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Summary

Despite tremendous progress in electronic structure theory and computer technology over
the last decades there still is great demand for more accurate and computationally efficient
quantum chemical computation methods. In this thesis, contributions to this field of
research are made by introducing several novel electronic structure methods for computing
correlation energies, NMR shielding tensors, and electronic g-tensors.

An efficient method for computing correlation energies is derived from atomic orbital-
based second-order Møller–Plesset perturbation theory (AO-MP2). Low-rank approxima-
tions are introduced for the pseudo-densities in the form of a Cholesky decomposition
and for the two-electron integrals using the resolution-of-the-identity (RI) approximation
with an attenuated Coulomb metric. Sparse linear algebra and integral screening based on
Schwarz estimates allow to achieve linear scaling for large systems. This method is also
extended to allow for computing NMR shieldings using an analytical second derivative.
A suitable Z-vector approach is described, which ensures high efficiency by minimizing
the number of coupled-perturbed self-consistent field equations that have to be solved. In
addition, the first method for computing NMR shieldings with the post-Kohn–Sham ran-
dom phase approximation (RPA) is presented. Benchmark calculations indicate a strong
dependence of the accuracy on the employed orbitals. RPA shieldings with Hartree–Fock
orbitals are shown to be significantly more accurate than MP2 shieldings, which renders
RPA a promising method for NMR shielding calculations.

A second method for computing MP2 energies is presented, which employs the tensor
hypercontraction (THC) ansatz. A low-scaling approach for decomposing two-electron
integrals in THC format is described that relies on Cholesky-decomposed density matrices
and RI with an attenuated Coulomb metric. Furthermore, it is demonstrated how the
correlation energy can be efficiently computed from the decomposed integrals by exploiting
their sparsity.

Finally, also methods for efficiently computing electronic g-tensors at the density func-
tional theory (DFT) level are presented. Integral screening and sparse linear algebra ap-
proaches are shown to enable linear scaling for large molecules. Sublinear scaling is achieved
for molecules with a local spin density by exploiting the locality of the contributions to the
g-tensor. A benchmark study on the gauge-origin dependence of the electronic g-tensor is
presented, which demonstrates that methods relying on a common gauge-origin can suffer
from large errors, especially for extended molecules. Distributed gauge-origin approaches
and a new way of choosing a common gauge-origin are suggested as potential alternatives.
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Chapter 1

Introduction

Quantum chemistry is concerned with the application of the fundamental laws of quantum
mechanics to chemical systems. In its early years, quantum chemistry could provide an
improved qualitative understanding of many chemical phenomena and, e.g., refine concepts
of chemical bonding. [1] With the enormous progress in modern computer technology and
the development of efficient numerical methods and approximations, quantitatively accurate
quantum chemical calculations on increasingly large molecules became possible.

The majority of quantum chemical methods available today can be grouped into two
categories: wave function based methods and density functional methods. Wave function
methods employ a certain ansatz for the many-electron wave function and are systemat-
ically improvable towards the exact solution of the Schrödinger equation, but are often
expensive in terms of computational resources if high accuracy is desired. Some wave
function methods are based on the variational principle [2] and minimize the energy ex-
pectation value assuming a specific form of the wave function. The Hartree–Fock (HF)
method [3–5] belongs to this class and uses a single Slater determinant as an ansatz for
the wave function. HF theory describes the electron-electron interaction in a mean field
manner; the corresponding error of this approximation compared to the exact solution of
the electronic Schrödinger equation is called the correlation energy. [6] One distinguishes
static and dynamic electron correlation. In systems with static correlation, a single deter-
minant does not provide a qualitatively correct description of the electronic structure, and
multi-reference methods like complete active space self-consistent field (CASSCF) [7] or the
density matrix renormalization group (DMRG) [8–10] need to be used. Dynamic correlation
accounts for the small, but numerous contributions from excited determinants, which are
created by removing electrons from occupied molecular orbitals (MOs) in the reference
determinant and placing them in virtual MOs.

Configuration interaction (CI) [11] methods are one class of variational methods for de-
scribing dynamic correlation and expand the wave function as a linear combination of Slater
determinants. The CI wave function contains contributions both from the HF determinant
and from excited determinants. CI methods are characterized by the maximum number
of allowed excitations. In the CI singles and doubles method (CISD), e.g., determinants
with one and two excited electrons are included, but no higher excitations. Unless all
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possible Slater determinants are included, which is called full CI [12] and is equivalent to
the exact solution of the Schrödinger equation in the given basis, truncated CI methods
are not size-extensive. This means that chemical systems with different sizes and numbers
of electrons are not treated at the same level of accuracy. [13] In general, CI recovers a
decreasing fraction of the total correlation energy for increasingly large molecules, which
is a serious drawback.

Coupled cluster (CC) methods [14,15] are a size-extensive alternative and employ an
exponential ansatz for the wave function. Most formulations of coupled cluster are not
variational. [16] However, as the variational principle only holds for absolute energies, but
not for energy differences, the non-variational nature of CC is of little concern in practice.
It is outweighed by the benefits of size-extensivity and faster convergence of CC to the full
CI limit compared to truncated CI methods. [13]

Perturbation theory [17] is another theoretical framework that allows to approximately
solve the many-electron Schrödinger equation. Møller–Plesset perturbation theory [18]

(MPPT) provides a hierarchy of methods for computing correlation energies. In the most
popular MPPT method, the perturbation series is truncated after second order, which
results in the MP2 model. MP2 is one of the computationally cheapest methods for de-
scribing electron correlation and allows to account for dispersion effects, which is highly
important, e.g., in the study of biomolecules. Perturbation theory can also be applied
in the context of CC theories. In the CCSD(T) method, e.g., a perturbatively computed
triples correction is added to the CC singles and doubles (CCSD) energy. [19] The highly ac-
curate CCSD(T) method is widely regarded as the “gold standard of quantum chemistry”,
but can only be applied to rather small molecules due to an unfavorable O(N7) scaling.

Density functional theory (DFT) methods aim to circumvent the use of the wave func-
tion in favor of the electron density, which is a much simpler function as it only depends
on three coordinates irrespective of the number of electrons. A sound theoretical basis for
DFT was provided by Hohenberg and Kohn [20] in 1964, who proved that the exact energy
can be expressed as a functional of the electron density. However, the exact functional
remains elusive up to this day and therefore approximate functionals need to be used in
practice. Most popular density functional methods are based on the Kohn–Sham formula-
tion of DFT [21] and have similar computational cost as HF theory, albeit at significantly
higher accuracy. Some methods display properties of both density functional and wave
function methods and cannot be unambiguously assigned to one category. These include
methods based on the adiabatic-connection fluctuation-dissipation theorem (ACFDT) [22–26]
such as the random phase approximation (RPA), [27] which allow to systematically improve
density functional methods. Another example for methods at the interface of density func-
tional and wave function methods are double-hybrid density functionals, which contain an
MP2-like contribution and have been shown to provide highly accurate energies. [28]

Even though many of the mentioned quantum chemistry methods allow for much more
efficient calculations than the exact “brute-force” full CI approach, the high requirements
of computational resources still limit their applicability, especially for larger molecules. Of
high importance in this context is the scaling of a method with respect to the molecule
size. HF theory displays a comparatively low O(N4) scaling, which means that doubling
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the system size results in an increase of the computational cost by a factor of 24 = 16.
Other wave function methods show an even higher scaling; MP2, e.g., scales as O(N5) and
CC methods scale at least as O(N6). Applying these methods to larger molecules quickly
becomes infeasible. However, the steep scaling is often unphysical. The electronic structure
of many molecules is local, [29,30] which explains the success of local bonding models or the
concept of functional groups. Therefore, it should, in principle, be possible to reduce
the scaling of quantum chemical methods, ideally to linear or O(N1), for large enough
systems with a significant electronic gap. Much work has been done on reduced-scaling
methods that are able to exploit the locality of the electronic structure both for energies
and molecular properties. [31]

This thesis is also mainly concerned with the development of novel quantum chemical
methods with reduced scaling, especially at the MP2 level of theory. The presented MP2
methods are based on atomic orbital-based MP2 (AO-MP2), [32–36] which expresses the MP2
equation solely in terms of atomic orbitals (AOs) avoiding the delocalized canonical MOs.
While the scaling of AO-MP2 can be reduced to linear using integral screening, [36] the high
computational cost, especially for extended basis sets, still limits its applicability to larger
molecules. For this reason, additional approximations such as the resolution-of-the-identity
(RI) [37,38] and Cholesky decomposition [39–42] of pseudo-density matrices have been intro-
duced into AO-MP2 theory, resulting in the RI-CDD-MP2 method from Maurer et al. [43]
Together with distance-dependent integral screening [44] cubic scaling with a low prefactor
was shown to be possible. Also, a linear-scaling version of RI-CDD-MP2 with local density
fitting [45] was presented by Maurer et al. [43] However, for the latter approach, the overhead
due to local density fitting was substantial and computational savings occurred only for
very large systems. In Publication I, RI-CDD-MP2 is improved further by introduc-
ing an attenuated Coulomb metric [46–49] for the RI. Sparse linear algebra approaches are
described, which allow to exploit the resulting sparsity in the three-center integrals and
reduce computational cost and memory demands. In addition, it is shown that a separate
treatment of Coulomb and exchange contributions with specialized algorithms is beneficial,
if an attenuated Coulomb metric is used. Efficient integral screening based on Schwarz es-
timates [50] is used for the time-dominating exchange contributions. Calculations on DNA
strands with up to 1052 atoms and 11230 basis functions demonstrate the potential of the
method for applications on large biomolecules.

An alternative path to efficient reduced-scaling MP2 is explored in Publication II by
combining the RI-CDD-MP2 method with the tensor hypercontraction [51,52] (THC) ansatz,
which provides a decomposition of four-center integral tensors into matrices. An approach
for obtaining the THC decomposition with reduced scaling is described, which employs
an attenuated Coulomb metric and Cholesky-decomposed density matrices. Furthermore,
it is shown how the MP2 energy can be computed efficiently from the THC-decomposed
integrals by exploiting the inherent sparsity of the obtained factors.

In addition to the computation of energies, quantum chemical methods can also be
used for calculating various molecular properties. Especially the computation of spectro-
scopically measurable properties provides important links between theory and experiments.
In this thesis, quantum chemical methods are presented for computing nuclear shielding
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tensors measurable by nuclear magnetic resonance (NMR) spectroscopy and electronic g-
tensors of electron paramagnetic resonance (EPR) spectroscopy. Both properties can be
obtained using a second derivative of the energy.

A method for computing NMR shieldings based on AO-MP2 has previously been intro-
duced by Maurer et al. [53] In Publication III, the method for computing MP2 energies
from Publication I is extended for NMR shieldings using an analytical second derivative.
The employed approximations significantly extend the applicability to larger systems com-
pared to the previous method fromMaurer et al. [53] A Z-vector approach [54,55] is used, which
reduces the number of coupled self-consistent field (CPSCF) equations [56] that need to be
solved and allows to efficiently compute the entire set of shieldings for a given molecule.

In Publication IV, the first method for computing NMR shieldings at the post-Kohn–
Sham RPA level of theory is introduced using a non-trivial numerical derivative approach.
While better efficiency could likely be obtained with an analytical derivative combined
with a Z-vector approach, the described implementation allowed us to perform benchmark
calculations on a set of small molecules and compare the computed shieldings to high-
level CCSD(T) shieldings. The results show that RPA based on a HF reference gives
highly accurate NMR shieldings. In particular, the obtained accuracy is higher than for
MP2, which makes the method attractive considering also the lower O(N4) scaling. In
addition, the basis set convergence of the method and the accuracy of the closely related
σ-functionals [57] was analyzed in this study.

The electronic g-tensor is a related molecular property and describes the interaction be-
tween the spin of an unpaired electron and an external magnetic field. In Publication VI,
an efficient method for computing g-tensors at the DFT level of theory is described. Linear
scaling for large systems is achieved with integral screening approaches. It is shown that
for molecules with a localized spin density, also asymptotically constant, O(N0) or O(1),
scaling is possible by exploiting the locality of the contributions to the g-tensor. As for
NMR shieldings, the problem of gauge-origin dependence [58] of the computed values can
occur in g-tensor calculations. Publication V provides an extensive benchmark study
on the gauge-origin dependence of the g-tensor. It is demonstrated that methods relying
on a common gauge-origin do not reliably give accurate g-tensors. The findings suggest
that, if possible, distributed gauge-origin methods should be used for g-tensors, which has
not been done in most of the previous implementations described in the literature. [59–76]
Furthermore, it is shown that for molecules with a single spin-center and well-localized
spin density, a common gauge-origin can be sufficient, but should be chosen according
to the spin density distribution. Previous common gauge-origin approaches do not fulfill
this requirement and we suggest a novel way of choosing an appropriate gauge-origin in
Publication V, whose suitability is illustrated using numerical data.

The following chapters of this cumulative thesis are structured as follows: In Chapter 2
the theoretical basis of the quantum chemical methods and many of the approximations
used in this thesis is presented. Chapter 3 contains the main body of work in the form
of the published articles and manuscripts, which are reproduced in their entirety. Finally,
a conclusion with an outlook on potential future lines of further research is provided in
Chapter 4.



Chapter 2

Theoretical Background

2.1 Molecular Schrödinger Equation
The central goal in non-relativistic quantum chemistry is to solve the molecular Schrödinger
equation [77] or at least to accurately approximate its solution. In its time-independent
formulation, the Schrödinger equation is given by

ĤΨ({r}, {R}) = EΨ({r}, {R}). (2.1)

In this equation, E stands for the energy of the molecular system. {r} and {R} denote
the sets of coordinates of all electrons and nuclei, respectively. Ψ is the wave function,
which describes the spatial distributions of electrons and nuclei. |Ψ|2 can be interpreted
as a probability density for finding these particles at certain positions in space. Note that
Eq. 2.1 has in general many different solutions with different energies E and wave functions
Ψ, which correspond to the ground state and to excited states of the molecule. In this
thesis, the focus lies on ground state energies and properties. Ĥ denotes the Hamilton
operator, which in atomic units has the following form for molecules:

Ĥ = T̂e + T̂N + V̂eN + V̂ee + V̂NN

= −
∑
i

1
2∇

2
i −

∑
A

1
2MA

∇ 2
A −

∑
i

∑
A

ZA
riA

+ 1
2
∑
i

∑
j

1
rij

+ 1
2
∑
A

∑
B

ZAZB
RAB

. (2.2)

The individual terms in Eq. 2.2 correspond to the kinetic energy of the electrons T̂e, the
kinetic energy of the nuclei T̂N, the electrostatic attraction of nuclei and electrons V̂eN, the
electron-electron repulsion V̂ee, and the nuclear-nuclear repulsion V̂NN, respectively. The
indices i and j denote electrons, while A and B denote nuclei. MA and ZA are mass and
charge of nucleus A. r and R denote distances between particles.

The problem of solving Eq. 2.1 can be simplified considerably by applying the Born–
Oppenheimer (BO) approximation, [78] which allows to separate the motion of nuclei and
electrons. It is motivated by the fact that the nuclei are much heavier than the electrons
and their motion usually happens on different time scales. The molecular wave function
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can in general be expanded in the following form:

Ψ({r}, {R}) =
∑
k

Ψe,k({r}; {R})ΨN,k({R}), (2.3)

where k labels the electronic states. Applying the BO approximation allows to replace
Eq. 2.1 with one electronic and one nuclear Schrödinger equation:(

T̂e + V̂eN + V̂ee + V̂NN
)

︸ ︷︷ ︸
Ĥe

Ψe,k({r}; {R}) = Ee,kΨe,k({r}; {R}), (2.4)

(
T̂N + Ee,k(R)

)
ΨN,k({R}) = EΨN,k({R}). (2.5)

The nuclear Schrödinger equation (Eq. 2.5) describes the quantum-mechanical motion of
the nuclei in the potential created by the electrons. Solving the (time-dependent) nuclear
Schrödinger equation allows to rigorously treat the nuclear dynamics during chemical reac-
tions and light-induced processes. In the rest of this thesis, the focus lies on the electronic
Schrödinger equation given in Eq. 2.4, which parametrically depends on the nuclear coor-
dinates R. For the sake of simplicity, the subscript “e” is dropped in the following; Ĥ, E,
and Ψ shall denote the electronic Hamiltonian, energy, and wave function.

For all but the simplest systems, an analytical solution of the electronic Schrödinger
equation is not possible, and one has to resort to approximations. Many of the commonly
used approximation methods are based on the variational principle, [2] which states that an
approximate wave function Ψ̃ always gives an energy expectation value EΨ̃ greater than or
equal to the exact ground state energy E0 associated with the ground state wave function
Ψ0:

EΨ̃ =

〈
Ψ̃
∣∣∣Ĥ∣∣∣ Ψ̃〉
〈Ψ̃|Ψ̃〉

≥

〈
Ψ0

∣∣∣Ĥ∣∣∣Ψ0
〉

〈Ψ0|Ψ0〉
= E0. (2.6)

This suggests the following strategy for determining approximate wave functions and en-
ergies: First, an ansatz for the wave function that depends on some parameters needs to
be chosen. Then, the energy as a function of these parameters needs to be minimized.
One suitable ansatz for an electronic wave function is a single Slater determinant [79] or a
linear combination of such determinants. A Slater determinant is a determinant containing
one-electron functions ϕ(τ ) called molecular orbitals (MOs):

Ψ(τ 1, τ 2, ..., τNel) = 1√
Nel!

∣∣∣∣∣∣∣∣∣∣
ϕ1(τ 1) ϕ2(τ 1) . . . ϕNel(τ 1)
ϕ1(τ 2) ϕ2(τ 2) . . . ϕNel(τ 2)

... ... ...
ϕ1(τNel) ϕ2(τNel) . . . ϕNel(τNel)

∣∣∣∣∣∣∣∣∣∣
, (2.7)

where Nel is the number of electrons. The MOs depend on the combined coordinates τ ,
which encompass three spatial coordinates r = (x, y, z) and a spin coordinate ω. An MO
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ϕp can be written as the product of a spatial orbital φp and a spin function, which may be
either an α or β function:

ϕp(τ 1) =
{
φp(r1)α(ω)
φp(r1)β(ω) . (2.8)

Slater determinants fulfill two necessary requirements for many-electron wave functions.
Firstly, they treat all electrons on an equal footing and thus account for the fact that
electrons are indistinguishable particles. Secondly, Slater determinants are anti-symmetric
under the exchange of two electrons; this requirement, which is also called the Pauli prin-
ciple, [80] has to hold for any wave function of fermions.

2.2 Electronic Structure Methods

2.2.1 Hartree–Fock Theory
In Hartree–Fock (HF) theory, [3–5] a single Slater determinant is used as ansatz for the
wave function. If the Slater determinant is inserted into the energy expectation value, the
energy becomes a functional of the molecular orbitals. Minimization of this functional with
respect to the MOs, under the constraint that the MOs are orthonormal, leads to a set of
coupled one-electron equations called canonical Hartree–Fock equations:

F̂ (τ 1)ϕi(τ 1) = εi ϕi(τ 1), (2.9)

where F̂ is the so-called Fock operator and εi is the orbital energy of orbital ϕi. The
Fock operator is an effective one-particle operator, which describes the electron-electron
interaction using a mean-field potential:

F̂ (τ 1)ϕi(τ 1) = ĥ(τ 1)ϕi(τ 1) +
∑
j

[
Ĵjϕi(τ 1)− K̂jϕi(τ 1)

]
, (2.10)

where
Ĵjϕi(τ 1) =

∫
dτ 2 ϕ

∗
j(τ 2) ϕj(τ 2) 1

r12
ϕi(τ 1), (2.11)

K̂jϕi(τ 1) =
∫
dτ 2 ϕ

∗
j(τ 2) ϕi(τ 2) 1

r12
ϕj(τ 1). (2.12)

The one-electron part ĥ includes the kinetic energy of the electrons and the electron-nuclear
attraction. The Coulomb operator Ĵ describes the electrostatic repulsion of electrons,
whereas the exchange operator K̂ does not have a classical interpretation and results from
antisymmetry of the wave function.

In practice, the spatial part of the MOs is usually expanded as a linear combination of
basis functions χ, for which most commonly Gaussian basis functions are used: [81]

φi(r1) =
∑
ν

Cνiχν(r1), (2.13)
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If this ansatz is inserted into Eq. 2.9, and one multiplies from the left with the ket 〈χµ|,
the Roothaan–Hall equation [82,83] is obtained:∑

ν

FµνCνi =
∑
ν

SµνCνiεi, (2.14)

where S is the so-called overlap matrix:

Sµν =
∫
dr1 χ

∗
µ(r1)χν(r1), (2.15)

and F is the Fock matrix, whose elements can be computed as follows:

Fµν =
∫
dr1 χ

∗
µ(r1)F̂χν(r1). (2.16)

The Roothaan–Hall equation is a generalized eigenvalue problem and can be solved using
the Löwdin orthogonalization. [84] As the Fock operator depends on the MOs and thus
on its own eigenfunctions, the canonical HF equation needs to be solved iteratively in
the self-consistent field (SCF) procedure. For a system with N basis functions, N MOs
can be obtained from the solution of the Roothaan–Hall equation. These are filled with
electrons according to the Aufbau principle, which means that the Nel energetically lowest
MOs become occupied MOs. In the following, the indices i, j, k, l, ... are used for denoting
occupied MOs. The remaining (N−Nel) MOs are unoccupied or virtual and will be denoted
with indices a, b, c, d, ....

Different variants of HF theory exist, which impose different conditions on the spatial
orbitals. For closed-shell systems, restricted Hartree–Fock (RHF) theory is appropriate,
which requires that each spatial orbital is occupied with one α and one β electron. For
open-shell systems, the most popular variants are unrestricted Hartree–Fock (UHF) [85]
and restricted open-shell Hartree–Fock (ROHF). [86] In ROHF theory, all spatial orbitals
are either doubly occupied with electrons of opposite spin or singly occupied. This ensures
that the ROHF wave function is an eigenfunction of the Ŝ2 operator. This is not guaranteed
for a UHF wave function, in which α and β MOs are not required to have identical spatial
parts. In UHF, an unphysical mixing of states with different total spin can occur for open-
shell systems, which is called spin contamination. [87] On the other hand, the UHF wave
function has more flexibility and can account for spin polarization. In Publications V and
VI methods for computing electronic g-tensors are studied; as the g-tensor is a property
of molecules with unpaired electrons, UHF and the related unrestricted DFT (UDFT) is
used in these works.

2.2.2 Møller–Plesset Perturbation Theory
Perturbation theory [17] is a method for solving the Schrödinger equation with a Hamiltonian
Ĥ and requires that the eigenvalues and eigenstates of a similar Hamiltonian Ĥ0 are known.
The difference between Ĥ and Ĥ0 is called the perturbation V̂ . Furthermore, a parameter λ
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is introduced, which controls the strength of the perturbation and renders the Hamiltonian
λ-dependent:

Ĥ(λ) = Ĥ0 + λV̂ . (2.17)

If the Hamiltonian from Eq. 2.17 is inserted into the Schrödinger equation, also the energy
and the wave function become functions of λ. In perturbation theory, these functions E(λ)
and Ψ(λ) are expanded in a Taylor series around λ = 0. From this expansion, a hierarchy
of equations can be derived, which allow to obtain wave function and energy corrections
to a certain order in λ. At the end of the derivation, λ is set to 1, which corresponds to
the (fully perturbed) system of interest.

In Møller–Plesset perturbation theory (MPPT), [18] electron correlation effects are de-
scribed perturbatively. The perturbation operator in MPPT is given by the difference
between the exact electron-electron interaction and the mean-field interaction in HF the-
ory:

V̂ MPPT = Ĥ −
∑
i

F̂ (τ i), (2.18)

ĤMPPT
0 =

∑
i

F̂ (τ i). (2.19)

The sum of the zeroth and first order energy in MPPT is equal to the HF energy. In
second-order MPPT (MP2), which is one of the computationally cheapest methods for
approximately computing electron correlation effects, the second-order energy correction
is included. For a closed-shell molecule, the following expression holds for the MP2 energy
contribution:

EMP2 =
∑
ijab

(ia|jb) [2(ai|bj)− (bi|aj)]
εi + εj − εa − εb

. (2.20)

This formula contains electron repulsion integrals (ERIs) in the MO basis, which are defined
as follows:

(ia|jb) =
∫∫

dr1dr2 φ
∗
i (r1)φa(r1) 1

r12
φ∗j(r2)φb(r2). (2.21)

Computing the MP2 energy formally scales as O(N5). Several reduced-scaling MP2
methods have been developed in order to enable calculations of the correlation energy
of large molecules. Local correlation methods [88–93] employ localized molecular orbitals
(LMOs) [94] and partition the correlation energy into contributions from LMOs and asso-
ciated orbital domains. Disadvantages of local correlation methods are that often large
orbital domains are required for accurate results and discontinuities in the potential en-
ergy surfaces can occur. [95–97] Other reduced scaling methods partition the molecule into
fragments, like the fragment molecular orbital (FMO) [98,99] or the divide-and-conquer ap-
proach. [100] A different class of approaches employ a Laplace transform for decomposing
the orbital energy denominator in Eq. 2.20: [101–103]

1
εi + εj − εa − εb

=
∞∫
0

dt e−t(εi+εj−εa−εb) ≈
∑
α

wα e
−tα(εi+εj−εa−εb). (2.22)
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The integral in Eq. 2.22 can be accurately approximated numerically; in most cases 5-8
integration points are sufficient. [102] With the help of a Laplace transform, a formulation of
MP2 purely based on AOs (AO-MP2) can be devised. [32–36] In combination with integral
screening approaches, the scaling of AO-MP2 can be reduced to linear. The RI-CDD-
MP2 method [43] further increases the efficiency of AO-MP2 by using the resolution-of-
the-identity approximation (see Sec. 2.4.1) and a Cholesky decomposition [39–42] of pseudo-
density matrices (see Sec. 2.4.3). Also distance-dependent QQR [44] integral screening is
used. In Publication I, RI-CDD-MP2 is improved further by introducing a local attenu-
ated Coulomb metric [46–48] for the RI and by efficiently exploiting the resulting additional
sparsity in the three-center integrals. In Publication II, an alternative path to efficient
MP2 energy computations on large molecules is explored by using the tensor hypercon-
traction approach (see also Sec. 2.4.2).

In recent years, also several variations of conventional MP2 theory have been proposed.
In spin-component scaled MP2 (SCS-MP2) from Grimme, [104] the Coulomb and exchange
type contributions to the MP2 energy are scaled using different constant factors, which
has been shown to further improve the accuracy. In the related scaled opposite-spin MP2
(SOS-MP2) from Jung et al., [105] the computationally demanding exchange contributions
can be neglected entirely without degrading the accuracy of MP2. In Publications I-III,
calculations with both conventional MP2 and SOS-MP2 were carried out showing that the
SOS-approximation leads to significant computational savings for the developed methods.
The recently introduced class of double-hybrid density functionals [28] contains an MP2-
like energy contribution. Double-hybrid functionals have been shown to give excellent
accuracy for energies [106] and different molecular properties. [107,108] All of the presented
developments for efficient MP2 calculations in this thesis are also applicable in the context
of double-hybrid density functionals.

2.2.3 Density Functional Theory
Density functional theory (DFT) aims to compute the energy and properties of molecules
without resorting to the electronic wave function, but rather using the electron density ρ(r)
as the central quantity. This would be desirable, because the electron density is a much
simpler quantity and depends only one three spatial coordinates, while the wave function
depends on 3Nel spatial coordinates. In 1964, Hohenberg and Kohn [20] proved that the
exact energy can be expressed as a functional of the electron density. However, the exact
density functional remains unknown to date. For this reason, approximate functionals are
used in practice. [109]

Contrary to orbital-free DFT approaches, [110] the popular Kohn–Sham DFT (KS-DFT) [21]
re-introduces MOs. This is advantageous because it enables an accurate computation of
the kinetic energy (exact only for non-interacting systems), which is challenging for orbital-
free DFT. The electron density ρ(r) can be obtained from the MOs as shown in Eq. 2.23:

ρ(r) =
∑
i

φ∗i (r)φi(r). (2.23)
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Like in HF theory, a Slater determinant composed of orthonormal MOs is used in KS-DFT.
These MOs fulfill an equation that has the same structure as the canonical HF equation
shown in Eq. 2.9:

ĥKSϕi(τ 1) = εiϕi(τ 1). (2.24)

Like the Fock operator from HF theory, ĥKS is a one-particle operator. It contains the
following contributions:

ĥKS(ri) = −∇
2
i

2 −
∑
A

ZA
riA

+
∫
dr2

ρ(r2)
ri2

+ Vxc(ri)︸ ︷︷ ︸
VKS

, (2.25)

where VKS is the Kohn–Sham potential. The first three terms on the right-hand side of
Eq. 2.25 account for the kinetic energy of the electrons, the nuclear-electron attraction,
and the Coulomb interaction; all these interactions are also included in the Fock operator
from HF theory. The exchange operator K̂ from Eq. 2.10, however, is replaced by the
exchange-correlation potential Vxc. As its name suggests, Vxc should ideally account for
all exchange and electron correlation effects (and include a small correction for the kinetic
energy). However, only approximate expressions for Vxc are known. LDA functionals
depend on ρ(r) only, while GGA functionals also depend on the gradient of ρ(r). [109] Hybrid
functionals also include a fraction of exact Hartree–Fock exchange and often provide better
accuracy. [111]

After iteratively solving Eq. 2.24, the DFT energy can be computed from the obtained
MOs and the electron density as follows:

EDFT = −
∑
i

∫
drφ∗i (r)∇

2
i

2 φi(r)−
∑
A

∫
dr

ZA ρ(r)
|r−RA|

+
∫∫

dr1dr2
ρ(r1)ρ(r2)

r12
+Exc[ρ], (2.26)

where Exc is the exchange-correlation energy, which is a functional of ρ and can be related
to Vxc by differentiating with respect to the electron density:

Vxc[ρ](r) = ∂Exc[ρ]
∂ρ(r) . (2.27)

For energetics and many molecular properties, DFT can provide significantly higher
accuracy than Hartree–Fock at similar or even lower computational cost (lower in the case
of pure density functionals without HF exchange). DFT is also more accurate than HF
for electronic g-tensors; [112] for this reason, we use unrestricted DFT (UDFT) in addition
to UHF in our studies on g-tensors in Publications V and VI. The excellent cost-to-
accuracy ratio makes DFT a highly popular method in modern computational chemistry.
Furthermore, DFT calculations can also serve as a starting point for the random phase
approximation method, which is discussed in Sec. 2.2.4.
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2.2.4 Random Phase Approximation
The adiabatic-connection formalism first studied by Langreth and Perdew [22,23] and by
Gunnarsson and Lundqvist [113] allows to derive an exact expression for the correlation
energy. This formalism is based on an interpolation between the so-called interacting
system with the Schrödinger equation given by Eq. 2.4 and the non-interacting Kohn–
Sham system. The corresponding Hamiltonian depending on the coupling strength λ reads
as follows:

Ĥλ = T̂e + λV̂ee + V̂ λ. (2.28)
V̂ λ is defined such that the ground state density is independent of λ. For λ = 0, V̂ λ

reduces to the Kohn–Sham potential V̂ KS, which was defined in Eq. 2.25. In the fully
interacting limit with λ = 1, Ĥλ is equal to the exact Hamiltonian. It can be shown that
the correlation energy in the adiabatic-connection formalism is given by: [22,113]

Ecorr =
1∫

0

dλ
〈
Ψλ

0

∣∣∣V̂ee∣∣∣Ψλ
0

〉
−
〈
ΨKS

∣∣∣V̂ee∣∣∣ΨKS
〉
, (2.29)

where Ψλ
0 is the ground state eigenfunction of Ĥλ and ΨKS is the Kohn–Sham determinant.

Using the adiabatic-connection fluctuation-dissipation theorem (ACFDT), [22–26] the ex-
pression for the correlation energy from Eq. 2.29 can be reformulated as:

Ecorr = − 1
2π

1∫
0

dλ

∞∫
0

dω
∫∫

dτ 1dτ 2
χλ(τ 1, τ 2, iω)− χKS(τ 1, τ 2, iω)

r12
, (2.30)

where χKS is the Kohn–Sham frequency-dependent response function and χλ is the corre-
sponding interacting response function. [114] These response functions describe the relation-
ship between an external, frequency-dependent perturbation acting at position r2 and with
frequency ω and the induced change of the density at position r1. For the Kohn–Sham
response function, an exact expression is known: [115]

χKS(τ 1, τ 2, ω) =
∑
ia

2 (εa − εi)ϕi(τ 1)ϕa(τ 1)ϕi(τ 2)ϕa(τ 2)
ω2 − (εa − εi)2 . (2.31)

The interacting response can, in principle, be computed exactly from a Dyson-type equa-
tion: [116]

χ(τ 1, τ 2, ω) = χKS(τ 1, τ 2, ω)+
∫∫

dτ 3dτ 4 χKS(τ 1, τ 3, ω)
[ 1
r34

+ fxc(τ 3, τ 4, ω)
]
χ(τ 4, τ 2, ω),

(2.32)
where fxc(τ 3, τ 4, ω) is the exchange-correlation kernel, for which no exact expression is
known. In its time-domain representation, fxc describes the change of the exchange-
correlation potential at time t3 and position τ 3 that is caused by a change of the electron
density at time t4 and position τ 4:

fxc(τ 3, τ 4, t3, t4) = ∂Vxc(τ 3, t3)
∂ρ(τ 4, t4) . (2.33)
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fxc(τ 3, τ 4, ω) is obtained from the function in Eq. 2.33 by a Fourier transform.
When working in a basis of MOs, Eq. 2.32 can also be written in matrix form:

Π(ω) = ΠKS(ω) + ΠKS(ω) [V + Fxc(ω)] Π(ω), (2.34)
where all involved matrices have dimensions (noccnvirt)× (noccnvirt)

ΠKS
ia,jb(ω) = 2(εa − εi)δijδab

ω2 − (εa − εi)2 , (2.35)

F xc
ia,jb(ω) =

∫∫
dτ 1dτ 2 ϕi(τ 1)ϕa(τ 1)fxc(τ 1, τ 2, ω)ϕj(τ 2)ϕb(τ 2), (2.36)

Via,jb = (ia|jb) . (2.37)
Different approximations can be employed for the exchange-correlation kernel; the arguably
simplest one is the direct random phase approximation (RPA), [27] in which the exchange-
correlation kernel is neglected entirely:

ΠRPA = ΠKS + ΠKS V ΠRPA. (2.38)
Different formulations of RPA exist, which differ in the final working equations, like the
plasmon formulation [26] or the dielectric matrix formulation. [117] In Publication IV, we
employ the O(N4) scaling RI-RPA formulation from Eshuis et al.: [118]

ERPA
corr = 1

2π

∞∫
0

dωTr{ln(I−XKS(iω)V) + XKS(iω)V}, (2.39)

XKS
PQ(iω) =

∑
iajb

(P |ia) ΠKS
ia,jb(iω) (jb|Q) , (2.40)

VPQ = (P |Q)−1 . (2.41)
Eq. 2.39 holds only for real MOs; a more general expression that is also valid for complex
MOs is derived in Publication IV.

RPA systematically improves energies obtained with DFT and gives particularly accu-
rate results for dispersion-dominated systems and molecules with a small HOMO-LUMO
gap. [119–121] It has also been shown that RPA provides accurate geometries and first-order
molecular properties. [122] In Publication IV, we present the first method for computing
NMR shieldings with RPA using a numerical derivative approach. With HF orbitals, RPA
NMR shieldings are shown to be more accurate than MP2 shieldings and almost as accurate
as CCSD shieldings.

The accuracy of direct RPA can be further increased by including exchange contri-
butions. To this end, several approaches were suggested, like the second-order screened
exchange (SOSEX) [117,123,124] or the approximate exchange kernel (AXK). [125] Very recently,
Trushin et al. [57] introduced a novel class of functionals called σ-functionals, which signifi-
cantly increase the accuracy of direct RPA while having virtually the same computational
cost. These novel functionals are also included in our benchmark study on NMR shieldings
from Publication IV.
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2.3 Reduced-Scaling Quantum Chemistry Approaches
The scaling is one of the most important properties of a quantum chemical algorithm. The
computational effort W can in general be approximately described by

W (M) = α×Mx, (2.42)

where α is a constant called prefactor, M is some measure for the system size like the
number of basis functions and the exponent x characterizes different quantum chemical
methods. Low scaling, ideally linear scaling (x = 1), is desirable especially for studying
larger molecules, as beyond a certain system size (called the crossover point) the method
with lower scaling is always faster. The location of the crossover point depends both on
the prefactors and the scaling of the compared methods.

In some cases, tensor decompositions like tensor hypercontraction can reduce the scaling
of a quantum chemical method. Such decompositions will be discussed in Sec. 2.4.2. In
the current section, approaches are discussed that reduce the scaling for large molecules
by exploiting sparsity in the integrals or other intermediates.

2.3.1 Sparse Linear Algebra
Matrices and matrix operations are ubiquitous in quantum chemical methods and their
implementations. Some of these matrices are sparse, which means that a large number of
elements has a very small or zero value. Prime examples of sparse matrices are the AO
density matrix in HF or DFT or the pseudo-density matrices that occur in AO-MP2 and
related methods. Multiplications and other operations involving sparse matrices can be
accelerated significantly by avoiding to include negligible elements during the computation.
While this is guaranteed to reduce the required number of floating point operations, it can
in practical implementations lead to a significant computational overhead compared to
highly optimized routines for densely populated matrices. Therefore it is important to use
suitable data structures and algorithms that allow to exploit the available sparsity in an
efficient manner.

The mentioned density and pseudo-density matrices as well as their Cholesky factors
usually display a diagonally-dominant structure if the atoms and basis functions are or-
dered appropriately (e.g., with the reverse Cuthill–McKee algorithm [126]). The magnitude
of the elements decreases with increasing distance from the main diagonal. This sparsity
pattern can be exploited using block-sparse linear algebra, which is applied in Publi-
cations VI and III. To this end, the matrix is divided into submatrices or blocks. In
multiplications, blocks are excluded if their norm is smaller than a chosen threshold, which
speeds up the multiplication. At the same time, highly optimized matrix multiplication
routines can be employed for multiplying blocks, which reduces the computational over-
head compared to dense matrix multiplications. Furthermore, no memory needs to be
allocated for insignificant blocks, which lowers the memory demands of the method.

In addition, a special data format for three-center integrals called natural blocking [47,127]

is used in Publications I-III. As an example, natural blocking shall be discussed for the
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three-center integrals
(
P | erfc(ωr12)

r12
|µν

)
. The elements in the corresponding third order

integral tensor can be arranged such that there is a N×N matrix for every auxiliary index
P , where N is the number of basis functions. If natural blocking is applied, all columns
and all rows in these matrices that do not contain any significant element above a chosen
threshold are deleted. This can lead to significant reduction of the size of these matrices.
In particular, if all three indices of a third order tensor only couple over short distances
(as it is the case for the three-center integrals with an attenuated Coulomb metric), then
asymptotically only O(1) columns and rows are expected to be significant. Due to the
reduced dimensions of the matrices, multiplications with matrices or contractions with
other integral tensors can be accelerated and in many cases, also the asymptotic scaling
can be lowered as demonstrated in Publications I-III. Furthermore, also the memory and
disk space requirements for the three-center integrals can be lowered with natural blocking.

2.3.2 Integral Screening
In integral screening approaches, upper bounds or estimates for integrals occurring in
quantum chemical methods are used for avoiding the computation of negligible integrals
or negligible contributions involving certain integrals. One example for integral screening
with a rigorous upper bound are Schwarz estimates [50] for the ERIs. These estimates are
based on the following inequality:

| (µν|λσ) | ≤ QµνQλσ, (2.43)

which is a special case of the more general Cauchy–Schwarz inequality. [128] The Schwarz
factors Q are defined as follows:

Qµν =
√
| (µν|µν) |. (2.44)

Formally, there areO(N4) ERIs. However, ERIs show an exponential decay with increasing
distance between the basis functions χµ and χν in the bra and between χλ and χσ in the
ket. For large molecules, many of the ERIs thus have values close to zero and are negligible.
Due to the exponential coupling, only O(N) µν pairs and λσ pairs are significant. Schwarz
screening can capture this decay behavior and allows to compute only theO(N2) significant
ERIs.

In Publication I, Schwarz estimates are applied to the exchange contributions to the
ω-RI-CDD-MP2 energy: ∣∣∣ (ia|jb) (ib|ja) ∣∣∣ ≤ QiaQjbQibQja. (2.45)

In the ERI
(
ia|jb

)
, the Cholesky pseudo-MOs φi and φa in the bra are coupled exponen-

tially as well as φj and φb in the ket. In the integral
(
ib|ja

)
, φi is exponentially coupled

to φb and φj is coupled exponentially to φa. In consequence, all four orbitals φi, φa, φj,
and φb need to be spatially close to each other; otherwise, the integral product in Eq. 2.45
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vanishes. The Schwarz estimates from Eq. 2.45 are able to capture this decay behavior
and reduce the number of computed contributions to linear. In a similar way, Schwarz es-
timates have recently also been applied to the exchange contributions in RPA-X methods
by Beuerle et al. [129]

In some integral screening approaches, also other quantities like the HF density matrix
are taken into account. One example is the LinK screening, [130,131] which enables a linear-
scaling computation of the elements of the HF exchange matrix:

Kµν =
∑
λσ

(µσ|λν)Pλσ, (2.46)

| (µσ|λν)Pλσ| ≤ QµσQλν |Pλσ|. (2.47)

For systems with a non-vanishing HOMO-LUMO gap, the density matrix elements Pλσ
decay exponentially with distance between χλ and χσ. [132–134] Because of the exponential
coupling of the basis functions in the bra and in the ket and the additional coupling of bra
and ket through the density matrix the number of significant contributions to K is reduced
to asymptotically O(N). A similar screening approach, which takes into account both the
HF density and the spin density matrix, was applied to the spin-orbit mean field (SOMF)
matrix [135] in Publication VI. This significantly reduces the number of two-electron spin-
orbit integrals that need to be computed, particularly for systems with a localized spin
density.

2.4 Tensor Decompositions
Matrices and higher-order tensors play an important role in quantum chemical methods.
Of particular significance is the fourth-order tensor of electron repulsion integrals. Tensor
decomposition approaches can be used to reduce the memory requirements for storing the
tensor elements and for accelerating tensor contractions. Also in this thesis, several different
tensor decomposition techniques are applied, which will be described in the following.

2.4.1 Resolution-of-the-Identity
An ERI (µν|λσ) describes the electrostatic interaction between two charge densities ρµν(r1)
and ρλσ(r2), which are both given by a product of basis functions:

ρµν(r1) = χ∗µ(r1)χν(r1) ρλσ(r2) = χ∗λ(r2)χσ(r2). (2.48)

When using the resolution-of-the-identity approximation, [37,38] also called density fitting, [45]
at least one of these two charge densities is approximated using a linear combination of
auxiliary functions χP :

ρλσ = χ∗λ(r2)χσ(r2) ≈
∑
P

χP (r2)CP
λσ = ρ̃λσ. (2.49)
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Different methods can be used to obtain the density fitting coefficients CP
λσ. Minimizing

the error in the charge density ∆λσ ≡ ρ̃λσ − ρλσ in a least-squares sense results in the
so-called overlap metric: [136]

CP
λσ =

∑
Q

(λσQ) (QP )−1. (2.50)

This formula contains two types of overlap integrals:

(λσQ) =
∫
drχ∗λ(r)χσ(r)χQ(r), (2.51)

(QP ) =
∫
drχQ(r)χP (r). (2.52)

If both of the charge densities in the bra and in the ket of an ERI (µν|λσ) are fitted using
the overlap metric, the following approximation for the ERI is obtained:

(µν|λσ) ≈
∑
PQRS

(µνP ) (PQ)−1 (Q|R) (RS)−1 (Sλσ) . (2.53)

Alternatively, one might employ the so-called Coulomb metric, [136] which minimizes the
error in the Coulomb potential of the fitted charge densities. With the Coulomb metric, a
four-center ERI can be decomposed into three- and two-center ERIs:

(µν|λσ) ≈
∑
PQRS

(µν|P ) (P |Q)−1 (Q|R) (R|S)−1 (S|λσ) =
∑
PQ

(µν|P ) (P |Q)−1 (Q|λσ) .

(2.54)
With a given auxiliary basis, the (four-center) ERIs are usually significantly more accu-
rately approximated with the Coulomb metric than with the overlap metric. [136] Therefore,
the overlap metric is used rarely in practice, even though it leads to more sparsity in the
three-center integrals because of an exponential decay with increasing bra-ket separation
(while the Coulomb metric leads to a very slow 1

r12
-decay).

The attenuated Coulomb metric [46–48] is another important RI metric. The correspond-
ing decomposition of an ERI reads as follows:

(µν|λσ) ≈
∑
PQRS

(µν 99
9P )(P 99
9Q)−1(Q|R)(R 99
9S)−1(S 99
9λσ). (2.55)

The dashed vertical lines in this equation represent an erfc-attenuated electron-electron
interaction operator given by erfc(ωr12)

r12
, which depends on the attenuation parameter ω. If

ω is set to zero, the standard Coulomb metric is obtained as erfc(0) = 1. In the limit
of ω → ∞, the overlap metric is obtained. Thus, the attenuated Coulomb metric allows
to interpolate between Coulomb and overlap metric. It has been shown that a suitable
choice of ω allows to combine the advantages of these two metrics. [49] With ω ≈ 0.1 the
accuracy is comparable to the Coulomb metric; additionally, a high degree of sparsity in
the three-center integrals is obtained. This sparsity can be exploited in order to accelerate
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calculations on large molecules and to reduce the scaling. Because of these favorable
properties, the attenuated Coulomb metric is used for increasing the efficiency of MP2
energy and MP2 NMR shielding calculations in Publications I and III and for speeding
up the decomposition of the ERIs in tensor hypercontraction format in Publication II.

For many methods like, e.g., MP2, the RI approximation does not lower the formal
scaling, but often significantly reduces the prefactor. [37] Additionally, the RI approximation
often reduces the memory demands. Irrespective of the employed metric, RI allows to
replace the fourth-order ERI tensor by third- and second-order integral tensors. Storing
the elements of these lower order tensors usually requires significantly less memory, which is
especially beneficial for electron correlation methods. A local metric such as the attenuated
Coulomb can enable a further reduction in the amount of needed memory, if the sparsity
in the three-center integrals is exploited. For this purpose, sparse data formats such as
natural blocking and block-sparse matrices are employed in Publications I and III in
order to lower the memory and disk space requirements for storing three-center integrals.

2.4.2 Tensor Hypercontraction
Tensor hypercontraction (THC) is a rather novel tensor decomposition technique and was
first introduced by Martínez and coworkers in 2012. [51] Later, applications to various elec-
tronic structure methods were published, including MP2, [137,138] CCSD, [139,140] and second-
order approximate coupled cluster singles and doubles (CC2). [141,142] More recently, THC
has also been applied in the context of second-order complete active space perturbation
theory (CASPT2). [143] For many of these methods, THC allows to reduce the formal scal-
ing. For both MP2 and CCSD, e.g., the scaling can be reduced to O(N4), [51,139] whereas
the scaling with undecomposed ERIs or RI-approximated ERIs amounts to O(N5) and
O(N6), respectively.

THC can be applied to ERIs both in the AO or MO basis. Here, the THC decomposition
format is shown for an ERI in the MO basis:

(ia|jb) ≈
∑
PQ

XP
i X

P
a Z

PQXQ
j X

Q
b . (2.56)

In the first article on THC, Hohenstein et al. [51] used an iterative PARAFAC decompo-
sition [144] for obtaining the factors X and Z. Later, the grid-based least-squares THC
approach (LS-THC) [52] was introduced, which provides a good compromise between accu-
racy and computational efficiency of the THC factorization. In LS-THC, the X-matrices
contain the values of AOs or MOs at the spatial positions of a grid:

XP
i = φi(rP ) 4

√
wP , (2.57)

where wP is the weight of the grid point at position rP . It has been shown that a rather
small number of grid points per atom (less than 100) can be sufficient for an accurate
THC decomposition of the ERIs. [145] A particularly good ratio between accuracy and the
number of grid points per atom is obtained with grids from Ref. 145, which were optimized
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for THC and specific basis sets. Using the X-matrices from Eq. 2.57, the corresponding
Z-matrix that minimizes the error in the ERI tensor in a least-squares sense

∂

∂ZPQ

∑
iajb

(ia|jb)−
∑
PQ

XP
i X

P
a Z

PQXQ
j X

Q
b

2
 != 0 ∀P,Q (2.58)

can be determined by evaluating the following analytical expression in LS-THC: [52]

Z = S−1ES−1, (2.59)

where
SPQ =

∑
ia

XP
i X

P
a X

Q
i X

Q
a , (2.60)

EPQ =
∑
iajb

XP
i X

P
a (ia|jb)XQ

j X
Q
b . (2.61)

In Publication II, local Cholesky-MOs are used instead of delocalized, canonical MOs in
Eqs. 2.60 and 2.61. Additionally, the ERIs in Eq. 2.61 are approximated using RI with an
attenuated Coulomb metric. Together with sparse linear algebra, this allows for a highly
efficient computation of the E and S intermediates.

In Eq. 2.58, Z is fitted to ERIs in the MO basis of the form (ia|jb); this is denoted
as MO-THC. Alternatively, Z can also fitted to the ERIs in the AO basis (AO-THC); for
MP2 energies this is significantly less accurate, because the number of ERIs in the AO
basis is much larger than the number of (ia|jb)-type integrals.

The THC approximation has shown great potential in the development of efficient
quantum chemistry methods due to several properties. THC can reduce the formal scaling
of many methods. As an example, consider the computation of the Coulomb contribution
EJ

MP2 in RI-CDD-MP2 from Maurer et al.: [146]

EJ
MP2 ≡ −2

∑
τ

∑
ijab

(
ia|jb

)(τ) (
ia|jb

)(τ)
, (2.62)

where the sum over τ runs over all Laplace quadrature points. With RI, evaluating Eq. 2.62
scales as O(N4). As shown in Publication II, the scaling can be lowered to O(N3) with
THC:

EJ
MP2 = −2

∑
τ

Tr
[(

C(τ)Z
) (

C(τ)Z
)]
, (2.63)

where
CPQ,(τ) =

(∑
i

XP
i X

Q
i

)(∑
a

XP
a X

Q
a

)
. (2.64)

THC also allows to lower the formal scaling of the RI-CDD-MP2 exchange contribution
from O(N5) to O(N4).

In Publication II, it is shown how the effective scaling of THC-MP2 can be reduced
further by exploiting sparsity. One might wonder whether reduced-scaling methods derived
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from THC-MP2 have any advantages compared to RI-MP2 based methods with the same
asymptotic scaling. One needs to consider, however, that reduced-scaling methods achieve
lowered scaling only for systems beyond a certain size by exploiting sparsity. For small
molecules, the scaling behavior always follows the formal scaling. The molecular size
range, in which a transition from the formal to the asymptotic scaling can be observed,
strongly depends on the system. In systems, in which this transition occurs rather late,
the THC-based methods will have a natural advantage, because they benefit from the
lower formal scaling. Molecular systems with a late onset of reduced scaling include dense
three-dimensional molecules (as opposed to linear, extended molecules), molecules with
delocalized electronic structure, and systems with a large basis set containing diffuse basis
functions. One can thus expect the THC-based methods to perform particularly well for
these kind of systems.

THC can also greatly reduce the memory requirements compared to methods based
on RI. The formal scaling of the required memory is quadratic for THC and cubic for RI
methods. The crossover occurs rather early and also for molecules that are tractable with
current methods, significant memory savings are possible. Consider, e.g., a system with
1000 basis functions. Typically, 3000-4000 auxiliary basis functions and roughly 10000
THC grid points (assuming optimized grids as from Kokkila Schumacher et al. [145]) are
needed for such a system. Not considering sparsity or symmetry, the three-center integrals
in the RI formulation would require 22.4 - 29.8 GB of memory (10002 × 3000× 8 bytes =
22.4GB, as 8 bytes of memory are needed for a double-precision float). In contrast, only
0.75 GB (100002 × 8 bytes) memory are required for storing the matrix Z from Eq. 2.59;
the X matrices require at least an order of magnitude less memory. As calculations of
molecular properties using RI are often more memory-intensive than energy calculations
due to the necessity of storing several different types of transformed integrals (see, e.g.,
Publication III), THC might be particularly useful in property calculations.

2.4.3 Cholesky Decomposition
A Cholesky decomposition (CD) [39] allows to decompose a symmetric positive definite
matrix A into the product of a lower triangular matrix L and its transpose:

A = LL>. (2.65)

Pivoted CD, which is a variant of CD, allows to decompose also positive semi-definite
matrices. [40]

CD can be applied to different quantities occurring in quantum chemistry. CD of the
fourth-order ERI tensor decomposes it into two third-order tensors – similar to the RI
approximation. [42,147,148] CD has also been applied to the MP2 orbital energy denominator
from Eq. 2.20. [149] In this thesis, CD is used for decomposing the occupied and virtual
pseudo-density matrices, which occur in AO-MP2 theory:

P µν =
∑
i

LµiLνi, (2.66)
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P µν =
∑
a

LµaLνa. (2.67)

Such a decomposition of pseudo-densities has previously been applied to MP2 [41,146] as well
as to RPA. [49,150] The Cholesky factors Lµi and Lµa can be interpreted as the expansion
coefficients of Cholesky pseudo-MOs φi and φa, respectively. The number of occupied
(virtual) Cholesky pseudo-MOs is smaller than or equal to the number of occupied (virtual)
orbitals due to the rank deficiency of the pseudo-density matrices. This can be used for
reducing the elements of the integral tensors in electron correlation methods like MP2 and
RPA, as especially the number of occupied MOs is much smaller than the number of basis-
functions for high-quality basis sets. It also improves the scaling with respect to the size
of the basis set for fixed molecule size, because the number of occupied orbitals is constant
in this case.

It also has been shown that the orbitals obtained from a CD are local as opposed to the
delocalized canonical MOs. [151] CD can thus be used as an alternative to iterative orbital
localization approaches, [94,152–155] which generally are computationally more demanding
and can suffer from convergence problems.

In order to benefit from the rank reduction and locality of the Cholesky pseudo-MOs,
the decompositions from Eqs. 2.66 and 2.67 are applied to MP2 energies in Publications
I and II and to MP2-NMR shieldings in Publication III. In Publication I, also the HF
density matrix is subjected to a CD – similar to Ref. 150. The obtained Cholesky factors are
used for transforming one index of the AO three-center integrals. For each Laplace point,
the Cholesky MO index is transformed again to the basis of occupied Cholesky pseudo-
MOs. This two-step transformation enables both computational savings and reduces the
disk space requirements by reducing the size of the integral tensors.

2.5 Computation of Magnetic Resonance Parameters
Spectroscopic techniques are widely used in modern experimental chemistry and can reveal
a wealth of information about molecular geometry and electronic structure. A quantum
chemical calculation of many spectroscopic properties is possible via derivatives of the
energy. In this thesis, the focus lies on NMR shieldings and electronic g-tensors, which
both can be computed using a mixed second derivative of the energy. Both properties
require the treatment of magnetic fields. In general, magnetic fields can be accounted for
by replacing the kinetic momentum p with π = p − qA according to the principle of
minimal coupling. [156] q is the charge (−1 for electrons) and A the vector potential, which
is related to the magnetic field B via B = ∇×A. The electronic Hamiltonian from Eq. 2.4
then changes to

Ĥe = 1
2
∑
i

(p̂i + A(ri))2 + V̂eN + V̂ee + V̂NN. (2.68)

The vector potential contains a contribution Aext from the external magnetic field. For
NMR shieldings, also a contribution Am from the magnetic moment mA of the nuclei needs
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to be included:
A = 1

2B× (r−R0)︸ ︷︷ ︸
Aext

+α2∑
A

mA × (r−RA)
|r−RA|3︸ ︷︷ ︸
Am

, (2.69)

where R0 denotes the gauge-origin. Similarly, the contribution of the magnetic moment of
the electron to the vector potential needs to be accounted for when computing g-tensors.

2.5.1 Gauge-Origin Dependence
Gauge-origin dependence is an important phenomenon that can occur in the computation
of magnetic properties. [58] In a gauge-origin dependent calculation, the computed values
show an unphysical dependence on the choice of the coordinate system. This is an artifact
caused by the use of an incomplete basis set. [58] In principle, it could be eliminated by using
a complete basis set, but this is not feasible in practice. Alternatively, gauge-origin inde-
pendence can also be ensured with distributed gauge-origin methods like gauge-including
atomic orbitals (GIAOs), [157–160] or, today less commonly, the individual gauge for local-
ized orbitals (IGLO) [161] or the localized orbital/local origin gauge (LORG) approach. [162]
GIAOs are the most commonly used approach and standard for computing NMR shield-
ings. They are constructed by multiplying AOs with a magnetic field dependent phase
factor:

χµ(r,B) = χµ(r) exp
[
− i2B× [(Rµ −R0) · r]

]
. (2.70)

For electronic g-tensors, most implementations described in the literature to date employ a
common gauge-origin. [59–76] The most commonly used gauge-origin is the electronic charge
centroid (ECC), [163] whose position can be computed according to

rECC = 1
Nel

∑
µν

Pµν 〈µ |r| ν〉 . (2.71)

The ECC can be thought of as the center of mass of the electron cloud. In Publication V,
we provided a benchmark study for the gauge-origin dependence in g-tensor and showed
that especially for large molecules, common gauge-origin approaches can lead to substantial
errors. The findings suggest that GIAOs or related approaches should be used for such
molecules in order to obtain reliable, gauge-origin independent g-tensors. However, if and
only if the spin density is well-localized in a small region of space, a common gauge-origin,
which is located in this region, can be sufficient. Therefore, as an alternative to ECC that
takes the spin density distribution into account, we proposed the spin density center (SDC)
given by

rSDC = 1
Tr (|Pα−β|S)

∑
µν

|Pα−β
µν | 〈µ |r| ν〉 . (2.72)

Here, Pα−β is the spin density matrix, which is obtained from the difference of α and β
densities. By construction, the SDC lies within the region with significant spin density; nu-
merical data in Publication V demonstrates that the obtained g-tensors are significantly
more accurate than with the ECC.
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2.5.2 NMR Shielding Tensors
Nuclei possess an intrinsic magnetic moment and can occupy energetically different ori-
entations in a magnetic field. The splitting of these energy levels can be probed experi-
mentally using NMR spectroscopy. In a molecule, the effective magnetic field interacting
with the nuclear magnetic moment is usually different from the externally applied field
due to secondary magnetic fields originating from induced currents. The shielding of a
nucleus is thus a sensitive probe of the chemical environment and electronic structure of
the molecule. NMR spectra contain a wealth of information about structure and geometry
of a molecule. [164] However, especially for larger molecules, it can be difficult to unambigu-
ously assign a spectrum to a particular structure. In such situations, a comparison between
experimental and theoretically simulated spectra can be very helpful.

The NMR shielding tensor σA of a nucleus A can be computed quantum-mechanically
by differentiating the energy with respect to an external magnetic field B and the nuclear
magnetic moment mA:

σArs = ∂E

∂mA
r ∂Bs

∣∣∣∣∣
mA=0,B=0

. (2.73)

In order to treat the perturbation caused by the nuclear magnetic moment, both param-
agnetic and diamagnetic spin-orbit coupling operators need to be included in the Hamilto-
nian. [165] For the magnetic field perturbation, the interaction of angular momentum of the
electronic motion and the magnetic field needs to be considered. [165] Furthermore, as for
other magnetic properties, the problem of gauge-origin dependence (see Sec. 2.5.1) needs to
be addressed. Simple approaches with a common gauge-origin give unreliable NMR shield-
ings. In order to ensure gauge-origin independence distributed gauge-origin approaches
like GIAOs are usually employed in NMR shielding calculations.

Many analytical derivative implementations for NMR shieldings also employ a Z-vector
approach [54,55] in order to minimize the number of CPSCF equations that need to be solved.
In general, a Z-vector approach can be used, when perturbed density matrices Pξ (≡ ∂

∂ξ
P)

for some general perturbation ξ appear in an expression of the following form:

Tr[XPξ] = Tr[X(A−1bξ)] = Tr[Zbξ], (2.74)

where A is the HF Hessian and bξ is the right-hand side of the CPSCF equation for Pξ.
Z = A−1X is the so-called Z-vector. If multiple perturbations ξ need to be considered,
the Z-vector approach can lead to large computational savings, because bξ can typically
be calculated with low effort and only a single CPSCF equation needs to be solved for Z.

Over the last decades, many quantum chemical methods for computing NMR shieldings
were developed. This includes methods with HF, [166–169] DFT, [170–172] MP2, [173,174] and cou-
pled cluster theory. [175–177] Also several reduced-scaling methods at the SCF level of theory
were introduced, which are applicable to large molecules with 1000 atoms or more. [178–180]
As MP2 gives highly accurate shieldings and outperforms HF and DFT, [171,181–183] there is
great demand for efficient methods based on MP2. Several local correlation approaches for
MP2 shieldings were proposed. [184–186] An asymptotically linear-scaling method based on
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Laplace-transformed AO-MP2 was presented by Maurer et al. [53] The method from Maurer
et al. [53] employs a selected-nuclei approach, [180] which makes it particularly efficient for
computing the shieldings for a few selected nuclei in the molecule. The computation of the
perturbed density matrices PB and PBm is avoided using a Z-vector approach. Only the
matrices Pm are calculated explicitly for the selected nuclei and their locality is exploited.

In Publication III, a similar method is introduced, which, however, employs an all-
nuclei formulation that is more suitable for computing the entire NMR spectrum of a given
molecule. This is achieved by formulating a Z-vector approach that allows to circumvent
the explicit computation of Pm and PBm, which would require the solution of 9×Natoms
and 3×Natoms CPSCF equations, respectively (where Natoms denotes the number of atoms).
Only three CPSCF equations need to be solved for PB irrespective of the number of atoms.
Furthermore, several additional approximations such as the RI approximation with an
attenuated Coulomb metric and Cholesky decomposition of pseudo-densities are introduced
in order to improve the computational efficiency and reduce the memory requirements.

Largely unexplored to date has been the computation of NMR shieldings with methods
based on the ACFDT such as RPA. The first method for NMR shieldings with post-Kohn–
Sham RPA and the related σ-functionals is presented by us in Publication IV. In this
study, the derivative from Eq. 2.73 is evaluated numerically using a finite-difference scheme.

2.5.3 Electronic g-Tensors
The electronic g-tensor, measured using EPR spectroscopy, can be viewed as the analogue
of NMR shieldings for unpaired electrons. It describes the interaction between the magnetic
moment of an unpaired electron and an external magnetic field. A quantum chemical
computation of g-tensors is possible by computing the following second derivative of the
energy:

grs = 2
α

∂E

∂Br∂ss

∣∣∣∣∣
B=0,s=0

, (2.75)

where s denotes the electronic spin vector. In many aspects, the calculation of g-tensors is
similar to the calculation of NMR shielding tensors. Both properties require the treatment
of external magnetic fields and the problem of gauge-origin dependence, which for g-tensors
is analyzed in detail in Publication V. In contrast to NMR shieldings, which involve only
electron-nuclear spin-orbit coupling, also two-electron spin-orbit coupling effects need be
considered for g-tensors. Several approximations have been developed for the two-electron
spin-orbit coupling, like effective one-electron approaches with scaled nuclear charges [187]
or the spin-orbit mean field (SOMF) [135] method. The latter describes the two-electron
spin-orbit interaction with a mean field approach that resembles the description of the
electron-electron interaction in HF theory and is used in Publications V and VI. The
implementation that is presented in these publications is the first one to combine the
SOMF operator and GIAOs and therefore enables accurate and gauge-origin independent
calculations. It also enables a linear- or sublinear-scaling computation of g-tensors using
integral screening techniques.
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ABSTRACT: We present a novel, highly efficient method for the
computation of second-order Møller−Plesset perturbation theory
(MP2) correlation energies, which uses the resolution of the identity
(RI) approximation and local molecular orbitals obtained from a
Cholesky decomposition of pseudodensity matrices (CDD), as in the
RI-CDD-MP2 method developed previously in our group [Maurer, S.
A.; Clin, L.; Ochsenfeld, C. J. Chem. Phys. 2014, 140, 224112]. In
addition, we introduce an attenuated Coulomb metric and subsequently
redesign the RI-CDD-MP2 method in order to exploit the resulting
sparsity in the three-center integrals. Coulomb and exchange energy
contributions are computed separately using specialized algorithms. A
simple, yet effective integral screening protocol based on Schwarz
estimates is used for the MP2 exchange energy. The Coulomb energy
computation and the preceding transformations of the three-center integrals are accelerated using a modified version of the natural
blocking approach [Jung, Y.; Head-Gordon, M. Phys. Chem. Chem. Phys. 2006, 8, 2831−2840]. Effective subquadratic scaling for a
wide range of molecule sizes is demonstrated in test calculations in conjunction with a low prefactor. The method is shown to enable
cost-efficient MP2 calculations on large molecular systems with several thousand basis functions.

1. INTRODUCTION

The accurate and efficient computation of electron correlation
energies is one of the central challenges in ab initio electronic
structure theory. Proper treatment of electron correlation is
essential for a quantitative description of many chemical
phenomena including dispersion, which is highly important in
inter- and intramolecular interactions of many molecular
systems. One of the most cost-efficient and commonly used
wave function-based methods for computing correlation
energies is second-order Møller−Plesset perturbation theory
(MP2).1 MP2 is significantly more accurate than
Hartree−Fock, and because of its comparatively low N5

scaling, it is computationally cheaper than other wave function
methods such as Coupled Cluster (see, e.g., ref 2), which scale
conventionally at least as N6. Due to this good compromise
between accuracy and computational cost, MP2 is one of the
most widely used quantum chemistry methods.
In recent years, several variants of MP2 theory have been

proposed. Empirical scaling of the same-spin and opposite-spin
contributions to the MP2 energy in the spin-component-scaled
MP2 (SCS-MP2)3 has been shown to further increase the
accuracy for energetics and molecular properties. The related
scaled-opposite spin MP2 model (SOS-MP2)4 leads to very
efficient methods, since it allows to avoid the computationally
challenging exchange contributions to the MP2 energy.

Furthermore, MP2 has also been combined with density
functional theory (DFT)5 in the context of double-hybrid
functionals.6 These functionals contain an MP2-like term and
have been shown to provide excellent accuracy for many
applications.6−8

Due to the widespread use of MP2 and its related methods,
the development of efficient MP2 algorithms, which allow one
to treat large molecules, is an important endeavor. The
unfavorable fifth-order scaling of canonical MP2 severely limits
its applicability to larger systems. Over the last decades, much
work has been devoted to the development of more efficient
MP2 methods with reduced scaling and prefactor (see, e.g., refs
9−39).
Many efficient MP2 methods employ decompositions of the

electron repulsion integral (ERI) tensor. The most commonly
used decomposition is the resolution of the identity (RI)
approximation,40 which decomposes the fourth-order ERI
tensor into third- and second-order tensors using a set of
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auxiliary basis functions. Although RI-MP2 has the same
scaling as canonical MP2 with four-center integrals, the
prefactor and the storage requirements are significantly
reduced. Apart from RI, also Cholesky decomposition of the
ERI tensor21,30 and the pseudospectral approximation12 have
been applied to MP2. More recently, tensor hypercontraction
has been introduced by Martıńez and co-workers,31,41 which
allows one to reduce the formal scaling of MP2 to quartic.
In order to tackle the steep scaling of MP2 algorithms for

larger systems, one can also exploit the locality of electron
correlation. Pulay and Saebø pioneered the field of local
correlation methods and introduced localized molecular
orbitals (MOs) and the concept of correlation domains into
MP2 theory.9,10 Many local MP2 methods have been proposed
since then,13,14,16−20,22,35 including the divide-expand-consol-
idate (DEC) ansatz,29,36 which employs iterative optimization
of the orbital spaces. Recently, Neese and co-workers have
employed local pair natural orbitals for MP2 and other
correlation methods using the domain-based local pair natural
orbital approach.34,42,43

Another path to reduced-scaling MP2 algorithms starts from
a Laplace transformation of the orbital energy denominator
appearing in canonical MP2, which was introduced by Almlöf
and Has̈er.11,44,45 Later, an atomic-orbital-based reformulation
of Laplace-transformed MP2 (AO-MP2) was developed.11,15

In combination with integral screening approaches, the scaling
of AO-MP2 can be reduced to be asymptotically line-
ar.23,26,27,32 However, the prefactor of AO-MP2 is high,
especially for large basis sets, leading to a late crossover with
canonical MP2.
The efficiency of the AO-MP2 method is improved in the

RI-CDD-MP2 method28,33 by introducing the RI approxima-
tion and using local orbitals obtained from a Cholesky
decomposition of the pseudodensity matrices (CDD). Both
modifications lead to a significantly reduced prefactor
compared to AO-MP2 and make RI-CDD-MP2 applicable to
large molecules also with high-quality basis sets. RI-CDD-MP2
in its standard formulation scales asymptotically cubic.33

Maurer et al.33 also presented a second formulation, which
employs the local density fitting approach from Werner et al.22

and scales asymptotically linear. However, the prefactor of
linear-scaling RI-CDD-MP2 is high, and speed-ups compared
to the cubic scaling RI-CDD-MP2 formulation are only
observed for very large systems.33

In this work, we aim to improve the RI-CDD-MP2 method
by replacing the Coulomb metric used for the RI with an
attenuated Coulomb metric.46 Furthermore, we redesigned the
RI-CDD-MP2 algorithm in order to optimally exploit the
additional sparsity in the three-center integrals. In particular,
we compute the Coulomb and exchange contributions to the
MP2 energy separately using specialized algorithms for each
contribution. For the exchange term, we present an efficient
screening approach based on Schwarz estimates,47 which is
able to capture the exponential decay behavior of this
contribution. The Coulomb contribution and the trans-
formations of the three-center integrals from the AO basis to
the basis of Cholesky-pseudo-MOs are accelerated with the
natural blocking approach from Jung et al.24,25 We also employ
several upper bounds for the three-center integrals in order to
reduce the number of elements in the naturally blocked
integral tensors at an early stage during the transformations. In
addition, an efficient transformation sequence for the three-
center integrals is proposed, which involves an initial

transformation of the AO-three-center integrals with the
Cholesky factor of the ground state density followed by a
transformation from occupied Cholesky-MOs to occupied
Cholesky-pseudo-MOs for every Laplace point. For the
efficient computation of three-center integrals in the atomic
orbital basis, a distance including screening based on the
integral partition bounds from Thompson and Ochsenfeld48 is
used.
The new MP2 method is shown to scale subquadratically for

sufficiently large and sparse systems and displays a small
prefactor. Significant speed-ups compared to the RI-CDD-
MP2 method are obtained for molecular systems of various
sizes. The asymptotic scaling of the method is cubic; however,
the cubic scaling steps have a small prefactor and are irrelevant
for all molecules used in the present study, of which the largest
system is a DNA strand with 16 AT base pairs, 1052 atoms,
11 230 basis functions, and 37 248 auxiliary functions. The new
method therefore enables efficient MP2 and double-hybrid
DFT calculations on large molecular systems.

2. THEORY
2.1. Review of AO-MP2 and RI-CDD-MP2. The MP2

energy of a closed-shell molecule can be obtained from the
following expression:

∑= −
| [ | − | ]
ϵ + ϵ − ϵ − ϵ

E
ia jb ia jb ib ja( ) 2( ) ( )

ijab a b i j
MP2

(1)

The indices ijk... denote occupied MOs, and abc... denote
virtual MOs. ϵ values are the orbital energies. The
denominator from eq 1 can be decoupled using a Laplace
transformation.44 In general, the Laplace transformation allows
one to replace the fraction

x
1 by an integral of an exponential

function:

∫ ∑ ω= − ≈ −
α

α α

∞

x
xt t xt

1
exp( ) d exp( )

0 (2)

The integral from eq 2 can be approximated by numerical
integration using quadrature points tα and quadrature weights
ωα. In the case of the MP2 orbital energy denominator, only 5
to 8 Laplace points are usually sufficient to obtain errors on the
order of a few μHartree.44 The major benefit of applying the
Laplace transformation to the MP2 energy denominator is the
possibility to factorize the resulting exponential into product
form:

∑ ∑ω= − |

× [ | − | ]

α
α

− ϵ − ϵ + ϵ + ϵα α α αE e e e e ia jb

ia jb ib ja

( )

2( ) ( )

ijab

t t t t
MP2

a b i j

(3)

Inserting the expansion of the MOs as a linear combination of
atomic orbitals (LCAO) and subsequently summing over MO
indices gives the energy expression of AO-MP2:11

∑ ∑ ∑ μν λσ

μ ν λ σ μ σ λ ν

= − ̲ ̅ ̲ ̅ |

× [ ′ ′| ′ ′ − ′ ′| ′ ′ ]

α μνλσ μ ν λ σ
μμ
α

νν
α

λλ
α

σσ
α

′ ′ ′ ′
′ ′ ′ ′E P P P P ( )

2( ) ( )

MP2
AO ( ) ( ) ( ) ( )

(4)

where ̲ αP( ) and ̅ αP( ) denote the occupied and virtual
pseudodensities, respectively. The pseudodensity matrices are
defined as follows:
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∑ω̲ =μμ
α

α μ μ′
+ϵ

′
αP C e C

i
i

t
i

( ) i4

(5)

∑ω̅ =νν
α

α ν ν′
−ϵ

′
αP C e C

a
a

t
a

( ) a4

(6)

In the CDD-MP2 method,28 the pseudodensity matrices are
subjected to a Cholesky decomposition with complete
pivoting:49

∑̲ = ̲ ̲μμ
α

μ
α

μ
α

′ ̲ ′ ̲P L L
i

i i
( ) ( ) ( )

(7)

∑̅ = ̅ ̅νν
α

ν
α

ν
α

′ ̅ ′ ̅
P L L

a
a a

( ) ( ) ( )

(8)

The obtained Cholesky factors are the expansion coefficients of

occupied and virtual Cholesky-pseudo-MOs ϕ α
̲i

( ) and ϕ α
̅a

( ),
respectively:

∑ϕ χ= ̲α

μ
μ
α

μ̲ ̲Lr r( ) ( )i i
( ) ( )

(9)

∑ϕ χ= ̅α

ν
ν

α
ν̅ ̅Lr r( ) ( )a a

( ) ( )

(10)

Inserting the Cholesky factors into eq 4 gives the energy
expression for CDD-MP2:33

∑ ∑= − ̲ ̅| ̲ ̅ [ ̲ ̅ | ̲ ̅ − ̲ ̅ | ̲ ̅ ]
α

α α αE i a j b i a j b i b j a( ) 2( ) ( )
ijab

MP2
CDD ( ) ( ) ( )

(11)

where

∑ μν λσ̲ ̅ | ̲ ̅ = ̲ ̅ ̲ ̅ |α

μνλσ
μ
α

ν
α

λ
α

σ
α

̲ ̅ ̲ ̅i a j b L L L L( ) ( )i a j b
( ) ( ) ( ) ( ) ( )

(12)

In the RI-CDD-MP2 method,33 the ERIs are in addition
approximated by RI:40

∑̲ ̅| ̲ ̅ ≈ ̲ ̅ | [ ] | ̲ ̅α α α−i a j b i a P Q j bV( ) ( ) ( )
PQ

PQ
( ) ( ) 1 ( )

(13)

∬ χ χ=V
r

r r r r( )
1

( ) d dPQ P Q1
12

2 1 2
(14)

where the indices PQ... denote auxiliary basis functions.
2.2. Calculation and Transformation of Three-Center

Integrals. In the new method presented in this work, RI with
an erfc-attenuated Coulomb metric25,46,50 is used for
approximating the ERIs:

∂ ∂∑μν λσ μν λσ| ≈ ̃P C Q( ) ( ) ( )
PQ

PQ
(15)

∂ ∬μν χ χ
ω

χ= μ νP
r

r
r r r r r( ) ( ) ( )

erfc( )
( ) d dP1 1

12

12
2 1 2

(16)

∑̃ = [ ̃ ] [ ̃ ]− −C VV VPQ
RS

PR RS SQ
1 1

(17)

∬ χ
ω

χ̃ =V
r

r
r r r r( )

erfc( )
( ) d dPR P R1

12

12
2 1 2

(18)

The erfc metric depends on the attenuation parameter ω and
interpolates between the Coulomb metric and the overlap
metric depending on the choice of ω. It was shown that the

attenuated Coulomb metric with a value of 0.1 for ω provides
comparable accuracy as the Coulomb metric without
sacrificing useful sparsity in the three-center integrals.51 Due
to the central role of the local metric, we will in the following
denote the new MP2 method as ω-RI-CDD-MP2. We want to
stress that ω should not be viewed as an empirical parameter
but as a threshold, because lowering ω allows one to
systematically reduce the deviations from the Coulomb metric;
an exact agreement with the Coulomb metric is obtained for ω
equal to zero.
The computation of the three-center integrals from eq 16

would scale quadratically, if only the sparsity of μν-shell pairs is
exploited. Due to the attenuation with the complementary
error function, these integrals decay quickly with increasing
bra-ket separation. We exploit this distance decay by using the
rigorous distance-including screening based on integral
partition bounds (IPB) from Thompson and Ochsenfeld;48

by default, our implementation employs the approximate
bound aIPB and neglects integrals below a threshold ϑ3c. With
aIPB screening, only an asymptotically linear-scaling number of
three-center integrals in the AO basis needs to be computed.
The three-center integrals in the atomic orbital basis need to

be transformed to the basis of Cholesky-pseudo-MOs for each
Laplace point. This could be done by applying the trans-
formations shown in eqs 19 and 20:

∂ ∂∑ν μν̲ = ̲α

μ
μ
α

̲i P L P( ) ( )i
( ) ( )

(19)

∂ ∂∑ ν̲ ̅ = ̅ ̲α

ν
ν

α α
̅i a P L i P( ) ( )a

( ) ( ) ( )

(20)

A more efficient way to obtain the transformed integrals
involves the Cholesky factors of the ground state density
matrix P:

∑=μν μ νP L L
i

i i
(21)

Using L, the transformation from eq 19 can be replaced by a
succession of two transformations:

∂ ∂∑ν μν=
μ

μi P L P( ) ( )i
(22)

∂ ∂∑ν ν̲ =α α
̲i P T i P( ) ( )

i
i i

( ) ( )

(23)

The matrix T(α) employed in eq 23 transforms the occupied
Cholesky-MOs to occupied Cholesky-pseudo-MOs. It can be
derived by considering the following identity for the

pseudodensity matrix ̲ αP( ):52

̲ = ̲ = ̲α α αP P SP PSP SP( ) ( ) ( ) (24)

Equation 24 is closely related to the well-known idempotency
condition for the density matrix:53

= =P PSP PSPSP (25)

After inserting the Cholesky factors of the occupied density
matrix and the occupied pseudodensity matrix into eq 24, one
can identify the sought transformation matrix as the product
̲ αL SLT( ) :

´ ≠ÖÖÖÖÖÖÖÖ ÆÖÖÖÖÖÖÖÖ ´ ≠ÖÖÖÖÖÖÖÖ ÆÖÖÖÖÖÖÖÖ̲ = ̲ ̲ =α α α α α

α α

P L L L L SL L SL LT T T T

T T

( ) ( ) ( ) ( ) ( )

T( ) ( ) (26)
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Thus, the elements of T(α) are given by

= ̲α α
̲ ̲T L SL( )i i

T
i i

( ) ( )
(27)

The advantage of the presented transformation sequence is
that eq 23 requires only a sum over occupied MOs instead of a
sum over AOs as in eq 19. Due to the smaller number of
occupied MOs, eq 23 is thus less computationally costly to
evaluate, especially for extended basis sets. The additional
transformation shown in eq 22 is also less expensive than the
transformation in eq 19, because it has to be carried out only
once and not for every Laplace point.
In order to reduce the scaling of the integral transformations,

we employ the natural blocking approach from Jung et al.,24,25

which provides a sparse data format for the three-center
integrals. In general, a third-order tensor is often represented as
a one-dimensional array of matrices; we will in the following
denote these matrices as “slices” of the tensor. The index that
labels the one-dimensional matrix array will be called the “slow
index”. One way to exploit sparsity in a third-order tensor
would be to use a block-sparse data format for each slice. In
contrast, in the natural blocking approach, entire rows and
columns of the slices are deleted if they contain only
insignificant values below a given threshold.24,25 This is
illustrated in Figure 1. The threshold used for deleting rows
and columns will be called the “natural blocking threshold”
ϑNB. Following Jung et al.,25 we employ a separate threshold

ϑNB
iaP for the fully transformed ∂̲ ̅

αi a P( )( ) integrals. The
advantage of natural blocking is that each slice remains a
single, relatively large matrix after deleting rows and columns;
in a block-sparse approach, in contrast, the slice is divided up
into a large number of small blocks. As the relative efficiency of
common matrix multiplications implementations is in general
higher for larger matrices, a smaller computational overhead in
multiplications involving the slices can be obtained with
natural blocking. In order to efficiently exploit sparsity in the
natural blocking format, it is important that the third-order
tensor has a suitable sparsity pattern. In particular, for each
value of the slow index, only (1) rows and columns should be
significant. For the three-center integrals with a local RI metric,
this is fulfilled for both the atomic orbital basis and a basis of
localized MOs, because all three indices couple only over short
distances. In cases where the slices still have significant sparsity
after row and column deletion, one might consider to also use
a block-sparse matrix format for these slices; however, we have
not exploited this so far.

