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A B S T R A C T

In percolation models, vertices or edges are removed from a
graph according to a particular probabilistic rule. The connec-
tivity properties of the resulting graph are then of interest. The
initial graph is typically taken to be transitive and infinite, for
example Zd with nearest neighbour edges. The classical exam-
ple of such a model is Bernoulli bond percolation, in which an
edge is removed from the graph with probability 1− p, and thus
kept with probability p, independently for every edge. It is well
known that this model exhibits a phase transition: for small
values of p, there exist only finite clusters almost surely, while
for large values of p, there exists an infinite cluster almost surely.
In particular, there exists a critical point pc ∈ (0, 1) at which this
transition occurs. Moreover, the phase transition is sharp: for
p < pc, the clusters are exponentially small.

This behaviour is not specific to Bernoulli percolation. Rather,
it is a common theme in percolation models. Nevertheless, the
original proofs of the sharpness of the phase transition were very
specific for Bernoulli percolation, and they are not easily applied
to models with dependencies. Recently however, a celebrated
new proof was given by Duminil-Copin, Raoufi and Tassion,
which is far more robust. It makes use of Boolean function
theory, in particular the OSSS inequality for decision trees. In
this thesis, we will explore this new technique, and apply it to
three models: the contact process, the orthant model, and the
corrupted compass model.
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The application of the OSSS method to these models is far
from straightforward, and some model-specific hurdles have to
be overcome. As an instructive model with dependencies, we
will start with the corrupted compass model, since the depen-
dencies are relatively easily controlled in this model. This is in
contrast to the contact process, where the dependencies of the
model are rather elusive. We give a new proof of the sharpness
of the phase transition at λc, the phase transition for the sur-
vival of the infection. We then investigate the percolation phase
transition for the time-t-measure, and show that this transition
is sharp as well. Furthermore, we investigate how this might
be extended to the upper invariant measure for the contact pro-
cess. Finally, we will examine the orthant model, which is quite
different in nature, since it is a directed model in which there
exists an infinite cluster across the entire parameter range. Still,
we can speak of a phase transition in this model, and we will
prove that it is sharp. The idiosyncratic nature of this model is
reflected in the proof.
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Z U S A M M E N FA S S U N G

In Perkolationsmodellen werden Knoten oder Kanten aus einem
Graph nach einer Zufallsregel entfernt. Wir sind dann an der
Zusammenhängingkeit des resultierenden Graphen interessiert.
Der ursprüngliche Graph wird typischerweise unendlich und
transitiv gewählt, zum Beispiel der Graph Z2 mit Nächster-
Nachbar-Kanten. Das klassische Beispiel eines solchen Modells
ist Bernoulli-Kantenperkolation, in dem eine Kante aus dem
Graph mit Wahrscheinlichkeit 1 − p entfernt wird, und damit
mit Wahrscheinlichkeit p behalten wird, unabhängig für jede
Kante. Es ist allgemein bekannt, dass dieses Modell einen Pha-
senübergang aufweist: Für kleine Werte von p existieren fast
sicher nur endliche Komponenten, während für große Werte
von p fast sicher eine unendliche Kompentente existiert. Insbe-
sondere gibt es einen kritischen Punkt pc ∈ (0, 1), an dem diesen
Übergang passiert. Weiterhin ist dieser Phasenübergang scharf:
Für p < pc sind alle Komponenten exponentiell klein.

Dieses Verhalten ist nicht spezifisch für Bernoulli-Perkolation,
sondern ein gemeinsames Thema in Perkolationsmodellen. Nichts-
destotrotz sind die ursprüngliche Beweise für den scharfen Pha-
senübergang sehr spezifisch für Bernoulli-Perkolation, und las-
sen sich nicht leicht auf Modelle mit Abhängigkeiten übertragen.
Vor kurzem aber wurde ein zelebrierter neuer Beweis durch
Duminil-Copin, Raoufi und Tassion erbracht, welcher viel ro-
buster ist. Dieser Beweis benutzt Boolesche Funktionentheorie,
insbesondere die OSSS-Ungleichung für Entscheidungsbäume.
In dieser Doktorarbeit werden wir diese neue Technik erfor-

vii



schen, und sie auf drei Modelle anwenden: der Kontaktprozess,
das Orthantmodell, und das Korrupter-Kompass-Modell.

