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Abstract

The task of clustering is to partition a given dataset in such a way that objects within
a cluster are similar to each other while being dissimilar to objects from other clusters.
One challenge to this task arises when dealing with datasets where the objects are char-
acterized by an increased number of features. Objects within a cluster may exhibit corre-
lations among a subset of features. In order to detect such clusters, within the past two
decades significant contributions have been made which yielded a wealth of literature pre-
senting algorithms for detecting clusters in arbitrarily oriented subspaces. Each of them
approaches the correlation clustering task differently, by relying on different underlying
models and techniques. Building on the current progress made, this work addresses the
following aspects: First, it is dedicated to the research question of how to actually measure
and therefore evaluate the quality of a correlation clustering. As an initial endeavor, it is
investigated how far objectives for internal evaluation criteria can be derived from exist-
ing correlation clustering algorithms. The results from this approach, however, exhibited
limitations rendering the derived internal evaluation measures not suitable. As a conse-
quence endeavors have been made to identify commonalities among correlation clustering
algorithms leading to a cost function that is introduced as an internal evaluation measure.
Experiments illustrate its capability to assess clusterings based on aspects that are inherent
to all correlation clustering algorithms studied so far. Second, among the existing correla-
tion clustering algorithms, one takes a unique approach. Clusters are detected in a space
spanned by the parameters of a given function, known as Hough space. The detection itself
is achieved by finding so-called regions of interest (ROI) in Hough space. While the de-
tection of ROIs in the existing algorithm performs well in most cases, there are conditions
under which the runtime deteriorates, especially in data sets with high amounts of noise.
In this work, two different novel strategies are proposed for ROI detection in Hough space,
where it is elaborated on their individual strengths and weaknesses. Besides the aspect
of ROI detection, endeavors are made to go beyond linearity by proposing approaches for
detecting quadratic and periodic correlated clusters using Hough transform. Third, while
there exist different views, like local and global correlated clusters, explorations are made
in this work with the question in mind, in how far both views can be unified under a single
concept. Finally, approaches are proposed and investigated that enhance the resilience of
correlation clustering methods against outliers.
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Zusammenfassung

Die Aufgabe von Clustering besteht darin einen gegebenen Datensatz so zu partitionieren
dass Objekte innerhalb eines Clusters ähnlich zueinander sind, während diese unähnlich
zu Objekten aus anderen Clustern sind. Eine Herausforderung bei dieser Aufgabe kommt
auf, wenn man mit Daten umgeht, die sich durch eine erhöhte Anzahl an Merkmalen
auszeichnen. Objekte innerhalb eines Clusters können Korrelationen zwischen Teilmen-
gen von Merkmalen aufweisen. Um solche Cluster erkennen zu können, wurden innerhalb
der vergangenen zwei Dekaden signifikante Beiträge geleistet. Darin werden Algorithmen
vorgestellt, mit denen Cluster in beliebig ausgerichteten Unterräumen erkannt werden kön-
nen. Jedes der Verfahren verfolgt zur Lösung der Correlation Clustering Aufgabenstellung
unterschiedliche Ansätze indem sie sich auf unterschiedliche zugrunde liegende Modelle
und Techniken stützen. Aufbauend auf die bislang gemachten Fortschritte, adressiert diese
Arbeit die folgenden Aspekte: Zunächst wurde sich der Forschungsfrage gewidmet wie die
Güte eines Correlation Clustering Ergebnisses bestimmt werden kann. In einer ersten Be-
strebung wurde ermittelt in wie fern Ziele für interne Evaluationskriterien von bereits beste-
henden Correlation Clustering Algorithmen abgeleitet werden können. Die Ergebnisse von
dieser Vorgehensweise offenbarten Limitationen die einen Einsatz als interne Evaluations-
maße ungeeignet erschienen ließen. Als Konsequenz wurden Bestrebungen unternommen
Gemeinsamkeiten zwischen Correlation Clustering Algorithmen zu identifizieren, welche
zu einer Kostenfunktion führten die als ein internes Evaluationsmaß eingeführt wurde. Die
Experimente illustrieren die Fähigkeit, Clusterings auf Basis von Aspekten die inherent
in allen bislang studierten Correlation Clustering Algorithmen vorliegen zu bewerten. Als
einen zweiten Punkt nimmt ein Correlation Clustering Verfahren unter den bislang ex-
istierenden Methoden eine Sonderstellung ein. Die Cluster werden in einem Raum erkannt
welches von den parametern einer gegebenen Funktion aufgespannt werden welches als
Hough Raum bekannt ist. Die Erkennung selbst wird durch das Finden von sogenannten
"Regions of Interest" (ROI) im Hough Raum erreicht. Während die Erkennung von ROIs
in dem bestehenden Verfahren in den meisten Fällen gut verläuft, gibt es Bedingungen,
unter welchen die Laufzeit sich verschlechtert, insbesondere bei Datensätzen mit großen
Mengen von Rauschen. In dieser Arbeit werden zwei verschiedene neue Strategien für die
ROI Erkennung im Hough Raum vorgeschlagen, wobei auf die individuellen Stärken und
Schwächen eingegangen wird. Neben dem Aspekt der ROI Erkennung sind Forschungen un-
ternommen worden um über die Linearität der Correlation Cluster hinaus zu gehen, indem
Verfahren entwickelt wurden, mit denen quadratisch- und periodisch korrelierte Cluster
mittels Hough Transform erkannt werden können. Der dritte Aspekt dieser Arbeit widmet
sich den sogenannten "views". Während es verschiedene views gibt wie z.B. bei lokal oder
global korrelierten Clustern, wurden Forschungen unternommen mit der Fragestellung, in
wie fern beide Ansichten unter einem einzigen gemeinsamen Konzept vereinigt werden kön-
nen. Zuletzt sind Ansätze vorgeschlagen und untersucht worden welche die Resilienz von
Correlation Clustering Methoden hinsichtlich Ausreißer erhöhen.
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Chapter 1
Introduction

Background When we are dealing with the topic of machine learning, we face a distinc-
tion between two, not strictly disjoint, high-level categories, namely the supervised setting,
for when labels are available, serving as a "ground truth" and the unsupervised setting when
we have no labels at our disposal. There are different research areas in the unsupervised
setting, such as e.g., frequent itemset mining or clustering. For the latter, the task is to
partition a given dataset in such a way that objects within a cluster are similar to each
other while objects from different clusters are dissimilar to other clusters. While clustering
algorithms such as DBSCAN [10] or kmeans [29] compute clusterings based on all dimen-
sions, questions arise like: do we need all dimensions? There are cases where scientists want
to see if subsets of features exist among which groups of objects within a dataset exhibit a
high similarity. Here the classic clustering task is extended by detecting subsets of features
among which partitions of objects exhibit certain patterns, i.e., being highly dense. This
field of research within the clustering theme addressing also high-dimensionality is coined
in the literature [27] with the term subspace clustering. There it is distinguished between
(a) axis-parallel and (b) arbitrarily oriented subspace clustering, which is also known as
correlation clustering. In the case of (a), the clusters reside in subspaces where each of
its features is independent of each other. In the case of (b) the features of a subspace
hint at a potentially linear dependence [28]. Regarding the complexity of both areas it is
notable that while the axis-parallel approach requires without heuristics a full enumeration
of all possible 1 to d− 1 tuples of subspaces, which is exponential, the arbitrarily oriented
approach has an uncountable infinite number of possible subspaces. This raises inevitably
the need for heuristics.

To provide a better understanding of the concept behind correlation clustering we refer
to Figure 1.1 that is based on [27] . On the left hand side we can observe an affine subspace
S+a with S ⊂ Rd and the translation a ∈ Rd. This affine subspace (sometimes also named
as relevant or cluster subspace) is regarded as interesting if a set of objects cluster within
this subspace. This cluster becomes visible when the objects are projected onto S+a (Fig-
ure 1.1 right). Among the perpendicular subspace (Rd \ S) + a the objects may exhibit a
high variance, (Rd\S)+a is also coined with the term correlation subspace in the literature.

Here the term correlation may give rise to the question of when we are dealing with
a single correlation within a given dataset and when we are observing multiple clusters
that may hint at a possible correlation within the partition. The number of clusters, and
therefore of potential correlations, is mediated either directly or indirectly through the
choice of the parameters in a correlation clustering algorithm. In algorithms like ORCLUS
[3] the number of clusters is set through the parameter k by the user. 4C [6], on the
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Figure 1.1: Left: illustration of the affine/cluster subspace and its orthogonal correla-
tion subspace. Right: projection of objects onto the cluster subspace. This illustration is
based on [27]

contrary, does not provide direct control of the number of clusters, but provides means to
indirectly take influence on the number of clusters by specifying for example what can be
considered as a sufficiently dense cluster through minPts and ε parameters.

This dissertation has its focus on the sub-field of arbitrarily oriented subspace clustering.
Within this sub-field, the thesis is dedicated to three categories which can be seen in Fig.
1.2, namely (i) Hough transform-based methods (Chapters 2-5), (ii) the evaluation of
correlation clusterings (Chapter 6, Chapter 7), and (iii) the unification of local and global
views (Chapter 8) and the impact of outliers on the detected subspaces and how to mitigate
their effect (Chapter 9). Within the category of Hough transform-based methods a division
is introduced into two sub-categories namely (a) detecting non-linear correlation clusters
relying on Hough transform (Chapter 2, Chapter 3) and (b) detecting regions of interest
(ROI) in Hough space (Chapter 4, Chapter 5). In the upcoming pages we provide a brief
overview on the single chapters and, where applicable, their relations to each other.