As a specific example for the application of natural blocking,
consider the (P⋮μν) integrals. If the integrals are ordered such
that P is the slow index, each value of P is associated with an
NAO × NAO slice, where NAO denotes the number of AOs. In a
large molecule, the (P⋮μν) integrals will only have significant
values, if both χμ and χν are spatially close to χP. Therefore,
many elements of the μν slice will be insignificant; in
particular, many rows and columns will contain only negligible
elements. By deleting these, the size of the slice can be reduced
to NAO(P) × NAO(P), where NAO(P) is the number of significant
AOs for the given P. For bookkeeping purposes, it is important
to store the indices of all significant rows (and columns) for a
particular P in a list {μ}P. More precisely, the list {μ}P can be
build according to

∂μ μ μν{ } ≡ { | | | > ϑ }
ν

Pmax ( )P NB (28)

One situation, in which this list is needed, is the following
transformation:

∂ ∂∑ν μν=
μ

μP i L P( ) ( )i
(29)

This transformation is carried out with matrix multiplications
of the μν slices with the coefficient matrix L. Before the
multiplication of one particular μν slice with the matrix L can
be performed, all columns in L, whose index μ is not in the list
{μ}P, need to be deleted. This reduces the size of L to Nocc ×
NAO(P). Due to the reduction of the dimensions of the involved
matrices, the multiplication can be accelerated significantly.
This illustrates how computational savings can be realized with
natural blocking.
In an analogous manner to {μ}P, several other lists of

significant orbital combinations are constructed and used
during the integral transformations. An overview of them is
shown in Table 1. The information about the significance of
orbital pairs can also be used to create “inverted” lists; the list

{ ̲} α
̅i a

( ), e.g., can be obtained by “inversion” of { ̅}
α
̲a i

( ).
Furthermore, the letters used in our notation are interchange-
able as long as they refer to the same type of orbital; the list

{ ̅}
α
̲a i

( ), e.g., is the same as { ̅} α
̲b i

( ).
In contrast to Jung et al.,24,25 we also employ several

rigorous upper bounds for the three-center integrals. Using
these, we can exploit sparsity at an earlier stage during the
sequence of integral transformation. We also build sparse lists
based on the integral bounds, for which we will use a slightly

different notation with square brackets such as [ ̅]
α
̲a i

( ). For

Figure 1. Illustration of the natural blocking format. A third-order tensor is stored as an array of matrices (top row). Red cells correspond to
significant entries, while green cells correspond to insignificant entries. When natural blocking is applied, all columns and rows containing only
insignificant entries are deleted (bottom row).

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://dx.doi.org/10.1021/acs.jctc.0c00600
J. Chem. Theory Comput. 2020, 16, 6856−6868

6859



computing the upper bounds, the matrices M and N defined in
eqs 30 and 31 are needed:

∂μν= | |μνM Pmax ( )
P (30)

∂μν= | |μ
ν

N Pmax ( )P (31)

The entries of M and N are accumulated during the
computation of the three-center integrals in the AO basis.
Using these matrices, upper bounds for the transformed
integrals can be obtained by multiplication with the absolute
value of the MO or pseudo-MO coefficients. One example is
shown in eq 32:

∂ ∑ν| | ≤ = | |
μ

μ μi P N L N( ) iP i P
(32)

The values NiP of the transformed N matrix can then be used
to construct the list [i]P:

[ ] ≡ { | > ϑ }i i NP iP NB (33)

All employed lists based on upper bounds are shown in Table
2.

With the sparse lists from Tables 1 and 2, the integral
transformations can be carried out with a linear-scaling
computational effort. The full algorithm for the trans-
formations is shown in Figure 2. During the transformations,
the integrals are ordered such that the auxiliary index P is the
slow index. This allows one to perform all transformations as
multiplications of the slices and the coefficient matrices L, T(α),
and L̅(α). After the transformations, the integrals are reordered
such that ̲i becomes the slow index; this ordering is more
convenient for the computation of the energy.

2.3. Computation of the MP2 Coulomb Energy. In
contrast to the implementation of RI-CDD-MP2 of Maurer et
al.,33 our new implementation treats the Coulomb and
exchange contributions to the MP2 energy separately using
specialized algorithms. As we will show, this is particularly
beneficial in combination with a local RI metric. A separate
treatment of Coulomb and exchange contributions has already
been proposed in related work by Beuerle et al.54 for low-
scaling beyond-RPA methods and by Helmich-Paris et al.55 for
relativistic RI-CDD-MP2; in both works, also, a local RI metric
was employed.
For the Coulomb contribution

∑ ∑ ∑= = − ̲ ̅| ̲ ̅ ̲ ̅ | ̲ ̅
α

α

α

α αE E i a j b i a j b2 ( ) ( )
ijab

MP2
C

MP2
C,( ) ( ) ( )

(34)

a matrix Z(α) is computed by contracting three-center integrals
over the pseudo-MO indices:

∂ ∂∑= ̲ ̅ ̲ ̅
α α αZ i a P i a Q( ) ( )PQ

ia

( ) ( ) ( )

(35)

Next, Z(α) is multiplied with the matrix C̃ defined in eq 17:

∑= ̃α αD Z CPQ
R

PR RQ
( ) ( )

(36)

From D(α), the contribution of the current Laplace point α to
the MP2 Coulomb energy can be computed via the following
equation:

∑= −α α αE D D2
PQ

PQ QPMP2
C,( ) ( ) ( )

(37)

The contraction in eq 35 has the highest formal scaling (N4),
which is nevertheless lower than the formal scaling of the MP2

Table 1. Overview of All Employed Lists of Significant
Orbital Combinations, Which Are Used for Natural
Blockinga

list of orbital pairs integral tensor

{a}̅i ̲
(α) ( ̲ ̅i a⋮P)(α)

{i}P (P⋮iν)
{ν}P (P⋮μν)
{i}̲P

(α) (P⋮ia)̅(α)

{a}̅P
(α) (P⋮ia)̅(α)

aThe lists are generated by inspecting entries of the corresponding
integral tensors shown in the right column in analogy to eq 28. The
indices of the integral tensors are sorted such that the leftmost index is
the “slow index”.

Table 2. Lists of Significant Orbital Pairs, Which Are
Generated by Using Upper Bounds for the Three-Center
Integrals

list of orbital pairs upper bound

[i]P
∂∑ ν= | | ≥ | |

μ
μ μN L N i P( )iP i P

[i]̲P
(α) ∂∑ ν= | ̲ | ≥ | ̲ |

μ
μ
α

μ
α

̲ ̲N L N i P( )i P i P
( ) ( )

[a]̅P
(α) ∂∑ ν= | ̅ | ≥ | ̅ |

μ
μ
α

μ
α

̅ ̅N L N a P( )a P a P
( ) ( )

[a]̅i ̲
(α) ∂∑= | ̲ | | ̅ | ≥ | ̲ ̅ |

μν
μ
α

μν ν
α α

̲ ̅ ̲ ̅M L M L i a P( )i a i a
( ) ( ) ( )

Figure 2. Algorithm for the transformation of the three-center
integrals. The leftmost index in the three-center integrals is the “slow
index”.
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exchange (N5). The use of natural blocking allows one to
exploit both the sparsity of the ̲ ̅i a -charge densities and the
sparsity resulting from the local metric as shown in the
algorithm in Figure 3. Thus, eq 35 can be evaluated with

asymptotically linear scaling. Note that the presented algorithm
would be suboptimal in combination with a Coulomb metric as
used in the original RI-CDD-MP2 method, because the
asymptotic scaling of eq 35 would be cubic with a relatively
large prefactor.
The matrix multiplication in eq 36 scales cubically with small

prefactor; note that the scaling could be reduced to quadratic
by exploiting the sparsity of Z(α). Since D(α) is a dense matrix,
eq 37 is a low-prefactor quadratic scaling step.
2.4. Computation of the MP2 Exchange Energy. The

algorithm used to evaluate the exchange contribution to the ω-
RI-CDD-MP2 energy is shown in Figure 4. In this algorithm,
the exchange energy contributions from individual ij pairs are
computed according to

∑= ̲ ̅| ̲ ̅ ̲ ̅ | ̲ ̅
α α α̲ ̲E i a j b i b j a( ) ( )i j

ab
MP2
X,( ), ( ) ( )

(38)

and summed up to obtain the total exchange energy EMP2
X :

∑ ∑ ∑= =
α

α

α

α ̲ ̲E E E
ij

i j
MP2
X

MP2
X,( )

MP2
X,( ),

(39)

For each ij pair, only a subset of virtual pseudo-MOs is
included in the sum of eq 38. The significant virtual pseudo-
MOs are selected by Schwarz screening. The Schwarz upper
bound for an individual four-center integral is given by

| ̲ ̅ | ̲ ̅ | ≤α α α
̲ ̅ ̲ ̅i a j b Q Q( ) i a j b

( ) ( ) ( )
(40)

where the Schwarz factors are defined as follows:

= ̲ ̅| ̲ ̅
α α
̲ ̅

Q i a i a( )i a
( ) ( )

(41)

The Schwarz factors are computed on the fly during the
algorithm for the MP2 exchange (see Figure 4) using the RI
approximation:

∂ ∂∑≈ ̲ ̅ ̃ ̲ ̅
α α α
̲ ̅

Q i a P C Q i a( ) ( )i a
PQ

PQ
( ) ( ) ( )

(42)

The Schwarz estimates for the integral products appearing in
the MP2 exchange are given by

| ̲ ̅ | ̲ ̅ ̲ ̅ | ̲ ̅ | ≤α α α α α α
̲ ̅ ̲ ̅ ̲ ̅ ̲ ̅

i a j b i b j a Q Q Q Q( ) ( ) i a j b i b j a
( ) ( ) ( ) ( ) ( ) ( )

(43)

Due to the structure of the MP2 exchange, the right-hand side
of eq 43 not only provides a rigorous upper bound to the
exchange energy contribution but also captures correctly its
exponential decay behavior. We therefore use the product of
Schwarz factors from eq 43 to screen virtual pseudo-MOs for a
given ij pair and to neglect integrals below a threshold denoted
as ϑschwarz. With this screening, only an asymptotically linear-
scaling number of four-center integrals needs to be computed.

For a given ij pair, only the virtual pseudo-MOs in { ̅}
α
̲a j

( ) are

considered in the screening. In order to further reduce the
screening overhead, significant ij pairs are selected in a
prescreening procedure, which is also based on Schwarz
estimates. The exchange energy contribution from an ij pair
given by eq 38 can be rigorously bound by the expression on
the right-hand side of the following equation:

∑| | ≤α α α α α̲ ̲
̲ ̅ ̲ ̅ ̲ ̅ ̲ ̅

E Q Q Q Qi j

ab
i a j b i b j aMP2

X,( ), ( ) ( ) ( ) ( )

(44)

This upper bound does in general not provide an accurate
quantitative estimate of the ij pair energy, because all
contributions on the right-hand side of eq 44 are positive in
contrast to the right-hand side of eq 38, where positive and
negative contributions to the sum can cancel. Nevertheless, it is
useful as a qualitative measure for the importance of an ij pair.

Figure 3. Algorithm for the computation of the Coulomb
contribution to the ω-RI-CDD-MP2 energy.

Figure 4. Algorithm for the computation of the exchange energy
contribution.
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The expression from eq 44 can be implemented very efficiently
by first performing a matrix multiplication of the matrix of
Schwarz integrals with its transpose:

∑=α α α
̲ ̲

∈{ }
̲ ̅ ̅ ̲

α

A Q Qi j
a a

i a a j
( ) ( ) ( )

i
( ) (45)

Then, the squares of the entries of A(α) can be used to screen ij
pairs:

| | ≤α α̲ ̲
̲ ̲E Ai j

i jMP2
X,( ), ( )2

(46)

An ij pair is neglected, if the right-hand side of eq 46 is smaller
than a threshold denoted as ϑij.
For all ijab combinations that are significant according to the

presented screening approach, four-center integrals are built in
two steps. In the first step, a third-order tensor B̃(α) is
computed by transforming the auxiliary index of the three-
center integrals with the matrix C̃ defined in eq 17:

∂∑̃ = ̲ ̅ ̃α α
̲ ̅B i a P C( )i a

Q

P
PQ

( ) ( )

(47)

In the second step, the B̃(α) tensor is contracted with three-
center integrals over the auxiliary index:

∂∑̲ ̅| ̲ ̅ = ̃ ̲ ̅α α α
̲ ̅i a j b B Q j b( ) ( )

Q
i a
Q( ) ( ) ( )

(48)

Even though the number of four-center integrals that needs to
be formed scales linearly, both steps from eqs 47 and 48 would
scale quadratically, if implemented naıv̈ely. The reason for this
is the quadratic scaling number of significant elements in the
B̃(α) tensor. This can be explained from eq 47, where the
indices i and P are coupled only over short distances due to the
erfc metric; i and Q, in contrast, couple over large distances,
because the matrix C̃ is densely populated. It turns out,
however, that the index Q in eqs 47 and 48 can be restricted to
a subset of the space of auxiliary functions. In order to realize
this, consider the MP2 exchange energy expression with the RI
plugged in:

∂ ∂ ∂

∂

= ∑ ∑ ̲ ̅ ̃ ̲ ̅ ̲ ̅ ̃

̲ ̅

α α α α

α

E i a P C Q j b i b R C

S j a

( ) ( ) ( )

( )

iajb PQRS PQ RSMP2
X,( ) ( ) ( ) ( )

( )

(49)

The coupling of i to both a ̅ and b̅ decays exponentially because
of the appearing ̲ ̅i a - and ̲ ̅i b -charge densities. a ̅ and b̅ also

appear next to the index j on the ket-side of the four-center
integrals, where they are coupled to Q and S by the short-
ranged erfc-function. By combining these couplings, one can
restrict the space of auxiliary functions χQ and χS that need to

be included for a given i. For a particular i, a list α
̲Q( ) i

( ) is
constructed from the union of auxiliary function indices Q in

all lists { } α
̅Q a

( ) for all a ̅ in { ̅}
α
̲a i

( ). For readers familiar with the
sparse-map formalism of Pinski et al.,34 it shall be mentioned
that this would correspond to a “chaining operation” of the

lists { ̅}
α
̲a i

( ) and { } α
̅Q a

( ). With these restrictions for the index Q,
eqs 47 and 48 can be evaluated with an asymptotically linear-
scaling computational effort.

3. COMPUTATIONAL DETAILS

The described method was implemented in a development
version of the quantum chemistry program FermiONs++.56−58

Unless stated explicitly, the def2-SVP basis set59 was used in
combination with the corresponding auxiliary basis set.60 Shell
pairs with an overlap of less than 10−12 are omitted from the
calculation. An integral screening threshold of 10−10 is used
during the SCF. The DIIS method61 is employed for
accelerating SCF convergence. The SCF energy is converged
to 10−7 and the norm of the commutator (FPS−SPF), where F
is the Fock matrix and S is the overlap matrix, to 10−6. Unless
mentioned explicitly, five Laplace quadrature points are used.
The Laplace points are determined using a minimax algorithm
as described in ref 62; the number of integration points is
reduced automatically in our implementation if the fitting
interval is small, and no improved accuracy can be obtained
with more integration points. In the calculation of pseudoden-
sity matrices, Fermi-shifting as proposed by Ayala and Scuseria
is applied.15 The pseudodensity matrices are orthogonalized
prior to the pivoted Cholesky decomposition as described in
ref 51; afterward, the orthogonalization is reverted. The frozen-
core approximation is employed in all calculations. For
comparison, calculations are carried out with the RI-CDD-
MP2 method33 in the standard formulation, which scales
cubically in the asymptotic limit, and with the implementation
of canonical RI-MP2 in FermiONs++. All timings were
performed using 20 threads on dual-processor Intel Xeon
CPU E5-2630 v4 @ 2.20 GHz machines with 256 GB RAM
and a solid-state drive (SSD) with a capacity of 1.7 TB.

Table 3. Mean Absolute Deviations (MAD), Maximum Absolute Deviations (MAX), and Root Mean Square Deviation
(RMSD) Compared to Canonical RI-MP2 in ω-RI-CDD-MP2 Calculations on the L7 Test Set64 with Different Values for the
Attenuation Parameter ωa

Δabs Δint

ω MAD RMSD MAX MAD RMDS MAX

0.50 1.48 × 10−0 1.83 × 10−0 3.83 × 10−0 4.70 × 10−1 6.59 × 10−1 1.18 × 10−0

0.20 2.70 × 10−1 3.52 × 10−1 8.19 × 10−1 1.57 × 10−1 2.18 × 10−1 3.77 × 10−1

0.10 4.06 × 10−2 5.73 × 10−2 1.49 × 10−1 3.77 × 10−2 5.09 × 10−2 8.39 × 10−2

0.05 4.95 × 10−3 7.47 × 10−3 2.04 × 10−2 5.73 × 10−3 7.56 × 10−3 1.22 × 10−2

0.01 3.54 × 10−5 4.95 × 10−5 1.41 × 10−4 4.49 × 10−5 4.82 × 10−5 7.61 × 10−5

0.00 9.23 × 10−7 1.53 × 10−6 4.52 × 10−6 1.89 × 10−6 2.79 × 10−6 5.36 × 10−6

aFor the octadecane monomers and dimer, 7 Laplace points were used; 10 Laplace points were used for all other systems. All screening and natural
blocking thresholds were set to zero. Δabs denotes the error in absolute energies of monomers and dimers; equivalent monomers were only
considered once. Δint denotes the error in interaction energies. All values are given in kcal/mol. The remaining errors for ω = 0.00 arise from the
Laplace transformation.
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4. RESULTS

4.1. Accuracy of the Introduced Approximations.
Among the used approximations, we first consider the Laplace
transformation of the MP2 denominator. This approximation
has been used extensively, and numerous benchmarks on its
accuracy exist;11,15,44,45,62,63 in most cases, 5−8 Laplace points
are sufficient in order to reach μHartree accuracy. As the
Laplace transformation for MP2 is a well-established
approximation, we did not analyze it further.
Next, we focus on the error introduced by the erfc-

attenuated Coulomb metric. The accuracy of this approx-
imation has been studied in detail for SOS-MP2,25 direct
RPA,51 and full MP2 on small molecules.46 In order to analyze
the influence of the local metric on the accuracy of full MP2
including exchange on larger systems, we compare calculations
with ω-RI-CDD-MP2 to canonical RI-MP2 with the standard
Coulomb metric. The calculations were performed on the L7
test set,64 and the results are shown in Table 3. When ω
approaches zero, the deviations from the values computed with
the Coulomb metric quickly decrease for both absolute
energies and interaction energies. For ω = 0.1, mean absolute
deviations well below 0.1 kcal/mol are obtained. This is in line
with the findings reported by Luenser et al.,51 who showed that
a value of 0.1 enables highly accurate direct RPA calculations.
We thus set ω to 0.1 in all ω-RI-CDD-MP2 calculations shown
in the following.
The remaining parameters were determined by carrying out

benchmark calculations on a set of 11 molecules from the
integral screening test set from ref 65. The used molecules all
have between 40 and 146 atoms; the average number of atoms
amounts to 98. Only the parameter of interest was varied in
these calculations, while the others were set to zero, in order to
isolate the effect of each parameter. Correlation energies
computed with ω-RI-CDD-MP2 without integral screening
and without natural blocking are used as references, which
excludes the Laplace transformation and the RI as potential
sources of error. The influence of the employed integral
screening thresholds on the accuracy is analyzed in Tables 4
and 5. For each screening, the accuracy can be improved
systematically by lowering the threshold. Suitable values for
accurate calculations on large molecules were determined to be
10−6 for the aIPB threshold, 10−9 for the Schwarz screening
threshold, and 10−6 for the ij prescreening threshold,
respectively, as they lead to mean errors below 0.1 kcal/mol.
In Table 6, the errors introduced by natural blocking are

displayed. Thresholds of ϑNB = 10−6 and ϑNB
iaP = 5.0 × 10−6 are

sufficient to obtain mean errors below 0.1 kcal/mol and are
thus employed in all calculations with def2-SVP basis shown in
the following. The same set of values has also been used by
Jung et al.25 For ϑNB, a significant decrease in accuracy can be

observed in Table 6 upon increasing the threshold from 10−6

to 10−5; a similar effect occurs for ϑ3c in Table 4. This is caused
by relatively large errors for graphite96 and CNT80, which are
both systems with strongly delocalized electronic structure and
a high degree of symmetry. Due to the symmetry, a large
number of integrals with nearly identical values are neglected if
the thresholds are raised above a certain value. One thus has to
apply care in choosing thresholds for systems of this kind.
The influence of the integral screening and natural blocking

thresholds on the accuracy was also studied on the S22 test
set,66 and the corresponding data is shown in the Supporting
Information. Due to the small size of the molecules in the S22
test set, only a few contributions are neglected by integral
screening or natural blocking and the obtained errors are
therefore significantly smaller than the errors obtained with the
employed test set containing large molecules.
The combined influence of the determined thresholds is

analyzed in Table 7. A mean error of 0.103 kcal/mol compared
to canonical RI-MP2 is obtained, which indicates that the
employed set of thresholds is suitable to obtain chemically
accurate results also for larger molecular systems. Therefore,
we use this particular set of thresholds for the timings with the
def2-SVP basis set shown in Section 4.2. In Table 7, also, the
errors obtained with RI-CDD-MP2 using the recommended
thresholds from ref 33 are shown. The mean error obtained
with RI-CDD-MP2 is more than twice as large. Thus, we
conclude that the use of these settings in the timings shown in
Section 4.2 does not introduce a biased advantage for ω-RI-
CDD-MP2 in the comparison with RI-CDD-MP2. In Table 8,
calculations with a set of suitable thresholds are shown that
allow highly accurate computations with a def2-TZVP basis
set.

4.2. Scaling Behavior and Efficiency. Timings on linear
n-alkanes are shown in Figure 5 and Table 9. The wall time
required for the ω-RI-CDD-MP2 calculations is smaller than

Table 4. Benchmark Calculations for the aIPB Screening Threshold (ϑ3c) and the Schwarz Screening Threshold (ϑschwarz)
a

ϑ3c ϑschwarz

value MAD RMSD MAX value MAD RMSD MAX

10−5 3.58 × 10−1 1.16 × 10−0 3.85 × 10−0 10−8 1.08 × 10−0 1.51 × 10−0 3.28 × 10−0

10−6 1.18 × 10−4 1.99 × 10−4 4.73 × 10−4 10−9 8.62 × 10−2 1.09 × 10−1 2.51 × 10−1

10−7 1.18 × 10−5 2.43 × 10−5 7.29 × 10−5 10−10 6.68 × 10−3 7.86 × 10−3 1.61 × 10−2

10−8 1.36 × 10−6 2.42 × 10−6 6.58 × 10−6 10−11 5.29 × 10−4 6.06 × 10−4 1.01 × 10−3

aMean absolute deviations (MAD), maximum absolute deviations (MAX), and root mean square deviation (RMSD) on the test set from Table 7
are shown. The reference energies were computed using ω-RI-CDD-MP2 without integral screening and natural blocking. 7 Laplace points are
used for [S8]5; 8 Laplace points were used in all other calculations. All values are given in kcal/mol.

Table 5. Benchmark Calculations for the Threshold for
Prescreening ij pairs (ϑij)a

ϑij

value MAD RMSD MAX

10−4 1.27 × 10−0 1.33 × 10−0 2.08 × 10−0

10−5 1.00 × 10−1 1.08 × 10−1 1.68 × 10−1

10−6 1.07 × 10−2 1.13 × 10−2 1.75 × 10−2

10−7 8.79 × 10−4 9.46 × 10−4 1.53 × 10−3

aMean absolute deviations (MAD), maximum absolute deviations
(MAX), and root mean square deviation (RMSD) on the test set from
Table 7 are shown. The reference energies were computed using ω-
RI-CDD-MP2 without integral screening and natural blocking. 7
Laplace points are used for [S8]5; 8 Laplace points are used in all
other calculations. All values are given in kcal/mol.

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://dx.doi.org/10.1021/acs.jctc.0c00600
J. Chem. Theory Comput. 2020, 16, 6856−6868

6863



the wall time used for the RI-CDD-MP2 reference in all of
these calculations, and the relative differences rise significantly
for increasing chain lengths. This suggests that ω-RI-CDD-
MP2 has both a lower prefactor and reduced effective scaling
compared to RI-CDD-MP2. For comparison, timings with
canonical RI-MP2 are shown. For the smallest alkanes, ω-RI-
CDD-MP2 is slower than RI-MP2 because of the screening
overhead and the required loop over Laplace points. Due to
the lower scaling of ω-RI-CDD-MP2, the situation is reversed
for large alkanes; the crossover occurs between 40 and 60
carbon atoms. The largest calculation was done on C300H602
with 7210 basis functions and required a compute time of
2400 s, which illustrates that the ω-RI-CDD-MP2 method
exploits the available sparsity in an efficient manner. The
scaling is analyzed in detail in Table 9. As shown, the effective
scaling steadily decreases for alkanes with up to 200 carbon
atoms, where the minimal scaling of 1.37 is reached. This
shows that the scaling of the time-dominating steps has been
reduced to be linear. Between a chain length of 200 and 300
carbon atoms, the effective scaling increases slightly to 1.56.
This can be explained by the remaining asymptotically cubic
and quadratic scaling steps. For some of these steps, the scaling
could be reduced further; the computation of the pseudoden-
sity matrices according to eqs 5 and 6, e.g., could be made to

Table 6. Benchmark Calculations for the Natural Blocking Thresholds ϑNB and ϑNB
iaPa

ϑNB ϑNB
iaP

value MAD RMSD MAX value MAD RMSD MAX

1.0 × 10−5 4.51 × 10−1 1.09 × 10−0 3.54 × 10−0 1.0 × 10−5 7.69 × 10−1 2.12 × 10−0 6.99 × 10−0

1.0 × 10−6 4.99 × 10−4 1.02 × 10−3 3.28 × 10−3 5.0 × 10−6 4.08 × 10−2 9.55 × 10−2 3.10 × 10−1

1.0 × 10−7 4.18 × 10−6 1.00 × 10−5 3.26 × 10−5 1.0 × 10−6 2.08 × 10−4 2.86 × 10−4 6.50 × 10−4

1.0 × 10−7 5.70 × 10−6 1.11 × 10−5 3.02 × 10−5

aMean absolute deviations (MAD) and maximum absolute deviations (MAX) on the test set from Table 7 are shown. The reference energies were
computed using ω-RI-CDD-MP2 without integral screening and natural blocking. 7 Laplace points are used for [S8]5; 8 Laplace points are used in
all other calculations. All values are given in kcal/mol.

Table 7. Errors Compared to Canonical RI-MP2 with a
Coulomb Metric in ω-RI-CDD-MP2 Calculations
(Δω‑RI‑CDD) and RI-CDD-MP2 Calculations (ΔRI‑CDD)

a

molecule Δω‑RI‑CDD ΔRI‑CDD

amylose4 1.69 × 10−2 9.89 × 10−2

angiotensin 9.08 × 10−2 2.39 × 10−1

β-carotene 1.85 × 10−2 5.69 × 10−2

CNT80 1.04 × 10−1 3.56 × 10−1

diamond102 9.89 × 10−2 1.30 × 10−1

DNA2 1.15 × 10−1 2.20 × 10−1

graphite96 2.56 × 10−1 2.36 × 10−1

LiF72 7.64 × 10−2 1.28 × 10−1

polyethyne64 1.01 × 10−1 5.22 × 10−2

polyyne64 1.25 × 10−1 5.20 × 10−2

[S8]5 1.33 × 10−1 9.70 × 10−1

MAD 1.03 × 10−1 2.31 × 10−1

MRD [%] 0.0019 0.0051
aAll calculations employ a def2-SVP basis set. For ω-RI-CDD-MP2,
the following thresholds are used: ϑ3c = 10−6, ϑschwarz = 10−9, ϑij =
10−6, ϑNB = 10−6, and ϑNB

iaP = 5 × 10−6. For RI-CDD-MP2, a QQR
screening threshold of 10−9 and a block-sparse linear algebra
threshold of 10−6 are used. 7 Laplace points are used for [S8]5; 8
Laplace points are used in all other calculations. All values are given in
kcal/mol. MAD and MRD denote mean absolute and mean relative
deviation, respectively. The MRD values are given in percent of the
total RI-MP2 correlation energy.

Table 8. Errors Compared to Canonical RI-MP2 with a
Coulomb Metric in ω-RI-CDD-MP2 Calculations
(Δω‑RI‑CDD) and RI-CDD-MP2 Calculations (ΔRI‑CDD)

a

molecule Δω‑RI‑CDD ΔRI‑CDD

amylose4 1.87 × 10−2 2.22 × 10−2

angiotensin 6.90 × 10−2 7.08 × 10−2

β-carotene 2.75 × 10−2 2.07 × 10−2

CNT80 1.76 × 10−1 7.53 × 10−2

diamond102 3.91 × 10−2 3.55 × 10−2

DNA2 6.87 × 10−2 7.84 × 10−2

graphite96 1.32 × 10−1 4.58 × 10−2

LiF72 3.20 × 10−2 5.01 × 10−3

polyethyne64 2.22 × 10−2 1.71 × 10−2

polyyne64 1.55 × 10−1 2.78 × 10−2

[S8]5 1.09 × 10−2 4.36 × 10−1

MAD 6.83 × 10−2 7.58 × 10−2

MRD [%] 0.00098 0.00143
aThe def2-TZVP basis set was used in all calculations. For ω-RI-
CDD-MP2, the following thresholds are used: ϑ3c = 10−7, ϑschwarz =
10−10, ϑij = 10−6, ϑNB = 10−7, and ϑNB

iaP = 10−6. For RI-CDD-MP2, a
QQR screening threshold of 10−10 and a block-sparse linear algebra
threshold of 10−8 are used. 7 Laplace points are used for [S8]5; 8
Laplace points are used in all other calculations. All values are given in
kcal/mol. MAD and MRD denote mean absolute and mean relative
deviation, respectively. The MRD values are given in percent of the
total RI-MP2 correlation energy.

Figure 5. Timings on linear n-alkanes with up to 300 carbon atoms.
The ω-RI-CDD-MP2 method (red) is compared to RI-CDD-MP2
(blue) and canonical RI-MP2 (green). In all calculations, the def2-
SVP basis set is employed in combination with the thresholds from
Table 7. The inset shows the timings for the alkanes with up to 60
carbon atoms.
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be linear scaling by expressing the pseudodensities in terms of
matrix exponentials67 and using sparse linear algebra in their
computation. Other steps such as the inversion of the matrix of
two-center integrals in eq 18 or the matrix multiplications from
eq 17 are intrinsically cubic scaling. Nevertheless, all steps with
a scaling > M( ) have a low prefactor and only become
relevant for extremely large systems.
In Figure 6, the number of computed three- and four-center

integrals is shown for the largest considered alkanes. The
number of significant integrals that need to be computed scales
close to linearly, which illustrates the effectiveness of the
employed integral screening. Also, the number of significant ij
pairs in the exchange contribution and the number of elements
in the lists ̲Q( ) i show near linear scaling. The fact that the
number of untransformed and transformed three-center
integrals scales linearly allows one to also reduce the RAM
and disk space requirements and the I/O overhead to linear.
Figure 7 shows calculations for linear n-alkanes with the

def2-TZVP basis set. As for the def2-SVP basis set, significant
speed-ups compared to RI-CDD-MP2 are observed with the
new method. The effective scaling between the largest systems
with 100 and 160 carbon atoms amounts to 1.46. This
demonstrates that the ω-RI-CDD-MP2 method scales
favorably with a small prefactor also for high-quality basis sets.
In order to illustrate the applicability of the new method to

realistic systems such as large biomolecules, we also performed
calculations on DNA strands. The corresponding timings are
shown in Figure 8 and Table 10. Also for the DNA strands,
significant speed-ups compared to RI-CDD-MP2 are obtained
with the new ω-RI-CDD-MP2 method. The crossover between
canonical RI-MP2 and ω-RI-CDD-MP2 occurs between AT2
and AT4. The largest ω-RI-CDD-MP2 calculation was

performed on a DNA strand with 16 base pairs, 1052 atoms,
11 230 basis functions, and 37 248 auxiliary functions and
required a computation time of 35.6 h on a single node (for
the specifications, see Computational Details). This demon-
strates that the ω-RI-CDD-MP2 method allows for efficient
MP2 calculations for large biomolecular systems. Table 10 also
shows how much individual steps contribute to the total wall
time. For most systems, the computation of the exchange
energy is the rate-limiting step, but also, the transformations of
the three-center integrals require a significant fraction of the
overall compute time. Note that the separate treatment of
Coulomb and exchange contributions in the ω-RI-CDD-MP2
method allows for even more efficient SOS-MP2 calculations
by simply omitting the exchange contributions. On the basis of
the timings from Table 10, one can expect a ω-SOS-RI-CDD-
MP2 method to be faster by roughly a factor of 2. The effective
scaling for the DNA strands is also shown in Table 10. The
effective scaling decreases for the larger DNA strands and
reaches a value of 1.90 between AT8 and AT16. This
demonstrates that subquadratic scaling can be achieved also
for realistic systems.

Table 9. Total Wall Times in Seconds and Scaling in
Calculations for Linear n-Alkanes with the def2-SVP Basis
Set and 5 Laplace Pointsa

#carbon atoms #basisf. wall time scaling

10 250 7
20 490 33 2.32
40 970 121 1.90
60 1450 230 1.59
100 2410 494 1.50
200 4810 1277 1.37
300 7210 2400 1.56

aThe scaling exponents are computed relative to the calculation on
the previous system.

Figure 6. Left: Numbers of computed three-center and four-center integrals for linear alkanes with 100 to 300 carbon atoms. Right: The number of
significant ij pairs from the ij prescreening and the number of elements in the lists ̲Q( ) i are shown. All values refer to the first Laplace point only.

Figure 7. Timings on linear n-alkanes with up to 160 carbon atoms.
The def2-TZVP basis set in combination with the thresholds from
Table 8 was used in all calculations. The ω-RI-CDD-MP2 method
(red) is compared to RI-CDD-MP2 (blue) and canonical RI-MP2
(green). The inset shows the timings for the alkanes with up to 40
carbon atoms.
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5. CONCLUSION
We presented a new method for the efficient computation of
MP2 energies denoted as ω-RI-CDD-MP2. Local MOs
obtained from a Cholesky decomposition of density and
pseudodensity matrices and an erfc-attenuated Coulomb
metric used for the RI approximation provide a high degree
of sparsity in the occurring intermediates. This sparsity is
exploited with efficient integral screening techniques and a
sparse linear algebra approach called natural blocking. It was
demonstrated in test calculations that the errors introduced by
the used approximations can be systematically decreased by
tightening the corresponding thresholds. Timings on alkane
chains and DNA strands were performed with thresholds that
allow one to obtain chemically accurate correlation energies
also for large molecular systems. It was shown that the method
displays effective subquadratic scaling behavior in conjunction
with a small prefactor for sufficiently large and extended
molecules. For both alkanes and DNA strands, significant

speed-ups compared to the RI-CDD-MP2 method are
observed. The largest considered DNA system with 1052
atoms, 11 230 basis functions, and 37 248 auxiliary functions
required a computation time of 35.6 h on a single node, which
illustrates the potential of the method for applications to large
biomolecular systems.
Further improvements might be possible by using iterative

orbital localization techniques in order to increase the locality
of Cholesky-MOs and Cholesky-pseudo-MOs. The applic-
ability of the method might be extended by developing
efficient parallelization schemes or by adapting the method to
GPUs. The basis set error could be reduced by combining the
method with explicitly correlated F12 approaches. Since the
method relies only on integral screening and sparse linear
algebra and not on any kind of domain approximation or
fragmentation, no problems with discontinuities in the
potential energy surfaces are to be expected, which makes
the accurate and reliable computation of gradients possible. In
future work, the development of analytical derivatives would
therefore be desirable in order to allow for accurate and
efficient computations of properties of large molecules.
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In Tab. 1, the results of benchmark calculations on the S22 test set are shown. Note that two different
references are used. All calculations with ω-RI-CDD-MP2 employ RI with an attenuated Coulomb metric
and an ω-value of 0.1 and furthermore employ a Laplace-transformation. The reference denoted as ω-RI-
CDD-MP2exact also contains these two sources of error, but no additional approximations. The deviations
from ω-RI-CDD-MP2exact thus show how large the errors due to integral screening and natural blocking
are.

For all integral screening and natural blocking thresholds considered in Tab. 1, fast convergence
towards the ω-RI-CDD-MP2exact reference is observed if the thresholds are lowered. The deviations
from canonical RI-MP2, which are also shown in Tab. 1, are significantly larger and converge to a
constant value upon lowering the thresholds. The remaining deviations are mostly caused by the use of
an attenuated Coulomb metric instead of a standard Coulomb metric for the RI.
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Table 1: Benchmark calculations on all monomers and dimers from the S22 test set for all ϑ-thresholds.
Mean absolute viations (MAD) and maximum absolute deviations (MAX) are shown. The errors are
computed either relative to canonical RI-MP2 or to ω-RI-CDD-MP2exact, which refers to the ω-RI-
CDD-MP2 method with Laplace transformation and attenuated Coulomb metric (ω = 0.1) as the only
approximations. 7 Laplace-points are used for [S8]5; 8 Laplace-points in all other calculations. The
def2-SVP basis set is employed in all calculations. All values are given in kcal/mol.

Error vs. ω-RI-CDD-MP2exact Error vs. RI-MP2

threshold value MAD MAX MAD MAX

ϑ3c 10−5 1.17× 10−5 5.22× 10−5 1.01× 10−2 2.59× 10−2

10−6 1.10× 10−6 6.84× 10−6 1.01× 10−2 2.58× 10−2

10−7 1.06× 10−7 6.28× 10−7 1.01× 10−2 2.58× 10−2

10−8 2.66× 10−8 4.39× 10−7 1.01× 10−2 2.58× 10−2

ϑschwarz 10−8 8.64× 10−3 7.22× 10−2 1.14× 10−2 5.54× 10−2

10−9 5.58× 10−4 5.00× 10−3 9.61× 10−3 2.57× 10−2

10−10 3.51× 10−5 3.58× 10−4 1.00× 10−2 2.58× 10−2

10−11 2.38× 10−6 2.09× 10−5 1.01× 10−2 2.58× 10−2

ϑij 10−4 7.75× 10−2 3.14× 10−1 6.78× 10−2 2.98× 10−1

10−5 7.46× 10−3 3.08× 10−2 6.14× 10−3 1.99× 10−2

10−6 6.16× 10−4 2.75× 10−3 9.54× 10−3 2.53× 10−2

10−7 6.03× 10−5 2.92× 10−4 1.00× 10−2 2.58× 10−2

ϑNB 10−4 4.68× 10−2 5.75× 10−1 4.70× 10−2 5.66× 10−1

10−5 1.21× 10−5 3.30× 10−4 1.00× 10−2 2.58× 10−2

10−6 8.56× 10−8 1.82× 10−6 1.01× 10−2 2.58× 10−2

10−7 3.04× 10−8 6.90× 10−7 1.01× 10−2 2.58× 10−2

ϑiaP
NB 10−4 1.54× 10−2 5.72× 10−1 2.06× 10−2 5.63× 10−1

10−5 8.37× 10−6 2.88× 10−4 1.01× 10−2 2.58× 10−2

10−6 4.56× 10−8 1.07× 10−6 1.01× 10−2 2.58× 10−2

10−7 3.14× 10−8 4.39× 10−7 1.01× 10−2 2.58× 10−2
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3.2 Low-Scaling Tensor Hypercontraction in the Cho-
lesky Molecular Orbital Basis Applied to Second-
Order Møller–Plesset Perturbation Theory
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J. Chem. Theory Comput. 17, 211 (2021).

Abstract: We employ various reduced scaling techniques to accelerate the recently de-
veloped least-squares tensor hypercontraction (LS-THC) approximation [Parrish, R. M.,
Hohenstein, E. G., Martínez, T. J., Sherrill, C. D. J. Chem. Phys. 137, 224106 (2012)]
for electron repulsion integrals (ERIs) and apply it to second-order Møller–Plesset per-
turbation theory (MP2). The grid-projected ERI tensors are efficiently constructed using
a localized Cholesky molecular orbital basis from density-fitted integrals with an attenu-
ated Coulomb metric. Additionally, rigorous integral screening and the natural blocking
matrix format are applied to reduce the complexity of this step. By recasting the equa-
tions to form the quantized representation of the 1/r operator Z into the form of a system
of linear equations, the bottleneck of inverting the grid metric via pseudoinversion is re-
moved. This leads to a reduced scaling THC algorithm and application to MP2 yields
the (sub-)quadratically scaling THC-ω-RI-CDD-SOS-MP2 method. The efficiency of this
method is assessed for various systems including DNA fragments with over 8000 basis func-
tions and the subquadratic scaling is illustrated.
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ABSTRACT: We employ various reduced scaling techniques to accelerate the recently developed least-squares tensor
hypercontraction (LS-THC) approximation [Parrish, R. M., Hohenstein, E. G., Martínez, T. J., Sherrill, C. D. J. Chem. Phys. 137,
224106 (2012)] for electron repulsion integrals (ERIs) and apply it to second-order Møller−Plesset perturbation theory (MP2).
The grid-projected ERI tensors are efficiently constructed using a localized Cholesky molecular orbital basis from density-fitted
integrals with an attenuated Coulomb metric. Additionally, rigorous integral screening and the natural blocking matrix format are
applied to reduce the complexity of this step. By recasting the equations to form the quantized representation of the 1/r operator Z
into the form of a system of linear equations, the bottleneck of inverting the grid metric via pseudoinversion is removed. This leads
to a reduced scaling THC algorithm and application to MP2 yields the (sub-)quadratically scaling THC-ω-RI-CDD-SOS-MP2
method. The efficiency of this method is assessed for various systems including DNA fragments with over 8000 basis functions and
the subquadratic scaling is illustrated.

1. INTRODUCTION

One of the simplest quantum chemical methods to recapture the
electron correlation neglected by Hartree−Fock (HF) theory is
second-order Møller−Plesset perturbation theory (MP2),1

which has been extensively studied in the past decades.2

Today, it remains popular as a post-HF method with affordable
cost and also as part of double-hybrid density functionals
(DHDF).3,4 It has further proven to provide accurate results for
molecular properties such as NMR chemical shifts.5 The
computational cost of conventional MP2 is governed by the
transformation of the electron repulsion integrals (ERI) from
atomic orbital (AO) to molecular orbital (MO) basis, which
scales as N( )5 with the number of basis functions N. The
formal fifth power scaling of the computational cost and the

N( )4 storage requirements severely restrict the size of
computationally accessible molecules. Naturally, considerable
effort has been put into reducing the computational cost of MP2
calculations. Methods aiming at reducing the scaling behavior of
MP2 can be grouped into two different categories: first, methods

aiming at exploiting the sparsity of the MP2 problem, either of
intrinsic nature such as in the AO-MP2 formulation6−8 or
created by ansatz as in local MP2 methods9−18 and, second,
methods based on tensor decompositions of the ERIs
involved.19−27

The pioneering work of Pulay and Sæbø9−11 on the local
treatment of correlation in the 1980s served as a stepping stone
for the development of the family of local correlation (LC)
methods by Werner, Schütz, and others.12−18 In the LC
methods developed by Werner and Schütz,12−15,17 the occupied
space is spanned by localized molecular orbitals (LMOs), which
are obtained from the canonical orbitals by localization
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techniques, such as Foster−Boys28 or Pipek−Mezey,29 while the
virtual space is spanned by nonorthogonal projected AOs
(PAOs), which are obtained from the AO basis by projecting out
the occupied orbitals. Using the locality created by a standard
localization procedure for the occupied MOs and the inherent
locality of the PAOs, low- and linear-scaling algorithms can be
devised. The latter has been demonstrated for MP2,13,17 the
singles and doubles coupled cluster method (CCSD),12,14 and
even for additional perturbative triple excitations (CCSD-
(T)).15,30 In order to overcome the sometimes large PAO
domains needed to converge the correlation energy, Neese et
al.31 proposed a compression of the virtual space by means of
pair natural orbitals (PNOs). In combination with careful
prescreening and a multipole expansion for distant orbital pairs,
Werner et al.32 developed the PNO-LMP2 method that scales as

M( ) with respect to the molecule sizeM and has good parallel
efficiency. Conceptually similar is the domain-based local PNO
(DLPNO) implementation of localMP2 by Pinski et al.,33 which
was extended to a linear scaling implementation of the DLPNO-
CCSD(T) method.34−36 An alternative approach to this is the
divide-expand-consolidate (DEC) group of methods,34−36

which achieve massive parallelization37 and therefore allow the
computation of very large molecules by partitioning of the
orbital space.
In spite of their favorable scaling and efficiency, local

correlation methods suffer from distinct drawbacks. One of
the most severe disadvantages is that the domains may change as
a function of the molecular geometry, which can reduce the
accuracy and may even lead to discontinuities in the potential
energy surface.38,39 Thus, instead of localizing the orbital space,
a second approach to reduce the scaling of the MP2 algorithm is
to recast theMP2 equations into the AObasis. Making use of the
Laplace transformation for the orbital energy denominator
occurring in the canonical MP2 formulation introduced by
Almlöf and Has̈er,6,40,41 in combination with efficient integral
screening, our group developed an asymptotically linear scaling
AO-MP2 method.8 To overcome the large prefactor associated
with the AO-based formulation, the RI-CDD-MP2 method42

was introduced, which uses a pivoted Cholesky decomposition
of the pseudo-density matrices (CDD) to obtain a localized
Cholesky pseudo-MO basis. RI-CDD-MP2 significantly reduces
the prefactor of theMP2 calculation while scaling asymptotically
cubic if no further approximations are applied.42

In contrast to the above, methods aiming at decomposing the
tensors involved in the calculations usually do not lower the
scaling exponent of the method they are applied to, but rather
lower the prefactor of the respective method. The most
established approach in the family of tensor decomposition
methods is the density fitting or resolution-of-the-identity
ansatz,19,43−45 which approximates a generalized charge density
ρμν(r1) = χμ(r1)χν(r1) with an auxiliary basis {χα(r1)}. Closely
related is the Cholesky decomposition (CD) ap-
proach20−22,46−50 of the ERIs, in which the auxiliary basis is
constructed on-the-fly as an orthogonalized subset of the basis
function space {χμ}. Both RI and CD achieve a factorization of
the fourth-order ERI tensor into two third-order tensors. Today,
RI is routinely applied to Møller−Plesset perturbation
theory,51−53 density functional theory (DFT),54,55 the random
phase approximation (RPA),56,57 or coupled cluster (CC)58

theory. Further decomposition of the ERIs into two second-
order and one third-order tensor is possible within the
pseudospectral approach,23−25 in which the integral over one
electronic coordinate is solved analytically and the other by

numerical quadrature. Conceptually related are the chain-of-
spheres approach (COSX)59 and the seminumerical exact-
exchange formalism (sn-LinK)60 that make use of the same kind
of decomposition. Taking this approach one step further and
attempting a two-sided decomposition of the ERI, one arrives at
the recently developed tensor hypercontraction (THC)27,61−63

factorization. Within the THC framework, it is possible to
approximate the fourth-order ERI tensor as a product of just five
factor matrices, reducing the highest order tensor necessary to
represent the full ERI to only two. While different flavors of
THC have been proposed, like parallel factors THC (PF-
THC),26 which achieves the factorization by canonical polyadic
decomposition (CPD) of the three-center overlap integrals
within the overlap metric RI formalism, we focus our discussion
on themore accurate least-squares THC (LS-THC)27 approach.
In passing, we note that the atomic-batched tensor decom-
position by Schmitz et al.64,65 can also be viewed as a THC-like
factorization starting from RI-approximated ERIs with further
decomposition by singular value decomposition of the third-
order subtensors belonging to atom pairs. THC attempts a
quantization of the spatial coordinates via r1 → {rP} and r2 →
{rQ} and replacing the singular grid operator r12

−1 → {rPQ
−1} with a

renormalized operator ZPQ. Together with the RI approxima-
tion, LS-THChas proven to be a flexible and efficient framework
and has been successfully applied to exact exchange,66

MP2,26,27,62,63,66−69 MP3,26,66 CCSD,70 second-order approxi-
mated CC (CC2),71 as well as equation-of-motion CC2 (EOM-
CC2),72 RPA,73 and second-order complete active space
perturbation theory (CASPT2).74

In this work, we aim to combine different linear scaling
techniques to obtain an efficient and low-scaling THC
algorithm. In particular, we extend the RI-LS-THC formalism
developed by Martıńez and co-workers27,61−63 using an
attenuated Coulomb metric75 for the THC fitting procedure.
Together with a localized Cholesky-MO basis, we seek to
efficiently exploit the sparsity in the three-center integrals for the
subsequent contractions. In our integral code, we make use of
efficient integral screening based on the recently developed
integral partition bounds (IPB).76 Furthermore, we employ the
natural blocking scheme originally developed by Jung et al.77 for
the transformation to the Cholesky-MO basis and subsequent
projection onto the quadrature grid. In addition to thereby
lowering the scaling of the formally most expensive step, i.e., the
formation of the grid-projected ERI tensor, we present ways to
circumvent the computational bottleneck of forming the
pseudoinverse of the grid metric necessary for building the
quantized and renormalized grid-projected potential operator.
We do this by decomposition of the grid metric matrix followed
by a forward and a backward substitution step. This is in contrast
to the local-THC approximation by Song et al.63 in which the
molecule is partitioned into fragments to reduce the complexity
of the inversion. After contraction of one-half of the projected
potential operator, obtained by the linear solve step, with its
transpose and the two-center RI integrals, the familiarZ tensor is
obtained. Finally, we apply our efficient THC algorithm toMP2,
for which the energy evaluation is performed in a localized
Cholesky pseudo-MO basis using block-sparse linear algebra to
efficiently exploit sparsity and reduce the scaling of this step.
Together with the scaled opposite-spin (SOS)78 approximation,
we present the (sub-)quadratically scaling THC-ω-RI-CDD-
SOS-MP2 method.
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2. THEORY
2.1. Notation. We briefly summarize the relevant indices

below:

• μ, ν, λ, σ: atomic orbital indices belonging to the AO basis
{χμ} of size Nbf.

• α, β, γ, δ: auxiliary basis indices belonging to the density
fitting basis {χα} of size Naux (usually Naux ≈ 3 · Nbf).

• P, Q, R, S: grid point indices belonging to the LS-THC
grid of size Ngrid (usually Ngrid ≈ 3 · Naux).

• i, j, k: occupied molecular orbital indices belonging to the
MO basis {ϕi} of size Nocc.

• a, b, c: virtual molecular orbital indices belonging to the
MO basis {ϕa} of size Nvirt (Nvirt ≫ Nocc).

• κ: index of the Laplace quadrature points for the MP2
energy denominator (usually integration with 5−8 points
is sufficiently accurate).

2.2. Review of Tensor Hypercontraction. The LS-THC
estimator27 for approximating the ERIs in the occupied-virtual
(OV) subspace of the MO integrals using a physical-space
quadrature is defined as

arg min
1
2Z ijab

iajb
2∑ Δ

(1)

where the deviation Δiajb of the THC factorization from the
exact ERI tensor is given by

ia jb X X Z X X( )iajb
PQ

i
P

a
P PQ

j
Q

b
Q∑Δ = | −

(2)

Note that we perform the THC fitting not in the AO space,
but instead in the OV subspace of the MO space, since this is the
only block of the MO integrals needed for evaluating the MP2
equation. Additionally, since the fitting space is smaller, grids
with fewer grid points can be used, or, if the same grids are
applied, more accurate results can be expected.27,62,66 In contrast
to the AO-based local-THC approximation by Song et al.,63 we
make use of a global description of the THC factorization, i.e.,
using a single global Z tensor, that is not prone to discontinuities
of the potential energy surface. The latter is demonstrated in the
Supporting Information for the rotation around the 4C−5C
bond in vitamin K2 as a representative example.
As is already evident from eqs 1 and 2, THC provides a more

flexible tensor decomposition than all methods discussed above
as it effectively unpins all fourMO indices. A direct consequence
of this is that fewer indices need to be carried over during tensor
contractions, providing means for the formulation of lower-
scaling algorithms. As shown by Parrish et al.,27 differentiating eq
1 with respect to Z and subsequently solving the stationary
condition for Z gives the analytic solution

Z ES SPQ

P Q

PP P Q QQ1 1∑= [ ] [ ]
′ ′

− ′ ′ ′ − ′

(3)

where the grid metric S is defined as

S X X X XPP

i a
i
P

i
P

a
P

a
P∑=′

′ ′
′ ′

′
′ ′

′

(4)

and the grid-projected ERI tensor E is defined as

E X X ia jb X X( )P Q

ijab
i
P

a
P

j
Q

b
Q∑= |′ ′ ′ ′ ′ ′

(5)

Within the LS-THC framework,27 the X tensors are chosen to
be collocation matrices, i.e., results of evaluating the basis
functions {χμ} at the real-space grid {rP} given by

X w r( )P
P P4 χ′ =μ μ (6)

where wP are the associated grid weights. For reasons of
numerical stability, we found it useful to additionally balance the
collocation matrices X according to

X X
X X

with
1P

P
P

P P P
υ υ= ′ =

∑ ′ ′
μ μ

μ μ μ (7)

as proposed by Parrish et al.61 After rebalancing, the collocation
matrices are transformed into Cholesky-MO space79 according
to

X L Xi
P

i
P∑=

μ
μ μ

(8)

X L Xa
P

a
P∑=

ν
ν ν

(9)

where Lμi and Lνa are the local Cholesky factors obtained from
the occupied density matrix P and the virtual density matrix Q,
respectively. We note that here and throughout CDD refers to
the Cholesky decomposition of the ground state densities as well
as the pseudo-densities in the energy evaluation (eq 30). Since P
and Q are both invariant under orbital rotations, an infinite
number of MO coefficient representations of the density matrix
exists.79 The Cholesky factors thus represent one possible set of
MO coefficients with the advantage that the Cholesky-MOs are
local and the coefficients sparse, which can be exploited during
subsequent contractions.

2.3. Construction of the Grid-Projected ERI Tensor E.
Inserting the RI factorization of the ERI tensor into eq 5 allows
one to reduce the formal scaling of the construction of the E
tensor to only quartic or N N N N( )occ virt aux grid to be more
precise.27 Thus, since all other operations in obtaining the THC
factorization scale at most cubic, the formation of E will still be
the rate-determining step in the asymptotic limit. To circumvent
this issue in the THC algorithm, we substitute the ERI tensor by
a double density-fitted RI approximation with a complementary
error function (erfc-) attenuated Coulomb metric75

∂ ∂V J V( ) ( ) ( )1 1∑μν λσ μν α β λσ| = [ ] [ ] [ ]
αβγδ

αγ γδ δβ
− −

(10)

where the two- and three-center integrals with the erfc-
attenuated Coulomb operator are given by

∂
r

r
r r r r r( ) d d ( ) ( )

erfc( )
( )1 2 1 1

12

12
2

3
∬μν α χ χ

ω
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r
r r r rd d ( )
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( )1 2 1

12

12
2

3
∬ χ

ω
χ=αγ α γ

 (12)

and [J]γδ is the usual two-center Coulomb integral of the
auxiliary functions. In the limits of limω → 0 and limω → ∞, the
attenuated Coulomb operator reduces to the Coulomb metric
1/r12 or the overlap metric δ(r12), respectively. Tuning the
attenuation parameter ω thus provides a way to interpolate
between the more accurate Coulomb metric and the overlap
metric, which provides greater sparsity in the corresponding
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integrals. An attenuation strength of ω = 0.1 was shown to yield
acceptable accuracy while providing sparsity comparable to the
overlapmetric.56 Due to the locality of the erfc-attenuated three-
center integrals, their computation can be reduced to linear
scaling by applying screening based on the recently developed
rigorous integral partition bounds (IPB).76 For the THC fitting
in the Cholesky-MO basis, the three-center AO integrals have
first to be transformed to the OV subspace according to

∂ ∂ia L L( ) ( )i a∑α μν α=
μν

μ ν
(13)

where Lμi and Lνa are again the local Cholesky factors obtained
from the occupied density matrix P and the virtual density
matrix Q, respectively. The contraction is carried out stepwise
and to reduce the computational complexity of these two steps
we make use of the natural blocking matrix format initially
proposed by Jung et al.,77 as recently reported in our work on
reduced-scalingω-RI-CDD-MP2.80 In short, third-order tensors
are usually internally stored as arrays of matrices, so-called
tensor slices, which can in turn be stored in any sparse matrix
format. Within the natural blocking approach,77 entire rows and
columns of these slices are removed if all their values fall below a
certain threshold, the so-called natural blocking threshold εNB.
For the natural blocking format to be efficient, only a constant
number of rows and columns of a given slice should be
significant. The latter is given using an attenuated Coulomb
operator causing coupling over only short distances between the
bra and ket and by transformation into the localized Cholesky-
MO basis, which reintroduces coupling between the bra indices.
To keep track of the significant rows and columns, natural
blocking relies on bookkeeping in terms of significance lists.
Adopting the notation introduced in our work on ω-RI-CDD-
MP2,80 an example would be the list {μ}α, which is defined as

∂max ( ) NBμ μ μν α ε{ } ≡ { | | | > }α
ν (14)

and stores all significant AO indices μ for a given auxiliary
function α. A second type of lists, which goes beyond the original
natural blocking approach introduced by Jung et al.,77 is based
on integral screening prior to the AO-to-MO transformation.80

For this, two matrices M and N, defined as

∂M max ( )μν α= | |μν
α (15)

∂N max ( )μν α= | |να
μ (16)

are constructed in the three-center integral kernel. With these
screening matrices, upper bounds for the transformed integrals
can be constructed. A detailed algorithm for the transformation
of the three-center integrals to the Cholesky-MO basis is
provided in the Supporting Information. Here, we rather focus
on the construction of intermediate Y, defined as

∂Y X X ia( )P

ia
i
P

a
P∑ α=α

′ ′ ′

(17)

obtained by inserting the ω-RI ansatz from eq 10 into the
definition of the E tensor from eq 5. One advantage of
performing the THC fitting in the Cholesky-MO space is that
the prefactor of the contraction above will be reduced compared
to a formulation in AOs as one occupied index is present. The
projection of the RI integrals onto the THC grids then follows
the same general procedure as their transformation into
Cholesky-MO space. The significance list [P]i, meaning the

grid points significant for a given occupied orbital can readily be
obtained from the Cholesky-MO-transformed collocation
matrix according to

P P Xi i
P

NBε[ ] ≡ { || | > } (18)

Due to the local nature of the Cholesky-MOs, for systems with
significant bandgaps, the number of significant grid points can be
expected to be small and constant for large enough molecules.
Using the lists {a}i and {α}i, obtained during the integral
transformation analogously to eq 14 and the upper bound list
[P]i, all tensors from eq 17 will have reduced sizes. Due to the
coupling between all integral indices and the locality of the grid-
projected Cholesky-MOs, the algorithm shown below for the
evaluation of Yα

P′ can be expected to be asymptotically linear
scaling.

Here we note, that the grid-projected integral tensor E can be
obtained from Y according to

E Y C YP Q P Q∑= ̃
αβ

α αβ β
′ ′ ′ ′

(19)

where C̃αβ is the contraction of all two-center RI integrals in eq
10. However, retaining this factorization allows for a more
efficient reformulation of obtaining the Z tensor, as will be
discussed below.

2.4. Removing the Pseudoinversion Bottleneck.
Despite the formal quartic scaling computation of the E tensor,
Martıńez and co-workers27,62,63 reported the inversion of the
grid metric S to be the bottleneck of the THC procedure. Since
the metric tensor is generally ill-conditioned and singular,
pseudoinversion with a cutoff εSVD between 10−10 to 10−12 is
applied to remove the near-linear dependencies.27,66 Due to the
large prefactor of the underlying singular value decomposition
(SVD), forming the inverse S−1 is usually the most time-
consuming step. Using a local ansatz of the THC factorization63

based on partitioning of the molecular system was presented as
one way of avoiding this.
Here, we present an alternative for which we make use of our

factorization of the E tensor and rewrite eq 3:

Z Y C YS SPQ

P Q

PP P Q QQ1 1∑ ∑= [ ] ̃ [ ]
αβ

α αβ β
′ ′

− ′ ′ ′ − ′

(20)

Taking only the tensors for the P′ grid index of eq 20, we
define a new intermediate Λ, given by
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Y Y SSP
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PP P P

P

PP P1∑ ∑Λ ≡ [ ] ⇔ = Λα α α α
′

− ′ ′ ′ ′

(21)

As becomes evident from the right side of eq 21, instead of
solving forΛ by inversion of the metric, the equation can also be
treated as a system of linear equations with multiple right-hand
sides, i.e., B = AX. Standard procedures to solving linear systems
can then be applied, which typically involve a factorization of the
coefficient matrix, here S, followed by forward and backward
substitution. Since the grid metric is generally singular and thus
not symmetric positive definite, Cholesky decomposition
cannot be applied for the factorization. However, other matrix
decompositions like the modified blocked LDL factorization
with diagonal pivoting or LU decomposition with partial
pivoting are applicable. Inserting, for example, the pivoted LU
decomposition S = ΠLU into eq 21 gives the following
triangular systems of linear equations

Y LW Wsolve forTΠ = ▷ (22)

W U solve forΛ Λ= ▷ (23)

which can be solved efficiently by forward and backward
substitution, respectively. We note that this procedure was
recently also suggested by Matthews,69 although in a slightly
different context, i.e., for the automatic grid generation in LS-
THC using a pivoted Cholesky decomposition of the grid metric
constructed from a larger parent grid.
The asymptotic scaling of finding the grid metric inverse

remains N( )3 , albeit with a significantly lower prefactor, which
makes this step irrelevant for the overall scaling for all but the
largest molecules. It should be emphasized that applying linear
solvers instead of pseudoinversion removes the bias of choosing
a cutoff parameter εSVD while also providing numerical stability
comparable to pseudoinversion. For large enough molecules
with a significant HOMO−LUMO gap, the metric S will
become sparse and diagonally dominant with appropriate
reordering, which allows for the use of specialized algorithms
for banded matrices. The latter allows us to reduce the scaling of
this step to quadratic, as will be discussed in Section 3.
Having computed one side of the projected potential operator

Λ, the familiar Z tensor is obtained by contraction with its
transpose and the two-center RI integrals C̃ according to

Z CPQ P Q∑= Λ ̃ Λ
αβ

α αβ β
(24)

After the construction of theX andZ tensors, they can be used
to approximate ERIs in various correlation methods.
2.5. Evaluation of the THC-CDD-MP2 Energy. The

THC-CDD-MP2 equations26 are based on the AO formulation
of the MP2 energy, as originally proposed by Almlöf and
Has̈er,6,40,41 which makes use of the Laplace transformation for
the energy denominator

E P P P P ( )

2( ) ( )

MP2
AO ∑ ∑ ∑ μν λσ

μ ν λ σ μ σ λ ν
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′ ′ ′ ′
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(25)

where P̲ and P̅ are the occupied and virtual pseudo-density
matrices, respectively. It should be noted that the Laplace
transformation is especially important for the THC format as it
allows to unpin all four orbital indices and thus to make full use
of the THC factorization. The pseudo-densities, defined as
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are contractions of the MO coefficients and the orbital energies
at a given Laplace point κ. Inserting the THC factorization of the
ERIs into eq 25 and Cholesky decomposing the pseudo-
densities, as is done in CDD-MP2,42 i.e.,

P L L
i

i i∑̲ = ̲ ̲μμ μ μ′ ′
(28)

P L L
a

a a∑̅ = ̅ ̅νν ν ν′ ′
(29)

the THC-CDD-MP2 energy equation is obtained
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Since the Cholesky pseudo-MOs span the same space as the
canonical and the Cholesky-MOs, the THC fitting can be
performed once in the Cholesky-MO basis and does not have to
be repeated for every Laplace point. X̲ and X̅ are the collocation
matrices transformed into the Cholesky pseudo-MO basis given
by

X L Xi
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i
P∑̲ = ̲

μ
μ μ

(31)

X L Xa
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ν
ν ν

(32)

The benefit of evaluating the THC-MP2 energy in the
Cholesky pseudo-MO basis is that the collocation matrices are
expected to be sparse and contractions involving them can
efficiently be done using sparse linear algebra. Since the Z tensor
is the grid representation of the long-ranged 1/r12 operator, it is
generally not sparse. For this reason, the Coulomb- and
exchange-like parts of the MP2 energy are evaluated by first
contracting all possible collocation matrices, only including the
Z tensors in the last step, to carry the sparsity in X through most
of the computation. By doing this, we obtain an algorithm with
reduced scaling compared to the formal quartic scaling of this
step. Detailed algorithms for the evaluation of the Coulomb- and
exchange-like contributions to the MP2 energy are provided in
the Supporting Information. It should also be noted that the
computation times of the evaluation of the Coulomb-like energy
are nearly independent of the choice of MOs because the time-
determining step involves the contraction of the THC Z matrix
with an intermediate that is invariant under orbital rotation. A
more detailed discussion of this matter is included as a separate
section in the Supporting Information. For our timings in
Section 3, we make use of the SOS approximation78 of the MP2
energy, considering only the Coulomb-like term
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where cOS is the opposite-spin scaling factor, for which we use 1.3
as reported by Jung et al.78 The SOS approximation reduces the
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formal scaling of the energy evaluation to cubic once theX andZ
tensors are obtained. The actual scaling will, however, have a
reduced scaling exponent due to the aforementioned use of
sparse linear algebra, see Section 3.2. For a formal comparison of
THC-RI-SOS-MP2 against different SOS-MP2 methods, see
the corresponding section in the Supporting Information.

3. RESULTS AND DISCUSSION
We implemented the above-described THC algorithm together
with the THC-RI-CDD-MP2 method within our quantum
chemistry package FermiONs++.81−83 The cc-pVDZ and cc-
pVTZ basis sets84 are used in combination with the
corresponding auxiliary basis sets for all RI calculations and
the corresponding optimized THC grids.67 For the phosphorus
atoms occurring in the calculations on DNA, the fluorine grids
were used. We demonstrate in the Supporting Information that
this does not lead to an additional error by benchmarking against
a small set of selected phosphorus species. DIIS acceleration85 is
used for the preceding SCF calculations, for which the SCF
energy is converged to 10−12 and the commutator FPS− SPF to
5× 10−9 for the S22 test set86 and the L7 test set,87 together with
10 Laplace points for the integration of the orbital energy
denominator. For the assessment of the scaling, the thresholds
10−7 and 10−6 were used, respectively, in combination with
seven Laplace points, which is expected to provide sufficient
accuracy in the submilli-Hartree regime. Fermi shifting is
applied to the formation of the pseudo-density matrices as
proposed by Ayala and Scuseria.7 For the evaluation of the
energy equations, we employ a block-sparse matrix format with a
block threshold of 10−7 for the Frobenius norm of a block. All
timings are done on an Intel Xeon E5-2667 v4 (3.20 GHz) CPU
node with 256 GB RAM and three 960 GB SSD drives.
3.1. Accuracy of the THC-ω-RI-CDD-SOS-MP2 Method.

We begin with the analysis of the accuracy of the linear solver
algorithm for the solution of eq 21 compared to the
pseudoinversion (εSVD = 10−12) suggested by Martıńez and
co-workers.27,61−63 For this, benchmark calculations on the S22
test set were performed with our implementation of the THC-
RI-CDD-SOS-MP2 method using the cc-pVDZ and cc-pVTZ
basis sets. The modified Cholesky decomposition (LDL) was
chosen as the linear solver routine, but we found that the
solution based on LU decomposition provides virtually identical
results. Table 1 summarizes the deviations of the absolute
energies for the S22 monomers and dimers as well as the
deviations of the relative energies for the complexes.

It can be seen that themean absolute deviations (MAD) of the
absolute energies and the maximum error (MAX) are on the
order of 10−6 H. As a consequence, the relative energies are also
accurately reproduced. It should be emphasized that these
deviations are not with respect to a reference method, like, e.g.,
RI-SOS-MP2, but to the pseudoinversion variant of THC,
meaning that the errors are more likely due to cutoff errors based

on the SVD threshold. The latter will be illustrated by comparing
the results against RI-SOS-MP2 in the following.
After having established that implicitly forming the inverse of

the grid metric matrix can be accurately done by the linear
solution of eq 21, we now assess the accuracy of our THC-RI-
CDD-SOS-MP2 method against the reference RI-SOS-MP2
method. For this, we compare two different variants of the THC
algorithm against the reference with the cc-pVDZ and cc-pVTZ
basis sets. The first variant uses the regular Coulomb metric and
a tight natural blocking threshold of 10−10, henceforth termed
THC-RI-CDD-SOS-MP2 and the second variant uses the
attenuated Coulomb metric from eq 10 with an attenuation
strengthω of 0.1 and a looser natural blocking threshold of 10−6,
from here on referred to as THC-ω-RI-CDD-SOS-MP2. In
Table 2, the absolute and relative errors are compared to the
reference RI-SOS-MP2 method for the S22 and the larger L7
test sets.

Table 2 shows that for the S22 test set both THC variants
provide good accuracies for the absolute energies with a MAD
on the order of 10−6 H, which shows that the THC factorization
only introduces an insignificant error compared to the well-
established RI error.27 Furthermore, the use of an attenuated
Coulomb metric does not worsen the mean error significantly.
The maximum errors are larger but still on the order of 10−5 H
and in all cases correspond to aromatic molecules, like the
nucleobases uracil or thymine, in the test set. The latter can be
attributed to the fact that delocalized electronic structures are
more difficult to fit with small grids in the LS-THC procedure,
which has previously been reported by Parrish et al.27 for acenes.
Since the mean errors for the absolute energies are small, the
relative energies are also accurately reproduced. For the L7 test
set, comprised of larger molecules, the errors are worse
compared to the results for the S22 test set and are roughly an
order of magnitude larger. This is somewhat expected since the
L7 test set represents a collection of worst case molecules, in a
sense that all complexes involve large, strongly delocalized
electronic structures. Remarkably, for this case, the errors for the
cc-pVTZ basis set are smaller than for the cc-pVDZ basis set.
This can be rationalized by the fact that for the triple-ζ basis set
larger integration grids are used, which allow for better fitting of
the delocalized orbitals. Furthermore, for the absolute energies,
the errors decrease when using the attenuated Coulomb metric
and integral screening, most likely due to favorable error
cancellation. For the interaction energies, the same trend of

Table 1. Deviation of the Linear Solver Algorithm Compared
to Pseudoinversion for the S22 Test Set

ΔEabs
a ΔErel

b

S22 MAD MAX MAD MAX

cc-pVDZ 0.4 3.8 <0.001 0.002
cc-pVTZ 2.0 7.8 0.003 0.011

aDeviations in μH. bDeviations in kcal/mol.

Table 2. Error of THC-RI-CDD-SOS-MP2 and THC-ω-RI-
CDD-SOS-MP2 Compared to Canonical RI-SOS-MP2 for
the S22 and L7Test Set Using the cc-pVXZ/cc-pVXZ-RI (X∈
{D,T}) Basis Sets

ΔEabsa ΔErelb

test set basis THC variant MAD MAX MAD MAX

S22 cc-pVDZ RI 8.8 38.9 0.003 0.013
ω-RI 13.9 57.9 0.008 0.030

cc-pVTZ RI 2.0 14.0 0.001 0.010
ω-RI 7.8 26.0 0.005 0.015

L7 cc-pVDZ RI 72.8 284.8 0.027 0.067
ω-RI 50.3 183.3 0.045 0.129

cc-pVTZ RI 50.6 187.3 0.010 0.030
ω-RI 45.4 137.0 0.022 0.049

aDeviations in μH. bDeviations in kcal/mol.
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increasing errors as compared to the S22 test set is observed.
Nonetheless, the deviations are significantly lower than 1 kcal/
mol, which can be considered to be chemical accuracy. To
conclude, the THC-ω-RI-CDD-SOS-MP2 method introduces
no significant errors compared to the THC-RI-CDD-SOS-MP2
implementation and provides good accuracy for the variety of
compounds present in the test sets under investigation. We also
note that our THC algorithm is not only able to accurately
reproduce final MP2 energies but also provides good accuracy
for important intermediate quantities such as MP2 amplitudes,
which is demonstrated in the Supporting Information.
3.2. Performance Analysis. In the following, the perform-

ance of the here developedTHC-ω-RI-CDD-SOS-MP2method
is assessed in terms of computational complexity and asymptotic
scaling behavior. First, we focus on the THC routine itself, i.e.,
without the computation of the MP2 energy to investigate the
most expensive steps of forming the THC factorized integrals.
For this, we consider the construction of the RI integrals in the
Cholesky-MO basis, the formation of the grid-projected RI
integralsY (eq 17), which is the formally highest scaling step and
the inversionor rather the linear solution to find the implicit

inverseof the grid metric S (eq 21). In Figure 1, this analysis is
exemplarily carried out for linear alkanes up to C200H402 using
the cc-pVDZ basis set. On the left, the computation times of the
total THC procedure (red) and the individual steps are plotted
against the number of basis functions.
It can be seen that the construction and contraction of the RI

integrals dominate the scaling behavior. Initially, subquadratic
scaling is observed for the RI integrals, which increases with
bigger molecule sizes. This is caused by the fact that, for the
largest chains, the inversion of the two-center integrals in eq 10
becomes computationally significant and starts to dominate the
overall scaling of the construction of the RI integrals. We note
that, for chemically relevant molecules, with a less sparse
structure, this crossover is expected to be for larger molecule
sizes. As the inversion is asymptotically cubic scaling, this
worsens the overall scaling of this step, while the formation of
the three-center integrals becomes close to linear scaling with
the screening outlined in Section 2.3. As the same screening in
combination with the natural blocking approach for the tensor
contractions is applied to the construction of the Y tensor, this
step also becomes close to linear scaling. For the linear solution

Figure 1.Total execution time of the THC algorithm (red) and individual contributions from the most expensive constituting steps, i.e., the formation
of the RI integrals (orange), the construction of intermediate Y (blue), and the inversion of the grid metric S (green) for linear alkanes CnH2n+2 using
the cc-pVDZ basis set (left) and the corresponding double logarithmic plot (right). The colored numbers correspond to the scaling exponent with
respect to the preceding fragment, and the scaling for the largest molecules was determined by linear regression starting from C60H122 (Nbf = 1450) up
to C200H402 (Nbf = 4810).

Figure 2. Plots of the total execution times for the THC-ω-RI-CDD-SOS-MP2 method (black) for linear alkanes CnH2n+2 as well as the individual
contributions from the THC fitting (red) and the computation of the MP2 energy (blue) for the cc-pVDZ (left) and cc-pVTZ basis sets (right). The
scaling exponent for the longest chains, starting from C60H122, was determined by linear regression in the double logarithmic plot, and the colored
numbers correspond to the scaling with respect to the preceding fragment.
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of eq 21, a specialized band matrix version of the LU
decomposition (LAPACK: xgbsv) was used. For this, reverse
Cuthill−McKee88 reordering of the atoms is performed in order
to minimize the bandwidth of the resulting grid-projected
overlap matrix. The bandwidth can then be determined
numerically by the algorithm presented in the Supporting
Information and converted to the LAPACK band storage
format. We found that, after a certain chain length, here C40H82,
the bandwidth is constant and the number of elements in S only
increases linearly, which results in an overall quadratic scaling of
this step. Even if no specialized linear solvers are applied, the
prefactor of this step is small, such that it only makes up a small
fraction of the total computation time. In total, using an
attenuated Coulomb metric in the RI integrals and natural
blocking for the corresponding contractions in combination
with a localized Cholesky basis and specialized algorithms for
the inversion of S, the overall scaling of obtaining the THC
factorization becomes quadratic. It should, however, be noted
that, for even larger molecule sizes, the scaling will eventually be
dominated by asymptotically cubic scaling steps, such as the
inversion of the two-center integrals or the formation of Z (eq
24), which involves only dense matrices.
Next, we focus the discussion on the overall scaling of the

evaluation of the SOS-MP2 energy equation with the THC
algorithm presented above.We first again consider linear alkanes
as a model system to determine the asymptotic scaling behavior.
Figure 2 shows the corresponding plots of the computation
times against the number of basis functions for the cc-pVDZ
(left) and cc-pVTZ basis sets (right). For this, the total wall
times for the evaluation of the THC-ω-RI-CDD-SOS-MP2
equations are shown (black) as well as the contributions from
obtaining the THC factorization (red) and the calculation of the
SOS-MP2 energy (blue).
For both basis sets, roughly quadratic scaling is observed for

the THC-ω-RI-CDD-SOS-MP2 method. Through the use of
sparsematrix algebra, the evaluation of the SOS-MP2 energy can
efficiently be performed since all quantities are sparseexcept
for the Z tensordue to the transformation into the Cholesky
pseudo-MO basis. It can be seen that for the smaller double-ζ
basis set, obtaining the THC factorization is the rate-
determining step and the energy evaluation only makes up 1/
3 of the total computation time. This highlights an advantage of
using a global THC formulation as, for the local-THC
approximation, the evaluation of the SOS-MP2 energy seems
to be dominating.63 The latter is especially problematic when
using more expensive correlation methods than MP2. For the
larger triple-ζ basis set, however, the evaluation of the energy
equations also becomes rate-determining for our global THC
algorithm. Here, larger grids are employed and the basis set
includes more diffuse functions, resulting in less sparse
intermediates in the energy evaluation. Overall, for linear
alkanes, as a sparse model, both the THC factorization and the
energy evaluation are quadratic scaling with a low prefactor for
the considered molecule sizes.
Even though linear alkanes provide a valuable model for

assessing the efficiency of screening algorithms and the scaling of
a method, we now focus on a class of molecules that is more
representative for practical applications in the form of adenine−
thymine base pair stacks (AT)n (n ∈ {1,2,4,8,12}). The same
calculations as in Figure 2 with the cc-pVDZ basis set were
performed for the DNA fragments, and the results are shown in
Figure 3.

Here, all observations discussed before for linear alkanes still
hold. The evaluation of the SOS-MP2 energy equations
approaches quadratic scaling for the largest DNA fragment
while obtaining the THC factorization reaches subquadratic
scaling. The latter is due to the fact that, for the less sparse DNA
systems, as compared to linear alkanes, the cubic scaling steps
cease to be significant and the scaling is dominated by the linear
scaling integral contractions. Thus, the whole THC-ω-RI-CDD-
SOS-MP2 method also becomes subquadratically scaling. The
more globular structure of DNA, however, causes a later onset of
subquadratic scaling (linear alkanes: Nbf ≈ 1000, DNA: Nbf ≈
6000) because only for the largest fragments the sparsity in the
tensors involved becomes sufficiently large to be exploited by
screening and sparse matrix algebra. It can be expected, that for
even larger fragments the scaling behavior of the energy
evaluation will reduce and approach the scaling observed for
linear alkanes. For the largest fragment, i.e., (AT)12, detailed wall
times for the individual steps of the THC-ω-RI-CDD-SOS-MP2
method are presented in Table 3.

As can be seen from Table 3, the operations involving the RI
integrals, i.e., their construction and transformation into theMO
basis as well as the grid projection to obtain intermediate Y,
make up roughly 75% of the total computation time. However,
we were able to show that these steps have been made linear
scaling through the use of an attenuated Coulomb metric and
the local Cholesky-MO basis in combination with integral

Figure 3. Total execution time of the THC-ω-RI-CDD-SOS-MP2
method (black) for (AT)n base pair stacks as well as the individual
contributions from the THC fitting (red) and the computation of the
MP2 energy (blue) for the cc-pVDZ basis set. The colored numbers
correspond to the scaling with respect to the preceding fragment.

Table 3. Detailed Computation Times for the Individual
Steps of the THC-ω-RI-CDD-SOS-MP2 Method for an
(AT)12 DNA Fragment (cc-pVDZ)

step wall time (s) %

integrals (eqs 11−13) 17,768 45.9
X (eqs 6−9) 208 0.5
Y (eq 17) 11,970 30.9
S (eq 4) 410 1.1
S−1 (eq 21) 960 2.5
Z (eq 24) 683 1.8
ESOS-MP2 (eq 33) 6132 15.8

total 38,745
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screening (see Figure 1), with the exception of the inversion of
the two-center integrals. Furthermore, the previously reported
bottleneck of the THC procedure, i.e., the inversion of the grid
metric S, was removed by the use of linear solvers, such that now
this step only contributes 2.5% of the total computation time for
the largest DNA fragment under consideration. Additionally,
here the other cubic scaling steps, i.e., obtaining the Z tensor and
inverting the two-center integrals, only contribute a small
percentage of the total wall time and are not rate-determining.
Finally, the evaluation of the SOS-MP2 energy equation only
requires roughly 15% of the total wall time.