Die Anwendung der OSSS-Methode auf diese Modelle ist
alles andere als einfach, und einige modellspezifischen Hürden
müssen überwunden werden. Zunächst werden wir als Beispiel
für ein Modell mit Abhängingkeiten das Korrupter-Kompass-
Modell betrachten, denn die Abhängigkeiten in diesem Modell
sind relativ leicht zu beherrschen. Im Gegensatz zu dem Kon-
taktprozess, in dem die Abhängigkeiten des Modells schwer
fassbar sind. Wir werden einen neuen Beweis für den scharfen
Phasenübergang bei λc, den Phasenübergang für das Überleben
der Infektion, präsentieren. Wir werden dann den Perkolati-
onsphasenübergang für den Zeit-t-Maß untersuchen und zei-
gen, dass dieser Phasenübergang ebenso scharf ist. Außerdem
werden wir untersuchen, wie dieses Resultat möglicherweise
erweitert werden kann, um es für das obere invariante Maß zu
zeigen. Schließlich werden wir das Orthantmodell erforschen,
welches wesentlich anders beschaffen ist, da es sich dabei um
ein gerichtetes Modell handelt, in dem über dem gesamten Pa-
rameterbereich eine unendliche Komponente existiert. Dennoch
können wir in diesem Modell über einen Phasenübergang spre-
chen und werden weiterhin zeigen, dass dieser Phasenübergang
scharf ist. Die Eigenart dieses Modells spiegelt sich im Beweis
wider.
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1
I N T R O D U C T I O N

Percolation theory studies random networks, in particular their
connectivity properties. The prototypical percolation model is
Bernoulli percolation. In this model we take an infinite graph.
(Mathematicians call networks graphs.) We then remove the
edges from a graph in a random and independent fashion. If we
remove enough edges, in other words if the probability that we
remove an edge is high enough, the graph breaks apart in small
finite components. On the other hand, if we do not remove too
many edges, the structure of the original graph remains largely
intact, although some holes might have appeared. This model
where the original graph is the square lattice is shown in Figure
1.2 for several values of p, where p is the probability that we
keep an edge in the graph.

Removing edges independently from a graph is the defining
property of Bernoulli percolation, but there are many different
ways to remove edges from a graph. Every different removal
rule results in a different percolation model. Besides Bernoulli
percolation, we focus our attention in this thesis to the corrupted
compass model, the contact process, and the orthant model.
These models are shown in Figure 1.1.

Seeing a realization of a particular percolation already gives
some hint toward the probabilistic rule that determines which
edges remain. In the corrupted compass model we choose for
every vertex exactly one edge that is incident to it to remain.
The model is so named, because we say that the compass at a
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2 introduction

vertex points in the direction of the edge that is chosen to remain.
However, some compasses are corrupted. That means that for
these vertices all incident edges are kept. Thus the higher the
probability that a compass is corrupted, the more edges remain
in the graph.

The contact process models the spread of infection on a graph.
Contrary to the other models in this thesis, this model evolves
over time. We start the process with some initial infected sites in
the graph. These vertices can then spread the infection to their
neighbours over time, or they become healthy. When a site is
healthy it can no longer spread the infection, but it is possible
that it gets (re-)infected by a neighbouring site. We then look at
the configuration of infected sites after some fixed time has past,
or even let the model evolve for an infinitely long time. Instead
of removing edges from the graph, we then have healthy and
infected sites, but we can ask the same question: how large are
the clusters of infected sites?

The last model in this thesis is the orthant model. This model
takes place on a directed graph: every edge has an orientation,

(a) The corrupted com-
pass model.

(b) The contact process. (c) The orthant model.

Figure 1.1: Several percolation models.
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(a) p = 0.3 (b) p = 0.49

(c) p = 0.51 (d) p = 0.7

Figure 1.2: Bernoulli percolation on Z2 for different values of p [21].



