when processed with
MaxQuant, and peptide sequences containing these variable modifications were taken into
account.

wiNNer model. The conventional neural network model wiNNer [Tiwary et al., 2019]
(window-based neural network being easily retrainable) uses sequence windows to com-
pute feature space around the backbone bond for which y- and b-ion intensities need to be
predicted. Amino acids on the N- and C- terminus, the distance of the bond from the peptide
termini, and the length of peptide, were also used as features. Each amino acid residue and
modified amino acid residues were converted to a 38 binary feature by one hot encoding to
include residue specific modification and sliding window extending termini. For example,
to include deamidation (NQ), the modification of two extra residues N(de) and Q(de) were
added for one hot encoding. The missing intensities were set to zero and the intensities of
a single peptide was normalized by the maximum value among y- and b-ions. Then, they
were log transformed: log2(1 + Intensity * 10000). We trained two regression models, one for
HCD+2 and one for HCD+3.

The architecture of the wiNNer model is built using Keras (version 2.0.8; https://keras.io/),
a high-level neural network, to train the neural network model. Tensorflow version 1.3.0
was used as backend in Keras. The architecture of neural network includes 5 dense layers.
The input layers contain 991 features for a window size of 24. The hidden unit is reduced
from 600, 400, 200 to 50 in subsequent dense layers, and the output layer contains 2 units for
y- and b-ion peak intensities. Hyper-parameters such as batch size, dropout, learning rate
and number of epochs were optimized separately for different models. The wiNNer model
can be accessed on GitHub (https://github.com/cox-labs/wiNNer.git).

https://github.com/cox-labs/wiNNer.git
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Results. The supplementary Figure 5.17a shows the PCC of HCD+2 and HCD+3 models
were 0.85 and 0.81 respectively, between true and predicted intensities for each peptide in
the test sets. These results are close to the wiNNer model for unmodified sequences, where
the PCC is 0.88 for HCD+2 and 0.76 for HCD+317. Figure S6b shows the PCC between true
and predicted spectra intensity of all the phylogenetically informative peptide sequences in
the ancient samples. The PCC of All peptides, Oxidation (M), Deamidation (NQ), Oxidation
(P), Dioxidation (MW) and Phospho (S) were 0.77, 0.79, 0.76, 0.68, 0.76 and 0.76 respectively.
Again, these distributions are similar to the overall test performance of our wiNNer model,
and indicate accurate peptide sequence identification for our phylogenetically informative
spectra.

Figure 5.17: Results of wiNNer on ancient enamel proteomes. a, Performance of the wiN-
Ner model for HCD+2 and HCD+3. The boxplots shows the PCC distribution between true
and predicted spectrum intensity for each peptide sequence in the test data. The boxplots
contains 556 unique PSMs for HCD+2 and 70 unique PSMs for HCD+3, respectively. b, PCC
distribution of true and predicted intensities in phylogenetically informative peptides, and
for specific classes of variable modifications. Distribution of PCCs of true and predicted
y- and b-ion peak intensities in all the phylogenetically informative peptides (“All Phylo-
Peptides”), and peptides including variable modifications, such as Oxidation (M), Deami-
dation (NQ), Oxidation (P), Dioxidation (MW) and Phospho (S). The boxplots contain 359,
125, 278, 22, 47, and 114 unique peptides, respectively. Lower mean PCC correlation for
classes of variable modifications are generally related to smaller number of unique peptides
included in wiNNer test and validation. For a and b, each box extends from the lower to
upper quartile values of the data. The line indicates the median. The whiskers extends up to
1.5 times the interquartile range. Values above and below the interquartile ranges are plotted
in diamonds as outliers.
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5.10.2.2.5 Proteomic data analysis

Proteomic data analysis focused on diagenetic degradation (deamidation and peptide bond
hydrolysis), and the survival of in vivo modifications in the two Pleistocene hominin pro-
teomes.

Deamidation analysis. Glutamine and asparagine deamidation has recently been inves-
tigated repeatedly in ancient proteome studies in an effort to understand patterns of pro-
tein damage between proteins and/or across time. We quantified glutamine and asparagine
deamidation separately by following Mackie et al. [Mackie et al., 2018] for MaxQuant. In
short, protein-based deamidation rates are based on spectral intensities of matching PSMs,
subsequently re-assessed through 1000 bootstraps to derive a 95% confidence interval. See
the original paper for further details.

Peptide length distributions. Our digestion-free extraction approach allows us to explore
peptide length distributions across and between samples. Here, peptide length distributions
are based on MaxQuant peptide matches only. Comparisons are made with enamel pro-
teomes extracted and analyzed in similar manners presented earlier [Cappellini et al., 2019,
Welker et al., 2019].

MMP20 and KLK4 cleavage patterns. The existing literature on enamel proteomes and
enamel proteome biomineralization describes the processes by which the enamel proteome
is shaped through targeted protein hydrolysis by the proteolytic enzymes MMP20 and KLK4
[Chun et al., 2010, Yamakoshi et al., 2006, Iwata et al., 2007, Nagano et al., 2009]. These two
enzymes digest the major enamel proteome components AMBN, AMELX, and ENAM
into shorter amino acid chains. The in vivo cleavage locations of MMP20 and KLK4 on
AMBN, AMEL(X/Y), and ENAM have been described in the literature [Chun et al., 2010,
Yamakoshi et al., 2006, Iwata et al., 2007, Nagano et al., 2009]. However, although various
studies have previously obtained proteomic data on fully mineralized enamel samples, in-
cluding ancient proteomes, no studies have explored whether in vivo MMP20 and KLK4
cleavage survives in (ancient) enamel proteomes.

Our digestion-free extraction approach allows us to explore whether our ancient proteome
datasets preserve such in vivo patterns. As the Dmanisi sample contains several extracts
either digested or alkylated, we explore MMP20 and KLK4 cleavage patterns solely using
the Atapuerca dataset. In addition, we only focus on the proteins AMBN, AMEL(X/Y),
and ENAM, since for these proteins we have large numbers of identified peptide-spectrum
matches (PSMs), as well as sufficient literature on known MMP20 or KLK4 cleavage sites.

As a background, we calculated for each protein a theoretical matrix (21 x 21) containing
the percentage that each possible amino acid (P1) – amino acid (P1’) pair occurred in the
UniProt sequence of that protein (AMBN HUMAN, AMELX HUMAN, AMELY HUMAN,
ENAM HUMAN). For AMELX, this calculation was based on the isoform 3 variant, which
is the longest of the three AMELX variants present in UniProt. Similarly, for AMELY, we
selected isoform 1, because it is the longest isoform. For AMEL(X/Y), we had to construct
a joined theoretical matrix, as AMELX and AMELY significantly overlap in peptide pop-
ulations, while the sampled Homo antecessor individual is a male. We obtained this com-
bined theoretical matrix by first joining the AMELX and AMELY matrices in a ratio of
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9:1, which is close to the experimental proteomic and tRNA ratios observed in developing
enamel [Stewart et al., 2016, Fincham et al., 1991, Parker et al., 2019]. The protein-derived
ratios were then recalculated to a percentage for each amino acid pair. This theoretical back-
ground thereby is a simple model of protein fragmentation in which each amino acid pair
(P1-P1’) has an equal chance of being cleaved and being observed, regardless of the amino
acids involved, their potential PTM modification, or their placement within the sequence or
structure of the protein.

As for the observed peptide cleavage pairs, we took the C- and N- termini of the peptide-
spectrum matches to each protein and counted the total occurrence of each amino acid pair.
This matrix was then turned into percentages, and divided by the theoretical matrix to obtain
a value indicating the fold difference between the observed frequency of each hydrolyzed
peptide bond (P1-P1’) and random peptide bond cleavage (P1-P1’) for each possible combi-
nation of amino acids in both positions.

The results of this exercise show that, against a general background of peptide bond hy-
drolysis, there are amino acid pairs that stand out by very large positive fold-differences in
their occurrence (Extended Data Fig. 5.10a, b). When mapped to known MMP20 and KLK4
cleavage sites, bonds with high rates of fragmentation are without exception known cleav-
age sites of either of those enzymes, or are within 2 amino acids in either C- or N-terminal
direction of such a known cleavage site (Extended Data Fig. 5.10b, c). This finding provides
experimental evidence that in vivo MMP20 and KLK4 protein cleavage survives in Middle
Pleistocene proteomes. In addition, for ENAM we observe a set of cleavage pairs that have
highly enriched fold cleavages located closely together (positions 56-57, 58-59, 65-66, 66-67;
accession ENAM HUMAN in UniProt), suggesting that extensive hydrolysis, either in vivo
or diagenetically, occurs at or around these positions (Extended Data Fig. 5.10b).

Furthermore, our data shows an absence of PSMs to known locations of N-linked glycosyla-
tion in ENAM (Extended Data Fig. 5.10c), as revealed in comparison with such modifications
for ENAM included in UniProt. This might either be due to enhanced molecular diagenesis
at such positions or aspects of our extraction and/or spectral identification approach pre-
venting the recovery of PSMs from such sequence regions.

Phosphorylation occupancy. Phosphorylation occupancy was calculated using MaxQuant
(v1.5.3.30) by measuring the intensity ratio of phosphorylated and non-phosphorylated pep-
tides. The raw mass spectrometry data of both hominins, SK339 and Ø1952 was analyzed
in a combined searched in MaxQuant for occupancy comparison between the samples. For
the database search, the same settings were applied as described in the Methods section.
We modified the used sequence database in such a way that it only contains one protein
sequence entry per species. The removal of AMELX and AMBN isoforms ensures that oc-
cupancy is calculated only once for each site. Additionally, we excluded AMELY protein
sequences, since we did not confidently identify AMELY in the initial database search in the
Dmanisi specimen.

In total, we could identify 18 phosphorylation sites. For three sites, ratio calculation was
possible, since in all four specimen the phosphorylated peptides and its non-phosphorylated
counterparts were present and quantified through label-free quantification (Supplementary
Table 5.7, Group 1). For nine sites, it was not possible to quantify the phosphorylated peptide
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in at least one out of all 4 specimens (Supplementary Table 5.7, Group 2). For six sites, only
the phosphorylated peptides were present but not the non-phosphorylated counterpart at
least one out of all four specimens (Supplementary Table 5.7, Group 3).

Table 5.7: Description of all identified phosphorylation sites in both ancient hominins
and both modern human control samples, including their summed intensity rations of
phosphorylated and unmodified peptides. The sites are grouped, depending on the pres-
ence of both phosphorylated and nonphosphorylated peptides (group 1), the sole quantifi-
cation of unmodified peptides in at least one of the samples (0, group 2), or the presence
of phosphorylated peptides only (∞, group 3). Ø1952 represents our recent human control.
SK339 is an example of a recent control taken from Stewart et al. [Stewart et al., 2017].
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5.10.2.2.6 Recent modern human control samples
To contrast our ancient hominin enamel proteomes with modern human data from less di-
ageneticallyaltered environments, we also processed a single Medieval human tooth from
Copenhagen (Ø1952) using extraction methods 1 and 3 (two injections in total, one based
on HCl and one based on TFA; see Section 5.10.2.2.1). LC-MS/MS set-up was identical as
described above (see Section 5.10.2.2.2). Ø1952 represents a male individual, derives from
the former cemetery of the Almindeligt Hospital which was in use from approximately 1600-
1800 A.D., and which was excavated in 1952. The specimen is stored and owned by the Lab-
oratory of Biological Anthropology, Department of Forensic Medicine, University of Copen-
hagen. Additionally, we processed published human enamel proteome data from Stewart
et al. [Stewart et al., 2017]. The latter utilizes a 5% HCl acid-etching procedure that is mini-
mally invasive, but also only recovers proteins from the outer enamel surface. Stewart et al.
used an extraction method without enzymatic digestion, and is therefore partly comparable
to the workflow used for Ø1952 and the ancient samples processed using extraction 1 and
3. Their samples range in chronological age between approximately 5700 and 200 years old.
Proteomic data from Stewart et al. and Ø1952 was processed using the same MaxQuant as
the ancient samples against a protein sequence database restricted to Homo sapiens. All other
search settings where as specified in the Methods, and are therefore identical between the
modern human control samples and the ancient hominins.

Our analysis of Ø1952 and the Stewart et al.samples indicate that all these enamel proteome
extracts are composed of the core enamel proteome (ENAM, AMBN, AMELX/Y, MMP20,
AMTN) with the addition of additional collagens (COL1α1, COL1α2, COL17α1) and plasma
proteins (AHSG, ALB) in some cases (Supplementary table 5.8). It is unclear whether the
collagens and plasma proteins derive from residual dentine in the Ø1952 sample. It is likely
these proteome components are endogenous to the enamel, however, as the acid-etch surface
extractions performed by Stewart et al. also contains these proteins at low frequency. We
confirm the sex assignment of the Stewart et al. samples by observing an absence of AMELY-
unique peptides in female samples but the presence of AMELY-specific peptides in all male
samples. We note that MMP20 is absent in acid-etching of enamel surfaces. Conversely,
ODAM and AMTN are only present the acid-etches and not in the destructively-sampled
Ø1952.

Analysis of proteome degradation performed on the Homo antecessor and Homo erectus
datasets were contrasted with Ø1952 and SK339, a male individual of the Stewart et al.
dataset. SK339 was chosen as it represents an approximation of the average protein sequence
recovery across the Stewart et al. samples and is comparatively young in chronological age
(19th century AD).