4. CONCLUSIONS
In the present work, we showed that, through a combination of
different reduced-scaling methods, the computational complex-
ity of the LS-THC formalism can significantly be reduced: By
combining the locality of Cholesky orbitals with an erfc-
attenuated Coulomb metric and appropriate integral screening
for the RI integrals, all contractions involving these integrals can
be performed in linear time complexity. This especially allowed
us to perform the formally highest scaling step, i.e., the
projection of the RI integrals onto the THC grids to form
intermediate Y, in a linear scaling fashion. Additionally, the
prefactor of the usually most expensive step, i.e., forming the
inverse of the grid metric S, can be significantly reduced by
reformulation of the underlying equations and application of
linear equation solvers. All of this leads to a subquadratically
scaling formulation of the LS-THC procedure for chemically
relevant molecules. We note that this still involves cubic scaling
steps, like the inversion of the two-center integrals or the final
contraction to form the Z tensor; however, these steps have
small enough prefactors to only show up for very large molecule
sizes. Applying our THC method to SOS-MP2 leads to an
overall subquadratically scaling MP2 method, which we term
THC-ω-RI-CDD-SOS-MP2.
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1 Transformation of the Three-center Integrals

Following up on our work on ω-RI-CDD-MP2,S1 we employ the natural blocking matrix

formatS2 in combination with screening based on integral partition bounds (IPB)S3 for the

transformation of the three-center RI integrals into Cholesky-MO basis. In short, in the

three-center AO integral kernel the matrices M and N,

Mµν = max
α
|(µν ...α)|, (1)

Nµα = max
ν
|(µν ...α)|, (2)

are constructed. The screening matrices M and N can then be turned into upper bounds

for the transformation into Cholesky-MO basis by contraction with the absolute Cholesky

factors Lµi and Lµa according to

|(iν ...α)| ≤ Niα =
∑

µ

|Lµi|Nµα, (3)

|(aν ...α)| ≤ Naα =
∑

µ

|Lµa|Nµα. (4)

The elements of Niα and Naα can then be used to construct significance lists

[i]α ≡ {i|Niα > εNB}, (5)

[a]α ≡ {a|Naα > εNB}. (6)

With these significance lists the Cholesky-MO transformation can be carried out in linear-

scaling fashion using the algorithm presented below.
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Algorithm 1 Transform the three-center RI integrals into Cholesky-MO basis.
1: procedure transformRI
2: for all α do
3: for all i ∈ [i]α and ν ∈ {ν}α do

4: (α
... iν) =

∑
µ∈{µ}α Lµi(α

...µν)
5: end for
6: build {i}α list
7: end for
8: for all α do
9: for all i ∈ {i}α and a ∈ [a]α do

10: (α
... ia) =

∑
ν∈{ν}α Lνa(α

... iν)
11: end for
12: build {a}α list
13: end for
14: reorder: (α

... ia)→ (ia
...α)

15: build {a}i list
16: return (ia

...α)
17: end procedure

2 Band Matrix Solver for Y

Here we present the pseudocode for determining the numerical bandwidth of a symmetric ma-

trixA of size n×n and converting it into the band matrix storage format of LAPACK. Follow-

ing the notation of the LAPACK documentation, kl is the number of significant subdiagonals

and ku the number of superdiagonals. Since A is expected to be symmetric kl = ku and the

total bandwidth is given by 2kl + 1. The algorithm determines the bandwidth by iterating

over all subdiagonals and accumulating the elements of a given subdiagonal in the variable

sum. Once the sum is less than the number of elements in this subdiagonals times a given

truncation threshold thresh, the subdiagonal is considered to be insignificant.
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Algorithm 2 Determine the numerical band width of a symmetric matrix A.
1: procedure determine_numerical_bandwidth(A)
2: kl ← 0
3: for sub ← 1 to sub < n do . iterate over all subdiagonals
4: sum ← 0.0
5: for k ← 0 to k < n - sub do . iterate over all elements in a subdiagonal
6: sum ← sum + A(k + sub, k)
7: end for
8: if sum < ((n - sub) × thresh) then
9: break

10: end if
11: kl ← kl + 1
12: end for
13: return kl
14: end procedure

Algorithm 3 Convert matrix A to LAPACK band matrix storage format.
1: procedure convert_to_band_storage(A)
2: kl, ku ← determine_numerical_bandwidth(A)
3: B ← 0(kl+ku+1, n)
4: for j ← 0 to j < n do
5: for i ← max(0, j-ku) to i < min(n, j + kl) do
6: B(ku + i - j, j) ← A(i, j)
7: end for
8: end for
9: return B

10: end procedure

Finally, we note that for the xgbsv routine the resulting matrix B has to be copied to a

zero-padded matrix with dimensions (2kl+ku+1)×n.

3 Evaluation of the MP2 Energy Equations using THC

Here the pseudocode for the algorithms to compute the THC-CDD-MP2 energy is presented.

The algorithms for the Coulomb-like and exchange-like energy contribution are shown sepa-

rately, but both make use of first contracting all possible MO indices after transformation of

the collocation matrices into pseudo-MO basis. Here, we present the algorithm to compute
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the Coulomb-like contribution ETHC-CDD
MP2-J to the MP2 energy with O(N3) scaling. We note,

that not all contractions are considered explicitly as some of the intermediates are equivalent.

Algorithm 4 Compute the Coulomb-like MP2 energy ETHC-CDD
MP2-J

1: procedure ETHC-CDD
MP2-J ← −2

∑
κ

∑
PQRS

∑
ijabX

P
i X

P
a Z

PQXQ
j X

Q
b ·XR

i X
R
a Z

RSXS
jX

S
b

2: EMP2-J ← 0.0
3: for κ← 1 to Nκ do . Laplace quadrature
4: XP

i ←
∑

µ LµiX
P
µ . O(NgridNbfNocc)

5: XP
a ←

∑
ν LνaX

P
ν . O(NgridNbfNvirt)

6: APR(κ) ←
∑

iX
P
i X

R
i . O(N2

gridNocc)

7: BPR
(κ) ←

∑
aX

P
aX

R
a . O(N2

gridNvirt)

8: CPR
(κ) ← APR(κ) ◦BPR

(κ) . O(N2
grid)

9: DPS
(κ) ←

∑
R C

PR
(κ) Z

RS . O(N3
grid)

10: EMP2-J += −2
∑

PS D
PS
(κ)D

SP
(κ) . O(N2

grid)
11: end for
12: end procedure

Next, the algorithm to compute the exchange-like contribution ETHC-CDD
MP2-K to the MP2 energy

with O(N4) scaling is presented. To circumvent memory issues, the accumulation of the final

ETHC-CDD
MP2-K energy contribution is batched over the occupied index i which avoids the necessity

of storing higher than second-order tensors. Again, we note that not all contractions are

considered explicitly as some of the intermediates are equivalent. Here, this is especially

relevant for intermediates APR(κ) and AQS(κ) .
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Algorithm 5 Compute the exchange-like MP2 energy ETHC-CDD
MP2-K

1: procedure ETHC-CDD
MP2-K ←∑

κ

∑
PQRS

∑
ijabX

P
i X

P
a Z

PQXQ
j X

Q
b ·XR

i X
R
b Z

RSXS
jX

S
a

2: EMP2-K ← 0.0
3: for κ← 1 to Nκ do . Laplace quadrature
4: XP

i ←
∑

µ LµiX
P
µ . O(NgridNbfNocc)

5: XP
a ←

∑
ν LνaX

P
ν . O(NgridNbfNvirt)

6: APR(κ) ←
∑

iX
P
i X

R
i . O(N2

gridNocc)

7: BPS
(κ) ←

∑
aX

P
aX

S
a . O(N2

gridNvirt)

8: e
(κ)
MP2-K ← 0.0

9: for i← 1 to i ≤ rk(P) do . Batching over occupied index i
10: CPS

(κ) ← BPS
(κ)X

P
i (i, :) . O(N2

gridNocc)

11: DQS
(κ) ←

∑
P Z

PQCPS
(κ) . O(N3

gridNocc)

12: e
(κ)
MP2-K +=

∑
QS A

QS
(κ)D

QS
(κ)D

SQ
(κ) . O(N2

gridNocc)
13: end for
14: EMP2-K += e

(κ)
MP2-K

15: end for
16: end procedure

4 Comparison of Different SOS-MP2 Methods

To put our THC-RI-SOS-MP2 method into context with different SOS-MP2 methods we

compare it to LT-RI-SOS-MP2 based on work by Jung et al.S4 and to CD-SOS-MP2 based

on work by Aquilante et al.S5 The LT-RI-SOS-MP2 method makes use of the Laplace trans-

formation of the orbital energy denominator of the MP2 energy, which in combination with

density-fitted integrals achieves a decoupling of the bra- and ket-indices. As noted in the

original publication,S4 the most expensive step of the method is the contraction of two third-

order B-tensors to form the final intermediate for the energy evaluation, i.e., Z. Asymp-

totically this step scales as O(NoccNvirtN
2
aux) and has to be performed for every Laplace

point. The CD-SOS-MP2 method on the other hand is based on a Cholesky decomposition

of the MP2 amplitudes while the remaining ERI can either be approximated by RI or also

be Cholesky-decomposed. This – similar to LT-RI-SOS-MP2 – achieves a factorization into

at most third-order tensors. For CD-SOS-MP2, however, the time-determining steps have to
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be performed only once as a preprocessing step before the actual energy calculation. Asymp-

totically both methods are quartic scaling with the relative performance mainly governed

by the ratio of these steps. THC-RI-SOS-MP2 is another quartic scaling SOS-MP2 method

which like LT-RI-SOS-MP2 uses a Laplace transformation of the orbital energy denominator

and a preprocessing step in the form of factorizing the ERIs into THC format. The quartic

scaling step in THC-RI-SOS-MP2 is the contraction of the collocation matrices X with the

third-order RI tensors. The actual energy calculation requires at most O(N3
grid) scaling steps

and therefore offers an advantage over LT-RI-SOS-MP2 and CD-SOS-MP2. The energy

expressions of the three methods together with the scaling behavior of the most expensive

steps are presented below.
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LT-RI-SOS-MP2

EOS-MP2 = −2
∑

κ

∑

ijab

(ia|jb)(ia|jb)

= −2
∑

κ

∑

αβ

∑

ia

Bα
iaB

β
ia

∑

jb

Bα
jb
Bβ

jb

= −2
∑

κ

∑

αβ

ZαβZαβ

Bα
ia O(N2

bfNoccNaux) +O(NbfNoccNvirtNaux)

Bα
ia O(NoccNvirtNaux)

Z O(NoccNvirtN
2
aux)

E O(N2
aux)

memory O(N2
bfNaux)a) or O(NoccNvirtNaux)

CD-SOS-MP2

EOS-MP2 = −2
∑

ijab

tabij (ia|jb)

= −2
∑

K

∑

J

∑

ia

RK
iaL

J
ia

∑

jb

RK
jbL

J
jb

= −2
∑

K

∑

J

ZKJZKJ

tabij O(NoccNvirtNauxNchol) +O(NoccNvirtN
2
chol/2)

Z O(NoccNvirtNauxNchol)

E O(NauxNchol)

memory O(N2
occN

2
virt)

b) or O(NoccNvirtNchol)

THC-RI-SOS-MP2

EOS-MP2 = −2
∑

κ

∑

PQRS

∑

ijab

XP
i X

P
a Z

PQXQ
j X

Q
b ·

XR
i X

R
a Z

RSXS
jX

S
b

= −2
∑

κ

∑

PQRS

APR(κ)B
PR
(κ) Z

PQZRSAQS(κ)B
QS
(κ)

= −2
∑

κ

∑

PQRS

CPR
(κ) Z

PQZRSCQS
(κ)

= −2
∑

κ

∑

PS

DPS
(κ)D

PS
(κ)

Y O(NoccNvirtNauxNgrid) +O(NoccNauxNgrid)

Z O(NauxN
2
grid)

A,B O(NoccN
2
grid), O(NvirtN

2
grid)

D O(N3
grid)

E O(N2
grid)

memory O(N2
bfNaux)a) or O(NoccNvirtNaux)a) or

O(N2
grid)

a) if not implemented with on-the-fly integral calculation/contraction

b) if tabij is not computed on-the-fly and Cholesky decomposition of the tabij supermatrix is

performed

All methods are formally quartic scaling and their relative performance can be assessed

by comparing the time-determining steps of CD-SOS-MP2 and THC-RI-SOS-MP2 against

LT-RI-SOS-MP2. For LT-RI-SOS-MP2 we assume an operation count proportional to

NoccNvirtN
2
aux, for CD-SOS-MP2 an operation count of 2NoccNvirtNauxNchol+NoccNvirtN

2
chol/2

and for THC-RI-SOS-MP2 an operation count of NoccNvirtNauxNgrid. As explained by
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Aquilante et al.S5 the relative performance of CD-SOS-MP2 against LT-RI-SOS-MP2 is

governed by the ratio of σ = 2Nchol/Naux + (Nchol/Naux)2 /2 to the number of Laplace points

Nκ. For reasonable accuracy the ratio Nchol/Naux should be greater or equal to one and

assuming Nchol/Naux = 1 simplifies σ to σ = 2.5. Assuming that Nchol/Naux = 1 results in

µH accuracy of the final energies, for which in LT-RI-SOS-MP2 7–10 Laplace points would

be needed, it can be argued that CD-SOS-MP2 requires roughly 2–4 times less operations.

The quartic scaling step of the THC-RI-SOS-MP2 method has to be carried out only once,

while in LT-RI-SOS-MP2 this step has to be performed for every Laplace point. Assuming

that the number of THC grid points is three times greater than the number of auxiliary

functions, this results in a ratio σ′ of σ′ = 3/Nκ. Assuming that again 7–10 Laplace points

are used, THC-RI-SOS-MP2 offers an operation count advantage of roughly 2–3 times and is

thus comparable to CD-SOS-MP2. Additionally, one of the strengths of THC-RI-SOS-MP2

is that – if all integral operations are performed on-the-fly – the storage requirements are

an order of magnitude smaller than for the other two methods. Furthermore, once the THC

factorization is obtained all subsequent steps of evaluating the SOS-MP2 energy are only

cubic scaling.

5 Canonical MOs vs Cholesky MOs

The effect of using local Cholesky- and Cholesky pseudo-MOs for the formation of the THC

factorized ERIs and the computation of the MP2 energy, respectively, is demonstrated. As

outlined in the main part of the paper, our screening routines for both the transformation

of the RI integrals into Cholesky-MO basis and the subsequent projection onto the THC

grids by contraction with the collocation matrices X rely on the locality of the MOs used.

Furthermore, the evaluation of the MP2 energy relies on sparse linear algebra and therefore

also benefits from the locality of the Cholesky pseudo-MOs. To highlight this, the following

figures compare computation times for our THC-ω-RI-CDD-SOS-MP2 method, split into
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contributions from obtaining the THC factorization and the evaluation of the SOS-MP2

energy, using canonical MOs (red) against using Cholesky (pseudo)-MOs (black).
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Figure S1: Total execution time of the THC algorithm (left) and the evaluation of the
SOS-MP2 energy (right) using Cholesky (pseudo)-MOs (black) and canonical MOs (red) for
linear alkanes CnH2n+2 using the cc-pVDZ basis set. The scaling for the largest molecules
was determined by linear regression starting from C60H122 (Nbf = 1450) up to C200H402
(Nbf = 4810).
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Figure S2: Total execution time of the THC algorithm (left) and the evaluation of the
SOS-MP2 energy (right) using Cholesky (pseudo)-MOs (black) and canonical MOs (red) for
linear alkanes CnH2n+2 using the cc-pVTZ basis set. The scaling for the largest molecules
was determined by linear regression starting from C60H122 (Nbf = 3508) up to C120H242
(Nbf = 6988).

The close to quartic scaling of obtaining the THC factorization when using canonical MOs is

expected since the non-locality of the MOs causes the contraction of the collocation matrices

X with the three-center RI integrals to approach its formal O(N4) scaling. This clearly

highlights the efficiency of our screening algorithms for the construction of the Z matrix.

For the energy evaluation, Cholesky pseudo-MOs only provide a speedup for lines 6 and 7 of
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algorithm 4, i.e., for contractions of the type XXT. The product A = XXT is essentially a

representation of the occupied density matrix in the THC grid basis. Analogously, B = XX
T

is a representation of the virtual density matrix. As such A and B possess a similar sparsity

pattern as the regular density matrices and more importantly should be invariant under

rotation of the MOs. The latter means, thatA constructed asA =
∑

iX
P
i X

R
i using Cholesky

pseudo-MOs and A′ constructed from regular MOs as A′ =
∑

i e
εit

(κ)
XP
i X

R
i are identical.

For this reason, the only step of the evaluation of the MP2 Coulomb-like energy that can

be speeded up is the formation of intermediates A and B, while all subsequent contractions

are identical for both types of MOs. Since the contraction D = CZ from algorithm 4 is the

time-determining step and C will have the same sparsity pattern irrespective of the choice

of MOs, the overall computation times for the Coulomb-like MP2 energy are very similar

(see right sides of figures S1 and S2).
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6 Detailed Results for the S22 and L7 Test Set

6.1 Results for the S22 Test Set

Table S1: Absolute energies for the S22 test set monomers computed with our implementa-
tion of the RI-SOS-MP2 (ERI

SOS-MP2) reference method as well as the THC-RI-CDD-SOS-MP2
(ETHC-RI-CDD

SOS-MP2 ) and the THC-ω-RI-CDD-SOS-MP2 (ETHC-ω-RI-CDD
SOS-MP2 ) method for the cc-pVDZ

basis set. Additionally the deviations (∆E) of the results from the THC methods to the
RI-SOS-MP2 energies are shown.

molecule ERI
SOS-MP2 / H ETHC-RI-CDD

SOS-MP2 / H ∆E / µH ETHC-ω-RI-CDD
SOS-MP2 / H ∆E / µH

2-aminopyridine −302.703 924 −302.703 927 2.6 −302.703 906 18.5
2-pyridoxine −322.546 423 −322.546 425 2.1 −322.546 406 16.9
adenine −465.932 237 −465.932 233 3.1 −465.932 201 35.2
ammonia −56.384 925 −56.384 925 <0.1 −56.384 928 3.0
benzene −231.485 902 −231.485 910 8.1 −231.485 889 12.8
ethene −78.323 148 −78.323 148 <0.1 −78.323 150 1.5
ethyne −77.082 330 −77.082 330 <0.1 −77.082 333 3.3
formamide −169.417 178 −169.417 178 0.1 −169.417 173 4.9
formicacid −189.261 080 −189.261 079 0.4 −189.261 074 5.6
hydrocyanic acid −93.163 064 −93.163 064 <0.1 −93.163 068 4.5
indole −362.658 729 −362.658 743 14.4 −362.658 715 13.2
methane −40.371 390 −40.371 390 <0.1 −40.371 397 6.1
phenol −306.521 903 −306.521 911 7.5 −306.521 889 14.2
pyrazine −263.507 029 −263.507 028 1.1 −263.507 005 24.2
thymine −452.829 481 −452.829 469 12.7 −452.829 455 26.7
uracil −413.641 115 −413.641 108 7.7 −413.641 090 24.8
water −76.224 952 −76.224 952 <0.1 −76.224 952 0.4
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Table S2: Absolute energies for the S22 test set dimers and complexes computed with our
implementation of the RI-SOS-MP2 (ERI

SOS-MP2) reference method as well as the THC-RI-
CDD-SOS-MP2 (ETHC-RI-CDD

SOS-MP2 ) and the THC-ω-RI-CDD-SOS-MP2 (ETHC-ω-RI-CDD
SOS-MP2 ) method

for the cc-pVDZ basis set. Additionally the deviations (∆E) of the results from the THC
methods to the RI-SOS-MP2 energies are shown.

molecule ERI
SOS-MP2 / H ETHC-RI-CDD

SOS-MP2 / H ∆E / µH ETHC-ω-RI-CDD
SOS-MP2 / H ∆E / µH

2-pyridoxine + −625.277 430 −625.277 432 2.1 −625.277 395 35.02-aminopyridine
adenine + −918.781 508 −918.781 497 11.6 −918.781 494 13.7thymine (stack)
adenine + −918.788 467 −918.788 458 8.8 −918.788 415 52.6thymine (W.-C.)
ammonia dimer −112.776 724 −112.776 724 <0.1 −112.776 729 4.5
benzene + −271.858 651 −271.858 660 8.6 −271.858 646 5.0methane
benzene + −287.873 967 −287.873 978 10.9 −287.873 962 4.3ammonia
benzene dimer (‖) −462.974 877 −462.974 902 24.8 −462.974 881 4.0
benzene dimer (⊥) −462.975 643 −462.975 667 24.3 −462.975 635 8.4
benzene + −324.655 118 −324.655 128 9.9 −324.655 112 6.3hydrocyanic acid
benzene + −307.715 837 −307.715 848 12.2 −307.715 830 6.5water
ethene dimer −156.647 632 −156.647 632 0.3 −156.647 630 1.9
ethene + −155.407 786 −155.407 786 <0.1 −155.407 789 3.0ethyne
formamide dimer −338.860 613 −338.860 611 2.1 −338.860 603 9.6
formic acid dimer −378.552 763 −378.552 761 1.6 −378.552 751 12.0
indole + −594.150 675 −594.150 713 38.9 −594.150 696 21.2benzene (‖)
indole + −594.152 908 −594.152 942 34.5 −594.152 902 5.1benzene (⊥)
methane dimer −80.743 019 −80.743 019 <0.1 −80.743 028 8.9
phenol dimer −613.056 581 −613.056 617 36.4 −613.056 584 3.5
pyrazine dimer −527.020 386 −527.020 372 13.8 −527.020 350 35.7
uracil dimer (H-bond) −827.313 142 −827.313 116 25.9 −827.313 084 57.9
uracil dimer (stack) −827.297 960 −827.297 941 18.3 −827.297 934 25.9
water dimer −152.460 696 −152.460 696 <0.1 −152.460 695 1.0
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Table S3: Absolute energies for the S22 test set monomers computed with our implementa-
tion of the RI-SOS-MP2 (ERI

SOS-MP2) reference method as well as the THC-RI-CDD-SOS-MP2
(ETHC-RI-CDD

SOS-MP2 ) and the THC-ω-RI-CDD-SOS-MP2 (ETHC-ω-RI-CDD
SOS-MP2 ) method for the cc-pVTZ

basis set. Additionally the deviations (∆E) of the results from the THC methods to the
RI-SOS-MP2 energies are shown.

molecule ERI
SOS-MP2 / H ETHC-RI-CDD

SOS-MP2 / H ∆E / µH ETHC-ω-RI-CDD
SOS-MP2 / H ∆E / µH

2-aminopyridine −303.110 460 −303.110 460 0.2 −303.110 465 5.2
2-pyridoxine −322.966 088 −322.966 092 3.3 −322.966 094 6.0
adenine −466.526 943 −466.526 939 3.9 −466.526 946 3.0
ammonia −56.471 514 −56.471 515 <0.1 −56.471 516 1.4
benzene −231.807 569 −231.807 569 0.7 −231.807 574 5.8
ethene −78.441 379 −78.441 379 <0.1 −78.441 375 4.5
ethyne −77.191 318 −77.191 318 <0.1 −77.191 326 7.7
formamide −169.634 769 −169.634 768 0.8 −169.634 770 1.0
formicacid −189.491 093 −189.491 093 0.5 −189.491 094 0.3
hydrocyanic acid −93.276 293 −93.276 293 <0.1 −93.276 305 11.5
indole −363.150 385 −363.150 381 4.1 −363.150 383 1.6
methane −40.441 911 −40.441 911 <0.1 −40.441 911 <0.1
phenol −306.931 762 −306.931 763 0.7 −306.931 766 4.0
pyrazine −263.847 780 −263.847 780 0.2 −263.847 787 6.6
thymine −453.403 928 −453.403 930 1.9 −453.403 930 2.8
uracil −414.156 850 −414.156 843 6.7 −414.156 848 2.3
water −76.328 144 −76.328 145 <0.1 −76.328 144 0.7
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Table S4: Absolute energies for the S22 test set dimers and complexes computed with our
implementation of the RI-SOS-MP2 (ERI

SOS-MP2) reference method as well as the THC-RI-
CDD-SOS-MP2 (ETHC-RI-CDD

SOS-MP2 ) and the THC-ω-RI-CDD-SOS-MP2 (ETHC-ω-RI-CDD
SOS-MP2 ) method

for the cc-pVTZ basis set. Additionally the deviations (∆E) of the results from the THC
methods to the RI-SOS-MP2 energies are shown.

molecule ERI
SOS-MP2 / H ETHC-RI-CDD

SOS-MP2 / H ∆E / µH ETHC-ω-RI-CDD
SOS-MP2 / H ∆E / µH

2-pyridoxine + −626.102 751 −626.102 756 3.6 −626.102 760 7.82-aminopyridine
adenine + −919.953 279 −919.953 283 4.0 −919.953 305 26.0thymine (stack)
adenine + −919.956 369 −919.956 365 4.3 −919.956 365 3.9thymine (W.-C.)
ammonia dimer −112.948 625 −112.948 625 <0.1 −112.948 624 1.1
benzene + −272.251 679 −272.251 680 0.9 −272.251 685 6.5methane
benzene + −288.282 957 −288.282 956 1.0 −288.282 970 12.5ammonia
benzene dimer (‖) −463.620 183 −463.620 177 6.2 −463.620 192 9.4
benzene dimer (⊥) −463.619 930 −463.619 927 3.9 −463.619 935 5.3
benzene + −325.091 880 −325.091 880 <0.1 −325.091 904 23.5hydrocyanic acid
benzene + −308.141 724 −308.141 722 1.8 −308.141 728 3.6water
ethene dimer −156.884 286 −156.884 286 <0.1 −156.884 291 5.8
ethene + −155.634 944 −155.634 945 1.0 −155.634 952 8.3ethyne
formamide dimer −339.294 087 −339.294 085 2.3 −339.294 087 0.1
formic acid dimer −379.010 826 −379.010 824 2.4 −379.010 851 24.6
indole + −594.967 113 −594.967 112 0.9 −594.967 130 16.6benzene (‖)
indole + −594.967 839 −594.967 834 4.7 −594.967 860 20.9benzene (⊥)
methane dimer −80.884 303 −80.884 303 <0.1 −80.884 303 0.1
phenol dimer −613.875 204 −613.875 205 1.2 −613.875 214 9.7
pyrazine dimer −527.703 274 −527.703 273 1.2 −527.703 298 23.5
uracil dimer (H-bond) −828.344 550 −828.344 536 14.0 −828.344 537 13.7
uracil dimer (stack) −828.331 458 −828.331 460 2.1 −828.331 473 15.6
water dimer −152.665 252 −152.665 252 <0.1 −152.665 250 1.7
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6.2 Results for the L7 Test Set

Table S5: Absolute energies for the L7 test set monomers (2nd and 3rd row of each cell)
and complexes (1st row of each cell) computed with our implementation of the RI-SOS-MP2
(ERI

SOS-MP2) reference method as well as the THC-RI-CDD-SOS-MP2 (ETHC-RI-CDD
SOS-MP2 ) and the

THC-ω-RI-CDD-SOS-MP2 (ETHC-ω-RI-CDD
SOS-MP2 ) method for the cc-pVDZ basis set. Additionally

the deviations (∆E) of the results from the THC methods to the RI-SOS-MP2 energies are
shown.

molecule ERI
SOS-MP2 / H ETHC-RI-CDD

SOS-MP2 / H ∆E / µH ETHC-ω-RI-CDD
SOS-MP2 / H ∆E / µH

circumcoronene −2528.319 812 −2528.320 097 284.8 −2528.319 995 183.3
+ −465.934 047 −465.934 057 10.7 −465.934 025 21.3

adenine −2062.358 644 −2062.358 811 167.1 −2062.358 643 1.4
circumcoronene −2997.209 161 −2997.209 377 215.5 −2997.209 315 153.5

+ −934.805 872 −934.805 864 8.7 −934.805 814 58.6
GC −2062.358 156 −2062.358 361 205.3 −2062.358 192 36.1

coronene −1837.897 882 −1837.898 001 118.9 −1837.897 970 87.0
+ −918.932 012 −918.932 097 85.6 −918.932 029 17.4

coronone −918.932 012 −918.932 097 85.6 −918.932 029 17.4
GC −1869.612 341 −1869.612 225 115.2 −1869.612 216 124.0
+ −934.793 898 −934.793 872 25.5 −934.793 824 73.7
GC −934.793 898 −934.793 872 25.5 −934.793 824 73.7

guanine −1622.921 181 −1622.921 159 21.9 −1622.921 131 50.0
+ −540.978 004 −540.978 009 5.0 −540.977 979 24.9

2×guanine −1081.938 478 −1081.938 454 24.5 −1081.938 429 49.4
octadecane −1412.944 380 −1412.944 429 48.8 −1412.944 427 46.8

+ −706.468 122 −706.468 122 0.3 −706.468 123 1.3
octadecane −706.468 122 −706.468 122 0.3 −706.468 123 1.3

phenylalanine −2056.636 559 −2056.636 594 35.5 −2056.636 561 1.7
+ −685.518 803 −685.518 816 13.5 −685.518 802 1.0

2×phenylalanine −1371.076 543 −1371.076 574 30.9 −1371.076 551 7.3
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Table S6: Absolute energies for the L7 test set monomers (2nd and 3rd row of each cell)
and complexes (1st row of each cell) computed with our implementation of the RI-SOS-MP2
(ERI

SOS-MP2) reference method as well as the THC-RI-CDD-SOS-MP2 (ETHC-RI-CDD
SOS-MP2 ) and the

THC-ω-RI-CDD-SOS-MP2 (ETHC-ω-RI-CDD
SOS-MP2 ) method for the cc-pVTZ basis set. Additionally

the deviations (∆E) of the results from the THC methods to the RI-SOS-MP2 energies are
shown.

molecule ERI
SOS-MP2 / H ETHC-RI-CDD

SOS-MP2 / H ∆E / µH ETHC-ω-RI-CDD
SOS-MP2 / H ∆E / µH

circumcoronene −2531.676 601 −2531.676 470 131.4 −2531.676 470 131.4
+ −466.526 351 −466.526 346 5.7 −466.526 356 4.2

adenine −2065.114 437 −2065.114 359 77.2 −2065.114 340 96.2
circumcoronene −3001.162 208 −3001.162 191 17.5 −3001.162 191 17.5

+ −935.987 058 −935.987 033 25.6 −935.987 036 22.1
GC −2065.114 682 −2065.114 673 9.6 −2065.114 659 23.8

coronene −1840.399 230 −1840.399 043 187.3 −1840.399 093 137.0
+ −920.176 000 −920.175 898 101.9 −920.175 897 103.2

coronone −920.176 000 −920.175 898 101.9 −920.175 897 103.2
GC −1872.005 953 −1872.005 838 115.6 −1872.005 875 77.9
+ −935.988 309 −935.988 264 45.3 −935.988 265 43.9
GC −935.988 309 −935.988 264 45.3 −935.988 265 43.9

guanine −1624.970 678 −1624.970 622 55.0 −1624.970 653 24.1
+ −541.658 226 −541.658 214 11.8 −541.658 217 8.2

2×guanine −1083.305 549 −1083.305 514 35.6 −1083.305 533 16.1
octadecane −1415.073 527 −1415.073 509 18.1 −1415.073 463 63.9

+ −707.530 305 −707.530 297 8.3 −707.530 314 8.3
octadecane −707.530 305 −707.530 297 8.3 −707.530 314 8.3

phenylalanine −2059.357 071 −2059.357 044 27.3 −2059.357 062 8.6
+ −686.425 836 −686.425 827 8.6 −686.425 838 2.5

2×phenylalanine −1372.890 709 −1372.890 692 17.3 −1372.890 706 3.5

7 Accuracy of THC-MP2 Amplitudes

As shown in the main part of this paper and section 6 of the SI, our THC-ω-RI-CDD-SOS-

MP2 method is able to accurately reproduce RI-SOS-MP2 energies with average errors on

the order of 10−6 H to 10−5 H for the investigated S22 and L7 test set. To show that our

THC algorithm can also accurately reproduce important intermediate quantities and not

only final energies, we compare RI-MP2 amplitudes, given as

tabij (RI-MP2) =
∑

αβ

(ia|α) [J−1]αβ (β|jb)
εi + εj − εa − εb

, (7)
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against the THC-ω-RI-MP2 amplitudes

tabij (THC-ω-RI-MP2) =
∑

PQ

XP
i X

P
a Z

PQXQ
j X

Q
b

εi + εj − εa − εb
, (8)

as computed with our THC algorithm. The deviation of the THC-ω-RI-MP2 amplitudes

from the RI-MP2 amplitudes is quantified by calculating the mean absolute deviation of the

diagonal elements given by

∆taaii =
1

NoccNvirt

∑

ia

|taaii (RI-MP2)− taaii (THC-ω-RI-MP2)| (9)

for the molecules and complexes in the S22 test set using the cc-pVDZ and cc-pVTZ basis

sets. The same thresholds and settings are used as in the main part of the paper.

Table S7: Deviations of the diagonal elements of the THC-ω-RI-MP2 amplitudes from the
RI-MP2 amplitudes for the S22 test set monomers computed with the cc-pVDZ and cc-pVTZ
basis sets.

molecule ∆taaii (cc-pVDZ) / 10−7 ∆taaii (cc-pVTZ) / 10−7

2-aminopyridine 2.935 0.345
2-pyridoxine 3.053 0.455
adenine 3.139 0.464
ammonia 3.293 0.725
benzene 2.981 0.565
ethene 1.614 0.343
ethyne 2.742 0.691
formamide 1.571 0.614
formicacid 1.436 0.785
hydrocyanic acid 3.393 1.036
indole 3.194 0.669
methane 1.677 0.325
phenol 2.790 0.276
pyrazine 3.604 0.568
thymine 2.977 0.357
uracil 3.699 0.912
water 4.234 1.122

MAD 2.843 0.603
MAX 4.234 1.122
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Table S8: Deviations of the diagonal elements of the THC-ω-RI-MP2 amplitudes from the
RI-MP2 amplitudes for the S22 test set dimers and complexes computed with the cc-pVDZ
and cc-pVTZ basis sets.

molecule ∆taaii (cc-pVDZ) / 10−7 ∆taaii (cc-pVTZ) / 10−7

2-pyridoxine +
1.529 0.1772-aminopyridine

adenine +
1.872 0.180thymine (stack)

adenine +
1.600 0.241thymine (W.-C.)

ammonia dimer 0.984 0.235
benzene +

2.018 0.366methane
benzene +

2.179 0.233ammonia
benzene dimer (‖) 2.327 0.145
benzene dimer (⊥) 1.610 0.343
benzene +

2.027 0.260hydrocyanic acid
benzene +

2.352 0.237water
ethene dimer 0.616 0.121
ethene +

0.761 0.195ethyne
formamide dimer 1.669 0.405
formic acid dimer 2.092 0.575
indole +

2.677 0.133benzene (‖)
indole +

1.898 0.261benzene (⊥)
methane dimer 0.651 0.936
phenol dimer 2.358 0.128
pyrazine dimer 2.235 0.271
uracil dimer (H-bond) 2.003 0.379
uracil dimer (stack) 2.253 0.214
water dimer 1.520 0.320

MAD 1.783 0.219
MAX 2.358 0.936

For the MP2 amplitude deviations similar effects as for the MP2 energies can be observed.

The THC factorization provides a quantitatively good approximation of the RI-MP2 ampli-
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tudes and deviations with the triple-ζ basis set are smaller due to larger THC grids being

employed. Errors of the THC-ω-RI-MP2 amplitudes are on the order of 10−7 for the cc-

pVDZ basis set and on the order of 10−8 for the cc-pVTZ basis set across the whole S22 test

set. This was expected since the THC gridsS6 used were optimized to best fit density-fitted

ERIs.

8 Validation of the Phosphorus Grids

The computation of DNA fragments requires THC grids for the atom types {H, C, N, O,

P}. The grids provided by Martínez and coworkersS6 were however only optimized for 1st-

and 2nd-row elements. To still make computations of DNA fragments possible we chose to

use the largest atom grids, i.e., the grids for fluorine, for the phosphorus atoms as well. To

demonstrate that this does not result in an additional error beyond the regular THC error,

we compare the Coulomb-like energies of the THC-RI-CDD-MP2 method against the RI-

MP2 reference method for a selection of representative phosphorus species. This mini test

set includes P4, the trivalent PH3 and the pentavalent H3PO4. H3PO4 is of special interest

here because the DNA backbone contains structurally comparable phosphate moieties. The

results are shown in the table below.

Table S9: Comparison of the Coulomb-like energies EMP2-J for the THC-RI-CDD-MP2
method against RI-MP2 for the validation of the phosphorus grids. All calculations were
performed with the cc-pVDZ basis set and the cc-pVDZ-RI fitting basis set.

molecule ERI
MP2-J / H ETHC-RI-CDD

MP2-J / H ∆E / µH
P4 -0.357244658 -0.357244828 0.17
PH3 -0.115739227 -0.115739217 0.01
H3PO4 -0.637504139 -0.637504382 0.24

As can be seen from table S9, the errors are well below 1 µH and comparable to the regular

THC error for the other atom types. This justifies the use of the fluorine grids for phosphorus

atoms and shows that this does not lead to a significant error increase.
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9 Demonstrating Continuousness of the Potential Energy

Surface for a C−C Bond Rotation in Vitamin K2

To demonstrate, that the THC-ω-RI-CDD-SOS-MP2 method is not prone to discontinuities

in the potential energy surface, the rotation around a C−C bond in vitamin K2 (menachinon-

4), we computed the THC-ω-RI-CDD-SOS-MP2 energies for the rotation around the C−C

bond between atoms 4 and 5 in steps of 10°. The same settings were used as in the main part

of the paper, i.e., a natural blocking threshold of 10−6 and an attenuation strength ω = 0.1.

The corresponding energy diagram and additionally the structures at a rotation of -180° and

0° are shown in the figure below.

Figure S3: THC-ω-RI-CDD-SOS-MP2 energies relative to the geometry with a rotation angle
of -180° of vitamin K2. All calculations were performed with the cc-pVDZ basis set and the
cc-pVDZ-RI fitting basis set.

The geometries of the Vitamin K2 molecules are provided on our website.
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ABSTRACT
A method for the computation of nuclear magnetic resonance (NMR) shieldings with second-order Møller–Plesset perturbation theory (MP2)
is presented which allows to efficiently compute the entire set of shieldings for a given molecular structure. The equations are derived using
Laplace-transformed atomic orbital second-order Møller–Plesset perturbation theory as a starting point. The Z-vector approach is employed
for minimizing the number of coupled-perturbed self-consistent-field equations that need to be solved. In addition, the method uses the
resolution-of-the-identity approximation with an attenuated Coulomb metric and Cholesky decomposition of pseudo-density matrices. The
sparsity in the three-center integrals is exploited with sparse linear algebra approaches, leading to reduced computational cost and memory
demands. Test calculations show that the deviations from NMR shifts obtained with canonical MP2 are small if appropriate thresholds are
used. The performance of the method is illustrated in calculations on DNA strands and on glycine chains with up to 283 atoms and 2864 basis
functions.
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I. INTRODUCTION

Nuclear magnetic resonance (NMR) is a widely used spectro-
scopic method in the field of chemistry. NMR spectra are highly sen-
sitive to the molecular geometry and contain a wealth of structural
information. However, especially for large molecules, their interpre-
tation can be difficult, and it can be challenging to unambiguously
assign a molecular structure to a given spectrum. In such situa-
tions, the comparison with theoretically computed spectra can be
very helpful. For this reason, much work has been done on the devel-
opment of quantum-chemical methods for the simulation of NMR
shieldings (for reviews, see, e.g., Refs. 1–3).

Methods for computing NMR shieldings with Hartree–Fock
(HF) theory4–8 or density functional theory (DFT)9–11 can often
provide useful shifts at moderate computational cost. For these
theories, linear and sublinear scaling implementations have been
developed which allow to apply them to large molecules with 1000
atoms or more.12–14 If higher accuracy is desired, wave-function
based correlation methods can be used. This includes second-order
Møller–Plesset perturbation theory (MP2),15,16 the multiconfigu-
rational self-consistent field method (MCSCF),17,18 or approaches
based on coupled-cluster theory.19–21 Among the mentioned corre-
lated methods, MP2 is particularly attractive because it has lower for-
mal scaling and computational cost than high-level coupled cluster
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methods but has been shown to yield typically NMR shifts of signif-
icantly higher quality than Hartree–Fock theory or DFT.16,22 There-
fore, a significant amount of work has been done on MP2-based
methods for computing NMR shieldings. In 1992, Gauss presented
the first method for computing NMR shifts with MP215,16 and a
Z-vector approach.23,24 In later years, a more efficient integral-direct
implementation by Kollwitz and Gauss25 and implementations using
local-correlation approximations26–28 were developed. Maurer and
Ochsenfeld29 demonstrated that a linear and sublinear scaling com-
putation of NMR shieldings is possible with atomic-orbital MP2
(AO-MP2)30–35 and integral screening approaches. Apart from pure
MP2 theory, closely related methods, such as double-hybrid den-
sity functional theory36,37 or spin-component-scaled38,39 and scaled-
opposite-spin MP2,39,40 showed good accuracy in benchmark stud-
ies and proved to be promising for efficient calculations on large
molecules considering that the algorithmic developments for MP2
can easily be transferred to these methods.

In this work, we present a new method for efficiently com-
puting NMR shieldings at the MP2 level of theory. Like the related
approach from the study by Maurer and Ochsenfeld,29 the method
presented in this work is based on Laplace-transformed AO-MP2
but differs in several aspects. First of all, our new method employs
an all-nuclei formulation, which allows us to efficiently compute the
entire set of NMR shieldings for all nuclei in a given molecule. In
contrast, Maurer and Ochsenfeld29 used a selected-nuclei formula-
tion, which was first introduced by Beer et al.14 at the SCF level
of theory. The selected-nuclei formulation allows to exploit locality
and accelerate the computation of the shieldings of a small subset of
all nuclei. However, if all shieldings need to be computed, this for-
mulation is inferior due to the large number of coupled-perturbed
self-consistent field (CPSCF) equations that need to be solved. The
working equations differ significantly between the all-nuclei and
selected nuclei ansatz because certain terms involving derivatives of
gauge-including atomic orbitals (GIAOs)4,41,42 are present in one
formulation and absent in the other one. GIAOs are used in our
method in order to ensure gauge-origin independence. Compared to
the method reported by Maurer and Ochsenfeld,29 our new imple-
mentation avoids four-center electron repulsion integrals (ERIs)
with the help of the resolution-of-the-identity (RI)43,44 approxima-
tion. Like in our previous work on the efficient computation of MP2
energies,45 an attenuated Coulomb metric46–48 is used in order to
further increase the available sparsity in the three-center integrals.
In this context, we would like to mention an efficient MP2 shielding
method using a Cholesky decomposition (CD) of ERIs that was very
recently introduced by Burger et al.49 As RI, the CD approach allows
to avoid four-center integrals. Compared to RI, it has certain advan-
tages, such as rigorous control of the numerical error of the decom-
position and independence of pre-defined auxiliary basis sets.50,51

However, the Cholesky factors have lower sparsity than three-
center RI integrals with an attenuated Coulomb metric for large
systems.

Here we use a pivoted Cholesky decomposition52–54 of pseudo-
density matrices which allows us to utilize the reduced rank of
these matrices (especially for the occupied pseudo-densities) and
further lowers computational cost and memory demands. The spar-
sity of the three-center integrals is exploited using sparse linear
algebra approaches. The transformations of the three-center inte-
grals in the atomic orbital basis with the Cholesky molecular orbitals

(Cholesky-MOs) and with pseudo-density and perturbed pseudo-
density matrices are accelerated using block-sparse matrix multipli-
cations. For the subsequent steps involving three-center integrals,
we use the natural blocking format,45,47,55 which allows us to reduce
the computational effort for contractions of the three-center inte-
grals and the I/O overhead. We demonstrate in test calculations that
the developed method provides accurate NMR shieldings if the same
thresholds are used that also proved to be appropriate for achieving
chemically accurate energies in our recent work on MP2 correlation
energies.45 In calculations on glycine chains and DNA strands, we
analyze the efficiency of the method, the scaling, and the require-
ments on memory and disk space. We also compare calculations
with standard MP2 to shielding calculations with scaled-opposite
spin MP2 (SOS-MP2)39,40 and show that the SOS-approximation
leads to further substantial gains in efficiency.

II. THEORY
In Sec. II A, a brief review of the AO-MP2 method for ener-

gies is provided, which provides the starting point for the deriva-
tion. Section II B contains a discussion of AO-MP2 gradients with
emphasis on the gradient with respect to the nuclear magnetic
moment. In Sec. II C, the mixed second derivative of the energy with
respect to nuclear magnetic moment and magnetic field is derived,
which allows to compute NMR shieldings. In Sec. II D, a nested
Z-vector approach is described, which allows to circumvent the
explicit computation of the nuclear magnetic moment derivative of
the density matrix and the second derivative of the density matrix
and thus minimizes the number of CPSCF equations that need to be
solved. Then, in Sec. II E, we discuss strategies for accelerating the
time-dominating steps of the computation.

A. Review of atomic-orbital MP2
In general, the elements of the NMR shielding tensor σA of a

nucleus A can be computed by taking a mixed second derivative of
the electronic energy E. One derivative needs to be taken with respect
to one of the components of the magnetic field Bs with s ∈ {x, y, z},
while the other derivative is taken with respect to a component of
the nuclear magnetic moment vector mA

r ,

σA
rs =

∂2

∂mA
r ∂Bs

E∣mA=0,B=0. (1)

Different quantum-chemical methods can be used for computing
E; the method presented in this work is based on atomic-orbital
MP2 (AO-MP2).30,32,34,35 Starting from the closed-shell MP2 energy
expression in terms of canonical, doubly occupied Hartree–Fock
orbitals,

EMP2 = −∑
ijab

(ia∣ jb)[2(ia∣ jb) − (ib∣ ja)]
ϵa + ϵb − ϵi − ϵj

, (2)

AO-MP2 can be derived by expressing the orbital energy denom-
inator from Eq. (2) using a Laplace transformation, which can be
approximated using numerical integration30 as follows:

1
ϵa + ϵb − ϵi − ϵj

=

∞

∫

0

dt e−t(ϵa+ϵb−ϵi−ϵj)

≈∑
α

ωα e−tα(ϵa+ϵb−ϵi−ϵj), (3)
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where tα and ωα are the exponent and weight of Laplace point α,
respectively. After inserting the Laplace-transformed denominator
into Eq. (2), insertion of the basis set expansion of the MOs, and
subsequent summation over all MO-indices, the energy expression
of AO-MP2 is obtained as follows:

EAO
MP2 = −∑

α
∑
μνλσ
(μν∣λσ)[2(μν∣λσ) − (μσ∣λν)], (4)

where

(μν∣λσ) = ∑
μ′ν′λ′σ′

Pμμ′Pνν′Pλλ′Pσσ′(μ′ν′∣λ′σ′) (5)

and

Pμμ′ =
4
√

ωα∑
i

Cμie+ϵitα Cμ′i, (6)

Pνν′ =
4
√

ωα∑
a

Cνae−ϵatα Cν′a. (7)

The matrices P and P defined in Eqs. (6) and (7) are called the
occupied and virtual pseudo-densities, respectively. Note that the
pseudo-density matrices depend on the Laplace point α; for simplic-
ity, we omit this dependence in all formulas shown below.

B. Gradient with respect to the nuclear
magnetic moment

In Ref. 56, Schweizer et al. derived the gradient of AO-MP2.
One possible expression for the gradient of AO-MP2 with respect to
a general perturbation ξ reads as follows:

∂

∂ξ
EAO

MP2 = − 2∑
α
{Tr[RPξ

] + Tr[RPξ
]}

− 2∑
α
∑
μνλσ
(μν∣λσ)[2(μν∣λσ)ξ

− (μν∣λσ)ξ
], (8)

where
Rμμ′ =∑

νλσ
(μ′ν∣λσ)[2(μν∣λσ) − (μσ∣λν)], (9)

Rνν′ =∑
μλσ
(μν′∣λσ)[2(μν∣λσ) − (μσ∣λν)]. (10)

Due to the pseudo-densities appearing in Eqs. (9) and (10), the
matrices R and R are also dependent on the Laplace point. For the
derivation of the working equations of our new MP2-NMR method,
we will take the gradient with respect to the nuclear magnetic
moment mA as a starting point,

∂

∂m
EAO

MP2 = −2∑
α
{Tr[RPm

] + Tr[RPm
]}. (11)

Here and in the following, mA shall be abbreviated as m in order to
simplify the notation. Note that for this particular perturbation, the
last term from Eq. (8) is zero because the two-electron integrals do
not depend on m. Equation (11) requires perturbed pseudo-density
matrices. Explicit expressions for the unperturbed pseudo-density

matrices in terms of MO coefficients and orbital energies are shown
in Eqs. (6) and (7); these matrices can also be computed only from
quantities in the AO basis33,56,57 as follows:

P = 4
√

ωαetPFP, (12)

P = 4
√

ωαe−tPvirtFPvirt, (13)

where P = ∑
i

C∗μiCνi is the HF density matrix and Pvirt = ∑
a

C∗μaCνa

is the virtual density matrix. After inserting the expressions from
Eqs. (12) and (13) into Eq. (11) and differentiating using the product
rule, one obtains

∂

∂m
EAO

MP2 = − 2∑
α

4
√

ωα{Tr[R(etPF
)

m
P] + Tr[RetPFPm

]

+ Tr[R(e−tPvirtF)
m

Pvirt] + Tr[Re−tPvirtFPm
virt]}. (14)

By applying cyclic permutations under the trace, Eq. (14) becomes

∂

∂m
EAO

MP2 = − 2∑
α

4
√

ωα{Tr[RetPFPm
] + Tr[PR(etPF

)
m
]

+ Tr[Re−tPvirtFPm
virt] + Tr[PvirtR(e−tPvirtF)

m
]}. (15)

In general, the perturbed virtual density matrix can be computed as
follows:56

Pξ
virt = −Pξ

− (P + Pvirt)SξS−1. (16)

For the nuclear magnetic moment perturbation, the derivative of S is
zero, and Eq. (16) therefore becomes Pm

virt = −Pm. The terms involv-
ing the perturbed density matrices can be efficiently treated with a
Z-vector approach, which will be described in detail in Sec. II D.
Here, we will focus on the terms containing perturbed matrix expo-
nentials, which are of the general form Tr[B(eA

)
ξ
]. As shown in

Appendix A, such a term can be rearranged as follows:

Tr[B(eA
)

ξ
] = Tr[YAξ

], (17)

where

Y =
∞
∑
k=1

k−1

∑
i=0

1
k!

AiBAk−1−i. (18)

Y can be computed efficiently by a recursive scheme, which is also
shown in Appendix A. In order to rearrange the terms containing
perturbed matrix exponentials in Eq. (15), we define two intermedi-
ates Y and Y. Y is computed by evaluating Eq. (18) with A = (tαPF)
and B = (PR). Y is calculated using the same formula and setting
A = (−tαPvirtF) and B = (PvirtR). Using Y and Y, the intermediates
Y1, Y2, Y1, and Y2 defined in Ref. 56 can be computed by a small
number of additional matrix multiplications as follows:

Y1 = −tαFY, (19)
Y2 = −tαYPvirt, (20)

Y1 = tαFY, (21)
Y2 = tαYP. (22)
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Instead of evaluating four different recursion formulas for Y1, Y2,
Y1, and Y2 as in Ref. 56, only two recursions for Y and Y need to
be evaluated if the new recursion formulas presented in this work
are used. This reduces the number of necessary matrix multiplica-
tions by roughly a factor of two. Note that also all “Y”-matrices from
Eqs. (19)–(22) implicitly depend on the Laplace point.

Using the intermediates defined so far, we are able to write the
formula for the gradient with respect to m in the following way:

∂

∂m
EAO

MP2 = −2∑
α

4
√

ωα[Tr[F (α)hm
] + Tr[P(α)Pm

]], (23)

F (α) = Y2 + Y2, (24)

P(α) = Y1 − Y1 +G[F (α)] + RetαPF
− Re−tαPvirtF. (25)

G[F (α)] is computed analogously to the two-electron part of the

Fock matrix with F (α) taking the role of the density matrix,

Gμν[F (α)] =∑
λσ
[2(μν∣λσ) − (μσ∣λν)]F(α)λσ . (26)

Noticing that only F (α) and P(α) depend on the Laplace point in
Eq. (23), we define

F ≡∑
α

4
√

ωαF (α), (27)

P ≡∑
α

4
√

ωαP(α). (28)

Using F and P, Eq. (23) becomes

∂

∂m
EAO

MP2 = −2[Tr[Fhm
] + Tr[PPm

]]. (29)

C. Second derivative with respect
to the magnetic field

As shown in Eq. (1), NMR shieldings can be computed as the
mixed second derivative of the energy with respect to the nuclear
magnetic moment and the magnetic field. The expression from
Eq. (29) thus needs to be differentiated with respect to the magnetic
field B as follows:

∂2

∂B∂m
EAO

MP2 = − 2[Tr[FhBm
] + Tr[FBhm

]

+ Tr[PPBm
] + Tr[PBPm

]]. (30)

Equation (30) contains the derivative of F and P, which can be
computed as follows:

FB
=∑

α

4
√

ωα(F (α))B
=∑

α

4
√

ωα{YB
2 + YB

2}, (31)

PB
=∑

α

4
√

ωα{YB
1 − YB

1 + RBetαPF
+ R(etαPF

)
B

− RBe−tαPvirtF − R(e−tαPvirtF)
B
}

+GB
[F] +G[FB

]. (32)

Equations (31) and (32) require the magnetic field derivative of the
“Y”-matrices from Eqs. (19)–(22),

YB
1 = tα(FBY + FYB

), (33)

YB
2 = tα(YBP + YPB

), (34)

YB
1 = −tα(FBY + FYB

), (35)

YB
2 = −tα(YBPvirt + YPB

virt). (36)

Here, YB and YB can be computed recursively. The corresponding
recursion formulas are derived in Appendix B by differentiating the
recursion formulas for Y and Y. For all recursion formulas, asymp-
totic linear scaling can be achieved by employing block-sparse matri-
ces. The matrix GB

[F] is computed in a similar way to G[F] in
Eq. (26) with the difference that the magnetic field derivatives of the
ERIs are used instead of the standard unperturbed ERIs,

GB
μν[F] =∑

λσ
[2 (μν∣λσ)(B) − (μσ∣λν)(B)]Fλσ . (37)

For an efficient calculation of GB
[F] and G[FB

] in Eq. (32) and
of G[F] in Eq. (26), any approach for efficient Fock matrix con-
struction in Hartree–Fock theory can be used, such as the Con-
tinuous Fast Multipole Method (CFMM)58,59 or the RI-J method60

for the Coulomb matrix and LinK screening61,62 or semi-numerical
exchange approaches63 for the exchange matrix.

Equations (31) and (32) also require the magnetic field deriva-
tive of R and R, which can be calculated as follows:

RB
νν′ =∑

μλσ
{[(μBν′∣λσ) + (μν′∣λBσ) + (μν′∣λσB

)]

× [2(μν∣λσ) − (μσ∣λν)] + (μν′∣λσ)
(B)
[2(μν∣λσ) − (μσ∣λν)]

+ (μν′∣λσ)[2(μν∣λσ)(B) − (μσ∣λν)(B)]}, (38)

RB
μμ′ =∑

νλσ
{[(μ′νB

∣λσ) + (μ′ν∣λBσ) + (μ′ν∣λσB
)]

× [2(μν∣λσ) − (μσ∣λν)] + (μ′ν∣λσ)(B)[2(μν∣λσ) − (μσ∣λν)]

+ (μ′ν∣λσ)[2(μν∣λσ)(B) − (μσ∣λν)(B)]}. (39)

Both Eqs. (38) and (39) contain two types of terms: terms involving
magnetic field derivatives of ERIs and terms in which the unper-
turbed ERIs are transformed both with perturbed and unperturbed
pseudo-densities. The efficient computation of these terms is dis-
cussed in Sec. II E. The notation with (B) as in (μ′ν∣λσ)(B) means
that only the integrals are differentiated, not the pseudo-density or
density matrices.
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D. Nested Z-vector approach for avoiding Pm and PBm

While Eq. (30) would allow us to compute the NMR shield-
ings of all nuclei in a molecule, these equations still contain Pm and
PBm. The explicit computation of these matrices should be avoided
in order to reduce the number of CPSCF equations that need to
be solved. This can be achieved using a nested Z-vector approach
similar to the one presented by Maurer and Ochsenfeld.29 In this
section, we will present the theory behind this approach in a gen-
eral way, which can be applied to any formulation of CPSCF. In
our implementation, we employ the density matrix based CPSCF
(D-CPSCF) method introduced by Ochsenfeld and Head-Gordon;64

detailed working equations for this formulation are derived in
Appendix D.

In general, a CPSCF equation for Pm has the following
structure:

APm
= bm, (40)

where bm is the right-hand side of the CPSCF equation and A is
the Hartree–Fock Hessian matrix. Formally, this equation can be
solved by multiplying with the inverse of the Hessian from the left
as follows:

Pm
= A−1bm. (41)

Usually, an explicit inversion of A is circumvented in favor of an
iterative solution. In order to compute all matrices Pm for a given
molecule, 3 ×Nat CPSCF equations would need to be solved where
Nat denotes the number of atoms. In a term of the form Tr[XPm

],
however, this can avoided by applying a Z-vector approach,23,24

Tr[XPm
] = Tr[XA−1bm

] = Tr[ZXbm
], (42)

where ZX is obtained by solving a CPSCF-like equation with X as the
right-hand side as follows:

AZX = X. (43)

The advantage here is that only a single CPSCF equation needs to
be solved. The outlined strategy could be directly applied to the
term Tr[PBPm

]; however, as we will discuss in the following, a
contribution from the term Tr[PPBm

] is first added to PB in our
implementation.

The term Tr[PPBm
] contains the mixed second derivative of

the density matrix. An equation for explicitly computing PBm can
be derived from the CPSCF equation APB

= bB by differentiating it
with respect to m as follows:

AmPB
+APBm

= bBm. (44)

PBm can thus be obtained by solving a CPSCF equation with
(bBm

−AmPB
) as a right-hand side as follows:

PBm
= A−1

(bBm
−AmPB

). (45)

Next, we insert Eq. (45) into the term Tr[PPBm
] as follows:

Tr[PPBm
] = Tr[P(A−1

(bBm
−Am

[PB
]))]

= Tr[ZP(bBm
−Am

[PB
])]. (46)

ZP is computed by solving a CPSCF equation with P as the right-
hand side as follows:

AZP = P. (47)

All terms in Tr[ZP(bBm
−Am

[PB
])] that depend on Pm need to

be rearranged in the form Tr[. . .Pm
] such that another Z-vector

approach can be applied. A detailed derivation is provided in
Appendix D. It is shown that the sum of the result from Eq. (46)
and the term Tr[PBPm

] can be rearranged in the following form:

Tr[ZP(bBm
−Am

[PB
])] + Tr[PBPm

]

= Tr[OFm hm
] + Tr[OYm hBm

] + Tr[OPm
], (48)

where OFm , OYm , and O are defined in Appendix D. The explicit
computation of Pm can be avoided by using a Z-vector ZO as follows:

Tr[OPm
] = Tr[ZObm

], (49)

which is obtained by solving a CPSCF equation with O as the right-
hand side as follows:

AZO = O. (50)

With this, we arrive at the final form of the working equation for
computing NMR shieldings as follows:

σA
= −2 Tr[(F +OYm)hBm

] − 2 Tr[(FB
+OFm)hm

]

− 2 Tr[ZObm
]. (51)

Figure 1 summarizes the described algorithm for computing
NMR shieldings and shows in which order the steps of the calcu-
lation are carried out in our implementation. With the described
nested Z-vector approach, seven CPSCF equations need to be solved
in total irrespective of the size of the molecule (one equation for ZP
and three equations for the magnetic field components of PB and
ZO, respectively).

FIG. 1. Algorithm for ω-RI-CDD-MP2-NMR.
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E. Efficient computation of R, R, RB, and RB

The computation of the matrices R and R and their magnetic
field derivatives (including the computation of the required three-
center integrals) is the most time-consuming step of the shielding
calculation with our new method. In this section, we describe how
these steps can be accelerated using several approximations.

In order to exploit their rank deficiency, we subject the pseudo-
density matrices a pivoted Cholesky decomposition,52–54

Pμν =∑
i

Lμi Lνi , (52)

Pμν =∑
a

LμaLνa. (53)

This decomposition has been applied before in several methods for
MP245,65,66 and direct RPA,67 and it was shown to preserve sparsity.
It is especially useful for the occupied pseudo-density as the number
of obtained Cholesky vectors is less than or equal to the number of
occupied orbitals and therefore much smaller than the number of
basis functions (assuming reasonably accurate basis sets). From the
Cholesky factors of Eqs. (52) and (53), local pseudo-MOs ϕi and ϕa
can be computed as follows:

ϕi(r) =∑
μ

χμ(r)Lμi , (54)

ϕa(r) =∑
ν

χν(r)Lνa. (55)

The pivoted Cholesky decomposition is not applicable to the mag-
netic field perturbed pseudo-densities because they are not posi-
tive semi-definite. For this reason, we leave the perturbed pseudo-
densities undecomposed. After inserting the Cholesky-decomposed
pseudo-densities, Eqs. (9), (10), (38), and (39) become

Rνν′ =∑

ijb

(iν′∣ jb)[2(iν∣ jb) − (ib∣ jν)], (56)

Rμμ′ =∑

ajb

(μ′a∣ jb)[2(μa∣ jb) − (μb∣ ja)], (57)

RB
νν′ =∑

μλσ
[(μBν′∣λσ) + (μν′∣λBσ) + (μν′∣λσB

)]

× [2(μν∣λσ) − (μσ∣λν)]

+∑

ijb

{(iν′∣ jb)
(B)
[2(iν∣ jb) − (ib∣ jν)]

+ (iν′∣ jb)[2(iν∣ jb)
(B)
− (ib∣ jν)

(B)
]}, (58)

RB
μμ′ =∑

νλσ
[(μ′νB

∣λσ) + (μ′ν∣λBσ) + (μ′ν∣λσB
)]

× [2(μν∣λσ) − (μσ∣λν)]

+∑

ajb

{(μa∣ jb)
(B)
[2(μa∣ jb) − (μb∣ ja)]

+ (μa∣ jb)[2(μa∣ jb)
(B)
− (μb∣ ja)

(B)
]}. (59)

We furthermore use the RI approximation in order to avoid
four-center integrals. As a metric for the RI, we employ an attenu-
ated Coulomb metric46–48 as in our recent work on MP2 energies.45

With this metric, four-center ERIs can be approximated as follows:

(60)

where

(61)

(62)

and

(63)

The attenuated Coulomb metric depends on the parameter ω, which
determines accuracy and sparsity in the three-center integrals. For
ω equal to zero, the attenuated Coulomb metric reduces to the stan-
dard Coulomb metric, which is highly accurate but has long-ranged
coupling between the bra and ket of the three-center integrals. On
the other hand, in the limit ω→∞, the rather inaccurate overlap
metric is obtained, which leads to a high degree of sparsity in the
three-center integrals. It has been shown for MP2 and direct RPA
that ω = 0.1 provides a good compromise and gives significant spar-
sity in the integrals in combination with only small errors compared
to the Coulomb metric.45,67 Therefore, we also use ω = 0.1 for all
timings shown in this work.

Using the RI approximation allows us to eliminate all trans-
formed four-center integrals from Eqs. (56)–(59) by substituting
them with three- and two-center RI-integrals. In consequence, sev-
eral different types of transformed three-center integrals are needed.
This includes integrals that are transformed with Cholesky-MO
coefficients or with perturbed pseudo-densities and transformed
three-center GIAO integrals, such as (ia∣P)(B). In order to compute
all of these transformed integrals, the three-center integrals in the
atomic orbital basis are computed once and written to disk and then
read into memory for each Laplace point. The AO three-center inte-
grals for any auxiliary basis function are copied to a block-sparse
matrix; likewise, the Cholesky-MOs and pseudo-density matrices
are kept in a block-sparse matrix format. Then, the necessary inte-
gral transformations can be carried out efficiently using block-sparse
matrix multiplications.

Next, the matrices R and R, as well as their B-field derivatives,
are computed from the three-center integrals. Figure 2 displays the
algorithm used for efficiently computing the Coulomb-type contri-
butions to the matrices R and R. For this, the transformed integrals
are copied into a natural blocking47,55 data format, which has also
been described in Ref. 45 and is used for speeding up the subsequent
contractions. As an example, let us discuss the following contraction,
which is one of the formally O(N4

)-scaling steps in the algorithm
from Fig. 2,

(64)
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FIG. 2. Algorithm for the computation of the Coulomb contributions to R and R.

The integrals used in this contraction are arranged such that there
is one matrix for each i with initial dimensions of nvirt × naux (where
nvirt is the number of virtual Cholesky MOs and naux is the num-
ber of auxiliary basis functions). Before carrying out any contraction,
rows and columns in these matrices get deleted if they only contain
elements that are below the chosen natural blocking threshold. By
this, the dimensions of these matrices are reduced and the integral
contractions are accelerated.

For a given i, the indices of the significant rows and columns
are collected in sparse lists {a}P

i and {P}a
i . The list {a}P

i , e.g., con-
tains all virtual pseudo-MOs ϕa that are significant for the orbital
ϕi . The superscript index P shall denote the third index of the three-
center integrals, from which the sparse list is derived (in this case,

). An additional superscript index B is used to denote lists
derived from GIAO integrals. The list {a}P,B

i , e.g., is derived from the

integrals. Note also that two sparse lists are identical if the
contained indices refer to the same type of orbital, e.g., {a}P

i = {b}
Q
j .

Such sparse lists, which have also been employed in Ref. 45, are used
extensively for exploiting sparsity in the algorithms from Figs. 2–5.

For the contraction in Eq. (64), the scaling can be reduced
from formally O(N4

) to asymptotically linear because for large sys-
tems, only a constant number of virtual pseudo-MOs and auxiliary
functions are expected to be significant for a given ϕi .

The matrix A from Eq. (64) is then multiplied from both sides
with C̃; this step scales cubically but has a very small prefactor.

The resulting matrix B in Fig. 2 and the intermediates D and E are
all dense matrices. As these matrices are dense, the scaling of the
remaining steps in the algorithm shown in Fig. 2 cannot be reduced
to asymptotically linear but only to asymptotically quadratic; in these
steps, natural blocking is employed again in order to exploit the
sparsity in the three-center integrals.

For MP2 shielding calculations, not only the computational
cost but also the memory and disk space requirements can be pro-
hibitive. Compared to the implementation of Maurer and Ochsen-
feld,29 the memory requirements are substantially reduced by the
use of the RI approximation, which allows us to avoid four-center
integrals. The employed attenuated Coulomb metric increases the
degree of sparsity in the three-center integrals. As in our implemen-
tation, the three-center integrals are always kept either in the natural
blocking format or a block-sparse data format, the sparsity can be
efficiently exploited, and the memory requirements be reduced sig-
nificantly. In order to further increase the size of systems that can
be treated with a given amount of memory, the three-center inte-
grals are stored on disk and only read into memory when needed
during the integral transformations and contractions, which are all
done in batches. The size of the batches is chosen in accordance with
the available memory. Therefore, the available disk space determines
the maximum system size that can be treated. In Sec. IV B, we show
data for the required disk space in illustrative calculations on glycine
chains and DNA strands.

Figures 3 and 4 show the algorithm used for computing the
Coulomb-type contributions to the RB and RB matrices. It is more
involved than the corresponding algorithm for the contributions to
the unperturbed R and R matrices from Fig. 2 but uses similar inter-
mediates and computation steps. Formally, the algorithm leads to
anO(N4

) scaling. Again, natural blocking is used for exploiting the
sparsity in the three-center integrals. The asymptotic scaling of all
steps except for the matrix multiplication C̃ABC̃ can be reduced to
either linear or quadratic in this way.

Finally, the algorithm for computing the exchange contribu-
tions to R and R and their magnetic field derivatives is shown in

FIG. 3. Algorithm for the computation of BB. For the definition of C̃, see Fig. 2. In
several steps, intersections of two sparse lists are employed.
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FIG. 4. Algorithm for the computation of the Coulomb contributions to RB and RB.
For the definitions of B and C̃, see Fig. 2. BB is computed as shown in Fig. 3.

Fig. 5. In this algorithm, four-center integrals are built and then
contracted as opposed to the algorithms used for the Coulomb con-
tributions. As a first step, three-center integrals are multiplied with
the matrix C̃ from Eq. (60) as follows:

FIG. 5. Algorithm for the computation of an exchange-type contribution to R, R, RB,
or RB, which is of the general form ∑

w,y,z
(wx∣yz)(wz∣yx′), where w, x, y, and z

can stand either for Cholesky-MO-indices or for transformed or untransformed AO
indices. R can stand for R, R, RB, or RB.

(65)

where w and x can denote either Cholesky-MO-indices or trans-
formed or untransformed AO indices. This step scales asymptoti-
cally quadratic even if the short-range coupling of the indices in the
three-center integrals is exploited because C̃ is a dense matrix. Next,
the four-center integrals are built by contracting the intermediate B̃
with three-center integrals as follows:

(66)

For any wy-pair, the computational effort is O(1) because only
O(1) orbitals with indices x and z are significant due to exponen-
tial coupling between w and x and between y and z. In addition, the
summation over Q can be restricted toO(1) elements by exploiting
the short-range coupling between Q and y. Therefore, the asymptotic
scaling of this step is quadratic. Likewise, also the remaining steps of
the algorithm in Fig. 5 scale asymptotically quadratic.

III. COMPUTATIONAL DETAILS
The described method was implemented in a development ver-

sion of the FermiONs++ program.68–70 Unless stated differently,
the def2-SVP basis set71 was used in combination with the corre-
sponding auxiliary basis set72 in all calculations. Two different sets of
parameters are used in the calculations shown in Sec. IV A, which we
denote as “Loose” and “Tight.” For the “Loose” settings, the atten-
uation parameter ω is set to 0.1, and 5 Laplace points are used in
MP2 and 10 Laplace points in DL-CPSCF73 iterations, which are
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used for computing PB and solving the Z-vector equations. Further-
more, 10−6 is used as the threshold for deleting rows and columns
in the natural blocking format. These values have also been used
in our recent work on efficient computation of MP2 energies with
the ω-RI-CDD-MP2 method, where we demonstrated that chemi-
cally accurate energies can be obtained.45 For the “Tight” settings,
the natural blocking threshold and ω are set to zero (meaning that
effectively a Coulomb metric is used); the number of Laplace points
for both the MP2 shielding part and the DL-CPSCF is increased to
13 in both cases. All timings in Sec. IV B were carried out using the
“Loose” settings.

In all calculations, shell-pairs with an overlap of less than
10−12 were neglected. Integral screening with a threshold of 10−10

is employed during the SCF. The Laplace points are determined
using a minimax algorithm as described in Refs. 74 and 75; the
number of integration points is reduced automatically in our imple-
mentation if the fitting interval is small and no improved accu-
racy can be obtained with more integration points. The pseudo-
density matrices are orthogonalized prior to the pivoted Cholesky
decomposition as described in Ref. 67; afterward, the orthogo-
nalization is reverted. No frozen-core approximation is employed.
For comparison, canonical MP2 shielding calculations were car-
ried out with the Turbomole program.25,76,77 All timings were per-
formed using 64 threads on a node with AMD EPYC 7302 proces-
sors, 256 GB RAM, and a solid-state drive (SSD) with a capacity
of 1.7 TB.

IV. RESULTS
A. Accuracy of the introduced approximations

In order to analyze the influence of the employed approxi-
mations on the accuracy, NMR shieldings were computed for all
complexes/dimers from the S22 test set78 and for all structures from
the benchmark set used by Flaig et al.22 In these calculations, both
the “Loose” and “Tight” settings were employed. As a reference,
NMR shielding calculations with canonical MP2 performed with the
Turbomole program25,76,77 are used. The statistics on the two bench-
mark sets are shown in Tables I and II. The “Loose” settings, which
will be employed also for the timings in Sec. IV B, give satisfactory
accuracy for the NMR shieldings, as the mean absolute deviations
amount to only 0.024 ppm for the S22 test set and to 0.036 ppm
for the benchmark set from the study by Flaig et al.22 No clear
improvement compared to the “Loose” settings is observed when
using the “Tight” settings. This suggests that the dominant source

TABLE I. Statistics for MP2 shielding calculations for all dimers from the S22 test
set. “Loose” and “Tight” settings are defined in the text. “Tight∗” denotes shieldings
computed with “Tight” settings and a cc-pVQZ-RI auxiliary basis set instead of a def2-
SVP-RI basis set. MP2 shieldings computed with Turbomole25,76,77 are used as a
reference. All values are given in ppm.

Loose Tight Tight∗

Mean error 0.016 0.024 0.001
Mean absolute error 0.024 0.026 0.011
Root mean squared error 0.044 0.047 0.021
Maximum error 0.229 0.271 0.151

TABLE II. Statistics for MP2 shielding calculations on the benchmark set from
the study by Flaig et al.22 “Loose” and “Tight” settings are defined in the text.
“Tight∗” denotes shieldings computed with “Tight” settings and a cc-pVQZ-RI aux-
iliary basis set instead of a def2-SVP-RI basis set. MP2 shieldings computed with
Turbomole25,76,77 are used as a reference. All values are given in ppm.

Loose Tight Tight∗

Mean error 0.028 0.033 −0.002
Mean absolute error 0.036 0.035 0.004
Root mean squared error 0.098 0.104 0.017
Maximum error 0.662 0.604 0.150

of error compared to canonical MP2 is the RI approximation; the
errors due to the other approximations appear to be negligible for
these test sets. Indeed, for both test sets, the already small devia-
tions to Turbomole are reduced further in calculations with “Tight”
settings and a cc-pVQZ-RI auxiliary basis set79,80 instead of a def2-
SVP-RI basis set. We thus conclude that the RI approximation is
the largest source of error, which does not preclude the compu-
tation of shieldings, in very good agreement with canonical MP2
shieldings.

However, one needs to consider that the molecules in the S22
test set and the test set from the study by Flaig et al.22 are relatively
small and that the errors for several of the used approximations, such
as the local RI-metric or the sparse linear algebra, might be larger
for more extended systems. Therefore, we also carried out calcula-
tions on all monomers in the L7 benchmark set81 and display the
results in Table III. For the purpose of computational efficiency, we
use the SOS-approximation in these calculations; this means that the
exchange contributions are neglected, while the Coulomb contri-
butions are scaled with 1.3 as suggested by Jung et al.40 (note that
alternatively, for application studies, the basis-set specific scaling
parameters from the study by Maurer and Ochsenfeld39 might also
be useful). In addition, for the L7 test set, the differences between
the “Loose” and “Tight” settings are small with a mean absolute
deviation of 0.028 ppm. This suggests that the “Loose” settings are
appropriate for computing reliable NMR shieldings also for larger
systems; therefore, we use these settings also for the timings shown
in Sec. IV B.

B. Scaling behavior and efficiency
In Table IV, timings with the new method in shielding cal-

culations on glycine chains are shown. The scaling decreases for
larger chain lengths and amounts to 2.74 between the two largest

TABLE III. Statistics for SOS-MP2 shielding calculations for all monomers from the L7
test set. SOS-MP2 shieldings computed with FermiONs++68–70 and “Tight” settings
are used as a reference. All values are given in ppm.

Loose

Mean error −0.013
Mean absolute error 0.028
Root mean square error 0.061
Maximum error 0.462
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TABLE IV. Timings for MP2 shielding calculations (including exchange) on glycine
chains. “nglyc” denotes the number of glycines, and “nbas” is the number of basis
functions.

nglyc nbas Wall time (s)

1 95 415
2 166 2 051
4 308 14 063
6 450 34 861
10 734 133 282

systems, glycine-6 and glycine-10. With this, the observed scaling
is well below the formal O(N5

) scaling of the MO-based method.
This agrees well with the expectations, as the asymptotic scaling of
allO(N4

) andO(N5
) scaling steps is reduced to linear or quadratic

if sparsity is exploited (see Sec. II).
Figure 6 also displays timings on glycine chains; in con-

trast to the calculations from Table IV, the SOS-approximation is
used in all calculations. The wall times needed for the SOS-MP2
shielding calculations are much lower than those for the full MP2
shieldings (e.g., by a factor of 32.9 for glycine-10). This shows
that the exchange contributions are the major bottleneck in the
MP2 shielding calculations from Fig. 4. Some acceleration for the
exchange contributions might be possible by using integral screen-
ing, e.g., with Schwarz estimates,82 in conjunction with the nat-
ural blocking, as done in our recent work on MP2 energies,45

but we have not explored this so far. For SOS-MP2, the scaling
is close to quadratic for the larger chain lengths and thus lower
than the formal scaling of SOS-MP2 (O(N4

)). Due to the sig-
nificantly higher computational efficiency obtained with the SOS-
approximation, it is likely preferable to use SOS-MP2 for studying
very large systems. For this, we recommend to use the basis-set spe-
cific scaling factors from the study by Maurer and Ochsenfeld,39

which were shown to provide similar or even better accuracy than
canonical MP2.

FIG. 6. Timings for SOS-MP2 shielding calculations on glycine chains. The colored
numbers indicate the effective scaling between two data points.

FIG. 7. Maximum disk usage for three-center integrals in SOS-MP2 shielding cal-
culations on glycine chains. The colored numbers indicate the effective scaling
between two data points.

As discussed, memory and/or disk space can also be a bottle-
neck in MP2 shielding calculations. Therefore, we show data for
the used disk space during calculations on glycine chains in Fig. 7.
For the largest system (glycine-40), roughly 437 GB of disk space
were used. The scaling continuously decreases with the increasing
chain length and amounts to 1.3 between glycine-30 and glycine-40.
This is significantly lower than the formal cubic scaling for the
memory demands of the three-center integrals and is enabled by
the sparsity provided by the attenuated Coulomb metric and by
the employed sparse data formats (block sparse matrices and nat-
ural blocking), which allow us to neglect many of the insignificant
integrals.

In addition to the glycine chains, also timings on short DNA
strands with one and two adenine–thymine base pairs were car-
ried out (see Table V). These molecules are more representative
of potential applications on large biomolecular systems. The cal-
culation on the largest DNA strand, AT2, with 128 atoms and
1332 basis functions took 11 h, which shows that the new method
allows to treat systems in this size range with moderate compu-
tational effort. The scaling of the compute time between AT1 and
AT2 amounts to 3.4. This is below the formal O(N4

) scaling of
Laplace-transformed SOS-MP2, which indicates that there is already
usable sparsity for systems in this size range. As expected, due to
the less extended shape of the AT base pairs, the observed scal-
ing is larger than for glycine chains with a similar number of basis

TABLE V. Wall times, scaling, and needed disk space in calculations on DNA strands
with up to two adenine–thymine base pairs. “nbas” is the number of basis functions.

AT1 AT2

nbas 625 1332
Wall time (h) 1.0 14.0
Scaling ⋅ ⋅ ⋅ 3.44
Disk space (GB) 59.5 531.4
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TABLE VI. Timings of individual steps during a SOS-MP2 shielding calculation
on AT2.

Wall time (s)

Integral transformation 15 702
R and R 1 205
RB and RB 10 782
YB and YB 2 795
Nested Z-vector 4 470

Total 39 619

functions. In Table VI, timings for several of the calculation steps
are shown. Most of the time during the SOS-MP2 shielding calcu-
lations is used for the transformations of the three-center integrals
followed by the computation of the perturbed RB and RB matri-
ces. Significantly less compute time is needed for the unperturbed
R and R matrices, the recursion formulas, and the nested Z-vector
approach. In Table V, also the maximum amount of disk space used
during the shielding calculations on the DNA strands is shown.
Significantly more disk space than that for glycine chains with a
similar number of basis functions is needed, which is caused by
the lower sparsity. For AT2, 531.4 GB disk space is needed for
storing three-center integrals. Calculations on larger DNA strands
were not possible with the available disk space on the employed
nodes. In order to improve the applicability to larger systems, it
is therefore important to circumvent the disk space bottleneck.
A potential solution would be an integral-direct approach, by
which we plan to address the disk space bottleneck in a future
publication.

V. CONCLUSION
We presented an efficient method for computing NMR shield-

ings at the MP2 level of theory, which is based on Laplace-
transformed AO-MP2. It employs many of the approximations that
were also used in our recently published ω-RI-CDD-MP2 method45

for correlation energies, including RI with an attenuated Coulomb
metric and Cholesky decomposition of pseudo-density matrices.
Furthermore, block sparse linear algebra and natural blocking are
used in order to speed up the computations and reduce the mem-
ory needed for the three-center integrals. A nested Z-vector allows
us to efficiently compute the entire set of NMR shieldings for all
nuclei (as opposed to the selected-nuclei formulation of Maurer
and Ochsenfeld29) and requires the solution of only seven CPSCF
equations irrespective of the molecule size. Benchmark calculations
indicated that the same thresholds and settings that were shown
previously to give accurate correlation energies with the ω-RI-CDD-
MP2 method also allow us to compute accurate NMR shieldings.
Timings on glycine chains show close to quadratic scaling for larger
systems. Particularly high efficiency is obtained in combination
with an SOS-approximation. In addition, the scaling of the needed
disk space decreases with molecule size and becomes sub-quadratic
for larger chain lengths. Calculations on DNA strands with up to
two base pairs illustrate the potential of the method for comput-
ing highly accurate NMR shieldings of biomolecular systems. The

new method thus enables the computation of NMR shieldings of
large molecules with significantly reduced computational cost and
memory requirements.