1.1 Hough Transform based Approaches

So far, many of the existing correlation clustering algorithms are based on the Principal
Component Analysis (PCA), and as such rely on the locality assumption. According to
[34], the assumption is that subspaces of clusters can be derived from their local neighbor-
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Figure 1.2: Categories of the dissertation.

hood in its full-dimensional data space1, either through a cluster prototype or through the
cluster members. As a consequence one may obtain with PCA-based correlation clustering
algorithms several locally dense correlation clusters that could be described through the
same linear model, i.e. through the same rotation and translation. For cases where one
wants to discover correlation clusters regardless of any local density, a correlation cluster-
ing algorithm is required that is not bound to the locality assumption. One algorithm that
satisfies this requirement is CASH [1] that relies on the Hough transform [16]. The idea of
this approach is that objects are represented as functions in a space that is spanned by the
parameters of a chosen parametrization function, known as Hough space (or among the
literature also as parameter space). Identifying dense regions within the Hough space cor-
responds to detecting subsets of objects that share a common subspace, i.e. for the linear
case, that are located on or around a hyperplane. Here the term dense means that a min-
imum of parametrization functions minPts do intersect within a certain boundary within
that space. Both information, the minimum number of parametrization functions inter-
secting, and the aforementioned boundary are user-provided through parameters. In the
following we elaborate in more detail on the concept of Hough transform and to introduce
the necessary definitions and properties that are adopted from [1]:

Definition 1. Spherical Coordinates. Let ei, 1 ≤ i ≤ d, be an orthonormal basis in a d-
dimensional data space. Let x = (x1, ..., xd)T be a d-dimensional vector on the hypersphere
of radius r with center at the origin. For the d − 1 independent angles α1, ..., αd−1, let
αi, 1 ≤ i ≤ d− 1, be the angle between x and ei. Then the generalized spherical coordinates
of vector x are defined by:

xi = r ·

i−1∏
j=1

sinαj

 · cosαi

where αd = 0 and αi ∈ [0, π).
1In the literature, data space is also named as feature space or embedding space or ambient space.
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Figure 1.3: Simplified two-dimensional illustration for Definition 1.

For the following suppose we are given an object p ∈ D ⊆ Rd. For p there exists an
infinite number of hyperplanes in data space that contain p. To be more specific, any of
the hyperplanes containing p are characterized through the object p, and the d− 1 angles
α1, ..., αd−1 with αi ∈ [0, π). The normal vector containing the angles α1, ..., αd−1 and a
given object p can be mapped to the distance of the corresponding hyperplane to the origin
through the following function named parametrization function [1]:

Definition 2. Parametrization Function.2 Let p = (p1, ..., pd)T ∈ D ⊆ Rd be a d-
dimensional vector of a dataset D. Further let n = (n1, ..., nd)T be a d-dimensional unit
vector specified by d− 1 angles α1, ..., αd−1 as stated in Definition 1. The parametrization
function fp : Rd−1 7→ R of a vector p denotes the distance of the hyperplane defined by an
object p and the normal vector n to the origin:

fp(α1, ..., αd−1) = 〈p, n〉 =
d∑
i=1

pi ·

i−1∏
j=1

sinαj

 · cosαi

With Definition 2 we have now the means to map any object p ∈ Rd to its correspond-
ing parameter function fp(α1, ..., αd−1) that resides in a d-dimensional parameter space P
with the angles αi being the arguments of that function. The semantic behind the param-
eter function is that it represents all possible hyperplanes that contain the object p. The
parameter space P is spanned by the d− 1 angles α1, ..., αd−1 of the normal vector n and
their distances δ = fp(α1, ..., αd−1).

Having elaborated on an object p and its mapping through a parametrization function
fp we elaborate on an interesting observation which we coin with the term Embedding-space
- Hough-space Duality. For this, we introduce four properties as stated in [1]:

2In some of the contributions of this dissertation parametrization function is also coined with the
term object function.
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Property 1. An object p = (p1, ..., pd)T ∈ D ⊆ Rd in data space is represented by a
sinusoidal curve fp : Rd 7→ R in parameter space P.

By setting a fixed object p from the dataset into the parametrization function of Defini-
tion 2, we obtain a function that represents all possible hyperplanes, characterized through
their different angles αi and the distance δ, that contain that particular object p, which is
reflected by Property 1.

Property 2. An object (α1, ..., αd−1, δ) ∈ P in parameter space corresponds to a (d − 1)-
dimensional hyperplane in data space.

If we consider now to pick an arbitrary point in Hough space, that would be represented
by a tuple of the form (α1, ..., αd−1, δ), we have in fact chosen a normal vector that represents
a hyperplane in data space, as resembled by Property 2.

In summary Property 1 and 2 state the duality regarding single objects, namely that
a single object in data space corresponds to a parametrization function in Hough space
and that a single object in Hough space corresponds to a hyperplane in data space. The
properties for multiple objects in either data space or Hough space are expressed by the
following two properties taken from [1]:

Property 3. Objects that are located on a common (d−1)-dimensional hyperplane in data
space correspond to sinusoidal curves through a common point in parameter space.

From Definition 1 we know that objects are mapped to parametrization functions in
Hough space. Now suppose that a subset of parametrization functions intersect in Hough
space at a specific point (α1, ..., αd−1, δ). From Property 2 we know that a specific point
in Hough space corresponds to a specific hyperplane in data space. For the aforemen-
tioned subset of parametrization functions, it means that if they intersect at a specific
point in Hough space, that their corresponding objects in data space are located on a
common hyperplane. In the opposite direction, it means that if a subset of objects in
data space is located on a common (d− 1)-dimensional hyperplane, then their correspond-
ing parametrization functions intersect at a specific point in Hough space, namely that
one representing the common hyperplane in data space they are located on, which is the
message of Property 3.

Property 4. Objects located on the same sinusoidal curve in parameter space represent
(d− 1)-dimensional hyperplanes through the same point in data space.

Imagine now that we map an object p to Hough space obtaining its parametrization
function. If we pick any point on this parametrization function in Hough space, it means
that we obtain a tuple of the form (α1, ..., αd−1, δ) in Hough space that corresponds to a
hyperplane in data space. Since the selected point was located among the parametrization
function of p it means that the hyperplane in data space contains p which is the statement
of Property 4.

In the introductory lines of this paragraph, it was mentioned that this Hough transform-
based approach is used with the purpose to locate dense regions within Hough space. The
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understanding of dense is here that a subset of parametrization functions intersect in
Hough space at (a) exactly one common point or (b) within a boundary of angles αi
and distance δ. The former means that the corresponding objects of the parametrization
functions are located perfectly on a hyperplane in data space, while the latter means that
the objects are located within a certain vicinity around the hyperplane. In the following
of this dissertation, such dense regions are coined with the term Region of Interest (ROI).
This concept of duality between data space and Hough space is the foundation on which
also the non-linear Hough transform-based variants (Chapter 2 and 3) rely.

Detecting Non-linear Correlation Clusters Datasets can be generated by mul-
tiple underlying processes. The unknown generative functions from which the data is sam-
pled can be of non-linear nature. One explicit use-case in which the detection of non-linear
correlations within individual clusters is of interest can be seen in [30] where correlations
between isotopes are investigated in archaeological context. In order to detect non-linear
subspaces, and therefore clusters that exhibit a shape hinting to non-linear relations among
their attributes, in Part I, two Hough transform-based methods have been proposed. One of
them is capable of detecting clusters residing on low-dimensional paraboloids of revolution
(axis-parallel) subspaces (Chapter 2) and the other method is capable of detecting clus-
ters that reside on two-dimensional periodic subspaces within the given dataset (Chapter
3). Contrary to the semantic of correlation clustering in the linear case, namely to detect
clusters that reside in arbitrarily oriented subspaces, we use in Part I the term correlation
clustering synonymous for clusters where their objects reside on or around non-linear sub-
spaces. The two proposed methods detect clusters on non-linear subspaces that are not
arbitrarily-oriented, but axis-parallel, i.e. a parabola is not arbitrarily rotated but aligned
towards one of the axes. One question in both works is how to parametrize the non-linear
functions, by which the corresponding Hough space is defined. For the quadratic Hough
space we introduce here the following formalization exemplary for two-dimensional data:

Definition 3. Quadratic Parametrization Function. Let x = (x1, x2)T ∈ D ⊆ R2 be a
2-dimensional vector of a dataset D. Further let v = (v1, v2)T be a 2-dimensional vector
representing the vertex of a parabola. The parametrization function fx : R2 7→ R of a vector
x denotes the opening of a parabola defined by an object x and its vertex v:

fx(v1, v2) = (x2 − v2)2

4(x1 − v1)

With the given definition we can map any two-dimensional object x ∈ R2 to its corre-
sponding parameter function fx(v1, v2) that resides in a 3-dimensional parameter space P ,
where two dimensions are spanned by the vertex v and one dimension by the opening p
of the parabola. The semantic of the parameter function is that it represents all possible
parabolas (of different vertices (v1, v2) and openings p) that contain an object x.

Having elaborated on an object x and its mapping through a parametrization function
fx we continue with the Embedding-space - Hough-space Duality, by introducing, like for
the linear Hough space, four properties:
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Property 5. An object x = (x1, x2)T ∈ D ⊆ R2 in data space is represented by a quadratic
curve fx : R2 7→ R in parameter space P.

Similar to the previously mentioned linear case for a specific object x its corresponding
parametrization function represents the infinite number of quadratic curves with different
vertices and different openings of the form described in Definition 3 that would include the
object x.

Property 6. An object (v1, v2, p) ∈ P in parameter space corresponds to a 2-dimensional
parabola in data space.

In the opposite direction Property 6 means that any picked point in the quadratic
Hough space corresponds to a parabola in data space characterized by its vertex through
v1 and v2 and its opening p.