Protein sequence coverage obtained for our human control (Ø1952) and the ancient ho-
minins is comparable, but on average lower compared to the recent controls generated
through subsuperficial acid-etching of exposed enamel surfaces (Supplementary Fig. 5.18).
This is likely due to the deep-sequencing of the ancient samples across multiple LC-MS/MS
injections, while data for SK339 is limited to a single LC-MS/MS injection and data for Ø1952
is limited to two LC-MS/MS injections. The decision to not employ subsuperficial acid etch-
ing of enamel surfaces, but opt for destructive sampling, is supported by the this observation
of lower protein sequence recovery for the acid-etched datasets (Supplementary Fig. 5.18).
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Table 5.8: Sequence coverage (%) of proteins identified in the modern human enamel pro-
teomes from Stewart et al. and Ø1952. For AMTN, AMELX, and AMELY, sequence cover-
age is calculated for the longest isoform present. Numbers in brackets indicate unique+razor
counts per protein. Unique+razor peptide counts for AMELX are summed for the three iso-
forms present in the database – note that a large number of shared peptides between these
three isoforms are therefore not taken into consideration here.

Still, major sequence regions for the enamel-specific proteins recovered in the ancient ho-
minins are also present in the modern human controls, regardless of extraction approach
(Extended Data Fig. 5.7).

We contrasted protein deamidation and peptide lengths of the recent human controls with
those of the ancient hominin samples. We observe that protein deamidation is high for
both recent controls, but less advanced compared with Homo antecessor and Homo erec-
tus (Supplementary Fig. 5.19). Interestingly, although the ancient hominins and Ø1952
have an expected pattern of more advanced asparagine (N) deamidation compared to glu-
tamine (Q) deamidation, the SK339 proteome displays the opposite pattern of with more
advanced glutamine deamidation. It is unclear why this would be the case. Enamel-
specific proteins are fragmented in vivo through he combined action of MMP20 and KLK4
[Chun et al., 2010, Nagano et al., 2009, Fukae et al., 1996]. Nevertheless, we observe that the
peptides recovered from the recent control samples are, on average, longer than those ob-
served in the Homo antecessor and Homo erectus samples (Extended Data Fig. 5.9d; Ø1952 –
Homo antecessor: t-test(6.87), df=1692, p=9.0e-12; Ø1952 – Homo erectus: t-test(15.93), df=1573,
p<2.2e-16). We also observe that the peptide lengths for SK339 are significantly shorter than
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those obtained for Ø1952 (t-test(-6.67), df=570, p=5.9e-11) or a Medieval ovicaprine enamel
specimen published previously6 (t-test(-8.90), df=487, p<2.2e16). These observations are
consistent with advanced enamel protein fragmentation in vivo, but also highlight the po-
tential of significant variation in protein fragmentation between samples or analytical pro-
cedures during protein extraction and LC-MS/MS analysis.

Figure 5.18: Comparison of protein sequence coverage between the subsuperficial acid-
etches (n=13, Stewart et al.16) and destructive sampling (n=3, this study).
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Figure 5.19: Enamel proteome deamidation of human controls and ancient hominin pro-
teomes. Only peptides matching to AMELX, AMELY, AMBN, and ENAM are taken into
account. Deamidation calculated following Mackie et al. [Mackie et al., 2018] for 1,000 boot-
strap replicates. The number of peptides (n) is given for each vioplot. The boxplots within
define the range of the data (whiskers extending to 1.5x the interquartile range), outliers
(black dots, beyond 1.5x the interquartile range), 25th and 75th percentiles (boxes), and me-
dians (centre lines). The boxplots define the range of the data (whiskers extending to 1.5 the
interquartile range), 25th and 75th percentiles (boxes), and medians (dots).

Finally, we compare the amino acid cleavages between our recent controls and the Homo
antecessor dataset. We observe that SK339 and Ø1952 display highly similar fold differences
in cleavage site occurrence compared to a random cleavage model for each protein (Supple-
mentary Fig. 5.20). Large fold-differences in P1-P1’ occurrence correspond to known MMP20
and/or KLK4 cleavage sites in these proteins. The Homo antecessor dataset contains a wider
range of cleavage sites, compatible with diagenetic hydrolysis of peptide bonds. This has
been observed previously for an ancient proteome as well [Chen et al., 2019]. Still, also for
the Homo antecessor dataset, the observed P1-P1’ pairs with a high fold difference compared
to a random fragmentation model correspond to sites of known MMP20 and/or KLK4 ac-
tivity, or peptide bond locations located in close proximity to such sites (see Extended Data
Fig. 5.10).
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Figure 5.20: Cleavage matrices of SK339, Ø1952, and the Homo antecessor proteome for
AMBN, ENAM, and AMELX/Y. Values indicate the fold difference between the observed
cleavage frequency of each amino acid pair P1-P1’ and its theoretical expectancy based on
a random protein cleavage (PSMs). Counts based on peptide-spectrum-matches for each
protein separately. The bottom row is identical to the top row in Extended Data Fig. 5.10.
AMEL* contains PSMs matching to both AMELX and AMELY, with the theoretical matrix of
both proteins joined in the ratio 9:1, respectively.
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5.10.2.3 Phylogenetic analysis

Jazmı́n Ramos-Madrigal, Martin Kuhlwilm, Marc de Manuel, Tomas Marques-Bonet, Carles
Lalueza-Fox, Eske Willerslev, Fernando Racimo

5.10.2.3.1 Reference data

We combined the new ancient protein sequences from Homo erectus and Homo anteces-
sor with protein sequences from great apes [De Manuel et al., 2016, Nater et al., 2017,
Prado-Martinez et al., 2013, Xue et al., 2015], three Neanderthals [Prüfer et al., 2014,
Castellano et al., 2014, Prüfer et al., 2017], a Denisovan [Meyer et al., 2012], and a panel
of present-day humans, including 256 samples from the Simons Genome Diversity Panel
(SGDP, IDs: ERZ312767-ERZ312784, ERZ312788-ERZ312789, ERZ312791-ERZ312797,
ERZ312799-ERZ312848, ERZ324259-ERZ324404, ERZ324529-ERZ324546, ERZ324867-
ERZ324876, ERZ325059, ERZ325062, ERZ329670-ERZ329671) [Mallick et al., 2016] and 41
high-coverage individuals from the 1000 Genomes Project [The 1000 Genomes Project, 2015]
(IDs: HG00096, HG00119, HG00183, HG00268, HG00419, HG00436, HG00640, HG00759,
HG01051, HG01112, HG01136, HG01500, HG01565, HG01583, HG01595, HG01879,
HG02568, HG02922, HG03006, HG03052, HG03642, HG03742, NA12413, NA12878,
NA12891, NA12892, NA18525, NA18562, NA18939, NA18985, NA19017, NA19238,
NA19239, NA19240, NA19625, NA19648, NA19685, NA19700, NA20502, NA20581,
NA20845), representing worldwide populations (Supplementary Table. 5.9). Additionally,
we included protein sequences from macaque (Macaca mulatta) and gibbon (Nomascus
leucogenys) to root phylogenetic trees. When available, for some great apes, we obtained the
protein sequences of interest from the UniProt database (Supplementary Table 5.10), or, in
the case of the Neanderthals and Denisovan, from published data [Castellano et al., 2014].
For the rest of the samples, including those from the SGDP and 1000 Genomes, we recon-
structed the protein sequences from publicly available read alignments or genotype calls, as
described below.

5.10.2.3.2 Reconstructing protein sequences from whole-genome sequencing data

Read alignments were obtained for 41 individuals from Phase3 of the 1000 Genomes Project
(ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase3) and 256 individuals from the SGDP
(ENA accession PRJEB9586). For each individual, we downloaded the reads overlap-
ping the regions of interest using samtools [Li et al., 2009] (v0.1.18) and built a majority-
count-based consensus sequence using ANGSD [Korneliussen et al., 2014] (v0.913); reads
with mapping quality lower than 30 and bases with base quality lower than 20 were dis-
carded. For great apes, VCF files with called diploid genotypes were provided by the au-
thors of the corresponding original publications [De Manuel et al., 2016, Nater et al., 2017,
Prado-Martinez et al., 2013]. In this case, we built FASTA files for each of the five genes of
interest, for each sample. Indels were not considered and a random allele was chosen at het-
erozygous positions. For each of these consensus sequences, we identified and removed in-
trons (in silico splicing) from each gene using the annotation of the reference human genome
(h19), as provided by ENSEMBL [Zerbino et al., 2018]. We then performed a tblastn search
using the human reference protein as the query, and each of the previously ’spliced genes’ as

ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase3
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a subject, separately. Finally, protein sequences were obtained from the resulting translated
alignments.

Table 5.9: Reference samples for which sequencing data was used to reconstruct the pro-
tein sequences. Inds. = Individuals.

Table 5.10: Accession numbers of reference sequences obtained from the UniProt or Gen-
bank databases.
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5.10.2.3.3 Protein alignments

We compared the protein sequences retrieved from the ancient samples and samples in the
reference dataset. COL1α1 and COL1α2 were excluded from phylogenetic analysis, as their
deamidation values could not exclude a contaminating origin of these proteins. AMTN was
excluded since the retrieved sequences overlap a conserved sequence region with no phylo-
genetic SAPs within Hominidae. For the proteins considered endogenous and informative
(AMBN, AMELX, AMELY, ENAM, MMP20, COL17α1, ALB), we present aligned fragment
ion series and MS/MS spectra in the Supplementary Data 1 file. For each of these proteins,
and for each of the ancient samples (Dmanisi Homo erectus and Atapuerca Homo antecessor),
we generated two multiple sequence alignments using mafft [Katoh, 2002]: one including
all individuals in Supplementary Table 5.7 and 5.8 and the corresponding ancient sample
(Full alignments), and a second one including a single individual from each species/group
(Single species alignments; Supplementary Table 5.11). To account for isobaric amino acids
(leucine and isoleucine), which cannot be distinguished with the methods used to obtain the
protein sequences for ancient specimens, we did the following: 1) for positions where the
ancient sample carried either a leucine or an isoleucine, and the reference samples carried
only one of those amino acids, we set the ancient sample to the amino acid found in the
reference samples, and 2) for positions where the ancient sample carried either a leucine or
an isoleucine, and both amino acids were present among the reference samples, we set all
individuals to carry a leucine.

https://www.nature.com/articles/s41586-020-2153-8#Sec24
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Table 5.11: Description of the protein alignments used to compare the two ancient sam-
ples sequenced and the reference dataset. 1Single species alignment: built using a single
individual per species/group. 2Full alignment: built using all individuals in the reference
dataset (Supplementary Table 5.9), Supplementary Table 5.10)). 3The numbers of sites where
the ancient samples are non-missing are indicated in brackets. HND refers to any individual
contained within the clade composed of H. sapiens, Neanderthals, and Denisovans.

a. Inspecting the protein alignments for informative amino acid substitutions in the an-
cient samples. We found one unique amino acid substitution in Homo antecessor and three
substitutions that are uniquely shared among Homo antecessor and at least one other hominin
(Neanderthal, Denisovan or present-day human; Supplementary Table 5.11). In contrast, we
found no substitutions that are unique to Dmanisi or are uniquely shared between Dmanisi
and at least one other hominin. The unique amino acid substitution present in Homo anteces-
sor requires one nucleotide change (Alanine (A) to Proline (P); codon GCT, most likely sub-
stituted to CCT; Supplementary Table 5.12)). To evaluate the plausibility of the unique amino
acid substitution in Homo antecessor, we assessed whether the corresponding nucleotide po-
sition is segregating in any of the groups included in the full alignment and in the 1000
Genomes diversity panel. For the 1000 Genomes diversity panel, we used the Phase3 VCFs.
We found that the three nucleotides coding for the amino acid present in great apes, includ-
ing humans, are invariant; the A at position 1,089 in the protein COL17α1 is coded by the
GCT codon present in all samples in the alignment (Supplementary Table 5.12). We further
examined the frequency of this type of amino acid substitution in the set of proteins recov-
ered from Homo antecessor and present in our protein alignments. We found 12 instances
of an A-to-P substitution among the reference proteins analyzed. Alanine and proline are
chemically compatible (they are both non-polar and hydrophobic), so this makes a plausible
change to have occurred in the Homo antecessor lineage. Finally, to get a sense of how likely it
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was to find one unique substitution in the Homo antecessor lineage given the sequences recov-
ered, we estimated the average of unique substitutions in the modern and archaic hominin
lineages. To do so, we counted the number of unique substitutions in each hominin sample
when compared to Homo antecessor, Gorilla, Pan, and Pongo in the alignment comprising the
seven concatenated proteins. In this case, we define an amino acid substitution as ’unique’
in a given sample when present in that sample but not in Homo antecessor, Gorilla, Pan, or
Pongo. To account for missing data in Homo antecessor, we only included the sites where
the ancient sample is non-missing. We observed an average of 1.605 ± 0.68 unique substitu-
tions for present-day humans, 2 unique substitutions for the Altai and Sidron Neanderthals
and the Denisovan, and one unique substitution for the Vindija Neandethal (Supplementary
Figure 5.21).