SUPPLEMENTARY MATERIAL

See the supplementary material for all computed NMR shield-
ings from Sec. IV A and the employed xyz-structures for DNA and
glycine chains.
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APPENDIX A: RECURSION FORMULAS FOR Y

In this section, the recursion formulas for a matrix Y are
derived such that Tr[YAξ

] = Tr[B(eA
)

ξ
] holds. First, we insert the

Taylor series expansion of the matrix exponential

Tr[B(eA
)

ξ
] = Tr[B(1 +A +

1
2!

AA +
1
3!

AAA + ⋅ ⋅ ⋅ )
ξ
] (A1)

and subsequently differentiate each term using the product rule

Tr[B(eA
)

ξ
] = Tr[B(0 +Aξ

+
1
2!
(AξA +AAξ

)

+
1
3!
(AξAA +AAξA +AAAξ

) + ⋅ ⋅ ⋅ )]. (A2)

In each term, cyclic permutations under the trace are used to
move Aξ to the far right,

Tr[B(eA
)

ξ
] = Tr[(B +

1
2!
(AB + BA)

+
1
3!
(AAB +ABA + BAA) + ⋅ ⋅ ⋅ )Aξ

]. (A3)

Upon comparing with Eq. (17), the term in round brackets can then
be identified with Y,

J. Chem. Phys. 155, 224107 (2021); doi: 10.1063/5.0069956 155, 224107-11

© Author(s) 2021



The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

Y = B +
1
2!
(AB + BA) +

1
3!
(AAB +ABA + BAA) + ⋅ ⋅ ⋅

=
∞
∑
k=1

k−1

∑
i=0

1
k!

AiBAk−1−i. (A4)

Y can be efficiently computed using recursion as shown in the
following equations:

Y =
kmax

∑
k=0

Yk, (A5)

Yk =
1
k
[AYk−1 + BAk−1] ∀k > 0, (A6)

Y0 = 0, (A7)

Ak ≡
1
k!

Ak. (A8)

In order to ensure a fast convergence and avoid numerical difficul-
ties, we employ a modified version of the “scaling and squaring”
approach,83,84 which is commonly used for computing matrix expo-
nentials. Instead of using A and B in Eqs. (A5)–(A8), two matrices
A′ and B′ are employed as follows:

A′ =
1
n

A, (A9)

where n is an integer number chosen such that ∣A′∣ < 0.5, and

B′ =
n−1

∑
i=0

exp(A′)i B exp(A′)n−1−i. (A10)

From the result Y′, one can then compute the matrix Y as follows:

Y =
1
n

Y′. (A11)

APPENDIX B: DIFFERENTIATED RECURSION
FORMULAS FOR OBTAINING Yξ

For computing MP2 shieldings, also derivatives of the Y matri-
ces from Appendix A are needed. These perturbed Y matrices can
also be computed using recursions, which are obtained by differen-
tiating the recursion from Eqs. (A5)–(A8) as follows:

Yξ
=

kmax

∑
k=0

Yξ
k, (B1)

with

Yξ
k =

1
k
[AξYk−1 +AYξ

k−1 + BξAk−1 + B(Ak−1)
ξ
] ∀k > 0, (B2)

Yξ
0 = 0. (B3)

Aξ
k−1 in Eq. (B2) can also be computed recursively as follows:

Aξ
k =

1
k
[AAξ

k−1 +AξAk−1] ∀k > 0, (B4)

Aξ
0 = 0. (B5)

Faster convergence can be obtained using a modified scaling and
squaring approach. For this, A′ = A/n and A

′ξ
= Aξ
/n should be

used instead of A and Aξ in the recursion from Eqs. (B2) and
(B4). Furthermore, B needs to be replaced with B′ from Eq. (A10).
The result Y

′ξ , which is computed by carrying out the recursion
from Eq. (B2) with A′, A

′ξ , B′, and B
′ξ instead of their respec-

tive unprimed counterparts, finally needs to be multiplied with 1
n

in order to obtain Yξ .

APPENDIX C: EFFICIENT COMPUTATION OF MATRIX
EXPONENTIALS AND PERTURBED MATRIX
EXPONENTIALS

The Taylor series expansion of a matrix exponential eA is
given by

eA
= 1 +A +

1
2!

AA +
1
3!

AAA + ⋅ ⋅ ⋅ =
∞
∑
k=0

1
k!

Ak. (C1)

The matrix exponential can be evaluated efficiently using recursion
as follows:

eA
=
∞
∑
k=0

ek, (C2)

ek =
1
k

ek−1 A ∀k > 0, (C3)

e0 = 1. (C4)

The recursion from Eq. (C2) can only be expected to converge
quickly if the norm of A is small. If this is not the case, “scaling and
squaring”83,84 can be applied. For this, an integer number n is chosen
such that ∣A/n∣ < 0.5. Then, the matrix exponential eA/n is computed
using the recursion from Eq. (C2). The exponential of A is obtained
by taking eA/n to the power n as follows:

eA
= [eA/n

]
n
. (C5)

For the presented MP2-NMR method, also perturbed matrix
exponentials of the form (eA

)
ξ need to be computed. A formula for

the recursive computation of the perturbed matrix exponential can
be derived by differentiating Eq. (C2) as follows:

(eA
)

ξ
=
∞
∑
k=0

ek
ξ , (C6)

ek
ξ
=

1
k
(ek−1

ξ A + ek−1 Aξ
) ∀k > 0, (C7)

e0
ξ
= 0. (C8)

If scaling and squaring is used, computing (eA
)

ξ
requires the recur-

sive computation of (eA/n
)

ξ
and eA/n as follows:

(eA
)

ξ
= (eA/n

)
ξ
(eA/n

)
n−1
+ (eA/n

)
1
(eA/n

)
ξ
(eA/n

)
n−2
+ ⋅ ⋅ ⋅

+ (eA/n
)

n−1
(eA/n

)
ξ
=

n−1

∑
i=0
(eA/n

)
i
(eA/n

)
ξ
(eA/n

)
n−1−i. (C9)
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An efficient evaluation of this formula is possible via another
recursion,

(eA
)

ξ
= En, (C10)

En = (eA/n
)En−1 + (eA/n

)
ξ
(eA/n

)
n−1
∀n > 1, (C11)

E1 = (eA/n
)

ξ . (C12)

APPENDIX D: NESTED Z-VECTOR APPROACH
WITH D-CPSCF

There are different formulations of CPSCF, which lead to dif-
ferent equations for A and bB in Eq. (40). Here, we use the D-CPSCF
formulation from Ref. 64, which results in the following expressions
for A and bB:

A[PB
] = 3 FPBS + 3 SPBF − 2 FPBSPS

− 2 SPSPBF − 4 FPSPBS − 4 SPBSPF
+G[X]PS + SPG[X] − 2 SPG[X]PS, (D1)

where

X = PBSP + PSPB
− 2 PSPBSP (D2)

and

bB
= FPSB

+ SBPF + 2 FPSBPS + 2 SPSBPF
− YPS − SPY + 2 SPYPS, (D3)

with

Y = F(B) −G[PSBP]. (D4)

The difference between FB and F(B) is that the latter does by
definition not include contributions containing the perturbed den-
sity PB. For computing the second derivative of the density matrix
PBm, the nuclear magnetic moment derivatives Am

[PB
] and bBm are

also needed as shown in Eq. (45),

Am
[PB
] = 3 FmPBS + 3 SPBFm

− 2 FmPBSPS − 2 FPBSPmS

− 2 SPmSPBF − 2 SPSPBFm
− 4 FmPSPBS

− 4 FPmSPBS − 4 SPBSPmF − 4 SPBSPFm
+G[Xm

]PS

+G[X]PmS + SPmG[X] + SPG[Xm
] − 2 SPmG[X]PS

− 2 SPG[Xm
]PS − 2 SPG[X]PmS, (D5)

where

Xm
= PBSPm

+ PmSPB
− 2 PmSPBSP − 2 PSPBSPm (D6)

and

bBm
= FmPSB

+ FPmSB
+ SBPmF + SBPFm

+ 2 FmPSBPS

+ 2 FPmSBPS + 2 FPSBPmS + 2 SPmSBPF

+ 2 SPSBPmF + 2 SPSBPFm
− YmPS − YPmS

− SPmY − SPYm
+ 2 SPmYPS + 2 SPYmPS + 2 SPYPmS,

(D7)

where

Ym
= hBm

+GB
[Pm
] −G[PmSBP + PSBPm

]. (D8)

As it is commonly done in implementations of NMR shieldings, we
do not use complex-valued matrices explicitly, but instead we treat
purely imaginary matrices using skew-symmetric, real-valued matri-
ces. In this case, one needs to be careful to use the correct sign for
each term; whenever a term contains two imaginary matrices, like
the term FmPSB with Fm and SB, an additional sign change needs
to be applied because both imaginary matrices carry a factor i and
i2
= −1.

Instead of iteratively solving for the full PBm as suggested by
Eq. (45), we only solve for the occupied-virtual (ov) and virtual-
occupied (vo) subspace projections. For the occupied–occupied
(oo) and virtual–virtual (vv) subspace projections, explicit expres-
sions can be derived by differentiating the idempotency condition
PSP = P twice and projecting onto the corresponding subspaces as
follows:29

Tr[PPBm
] = Tr[P(PBm

ov + PBm
vo )] + Tr[P(PBm

oo + PBm
vv )], (D9)

with

PBm
oo + PBm

vv = −2(PSPBSPmSP + PSPmSBP

+ PSBPmSP + PSPmSPBSP)

+ PBSPm
+ PmSPB

+ PmSBP + PSBPm. (D10)

The computation of the ov- and vo-projections of PBm in the first
term on the right-hand side of Eq. (D9) can be avoided using a
Z-vector approach,

Tr[P(PBm
ov + PBm

vo )] = Tr[(Zov + Zvo)(bBm
−Am

[PB
])]. (D11)

Here, Zov and Zvo are the ov- and vo-projections of the Z-vector
ZP = A−1P.

After eliminating PBm from the equations, Pm remains to be
eliminated. For this, we will show how terms involving Pm can be
rearranged in the form Tr[. . .Pm

], which then allows us to apply
another Z-vector approach. The terms involving PBm

oo + PBm
vv can be

brought into this form by applying cyclic permutations under the
trace,

Tr[P(PBm
oo + PBm

vv )] = Tr[O[PBm
oo +PBm

vv]P
m
], (D12)

where

O[PBm
oo +PBm

vv] = −2(SPPPSPBS + SBPPPS + SPPPSB
+ SPBSPPPS)

+ (PPBS + SPBP + SBPP +PPSB
). (D13)

Next, we focus on the expression Tr[(Zov + Zvo)

(bBm
−Am

[PB
])]. First, we insert Eqs. (D5) and (D7). After

applying cyclic permutations, we arrive at
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Tr[(Zov + Zvo)(bBm
−Am

[PB
])]

= Tr[OPm Pm
+OFm Fm

+OYm(G[Xm
] + Ym

)], (D14)

where

OPm = SBZ̄F + FZ̄SB
+ 2 SBPSZ̄F + 2 SZ̄FPSB

+ 2 SBPFZ̄S

+ 2 FZ̄SPSB
− SZ̄Y − YZ̄S + 2 YPSZ̄S + 2 SZ̄SPY

+ 2 SZ̄FPBS + 2 SPBFZ̄S + 4 SPBSZ̄F + 4 FZ̄SPBS

− SZ̄G[X] −G[X]Z̄S + 2 G[X]PSZ̄S + 2 SZ̄SPG[X],
(D15)

OFm = PSBZ̄ + Z̄SBP + 2 PSBPSZ̄ + 2 Z̄SPSBP − 3 PBSZ̄ − 3 Z̄SPB

+ 2 PBSPSZ̄ + 2 Z̄SPSPB
+ 4 PSPBSZ̄ + 4 Z̄SPBSP, (D16)

and

OYm = −PSZ̄ − Z̄SP + 2 PSZ̄SP, (D17)

where Z̄ ≡ Zov + Zvo.
Equation (D14) contains the Fock matrix derivative Fm, which

also needs to be circumvented in the all-nuclei formulation. For this,
we use the following identities:

Tr[WFm
] = Tr[Whm

] + Tr[WG[Pm
]], (D18)

Tr[WG[Pm
]] = Tr[G[W]Pm

], (D19)

where W is some general matrix and G[W] is

Gμν[W] ≡∑
λσ

Wλσ[2(μν∣λσ) − (μσ∣λν)]. (D20)

Using Eqs. (D18) and (D19), the contribution from Fm in Eq. (D14)
can be rearranged as follows:

Tr[OFm Fm
] = Tr[OFm hm

] + Tr[G[OFm]Pm
]. (D21)

Similarly, the terms involving G[Xm
] and Ym in Eq. (D14) can be

rearranged by using Eq. (D19) and then applying cyclic permuta-
tions as follows:

Tr[OYm G[Xm
]] = Tr[G[OYm]Xm

]

= Tr[{G[OYm]PBS + SPB G[OYm]

− 2SPBSP G[OYm] − 2G[OYm]PSPBS}Pm
],

(D22)

Tr[OYm Ym
] = Tr[OYm hBm

] + Tr[GB
[OYm]Pm

]

− Tr[G[OYm](PmSBP + PSBPm
)]

= Tr[OYm hBm
] + Tr[GB

[OYm]Pm
]

− Tr[(SBPG[OYm] +G[OYm]PSB
)Pm
]. (D23)

Using the results from Eqs. (D18)–(D23) allows us to rewrite the
expression Tr[(Zov + Zvo)(bBm

−Am
[PB
])] in the following form:

Tr[(Zov + Zvo)(bBm
−Am

[PB
])]

= Tr[OFm hm
] + Tr[OYm hBm

] + Tr[ÕPm
], (D24)

where

Õ = OPm +G[OFm] +GB
[OYm] +G[OYm]PBS

+ SPBG[OYm] − 2 SPBSPG[OYm] − 2 G[OYm]PSPBS

− SBPG[OYm] −G[OYm]PSB. (D25)

Combining Õ, O[PBm
oo +PBm

vv], and PB from the term Tr[PBPm
] allows

us to compactly express all remaining terms involving Pm in the
form Tr[OPm

],

O = Õ +O
[PBm

oo +PBm
vv]
+PB. (D26)

This term now has the proper form for applying a Z-vector
approach, which allows us to circumvent Pm,

Tr[OPm
] = Tr[ZObm

], (D27)

where

ZO = A−1O. (D28)
In our implementation, the Z-vector equation for ZO is solved iter-
atively using the DL-CPSCF approach from the study by Beer and
Ochsenfeld.73
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Table 1: MP2 shielding calculations for all dimers from the S22 test set.[1] “Loose” and “Tight” settings
are defined in the text. “Tight*” denotes shieldings computed with “Tight” settings and a cc-pVQZ-RI
auxiliary basis set instead of a def2-SVP-RI basis set. MP2 shieldings computed with Turbomole are
used as a reference. All values are given in ppm.

Molecule Atom Loose Tight Tight* Ref.
ammonia dimer N 280.264 280.271 280.257 280.258
ammonia dimer H 31.915 31.915 31.914 31.914
ammonia dimer H 31.915 31.915 31.914 31.914
ammonia dimer H 31.011 31.011 31.010 31.010
ammonia dimer N 280.255 280.271 280.257 280.258
ammonia dimer H 31.915 31.915 31.914 31.914
ammonia dimer H 31.011 31.011 31.010 31.010
ammonia dimer H 31.915 31.915 31.914 31.914
water dimer O 365.630 365.648 365.630 365.630
water dimer H 32.021 32.022 32.020 32.020
water dimer H 28.707 28.708 28.705 28.705
water dimer O 358.178 358.195 358.176 358.178
water dimer H 30.865 30.866 30.864 30.864
water dimer H 30.865 30.866 30.864 30.864
benzene–methane C 83.554 83.558 83.588 83.584
benzene–methane C 83.512 83.508 83.539 83.534
benzene–methane C 83.562 83.558 83.588 83.585
benzene–methane C 83.513 83.508 83.539 83.533
benzene–methane C 83.562 83.558 83.588 83.584
benzene–methane C 83.512 83.508 83.539 83.534
benzene–methane H 24.453 24.453 24.454 24.455
benzene–methane H 24.452 24.452 24.453 24.453
benzene–methane H 24.454 24.453 24.454 24.455
benzene–methane H 24.453 24.452 24.453 24.454
benzene–methane H 24.454 24.453 24.454 24.455
benzene–methane H 24.452 24.452 24.453 24.454
benzene–methane C 208.639 208.639 208.634 208.636
benzene–methane H 32.494 32.493 32.493 32.492
benzene–methane H 32.494 32.493 32.493 32.492
benzene–methane H 34.041 34.040 34.040 34.039
benzene–methane H 32.494 32.493 32.493 32.492
formic acid dimer C 48.646 48.639 48.662 48.663
formic acid dimer O 163.655 163.645 163.750 163.746
formic acid dimer O 23.671 23.658 23.767 23.769
formic acid dimer H 24.548 24.549 24.547 24.547
formic acid dimer H 19.312 19.312 19.311 19.313
formic acid dimer C 48.645 48.639 48.662 48.663
formic acid dimer O 163.656 163.645 163.750 163.746
formic acid dimer O 23.650 23.658 23.767 23.769
formic acid dimer H 24.548 24.549 24.547 24.547
formic acid dimer H 19.312 19.312 19.311 19.313
formamide dimer C 54.007 54.004 54.031 54.034
formamide dimer O 32.213 32.192 32.317 32.329
formamide dimer N 173.556 173.553 173.611 173.605
formamide dimer H 27.619 27.619 27.620 27.620
formamide dimer H 22.559 22.558 22.557 22.558
formamide dimer H 24.326 24.327 24.327 24.326
formamide dimer C 54.008 54.004 54.031 54.034
formamide dimer O 32.215 32.192 32.317 32.329
formamide dimer N 173.557 173.553 173.611 173.605
formamide dimer H 27.619 27.619 27.620 27.620
formamide dimer H 22.559 22.558 22.557 22.558
formamide dimer H 24.326 24.327 24.327 24.326
uracil H-bonded dimer O 114.183 114.168 114.292 114.340
uracil H-bonded dimer C 57.549 57.533 57.547 57.548
uracil H-bonded dimer N 152.959 152.929 152.991 152.948
uracil H-bonded dimer C 74.251 74.250 74.298 74.301
uracil H-bonded dimer C 107.664 107.646 107.688 107.719
uracil H-bonded dimer C 53.935 53.923 53.944 53.945
uracil H-bonded dimer N 126.305 126.267 126.361 126.327
uracil H-bonded dimer O -17.750 -17.822 -17.699 -17.654
uracil H-bonded dimer H 26.687 26.691 26.692 26.685
uracil H-bonded dimer H 20.529 20.526 20.526 20.538
uracil H-bonded dimer H 25.406 25.402 25.402 25.397
uracil H-bonded dimer H 25.148 25.150 25.151 25.154
uracil H-bonded dimer O 114.179 114.168 114.292 114.340
uracil H-bonded dimer C 57.548 57.533 57.547 57.548
uracil H-bonded dimer N 152.959 152.929 152.991 152.948
uracil H-bonded dimer C 74.250 74.250 74.298 74.301
uracil H-bonded dimer C 107.664 107.646 107.688 107.719
uracil H-bonded dimer C 53.934 53.923 53.944 53.945
uracil H-bonded dimer N 126.305 126.267 126.361 126.327
uracil H-bonded dimer O -17.750 -17.822 -17.699 -17.654
uracil H-bonded dimer H 26.687 26.691 26.692 26.685
uracil H-bonded dimer H 20.529 20.526 20.526 20.538
uracil H-bonded dimer H 25.406 25.402 25.402 25.397
uracil H-bonded dimer H 25.148 25.150 25.151 25.154
2-pyridoxine–2-aminopyridine O 67.683 67.651 67.740 67.740
2-pyridoxine–2-aminopyridine N 102.458 102.356 102.416 102.460
2-pyridoxine–2-aminopyridine C 77.077 77.121 77.172 77.181
2-pyridoxine–2-aminopyridine C 106.148 106.093 106.115 106.097
2-pyridoxine–2-aminopyridine C 80.473 80.500 80.545 80.557

Continued on next page. . .
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Molecule Atom Loose Tight Tight* Ref.
2-pyridoxine–2-aminopyridine C 49.304 49.274 49.280 49.253
2-pyridoxine–2-aminopyridine C 86.818 86.752 86.781 86.775
2-pyridoxine–2-aminopyridine H 24.737 24.744 24.749 24.745
2-pyridoxine–2-aminopyridine H 26.019 26.021 26.024 26.023
2-pyridoxine–2-aminopyridine H 24.851 24.850 24.850 24.855
2-pyridoxine–2-aminopyridine H 25.368 25.369 25.372 25.367
2-pyridoxine–2-aminopyridine H 17.596 17.583 17.578 17.590
2-pyridoxine–2-aminopyridine N 32.173 32.011 32.021 32.097
2-pyridoxine–2-aminopyridine C 51.046 51.047 51.072 51.093
2-pyridoxine–2-aminopyridine C 99.130 99.068 99.091 99.083
2-pyridoxine–2-aminopyridine C 79.310 79.373 79.420 79.417
2-pyridoxine–2-aminopyridine C 96.163 96.101 96.123 96.101
2-pyridoxine–2-aminopyridine C 69.340 69.392 69.443 69.453
2-pyridoxine–2-aminopyridine H 25.392 25.391 25.391 25.390
2-pyridoxine–2-aminopyridine H 24.641 24.646 24.649 24.649
2-pyridoxine–2-aminopyridine H 25.361 25.360 25.361 25.362
2-pyridoxine–2-aminopyridine H 24.093 24.090 24.090 24.092
2-pyridoxine–2-aminopyridine N 205.968 205.981 206.035 206.049
2-pyridoxine–2-aminopyridine H 28.567 28.567 28.567 28.567
2-pyridoxine–2-aminopyridine H 23.343 23.334 23.331 23.329
adenine–thymine WC complex N 60.851 60.756 60.795 60.722
adenine–thymine WC complex C 55.191 55.182 55.210 55.242
adenine–thymine WC complex C 87.109 87.055 87.102 87.144
adenine–thymine WC complex C 63.864 63.901 63.958 63.951
adenine–thymine WC complex N 52.749 52.538 52.525 52.553
adenine–thymine WC complex C 60.890 60.954 61.000 61.043
adenine–thymine WC complex N 51.046 51.082 51.133 51.049
adenine–thymine WC complex C 79.086 79.070 79.109 79.133
adenine–thymine WC complex N 132.556 132.502 132.581 132.535
adenine–thymine WC complex N 206.299 206.315 206.360 206.400
adenine–thymine WC complex H 23.338 23.334 23.333 23.341
adenine–thymine WC complex H 24.714 24.713 24.712 24.697
adenine–thymine WC complex H 23.602 23.603 23.604 23.588
adenine–thymine WC complex H 23.187 23.178 23.175 23.181
adenine–thymine WC complex H 26.580 26.576 26.575 26.589
adenine–thymine WC complex N 158.262 158.210 158.280 158.287
adenine–thymine WC complex C 78.725 78.713 78.766 78.810
adenine–thymine WC complex C 100.250 100.233 100.273 100.211
adenine–thymine WC complex C 45.397 45.378 45.401 45.407
adenine–thymine WC complex N 120.856 120.804 120.886 120.941
adenine–thymine WC complex C 62.813 62.799 62.808 62.815
adenine–thymine WC complex C 189.913 189.916 189.922 189.924
adenine–thymine WC complex O 22.754 22.677 22.792 22.854
adenine–thymine WC complex O 82.944 82.922 83.048 83.131
adenine–thymine WC complex H 26.208 26.210 26.212 26.205
adenine–thymine WC complex H 17.470 17.456 17.452 17.485
adenine–thymine WC complex H 25.338 25.347 25.351 25.335
adenine–thymine WC complex H 29.881 29.883 29.884 29.883
adenine–thymine WC complex H 29.887 29.888 29.889 29.888
adenine–thymine WC complex H 30.604 30.609 30.611 30.603
methane dimer C 205.858 205.861 205.856 205.856
methane dimer H 31.500 31.501 31.500 31.500
methane dimer H 31.500 31.501 31.500 31.500
methane dimer H 31.499 31.500 31.499 31.499
methane dimer H 31.515 31.514 31.514 31.514
methane dimer C 205.866 205.861 205.856 205.856
methane dimer H 31.514 31.514 31.514 31.514
methane dimer H 31.501 31.501 31.500 31.500
methane dimer H 31.501 31.501 31.500 31.500
methane dimer H 31.500 31.500 31.499 31.499
ethene dimer C 90.520 90.517 90.560 90.560
ethene dimer C 90.520 90.517 90.560 90.560
ethene dimer H 26.269 26.268 26.269 26.270
ethene dimer H 26.269 26.268 26.269 26.270
ethene dimer H 26.482 26.482 26.484 26.483
ethene dimer H 26.482 26.482 26.484 26.483
ethene dimer C 90.520 90.517 90.560 90.560
ethene dimer C 90.520 90.517 90.560 90.560
ethene dimer H 26.269 26.268 26.269 26.270
ethene dimer H 26.269 26.268 26.269 26.270
ethene dimer H 26.482 26.482 26.484 26.483
ethene dimer H 26.482 26.482 26.484 26.483
benzene stack C 84.866 84.860 84.891 84.905
benzene stack C 82.795 82.793 82.822 82.823
benzene stack C 82.795 82.793 82.822 82.823
benzene stack C 85.558 85.552 85.583 85.559
benzene stack C 85.041 85.039 85.069 85.047
benzene stack C 85.558 85.552 85.583 85.559
benzene stack H 25.088 25.088 25.089 25.089
benzene stack H 24.734 24.734 24.735 24.736
benzene stack H 24.643 24.643 24.644 24.644
benzene stack H 24.734 24.734 24.735 24.736
benzene stack H 25.088 25.088 25.089 25.089
benzene stack H 25.734 25.734 25.735 25.739
benzene stack C 84.865 84.860 84.891 84.905
benzene stack C 82.795 82.793 82.823 82.823
benzene stack C 82.795 82.793 82.822 82.823
benzene stack C 85.557 85.552 85.583 85.559
benzene stack C 85.039 85.039 85.069 85.047
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Molecule Atom Loose Tight Tight* Ref.
benzene stack C 85.557 85.552 85.583 85.559
benzene stack H 25.735 25.734 25.735 25.739
benzene stack H 25.088 25.088 25.089 25.089
benzene stack H 24.734 24.734 24.735 24.736
benzene stack H 24.643 24.643 24.644 24.644
benzene stack H 24.734 24.734 24.735 24.736
benzene stack H 25.088 25.088 25.089 25.089
pyrazine dimer C 67.702 67.700 67.740 67.757
pyrazine dimer C 67.703 67.700 67.740 67.757
pyrazine dimer N -29.730 -29.688 -29.637 -29.647
pyrazine dimer C 66.678 66.680 66.721 66.722
pyrazine dimer C 66.678 66.680 66.721 66.722
pyrazine dimer N -29.730 -29.688 -29.637 -29.647
pyrazine dimer H 24.536 24.536 24.537 24.540
pyrazine dimer H 24.536 24.536 24.537 24.540
pyrazine dimer H 23.684 23.684 23.685 23.685
pyrazine dimer H 23.684 23.684 23.685 23.685
pyrazine dimer C 67.703 67.697 67.738 67.749
pyrazine dimer C 65.706 65.708 65.748 65.758
pyrazine dimer N -26.983 -26.958 -26.905 -26.896
pyrazine dimer C 65.706 65.708 65.748 65.758
pyrazine dimer C 67.699 67.697 67.738 67.749
pyrazine dimer N -28.724 -28.668 -28.615 -28.629
pyrazine dimer H 23.759 23.759 23.760 23.761
pyrazine dimer H 24.281 24.281 24.282 24.284
pyrazine dimer H 24.281 24.281 24.282 24.284
pyrazine dimer H 23.759 23.759 23.760 23.761
uracil stack N 155.157 155.124 155.191 155.159
uracil stack C 75.409 75.409 75.458 75.485
uracil stack H 25.513 25.515 25.517 25.516
uracil stack C 108.019 107.998 108.039 108.056
uracil stack H 27.069 27.071 27.072 27.070
uracil stack C 52.119 52.104 52.125 52.098
uracil stack O -16.277 -16.398 -16.279 -16.179
uracil stack N 125.310 125.264 125.358 125.329
uracil stack H 25.397 25.389 25.388 25.385
uracil stack C 63.574 63.558 63.567 63.556
uracil stack O 74.539 74.525 74.655 74.710
uracil stack H 26.221 26.220 26.221 26.218
uracil stack N 155.157 155.124 155.191 155.159
uracil stack C 75.409 75.409 75.458 75.485
uracil stack H 25.513 25.515 25.517 25.516
uracil stack C 108.019 107.998 108.039 108.056
uracil stack H 27.069 27.071 27.072 27.070
uracil stack C 52.119 52.104 52.125 52.098
uracil stack O -16.277 -16.398 -16.279 -16.179
uracil stack N 125.310 125.264 125.358 125.329
uracil stack H 25.397 25.389 25.388 25.385
uracil stack C 63.574 63.558 63.567 63.556
uracil stack O 74.539 74.525 74.655 74.710
uracil stack H 26.221 26.220 26.221 26.218
indole–benzene stack C 84.102 84.098 84.126 84.175
indole–benzene stack C 86.526 86.518 86.548 86.554
indole–benzene stack C 84.382 84.377 84.407 84.388
indole–benzene stack C 86.806 86.800 86.831 86.790
indole–benzene stack C 86.719 86.714 86.745 86.719
indole–benzene stack C 87.804 87.797 87.827 87.838
indole–benzene stack H 25.876 25.875 25.875 25.877
indole–benzene stack H 25.738 25.736 25.737 25.735
indole–benzene stack H 25.045 25.044 25.045 25.043
indole–benzene stack H 24.876 24.875 24.876 24.875
indole–benzene stack H 25.074 25.073 25.074 25.071
indole–benzene stack H 25.458 25.457 25.458 25.459
indole–benzene stack H 24.760 24.759 24.760 24.762
indole–benzene stack C 91.248 91.227 91.254 91.222
indole–benzene stack C 91.965 91.981 92.016 91.956
indole–benzene stack H 24.219 24.218 24.218 24.219
indole–benzene stack C 81.436 81.427 81.473 81.518
indole–benzene stack C 108.265 108.262 108.304 108.246
indole–benzene stack H 25.347 25.344 25.343 25.347
indole–benzene stack C 91.851 91.858 91.906 91.891
indole–benzene stack N 149.141 149.077 149.130 149.120
indole–benzene stack C 78.267 78.281 78.328 78.344
indole–benzene stack C 100.108 100.076 100.098 100.069
indole–benzene stack H 25.384 25.383 25.384 25.384
indole–benzene stack C 91.679 91.702 91.737 91.675
indole–benzene stack H 25.018 25.020 25.021 25.022
indole–benzene stack H 25.207 25.204 25.203 25.201
indole–benzene stack H 25.152 25.151 25.151 25.152
adenine–thymine stack N 129.349 129.300 129.382 129.372
adenine–thymine stack C 76.816 76.799 76.836 76.834
adenine–thymine stack H 24.540 24.535 24.534 24.530
adenine–thymine stack N 49.033 49.056 49.110 49.117
adenine–thymine stack C 85.573 85.520 85.566 85.530
adenine–thymine stack C 54.545 54.555 54.591 54.557
adenine–thymine stack N 209.663 209.676 209.725 209.751
adenine–thymine stack H 27.672 27.671 27.670 27.672
adenine–thymine stack H 26.871 26.864 26.863 26.868
adenine–thymine stack N 38.818 38.693 38.719 38.712
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Molecule Atom Loose Tight Tight* Ref.
adenine–thymine stack C 61.879 61.933 61.974 62.055
adenine–thymine stack H 23.914 23.916 23.917 23.923
adenine–thymine stack N 48.372 48.158 48.146 48.143
adenine–thymine stack C 64.987 65.015 65.068 65.055
adenine–thymine stack H 23.775 23.771 23.771 23.769
adenine–thymine stack N 158.706 158.667 158.737 158.711
adenine–thymine stack C 80.211 80.207 80.261 80.291
adenine–thymine stack H 26.116 26.116 26.117 26.115
adenine–thymine stack C 101.291 101.267 101.305 101.312
adenine–thymine stack C 189.342 189.339 189.343 189.330
adenine–thymine stack H 30.224 30.221 30.220 30.223
adenine–thymine stack H 30.390 30.389 30.389 30.391
adenine–thymine stack H 31.078 31.077 31.078 31.076
adenine–thymine stack C 52.161 52.151 52.173 52.154
adenine–thymine stack O -5.732 -5.812 -5.692 -5.541
adenine–thymine stack N 129.995 129.958 130.050 130.007
adenine–thymine stack H 26.380 26.373 26.372 26.373
adenine–thymine stack C 64.259 64.253 64.264 64.257
adenine–thymine stack O 86.906 86.842 86.977 86.958
adenine–thymine stack H 26.777 26.775 26.776 26.771
ethene–ethyne C 89.433 89.431 89.474 89.473
ethene–ethyne C 89.433 89.431 89.474 89.473
ethene–ethyne H 26.468 26.467 26.469 26.469
ethene–ethyne H 26.468 26.467 26.469 26.469
ethene–ethyne H 26.468 26.467 26.469 26.469
ethene–ethyne H 26.468 26.467 26.469 26.469
ethene–ethyne C 141.330 141.327 141.337 141.341
ethene–ethyne C 137.916 137.925 137.936 137.938
ethene–ethyne H 29.948 29.948 29.946 29.946
ethene–ethyne H 30.563 30.563 30.561 30.561
benzene–water C 83.279 83.272 83.302 83.300
benzene–water C 82.927 82.923 82.953 82.949
benzene–water C 83.658 83.653 83.684 83.683
benzene–water C 82.926 82.923 82.953 82.949
benzene–water C 83.277 83.272 83.302 83.300
benzene–water C 83.710 83.706 83.736 83.732
benzene–water H 24.423 24.423 24.424 24.424
benzene–water H 24.355 24.355 24.356 24.356
benzene–water H 24.358 24.358 24.359 24.359
benzene–water H 24.355 24.355 24.356 24.356
benzene–water H 24.423 24.423 24.424 24.424
benzene–water H 24.465 24.465 24.466 24.466
benzene–water O 364.277 364.278 364.261 364.272
benzene–water H 32.860 32.858 32.857 32.857
benzene–water H 33.622 33.620 33.619 33.618
benzene–ammonia C 83.336 83.330 83.360 83.359
benzene–ammonia C 82.695 82.690 82.721 82.718
benzene–ammonia C 83.335 83.330 83.360 83.359
benzene–ammonia C 83.792 83.787 83.818 83.814
benzene–ammonia C 83.868 83.863 83.893 83.888
benzene–ammonia C 83.793 83.787 83.818 83.814
benzene–ammonia H 24.412 24.412 24.413 24.413
benzene–ammonia H 24.331 24.330 24.331 24.331
benzene–ammonia H 24.413 24.412 24.413 24.413
benzene–ammonia H 24.490 24.489 24.490 24.490
benzene–ammonia H 24.509 24.509 24.510 24.510
benzene–ammonia H 24.490 24.489 24.490 24.490
benzene–ammonia N 287.339 287.345 287.328 287.321
benzene–ammonia H 33.269 33.268 33.267 33.267
benzene–ammonia H 33.269 33.268 33.267 33.267
benzene–ammonia H 34.527 34.526 34.525 34.524
benzene–HCN C 83.017 83.013 83.044 83.047
benzene–HCN C 82.902 82.898 82.929 82.930
benzene–HCN C 83.017 83.013 83.044 83.047
benzene–HCN C 83.266 83.262 83.292 83.293
benzene–HCN C 83.400 83.396 83.427 83.427
benzene–HCN C 83.266 83.262 83.292 83.293
benzene–HCN H 24.395 24.395 24.396 24.397
benzene–HCN H 24.385 24.385 24.386 24.387
benzene–HCN H 24.395 24.395 24.396 24.397
benzene–HCN H 24.415 24.415 24.416 24.417
benzene–HCN H 24.425 24.424 24.425 24.427
benzene–HCN H 24.415 24.415 24.416 24.417
benzene–HCN N 32.265 32.247 32.269 32.260
benzene–HCN C 107.230 107.225 107.245 107.254
benzene–HCN H 33.222 33.222 33.221 33.218
benzene dimer T-shaped C 83.552 83.536 83.567 83.605
benzene dimer T-shaped C 84.261 84.254 84.283 84.299
benzene dimer T-shaped C 84.888 84.887 84.917 84.902
benzene dimer T-shaped C 84.717 84.710 84.740 84.714
benzene dimer T-shaped C 84.889 84.887 84.917 84.902
benzene dimer T-shaped C 84.262 84.254 84.283 84.299
benzene dimer T-shaped H 27.704 27.702 27.704 27.712
benzene dimer T-shaped H 25.067 25.067 25.068 25.069
benzene dimer T-shaped H 24.761 24.761 24.762 24.760
benzene dimer T-shaped H 24.721 24.720 24.721 24.718
benzene dimer T-shaped H 24.761 24.761 24.762 24.760
benzene dimer T-shaped H 25.068 25.067 25.068 25.069
benzene dimer T-shaped C 82.843 82.840 82.870 82.874
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Molecule Atom Loose Tight Tight* Ref.
benzene dimer T-shaped C 83.364 83.361 83.392 83.387
benzene dimer T-shaped C 83.363 83.361 83.392 83.387
benzene dimer T-shaped C 82.835 82.840 82.870 82.874
benzene dimer T-shaped C 83.362 83.361 83.392 83.387
benzene dimer T-shaped C 83.364 83.361 83.392 83.387
benzene dimer T-shaped H 24.336 24.336 24.336 24.337
benzene dimer T-shaped H 24.255 24.255 24.256 24.257
benzene dimer T-shaped H 24.255 24.255 24.256 24.257
benzene dimer T-shaped H 24.335 24.336 24.336 24.337
benzene dimer T-shaped H 24.255 24.255 24.256 24.257
benzene dimer T-shaped H 24.255 24.255 24.256 24.257
indole–benzene T-shaped C 82.457 82.455 82.486 82.502
indole–benzene T-shaped C 82.525 82.521 82.552 82.555
indole–benzene T-shaped C 82.478 82.472 82.503 82.497
indole–benzene T-shaped C 83.464 83.458 83.489 83.489
indole–benzene T-shaped C 82.475 82.472 82.503 82.497
indole–benzene T-shaped C 82.525 82.521 82.552 82.555
indole–benzene T-shaped H 23.875 23.874 23.875 23.875
indole–benzene T-shaped H 24.129 24.127 24.128 24.130
indole–benzene T-shaped H 24.187 24.186 24.187 24.188
indole–benzene T-shaped H 24.076 24.075 24.076 24.075
indole–benzene T-shaped H 24.187 24.186 24.187 24.188
indole–benzene T-shaped H 24.129 24.127 24.128 24.130
indole–benzene T-shaped H 27.986 27.979 27.979 27.991
indole–benzene T-shaped N 149.334 149.253 149.304 149.323
indole–benzene T-shaped C 91.346 91.356 91.405 91.373
indole–benzene T-shaped C 109.523 109.522 109.564 109.514
indole–benzene T-shaped C 81.850 81.842 81.890 81.919
indole–benzene T-shaped C 77.477 77.492 77.539 77.589
indole–benzene T-shaped C 100.888 100.850 100.871 100.878
indole–benzene T-shaped C 91.948 91.972 92.008 91.985
indole–benzene T-shaped C 91.691 91.663 91.689 91.655
indole–benzene T-shaped C 91.969 91.989 92.024 91.968
indole–benzene T-shaped H 25.574 25.572 25.572 25.574
indole–benzene T-shaped H 25.577 25.575 25.575 25.575
indole–benzene T-shaped H 24.882 24.879 24.879 24.882
indole–benzene T-shaped H 24.896 24.897 24.899 24.898
indole–benzene T-shaped H 24.846 24.845 24.846 24.848
indole–benzene T-shaped H 24.301 24.301 24.302 24.302
phenol dimer C 53.287 53.278 53.314 53.319
phenol dimer O 260.431 260.412 260.489 260.499
phenol dimer H 25.219 25.215 25.213 25.216
phenol dimer C 96.214 96.184 96.217 96.240
phenol dimer C 85.604 85.625 85.660 85.673
phenol dimer C 91.914 91.889 91.914 91.897
phenol dimer C 84.460 84.481 84.516 84.486
phenol dimer C 93.967 93.940 93.972 93.972
phenol dimer H 25.587 25.584 25.584 25.593
phenol dimer H 25.179 25.179 25.179 25.182
phenol dimer H 25.179 25.178 25.179 25.178
phenol dimer H 24.704 24.706 24.707 24.706
phenol dimer H 24.748 24.747 24.748 24.746
phenol dimer O 266.156 266.093 266.169 266.205
phenol dimer C 57.015 57.004 57.041 57.052
phenol dimer H 27.838 27.836 27.835 27.835
phenol dimer C 93.194 93.169 93.199 93.210
phenol dimer C 82.780 82.798 82.833 82.841
phenol dimer C 88.885 88.864 88.889 88.875
phenol dimer C 84.516 84.532 84.567 84.549
phenol dimer C 97.833 97.807 97.840 97.837
phenol dimer H 24.701 24.698 24.698 24.706
phenol dimer H 24.744 24.743 24.744 24.745
phenol dimer H 24.875 24.874 24.874 24.873
phenol dimer H 24.634 24.635 24.635 24.634
phenol dimer H 25.130 25.129 25.129 25.127
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Table 2: MP2 shielding calculations on the benchmark set from Flaig et al.[2] “Loose” and “Tight”
settings are defined in the text. “Tight*” denotes shieldings computed with “Tight” settings and a
cc-pVQZ-RI auxiliary basis set instead of a def2-SVP-RI basis set. MP2 shieldings computed with
Turbomole[3–5] are used as a reference. All values are given in ppm.

Molecule Atom Loose Tight Tight* Ref.
C2H2 H 30.597 30.597 30.595 30.595
C2H2 C 140.705 140.704 140.714 140.713
C2H2 C 140.705 140.704 140.714 140.713
C2H2 H 30.597 30.597 30.595 30.595
C2H4 H 26.631 26.630 26.631 26.632
C2H4 H 26.631 26.630 26.631 26.632
C2H4 C 91.113 91.110 91.153 91.153
C2H4 H 26.631 26.630 26.631 26.632
C2H4 C 91.111 91.109 91.152 91.153
C2H4 H 26.630 26.630 26.631 26.632
C2H6 H 31.094 31.094 31.093 31.093
C2H6 H 31.094 31.094 31.093 31.093
C2H6 H 31.094 31.094 31.093 31.093
C2H6 C 197.027 197.016 197.005 197.004
C2H6 H 31.093 31.093 31.093 31.093
C2H6 H 31.094 31.093 31.093 31.093
C2H6 C 197.023 197.014 197.003 197.003
C2H6 H 31.094 31.093 31.093 31.093
C6H6 H 24.236 24.235 24.236 24.236
C6H6 H 24.236 24.235 24.236 24.236
C6H6 C 81.848 81.843 81.874 81.872
C6H6 H 24.236 24.235 24.236 24.236
C6H6 C 81.848 81.843 81.874 81.872
C6H6 H 24.236 24.235 24.236 24.236
C6H6 C 81.848 81.843 81.874 81.872
C6H6 H 24.236 24.235 24.236 24.236
C6H6 C 81.850 81.843 81.874 81.872
C6H6 C 81.850 81.843 81.874 81.872
C6H6 C 81.861 81.843 81.874 81.872
C6H6 H 24.235 24.235 24.236 24.236
CCl4 C 80.240 80.163 80.214 80.170
CCl4 Cl 542.921 542.731 543.424 543.335
CCl4 Cl 542.924 542.731 543.424 543.335
CCl4 Cl 542.919 542.731 543.424 543.335
CCl4 Cl 542.921 542.731 543.424 543.335
CF4 F 300.550 300.555 300.684 300.687
CF4 F 300.570 300.555 300.684 300.687
CF4 F 300.549 300.555 300.684 300.687
CF4 C 81.845 81.847 81.860 81.860
CF4 F 300.548 300.555 300.684 300.687
CH2CCH2 H 27.398 27.398 27.398 27.398
CH2CCH2 H 27.397 27.397 27.398 27.398
CH2CCH2 C 135.781 135.778 135.794 135.795
CH2CCH2 C 0.135 0.150 0.205 0.206
CH2CCH2 H 27.398 27.397 27.398 27.398
CH2CCH2 C 135.778 135.775 135.791 135.793
CH2CCH2 H 27.397 27.397 27.398 27.398
CH3CHO O -247.028 -246.908 -246.548 -246.528
CH3CHO H 22.885 22.884 22.886 22.886
CH3CHO C 28.440 28.447 28.522 28.520
CH3CHO H 30.023 30.023 30.023 30.023
CH3CHO H 30.023 30.023 30.023 30.023
CH3CHO C 175.874 175.873 175.896 175.899
CH3CHO H 30.304 30.304 30.303 30.303
CH3Cl C 179.327 179.314 179.321 179.320
CH3Cl Cl 1010.339 1010.283 1010.228 1010.236
CH3Cl H 29.337 29.338 29.339 29.339
CH3Cl H 29.337 29.338 29.339 29.339
CH3Cl H 29.337 29.338 29.339 29.339
CH3CN N 42.119 42.119 42.151 42.150
CH3CN C 99.424 99.405 99.418 99.416
CH3CN H 30.439 30.439 30.438 30.438
CH3CN H 30.436 30.436 30.436 30.436
CH3CN C 204.131 204.127 204.117 204.120
CH3CN H 30.437 30.437 30.437 30.437
CH3COCH3 H 30.393 30.393 30.393 30.392
CH3COCH3 H 29.964 29.964 29.964 29.964
CH3COCH3 H 29.964 29.964 29.964 29.964
CH3COCH3 C 176.847 176.849 176.872 176.872
CH3COCH3 O -241.915 -241.875 -241.474 -241.466
CH3COCH3 C 20.053 20.057 20.144 20.141
CH3COCH3 H 29.964 29.964 29.964 29.964
CH3COCH3 H 29.964 29.964 29.964 29.964
CH3COCH3 C 176.847 176.850 176.872 176.873
CH3COCH3 H 30.393 30.393 30.393 30.393
CH3F F 488.310 488.316 488.335 488.339
CH3F H 27.914 27.914 27.914 27.914
CH3F H 27.914 27.914 27.914 27.914
CH3F C 137.177 137.189 137.206 137.204
CH3F H 27.914 27.914 27.914 27.914
CH3NH2 H 32.123 32.123 32.123 32.123
CH3NH2 H 32.124 32.123 32.123 32.123
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Molecule Atom Loose Tight Tight* Ref.
CH3NH2 N 272.114 272.102 272.087 272.085
CH3NH2 H 29.696 29.696 29.695 29.695
CH3NH2 H 29.718 29.718 29.717 29.717
CH3NH2 C 175.379 175.376 175.373 175.373
CH3NH2 H 29.718 29.718 29.717 29.717
CH3OCH3 H 28.417 28.417 28.417 28.417
CH3OCH3 H 29.111 29.111 29.111 29.111
CH3OCH3 H 29.111 29.111 29.111 29.111
CH3OCH3 C 145.941 145.933 145.946 145.949
CH3OCH3 O 367.591 367.566 367.578 367.583
CH3OCH3 H 29.111 29.111 29.111 29.111
CH3OCH3 H 29.111 29.111 29.111 29.111
CH3OCH3 C 145.945 145.933 145.946 145.949
CH3OCH3 H 28.418 28.417 28.417 28.417
CH3OH H 32.553 32.554 32.552 32.552
CH3OH O 363.971 363.957 363.952 363.949
CH3OH H 28.705 28.705 28.705 28.705
CH3OH H 28.705 28.705 28.705 28.705
CH3OH C 155.117 155.105 155.113 155.113
CH3OH H 28.590 28.590 28.590 28.590
CH3PH2 C 207.616 207.611 207.602 207.601
CH3PH2 P 599.208 599.252 599.353 599.357
CH3PH2 H 29.258 29.259 29.258 29.258
CH3PH2 H 29.258 29.259 29.258 29.258
CH3PH2 H 31.447 31.449 31.449 31.449
CH3PH2 H 31.447 31.449 31.449 31.449
CH3PH2 H 30.621 30.622 30.623 30.623
CH3SH C 196.239 196.225 196.216 196.217
CH3SH S 748.256 748.374 748.507 748.509
CH3SH H 31.123 31.121 31.120 31.120
CH3SH H 30.644 30.647 30.647 30.647
CH3SH H 30.151 30.152 30.153 30.153
CH3SH H 30.151 30.152 30.153 30.153
CH4 H 31.583 31.583 31.582 31.582
CH4 H 31.583 31.583 31.582 31.582
CH4 H 31.583 31.583 31.582 31.582
CH4 C 207.146 207.139 207.135 207.135
CH4 H 31.583 31.583 31.582 31.582
CO2 O 264.065 264.056 264.058 264.061
CO2 C 87.547 87.541 87.535 87.534
CO2 O 264.063 264.056 264.058 264.061
CO O -3.069 -3.073 -3.046 -3.039
CO C 38.931 38.937 38.960 38.961
furan H 25.858 25.857 25.857 25.857
furan H 25.086 25.085 25.085 25.085
furan C 105.058 105.054 105.089 105.088
furan H 25.858 25.857 25.857 25.857
furan C 75.879 75.873 75.916 75.919
furan C 105.058 105.054 105.089 105.089
furan O 98.706 98.617 98.786 98.789
furan C 75.879 75.874 75.916 75.918
furan H 25.086 25.085 25.085 25.085
glycine H 30.709 30.709 30.709 30.709
glycine H 31.192 31.192 31.191 31.191
glycine N 262.070 262.061 262.064 262.069
glycine H 29.178 29.178 29.177 29.177
glycine H 29.275 29.275 29.274 29.275
glycine C 163.456 163.450 163.460 163.462
glycine O 2.625 2.612 2.733 2.759
glycine C 48.754 48.744 48.771 48.769
glycine O 192.706 192.689 192.808 192.804
glycine H 21.774 21.773 21.774 21.774
H2CO O -293.516 -293.301 -292.894 -292.855
H2CO H 23.096 23.094 23.096 23.096
H2CO C 34.365 34.371 34.443 34.442
H2CO H 23.096 23.094 23.096 23.096
HCN H 29.687 29.687 29.685 29.685
HCN C 109.975 109.971 109.990 109.990
HCN N 31.431 31.422 31.444 31.447
HCONH2 H 27.971 27.971 27.971 27.971
HCONH2 H 27.994 27.995 27.996 27.996
HCONH2 N 189.562 189.562 189.624 189.620
HCONH2 H 24.559 24.559 24.559 24.559
HCONH2 C 61.449 61.449 61.473 61.473
HCONH2 O -8.028 -8.029 -7.901 -7.868
HCOOH H 26.643 26.643 26.644 26.644
HCOOH O 184.003 183.992 184.100 184.102
HCOOH H 24.892 24.892 24.891 24.891
HCOOH C 59.210 59.205 59.227 59.225
HCOOH O -14.651 -14.639 -14.530 -14.507
imidazole H 23.863 23.861 23.862 23.861
imidazole H 25.069 25.069 25.068 25.068
imidazole N 128.828 128.799 128.873 128.877
imidazole H 25.304 25.303 25.303 25.303
imidazole C 83.090 83.100 83.139 83.139
imidazole C 98.344 98.332 98.368 98.373
imidazole N 25.424 25.388 25.430 25.428
imidazole C 83.241 83.237 83.283 83.285
imidazole H 25.016 25.015 25.015 25.016
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Molecule Atom Loose Tight Tight* Ref.
pyridine H 23.449 23.448 23.449 23.449
pyridine N -31.689 -31.783 -31.770 -31.773
pyridine H 23.449 23.448 23.449 23.449
pyridine C 64.908 64.931 64.976 64.977
pyridine H 24.719 24.718 24.718 24.718
pyridine C 64.908 64.931 64.976 64.977
pyridine H 24.719 24.718 24.718 24.718
pyridine C 86.844 86.815 86.842 86.844
pyridine C 86.844 86.815 86.842 86.844
pyridine C 80.863 80.890 80.932 80.932
pyridine H 24.446 24.447 24.448 24.449
pyrimidine H 23.487 23.486 23.487 23.487
pyrimidine N -16.845 -17.002 -17.009 -17.004
pyrimidine H 22.865 22.864 22.864 22.864
pyrimidine C 60.606 60.633 60.683 60.685
pyrimidine H 24.804 24.803 24.803 24.804
pyrimidine C 54.877 54.898 54.933 54.936
pyrimidine C 87.218 87.181 87.213 87.218
pyrimidine N -16.850 -17.008 -17.015 -17.009
pyrimidine C 60.592 60.620 60.670 60.673
pyrimidine H 23.481 23.481 23.481 23.482
TMS H 31.905 31.906 31.906 31.905
TMS H 31.905 31.906 31.906 31.905
TMS H 31.905 31.906 31.906 31.905
TMS H 31.905 31.906 31.906 31.905
TMS H 31.905 31.906 31.906 31.905
TMS H 31.905 31.906 31.906 31.906
TMS H 31.905 31.906 31.906 31.905
TMS H 31.905 31.906 31.906 31.905
TMS H 31.905 31.906 31.906 31.905
TMS C 205.816 205.809 205.815 205.815
TMS C 205.816 205.809 205.815 205.817
TMS C 205.816 205.809 205.815 205.817
TMS Si 439.889 439.859 439.981 439.831
TMS H 31.905 31.906 31.906 31.905
TMS H 31.905 31.906 31.906 31.906
TMS C 205.816 205.809 205.815 205.817
TMS H 31.905 31.906 31.906 31.905
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Table 3: SOS-MP2 shielding calculations for all monomers from the L7 test set.[6] SOS-MP2 shieldings
computed with FermiONs++[7–9] and “Tight” settings are used as a reference. All values are given in
ppm.

Molecule Atom Loose Tight
C2C2PD monomer A C 97.161 97.140
C2C2PD monomer A C 97.149 97.136
C2C2PD monomer A C 97.144 97.134
C2C2PD monomer A C 97.149 97.136
C2C2PD monomer A C 97.160 97.140
C2C2PD monomer A C 97.168 97.142
C2C2PD monomer A C 93.503 93.512
C2C2PD monomer A C 100.579 100.589
C2C2PD monomer A C 100.578 100.588
C2C2PD monomer A C 93.513 93.515
C2C2PD monomer A C 93.519 93.518
C2C2PD monomer A C 100.583 100.589
C2C2PD monomer A C 100.584 100.590
C2C2PD monomer A C 100.583 100.589
C2C2PD monomer A C 100.583 100.590
C2C2PD monomer A C 93.511 93.515
C2C2PD monomer A C 100.578 100.588
C2C2PD monomer A C 100.580 100.589
C2C2PD monomer A C 93.503 93.512
C2C2PD monomer A C 100.574 100.587
C2C2PD monomer A C 100.575 100.587
C2C2PD monomer A C 93.498 93.510
C2C2PD monomer A C 100.579 100.587
C2C2PD monomer A C 100.578 100.587
C2C2PD monomer A H 23.539 23.543
C2C2PD monomer A H 23.536 23.542
C2C2PD monomer A H 23.535 23.541
C2C2PD monomer A H 23.533 23.540
C2C2PD monomer A H 23.533 23.540
C2C2PD monomer A H 23.535 23.541
C2C2PD monomer A H 23.537 23.542
C2C2PD monomer A H 23.539 23.543
C2C2PD monomer A H 23.541 23.544
C2C2PD monomer A H 23.542 23.544
C2C2PD monomer A H 23.542 23.544
C2C2PD monomer A H 23.541 23.544
C2C2PD monomer B C 97.148 97.136
C2C2PD monomer B C 97.162 97.140
C2C2PD monomer B C 97.167 97.142
C2C2PD monomer B C 97.162 97.140
C2C2PD monomer B C 97.147 97.136
C2C2PD monomer B C 97.143 97.134
C2C2PD monomer B C 93.513 93.515
C2C2PD monomer B C 100.577 100.588
C2C2PD monomer B C 100.580 100.589
C2C2PD monomer B C 93.502 93.512
C2C2PD monomer B C 93.496 93.510
C2C2PD monomer B C 100.576 100.587
C2C2PD monomer B C 100.574 100.587
C2C2PD monomer B C 100.575 100.587
C2C2PD monomer B C 100.574 100.587
C2C2PD monomer B C 93.500 93.512
C2C2PD monomer B C 100.580 100.589
C2C2PD monomer B C 100.579 100.588
C2C2PD monomer B C 93.514 93.515
C2C2PD monomer B C 100.583 100.590
C2C2PD monomer B C 100.582 100.589
C2C2PD monomer B C 93.521 93.518
C2C2PD monomer B C 100.587 100.589
C2C2PD monomer B C 100.588 100.590
C2C2PD monomer B H 23.537 23.542
C2C2PD monomer B H 23.539 23.543
C2C2PD monomer B H 23.541 23.544
C2C2PD monomer B H 23.542 23.544
C2C2PD monomer B H 23.542 23.544
C2C2PD monomer B H 23.541 23.544
C2C2PD monomer B H 23.539 23.543
C2C2PD monomer B H 23.537 23.542
C2C2PD monomer B H 23.534 23.541
C2C2PD monomer B H 23.533 23.540
C2C2PD monomer B H 23.533 23.540
C2C2PD monomer B H 23.534 23.541
C3A monomer A C 71.512 71.536
C3A monomer A C 96.044 95.989
C3A monomer A C 81.091 81.134
C3A monomer A C 81.878 81.945
C3A monomer A C 100.456 100.439
C3A monomer A N 65.336 65.189
C3A monomer A N 73.180 72.927
C3A monomer A N 102.467 102.497
C3A monomer A N 151.525 151.467
C3A monomer A N 221.125 221.135
C3A monomer A H 24.115 24.118

Continued on next page. . .
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Molecule Atom Loose Tight
C3A monomer A H 25.339 25.333
C3A monomer A H 24.208 24.203
C3A monomer A H 27.883 27.882
C3A monomer A H 27.281 27.274
C3GC monomer A C 71.011 71.006
C3GC monomer A C 100.151 100.182
C3GC monomer A C 125.582 125.551
C3GC monomer A C 63.275 63.257
C3GC monomer A C 65.937 65.916
C3GC monomer A C 73.261 73.305
C3GC monomer A C 79.198 79.274
C3GC monomer A C 98.707 98.636
C3GC monomer A C 103.860 103.869
C3GC monomer A N 161.320 161.318
C3GC monomer A N 103.802 103.629
C3GC monomer A N 186.877 186.851
C3GC monomer A N 145.490 145.411
C3GC monomer A N 134.123 133.997
C3GC monomer A N 103.400 103.455
C3GC monomer A N 152.045 151.968
C3GC monomer A N 219.064 219.101
C3GC monomer A O 92.328 92.190
C3GC monomer A O 91.416 91.147
C3GC monomer A H 26.070 26.076
C3GC monomer A H 26.097 26.112
C3GC monomer A H 27.255 27.268
C3GC monomer A H 27.706 27.707
C3GC monomer A H 19.841 19.821
C3GC monomer A H 18.268 18.238
C3GC monomer A H 25.837 25.837
C3GC monomer A H 24.704 24.704
C3GC monomer A H 28.491 28.489
C3GC monomer A H 23.256 23.242
CBH monomer A C 189.651 189.643
CBH monomer A C 180.241 180.233
CBH monomer A C 171.967 171.961
CBH monomer A C 172.760 172.755
CBH monomer A C 172.526 172.521
CBH monomer A C 172.565 172.560
CBH monomer A C 172.458 172.453
CBH monomer A C 172.624 172.618
CBH monomer A C 172.405 172.400
CBH monomer A C 172.660 172.654
CBH monomer A C 172.438 172.437
CBH monomer A C 172.581 172.575
CBH monomer A C 172.493 172.488
CBH monomer A C 172.640 172.635
CBH monomer A C 172.675 172.671
CBH monomer A C 171.991 171.989
CBH monomer A C 180.218 180.212
CBH monomer A C 189.588 189.580
CBH monomer A H 30.638 30.637
CBH monomer A H 30.854 30.854
CBH monomer A H 30.652 30.652
CBH monomer A H 30.873 30.873
CBH monomer A H 30.540 30.540
CBH monomer A H 30.531 30.531
CBH monomer A H 30.570 30.570
CBH monomer A H 30.572 30.572
CBH monomer A H 30.559 30.558
CBH monomer A H 30.558 30.558
CBH monomer A H 30.518 30.518
CBH monomer A H 30.552 30.552
CBH monomer A H 30.543 30.542
CBH monomer A H 30.529 30.529
CBH monomer A H 30.533 30.533
CBH monomer A H 30.558 30.558
CBH monomer A H 30.554 30.554
CBH monomer A H 30.528 30.528
CBH monomer A H 30.537 30.537
CBH monomer A H 30.560 30.560
CBH monomer A H 30.560 30.560
CBH monomer A H 30.538 30.538
CBH monomer A H 30.550 30.550
CBH monomer A H 30.532 30.532
CBH monomer A H 30.524 30.524
CBH monomer A H 30.542 30.541
CBH monomer A H 30.540 30.540
CBH monomer A H 30.538 30.538
CBH monomer A H 30.539 30.538
CBH monomer A H 30.538 30.538
CBH monomer A H 30.548 30.547
CBH monomer A H 30.555 30.555
CBH monomer A H 30.561 30.561
CBH monomer A H 30.579 30.578
CBH monomer A H 30.535 30.534
CBH monomer A H 30.541 30.540
CBH monomer A H 30.867 30.867
CBH monomer A H 30.849 30.848
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Molecule Atom Loose Tight
CBH monomer B C 172.732 172.728
CBH monomer B C 171.950 171.946
CBH monomer B C 180.231 180.224
CBH monomer B C 189.622 189.616
CBH monomer B C 172.499 172.493
CBH monomer B C 172.642 172.637
CBH monomer B C 172.446 172.441
CBH monomer B C 172.623 172.617
CBH monomer B C 172.451 172.446
CBH monomer B C 172.627 172.621
CBH monomer B C 172.434 172.428
CBH monomer B C 172.651 172.645
CBH monomer B C 172.447 172.441
CBH monomer B C 172.625 172.619
CBH monomer B C 172.683 172.677
CBH monomer B C 171.964 171.958
CBH monomer B C 180.226 180.217
CBH monomer B C 189.562 189.554
CBH monomer B H 30.639 30.639
CBH monomer B H 30.847 30.847
CBH monomer B H 30.534 30.533
CBH monomer B H 30.541 30.541
CBH monomer B H 30.569 30.569
CBH monomer B H 30.561 30.561
CBH monomer B H 30.566 30.566
CBH monomer B H 30.542 30.541
CBH monomer B H 30.541 30.541
CBH monomer B H 30.551 30.551
CBH monomer B H 30.542 30.542
CBH monomer B H 30.546 30.545
CBH monomer B H 30.542 30.542
CBH monomer B H 30.559 30.559
CBH monomer B H 30.560 30.559
CBH monomer B H 30.555 30.555
CBH monomer B H 30.555 30.554
CBH monomer B H 30.547 30.547
CBH monomer B H 30.537 30.537
CBH monomer B H 30.559 30.559
CBH monomer B H 30.568 30.567
CBH monomer B H 30.528 30.528
CBH monomer B H 30.510 30.510
CBH monomer B H 30.553 30.553
CBH monomer B H 30.571 30.571
CBH monomer B H 30.536 30.536
CBH monomer B H 30.526 30.526
CBH monomer B H 30.552 30.552
CBH monomer B H 30.556 30.556
CBH monomer B H 30.556 30.556
CBH monomer B H 30.596 30.596
CBH monomer B H 30.541 30.541
CBH monomer B H 30.531 30.530
CBH monomer B H 30.653 30.652
CBH monomer B H 30.835 30.835
CBH monomer B H 30.888 30.887
CBH monomer B H 30.533 30.533
CBH monomer B H 30.846 30.846
GCGC monomer A C 74.407 74.404
GCGC monomer A C 101.629 101.648
GCGC monomer A C 127.796 127.769
GCGC monomer A C 67.233 67.210
GCGC monomer A N 168.454 168.451
GCGC monomer A N 105.994 105.841
GCGC monomer A N 200.115 200.111
GCGC monomer A O 95.993 95.928
GCGC monomer A H 26.724 26.730
GCGC monomer A H 26.361 26.374
GCGC monomer A H 27.574 27.583
GCGC monomer A H 28.514 28.514
GCGC monomer A H 23.684 23.667
GCGC monomer A C 70.658 70.650
GCGC monomer A C 77.345 77.368
GCGC monomer A C 82.154 82.204
GCGC monomer A C 101.690 101.624
GCGC monomer A C 104.908 104.910
GCGC monomer A N 154.871 154.815
GCGC monomer A N 144.994 144.894
GCGC monomer A N 102.771 102.802
GCGC monomer A N 155.840 155.782
GCGC monomer A N 226.887 226.919
GCGC monomer A O 94.203 94.024
GCGC monomer A H 21.670 21.646
GCGC monomer A H 26.082 26.082
GCGC monomer A H 25.323 25.325
GCGC monomer A H 29.192 29.192
GCGC monomer A H 25.811 25.800
GCGC monomer B C 70.657 70.649
GCGC monomer B C 77.344 77.368
GCGC monomer B C 82.153 82.204
GCGC monomer B C 101.688 101.623
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Molecule Atom Loose Tight
GCGC monomer B C 104.904 104.909
GCGC monomer B N 154.870 154.817
GCGC monomer B N 144.991 144.891
GCGC monomer B N 102.762 102.794
GCGC monomer B N 155.841 155.785
GCGC monomer B N 226.883 226.921
GCGC monomer B O 94.188 94.024
GCGC monomer B H 21.670 21.646
GCGC monomer B H 26.082 26.082
GCGC monomer B H 25.324 25.325
GCGC monomer B H 29.192 29.192
GCGC monomer B H 25.811 25.800
GCGC monomer B C 74.410 74.402
GCGC monomer B C 101.629 101.648
GCGC monomer B C 127.794 127.769
GCGC monomer B C 67.232 67.209
GCGC monomer B N 168.454 168.453
GCGC monomer B N 105.990 105.839
GCGC monomer B N 200.115 200.114
GCGC monomer B O 96.019 95.916
GCGC monomer B H 26.725 26.730
GCGC monomer B H 26.361 26.374
GCGC monomer B H 27.575 27.583
GCGC monomer B H 28.514 28.514
GCGC monomer B H 23.684 23.667
GGG monomer A N 152.748 152.651
GGG monomer A C 102.999 103.021
GGG monomer A N 98.479 98.583
GGG monomer A C 100.410 100.250
GGG monomer A C 77.107 77.102
GGG monomer A O 45.008 44.665
GGG monomer A N 151.533 151.539
GGG monomer A C 77.687 77.759
GGG monomer A N 230.502 230.546
GGG monomer A N 134.167 134.070
GGG monomer A C 79.218 79.302
GGG monomer A H 24.664 24.628
GGG monomer A H 25.564 25.643
GGG monomer A H 25.823 25.789
GGG monomer A H 28.373 28.380
GGG monomer A H 28.366 28.406
GGG monomer B N 157.707 157.635
GGG monomer B C 106.278 106.236
GGG monomer B N 95.659 95.703
GGG monomer B C 100.332 100.121
GGG monomer B C 77.356 77.338
GGG monomer B O 20.036 19.686
GGG monomer B N 154.711 154.530
GGG monomer B C 83.488 83.473
GGG monomer B N 231.748 231.555
GGG monomer B N 145.620 145.406
GGG monomer B C 83.631 83.708
GGG monomer B H 24.968 24.931
GGG monomer B H 26.892 26.837
GGG monomer B H 25.956 25.897
GGG monomer B H 29.331 29.277
GGG monomer B H 28.907 28.891
GGG monomer B N 154.315 154.348
GGG monomer B C 105.500 105.585
GGG monomer B N 94.029 94.299
GGG monomer B C 99.849 99.691
GGG monomer B C 78.187 78.080
GGG monomer B O -10.178 -10.639
GGG monomer B N 154.428 154.322
GGG monomer B C 81.293 81.506
GGG monomer B N 229.881 229.936
GGG monomer B N 142.980 142.752
GGG monomer B C 87.367 87.522
GGG monomer B H 24.967 25.079
GGG monomer B H 25.227 25.301
GGG monomer B H 26.322 26.383
GGG monomer B H 28.286 28.328
GGG monomer B H 28.522 28.611
PHE monomer A C 98.522 98.467
PHE monomer A C 91.250 91.198
PHE monomer A C 97.814 97.763
PHE monomer A C 100.898 100.898
PHE monomer A C 100.190 100.158
PHE monomer A C 100.280 100.265
PHE monomer A C 161.384 161.391
PHE monomer A C 150.683 150.670
PHE monomer A C 65.299 65.293
PHE monomer A C 74.366 74.341
PHE monomer A C 184.592 184.606
PHE monomer A N 201.885 201.863
PHE monomer A N 176.713 176.662
PHE monomer A O 32.616 32.519
PHE monomer A O 48.173 48.099
PHE monomer A H 30.100 30.109
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Molecule Atom Loose Tight
PHE monomer A H 28.011 28.006
PHE monomer A H 30.355 30.358
PHE monomer A H 30.746 30.753
PHE monomer A H 26.871 26.881
PHE monomer A H 28.313 28.294
PHE monomer A H 29.427 29.438
PHE monomer A H 29.315 29.310
PHE monomer A H 25.088 25.097
PHE monomer A H 25.131 25.120
PHE monomer A H 25.120 25.126
PHE monomer A H 25.080 25.074
PHE monomer A H 25.109 25.108
PHE monomer A H 27.415 27.406
PHE monomer B C 66.678 66.665
PHE monomer B C 151.006 150.979
PHE monomer B C 68.379 68.350
PHE monomer B C 162.115 162.120
PHE monomer B C 91.519 91.508
PHE monomer B C 97.734 97.695
PHE monomer B C 101.836 101.858
PHE monomer B C 99.760 99.724
PHE monomer B C 99.640 99.641
PHE monomer B C 97.171 97.127
PHE monomer B C 182.950 182.962
PHE monomer B C 59.282 59.253
PHE monomer B C 149.623 149.596
PHE monomer B C 68.153 68.136
PHE monomer B C 167.619 167.612
PHE monomer B C 90.029 90.012
PHE monomer B C 99.000 98.975
PHE monomer B C 100.119 100.103
PHE monomer B C 101.012 100.995
PHE monomer B C 100.943 100.945
PHE monomer B C 95.898 95.878
PHE monomer B C 185.649 185.656
PHE monomer B N 161.011 160.967
PHE monomer B N 193.938 193.911
PHE monomer B N 188.311 188.276
PHE monomer B N 164.465 164.419
PHE monomer B O 49.231 49.128
PHE monomer B O 64.165 64.069
PHE monomer B O 68.747 68.609
PHE monomer B O 45.454 45.348
PHE monomer B H 30.329 30.332
PHE monomer B H 27.808 27.799
PHE monomer B H 30.516 30.517
PHE monomer B H 28.093 28.086
PHE monomer B H 30.131 30.139
PHE monomer B H 29.891 29.896
PHE monomer B H 30.582 30.586
PHE monomer B H 23.645 23.646
PHE monomer B H 28.028 28.019
PHE monomer B H 29.160 29.161
PHE monomer B H 29.222 29.220
PHE monomer B H 26.042 26.048
PHE monomer B H 25.060 25.054
PHE monomer B H 25.404 25.407
PHE monomer B H 25.052 25.048
PHE monomer B H 25.166 25.165
PHE monomer B H 24.688 24.678
PHE monomer B H 30.596 30.604
PHE monomer B H 26.547 26.558
PHE monomer B H 27.718 27.705
PHE monomer B H 29.389 29.398
PHE monomer B H 28.966 28.964
PHE monomer B H 25.257 25.264
PHE monomer B H 24.918 24.911
PHE monomer B H 25.172 25.178
PHE monomer B H 25.919 25.914
PHE monomer B H 25.442 25.441
PHE monomer B H 24.557 24.549

S15



References
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Abstract: A method for computing NMR shieldings with the direct random phase approx-
imation (RPA) and the closely related σ-functionals [Trushin, E.; Thierbach, A.; Görling,
A. Toward chemical accuracy at low computational cost: density functional theory with
σ-functionals for the correlation energy. J. Chem. Phys. 2021, 154, 014104] is presented,
which is based on a finite-difference approach. The accuracy is evaluated in benchmark
calculations using high-quality coupled cluster values as a reference. Our results show that
the accuracy of the computed NMR shieldings using direct RPA is strongly dependent
on the density functional theory reference orbitals and improves with increasing amounts
of exact Hartree–Fock exchange in the functional. NMR shieldings computed with direct
RPA using a Hartree-Fock reference are significantly more accurate than MP2 shieldings
and comparable to CCSD shieldings. Also, the basis set convergence is analyzed and it is
shown that at least triple-zeta basis sets are required for reliable results.
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ABSTRACT: A method for computing NMR shieldings with the
direct random phase approximation (RPA) and the closely related
σ-functionals [Trushin, E.; Thierbach, A.; Görling, A. Toward
chemical accuracy at low computational cost: density functional
theory with σ-functionals for the correlation energy. J. Chem. Phys.
2021, 154, 014104] is presented, which is based on a finite-
difference approach. The accuracy is evaluated in benchmark
calculations using high-quality coupled cluster values as a reference.
Our results show that the accuracy of the computed NMR
shieldings using direct RPA is strongly dependent on the density
functional theory reference orbitals and improves with increasing
amounts of exact Hartree−Fock exchange in the functional. NMR
shieldings computed with direct RPA using a Hartree−Fock
reference are significantly more accurate than MP2 shieldings and comparable to CCSD shieldings. Also, the basis set convergence is
analyzed and it is shown that at least triple-zeta basis sets are required for reliable results.

1. INTRODUCTION
NMR shieldings are one of the most often measured
spectroscopic parameters in experimental chemistry. Ap-
proaches for the accurate theoretical prediction of NMR
shieldings are thus of great practical relevance. Throughout the
last decades, much work has been done on developing
quantum-chemical methods for this spectroscopic quantity.1,2

Methods for computing NMR shieldings with Hartree−Fock
(HF)3−8 or density functional theory (DFT)9−11 provide
reasonable accuracy at moderate computational cost. Using
reduced-scaling techniques, the computation of NMR spectra
for molecules with more than 1000 atoms is possible.12−14

Computationally much more expensive, but also significantly
more accurate are methods based on high-level wave functions
such as coupled cluster15−17 or multi-configurational self-
consistent field theory.18,19 Intermediateboth in terms of
accuracy and computational costare methods for NMR
shielding calculations based on second-order Møller−Plesset
perturbation theory (MP2). The first analytical derivative
method for computing NMR shieldings at the MP2 level was
presented by Gauss,2,20,21 using suitable Z-vector22,23 equa-
tions. Later, the applicability of NMR shielding calculations
with MP2 was extended using a memory-efficient integral-
direct approach24 or by using local-correlation approxima-
tions.25−27 Another efficient method for computing MP2
shieldings using Cholesky-decomposed two-electron integrals
was presented by Burger et al. very recently.28 Also, linear and
sublinear scaling methods based on atomic-orbital MP2 (AO-
MP2) were developed.29 More recently, approaches for

computing NMR shieldings with methods closely related to
MP2 were also developed including the spin-component-scaled
MP2 (SCS-MP2)30,31 and scaled-opposite-spin MP2 (SOS-
MP2)30,32 as well as double-hybrid DFT.33,34

To the best of our knowledge, no NMR shielding
calculations with post-Kohn−Sham methods based on the
adiabatic-connection fluctuation−dissipation theorem
(ACFDT)35−39 have been carried out to date and we want
to fill this gap in our present work. The ACFDT reduces the
problem of determining the exact ground-state correlation
energy of a many-electron system to integrating an expression
involving the frequency-dependent response function along the
adiabatic connection path. The various ACFDT-based
methods differ in the specific approximation used for
calculating the frequency-dependent response functions for
the systems with scaled electron−electron interactions. The
arguably simplest approximation is the (direct) random phase
approximation (RPA),40 which is obtained by neglecting the
exchange−correlation kernel in the Dyson-like equations for
the interacting response functions. The earliest formulations of
RPA scaled as N( )6 with system size N and were thus limited
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to rather small molecules.38 Renewed interest in the RPA
method arose after Furche and co-workers41 showed in 2010
that the scaling can be reduced to N( )4 with the help of the
resolution-of-the-identity (RI) approximation.42 RI-RPA thus
belongs to the correlation methods with the lowest formal
scaling. It is an attractive alternative to MP2, which scales as

N( )5 , or the SOS-MP232,43 method, which also scales as
N( )4 when used in conjunction with the RI approximation

and a Laplace transform. In recent years, also several linear-
scaling methods based on RI-RPA were developed, which
allow to perform RPA calculations even on systems with more
than 1000 atoms.44−47 The accuracy of RPA can be further
improved by including exchange effects.48−54 Alternatively, one
might employ the promising σ-functionals, which were recently
presented by Görling and co-workers55,56 and were shown to
substantially improve upon the accuracy of RPA, while
requiring only minor adaptions to existing implementations
and having virtually identical computational cost.
In this work, we present a method for computing NMR

shieldings with RPA and the closely related σ-functionals using
a finite-field approach, in which the NMR shieldings are
computed from a numerical second derivative of the energy.
Note that some methods for computing NMR shieldings with
RPA have been described and applied in the literature;1,57−62

however, in these works, RPA has been used as a synonym for
“time-dependent HF”; this should not be confused with the
ACFDT-based post-Kohn−Sham RPA method that is used in
the current work and leads to different results.
Our method is based on RI-RPA, and the working equations

for computing the RI-RPA energy in terms of complex
molecular orbitals are derived. The method scales as N( )4 , if
the shielding tensor of a single nucleus is computed, and as

N( )5 , if all shieldings are to be computed, but is in general
limited to small molecules due to a large prefactor. We expect
that a significantly higher efficiency could be obtained with an
analytical derivative formulation in combination with a Z-
vector approach;22,23 however, this is outside of the scope of
this study and left for future work. Here, we focus on the
accuracy for NMR shieldings that can be achieved with RPA or
the related σ-functionals. We present calculations on the
benchmark set used in refs 63 and 64 and compare the results
to accurate CCSD(T) shieldings. The accuracies obtained with
RPA and σ-functionals are also compared to other methods,
including CCSD, MP2, and several popular density functionals.
In addition, the basis set convergence and the influence of the
density functional used as a reference for RPA are analyzed.