4 introduction

which means that it can only be traversed in one direction. The
model takes place on the cubic lattice with directed nearest
neighbour edges. The probabilistic rule is the following: for
each vertex we keep all edges pointing in the direction of the
positive orthant (↑, and → in two dimensions) with probability
p, independently for each edge. Otherwise, so with probability
1− p, we take the edges pointing in the other direction (↓, and ←
in two dimensions). An interesting feature of this model is that
every vertex is in an infinite component, since the edge ↑ or ← is
available at every site, and hence it is not possible to get stuck
while exploring the graph.

sharp phase transitions

A central theme that percolation models have in common is
that of a phase transition, and moreover these transitions have
a tendency to be sharp. This phenomenon is easiest explained
for Bernoulli percolation. We already saw in Figure 1.2 that the
graph consists of only finite clusters if p is small, whereas for
large p there exists a giant infinite component. That means that
at some value of p the behaviour of the model changes. We
call this behavioural change the phase transition. For Bernoulli
percolation on Z2 this transition occurs at pc = 1/2. Looking
closely at Figure 1.2, we can see that there is no path from top
to bottom if p = 0.49. However, a slight increase of p pushes the
model over the critical threshold, and we can see that a path
from top to bottom exists for p = 0.51.

If the model is subcritical, that is if p < pc, we can prove that
the components of the graph after the removal of the edges
are exponentially small. This property is called a sharp phase
transition: exponentially small clusters in the subcritical param-
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eter range, and the existence of an infinite component in the
supercritical regime. Such a statement requires a mathematical
proof, and in the case of Bernoulli percolation this was first
given by Menshikov [45] and independently by Aizenman and
Barsky [1] around the same time in the 80’s. Bernoulli percola-
tion is far from the only percolation model that exhibits a sharp
phase transition. However proving this behaviour has long been
out of reach for most other models, even after Menshikov and
Aizenman and Barsky wrote their proofs, since these proofs
use the independence of the edges in a crucial way. A notable
exception is the Ising model, a model of ferromagnetism, for
which Aizenman and Barsky also managed to prove a sharp
phase transition [2]. However, a major breakthrough in the study
of sharp phase transitions has recently been achieved.

the osss inequality

In 2019 Duminil-Copin, Raoufi and Tassion published their proof
of the sharp phase transition in the random-cluster model [15].
This model is a genaralization of Bernoulli percolation and the
Ising model, which exhibits dependencies between edges that
have long made a proof for its sharp phase transition out of
reach. The proof of Duminil-Copin, Raoufi and Tassion uses a
revolutionary approach using the OSSS inequality for Boolean
functions.

Simply stated, a Boolean function is a function f ∶{−1, 1}n →

{−1, 1}. The theory of Boolean functions has a long history, in par-
ticular in computer science. We call the entries of (x1, . . . , xn) ∈

{−1, 1}n variables or bits. An inequality from the field of Boolean
functions is the OSSS inequality: it bounds the variance of a
Boolean function by a sum over the influences of the variables,
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discounted by a factor equal to the probability that a decision
tree queries that variable. A decision tree is an algorithm that
determines the value of a Boolean function. It does this by se-
quentially revealing the values of x1, . . . , xn, until it has gathered
enough information to decide what the value of the Boolean
function is. The variables x1, . . . , xn are typically not revealed in
order. Instead, the decision tree decides which variable to reveal
next based on what it has seen before. If a decision tree can
determine the value of f efficiently, that is, by revealing a small
amount of variables in the process, then the OSSS inequality is
strong.

In the context of of percolation models, the variables are
typically the state of the edges, and a useful Boolean function
is the indicator of a connection event such as 0 ←→ ∂Λn: the
event that 0 is connected to the boundary of a box of size n. The
OSSS inequality can then be harvested to obtain a differential
inequality from which the sharp phase transition can be deduced.
However, this process can be quite involved, since a suitable
decision tree needs to be constructed, which is typically rather
specific to the model in question. Thus, even though we now
have a new proof technique, it is still far from easy to prove the
sharpness of phase transitions in percolation models.