b. Informative amino acid substitutions recovered in both Atapuerca Homo antecessor
and Dmanisi Homo erectus samples.
Among the proteins recovered for Dmanisi Homo erectus and Atapuerca Homo antecessor,
we obtained amino acid positions covered in both samples (Extended Data Fig. 5.7). Most
of such positions correspond to non-segregating amino acids in hominids, or are single-
tons. These are not particularly informative for differentiating between groups. There are,
however, three positions recovered for both hominins that are segregating in our alignment:
position 281 in MMP20, 648 in ENAM, and 255 in AMBN (Supplementary Table 5.13). The
amino acid present at position 281 in the MMP20 protein is fixed to a threonine in Pan (n=72),
Gorilla (n=44), and Pongo (n=28), Neanderthals (n=7) and the Denisovan, but it is segregating
in present-day humans (both threonine (T) and glutamine (N) are present; n=302) (Supple-
mentary Table 5.13; Supplementary Figure 5.22a). In this position, both Dmanisi and Homo
antecessor carry a threonine. Similarly, the amino acid present at position 648 in ENAM is
fixed to a T (threonine) in Pan (n=72; with the exception of a single sample), Gorilla (n=44),
and Pongo (n=28), but it is segregating in present-day humans (both threonine/isoleucine
are present; n=302) and Neanderthals (n=7) and the Denisovan carry the derived amino acid
(I). The sequence support of the single Pan individual carrying an isoleucine is restricted to
just three sequence reads, and hence not well supported. Here, Homo antecessorr carries an
isoleucine - which is almost exclusively present in presentday humans, Neanderthals, while
the Denisovan and Dmanisi carry a threonine (Supplementary Table 5.13; Supplementary
Figure 5.22b). Finally, the amino acid present at position 255 in the AMBN protein is fixed
to an alanine in Pan (n=72), Gorilla (n=44), and Pongo (n=28), Neanderthals (n=6) and the
Denisovan, but it is segregating in present-day humans (both alanine (A) and valine (V) are
present; n=302) (Supplementary Table 5.13; Supplementary Figure 5.22c). In this case, both
the Dmanisi Homo erectus and Atapuerca Homo antecessor carry an alanine.
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Table 5.12: Nucleotide allele frequencies at the codons that translate to the amino acid
where Homo antecessor carries a unique amino acid substitution. 1 None of these genomic
sites are present in the 1000 genomes diversity panel. The frequencies of the alleles were
obtained from the read alignments in the 41 high coverage genomes. 2Allele frequencies
for the Neanderthal and Denisovan genomes were obtained from the read alignments in
Castellano, et al. [Castellano et al., 2014], Meyer, et al. [Meyer et al., 2012], and Hajdinjak, et
al. [Hajdinjak et al., 2018]. For samples in Hajdinjak, et al., only the following samples were
non-missing at the sites of interest: Mezmaiskaya 2, Les Cottes Z4-1514 and Goyet Q56-1.
3This amino acid substitution is only found in Homo antecessor. While all groups presented
in the table carry the codon GCT (AGC, since the protein in coded in the reverse strand)
which translates into Alanine (A), Homo antecessor most likely carries triplet CCT (AGG) that
translates into Proline (P).
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Figure 5.21: Frequency of unique amino acid substitutions among present-day humans.
For each present-day human sample, we counted how many unique amino acid substitu-
tions it carries when compared to Homo antecessor, Gorilla, Pan, and Pongo. Each bar corre-
sponds to the number of present-day human samples that carry 0, 1, 2, 3 or 4 unique amino
acid substitutions. The number of unique substitutions present in the archaic samples is in-
dicated as stars in the top of the corresponding bar. This comparison only includes the sites
where Homo antecessor is non-missing and the seven proteins recovered the ancient sample.
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Table 5.13: Allele frequencies of the codons that translate to informative amino acid sub-
stitutions recovered for both Dmanisi Homo erectus and Atapuerca Homo antecessor. 1

The allele frequencies at positions chr4:71509086 and chr11:102477377 were obtained from
the 1000 Genomes diversity panel that comprise ∼2,500 individuals. The frequencies of the
invariant sites, that were not present in the 1000 Genomes VCFs, were obtained from the read
alignments in the 41 high coverage genomes also from the 1000 genomes. 2Allele frequen-
cies for the Neanderthal and Denisovan genomes were obtained from the read alignments in
Castellano et al. [Castellano et al., 2014], Meyer et al. [Meyer et al., 2012], and Hajdinjak et
al. [Hajdinjak et al., 2018]. For samples in Hajdinjak, et al., only the following samples were
non-missing at the sites of interest: Spy 94a (only for ENAM and MMP20), Mezmaiskaya 2
(only for MMP20 and AMBN), Les Cottes Z4-1514 and Goyet Q56-1 (only for ENAM and
MMP20).
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Figure 5.22
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Figure 5.22: (Previous page.) Allele frequencies in the 1000 Genomes diversity panel,
among other great apes and in archaic hominins, at SNPs that code for three informative
amino acids recovered for both Dmanisi Homo erectus and Atapuerca Homo antecessor
samples. a, Genomic site corresponding to the second position of the codon that translates
to a threonine (if G) or an asparagine (if T). This codon corresponds to position 281 in the
MMP20 protein. Both Dmanisi Homo erectus and Atapuerca Homo antecessor samples carry
a threonine at this position. b, Genomic site corresponding to the second nucleotide in the
codon that translates into a threonine (if C) or an isoleucine (if T). This codon corresponds
to position 648 of the ENAM protein. Dmanisi Homo erectus carries a threonine. While we
cannot experimentally distinguish between isobaric amino acids (L/I) for Homo antecessor, it
is most likely that the Atapuerca Homo antecessor carries an isoleucine, since only isoleucine
is present among present-day human variation. c, Genomic site corresponding to the second
position of the codon that translate to an alanine (if C) or a valine (if T). This codon cor-
responds to position 255 in the AMBN protein. Both Dmanisi Homo erectus and Atapuerca
Homo antecessor samples carry an alanine at this position. The base map was generated using
public domain data from http://www.naturalearthdata.com/.

5.10.2.3.4 Pairwise-distance between the ancient and modern samples

We used a distance-based approach to compare the Homo antecessor and Homo erectus protein
sequences with present-day humans, Neanderthals and the Denisovan. The latter three ho-
minin groups are hereafter collectively referred to as the HND group. We estimated the pair-
wise distance between the Atapuerca Homo antecessor or Dmanisi Homo erectus and individ-
uals of the HND group, while considering all the proteins retrieved for each ancient sample
and excluding X and Y chromosome-located proteins (AMELX and AMELY). Pairwise dis-
tances between samples were estimated using the phangorn R package [Schliep et al., 2017],
considering the LG model [Le and Gascuel, 2008] and pairwise-deletions. In this case, we
used the full alignment comprising the complete set of samples in the dataset (multiple indi-
viduals per species). The average distance between Homo antecessor and individuals from the
HND group was 0.0036228 (0.0035712 when excluding AMELX and AMELY), whereas the
average distance between members of the HND group is approximately three times smaller
(0.0010827, or 0.0011429 when excluding AMELX and AMELY; Supplementary Figure 5.20a,
b). The distance between Homo antecessor and the HND group is significantly different to
that between pairs of samples from the HND group (p-value<0.001; Mann-Whitney U Test).
This suggests that the sequence is distantly related to the corresponding sequences in Nean-
derthals, Denisovans, and present-day humans.

In the case of Dmanisi Homo erectus individual, we obtained an average pairwise-distance be-
tween the ancient sample and individuals in the HND group of 0.0017148 (0.0020855, when
excluding AMELX) and of 0.0011 (0.0011455 when excluding AMELX) between members of
the HND group (Supplementary Figure 5.23c, d). In this case, we cannot exclude that Dman-
isi belongs to the HND group, possibly due to the limited amount of informative positions
retrieved for this sample, and the absence of a Dmanisi-unique SAP.



160 5. The dental proteome of Homo antecessor

Figure 5.23: Pairwise-distances. a, Distribution of pairwise distances between individuals
of the HND group (Humans, Neanderthals and Denisovan), Homo antecessor, and Pan for
the seven proteins (ALB, AMBN, ENAM, MMP20, COL17α1, AMELX and AMELY), and b,
excluding X- and Y-chromosome located proteins (AMELX and AMELY). c, Distribution of
pairwise distances between individuals of the HND group, Dmanisi Homo erectus, and Pan
for the six proteins (ALB, AMBN, ENAM, MMP20, COL17α1 and AMELX), and d, exclud-
ing the X-chromosome located protein (AMELX). The distance between pairs of samples is
estimated based on the concatenated alignments and using the phangorn R package via the
LG model and accounting for pairwise-deletions. HND refers to any individual contained
within the clade composed of H. sapiens, Neanderthals, and Denisovans.

5.10.2.3.5 Phylogenetic placement of the ancient sequences
We sought to build phylogenetic trees using the aforementioned sequences, by applying

two different approaches: a maximum likelihood and a Bayesian approach.

Maximum-likelihood (ML) approach. Using the single species alignments, we built ML
trees for each protein and for a concatenated alignment of all seven of the available protein
sequences using PhyML v3, for each of the ancient samples [Guindon et al., 2010] (Supple-
mentary Figure 5.21, 5.22). For each alignment we optimized the tree topologies, branch
lengths and substitution rates (-o tlr) under the JTT model (-m JTT). Additionally, we ob-
tained maximum likelihood estimates for the gamma distribution shape parameter (-a e)
and the proportion of invariable sites (-v e). For each alignment, we started from three ran-
dom trees and for each optimization step, we kept the best tree between those generated
through the ’nearest neighbor interchange’ and ’subtree prune and regraft’ routines (-s BEST
–rand start –n rand starts 3). Support for each bipartition was obtained based on 100 non-
parametric bootstrap replicates.

In the case of Homo antecessor (Supplementary Fig. 5.24), each of the individual gene
trees produced using the individual proteins provided poor resolution for resolving known
species relationships. Four out of the seven gene trees place Homo antecessor within a
hominin-only clade or as the closest outgroup to a hominin-only clade. The tree based on the
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concatenated alignment helps to resolve most of the known species relationships, and places
the Homo antecessor sequence as the closest outgroup to Neanderthals, present-day humans
and the Denisovan with 100% bootstrap support.

For the Homo erectus sample (Supplementary Figure 5.25), none of the individual gene trees
produced a reliable topology for great ape relationships, and most inferred nodes have poor
bootstrap support. In the tree based on the concatenated alignment, the Dmanisi Homo erec-
tus is placed as the closest outgroup to present-day humans, Neanderthals and the Deniso-
van. However, the bootstrap support is, again, very poor (54%).

Maximum-likelihood approach including all present-day human samples.
In addition to the single-species tree, we estimated a maximum likelihood tree including all
present-day human samples and other great apes present in the dataset for the Atapuerca
Homo antecessor individual (Supplementary Table 5.9). Note that, to include the AMELY pro-
tein recovered for Homo antecessor, we only included male individuals in the tree. We used
the seven-protein concatenated alignment, PhyML v3 and the same parameters described
above. Additionally, when more than one individual was identical across the seven proteins
considered, we kept only one of them. Consistent with the single-species tree, the resulting
phylogeny places Homo antecessor as an outgroup to all individuals in the HND clade (Sup-
plementary Figure 5.26). However, the support for this bipartition is smaller: 41% of the
trees place Homo antecessor as an outgroup to the HND clade, while in the remaining 59%
Homo antecessor is placed within the HND clade. We then tested, whether using different
combinations of present-day human samples in the phylogenetic inference affects the posi-
tion of Homo antecessor. We created 1,000 different alignments, each containing 7 randomly
sampled present-day humans from the 305 in our dataset. For each alignment, we used
PhyML v3 and the same parameters described above, and evaluated the position obtained
for Homo antecessor with the respect to the HND clade. In 98.7% of the trees, Homo antecessor
is placed as an outgroup to the HND clade, while in the remaining 1.3% it is placed within
Neanderthals, forming a clade with the Vindija Neanderthal.

Effect of missing data on the phylogenetic inference.
To assess the effect of missing data in Homo antecessor, and whether missing data could
artificially yield the phylogenetic result we observe in the ancient sample, we performed
a downsampling experiment by adding missing data to one present-day human sample
(ERZ324268) and the Altai Neanderthal. For each of those samples, we created 100 inde-
pendent replicates, where each contains a similar amount of missing data to Homo antecessor,
distributed randomly in blocks of similar size as observed in the ancient sample. For each
sample and replicate, we created a concatenated protein alignment consisting of the given
replicate and all samples present in the single-species dataset, excluding the ancient sample.
We then used PhyML (with the parameters described in the section above) to estimate a ML
tree for each replicate and sample, and compared the resulting topologies to the topology ob-
tained using the same alignment without missing data. For sample ERZ324268, we recover a
topology similar to the one obtained without missing data in 99% of the replicates, while in
1% of the replicates the sample forms a polytomy with the Denisovan and the Sidron Nean-
derthal. For the Altai Neanderthal, we recover the topology obtained without missing data
in 43% of the cases, while 57% of the replicates result in a polytomy involving all hominin
samples.
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Figure 5.24: Atapuerca Homo antecessor maximum likelihood trees. a, Maximum-
likelihood tree based on a concatenated alignment of the seven reconstructed Homo antecessor
proteins. b-h, Individual protein trees. Support values for each bipartition were estimated
through 100 non-parametric bootstrap replicates.

Bayesian phylogenetic inference.
To assess the robustness of the ML inference results, we also performed Bayesian phyloge-
netic inference based on the concatenated alignments using mrBayes [Ronquist et al., 2012]
(v3.2). In this case, we partitioned the alignments by gene and for each partition we
estimated the substitution rates, the shape parameter of a gamma distribution to model
across-site rate variation (exponentially distributed prior), and the proportion of invariable
sites (uniformly distributed prior; unlink Statefreq=(all) Ratemultiplier=(all) Aamodel=(all)
Shape=(all) Pinvar=(all)). The tree topology and branch lengths were inferred for all the par-
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Figure 5.25: Dmanisi Homo erectus maximum likelihood trees. a, Maximum-likelihood
tree obtained using PhyML and a concatenated alignment of the six reconstructed proteins
for Dmanisi individual. b-h, Individual protein trees. Support values for each bipartition
were estimated through 100 non-parametric bootstrap replicates.

titions jointly. To obtain posterior probabilities of unknown parameters, we ran a Metropolis-
coupled Markov-chain Monte Carlo (MCMCMC) algorithm with four chains and a temper-
ature parameter of 0.2 for 5,000,000 cycles sampling every 500 steps, after which we dis-
carded the first 1,250,000 runs as burn-in. Convergence of the algorithm was evaluated us-
ing Tracer [Rambaut et al., 2018] (v.1.7.0). In particular, we required that the effective sample
sizes for each estimated parameter were greater than 200, and that the overall log-likelihood
of the run did not fluctuate substantially. Bayesian inference performed via mrBayes was
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performed using the CIPRES Science Gateway [Miller et al., 2010]. In agreement with the
maximum-likelihood approach, the Atapuerca Homo antecessor and Dmanisi Homo erectus
individuals are placed as an outgroup to the HND clade with a posterior probability of 1
and 0.613, respectively (Supplementary Figure 5.27; Extended Data Figure 5.11).
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Figure 5.26: Maximum-likelihood tree based on a concatenated alignment of the seven
protein sequences recovered for the Atapuerca Homo antecessor individual. Support val-
ues were estimated through 100 non-parametric bootstrap replicates.
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Figure 5.27: Homo antecessor Bayesian phylogenetic tree. Tree obtained using the seven-
protein concatenated alignment and MrBayes. Posterior probabilities are indicated for each
bipartition. Macaca mulatta was used as outgroup.