2. THEORY
2.1. Numerical Differentiation Approach for NMR

Shieldings. The elements of the NMR shielding tensor σA of
a nucleus A can be computed by differentiating the electronic
energy E twice; once with respect to the magnetic field B⃗ and
once with respect to the nuclear magnetic moment m⃗A

m B
EA

A
m B

rs

2

r s 0, 0A

σ = ∂
∂ ∂

⃗ = ⃗= (1)

Both the magnetic field and the nuclear magnetic moment
are vector quantities with an x-, y-, and z-component.
Therefore, the shielding tensor for any given nucleus A in
the molecule is represented by a 3 × 3 matrix. The mixed
second derivative from eq 1 can be computed either

analytically or numerically. In general, analytical derivatives
are preferable for the computation of molecular properties
because the corresponding implementations are usually much
more efficient. Analytical derivatives also avoid the errors due
to a finite step size and the potential numerical instabilities
occurring in a finite-difference based scheme.1,65 The only
major advantage of numerical derivatives is the lower
complexity of the working equations and the, in consequence,
significantly lower programming and debugging effort.1,65

A numerical computation of NMR shieldings is possible with
a finite-difference scheme as shown, for example, by Fukui et
al.66 Also, nonperturbative approaches for computing the
energy in the presence of strong magnetic fields can be used in
finite-field calculations of NMR shieldings and other magnetic
properties.67,68 A finite-difference calculation of NMR
shieldings requires to perform several energy computations
with different finite values for the magnetic field strength and
the size of the nuclear magnetic moment. If the energy is
considered as a function of the components of the magnetic
field and the nuclear magnetic moment:

E E B m E B B B m m m( , ) (( , , ) , ( , , ) )A
x y z x

A
y
A

z
AT T= ⃗ ⃗ = (2)

then the component σyx
A of the shielding tensor, for example,

can be approximated as follows66

m B
E B m

E B m

1
2

(( , 0, 0) , (0, , 0) )

(( , 0, 0) , (0, , 0) )

yx
A

y
A

x
x y

A

x y
A

T T

T T

σ ≈ [ + +

− + − ] (3)

The exact value of σyx
A would be obtained in the limit

limm 0y
A→ and limBx→0. In practice, if floating-point arithmetic is

used, finite values for my
A and Bx need to be used. In our

implementation, we set both my
A and Bx to a constant value δ

E E(( , 0, 0) , (0, , 0) ) (( , 0, 0) , (0, , 0) )
2

yx
A

T T T T

2

σ

δ δ δ δ
δ

≈

− −

(4)

The other components of the shielding tensor can be
computed in an analogous manner. All values presented in this
study are isotropic shieldings, which can be computed as
follows

1
3

( )A
xx
A

yy
A

zz
A

isoσ σ σ σ= + +
(5)

As both the magnetic field and the nuclear magnetic
moment perturbations are imaginary, one needs to employ
complex orbitals and density matrices in evaluating the energy
from eq 2. In order to ensure gauge origin independence, we
use gauge-including atomic orbitals (GIAOs)3,6,69−72 defined
as

Ä

Ç
ÅÅÅÅÅÅÅÅ

É

Ö
ÑÑÑÑÑÑÑÑ

r B r B R R r( , ) ( ) exp
i
2

( ( ))0χ χ⃗ ⃗ = ⃗ − ⃗ × ⃗ − ⃗ · ⃗μ μ μ (6)

in all of our calculations, where χμ(r)⃗ is a magnetic field-
independent basis function and R⃗μ and R⃗0 are the coordinates
of the center of basis function χμ and of the gauge origin,
respectively. The use of GIAOs thus also renders the basis
functions complex quantities. Our implementation therefore
employs complex matrices and higher order tensors and uses
routines for complex linear algebra. This is in contrast to most
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analytical implementations of NMR shieldings, where real and
imaginary components are treated separately and the explicit
use of complex linear algebra is usually avoided.2,6

2.2. Numerical NMR Shieldings with HF. In order to
compute numerical NMR shieldings at the HF level, the HF
energy needs to be evaluated in the presence of the magnetic
field and nuclear magnetic moment perturbations. For this, one
needs to add the matrix representations of all relevant
perturbation operators to the one-electron part of the Fock
matrix. Following Fukui et al.,66 the matrix elements hμν of the
core Hamiltonian matrix are computed like this

h B m h h B h m

h B m

( , ) ( ) ( )

( , )

A A

A

(0) (1,0) (0,1)

(1,1)

⃗ ⃗ = + ⃗ + ⃗

+ ⃗ ⃗

μν μν μν μν

μν (7)

hμν
(0) contains the kinetic energy integrals Tμν and the nuclear
attraction integrals Vμν

h T V(0) = +μν μν μν (8)

hμν
(1,0)(B⃗) contains the magnetic field derivative of the integrals
from hμν

(0) and, in addition, the integrals of the angular
momentum operator

i
k
jjjj

y
{
zzzz

h B r B

T

B

V

B
B

( )
i
2

B

(1,0)

0

χ χ⃗ = − ⟨ | ⃗ × ∇⃗| ⟩· ⃗

+
∂

∂ ⃗
+

∂

∂ ⃗
· ⃗

μ ν νμν

μν μν

⃗= (9)

where rν⃗ = r ⃗ − R⃗ν. Note that here and in the following, all
magnetic field-dependent integrals containing GIAOs like
Tμν(B⃗) and Vμν(B⃗) are not computed exactly, but approxi-
mated to first order in the magnetic field. This is sufficient for a
property like NMR shieldings that is of first order in the
magnetic field. It is also convenient because the first derivatives
of GIAO integrals are usually available in programs that allow
for NMR shielding calculations with GIAOs.13

hμν
(0,1)(m⃗A) is built from the paramagnetic spin−orbit integrals

h m
r

r
m( ) iA A

A

A(0,1) 2
3α χ χ⃗ = − ⃗ × ∇⃗

· ⃗μ νμν
(10)

where rA⃗ = r ⃗ − R⃗A and R⃗A is the position of nucleus A and α
denotes the fine-structure constant.
Finally, hμν

(1,1) is computed using the diamagnetic spin−orbit
integrals and the magnetic field derivative of the paramagnetic
spin−orbit integrals from eq 10
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( ) ( )

A
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A

r A s

A
r s

A

(1,1)
2

, ,
3

3

∑α χ
δ

χ

χ χ

⃗ ⃗ =
⃗ · ⃗ −

+
⃗ × ⃗ ⃗ × ∇⃗

μ
ν ν

ν

μ ν

μν

μν

(11)

where R⃗μν = R⃗μ − R⃗ν.
In addition, the magnetic field dependence of the overlap

matrix and the electron repulsion integrals needs to be
accounted for:

S B S B
S

B
B( ) ( 0)

B 0

⃗ ≈ ⃗ = +
∂

∂ ⃗
· ⃗μν μν

μν

⃗= (12)

B B
B

B( )( ) ( )( 0)
( )

B 0

μν|λσ ⃗ ≈ μν|λσ ⃗ = + ∂ μν|λσ
∂ ⃗

· ⃗
⃗= (13)

where (μν|λσ) are the two-electron integrals in the atomic
orbital basis.
With the one-electron part from eq 7, the two-electron

integrals from eq 13, and the density matrix P, whose entries
are given by

P B m C B m C B m( , ) ( , ) ( , )A

i
i

A
i

A∑⃗ ⃗ = * ⃗ ⃗ ⃗ ⃗μ νμν
(14)

the complex Fock matrix can be constructed

F B m h B m J B m K B m( , ) ( , ) ( , ) ( , )A A A A⃗ ⃗ = ⃗ ⃗ + ⃗ ⃗ − ⃗ ⃗μν μν μν μν

(15)

J B m P B m B( , ) ( , )( )( )A A∑⃗ ⃗ = ⃗ ⃗ μν|λσ ⃗
μν

λσ
λσ

(16)

K B m P B m B( , )
1
2

( , )( )( )A A∑⃗ ⃗ = ⃗ ⃗ μσ|λν ⃗μν
λσ

λσ
(17)

Updated molecular orbital coefficients in each SCF iteration
are then obtained by solving the complex Roothaan−Hall
equation

F B m C B m

S B C B m B m

( , ) ( , )

( ) ( , ) ( , )

A
i

A

i
A

i
A

∑

∑

⃗ ⃗ ⃗ ⃗
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ν

ν

ν
ν

μν

μν
(18)

From the converged density matrix, the HF energy can then
be computed

E B m h B m F B m

P B m

( , )
1
2

( ( , ) ( , ))

( , )

A A A

A

HF ∑⃗ ⃗ = ⃗ ⃗ + ⃗ ⃗

⃗ ⃗

μν
μν μν

μν (19)

2.3. Numerical NMR Shieldings with DFT. While
molecular orbitals obtained with HF can be used in an RPA
calculation, more commonly, density functionals are used as a
reference for RPA. For this reason, we also want to discuss
here how NMR shieldings can be calculated numerically at the
DFT level. In this work, we focus on density functionals that
only depend on the electron density (and molecular orbitals in
the case of hybrid functionals) and not on other variables such
as the (paramagnetic) current density73 or the magnetic field.74

Computing numerical DFT shieldings requires several small
modifications compared to the described approach for HF.
The Kohn−Sham matrix FKS for DFT is constructed as follows

F B m h B m J B m K B m

V B m

( , ) ( , ) ( , ) ( , )

( , )

A A A A

A

KS

xc

β⃗ ⃗ = ⃗ ⃗ + ⃗ ⃗ − ⃗ ⃗

+ ⃗ ⃗

μν μν μν μν

μν (20)

where β is the fraction of exact exchange in the functional (0.0
in the case of pure density functionals) and Vμν

xc is the matrix
representation of the remaining exchange−correlation poten-
tial Vxc
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V B m r B V r B m r B r( , ) ( , ) ( ; , ) ( , )dA Axc
xc∫ χ χ⃗ ⃗ = * ⃗ ⃗ ⃗ ⃗ ⃗ ⃗ ⃗ ⃗μ νμν

(21)

In our implementation, the exchange−correlation potential
matrix is approximated to first order in the magnetic field

V B V B
V

B
B( ) ( 0)

B

xc xc
xc

0

⃗ ≈ ⃗ = +
∂

∂ ⃗
· ⃗μν μν

μν

⃗= (22)

where the first magnetic field derivative of Vμν
xc is also

commonly available in codes that allow for computing NMR
shieldings with DFT.13 After achieving convergence in the SCF
iterations, the DFT energy can then be computed as follows
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μν
μν

μν

μν μν

(23)

where Exc is the exchange−correlation energy and ρ(r;⃗ B⃗, m⃗A)
is the real-space electron density, which can be computed
according to the following equation

r B m r B P B m r B( ; , ) ( , ) ( , ) ( , )A A∑ρ χ χ⃗ ⃗ ⃗ = * ⃗ ⃗ ⃗ ⃗ ⃗ ⃗
μ ν

μν
μν

(24)

For a complex density matrix and GIAO basis functions, the
electron density also has a nonvanishing imaginary component,
which, however, is unphysical and an artifact of the employed
approach. For this reason, only the real part of the electron
density is used in eq 23. Note that the product of the imaginary
part of P and the imaginary part of the GIAO basis functions
also results in a contribution to the real part of the electron
density, which needs to be taken into account.
2.4. Numerical NMR Shieldings with Correlation

Methods. The complex orbitals obtained from the SCF
procedures described in Sections 2.2 and 2.3 can be used to
compute correlation energies in the presence of the
perturbations of the magnetic field and nuclear magnetic
moment. These perturbed energies can then be inserted into
eq 3 in order to obtain the correlation contribution to the
NMR shieldings.
As an example, consider the MP2 method, for which the

correlation energy EMP2
corr can be computed from complex spin

orbitals as follows66

E
ai bj aj bi1

4
( ) ( )

ijab a b i j
MP2
corr

2

∑=
| | − | |
ϵ + ϵ − ϵ − ϵ (25)

The ordering of the MO indices in the four-center integrals
is important here because it determines which spin orbitals
need to be complex-conjugated. In the employed Mulliken
notation, the first MO of bra and ket is complex-conjugated

pq rs x x
r

x x x x( ) ( ) ( )
1

( ) ( )d dp q r s1 1
12

2 2 1 2∬ φ φ φ φ| = * ⃗ ⃗
| |

* ⃗ ⃗ ⃗ ⃗
(26)

where p, q, r, s are general (occupied or virtual) MO indices. x1⃗
and x2⃗ denote combined spatial and spin coordinates of
electrons 1 and 2, respectively. The full MP2 shieldings can
then be obtained by using the total MP2 energy

E E EMP2 HF MP2
corr= + (27)

in eq 3.
The focus of the current work lies on NMR shieldings

obtained with RPA, which requires computations of RPA
correlation energies in terms of complex orbitals. With a
scaling of N( )6 , this is possible using equations that are
similar to equations presented in ref 75:

l
m
oo
n
oo

|
}
ooo
~
ooE A

1
2

Tr
n

nRPA
corr ∑ ω= − [ ]

(28)

where the positive excitation energies ωn can be obtained by
solving the RPA eigenvalue problem
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(29)

where

A ia bj( ) ( )ia jb a i ij ab, δ δ= ϵ − ϵ + | (30)

B ai bj( )ia jb, = | (31)

In order to obtain the total RPA energy, one must add the
correlation energy from eq 28 to the expectation value of the
Hamilton operator evaluated with a single Slater determinant
ΨSD (build from the MOs obtained from the HF or DFT
reference calculation) as a wave function

E
H

ERPA
SD SD

SD SD
RPA
corr=

⟨Ψ | ̂ |Ψ ⟩
⟨Ψ |Ψ ⟩

+
(32)

Using the energy from eq 32 in eq 3 then allows to
numerically compute NMR shieldings with RPA.
For efficiency reasons, our implementation does not employ

eqs 28 to 31 for computing ERPA
corr , but is based on the RI-RPA

method of Furche and co-workers41 instead, which scales only
as N( )4 . We are not using our low- and linear-scaling RI-RPA
methods45−47 because we focus here only on very small
molecules. In the following, a brief derivation of the working
equations will be provided. We start from the following
expression for the RPA correlation energy76,77

E x x V x x x x

x x V x x x x

1
2

d d d ln(1 ( , ) ( , , i ))

1
2

d d d ( , ) ( , , i )

RPA
corr

0
1 2 1 2 0 1 2

0
1 2 1 2 0 1 2

∫ ∬

∫ ∬
π

ω χ ω

π
ω χ ω

= ⃗ ⃗ [ − ⃗ ⃗ ⃗ ⃗ ]

+ ⃗ ⃗ [ ⃗ ⃗ ⃗ ⃗ ]

+∞

+∞

(33)

where V(x1⃗,x2⃗) = 1/r12 is the interelectron potential and
χ0(x1⃗,x2⃗,iω) is the frequency-dependent Kohn−Sham response
function76,77
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−
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with

ia a iΩ = ϵ − ϵ (35)

Let us now consider the second term of eq 33 and perform
the integration over the electronic coordinates
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The two-electron integrals appearing in this equation can be
approximated using RI

ia ai ia P P Q Q ai( ) ( )( ) ( )
PQ

1∑| = | | |−

(37)

Note that also in the three-center integrals, the left MO of an
orbital pair in either bra or ket is complex-conjugated (e.g., φi
in (ia|P)). In contrast, the auxiliary functions χP and χQ are
always taken to be real. Inserting the RI approximation in eq
36 gives

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑ

x x V x x x x

ia P P Q Q ai ai P P Q Q ia

d d ( , ) ( , , i )

( )( ) ( )
i

( )( ) ( )
iia PQ ia ia

1 2 1 2 0 1 2

1 1

∬

∑ ∑

χ ω

ω ω

⃗ ⃗ ⃗ ⃗ ⃗ ⃗ =

| | |
− Ω

− | | |
+ Ω

− −

(38)

Next, the summation over i and a is performed
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where VPQ = (P|Q)−1 and
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|+

(41)

A similar series of manipulations, as shown in eqs 36 to 39,
can be applied to the first term of eq 33; combined with the
result from eq 39, this leads to the final formula for the RI-RPA
correlation energy in terms of complex orbitals
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The frequency integration over ω can be approximated using
numerical integration.41

3. COMPUTATIONAL DETAILS
The described method has been implemented in a develop-
ment version of the FermiONs++ program.78−80 For the field-
strength δ in eq 4, a value of 0.1 a.u. is used in all calculations
shown in Section 2; this value might appear to be rather large,
but one needs to also consider that the perturbation operators
and the GIAO integral derivatives contain factors of the fine-
structure constant α or factors of α2. As α ≈ 7 × 10−3, the
magnitude of the perturbations is thus reduced substantially.
With δ = 0.1 a.u., changes of the energy (compared to the
unperturbed case) on the order of 10 μHartree are obtained in
most cases. The numerical frequency integration is carried out
using the Clenshaw−Curtis scheme41 with 120 integration
points. We include all electrons in the correlation treatment

and do not apply a frozen-core approximation. As a starting
guess for the complex SCF, we use the converged real density
matrix from the standard SCF in FermiONs++ and set the
imaginary part to zero. The SCF calculations are converged
tightly to an energy difference of below 10−16. No integral
screening or sparse linear algebra is used. As a numerical
integration grid for DFT, we employ the “g5” grid from Laqua
et al. described in detail in ref 81. Several different density
functionals are used as a starting point for the RPA correlation
energy calculations, including the PBE,82 KT2,83 B3LYP,84

B97-2,85 and the Becke half-and-half functional86 (which we
will in the following abbreviate as BH&H).
In the presented calculations, we employ correlation-

consistent basis sets from the cc-pVXZ series87,88 and the cc-
pCVXZ series89,90 with additional core functions. For each of
these basis sets, we use the corresponding auxiliary basis
set91,92 in the RI-RPA calculations. In addition, we also use
basis sets from the def2 series93 with the corresponding RI-
basis sets94 and basis sets of the pcSseg series95,96 (in
combination with the cc-pVQZ/mp2fit basis set).
In order to confirm the correctness of our implementation

and in order to show that the errors due to numerical
differentiation and the numerical frequency integration are
insignificant, we performed test calculations with a cc-pVTZ
basis set, in which we varied the field strength and the number
of frequency integration points used for RPA as well as the
number of DFT grid points. In addition, we tested that the
gauge origin independence is not violated by carrying out
additional calculations after shifting the gauge origin by 5.0 Å
in x-, y-, and z-direction. The data from all these calculations
are shown in the Supporting Information. The results show
that gauge origin independence is fulfilled to a very good
approximation, as the changes of isotropic shieldings upon
translation of the molecules did not exceed 0.1 ppm in all
cases. Furthermore, for all molecules and basis sets, the
computed HF or DFT contributions to the numerical
shieldings agree well with the analytically computed values
from ref 63. Therefore, we conclude that the presented
numerical differentiation approach with the employed
parameters is accurate enough for judging the performance
of direct RPA and σ-functionals for NMR shieldings. For the
pcSseg-0 basis set, we also compared calculations with different
auxiliary basis sets (see Supporting Information) and
concluded that the RI errors are small compared to the
method and basis set errors.
All calculations in this study are performed on molecules

from the benchmark set used by Teale et al.63 We only exclude
the molecules O3 and SO2, as it has also been done in most of
the analysis from ref 63. All together, the employed benchmark
set comprises 68 nuclei, for which shieldings were computed.
For comparison, we performed CCSD(T) shielding calcu-
lations with the CFOUR program.97,98 Values for extrapolated
CCSD(T) shieldings were taken from ref 63. In addition, we
performed MP2 shielding calculations with the Turbomole
program package.24,99,100 All computed NMR shieldings can be
found in the Supporting Information.

4. RESULTS
4.1. Basis Set Convergence. As Teale et al.63 found that

diffuse basis functions have only a very small impact on
correlated NMR shieldings, we focus on basis sets without
diffuse functions in the present study. Figure 1 displays the
basis set errors obtained with RPA@HF for basis sets from the
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cc-pVXZ and cc-pCVXZ series (X ∈ {D,T,Q}) as well as the
def2 and pcSseg series. The mean absolute deviations (MADs)
are computed relative to RPA@HF with the large cc-pCVQZ
basis set, which we assume to give results close to the basis set
limit. RPA@HF stands for RPA with a HF reference; a similar
notation will be employed in the following for RPA
calculations with several different density functionals as a
reference. The basis set convergence of RPA@PBE is shown in
Figure 2, again using shieldings obtained in a cc-pCVQZ basis

as a reference. For both a HF and PBE reference, the basis sets
from the cc-pCVXZ series with additional core functions
provide slightly better accuracy than the corresponding basis
sets from the cc-pVXZ series, which is consistent with the
findings from Teale et al.63 The convergence behavior for the
basis sets from the def2 series is similar to that for the cc-pVXZ
series. In particular, the def2-QZVP basis set gives very

accurate results and a smaller mean error than the cc-pVQZ
basis set, which has a similar number of basis functions per
atom. Also, the basis sets from the pcSseg series appear highly
suitable for RPA shielding calculations. The pcSseg-2 basis set,
for example, leads to significantly smaller errors than the cc-
pVTZ basis set, but contains only slightly more basis functions
per atom.
In order to analyze potential systematic compensations

between basis set and method errors, the RPA@HF shielding
values are also compared to CCSD(T) shieldings, as shown in
Figure 3. The deviations to CCSD(T) with the same basis set,

which reflect the method error of RPA@HF, are relatively
constant across different basis sets and amount to roughly 5
ppm. Also, the deviations from CCSD(T) extrapolated to the
basis set limit (details for the extrapolation can be found in
ref 63) are displayed, which can be attributed to a combination
of basis set incompleteness error and method error. The results
show that the double-zeta basis sets cc-pVDZ and cc-pCVDZ
and the def2-SVP and pcSseg-0 basis sets are not sufficiently
large for obtaining accurate shieldings, as the basis set error
clearly exceeds the method error with these basis sets. For all
other basis sets, the deviations from basis set extrapolated
CCSD(T) are rather similar in magnitude and are between 4.9
and 6.2 ppm. Triple-zeta basis sets like cc-pVTZ might
therefore be particularly useful in practice, as they offer a good
compromise between accuracy and computational cost.
Figure 4 displays the MADs obtained with the RPA@PBE

method and different basis sets. In general, the deviations from
the coupled cluster references are significantly larger than for
RPA@HF, but the trends are similar to RPA@HF. Similar data
for the σ-functional55 with parametrization “σ-P1” are shown in
the Supporting Information. Also for this functional, large
errors are obtained with double-zeta basis sets (MADs of
31.2 ppm for cc-pVDZ and 26.6 ppm for cc-pCVDZ with
respect to CCSD(T)/aug-cc-pCV[TQ]Z, respectively). Sig-
nificantly smaller errors are obtained with triple-zeta (MAD of

Figure 1. Basis set convergence of NMR shieldings at the RPA@HF
level of theory. The blue bars display the deviations from RPA@HF
shieldings with a cc-pCVQZ basis set.

Figure 2. Basis set convergence of NMR shieldings at the RPA@PBE
level of theory. The blue bars display the deviations from RPA@PBE
shieldings with a cc-pCVQZ basis set.

Figure 3. Mean absolute deviations of NMR shieldings computed
with RPA@HF on the employed test set with several different basis
sets. The blue bars display the deviations from basis set extrapolated
(aug-cc-pCV[TQ]Z) CCSD(T)-shieldings; the orange bars display
the deviations from CCSD(T) with the same basis set as used for the
RPA calculation.
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11.5 ppm with cc-pVTZ and 9.5 ppm with cc-pCVTZ) and
quadruple-zeta basis sets (MAD of 9.3 ppm with cc-pVQZ and
7.0 ppm with cc-pCVQZ).
4.2. Influence of the Chosen Density Functional.

Figures 5 and 6 illustrate (amongst others) the mean absolute
errors in the NMR shieldings obtained with RPA using
different reference functionals. For both basis sets, the
dependence of the accuracy of RPA shieldings on the
employed DFT reference is rather pronounced. There seems

to be a strong correlation between the accuracy and the
fraction of exact exchange in the functional used as a reference.
The worst accuracy is obtained with the PBE functional as a
reference, which results in a mean absolute error of 19.9 ppm
relative to extrapolated CCSD(T) shieldings using the cc-
pVTZ basis set. RPA@KT2 performs slightly better with an
MAD of 16.1 ppm. Like PBE, the KT2 functional is a pure
density functional without exact exchange. Significantly higher
accuracy is observed if the DFT reference includes a fraction of
exact exchange. The MAD drops to 15.2 ppm for B3LYP with
20% exact exchange, to 13.8 ppm for B97-2 with 21% exact
exchange, and to 10.7 ppm for Becke-half-and-half with 50%
exact exchange. The best accuracy and an MAD of only 6.1
ppm is observed using a HF reference with 100% exact
exchange.
It is known that NMR shieldings are a challenging molecular

property for DFT and many popular density functionals fail to
give accurate shieldings. This can also be seen in the data for
DFT from Teale et al.,63 which is also displayed in Figures 5
and 6. With the exception of the KT2 functional (and to some
extent B97-2), none of the used functionals provides a
substantial improvement over HF in the quality of the
shieldings. This is in contrast to total ground-state energies,
where DFT often surpasses HF in accuracy. The rather poor
performance of many density functionals for NMR shieldings
stems from errors in the paramagnetic terms, which has been
explained by Reimann et al. with missing paramagnetic current
contributions in conventional DFT.101 It has also been shown
that common density functionals tend to systematically
overestimate the magnitude of the paramagnetic contributions,
which is linked to a systematic underestimation of the
electronic gap especially for pure density functionals.102

More generally, conventional Kohn−Sham DFT suffers from
fundamental limitations in the treatment of magnetic fields.
Several extensions of KS-DFT have been proposed,73,74,103 of

Figure 4. Mean absolute deviations of NMR shieldings computed
with RPA@PBE on the employed test set with several different basis
sets. The blue bars display the deviations from basis set extrapolated
(aug-cc-pCV[TQ]Z) CCSD(T)-shieldings; the orange bars display
the deviations from CCSD(T) with the same basis set as used for the
RPA calculation.

Figure 5. Mean absolute deviations of NMR shieldings on the
employed test set using the cc-pVTZ basis set in all calculations. The
blue bars display the deviation from basis set extrapolated (aug-cc-
pCV[TQ]Z) CCSD(T) shieldings; the red bars display deviations
from CCSD(T) shieldings obtained with a cc-pVTZ basis set. The cc-
pVTZ/mp2fit auxiliary basis set is used in all RPA and σ-functional
calculations. The data for RHF, CCSD, PBE, KT2, B3LYP, and B97-2
were taken from ref 63.

Figure 6. Mean absolute deviations of NMR shieldings on the
employed test set using the cc-pVQZ basis set in all calculations. The
blue bars display the deviation from basis-set extrapolated (aug-cc-
pCV[TQ]Z) CCSD(T) shieldings; the red bars display deviations
from CCSD(T) shieldings obtained with a cc-pVQZ basis set. The cc-
pVQZ/mp2fit auxiliary basis set is used in all RPA and σ-functional
calculations. The data for RHF, CCSD, PBE, KT2, B3LYP, and B97-2
were taken from ref 63.
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which current DFT73 is the most popular. Thus, Kohn−Sham
orbitals and orbital energies obtained with functionals that only
depend on the density might be suboptimal for a subsequent
RPA calculation in the presence of magnetic fields. This could
possibly explain the lower accuracy of the computed shieldings
compared to RPA@HF and might also apply to other magnetic
properties at the RPA level of theory.
For both a cc-pVTZ and a cc-pVQZ basis, RPA reduces the

errors compared to HF and DFT, if CCSD(T) with the same
basis set is used as a reference (see Figures 5 and 6). This
reduction is small for KT2, but significant for HF and all other
considered density functionals. The improvement of the RPA
methods over the underlying reference methods is not as
pronounced, if the deviations from extrapolated CCSD(T)
shieldings are considered instead. In some cases like, for
example, PBE with a cc-pVTZ basis set, the mean absolute
error is even slightly larger for the corresponding RPA@PBE
method. Strikingly, for all RPA methods, the errors compared
to CCSD(T) with the same basis set are significantly smaller
than the errors compared to basis set extrapolated CCSD(T).
In contrast, for HF and the considered density functionals, the
deviations from CCSD(T) with the same basis set are
consistently larger. This suggests that HF and DFT seem to
benefit from a compensation of basis set incompleteness and
method errors. It also suggests that RPA does, in principle,
improve the accuracy compared to the employed references,
but this improvement seems reduced by a less favorable
cancelation of errors. Among the considered density func-
tionals, KT2 is special because it is fitted to give good NMR
shieldings.83 However, it leads to significant errors in the
diamagnetic and paramagnetic shieldings and achieves good
performance for NMR shieldings only by significant error
cancelation.101 KT2 orbitals and orbital energies thus might
not constitute a good reference for RPA shielding calculations.
This is the likely reason, why shieldings obtained with RPA@
KT2 are not significantly more accurate than KT2 shieldings.
In order to examine the influence of different DFT

references in more detail, we also computed mean unsigned
and signed errors for the diamagnetic and paramagnetic
contributions shown in Figures 7 and 8 as well as mean signed
errors for the total shieldings shown in Figure 9. The
diamagnetic contributions with RPA and σ-functionals were
computed numerically as described in Section 2, but setting
h(1,0) and h(0,1) in eq 7 and the GIAO integral derivatives from
eqs 12, 13, and 22 to zero; the paramagnetic contributions
were then computed by subtracting the diamagnetic
contributions from the total NMR shieldings. With this
definition of the diamagnetic and paramagnetic contributions,
all contributions that would require a perturbed density from a
CPSCF in an analytical derivative approach are defined to be
paramagnetic. The diamagnetic contributions include all terms
that would only involve the unperturbed ground-state density
in an analytical derivative approach. The employed definition
for diamagnetic and paramagnetic contributions is also
consistent with the CCSD(T) implementation in
CFOUR,97,98 which is used for computing reference values
for these contributions. Note that the diamagnetic and
paramagnetic contributions are not gauge origin-independent
if defined like this; gauge origin independence could be
achieved by using alternative definitions of diamagnetic and
paramagnetic contributions (see refs 14, 104, and 105).
However, as we only compare different methods with exactly
the same molecular geometry and choice of gauge origin, the

missing gauge origin independence is not problematic here. In
all calculations of diamagnetic and paramagnetic shielding
contributions, the position of the considered nucleus was used
as gauge origin.
For all considered RPA methods, the errors in the

diamagnetic contributions are of similar magnitude and
significantly smaller than the errors in the paramagnetic
contributions. Irrespective of the reference functional, RPA
tends to underestimate the diamagnetic contributions to a
small extent with mean absolute errors not larger than 1.4 ppm.

Figure 7. Mean absolute errors in the diamagnetic (blue bars) and
paramagnetic (red bars) contributions to the NMR shieldings using
the cc-pVTZ basis set in all calculations. The cc-pVTZ/mp2fit
auxiliary basis set is used in all RPA and σ-functional calculations. The
diamagnetic and paramagnetic contributions to the CCSD(T)
shieldings in a cc-pVTZ basis are used as a reference, respectively.

Figure 8. Mean signed errors in the diamagnetic (blue bars) and
paramagnetic (red bars) contributions to the NMR shieldings using
the cc-pVTZ basis set in all calculations. The cc-pVTZ/mp2fit
auxiliary basis set is used in all RPA and σ-functional calculations. The
diamagnetic and paramagnetic contributions to the CCSD(T)
shieldings in a cc-pVTZ basis are used as a reference, respectively.
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With a HF reference, slightly larger errors in the diamagnetic
contributions are obtained than with the considered density
functionals as references, which is in contrast to the total
shieldings. The diamagnetic contributions do not depend on
the magnetic field response of the density, but depend only on
the unperturbed ground-state density, which is typically more
accurate for a Kohn−Sham reference as for HF due to included
correlation. This might explain the better performance of RPA
with Kohn−Sham references for the diamagnetic contributions
and is in line with the findings from Burow et al.106 for first-
order molecular properties, where RPA with a Kohn−Sham
reference leads to more accurate results.
While the absolute errors in the paramagnetic contributions

are comparably small for RPA@HF and amount to 5.5 ppm on
average, significantly larger errors are observed for the
employed density functionals as a reference. Additionally, a
strong correlation with the fraction of exact exchange in the
functional is observed. The RPA@PBE method with a pure
density functional as a reference shows the largest errors in the
paramagnetic contributions with a MAD of 15.2 ppm. As the
errors in the paramagnetic contributions are significantly larger
than the errors in the diamagnetic shieldings, they are also the
major source of error for the total shieldings. Accordingly,
because of the too high values for the paramagnetic
contributions (see Figure 8), most RPA methods also give
total shieldings that are significantly too high, which can be
seen from the mean signed errors shown in Figure 9. Figures 7
and 8 also show the errors in the diamagnetic and
paramagnetic contributions for the HF method and several
density functionals. In contrast to RPA, HF and all density
functional methods lead to a significant underestimation of the
paramagnetic contributions. For the KT2 functional, subse-
quent RPA calculations only marginally improve the accuracy
of the paramagnetic contributions. For all other references,
RPA leads to significantly reduced errors in the paramagnetic
contributions. For HF and all considered density functionals,

RPA leads to a significant reduction of the errors in the
diamagnetic contributions.
The way RPA improves upon different density functionals or

HF references regarding the description of the electronic
structure in the presence of magnetic fields remains an
interesting topic for further investigation. For this purpose, it
might be fruitful to exploit the formal equivalence of direct
RPA and ring-coupled cluster theory.107 A wave function at the
RPA level of theory could be constructed by computing
doubles amplitudes with the Riccati equation,107 from which
reduced density matrices and an electron density could be
computed. Analyzing wave function and density could allow
for further insights into the description of magnetic field
perturbations by the RPA method. Such an analysis, however,
is not possible with our current implementation and thus out
of the scope of the present study.
Figures 5 and 6 further show the MADs obtained with one

of the σ-functionals introduced by Görling and co-workers55

using the parametrizations “σ-P1”, “σ-P2”, and “σ-P3”. These
σ-functionals were parametrized for a PBE reference and all
give significantly more accurate shieldings than the corre-
sponding RPA-based method RPA@PBE. The σ-functional
with parametrization “σ-P3” gives slightly less accurate
shieldings than “σ-P1” and “σ-P2”, but the differences are
small. The results suggest that σ-functionals may have great
potential not only for accurately computing energies as shown
in ref 55, but also for computing accurate NMR shieldings.
However, the employed σ-functionals provide inferior accuracy
compared to RPA@HF. It might be possible to further
increase the accuracy of σ-functionals by developing new
parametrizations, which are tailored for NMR shieldings, or by
parametrizing σ-functionals for other DFT or HF references.
Due to its excellent accuracy, we recommend at this stage

that RPA@HF should be the method of choice for NMR
shielding calculations at the RPA level of theory. The use of
HF as a reference for the RPA calculation is also desirable from
a puristic point of view, as RPA@HF does not involve any
empirical parameters and thus can be regarded as a true ab
initio method.

4.3. Comparison with Other Methods. In this section,
we compare the accuracy of RPA, DFT, and several
wavefunction-based methods; among the RPA-based methods,
we focus on the most accurate RPA@HF. Compared to basis
set extrapolated CCSD(T), RPA@HF is almost as accurate as
CCSD and also CCSD(T) for both a cc-pVTZ and cc-pVQZ
basis set (see Figures 5 and 6). This is presumably due to a
more fortunate cancellation of basis set and method errors for
RPA@HF. The errors in the shieldings obtained with RPA@
HF are also considerably smaller than the errors obtained with
HF or all of the considered density functionals. The
comparison with MP2 is particularly interesting because
MP2 belongs to the computationally cheapest methods for
treating electron correlation with a formal scaling of N( )5

and at the same time providing accurate relative NMR
shieldings (see, e.g., ref 108). RPA@HF in contrast scales only
as N( )4 and significantly outperforms MP2 in the presented
benchmark calculations; the MAD relative to basis-set
extrapolated CCSD(T) amounts to 11.8 ppm for MP2 in a
cc-pVQZ basis, while it amounts to only 5.6 ppm for RPA@
HF. This makes RPA@HF a very attractive alternative to MP2
for the computation of NMR shieldings. Similar trends,
concerning the relative accuracy of the considered methods,

Figure 9. Mean signed errors of NMR shieldings on the employed
test set using the cc-pVTZ basis set in all calculations. The blue bars
display the deviation from basis-set extrapolated (aug-cc-pCV[TQ]Z)
CCSD(T)-shieldings; the red bars display deviations from CCSD(T)-
shieldings obtained with a cc-pVQZ basis set. The cc-pVTZ/mp2fit
auxiliary basis set is used in all RPA and σ-functional calculations.
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are observed for the pcSseg-2 basis set; the corresponding plot
is displayed in the Supporting Information.
In Figure 10, the errors of different methods are analyzed

separately for different types of nuclei (second-row elements

carbon to fluorine). The molecules in the employed bench-
mark set together contain 17 carbon, 7 nitrogen, 10 oxygen,
and 9 fluorine nuclei. In general, all RPA-based methods
produce the largest errors for oxygen. RPA@HF provides
excellent accuracy for carbon and nitrogen shieldings with
MADs below 4 ppm and slightly larger errors for oxygen and
fluorine shieldings. The data suggest that RPA@HF is a good
alternative to MP2 especially for nitrogen shieldings, for which
MP2 leads to a much larger MAD of 32.3 ppm.
Both in practical applications of NMR spectroscopy and

theoretical simulations of NMR spectra, NMR shifts relative to
a reference compound are most widely used as opposed to
absolute shieldings considered so far. The performance of the
analyzed methods for NMR shifts of the second-row elements
carbon to fluorine is shown in Figure 11 using the respective
hydrides as a reference. In general, the differences between the
mean errors shown in Figures 10 and 11 are rather small. On
the employed test set, MP2 benefits more from systematic
error cancellation than the other methods and shows the
greatest reduction in the mean errors between absolute and
relative shieldings. Nevertheless, MP2 is slightly less accurate
than RPA@HF also for relative shieldings and significantly less
accurate for relative nitrogen shieldings.

5. CONCLUSIONS
We presented a method for computing NMR shielding
constants within the direct RPA and the recently introduced
σ-functionals from Trushin et al.55 using a finite-difference
approach. Benchmark calculations on a set of small molecules
indicated that the accuracy of RPA NMR shieldings strongly
depends on the employed reference orbitals and orbital
energies; a quite systematic improvement was observed with

increasing amounts of exact HF exchange in the functional; the
best results were obtained with the HF state as a reference. In
this work, density functionals were employed that depend only
on the electron density and the molecular orbitals; an
interesting question for further studies is whether orbitals
obtained with current density functionals73 and similar
approaches74,103 would enable more accurate RPA shielding
calculations.
An analysis of the basis set convergence showed that at least

triple-zeta basis sets are required for obtaining reliable NMR
shieldings at the RPA level. With HF as a reference and using a
quadruple-zeta basis, the accuracy of RPA shieldings are
significantly higher than the accuracy of MP2 shieldings and
comparable to CCSD shieldings. NMR shieldings computed
with the σ-functionals are more accurate than the correspond-
ing RPA calculations with a PBE reference, but do not reach
the accuracy of RPA@HF with the employed parametrizations.
Because of the high accuracy and the fact that these methods
can be implemented with formally quartic scaling using RI,
direct RPA and σ-functionals appear promising for the
computation of NMR shielding constants. Several lines of
further improvement could be pursued in the future, such as
including exchange effects in the calculation of the interacting
response function or developing new σ-functionals with
different parametrizations. Also, self-consistent RPA
schemes109,110 might enable more accurate shielding calcu-
lations. We hope that this benchmark study encourages the
development of efficient analytical derivative methods for RPA,
σ-functionals, and related post-Kohn−Sham methods in order
to allow for highly accurate NMR shielding calculations on
extended molecular systems.

Figure 10. Mean absolute deviations of carbon, nitrogen, oxygen, and
fluorine NMR shieldings using the cc-pVTZ basis set in all
calculations. “CNOF” includes shieldings from all of the considered
elements. The cc-pVTZ/mp2fit auxiliary basis set is used in all RPA
and σ-functional calculations. Basis-set extrapolated (aug-cc-pCV-
[TQ]Z) CCSD(T)-shieldings are used as a reference.

Figure 11. Mean absolute deviations of relative NMR shieldings for
carbon, nitrogen, oxygen, and fluorine using the cc-pVTZ basis set in
all calculations. The relative shifts were computed using the following
references: CH4 for carbon, NH3 for nitrogen, H2O for oxygen, and
HF for fluorine. “CNOF” includes relative shieldings from all of the
considered elements. The cc-pVTZ/mp2fit auxiliary basis set is used
in all RPA and σ-functional calculations. Basis-set extrapolated (aug-
cc-pCV[TQ]Z) CCSD(T)-shieldings are used as a reference.
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(50) Dixit, A.; Ángyán, J. G.; Rocca, D. Improving the accuracy of
ground-state correlation energies within a plane-wave basis set: The
electron-hole exchange kernel. J. Chem. Phys. 2016, 145, 104105.
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Figure 1: Mean absolute deviations of NMR-shieldings on the employed test set using the pcSseg-2 basis
set in all calculations. The blue bars display the deviation from basis-set extrapolated (aug-cc-pCV[TQ]Z)
CCSD(T)-shieldings; the red bars display deviations from CCSD(T)-shieldings obtained with a pcSseg-2
basis set. “(num.)” denotes shieldings computed with a numerical derivative.
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Table 1: Absolute isotropic NMR shieldings in a cc-pVDZ basis. All values are given in ppm. “Extrap.”
stands for basis-set extrapolated CCSD(T)-shieldings in an aug-cc-pCV[TQ]Z basis set. The data for
“Extrap.” was taken from Ref. 3. CCSD(T) calculations were done with the CFOUR program[1, 2].

Mol. Nuc. CCSD(T) Extrap. RPA@HF RPA@PBE σ-P1@PBE
HF H 30.5 28.8 30.4 31.1 31.4

F 427.0 420.3 427.2 425.1 422.0
CO C 34.3 2.2 32.2 55.8 46.9

O -16.5 -55.0 -10.2 18.6 0.1
N2 N -25.6 -60.4 -25.4 3.7 -11.8
H2O O 354.9 338.0 353.8 351.8 347.9

H 31.9 30.6 31.9 32.3 32.5
HCN H 29.4 29.0 29.6 29.6 29.7

C 111.5 84.6 108.7 120.1 117.4
N 21.5 -14.1 20.3 45.0 37.9

HOF O -5.6 -68.9 9.1 76.6 43.1
H 21.8 19.6 22.6 24.5 23.8
F 183.1 192.2 206.6 222.0 213.2

NH3 N 283.9 270.7 281.8 281.3 279.0
H 32.3 31.4 32.4 32.5 32.6

CH2O O -339.3 -378.6 -309.5 -204.3 -259.4
C 36.9 1.5 37.1 59.3 54.2
H 22.7 22.0 23.1 23.7 23.4

CH4 C 209.6 198.9 207.6 208.9 207.2
H 31.6 31.3 31.7 31.7 31.7

C2H4 C 95.6 69.7 92.3 103.4 102.7
H 26.6 26.0 26.7 27.0 27.0

AlF Al 599.3 572.9 604.1 610.6 607.0
F 190.9 211.8 212.3 207.8 204.7

CH3F C 142.9 122.1 142.9 147.2 146.0
F 475.9 482.9 476.7 470.5 471.0
H 27.9 27.3 28.1 28.2 28.3

C3H4 C 205.0 192.1 203.9 205.6 205.4
C 107.5 83.7 105.6 115.5 113.9
H 25.1 24.4 25.2 25.6 25.5
H 31.2 30.6 31.3 31.3 31.4

FCCH C 192.5 179.9 190.7 194.5 195.6
C 125.5 100.1 125.0 129.5 129.2
H 31.0 30.5 31.1 31.2 31.3
F 429.6 423.5 433.1 431.2 431.9

FCN F 385.1 374.1 392.3 391.3 387.2
C 110.7 82.2 108.5 116.0 114.6
N 140.5 117.9 137.8 153.0 151.2

H2S S 783.0 739.0 776.4 785.2 768.2
H 31.4 30.5 31.5 31.7 31.9

HCP H 29.4 29.6 29.7 29.6 29.7
C 67.3 37.6 61.2 78.4 76.6
P 471.7 388.0 456.1 510.3 499.6

HFCO O -58.6 -94.3 -48.5 -15.6 -33.6
C 68.0 39.6 66.9 76.7 74.3
F 187.0 165.3 204.5 207.1 196.6
H 24.7 23.9 24.9 25.0 24.9

H2C2O C 205.3 193.3 204.4 205.8 205.2
C 26.1 -6.3 26.5 37.5 31.0
O 22.2 -5.9 36.3 51.0 35.1
H 30.0 29.2 30.2 30.3 30.4

LiF Li 94.4 89.3 94.5 94.6 94.6
F 350.0 382.5 359.8 352.2 351.4

LiH H 26.3 26.6 26.5 26.2 26.3
Li 92.4 89.3 92.4 93.7 93.6

N2O N 129.6 106.4 127.9 144.2 139.8
N 45.4 12.6 41.0 60.3 55.0
O 209.8 199.0 215.9 223.7 217.2

OCS O 123.0 96.8 128.1 140.9 132.8
C 58.3 30.2 54.6 69.5 66.4
S 840.0 796.7 845.6 857.4 848.2

OF2 O -339.7 -447.1 -306.1 -130.0 -229.2
F 18.7 -24.0 49.5 79.9 58.4

H4C2O O 364.8 363.2 369.5 364.7 364.2
C 170.7 153.2 170.6 173.5 173.0
H 29.7 29.1 30.0 30.0 30.0

PN N -282.0 -344.0 -273.9 -192.3 -245.0
P 189.0 50.6 176.9 302.7 224.5
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Table 2: Statistics for absolute isotropic NMR shieldings in a cc-pVDZ basis. CCSD(T)/aug-cc-
pCV[TQ]Z shieldings are used as a reference. MSD=mean signed deviation; MAD=mean absolute de-
viation; MRD=mean relative deviation [%]; MARD=mean absolute relative deviation [%]; RMSD=root
mean squared deviation.

MSD MAD MRD MARD RMSD
RHF 1.6 15.8 8.9 39.5 28.7
CCSD 20.0 21.3 92.4 92.8 32.4
CCSD(T) 20.2 22.2 98.7 99.5 33.4
RPA@HF 22.9 23.7 103.0 103.2 36.4
RPA@PBE 37.9 39.3 165.9 166.3 69.2
σ-P1@PBE 29.7 31.2 140.8 141.2 51.0
MP2 28.6 30.5 126.1 126.9 48.3

Table 3: Statistics for absolute isotropic NMR shieldings in a cc-pVDZ basis. CCSD(T) shieldings are
used as a reference. MSD=mean signed deviation; MAD=mean absolute deviation; MRD=mean relative
deviation [%]; MARD=mean absolute relative deviation [%]; RMSD=root mean squared deviation.

MSD MAD MRD MARD RMSD
RHF -18.5 24.8 -47.3 54.5 46.6
CCSD -0.1 2.8 -0.1 3.9 5.4
CCSD(T) 0.0 0.0 0.0 0.0 0.0
RPA@HF 2.7 5.0 8.3 10.3 9.2
RPA@PBE 17.7 18.1 44.7 44.8 39.5
σ-P1@PBE 9.6 10.7 26.2 26.5 21.2
MP2 8.4 9.0 16.8 17.3 19.1
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Table 4: Absolute isotropic NMR shieldings in a cc-pVTZ basis. All values are given in ppm. “Extrap.”
stands for basis-set extrapolated CCSD(T)-shieldings in an aug-cc-pCV[TQ]Z basis set. The data for
“Extrap.” was taken from Ref. 3. CCSD(T) calculations were done with the CFOUR program[1, 2].

Mol. Nuc. CCSD(T) Extrap. RPA@HF RPA@PBE RPA@KT2 RPA@B3LYP RPA@BH&H RPA@B97-2
HF H 29.5 28.8 29.4 30.1 30.1 29.9 29.7 29.9

F 419.8 420.3 419.0 417.9 418.2 418.3 418.6 418.0
CO C 11.3 2.2 5.6 28.4 23.6 21.5 14.3 19.7

O -49.8 -55.0 -48.4 -21.4 -26.2 -29.7 -37.8 -31.7
N2 N -52.5 -60.4 -58.2 -28.8 -34.7 -37.8 -47.3 -39.8
H2O O 344.3 338.0 341.7 341.1 341.6 341.5 341.5 341.0

H 31.3 30.6 31.3 31.7 31.7 31.6 31.5 31.6
HCN H 29.2 29.0 29.5 29.5 29.5 29.5 29.5 29.5

C 91.5 84.6 87.5 98.7 96.4 95.7 92.2 94.8
N -7.4 -14.1 -11.8 12.5 6.6 6.5 -1.3 3.8

HOF O -44.4 -68.9 -40.6 24.1 0.4 -5.2 -26.7 -10.5
H 20.7 19.6 21.3 22.9 22.3 22.0 21.5 22.0
F 188.3 192.2 212.3 213.7 210.5 210.2 209.9 210.0

NH3 N 276.2 270.7 272.8 273.0 273.3 273.3 273.0 272.6
H 32.0 31.4 32.1 32.2 32.2 32.2 32.2 32.2

CH2O O -376.5 -378.6 -351.6 -266.4 -292.3 -293.5 -316.4 -302.2
C 13.2 1.5 12.3 31.6 25.4 24.8 18.6 22.9
H 22.3 22.0 22.9 23.3 23.1 23.0 22.9 23.0

CH4 C 201.3 198.9 198.4 199.3 199.3 199.6 198.9 198.7
H 31.5 31.3 31.6 31.6 31.6 31.6 31.6 31.6

C2H4 C 77.3 69.7 73.3 83.0 80.7 80.8 77.6 79.3
H 26.3 26.0 26.5 26.7 26.7 26.7 26.6 26.7

AlF Al 576.5 572.9 580.9 586.1 583.4 583.3 580.7 581.7
F 200.2 211.8 217.9 217.6 215.6 216.3 216.0 214.9

CH3F C 127.4 122.1 127.3 130.0 129.0 129.5 128.1 128.3
F 479.3 482.9 477.4 472.0 472.5 473.3 474.5 473.4
H 27.7 27.3 28.0 28.0 28.0 28.0 27.9 27.9

C3H4 C 194.9 192.1 193.2 194.3 193.6 194.4 193.5 193.3
C 90.3 83.7 87.0 96.4 94.1 94.2 90.8 92.5
H 24.6 24.4 24.8 25.2 25.1 25.1 25.0 25.1
H 30.9 30.6 31.1 31.1 31.1 31.1 31.1 31.1

FCCH C 183.1 179.9 180.7 183.8 182.6 183.7 182.7 183.0
C 105.3 100.1 104.8 108.4 107.3 107.9 106.4 107.0
H 30.7 30.5 30.9 31.0 31.0 31.0 30.9 31.0
F 421.2 423.5 423.2 421.4 421.3 421.8 422.5 422.3

FCN F 373.2 374.1 377.9 376.7 376.8 376.4 376.7 376.7
C 88.2 82.2 85.4 92.4 90.8 91.3 88.8 90.3
N 122.4 117.9 116.7 131.5 128.1 129.6 125.1 127.6

H2S S 758.5 739.0 744.8 753.3 752.2 752.1 747.7 748.9
H 30.9 30.5 31.1 31.3 31.3 31.2 31.2 31.2

HCP H 29.7 29.6 30.0 29.9 30.0 29.9 30.0 30.0
C 45.4 37.6 38.2 54.1 50.9 50.5 45.7 48.6
P 412.9 388.0 394.9 446.8 435.9 434.9 416.8 428.4

HFCO O -88.0 -94.3 -82.9 -54.6 -59.0 -58.7 -65.9 -61.9
C 47.0 39.6 45.0 53.3 51.3 51.7 48.8 50.6
F 167.2 165.3 184.0 184.5 180.3 183.2 181.6 181.9
H 24.3 23.9 24.6 24.6 24.6 24.6 24.6 24.6

H2C2O C 196.3 193.3 194.1 195.4 195.3 195.6 194.9 194.9
C 3.4 -6.3 1.8 11.8 10.3 9.9 6.6 8.7
O -3.9 -5.9 4.1 18.2 17.4 16.7 13.5 14.9
H 29.5 29.2 29.7 29.9 29.9 29.8 29.8 29.8

LiF Li 90.6 89.3 90.9 90.9 90.5 90.8 90.8 90.7
F 362.8 382.5 371.1 369.7 362.9 371.0 370.6 367.9

LiH H 26.5 26.6 26.8 26.5 26.5 26.6 26.8 26.6
Li 90.0 89.3 89.9 90.9 90.6 90.5 90.2 90.3

N2O N 114.3 106.4 107.8 125.4 122.9 121.8 116.2 120.0
N 22.1 12.6 13.9 34.5 32.3 29.8 23.3 28.1
O 197.0 199.0 197.7 207.2 206.4 205.3 202.6 204.5

OCS O 98.7 96.8 100.6 112.6 111.3 110.1 106.6 108.9
C 37.9 30.2 32.2 47.0 45.2 43.9 39.3 42.6
S 810.9 796.7 811.1 823.4 820.4 822.1 816.6 818.7

OF2 O -402.8 -447.1 -377.4 -230.0 -300.5 -309.3 -356.8 -320.7
F 0.0 -24.0 27.2 49.3 42.4 38.6 31.1 36.0

H4C2O O 362.1 363.2 364.7 359.0 357.7 361.5 362.9 360.7
C 158.1 153.2 157.5 159.2 158.3 159.2 158.0 158.0
H 29.4 29.1 29.7 29.7 29.6 29.6 29.7 29.6

PN N -336.0 -344.0 -348.5 -268.5 -286.4 -293.1 -317.7 -301.4
P 89.4 50.6 58.4 177.5 152.2 137.8 100.8 129.9
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Table 5: Absolute isotropic NMR shieldings in a cc-pVTZ basis. All values are given in ppm. “Extrap.”
stands for basis-set extrapolated CCSD(T)-shieldings in an aug-cc-pCV[TQ]Z basis set. The data for
“Extrap.” was taken from Ref. 3. CCSD(T) calculations were done with the CFOUR program[1, 2].
MP2 calculations were done with the Turbomole program[4–6].

Mol. Nuc. CCSD(T) Extrap. σ-P1@PBE σ-P2@PBE σ-P3@PBE MP2
HF H 29.5 28.8 30.0 30.0 29.9 29.2

F 419.8 420.3 415.7 415.7 416.1 425.2
CO C 11.3 2.2 18.4 18.2 18.8 16.8

O -49.8 -55.0 -36.5 -36.6 -34.4 -43.3
N2 N -52.5 -60.4 -43.0 -43.5 -42.2 -35.8
H2O O 344.3 338.0 338.5 338.6 338.9 352.5

H 31.3 30.6 31.6 31.6 31.5 31.0
HCN H 29.2 29.0 29.5 29.6 29.6 29.2

C 91.5 84.6 94.8 94.5 95.1 93.0
N -7.4 -14.1 3.5 3.1 3.4 5.2

HOF O -44.4 -68.9 -19.6 -19.4 -14.0 -28.6
H 20.7 19.6 21.8 21.8 21.9 20.8
F 188.3 192.2 190.4 191.7 193.3 191.4

NH3 N 276.2 270.7 271.3 271.4 271.6 281.8
H 32.0 31.4 32.1 32.1 32.1 31.8

CH2O O -376.5 -378.6 -333.6 -333.2 -325.9 -335.0
C 13.2 1.5 24.1 24.0 24.4 13.5
H 22.3 22.0 23.0 23.0 23.0 22.3

CH4 C 201.3 198.9 198.4 198.4 198.6 203.0
H 31.5 31.3 31.6 31.6 31.6 31.4

C2H4 C 77.3 69.7 80.8 80.9 80.9 75.9
H 26.3 26.0 26.7 26.7 26.7 26.2

AlF Al 576.5 572.9 583.0 582.9 583.4 575.8
F 200.2 211.8 214.0 213.7 214.7 197.8

CH3F C 127.4 122.1 128.8 128.8 129.0 126.0
F 479.3 482.9 475.4 475.4 475.4 485.8
H 27.7 27.3 28.1 28.1 28.1 27.6

C3H4 C 194.9 192.1 194.3 194.3 194.4 195.8
C 90.3 83.7 94.1 94.0 93.9 91.6
H 24.6 24.4 25.1 25.1 25.1 24.6
H 30.9 30.6 31.2 31.2 31.2 30.9

FCCH C 183.1 179.9 182.5 182.6 182.5 185.0
C 105.3 100.1 107.6 107.6 107.6 102.8
H 30.7 30.5 31.0 31.0 31.0 30.7
F 421.2 423.5 421.7 421.7 421.8 427.5

FCN F 373.2 374.1 373.6 373.7 374.0 382.0
C 88.2 82.2 90.5 90.3 90.3 87.2
N 122.4 117.9 125.6 125.4 125.6 135.3

H2S S 758.5 739.0 739.5 739.6 739.8 774.0
H 30.9 30.5 31.4 31.4 31.3 30.7

HCP H 29.7 29.6 30.1 30.1 30.1 29.6
C 45.4 37.6 52.5 51.6 52.2 50.2
P 412.9 388.0 436.5 434.5 435.3 419.3

HFCO O -88.0 -94.3 -76.7 -76.3 -73.4 -57.8
C 47.0 39.6 49.9 49.9 50.2 47.4
F 167.2 165.3 174.4 174.2 175.5 167.4
H 24.3 23.9 24.6 24.6 24.6 24.2

H2C2O C 196.3 193.3 194.0 194.1 194.0 201.1
C 3.4 -6.3 5.3 5.3 5.5 7.5
O -3.9 -5.9 3.1 2.9 5.0 29.7
H 29.5 29.2 29.8 29.8 29.8 29.6

LiF Li 90.6 89.3 90.8 90.8 90.8 90.5
F 362.8 382.5 369.7 369.4 369.6 360.2

LiH H 26.5 26.6 26.7 26.7 26.7 26.6
Li 90.0 89.3 90.6 90.6 90.6 90.0

N2O N 114.3 106.4 118.0 117.4 118.2 137.1
N 22.1 12.6 29.7 28.7 29.5 40.0
O 197.0 199.0 200.0 200.1 201.1 214.0

OCS O 98.7 96.8 108.6 108.8 109.3 111.7
C 37.9 30.2 44.2 43.9 44.1 45.0
S 810.9 796.7 811.8 812.1 812.3 830.2

OF2 O -402.8 -447.1 -341.9 -341.7 -328.0 -422.1
F 0.0 -24.0 12.4 14.1 16.7 9.6

H4C2O O 362.1 363.2 359.3 359.3 359.5 370.5
C 158.1 153.2 158.3 158.3 158.4 157.3
H 29.4 29.1 29.7 29.7 29.7 29.3

PN N -336.0 -344.0 -299.1 -303.1 -301.3 -248.2
P 89.4 50.6 132.7 126.5 128.9 152.2
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Table 6: Statistics for absolute isotropic NMR shieldings in a cc-pVTZ basis. CCSD(T)/aug-cc-
pCV[TQ]Z shieldings are used as a reference. MSD=mean signed deviation; MAD=mean absolute de-
viation; MRD=mean relative deviation [%]; MARD=mean absolute relative deviation [%]; RMSD=root
mean squared deviation.

MSD MAD MRD MARD RMSD
RHF -9.4 17.4 -40.5 51.9 34.9
PBE -18.4 18.6 -41.3 42.0 31.7
KT2 -5.7 9.3 16.5 24.4 17.7
B3LYP -19.1 19.3 -52.4 53.0 30.6
B97-2 -13.4 13.6 -29.6 30.5 22.7
CCSD 4.2 5.4 19.8 21.4 11.3
CCSD(T) 5.0 6.3 28.2 28.7 10.6
RPA@HF 5.3 6.1 24.2 24.4 12.8
RPA@BH&H 10.0 10.7 46.4 46.5 19.4
RPA@B3LYP 14.4 15.2 64.5 64.7 28.4
RPA@KT2 15.0 16.1 68.1 68.4 30.5
RPA@B97-2 12.9 13.8 59.0 59.2 25.9
RPA@PBE 18.9 19.9 82.0 82.3 40.4
σ-P1@PBE 10.5 11.5 53.5 53.7 21.9
σ-P2@PBE 10.3 11.3 52.9 53.1 21.4
σ-P3@PBE 11.2 12.1 55.1 55.3 23.3
MP2 12.3 13.4 50.8 51.1 23.3

Table 7: Statistics for absolute isotropic NMR shieldings in a cc-pVTZ basis. CCSD(T) shieldings are
used as a reference. MSD=mean signed deviation; MAD=mean absolute deviation; MRD=mean relative
deviation [%]; MARD=mean absolute relative deviation [%]; RMSD=root mean squared deviation.

MSD MAD MRD MARD RMSD
RHF -14.4 21.0 -45.0 47.8 40.0
PBE -23.4 23.5 -36.3 36.5 38.6
KT2 -10.6 11.5 -3.4 11.9 21.1
B3LYP -24.1 24.2 -47.1 47.3 38.2
B97-2 -18.4 18.4 -31.7 31.8 30.2
CCSD -0.8 3.4 -5.7 6.7 6.4
CCSD(T) 0.0 0.0 0.0 0.0 0.0
RPA@HF 0.3 5.1 -0.5 9.1 9.0
RPA@BH&H 5.0 5.9 13.5 13.7 12.0
RPA@B3LYP 9.4 10.1 23.1 23.3 20.1
RPA@KT2 10.0 10.8 24.7 25.0 22.0
RPA@B97-2 7.9 8.8 19.8 20.0 17.6
RPA@PBE 13.9 14.7 31.1 31.3 31.9
σ-P1@PBE 5.5 6.9 12.8 13.2 13.3
σ-P2@PBE 5.3 6.7 12.4 12.8 12.8
σ-P3@PBE 6.2 7.5 14.1 14.4 14.7
MP2 7.3 8.3 23.5 24.1 16.8
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Table 8: Diamagnetic (-dia) contributions to the absolute isotropic NMR shieldings in a cc-pVTZ basis
set. All values are given in ppm. The diamagnetic and paramagnetic contributions to the CCSD(T)-
shieldings were computed with the CFOUR[1, 2] program. The gauge-origin is located at the position of
the nucleus, for which the shielding is computed.

Mol. Nuc. CCSD(T)-dia RPA@HF-dia RPA@PBE-dia RPA@BH&H-dia RPA@B3LYP-dia RPA@KT2-dia
HF H 29.0 29.0 29.2 29.2 29.2 29.2

F 466.9 466.7 466.9 466.8 466.9 466.8
CO C 259.7 259.9 260.2 259.9 260.0 260.2

O 395.7 395.3 395.0 395.3 395.2 395.1
N2 N 324.9 324.7 324.6 324.7 324.7 324.7
H2O O 383.2 382.5 383.3 382.7 383.0 383.1

H 30.2 30.6 30.5 30.6 30.5 30.5
HCN H 28.9 29.0 29.0 29.0 29.0 28.9

C 259.1 259.3 259.6 259.4 259.5 259.6
N 334.2 332.8 332.5 332.9 332.7 332.6

HOF O 379.9 379.7 381.1 380.2 380.6 381.0
H 28.6 28.0 28.0 28.0 28.0 28.0
F 466.6 466.3 467.1 466.6 466.8 467.1

NH3 N 310.5 309.3 310.6 309.8 310.2 310.3
H 30.3 30.9 30.7 30.8 30.7 30.6

CH2O O 398.6 399.6 399.4 399.7 399.6 399.5
C 246.4 245.8 247.2 246.4 246.9 247.2
H 28.4 29.6 29.2 29.4 29.3 29.2

CH4 C 247.6 246.6 248.2 247.2 247.8 247.9
H 29.4 29.9 29.7 29.8 29.8 29.7

C2H4 C 253.3 253.1 253.9 253.4 253.7 253.8
H 30.1 30.8 30.5 30.7 30.6 30.5

AlF Al 791.1 790.8 791.0 790.9 790.9 791.0
F 467.0 466.8 466.4 466.7 466.5 466.3

CH3F C 238.4 240.3 242.2 241.1 241.8 241.9
F 469.9 471.4 471.2 471.4 471.3 471.3
H 28.3 29.1 28.9 29.0 28.9 28.8

C3H4 C 246.5 236.1 238.0 236.9 237.5 237.7
C 254.9 245.8 247.0 246.2 246.7 246.9
H 29.2 25.6 25.4 25.6 25.5 25.5
H 29.5 22.0 21.7 21.9 21.8 21.7

FCCH C 261.1 256.4 256.6 256.5 256.6 256.4
C 258.8 257.8 257.9 257.9 258.0 257.8
H 29.4 30.3 30.3 30.3 30.3 30.3
F 467.1 462.8 463.5 463.1 463.3 463.5

FCN F 465.4 464.5 465.2 464.8 465.0 465.1
C 263.3 263.1 263.5 263.3 263.5 263.5
N 330.4 329.6 329.1 329.6 329.4 329.1

H2S S 1054.7 1054.5 1054.1 1054.4 1054.3 1054.2
H 29.5 30.2 30.0 30.1 30.1 30.0

HCP H 28.8 29.2 29.0 29.1 29.0 29.0
C 261.6 260.2 260.6 260.4 260.4 260.4
P 966.9 970.5 969.2 970.1 969.7 969.3

HFCO O 398.4 399.6 399.6 399.8 399.7 399.6
C 247.5 248.3 249.7 249.0 249.4 249.7
F 471.1 472.0 472.2 472.1 472.2 472.2
H 28.1 29.9 29.6 29.8 29.7 29.6

H2C2O C 257.5 256.5 257.2 256.9 257.1 257.1
C 256.4 255.8 256.3 256.0 256.2 256.3
O 397.9 396.2 396.2 396.3 396.3 396.2
H 29.9 30.2 29.9 30.1 30.0 29.9

LiF Li 100.8 100.7 101.1 100.9 101.0 101.1
F 471.5 468.5 469.0 468.6 468.8 468.7

LiH H 26.0 26.5 26.0 26.3 26.2 26.0
Li 101.7 101.2 101.3 101.2 101.2 101.3

N2O N 326.1 324.2 324.4 324.5 324.5 324.4
N 320.7 319.9 320.4 320.1 320.3 320.5
O 398.4 397.5 397.5 397.6 397.6 397.6

OCS O 394.8 393.2 393.3 393.4 393.4 393.3
C 260.7 258.5 259.2 258.8 259.0 259.1
S 1055.5 1057.5 1056.5 1057.2 1056.8 1056.6

OF2 O 378.5 378.6 380.6 379.4 380.0 380.6
F 466.5 465.8 466.6 466.2 466.4 466.6

H4C2O O 391.4 388.7 389.1 389.0 389.0 389.4
C 246.9 245.1 246.6 245.8 246.3 246.5
H 29.4 28.7 28.4 28.6 28.5 28.4

PN N 330.4 329.5 329.0 329.5 329.3 329.0
P 967.2 967.3 966.8 967.2 967.0 966.9
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Table 9: Paramagnetic (-para) contributions to the absolute isotropic NMR shieldings in a cc-pVTZ basis
set. All values are given in ppm. The diamagnetic and paramagnetic contributions to the CCSD(T)-
shieldings were computed with the CFOUR[1, 2] program. The gauge-origin is located at the position of
the nucleus, for which the shielding is computed.

Mol. Nuc. CCSD(T)-para RPA@HF-para RPA@PBE-para RPA@BH&H-para RPA@B3LYP-para RPA@KT2-para
HF H 0.5 0.4 0.9 0.5 0.7 0.9

F -47.2 -47.7 -49.0 -48.2 -48.6 -48.6
CO C -248.4 -254.3 -231.8 -245.6 -238.5 -236.6

O -445.5 -443.7 -416.4 -433.1 -424.9 -421.3
N2 N -377.5 -382.9 -353.4 -372.0 -362.5 -359.4
H2O O -38.9 -40.8 -42.2 -41.2 -41.5 -41.5

H 1.0 0.7 1.2 0.9 1.1 1.2
HCN H 0.4 0.5 0.5 0.5 0.5 0.6

C -167.6 -171.8 -160.9 -167.2 -163.8 -163.2
N -341.6 -344.6 -320.0 -334.2 -326.2 -326.0

HOF O -424.4 -420.3 -357.0 -406.9 -385.8 -380.6
H -7.9 -6.7 -5.1 -6.5 -6.0 -5.7
F -278.3 -254.0 -253.4 -256.7 -256.6 -256.6

NH3 N -34.4 -36.5 -37.6 -36.8 -36.9 -37.0
H 1.6 1.2 1.5 1.4 1.5 1.6

CH2O O -775.0 -751.2 -665.8 -716.1 -693.1 -691.8
C -233.2 -233.5 -215.6 -227.8 -222.1 -221.8
H -6.1 -6.7 -5.9 -6.5 -6.3 -6.1

CH4 C -46.2 -48.2 -48.9 -48.3 -48.2 -48.6
H 2.0 1.7 1.9 1.8 1.8 1.9

C2H4 C -176.1 -179.8 -170.9 -175.8 -172.9 -173.1
H -3.8 -4.3 -3.8 -4.1 -3.9 -3.8

AlF Al -214.6 -209.9 -204.9 -210.2 -207.6 -207.6
F -266.8 -248.9 -248.8 -250.7 -250.2 -250.7

CH3F C -111.0 -113.0 -112.2 -113.0 -112.3 -112.9
F 9.4 6.0 0.8 3.1 2.0 1.2
H -0.6 -1.1 -0.9 -1.1 -0.9 -0.8

C3H4 C -51.6 -42.9 -43.7 -43.4 -43.1 -44.1
C -164.6 -158.8 -150.6 -155.4 -152.5 -152.8
H -4.6 -0.8 -0.2 -0.6 -0.4 -0.4
H 1.4 9.1 9.4 9.2 9.3 9.4

FCCH C -77.9 -75.7 -72.8 -73.8 -72.9 -73.8
C -153.4 -153.0 -149.5 -151.5 -150.1 -150.5
H 1.3 0.6 0.7 0.6 0.7 0.7
F -45.8 -39.6 -42.1 -40.6 -41.5 -42.2

FCN F -92.3 -86.6 -88.5 -88.1 -88.6 -88.3
C -175.1 -177.7 -171.1 -174.5 -172.2 -172.7
N -207.9 -212.9 -197.6 -204.5 -199.8 -201.0

H2S S -296.2 -309.7 -300.8 -306.7 -302.2 -302.0
H 1.4 0.9 1.3 1.1 1.1 1.3

HCP H 0.9 0.8 0.9 0.9 0.9 1.0
C -216.3 -222.0 -206.5 -214.7 -209.9 -209.5
P -554.0 -575.6 -522.4 -553.3 -534.8 -533.4

HFCO O -486.4 -482.5 -454.2 -465.7 -458.4 -458.6
C -200.5 -203.3 -196.4 -200.2 -197.7 -198.4
F -303.9 -288.0 -287.7 -290.5 -289.0 -291.9
H -3.8 -5.3 -5.0 -5.2 -5.1 -5.0

H2C2O C -61.3 -62.4 -61.8 -62.0 -61.5 -61.8
C -252.9 -254.0 -244.5 -249.4 -246.3 -246.0
O -401.8 -392.1 -378.0 -382.8 -379.6 -378.8
H -0.3 -0.5 0.0 -0.3 -0.2 0.0

LiF Li -10.1 -9.8 -10.2 -10.1 -10.2 -10.6
F -101.2 -97.4 -99.3 -98.0 -97.8 -105.8

LiH H 0.5 0.3 0.5 0.5 0.4 0.5
Li -11.7 -11.3 -10.4 -11.0 -10.7 -10.7

N2O N -211.8 -216.4 -199.0 -208.3 -202.7 -201.5
N -298.6 -306.0 -285.9 -296.8 -290.5 -288.2
O -201.4 -199.8 -190.3 -195.0 -192.3 -191.2

OCS O -296.1 -292.6 -280.7 -286.8 -283.3 -282.0
C -222.9 -226.3 -212.2 -219.5 -215.1 -213.9
S -244.6 -246.4 -233.1 -240.6 -234.7 -236.2

OF2 O -781.3 -756.0 -610.6 -736.2 -689.3 -681.1
F -466.5 -438.6 -417.3 -435.1 -427.8 -424.2

H4C2O O -29.3 -24.0 -30.1 -26.1 -27.5 -31.7
C -88.8 -87.6 -87.4 -87.8 -87.1 -88.2
H 0.0 1.0 1.3 1.1 1.1 1.2

PN N -666.4 -678.0 -597.5 -647.2 -622.4 -615.4
P -877.8 -908.9 -789.3 -866.4 -829.2 -814.7
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Table 10: Diamagnetic (-dia) contributions to the absolute isotropic NMR shieldings in a cc-pVTZ basis
set. All values are given in ppm. The diamagnetic and paramagnetic contributions to the CCSD(T)-
shieldings were computed with the CFOUR[1, 2] program. The gauge-origin is located at the the position
of the nucleus, for which the shielding is computed.

Mol. Nuc. CCSD(T)-dia HF(num.)-dia PBE(num.)-dia BH&H(num.)-dia B3LYP(num.)-dia KT2(num.)-dia
HF H 29.0 28.5 29.8 29.0 29.5 29.5

F 466.9 466.0 467.3 467.0 467.2 470.9
CO C 259.7 259.4 259.6 259.4 259.3 261.2

O 395.7 394.1 397.7 396.1 397.2 401.3
N2 N 324.9 324.3 325.6 325.0 325.2 327.4
H2O O 383.2 381.1 382.3 382.1 382.2 386.1

H 30.2 30.5 31.5 30.9 31.3 31.2
HCN H 28.9 29.0 29.7 29.3 29.7 29.6

C 259.1 259.4 258.0 258.7 257.9 259.7
N 334.2 330.9 336.6 333.8 335.6 338.9

HOF O 379.9 377.7 379.9 379.0 379.5 383.2
H 28.6 27.5 28.9 28.0 28.5 28.5
F 466.6 466.1 466.2 466.4 466.4 469.2

NH3 N 310.5 307.2 308.9 308.3 308.4 312.5
H 30.3 30.9 31.5 31.1 31.3 31.1

CH2O O 398.6 398.0 402.2 400.4 401.8 405.3
C 246.4 243.8 245.2 244.1 244.1 247.6
H 28.4 29.8 29.6 29.7 29.7 29.2

CH4 C 247.6 243.7 248.0 245.4 246.0 251.1
H 29.4 30.0 30.3 30.0 30.1 29.8

C2H4 C 253.3 251.7 253.3 252.2 252.2 255.9
H 30.1 31.1 31.1 31.0 31.1 30.5

AlF Al 791.1 790.8 792.4 791.7 792.1 794.7
F 467.0 466.0 467.9 467.6 468.4 471.0

CH3F C 238.4 237.4 240.5 238.4 238.6 243.6
F 469.9 470.5 473.7 472.6 473.8 476.4
H 28.3 29.1 29.3 29.1 29.1 28.8

C3H4 C 246.5 233.2 236.5 234.4 235.0 238.7
C 254.9 244.6 243.7 244.2 243.5 245.8
H 29.2 25.7 26.4 26.0 26.3 25.8
H 29.5 22.3 21.8 21.9 21.8 20.6

FCCH C 261.1 255.8 256.3 256.0 255.7 258.4
C 258.8 257.2 257.3 257.0 256.7 259.9
H 29.4 30.2 31.1 30.6 31.0 31.0
F 467.1 460.9 463.7 463.0 463.9 468.0

FCN F 465.4 462.8 466.2 465.0 466.1 470.3
C 263.3 262.6 262.3 262.3 262.0 264.1
N 330.4 328.0 333.6 330.7 332.3 335.8

H2S S 1054.7 1055.1 1056.7 1056.1 1056.5 1059.5
H 29.5 30.2 30.1 30.1 30.2 29.9

HCP H 28.8 29.1 30.0 29.5 29.9 30.0
C 261.6 259.4 259.0 259.7 259.6 262.9
P 966.9 971.7 976.2 974.1 975.5 979.9

HFCO O 398.4 398.0 402.7 400.5 401.9 405.9
C 247.5 246.4 247.9 246.7 246.8 249.9
F 471.1 470.7 474.4 473.2 474.4 477.5
H 28.1 29.9 30.6 30.1 30.4 30.0

H2C2O C 257.5 254.9 258.5 256.2 256.7 260.8
C 256.4 255.5 254.7 255.2 254.8 256.9
O 397.9 394.5 398.3 396.6 397.6 401.6
H 29.9 30.4 30.7 30.4 30.6 30.0

LiF Li 100.8 100.4 101.9 101.1 101.6 104.7
F 471.5 467.8 465.9 467.3 466.7 469.6

LiH H 26.0 26.2 25.8 26.1 26.1 25.8
Li 101.7 101.4 101.9 101.8 101.8 104.9

N2O N 326.1 322.9 326.7 324.5 325.4 328.7
N 320.7 319.6 318.1 319.1 318.6 321.1
O 398.4 396.2 399.2 397.8 398.8 401.6

OCS O 394.8 391.5 395.3 393.6 394.6 398.8
C 260.7 257.5 257.2 257.6 257.5 260.1
S 1055.5 1058.5 1060.8 1059.7 1060.4 1064.1

OF2 O 378.5 376.2 378.9 377.5 378.2 381.8
F 466.5 464.8 466.5 465.8 466.3 469.5

H4C2O O 391.4 387.8 389.7 389.4 390.3 391.2
C 246.9 242.8 245.4 243.6 243.8 247.8
H 29.4 28.9 29.1 28.8 28.9 28.1

PN N 330.4 327.3 331.1 329.8 331.3 334.3
P 967.2 967.9 969.5 968.7 969.1 971.8
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Table 11: Paramagnetic (-para) contributions to the absolute isotropic NMR shieldings in a cc-pVTZ
basis set. All values are given in ppm. The diamagnetic and paramagnetic contributions to the CCSD(T)-
shieldings were computed with the CFOUR[1, 2] program. The gauge-origin is located at the the position
of the nucleus, for which the shielding is computed.

Mol. Nuc. CCSD(T)-para HF(num.)-para PBE(num.)-para BH&H(num.)-para B3LYP(num.)-para KT2(num.)-para
HF H 0.5 0.0 0.4 0.1 0.3 0.8

F -47.2 -50.4 -54.8 -52.2 -54.3 -59.0
CO C -248.4 -281.2 -266.0 -277.5 -272.2 -246.7

O -445.5 -481.3 -473.8 -480.4 -477.2 -456.3
N2 N -377.5 -433.1 -402.7 -421.5 -411.9 -380.3
H2O O -38.9 -45.7 -44.9 -45.6 -46.4 -50.4

H 1.0 0.4 0.2 0.3 0.2 0.6
HCN H 0.4 0.3 -0.4 0.1 -0.3 -0.6

C -167.6 -185.0 -179.8 -185.1 -183.0 -167.1
N -341.6 -378.2 -374.2 -380.9 -379.6 -351.5

HOF O -424.4 -497.0 -484.5 -494.9 -494.0 -454.1
H -7.9 -7.9 -8.8 -8.1 -8.5 -7.8
F -278.3 -179.6 -316.7 -249.4 -292.8 -306.3

NH3 N -34.4 -38.7 -39.5 -40.0 -41.2 -41.4
H 1.6 1.0 0.7 0.9 0.9 1.1

CH2O O -775.0 -841.6 -847.6 -858.2 -855.1 -782.5
C -233.2 -245.9 -260.8 -255.8 -259.6 -241.9
H -6.1 -7.1 -8.6 -7.7 -8.1 -7.7

CH4 C -46.2 -47.0 -54.4 -51.5 -54.5 -52.6
H 2.0 1.6 1.2 1.6 1.5 1.8

C2H4 C -176.1 -187.9 -196.9 -195.0 -197.7 -184.4
H -3.8 -4.8 -5.4 -4.9 -5.1 -4.5

AlF Al -214.6 -207.7 -247.8 -227.6 -241.3 -235.3
F -266.8 -249.7 -336.5 -286.5 -313.9 -336.2

CH3F C -111.0 -109.6 -129.2 -120.4 -127.1 -123.9
F 9.4 14.4 -15.9 0.8 -11.0 -18.1
H -0.6 -1.1 -2.1 -1.4 -1.6 -1.5

C3H4 C -51.6 -38.0 -56.4 -47.7 -54.1 -52.7
C -164.6 -169.7 -173.6 -174.5 -176.1 -162.1
H -4.6 -1.5 -2.1 -1.8 -1.9 -1.4
H 1.4 8.7 8.9 9.0 9.0 10.1

FCCH C -77.9 -77.9 -82.6 -82.3 -83.3 -74.2
C -153.4 -152.9 -168.1 -162.5 -167.6 -160.0
H 1.3 0.4 0.0 0.2 0.0 -0.1
F -45.8 -35.8 -77.3 -54.1 -66.5 -76.4

FCN F -92.3 -87.6 -128.5 -104.8 -116.7 -133.5
C -175.1 -183.8 -186.5 -188.3 -189.5 -175.8
N -207.9 -234.7 -229.6 -238.1 -236.1 -212.2

H2S S -296.2 -319.9 -328.9 -333.0 -342.5 -321.5
H 1.4 0.6 0.9 0.8 0.9 1.1

HCP H 0.9 1.1 -0.4 0.5 0.0 -0.7
C -216.3 -242.3 -236.8 -244.6 -243.0 -225.1
P -554.0 -616.6 -638.4 -642.0 -646.7 -595.0

HFCO O -486.4 -524.6 -522.1 -534.7 -531.7 -496.2
C -200.5 -209.1 -218.3 -216.7 -219.6 -206.3
F -303.9 -282.4 -381.3 -326.5 -357.5 -368.5
H -3.8 -5.3 -7.0 -5.9 -6.5 -6.4

H2C2O C -61.3 -63.9 -69.7 -68.0 -70.0 -65.5
C -252.9 -264.5 -262.1 -269.0 -268.7 -249.4
O -401.8 -421.2 -415.1 -426.1 -423.4 -401.2
H -0.3 -0.9 -1.2 -0.9 -1.0 -0.4

LiF Li -10.1 -8.6 -13.6 -10.9 -12.5 -12.5
F -101.2 -94.9 -150.1 -122.7 -140.8 -129.6

LiH H 0.5 0.3 0.5 0.5 0.4 0.6
Li -11.7 -11.3 -12.7 -12.5 -12.6 -11.7

N2O N -211.8 -255.8 -227.4 -245.6 -237.0 -219.5
N -298.6 -346.7 -305.5 -331.8 -320.1 -298.4
O -201.4 -225.7 -225.6 -229.1 -229.0 -226.8

OCS O -296.1 -315.6 -321.7 -320.4 -322.2 -314.8
C -222.9 -245.6 -225.3 -240.8 -235.1 -215.5
S -244.6 -264.8 -289.5 -283.7 -291.7 -279.1

OF2 O -781.3 -796.1 -965.7 -869.5 -927.8 -883.3
F -466.5 -424.1 -530.1 -479.1 -513.5 -511.9

H4C2O O -29.3 -9.9 -59.6 -36.1 -53.1 -53.8
C -88.8 -84.1 -102.4 -94.2 -100.6 -96.9
H 0.0 0.9 0.1 0.7 0.5 1.2

PN N -666.4 -836.4 -734.9 -796.4 -766.4 -695.7
P -877.8 -1059.1 -995.6 -1043.9 -1020.4 -921.9
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Table 12: Testing influence of δ and DFT grid and gauge-origin independence in a cc-pVTZ basis set.
All values are given in ppm. “RPA@HF0.05” denotes calculations with δ = 0.05 instead of δ = 0.1
as in the other calculations. RPA@HF trans denotes calculations after translating the molecule by 5.0
Angstroem in x-, y- and z-direction, respectively. The gauge-origin is located at (0.0, 0.0, 0.0). The
“RPA@PBE” calculations are performed with a g5 grid; in contrast, a g7 grid is used in the “RPA@PBE-
g7” calculations.