For the case of considering multiple objects in either spaces the following properties are
provided that are adopted from[1]:

Property 7. Objects that are located on a common 2-dimensional parabola in data space
correspond to quadratic curves through a common point in parameter space.

Again, suppose we are given a subset of objects in data space and their corresponding
parametrization functions. Further we observe that the parametrization functions intersect
at a specific point (v1, v2, p) in Hough space. This means that there exists a common
parabola with the vertex v1, v2 and an opening p in data space on which the subset of
objects are located.

Property 8. Objects located on the same quadratic curve in parameter space represent
2-dimensional parabolas through the same point in data space.

From the parametrization function of an object x (Definition 3) we obtain a function
that represents all possible parabolas with all possible vertices v1, v2 and openings p that
contain x. If we select in Hough space arbitrarily any points that are located on the
parametrization function of x, these points represent parabolas in data space that contain
the object x.

Moving from the quadratic Hough transform to periodic correlation clustering we pro-
vide here a formalization for a two-dimensional case in data space:

Definition 4. Periodic Parametrization Function. Let x = (x1, x2)T ∈ D ⊆ R2 be a 2-
dimensional vector of a dataset D. Further let p = (p1, p2, p3)T be a 3-dimensional vector
representing with p1 the amplitude, with p2 the frequency and with p3 the phase shift of a
periodic (sinusoidal) function. The parametrization function fx : R3 7→ R of a vector x
denotes the vertical shift of a periodic function defined by an object x and its parameters
p:

fx(p1, p2, p3) = x2 − p1 · sin(p2 · x1 − p3)
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With the given definition we can map any two-dimensional object x ∈ R2 to its corre-
sponding parameter function fx(p1, p2, p3) that resides in a 4-dimensional parameter space
P , where three dimensions are spanned by the parameters in p (spanned by amplitude, fre-
quency and phase shift) and one dimension by the vertical shift d of the periodic function.
The semantic of the parameter function is that it represents all possible periodic functions
(of different amplitude, frequency, phase shift, and vertical shift) that contain an object x.

Having elaborated on an object x and its mapping through a parametrization function
fx we continue with the Embedding-space - Hough-space Duality, by introducing, like for
the linear and quadratic Hough space, four properties as stated in [1]:

Property 9. An object x = (x1, x2)T ∈ D ⊆ R2 in data space is represented by a sinusoidal
curve fx : R3 7→ R in parameter space P.

For the case of Property 9 imagine that we are given an object x. This object is
mapped to a parametrization function in Hough space as provided in Definition 4. Since
the arguments of the function are the amplitude p1, frequency p2 and phase shift p3 the
parametrization function represents all possible periodic functions containing x.

Property 10. An object (p1, p2, p3, d) ∈ P in parameter space corresponds to a 2-dimensional
periodic function in data space.

If we choose any point in the periodic Hough space we obtain a tuple (p1, p2, p3, d)
since that space is spanned by these four scalars representing the parameters of a periodic
function as provided in Definition 4. The scalars in this tuple represent a specific periodic
function in data space of amplitude p1, frequency p2, phase shift p3 and vertical shift d.

Next, we dedicate to the properties for multiple objects in either spaces being expressed
by the following two properties adopted from [1]:

Property 11. Objects that are located on a 2-dimensional periodic function in data space
correspond to sinusoidal curves through a common point in parameter space.

Given the case that for a subset of objects their corresponding parametrization func-
tions intersect in Hough space at a common point, this point is represented by a tuple
(p1, p2, p3, d). This means that the subset of parametrization functions share a common
amplitude p1, frequency p2, phase shift p3 and vertical shift d. Therefore the subset of ob-
jects are located on a common 2-dimensional periodic function with a common amplitude,
frequency, phase shift and vertical shift in data space.

Property 12. Objects located on the same sinusoidal curve in parameter space represent
2-dimensional periodic functions through the same point in data space.

Again we map an object x to Hough space obtaining its parametrization function. Any
sampled points in Hough space that are located on that parametrization function represent
in data space 2-dimensional periodic functions that contain the object x.
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The goal of the work in the Chapters 2 and 3 was to investigate if and in how far
the Hough transform-based concept from CASH [1] can be transferred to the detection of
clusters with their objects residing on non-linear subspaces. As a first step, it was neces-
sary to identify the parameters and the parametrization function that provide the means
to characterize the quadratic and periodic Hough space. Building on the previous step,
it turned out to be challenging to identify ROIs in Hough space through the adaptive
grid technique used in CASH[1]. In particular, formulating queries for checking if minPts
number of parameter functions intersect within a region in Hough space revealed that it
is necessary to cover different cases. More specifically, as one case the parametrization
function in Definition 3 exhibits a point of singularity if x1 = v1 and as such requires
attention when formulating ROI queries. For the periodic case, we observed that data of
a cluster within a dataset may be covered by not only one, but multiple periodic models
equally well. In this case, we had to introduce heuristics to prefer those periodic models
that provide a lower frequency, since an arbitrarily high frequency turned out to lead to
an overfitting on the data. The conducted experiments in both cases (Chapter 2 and 3)
showed that the developed methods can detect clusters residing on quadratic or periodic
subspaces whereas other existing methods like CASH[1] or DBSCAN[10] are, as expected,
incapable of detecting those clusters.

Another observation that we made was that the detection of clusters in which the object
resides on quadratic subspaces is computationally expensive. To mitigate this, in Chapter 2
a first simple parallelization approach is proposed. One challenge was to develop a concept
where the computations in Hough space are distributed on multiple CPU cores while at
the same time being mostly mutual independent of other computations. The experiments
illustrated that this simple approach scales with an increasing number of CPU cores. How-
ever, further work is required to develop more sophisticated approaches, relying on different
frameworks such as Map-Reduce[8] for example. Another aspect that addresses all three
presented correlation clustering techniques (linear, quadratic, periodic) is the question of
how the methods deal with cases where actually no linear, quadratic, or periodic patterns
are present within the data. This depends on the decisions made by the domain experts
using the methods. To be more specific, by setting the minimum support (minPts) of
objects that need to be on or around a (linear, quadratic, or periodic) subspace the users
determine when actually a pattern is present in a given dataset.

Lastly, one feature that comes with CASH[1], and also with the other Hough transform-
based methods in Chapters 2 and 3 for "free" is that for each cluster one obtains a quan-
titative model of the underlying subspace. As one use case, the obtained models for each
cluster can be utilized to generate their own artificial datasets for training machine learning
systems, which is of special interest in cases where the amount of collected data is sparse.
Endeavors to derive quantitative models from PCA-based correlation clustering methods
have been made in [2]. In conclusion, we provide the following two hypotheses for Chapters
2 and 3:
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Hypothesis 1: The concepts of Hough transform-based correlation clustering including
the adaptive grid-based search strategy as proposed in CASH[1] can be extended to detect
clusters with their objects residing on quadratic axis-parallel subspaces in lower-dimensional
settings.

Hypothesis 2: The concepts of Hough transform-based correlation clustering including
the adaptive grid-based search strategy as proposed in CASH[1] can be extended to detect
clusters with their objects residing on periodic subspaces in two-dimensional settings.

1.2 Strategies for Region of Interest Detection
in Hough Space

While the Hough transform-based approaches enable the detection of global correlation
clusters and are unbound from any locality assumption, they suffer from three factors
when it comes to the detection of regions of interest (ROI) in Hough space: (a) the run-
time deteriorates to a full enumeration of all paths of a binary tree and therefore to an
exponential runtime, where a tendency to such behavior is notable if the data contains
large amounts of noise (b) the computation of regions of interest is expensive, or more pre-
cisely: computing if a multivariate parametrization function intersects with a hypercuboid
in Hough space is costly and (c) it is not possible to apply ’classical’ well-known clustering
algorithms such as DBSCAN [10] or k-means [29] in Hough space.

Historically, the first approach to determine ROIs in Hough space was to deploy a
static grid and to count the number of intersecting parametrization functions per grid cell.
This approach is coined in the literature [9] with the term "accumulator". The handling
with accumulators leads to two observations: (1) it is non-trivial to identify an ’adequate’
grid resolution and (2) with increasing dimensionality the runtime increases exponentially
which is also additionally affected by increasing grid resolution. The correlation clustering
algorithm CASH[1] deploys a depth-first search (DFS) strategy in which all axes in Hough
space are split by a pre-defined order. If a minimum number of parametrization functions
does not intersect with a partition (hypercuboid) in Hough space, the entire partition is
pruned. This approach, however, can deteriorate to an exponential runtime as mentioned
before.

To mitigate this, in Part I, the algorithm D-MASC is proposed (Chapter 4) which ad-
dresses the problem by first applying a MeanShift algorithm [12] on the dataset to reduce
the number of parametrization functions down to the number of modes from the MeanShift
approach. At this point, we provide a formal introduction to the MeanShift algorithm. The
following description of the MeanShift method is based on [7] and briefly summarized as
follows:
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MeanShift is an algorithm by which the density within a given d-dimensional feature
space can be estimated. This is achieved by using a kernel K : Rd 7→ R, e.g. a radially
symmetric kernel and a shifting of cluster centers through a gradient ascent approach. By
computing the gradient ascent of the kernel density estimate (KDE) f̂h,K we obtain the
following expression based on [7]:

∇f̂h,K(x) = 2ck,d
nhd+2

[
n∑
i=1

g

(∥∥∥∥x− xih

∥∥∥∥2
)]

︸ ︷︷ ︸
term 1


∑n
i=1 xig

(∥∥∥x−xi

h

∥∥∥2
)

∑n
i=1 g

(∥∥∥x−xi

h

∥∥∥2
) − x


︸ ︷︷ ︸

term 2

Term 1 corresponds to the density estimation at x. The second term is known as the
MeanShift vector m which shows in the direction of the maximum increase in density and
corresponds to the density gradient estimate at a given object x using a kernel K. Hence
in the literature MeanShift is also known as a mode seeking algorithm since the objects
shift towards their center of mass (mode). The MeanShift algorithm for a given object xi
performs the three following steps: (1) Compute the MeanShift vector m(xti) at an itera-
tion t (2) Translate the density estimation window (bandwidth): xt+1

i = xti + m(xti) and
(3) Iterate step (1) and (2) until convergence is reached: ∇f̂h,K(xi) = 0, or in more simple
terms: until the objects barely shift.