5.10.2.3.6 BEAST analysis

We used the Bayesian approach implemented in BEAST 2.5 [Bouckaert et al., 2019] to infer
sequence divergence times for the proteins sequenced and between the different groups in
the dataset and Homo antecessor. For this analysis, we used the seven-protein concatenated
alignment including the Neanderthals, the Denisovan, seven randomly chosen Homo sapiens
sequences and a single individual per great ape species. The alignment was partitioned by
gene and a coalescent constant population model was used for the tree prior. The ages of the
ancient samples included in the analysis (Vindija Neanderthal: 52 ka [Prüfer et al., 2017], Al-
tai Neanderthal: 112 ka [Prüfer et al., 2017], Denisovan: 72 ka [Prüfer et al., 2017] and Homo
antecessor 860.5 ka [Duval et al., 2018]) were used as tip dates for calibration. For each of
the seven partitions we used the JTT substitution model with four categories for the gamma
parameter, for which we allowed the MCMC chain to sample the shape of the gamma dis-
tribution (with an exponentially distributed prior) and assigned independent clock models.
Additionally, we set a prior for the divergence time of great apes to 23.85 ± 2.5 Ma (nor-
mally distributed) [Besenbacher et al., 2019], and rooted the tree using the macaque (Macaca
mulatta). Note that the overall topology of the tree was estimated for the seven partitions
jointly. We assessed the convergence of the algorithm using Tracer [Rambaut et al., 2018]
v1.7.0. Finally, since including all present-day humans in the analyses led to convergence
problems, we instead repeated the analyses for 100 alignments, each of them consisting of
seven different present-day humans chosen randomly. While the topology within the clade
comprising present-day humans, Neanderthals and Denisovan (HND) was not consistent
in all of the 100 alignments, 99 of them consistently placed Homo antecessor as an outgroup
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to the HND clade. The one alignment that did not place Homo antecessor as an outgroup, it
placed it as an outgroup to Neanderthals and the Denisovan.

The inferred tree for one of the 99 replicates is shown in Figure 5.3a. We note that the es-
timated tree in Figure 5.3a does not place Neanderthals as a monophyletic clade, which
is likely due to incomplete lineage sorting, and the poor phylogenetic resolution afforded
by sampling only a few gene trees. We assessed the proportion of sampled trees from the
MCMC chain in which the inferred HND-Homo antecessor divergence was more ancient than
that estimated for the HND clade for each of the 100 replicates. We found that in 95% of the
trees, the divergence of Homo antecessor predated the first divergence within the HND clade
(Fig. 5.2b).

These estimates rely on gene trees reconstructed from only seven protein sequences for
which it was possible to obtain data for Homo antecessor. We therefore caution that these di-
vergence times only reflect an approximation to the average genetic divergence time. They
are likely an upper boundary for the population split time between these groups, which
is expected to be more recent than the average genomic divergence. Nevertheless, assum-
ing incomplete lineage sorting is not prevalent in these gene trees, our results support the
placement of Homo antecessor as an outgroup to the HND group.
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6.1 Abstract

Gigantopithecus blacki was a giant hominid that inhabited densely forested environments
of Southeast Asia during the Pleistocene epoch [Zhang and Harrison, 2017]. Its evolu-
tionary relationships to other great ape species, and the divergence of these species
during the Middle and Late Miocene epoch (16–5.3 million years ago), remain unclear
[Harrison, 2010, Begun, 2007]. Hypotheses regarding the relationships between Gigantop-
ithecus and extinct and extant hominids are wide ranging but difficult to substantiate be-
cause of its highly derived dentognathic morphology, the absence of cranial and post-
cranial remains [Zhang and Harrison, 2017, Begun, 2007, Kelley, 2002, Miller et al., 2008,
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Grehan and Schwartz, 2009], and the lack of independent molecular validation. We re-
trieved dental enamel proteome sequences from a 1.9-million-year-old G. blacki molar found
in Chuifeng Cave, China [Shao et al., 2014, Wang, 2009]. The thermal age of these pro-
tein sequences is approximately five times greater than that of any previously published
mammalian proteome or genome. We demonstrate that Gigantopithecus is a sister clade to
orangutans (genus Pongo) with a common ancestor about 12–10 million years ago, imply-
ing that the divergence of Gigantopithecus from Pongo forms part of the Miocene radiation
of great apes. In addition, we hypothesize that the expression of alpha-2-HS-glycoprotein,
which has not been previously observed in enamel proteomes, had a role in the biomin-
eralization of the thick enamel crowns that characterize the large molars in Gigantopithecus
[Bartlett et al., 2006, Dean and Schrenk, 2003]. The survival of an Early Pleistocene dental
enamel proteome in the subtropics further expands the scope of palaeoproteomic analy-
sis into geographical areas and time periods previously considered incompatible with the
preservation of substantial amounts of genetic information.
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6.2 Introduction

G. blacki is an extinct, potentially giant hominid species that once inhabited Asia. It was
first discovered and identified by von Koenigswald in 1935, when he described an isolated
tooth that he found in a Hong Kong drugstore [von Koenigswald, 1935]. The entire G. blacki
fossil record, dated between the Early Pleistocene (about 2 million years ago (Ma)) and
the late Middle Pleistocene (about 0.3 Ma) [Zhang et al., 2014], includes thousands of teeth
and four partial mandibles from subtropical Southeast Asia [Zhang and Harrison, 2017,
Zhao and Zhang, 2013, Pei, 1965]. All the locations at which G. blacki remains have been
found are in or near southern China, stretching from Longgupo Cave, just south of the
Yangtze River, to the Xinchong Cave on Hainan Island and, possibly, into northern Vietnam
and Thailand [Bocherens et al., 2017, Ciochon et al., 1996].

To address the evolutionary relationships between Gigantopithecus and extant hominoids, we
performed protein extractions on dentine and enamel samples of a single molar (CF-B-16)
found in Chuifeng Cave, China (Extended Data Figs. 6.4, 6.5), that has been morphologically
assigned to G. blacki [Shao et al., 2014, Wang, 2009]. The site has been dated, using multiple
approaches, to 1.9 ± 0.2 Ma. We processed enamel and dentine samples using recently es-
tablished digestion-free protocols that were optimized for extremely degraded ancient pro-
teomes [Cappellini et al., 2019] (see 6.3 Methods). Enamel demineralization was replicated
using two acids, trifluoroacetic acid (TFA) and hydrochloric acid (HCl).
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6.3 Methods

Chuifeng Cave

The Chuifeng Cave (23°34′27′′ N, 107°0′22′′ E) is one of the most representative sites
for the Early Pleistocene G. blacki fauna [Wang, 2009]. The site is located in the Bubing
Basin in the northwestern part of the Guangxi Zhuang Autonomous Region, south China
(Extended Data Fig. 6.4). The cave is 19 m long, 0.5–2 m wide and 1.5–5 m high, penetrating
the limestone from southeast to northwest at a height of ∼77 m above the local valley
floor. A fossiliferous sandy clay with a few limestone breccias fills most of the cave,
with an average depth of 1.3 m (Extended Data Fig. 6.5). Four excavation areas (A, B,
C and D) were excavated down to limestone bedrock at 10-cm intervals. Twenty-four
large mammalian species, including 92 G. blacki teeth, were unearthed from the cave
[Wang, 2009]. The Chuifeng Cave mammalian fauna is characterized by the occurrence of
typical Early Pleistocene species, such as Hystrix magna, Sinomastodon sp., Stegodon preorien-
talis, Ailuropoda microta, Pachycrocuta licenti, Tapirus sanyuanensis and Sus peii [Wang, 2009].
This mammalian fauna is comparable with other Gigantopithecus-containing faunas of
the Early Pleistocene in southern China, such as Baikong [Jin et al., 2014], Longgupo
[Huang R; Gu, Y; Larick, R; Fang, Q; Yonge, C; de Vos, J; Schwarcz, H P; Rink, W J, 1995]
and Liucheng [Pei, 1957]. The mammalian fauna composition is consistent with the results
of combined electron spin resonance (ESR)/U-series dating and sediment palaeomagnetic
studies (∼ 1.9 Ma) [Sun et al., 2014]. In the present study, we collected one well-preserved
G. blacki tooth (excavation number CF-B-16) for palaeoproteomic analysis. This tooth was
excavated from area B at a depth of 90 cm from the sediment surface and, based on its
stratigraphic position, dated to ∼1.9 Ma. No other specimens were tested before CF-B-16,
and no specific selection was made as to which Gigantopithecus tooth would be analysed.

Thermal age

Thermal age was calculated to allow comparison with previously published ancient
genomes, ancient proteomes and collagen peptide mass fingerprinting studies, from
other temporal and geographical localities. Temperature estimates for the hominin oc-
cupation of Dmanisi based on herpetological fauna suggest a temperature about 3.1 °C
above the current MAT [Blain et al., 2014], while the sea surface temperature record used
[Demarchi et al., 2016] predicts a negative ∆T at the time of hominin occupation. Given
this discrepancy and the widely different temperature estimates for the Last Glacial Max-
imum (LGM) in the Caucasus, we conservatively use a scale factor of 0, correlating with
a ∆T of approximately -0.2 °C and a current MAT of 11.2 °C. Our thermal age prediction
for Dmanisi (2.2 Myr@10 °C) should therefore be seen as conservative. The thermal age
for Chuifeng Cave was calculated with a general lapse rate between mean annual tem-
perature (MAT) and altitude of 5.0 °C/km, a scale factor of 0.7 and a ∆T at LGM of -3
°C. The actual ∆T at LGM might have been more pronounced, again leading to a con-
servative estimate for the thermal age of Chuifeng Cave also. MAT was estimated based
on the ten closest weather stations listed in publicly accessible World Meteorological Or-
ganization (WMO) data (Extended Data Table 6.2). Thermal age calculations are, among
other factors, altitude dependent, but only five out of these ten weather stations have alti-
tudes directly associated with them. We therefore estimated the altitude of the other five
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weather stations through an online resource (https://www.advancedconverter.com/map-
tools/find-altitude-by-coordinates). The correlation between WMO altitude and estimated
altitude was R2 = 0.99, providing sufficient validity to our estimated altitudes. The MATs
for all weather stations were then averaged to obtain an approximate MAT for Chuifeng
Cave. Next, thermal age was calculated for chronological ages of 1.7 Myr, 1.9 Myr and 2.1
Myr, giving estimates of the minimum (9.2 Myr@10 °C), maximum (15.0 Myr@10 °C) and
mean (11.8 Myr@10 °C) thermal ages associated with the Chuifeng Cave fauna within a 95%
confidence interval (Fig. 6.1). The Chuifeng Cave proteome is therefore, to our knowledge,
substantially older than the oldest collagen peptide mass fingerprint (Ellesmere Island, 0.003
Myr@10 °C), oldest mammalian genome (Thistle Creek, 0.03 Myr@10 °C), oldest hominin
genome (Sima de los Huesos, 0.25 Myr@10 °C) and oldest enamel proteome (Dmanisi, 2.2
Myr@10 °C) published to date [Demarchi et al., 2016]. Full thermal age calculations can be
found in Supplementary Data 2.

Figure 6.1: Chronological (circles) and thermal (coloured wedges, @10 °C) ages of other
Cenozoic ancient genomes and proteomes are given for comparison. For Chuifeng Cave,
dark red shading indicates thermal age calculated at a chronological age of 1.9 Ma and
lighter shading indicates 95% confidence intervals based on a chronological age of 1.7 and
2.1 Ma, respectively. Inset, geographical location of Chuifeng Cave in the subtropics of
Southeast Asia (red asterisk). Base map was generated using public domain data from
http://www.naturalearthdata.com/. The red asterisk also encloses the entire known geo-
graphical range of G. blacki fossils.

https://www.advancedconverter.com/map-tools/find-altitude-by-coordinates
https://www.advancedconverter.com/map-tools/find-altitude-by-coordinates
https://www.nature.com/articles/s41586-019-1728-8#Sec19
http://www.naturalearthdata.com/
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Protein extraction

Extraction of ancient proteins took place in facilities at the Natural History Museum of Den-
mark dedicated to extracting ancient DNA and ancient proteins. These laboratories include
clean rooms fitted with filtered ventilation and positive air pressure [Hendy et al., 2018]. A
negative extraction blank was processed alongside the ancient extractions, with the addi-
tional inclusion of injection blanks during tandem mass spectrometry (MS/MS) analysis to
monitor potential protein contamination during all stages of analysis.

Two samples of enamel (185 and 118 mg) and one of dentine (192 mg) were removed from
the same molar (CF-B-16) using a sterilized drill and crushed to a rough powder. One enamel
sample and the dentine sample were demineralized in 1.2 M HCl at 3 °C for 24 h, and the
other enamel sample was demineralized at the same temperature and duration using 10%
TFA. Subsequently, solubilized protein residues were cleaned, concentrated and immobi-
lized on C18 Stage-Tips using previously published methods [Cappellini et al., 2019]. No
other samples from Chuifeng Cave were analysed before or during the analysis of CF-B-16.