Mol. Nuc. RPA@HF RPA@HF0.05 RPA@HF trans RPA@PBE RPA@PBE-g7
HF H 29.4 29.4 29.4 30.1 30.1

F 419.0 419.0 419.0 417.9 417.9
CO C 5.6 5.6 5.6 28.4 28.4

O -48.4 -48.4 -48.4 -21.4 -21.4
N2 N -58.2 -58.2 -58.2 -28.8 -28.8
H2O O 341.7 341.7 341.7 341.1 341.1

H 31.3 31.3 31.3 31.7 31.7
HCN H 29.5 29.5 29.5 29.5 29.5

C 87.5 87.5 87.5 98.7 98.7
N -11.8 -11.8 -11.8 12.5 12.5

HOF O -40.6 -40.7 -40.6 24.1 24.1
H 21.3 21.3 21.3 22.9 22.9
F 212.3 212.2 212.3 213.7 213.7

NH3 N 272.8 272.8 272.8 273.0 273.0
H 32.1 32.1 32.1 32.2 32.2

CH2O O -351.6 -351.8 -351.6 -266.4 -266.4
C 12.3 12.3 12.3 31.6 31.6
H 22.9 22.9 22.9 23.3 23.3

CH4 C 198.4 198.4 198.4 199.3 199.3
H 31.6 31.6 31.6 31.6 31.6

C2H4 C 73.3 73.3 73.3 83.0 83.0
H 26.5 26.5 26.5 26.7 26.7

AlF Al 580.9 580.9 580.9 586.1 586.1
F 217.9 218.0 217.9 217.6 217.6

CH3F C 127.3 127.3 127.3 130.0 130.0
F 477.4 477.4 477.4 472.0 472.0
H 28.0 28.0 28.0 28.0 28.0

C3H4 C 193.2 193.2 193.2 194.3 194.3
C 87.0 87.0 87.0 96.4 96.4
H 24.8 24.8 24.8 25.2 25.2
H 31.1 31.1 31.1 31.1 31.1

FCCH C 180.7 180.7 180.7 183.8 183.8
C 104.8 104.8 104.8 108.4 108.4
H 30.9 30.9 30.9 31.0 31.0
F 423.2 423.2 423.2 421.4 421.4

FCN F 377.9 377.9 377.9 376.7 376.7
C 85.4 85.4 85.4 92.4 92.4
N 116.7 116.7 116.7 131.5 131.5

H2S S 744.8 744.9 744.9 753.3 753.3
H 31.1 31.1 31.1 31.3 31.3

HCP H 30.0 30.0 30.0 29.9 29.9
C 38.2 38.2 38.2 54.1 54.1
P 394.9 394.9 394.8 446.8 446.8

HFCO O -82.9 -82.9 -82.9 -54.6 -54.6
C 45.0 45.0 45.0 53.3 53.3
F 184.0 184.1 184.1 184.5 184.5
H 24.6 24.6 24.6 24.6 24.6

H2C2O C 194.1 194.1 194.1 195.4 195.4
C 1.8 1.8 1.8 11.8 11.8
O 4.1 4.1 4.1 18.2 18.2
H 29.7 29.7 29.7 29.9 29.9

LiF Li 90.9 90.9 90.9 90.9 90.9
F 371.1 371.1 371.1 369.7 369.7

LiH H 26.8 26.8 26.8 26.5 26.5
Li 89.9 89.9 89.9 90.9 90.9

N2O N 107.8 107.8 107.7 125.4 125.4
N 13.9 13.9 13.9 34.5 34.5
O 197.7 197.7 197.7 207.2 207.2

OCS O 100.6 100.6 100.6 112.6 112.6
C 32.2 32.2 32.2 47.0 47.0
S 811.1 811.1 811.0 823.4 823.4

OF2 O -377.4 -377.5 -377.4 -230.0 -230.0
F 27.2 27.1 27.2 49.3 49.3

H4C2O O 364.7 364.7 364.7 359.0 359.0
C 157.5 157.5 157.5 159.2 159.2
H 29.7 29.7 29.7 29.7 29.7

PN N -348.5 -348.5 -348.5 -268.5 -268.5
P 58.4 58.4 58.4 177.5 177.5
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Table 13: Comparison of analytical and numerical NMR shieldings in a cc-pVTZ basis set. All values
are given in ppm. The HF and PBE values were taken from Ref. 3. “HF(num.)” and “PBE(num.)”
denote the numerically computed shieldings.

Mol. Nuc. RHF HF(num.) PBE PBE(num.)
HF H 28.5 28.5 30.2 30.2

F 415.6 415.6 412.5 412.5
CO C -21.8 -21.8 -6.4 -6.4

O -87.2 -87.2 -76.1 -76.1
N2 N -108.8 -108.8 -77.1 -77.1
H2O O 335.4 335.4 337.4 337.4

H 30.9 30.9 31.7 31.7
HCN H 29.3 29.3 29.3 29.3

C 74.4 74.4 78.2 78.2
N -47.3 -47.3 -37.6 -37.6

HOF O -119.5 -119.3 -104.9 -104.6
H 19.6 19.6 20.1 20.1
F 286.6 286.5 149.2 149.5

NH3 N 268.5 268.5 269.4 269.4
H 31.9 31.9 32.2 32.2

CH2O O -443.9 -443.6 -445.7 -445.4
C -2.1 -2.1 -15.6 -15.6
H 22.7 22.7 21.0 21.0

CH4 C 196.7 196.7 193.6 193.6
H 31.6 31.6 31.5 31.5

C2H4 C 63.8 63.8 56.4 56.4
H 26.3 26.3 25.7 25.7

AlF Al 583.1 583.1 544.6 544.6
F 216.3 216.3 131.4 131.4

CH3F C 127.8 127.8 111.3 111.3
F 484.9 484.9 457.9 457.8
H 28.0 28.0 27.2 27.2

C3H4 C 195.2 195.2 180.1 180.1
C 74.9 74.9 70.1 70.1
H 24.2 24.2 24.3 24.3
H 31.0 31.0 30.7 30.7

FCCH C 177.9 177.9 173.7 173.7
C 104.3 104.3 89.2 89.2
H 30.6 30.6 31.1 31.1
F 425.1 425.1 386.4 386.4

FCN F 375.2 375.2 337.7 337.7
C 78.8 78.8 75.8 75.8
N 93.3 93.3 104.0 104.0

H2S S 735.2 735.2 727.8 727.8
H 30.8 30.8 31.0 31.0

HCP H 30.2 30.2 29.6 29.6
C 17.1 17.1 22.2 22.2
P 355.1 355.1 337.8 337.8

HFCO O -126.7 -126.6 -119.4 -119.4
C 37.3 37.3 29.6 29.6
F 188.3 188.3 93.1 93.1
H 24.6 24.6 23.6 23.6

H2C2O C 191.0 191.0 188.8 188.8
C -9.0 -9.0 -7.4 -7.4
O -26.7 -26.7 -16.9 -16.8
H 29.5 29.5 29.5 29.5

LiF Li 91.8 91.8 88.3 88.3
F 373.0 372.9 315.9 315.8

LiH H 26.5 26.5 26.3 26.3
Li 90.1 90.1 89.2 89.2

N2O N 67.1 67.1 99.3 99.3
N -27.1 -27.1 12.6 12.6
O 170.4 170.5 173.6 173.6

OCS O 75.9 75.9 73.6 73.6
C 11.9 11.9 31.9 31.9
S 793.7 793.7 771.3 771.3

OF2 O -420.2 -419.9 -587.3 -586.8
F 40.7 40.7 -63.8 -63.6

H4C2O O 377.9 377.9 330.1 330.1
C 158.7 158.7 143.0 143.0
H 29.8 29.8 29.2 29.2

PN N -509.2 -509.1 -403.9 -403.8
P -91.4 -91.2 -26.2 -26.1
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Table 14: Testing influence of number of frequency integration points in a cc-pVTZ basis set. The default
of 120 grid points is used for the RPA frequency integration in “RPA@BH&H” and “σ-P1@PBE”. In the
other calculations with suffix “-npX”, X frequency points are employed. All values are given in ppm.

Mol. Nuc. RPA@BH&H RPA@BH&H-np90 σ-P1@PBE σ-P1@PBE-np160 σ-P1@PBE-np200 σ-P1@PBE-np250
HF H 29.7 29.7 30.0 30.0 30.0 30.0

F 418.6 418.6 415.7 415.7 415.7 415.7
CO C 14.3 14.3 18.4 18.4 18.7 18.4

O -37.8 -37.8 -36.5 -36.5 -36.5 -36.4
N2 N -47.3 -47.3 -43.0 -43.0 -43.0 -43.0
H2O O 341.5 341.5 338.5 338.5 338.5 338.5

H 31.5 31.5 31.6 31.6 31.6 31.6
HCN H 29.5 29.5 29.5 29.5 29.5 29.5

C 92.2 92.2 94.8 95.2 95.2 95.2
N -1.3 -1.3 3.5 3.7 3.7 3.7

HOF O -26.7 -26.7 -19.6 -19.5 -19.6 -19.6
H 21.5 21.5 21.8 21.8 21.8 21.8
F 209.9 209.9 190.4 190.4 190.4 190.4

NH3 N 273.0 273.0 271.3 271.3 271.3 271.3
H 32.2 32.2 32.1 32.1 32.1 32.1

CH2O O -316.4 -316.4 -333.6 -333.5 -333.5 -333.5
C 18.6 18.6 24.1 24.1 23.9 24.1
H 22.9 22.9 23.0 23.0 23.0 23.0

CH4 C 198.9 198.9 198.4 198.4 198.4 198.4
H 31.6 31.6 31.6 31.6 31.6 31.6

C2H4 C 77.6 77.6 80.8 80.8 80.8 80.8
H 26.6 26.6 26.7 26.7 26.7 26.7

AlF Al 580.7 580.7 583.0 583.0 583.0 583.0
F 216.0 216.0 214.0 214.0 214.1 214.0

CH3F C 128.1 128.1 128.8 128.8 128.8 128.8
F 474.5 474.5 475.4 475.4 475.3 475.3
H 27.9 27.9 28.1 28.1 28.1 28.1

C3H4 C 193.5 193.5 194.3 194.2 194.2 194.2
C 90.8 90.8 94.1 94.1 94.1 94.1
H 25.0 25.0 25.1 25.1 25.1 25.1
H 31.1 31.1 31.2 31.2 31.2 31.2

FCCH C 182.7 182.7 182.5 182.5 182.6 182.5
C 106.4 106.4 107.6 107.6 107.6 107.6
H 30.9 30.9 31.0 31.0 31.0 31.0
F 422.5 422.5 421.7 421.7 421.7 421.7

FCN F 376.7 376.7 373.6 373.6 373.2 373.6
C 88.8 88.8 90.5 90.5 90.5 90.5
N 125.1 125.1 125.6 125.6 125.6 125.6

H2S S 747.7 747.7 739.5 739.6 739.5 739.6
H 31.2 31.2 31.4 31.4 31.4 31.4

HCP H 30.0 30.0 30.1 30.1 30.1 30.1
C 45.7 45.7 52.5 52.5 52.5 52.5
P 416.8 416.8 436.5 436.5 436.5 436.5

HFCO O -65.9 -65.9 -76.7 -76.7 -76.7 -76.7
C 48.8 48.8 49.9 49.9 49.9 49.9
F 181.6 181.6 174.4 174.4 174.3 174.4
H 24.6 24.6 24.6 24.6 24.6 24.6

H2C2O C 194.9 194.9 194.0 193.9 194.0 194.0
C 6.6 6.6 5.3 5.3 5.3 5.4
O 13.5 13.5 3.1 3.2 3.2 3.2
H 29.8 29.8 29.8 29.8 29.8 29.8

LiF Li 90.8 90.8 90.8 90.8 90.8 90.8
F 370.6 370.6 369.7 369.7 369.7 369.7

LiH H 26.8 26.8 26.7 26.7 26.7 26.7
Li 90.2 90.2 90.6 90.6 90.6 90.6

N2O N 116.2 116.2 118.0 118.4 118.0 118.0
N 23.3 23.3 29.7 29.7 29.7 29.7
O 202.6 202.6 200.0 200.0 200.0 202.5

OCS O 106.6 106.6 108.6 108.4 108.4 108.1
C 39.3 39.3 44.2 44.2 44.2 44.0
S 816.6 816.6 811.8 811.8 811.8 811.8

OF2 O -356.8 -356.8 -341.9 -341.6 -341.3 -341.9
F 31.1 31.1 12.4 12.4 12.8 12.3

H4C2O O 362.9 362.9 359.3 359.3 359.3 359.3
C 158.0 158.0 158.3 158.3 158.3 158.3
H 29.7 29.7 29.7 29.7 29.7 29.7

PN N -317.7 -317.7 -299.1 -299.1 -299.1 -299.0
P 100.8 100.8 132.7 132.3 132.7 132.7
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Table 15: Absolute isotropic NMR shieldings in a cc-pVQZ basis. All values are given in ppm. “Extrap.”
stands for basis-set extrapolated CCSD(T)-shieldings in an aug-cc-pCV[TQ]Z basis set. The data for
“Extrap.” was taken from Ref. 3. CCSD(T) calculations were done with the CFOUR program[1, 2].
MP2 calculations were done with the Turbomole program[4–6].

Mol. Nuc. CCSD(T) Extrap. RPA@HF RPA@PBE σ-P1@PBE MP2
HF H 29.1 28.8 29.0 29.6 29.1 28.8

F 419.9 420.3 419.2 418.5 418.3 425.3
CO C 5.9 2.2 -0.5 22.4 11.5 11.2

O -51.9 -55.0 -50.7 -25.1 -38.9 -45.2
N2 N -57.6 -60.4 -64.3 -34.7 -49.5 -40.6
H2O O 341.0 338.0 338.5 338.5 338.0 349.1

H 30.9 30.6 30.9 31.2 30.9 30.6
HCN H 29.1 29.0 29.3 29.3 29.3 29.0

C 87.3 84.6 83.3 94.4 90.1 88.7
N -11.3 -14.1 -15.9 8.2 -1.3 1.6

HOF O -58.7 -68.9 -57.7 8.6 -37.1 -43.9
H 20.0 19.6 20.6 22.0 20.7 20.1
F 191.6 192.2 215.3 214.2 194.7 194.9

NH3 N 273.1 270.7 269.8 270.6 269.5 278.7
H 31.7 31.4 31.8 31.9 31.7 31.5

CH2O O -377.2 -378.6 -350.5 -271.3 -333.0 -332.6
C 6.5 1.5 5.7 24.7 15.3 6.6
H 22.1 22.0 22.6 23.0 22.6 22.1

CH4 C 199.9 198.9 196.9 197.9 198.0 201.5
H 31.4 31.3 31.5 31.5 31.4 31.3

C2H4 C 72.9 69.7 69.0 78.7 75.7 71.4
H 26.1 26.0 26.4 26.5 26.4 26.0

AlF Al 587.7 572.9 589.8 589.7 587.5 587.0
F 212.2 211.8 228.7 229.5 231.0 209.5

CH3F C 124.5 122.1 124.6 127.3 126.1 123.0
F 482.8 482.9 480.2 475.6 481.1 488.9
H 27.5 27.3 27.8 27.8 27.7 27.4

C3H4 C 193.2 192.1 191.4 192.4 192.4 194.1
C 86.5 83.7 83.1 92.5 89.7 87.7
H 24.5 24.4 24.6 24.9 24.8 24.4
H 30.7 30.6 30.9 30.9 30.9 30.7

FCCH C 181.4 179.9 179.0 181.9 179.6 183.2
C 102.6 100.1 102.3 106.0 104.8 99.9
H 30.6 30.5 30.7 30.8 30.6 30.5
F 424.0 423.5 425.4 423.0 424.9 430.0

FCN F 375.1 374.1 379.2 377.3 376.4 383.7
C 84.8 82.2 82.0 89.1 86.6 83.7
N 120.1 117.9 114.1 128.8 122.1 133.1

H2S S 759.6 739.0 744.2 752.4 743.9 775.1
H 30.7 30.5 30.9 31.0 30.9 30.5

HCP H 29.7 29.6 30.0 29.9 29.9 29.5
C 41.1 37.6 34.0 49.5 46.4 45.8
P 426.9 388.0 408.5 443.1 432.9 432.6

HFCO O -91.0 -94.3 -85.7 -59.0 -79.2 -60.2
C 43.1 39.6 41.1 49.2 44.9 43.4
F 166.9 165.3 183.7 183.9 177.2 166.6
H 24.0 23.9 24.3 24.3 24.2 23.9

H2C2O C 194.4 193.3 192.0 193.6 192.4 199.1
C -2.0 -6.3 -3.9 6.1 -0.7 1.7
O -4.3 -5.9 3.1 16.6 4.7 29.1
H 29.3 29.2 29.5 29.6 29.4 29.4

LiF Li 89.3 89.3 89.7 89.7 89.5 89.3
F 375.8 382.5 383.6 383.8 387.9 373.9

LiH H 26.6 26.6 26.9 26.6 26.8 26.7
Li 89.3 89.3 89.2 90.2 89.4 89.3

N2O N 109.4 106.4 102.0 120.1 112.3 132.0
N 16.0 12.6 7.5 28.0 23.1 33.6
O 199.9 199.0 199.3 208.3 201.7 217.4

OCS O 98.7 96.8 100.3 111.7 108.8 111.9
C 33.8 30.2 27.9 42.5 39.5 40.7
S 815.1 796.7 814.1 819.1 810.1 833.9

OF2 O -430.3 -447.1 -406.1 -260.8 -374.3 -451.6
F -12.7 -24.0 14.0 34.7 -0.5 -3.4

H4C2O O 364.7 363.2 366.5 360.2 360.7 373.5
C 155.1 153.2 154.5 156.4 155.1 154.2
H 29.2 29.1 29.5 29.4 29.4 29.2

PN N -340.7 -344.0 -353.8 -276.3 -306.7 -252.2
P 118.2 50.6 84.8 191.2 149.7 176.7
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Table 16: Statistics for absolute isotropic NMR shieldings in a cc-pVQZ basis. CCSD(T)/aug-cc-
pCV[TQ]Z shieldings are used as a reference. MSD=mean signed deviation; MAD=mean absolute de-
viation; MRD=mean relative deviation [%]; MARD=mean absolute relative deviation [%]; RMSD=root
mean squared deviation.

MSD MAD MRD MARD RMSD
RHF -9.2 17.3 -49.9 59.8 32.9
PBE -19.6 19.8 -58.9 59.3 32.6
KT2 -5.3 9.4 5.8 18.4 17.3
B3LYP -20.0 20.2 -69.9 70.4 30.7
CCSD 3.4 4.9 5.7 11.1 10.2
CCSD(T) 4.1 4.3 13.9 14.0 10.8
RPA@HF 4.1 5.6 9.0 15.4 10.8
RPA@BH&H 8.5 8.8 30.7 30.8 17.3
RPA@B3LYP 12.3 12.6 48.3 48.4 25.0
RPA@KT2 13.1 13.8 51.7 51.9 27.7
RPA@PBE 16.9 17.3 65.7 65.8 36.7
σ-P1@PBE 9.0 9.3 35.5 35.6 19.2
MP2 11.3 11.8 35.8 36.0 23.8

Table 17: Statistics for absolute isotropic NMR shieldings in a cc-pVQZ basis. CCSD(T) shieldings are
used as a reference. MSD=mean signed deviation; MAD=mean absolute deviation; MRD=mean relative
deviation [%]; MARD=mean absolute relative deviation [%]; RMSD=root mean squared deviation.

MSD MAD MRD MARD RMSD
RHF -13.4 20.1 -43.5 56.2 37.9
PBE -23.8 23.8 -52.5 52.8 38.5
KT2 -9.4 10.6 -4.5 17.9 19.4
B3LYP -24.1 24.2 -63.9 64.1 37.3
CCSD -0.7 3.4 -5.0 9.2 6.4
CCSD(T) 0.0 0.0 0.0 0.0 0.0
RPA@HF -0.0 5.1 0.3 13.2 9.1
RPA@BH&H 4.4 5.3 16.4 16.7 11.6
RPA@B3LYP 8.2 9.0 28.3 28.5 18.8
RPA@KT2 9.0 10.0 30.5 30.8 20.5
RPA@PBE 12.8 13.6 39.0 39.2 30.3
σ-P1@PBE 4.9 6.1 14.3 14.6 12.0
MP2 7.2 8.3 24.0 24.6 16.8
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Table 18: Absolute isotropic NMR shieldings in a cc-pCVDZ basis. All values are given in ppm.
“Extrap.” stands for basis-set extrapolated CCSD(T)-shieldings in an aug-cc-pCV[TQ]Z basis set. The
data for “Extrap.” was taken from Ref. 3. CCSD(T) calculations were done with the CFOUR program[1,
2].

Mol. Nuc. CCSD(T) Extrap. RPA@HF RPA@PBE σ-P1@PBE
HF H 30.5 28.8 30.4 31.1 31.4

F 426.0 420.3 426.2 424.0 420.7
CO C 28.9 2.2 27.0 52.2 42.8

O -24.3 -55.0 -18.2 12.1 -7.3
N2 N -32.8 -60.4 -32.7 -1.8 -18.4
H2O O 353.7 338.0 352.5 350.5 346.2

H 31.9 30.6 31.9 32.3 32.5
HCN H 29.4 29.0 29.5 29.6 29.6

C 106.3 84.6 103.6 116.0 113.0
N 13.9 -14.1 12.8 39.4 31.5

HOF O -12.4 -68.9 2.6 72.9 38.1
H 21.8 19.6 22.6 24.5 23.8
F 179.7 192.2 204.4 219.7 210.3

NH3 N 282.2 270.7 280.1 279.5 276.8
H 32.3 31.4 32.4 32.5 32.6

CH2O O -352.1 -378.6 -321.4 -212.0 -268.7
C 32.3 1.5 32.7 56.4 51.0
H 22.6 22.0 23.1 23.7 23.4

CH4 C 206.8 198.9 204.9 206.4 204.5
H 31.6 31.3 31.7 31.7 31.7

C2H4 C 90.3 69.7 87.2 99.2 98.3
H 26.6 26.0 26.7 27.0 27.0

AlF Al 578.6 572.9 584.9 592.8 592.1
F 186.3 211.8 207.7 203.7 199.8

CH3F C 139.1 122.1 139.3 144.1 142.7
F 475.6 482.9 476.4 469.8 470.1
H 27.9 27.3 28.1 28.2 28.3

C3H4 C 202.2 192.1 201.2 203.2 202.9
C 102.7 83.7 100.9 111.8 109.9
H 25.0 24.4 25.2 25.6 25.5
H 31.1 30.6 31.3 31.3 31.3

FCCH C 189.6 179.9 188.0 192.3 193.2
C 120.7 100.1 120.5 125.6 125.0
H 31.0 30.5 31.0 31.2 31.2
F 428.0 423.5 431.4 429.6 430.0

FCN F 382.5 374.1 389.3 388.5 384.2
C 105.7 82.2 103.7 111.9 110.4
N 135.8 117.9 133.3 149.8 147.3

H2S S 756.4 739.0 750.5 759.2 745.5
H 31.3 30.5 31.4 31.6 31.8

HCP H 29.4 29.6 29.6 29.6 29.7
C 61.6 37.6 55.5 74.2 72.3
P 422.0 388.0 407.3 465.8 462.4

HFCO O -67.1 -94.3 -56.5 -22.1 -40.7
C 64.0 39.6 63.1 73.9 71.1
F 183.1 165.3 200.7 204.0 193.1
H 24.7 23.9 24.9 25.0 24.9

H2C2O C 202.2 193.3 201.4 203.1 202.3
C 21.2 -6.3 21.8 33.6 26.6
O 14.8 -5.9 29.1 44.6 27.7
H 30.0 29.2 30.2 30.3 30.4

LiF Li 93.0 89.3 93.2 93.4 93.5
F 348.3 382.5 358.8 352.2 354.5

LiH H 26.3 26.6 26.5 26.2 26.3
Li 91.7 89.3 91.8 93.2 93.4

N2O N 125.2 106.4 123.3 140.8 135.9
N 41.3 12.6 36.6 57.0 51.0
O 206.2 199.0 211.6 220.3 213.7

OCS O 117.0 96.8 121.8 135.6 127.3
C 54.4 30.2 50.6 66.5 63.2
S 817.4 796.7 823.6 836.3 830.8

OF2 O -349.1 -447.1 -314.6 -132.6 -234.1
F 13.9 -24.0 45.6 77.1 55.3

H4C2O O 364.0 363.2 368.9 364.1 363.5
C 167.5 153.2 167.5 170.8 170.1
H 29.7 29.1 30.0 29.9 30.0

PN N -295.2 -344.0 -289.6 -200.5 -252.9
P 111.2 50.6 100.4 235.3 168.0
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Table 19: Statistics for absolute isotropic NMR shieldings in a cc-pCVDZ basis. CCSD(T)/aug-cc-
pCV[TQ]Z shieldings are used as a reference. MSD=mean signed deviation; MAD=mean absolute de-
viation; MRD=mean relative deviation [%]; MARD=mean absolute relative deviation [%]; RMSD=root
mean squared deviation.

MSD MAD MRD MARD RMSD
RHF -4.0 17.1 -6.4 43.2 34.8
CCSD 14.0 15.4 74.2 74.7 23.6
CCSD(T) 14.2 16.6 81.1 82.0 23.8
RPA@HF 17.1 18.1 85.9 86.2 28.2
RPA@PBE 33.1 34.6 152.9 153.4 62.4
σ-P1@PBE 25.1 26.6 126.8 127.3 44.5

Table 20: Statistics for absolute isotropic NMR shieldings in a cc-pCVDZ basis. CCSD(T) shieldings are
used as a reference. MSD=mean signed deviation; MAD=mean absolute deviation; MRD=mean relative
deviation [%]; MARD=mean absolute relative deviation [%]; RMSD=root mean squared deviation.

MSD MAD MRD MARD RMSD
RHF -18.2 24.9 -35.4 45.2 47.5
CCSD -0.3 3.0 -0.5 4.6 5.7
CCSD(T) 0.0 0.0 0.0 0.0 0.0
RPA@HF 2.9 5.0 7.4 9.6 9.4
RPA@PBE 18.8 19.3 37.9 38.0 41.3
σ-P1@PBE 10.9 12.0 22.5 22.8 23.1
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Table 21: Absolute isotropic NMR shieldings in a cc-pCVTZ basis. All values are given in ppm. “Extrap.”
stands for basis-set extrapolated CCSD(T)-shieldings in an aug-cc-pCV[TQ]Z basis set. The data for
“Extrap.” was taken from Ref. 3. CCSD(T) calculations were done with the CFOUR program[1, 2].

Mol. Nuc. CCSD(T) Extrap. RPA@HF RPA@PBE σ-P1@PBE
HF H 29.4 28.8 29.4 30.0 29.9

F 420.4 420.3 419.5 418.2 415.9
CO C 8.0 2.2 2.2 26.0 16.1

O -52.0 -55.0 -51.3 -24.0 -39.8
N2 N -56.3 -60.4 -62.9 -32.3 -47.5
H2O O 344.5 338.0 341.8 341.1 338.3

H 31.2 30.6 31.3 31.6 31.5
HCN H 29.2 29.0 29.4 29.4 29.5

C 89.5 84.6 85.5 97.1 93.7
N -11.0 -14.1 -15.8 9.4 0.5

HOF O -49.0 -68.9 -46.1 20.2 -24.8
H 20.6 19.6 21.2 22.8 21.7
F 184.9 192.2 210.2 210.7 185.5

NH3 N 275.5 270.7 272.1 272.4 270.5
H 32.0 31.4 32.1 32.2 32.1

CH2O O -383.6 -378.6 -359.7 -272.4 -340.4
C 10.1 1.5 9.2 29.7 22.2
H 22.3 22.0 22.8 23.2 22.9

CH4 C 200.3 198.9 197.5 198.6 197.6
H 31.5 31.3 31.6 31.6 31.6

C2H4 C 74.4 69.7 70.5 80.9 78.7
H 26.3 26.0 26.5 26.7 26.7

AlF Al 573.6 572.9 578.4 582.4 578.8
F 197.8 211.8 215.8 214.6 210.7

CH3F C 125.8 122.1 125.8 129.1 127.8
F 480.3 482.9 478.5 473.0 475.7
H 27.6 27.3 28.0 28.0 28.0

C3H4 C 193.8 192.1 192.1 193.4 193.3
C 87.7 83.7 84.5 94.3 92.0
H 24.6 24.4 24.8 25.1 25.0
H 30.9 30.6 31.1 31.0 31.1

FCCH C 182.1 179.9 179.9 183.4 182.5
C 103.6 100.1 103.3 107.3 106.7
H 30.7 30.5 30.8 30.9 30.9
F 422.0 423.5 423.7 421.8 421.4

FCN F 373.2 374.1 377.3 375.9 371.4
C 86.6 82.2 83.8 91.4 89.8
N 120.3 117.9 114.5 130.1 124.5

H2S S 739.0 739.0 725.1 734.4 722.5
H 30.8 30.5 30.9 31.1 31.2

HCP H 29.6 29.6 30.0 29.8 30.0
C 42.3 37.6 35.0 51.8 50.3
P 393.6 388.0 376.2 426.9 417.7

HFCO O -92.3 -94.3 -87.8 -58.6 -81.3
C 45.0 39.6 43.1 52.1 48.7
F 166.3 165.3 182.9 183.2 172.3
H 24.3 23.9 24.6 24.6 24.5

H2C2O C 195.0 193.3 192.8 194.3 192.9
C 0.4 -6.3 -1.2 9.4 2.7
O -6.9 -5.9 0.6 15.0 -1.0
H 29.5 29.2 29.7 29.8 29.7

LiF Li 90.3 89.3 90.8 91.0 91.5
F 364.2 382.5 373.2 373.7 377.6

LiH H 26.5 26.6 26.8 26.5 26.7
Li 89.9 89.3 90.1 91.3 91.6

N2O N 111.1 106.4 103.7 122.6 114.7
N 19.0 12.6 9.9 31.5 26.2
O 196.6 199.0 196.0 206.1 197.7

OCS O 96.6 96.8 97.8 110.3 105.0
C 35.4 30.2 29.4 44.9 42.2
S 800.2 796.7 800.5 810.1 799.2

OF2 O -412.4 -447.1 -387.7 -239.0 -352.7
F -6.2 -24.0 21.2 43.1 4.0

H4C2O O 362.4 363.2 365.1 359.2 359.4
C 156.3 153.2 155.9 158.0 157.0
H 29.4 29.1 29.7 29.6 29.7

PN N -342.9 -344.0 -359.2 -273.0 -304.1
P 59.8 50.6 27.1 151.2 105.8
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Table 22: Statistics for absolute isotropic NMR shieldings in a cc-pCVTZ basis. CCSD(T)/aug-cc-
pCV[TQ]Z shieldings are used as a reference. MSD=mean signed deviation; MAD=mean absolute de-
viation; MRD=mean relative deviation [%]; MARD=mean absolute relative deviation [%]; RMSD=root
mean squared deviation.

MSD MAD MRD MARD RMSD
RHF -10.8 18.7 -46.0 57.1 36.9
CCSD 1.5 4.5 9.7 15.2 9.7
CCSD(T) 2.3 3.9 18.2 19.3 6.9
RPA@HF 2.4 5.4 13.7 17.1 11.3
RPA@PBE 16.5 17.4 74.2 74.5 36.9
σ-P1@PBE 7.9 9.5 45.2 45.6 17.9

Table 23: Statistics for absolute isotropic NMR shieldings in a cc-pCVTZ basis. CCSD(T) shieldings are
used as a reference. MSD=mean signed deviation; MAD=mean absolute deviation; MRD=mean relative
deviation [%]; MARD=mean absolute relative deviation [%]; RMSD=root mean squared deviation.

MSD MAD MRD MARD RMSD
RHF -13.1 20.3 -66.0 90.4 38.6
CCSD -0.8 3.5 -7.4 14.9 6.6
CCSD(T) 0.0 0.0 0.0 0.0 0.0
RPA@HF 0.1 5.2 -1.4 20.0 9.1
RPA@PBE 14.2 15.0 70.1 70.3 32.3
σ-P1@PBE 5.6 7.0 22.4 22.8 13.4
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Table 24: Absolute isotropic NMR shieldings in a cc-pCVQZ basis. All values are given in ppm.
“Extrap.” stands for basis-set extrapolated CCSD(T)-shieldings in an aug-cc-pCV[TQ]Z basis set. The
data for “Extrap.” was taken from Ref. 3. CCSD(T) calculations were done with the CFOUR program[1,
2].

Mol. Nuc. CCSD(T) Extrap. RPA@HF RPA@PBE σ-P1@PBE
HF H 29.1 28.8 29.0 29.6 29.1

F 419.7 420.3 419.0 418.3 418.0
CO C 3.9 2.2 -3.0 20.6 9.7

O -54.9 -55.0 -54.5 -27.9 -41.7
N2 N -60.2 -60.4 -67.7 -37.2 -52.0
H2O O 340.6 338.0 338.0 338.0 337.3

H 30.9 30.6 30.9 31.2 30.9
HCN H 29.1 29.0 29.3 29.3 29.2

C 86.0 84.6 81.7 93.1 88.9
N -13.6 -14.1 -18.7 6.1 -3.3

HOF O -61.8 -68.9 -61.6 5.9 -39.7
H 20.0 19.6 20.5 22.0 20.6
F 189.1 192.2 213.4 211.6 191.9

NH3 N 272.7 270.7 269.4 270.2 269.5
H 31.6 31.4 31.7 31.8 31.6

CH2O O -382.9 -378.6 -357.5 -275.8 -336.7
C 4.3 1.5 3.1 22.8 13.5
H 22.1 22.0 22.6 23.0 22.6

CH4 C 199.2 198.9 196.3 197.6 197.3
H 31.4 31.3 31.5 31.4 31.4

C2H4 C 71.0 69.7 66.9 77.1 74.1
H 26.1 26.0 26.3 26.5 26.4

AlF Al 573.2 572.9 576.7 579.8 576.2
F 206.8 211.8 223.6 223.5 225.1

CH3F C 123.2 122.1 123.3 126.5 125.1
F 482.4 482.9 479.7 475.2 480.3
H 27.4 27.3 27.8 27.7 27.7

C3H4 C 192.5 192.1 190.6 191.9 191.8
C 84.8 83.7 81.2 90.9 88.2
H 24.4 24.4 24.6 24.9 24.7
H 30.7 30.6 30.9 30.9 30.8

FCCH C 180.5 179.9 178.1 181.3 179.8
C 101.0 100.1 100.7 104.7 103.8
H 30.5 30.5 30.6 30.8 30.7
F 422.6 423.5 423.7 422.3 423.9

FCN F 373.6 374.1 377.1 376.0 374.4
C 83.4 82.2 80.5 87.9 85.6
N 118.4 117.9 112.1 127.3 120.8

H2S S 737.9 739.0 722.8 733.1 725.5
H 30.6 30.5 30.7 30.8 30.7

HCP H 29.6 29.6 29.9 29.8 29.8
C 38.8 37.6 31.1 47.6 44.4
P 390.5 388.0 373.0 421.9 409.0

HFCO O -94.7 -94.3 -90.2 -62.5 -82.4
C 41.2 39.6 38.9 47.6 43.4
F 164.9 165.3 181.4 182.2 175.3
H 24.0 23.9 24.3 24.3 24.2

H2C2O C 193.7 193.3 191.2 192.8 191.6
C -4.4 -6.3 -6.6 4.0 -2.9
O -7.2 -5.9 -0.3 13.7 1.7
H 29.3 29.2 29.5 29.5 29.3

LiF Li 89.6 89.3 90.1 90.3 90.9
F 375.0 382.5 383.3 385.0 392.4

LiH H 26.6 26.6 26.9 26.6 26.8
Li 89.5 89.3 89.7 90.7 90.8

N2O N 107.9 106.4 99.8 118.7 110.8
N 14.0 12.6 4.7 26.1 21.1
O 197.5 199.0 195.9 206.0 199.0

OCS O 96.2 96.8 97.1 109.2 106.1
C 31.5 30.2 25.2 40.5 37.4
S 798.5 796.7 797.4 806.0 795.7

OF2 O -435.0 -447.1 -411.6 -265.2 -378.0
F -15.7 -24.0 10.7 31.5 -3.7

H4C2O O 363.3 363.2 364.9 359.2 359.8
C 154.0 153.2 153.4 155.6 154.3
H 29.2 29.1 29.5 29.4 29.3

PN N -345.5 -344.0 -362.3 -279.8 -309.9
P 55.3 50.6 21.7 140.9 96.2
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Table 25: Statistics for absolute isotropic NMR shieldings in a cc-pCVQZ basis. CCSD(T)/aug-cc-
pCV[TQ]Z shieldings are used as a reference. MSD=mean signed deviation; MAD=mean absolute de-
viation; MRD=mean relative deviation [%]; MARD=mean absolute relative deviation [%]; RMSD=root
mean squared deviation.

MSD MAD MRD MARD RMSD
RHF -12.1 19.2 -55.1 64.7 37.2
CCSD -0.2 3.7 -3.1 10.2 7.4
CCSD(T) 0.6 1.4 5.4 6.4 2.6
RPA@HF 0.4 4.9 -0.8 13.4 9.3
RPA@PBE 14.1 14.8 58.3 58.5 32.5
σ-P1@PBE 6.2 7.0 28.0 28.2 14.0

Table 26: Statistics for absolute isotropic NMR shieldings in a cc-pCVQZ basis. CCSD(T) shieldings are
used as a reference. MSD=mean signed deviation; MAD=mean absolute deviation; MRD=mean relative
deviation [%]; MARD=mean absolute relative deviation [%]; RMSD=root mean squared deviation.

MSD MAD MRD MARD RMSD
RHF -12.7 19.7 -41.9 53.3 37.6
CCSD -0.8 3.5 -5.4 9.1 6.6
CCSD(T) 0.0 0.0 0.0 0.0 0.0
RPA@HF -0.2 5.2 -2.9 12.7 9.1
RPA@PBE 13.5 14.3 37.5 37.7 31.1
σ-P1@PBE 5.6 6.6 15.1 15.4 12.9
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Table 27: Absolute isotropic NMR shieldings in a def2-SVP basis. All values are given in ppm. “Extrap.”
stands for basis-set extrapolated CCSD(T)-shieldings in an aug-cc-pCV[TQ]Z basis set. The data for
“Extrap.” was taken from Ref. 3. CCSD(T) calculations were done with the CFOUR program[1, 2].

Mol. Nuc. CCSD(T) Extrap. RPA@HF RPA@PBE
HF H 30.1 28.8 30.0 30.6

F 430.6 420.3 430.7 428.6
CO C 32.2 2.2 28.8 52.7

O -10.5 -55.0 -5.4 23.6
N2 N -20.8 -60.4 -22.0 7.0
H2O O 355.2 338.0 353.9 352.0

H 31.7 30.6 31.7 32.1
HCN H 29.8 29.0 29.9 30.0

C 108.4 84.6 105.2 116.7
N 17.9 -14.1 16.1 41.7

HOF O -4.6 -68.9 6.9 73.4
H 21.7 19.6 22.4 24.2
F 193.0 192.2 217.0 231.8

NH3 N 280.7 270.7 278.4 278.0
H 32.3 31.4 32.4 32.5

CH2O O -338.7 -378.6 -307.9 -202.0
C 33.3 1.5 32.6 54.7
H 23.1 22.0 23.5 24.2

CH4 C 205.5 198.9 203.3 204.2
H 31.6 31.3 31.7 31.7

C2H4 C 92.3 69.7 88.1 99.1
H 26.8 26.0 26.9 27.2

AlF Al 583.4 572.9 587.7 592.2
F 205.1 211.8 223.9 224.6

CH3F C 138.4 122.1 138.2 141.9
F 481.2 482.9 481.3 475.4
H 28.0 27.3 28.3 28.4

C3H4 C 202.9 192.1 201.6 203.2
C 104.8 83.7 102.3 112.1
H 25.2 24.4 25.4 25.8
H 31.3 30.6 31.5 31.5

FCCH C 188.9 179.9 186.6 190.3
C 121.7 100.1 121.0 125.2
H 31.2 30.5 31.4 31.5
F 438.9 423.5 441.2 441.2

FCN F 398.3 374.1 403.8 404.5
C 105.3 82.2 103.0 110.2
N 134.1 117.9 130.3 146.4

H2S S 786.6 739.0 780.0 787.0
H 31.5 30.5 31.6 31.8

HCP H 29.8 29.6 30.1 30.0
C 63.0 37.6 55.9 72.8
P 462.9 388.0 445.7 500.7

HFCO O -58.8 -94.3 -49.6 -16.2
C 64.6 39.6 62.9 72.3
F 196.8 165.3 212.8 217.1
H 25.1 23.9 25.4 25.5

H2C2O C 203.9 193.3 202.7 204.2
C 21.3 -6.3 21.4 31.8
O 21.3 -5.9 36.4 51.1
H 30.1 29.2 30.3 30.4

LiF Li 89.3 89.3 89.7 89.6
F 338.0 382.5 349.7 338.9

LiH H 26.7 26.6 26.9 26.6
Li 90.3 89.3 90.4 92.4

N2O N 133.5 106.4 131.0 147.5
N 44.5 12.6 39.8 58.8
O 224.7 199.0 229.9 237.2

OCS O 131.8 96.8 135.9 148.9
C 54.7 30.2 50.4 65.0
S 849.1 796.7 852.3 865.3

OF2 O -329.6 -447.1 -300.0 -132.4
F 27.3 -24.0 58.0 88.7

H4C2O O 368.4 363.2 372.4 367.4
C 166.9 153.2 166.6 169.1
H 29.8 29.1 30.1 30.1

PN N -282.6 -344.0 -278.6 -194.6
P 183.8 50.6 167.1 292.3

S25



Table 28: Statistics for absolute isotropic NMR shieldings in a def2-SVP basis. CCSD(T)/aug-cc-
pCV[TQ]Z shieldings are used as a reference. MSD=mean signed deviation; MAD=mean absolute de-
viation; MRD=mean relative deviation [%]; MARD=mean absolute relative deviation [%]; RMSD=root
mean squared deviation.

MSD MAD MRD MARD RMSD
CCSD(T) 20.4 22.0 92.2 92.7 33.7
RPA@HF 22.5 23.6 94.3 94.6 36.4
RPA@PBE 37.5 39.0 157.1 157.5 68.5

Table 29: Statistics for absolute isotropic NMR shieldings in a def2-SVP basis. CCSD(T) shieldings are
used as a reference. MSD=mean signed deviation; MAD=mean absolute deviation; MRD=mean relative
deviation [%]; MARD=mean absolute relative deviation [%]; RMSD=root mean squared deviation.

MSD MAD MRD MARD RMSD
CCSD(T) 0.0 0.0 0.0 0.0 0.0
RPA@HF 2.1 4.9 7.0 9.9 9.0
RPA@PBE 17.1 17.6 48.9 49.1 38.1
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Table 30: Absolute isotropic NMR shieldings in a def2-TZVP basis. All values are given in ppm.
“Extrap.” stands for basis-set extrapolated CCSD(T)-shieldings in an aug-cc-pCV[TQ]Z basis set. The
data for “Extrap.” was taken from Ref. 3. CCSD(T) calculations were done with the CFOUR program[1,
2].

Mol. Nuc. CCSD(T) Extrap. RPA@HF RPA@PBE
HF H 29.7 28.8 29.6 30.2

F 420.8 420.3 420.7 420.1
CO C 10.4 2.2 4.8 27.7

O -50.9 -55.0 -49.2 -21.4
N2 N -52.2 -60.4 -58.1 -28.4
H2O O 343.3 338.0 341.7 341.9

H 31.6 30.6 31.6 31.9
HCN H 29.3 29.0 29.4 29.5

C 90.3 84.6 86.2 97.0
N -8.3 -14.1 -12.8 12.8

HOF O -53.7 -68.9 -50.1 17.1
H 20.9 19.6 21.4 23.0
F 188.0 192.2 213.4 213.4

NH3 N 275.8 270.7 273.3 274.2
H 32.2 31.4 32.3 32.4

CH2O O -374.8 -378.6 -350.4 -266.7
C 10.7 1.5 9.3 28.2
H 22.4 22.0 22.9 23.3

CH4 C 201.1 198.9 198.7 200.3
H 31.7 31.3 31.8 31.8

C2H4 C 75.8 69.7 71.6 81.5
H 26.5 26.0 26.6 26.8

AlF Al 574.6 572.9 579.9 584.5
F 203.3 211.8 220.7 222.0

CH3F C 126.5 122.1 126.6 129.8
F 482.1 482.9 480.6 476.0
H 27.8 27.3 28.1 28.1

C3H4 C 195.3 192.1 193.8 195.6
C 89.4 83.7 86.0 96.0
H 24.8 24.4 24.9 25.2
H 31.0 30.6 31.2 31.2

FCCH C 184.5 179.9 182.2 185.4
C 104.5 100.1 103.9 107.8
H 30.9 30.5 31.0 31.1
F 426.0 423.5 427.4 427.9

FCN F 374.1 374.1 378.8 378.8
C 87.3 82.2 84.5 91.6
N 123.3 117.9 117.9 133.6

H2S S 729.2 739.0 718.4 729.4
H 31.0 30.5 31.2 31.3

HCP H 29.7 29.6 30.0 29.9
C 44.1 37.6 36.7 52.4
P 381.4 388.0 363.4 414.4

HFCO O -88.3 -94.3 -83.0 -53.8
C 45.8 39.6 43.8 52.3
F 165.7 165.3 182.3 184.1
H 24.4 23.9 24.7 24.7

H2C2O C 197.1 193.3 195.3 197.0
C 1.8 -6.3 0.4 10.9
O -2.6 -5.9 6.5 22.3
H 29.8 29.2 29.9 30.0

LiF Li 90.6 89.3 91.0 91.3
F 378.0 382.5 386.8 392.1

LiH H 26.6 26.6 26.9 26.6
Li 91.1 89.3 91.2 93.2

N2O N 114.1 106.4 107.7 125.8
N 18.7 12.6 10.8 31.4
O 200.6 199.0 201.2 211.3

OCS O 100.4 96.8 102.6 115.4
C 36.4 30.2 31.0 45.7
S 797.7 796.7 799.4 808.0

OF2 O -419.7 -447.1 -393.0 -242.5
F -12.8 -24.0 15.5 37.6

H4C2O O 366.1 363.2 368.8 363.5
C 157.3 153.2 156.8 159.1
H 29.6 29.1 29.8 29.7

PN N -336.2 -344.0 -347.2 -267.4
P 40.0 50.6 11.8 134.6
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Table 31: Statistics for absolute isotropic NMR shieldings in a def2-TZVP basis. CCSD(T)/aug-cc-
pCV[TQ]Z shieldings are used as a reference. MSD=mean signed deviation; MAD=mean absolute de-
viation; MRD=mean relative deviation [%]; MARD=mean absolute relative deviation [%]; RMSD=root
mean squared deviation.

MSD MAD MRD MARD RMSD
CCSD(T) 2.9 4.2 22.0 22.9 6.1
RPA@HF 3.5 6.2 18.1 21.1 12.0
RPA@PBE 17.6 18.1 76.6 76.7 36.5

Table 32: Statistics for absolute isotropic NMR shieldings in a def2-TZVP basis. CCSD(T) shieldings are
used as a reference. MSD=mean signed deviation; MAD=mean absolute deviation; MRD=mean relative
deviation [%]; MARD=mean absolute relative deviation [%]; RMSD=root mean squared deviation.

MSD MAD MRD MARD RMSD
CCSD(T) 0.0 0.0 0.0 0.0 0.0
RPA@HF 0.6 5.0 3.7 15.5 8.9
RPA@PBE 14.7 15.1 48.8 49.0 32.7
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Table 33: Absolute isotropic NMR shieldings in a def2-QZVP basis. All values are given in ppm.
“Extrap.” stands for basis-set extrapolated CCSD(T)-shieldings in an aug-cc-pCV[TQ]Z basis set. The
data for “Extrap.” was taken from Ref. 3. CCSD(T) calculations were done with the CFOUR program[1,
2].

Mol. Nuc. CCSD(T) Extrap. RPA@HF RPA@PBE
HF H 29.0 28.8 28.9 29.6

F 419.2 420.3 418.7 418.9
CO C 4.4 2.2 -2.2 20.8

O -54.9 -55.0 -53.9 -26.9
N2 N -60.0 -60.4 -66.9 -36.7
H2O O 337.8 338.0 335.6 336.9

H 30.8 30.6 30.9 31.2
HCN H 29.1 29.0 29.3 29.3

C 86.3 84.6 82.1 93.5
N -12.4 -14.1 -17.2 7.5

HOF O -63.3 -68.9 -61.8 5.0
H 19.9 19.6 20.5 22.0
F 190.6 192.2 213.8 211.5

NH3 N 271.1 270.7 268.0 269.5
H 31.6 31.4 31.7 31.8

CH2O O -378.1 -378.6 -351.8 -272.6
C 4.9 1.5 4.0 23.1
H 22.1 22.0 22.6 23.0

CH4 C 199.7 198.9 196.7 197.4
H 31.4 31.3 31.5 31.5

C2H4 C 72.1 69.7 68.0 77.8
H 26.1 26.0 26.4 26.5

AlF Al 572.1 572.9 575.6 579.4
F 211.2 211.8 227.8 227.6

CH3F C 124.0 122.1 124.0 126.0
F 482.3 482.9 479.8 474.8
H 27.4 27.3 27.8 27.8

C3H4 C 193.1 192.1 191.1 192.3
C 85.8 83.7 82.3 92.5
H 24.5 24.4 24.6 24.9
H 30.7 30.6 30.9 30.9

FCCH C 181.0 179.9 178.5 181.3
C 101.2 100.1 100.9 104.3
H 30.6 30.5 30.7 30.8
F 423.7 423.5 424.9 422.8

FCN F 374.7 374.1 378.7 377.6
C 83.3 82.2 80.5 87.4
N 119.4 117.9 113.2 128.0

H2S S 737.5 739.0 722.1 732.3
H 30.6 30.5 30.8 30.9

HCP H 29.6 29.6 29.9 29.8
C 39.7 37.6 32.2 48.0
P 385.9 388.0 368.8 417.8

HFCO O -93.1 -94.3 -88.1 -60.8
C 41.7 39.6 39.6 47.3
F 165.2 165.3 182.0 182.2
H 24.0 23.9 24.3 24.3

H2C2O C 194.3 193.3 191.8 193.7
C -4.1 -6.3 -6.1 4.1
O -6.1 -5.9 1.2 15.7
H 29.3 29.2 29.5 29.6

LiF Li 90.3 89.3 90.8 91.0
F 382.2 382.5 390.2 392.6

LiH H 26.6 26.6 26.9 26.6
Li 90.0 89.3 90.2 91.3

N2O N 108.3 106.4 100.7 119.2
N 13.5 12.6 4.9 26.0
O 199.0 199.0 198.3 207.9

OCS O 97.2 96.8 98.6 111.1
C 31.7 30.2 25.8 40.5
S 798.6 796.7 798.4 806.6

OF2 O -438.0 -447.1 -412.7 -267.5
F -19.3 -24.0 7.6 28.3

H4C2O O 363.7 363.2 365.2 359.2
C 154.7 153.2 154.0 155.5
H 29.2 29.1 29.5 29.4

PN N -341.8 -344.0 -356.5 -278.4
P 47.5 50.6 16.1 134.7
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Table 34: Statistics for absolute isotropic NMR shieldings in a def2-QZVP basis. CCSD(T)/aug-cc-
pCV[TQ]Z shieldings are used as a reference. MSD=mean signed deviation; MAD=mean absolute de-
viation; MRD=mean relative deviation [%]; MARD=mean absolute relative deviation [%]; RMSD=root
mean squared deviation.

MSD MAD MRD MARD RMSD
CCSD(T) 0.8 1.2 6.6 6.9 1.9
RPA@HF 0.8 5.2 1.4 13.9 9.7
RPA@PBE 14.3 15.0 59.2 59.4 32.3

Table 35: Statistics for absolute isotropic NMR shieldings in a def2-QZVP basis. CCSD(T) shieldings are
used as a reference. MSD=mean signed deviation; MAD=mean absolute deviation; MRD=mean relative
deviation [%]; MARD=mean absolute relative deviation [%]; RMSD=root mean squared deviation.

MSD MAD MRD MARD RMSD
CCSD(T) 0.0 0.0 0.0 0.0 0.0
RPA@HF 0.0 5.1 -2.3 12.1 9.0
RPA@PBE 13.5 14.2 36.8 37.0 31.2
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Table 36: Absolute isotropic NMR shieldings in a pcSseg-0 basis. All values are given in ppm. “Extrap.”
stands for basis-set extrapolated CCSD(T)-shieldings in an aug-cc-pCV[TQ]Z basis set. The data for
“Extrap.” was taken from Ref. 3. CCSD(T) calculations were done with the CFOUR program[1, 2].

Mol. Nuc. CCSD(T) Extrap. RPA@HF RPA@PBE
HF H 30.8 28.8 30.7 30.9

F 430.9 420.3 432.5 432.1
CO C 7.0 2.2 11.6 43.2

O -77.8 -55.0 -63.6 -19.8
N2 N -74.3 -60.4 -63.1 -25.2
H2O O 355.8 338.0 356.3 355.3

H 32.8 30.6 32.8 32.8
HCN H 30.4 29.0 30.5 30.5

C 87.6 84.6 87.1 102.5
N -14.7 -14.1 -8.9 26.5

HOF O -38.8 -68.9 -7.3 103.6
H 23.6 19.6 24.4 27.0
F 130.4 192.2 168.0 212.2

NH3 N 280.5 270.7 279.7 279.3
H 33.5 31.4 33.7 33.5

CH2O O -475.5 -378.6 -392.7 -217.6
C 13.6 1.5 18.8 47.9
H 23.1 22.0 23.7 24.8

CH4 C 205.6 198.9 204.9 207.2
H 32.7 31.3 32.8 32.6

C2H4 C 82.6 69.7 78.6 92.8
H 27.8 26.0 27.9 28.1

AlF Al 554.5 572.9 559.3 573.8
F 187.8 211.8 211.7 205.1

CH3F C 134.9 122.1 135.4 142.1
F 506.2 482.9 507.0 499.3
H 28.9 27.3 29.1 29.1

C3H4 C 207.9 192.1 207.3 210.1
C 96.7 83.7 96.2 108.3
H 27.0 24.4 27.2 27.4
H 32.1 30.6 32.3 32.1

FCCH C 179.1 179.9 177.3 182.8
C 108.3 100.1 108.1 114.1
H 31.8 30.5 31.9 31.8
F 436.2 423.5 439.0 438.2

FCN F 391.6 374.1 400.3 402.0
C 84.6 82.2 84.1 93.4
N 105.5 117.9 107.7 130.6

H2S S 789.4 739.0 797.4 806.0
H 32.7 30.5 32.9 32.7

HCP H 30.9 29.6 31.1 31.1
C 39.6 37.6 37.2 58.4
P 405.2 388.0 404.4 469.9

HFCO O -139.8 -94.3 -114.1 -60.0
C 44.0 39.6 44.8 56.5
F 170.3 165.3 193.3 202.4
H 25.2 23.9 25.4 25.5

H2C2O C 197.7 193.3 197.2 199.8
C -4.4 -6.3 0.9 16.0
O -49.1 -5.9 -13.0 14.2
H 31.2 29.2 31.4 31.3

LiF Li 89.0 89.3 89.3 89.1
F 301.8 382.5 318.5 302.8

LiH H 26.1 26.6 26.2 25.7
Li 89.6 89.3 89.5 91.4

N2O N 99.0 106.4 104.3 124.2
N 10.0 12.6 12.2 33.9
O 183.1 199.0 198.1 207.1

OCS O 73.4 96.8 83.4 105.0
C 29.1 30.2 28.7 47.1
S 807.2 796.7 816.8 831.3

OF2 O -392.4 -447.1 -329.6 -27.6
F -38.1 -24.0 14.6 74.1

H4C2O O 376.6 363.2 382.4 377.3
C 165.1 153.2 165.6 169.9
H 30.8 29.1 31.0 30.8

PN N -370.9 -344.0 -268.3 -201.9
P 45.1 50.6 146.9 254.6
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Table 37: Statistics for absolute isotropic NMR shieldings in a pcSseg-0 basis. CCSD(T)/aug-cc-
pCV[TQ]Z shieldings are used as a reference. MSD=mean signed deviation; MAD=mean absolute de-
viation; MRD=mean relative deviation [%]; MARD=mean absolute relative deviation [%]; RMSD=root
mean squared deviation.

MSD MAD MRD MARD RMSD
CCSD(T) -1.4 13.8 4.0 36.3 23.4
RPA@HF 9.0 14.5 33.4 40.3 26.8
RPA@PBE 30.3 32.9 118.8 119.6 70.8

Table 38: Statistics for absolute isotropic NMR shieldings in a pcSseg-0 basis. CCSD(T) shieldings are
used as a reference. MSD=mean signed deviation; MAD=mean absolute deviation; MRD=mean relative
deviation [%]; MARD=mean absolute relative deviation [%]; RMSD=root mean squared deviation.

MSD MAD MRD MARD RMSD
CCSD(T) 0.0 0.0 0.0 0.0 0.0
RPA@HF 10.5 10.9 14.9 15.4 24.7
RPA@PBE 31.8 32.0 56.7 56.8 71.1
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Table 39: Testing influence of the auxiliary basis set in a pcSseg-0 basis set. Calculations with the
cc-pVDZ/mp2fit, cc-pVTZ/mp2fit, and cc-pVQZ/mp2fit auxiliary basis set are compared. All values are
given in ppm.

Mol. Nuc. cc-pVDZ/mp2fit cc-pVTZ/mp2fit cc-pVQZ/mp2fit
HF H 30.7 30.7 30.7

F 432.5 432.5 432.5
CO C 11.5 11.6 11.6

O -63.7 -63.7 -63.6
N2 N -63.2 -63.1 -63.1
H2O O 356.3 356.3 356.3

H 32.8 32.8 32.8
HCN H 30.5 30.5 30.5

C 87.1 87.1 87.1
N -9.0 -8.9 -8.9

HOF O -7.6 -7.4 -7.3
H 24.4 24.4 24.4
F 167.9 168.0 168.0

NH3 N 279.7 279.7 279.7
H 33.7 33.7 33.7

CH2O O -393.1 -392.7 -392.7
C 18.8 18.8 18.8
H 23.7 23.7 23.7

CH4 C 204.8 204.8 204.9
H 32.8 32.8 32.8

C2H4 C 78.6 78.6 78.6
H 27.9 27.9 27.9

AlF Al 559.2 559.3 559.3
F 211.6 211.7 211.7

CH3F C 135.4 135.4 135.4
F 507.0 507.0 507.0
H 29.1 29.1 29.1

C3H4 C 207.3 207.3 207.3
C 96.2 96.2 96.2
H 27.2 27.2 27.2
H 32.3 32.3 32.3

FCCH C 177.3 177.3 177.3
C 108.1 108.1 108.1
H 31.9 31.9 31.9
F 439.0 439.0 439.0

FCN F 400.3 400.3 400.3
C 84.1 84.1 84.1
N 107.6 107.7 107.7

H2S S 797.1 797.4 797.4
H 32.9 32.9 32.9

HCP H 31.1 31.1 31.1
C 37.1 37.2 37.2
P 404.2 404.4 404.4

HFCO O -114.2 -114.1 -114.1
C 44.8 44.8 44.8
F 193.2 193.2 193.3
H 25.4 25.4 25.4

H2C2O C 197.2 197.2 197.2
C 0.8 0.9 0.9
O -13.3 -13.1 -13.0
H 31.4 31.4 31.4

LiF Li 89.3 89.3 89.3
F 318.5 318.5 318.5

LiH H 26.2 26.2 26.2
Li 89.5 89.5 89.5

N2O N 104.3 104.3 104.3
N 12.2 12.2 12.2
O 198.1 198.1 198.1

OCS O 83.3 83.4 83.4
C 28.6 28.7 28.7
S 816.7 816.8 816.8

OF2 O -330.1 -329.7 -329.6
F 14.5 14.6 14.6

H4C2O O 382.3 382.4 382.4
C 165.6 165.6 165.6
H 31.0 31.0 31.0

PN N -268.8 -268.3 -268.3
P 146.2 146.8 146.9
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Table 40: Absolute isotropic NMR shieldings in a pcSseg-1 basis. All values are given in ppm. “Extrap.”
stands for basis-set extrapolated CCSD(T)-shieldings in an aug-cc-pCV[TQ]Z basis set. The data for
“Extrap.” was taken from Ref. 3. CCSD(T) calculations were done with the CFOUR program[1, 2].

Mol. Nuc. CCSD(T) Extrap. RPA@HF RPA@PBE
HF H 29.2 28.8 29.1 29.8

F 419.6 420.3 419.5 418.5
CO C 6.3 2.2 2.2 27.0

O -54.4 -55.0 -50.8 -18.8
N2 N -58.6 -60.4 -61.7 -29.9
H2O O 346.3 338.0 344.4 343.8

H 31.1 30.6 31.1 31.4
HCN H 29.2 29.0 29.4 29.5

C 88.0 84.6 83.9 96.0
N -11.6 -14.1 -15.1 12.8

HOF O -50.7 -68.9 -38.9 36.3
H 20.7 19.6 21.4 23.2
F 179.2 192.2 205.2 219.3

NH3 N 276.8 270.7 274.0 274.4
H 31.9 31.4 32.0 32.1

CH2O O -399.5 -378.6 -364.8 -257.5
C 13.0 1.5 11.9 34.0
H 22.6 22.0 23.0 23.7

CH4 C 197.9 198.9 195.7 197.0
H 31.4 31.3 31.5 31.5

C2H4 C 74.6 69.7 69.8 81.3
H 26.5 26.0 26.6 26.9

AlF Al 568.6 572.9 574.1 581.9
F 199.6 211.8 216.7 224.4

CH3F C 126.0 122.1 126.0 129.9
F 473.8 482.9 474.3 468.8
H 27.6 27.3 27.9 28.0

C3H4 C 193.8 192.1 192.3 194.2
C 88.1 83.7 84.6 95.3
H 24.8 24.4 25.0 25.4
H 31.0 30.6 31.1 31.1

FCCH C 179.9 179.9 177.4 181.3
C 102.2 100.1 101.4 105.5
H 30.6 30.5 30.7 30.8
F 422.8 423.5 425.0 425.4

FCN F 374.4 374.1 380.0 380.6
C 84.2 82.2 81.3 88.8
N 119.2 117.9 114.3 131.7

H2S S 750.6 739.0 744.9 755.0
H 31.0 30.5 31.1 31.3

HCP H 29.6 29.6 29.9 29.9
C 44.1 37.6 35.9 54.6
P 399.4 388.0 383.6 441.7

HFCO O -100.1 -94.3 -91.3 -56.7
C 45.5 39.6 43.4 52.8
F 165.6 165.3 183.1 188.4
H 24.4 23.9 24.6 24.8

H2C2O C 192.4 193.3 190.6 192.2
C -2.5 -6.3 -2.9 7.5
O -17.3 -5.9 -2.5 13.9
H 29.5 29.2 29.7 29.8

LiF Li 90.0 89.3 90.3 90.5
F 345.5 382.5 355.5 351.9

LiH H 26.5 26.6 26.7 26.5
Li 90.8 89.3 90.9 93.3

N2O N 109.6 106.4 104.7 123.5
N 20.5 12.6 13.5 34.6
O 194.2 199.0 197.8 207.7

OCS O 94.7 96.8 97.3 113.2
C 35.0 30.2 29.5 45.0
S 805.4 796.7 808.9 823.4

OF2 O -411.2 -447.1 -376.5 -189.9
F -6.4 -24.0 27.3 60.1

H4C2O O 361.3 363.2 365.7 360.7
C 156.7 153.2 156.4 159.1
H 29.5 29.1 29.7 29.7

PN N -330.3 -344.0 -329.6 -237.8
P 83.1 50.6 69.2 200.0

S34



Table 41: Statistics for absolute isotropic NMR shieldings in a pcSseg-1 basis. CCSD(T)/aug-cc-
pCV[TQ]Z shieldings are used as a reference. MSD=mean signed deviation; MAD=mean absolute de-
viation; MRD=mean relative deviation [%]; MARD=mean absolute relative deviation [%]; RMSD=root
mean squared deviation.

MSD MAD MRD MARD RMSD
CCSD(T) 1.9 5.6 17.0 24.0 9.8
RPA@HF 3.9 5.7 17.5 18.6 12.8
RPA@PBE 20.4 21.9 83.1 83.5 46.7

Table 42: Statistics for absolute isotropic NMR shieldings in a pcSseg-1 basis. CCSD(T) shieldings are
used as a reference. MSD=mean signed deviation; MAD=mean absolute deviation; MRD=mean relative
deviation [%]; MARD=mean absolute relative deviation [%]; RMSD=root mean squared deviation.

MSD MAD MRD MARD RMSD
CCSD(T) 0.0 0.0 0.0 0.0 0.0
RPA@HF 2.0 5.2 7.0 14.4 9.6
RPA@PBE 18.5 18.9 47.6 47.7 41.4
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Table 43: Absolute isotropic NMR shieldings in a pcSseg-2 basis. All values are given in ppm. “Extrap.”
stands for basis-set extrapolated CCSD(T)-shieldings in an aug-cc-pCV[TQ]Z basis set. The data for
“Extrap.” was taken from Ref. 3. CCSD(T) calculations were done with the CFOUR program[1, 2].
MP2 calculations were done with the Turbomole program[4–6].

Mol. Nuc. CCSD(T) Extrap. RPA@HF RPA@PBE RPA@KT2 RPA@B3LYP RPA@BH&H σ-P1@PBE MP2
HF H 29.2 28.8 29.1 29.7 29.7 29.6 29.4 29.5 28.9

F 419.5 420.3 418.9 418.2 418.0 418.5 418.7 417.3 425.0
CO C 6.5 2.2 0.6 24.7 20.4 17.4 9.8 15.3 12.1

O -52.3 -55.0 -50.7 -22.6 -27.0 -31.3 -39.5 -36.2 -45.4
N2 N -56.7 -60.4 -62.8 -32.2 -37.5 -41.6 -51.2 -46.1 -39.2
H2O O 339.4 338.0 337.1 337.4 337.7 337.7 337.6 335.7 347.6

H 30.9 30.6 31.0 31.3 31.3 31.2 31.1 31.2 30.7
HCN H 29.2 29.0 29.4 29.4 29.4 29.4 29.4 29.3 29.1

C 87.4 84.6 83.3 95.1 93.1 91.8 88.2 92.4 88.8
N -11.3 -14.1 -15.3 10.6 4.9 3.9 -4.1 2.2 1.9

HOF O -58.9 -68.9 -53.9 15.0 -9.1 -15.8 -38.4 -25.7 -44.1
H 20.1 19.6 20.8 22.3 21.7 21.5 21.0 21.2 20.2
F 190.0 192.2 214.6 215.7 213.2 212.6 212.3 199.6 194.3

NH3 N 272.4 270.7 269.1 270.2 270.4 270.2 269.8 269.0 278.0
H 31.7 31.4 31.8 31.9 31.9 31.9 31.8 31.8 31.5

CH2O O -377.6 -378.6 -348.7 -261.9 -287.9 -290.1 -313.2 -318.8 -331.5
C 7.3 1.5 6.5 27.6 21.7 19.9 13.2 20.8 7.3
H 22.3 22.0 22.8 23.2 23.0 22.9 22.8 22.9 22.3

CH4 C 199.5 198.9 196.5 197.9 197.6 197.7 197.1 197.4 201.2
H 31.4 31.3 31.5 31.5 31.5 31.5 31.5 31.5 31.3

C2H4 C 72.7 69.7 68.6 79.6 77.5 76.7 73.2 77.8 71.1
H 26.2 26.0 26.4 26.6 26.6 26.6 26.5 26.6 26.1

AlF Al 571.0 572.9 574.7 579.8 577.1 576.7 574.2 575.6 569.6
F 213.9 211.8 229.1 239.0 236.4 233.0 229.3 242.6 210.3

CH3F C 124.2 122.1 124.3 127.9 126.9 126.8 125.1 127.2 122.7
F 479.4 482.9 477.4 472.0 472.4 473.3 474.7 474.1 485.9
H 27.5 27.3 27.9 27.9 27.9 27.8 27.8 27.9 27.4

C3H4 C 193.2 192.1 191.4 192.9 192.2 192.4 191.7 192.8 194.3
C 85.9 83.7 82.5 92.7 90.7 89.9 86.5 90.7 87.2
H 24.6 24.4 24.7 25.1 25.1 25.0 24.9 25.0 24.5
H 30.8 30.6 31.0 31.0 31.0 31.0 31.0 31.0 30.8

FCCH C 181.4 179.9 179.0 182.4 181.2 182.1 181.0 182.1 183.1
C 101.8 100.1 101.5 106.0 105.0 104.9 103.2 106.0 99.1
H 30.6 30.5 30.8 30.8 30.9 30.9 30.8 30.8 30.6
F 424.5 423.5 425.8 425.5 425.0 425.3 425.5 425.9 430.7

FCN F 375.2 374.1 379.2 378.9 379.1 378.0 378.2 374.7 384.1
C 84.3 82.2 81.6 89.3 88.0 87.8 85.1 88.4 83.2
N 120.1 117.9 114.6 130.5 127.3 128.0 123.4 126.7 133.4

H2S S 732.1 739.0 718.0 725.7 724.2 723.2 720.2 712.9 748.4
H 30.7 30.5 30.9 31.1 31.1 31.1 31.0 31.1 30.5

HCP H 29.7 29.6 30.0 29.9 29.9 29.9 29.9 30.0 29.5
C 41.5 37.6 34.1 52.4 49.5 47.8 42.4 51.5 46.2
P 381.7 388.0 363.1 411.7 403.2 399.0 384.3 402.8 385.9

HFCO O -93.0 -94.3 -86.9 -57.6 -61.8 -62.3 -69.5 -76.0 -61.3
C 43.2 39.6 41.1 50.6 48.9 48.4 45.1 47.9 43.4
F 166.8 165.3 183.3 186.5 182.2 184.1 181.9 179.5 166.5
H 24.1 23.9 24.4 24.4 24.4 24.4 24.4 24.4 24.1

H2C2O C 194.4 193.3 192.0 193.8 193.5 193.4 192.9 192.5 199.3
C -3.3 -6.3 -4.8 5.9 4.8 3.5 0.1 -0.5 0.7
O -6.7 -5.9 2.2 16.8 16.1 14.9 11.8 4.0 28.4
H 29.3 29.2 29.5 29.6 29.7 29.6 29.6 29.5 29.4

LiF Li 89.6 89.3 90.0 90.2 89.6 90.0 89.8 90.5 89.5
F 372.0 382.5 380.9 382.9 374.3 382.1 380.3 390.5 369.7

LiH H 26.6 26.6 26.9 26.6 26.6 26.7 26.8 26.8 26.7
Li 89.4 89.3 89.5 91.1 90.6 90.5 90.0 91.2 89.4

N2O N 109.6 106.4 103.0 121.7 119.7 117.5 111.9 115.2 132.7
N 15.3 12.6 7.2 28.4 26.7 23.2 16.8 24.3 33.5
O 200.8 199.0 200.9 210.8 210.6 208.8 206.2 202.8 218.9

OCS O 99.9 96.8 101.1 115.3 114.1 111.9 107.7 111.2 113.0
C 32.9 30.2 27.0 42.6 41.2 39.1 34.3 40.4 39.9
S 797.4 796.7 796.6 806.1 804.3 803.2 800.3 794.5 816.8

OF2 O -429.7 -447.1 -401.2 -245.5 -317.2 -328.9 -378.8 -349.4 -452.3
F -16.9 -24.0 12.9 36.9 30.3 26.0 17.9 7.5 -7.0

H4C2O O 363.6 363.2 365.5 360.5 359.5 362.7 364.1 360.3 372.5
C 154.9 153.2 154.4 157.0 156.0 156.2 155.0 156.2 154.2
H 29.3 29.1 29.6 29.5 29.5 29.5 29.5 29.5 29.2

PN N -339.8 -344.0 -350.0 -262.9 -281.1 -290.5 -317.0 -289.4 -248.0
P 42.7 50.6 10.8 129.4 105.3 87.9 51.8 82.7 104.9
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Table 44: Absolute isotropic NMR shieldings in a pcSseg-2 basis. All values are given in ppm. “Extrap.”
stands for basis-set extrapolated CCSD(T)-shieldings in an aug-cc-pCV[TQ]Z basis set. The data for
“Extrap.” was taken from Ref. 3. CCSD(T) calculations were done with the CFOUR program[1, 2].

Mol. Nuc. CCSD(T) Extrap. HF(num.) PBE(num.) KT2(num.) B3LYP(num.)
HF H 29.2 28.8 28.3 29.9 29.9 29.4

F 419.5 420.3 414.5 411.0 408.6 411.3
CO C 6.5 2.2 -27.0 -17.2 -0.9 -22.8

O -52.3 -55.0 -91.8 -85.7 -68.1 -88.6
N2 N -56.7 -60.4 -114.9 -88.8 -69.1 -97.2
H2O O 339.4 338.0 328.8 330.4 326.9 328.4

H 30.9 30.6 30.6 31.3 31.4 31.1
HCN H 29.2 29.0 29.3 29.2 28.9 29.3

C 87.4 84.6 70.3 69.6 80.2 67.1
N -11.3 -14.1 -53.2 -49.2 -28.0 -54.2

HOF O -58.9 -68.9 -135.9 -129.4 -97.8 -138.2
H 20.1 19.6 19.2 19.5 20.2 19.5
F 190.0 192.2 287.0 147.2 156.8 172.3

NH3 N 272.4 270.7 263.5 264.1 263.1 261.6
H 31.7 31.4 31.7 31.9 31.9 31.8

CH2O O -377.6 -378.6 -449.6 -461.8 -398.7 -466.7
C 7.3 1.5 -7.8 -28.6 -11.1 -26.9
H 22.3 22.0 22.6 20.9 21.5 21.5

CH4 C 199.5 198.9 195.1 190.1 192.0 188.4
H 31.4 31.3 31.6 31.5 31.5 31.5

C2H4 C 72.7 69.7 58.9 46.6 58.2 45.8
H 26.2 26.0 26.2 25.6 25.9 25.9

AlF Al 571.0 572.9 577.2 540.4 556.7 547.2
F 213.9 211.8 226.2 140.6 140.7 164.3

CH3F C 124.2 122.1 125.1 104.5 109.7 105.8
F 479.4 482.9 485.7 459.8 458.0 464.7
H 27.5 27.3 28.0 27.1 27.2 27.4

C3H4 C 193.2 192.1 193.6 176.7 180.0 177.9
C 85.9 83.7 70.3 61.3 71.8 59.6
H 24.6 24.4 24.1 24.2 24.3 24.3
H 30.8 30.6 30.9 30.6 30.6 30.7

FCCH C 181.4 179.9 176.1 169.5 177.4 168.7
C 101.8 100.1 100.5 81.5 89.5 82.2
H 30.6 30.5 30.5 31.0 30.8 30.9
F 424.5 423.5 428.3 388.4 391.1 399.9

FCN F 375.2 374.1 377.3 338.2 334.4 350.6
C 84.3 82.2 74.9 67.8 77.4 65.1
N 120.1 117.9 90.1 97.4 113.8 90.4

H2S S 732.1 739.0 712.4 710.4 725.8 694.4
H 30.7 30.5 30.6 30.8 30.8 30.8

HCP H 29.7 29.6 30.1 29.6 29.2 29.8
C 41.5 37.6 11.6 11.5 23.1 7.1
P 381.7 388.0 330.5 320.1 375.4 310.0

HFCO O -93.0 -94.3 -134.0 -132.2 -107.2 -141.5
C 43.2 39.6 33.4 20.3 30.6 19.0
F 166.8 165.3 186.3 88.2 101.2 112.9
H 24.1 23.9 24.5 23.4 23.5 23.8

H2C2O C 194.4 193.3 189.4 185.0 188.7 183.3
C -3.3 -6.3 -15.1 -19.7 -8.6 -25.3
O -6.7 -5.9 -30.9 -25.5 -11.8 -33.5
H 29.3 29.2 29.3 29.3 29.3 29.4

LiF Li 89.6 89.3 90.8 86.7 90.6 87.7
F 372.0 382.5 383.2 323.1 345.8 335.6

LiH H 26.6 26.6 26.5 26.2 26.4 26.5
Li 89.4 89.3 89.5 88.1 92.0 88.2

N2O N 109.6 106.4 61.7 89.6 96.2 79.4
N 15.3 12.6 -34.8 -0.3 6.5 -13.6
O 200.8 199.0 173.2 173.7 171.5 170.8

OCS O 99.9 96.8 73.9 68.3 75.4 68.2
C 32.9 30.2 6.8 21.8 30.6 13.1
S 797.4 796.7 784.1 762.1 778.4 759.2

OF2 O -429.7 -447.1 -444.5 -631.8 -548.1 -590.8
F -16.9 -24.0 22.4 -89.8 -71.5 -72.5

H4C2O O 363.6 363.2 378.7 331.9 336.0 339.0
C 154.9 153.2 155.7 137.1 142.3 138.0
H 29.3 29.1 29.7 29.1 29.2 29.3

PN N -339.8 -344.0 -521.1 -426.6 -390.3 -454.9
P 42.7 50.6 -127.4 -54.9 27.0 -81.9
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Table 45: Statistics for absolute isotropic NMR shieldings in a pcSseg-2 basis. CCSD(T)/aug-cc-
pCV[TQ]Z shieldings are used as a reference. MSD=mean signed deviation; MAD=mean absolute de-
viation; MRD=mean relative deviation [%]; MARD=mean absolute relative deviation [%]; RMSD=root
mean squared deviation.

MSD MAD MRD MARD RMSD
HF(num.) -13.4 20.0 -58.1 66.7 39.5
PBE(num.) -24.9 25.0 -75.9 76.3 39.9
KT2(num.) -13.8 14.1 -29.0 29.6 23.3
B3LYP(num.) -25.1 25.2 -83.9 84.3 38.9
CCSD 0.4 3.9 3.1 11.0 8.4
CCSD(T) 1.2 2.4 11.3 12.4 3.8
RPA@HF 1.6 5.6 7.8 15.3 11.4
RPA@BH&H 6.5 7.7 31.0 31.3 15.2
RPA@B3LYP 11.1 11.9 50.1 50.3 23.5
RPA@KT2 12.3 13.5 56.5 56.8 26.1
RPA@PBE 16.2 17.1 69.5 69.7 36.0
σ-P1@PBE 8.9 10.3 43.8 44.1 19.3
MP2 8.6 9.3 34.2 34.4 18.0

Table 46: Statistics for absolute isotropic NMR shieldings in a pcSseg-2 basis. CCSD(T) shieldings are
used as a reference. MSD=mean signed deviation; MAD=mean absolute deviation; MRD=mean relative
deviation [%]; MARD=mean absolute relative deviation [%]; RMSD=root mean squared deviation.

MSD MAD MRD MARD RMSD
HF(num.) -14.6 21.0 -44.7 54.2 40.0
PBE(num.) -26.1 26.1 -54.9 55.0 41.6
KT2(num.) -15.0 15.2 -25.5 25.8 25.2
B3LYP(num.) -26.2 26.3 -62.2 62.3 40.4
CCSD -0.8 3.4 -4.8 8.1 6.4
CCSD(T) 0.0 0.0 0.0 0.0 0.0
RPA@HF 0.4 5.2 -0.2 11.8 9.4
RPA@BH&H 5.4 6.2 15.0 15.2 13.0
RPA@B3LYP 9.9 10.6 26.6 26.8 21.3
RPA@KT2 11.1 11.9 30.8 31.0 23.9
RPA@PBE 15.0 15.7 38.0 38.1 33.9
σ-P1@PBE 7.7 9.0 19.4 19.7 17.1
MP2 7.4 8.6 20.7 21.4 17.5

S38



References

[1] D. A. Matthews, L. Cheng, M. E. Harding, F. Lipparini, S. Stopkowicz, T.-C. Jagau, P. G. Szalay,
J. Gauss, and J. F. Stanton, J. Chem. Phys. 152, 214108 (2020).