After the paper for the random-cluster model, Duminil-Copin,
Raoufi and Tassion published papers proving sharp phase tran-
sitions for Voronoi percolation and Boolean percolation [14, 16].
The proof technique was applied to the Widom-Rowlison model
by Dereudre and Houdebert [12]. The level sets of the Gaussian
free field were considered by [13, 46]. A different proof for the
sharpness of the phase transition in the random-cluster model is
given by Hutchroft [37]. This proof still uses the OSSS inequality,
but applied to a different Boolean function and corresponding
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decision tree. We will study this proof in Chapter 3 in the case
of Bernoulli percolation.

structure of the thesis

We start by introducing the Boolean function framework in
Chapter 2. In this chapter we give several proofs of the OSSS
inequality. Most notable is the proof of the inequality for Boolean
functions depending on countably many variables, which has
not previously appeared in the literature. In Chapter 3 we apply
the OSSS inequality in two different ways to prove the sharp
phase transition of Bernoulli percolation. We then investigate
how to apply these ideas to the corrupted compass model in
Chapter 4. We prove that this model undergoes a sharp phase
transition, which was previously unattainable, considering the
dependencies of the model. In Chapter 5 we consider the contact
process. This model undergoes two phase transitions, both of
which we prove to be sharp. Finally we look at the orthant
model in Chapter 6. Since all components in this model are
infinite, the typical definition of a sharp phase transition does
not apply in this model. Nevertheless, this model undergoes a
phase transition, and there is a natural notion of its sharpness,
for which we will give a proof.





2
B O O L E A N F U N C T I O N S

In the simplest terms, a Boolean function is a mapping from
{−1, 1}n to {−1, 1}, for a fixed n ∈ N. The choice of {−1, 1} as the
possible values of the bits is arbitrary, but it makes the analysis
more elegant. The range {−1, 1} is not an essential property
of a Boolean function either, and we will often talk of real-
valued Boolean functions instead. Since we are interested in
probabilistic models, we want to consider a probability measure
on {−1, 1}n. We start off by considering the product measure
under which every bit is equal to 1 with probability 1⁄2 and −1
with probability 1⁄2, independently of each other. Even though
this choice is restrictive from an application point of view, it
does make the analysis more elegant as well. Once we have
introduced the main objects in this setting, we will move to
a more general setting, and see that these objects have natural
analogues there. We will consider a general product space Ωn for
some finite set Ω, equipped with a product probability measure.
In this way, we can apply the results of Boolean function theory
to the models that are of interest to us.

Generally speaking, we can say the theory of Boolean func-
tions is not so much characterized by the exact definition of
the objects, but rather by the approach to analyzing them. We
will have to spend some time to lay down the Boolean function
ground work, so that we can reap the rewards of this work later
on. A lot can be said about Boolean functions and their appli-
cations, but we will focus on the results that are relevant for

9



10 boolean functions

percolation models. In this context, the typical Boolean function
of interest is the indicator that 0 is connected to the boundary of
the box of size r: 1{0←→ ∂Λr}. The precise domain depends on
the model in question, but if we take Bernoulli bond percolation
as an example, we take E to be the set of edges inside Λr, and set
n = ∣E∣, so that 1{0 ←→ ∂Λr} is indeed a Boolean function. The
theory of Boolean functions is then fundamental in analyzing
the properties of this indicator function, which in turn gives
detailed information on the behaviour of the model.

A comprehensive book on the theory of Boolean functions
has been written by O’Donnel [47]. The presentation of the
Boolean function framework as given in Sections 2.1 and 2.3
is largely based on this source, albeit more specific for our
purposes. In Section 2.2 we state and prove the first version of
the OSSS inequality. This section is based on the original paper
of O’Donnell, Saks, Schramm and Servedio [48]. In Sections
2.4 and 2.5 we give proofs of two generalizations of the OSSS
inequality, the first of which is based on the proof given by
O’Donnel [47], while the second has not previously appeared in
the literature to the best of our knowledge. In the final section
of this chapter we loosen the assumption that the probability
measure on Ωn is a product measure, and focus on positively
associated measures.