In D-MASC, the step of applying MeanShift on the dataset is followed by rasterization of
single parametrization functions of the modes into small cells in Hough space. Those regions
where increasing number of intersecting cells can be observed are considered as ROIs. The
conducted experiments indicate that D-MASC is in high-noise scenarios capable to detect
ROIs in lower runtime compared to the adaptive grid-based approach in CASH. This benefit
in runtime can be traced back to the involved MeanShift step that acts as an aggregation of
objects, leading in consequence to a reduction of the number of parametrization functions
from the size of the dataset down to the number of detected modes.

The aforementioned accumulator strategy for ROI detection, as illustrated in Figure 1.4
(a) has been replaced in CASH by an adaptive grid-based approach where only regions that
satisfy the criterion of minPts parametrization functions intersecting are further scanned
at higher grid resolutions. An illustration for the adaptive grid strategy can be seen in 1.4
(b). What can be observed here is that regions that do not meet the minPts threshold are
not further refined, reducing the number of queries. For scenarios where the data contains
large amounts of noise, the strategy in D-MASC first detects the modes within a given
dataset. The corresponding parametrization functions of those modes are then rasterized
into small cells. Those regions with a high count of overlapping cells are considered as
ROIs. The rasterization (green cells) of the parametrization functions of the modes (red)
can be seen in 1.4 (c). In all the so far mentioned strategies (Accumulator, adaptive grid,
and D-MASC) the queries if a parametrization function intersects with a region turn out
to be computationally expensive. This raised the questions (a) if it is possible to detect
ROIs in Hough space without handling with parametrization functions and (b) if then well-
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Figure 1.4: Different ROI detection strategies: (a) Accumulator-based, (b) adaptive grid-
based (c) D-MASC, (d) d-tuples sampling method (Part I, Chapter5)

known clustering algorithms can be applied to discover the ROIs. In Chapter 5 it turned
out that handling with parametrization functions can be circumvented by taking a different
approach: Instead of mapping each object in data space to a parametrization function in
Hough space, we take in a d-dimensional datasets in data space multiple samples of size d
and compute the parameters of the hyperplane they would be located on. The computed
hyperplane can be represented as a single point in Hough space. As a consequence, all
computations are performed on a set of normal vectors in Hough space. This enables the
use of clustering algorithms like DBSCAN[10] or k-means[29] to detect ROIs in Hough
space. In the conducted experiments of Chapter 5, we observed that one can find the
ROIs with this strategy eliminating the need to handle with parametrization functions. As
one illustrative example, the detected ROIs with the strategy of Chapter 5 can be seen in
Figure 1.4 (d). In summary, we come with the following hypothesis regarding Chapters 4
and 5:

Hypothesis 3: The runtime of Hough transform-based methods on datasets with large
amounts of noise can be reduced through a pre-aggregation in data space and a rasterization
approach in Hough space.

Hypothesis 4: Handling with parametrization functions in Hough space for ROI detec-
tion can be circumvented by a different model where instead it is operated with objects in
Hough space permitting the ROI detecting with well-known clustering algorithms.
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1.3 Evaluation of Correlation Clusterings

We leave now the field of Hough transform-related algorithms and dedicate to a topic that
concerns correlation clustering algorithms in general. While there exist several correlation
clustering algorithms, one question that has not been asked so far with this observation,
yet being important, is how to evaluate the clusterings that are yielded by the respective
algorithms. This is of special interest in cases where we do not have any "ground truth"
labels, rendering the application of external measures impossible. In this context, we elab-
orate on our understanding of the terms internal and external since they will accompany
the reader throughout Chapters 6 and 7.

We understand under the term external validation a measure which compares a given
(observed) clustering result against a reference (expected) result which is sometimes re-
ferred to among the literature as a "ground truth" as it is stated in [14]. This a priori
knowledge (to which class an object belongs) is not part of the actual dataset on which
the clustering has been performed, but has been provided after the data was obtained by
e.g. domain experts. Accordingly, in the work of [32] external validation is meant to be
based on previous knowledge about the provided data, which corresponds to the idea of a
"ground truth" (in form of class labels). Supporting [14] and [32], according to [33] so-called
external criteria are those which evaluate a cluster regarding of an independently drawn
structure imposed on the dataset, where such a structure would be class labels for example.

With the term internal validation we understand that a clustering result is evaluated
based on intrinsic information of the data itself [14],[32],[33] (Ch. 16.1, P.864) (e.g. the
structure of detected clusters). Further, since no external information (in form of labels)
are provided, internal evaluation measures require assumptions about what can be consid-
ered as a favorable property of a detected cluster [14]. Being aware that the underlying
model assumption can also be regarded as some sort of a priori and therefore external
knowledge that is imposed a given clustering, in this dissertation it is adhered to the pre-
viously mentioned and common understanding of the term internal among the literature.

Lastly, we elaborate on the term model agnostic in the context of Chapter 7. Among
clustering algorithms, there exist different archetypes. As an example, we may have a
density-based archetype encompassing clustering algorithms such as DBSCAN [10] or OP-
TICS [4]. In our case we have the correlation clustering archetype of clustering algorithms.
Within the archetype of correlation clustering algorithms, the proposed evaluation measure
in Chapter 7 is model agnostic in a sense that it does not favor any particular correlation
clustering algorithm based on an algorithm-specific property (like density in correlation
subspace), but evaluates correlation clusterings based on three properties which are, to
the best of our knowledge, inherent to all correlation clustering algorithms, namely: all
correlation clustering algorithms can be evaluated based on (1) their reconstruction error
which is obtained when e.g. projecting objects of a cluster to their respective subspaces
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and back (2) the number of clusters and thus subspaces (3) the number of dimensions their
subspaces have. The evaluation can be made based on these three criteria since all corre-
lation clustering algorithms yield a clustering which is characterized through the number
of clusters (and therefore also subspaces), number of dimensions of their subspaces, and of
how "close" objects of a cluster are located on or around their respective subspace. Trans-
ferring what has been stated before in the paragraph on internal validation, in Chapter
7 for correlation clustering it relies on the assumption that it is a favorable property if a
given dataset can be represented with a low reconstruction error (Property 1) while at the
same time exhibiting a low model complexity (Properties 2 and 3). Conclusively, the term
model agnostic refers in this work to the aspect that the internal evaluation measure is
agnostic to the algorithms within an archetype of clustering algorithms (here: correlation
clustering) but not necessarily to other archetypes.

While there exists a variety of internal evaluation measures which are tailored at dif-
ferent underlying clustering models and assumptions, none of them, to the best of our
knowledge are specialized for arbitrarily oriented subspace clustering. For that reason we
have proposed in Part II, Chapter 6 [23] the first two internal evaluation measures, namely
the Normalized Projected Energy (NPE) and the Subspace Compactness Score (SCS).
NPE is derived from the objective function of the ORCLUS[3] clustering algorithm while
SCS is derived from CASH[1]. During the investigations, the expected insight confirmed
the assumption that ORCLUS and CASH optimize for the same objective. However, both
of them have algorithm-specific biases and come with certain shortcomings. To be more
specific, NPE does not account explicitly for the dimensionality of a subspace, meaning
that a better NPE score is achieved if the subspaces have a higher dimensionality since
the deviations of objects to a subspace are reduced with increasing dimensionality. To
remedy such shortcomings, we have derived an evaluation measure that accounts for the
reconstruction error on the one hand, and the model complexity, on the other hand, coined
with the term Sum of subspace Reconstruction Errors (SRE)). SRE is, in contrast to NPE
and SCS, model agnostic in a sense as it has been stated in the previous paragraph. In
summary, we have come up for Chapters 6 and 7 with the following hypothesis:

Hypothesis 5: Among some correlation clustering algorithms exist common properties,
such as common objectives by which the algorithms compute their clusterings, or common-
alities that can be observed with the clustering results, that can be used as a basis for a
common internal evaluation measure.

1.4 Different Views of Correlation Clusterings
Among the plethora of correlation clustering algorithms, different methods support differ-
ent views. To commit an intuition for the meaning of the term "view" we refer to Figure 1.5.
Here we can see a toy example where we observe a set of objects in which two attributes
per object are captured, namely (1) age in years and (2) chocolate consumption in gram
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Figure 1.5: Toy example with local and global correlation clusters

per day, which denote the two axes of our coordinate system. At a first sight we may see
three locally dense correlation clusters, denoted with Cloc1 , Cloc2 and Cloc3 . Each of these
clusters encloses an age interval.

Having only the local view communicates to the scientists that there exist three age
groups. Additionally, they observe that there exist "age gaps" i.e., between 9 and 11 years
old people. This information can be valuable for example to initiate the development of
marketing programs that specifically target 9 to 11-year-old consumers. On the contrary,
in the global view, data scientists can observe that all three clusters, follow a global correla-
tion or trend. This information reveals that among all three age groups a common trend is
visible, from which potentially the trends for higher age groups can be extrapolated, given
the case that no market analysis data is available. By applying algorithms that support
solely either a local or a global view, data scientists see only "half of the picture".