[2] J. F. Stanton, J. Gauss, L. Cheng, M. E. Harding, D. A. Matthews, and P. G. Szalay, “CFOUR,
Coupled-Cluster techniques for Computational Chemistry, a quantum-chemical program package,”
With contributions from A.A. Auer, R.J. Bartlett, U. Benedikt, C. Berger, D.E. Bernholdt, S.
Blaschke, Y. J. Bomble, S. Burger, O. Christiansen, D. Datta, F. Engel, R. Faber, J. Greiner, M.
Heckert, O. Heun, M. Hilgenberg, C. Huber, T.-C. Jagau, D. Jonsson, J. Jusélius, T. Kirsch, K. Klein,
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cantly exceed the basis set error. Using calculations with the spin-orbit mean field ansatz
and gauge-including atomic orbitals as a reference, we furthermore show that the accuracy
and reliability of common gauge-origin approaches in larger molecules depends strongly
on the locality of the spin density distribution. We propose a new pragmatic ansatz for
choosing the gauge-origin which takes the spin density distribution into account and gives
reasonably accurate values for molecules with a single localized spin center. For more gen-
eral cases like molecules with several spatially distant spin centers, common gauge-origin
approaches are shown to be insufficient for consistently achieving high accuracy. Therefore
the computation of g-tensors using distributed gauge-origin methods like gauge-including
atomic orbitals is considered as the ideal approach and is recommended for larger molec-
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We present a benchmark study on the gauge-origin dependence of the electronic g-tensor using data
from unrestricted density functional theory calculations with the spin-orbit mean field ansatz. Our
data suggest in accordance with previous studies that g-tensor calculations employing a common
gauge-origin are sufficiently accurate for small molecules; however, for extended molecules, the
introduced errors can become relevant and significantly exceed the basis set error. Using calcula-
tions with the spin-orbit mean field ansatz and gauge-including atomic orbitals as a reference, we
furthermore show that the accuracy and reliability of common gauge-origin approaches in larger
molecules depends strongly on the locality of the spin density distribution. We propose a new prag-
matic ansatz for choosing the gauge-origin which takes the spin density distribution into account and
gives reasonably accurate values for molecules with a single localized spin center. For more general
cases like molecules with several spatially distant spin centers, common gauge-origin approaches
are shown to be insufficient for consistently achieving high accuracy. Therefore the computation of
g-tensors using distributed gauge-origin methods like gauge-including atomic orbitals is considered
as the ideal approach and is recommended for larger molecular systems. Published by AIP Publishing.
https://doi.org/10.1063/1.5028454

I. INTRODUCTION

A central issue in the calculation of magnetic molecu-
lar properties is the gauge-origin dependence. Unless gauge-
origin independence is enforced by appropriate methods, com-
puted values can depend on the positioning of the molecule
within the chosen coordinate system.1 This unphysical effect
is only present in calculations with a finite basis set and van-
ishes in the complete basis set limit. Well-established methods
exist that use distributed gauge-origins and assure gauge-
origin independent results. The most commonly used approach
employs gauge-including atomic orbitals (GIAOs, also called
“London atomic orbitals”).2–4 Alternatively, the “individual
gauge for localized orbitals” (IGLO)6,7 or the “localized
orbital/local origin” (LORG)8 approaches have been used in
methods employing localized molecular orbitals.5

Gauge-origin dependence is also a problem in g-tensor
calculations; however, in several studies on the electronic g-
tensor, it was found to be smaller than for other magnetic
properties.9–13 Still, some evidence of a non-negligible influ-
ence of the gauge in g-tensor calculations can be found in
the literature: Lushington et al.13 analyzed the gauge-origin
dependence using Hartree-Fock and reported that for some
of the studied molecules g-shifts changed considerably upon
translation of the molecule by 1.73 bohrs in a Sadlej basis
set14 (30% change for ∆gxx of CO−2 ; 34% change for ∆gxx of
C3H5). Kaupp et al.15 observed a rather small dependence
of the g-shifts on the chosen gauge-origin in calculations
on various phenoxyl radicals, but a pronounced gauge-origin

a)Electronic mail: christian.ochsenfeld@uni-muenchen.de

dependence of the g-tensor orientation. Patchkovskii et al.16

found a pronounced gauge-origin dependence of the (in most
cases relatively small) spin-other-orbit contribution to the g-
tensor. van Lenthe et al.12 studied the gauge-origin dependence
of their relativistic ansatz for g-tensor calculations based on
the zeroth-order regular approximation method and observed
for NO2 with triple-ζ Slater type orbital basis set changes of
around 20% upon translation of the molecule by 10 Å in the x-,
y-, and z-direction. Lushington and Grein17 reported a relative
change of 18% in the g-shifts in multi-reference configuration
interaction calculations for MgF with two choices of the gauge-
origin [on the Mg atom or in the electronic charge centroid
(ECC)18].

Despite these examples which show that the gauge-
origin dependence can have a non-negligible effect on the
g-shifts, many studies on electronic g-tensors employ a com-
mon gauge-origin.10,11,19–35 This can also be explained by the
fact that most previous studies focused on g-tensors of small
molecules.17,28,30,33,34,36,37 By contrast, for g-tensors of large
molecules, the gauge-origin dependence of the obtained values
can be expected to be much more severe. This is because the
errors associated with the gauge-origin dependence increase
with distance from the gauge-origin;1 in extended molecules
always some parts of the molecule are relatively far apart
from the origin — no matter how the molecule is positioned.
As several recent studies presented g-tensor calculations on
larger molecules,38–45 a careful evaluation of the influence of
the gauge-origin dependence in larger systems appears to be
necessary.

To this end we carried out the, to our knowledge,
most extensive study on the gauge-origin dependence of the
electronic g-tensor to date. In particular, we also discuss the

0021-9606/2018/148(21)/214101/11/$30.00 148, 214101-1 Published by AIP Publishing.
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accuracy and reliability of common gauge-origin approaches
for larger molecules and highlight the role played by the
spin density distribution. Our method of choice is unrestricted
density functional theory (DFT) because it provides a reason-
able compromise between accuracy and computational effi-
ciency. We use B3LYP46 as a functional, which has shown
a good agreement with coupled-cluster singles and doubles
(CCSD) calculations on g-tensors in a recent study by Perera
et al.47 Further details on our employed ansatz are provided in
Sec. II.

II. THEORY

The components of the electronic g-tensor can be com-
puted in analytical derivative theory by taking a second deriva-
tive of the energy E with respect to the magnetic field ~B and
the electronic spin~s

gpq =
2
α

∂2E
∂Bp∂sq

����B=0,s=0
, p, q ∈ {x, y, z}, (1)

where α denotes the fine structure constant.48 Throughout
this paper, only the three g-shifts or their isotropic average
are shown; the g-shifts are the deviations of the singular val-
ues of the g-tensor from the g-value of the free electron gel.
The contributions to the g-tensor include the relativistic mass
correction grmc, the diamagnetic one- and two-electron terms
(gdso1 and gdso2), and the paramagnetic one- and two-electron
terms (gpso1 and gpso2)48

gpq = δpqgel + grmc
pq + gdso1

pq + gdso2
pq + gpso1

pq + gpso2
pq . (2)

In the following, we summarize how these contributions are
computed in our implementation. We initially show the equa-
tions for a basis of regular atomic orbitals (AOs) and then
describe the necessary modifications for a basis of GIAOs.

grmc is readily computed from the kinetic energy integrals
Tµν and the spin density Pα−β

µν

grmc
pq = −

α2gel

2S
δpq

∑

µν

Pα−β
µν Tµν . (3)

S is the total spin of the electronic state (e.g., 1
2 for doublet

states and 2
2 for triplet states). The diamagnetic one-electron

contribution is given by the following expression:

gdso1
pq =

α2g′

8S

∑

A

ZA

∑

µν

Pα−β
µν



∫
χµ(~r)

δpq(~r − ~RA) · (~r − ~R0)

|~r − ~RA |3
χν(~r)dr3

−
∫

χµ(~r)
(~r − ~RA)p(~r − ~R0)q

|~r − ~RA |3
χν(~r)dr3


, (4)

where ZA and ~RA are the charge and position of nucleus A,
respectively, and g′ is the electronic spin-orbit g-factor.49 ~R0

is the chosen gauge-origin. The diamagnetic two-electron con-
tribution is usually rather small; we only indirectly account for
it by replacing the nuclear charges ZA in Eq. (4) by effective

nuclear charges Z̃A as determined by Koseki et al.37 In this
way, we obtain for the diamagnetic contributions

gdso1
pq + gdso2

pq ≈ α2g′

8S

∑

A

Z̃A

∑

µν

Pα−β
µν



∫
χµ(~r)

δpq(~r − ~RA) · (~r − ~R0)

|~r − ~RA |3
χν(~r)dr3

−
∫

χµ(~r)
(~r − ~RA)p(~r − ~R0)q

|~r − ~RA |3
χν(~r)dr3


. (5)

For the paramagnetic terms, we employ the spin-orbit mean
field (SOMF) operator.50(a),50(b) It treats the two-electron spin-
orbit coupling in a mean field way and has been shown to be a
highly accurate approximation to the exact spin-orbit oper-
ators.50(a) The SOMF operator ẑ has a similar structure to
the Fock operator and contains one-electron, Coulomb, and
exchange contributions

zq
µν = hSOMF

µν,q + JSOMF
µν,q + KSOMF

µν,q , q ∈ {x, y, z}, (6)

hSOMF
µν,q =

α2g′

4

∑

A

ZA

∫
χµ(~r)

[
(~r − ~RA) × p̂

]
q

|~r − ~RA |3
χν(~r)dr3,

(7)

JSOMF
µν,q = −α

2g′

4

∑

λσ

Pλσgsoc, q
µνλσ , (8)

KSOMF
µν,q =

3
8
α2g′

∑

λσ

(
Pλσgsoc, q

µλσν + Pλσgsoc, q
σνµλ

)
, (9)

gsoc, q
µνλσ =

∫
χµ(~r)

[
(~r −~r ′) × p̂

]
q

|~r −~r ′ |3 χν(~r)χλ(~r ′)χσ(~r ′)dr3dr ′3.

(10)

Finally, we further apply the 1X-approximation, which only
introduces minor errors, to the SOMF operator as suggested
by Neese.50(a) The SOMF-1X operator is obtained from the
full SOMF-operator by neglecting all multi-center integrals in
Eq. (9).

With the SOMF operator, the paramagnetic contribution
to the g-tensor can be obtained as follows:

gpso1
pq + gpso2

pq ≈ 1
αS

∑

µν

∂Pα−β
µν

∂Bp

������s=0

zq
µν . (11)

The magnetic field derivative of the spin density is obtained
from the difference of the perturbed α and β densities

∂Pα−β
µν

∂Bp

������s=0

=
∂Pα

µν

∂Bp

�����s=0

− ∂Pβ
µν

∂Bp

������s=0

, (12)

which in turn can be computed by unrestricted coupled-
perturbed self-consistent field (CPSCF) as described, e.g., in
Ref. 51.

In addition to the gauge-origin dependent theory in a regu-
lar AO basis described so far, we also implemented the SOMF
ansatz in combination with GIAOs, which are obtained from a
product of a regular AO basis function χµ(~r) and a magnetic
field dependent phase factor4

φµ(~r) = exp
[
−i
α

2
(~B × (~Rµ − ~R0)) ·~r

]
χµ(~r). (13)
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GIAOs have previously been used in several methods for
g-tensor computations such as the coupled-cluster approach
from Gauss et al.69 and the DFT ansatz from Schreckenbach
and Ziegler.48 If GIAOs are employed the expression for the
diagmagnetic contributions changes as follows:

gdso1
pq + gdso2

pq ≈ α2g′

8S

∑

A

Z̃A

∑

µν

Pα−β
µν



∫
χµ(~r)

δpq(~r − ~RA) · (~r − ~Rν)

|~r − ~RA |3
χν(~r)dr3

−
∫

χµ(~r)
(~r − ~RA)p(~r − ~Rν)q

|~r − ~RA |3
χν(~r)dr3


.

(14)

In a GIAO basis, the magnetic field derivatives of the inte-
grals contributing to the Fock matrix and of the exchange-
correlation potential need to be included in the CPSCF equa-
tions as described in Ref. 52 for restricted CPSCF. The use of
GIAOs also leads to an additional paramagnetic contribution
from the B-field derivative of the SOMF matrix

gpso1
pq + gpso2

pq ≈ 1
αS

∑

µν



∂Pα−β
µν

∂Bp

������s=0

zq
µν +Pα−β

µν
*
,

∂zq
µν

∂Bp

+
-


, (15)

∂zq
µν

∂Bp
= −α

2

(
~Rµ × ~Rν

)
p
zq
µν −

α

2

[(
~Rµ − ~Rν

)
× zq

µν+

]
p
. (16)

Here, ~Rµ and ~Rν are the positions of the atomic centers of χµ
and χν , respectively. The index ν+ indicates the basis func-
tion χν , whose angular momentum has been incremented in
either x-, y-, or z-direction as necessitated by the cross prod-
uct. Note that the basis functions χλ and χσ in Eqs. (8)–(10)
are not substituted by GIAOs because the SOMF operator
enters the Hamiltonian as a one-electron operator. Consider-
able simplification occurs if the 1X-approximation is invoked;
in this case, no exchange terms need to be computed dur-
ing the evaluation of Eq. (16) because both ~Rµ × ~Rν and
~Rµ − ~Rν vanish if all basis functions are centered on the same
atom.

III. COMPUTATIONAL DETAILS

The theory described in Sec. II was implemented both
for a basis of GIAOs and a basis of regular AOs in a devel-
opment version of the FermiONs++ program.53,54 The ref-
erence state is obtained via unrestricted Kohn-Sham DFT
and the SCF energy converged to a threshold of 10−8 a.u.
Direct inversion of the iterative subspace (DIIS)55 is employed
for updating the perturbed density during the CPSCF. The
perturbed densities were converged below 10−7. Shell pairs
with a maximum basis function overlap of less than 10−12

were omitted from the calculation. The molecular integration
grid used for DFT was generated as a product of a spherical
Lebedev/Laikov56 grid with 590 angular points and a Treutler-
Ahlrichs “M4” grid57 with 99 radial points. We employ basis
sets from the def2-series58 (def2-SVP, def2-TZVP, and def2-
QZVPPD59); these basis sets are well-suited for DFT calcula-
tions and have also been used in several recent DFT studies on
g-tensors.38,40–44

The structures of the small molecules used in Secs. IV A
and IV B were taken from two sources: a set of molecules
from Schreckenbach and Ziegler used for benchmarking their
g-tensor ansatz48 and a set of small main group radicals
from Ref. 60 with structures optimized by unrestricted CCSD
with perturbative triples [UCCSD(T)]. The used test set con-
tains 45 molecules, including different spin states (doublets
and triplets) as well as molecular charges (anions, cations,
and neutral species). The geometries of the molecules used
for Secs. IV C and IV D were optimized with the HF-3c
method61 using the ORCA program.62,63 All computed g-
shifts are shown in the supplementary material. The employed
geometries are available for download at http://www.cup.uni-
muenchen.de/pc/ochsenfeld/download/.

IV. RESULTS AND DISCUSSION
A. Significance of the gauge-origin dependence
in g-tensor calculations

In this section, we present calculations on a test set of
45 main group radicals for the purpose of benchmarking the
gauge-origin dependence of the electronic g-tensor at the DFT
level of theory. We quantify the gauge-origin dependence in
our calculations by performing two calculations per molecule
with different positioning of the molecule relative to the gauge-
origin: in one of these calculations the gauge-origin is posi-
tioned in the center of mass of the molecule; in the second
calculation the molecule is translated away from the gauge-
origin by 10.0 Å in the x-, y-, and z-direction. The difference
in the g-shifts in these calculations is in the following denoted
as ∆gauge. In order to assess the relevance of the observed
gauge-origin dependence and its practical implications, we try
to compare the gauge error to the basis set error. Both of these
errors represent different aspects of the basis set incomplete-
ness and vanish for a complete basis set. Our estimate for basis
set error (which we denote as ∆basis) is obtained from the dif-
ference to the g-shifts computed in a def2-QZVPPD basis set,
which we assume to be close to the complete basis set limit
(in both calculations the gauge-origin is at the center of mass).
Based on the comparison between gauge error and basis set
error, we then discuss to what extent the use of distributed
gauge-origin methods like GIAOs can improve the accuracy
of g-tensor calculations in a given basis.

Although our main interest focuses on the gauge errors
that can occur in medium-sized and larger molecules, we
exclusively employ small molecules (less than eight atoms)
in the calculations of this section. We avoid larger molecules
as the calculations with the def2-QZVPPD basis set would be
computationally very demanding. However, as we will show
in Secs. IV C and IV D in calculations on extended molecules,
the contributions to the molecular g-tensor are often local
and originate from small parts of the molecule. We there-
fore think that ∆gauge provides a good estimate of the errors
that can be expected when contributions to the g-tensor from
a group of atoms inside a large molecule are computed—
assuming that this group of atoms does not happen to be
spatially close to the gauge-origin. The employed translation
distance of 17.3 Å (10.0 Å in each spatial direction) is not
unreasonably large for this purpose as the numerous studies
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FIG. 1. Comparison of the influence of the basis set and gauge-origin on g-
shifts in our test set. ∆basis is the absolute deviation of the value computed
with the def2-SVP basis set from the def2-QZVPPD result obtained with the
same nuclear coordinates. ∆gauge is the absolute change in the individual g-
shifts upon a translation of the molecule by 10.0 Å in the x-, y-, and z-direction
(using def2-SVP as a basis set in both calculations).

using EPR spectroscopy on biological macromolecules includ-
ing, e.g., spin-labeled proteins,64,65 lipids,66 or nucleic acid
polymers,67 show. For such molecules, inter-atomic distances
can easily exceed 17.3 Å. Nevertheless, we will also discuss
the implications of our findings for calculations on smaller
molecules.

In Figs. 1–4, we present how large ∆gauge and ∆basis are
in absolute and relative terms for the molecules in our test set;
for this purpose, we sorted the computed deviations into cate-
gories in order to show how these errors vary among the test
set. The calculation with the same basis set and with the gauge-
origin in the center of mass is taken as a reference value for
the relative deviations due to gauge-origin dependence. The
relative deviations due to ∆basis are computed relative to the
def2-QZVPPD values (also with the center of mass as gauge-
origin). Statistical values on the calculations are presented in

FIG. 2. Comparison of the influence of the basis set and gauge-origin on g-
shifts in our test set. ∆basis is the absolute deviation of the value computed
with the def2-TZVP basis set from the def2-QZVPPD result obtained with the
same nuclear coordinates. ∆gauge is the absolute change in the individual g-
shifts upon a translation of the molecule by 10.0 Å in the x-, y-, and z-direction
(using def2-TZVP as a basis set in both calculations).

FIG. 3. Comparison of the influence of the basis set and gauge-origin on
g-shifts in our test set. ∆basis is the unsigned relative deviation of the value
computed with the def2-SVP basis set from the def2-QZVPPD result obtained
with the same nuclear coordinates. ∆gauge is the unsigned relative change in
the individual g-shifts upon a translation of the molecule by 10.0 Å in the x-,
y-, and z-direction (using def2-SVP as a basis set in both calculations).

Table I. As g-shifts can vary over several orders of magni-
tude for different molecules, it is worth mentioning that the
average isotropic g-shift of our test set amounts to 3495 ppm
(def2-QZVPPD basis).

For the def2-SVP basis set and the employed transla-
tion distance of 17.3 Å, the average value of ∆gauge exceeds
the average of ∆basis significantly—both for individual g-
shifts (2318 ppm compared to 693 ppm) and for isotropic
g-shifts (1967 compared to 642 ppm). In general, we observe
that for molecules whose three g-shifts have significantly dif-
ferent magnitudes, the smallest shifts of these g-shifts show
the highest sensitivity to the gauge. This effect explains why
the mean relative deviations in the individual g-shifts due to
∆gauge (346.3% for def2-SVP; 95.9% for def2-TZVP) are
much higher than the mean relative deviations in the isotropic
g-shifts (79.3% for def2-SVP; 25.5% for def2-TZVP). These

FIG. 4. Comparison of the influence of the basis set and gauge-origin on g-
shifts in our test set.∆basis is the unsigned relative deviation of the value com-
puted with the def2-TZVP basis set from the def2-QZVPPD result obtained
with the same nuclear coordinates. ∆gauge is the unsigned relative change in
the individual g-shifts upon a translation of the molecule by 10.0 Å in the x-,
y-, and z-direction (using def2-TZVP as a basis set in both calculations).
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TABLE I. Mean and standard deviations (s.d.) from the calculations on our test set with either def2-SVP or
def2-TZVP basis set. ∆basis is the deviation of the computed value from the def2-QZVPPD result obtained with
the same nuclear coordinates. ∆gauge is the change in the individual g-shifts upon a translation of the molecule
by 10.0 Å in the x-, y-, and z-direction (using the same basis set in both calculations). Shown are either statistics
on the individual g-shifts (“all”), the isotropic g-shifts (“iso”), or the isotropic g-shifts between 500 and 5000 ppm
[“iso (500–5000 ppm)”].

def2-SVP def2-TZVP

Shifts Absolute (ppm) Relative (%) Absolute (ppm) Relative (%)

All ∆gauge (mean) 2318 346.3 1193 95.9
∆basis (mean) 693 15.5 175 7.3
∆gauge (s.d.) 5245 1690.4 3041 463.8
∆basis (s.d.) 1564 23.5 368 15.9

Iso ∆gauge (mean) 1967 79.3 1041 25.5
∆basis (mean) 642 14.1 156 6.3
∆gauge (s.d.) 3580 121.1 2228 36.7
∆basis (s.d.) 990 14.5 253 10.8

Iso (500–5000 ppm) ∆gauge (mean) 1290 102.9 387 21.2
∆basis (mean) 274 13.1 102 4.4
∆gauge (s.d.) 1041 152.1 302 17.1
∆basis (s.d.) 477 17.1 263 7.2

large relative deviations can also be seen from Figs. 3
and 4.
∆basis is reduced by roughly a factor of four upon chang-

ing from a def2-SVP basis to a def2-TZVP basis (693 ppm
compared to 175 ppm); ∆gauge is on average only reduced by
roughly a factor of two (2318 ppm compared to 1193 ppm). If
only isotropic g-shifts between 500 and 5000 ppm are included
in the statistics, ∆gauge is diminished to a somewhat larger
extent upon changing from a def2-SVP to a def2-TZVP basis
set (reduction from 1290 ppm to 387 ppm) than∆basis (reduc-
tion from 274 ppm to 102 ppm). Thus the gauge-error is
of similar magnitude relative to the basis set error both for
the def2-SVP and the def2-TZVP basis sets, even though its
absolute size decreases by about 50% for the larger basis
set.

The shown data imply that the “total basis set incomplete-
ness error” (including the gauge error and the regular basis set
error) in contributions to the g-tensor from a group of atoms
displaced 17.3 Å from the gauge-origin can be reduced con-
siderably if distributed gauge-origin methods are employed as
the gauge error exceeds the standard basis set error signifi-
cantly (for def2-TZVP/individual g-shifts by a factor of 6.8).
Thus, the use of distributed gauge-origin approaches would
be beneficial in situations where the gauge-origin cannot be
positioned closer to sites of the molecule with significant
contributions to the g-tensor — especially considering that
distributed gauge-origin approaches increase the computa-
tional cost to a much smaller extent than an increase of the
basis set.

In general, the components of the g-tensor depend lin-
early on the displacement from the gauge-origin.13 The same
linear dependence also holds for the closely related NMR
shielding tensors.68 This does not imply a strictly linear depen-
dence of the individual g-shifts; only the isotropic g-shift
changes in a linear fashion with increasing distance from the

gauge-origin. Therefore one can extrapolate how large the
gauge-error in the isotropic g-shifts would be on average for
smaller or larger displacements than the employed 17.3 Å.
For def2-SVP, the gauge error in the isotropic g-shift amounts
to 113.7 ppm/Å on average; for def2-TZVP, it amounts to
60.2 ppm/Å. For a distance of 1.0 Å to the gauge-origin,
the gauge-error is clearly below ∆basis suggesting that dis-
tributed gauge-origin methods would not significantly improve
the accuracy in g-tensor calculations on very small molecules.
On average, the gauge error in the isotropic g-shifts exceeds
∆basis for displacements larger than 5.6 Å (def2-SVP) and
2.6 Å (def2-TZVP). If only values between 500 and 5000 ppm
are included, ∆gauge is on average larger than ∆basis for dis-
placements above 3.7 Å (def2-SVP) and 4.6 Å (def2-TZVP).
These results imply that the usage of distributed gauge-origin
methods can improve the accuracy considerably for extended
molecules.

We also found rather large variations of the gauge-origin
dependence among the molecules in our test set. In Table II,
data from several molecules are shown, whose g-shifts dis-
play a quite pronounced dependence on the gauge. For all
these molecules, the gauge error after displacement signifi-
cantly exceeds the changes that are caused by an enlargement
of the basis set. With the def2-SVP basis set, the isotropic
g-shifts of the molecules in Table II deviate on average
934 ppm from the def2-QZVPPD numbers; after displace-
ment this deviation grows to 6374 ppm. For the def2-TZVP
basis, the deviations relative to the def2-QZVPPD values are
increased by more than one order of magnitude by the trans-
lation away from the gauge-origin (from 155 ppm to 2197
ppm). The gauge error in the calculations exceeds ∆basis on
average for more than 2.5 Å (def2-SVP) and 1.2 Å (def2-
TZVP) distance to the gauge-origin. This shows even more
impressively than the statistics on the entire test set how large
influences of the gauge in g-tensor calculations can be. It
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TABLE II. Examples of molecules in our test set with strong gauge-origin
dependence. The column “transl.” indicates whether the molecule was posi-
tioned close to the origin or translated away from it by 10.0 Å in the x-, y- and
z- direction.

Molecule Basis Transl. ∆g1 (ppm) ∆g2 (ppm) ∆g3 (ppm)

ClO3 def2-SVP No 10 056 10 056 847
def2-SVP Yes 16 099 15 221 �25
def2-TZVP No 7 581 7 581 1058
def2-TZVP Yes 10 185 9 892 766
def2-QZVPPD No 7 316 7 316 1105

GeH3 def2-SVP No 14 613 14 613 �211
def2-SVP Yes 55 387 46 245 �9106
def2-TZVP No 16 196 16 196 �61
def2-TZVP Yes 29 764 27 576 �2217
def2-QZVPPD No 16 762 16 762 �107

MgF def2-SVP No �5 �1 905 �1905
def2-SVP Yes 877 �5 169 �6048
def2-TZVP No �3 �1 705 �1705
def2-TZVP Yes 119 �2 504 �2625
def2-QZVPPD No �3 �1 742 �1742

SO−3 def2-SVP No 4 379 4 379 73
def2-SVP Yes 8 564 7 852 �636
def2-TZVP No 2 761 2 761 366
def2-TZVP Yes 4 709 4 399 57
def2-QZVPPD No 2 534 2 534 169

SiH3 def2-SVP No 2 062 2 062 �89
def2-SVP Yes 7 360 6 205 �1239
def2-TZVP No 2 266 2 266 �78
def2-TZVP Yes 2 619 2 599 �99
def2-QZVPPD No 2 285 2 285 �78

strongly suggests that the gauge-origin dependence cannot be
ignored for larger molecules because the introduced errors
might render the computed values meaningless. Distributed
gauge-origin methods offer one elegant way to completely
remove the gauge error at moderately increased computational
cost and should be employed for larger molecules if possible.
In Secs. IV C and IV D, we will present calculations on larger
molecules and analyze the gauge-origin dependence in these
systems.

B. Influence of GIAOs on the basis set convergence

Most importantly, GIAOs ensure gauge-origin indepen-
dent results in magnetic property calculations. Apart from
that, the use of GIAOs also has the desirable advantage of
an accelerated basis set convergence. In this section, we ana-
lyze to what extent the GIAOs accelerate basis set convergence
in g-tensor computations at the DFT level. We present some
example data from our test set (Table III) and statistical val-
ues (Table IV). For the def2-SVP basis set, the use of GIAOs
reduces the absolute deviation to the def2-QZVPPD result
from 693 ppm to 645 ppm on average while the relative devia-
tion decreases from 15.5% to 14.6%. For the def2-TZVP basis,
mean absolute deviations of 196 ppm and 175 ppm absolute
deviation with and without GIAOs are observed; the mean rela-
tive deviations amount to 6.5% and 7.3%. It shows that GIAOs
accelerate the basis set convergence in g-tensor calculations at

TABLE III. Illustrative examples of the basis set convergence in some of the
molecules in our test set. “+ giao” indicates the use of a GIAO basis; in all
other cases, a regular AO basis set was employed and the gauge-origin was
positioned in the center of mass.

Molecule Basis ∆g1 (ppm) ∆g2 (ppm) ∆g3 (ppm)

BS def2-SVP �83 �8594 �8594
def2-SVP + giao �83 �8358 �8358
def2-TZVP �84 �9338 �9338
def2-TZVP + giao �84 �9322 �9322
def2-QZVPPD �84 �9099 �9099

CO+ def2-SVP �136 �2336 �2336
def2-SVP + giao �136 �2255 �2255
def2-TZVP �135 �2534 �2534
def2-TZVP + giao �135 �2514 �2514
def2-QZVPPD �134 �2535 �2535

NH+
3 def2-SVP 1449 1449 �162

def2-SVP + giao 1475 1475 �156
def2-TZVP 1595 1595 �158
def2-TZVP + giao 1600 1600 �153
def2-QZVPPD 1657 1657 �156

the DFT level only to a very small extent. This result agrees
with the findings from Gauss et al., who reported only marginal
acceleration of the basis set convergence by GIAOs in their
CCSD approach.69

In Secs. IV C and IV D, we will present calculations with
different choices of a common gauge-origin and compare them
to calculations with GIAOs. Based on the findings of this sec-
tion, this comparison is suitable for estimating the gauge error
in the calculations without GIAOs, as GIAOs ensure gauge-
origin independence but only have a small impact on the basis
set convergence.

C. Gauge-origin dependence in molecules
with a single localized spin center

As the calculations on small molecules shown in Sec. IV A
suggest, errors due to gauge-origin dependence can signifi-
cantly deteriorate the achievable accuracy in g-tensor calcula-
tions on larger molecules. In the current section and Sec. IV D,
we present calculations on medium-sized molecules. In order
to assess the influence of the gauge-origin dependence, we
compare the g-shifts computed with our SOMF-GIAO ansatz
to g-shifts obtained with different choices of a common

TABLE IV. Deviations of the def2-SVP or def2-TZVP data from the def2-
QZVPPD reference values for our test set. Mean absolute deviation (MAD),
absolute standard deviation (ASD), mean relative deviation (MRD), and rela-
tive standard deviation (RSD) are given. The calculations were carried out in
a regular AO basis (“AO”) or in a GIAO basis (“GIAO”).

def2-SVP def2-TZVP

AO GIAO AO GIAO

MAD (ppm) 693 645 175 196
ASD (ppm) 1564 1523 368 437
MRD (%) 15.5 14.6 7.3 6.5
RSD (%) 23.5 17.0 15.9 9.4
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gauge-origin. One of them is the electronic charge centroid
(ECC) which is the most commonly employed gauge-origin
in the literature on g-tensors.10,11,22–35 Other choices for the
gauge-origin that have been employed in the literature are the
charge center of the nuclei20 or the center of mass.21

All of the mentioned choices lead to a gauge-origin that
is quite centrally located within the molecule. However, we
claim that such gauge-origins are in general not optimal as
they do not take into account the local nature of the g-tensor.
As one can see from Eqs. (3)–(16), the g-tensor is determined
by the distribution of the ground state spin density and the first
order response of the spin density to the applied magnetic field
perturbation. In many larger open-shell molecules, the spin
density is highly local. The perturbed spin density [Eq. (12)]
is exactly zero for a closed-shell reference state as all spin-
dependent operators in the Hamiltonian are set to zero for
~s = ~0, and α and β electrons are therefore affected in the same
way by the magnetic field perturbation. In large molecules
with an electronic structure that only locally displays open-
shell character, one can accordingly expect the perturbed spin
density to be a local quantity as well. We also observed this
in our calculations; in Fig. 5, plots of the ground state and
perturbed spin densities in the ·O−−[CH2]18−−CH3 radical are
presented, which show their similar distribution and locality.

Given a spin density and perturbed spin densities that are
all well localized within one small part of the molecule, it is
clear that significant contributions to the g-tensor only arise
from this spatial region. In order to accurately compute these
contributions, a common gauge-origin should be positioned

FIG. 5. Absolute values of the entries in the spin density matrix and the
perturbed spin density matrices for the calculation of the ·O−−[CH2]18−−CH3
molecule (def2-SVP basis set). Only matrix elements above a threshold of
10−5 are shown. The basis functions centered on the oxygen atom are located
in the upper left corner.

within the region with significant spin density and perturbed
spin densities. In analogy to the ECC whose position rECC can
be computed using the following equation:18

rECC,p =
1

nel

∑

µν

Pµν

〈
µ

���r̂p
���ν
〉
, p ∈ {x, y, z}, (17)

where nel is the number of electrons, we therefore propose the
use of the spin density center (SDC). The equation used for
computing the position of the SDC is given by

rSDC,p =
1

Tr
( |Pα−β |S)

∑

µν

|Pα−β
µν |

〈
µ

���r̂p
���ν
〉
, p ∈ {x, y, z}.

(18)
The density matrix P in Eq. (17) is substituted by the absolute
values of the spin density matrix Pα−β . The trace of the matrix
product of |Pα−β | with the overlap matrix S ensures the cor-
rect normalization. In the following, we compare the g-shifts
obtained with GIAOs to the g-shifts obtained with both the
ECC and the SDC as common gauge-origins.

In Fig. 6, computed isotropic g-shifts of alkane radicals
with increasing chain length are shown. The radical center is at
the end of the alkane chain. Both the isotropic g-shift obtained
with GIAOs and with the SDC as common gauge-origin
quickly converge with chain length; contrarily, the isotropic
g-shifts computed with the ECC as gauge-origin show a wrong
behavior with a linear increase for alkane radicals with more
than five carbon atoms. This qualitatively different behavior
between the gauge-origins ECC and SDC can be interpreted
as follows: The alkane radicals have a strongly localized spin
density at the radical center (which is at the end of the chain); in
the calculation employing the SDC, the gauge-origin is located
close to the terminal carbon atom at the radical center, and the
region containing the spin density is well described. The rapid
convergence of the isotropic g-shifts with chain length in the
calculations with GIAOs and with the SDC reflects the locality
of the contributions to the g-tensor in the alkane radicals. The
agreement of the isotropic g-shifts computed with GIAOs and
with the SDC as common gauge-origin is quite good in these
calculations; the small remaining deviations can originate from
the accelerated basis convergence in the GIAO calculation or

FIG. 6. Isotropic g-shifts of alkane radicals of increasing chain length with a
terminal CH2 group. The computations were carried out at the UDFT/B3LYP-
level with a def2-TZVP basis. The GIAO ansatz is compared to the common
gauge-origins SDC and ECC.
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from a minor gauge error within the SDC calculation. In con-
trast to the SDC, the ECC is by construction always located
centrally within the molecule (the ECC can even be viewed as
one possible definition of the center of the molecule); for these
calculations, it means that the ECC is for growing chain length
increasingly far apart from the region with significant spin den-
sity. Hence larger and larger gauge errors are introduced in the
calculation leading to a linear increase in the isotropic g-shift.
For the C20H41 radical, the isotropic g-shift obtained with the
ECC deviates 318 ppm (111.6%) from the GIAO value.

In Table V, computed g-shifts for other molecules with
a single localized spin center are presented. The g-shifts
obtained with the SDC as gauge-origin are also for these
molecules significantly closer to the GIAO reference values
than the ECC g-shifts. For the calculations shown in Table V,
the mean absolute deviations in the isotropic g-shifts com-
pared to the GIAO values are 289 ppm for the ECC and
26 ppm for the SDC. The average relative deviations in the
isotropic g-shifts amount to 18.8% for the ECC and 2.9% for
the SDC. The improvement is especially significant for the
smaller g-shifts like in the ·NH−−[CH2−−O]3−−CH3−−OH or
the ·O−−[CH2]18−−CH3 molecule where the smallest g-shifts
obtained with the ECC have opposite sign. For even larger
molecules, one can expect even more pronounced improve-
ments by the SDC compared to the ECC as gauge-origin. Irre-
spective of the good agreement between the g-shifts obtained

with the SDC and the g-shifts in a GIAO basis, the results
show that the influence of the gauge can be substantial in
these calculations on medium-sized molecules and signifi-
cant errors are introduced with a sub-optimal gauge origin
such as the ECC. This can be seen from several examples in
which the ECC leads to rather large errors like for ∆g1 of the
·NH−−[CH2−−O]7−−CH3−−OH molecules with a deviation of
1561 ppm (37.9%).

For the substituted toluene radical in Table V, the devia-
tion of the SDC values from the GIAO values is larger than for
the other systems (14.7% deviation in the isotropic g-shift).
This is expected due to the delocalization of the spin density
over the aromatic ring and the attached CH2 group. Neverthe-
less, the differences of the SDC values to the GIAO results are
still smaller than those of the ECC values with a deviation of
50.2% in the isotropic g-shift.

With LiH+ and NaF+, Table V also includes two molecules
which have a relatively large separation of ECC and SDC
despite their small extent (1.338 Å separation for LiH+;
1.196 Å separation for NaF+). Also for these molecules, the
SDC values are closer to the g-shifts obtained in a basis of
GIAOs than the ECC values. In general, for small molecules,
the differences between SDC and ECC can be expected to
be small as they are often close to each other; for symmet-
ric molecules, they might even coincide (e.g., for the O2

molecule).

TABLE V. g-tensor calculations with different gauge-origins (SDC or ECC) or GIAOs on radicals with a single
spin-center. The employed basis set is def2-TZVP in all cases.

Molecule Gauge ∆g1 (ppm) ∆g2 (ppm) ∆g3 (ppm) ∆giso (ppm)

MTSL
ECC 7 147 4 295 �44 3 799
SDC 7 139 3 950 �163 3 642
GIAO 7 084 3 805 �226 3 554

·NH−−[CH2−−O]7−−CH2−−OH
ECC 5 680 1 505 207 2 464
SDC 4 137 1 509 �132 1 838
GIAO 4 119 1 540 �151 1 836

·O−−[CH2]18−−CH3

ECC 65 816 7 382 292 24 497
SDC 65 935 6 494 �143 24 095
GIAO 66 021 6 443 �175 24 096

·Cys−−Gly4

ECC 219 431 17 158 83 78 891
SDC 220 569 17 268 15 79 284
GIAO 220 519 17 231 17 79 256

ECC 774 491 274 513
SDC 557 553 �28 361
GIAO 552 549 �81 340

ECC 786 593 45 475

SDC 619 520 �52 362

GIAO 566 504 �122 316

LiH+
ECC �36 �36 �36 �36
SDC �36 �39 �39 �38
GIAO �36 �39 �39 �38

NaF+
ECC 99 018 69 225 �265 55 993
SDC 99 018 68 179 �291 55 635
GIAO 99 018 68 231 �288 55 654
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In summary, we have shown that the choice of gauge has
a large influence on the g-shifts in medium-sized molecules,
and common gauge-origin approaches can lead to significant
errors compared to the gauge-origin independent GIAO values.
A common gauge-origin that is chosen according to the spin
density distribution like our proposed SDC is better able to
account for the local nature of the g-tensor than the ECC. The g-
shifts obtained with the SDC as gauge-origin agree much better
with GIAO values than the g-shifts obtained with the ECC.
Therefore the SDC can be used as a pragmatic common gauge-
origin in larger molecules with a single localized spin center
if no suitable GIAO implementation is available. However,
we want to stress that the SDC does not represent a generally
applicable solution to the gauge-origin problem as shown in
Sec. IV D in calculations on molecules with multiple spin
centers.

One minor advantage of a common gauge-origin approach
involving the SDC is a small speed-up of the calculation. The
gauge-origin independence provided by the GIAO approach
comes at the price of slightly increased computational cost
because it requires the computation of several integral deriva-
tives with respect to the magnetic field; the integrals needed
for the magnetic field derivative of the SOMF matrix [Eq. (16)]
are especially costly. In our preliminary implementation, the
computation of the SOMF matrix requires 35.5% of the total
calculation time (calculation on alkane-20 radical/def2-TZVP
basis); with GIAOs, this amounts to 53.4% (including the
magnetic field derivative of the SOMF matrix). In these calcu-
lations, the use of GIAOs increased the total computation time
by 71.1%. However, this additional effort might be substan-
tially reduced by the resolution-of-the-identity (RI) approxi-
mation50(a),70–72 which we currently do not employ. In a fully
optimized implementation, we expect a significantly smaller
overhead due to GIAOs. Therefore we recommend to use
distributed gauge-origin methods if possible also for larger
molecules with a single spin center as they provide fully
gauge-origin independent results.

D. Gauge-origin dependence in molecules
with multiple spin centers

As shown in Sec. IV C, a suitably chosen common gauge-
origin can allow for reasonably accurate g-tensor computations
also for larger molecules with a single, well localized spin cen-
ter. However, there are also many examples for molecules with
multiple spin centers or significantly delocalized spin density.
Much larger errors due to gauge-origin dependence can be
expected for molecules of this kind as no common gauge-
origin can be positioned close to all sites of the molecule with
significant (perturbed) spin density. This is confirmed by the
illustrative calculations shown on molecules with two or three
spin centers (Fig. 7 and Table VI).

In Fig. 7, isotropic g-shifts of the ·NH−−[CH2]x−−ĊH2

(x varied from 1 to 15) molecules are shown. Both the SDC
and the ECC as gauge-origins lead to significant deviations
from the GIAO values; the agreement with the GIAO g-shifts
deteriorates with increased spacing between the two spin cen-
ters. For x = 15, the deviations in the isotropic g-shift are
392 ppm/34.1% (ECC) and 403 ppm/35.0% (SDC). In these
molecules, the SDC is — similarly as the ECC — located

FIG. 7. Isotropic g-shifts of radicals of the type ·NH−−[CH2]x−−ĊH2 with
triplet spin state, where x is varied from 1 to 15. The computations were carried
out at the UDFT/B3LYP-level and with a def2-TZVP basis. The GIAO ansatz
is compared to the common gauge-origins SDC and ECC.

relatively centrally between the two spin centers. For both
gauge-origins, the increase of the distance between the gauge-
origin and the spin centers with increasing chain length causes
an increase in the gauge error which explains the large devia-
tions from the GIAO numbers. After an irregular behavior for
the smallest chain lengths, the deviations are growing linearly;
one could therefore easily extrapolate the size of the error for
even larger spacing between the spin centers. By contrast, the
isotropic g-shift converges rapidly in a GIAO basis due to the
locality of the contributions from the two spin centers.

In Table VI, results from g-tensor calculations on several
other molecules with two or three spin centers are shown. For
the presented molecules with radical centers on sulfur atoms,
the gauge-origin dependence is mostly negligible. The same
holds for the calculations on the ·Cys−−Gly4 radical shown
in Table V. We suspect that due to the dominance of the
atomic contributions of the sulfur the g-shifts are both signifi-
cantly larger and less sensitive to the gauge than for the other
analyzed systems; in the limiting case of a single atom, the
g-shifts are independent of the gauge as discussed in Ref. 73
for the related theory of NMR shielding tensors. More pro-
nounced differences between the GIAO values and the com-
mon gauge-origin approaches can be seen for the g-shifts of
the other molecules. For the largest g-shift of ·Ala−−Gly−−Lys·
di-radical, the difference to the GIAO g-shifts amounts to 620
ppm/23.6% (ECC) and 517 ppm/19.6% (SDC). The ∆g2 value
of the ·O−−[CH2]18−−NH molecule differs by 721 ppm/19.0%
(ECC) and 718 ppm/18.9% (SDC) from the GIAO result.

Because of the demonstrated low reliability of common-
gauge-origin approaches for molecules with several, spatially
distant spin centers, we recommend to use distributed gauge-
origin methods like GIAOs for molecules of this kind.

We have on purpose not shown calculations on molecules
with extensively delocalized spin density, as in many cases
multi-reference methods might be necessary to properly
describe these systems, and the reliability of the DFT ansatz
is questionable. Still, the findings of this section should be
transferable to this class of molecules because it is not possi-
ble to position the entire region with significant spin density
and perturbed spin densities in close vicinity of a common
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TABLE VI. g-tensor calculations on molecules with two or three spin centers. All calculations were done with
UDFT/B3LYP and the def2-TZVP basis set. Values obtained with the SDC or ECC as gauge-origins are compared
to the GIAO results.

Molecule Gauge ∆g1 (ppm) ∆g2 (ppm) ∆g3 (ppm) ∆giso (ppm)

O==Ċ−−[CH2]17−−C≡≡C·
ECC 1 550 �92 �3268 �603
SDC 1 487 �96 �3248 �619
GIAO 1 353 �118 �3253 �673

·NF−−CH2−−[CH==CH−−CH2]5−−CH2−−CH==ĊH
ECC 4 167 1 788 �35 1 973
SDC 4 197 1 786 �28 1 985
GIAO 3 704 1 518 �155 1 689

·Ala−−Gly2−−Lys·
ECC 3 252 1 031 113 1 465
SDC 3 149 1 032 111 1 431
GIAO 2 632 887 �32 1 162

·NH−−[CH2−−O]7−−CH2−−S·
ECC 108 751 9 710 �100 39 454
SDC 108 742 9 710 �100 39 451
GIAO 108 747 9 710 �100 39 452

·O−−[CH2]18−−ṄH
ECC 35 012 4 516 1108 13 545
SDC 35 002 4 513 1110 13 542
GIAO 34 749 3 795 561 13 035

ECC 138 717 20 958 2980 54 218
SDC 138 718 20 968 2975 54 220
GIAO 138 658 20 575 2805 54 013

gauge-origin. Consequently we also recommend the use of a
distributed gauge-origin ansatz for molecules with delocalized
spin density.

V. CONCLUSIONS

We provided a detailed study of the gauge-origin depen-
dence in g-tensor calculations at the DFT level of theory using
the spin-orbit mean field ansatz. Our findings show that the
influence of the gauge is only negligible for small molecules
and not for larger molecular systems. For our test set of small
molecules, we found a pronounced dependence of the g-shifts
on the gauge; only a few Ångström displacements of the
molecules from the gauge-origin are necessary to introduce
errors that significantly exceed the basis set errors. We also
analyzed to what extent GIAOs accelerate the basis set conver-
gence in g-tensor calculations and found the effect to be neg-
ligible for our test set. It was shown in further calculations on
medium-sized molecules that the influence of the gauge can be
large in these systems and substantial errors can be introduced
by common gauge-origin approaches. This renders distributed
gauge-origin methods like GIAOs the preferred approach for
larger systems. For extended molecules with a single local-
ized spin center, the spin density center (SDC) was proposed
as a common gauge-origin that takes the locality of the g-tensor
into account; in contrast to the commonly employed electronic
charge centroid (ECC) as gauge-origin, the SDC was shown to
give reasonable agreement with the GIAO values for molecules
of this kind. For more general situations such as molecules with
multiple spin centers, neither the ECC nor the SDC as common
gauge-origins lead to reliable and accurate g-shifts; for these
cases, distributed gauge-origin approaches like GIAOs were

shown to be essential. Although this study was based entirely
on DFT calculations, it is highly likely that the presented find-
ings are transferable to other quantum-chemical methods like
wave-function based correlation methods. One can expect that
gauge-origin dependence of very similar magnitude occurs in
these methods as it is caused by basis set incompleteness and
not by method specifics.

SUPPLEMENTARY MATERIAL

See supplementary material for all computed g-shifts.
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1 g-shifts

1.1 Sections ”Significance of the gauge-origin dependence in g-tensor calcu-
lations” and ”Influence of GIAOs on the basis set convergence”

Table 1: g-shifts in ppm for small molecules. Different gauges are employed :
center of mass (“COM”), a gauge origin at (-10.0, -10.0 -10.0) (“m10”) or a
GIAO basis.

molecule basis set gauge ∆g1 [ppm] ∆g2 [ppm] ∆g3 [ppm]
BeH def2-qzvppd COM -40 -167 -167
CCH def2-qzvppd COM 277 277 -127
CH2CH3 def2-qzvppd COM 686 536 -90
CH2OH def2-qzvppd COM 2173 948 -144
CH2 def2-qzvppd COM 210 197 -67
CH3 def2-qzvppd COM 578 578 -90
CHCH2 def2-qzvppd COM 604 -98 -683
CHO def2-qzvppd COM 2340 -201 -7373
CH def2-qzvppd COM 1309 -158 -15408
COCH3 def2-qzvppd COM 2267 -254 -6544
NH2 def2-qzvppd COM 5037 1505 -153
NH def2-qzvppd COM 1287 1287 -107
NO def2-qzvppd COM 3302 -381 -110959
OCH3 def2-qzvppd COM 47607 6061 -195
OH def2-qzvppd COM 55799 5574 -217
ONO def2-qzvppd COM 3604 -624 -11072
OOH def2-qzvppd COM 27585 5529 -279
PH2 def2-qzvppd COM 15108 5063 -32
SiH2 def2-qzvppd COM 1230 1034 -498
SiH3 def2-qzvppd COM 2285 2285 -78
AlO def2-qzvppd COM 1076 1076 -125

AsO2−
3 def2-qzvppd COM 9325 9325 2783

BO def2-qzvppd COM -69 -1742 -1742
BS def2-qzvppd COM -84 -9099 -9099
C3H5 def2-qzvppd COM 752 631 -73
CF3Br− def2-qzvppd COM 53176 53176 -465
CF3Cl− def2-qzvppd COM 11696 11696 -497

CH+
4 def2-qzvppd COM 23796 2599 -86

Continued on next page
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Table 1 – continued from previous page
molecule basis set gauge ∆g1 [ppm] ∆g2 [ppm] ∆g3 [ppm]
ClO2 def2-qzvppd COM 15108 12793 -453
ClO3 def2-qzvppd COM 7316 7316 1105

CO−
2 def2-qzvppd COM 1041 -632 -4678

CO−
3 def2-qzvppd COM 11733 11733 2997

CO+ def2-qzvppd COM -134 -2535 -2535
GeH3 def2-qzvppd COM 16762 16762 -107
H2CO+ def2-qzvppd COM 5677 262 97
KrF def2-qzvppd COM 38364 38364 -307
MgF def2-qzvppd COM -3 -1742 -1742
NF2 def2-qzvppd COM 6586 3949 -644

NF+
3 def2-qzvppd COM 7109 7109 -563

NH+
3 def2-qzvppd COM 1657 1657 -156

NO2 def2-qzvppd COM 3836 -638 -11239
NO3 def2-qzvppd COM 15197 15197 343

O−
3 def2-qzvppd COM 17547 10452 -502

SO−
2 def2-qzvppd COM 6376 5072 -278

SO−
3 def2-qzvppd COM 2534 2534 169

BeH def2-svp GIAO -42 -151 -151
CCH def2-svp GIAO 195 195 -128
CH2CH3 def2-svp GIAO 599 434 -108
CH2OH def2-svp GIAO 2053 846 -168
CH2 def2-svp GIAO 163 137 -73
CH3 def2-svp GIAO 481 481 -92
CHCH2 def2-svp GIAO 457 -117 -630
CHO def2-svp GIAO 2102 -224 -6943
CH def2-svp GIAO 1131 -175 -14448
COCH3 def2-svp GIAO 2075 -275 -6330
NH2 def2-svp GIAO 4651 1260 -153
NH def2-svp GIAO 1109 1109 -110
NO def2-svp GIAO 3117 -385 -124152
OCH3 def2-svp GIAO 48468 5437 -214
OH def2-svp GIAO 60473 4950 -210
ONO def2-svp GIAO 3422 -574 -10675
OOH def2-svp GIAO 26857 5077 -286
PH2 def2-svp GIAO 13370 4506 -23
SiH2 def2-svp GIAO 1099 941 -413
SiH3 def2-svp GIAO 2125 2125 -85
AlO def2-svp GIAO 1230 1230 -125

AsO2−
3 def2-svp GIAO 12798 12798 2361

BO def2-svp GIAO -69 -1574 -1574
BS def2-svp GIAO -83 -8358 -8358
C3H5 def2-svp GIAO 511 510 -111
CF3Br− def2-svp GIAO 50377 50377 -474
CF3Cl− def2-svp GIAO 12016 12016 -488

CH+
4 def2-svp GIAO 27516 2379 -89

ClO2 def2-svp GIAO 17302 14141 -548
ClO3 def2-svp GIAO 9178 9178 630

CO−
2 def2-svp GIAO 1507 -629 -5194

CO−
3 def2-svp GIAO 11584 11584 2988

CO+ def2-svp GIAO -136 -2255 -2255
GeH3 def2-svp GIAO 15005 15005 -211
H2CO+ def2-svp GIAO 5168 164 72
KrF def2-svp GIAO 32609 32609 -301
MgF def2-svp GIAO -5 -1661 -1661
NF2 def2-svp GIAO 6617 3992 -653

NF+
3 def2-svp GIAO 6716 6716 -645

NH+
3 def2-svp GIAO 1475 1475 -156

NO2 def2-svp GIAO 3634 -587 -10828
NO3 def2-svp GIAO 14840 14840 547

O−
3 def2-svp GIAO 17659 10590 -519

SO−
2 def2-svp GIAO 9479 7461 -404

SO−
3 def2-svp GIAO 4036 4036 21

BeH def2-svp COM -42 -150 -150
CCH def2-svp COM 195 195 -128
CH2CH3 def2-svp COM 604 428 -95
CH2OH def2-svp COM 2004 724 -146
CH2 def2-svp COM 152 132 -73
CH3 def2-svp COM 462 462 -98
CHCH2 def2-svp COM 496 -109 -606
CHO def2-svp COM 2056 -197 -6889
CH def2-svp COM 1094 -175 -14448
COCH3 def2-svp COM 2140 -268 -6278
Continued on next page
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Table 1 – continued from previous page
molecule basis set gauge ∆g1 [ppm] ∆g2 [ppm] ∆g3 [ppm]
NH2 def2-svp COM 4579 1157 -147
NH def2-svp COM 1062 1062 -110
NO def2-svp COM 3205 -357 -124152
OCH3 def2-svp COM 47937 5518 -200
OH def2-svp COM 60473 4805 -186
ONO def2-svp COM 3741 -558 -10660
OOH def2-svp COM 26796 5195 -271
PH2 def2-svp COM 12972 4104 -12
SiH2 def2-svp COM 1033 932 -442
SiH3 def2-svp COM 2062 2062 -89
AlO def2-svp COM 1070 1070 -125

AsO2−
3 def2-svp COM 13367 13367 2489

BO def2-svp COM -69 -1607 -1607
BS def2-svp COM -83 -8594 -8594
C3H5 def2-svp COM 528 508 -74
CF3Br− def2-svp COM 49725 49725 -458
CF3Cl− def2-svp COM 11389 11389 -470

CH+
4 def2-svp COM 27180 2381 -85

ClO2 def2-svp COM 17661 15264 -489
ClO3 def2-svp COM 10056 10056 847

CO−
2 def2-svp COM 1555 -619 -5144

CO−
3 def2-svp COM 11914 11914 3502

CO+ def2-svp COM -136 -2336 -2336
GeH3 def2-svp COM 14613 14613 -211
H2CO+ def2-svp COM 5238 192 95
KrF def2-svp COM 33247 33247 -301
MgF def2-svp COM -5 -1905 -1905
NF2 def2-svp COM 6696 4033 -629

NF+
3 def2-svp COM 6818 6818 -609

NH+
3 def2-svp COM 1449 1449 -162

NO2 def2-svp COM 3966 -570 -10816
NO3 def2-svp COM 15243 15243 1046

O−
3 def2-svp COM 17780 10894 -498

SO−
2 def2-svp COM 9674 8063 -365

SO−
3 def2-svp COM 4379 4379 73

BeH def2-svp m10 -15 -88 -115
CCH def2-svp m10 640 555 -213
CH2CH3 def2-svp m10 885 349 75
CH2OH def2-svp m10 2787 -206 -446
CH2 def2-svp m10 176 -10 -117
CH3 def2-svp m10 462 462 -98
CHCH2 def2-svp m10 921 54 -578
CHO def2-svp m10 3430 -305 -4176
CH def2-svp m10 -97 -405 -14451
COCH3 def2-svp m10 3301 -381 -5488
NH2 def2-svp m10 2969 -142 -2059
NH def2-svp m10 732 -172 -1014
NO def2-svp m10 3679 -636 -124153
OCH3 def2-svp m10 47850 8793 -175
OH def2-svp m10 60557 666 248
ONO def2-svp m10 5578 -429 -8160
OOH def2-svp m10 25038 1984 -241
PH2 def2-svp m10 8545 -175 -524
SiH2 def2-svp m10 4123 2370 -100
SiH3 def2-svp m10 7360 6205 -1239
AlO def2-svp m10 2654 -5758 -8526

AsO2−
3 def2-svp m10 36236 31381 -2285

BO def2-svp m10 -15 -2080 -2134
BS def2-svp m10 176 -10993 -11250
C3H5 def2-svp m10 1297 397 29
CF3Br− def2-svp m10 42320 41525 -1236
CF3Cl− def2-svp m10 18344 17384 -1421

CH+
4 def2-svp m10 26719 2453 -176

ClO2 def2-svp m10 17641 5836 -668
ClO3 def2-svp m10 16099 15221 -25

CO−
2 def2-svp m10 1117 -619 -6003

CO−
3 def2-svp m10 11914 11914 3502

CO+ def2-svp m10 374 -1107 -1617
GeH3 def2-svp m10 55387 46245 -9106
H2CO+ def2-svp m10 7889 363 -39
KrF def2-svp m10 31177 31103 -373
MgF def2-svp m10 877 -5169 -6048
NF2 def2-svp m10 9079 3809 -345
Continued on next page

S3



Table 1 – continued from previous page
molecule basis set gauge ∆g1 [ppm] ∆g2 [ppm] ∆g3 [ppm]

NF+
3 def2-svp m10 8367 8252 -723

NH+
3 def2-svp m10 1449 1449 -162

NO2 def2-svp m10 2474 -686 -13728
NO3 def2-svp m10 15243 15243 1046

O−
3 def2-svp m10 15433 10472 -567

SO−
2 def2-svp m10 14809 7343 -468

SO−
3 def2-svp m10 8564 7852 -636

BeH def2-tzvp GIAO -40 -154 -154
CCH def2-tzvp GIAO 167 167 -127
CH2CH3 def2-tzvp GIAO 678 503 -106
CH2OH def2-tzvp GIAO 2175 929 -168
CH2 def2-tzvp GIAO 198 173 -70
CH3 def2-tzvp GIAO 551 551 -89
CHCH2 def2-tzvp GIAO 517 -114 -682
CHO def2-tzvp GIAO 2256 -224 -7245
CH def2-tzvp GIAO 1256 -164 -15142
COCH3 def2-tzvp GIAO 2200 -275 -6536
NH2 def2-tzvp GIAO 4900 1453 -151
NH def2-tzvp GIAO 1240 1240 -107
NO def2-tzvp GIAO 3300 -402 -112426
OCH3 def2-tzvp GIAO 47755 5894 -213
OH def2-tzvp GIAO 56561 5406 -213
ONO def2-tzvp GIAO 3559 -638 -10980
OOH def2-tzvp GIAO 27277 5401 -300
PH2 def2-tzvp GIAO 15250 5044 -18
SiH2 def2-tzvp GIAO 1224 1031 -511
SiH3 def2-tzvp GIAO 2294 2294 -81
AlO def2-tzvp GIAO 1167 1167 -127

AsO2−
3 def2-tzvp GIAO 10627 10627 3371

BO def2-tzvp GIAO -69 -1733 -1733
BS def2-tzvp GIAO -84 -9322 -9322
C3H5 def2-tzvp GIAO 590 559 -103
CF3Br− def2-tzvp GIAO 51125 51125 -479
CF3Cl− def2-tzvp GIAO 12155 12155 -508

CH+
4 def2-tzvp GIAO 24221 2487 -91

ClO2 def2-tzvp GIAO 16238 12888 -548
ClO3 def2-tzvp GIAO 7325 7325 953

CO−
2 def2-tzvp GIAO 1283 -668 -5144

CO−
3 def2-tzvp GIAO 11731 11731 2912

CO+ def2-tzvp GIAO -135 -2514 -2514
GeH3 def2-tzvp GIAO 16501 16501 -116
H2CO+ def2-tzvp GIAO 5517 249 75
KrF def2-tzvp GIAO 36640 36640 -304
MgF def2-tzvp GIAO -3 -1651 -1651
NF2 def2-tzvp GIAO 6548 3960 -679

NF+
3 def2-tzvp GIAO 6975 6975 -602

NH+
3 def2-tzvp GIAO 1600 1600 -153

NO2 def2-tzvp GIAO 3787 -652 -11142
NO3 def2-tzvp GIAO 14978 14978 257

O−
3 def2-tzvp GIAO 17795 10623 -557

SO−
2 def2-tzvp GIAO 8942 5544 -369

SO−
3 def2-tzvp GIAO 2612 2612 227

BeH def2-tzvp COM -40 -151 -151
CCH def2-tzvp COM 155 155 -127
CH2CH3 def2-tzvp COM 676 512 -93
CH2OH def2-tzvp COM 2177 864 -149
CH2 def2-tzvp COM 193 171 -69
CH3 def2-tzvp COM 544 544 -92
CHCH2 def2-tzvp COM 545 -105 -668
CHO def2-tzvp COM 2248 -206 -7213
CH def2-tzvp COM 1237 -165 -15142
COCH3 def2-tzvp COM 2248 -261 -6506
NH2 def2-tzvp COM 4886 1409 -148
NH def2-tzvp COM 1221 1221 -107
NO def2-tzvp COM 3353 -379 -112426
OCH3 def2-tzvp COM 47485 5956 -198
OH def2-tzvp COM 56561 5357 -202
ONO def2-tzvp COM 3661 -614 -10973
OOH def2-tzvp COM 27234 5419 -283
PH2 def2-tzvp COM 15126 4889 -8
SiH2 def2-tzvp COM 1187 1033 -522
SiH3 def2-tzvp COM 2266 2266 -78
Continued on next page
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Table 1 – continued from previous page
molecule basis set gauge ∆g1 [ppm] ∆g2 [ppm] ∆g3 [ppm]
AlO def2-tzvp COM 1167 1167 -127

AsO2−
3 def2-tzvp COM 10348 10348 3892

BO def2-tzvp COM -69 -1737 -1737
BS def2-tzvp COM -84 -9338 -9338
C3H5 def2-tzvp COM 556 459 -72
CF3Br− def2-tzvp COM 52769 52769 -477
CF3Cl− def2-tzvp COM 11907 11907 -506

CH+
4 def2-tzvp COM 24111 2508 -86

ClO2 def2-tzvp COM 16585 13118 -481
ClO3 def2-tzvp COM 7581 7581 1058

CO−
2 def2-tzvp COM 1358 -647 -5128

CO−
3 def2-tzvp COM 11881 11881 3186

CO+ def2-tzvp COM -135 -2534 -2534
GeH3 def2-tzvp COM 16196 16196 -61
H2CO+ def2-tzvp COM 5591 269 93
KrF def2-tzvp COM 37733 37733 -304
MgF def2-tzvp COM -3 -1705 -1705
NF2 def2-tzvp COM 6590 3953 -650

NF+
3 def2-tzvp COM 6967 6967 -576

NH+
3 def2-tzvp COM 1595 1595 -158

NO2 def2-tzvp COM 3890 -628 -11135
NO3 def2-tzvp COM 15144 15144 636

O−
3 def2-tzvp COM 17900 10781 -531

SO−
2 def2-tzvp COM 9530 5657 -319

SO−
3 def2-tzvp COM 2761 2761 366

BeH def2-tzvp m10 -38 -171 -173
CCH def2-tzvp m10 374 340 -161
CH2CH3 def2-tzvp m10 737 472 52
CH2OH def2-tzvp m10 2348 -204 -286
CH2 def2-tzvp m10 218 32 -146
CH3 def2-tzvp m10 544 544 -92
CHCH2 def2-tzvp m10 733 -42 -669
CHO def2-tzvp m10 2557 -316 -6106
CH def2-tzvp m10 646 -207 -15144
COCH3 def2-tzvp m10 2694 -298 -6266
NH2 def2-tzvp m10 3204 400 -113
NH def2-tzvp m10 797 545 -359
NO def2-tzvp m10 3252 -523 -112426
OCH3 def2-tzvp m10 47255 7053 -120
OH def2-tzvp m10 56586 2999 61
ONO def2-tzvp m10 4452 -630 -10283
OOH def2-tzvp m10 26154 3917 -309
PH2 def2-tzvp m10 11363 4083 40
SiH2 def2-tzvp m10 1431 1101 -823
SiH3 def2-tzvp m10 2619 2599 -99
AlO def2-tzvp m10 1070 1066 -131

AsO2−
3 def2-tzvp m10 23769 20934 1085

BO def2-tzvp m10 -57 -1946 -1958
BS def2-tzvp m10 -77 -9685 -9691
C3H5 def2-tzvp m10 511 396 24
CF3Br− def2-tzvp m10 66382 65206 -1615
CF3Cl− def2-tzvp m10 13104 13055 -554

CH+
4 def2-tzvp m10 24218 2388 -157

ClO2 def2-tzvp m10 15408 12908 -393
ClO3 def2-tzvp m10 10185 9892 766

CO−
2 def2-tzvp m10 1178 -648 -5408

CO−
3 def2-tzvp m10 11881 11881 3186

CO+ def2-tzvp m10 -84 -2081 -2133
GeH3 def2-tzvp m10 29764 27576 -2217
H2CO+ def2-tzvp m10 6679 279 159
KrF def2-tzvp m10 52699 51013 -1947
MgF def2-tzvp m10 119 -2504 -2625
NF2 def2-tzvp m10 7891 3864 -402

NF+
3 def2-tzvp m10 7287 7281 -582

NH+
3 def2-tzvp m10 1595 1595 -158

NO2 def2-tzvp m10 3157 -657 -11851
NO3 def2-tzvp m10 15144 15144 636

O−
3 def2-tzvp m10 17786 10781 -609

SO−
2 def2-tzvp m10 7702 4725 -554

SO−
3 def2-tzvp m10 4709 4399 57
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1.2 Section ”Gauge-origin dependence in molecules with a single localized
spin center”

Table 2: g-shifts in ppm for section ”Gauge-origin dependence in molecules
with a single localized spin center”. Either a GIAO basis or a common gauge-
origin (SDC or ECC) was used as indicated.

molecule basis set gauge ∆g1 [ppm] ∆g2 [ppm] ∆g3 [ppm]
MTSL def2-tzvp ECC 7147 4295 -44
·NH-[CH2-O]7-CH2-OH def2-tzvp ECC 5680 1505 207
·O-[CH2]18-CH3 def2-tzvp ECC 65816 7382 292
·Cys-Gly4 def2-tzvp ECC 219431 17158 83
·CH3 def2-tzvp ECC 543 543 -92
·CH2-CH3 def2-tzvp ECC 683 514 -95
·CH2-[CH2]-CH3 def2-tzvp ECC 549 492 -106
·CH2-[CH2]2-CH3 def2-tzvp ECC 580 497 -81
·CH2-[CH2]3-CH3 def2-tzvp ECC 598 508 -72
·CH2-[CH2]5-CH3 def2-tzvp ECC 639 536 -44
·CH2-[CH2]8-CH3 def2-tzvp ECC 700 588 -4
·CH2-[CH2]13-CH3 def2-tzvp ECC 802 695 48
·CH2-[CH2]18-CH3 def2-tzvp ECC 905 819 84
LiH+ def2-tzvp ECC -36 -36 -36
NaF+ def2-tzvp ECC 99018 69225 -265
MTSL def2-tzvp SDC 7139 3950 -163
·NH-[CH2-O]7-CH2-OH def2-tzvp SDC 4137 1509 -132
·O-[CH2]18-CH3 def2-tzvp SDC 65935 6494 -143
·Cys-Gly4 def2-tzvp SDC 220569 17268 15
·CH3 def2-tzvp SDC 543 543 -92
·CH2-CH3 def2-tzvp SDC 680 516 -100
·CH2-[CH2]-CH3 def2-tzvp SDC 544 486 -112
·CH2-[CH2]2-CH3 def2-tzvp SDC 558 478 -106
·CH2-[CH2]3-CH3 def2-tzvp SDC 561 475 -110
·CH2-[CH2]5-CH3 def2-tzvp SDC 563 473 -111
·CH2-[CH2]8-CH3 def2-tzvp SDC 566 473 -109
·CH2-[CH2]13-CH3 def2-tzvp SDC 568 474 -108
·CH2-[CH2]18-CH3 def2-tzvp SDC 568 474 -107
LiH+ def2-tzvp SDC -36 -39 -39
NaF+ def2-tzvp SDC 99018 68179 -291
MTSL def2-tzvp GIAO 7084 3805 -226
·NH-[CH2-O]7-CH2-OH def2-tzvp GIAO 4119 1540 -151
·O-[CH2]18-CH3 def2-tzvp GIAO 66021 6443 -175
·Cys-Gly4 def2-tzvp GIAO 220519 17231 17
·CH3 def2-tzvp GIAO 550 550 -89
·CH2-CH3 def2-tzvp GIAO 682 507 -108
·CH2-[CH2]-CH3 def2-tzvp GIAO 526 469 -137
·CH2-[CH2]2-CH3 def2-tzvp GIAO 537 465 -133
·CH2-[CH2]3-CH3 def2-tzvp GIAO 534 460 -138
·CH2-[CH2]5-CH3 def2-tzvp GIAO 533 460 -139
·CH2-[CH2]8-CH3 def2-tzvp GIAO 533 460 -139
·CH2-[CH2]13-CH3 def2-tzvp GIAO 533 460 -139
·CH2-[CH2]18-CH3 def2-tzvp GIAO 534 460 -139
LiH+ def2-tzvp GIAO -36 -39 -39
NaF+ def2-tzvp GIAO 99018 68231 -288

def2-tzvp ECC 786 593 45
def2-tzvp SDC 619 520 -52
def2-tzvp GIAO 566 504 -122

def2-tzvp ECC 774 491 274
def2-tzvp SDC 557 553 -28
def2-tzvp GIAO 552 549 -81
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1.3 Section ”Gauge origin dependence in molecules with multiple spin cen-
ters”

Table 3: g-shifts in ppm for section ”Gauge-origin dependence in molecules
with multiple spin centers”. Either a GIAO basis or a common gauge-origin
(SDC or ECC) was used as indicated.

molecule basis set gauge ∆g1 [ppm] ∆g2 [ppm] ∆g3 [ppm]

O=Ċ-[CH2]17-C≡C· def2-tzvp ECC 1550 -92 -3268

·NF-CH2-[CH=CH-CH2]5-CH2-CH=ĊH def2-tzvp ECC 4167 1788 -35
·Ala-Gly2-Lys· def2-tzvp ECC 3252 1031 113

·NH-ĊH2 def2-tzvp ECC 2296 887 -6

·NH-CH2-ĊH2 def2-tzvp ECC 2763 979 -28

·NH-[CH2]2-ĊH2 def2-tzvp ECC 2647 944 179

·NH-[CH2]3-ĊH2 def2-tzvp ECC 2812 901 67

·NH-[CH2]4-ĊH2 def2-tzvp ECC 2688 913 256

·NH-[CH2]9-ĊH2 def2-tzvp ECC 3155 954 129

·NH-[CH2]14-ĊH2 def2-tzvp ECC 3251 917 457

·O-[CH2]18-ṄH def2-tzvp ECC 35012 4516 1108

O=Ċ-[CH2]17-C≡C· def2-tzvp SDC 1487 -96 -3248

·NF-CH2-[CH=CH-CH2]5-CH2-CH=ĊH def2-tzvp SDC 4197 1786 -28
·Ala-Gly2-Lys· def2-tzvp SDC 3149 1032 111

·NH-ĊH2 def2-tzvp SDC 2288 890 -7

·NH-CH2-ĊH2 def2-tzvp SDC 2764 978 -28

·NH-[CH2]2-ĊH2 def2-tzvp SDC 2646 943 178

·NH-[CH2]3-ĊH2 def2-tzvp SDC 2818 899 67

·NH-[CH2]4-ĊH2 def2-tzvp SDC 2692 915 255

·NH-[CH2]9-ĊH2 def2-tzvp SDC 3178 949 129

·NH-[CH2]14-ĊH2 def2-tzvp SDC 3289 913 456

·O-[CH2]18-ṄH def2-tzvp SDC 35002 4513 1110
·NH-[CH2-O]7-CH2-S· def2-tzvp ECC 108751 9710 -100
·NH-[CH2-O]7-CH2-S· def2-tzvp SDC 108742 9710 -100

O=Ċ-[CH2]17-C≡C· def2-tzvp GIAO 1353 -118 -3253

·NF-CH2-[CH=CH-CH2]5-CH2-CH=ĊH def2-tzvp GIAO 3704 1518 -155
·Ala-Gly2-Lys· def2-tzvp GIAO 2632 887 -32

·NH-ĊH2 def2-tzvp GIAO 2196 901 -39

·NH-CH2-ĊH2 def2-tzvp GIAO 2623 996 -78

·NH-[CH2]2-ĊH2 def2-tzvp GIAO 2468 948 112

·NH-[CH2]3-ĊH2 def2-tzvp GIAO 2564 897 -15

·NH-[CH2]4-ĊH2 def2-tzvp GIAO 2376 931 143

·NH-[CH2]9-ĊH2 def2-tzvp GIAO 2579 927 -57

·NH-[CH2]14-ĊH2 def2-tzvp GIAO 2378 928 143
·NH-[CH2-O]7-CH2-S· def2-tzvp GIAO 108747 9710 -100

·O-[CH2]18-ṄH def2-tzvp GIAO 34749 3795 561
def2-tzvp ECC 138717 20958 2980
def2-tzvp SDC 138718 20968 2975
def2-tzvp GIAO 138658 20575 2805
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ABSTRACT
We present an efficient and low-scaling implementation of a density functional theory based method for the computation of
electronic g-tensors. It allows for an accurate description of spin-orbit coupling effects by employing the spin-orbit mean-field
operator. Gauge-origin independence is ensured by the use of gauge-including atomic orbitals. Asymptotically linear scaling
with molecule size is achieved with an atomic orbital based formulation, integral screening methods, and sparse linear algebra.
In addition, we introduce an ansatz that exploits the locality of the contributions to the g-tensor for molecules with local spin
density. For such systems, sublinear scaling is obtained by restricting the magnetic field perturbation to the relevant subspaces
of the full atomic orbital space; several criteria for selecting these subspaces are discussed and compared. It is shown that the
computational cost of g-tensor calculations with the local approach can fall below the cost of the self-consistent field calcula-
tion for large molecules. The presented methods thus enable efficient, accurate, and gauge-origin independent computations of
electronic g-tensors of large molecular systems.
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I. INTRODUCTION

The g-factor of the free electron relates its magnetic
moment to the electronic spin. It is one of the most precisely
known constants in physics,1,2 and its accurate prediction
has historically been one of the largest successes of quantum
electrodynamics.3–6

In a molecular environment, the effective magnetic
moment due to the electron spin is altered compared to the
free electron case as a result of spin-orbit coupling. This
can be described by substituting the scalar g-factor with
the electronic g-tensor, a 3 × 3 matrix, which is in gen-
eral anisotropic.7 Electronic g-tensors contain information
about the electronic structure of the molecule and are among
the most important electron paramagnetic resonance (EPR)
parameters.7 Accurate quantum-chemical calculations of

g-tensors are of great interest to experimentalists in the
field of EPR spectroscopy as demonstrated by many stud-
ies that use theoretically predicted g-tensors to assist in the
interpretation of the spectra.8–23

The quantum-chemical computation of g-tensors steadily
progressed throughout the last decades. One important line
of development was the accurate and efficient treatment
of spin-orbit coupling effects in molecules. Both the one-
electron and two-electron spin-orbit coupling need to be
accounted for, of which the latter is computationally more
challenging to handle. Due to this difficulty, several ab ini-
tio studies on g-tensors employed effective nuclear charges
in the one-electron spin-orbit coupling contributions in
order to account for the screening effects provided by the
two-electron contributions.24–26 In later years, several impro-
ved approximations to the two-electron spin-orbit coupling
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effects were developed. Schreckenbach and Ziegler27 treated
these contributions with the use of an effective potential
in the first density functional theory (DFT) method for g-
tensors. Furthermore, they also employed gauge-including
atomic orbitals (GIAOs),28–30 which ensure gauge-origin inde-
pendence of the computed values.27 Several other accurate
approximations to the two-electron spin-orbit coupling con-
tributions have been presented, which involve an effective
mean-field operator. Heß et al.31 introduced the spin-orbit
mean-field (SOMF) operator. Schimmelpfennig et al.32,33 used
the related atomic mean-field integral (AMFI) approach, where
in addition all multi-center integrals are neglected. More
recently, Neese34 presented several accurate approximations
to the SOMF operator, which reduce the computational effort
significantly.

Inclusion of electron correlation has been shown to be
crucial for accurate predictions of electronic g-tensors.35

Apart from DFT based methods,26,27 also several wave func-
tion based methods were presented in the literature; impor-
tant contributions have been made with configuration inter-
action theory.36,37 Coupled-cluster methods for g-tensors
were employed in Refs. 35 and 38. Static correlation has
been accounted for in the multiconfiguration response theory
from Vahtras et al.,39 in several multi-reference configura-
tion interactions approaches,40–43 and in the recent density-
matrix normalization group ansatz from Sayfutyarova and
Chan.44

Important advances have also been made in the treat-
ment of relativistic effects. van Lenthe et al.45 developed a
method based on the zero-order regular approximation. A
self-consistent two-component method with a Douglas-Kroll
Hamiltonian was introduced by Neyman et al.46 Manninen
et al.47 presented a perturbational relativistic theory for
g-tensors. Another two-component ansatz was presented by
Malkin et al.,48 and a four-component ansatz was introduced
by Repiskỳ et al.49

While much progress has been made in the accurate com-
putation of electronic g-tensors for small molecules, meth-
ods that enable to tackle large molecular systems are neces-
sary in order to further increase the area of application for
ab initio g-tensor calculations. Such methods have to be com-
putationally efficient and display low scaling behavior with the
molecule size; furthermore, they should be gauge-origin inde-
pendent. In a recent benchmark study, we showed that sig-
nificant errors can be introduced in g-tensor calculations on
larger systems, if gauge-origin independence is not ensured
by a suitable ansatz.50

This work builds on our previously established DFT based
ansatz from Ref. 50, which employs the SOMF operator in
order to accurately describe the two-electron spin-orbit cou-
pling but does not suffer from gauge-origin dependence. Sim-
ilar to the method from Schreckenbach and Ziegler27 and a
later coupled cluster approach by Gauss et al.,35 the gauge-
origin independence of our method is ensured by the use of
GIAOs.50 In this paper, we present an implementation of this
method with improved computational efficiency and reduced

scaling due to efficient integral screening. In addition, a local
ansatz for treating the magnetic field perturbation is intro-
duced, which can lead to sublinear scaling for molecules
with localized spin density. These methods enable efficient
and accurate g-tensor calculations at the DFT level for large
molecules such as biological macro-molecules.

II. THEORY
A. General theory

The electronic g-tensor can be computed by evaluating
the mixed second derivative of the electronic energy E with
respect to the magnetic field ~B and the electron spin ~s

gpq =
1
αS

d2E
dBpdsq

�����~B=~0,~s=~0
, p, q ∈ {

x, y, z
}
, (1)

with the fine structure constant α.27 S denotes the total
spin of the electronic state ( 1

2 times the number of unpaired
electrons).

Five contributions need to be included in order to com-
pute the deviation of the electronic g-tensor from the free
electron g-factor gel

27

gpq = δpqgel + grmc
pq + gdso1

pq + gdso2
pq + gpso1

pq + gpso2
pq . (2)

Here, grmc is the relativistic mass correction, gdso1 and gdso2

are the diamagnetic one-electron and two-electron spin-
orbit terms, respectively, and gpso1 and gpso2 denote the para-
magnetic one-electron and two-electron spin-orbit terms,
respectively. The theoretical approach for calculating these
contributions is the same as in our recent work;50 in our
present work, we explore several methods for reducing the
computational cost and scaling to linear or sublinear (Secs. II C
and II D).

grmc is computed from the following expression con-
taining the kinetic energy integrals T and the spin density
Pα−β :26

grmc
pq = −

α2gel

2S
δpq

∑

µν

Pα−βµν Tµν , (3)

where the spin density matrix is defined as the difference
between α and β density matrices

Pα−βµν ≡ Pαµν − Pβµν . (4)

We do not compute the two-electron contributions needed
for gdso2 explicitly, but instead use effective nuclear charges
as determined by Koseki et al.51 in the evaluation of gdso1 in
order to approximately account for this contribution

gdso1
pq + gdso2

pq ≈ α
2g′

8S

∑

A

Z̃A

∑

µν

Pα−βµν

×


∫
χ∗µ (~r1)

δpq(~r1 − ~RA) · (~r1 − ~Rν )

|~r1 − ~RA |3
χν (~r1)d~r1

−
∫
χ∗µ (~r1)

(~r1 − ~RA)p(~r1 − ~Rν )q

|~r1 − ~RA |3
χν (~r1)d~r1


,

(5)
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where Z̃A and ~RA are the effective charge and position of
nucleus A, respectively, and g′ is the electronic spin-orbit g-
factor.7 ~Rν denotes the atomic center of the basis function
χν .