2.1 the boolean function framework

Let n ∈ N, and write [n] = {1, . . . , n}. We start by considering
functions of the form f ∶{−1, 1}n → R. An element x ∈ {−1, 1}n

consists of the variables x1, . . . , xn, which we also call bits, con-
sidering the relevance of Boolean functions in computer science.
Every Boolean function can be written as a multinomial in the
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variables x1, . . . , xn. To see this, we first consider the indicator
function 1{a}(x) for a ∈ {−1, 1}n, which can be written as:

1{a}(x) = (
1+ a1x1

2
)(

1+ a2x2

2
) . . . (

1+ anxn

2
).

With this observation, we can write f as the multinomial given
by

f (x) = ∑
a∈{0,1}n

f (a)1{a}(x).

For S ⊆ [n], we define the monomial xS = ∏i∈S xi. We can rear-
range the terms in the above sum and write

f (x) = ∑
S⊆[n]

f̂ (S)xS, (2.1)

where f̂ (S) is the coefficient in front of xS, which is called the
Fourier coefficient of f on S. The expansion in (2.1) is called the
Fourier expansion of f . This expansion is unique, as we will
now argue. The set of Boolean function defined on {−1, 1}n form
a vector space over the reals. We can define an inner product on
this space as follows:

⟨ f , g⟩ ∶=
1
2n ∑

x∈{−1,1}n
f (x)g(x).

We then also have the corresponding norm on this space: ∥ f ∥ =√
⟨ f , f ⟩. For S ⊆ [n] we define the Boolean functions χS(x) ∶= xS,

so that in particular χ∅(x) ≡ 1. Note that for T ⊆ [n], we have
χS(x)χT(x) = χS△T(x), where S△ T is the symmetric difference
between S and T, since x2

i = 1. This is one of the reasons why
we have taken −1 and 1 as the values for the bits. We now have

⟨χS, χT⟩ =
1
2n ∑

x∈{−1,1}n
χS△T(x) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

1 if T = S,

0 otherwise.
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From this observation it follows that the functions {χS ∶ S ⊆

[n]} form an orthonormal basis for the vector space of Boolean
functions, since every Boolean function can also be written as a
linear combination of these function, as we saw in (2.1). It follows
that the Fourier coefficients are uniquely given by f̂ (S) = ⟨ f , χS⟩,
and

f (x) = ∑
S⊆[n]

⟨ f , χS⟩χS(x).

Furthermore, the norm of f can be expressed in terms of the
coefficients:

∥ f ∥2 = ∑
S⊆[n]

f̂ (S)2, (Parseval’s identity)

and more generally,

⟨ f , g⟩ = ∑
S⊆[n]

f̂ (S)ĝ(S). (2.2)

Now that we have constructed the space of Boolean functions,
we are ready to introduce a probability measure on {−1, 1}n.
We define P1/2 as the measure under which every bit is equal
to 1 with probability 1/2 and equal to −1 with probability 1/2,
independently of each other. We then denote the expectation
with respect to this measure by E1/2. We can interpret the inner
product we defined earlier as an expectation with respect to P1/2,
since this corresponds to the uniform measure on {−1, 1}n:

⟨ f , g⟩ =
1
2n ∑

x∈{−1,1}n
f (x)g(x) = E1/2[ f g].

The expectation of f with respect to P1/2 can be expressed in
terms of its Fourier coefficients:

E1/2[ f ] = f̂ (∅),
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since E1/2[χS] = 0 for S ≠ ∅. We can find a similar expression for
the variance of f by using Parseval’s identity:

Var1/2( f ) = E1/2[ f 2]−E1/2[ f ]2 = ∥ f ∥2 − f̂ (∅)2 = ∑
S≠∅

f̂ (S)2. (2.3)

The most essential quantity for percolation is the influence of a
variable i on the function f . We first define this for {−1, 1}-valued
functions.