LC–MS/MS analysis

The extracts were analysed by nanoflow liquid chromatography–tandem mass spectrome-
try (nanoLC–MS/MS) using a 15-cm capillary column (75 µm inner diameter, packed with
1.9 µm C18 beads (Reprosil-AQ Pur, Dr. Maisch)) on an EASY-nLC 1200 system (Prox-
eon) connected to a Q-Exactive HF-X mass spectrometer (Thermo Scientific). The nanoLC
gradient and MS parameters followed a previously published Q-Exactive HF-X method
[Mackie et al., 2018]. System wash blanks were performed before and after every sample
to hinder cross-contamination.

Database construction

We constructed a protein sequence database for Hominoidea proteins known to be present in
enamel proteomes (Supplementary Table 6.4), to which we added the homologous sequences
from one Cercopithecoid (Macaca mulatta) as an outgroup for phylogenetic analysis. As few
protein sequences are publicly available for Pongo pygmaeus, we predicted those sequences
from publicly available genomic sequence data using the known gene coordinates of Pongo
abelii homologues. Similarly, we generated de novo AMELY sequences for P. abelii and P.
pygmaeus. Finally, we added common laboratory contaminants to allow spectra from such
proteins to be confidently identified [Hendy et al., 2018].

Ancestral sequence reconstruction

Previous research indicates that cross-species proteomic effects, observed during spectral
identification, substantially reduce the identification of phylogenetically informative amino
acid positions at large evolutionary distances [Welker, 2018a]. We reasoned that this was
likely to occur in the case of Gigantopithecus proteins [Welker, 2018b], and therefore recon-
structed the ancestral protein sequences of enamel-specific proteins. Ancestral sequence
recontruction (ASR) was conducted across the entire Hominoidea phylogeny using Phy-
loBot [Hanson-Smith and Johnson, 2016]. Input sequences were constrained phylogeneti-
cally to (Macaca,(Nomascus,((Pongo abelii, Pongo pygmaeus),Gorilla,(Homo,((Pan paniscus, Pan
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troglodytes)))))). We added those sequences to the reference protein database to account for
them in the database search of PEAKS and MaxQuant.

Isoform variation

After obtaining complete protein sequences for all extant hominids, we added isoforms not
present in UniProt or GenBank for the proteins AMELX, AMELY, AMBN, AMTN, KLK4 and
TUFT1, including the reconstructed ASR sequences of these proteins, to the database. We as-
sumed that the isoforms for these non-human hominids would result from identically placed
alternative splicing across species and ancestral nodes (as also supported by all UniProt iso-
forms present for the studied proteins). Thus, we copied these alternative splicing sites onto
the available reference sequences to create the missing isoforms. Database sequence names
for these proteins were appended with ‘ ManIso2’ or ‘ ManIso3’.

Proteomic data analysis

Raw mass spectrometry data were searched per sample type (enamel, dentine, extraction
blank and injection blanks) against a sequence database containing all common enamel pro-
teins for all extant hominids (see above). We used PEAKS [Zhang et al., 2012] (v.7.5) and
MaxQuant [Cox and Mann, 2008] (v.1.6.2.6) software. The de novo and error-tolerant imple-
mentations of PEAKS, and the dependent peptide algorithm implemented in MaxQuant,
were used to generate possible, additional, SAP variation in enamel protein sequences.
Such novel SAPs could represent unique amino acid substitutions on the Gigantopithecus
lineage, which are not relevant to its phylogenetic placement but are relevant for dating
the Pongo–Gigantopithecus divergence. Next, these potential sequence variants were added
to a newly constructed sequence database and verified in separate searches in PEAKS and
MaxQuant. We defined as variable modifications methionine oxidation, proline hydroxyla-
tion, glutamine and asparagine deamidation, pyro-glutamic acid from glutamic acid, pyro-
glutamic acid from glutamine and phosphorylation (STY). No fixed modifications were se-
lected. We did not use an enzymatic protease during sample preparation, therefore the
digestion mode was set to ‘unspecific’. For PEAKS, peptide spectrum matches were only
accepted with a false-discovery rate (FDR) ≤ 1.0%, and precursor mass tolerance was set to
10 ppm and fragment mass tolerance to 0.05 Da. For MaxQuant, peptide spectrum matches
and protein FDR were set at ≤ 1.0%, with a minimum Andromeda score of 40 for all pep-
tides. Protein matches were accepted with a minimum of two unique peptide sequences
in at least one of the MaxQuant or PEAKS searches, including the removal of non-specific
peptides after BLASTp searches of peptides matching non-enamel proteins against UniProt
and GenBank databases. Proteins that are retained after applying these criteria are listed in
Extended Data Table 6.1. Examples of annotated MS/MS spectra after MaxQuant analysis
can be found in Supplementary Figs. 6.14 - 6.23.

Assessment of protein damage and degradation followed protocols explained elsewhere
[Cappellini et al., 2019, Mackie et al., 2018, Welker et al., 2016] and included rates of deami-
dation and a comparison of observed peptide lengths. GRAVY index scores of peptide hy-
drophobicity were calculated using the R package Peptides, with the scale set to ‘KyteDoolit-
tle’.
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Phylogenetic and divergence analysis

Comparative reference dataset

We assembled a reference dataset with five protein sequences retrieved from the an-
cient sample (AMBN, AMELX, AMTN, ENAM and MMP20) and relevant extant species
(Supplementary Table 6.4). Protein sequences for human (Homo sapiens), common chim-
panzee (P. troglodytes), bonobo (P. paniscus), Sumatran orangutan (P. abelii), Western go-
rilla (Gorilla gorilla), rhesus macaque (M. mulatta) and the white-cheeked gibbon (Nomas-
cus leucogenys) were obtained from the UniProt database. Additionally, we expanded our
dataset with protein sequences from publicly available whole-genome sequence data from
present-day great apes (in total 27 orangutans, 42 gorillas, 11 bonobos and 61 chimpanzees
[Prado-Martinez et al., 2013, Nater et al., 2017, De Manuel et al., 2016]), as well as 19 human
individuals from the Simons Genome Diversity Project (SGDP) [Mallick et al., 2016]. See 6.9
Supplementary Information for the human sample numbers taken from the SGDP dataset.

Reconstruction of protein sequences from whole-genome sequencing data

DNA sequence reads for reference samples used were mapped to the hu-
man genome (version hg19) using BWA-MEM v.0.7.5a-r405 (http://bio-
bwa.sourceforge.net/bwa.shtml) with default parameters. PCR and op-
tical duplicates were identified and removed using PICARD v.1.91
(https://sourceforge.net/projects/picard/files/picard-tools/1.91/). Single-nucleotide
polymorphisms were called on the read alignments using the GATK UnifiedGeno-
typer (https://software.broadinstitute.org/gatk/documentation/tooldocs/current/org
broadinstitute gatk tools walkers genotyper UnifiedGenotyper.php).

To reconstruct the protein sequences from the genotype calls, we first created a consensus
sequence for each of the five genes of interest and for each sample. Indels were not con-
sidered and a random allele was chosen at heterozygous positions. Next, we removed the
intron sequences from each gene using the annotation of the reference human genome (hg19)
available in the ENSEMBL database. For each of the in silico spliced genes, we performed a
tblastn search [Altschul et al., 2002] using the human reference protein as the query. Finally,
we obtained the translated protein sequences from the resulting alignments.

Assessing the phylogenetic position of G. blacki

We compared the G. blacki protein sequences with the corresponding homologues of the
species in the reference panel. For each gene, we built two multiple sequence alignments
using mafft [Katoh and Frith, 2012]. The first incorporated all samples in the reference panel
(n = 164). The second incorporated only a single sample per species (Supplementary Table
6.5). To account for isobaric amino acids (leucines and isoleucines), which cannot be distin-
guished in the ancient protein data, we changed all isoleucines to leucines at positions where
the ancient sample carried either of those amino acids. To assess the phylogenetic position
of the ancient sample, two inference approaches were used: a maximum-likelihood and a
Bayesian inference.

http://bio-bwa.sourceforge.net/bwa.shtml
http://bio-bwa.sourceforge.net/bwa.shtml
https://sourceforge.net/projects/picard/files/picard-tools/1.91/
https://gatk.broadinstitute.org/hc/en-us
https://gatk.broadinstitute.org/hc/en-us
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Maximum-likelihood approach. PhyML v.3.1 [Guindon et al., 2010] was used to infer a
maximum-likelihood tree, branch lengths and substitutions rates for each individual pro-
tein alignment (Supplementary Fig. 6.13) and for the concatenated alignment. For each
alignment, we started from three random trees (–n rand starts 3 -s BEST –rand start), used
the JTT model (-m JTT -f m), and obtained maximum likelihood estimates for the gamma
distribution shape parameter (-a e) and the proportion of invariable sites (-v e). Support
values were obtained for each bipartition based on 100 non-parametric bootstrap replicates.
The bootstrap results per branch split are shown in Extended Data Fig. 6.9b.

Bayesian approach. As a complementary approach, we used MrBayes [Ronquist et al., 2012]
and the concatenated alignment to infer the phylogenetic position of the ancient sample
(Fig. 6.3), Extended Data Fig. 6.9b). We set an independent bipartition for each gene and
estimated: substitution rates, across-site rate variation and the proportion of invariable sites
(unlink Statefreq = (all) Ratemultiplier = (all) Aamodel = (all) Shape = (all) Pinvar = (all)).
MrBayes was executed using the CIPRES portal [Miller et al., 2010]. The MCMC algorithm
was set to 5,000,000 cycles with 4 chains and a temperature parameter of 0.2. The conver-
gence of the algorithm was assessed using Tracer v.1.6.0 after discarding 25% of the iterations
as burn-in. MrBayes was run against the reference sequence for each species (Extended Data
Fig. 6.9c) or against 162 great ape individuals, one hylobatid and one cercopithecid (Ex-
tended Data Fig. 6.10). Both of these analyses, as well as the PHyML maximum likelihood
approach, resulted in the same topology. The analysis using a large number of individuals
shows, however, that resolution within the genus Pongo is limited (Extended Data Fig. 6.10).
Nevertheless, the placement of Gigantopithecus is fully supported.

Divergence time of Gigantopithecus

We estimated the divergence time between Gigantopithecus and the Pongo branch first by
using a distance-based approach. We used the alignment of the amino acid sequences of
reference genome sequences for each species as well as diversity data (see above). A dis-
tance matrix was created from the concatenated protein sequences of all individuals us-
ing the function dist.ml from the R package phangorn [Schliep, 2011] under the LG amino
acid substitution model [Le and Gascuel, 2008]. We used pairwise exclusion to increase the
amount of data for the present-day branches. We then calculated the mean difference of all
orangutan sequences to all sequences from Homo, Pan and Gorilla, and the mean difference
of all orangutan sequences to Gigantopithecus (Extended Data Fig. 6.9a). We used the average
distance between orangutan and the other extant great apes as a scaling factor, assuming a
divergence time between these branches [Besenbacher et al., 2019] of 23.8 Ma. Under this
assumption, the molecular divergence of Gigantopithecus from the Pongo branch is 9.98 Ma.
However, because Chuifeng Cave is dated to 1.9 Ma, this branch is likely to be underesti-
mated and its age needs to be corrected to 11.88 Ma. We combine the 95% confidence in-
terval of the distance matrix with the 95% confidence interval of the mutation rate estimate
[Besenbacher et al., 2019], and add the upper and lower values of the 95% confidence inter-
val for the Chuifeng Cave dating (1.7–2.1 Ma), and therefore suggest conservative upper and
lower boundaries for the divergence of 8.91 and 15.65 Ma, respectively.
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If mutation rates did not substantially differ between extant Pongo and Gigantopithecus, this
estimate should reflect the molecular evolution of their common branch. We calculated the
divergence between the other great apes, taking into account the mutation rate differences
on these lineages as scaling factors [Besenbacher et al., 2019]. The resulting divergence time
between Gorilla and the Homo/Pan branch is estimated at 10.27 Ma (7.9–13.25 Ma, 95% con-
fidence interval), and the divergence between Homo and Pan at 8.72 Ma (8.06–13.81 Ma,
95% confidence interval). These values are in strong agreement with previous estimates
[Besenbacher et al., 2019], suggesting that these protein sequences represent well the known
phylogeny of the great apes. Clearly, all divergence time estimates scale with assumptions of
mutation rates. We also caution that the small number of mutations in the peptide fragments
in Gigantopithecus constitutes a severe limitation on the precision of these estimates on this
branch. However, the phylogenetic position of Gigantopithecus as a sister clade to orangutans
is also well supported in this analysis: a phylogenetic tree from a distance matrix of the refer-
ence sequences for these species (neighbour joining tree in phangorn; maximum likelihood
computed with the pml function; 1,000 bootstrap replicates) separates Gigantopithecus from
orangutans with 100% bootstrap support.

We used the program MrBayes [Ronquist et al., 2012] to estimate divergence time estimates
in a Bayesian framework using the reference genome sequences. We defined M. mulatta as
outgroup, grouped Pan, Homo and Gorilla together as well as Pongo and Gigantopithecus, and
set the divergence time of the two groups with a uniform distribution of 17.739–26.061 Ma,
using a previously published estimate [Besenbacher et al., 2019]. Furthermore, we set the
divergence time of the macaques and apes at 26.061–39.9 Ma (from the maximum diver-
gence time of the hominids to a very high divergence time of the apes). We used a variable
mutation rate and the VT amino acid substitution model [Müller and Vingron, 2001] in five
million iterations. This results in a divergence time for Gigantopithecus–Pongo of 10.14 Ma
(4.76–15.79 Ma, 95% HPD interval). The divergence of Gorilla from the Homo/Pan branch is
estimated at 8.59 Ma (4.62–13.56 Ma, 95% HPD interval), and the divergence of Homo and Pan
at 5.78 Ma (2.64–9.53 Ma, 95% HPD interval). These are largely consistent with, but slightly
younger than, previous estimates [Besenbacher et al., 2019, Langergraber et al., 2012], pos-
sibly owing to a mutation slowdown in these lineages compared to the Pongo lineage,
which is not taken into account here. However, they seem in agreement with the fos-
sil record indicating the origin of hominins around 6–8 Ma and the dating of a possible
early Gorillini (Chororapithecus) around 7–9 Ma [Langergraber et al., 2012, Katoh et al., 2016,
Senut et al., 2001, Brunet et al., 2002, Haile-Selassie, 2001]. Therefore, we conclude that the
relative branch lengths of the tree (Fig. 5.3b) are concordant with the overall phylogeny and
the estimates presented above.
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Reporting summary

Further information on research design is available in the Nature Research Reporting Sum-
mary linked to this paper.