The paramagnetic contributions involve the SOMF oper-
ator ẑ50

gpso1
pq + gpso2

pq ≈ 1
αS

∑

µν



dPα−βµν

dBp

������~B=~0,~s=~0

zqµν + Pα−βµν zq,Bp
µν


. (6)

The matrix representation of the SOMF operator31 in an
atomic orbital basis is obtained from the following set of
equations:

zqµν = hSOMF
µν,q + JSOMF

µν,q + KSOMF
µν,q , q ∈ {

x, y, z
}
, (7)

hSOMF
µν,q =

α2g′

4

∑

A

ZA

∫
χ∗µ (~r1)

[
(~r1 − ~RA) × p̂

]
q

|~r1 − ~RA |3
χν (~r1)d~r1, (8)

JSOMF
µν,q = −

α2g′

4

∑

λκ

Pλκg
soc, q
µνλκ , (9)

KSOMF
µν,q =

3
8
α2g′

∑

λκ

(
Pλκg

soc, q
µλκν + Pλκg

soc, q
κνµλ

)
. (10)

Here, gsoc, q
µνλκ denotes two-electron spin-orbit coupling inte-

grals

gsoc, q
µνλκ =

∫ ∫
χ∗µ (~r1)ĝsoc,q(~r1,~r2)χν (~r1)χ∗λ(~r2)χκ (~r2)d~r1d~r2, (11)

with

ĝsoc,q(~r1,~r2) =

[
(~r1 −~r2) × p̂

]
q

|~r1 −~r2 |3
. (12)

By partial integration, these integrals can be transformed to
linear combinations of second derivatives of standard elec-
tron repulsion integrals as shown in Ref. 52. Finally, a contri-
bution from the magnetic field derivative of the GIAO basis
functions28–30

χµ (~r, ~B) = e−
iα
2

[
(~B×(~Rµ−~R0))·~r

]
χµ (~r) (13)

in the SOMF matrix arises50

zq,Bp
µν =

iα
2

(
~Rµ × ~Rν

)
p
zqµν +

iα
2

[(
~Rµ − ~Rν

)
× zq

µν+

]
p
, (14)

where χν+ represents the basis function χν with incremented
angular momentum.50 The direction, in which the angular
momentum must be incremented, is determined by the cross
product.

B. Coupled-perturbed SCF
For computing the paramagnetic contributions to the

g-tensor as in Eq. (6), the derivative of the spin density with

respect to the magnetic field is needed. The perturbed spin
density Pα−β,Bp is obtained from the difference between the
perturbed α and β densities

dPα−βµν

dBp

������~B=~0,~s=~0

≡ Pα−β,Bp
µν ≡ Pα,Bp

µν − Pβ,Bp
µν

≡ dPαµν
dBp

������~B=~0,~s=~0

− dPβµν
dBp

������~B=~0,~s=~0

. (15)

The perturbed α and β densities can be decomposed into their
subspace projections resulting in occupied-occupied (oo),
occupied-virtual (ov), virtual-occupied (vo), and virtual-virtual
(vv) parts, of which the latter vanishes53

Pσ,Bp
µν =

[
Pσ,Bp
µν

]

oo
+

[
Pσ,Bp
µν

]

vo
+

[
Pσ,Bp
µν

]

ov
+

[
Pσ,Bp
µν

]

vv

=

[
Pσ,Bp
µν

]

oo
+

[
Pσ,Bp
µν

]

vo
−

[
Pσ,Bp
νµ

]

vo
, (16)

where σ denotes the spin (either α or β) and the negative
sign in the last line results from the skew-symmetry of the
perturbed densities. The occupied-occupied block of the per-
turbed density is obtained via the following expression, which
contains the magnetic field derivative of the overlap matrix
S:53

[
Pσ,Bp
µν

]

oo
= −

∑

λκ

Pσµλ
dSλκ
dBp

Pσκν . (17)

The virtual-occupied block of the perturbed densities can
be computed using the density-matrix based Laplace-
transformed coupled-perturbed self-consistent field (DL-
CPSCF) method54

[
Pσ,Bp
µν

]

vo
=

∑

τ

ωτ
∑

λκ

Q
σ,τ
µλ

(
−hσ,Bp

λκ + K
σ,[Bp]
λκ

)
Pσ,τ
κν . (18)

Here, ωτ is the weight corresponding to the Laplace quadra-
ture point τ. Pσ,τ and Q

σ,τ
are the occupied and virtual

pseudo-density for Laplace point τ, respectively,

Pσ,τ
µλ =

∑

i

Cσ∗µi e
(εσi −εσF )tτCσλi, (19)

Q
σ,τ
κν =

∑

a
Cσ∗κa e

−(εσa −εσF )tτCσνa, (20)

where Cσ are the molecular orbital coefficients and εσ are
the orbital energies. tτ is the exponent corresponding to
Laplace point τ. The sums over i and a run over occupied
and virtual molecular orbitals, respectively. The orbital ener-
gies are shifted by the Fermi level εσF , which is given by the
average of the energies of HOMO and LUMO; this increases
the numerical stability in the computation of the pseudo-
densities.55 hσ,Bp includes the integrals of the orbital angular
momentum operator l̂, all magnetic field derivatives of the
GIAO basis functions within the Fock matrix, a contribution
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from the derivative of the overlap matrix S, and an exchange
contribution from

[
Pσ,Bp

]
oo

53

hσ,Bp
µν =

α

2

〈
µ

���(r × p̂)p
���ν
〉

+
dTµν
dBp

+
dVµν
dBp

+
dfxc,σ
µν

dBp

+
∑

λκ

d(µν |λκ)
dBp

(
Pαλκ + Pβλκ

)
− ax

∑

λκ

d(µκ |λν)
dBp

Pσλκ

−
∑

κλ

dSµλ
dBp

PσλκF
σ
κν − ax

∑

κλ

(µκ |λν)
[
Pσ,Bp
λκ

]

oo
, (21)

where dfxc,σ

dBp
denotes the derivative of the exchange-

correlation potential, which depends on the density for α and
β electrons. T and V are the kinetic and potential energy inte-
grals, respectively. ax is the fraction of exact exchange in the
employed hybrid DFT functional. Mulliken notation is used for
the two-electron integrals

(µν |λκ) =
∫ ∫

χ∗µ (~r1)χν (~r1)
1

|~r1 −~r2 |
χ∗λ(~r2)χκ (~r2)d~r1d~r2. (22)

Finally, Kσ,[Bp] is an exchange matrix built with the perturbed
density

K
σ,[Bp]
µν = ax

∑

λκ

(µκ |λν)
( [
Pσ,Bp
κλ

]

ov
+

[
Pσ,Bp
κλ

]

vo

)
. (23)

Therefore, the right-hand side of Eq. (18) depends on the per-
turbed density itself and the equation has to be solved iter-
atively. The exchange contribution from

[
Pσ,Bp

]
oo

has been

added to hσ,Bp in Eq. (21), as it is constant throughout the
CPSCF iterations and thus needs to be computed only once.
Note that no Coulomb term appears in Eq. (23) as it vanishes
due to the skew-symmetry of the perturbed densities for the
imaginary magnetic field perturbation.53

C. Linear scaling approach using integral
screening and sparse linear algebra

The relativistic mass contribution and the diamagnetic
contributions to the g-tensor are evaluated non-iteratively
and involve only one-electron integrals [see Eqs. (3) and (5)].
Therefore, these contributions are computationally inexpen-
sive; if necessary, one could obtain them with sublinear scaling
effort for systems with local spin densities by restricting the
summations in Eqs. (3) and (5) to basis function pairs with
significant entries in Pα−β . We will focus our attention on
the computationally more demanding paramagnetic contribu-
tions, which involve the iterative solution of CPSCF equations
and thus constitute a potential bottleneck. Computationally
demanding steps include the computation of hσ,Bp [Eq. (21)],
the matrix multiplications in Eq. (18), and the construction
of Kσ,[Bp] according to Eq. (23). With the perturbed densi-
ties from the converged CPSCF at hand, the contributions to
the g-tensor from the SOMF-operator can be computed. The
one-electron contribution from Eq. (8) is not computationally

expensive in contrast to the Coulomb contribution from Eq. (9)
and the exchange contribution from Eq. (10). In this section, we
will explain how the computationally demanding steps can be
implemented efficiently and in an asymptotically linear scal-
ing fashion using integral screening methods and sparse lin-
ear algebra. We will denote the new method as “SOMF-GIAO”
henceforth.

1. Linear scaling CPSCF
Usually, the most expensive step of the g-tensor calcula-

tion is the construction of Kσ,[Bp] [Eq. (23)] in each iteration of
the CPSCF. For this step, we employ LinK screening56,57 which
reduces the computational effort toO(N) for sparse perturbed
density matrices.

In order to speed up the matrix multiplications needed
in Eqs. (17) and (18), we save the matrices in the block-
compressed sparse row (BCSR) format53,58 such that the
inherent block-sparsity of these matrices can be exploited.53

The atoms and their shells of associated basis functions are
sorted via the reverse Cuthill-McKee algorithm59 in order to
increase the block sparsity. For large systems with sufficiently
local electronic structures, this allows scaling of the matrix
multiplications to be reduced toO(N).

The most expensive steps in the computation of hσ,Bp

[Eq. (21)] are the contributions involving the magnetic-field
derivatives of the two-electron integrals and of the exchange-
correlation potential matrix. Their efficient evaluation has also
been discussed in Ref. 60. The Coulomb contribution

JBp
µν ≡

∑

λκ

d(µν |λκ)
dBp

(
Pαλκ + Pβλκ

)
(24)

can be calculated efficiently and in a linear scaling fashion
using the continuous fast multipole method (CFMM).60–62 For
the near-field contribution, we use Schwarz-screening for the
two-electron integrals.63,64

For the exchange term

Kσ,Bp
µν ≡ ax

∑

λκ

d(µκ |λν)
dBp

Pσλκ , (25)

we apply LinK-screening,56,57 which takes the coupling of the
bra- and ket-sides of the integrals by the density matrix into
account. For systems with a sparse density matrix (which is
generally the case for systems with a non-vanishing HOMO-
LUMO gap), Kσ,Bp can thus be obtained with linear scaling
effort.

Finally, dfxc

dBp
is computed for local batches of grid points.

Each batch has an associated list of significant shell-pairs
of basis functions, which includes all basis functions with
significant values at the grid points in the batch. For each
batch of grid points, only O(1) shell-pairs are significant. In
this way, the derivative of the exchange-correlation poten-
tial can also be evaluated with linear scaling compute
time.
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2. Coulomb contribution to the SOMF operator
The SOMF matrices from Eq. (7) do not have to be explic-

itly constructed for the purpose of calculating the g-tensor.
Instead, one can contract the spin-orbit integrals directly with
the density matrices. For the Coulomb contribution in Eq. (9),
this gives the following contributions to the g-tensor:

gSOMF-J
pq = −αg

′

4S

∑

µνλκ

Pα−β,Bp
µν gsoc, q

µνλκPλκ , (26)

g̃SOMF-J
pq = − αg

′

4S

∑

µνλκ

iα
2
Pα−βµν

[
(~Rµ × ~Rν )p g

soc, q
µνλκ

+ (~Rµν × gsoc, q
µν+λκ

)p
]
Pλκ , (27)

with

~Rµν ≡ ~Rµ − ~Rν . (28)

The contributions from Eqs. (26) and (27) are computed
together in our implementation such that common interme-
diates in the integral calculation can be used. The formal scal-
ing of the Coulomb contributions is N4. This can be reduced
to O(N2) by neglecting shell-pairs µν and λσ with vanishing
overlap.34,63 As discussed in Sec. IV A, the perturbed spin den-
sities are local in many systems; if their locality is exploited,
the scaling can be further reduced to linear because onlyO(1)
bra shell-pairs µν are significant.

An even more efficient screening protocol has to take the
decay of the two-electron spin-orbit integrals with increas-
ing bra-ket separation into account. These integrals show
anisotropic decay behavior and decay in one direction like
r−2

12 and in two directions like r−3
12 , which can be observed by

inspecting the operator in Eq. (12). In order to exploit the
fact that these integrals decay at least as r−2

12 with increasing
bra-ket separation, we employ the distance-including screen-
ing technique called QQR65 with an exponent of 2.0. We do
not account for the anisotropic decay behavior. In our imple-
mentation, contributions from shell-quartets µνλκ are only
computed if the following inequality holds:

Pα−β,max
µν QµνQλκPmax

λκ

|Rµν−λκ − ext′µν − ext′λκ |2
< ϑQQR, (29)

where ϑQQR is the screening threshold. Q is an intermediate
that is commonly employed in integral screening based on the
Cauchy-Schwarz inequality63,64

Qµν = |(µν |µν) |1/2. (30)

QµνQλκ is the Schwarz estimate for a standard electron
repulsion integral (ERI) (µν |λκ).63,64 We use this estimate
to account for the exponential decay behavior of the inte-
grals with separation between the basis functions in both
bra and ket. Pα−β,max

µν is the maximum value of the maximal
values of spin density and perturbed spin densities for the
shell-pair µν

Pα−β,max
µν ≡ max

µν

[(
α

2
|Pα−βµν |

)
, |Pα−β,Bx

µν |, |Pα−β,By
µν |, |Pα−β,Bz

µν |
]
. (31)

By including Pα−β,max
µν in the screening from Eq. (29), calcula-

tion of integrals is required only forO(1) shell-pairs µν for sys-
tems with local (perturbed) spin density. Pmax

µν is the maximal
value of the ground state density matrix for this shell-pair

Pmax
µν ≡ max

µν
|Pµν |. (32)

Rµν−λκ is the distance between the center of shell-pair µν and
the shell-pair λκ.65 The shell-pair extent ext′µν is defined in
Ref. 65.

3. Exchange contribution to the SOMF operator
The contribution from the exchange part of the SOMF

operator to the g-tensor can also be evaluated by directly
contracting the spin-orbit integrals with the density matri-
ces leading to the contributions from Eqs. (33) and (34). In
Eq. (33), the bra and ket sides of the two-electron spin-orbit
integrals are coupled via the ground state density matrix P and
the perturbed spin density matrices Pα−β,Bp

gSOMF-K
pq =

3αg′

8S

∑

µνλκ

[
Pα−β,Bp
µν Pλκ

(
gsoc, q
µλκν + gsoc, q

κνµλ

)]
. (33)

In the corresponding GIAO contribution [see also Eq. (14)], the
bra and ket sides of the integrals are coupled via P and the spin
density matrix Pα−β

g̃SOMF-K
pq =

3αg′

8S

∑

µνλκ

iα
2
Pα−βµν Pλκ

[
(~Rµ × ~Rν )p

(
gsoc, q
µλκν + gsoc, q

κνµλ

)

+
(
~Rµν ×

(
gsoc, q
µλκν+ + gsoc, q

κν+µλ

))
p

]
. (34)

Similarly to the Coulomb contributions from Sec. II C 2, we
evaluate both contributions from Eqs. (33) and (34) together
in order to use intermediates in the integral calculation. For
an efficient computation of the exchange contribution, it is
crucial to exploit the sparsity and the locality in the density
matrices in addition to the sparsity of the integrals. To this
end, we use a screening that is based on Cauchy-Schwarz
screening for the integrals but also takes the density matri-
ces into account; the integrals are only computed for a shell
quartet µνλκ if the following inequality is fulfilled:

Pα−β,max
µν QµλQνκPmax

λκ > ϑSOMF-K. (35)

Pα−β,max
µν and Pmax

λκ have been defined in Eqs. (31) and (32),
respectively, and account for the coupling of bra and ket sides
of the integrals by the density matrices.

D. Local perturbation approach for g-tensors
As described in Sec. IV A, the perturbed spin densities in

Eq. (15) are, like the unperturbed spin density, local quanti-
ties for many larger molecules. For radicals with one or more
localized spin centers, perturbed spin densities only occur in
the immediate vicinity of the spin centers. In contrast, the
magnetic field derivatives of the α and β density matrices
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are in general global quantities with significant entries for
basis function pairs throughout the entire molecule. However,
most of the contributions from α and β spin cancel, when
the difference between the two spins is computed according
to Eq. (15), resulting in a local perturbed spin density matrix.
We will denote the space of basis functions that are part
of AO pairs with a significant perturbed spin density by ΩP
henceforth.

It is highly desirable to altogether avoid the expensive
computation of entries in the perturbed α and β densities
that do not lead to significant contributions to the perturbed
spin density because of cancellation during the evaluation of
Eq. (15). In order to achieve this, we extend the SOMF-GIAO
method from Sec. II C by employing a “locally projected per-
turbation” (LPP) approach. For this purpose, we rewrite Eq. (18)
as

[
Pσ,Bp
µν

]

vo
=

[
P̃σ,Bp
µν

]

vo
+
∑

τ

ωτ
∑

λκ

Q
σ,τ
µλ K

σ,[Bp]
λκ Pσ,τ

κν , (36)

with the uncoupled-perturbed density
[
P̃
σ,Bp

]

vo
[
P̃σ,Bp
µν

]

vo
≡

∑

τ

ωτ
∑

λκ

Q
σ,τ
µλ

(
−hσ,Bp

λκ

)
Pσ,τ
κν . (37)

[
P̃
σ,Bp

]

vo
can be computed prior to the CPSCF iterations, as it

does not change during the iterations. In our local perturba-

tion approach, we project hσ,Bp ,
[
P̃
σ,Bp

]

vo
, or both quantities

to the relevant subspaces of the full atomic orbital space; this
has a similar effect as turning the magnetic field perturba-
tion on only in certain parts of the molecule. The approach
is intended to allow for a local computation of perturbed α

and β densities in the relevant parts of the molecule without
computing the perturbed densities globally. This method will
be denoted as “LPP-SOMF-GIAO” henceforth.

In our first projection approach, the uncoupled-perturbed
densities are projected onto Ω̃P by zeroing all entries for basis
functions that are not contained in Ω̃P, where Ω̃P shall denote
an estimate of the space ΩP:

[
P̃
σ,Bp

]

vo
⇒ oΩ̃P

[
P̃
σ,Bp

]

vo
oΩ̃P , (38)

oΩ̃P
µν =




δµν if µ ∈ Ω̃P

0 otherwise
. (39)

Methods for obtaining Ω̃P will be presented in the following.
When the projected uncoupled-perturbed density is inserted
into Eq. (36), a modified DL-CPSCF equation is obtained

[
Pσ,Bp
µν

]

vo
=

∑

λκ

oΩ̃P
µλ

[
P̃σ,Bp
λκ

]

vo
oΩ̃P
κν +

∑

τ

ωτ
∑

λκ

Q
σ,τ
µλ K

σ,[Bp]
λκ Pσ,τ

κν .

(40)

In cases where Ω̃P is significantly smaller than the full AO
space, a local perturbed density is obtained as the solution of

Eq. (40), as the projection of
[
P̃
σ,Bp

]

vo
has a similar effect as

turning the magnetic field perturbation on only in a small part
of the molecule. For such a local perturbed density, Kσ,[Bp]

can be built with O(1) computational cost if LinK screening is
employed,66 thus reducing the scaling of the rate-determining
step to sublinear. Also the matrix multiplications of the local
matrix Kσ,[Bp] with the pseudo-densities can be performed
with sublinear effort if sparse linear algebra with the BCSR
matrix format is used.66

The first method for obtaining an estimate Ω̃P involves

the uncoupled-perturbed spin density P̃
α−β,Bp . It is obtained

from the difference between the uncoupled-perturbed den-
sities P̃

α,Bp and P̃
β,Bp , which can be viewed as approximate

perturbed densities

[
P̃α−β,Bp
µν

]

vo
=

[
P̃α,Bp
µν

]

vo
−

[
P̃β,Bp
µν

]

vo
. (41)

In a similar way, Wolinski et al.30 used the uncoupled-
perturbed density in order to estimate the perturbed density
prior to the CPSCF in the context of NMR shieldings.

Then, for each atom A, the following quantity qP1
A is

formed:

qP1
A ≡

∑

µ∈{A}

∑

ν

max
{p}

����

[
P̃α−β,Bp
µν

]

vo
+

[
P̃α−β,Bp
µν

]

ov

����

=
∑

µ∈{A}

∑

ν

max
{p}

����

[
P̃α−β,Bp
µν

]

vo
−

[
P̃α−β,Bp
νµ

]

vo

����, (42)

where {A} shall denote the set of basis functions centered on
atom A. qP1

A is used as a measure for the importance of the
basis functions on atom A for the computation of the per-
turbed densities. One could define Ω̃P as the set of all basis
functions that are centered on atoms with qP1 values above
a pre-defined threshold. However, this approach has certain
drawbacks because the distribution of qP1 values can be rather
different for different molecules depending on its electronic
structure. Using a fixed threshold can be sub-optimal for some
systems. For this reason, we use an adaptive, system-specific
threshold and include only basis functions on atoms with a qP1

value larger than ϑproj-P1 in the space Ω̃P

ϑproj-P1 ≡ ϑ90%
P1 ϑuser

proj-P1. (43)

Here, ϑuser
proj-P1 is a threshold that is specified in the user input

file. ϑ90%
P1 is the threshold for which 90% of

∑
A
qP1
A would be

included and is dependent on the molecule. In order to obtain
ϑ90%

P1 , a list of qP1 values for all atoms is constructed and sorted
by magnitude; starting with the atoms with largest qP1 values,
more and more atoms are added until 90% of

∑
A
qP1
A is included.

The qP1 value of the last atom needed to exceed 90% of
∑
A
qP1
A is

then taken as ϑ90%
P1 . The described projection approach based

on the uncoupled-perturbed spin density will be denoted as
proj-P1 henceforth.
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An alternative way of obtaining an estimate for Ω̃P was
implemented which uses the unperturbed spin density

qP2
A ≡

∑

µ∈{A}

∑

ν

|Pα−βµν |. (44)

The corresponding projection approach is in all other respects
analogous to proj-P1 and will be denoted as proj-P2. Here, it
is assumed that the spatial distribution of the unperturbed
and perturbed spin densities is similar. In this context, we
want to point out that the perturbed spin density as defined
in Eq. (15) vanishes exactly for a closed-shell reference state
where the α and β density matrices are identical (and the
spin density is zero). This can be seen from the CPSCF equa-
tions in the DL-CPSCF formulation [Eq. (18)]. This equation
can be written in a way such that only the spin-dependent
quantities are the perturbed density matrices and the unper-
turbed density matrices. For this purpose, one needs to
express the pseudo-density matrices as the following matrix
exponentials:

Pσ,τ = etτP
σFσPσ , (45)

Q
σ,τ
= e−tτQ

σFσQσ (46)

and use the definition of the Fock matrix

Fσµν =hµν +
∑

λκ

[
Pαλκ + Pβλκ

]
(µν |λκ) − ax

∑

λκ

Pσλκ (µκ |λν), (47)

as well as the following relation between the occupied density
matrix P and the virtual density matrix Q:

Qσ = S−1 − Pσ . (48)

Therefore, the DL-CPSCF equations describe a (rather compli-
cated) relationship between the perturbed and unperturbed
density matrices. This relationship is the same for both spin
cases. If identical density matrices for α and β spin enter these
equations for the case of a closed-shell state, the obtained
perturbed α and β densities are therefore identical. Conse-
quently, the perturbed spin density vanishes for a closed-shell
state due to the symmetry between α and β spin. This implies
that differences between α and β density matrices are a nec-
essary prerequisite for a non-zero perturbed spin density as
defined in Eq. (15).

We furthermore argue that the effects of local differences
between α and β density are also local and lead to perturbed
spin densities in the same spatial region. This is because all
spin-dependent quantities in the CPSCF equations that can
break the symmetry between α and β spin are sparse and
short-ranged. These include the exchange matrices that occur
in the Fock matrix [Eq. (47)] and the matrices KB in Eq. (25). The
Coulomb-type matrices appearing in the CPSCF equations (J
and JB) depend on the total density (Pα + Pβ ) and enter the
equations for α and β spin identically; therefore these long-
ranged contributions do not affect the spin symmetry. Conse-
quently, one can expect the unperturbed and perturbed spin
densities to share the same locality. This motivates the use of
the unperturbed spin density as a criterion for determining
the space Ω̃P in the approach proj-P2.

In a GIAO basis, the computation of hσ,Bp in Eq. (21)
can become the bottleneck for large systems, if the scal-
ing of the iterative part of the CPSCF is reduced to sublin-
ear by the projection approaches proj-P1 or proj-P2. If the
uncoupled-perturbed densities are only computed in a local
subspace Ω̃P, then it is possible to project also hσ,Bp onto
a suitable local subspace Ω̃h without introducing significant
errors. The space Ω̃h needs to be chosen large enough such
that all significant effects of hσ,Bp on the perturbed densi-
ties in Ω̃P are accounted for. As one can see from Eq. (18),
the contributions from hσ,Bp to the perturbed densities are
obtained by matrix multiplications involving the occupied and
virtual pseudo-density matrices. Entries in hσ,Bp from basis
function pairs without significant coupling to the space Ω̃P
through the pseudo-densities thus have no significant influ-
ence on the perturbed densities within Ω̃P. In order to deter-
mine the space Ω̃h, we therefore employ the following auxiliary
quantity M:

Mσ
µν ≡

∑

τ

ωτ
∑

λκ

Pσ,τ
µλ |Pα−βλκ |Q

σ,τ
κν . (49)

In Eq. (49), the spin density has been inserted because it can
be used to determine Ω̃P as discussed in the context of pro-
jection approach proj-P2. We account for the coupling of the
space Ω̃P to the surrounding environment by the matrix mul-
tiplications with the pseudo-densities. The quantity M is used
for determining the space Ω̃h. For each atom A, we form a
quantity qh

A

qh
A =

∑

µ∈A

∑

ν

max
{α,β}

(
|Mσ

µν | + |Mσ
νµ |

)
. (50)

In complete analogy to the projection approaches proj-P1 and
proj-P2, a sorted list of qh

A for all atoms is constructed. The qh
A

value needed for exceeding 90% of
∑
A
qh
A is taken as ϑ90%

h . The

used system-specific threshold ϑproj-h is then obtained from

ϑproj-h ≡ ϑ90%
h ϑuser

proj-h, (51)

where ϑuser
proj-h is pre-defined in the input. The space Ω̃h then

includes all basis functions on atoms with a qh value larger
than ϑproj-h.

All matrix elements hσ,Bp
µν , where χµ and χν do not both

belong to Ω̃h, are set to zero and we will refer to this as the
proj-h approach henceforth. In order to speed up the calcu-
lation of hσ,Bp , one needs to avoid the computation of entries
that would afterwards be removed by the projection—at least
for the most expensive steps. These include the Coulomb con-
tribution JBp , the exchange contributions from Kσ,Bp in Eq. (25)
and from

[
Pσ,Bp

]
oo

in Eq. (21), and finally also the evaluation of
dfxc

dBp
. In the computation of dfxc

dBp
, a loop over batches of spa-

tially close grid points is carried out and each batch has an
associated list of significant shell-pairs. When applying proj-h,
the grid batches are skipped if none of the shell-pairs con-
taining basis functions from Ω̃h are considered significant for

J. Chem. Phys. 150, 024104 (2019); doi: 10.1063/1.5066266 150, 024104-7

Published under license by AIP Publishing



The Journal of
Chemical Physics ARTICLE scitation.org/journal/jcp

them. In this way, hσ,Bp can be obtained in a sublinear scaling
fashion.

The projection approaches proj-P2 and proj-P1 can also
be combined with proj-h. The combined approaches allow
for overall sublinear scaling of all computationally demanding
steps and are denoted by proj-P1h and proj-P2h, respectively.

III. COMPUTATIONAL DETAILS
The theory described in Sec. II was implemented in a

development version of the FermiONs++ program.67–69 The
reference state is obtained via unrestricted Kohn-Sham-
DFT.70 The root mean square deviation of (FPS − SPF) from
zero is used as the SCF convergence criterion and converged
to a threshold of 10−7. Shell-pairs with a maximum basis func-
tion overlap of less than 10−12 were omitted from the calcu-
lation. Direct inversion of the iterative subspace (DIIS)71 is
used for accelerating and stabilizing the convergence of the
CPSCF. In order to test for convergence, the paramagnetic
one-electron contribution from Eq. (8) to the g-tensor is com-
puted in each CPSCF iteration; the iterations are stopped if the
relative change in this contribution falls below a predefined
threshold; this threshold was taken to be 10−6 for the accuracy
benchmark in Secs. IV B and IV C and 10−4 for the timings in
Sec. IV D. For the BCSR matrices, we use a sparsity threshold
of 10−7.

In all calculations, the B3LYP functional72 was employed.
The molecular integration grids used for DFT are gener-
ated as a product of a spherical Lebedev/Laikov73 grid and
a Treutler-Ahlrichs “M4” grid.74 Separate sets of Laplace
quadrature points are used for α and β in Eq. (18), which
are obtained from a minimax optimization75,76 in the inter-
val

[
1, ∆εmax
∆εmin/2

]
using a sloppy Remez algorithm.75 Here,

∆εmin denotes the HOMO-LUMO gap and ∆εmax is the
maximum difference between occupied and virtual orbital
energies.

All molecular geometries used for benchmarking the
accuracy of our method in Sec. IV C were optimized using
the FermiONs++ program67–69 and the PBE-H3c method77

with geometric counterpoise-correction.78 The spin-labeled
DNA structures used in Sec. IV D were optimized with
FermiONs++,67–69 the HF-3c method,79 and the DL-FIND opti-
mizer.80 All timings in Sec. IV D were performed on a single
compute node with two Intel Xeon E5-2667 v4 processors with
3.2 GHz clock speed and 16 cores in total.

IV. RESULTS
A. Locality of the spin density and perturbed
spin densities

The approaches presented in Sec. II involve an estimation
procedure for the perturbed spin densities and then project

P̃
σ,Bp and hσ,Bp onto the relevant subspace of the full AO

space. This reduces the asymptotic scaling from linear to sub-
linear by avoiding the computation of the perturbed α and
β densities, which are in general global quantities. Instead it
is assumed that the perturbed spin densities are often (not
for all molecules) local quantities making a local and sub-
linear scaling computation possible. The approaches proj-P2
and proj-h further assume that the spatial distribution of the
unperturbed spin density is a good estimate of the spatial
distribution of the perturbed spin densities. In order to sup-
port these assumptions, the plots of the mentioned density
matrices are shown in Fig. 1 for three exemplary molecules.
In contrast to the completely delocalized perturbed α and

FIG. 1. Plots of
∑
µν
|Xµν |χ∗µ (r)χν (r),

where X is the perturbed α density (first
column), the perturbed β density (sec-
ond column), the perturbed spin den-
sity (third column), or the unperturbed
spin density (fourth column). Depicted
are iso-surfaces, which include 90%
of the respective density. For all per-
turbed densities, the magnetic field in the
z-direction was taken as the perturba-
tion. The employed molecules are MTSL
(first row), ·O–[CH2]18–[CH3] (middle
row), and octylphenol radical (bottom
row). The molecule images were cre-
ated with the Visual Molecular Dynamics
(VMD) program.81,82
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β densities, the perturbed spin density has significant val-
ues only in the parts of the molecule that are close to the
spin center. Both the perturbed spin densities and the unper-
turbed spin density have a similar spatial distribution in all
three molecules. These results suggest on the one hand that
a local approach for g-tensor computations must be feasible
and on the other hand that the unperturbed spin density pro-
vides a good estimate of the locality of the perturbed spin
densities.

B. Comparison to other methods
In Table I, we show benchmark calculations for small

molecules with the SOMF-GIAO method (without integral
screening) using the B3LYP functional. As a reference, we use
accurate values from a recent study of Perera et al.,38 which
were obtained at the coupled-cluster singles and doubles

TABLE I. Comparison of the new SOMF-GIAO approach with the B3LYP functional to
CCSD values from Ref. 38 and to values obtained with an effective one-electron spin-
orbit operator with empirical nuclear charges (“Zeff-GIAO”). All DFT calculations were
carried out with FermiONs++67–69 and the aug-cc-pVTZ basis set. The employed
molecular geometries were taken from Ref. 35. The average deviations are computed
with the CCSD values as reference. All values are given in ppm.

Molecule Component B3LYP CCSD

Zeff-GIAO SOMF-GIAO

CN ∆gxx −2 173 −2 029 −2 033
∆gzz −134 −134 −176

CO+ ∆gxx −2 620 −2 451 −2 436
∆gzz −134 −134 −162

BO ∆gxx −1 840 −1 699 −1 734
∆gzz −68 −68 −86

NH ∆gxx 1 369 1 214 1 379
∆gzz −106 −106 −163

OH+ ∆gxx 3 722 3 389 3 979
∆gzz −173 −173 −249

H2O+ ∆gxx −189 −189 −250
∆gyy 13 654 12 300 15 156
∆gzz 4 701 4 152 4 353

CH3 ∆gxx −89 −90 −113
∆gzz 653 520 476

O2 ∆gxx 2 686 2 498 2 516
∆gzz −200 −200 −89

O−3 ∆gxx −554 −526 −581
∆gyy 18 459 17 026 16 583
∆gzz 11 084 10 174 9 726

CO−2 ∆gxx 951 914 747
∆gyy −5 142 −4 636 −4 674
∆gzz −724 −677 −723

H2CO+ ∆gxx 5 927 5 458 5 668
∆gyy 86 80 233
∆gzz 249 212 608

NO2 ∆gxx 3 643 3 444 3 327
∆gyy −11 873 −10 851 −10 792
∆gzz −697 −656 −630

NF2 ∆gxx −669 −619 −526
∆gyy 7 010 6 376 6 030
∆gzz 4 147 3 757 3 239

Average deviation 360 233

(CCSD) level with full one-electron and two-electron spin-
orbit operators. Overall, the SOMF-GIAO method agrees well
with the CCSD values with an average deviation of 233 ppm.
Further improvements might be possible by also including
explicit two-electron contributions in the diamagnetic contri-
butions as in Ref. 38.

Table I also contains g-shifts computed with an effective
one-electron operator with empirically determined nuclear
charges from Koseki et al.51 as proposed by Neese.26 Apart
from small deviations, which are presumably due to the use
of GIAOs and different integration grids, we were able to
reproduce the B3LYP results with effective nuclear charges
from Ref. 35 using our implementation in FermiONs++.67–69

The results indicate that the ansatz with effective nuclear
charges is less accurate than the SOMF-GIAO method and
leads to an average deviation of 360 ppm to the CCSD
reference.

C. Accuracy of the introduced approximations
The methods presented in Sec. II employ several thresh-

olds and parameters, whose values determine accuracy and
efficiency of the calculation. In this section, benchmark cal-
culations are presented in which always one parameter was
varied while all others were set to fixed values, which only
introduce negligible errors. These values are zero for the pro-
jection approaches proj-P1, proj-P2, and proj-h (equivalent to
performing no projection at all); 10−12 has been employed for
all integral screening thresholds, and 15 Laplace points were
used (it was confirmed by comparison to reference calcu-
lations without integral screening or projections that these
settings introduce negligible errors, which were in all cases
below 0.001%). In this manner, we analyze the influence of
each parameter in isolation. In general, we consider relative
errors on the order of 0.2% in the computed g-shifts as sat-
isfying accuracy and try to determine threshold values that
provide such high accuracy.

Our test set contains 10 medium-sized molecules; among
them are several bio-molecules, such as short peptides [a cys-
teine radical bound to four glycines (“·Cys-Gly4”), a serine-
lysine dipeptide (“Ser-Lys”) with the radical center at the
serine side-chain oxygen, and a tripeptide from the enzyme
pyruvate formate lyase with the radical center at the residue
419 (“419,” structure taken from Ref. 83)], a fatty acid radical
(myristoleic acid), and all-trans-retinal. Furthermore, the test
set contains a commonly employed spin label called MTSL,84

an alcohol radical (“·O-[CH2]18–CH3”), and an alkane radical
(“·CH2–[CH2]18–CH3”). The two remaining molecules are a 4-
octylphenol molecule with the radical center at the oxygen
and triethylmethylamine with the radical center at the methyl
group. The focus lies on molecules with a rather localized spin
density; still, some systems have an at least partially delocal-
ized spin density such as all-trans-retinal with its conjugated
double-bonds or the octylphenol radical where the spin den-
sity is delocalized over the aromatic ring and the neighboring
oxygen. All calculations were done with the def2-TZVP basis
set.85
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FIG. 2. Relative errors in the isotropic g-shift due to (a) the QQR screening for the Coulomb part of the SOMF operator from Sec. II C 2 and (b) the screening for the exchange
part of the SOMF operator from Sec. II C 3 are shown as a function of the respective screening threshold. The insets provide a detailed view on relative errors in the range
from 0.0% to 1.0%. For the color-coding of the molecules, see Fig. 5.

1. Integral screening
Figure 2 shows the errors introduced by the QQR screen-

ing in the Coulomb contribution to the SOMF operator and
due to the screening for the contribution from the exchange
part of the SOMF operator. For both contributions, thresholds
of 10−8 are sufficient for achieving errors of less than 0.2%,
even though the errors are slightly larger for the Coulomb
contribution. Figure 3 displays the errors due to LinK screen-
ing in Eq. (23). Negligible errors below 10−3% are introduced
with a threshold of 10−6 for all molecules. A threshold of
10−4 is sufficient to reduce the errors below 3% in all cases.
Finally, negligible errors are obtained, if integral screening
with thresholds of 10−8 and 10−6 is used for JBp in Eq. (24) and
Kσ,Bp in Eq. (25), respectively (see Fig. 3).

In summary, we observe fast convergence towards the
reference values for all integral screening methods; the
obtainable accuracy is fully controllable by adjusting the
screening thresholds.

2. Laplace quadrature
Only a small number of Laplace points are needed for

achieving negligible error due to the Laplace quadrature (see
Fig. 4). For 7 quadrature points, errors below 0.1% are observed
for all molecules; 10 quadrature points reduce the errors below
0.01% in all cases. As most steps of the g-tensor calcula-
tion are independent of the number of Laplace points [the
exceptions are the matrix multiplications in Eq. (18) and the
construction of the pseudo-densities, which are usually not
time-dominating], a relatively high number of Laplace points
can be used without significantly increasing the total compute
time.

3. CPSCF with the “locally projected
perturbation” approach

In Fig. 5, the relative errors in the isotropic g-shift caused
by the subspace projection approaches described in Sec. II D
are plotted against the corresponding thresholds. The results

FIG. 3. Relative errors in the isotropic g-shift as a function of the screening thresholds for the LinK screening in Eq. (23) (a), the Schwarz screening for the near-field part of
JBp in Eq. (24) (b) and the LinK screening in the computation of Kσ,Bp in Eq. (25) (c). For the color-coding of the molecules, see Fig. 5.
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FIG. 4. Relative errors in the isotropic g-shift as a function of the number of Laplace
integration points used in the DL-CPSCF. For the color-coding of the molecules,
see Fig. 5.

indicate that all three projection approaches are robust and
quickly converge to the result without projection for all ana-
lyzed systems. The approaches proj-P2 and proj-h are also
used in Sec. IV D; suitable thresholds for obtaining errors of
around 0.2% or less are 10−2 for ϑuser

h and 10−1 for ϑuser
P2 . In

Fig. 5, it is also shown how many shell-pairs are removed by
the projection approaches for the different thresholds. The
fraction of shell-pairs that can be removed by the projection
varies considerably among the molecules in the test set; this
is expected due to the different degrees of locality of the spin
densities. For molecules with local spin densities, large frac-
tions of the AO space can be removed by the projection, while
for molecules with less local spin densities, only small fractions
can be removed.

When comparing the ratios between the errors and the
sizes of the orbital spaces, the approaches proj-P1 and proj-P2
show similar performance. The ratios between the introduced
errors and the sizes of the orbital spaces are significantly
worse for proj-h; however, proj-h has a different purpose
and is intended to allow for a sublinear computation of hσ,Bp ,
which has a smaller prefactor than the iterative part of the
CPSCF.

D. Scaling behavior and efficiency
In this section, we present timings from calculations on

two kinds of molecular systems: on the one hand, alkane rad-
icals of varying length with a terminal spin center and, on the
other hand, short DNA strands with 1-5 adenine-thymine (AT)
base pairs and an attached nitroxide spin label. The alkanes are
idealized systems with a high degree of sparsity in the density
matrices and are well-suited to show the asymptotic scaling
behavior for very large systems; the spin-labeled DNA strands
with less sparse density matrices are more representative of
molecules that might be considered in application studies.

First, we consider the SOMF-GIAO method introduced in
Sec. II C and use integral screening thresholds that were found

to allow for accurate computations in Sec. IV C: 10−6 for the
LinK screening in the CPSCF, 10−8 for the exchange contribu-
tion to the SOMF operator, 10−10 for the QQR screening for
the Coulomb part of the SOMF operator, 10−8 for the near-
field part of JBp [Eq. (24)], and 10−6 for the LinK screening used
for Kσ,Bp [Eq. (25)].

The corresponding timings with the def2-SVP basis set85

are shown in Fig. 6. For the alkanes, the observed scaling is
clearly below quadratic and approaches linear scaling; for the
two largest systems (alkane-160 and alkane-200), the scaling
exponent amounts to 1.3 for the entire g-tensor calculation
and 1.4 for the iterative part of the CPSCF, which is time-
dominating. For the spin-labeled DNA, the effective scaling is
higher [1.8 for the entire g-tensor calculation between (AT)4
and (AT)5], which is due to the more three-dimensional struc-
ture and lower sparsity in the density matrices. In order to
observe a scaling closer to 1.0, one would need to consider
larger DNA strands.

For both alkane radicals and spin-labeled DNA, the com-
putation of hσ,Bp requires a significant fraction of the total
compute time for smaller systems, but displays a lower effec-
tive scaling than the iterative part and thus becomes less
important for larger molecules. This is mainly due to the
CFMM used for JB in Eq. (24) and the computation of dfxc,σ

dBp
,

both which scale close to linear. The compute time needed
for the SOMF operator is negligible for both systems because
the locality of spin density and perturbed spin densities can
be efficiently exploited in the screening from Secs. II C 2
and II C 3.

The g-tensor calculations on both types of systems were
comparably as fast as the linear scaling self-consistent field
(SCF) method with LinK screening for the exchange matrix
and CFMM for the Coulomb matrix (and integral screen-
ing thresholds of 10−10 for both; for the timings, see Fig. 8).
The chosen SCF settings are tight, but this is advisable for
practical calculations where g-tensors and potentially other
molecular properties are computed based on the SCF den-
sity. For alkane-200, the SCF took 49 min and the g-tensor
part 60 min. For the largest DNA system with 5 AT base
pairs and the def2-SVP basis set, both the g-tensor calcula-
tion and the SCF took 212 min. This shows the high efficiency
of the method. Also the scaling with system size is highly sim-
ilar for the g-tensor calculation and the preceding SCF, for
which the effective scaling between alkane-160 and alkane-
200 amounts to 1.4, while it amounts to 1.7 between (AT)4 and
(AT)5.

In Fig. 9, timings on (AT)1 to (AT)3 with the def2-TZVP
basis set are shown. Due to CPSCF convergence problems in
some of the calculations, we tightened the LinK threshold to
10−8. Both computational cost and scaling with system size are
higher than for the def2-SVP basis set. However, the effective
scaling is decreasing and can be expected to further decrease
for larger systems. Also for this basis set, scaling and wall
time for the g-tensor calculation and the SCF are similar in
magnitude.
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FIG. 5. Relative errors in the isotropic g-
shifts due to the projection approaches
proj-P1, proj-P2, and proj-h as a function
of the corresponding projection thresh-
old are shown in the left column. The
right column shows the fractions of shell-
pairs that need to be included in the
spaces Ω̃P and Ω̃h as a function of the
projection threshold.

In summary, the SOMF-GIAO method was shown to dis-
play near linear scaling for sufficiently large systems and a
reasonably low prefactor and thus allows for calculations on
large molecules.

In the calculations with the LPP-SOMF-GIAO method
introduced in Sec. II D, we employed the projection approach
P2h with thresholds of 10−1 for ϑuser

P2 and 10−2 for ϑuser
h ; in addi-

tion, integral screening with the same thresholds as for the
linear scaling ansatz was employed. In order to analyze the
combined influence of the subspace projections proj-h and

proj-P2 on the obtained accuracy, we show the relative devi-
ations from the SOMF-GIAO method for all employed alka-
nes and spin-labeled DNA strands in Fig. 7. For both series of
systems, the magnitude of the errors does not grow signif-
icantly if the molecule is enlarged. Small oscillations in the
magnitude of the errors occur for the alkanes with a LinK
screening threshold of 10−6; these oscillations are due to
numerical errors from the screening of integrals and disappear
if the threshold is lowered to 10−8. In Fig. 7, also the sizes of the
orbital spaces Ω̃h and Ω̃P are shown. For both the alkanes and
the spin-labeled DNA, Ω̃h is significantly larger than Ω̃P. The
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FIG. 6. Timings for alkane radicals with 5 to 200 carbon atoms (a) and spin-labeled DNA strands with 1-5 AT base pairs (b). The def2-SVP basis set with the SOMF-GIAO
method was employed in all calculations. “RHSB” denotes the time needed for the computation of all contributions to hσ,Bp [see Eq. (21)]. “CPSCF” denotes the compute
time needed for the iterative part of the CPSCF. The colored numbers indicate the effective scaling.

orbital spaces converge quickly with molecule size and stay
essentially constant in size for systems larger than alkane-40
or spin-labeled (AT)2.

In Fig. 8, timings with the LPP-SOMF-GIAO method and
def2-SVP basis set are shown in comparison with the timings
for the SOMF-GIAO approach. In most cases, the observed

FIG. 7. Calculations with the LPP-SOMF-GIAO method and the def2-SVP basis set. [(a) and (b)] Calculations on alkane radicals with 5–200 carbon atoms. [(c) and (d)]
calculations on spin-labeled DNA strands with 1-5 AT base pairs. [(a) and (c)] Relative errors in the isotropic g-shifts compared to the SOMF-GIAO method. Two different
screening thresholds for the LinK screening have been used (10−6 and 10−8). [(b) and (d)] Number of shells of basis functions that need to be included in the spaces Ω̃P
and Ω̃h.
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FIG. 8. Timings on alkane radicals with 5–200 carbon atoms (a) and spin-labeled DNA strands with 1-5 AT base pairs (b). The SOMF-GIAO and LPP-SOMF-GIAO methods
are compared. In addition, the wall time needed for the SCF is shown. The def2-SVP basis set was used in all calculations. The colored numbers indicate the effective scaling.

effective scaling is significantly lower than the scaling of
the SOMF-GIAO method. Between alkane-40 and alkane-100,
effective sublinear scaling is observed with a minimal scaling
of 0.3 between alkane-40 and alkane-60. Between (AT)2 and
(AT)3, an effective scaling of 1.1 was obtained. For the largest
considered systems, the scaling increases again. Several fac-
tors may contribute to this such as overhead due to the inte-
gral screening (which could be reduced by resorting to a more
coarse-grained screening, i.e., screening blocks of shell-pairs
instead of individual shell-pairs) or less efficient cache uti-
lization. For the largest alkanes, the increase in scaling is also
partly due to a higher number of required CPSCF iterations (7
and 10 iterations for alkane-160 and alkane-200 compared to
6 iterations for alkane-40 to alkane-100).

Irrespective of the discussed complications in the anal-
ysis of the scaling behavior, the LPP-SOMF-GIAO method
is computationally highly efficient and leads to considerable
speedups compared to the SOMF-GIAO method while only
introducing negligible errors. The speedup amounts to 4.0 for

alkane-200 (15 min compared to 60 min) and 3.3 for (AT)5
with the def2-SVP basis set (64 min compared to 211 min).
For (AT)3 in a def2-TZVP basis, a speedup of 2.1 is observed
(1005 min compared to 2131 min, see Fig. 9). For these sys-
tems, the g-tensor calculations were significantly faster than
the SCF calculations with the employed settings (which took
49 min for alkane-200, 212 min for (AT)5 in a def2-SVP basis,
and 1973 min for (AT)3 in a def2-TZVP basis). As the method
requires an SCF reference state, the SCF itself becomes the
bottleneck for large molecules with local spin density. Any fur-
ther substantial speed-up would thus require a more efficient
SCF.

While all calculations shown in this work were carried
with our ansatz employing the SOMF operator and GIAOs,
the presented strategies for reducing the scaling are with-
out modification also applicable to other DFT-based methods
for g-tensors, which differ, e.g., in the treatment of spin-orbit
effects. In fact, some of these methods are implemented in our
program code, including the methods from Neese using either

FIG. 9. Timings for spin-labeled DNA strands with 1-3 AT base pairs. The def2-TZVP basis set was employed in all calculations. A LinK screening threshold of 10−8 was
used in the CPSCF. (a) shows timings with the SOMF-GIAO method and the individual contributions. For an explanation of the legend entries, see Fig. 6. (b) presents wall
times and scaling of the SOMF-GIAO method, the LPP-SOMF-GIAO method, and the SCF. The colored numbers indicate the effective scaling.
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the SOMF operator34 or effective nuclear charges.26 Our pro-
gram also features a method using both GIAOs and effective
nuclear charges, which has been used in the literature.86–88 No
computational differences between these approaches occur
in the usually time-dominating iterative part of the CPSCF;
therefore, one can expect that the application of the outlined
strategies would lead to very similar scaling and efficiency for
all these methods.

V. CONCLUSION
An efficient and accurate method for electronic g-tensor

calculations at the DFT level has been presented. It employs
the spin-orbit mean-field operator for an accurate computa-
tion of both one- and two-electron spin-orbit coupling con-
tributions and makes use of gauge-including atomic orbitals
for ensuring gauge-origin independence.

Asymptotically linear scaling with molecule size is
achieved by integral screening methods and sparse linear
algebra. In addition, a local perturbation approach for solving
the CPSCF equations was introduced, which allows the scaling
to be further reduced to sublinear for molecules with localized
spin density. These methods make g-tensor computations on
large molecular systems feasible and allow us to compute the
g-tensor of an alkane-200 radical with 4805 basis functions
in 15 min on a single node. For such molecules, the g-tensor
calculation with the local perturbation approach can even be
significantly faster than the SCF.
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Chapter 4

Conclusion and Outlook

In this thesis, several new quantum chemical methods for efficiently and accurately com-
puting correlation energies, NMR shieldings, and electronic g-tensors were described.

In Publication V, the gauge-origin dependence of the electronic g-tensor is analyzed in
an extensive benchmark study using a DFT approach. It is shown that simple, gauge-origin
dependent methods using a single gauge-origin can give large errors for some molecules.
These errors can be eliminated completely by employing distributed gauge-origin meth-
ods like GIAOs, [157–160] which are standard for NMR shielding calculations. In contrast,
most implementations of g-tensors previously described in the literature employ a common
gauge-origin. [59–76] The most used gauge-origin in the literature is the electronic charge
centroid (ECC), [163] which corresponds to the center of mass of the electron cloud. As
shown in Publication V, this choice of gauge-origin can lead to substantial errors espe-
cially for large molecules with spin centers far away from the ECC. An alternative choice
of gauge-origin called the spin density center (SDC) is proposed, which is by construction
located near the center of mass of the unsigned spin density. We showed that for molecules
with a single well-localized spin center, much more accurate g-tensors are obtained with
the SDC than with the ECC. The data from Publication V furthermore suggests that
also the SDC approach is insufficient for computing accurate g-tensors if the spin density
is delocalized or if multiple spin centers are present. In such situations the use of a dis-
tributed gauge-origin approach like GIAOs is mandatory for obtaining reliable results. The
findings of Publication V might have a significant impact on the way the gauge-origin
problem is tackled in future theoretical methods for computing g-tensors and application
studies.

The first linear- and sublinear-scaling methods for computing g-tensors with unre-
stricted DFT or HF are presented in Publication VI. The implementation allows to treat
the spin-orbit coupling effects either with an effective one-electron operator and effective
nuclear charges, [187] or with the more accurate spin-orbit mean field (SOMF) [135] approach.
GIAOs [157–160] are employed for ensuring gauge-origin independence, whose importance was
shown in Publication V. Asymptotically linear scaling is obtained by employing integral
screening and sparse linear algebra approaches. It is shown that for molecules with a well-
localized spin density distribution, asymptotic O(1) scaling is possible. This is enabled
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by exploiting the locality of the spin density matrix in the computation of the spin-orbit
contributions and by using a modified CPSCF approach, which allows to include only con-
tributions from parts of the molecule close to the spin center in the computation of the
perturbed densities. Even higher performance could likely be obtained by using RI for the
Coulomb part of the SOMF matrix and a semi-numerical approach [188] for the exchange.
The outlined strategies for efficiently computing the SOMF operator and for exploiting
the locality of the spin density are likely also transferable to other methods for computing
g-tensors at the MP2 or coupled cluster level of theory.

In Publication I, the efficiency of the RI-CDD-MP2 method for correlation energies
from Maurer et al. [146] is improved further by introducing an erfc-attenuated Coulomb
metric for the RI approximation. In contrast to the method of Maurer et al., [146] where
distance-dependent QQR screening [44] is used and Coulomb and exchange energy contribu-
tions are computed together, a separate treatment of these contributions using specialized
algorithms is proposed in order to exploit the benefits of the local RI metric. The Coulomb
contributions and the transformations of the three-center integrals are accelerated using a
modified form of the natural blocking approach, which was originally introduced by Jung
et al. [47,127] The fast exponential decay of the exchange contributions is exploited using a
Schwarz screening [50] approach. Timings on alkanes and DNA strands show that the new
method called ω-RI-CDD-MP2 is significantly more efficient than the original RI-CDD-
MP2. The additional sparsity in the three-center integrals provided by the local RI metric
allows to also lower memory and disk space requirements compared to RI-CDD-MP2 and
achieve asymptotically linear scaling for these quantities. With the new MP2 method from
Publication I, larger systems than previously possible can thus be computed at the MP2
level of theory. The largest tackled system was a DNA strand with 16 adenine-thymine
base pairs and 11230 basis functions. The applicability to very large systems may be
further improved by an adaptation to graphics processing units (GPUs), or paralleliza-
tion over multiple nodes. Furthermore, implementing various analytical derivatives of the
new method could allow to efficiently compute properties of large molecules with MP2 or
performing geometry optimizations and molecular dynamics simulations at this level of
theory. So far, only NMR shieldings were implemented using a mixed second derivative as
described in Publication III.

A different path to efficient MP2 energies is explored in Publication II using the tensor
hypercontraction (THC) [51,52] approach from Martínez and co-workers. In contrast to the
RI approximation, THC allows to decompose the fourth order ERI tensor into two-index
quantities and can reduce the formal scaling of many correlation methods. Both obtaining
the THC factorization of the ERIs and computing the MP2 energy from the THC factors
formally scales as O(N4). [51] In Publication II, we describe how the THC decomposition
can be done efficiently for large molecules with reduced scaling. For this, local MOs ob-
tained from a Cholesky decomposition of the occupied and virtual density matrix are used
in combination with an attenuated Coulomb metric and natural blocking. Furthermore,
the explicit inversion of the grid-overlap metric, which was reported to be a computational
bottleneck, [52,137,138] is circumvented by solving a linear equation system. It is also shown
how the Coulomb and exchange contributions to the MP2 energy can be computed effi-
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ciently using THC and Cholesky-decomposed pseudo-densities. While the performance of
the method is similar to the ω-RI-CDD-MP2 from Publication III at the cost of a small
additional error due to the THC factorization, especially the very low memory requirements
make the method attractive. It is also shown in Publication II that the computation
of the Coulomb contributions to the MP2 energy is extremely fast. Significant speed-ups
compared to ω-RI-CDD-MP2 are only prevented by the computational cost of obtaining
the THC factorization of the ERIs. As the computational cost for decomposing the ERIs
does not depend on the specific method used, one can expect that a very good performance
would be obtained if the developed THC approach would be applied to other methods that
are similar to SOS-MP2, but more computationally expensive, like, e.g., direct RPA. For
the same reasons, also an excellent computational efficiency could be expected for SOS-
MP2 properties, which require only unperturbed ERIs and no ERI derivatives. Some
examples are hyperfine coupling constants (HFCCs), NMR spin-spin coupling constants,
electric dipole moments, polarizabilities, and hyper-polarizabilities. Work on computation
of HFCCs at the MP2 level of theory with the THC approach is currently in progress. For
other molecular properties, which do require to compute perturbed ERIs, additional work
on the efficient THC decomposition of perturbed ERIs is needed.

An efficient method for computing NMR shieldings at the MP2 level of theory is pre-
sented in Publication III. It is related to the method from Maurer et al. [53] for comput-
ing NMR shieldings with AO-MP2, but additionally uses Cholesky-decomposed pseudo-
densities and the RI approximation for the two-electron integrals in order to lower the
computational cost. A nested Z-vector approach is used for minimizing the number of
CPSCF equations that need to be solved for obtaining perturbed density matrices. In con-
trast to the selected-nuclei approach [180] used by Maurer et al., [53] an all-nuclei approach
is employed, which allows to more efficiently compute the entire set of NMR shieldings
for all atoms in a given molecule. This is achieved by formulating the nested Z-vector
approach [54,55] in such a way that the explicit computation of the nuclear spin deriva-
tive of the density matrices and pseudo-density matrices is circumvented. Calculations on
glycine chains show that quadratic scaling of the computation time and linear scaling of
the required disk space can be achieved for large molecules. Also computations on DNA
strands with up to 194 atoms and 2039 basis functions were shown in Publication III,
which illustrates the potential of the method for applications on large biomolecules. A
further speed-up and reduction of the memory requirements may be possible by combining
the method with THC and applying techniques from Publication II. For this, the THC
decomposition approach needs to be extended to magnetic field perturbed ERIs. Also, a
suitable matrix decomposition of the perturbed pseudo-densities, which preserves locality
and at the same time exploits rank-deficiency, could improve the efficiency. In contrast to
the unperturbed pseudo-densities, Cholesky decomposition is not applicable, because the
perturbed pseudo-densities are not positive semi-definite. Furthermore, the method could
be combined with a QM/MM approach [189] in order to enable calculations on even larger
molecules.

The first method for computing NMR shieldings at the post-Kohn–Sham RPA level
of theory is introduced in Publication IV. In the presented implementation, RPA NMR
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shieldings are computed as a non-trivial numerical derivative of the RPA energy using
a finite-difference scheme. Benchmark calculations on a test set of Teale et al. [190] are
performed and compared to high-quality coupled cluster reference values. The results show
that the accuracy of RPA shieldings strongly depends on the employed orbitals and orbital
energies. A clear correlation between the amount of exact HF exchange in the reference
functional and the accuracy is found. The most accurate shieldings are obtained with HF
orbitals. An analysis of the basis set convergence shows that at least triple-zeta basis sets
are needed for computing accurate RPA NMR shieldings. Comparison with other methods
shows that RPA NMR shieldings with a HF reference are significantly more accurate than
MP2 shieldings and are close to CCSD quality. The good observed accuracy makes RPA
a promising method for NMR shielding calculations on large molecules considering also its
comparatively low O(N4) scaling. The developments from Publication IV only present
a first step towards RPA shielding calculations for large molecules. The development of
efficient analytical derivative methods for RPA NMR shieldings involving also a Z-vector
approach is highly desirable. Due to the similarities of direct RPA and SOS-MP2, many of
the developments for (SOS)-MP2 shieldings from Publication III are likely transferable
to analytical RPA NMR shieldings.



Bibliography

[1] L. Pauling, The Nature of the Chemical Bond and the Structure of Molecules and
Crystals: An Introduction to Modern Struct. Chem.. (Oxford University Press, Lon-
don, 1940).

[2] W. Ritz, J. Reine Angew. Math. 1909, 1 (1909).

[3] H. D. R., Proc. Cambridge Philos. Soc. 24, 89 (1928).

[4] J. C. Slater, Phys. Rev. 35, 210 (1930).

[5] V. Fock, Z. Phys. 61, 126 (1930).

[6] P.-O. Löwdin, Phys. Rev. 97, 1509 (1955).

[7] B. O. Roos, P. R. Taylor, and P. E. M. Siegbahn, Chem. Phys. 48, 157 (1980).

[8] S. R. White, Phys. Rev. Lett. 69, 2863 (1992).

[9] S. R. White, Phys. Rev. B 48, 10345 (1993).

[10] S. R. White and R. L. Martin, J. Chem. Phys. 110, 4127 (1999).

[11] P.-O. Löwdin, Phys. Rev. 97, 1474 (1955).

[12] C. D. Sherrill and H. F. Schaefer III, Adv. Quantum Chem. 34, 143 (1999).

[13] T. Helgaker, P. Jørgensen, and J. Olsen, Molecular electronic-structure theory (John
Wiley & Sons, New York, 2014).

[14] J. Čížek, J. Chem. Phys. 45, 4256 (1966).

[15] J. Čížek, J. Paldus, and L. Šroubková, Int. J. Quantum Chem. 3, 149 (1969).

[16] R. J. Bartlett and J. Noga, Chem. Phys. Lett. 150, 29 (1988).

[17] E. Schrödinger, Ann. Phys. 385, 437 (1926).

[18] C. Møller and M. S. Plesset, Phys. Rev. 46, 618 (1934).



218 BIBLIOGRAPHY

[19] G. D. Purvis III and R. J. Bartlett, J. Chem. Phys. 76, 1910 (1982).

[20] P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).

[21] W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).

[22] D. C. Langreth and J. P. Perdew, Solid State Commun. 17, 1425 (1975).

[23] D. C. Langreth and J. P. Perdew, Phys. Rev. B 15, 2884 (1977).

[24] J. G. Ángyán, R.-F. Liu, J. Toulouse, and G. Jansen, J. Chem. Theory Comput. 7,
3116 (2011).

[25] F. Furche, Phys. Rev. B 64, 195120 (2001).

[26] F. Furche, J. Chem. Phys. 129, 114105 (2008).

[27] D. Bohm and D. Pines, Phys. Rev. 92, 609 (1953).

[28] S. Grimme, J. Chem. Phys. 124, 034108 (2006).

[29] W. Kohn, Phys. Rev. Lett. 76, 3168 (1996).

[30] E. Prodan and W. Kohn, Proc. Natl. Acad. Sci. USA 102, 11635 (2005).

[31] C. Ochsenfeld, J. Kussmann, and D. S. Lambrecht, Rev. Comput. Chem. 23, 1
(2007).

[32] P. Y. Ayala and G. E. Scuseria, J. Chem. Phys. 110, 3660 (1999).

[33] D. S. Lambrecht, B. Doser, and C. Ochsenfeld, J. Chem. Phys. 123, 184102 (2005).

[34] D. S. Lambrecht, B. Doser, and C. Ochsenfeld, J. Chem. Phys. 136, 149902 (2012).

[35] B. Doser, D. S. Lambrecht, and C. Ochsenfeld, Phys. Chem. Chem. Phys. 10, 3335
(2008).

[36] B. Doser, D. S. Lambrecht, J. Kussmann, and C. Ochsenfeld, J. Chem. Phys. 130,
064107 (2009).

[37] M. Feyereisen, G. Fitzgerald, and A. Komornicki, Chem. Phys. Lett. 208, 359 (1993).

[38] J. L. Whitten, J. Chem. Phys. 58, 4496 (1973).

[39] N. J. Higham, Wiley Interdiscip. Rev. Comput. Stat. 1, 251 (2009).

[40] H. Harbrecht, M. Peters, and R. Schneider, Appl. Numer. Math. 62, 428 (2012).

[41] J. Zienau, L. Clin, B. Doser, and C. Ochsenfeld, J. Chem. Phys. 130, 204112 (2009).



BIBLIOGRAPHY 219

[42] H. Koch, A. Sánchez de Merás, and T. B. Pedersen, J. Chem. Phys. 118, 9481
(2003).

[43] S. A. Maurer, D. S. Lambrecht, J. Kussmann, and C. Ochsenfeld, J. Chem. Phys.
138, 014101 (2013).

[44] S. A. Maurer, D. S. Lambrecht, D. Flaig, and C. Ochsenfeld, J. Chem. Phys. 136,
144107 (2012).

[45] H.-J. Werner, F. R. Manby, and P. J. Knowles, J. Chem. Phys. 118, 8149 (2003).

[46] Y. Jung, A. Sodt, P. M. Gill, and M. Head-Gordon, Proc. Natl. Acad. Sci. USA
102, 6692 (2005).

[47] Y. Jung, Y. Shao, and M. Head-Gordon, J. Comput. Chem. 28, 1953 (2007).

[48] S. Reine, E. Tellgren, A. Krapp, T. Kjærgaard, T. Helgaker, B. Jansik, S. Høst, and
P. Salek, J. Chem. Phys. 129, 104101 (2008).

[49] A. Luenser, H. F. Schurkus, and C. Ochsenfeld, J. Chem. Theory Comput. 13, 1647
(2017).

[50] M. Häser and R. Ahlrichs, J. Comput. Chem. 10, 104 (1989).

[51] E. G. Hohenstein, R. M. Parrish, and T. J. Martínez, J. Chem. Phys. 137, 044103
(2012).

[52] R. M. Parrish, E. G. Hohenstein, T. J. Martínez, and C. D. Sherrill, J. Chem. Phys.
137, 224106 (2012).

[53] M. Maurer and C. Ochsenfeld, J. Chem. Phys. 138, 174104 (2013).

[54] N. C. Handy and H. F. Schaefer III, J. Chem. Phys. 81, 5031 (1984).

[55] Y. Yamaguchi, Y. Osamura, J. D. Goddard, and H. F. Schaefer, A New Dimension to
Quantum Chemistry: Analytic Derivative Methods in Ab Initio Molecular Electronic
Structure Theory (Oxford University Press, Oxford, 1994).

[56] J. Gerratt and I. M. Mills, J. Chem. Phys. 49, 1719 (1968).

[57] E. Trushin, A. Thierbach, and A. Görling, J. Chem. Phys. 154, 014104 (2021).

[58] J. Gauss, in Modern methods and algorithms of quantum chemistry, NIC Series, Vol.
3, 2nd ed., edited by J. Grotendorst (John von Neumann Institute for Computing,
Jülich, 2000) pp. 541–592.

[59] I. Ciofini, R. Reviakine, A. Arbuznikov, and M. Kaupp, Theor. Chem. Acc. 111,
132 (2004).



220 BIBLIOGRAPHY

[60] M. Witwicki, A. R. Jaszewski, J. Jezierska, M. Jerzykiewicz, and A. Jezierski, Chem.
Phys. Lett. 462, 300 (2008).

[61] B. Frecus, Z. Rinkevicius, and H. Ågren, Phys. Chem. Chem. Phys. 15, 10466 (2013).

[62] M. Witwicki and J. Jezierska, J. Phys. Chem. B 115, 3172 (2011).

[63] M. Bühl, S. E. Ashbrook, D. M. Dawson, R. A. Doyle, P. Hrobárik, M. Kaupp, and
I. A. Smellie, Chem. Eur. J. 22, 15328 (2016).

[64] S. M. Mattar, J. Phys. Chem. B 108, 9449 (2004).

[65] M. Engström, R. Owenius, and O. Vahtras, Chem. Phys. Lett. 338, 407 (2001).

[66] Q. Daniel, P. Huang, T. Fan, Y. Wang, L. Duan, L. Wang, F. Li, Z. Rinkevicius,
F. Mamedov, M. S. Ahlquist, et al., Coord. Chem. Rev. 346, 206 (2017).

[67] G. Lushington and F. Grein, Theor. Chim. Acta 93, 259 (1996).

[68] D. Jayatilaka, J. Chem. Phys. 108, 7587 (1998).

[69] G. Lushington and F. Grein, J. Chem. Phys. 106, 3292 (1997).

[70] O. Vahtras, B. Minaev, and H. Ågren, Chem. Phys. Lett. 281, 186 (1997).

[71] P. J. Bruna, G. H. Lushington, and F. Grein, Chem. Phys. 225, 1 (1997).

[72] P. J. Bruna and F. Grein, Int. J. Quantum Chem. 77, 324 (2000).

[73] M. Engström, O. Vahtras, and H. Ågren, Chem. Phys. 243, 263 (1999).

[74] M. Engström, B. Minaev, O. Vahtras, and H. Ågren, Chem. Phys. 237, 149 (1998).

[75] P. Bruna, G. Lushington, and F. Grein, J. Mol. Struct. THEOCHEM 527, 139
(2000).

[76] S. Brownridge, F. Grein, J. Tatchen, M. Kleinschmidt, and C. M. Marian, J. Chem.
Phys. 118, 9552 (2003).

[77] E. Schrödinger, Phys. Rev. 28, 1049 (1926).

[78] M. Born and R. Oppenheimer, Ann. Phys. 389, 457 (1927).

[79] J. C. Slater, Phys. Rev. 34, 1293 (1929).

[80] W. Pauli, Z. Phys. 31, 765 (1925).

[81] S. F. Boys, Proc. R. Soc. London, Ser. A 200, 542 (1950).

[82] C. C. J. Roothaan, Rev. Mod. Phys. 23, 69 (1951).



BIBLIOGRAPHY 221

[83] G. G. Hall, Proc. R. Soc. London, Ser. A 205, 541 (1951).

[84] P.-O. Löwdin, J. Chem. Phys. 18, 365 (1950).

[85] J. A. Pople and R. K. Nesbet, J. Chem. Phys. 22, 571 (1954).

[86] C. Roothaan, Rev. Mod. Phys. 32, 179 (1960).

[87] J. S. Andrews, D. Jayatilaka, R. G. Bone, N. C. Handy, and R. D. Amos, Chem.
Phys. Lett. 183, 423 (1991).

[88] P. Pulay, Chem. Phys. Lett. 100, 151 (1983).

[89] P. Pulay and S. Saebø, Theor. Chim. Acta 69, 357 (1986).

[90] M. Schütz, G. Hetzer, and H.-J. Werner, J. Chem. Phys. 111, 5691 (1999).

[91] G. Hetzer, M. Schütz, H. Stoll, and H.-J. Werner, J. Chem. Phys. 113, 9443 (2000).

[92] K. Kristensen, I.-M. Høyvik, B. Jansik, P. Jørgensen, T. Kjærgaard, S. Reine, and
J. Jakowski, Phys. Chem. Chem. Phys. 14, 15706 (2012).

[93] P. Baudin, P. Ettenhuber, S. Reine, K. Kristensen, and T. Kjærgaard, J. Chem.
Phys. 144, 054102 (2016).

[94] C. Edmiston and K. Ruedenberg, Rev. Mod. Phys. 35, 457 (1963).

[95] N. J. Russ and T. D. Crawford, J. Chem. Phys. 121, 691 (2004).

[96] J. E. Subotnik and M. Head-Gordon, J. Chem. Phys. 123, 064108 (2005).

[97] J. E. Subotnik, A. Sodt, and M. Head-Gordon, J. Chem. Phys. 128, 034103 (2008).

[98] D. G. Fedorov and K. Kitaura, J. Chem. Phys. 121, 2483 (2004).

[99] Y. Mochizuki, K. Yamashita, T. Murase, T. Nakano, K. Fukuzawa, K. Takematsu,
H. Watanabe, and S. Tanaka, Chem. Phys. Lett. 457, 396 (2008).

[100] M. Kobayashi, T. Akama, and H. Nakai, J. Chem. Phys. 125, 204106 (2006).

[101] J. Almlöf, Chem. Phys. Lett. 181, 319 (1991).

[102] M. Häser and J. Almlöf, J. Chem. Phys. 96, 489 (1992).

[103] M. Häser, Theor. Chim. Acta 87, 147 (1993).

[104] S. Grimme, J. Chem. Phys. 118, 9095 (2003).

[105] Y. Jung, R. C. Lochan, A. D. Dutoi, and M. Head-Gordon, J. Chem. Phys. 121,
9793 (2004).



222 BIBLIOGRAPHY

[106] L. Goerigk and S. Grimme, WIREs Comput Mol Sci 4, 576 (2014).

[107] F. Neese, T. Schwabe, and S. Grimme, J. Chem. Phys. 126, 124115 (2007).

[108] S. Kossmann, B. Kirchner, and F. Neese, Mol. Phys. 105, 2049 (2007).

[109] J. P. Perdew and K. Schmidt, AIP Conf Proc 577, 1 (2001).

[110] H. Chen and A. Zhou, Numer. Math. Theor. Meth. Appl. 1, 1 (2008).

[111] A. D. Becke, J. Chem. Phys. 98, 1372 (1993).

[112] J. Gauss, M. Kállay, and F. Neese, J. Phys. Chem. A 113, 11541 (2009).

[113] O. Gunnarsson and B. I. Lundqvist, Phys. Rev. B 13, 4274 (1976).

[114] E. Gross and W. Kohn, Phys. Rev. Lett. 55, 2850 (1985).

[115] A. Görling, Phys. Rev. B 99, 235120 (2019).

[116] M. Petersilka, U. J. Gossmann, and E. K. U. Gross, Phys. Rev. Lett. 76, 1212
(1996).

[117] B. Mussard, D. Rocca, G. Jansen, and J. G. Ángyán, J. Chem. Theory Comput.
12, 2191 (2016).

[118] H. Eshuis, J. Yarkony, and F. Furche, J. Chem. Phys. 132, 234114 (2010).

[119] M. Fuchs, Y.-M. Niquet, X. Gonze, and K. Burke, J. Chem. Phys. 122, 094116
(2005).

[120] J. Harl and G. Kresse, Phys. Rev. B 77, 045136 (2008).

[121] J. Harl and G. Kresse, Phys. Rev. Lett. 103, 056401 (2009).

[122] A. M. Burow, J. E. Bates, F. Furche, and H. Eshuis, J. Chem. Theory Comput. 10,
180 (2014).

[123] D. L. Freeman, Phys. Rev. B 15, 5512 (1977).

[124] A. Grüneis, M. Marsman, J. Harl, L. Schimka, and G. Kresse, J. Chem. Phys. 131,
154115 (2009).

[125] J. E. Bates and F. Furche, J. Chem. Phys. 139, 171103 (2013).

[126] E. Cuthill and J. McKee, in Proceedings of the 1969 24th national conference (ACM,
New York, 1969) pp. 157–172.

[127] Y. Jung and M. Head-Gordon, Phys. Chem. Chem. Phys. 8, 2831 (2006).



BIBLIOGRAPHY 223

[128] A. L. Cauchy, Paris: Imprim. Royale (1821).

[129] M. Beuerle, D. Graf, H. F. Schurkus, and C. Ochsenfeld, J. Chem. Phys. 148, 204104
(2018).

[130] C. Ochsenfeld, C. A. White, and M. Head-Gordon, J. Chem. Phys. 109, 1663 (1998).

[131] C. Ochsenfeld, Chem. Phys. Lett. 327, 216 (2000).

[132] C. Ochsenfeld and M. Head-Gordon, Chem. Phys. Lett. 270, 399 (1997).

[133] P. E. Maslen, C. Ochsenfeld, C. A. White, M. S. Lee, and M. Head-Gordon, J. Phys.
Chem. A 102, 2215 (1998).

[134] S. Goedecker, Rev. Mod. Phys. 71, 1085 (1999).

[135] B. A. Heß, C. M. Marian, U. Wahlgren, and O. Gropen, Chem. Phys. Lett. 251,
365 (1996).

[136] O. Vahtras, J. Almlöf, and M. Feyereisen, Chem. Phys. Lett. 213, 514 (1993).

[137] C. Song and T. J. Martínez, J. Chem. Phys. 144, 174111 (2016).

[138] C. Song and T. J. Martínez, J. Chem. Phys. 146, 034104 (2017).

[139] E. G. Hohenstein, R. M. Parrish, C. D. Sherrill, and T. J. Martínez, J. Chem. Phys.
137, 221101 (2012).

[140] R. M. Parrish, C. D. Sherrill, E. G. Hohenstein, S. I. Kokkila, and T. J. Martínez,
J. Chem. Phys. 140, 181102 (2014).

[141] E. G. Hohenstein, S. I. Kokkila, R. M. Parrish, and T. J. Martínez, J. Chem. Phys.
138, 124111 (2013).

[142] E. G. Hohenstein, S. I. Kokkila, R. M. Parrish, and T. J. Martínez, J. Phys. Chem.
B 117, 12972 (2013).

[143] C. Song and T. J. Martínez, J. Chem. Phys. 149, 044108 (2018).

[144] J. D. Carroll and J.-J. Chang, Psychometrika 35, 283 (1970).

[145] S. I. Kokkila Schumacher, E. G. Hohenstein, R. M. Parrish, L.-P. Wang, and T. J.
Martínez, J. Chem. Theory Comput. 11, 3042 (2015).

[146] S. A. Maurer, L. Clin, and C. Ochsenfeld, J. Chem. Phys. 140, 224112 (2014).

[147] N. H. Beebe and J. Linderberg, Int. J. Quantum Chem. 12, 683 (1977).

[148] I. Røeggen and E. Wisløff-Nilssen, Chem. Phys. Lett. 132, 154 (1986).



224 BIBLIOGRAPHY

[149] H. Koch and A. Sánchez de Merás, J. Chem. Phys. 113, 508 (2000).

[150] D. Graf, M. Beuerle, H. F. Schurkus, A. Luenser, G. Savasci, and C. Ochsenfeld, J.
Chem. Theory Comput. 14, 2505 (2018).

[151] F. Aquilante, T. Bondo Pedersen, A. Sánchez de Merás, and H. Koch, J. Chem.
Phys. 125, 174101 (2006).

[152] S. F. Boys, Rev. Mod. Phys. 32, 296 (1960).

[153] J. Pipek and P. G. Mezey, J. Chem. Phys. 90, 4916 (1989).

[154] B. Jansík, S. Høst, K. Kristensen, and P. Jørgensen, J. Chem. Phys. 134, 194104
(2011).

[155] I.-M. Høyvik, B. Jansik, and P. Jørgensen, J. Chem. Phys. 137, 224114 (2012).

[156] D. P. Craig and T. Thirunamachandran,Molecular Quantum Electrodynamics (Dover
Publications, New York, 1984).

[157] F. London, J. Phys. Radium 8, 397 (1937).

[158] H. Hameka, Mol. Phys. 1, 203 (1958).

[159] H. Hameka, Rev. Mod. Phys. 34, 87 (1962).

[160] R. Ditchfield, J. Chem. Phys. 56, 5688 (1972).

[161] W. Kutzelnigg, Isr. J. Chem. 19, 193 (1980).

[162] A. E. Hansen and T. D. Bouman, J. Chem. Phys. 82, 5035 (1985).

[163] A. Luzanov, E. Babich, and V. Ivanov, J. Mol. Struct. 311, 211 (1994).

[164] W. Kutzelnigg, U. Fleischer, and M. Schindler, NMR-Basic Principles and Progress:
Deuterium and Shift Calculation (Springer-Verlag, Berlin, Heidelberg, 1991).

[165] T. Helgaker, M. Jaszunski, and K. Ruud, Chem. Rev. 99, 293 (1999).

[166] R. Ditchfield, Mol. Phys. 27, 789 (1974).

[167] K. Wolinski, J. F. Hinton, and P. Pulay, J. Am. Chem. Soc. 112, 8251 (1990).

[168] M. Häser, R. Ahlrichs, H. Baron, P. Weis, and H. Horn, Theor. Chim. Acta 83, 455
(1992).

[169] R. Stevens, R. Pitzer, and W. Lipscomb, J. Chem. Phys. 38, 550 (1963).

[170] G. Schreckenbach and T. Ziegler, J. Phys. Chem. 99, 606 (1995).



Bibliography 225

[171] J. R. Cheeseman, G. W. Trucks, T. A. Keith, and M. J. Frisch, J. Chem. Phys. 104,
5497 (1996).

[172] G. Rauhut, S. Puyear, K. Wolinski, and P. Pulay, J. Phys. Chem. 100, 6310 (1996).

[173] J. Gauss, Chem. Phys. Lett. 191, 614 (1992).

[174] J. Gauss and J. F. Stanton, Advances in Chem. Phys. 123, 355 (2002).

[175] J. Gauss and J. F. Stanton, J. Chem. Phys. 102, 251 (1995).

[176] J. Gauss and J. F. Stanton, J. Chem. Phys. 104, 2574 (1996).

[177] M. Kállay and J. Gauss, J. Chem. Phys. 120, 6841 (2004).

[178] C. Ochsenfeld, J. Kussmann, and F. Koziol, Angew. Chem. 116, 4585 (2004).

[179] J. Kussmann and C. Ochsenfeld, J. Chem. Phys. 127, 054103 (2007).

[180] M. Beer, J. Kussmann, and C. Ochsenfeld, J. Chem. Phys. 134, 074102 (2011).

[181] D. Flaig, M. Maurer, M. Hanni, K. Braunger, L. Kick, M. Thubauville, and
C. Ochsenfeld, J. Chem. Theory Comput. 10, 572 (2014).

[182] J. Gauss, J. Chem. Phys. 99, 3629 (1993).

[183] M. Bühl and T. van Mourik, WIREs Comput Mol Sci 1, 634 (2011).

[184] J. Gauss and H.-J. Werner, Phys. Chem. Chem. Phys. 2, 2083 (2000).

[185] S. Loibl and M. Schütz, J. Chem. Phys. 137, 084107 (2012).

[186] G. L. Stoychev, A. A. Auer, J. Gauss, and F. Neese, J. Chem. Phys. 154, 164110
(2021).

[187] S. Koseki, M. W. Schmidt, and M. S. Gordon, J. Phys. Chem. 96, 10768 (1992).

[188] H. Laqua, T. H. Thompson, J. Kussmann, and C. Ochsenfeld, J. Chem. Theory
Comput. 16, 1456 (2020).

[189] D. Flaig, M. Beer, and C. Ochsenfeld, J. Chem. Theory Comput. 8, 2260 (2012).

[190] A. M. Teale, O. B. Lutnæs, T. Helgaker, D. J. Tozer, and J. Gauss, J. Chem. Phys.
138, 024111 (2013).


	Introduction
	Theoretical Background
	Molecular Schrödinger Equation
	Electronic Structure Methods
	Hartree–Fock Theory
	Møller–Plesset Perturbation Theory
	Density Functional Theory
	Random Phase Approximation

	Reduced-Scaling Quantum Chemistry Approaches
	Sparse Linear Algebra
	Integral Screening

	Tensor Decompositions
	Resolution-of-the-Identity 
	Tensor Hypercontraction
	Cholesky Decomposition 

	Computation of Magnetic Resonance Parameters
	Gauge-Origin Dependence
	NMR Shielding Tensors
	Electronic g-Tensors


	Publications
	Publication I
	Publication II
	Publication III
	Publication IV
	Publication V
	Publication VI

	Conclusion and Outlook
	Bibliography