Definition 2.1. For f ∶{−1, 1}n → {−1, 1}, the influence of i on f is
given by

Infi( f ) = P1/2( f (x) ≠ f (x⊕i)),

where x⊕i is the configuration x with bit i flipped:

x⊕i ∶= (x1, . . . , xi−1,−xi, xi+1, . . . , xn).

We say that i is pivotal for f , whenever changing the value of
xi changes the value of f . The influence of i on f is therefore the
probability that i is pivotal for f . It can also be written using the
discrete derivative operator:

Di f (x) ∶=
f (x(i↦1))− f (x(i↦−1))

2
,

where x(i↦±1) is given by (x1, . . . , xi−1,±1, xi+1, . . . , xn). This op-
erator is also defined for real-valued functions. In the case of
{−1, 1}-valued functions however, we have

Di f (x) =
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

±1 if xi is pivotal for f ,

0 otherwise,
(2.4)
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so that in this case,

Infi( f ) = E1/2[(Di f )2] = ∥Di f ∥2.

We use this as a definition for real-valued functions.

Definition 2.2. For f ∶{−1, 1}n → R, the influence of i on f is given
by

Infi( f ) = E1/2[(Di f )2] = ∥Di f ∥2.

The influence of i on f can also be expressed using the Fourier
coefficients of f .

Proposition 2.3. For f ∶{−1, 1}n → R, we have

Di f (x) = ∑
S⊆[n]

i∈S

f̂ (S)xS/{i}, Infi( f ) = ∑
S⊆[n]

i∈S

f̂ (S)2.

Proof. Since the discrete derivative operator is linear, we have

Di f (x) = Di ∑
S⊆[n]

f̂ (S)χS(x) = ∑
S⊆[n]

f̂ (S)DiχS(x).

The result follows using Parseval’s Identity, and considering

DiχS(x) =
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

xS/{i} if i ∈ S,

0 otherwise.
(2.5)

The total influence of f is defined as the sum over the individ-
ual influences.
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Definition 2.4. The total influence of f ∶{−1, 1}n → R is defined as

I( f ) =
n
∑
i=1

Infi( f ).

We are now able to prove a first concentration inequality for
Boolean functions, which is known as the Poincaré inequality.

Theorem 2.5 (Poincaré inequality). Let f ∶{−1, 1}n → R. Then,

Var1/2( f ) ≤ I( f ). (2.6)

Proof. Starting on the right hand side, and using Proposition 2.3,
we find

I( f ) =
n
∑
i=1

∑
S⊆[n]

i∈S

f̂ (S)2 = ∑
S⊆[n]

∣S∣ f̂ (S)2 ≥ ∑
S≠∅

f̂ (S)2 = Var1/2( f ),

by (2.3).

From the proof, it also follows that equality holds if and only
if f̂ (S) = 0 for all sets S with ∣S∣ ≥ 2. This is the case where f
is a linear combination of the xi’s and a constant. The Poincaré
inequality is not the strongest inequality, but it does set the tone
for things to come. Namely, concentration inequalities where
we bound the variance of f by, loosely speaking, its deriva-
tive. Sharp phase transitions are typically proven using strong
differential inequalities, and these might in turn be proven us-
ing concentration inequalities. The Poincaré inequality is not
strong enough for this purpose, which leads us to finding an
improvement over this inequality.
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2.2 the osss inequality

The OSSS inequality is an improvement of the Poincaré inequal-
ity by discounting the influence of variables that are, in some
sense, not necessary in determining the value of f . To make this
notion precise, we introduce decision trees. Informally speaking,
a decision tree is an algorithm that subsequently queries the
bits until it has enough information to determine the value of
f . It starts by revealing the value of xi for some fixed variable
xi. Depending on this value, it then chooses the next variable to
reveal, and so on, until it has gathered enough information. This
occurs when, given the revealed information, the value of f is
the same, regardless of the values of the unrevealed variables. In
order to formally define a decision tree, we consider a directed
tree (V ∪U, E) with root r ∈ V, and define for v ∈ V ∪U/{r}, the
set ρ(v) to be the ancestors of v: the set of vertices on the path
from the root to v, including the root, and excluding v. We set
ρ(r) = ∅.