Data availability

All the mass spectrometry proteomics data have been deposited in the ProteomeXchange
Consortium (http://proteomecentral.proteomexchange.org) via the PRIDE partner reposi-
tory with the dataset identifier PXD013838. Generated ancient protein consensus sequences
for G. blacki can be found in Supplementary Data 1. Full thermal age calculations can be
found in Supplementary Data 2.

Online content

Any methods, additional references, Nature Research reporting summaries, source data,
extended data, supplementary information, acknowledgements, peer review information;
details of author contributions and competing interests; and statements of data and code
availability are available at https://doi.org/10.1038/s41586-020-2153-8.

https://www.nature.com/articles/s41586-019-1728-8#MOESM2
https://www.nature.com/articles/s41586-019-1728-8#MOESM2
http://proteomecentral.proteomexchange.org
https://www.ebi.ac.uk/pride/archive/projects/PXD013838
https://www.nature.com/articles/s41586-019-1728-8#Sec19
https://www.nature.com/articles/s41586-019-1728-8#Sec19
https://doi.org/10.1038/s41586-020-2153-8
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6.4 Results

We identified no endogenous proteins from the dentine, but instead recovered an ancient
enamel proteome composed of 409 unique peptides matching 6 endogenous proteins: amel-
ogenin X (AMELX), ameloblastin (AMBN), amelotin (AMTN), enamelin (ENAM), matrix
metalloproteinase-20 (MMP20) and alpha-2-HS-glycoprotein (AHSG, also known as FETUA;
Extended Data Table 6.1). This observation extends the survival of ancient mammalian pro-
teins to a thermal age, obtained by normalizing the chronological age to a constant tem-
perature of 10 °C, of approximately 11.8 million years (Myr)@10 °C (Extended Data Ta-
ble 6.2). Such a thermal age is well beyond the thermally oldest DNA (0.25 Myr@10 °C,
Sima de los Huesos, Spain [Meyer et al., 2016]), collagen (0.22 Myr@10 °C, Happisburgh,
UK [Wadsworth and Buckley, 2014]) and enamel proteome (2.2 Myr@10 °C, Dmanisi, Geor-
gia [Cappellini et al., 2019]) reported to date. The Chuifeng Cave enamel proteome is thus,
to our knowledge, the oldest Cenozoic skeletal proteome currently reported (Fig. 6.1). The
survival of a subtropical proteome from approximately 2 Ma suggests that chronologically
older specimens from higher latitudes are likely to contain preserved ancient proteomes as
well.

The content of the recovered enamel proteome is consistent with previously reported ancient
enamel proteomes [Cappellini et al., 2019, Stewart et al., 2016, Castiblanco et al., 2015], with
the addition of several peptides deriving from a single region of AHSG. Peptide matches
to these proteins covered a minimum of 43 informative single amino acid polymorphisms
(SAPs; Supplementary Table 6.5). In addition, the retrieved protein regions fell largely
within areas previously recovered from an Early Pleistocene Stephanorhinus enamel pro-
teome from Dmanisi [Cappellini et al., 2019] (Supplementary Fig. 6.12). The absence of
peptides specific to amelogenin Y (AMELY) suggests that the sampled molar might have be-
longed to a female Gigantopithecus. Alternatively, male-diagnostic AMELY-specific peptides
were not observed due to their degradation beyond the limit of detection of the instrument.
The endogenous enamel proteome sequence coverage of 456 amino acids is lower than the
previously recovered sequence coverage for a Dmanisi Stephanorhinus specimen (875 amino
acids [Cappellini et al., 2019]; Supplementary Table 6.3). This observation is consistent with
the older thermal age for Chuifeng Cave, compared to Dmanisi [Cappellini et al., 2019].

We replicated enamel demineralization using two acids (TFA and HCl). The chromatograms
of these two extracts showed that different peptide populations were released (Extended
Data Fig. 6.6). Owing to the partial acidic hydrolysis [Cristobal et al., 2017], which poten-
tially occurs alongside demineralization, peptide populations with a wider range of acidity
(Extended Data Fig. 6.7a) and hydrophobicity (Extended Data Fig. 6.7c) are generated using
TFA. Our TFA-based demineralization returned 127 more unique non-overlapping peptide
sequences than did the HCl-based demineralization (Extended Data Fig. 6.7e). The TFA
extract, therefore, outperformed the HCl-based extraction, despite being carried out on a
smaller amount of starting material [Cappellini et al., 2019]. Ultimately, the extended cov-
erage of TFA-based demineralization increased the identification rate of informative SAPs,
enhancing the phylogenetic information obtained (Extended Data Fig. 6.7d). Finally, the
HCl- and TFA-demineralized samples had similar deamidation rates and average peptide
lengths (Extended Data Fig. 6.8), which indicates that the two acids released peptide popu-
lations that were modified to the same extent.
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The Gigantopithecus enamel proteome is characterized by extensive diagenetic modifications,
such as high rates of deamidation (Fig. 6.2a) and a high degree of degradation, as indi-
cated by relatively short peptide lengths (Fig. 6.2b); this is expected for an ancient proteome
preserved in subtropical conditions. When quantifying peptide intensities using label-free
quantification (LFQ) implemented in MaxQuant [Cox and Mann, 2008], we observed that
summed and normalized MS1 spectral intensities were higher for shorter peptides than for
longer peptides (Extended Data Fig. 6.7b). Finally, the peptide lengths of the Chuifeng Cave
enamel proteome were shorter than those identified in thermally younger enamel proteomes
(Fig. 6.2b).

Enamel-specific proteins are modified in vivo through protein phosphorylation, alterna-
tive splicing of AMELX, and MMP20- and KLK4-mediated proteolysis. Such modifica-
tions could survive in ancient proteomes. We detected evidence of surviving in vivo
post-translational modifications, such as serine phosphorylation in the S-x-E/phS mo-
tif, which is recognized by the secreted kinase FAM20C (Fig. 6.2c). The FAM20C ki-
nase regulates the phosphorylation of extracellular proteins involved in biomineralization
[Tagliabracci et al., 2012]. We also observed two alternative-splicing-derived isoforms of
AMELX (Fig. 6.2d). These observations are similar to those from other Early Pleistocene
enamel proteomes [Cappellini et al., 2019]. The Gigantopithecus enamel proteome therefore
demonstrates that such in vivo modifications can be recovered from hominid samples across
the Pleistocene.

To achieve a protein-based phylogenetic placement of Gigantopithecus, we compared the
enamel proteome sequences we retrieved with those of extant apes (Hominoidea). We used
publicly available whole-genome sequence data to predict enamel protein sequences from
relevant species [Prado-Martinez et al., 2013, Nater et al., 2017] (Supplementary Table 6.4,
Supplementary Figs. 6.13–6.23). Our results show that Gigantopithecus represents a sister
taxon to all extant orangutans (Pongo spp.) and forms a monophyletic group with extant
pongines (Fig. 6.3a, Extended Data Figs. 6.9, 6.10). We then attempted to estimate the diver-
gence time between Gigantopithecus and Pongo species using two approaches: (1) a pairwise
distance approach and (2) a Bayesian approach using MrBayes (see 6.3 Methods). Although
confidence intervals obtained for the divergence estimates of the Pongo–Gigantopithecus split
are large, our results indicate that Gigantopithecus diverged from the extant Pongo species in
the Middle or Late Miocene (approximately 10 Ma or 12 Ma using the Bayesian or pairwise
distance approaches, respectively; Fig. 6.3b). This suggests that, despite an exclusively Pleis-
tocene fossil record, Gigantopithecus is a member of an early radiation of pongines, whose
diversity peaked during the Middle and Late Miocene (Fig. 6.3b). Our results thereby re-
solve not only the phylogenetic position of Gigantopithecus, but also renew the debate on the
evolutionary relationships between extant hominids and early hominids present in the fossil
record [Harrison, 2010].

The presence of AHSG in the Gigantopithecus proteome is intriguing, as this protein is not
commonly observed in (modern) hominid enamel proteomes. All retrieved peptides derive
from a single, highly conserved region that is bordered by disulfide cysteine bonds on ei-
ther side (Extended Data Fig. 6.11). AHSG is highly glycosylated in vivo, but we observed
no glycosylation during our bioinformatics analysis. The observed sequence contains reg-
ularly spaced aspartic acid residues that provide a suitable motif for binding to basic cal-
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Figure 6.2: a, Violin plots of asparagine (N) and glutamine (Q) deamidation for se-
lected proteins (n = 1,000 bootstrap replicates of intensity-based peptide deamidation
[Mackie et al., 2018]). Human dermcidin (DCD) is included as an example of a non-
deamidated contaminant. For AMBN, all observed asparagines and glutamines are deami-
dated. For AMELX, all asparagines are deamidated. For DCD, no observed asparagines
and glutamines are deamidated. The number of peptides used for the calculation are
shown at the bottom. b, Violin plots of peptide lengths for Gigantopithecus, an Early Pleis-
tocene rhinoceros from Dmanisi and a Medieval control sample [Cappellini et al., 2019]. c,
Sequence-motif analysis of the over-representation of specific amino acids around the phos-
phorylated amino acid (position 0; n = 14). d, Peptide coverage of AMELX protein isoforms.
Matching peptides are indicated by black bars for isoform 1 (n = 21) and isoform 3 (n =
7). The latter includes an insertion due to alternative splicing between isoform 1, amino
acid positions 34 and 35 (coordinates in reference to UniProt Accession number: Q99217-1
[AMELX HUMAN]). b includes data on AMELX, AMBN, ENAM, AMTN and MMP20 only.
For a and b, box plots define the range of the data (whiskers extending to 1.5× the interquar-
tile range), 25th and 75th percentiles (boxes) and medians (dots/lines). For a, outliers are
indicated as black dots (beyond 1.5× the interquartile range).

cium phosphate lattices [Tang and Skibsted, 2016]. The notion that this specific peptide se-
quence is involved in biomineral binding is supported by three observations: (1) this region
is presented on the external surface of AHSG [Heiss et al., 2003]; (2) such surfaces have been
demonstrated to bind biominerals in other systems as well [Demarchi et al., 2016]; and (3)
this type of binding enhances peptide preservation [Demarchi et al., 2016]. AHSG acts as a
key component of bone and dentine mineralization by inhibiting the extrafibrillar mineral-
ization of collagen type I helices [Price et al., 2009] and has previously been hypothesized
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Figure 6.3: a, Time-calibrated Bayesian phylogeny of Gigantopithecus. Circled nodes were
fixed for topology (see section 6.3 Methods). Grey error bars represent the 95% highest
posterior density (HPD) intervals for the divergence estimates. b, Distribution of probable
and possible extinct pongines known from the fossil record, including Gigantopithecus (black
bars). Grey bars represent the 95% HPD interval obtained from the Bayesian approach and
the 95% confidence interval obtained from the pairwise-distance-based approach, of the Gi-
gantopithecus–Pongo divergence.

to have a role in amelogenesis [Bartlett et al., 2006]. Our extracts contained no endogenous
plasma proteins, such as human serum albumin, or other common dentine proteins, such
as collagen type I. We also did not identify any AHSG peptides in our dentine sample. We
therefore exclude the possibility that the AHSG peptides derived from dentine. Giganto-
pithecus is known to have relatively long enamel formation times and thick enamel com-
pared to several extant and extinct hominids, including its phylogenetically closest relatives
[Dean and Schrenk, 2003, Kono et al., 2014]. We therefore hypothesize that Gigantopithecus
recruited AHSG as an additional molecular component to favour enamel biomineralization
during prolonged amelogenesis, ultimately playing a part comparable to the one it has in
bone and dentine mineralization [Bartlett et al., 2006].
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6.5 Discussion

Our results reveal the long-debated phylogenetic position of Gigantopithecus as an early di-
verging pongine. We demonstrate that ancient enamel proteomes can be retrieved from
Early Pleistocene samples preserved in subtropical conditions, well beyond the current limi-
tations of biomolecular research in hominid and hominin evolution. In addition, the survival
of an Early Pleistocene Gigantopithecus enamel proteome enables us to assess the presence
of multiple forms of in vivo modification. Finally, palaeoproteomic analysis allowed us to
identify a hitherto unknown biological component of tooth formation in an extinct hominid.
These findings suggest that the palaeoproteomic analysis of hominid enamel has the poten-
tial to provide a molecular perspective on human and great ape evolution.
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6.6 Author’s contribution

Prior to this study, the evolutionary relationship of Gigantopithecus blacki to other great ape
species had remained unclear. Therefore, we performed a proteomic analysis of its dental
enamel molar.

For this study, I performed the MaxQuant analysis of the data provided by the LC-MS/MS
experiment. In the analysis, I used the available toolset provided by MaxQuant to iden-
tify the peptide sequences and its sequence variations. Additionally, I applied the post-
processing pipeline that I previously implemented for protein sequence reconstruction
(Chapter 5 - Publication 3). The reconstructed sequences comprise the identified and val-
idated sequence variations, which are necessary for phylogenetic analysis.