One challenge in pursuit of obtaining both views is to identify local and global corre-
lation clusters that belong to the same common subspace. A simple application of a local
and a global correlation clustering algorithm on a given dataset would not necessarily lead
to the expected result of finding local and global correlation clusters of the same common
subspace for the following reasons: First, it would require to probe ranges of parameter
settings in both (local and global) algorithms in order to find local and global clusters
belonging to common subspaces. Depending on how thorough the parameter ranges have
been probed, the detection of local and global correlation clusters with a common subspace
may be missed. The second reason is founded on a statement in [34] which addresses an
aspect related to the locality assumption, namely: "Outliers in the neighborhoods, that
do not belong to the corresponding cluster prevent the algorithms from finding suitable
subspaces, ..." [34]. Indeed we could independently observe that outliers do have an im-
pact on the detection of subspaces with respect to their orientation and translation as we
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have investigated on the example of PCA, a method that is predominantly used in local
correlation clustering algorithms (s. Subsection 1.5 and Chapter 9). Outliers may then
render it impossible for local correlation clustering algorithms to find local clusters with
subspaces being similar to those yielded by global correlation clustering algorithms. These
reasons motivated the development of the following method:

In this proposed framework first with a density-based clustering algorithm like DBSCAN[10]
dense regions in the full-dimensional data space are detected. On the detected local re-
gions a global correlation clustering algorithm (here CASH) is applied to detect within the
full-dimensional dense, and therefore local regions, correlation clusters. Since CASH is a
global correlation clustering method, the detected clusters and their subspaces should not
be affected by any outliers within the locally dense cluster. The obtained local correlation
clusters are in a bottom-up fashion subsumed to global clusters if they do not exceed mu-
tually the user-defined thresholds for orientation and translation dissimilarity. Further in
Part III, Chapter 8 we elaborate on the impacts of different hyperparameter settings with
regards to the properties of the obtained local and global correlation clusters. In summary,
we come up with the following hypothesis for Chapter 8:

Hypothesis 6: It is possible to obtain local and global correlation clusters that belong to
the same common subspace by using a full-dimensional density-based clustering algorithm
and a global correlation clustering method.

1.5 Resilience against Outliers
So far we have elaborated in this introductory part on different aspects of correlation clus-
tering like views, non-linearity, internal evaluation measures, and ROI detection in Hough
space. There exists one aspect that affects correlation clusterings when it comes to the com-
putation of their respective subspaces: outliers. Depending on the chosen hyperparameters
and on the underlying model, outliers can heavily skew the orientation and translation of
arbitrarily oriented subspaces of each cluster and as such impact view, the reconstruction
error, and therefore also the resulting clustering quality.

At this point we have to address the following questions first, namely (a) what an outlier
is and (b) how it can be identified. If we think of the subspaces, we compute the distances
of objects orthogonal to a subspace. However, it remains so far open which distance is an
indicator for an outlier. There exist many outlier models as it has been elaborated on in
the survey of [35]. We refer here to the so-called deviation-based outlier model which states
that: "Deviation-based outlier detection groups objects, captures some characteristics of
the group, and considers those objects outliers that deviate considerably from the general
characteristics of the groups." [35]. The general characteristics in our case is that objects
belonging to the group should exhibit a low distance to the subspaces, or in other terms,
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outlier show a significantly higher distance to the subspace. In this context we cite the def-
inition of an outlier by Hawkins [15]: "An outlier is an observation which deviates so much
from the other observations as to arouse suspicions that it was generated by a different
mechanism.". Referring to Hawkins outlier definition an open question in this context is:
what is understood by "so much" deviating from other observations? One simple approach
would be to observe the distribution of distances of objects to a subspace and determine
a cut-off threshold, by which all distances that are larger than the specified threshold are
considered as outliers.

While in Hough transform-based approaches outliers do not influence the arbitrarily
oriented subspaces, the PCA-based methods are potentially susceptible to outliers, espe-
cially if no outlier detection routines are incorporated. At this point we provide a more
formal introduction of PCA based on [2]:

Given a d-dimensional dataset D ⊆ Rd consisting of n vectors. Further let µD denote
the mean of all objects x ∈ D. The covariance matrix ΣD of D is defined as:

ΣD = 1
|D|
·
∑
x∈D

(x− µD) · (x− µD)T

The decomposition of the covariance matrix ΣD yields:

ΣD = VD · ED · V T
D

where VD denotes the Eigenvector matrix which is an orthonormal matrix containing
the Eigenvectors of ΣD and ED denotes the Eigenvalue matrix that is a diagonal matrix
with the corresponding Eigenvalues being located in decreasing order in its diagonal. In
fact, every Eigenvector λD is accompanied by a corresponding Eigenvalue that expresses
how strong the variance is in that particular direction. Typically the strong Eigenvec-
tors, namely those capturing the direction of highest variance are identified by sorting
the Eigenvectors in descending order by their corresponding Eigenvalues. The number of
Eigenvectors required to meet an explained variance of at least α, where (according to
[2]) α is typically chosen between 0.8 and 0.9, serves as a threshold for determining the
dimensionality of the subspace spanned by the strong Eigenvectors.

Single or multiple outlier objects primarily influence the covariance matrix, or to be
more precise: affect the variance and covariance entries in the covariance matrix. This
causes the Eigenvectors which are obtained from solving the Eigenproblem to be skewed
with respect to orientation or translation. In Part III, Chapter 9 [21], the conducted ex-
periments illustrate the effects of outliers on the principal components. There exists a rich
body of literature dealing with robustness for PCA, which approaches this issue from dif-
ferent perspectives, using different techniques as stated in [21]. However, the impressions
from observing the different techniques are, that they also increase in complexity, with
respect to the complexity of the underlying mathematical framework. This circumstance
challenged us to approach the following question: Is it possible to make PCA more robust



18 1. Introduction

by introducing a minimum of modifications to the current method? To approach this en-
deavor, we remembered at which point outliers have an impact on PCA. In the covariance
matrix, the variance with respect to the mean is computed. From a statistical point of
view, the mean itself is prone to outliers as the following toy example shall illustrate: given
a sequence of numbers: S = [1, 4, 4, 4, 40], the mean of S, is µ(S) = 10.6, however, the me-
dian ismed(S) = 4. As it can be observed on this tiny example, the median is, as expected,
more robust compared to the mean. In the work of [11], the comedian (or co-MAD, for
co-Median Absolute Deviation) matrix is introduced which instead of relying on the mean
and the variance, relies on the median and the absolute deviation to the median. In fact,
in Part III, Chapter 9, the sole change that has been introduced to the PCA is to replace
the covariance matrix with a co-MAD matrix. The first conducted experiments support
our expectations that the resulting principal components are only marginally affected by
outliers, in comparison to a classical covariance-based PCA. In summary, the hypothesis
in Chapter 9 is as follows:

Hypothesis 7: The susceptibility of PCA towards outliers can be mitigated by introduc-
ing a minimum of modification to the PCA method itself.

In the upcoming pages, three parts of this dissertation are presented, namely Part I,
dealing with Hough transform-based approaches, Part II that is dedicated to the evaluation
of correlation clusterings, and Part III that consists of chapters addressing different views
and resilience against outliers. This dissertation is concluded with chapter 10 that provides
a wrap-up and proposes potential targets for future work.



Part I

Hough Transform Based Approaches
“We can only see a short distance ahead,

but we can see plenty there that needs to be done.”

Alan Turing
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Chapter 2
Detecting global hyperparaboloid correlated clusters:
a Hough-transform based multicore algorithm

Published in:
Kazempour, Daniyal; Mauder, Markus; Kröger, Peer and Seidl, Thomas. "Detecting global
hyperparaboloid correlated clusters: a Hough-transform based multicore algorithm." Dis-
tributed and Parallel Databases (DAPD) 37.1 2019: 39-72. https://doi.org/10.1007/
s10619-018-7246-0

In the first chapter of the dissertation the linear Hough transform [16] and its gener-
alization to an arbitrary number of dimensions [1] has been introduced which is utilized
for detecting clusters that reside in arbitrarily oriented subspaces. In the following chap-
ter, an endeavor is made towards detecting clusters that reside on or around subspaces of
parabolic shape hinting at features that may exhibit quadratic relations.

The detected clusters of parabolic shape are axis-parallel, where the one rotation axis
is provided by the user. The decision to restrict the user to focus to one particular rota-
tion axis was made since even in low-dimensional settings capturing clusters that reside on
paraboloid subspaces with different rotational axes would significantly increase the com-
plexity of the computations.

Besides the focus on the axis-parallel setting, the proposed method is, contrary to [1]
which is generalized to arbitrary dimensionality, constructed and investigated towards low-
dimensional settings. While in the non-linear cases a risk of overfitting may occur with
increasing degree of polynomials, the proposed method in this chapter is not affected by
this issue since it is limited to polynomials of degree two. In addition to overfitting over
the polynomial degree also overfitting by increasing the dimensionality may be possible
which is not further discussed in this chapter, since this work does not discuss paraboloids
in high-dimensional settings.

https://doi.org/10.1007/s10619-018-7246-0
https://doi.org/10.1007/s10619-018-7246-0
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Chapter 3
Detecting Global Periodic Correlated Clusters in Event
Series based on Parameter Space Transform

Published in:
Kazempour, Daniyal; Emmerig, Kilian; Kröger, Peer and Seidl, Thomas. "Detecting Global
Periodic Correlated Clusters in Event Series based on Parameter Space Transform." Pro-
ceedings of the 31st International Conference on Scientific and Statistical Database Man-
agement (SSDBM). 2019. https://doi.org/10.1145/3335783.3335803

In the previous chapter, we proposed a first endeavor for detecting clusters that reside
in subspaces that exhibit the shape of a paraboloid. In the context of time series, subsets of
data may be generated from one (or multiple) underlying periodic process(es). To detect
clusters that are located on or around subspaces in which their features hint towards a
periodic relationship we propose a Hough transform-based approach which is focused on
two-dimensional time series.