Despite the subtropical climate in Southeast Asia, we retrieved protein sequences of a dental
enamel from Gigantopithecus blacki, which is dated to be the 1.9 million years old. Phylo-
genetic analysis revealed that Gigantopithecus blacki is a sister clade to orangutans with a
common ancestor about 12-10 million years ago.



186 6. Enamel proteome shows that Gigantopithecus was an early diverging pongine

6.7 Additional information

Acknowledgements

E.C. and F.W. are supported by VILLUM FONDEN (17649) and by the European Commis-
sion through a Marie Skłodowska-Curie (MSCA) Individual Fellowship (795569). T.M.-B.
is supported by BFU2017-86471-P (MINECO/FEDER, UE), NIHM grant U01 MH106874,
Howard Hughes International Early Career grant, Obra Social ‘La Caixa’ and Secretaria
d’Universitats i Recerca and CERCA Programme del Departament d’Economia i Coneixe-
ment de la Generalitat de Catalunya (GRC 2017 SGR 880). E.C., J.C., J.V.O., D.S. and P.G. are
supported by the Marie Skłodowska-Curie European Training Network (ETN) TEMPERA,
a project funded by the European Union’s EU Framework Program for Research and Inno-
vation Horizon 2020 under grant agreement no. 722606. M.J.C. and M.M. are supported
by the Danish National Research Foundation award PROTEIOS (DNRF128). Work at the
Novo Nordisk Foundation Center for Protein Research is funded in part by a donation from
the Novo Nordisk Foundation (NNF14CC0001). Research at Chuifeng Cave is made possi-
ble by support from the National Natural Science Foundation of China (41572023) and by a
grant from the Bagui Scholar of Guangxi. M.K. was supported by a Deutsche Forschungsge-
meinschaft (DFG) fellowship (KU 3467/1-1) and the Postdoctoral Junior Leader Fellowship
Programme from ‘la Caixa’ Banking Foundation (LCF/BQ/PR19/11700002). M.E.A. is sup-
ported by the Independent Research Fund Denmark (7027-00147B). We thank E. Willerslev
for critical reading of the manuscript, scientific support and guidance.

All author’s contributions

F.W., E.C., F.D. and T.M.-B. designed the study. W.W. conduced excavation of Chuifeng
Cave. W.W. and W.L. carried out faunal analysis of Chuifeng Cave. W.W., W.L. and M.E.A.
provided ancient samples. F.W., J.R.-M., M.K., P.G., D.S., M.M., J.V.O. and M.d.M. performed
data generation and analysed data with support from A.-M.B., M.J.C., J.C., C.L.-F., F.D. and
T.M.-B. F.W., E.C. and T.M.-B. wrote the manuscript with contributions from all authors.



6.8 Extended data figures 187

6.8 Extended data figures

Figure 6.4: a, Landscape outside Chuifeng Cave. b, Elevated altitude of Chuifeng Cave
(arrow points to the entrance). Photo credit: W.W.
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Figure 6.5: a, Main entrance of Chuifeng Cave. b, Well-preserved deposits before excavation.
c, The stratigraphic profile (1.3 m in height) of area D. d, W.W. excavating in area D. e,
Excavated channel. f,g, In situ G. blacki teeth (scale bars, 3 cm). Photo credit: W.W.
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Figure 6.6: a, HCl extract. b, TFA extract. Note differences in maximum total ion currents
on the y axes. Each extract was analysed only once.
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Figure 6.7
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Figure 6.7: a, Summed and normalized peptide intensities for each combination of peptide
length and number of acidic residues (aspartic acid, glutamic acid, deamidated asparagine,
deamidated glutamine). Circle sizes are proportional to the percentage of the total inten-
sity, for each combination of peptide length and number of acidic residues. b, Summed
and normalized intensities by peptide length. c, Summed and normalized peptide inten-
sities across peptide hydrophobicity (GRAVY index values calculated using the R package
Peptides, scale ‘KyteDoolittle’). Insets show peptide count distribution across peptide hy-
drophobicity. d, Extraction performance for various data categories. Values scaled to one
and compared to the best-performing extraction method for each category independently.
SAPs refer to those SAPs informative within Hominoidea. e, Proportional Venn diagram of
unique peptide sequences identified in the two demineralization methods. All comparisons
based on MaxQuant LFQ data only. N, number of peptides.
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Figure 6.8: a, Comparison of peptide lengths, showing an identical distribution for the TFA
(n = 305) and HCl (n = 191) extractions (two-sided t-test, t394 = -0.599, P = 0.5495). b, Com-
parison of asparagine deamidation. c, Comparison of glutamine deamidation. b, c, Violin
plots describe the distribution of bootstrap replicates (n = 1,000) of intensity-based peptide
deamidation32. The number of peptides used for the calculation are shown at the bottom.
For some proteins, only deamidated asparagines or glutamines were observed (for exam-
ple, AMBN), while DCD is included as an example of a non-deamidated contaminant. All
comparisons based on MaxQuant data only. For a–c, box plots define the range of the data
(whiskers extending to 1.5× the interquartile range), outliers (beyond 1.5× the interquartile
range), 25th and 75th percentiles (boxes) and medians (dots).
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Figure 6.9: a, Pairwise distances between groups of selected Hominoids and Pongo esti-
mated using the concatenated protein alignments and the phangorn R package. n shows
number of pairwise comparisons. b, Maximum-likelihood tree computed on a distance ma-
trix using pml R function. Support values were obtained from 1,000 bootstrap replicates. c,
Rooted phylogenetic tree obtained using MrBayes. For each bipartition, we show the poste-
rior probability (0–1) obtained from the Bayesian approach and the support values obtained
from 100 non-parametric bootstrap replicates in a PHyML maximum-likelihood (0–100) tree.
PHyML and MrBayes recover the same topology. b and c are based on the same concate-
nated alignment of the five proteins retrieved from Gigantopithecus, and resulted in the same
tree topology.
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Figure 6.10: Tree obtained from the concatenated alignment using MrBayes. M. mulatta was
used as an outgroup. The internal nodes corresponding to the Gorilla, Pan and Homo clades
are collapsed for visualization purposes. The number of individuals in each of these nodes
is indicated in parentheses.
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Figure 6.11: All AHSG-specific peptides, identified by PEAKS and MaxQuant, derive from
a single sequence region bridging cystatin domains 1 and 2. The surviving sequence region
is evolutionarily conserved across Catarrhini. It contains a regular repeat of acidic amino
acid residues (aspartic acid, D, on positions 133, 137 and 141) that enable binding of basic
calcium phosphate (residues highlighted in green), similarly to a conserved region just N-
terminal (glutamic acid, E, on position 111, and aspartic acid, D, on position 113 and 115). At
the bottom, a fragment ion alignment is given of MaxQuant-identified AHSG peptides. The
serine is phosphorylated in all matching spectra. The majority-based amino acid consensus
sequence for the alignment of Catarrhini is shown at the top for amino acid positions 100–149
(amino acid coordinates following UniProt accession P02765 [FETUA HUMAN]).
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Table 6.1: Only proteins with two unique peptides in at least either MaxQuant or PEAKS
searches were accepted. No protein matches in the dentine or blank extractions fulfilled this
criterion. Primary entries for proteins used for phylogenetic reconstruction refer to the P.
abelii accessions in UniProt for reference purposes. Protein sequence coverage in the final
column indicates the coverage obtained after combining PEAKS and MaxQuant peptide re-
covery and is only reported for proteins considered endogenous. ALB, DCD and K1C9 are
considered to be contaminants. For amino acid columns, numbers in brackets refer to amino
acid positions uniquely identified in PEAKS or MaxQuant searches.

Table 6.2: The ten geographically closest meteorological weather stations included in pub-
licly available WMO data were used to estimate current MAT at Chuifeng Cave. Correlation
between online altitude estimation and WMO provided altitude is R2 = 0.99 (Pearson corre-
lation).
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6.9 Supplementary information

Humans from the Simons Genome Diversity Project

The following 19 humans sequenced as part of the Simons Genome Diversity Panel were
used to construct the human reference panel used for phylogenetic alignment (“Full align-
ments”):

Homo sapiens-Africa 20ERR1419150 Homo sapiens-Africa 21ERR1419161
Homo sapiens-Africa 22ERR1419175 Homo sapiens-Africa 23ERR1419183
Homo sapiens-Africa 24ERR1347655 Homo sapiens-Africa 25ERR1419136
Homo sapiens-Africa 26ERR1419145 Homo sapiens-Africa 27ERR1419179
Homo sapiens-Africa 28ERR1419171 Homo sapiens-WestEurasia 0ERR1395604
Homo sapiens-WestEurasia 1ERR1419103 Homo sapiens-WestEurasia 2ERR1419088
Homo sapiens-WestEurasia 3ERR1419098 Homo sapiens-WestEurasia 4ERR1419111
Homo sapiens-WestEurasia 5ERR1419121 Homo sapiens-WestEurasia 6ERR1419141
Homo sapiens-WestEurasia 7ERR1419091 Homo sapiens-WestEurasia 8ERR1419102
Homo sapiens-WestEurasia 9ERR1419117

Supplementary Table 6.3. Proteome characteristics of Dm.5/157–16635 (Stephanorhinus
sp., Dmanisi, Georgia, main text reference 17) and CF-B-16 (Gigantopithecus blacki,
Chuifeng Cave, China, this study).

Stephanorhinos Gigantophitecus
Chronological age (million years ago) 1.77 1.9
Total number of spectra acquired 117,516 38,082
Total number of spectra matched 6,393 1,398
% Spectra matched 5.44 3.67
Number of proteins identified 6 6
Number of peptides identified 987 409
Number of amino acids covered 875 456
Average peptide length 10.89 10.20
Average deamidation rate N* 96.34 ± 1.08 92.85 ± 3.29
Average deamidation rate Q* 96.57 ± 0.57 92.30 ± 2.19

Table 6.3: *mean ± 1 standard deviation obtained after 1,000 bootstrap replicates of
MaxQuant proteomic data analysis (endogenous proteins only, see Methods)



198 6. Enamel proteome shows that Gigantopithecus was an early diverging pongine

Supplementary Table 6.4. Entry names of publicly available protein sequences utilized
in database construction and phylogenetic analysis.

Protein Homo
sapiens

Pan
paniscus

Pan
troglodytes

Gorilla
gorilla

Pongo
abelii

Nomascus
leucogenys

Macaca
Mulatta

COL1α1 COL1A1
HUMAN

XP
003817507

H2QDE6
PANTR

G3RBN8
GORGO

H2NVM9
PONAB

XP
012358721

H9Z595
MACMU

COL1α2 CO1A2
HUMAN

XP
003809763

H2QUY2
PANTR

G3QT97
GORGO

H2PMW7
PONAB

G1RZZ2
NOMLE

H9Z2D1
MACMU

ALB ALBU
HUMAN

XP
003832390

H2RBT1
PANTR

G3S791
GORGO

ALBU
PONAB

G1R8T8
NOMLE

ALBU
MACMU

AMBN AMBN
HUMAN

XP
003809040

H2R148
PANTR

G3RCU1
GORGO

H2PDI5
PONAB

G1R841
NOMLE

F7HLX4
MACMU

AMELY AMELY
HUMAN

(absent) AMELY
PANTR

C3UJP7
9PRIM

(absent) (absent) A0A1D5
RDA1
MACMU

AMELX AMELX
HUMAN

XP
003805726

A5JJS6
PANTR

G3SDK0
GORGO

H2PUX0
PONAB

G1RCS3
NOMLE

A5JJS8
MACMU

ENAM ENAM
HUMAN

B2L7U5
PANPA

H2QPM0
PANTR

B2L7U8
9PRIM

H2PDI6
PONAB

G1R843
NOMLE

F7H832
MACMU

TUFT1 TUFT1
HUMAN

XP
003817293

K7CQG4
PANTR

G3QY68
GORGO

H2N5V2
PONAB

G1RGY4
NOMLE

G7MDK9
MACMU

KLK4 KLK4
HUMAN

XP
003813692

XP
009434410

G3QU55
GORGO

A0A2J8
U913
PONAB

G1R1C5
NOMLE

G7NMD1
MACMU

MMP20 MMP20
HUMAN

XP
003828430

H2Q4M8
PANTR

G3QLA8
GORGO

H2NF32
PONAB

G1R6B1
NOMLE

F7GQW6
MACMU

AMTN AMTN
HUMAN

XP
003809041

H2QPL9
PANTR

G3RJV5
GORGO

H2PDI4
PONAB

G1R825
NOMLE

F6VN65
MACMU

ODAM ODAM
HUMAN

XP
003809049

ODAM
PANTR

G3QY18
GORGO

H2PDH6
PONAB

G1R7Z0
NOMLE

ODAM
MACMU

AHSG FETUA
HUMAN

XP
008953975

FETUA
PANTR

E1U7Q5
9PRIM

H2PC98
PONAB

G1R4B1
NOMLE

F6VZ47
MACMU

Table 6.4: Entry names either refer to UniProt or GenBank.
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Supplementary Table 6.5. Description of the protein alignments used in the study.

Protein Total
sites

Non-
missing
sites

Unique
Sites

Single-individual alignment Full alignment

Poly-
morphic
sites

Polymorphic
sites & non
singletons

Poly-
morphic
sites

Polymorphic
sites & non
singletons

AMBN 447 116 0 64 (7) 19 (3) 74 (11) 28 (5)
AMELX 206 145 2 9 (4) 2 (0) 17 (11) 3 (1)
AMTN 209 18 0 26 (0) 13 (0) 39 (1) 24 (1)
ENAM 1,142 186 1 161 (29) 54 (12) 189 (31) 87 (16)
MMP20 483 9 0 35 (3) 11 (0) 41 (3) 20 (0)

Table 6.5: Single individual alignment: alignment built using a single individual per
species. This alignment was used to estimate divergence times for each node. Full align-
ment: alignment built using all individuals in the reference dataset. 1: Private muta-
tions/polymorphism found in the ancient sample. 2: The number of sites where the ancient
sample is non-missing are indicated in brackets.