An observation that emerged during the development of this method were cases where
single clusters could be characterized by multiple periodic models. A closer look revealed
that with increasing frequency even objects that were supposed to be outliers (by the
"ground truth") have been overfitted to the underlying model. Investigating the cause that
lead to this observation directed to the frequency. More specifically, by just increasing the
frequency of the underlying periodic model any object of the data may be fitted to the
model. Due to the compact character of a short paper, the understanding of this type of
overfitting may not be easy to follow, and as a consequence, we provide the reader a more
concrete case. For this purpose consider the dataset in Figure 3.1 (left) where five objects
can be observed that are located on a periodic function (with the parameter of amplitude
a = 4, frequency b = 5, phase shift c = π

2 and vertical shift d = 3) and one object as
an outlier. Through an increase of the frequency by a factor of 6 (b = 30) we obtain the
function as seen in Figure 3.1 (right) where the outlier is now also located on the sinusoidal
curve.

https://doi.org/10.1145/3335783.3335803
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Figure 3.1: Left: Data fitted to a periodic model. Right: Data fitted to a periodic model
with increased frequency

By increasing the frequency to arbitrarily high values one can potentially overfit on any
dataset. The proposed method in this chapter provides a simple heuristic by choosing in
cases of equally suitable models, those that exhibit the lowest frequency. What remains
for future work are thorough studies of how overfitting can be detected by the method.



Chapter 4
D-MASC: A Novel Search Strategy for Detecting Re-
gions of Interest in Linear Parameter Space

Published in:
Kazempour, Daniyal; Bein, Kevin; Kröger, Peer and Seidl, Thomas. "D-MASC: A Novel
Search Strategy for Detecting Regions of Interest in Linear Parameter Space." 11th In-
ternational Conference on Similarity Search and Applications (SISAP). Springer, Cham,
2018: 163-176. https://doi.org/10.1007/978-3-030-02224-2_13

While the previous two chapters dealt with the topic of non-linearity in the context of
the Hough transform, this chapter is dedicated to the process of detecting regions of interest
(ROI) in Hough space. Besides the original accumulator-based approach and the strategy
introduced in [1], a different technique is proposed in this chapter where the conducted
experiments indicate a certain benefit of D-MASC in high-noise scenarios. D-MASC itself
relies in an initial step on a pre-aggregation of the data into modes using the MeanShift
algorithm which has been introduced in chapter 1. To ensure self-containedness, further
information regarding the dataset on which the experiments were conducted in Fig. 11
are provided: The dataset used there consists of 500 objects assigned to the observable
clusters and 500 objects as noise.

https://doi.org/10.1007/978-3-030-02224-2_13
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The D-MASC approach from the previous chapter relies on a region of interest (ROI)
detection which is tailored at finding intersecting parametrization functions in Hough space.
A question that motivated the method proposed in this chapter was: is it possible to detect
clusters with their corresponding subspaces hinting towards potentially linear relations
between their features without dealing with parametrization functions in Hough space?
To recall the semantics behind the parametrization functions as introduced in chapter 1:
An object in embedding space is mapped to a parametrization function in Hough space
representing all possible lines in embedding space containing the particular object. To
turn away from parametrization functions in Hough space, we pursued a different idea:
By sampling d tuples (where d refers to the dimensionality of the dataset) and computing
the linear model (line or plane on which the d objects are located) we obtain a normal
vector and a distance from the origin orthogonal to the plane. Both information can be
resembled as a point in Hough space. In fact, we no longer deal with parametrization
functions but with points in Hough space, each of them representing planes in embedding
space. This chosen approach is promising since we can now detect ROI without any queries
if parametrization functions intersect within a certain area in Hough space and without
grid refinements which can deteriorate in worst-case according to [1] to an exponential
runtime. Instead, we can utilize clustering algorithm, such as OPTICS [4]. The conducted
preliminary experiments show that with this approach we can detect in Hough space ROIs
that represent linear subspace clusters in embedding space.

https://doi.org/10.5441/002/edbt.2019.91


28 5. A Galaxy of Correlations



Part II

Evaluation of Correlation Clusterings
“The most important property of a program is whether it accomplishes the intention of

its user.”

C.A.R. Hoare
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This second part of the dissertation deals with the aspect of evaluating correlation
clusterings without any labels. In this context, we refer to the terminologies of internal
and external evaluation measures as stated in chapter 1. One challenge was to identify
a potentially common objective among some correlation clustering algorithms. As a first
attempt, in this chapter evaluation criteria were derived from two existing correlation clus-
tering algorithms namely CASH [1] and ORCLUS [3]. The two derived internal evaluation
measures (Subspace Compactness Score [SCS] and Normalized Projected Energy [NPE])
are further investigated in this chapter regarding their objectives by which they evaluate
a correlation clustering. The conducted experiments showed that while the proposed mea-
sures take into account the reconstruction error, more specifically, the deviation of objects
to their respective subspace, they do not account for the model complexity. The latter is
an aspect that is further addressed in the following chapter.

Further, there are certain aspects that need to be addressed for clarification purposes:
Within this chapter, it is discussed in II.C how a quantitative model can be obtained
from CASH clustering results by applying PCA on them. This idea has been originally
mentioned in [1] (Sec. 3.7) and was not further pursued since, as the authors of [1] state,
CASH provides already an implicit quantitative model capturing the orientation, transla-
tion, and through the perimeters of the hypercuboids in Hough space also the deviations
to the detected hyperplane.

Besides the elaboration of how a quantitative model could be obtained for a CASH
clustering result, it is also elaborated on how CASH can emulate properties of ORCLUS.
The opposite direction has not been discussed and is advised as a target for future work.
Further, in the context of mutual emulation capabilities, Definition 4 should be regarded
as a proposition.

Apart from the differences on which it has been elaborated on in this chapter, one major
difference remains to be investigated in more detail in future work, namely the impact of
different shapes of noise distributions on the two clustering algorithms.

https://doi.org/10.1109/ICDMW51313.2020.00049
https://doi.org/10.1109/ICDMW51313.2020.00049
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The evaluation measures from the previous chapter did not account for model com-
plexity (number of clusters/subspaces and dimensionality). More specifically, one could
observe that a clustering with more number of clusters is valued as equally good compared
to a clustering with fewer clusters but the same reconstruction error. While the internal
measures from the previous chapter behave as expected, namely to evaluate clusterings
based on the reconstruction error, they do not account for the model complexity. This
gets in particular problematic in terms of overfitting, since in a d-dimensional embedding
space potentially any d objects can be assigned to a cluster spanning their own d − 1-
dimensional subspace with a reconstruction error of zero. In this sketched extreme case,
the reconstruction error is minimized by increasing the model complexity through an in-
creased number of clusters and therefore subspaces. In the pursuit of a better evaluation
measure that also accounts for the model complexity a question that emerged was: what
are properties that are common to correlation clustering results? It turns out that corre-
lation clustering algorithms can on the one hand be characterized by the deviation of the
cluster members to their respective subspaces (reconstruction error) and on the other hand
by their model complexity in terms of number of clusters (therefore subspaces) and dimen-
sionality of subspaces. From this observation emerged the evaluation measure named Sum
of subspace Reconstruction Errors (SRE). The design decision was to construct SRE in
such a way that (a) even with a low reconstruction error, the clustering is penalized if the
model complexity is increased (i.e. through an increased number of clusters and therefore
subspaces) and (b) that even with a low model complexity the clustering is penalized if
the reconstruction error increases. The chosen approach is promising since it takes both
aspects (reconstruction error and model complexity) into account yielding a bad score if
the clustering result exhibits tendencies towards overfitting or an increasing reconstruction
error is observed. The mentioned expected behaviors could be observed in the conducted
experiments, making SRE a potential candidate for an internal evaluation measure.

The proposed internal evaluation measure of this chapter shares similarities to a quanti-
tative model for correlation clustering introduced in [2] on a conceptual level. The similari-
ties to [2] are the following: (1) Like in [2] first a correlation clustering algorithm is applied

https://doi.org/10.1109/ICDMW51313.2020.00051
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on a given dataset followed by the computation of the Eigenvectors derived from the co-
variance matrix of each cluster (2) Those Eigenvectors with the λ-largest corresponding
Eigenvalues (strong Eigenvectors) are considered as those directions spanning the corre-
lation hyperplane. Further for each cluster the deviation of objects to their respective
hyperplane is computed by projecting the objects down to the subspace spanned by the
strong Eigenvectors and back to the full-dimensional embedding space.



Part III

On Different Views and Resilience
against Outliers of Correlation

Clusterings
“There is no unique picture of reality.”

Stephen Hawking
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The so far presented chapters either dealt with Hough transform-based approaches
or with the internal evaluation of correlation clusterings. This chapter deals with the
aspect of views, more concrete with the endeavor to bring the so-called local and global
views together. The design decision in this chapter was to first identify locally dense
regions and to derive their respective subspaces followed by a merging of clusters based on
the similarity of their subspaces. The conducted experiments showed that the proposed
approach while providing local and global views, does not forfeit w.r.t. runtime and cluster
quality compared to the global correlation clustering algorithm CASH.

While the chapter provides notions for local and global correlation clusters, we introduce
at this point a notion for density-reachable (as stated in [10]) in the context of Definitions
3 [density-connected] and 5 [Local Arbitrarily Oriented Subspace Cluster] to ensure self-
containedness in this chapter:

Definition. Density-reachable A point p is density-reachable from a point q wrt. ε and
MinPts if there is a chain of points p1, ..., pn, p1 = q, pn = p such that pi+1 is directly
density-reachable from pi

Besides the definition of density-reachability, we address in the following an aspect that
is not handled in the chapter. While the proposed method works on the experiments pro-
vided, one can think of cases that may not be captured by it. As stated at the beginning of
this preface, the proposed approach first identifies locally dense regions within the dataset.
If we now consider that a density-based cluster may not be located only in a single common
subspace but reside in two or more different subspaces we are confronted with a situation
as shown in Figure 8.1 (left). Here the single dense region contains subsets of objects that
may reside in two different superimposed subspaces with different orientation as it can be
observed in Figure 8.1 (right). Determining the subspace of the entire dense region would
mean forcefully fitting all objects into one common subspace, neglecting local directions of
variance and therefore the superimposed subspaces.

https://doi.org/10.1109/ICDMW51313.2020.00050
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Figure 8.1: Left: a two-dimensional dataset in embedding space exhibiting one dense re-
gion. Right: two subspaces to which the one dense region can be distributed to.

As for now, the risk of force-fitting a single dense region into one common subspace
can be circumvented by reducing the minPts parameter of the CASH algorithm that
is applied to the dense regions. This however bears the risk of a strong fragmentation
leading to many small clusters within a dense region that exhibit different orientations and
translations of the subspaces. The fragmentation can further be influenced through the pa-
rameter j and s that permit the control of the variance within a cluster detected by CASH.

Another behavior of the proposed method that can be observed is that by its order
to detect local clusters first followed by a merging to its global cluster, objects that are
not belonging to any of the locally dense regions need to be re-evaluated if they belong
to the global common subspace. As a future work, it may be considered to circumvent
this re-evaluation by starting with the detection of the global subspace first followed by a
determination of its local clusters. Lastly, we address the parameters of this framework.
While their setting seems intuitive in lower-dimensional cases, it becomes significantly less
intuitive in higher dimensionalities.
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This chapter of the dissertation is dedicated to the topic of resilience against outliers.
Certain correlation clustering algorithms do not rely on PCA and have an outlier handling
like CASH [1]. Other algorithms of that archetype rely on PCA and have an outlier
handling by their underlying model, such as 4C [6]. On the contrary, algorithms like
local PCA [17] and ORCLUS [3] rely on PCA and do not have in their native form any
outlier handling. This combination exposes their vulnerability towards outliers regarding
the computation of the subspaces of a correlation cluster. The endeavor made in this
chapter leads to a method that introduces a minimum of changes to the existing Principal
Components Analysis while at the same time increasing its robustness towards outliers.

While in this chapter the influence of single outliers or micro-groups of outliers is dis-
cussed, it is also of interest for future work to study the impact of neighboring objects, that
belong to other clusters, on the orientation and translation of subspaces. More specifically
it is of interest to investigate (a) which factors promote or reduce such an influence from
neighboring clusters and (b) how the magnitude of their impact can be measured.

https://doi.org/10.1007/978-3-030-32047-8_24
https://doi.org/10.1007/978-3-030-32047-8_24
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Chapter 10
Conclusion and Future Work

It has been about twelve years ago when the work in [34] laid the foundation for corre-
lation clustering. In the work of [34] algorithms were proposed which rely on different
views (local, global, hierarchical), and different underlying models (density-based, Hough
transform-based, etc.). Further in [34] common and distinctive properties to axis-parallel
subspace clustering were investigated and the algorithms were studied concerning their
algorithmic properties (i.e., grid-based, top-down, bottom-up). Building on the insights
of [34] and looking at the advances made in the field of correlation clustering, we investi-
gated in this dissertation different aspects. First, we dedicated our research in Part I to
the Hough transform-based approaches. Within this category, we explicitly researched for
methods that are capable of detecting clusters where the relation of the attributes within
a cluster is potentially non-linear, as proposed in Chapters 2 and 3. While any arbitrary
(non-linear) relation between features can be detected by finding the parameters of a non-
linear function, one issue that remains is that it requires scientists a-priori to know the
type of non-linearity they are looking for. This issue is also inherent to all kernel-based
methods. As another aspect, we investigated strategies for improving the region of interest
(ROI) detection within Hough space (Part I, Chapters 4 and 5). While D-MASC [19] is
effective on datasets that contain substantial amounts of noise, it is inferior to CASH [1]
concerning runtime, when the data contains low amounts of noise. This is owed to the fact
that D-MASC has a single fixed resolution for the rasterization procedure. An adaptive
resolution may mitigate the runtime performance issue in such a scenario.

The second part of this dissertation was dedicated to the evaluation of correlation clus-
terings without a given "ground truth". For that purpose, endeavours have been made to
derive evaluation measures from the objective functions of existing correlation clustering
algorithms (Part II, Chapter 6). Both of the evaluation criteria (NPE and SCS) rely par-
tially on algorithm-specific properties. One drawback of both measures is, that they do
not fully penalize model complexity meaning that they minimize the deviation of objects
to their subspaces regardless of e.g. how many dimensions or clusters (and thus subspaces)
are needed. While SCS penalizes the deviation of objects from their respective subspace
with increasing dimensionality of the subspaces, NPE does not penalize increasing dimen-
sionality at all.

The insights from Part II, Chapter 6 raised the question if there exists a common theme
among correlation clustering algorithms that can be utilized for an evaluation measure. It
turned out that the so far observed correlation clustering algorithms (1) yield clusterings
which have (obviously) a number of clusters k (and thus subspaces), (2) where the sub-
spaces of each cluster have a dimensionality l and (3) where the linear subspaces are "fitted"
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into each cluster such that the deviation of the objects within a cluster to that subspace
is minimized concerning the algorithms internal objective. The assumption on which this
evaluation measure relies is that a correlation clustering is considered as favourable if it
provides a low reconstruction error [Property (3)] while at the same time maintaining a low
model complexity in terms of the required number of clusters (and therefore subspaces)
and dimensionality of the subspaces [Properties (1) and (2)]. These three properties are
considered for constructing an evaluation measure as proposed in Part III, Chapter 7.

Among the different properties and characteristics is the aspect of the different views
in correlation clustering (local, global, hierarchical). While in the previous work by [34]
algorithms have been proposed which were able to detect local, global, hierarchical or
global and hierarchical at the same time, there exists, to the best of our knowledge, no
correlation clustering algorithm so far which aims at yielding global and local correlation
clusters at the same time. Besides this aspect, our contribution in Part III, Chapter 8
is further to provide a formal definition for local and global correlation clusters. We also
briefly elaborated on the matter of why it would be not an option to simply run on a given
dataset first a local correlation clustering algorithm followed by a global one (or the other
way around).

Finally, we investigated the aspect of resilience against outliers (Part III, Chapter 9).
Motivated by the observation that either single objects or micro-groups of objects can mas-
sively impact the orientation and translation of arbitrarily oriented subspaces, we investi-
gated if there exist, besides the so far present methods, techniques that add a minimum of
change to the existing PCA method while significantly contribute to the resilience towards
outliers. As such we proposed in Chapter 9 a PCA variant in which the sole modification
was to change the covariance matrix to a co-MAD (co-Median Absolute Deviation) matrix,
where the co-MAD relies on the idea of the deviation from the median while the covariance
relies on the deviation from the mean.

Looking back at the progress made in this work, the question may arise: where to go
next from here?

From the findings in this dissertation, the following research opportunities emerge,
when revisiting the field of correlation clustering: A different direction to pursue is to
investigate if and in how far correlation clustering can be expressed in terms of relational
algebra. So far we have an algorithmic view, through the existing methods, and a view
of correlation clustering in terms of an optimization problem. For the relational algebra
approach, one potential research question is: In how far is the relational description of a
correlation clustering method similar to the objective functions by which the clustering
is optimized? What are the differences? What are the potential benefits of a relational
representation with regards to i.e., runtime? According to [31] the transformation of a
machine learning problem into a database problem can be beneficial for both sides, the
machine learning side, by improving the efficiency of the methods and the databases side
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by extending the influence of database research. Another endeavour should be made in
the direction of re-formulating correlation clustering algorithms as a matrix factorization
task. Just as k-means can be re-formulated as a matrix factorization problem [5], so, we
are convinced, can also correlation clustering algorithms be transformed to such a setting.
Here we may also face potential challenges, among them questions such as: Is it possible
to perform the optimization by clusters and subspaces within one computational step or is
an alternating optimization required, i.e., first by the clusters and then by the computed
subspaces? We recommend as a prototype algorithm to consider local PCA since this al-
gorithm is quite straightforward and shares similarities to the well known PCA. Further
one may ask what the differences and similarities are concerning the objective functions or
the relational representations? Are there any differences observable?

Another major aspect to pursue in future work is related to the differences between
clusters residing on a single subspace (similarly to PCA) and multiple subspaces as in
correlation clustering. A single subspace may have the advantage that inter-cluster rela-
tionships can be ’easier’ studied, as claimed by the authors in [13]. On the other hand,
it may exhibit a poor performance, if the underlying process(es) and thus the subspace(s)
around which objects are located are inherently non-linear. In such a case one single linear
subspace fails to capture the non-linearities and therefore leads to a larger reconstruction
error. In contrast, correlation clustering methods such as 4C and CASH achieve through a
piecewise linear approximation, high-quality subspace clusters, but may render it difficult
to compare between clusters of a clustering. For future work, we propose to perform multi-
level subspace correlation clustering and to compute hierarchies of subspace similarities
for investigating inter-cluster relationships. In more detail: On each hierarchy-level sub-
spaces that are most similar are merged to a common cluster and a new ’single subspace’
is computed from the newly merged subset of similar subspaces. The aspired benefits are
as follows: (1) we can have the ’best of both worlds’ (single subspace vs. multiple sub-
spaces) (2) scientists can decide at which similarity level in the dendrogram they wish to
investigate the relationships between clusters, and then merge the subspaces, which leads
at the end of the dendrogram to a common single optimal subspace.