200 6. Enamel proteome shows that Gigantopithecus was an early diverging pongine

Figure 6.12: MaxQuant PSM coverage plot for the six endogenous enamel proteins recovered from
the Gigantopithecus enamel. Grey background shading indicates regions with peptide sequence cov-
erage in a previously published Early Pleistocene enamel proteome from Dmanisi (Stephanorhinus
sp.; 19). Although differences are expected, due to differences in primary sequence, recovered pep-
tide sequences from Gigantopithecus generally fall within sequence regions identified in the thermally
younger Stephanorhinus sp. specimen from Dmanisi.
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Figure 6.13: Supplementary Figure S2. PHyML individual protein trees for the five endoge-
nous proteins recovered from the Gigantopithecus blacki enamel proteome (AHSG excluded).
a, AMELX. b, AMBN. c, AMTN. d, ENAM. e, MMP20. Nodal support values are after 100
bootstraps.
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Note on Supplementary Figures 6.14 to 6.23

Supplementary figures 6.14 to 6.23 contain MaxQuantderived examples of annotated
MS/MS spectra. Fragment ions are labelled in the “Standard” annotation mode provided
in MaxQuant. For each panel, both the annotated MS/MS spectrum and an amino acid
sequence, covered by the relevant b- and y-ions, are shown. For the latter, additional
PTM annotations on relevant amino acid positions include “ph” (phosphorylation), “de”
(deamidation), and “ox” (oxidation). In some of these cases, additional PSMs were also
identified by MaxQuant (Supplementary Figure 6.12) and PEAKS.

Supplementary figures 6.14 to 6.19 include unique spectra matching to peptide se-
quences representing one of the six endogenous proteins identified in the Gigantopithecus
proteome. Supplementary Figures 6.20 to 6.23 include several examples of MS/MS spectra
overlapping SAPs of phylogenetic interest.

All the mass spectrometry proteomics data have been deposited in the ProteomeX-
change Consortium (http://proteomecentral.proteomexchange.org) via the PRIDE partner
repository with the data set identifier PXD013838.

http://proteomecentral.proteomexchange.org
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Figure 6.14: Examples of annotated MS/MS spectra unique to AHSG. Top, amino acid po-
sitions 135-145. Bottom, amino acid positions 134-145. Coordinates refer to UniProt entry
H2PC98 PONAB.
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Figure 6.15: Examples of annotated MS/MS spectra unique to AMBN. Top, amino acid
positions 39-50. Bottom, amino acid positions 36-49. Coordinates refer to UniProt entry
H2PDI5 PONAB.
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Figure 6.16: Examples of annotated MS/MS spectra unique to AMELX. Top, amino acid
positions 20-27. Bottom, amino acid positions 182-192. Coordinates refer to UniProt entry
H2PUX0 PONAB.
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Figure 6.17: Examples of annotated MS/MS spectra unique to AMTN. Top, amino acid po-
sitions 112-121. Bottom, amino acid positions 112-121. Coordinates refer to UniProt entry
H2PDI4 PONAB.
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Figure 6.18: Examples of annotated MS/MS spectra unique to ENAM. Top, amino acid po-
sitions 221-231. Bottom, amino acid positions 180-190. Coordinates refer to UniProt entry
H2PDI6 PONAB.
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Figure 6.19: Example of an annotated MS/MS spectrum unique to MMP20. Amino acid
positions 136-144. Coordinates refer to UniProt entry H2NF32 PONAB.

Figure 6.20: Example an of annotated MS/MS spectrum of a phylogenetically informative
SAP in AMBN. Amino acid positions 53-61, with a Hominidae-derived “R” on amino acid
position 55. Coordinates refer to UniProt entry H2PDI5 PONAB.
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Figure 6.21: Examples of annotated MS/MS spectra of phylogenetically informative SAPs
in AMELX. Amino acid positions 18-27, with a Gigantopithecus-derived “E” on amino acid
position 26. Coordinates refer to UniProt entry H2PUX0 PONAB.
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Figure 6.22: Examples of annotated MS/MS spectra of phylogenetically informative SAPs in
ENAM. Top, amino acid positions 145-156, with an ancestral “A” on amino acid position 147
(substituted to “P” in Gorilla, Pan, and Homo). Bottom, amino acid positions 187-194, with
a Hominidae-derived “I/L” on amino acid position 190. Coordinates refer to UniProt entry
H2PDI6 PONAB
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Figure 6.23: Examples of annotated MS/MS spectra of phylogenetically informative SAPs
in ENAM. Top, amino acid positions 211-219, with a Pongo+Gigantopithecus derived “A” on
amino acid position 212 (“A” in other Hominoids). Bottom, amino acid positions 849-857,
with a Gigantopithecus-derived “L” on amino acid position 853. Coordinates refer to UniProt
entry H2PDI6 PONAB.



212 6. Enamel proteome shows that Gigantopithecus was an early diverging pongine



Chapter 7

Conclusion and outlook

Ancient biomolecules, such as aDNA and ancient proteins are essential resources to unravel
the past. Due to the lack of availability of morphological features, these biomolecules are
the sole option for species identification and phylogenetic placement of highly fragmented
fossil remains.

aDNA is known to degrade faster than ancient proteins, which makes ancient pro-
teins vital when investigating fossil remains that date back more than a million years or
when deposition conditions are unfavorable for the preservation of DNA. Ancient protein
studies have highly contributed to deepen our knowledge in the fields of cultural heritage,
archaeology and palaeontology by studying surviving proteins of organic materials or
harbouring on the surface of archaeological objects (Section 1.7 Application of ancient
proteins). PMF and LC-MS/MS are the most used MS approaches for ancient peptide and
protein identification. PMF is mainly performed for species identification by comparing
the measured peptide mass pattern of collagenous protein sequences to known peptide
mass patterns of other species. Species identification of faunal assemblages have provided
insights into past subsistence practices and ecologies. Unlike PMF, LC-MS/MS approaches
generate a detailed peptide fragmentation pattern, which are indicative of the amino acid
sequences and are commonly identified by database search engines.

Typically, ancient proteins are obtained from unsequenced or extinct species, which
are evolutionarily distant to their extant relatives, thus, their protein sequences comprise
unknown sequence variations. Database search engines, however, are only capable of
identifying sequences that exactly match to a reference sequence database. Consequently,
identification by sequence database search is an obstacle for ancient protein studies causing
many peptides to remain unidentified (Section 1.6.2 Sequence database search, 1.8 Chal-
lenges of ancient protein sequence identification). De-novo sequencing has the potential to
overcome this challenge by directly inferring the sequence based on the peptides fragmen-
tation pattern. Yet, de-novo sequencing is hampered by the generally poor fragmentation
quality due to the low abundant and highly fragmented peptides caused by advanced
ancient protein degradation (Section 1.6.3 De-novo sequencing). Furthermore, proteomics
analysis requires destructive sampling of ancient objects, which are primarily very precious
and most importantly limited. Thus, ancient protein analysis is only performed when there
is a guaranteed successful outcome to avoid an irrecoverable information loss.
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To this end, the aim of this thesis was to computationally increase the identified pep-
tide rate on two levels: sequence database searching (Chapter 3 – Publication 1) and
de-novo sequencing (Chapter 4 – Publication 2). To improve the identification rate of
database searching, Andromeda was extended to include predicted fragmentation intensi-
ties. By adding the intensity prediction, the sequence context is not only included in form of
fragment mass but also in form of fragmentation efficiencies. We successfully demonstrated
an increase in peptide identifications by using the intensity informed Andromeda score in
comparison to the conventional Andromeda score (Chapter 3 - Publication 1). To provide
highly accurate peptide fragment intensities, we developed in collaboration with the
research organisation Verily Life Sciences two machine learning models: DeepMass:Prism
and wiNNer. DeepMass:Prism is based on deep learning and was trained on large datasets
covering a variety of different species and MS settings, therefore it can be used as standard
prediction model for tryptic datasets obtained by LC-MS/MS experiments. In contrast,
wiNNer is based on neural networks and was trained on a smaller dataset allowing fast
re-training. The possibility to re-train prediction models fast and easily with standard
computing power is crucial for ancient datasets. These datasets can be different to common
datasets in terms of enzymatic digestion, instrumental setup or because of non-standard
protein characteristics. We demonstrated that wiNNer can be re-trained based on ancient
datasets that are characterized by non-tryptic digestion, short and highly modified peptides
(Chapter 5 - Publication 3). Despite the limited available training data, wiNNer provides
high quality predictions for ancient proteomics data.

The current status of the extended Andromeda score is a proof-of-principle and re-
quires further development to make it accessible for public usage for which the following
steps need to be developed: 1) integration of the DeepMass:Prism and wiNNer model
directly in the MaxQuant workflow to enable real-time prediction during the identification
step; 2) extension of the current intensity prediction models to additionally allow prediction
of modified peptides, as currently only prediction of unmodified peptides is possible.

Next, with the development of MaxNovo, integrated in the MaxQuant software package,
we provide a novel spectrum graph-based de-novo sequencing algorithm that achieves high
peptide identification in collisional dissociated MS/MS spectra (Chapter 4 - Publication
2). MaxNovo is implemented using expert domain knowledge, whereas state-of-the-art
de-novo algorithms are based on deep learning algorithms. While deep learning models are
often referred to as “black box”, the development of the MaxNovo algorithm is transparent
and can be fully explained. Furthermore, MaxNovo performs as well as or better than
leading deep learning-based algorithms, which rely on sufficient training data and might
require re-training to provide reliable performance for uncommon datasets. Lastly, we
have shown that MaxNovo is able to provide additional peptide identifications in ancient
datasets previously unidentified by the database search engine Andromeda.
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Additionally, as part of this thesis, I contributed to two evolutionary ancient proteomics
studies, where we provided evidence that H. antecessor is a close sister lineage to subsequent
Middle and Late Pleistocene hominins, including modern humans, Neanderthals and
Denisovans (Chapter 5 – Publication 3). With proteomic analysis of dental enamel from a 1.9
million year old molar, we revealed that Gigantopithecus blacki is a sister clade to orangutans
with a common ancestor about 12-10 million years ago (Chapter 6 – Publication 4).

Despite the challenges due to the characteristics of ancient protein, previous ancient
studies as well as the two ancient studies included in this thesis demonstrate the success of
retrieving ancient protein sequences of fossils dated to Late and Middle Pleistocene. Fur-
thermore, based on the ancient analysis of the molar of G. blacki we can show that the limits
of ancient protein studies have not yet been reached. Despite archaeological deposition in
subtropical climate, we were able to retrieve an enamel proteome in sufficient quality to al-
low phylogenetic placement from an Early Pleistocene sample, which is currently the oldest
Cenozoic skeletal proteome reported [Welker et al., 2019]. The successful palaeoproteomic
analysis on a sample older than previous ones and preserved in subtropical conditions
enhances the application range of palaeoproteomic analysis on samples from climatically
problematic areas and earlier time periods. This extends the scope of samples that hold the
potential to gain new insights into great ape and human evolution.

For both ancient studies that are part of this thesis, I developed a post-processing computa-
tional workflow based on the MaxQuant outputs to reconstruct ancient protein sequences
to determine the amino acid sequence variations. For the reconstruction, all identified
peptide sequences of different identification approaches are aligned to a reference protein
sequence that is representative for a gene, but independent of the species information, since
the investigated species is mainly of unknown origin. To date, there is no software tool
available that specifically addresses the challenges of ancient proteins. Therefore, a possible
future development would be to transform this ancient protein sequence reconstruction
workflow into a novel standalone software tool. Moreover, this software can be extended by
the integration of the intensity-informed Andromeda search engine including a dedicated
ancient wiNNer model for intensity prediction and MaxNovo to enable the identification of
novel peptides containing sequence variations. Such a software would provide a complete
package for ancient protein sequence identification and reconstruction.

The current scope of this thesis was focused on the identification of ancient protein and
peptide sequences. However, the deamidation rate of peptides is crucial to validate the
age of the fossils because the deamidation rate is expected to increase with the age of the
sample. Therefore, the possibility to not only identify ancient proteins but also quantify
their deamidation rate would offer a complete package that covers all important aspects for
ancient protein studies. Thus, a comprehensive software tool covering the aforementioned
functionalities would be highly beneficial for the ancient proteomics community.
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A. P., Viola, B., Meyer, M., Kelso, J., Andrés, A. M., and Pääbo, S. (2014). Patterns of coding
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López-Garcı́a, J. M., Duval, M., Galán, J., and Núñez-Lahuerta, C. (2015). Comparing two
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A., Rudan, P., Brajkovic, D., Kucan, Ž., Gušic, I., Marques-Bonet, T., Andrés, A. M., Viola,
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Despriée, J., Bahain, J.-J., Sala, R., Carbonell, E., Bermúdez de Castro, J. M., and Arsuaga,
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[Thiede et al., 2005] Thiede, B., Höhenwarter, W., Krah, A., Mattow, J., Schmid, M., Schmidt,
F., and Jungblut, P. R. (2005). Peptide mass fingerprinting. Methods, 35(3 SPEC.ISS.):237–
247.
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Oppenheimer, J., Hartmann, S., Xenikoudakis, G., Thomas, J. A., Dehasque, M., Sağlıcan,
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[Zadrozna et al., 2003] Zadrozna, I., Połeć-Pawlak, K., Głuch, I., Ackacha, M. A., Mojski,
M., Witowska-Jarosz, J., and Jarosz, M. (2003). Old master paintings - A fruitful field of
activity for analysts: Targets, methods, outlook.

[Zarnack et al., 2013] Zarnack, K., König, J., Tajnik, M., Martincorena, I., Eustermann, S.,
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