As further targets for future work, but with minor impact, a Hough-transform based
ensemble can be pursued in which a dataset is scanned for a set of distinctive non-linear
correlations. The non-linear model which provides the lowest reconstruction error from
that non-linear manifold is considered, concerning the model complexity of the function,
as the better representative model. In this context it is vital to be cautious regarding the
risk of overfitting: While a more complex non-linear model may lower the reconstruction
error, its non-linear complexity and the dimensionality of the model severely lead to an
overfitting and as such need to be regularized when considering such ensembles.

Regarding the aforementioned matrix factorization formulation of the correlation clus-
tering task, it opens opportunities for parallelization. The so-far existing correlation clus-
tering algorithms are, to the best of our knowledge, not developed or extended for dis-
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tributed settings. While there exist axis-parallel subspace clustering algorithms tailored at
the MapReduce [8] framework, no methods have been developed for running a correlation
clustering algorithm in a distributed setting. A very simple approach was proposed in
our previous works [24]. However, a matrix factorization task is predestined to be par-
allelized on the graphic processing unit (GPU). As such, based on the advances made in
matrix-based GPU computations, we think that a matrix factorization reformulation of the
correlation clustering task allows developing methods that provide a significant speedup,
which is so far harnessed by neural-based approaches. Moving to the aspect of resilience of
subspaces towards noise (Chapter 9) the effectiveness of coMAD has been studies to single
scattered outliers. It is of interest to investigate how different distributions of noise impact
the subspaces obtained from a decomposition of the coMAD matrix.

Finally, an open question is to investigate the semantics of clusters in Hough space,
which are obtained i.e., like in [22]. What is the meaning of detecting a dense region in
Hough space, or a mode, or a cluster hierarchy? What are the semantics behind detecting
an axis-parallel subspace cluster in Hough space? Pursuing to find answers to these ques-
tions may open up an additional field in the research area of correlation clustering. Lastly,
the search for suitable hyperparameter settings in the framework proposed in Chapter 7
is currently done by imposing a hyperparameter grid of a fixed resolution. Depending on
the chosen grid resolution finding suitable settings may either be time-consuming or po-
tentially good settings may be missed, as in the case of a too coarse resolution. A future
direction is to impose a grid with an adaptive resolution. Areas of the grid which exhibit
a significant increase of a score are further refined by an increased grid resolution on that
particular sub-area. At this point, it is also of interest to investigate how far this approach
shares, from an intuitive point of view, commonalities with the gradient descent approach
of neural methods and in how far it can benefit from current state of the art reinforcement
techniques.

Coming to an end of this dissertation, and by looking at the increasing numbers of
neural-based publications, a question that arises is: what is this ’classical’ correlation
clustering actually good for? Does it still stand a chance among the plethora of neural-
based methods? In our opinion correlation clustering does play a role beyond academic
interest. For this we would like to refer to the aspect of explainability. In [25], the issue of
current neural methods has been addressed, stating that they lack the capability to explain
the users how the actual results were obtained. While it may be argued that it is not always
of interest to understand how something has been detected or computed, there are however
cases (crime detection, recruitment procedures, productivity assessments etc.) where it is
of special interest and importance of what actually was learned and how decisions by a
machine were made. With the concepts proposed in this work, scientists can indeed follow
which piecewise (non-)linear embeddings were learned. They can follow the different views
(local and global), and they can comprehend, based on the internal measures, the quality
of the clusterings. As a conclusion to the initial question, we can see that the aspect of
explainability gives these classic correlation clustering algorithms still a purpose. Just like
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in the work of [34], also this work is not meant to be an "end" regarding the research in
the field of correlation clustering, but another stage in the journey, as I am convinced that
there are many exciting discoveries ahead of us.
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Statement of Originality

The research in this dissertation has been conceptualized, implemented and evaluated by
the author of this doctoral thesis in cooperation with the supervisor Prof. Dr. Thomas
Seidl, researchers and bachelor as well as master students from the Department for Database
Systems and Data Mining at the LMU Munich and with a researcher from the Department
of Chemistry at the Umeå-University of Sweden.

The work in Part I, Chapter 2, on "Detecting global hyperparaboloid correlated clusters:
a Hough-transform based multicore algorithm" as published in [24] has been written in
cooperation with Prof. Dr. Peer Kröger, who contributed the introduction and with
Dr. Markus Mauder, with whom I had valuable discussions and revisions of, as well as
contributions to the source code. The original concept of detecting quadratic correlation
clusters using Hough transform, and the conducted experiments as well as the written
text of [24] were contributed by the author of this dissertation. Prof. Dr. Thomas Seidl
stimulated ideas for a first parallelization of the HCC algorithm.

The following work in Part I, Chapter 3, "Detecting Global Periodic Correlated Clusters
in Event Series based on Parameter Space Transform" [20] was written in cooperation with
the bachelor student Kilian Emmerig. He conducted experiments which were contributed
to [20]. Prof. Dr. Thomas Seidl stimulated in a discussion aspects for the motivation
and need for detecting periodic correlated clusters. Prof. Dr. Peer Kröger stimulated the
investigation of detecting adequate frequency phase shifts. The conceptualization, writing
of the paper and the formalizations were conducted by the author of this work. The code
is partially by the author of this work and partially contributed by Kilian Emmerig.

The work on improving the ROI detection in Hough space as proposed in Part I,
Chapter 4, "D-MASC: A Novel Search Strategy for Detecting Regions of Interest in Linear
Parameter Space" [19] was written in cooperation with the bachelor student Kevin Bein.
He performed the implementation of the algorithm, conducted the experiments, provided
figures for the experiments and the visualization of the single steps of the algorithm. He
also contributed partially in the paper to the investigations on different effects of the
parameter settings. Prof. Dr. Thomas Seidl provided the initial idea for the D-MASC
approach by introducing the author to the Bresenham algorithm for curve rasterization
which gave rise to the method proposed in [19]. Prof. Dr. Peer Kröger stimulated in a
discussion to investigate and highlight the conditions under which the CASH algorithm
exposes its weaknesses. The conceptualization and design of the experiments, and the
writing of major parts of the paper was conducted by the author of this work.

In Part I, Chapter 5, "A Galaxy of Correlations" [22], the publication was made in
cooperation with the bachelor student Lisa Krombholz. She performed the implementation
and conducted the experiments and contributed the majority of figures in [22]. Prof.
Dr. Thomas Seidl stimulated a discussion in which the author became aware that this
contribution is not only a modification of search strategy in Hough space, but a different
perspective and way of transformation. Prof. Dr. Peer Kröger stimulated in a discussion
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to test different "standard" clustering algorithms in Hough space. The authors contribution
is the conceptualization and formalization of the idea as well as the writing of the paper.

The work in Part II, Chapter 6, "Towards an Internal Evaluation Measure for Arbi-
trarily Oriented Subspace Clustering" [23], was conceptualized, implemented, the experi-
ments conducted and written by the author. Prof. Dr. Thomas Seidl contributed by the
discussion of which properties internal evaluation measures should satisfy in context of
correlation clustering, and to investigate the differences and common properties between
ORCLUS and CASH. Prof. Dr. Peer Kröger stimulated the investigation of CASH in
terms of an optimization problem.

For the work in Part II, Chapter 7, "I fold you so! An internal evaluation measure for
arbitrary oriented subspace clustering" [18] the publication was made in cooperation with
the colleague of our chair Anna Beer. She contributed to the formalization part of the
paper. Further she provided invaluable contributions in discussions regarding the choice
of experiments. Further she reviewed the code and assisted in eliminating errors in the
implementation. Prof. Dr. Thomas Seidl provided recommendations and strategies for the
experiments, including the message they should convey. Prof. Dr. Peer Kröger stimulated
the investigations for further properties which are required for an internal evaluation mea-
sure. The author of this work had the initial idea of regarding correlation clustering as an
autoencoding problem and to utilize this re-formulation of the problem statement for the
evaluation of correlation clustering results. Further the author wrote major parts of the
paper, implemented the framework, conducted and discussed the experiments and made
the figures.

The work in Part III, Chapter 8, "You see a set of wagons - I see one train: Towards
a unified view of local and global arbitrarily oriented subspace clusters" [26] was made in
cooperation with the master student Long Matthias Yan. He implemented the proposed
algorithm, conducted the majority of the experiments and created the majority of the
figures. The author of this dissertation conceptualized this work, wrote the paper, extended
parts of the implementation and conducted real-world experiments. Prof. Dr. Thomas
Seidl stimulated the investigation of different views under the guiding question in how
far both views can be consistently obtained by applying a local and a global correlation
clustering algorithm. Prof. Dr. Peer Kröger stimulated the distinctive approaches of
top-down and bottom-up strategies for obtaining local and global views.

Finally the work in Part III, Chapter 9, "On coMADs and Principal Component Analy-
sis" [21] has been performed in a cooperation with a former colleague of this chair, Maxim-
ilian Archimedes Xaver Hünemörder. He conducted the experiments, uncovered an error in
the original implementation, created the figures and contributed to the discussions of the
results. The author of this work contributed the original idea of using coMAD instead of
co-variance matrices and conceptualized this idea to investigate the impact of PCA under
the aspect of resilience against outliers.
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