Definition 2.6. A decision tree T on {−1, 1}n consists of a finite
directed rooted tree (V ∪U, E), and maps φ ∶ V → [n], ψ ∶ E → {−1, 1}.
Every vertex v ∈ V has two children, while every u ∈ U is a leaf. For
any v ∈ V, the map φ satisfies φ(w) ≠ φ(v) for all w ∈ ρ(v).

We can use a decision tree to sequentially reveal the configu-
ration x. This works by first revealing the value of xφ(r). We then
move down the tree along the edge (r, v) with ψ((r, v)) = xφ(r).
If this vertex is a leaf we stop the process. Otherwise we reveal
xφ(v) and repeat the process by moving down the edge (v, w)

with ψ((v, w)) = xφ(v). This process then continues until we end
up in a leaf. We say that a decision tree determines the value of
a Boolean function f ∶{−1, 1}n → R, when the revealed values de-
termine the value of f , that is, for all u ∈ U and all x, y ∈ {−1, 1}n
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x1

x2

x3

-11

-11

-11

f =-1f = 1

f =-1

f = 1

Figure 2.1: A decision tree determining the value of f (x) = x1 ∨ (x2 ∧

x3).

with xφ(w) = yφ(w) for all w ∈ ρ(u), it holds, that f (x) = f (y).
We sometimes say that T computes f instead. To illustrate the
above definition, we consider the example of f ∶{−1, 1}3 → {−1, 1}
given by f (x) = x1 ∨ (x2 ∧ x3). A decision tree that determines
the value of this function is shown in Figure 2.1. Note that this
decision tree is not unique.

Since we consider a probability measure on {−1, 1}n, the path
that is taken in decision tree is also random. We say that a
variable is revealed, if it lies on this path. We call the probability
that a variable is revealed the revealment of that variable.

Definition 2.7. Let T be a decision tree on {−1, 1}n. The event that
i ∈ [n] is revealed, is the set of configurations x ∈ {−1, 1}n such
that there exists v ∈ V with φ(v) = i, and xφ(w) = ψ(e) for all edges
e = (w, w′) with starting- and endpoints in ρ(v)∪{v}. The revealment
of i is given by

Revi(T) ∶= P1/2(i is revealed).

We can now state the OSSS inequality in the simplest setting.



18 boolean functions

Theorem 2.8 (OSSS inequality for Ber(1⁄2)-random variables). Let
f ∶{−1, 1}n → R, and let T be a decision tree that determines the value
of f . Then,

E1/2[∣ f (x)− f (y)∣] ≤
n
∑
i=1

E1/2[∣Di f ∣]Revi(T), (2.7)

where x and y are independent and have law P1/2.

For {−1, 1}-valued functions, we recover the more familiar
form of the OSSS inequality.

Corollary 2.9. Let f ∶{−1, 1}n → {−1, 1}, and let T be a decision tree
that determines the value of f . Then,

Var1/2( f ) ≤
n
∑
i=1

Infi( f )Revi(T). (2.8)

This corollary follows directly from Theorem 2.8, since in the
case of {−1, 1}-valued functions, we have

Infi( f ) = E1/2[(Di f )2] = E1/2[∣Di f ∣],

and

Var1/2( f ) = E1/2[ f 2]−E1/2[ f ]2 = 1− (P1/2( f = 1)−P1/2( f = −1))
2

= 4P1/2( f = 1)P1/2( f = −1)

= 2P1/2( f (x) ≠ f (y))

= E1/2[∣ f (x)− f (y)∣].

Since Revi(T) ≤ 1, Corollary 2.9 is indeed an improvement over
the Poincaré inequality. To make the inequality strong for a given
function f , the aim is to find a decision tree computing f for
which the revealments are small. There exist functions f however,
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for which the OSSS inequality does not strictly improve on the
Poincaré inequality, considering that the Poincaré inequality
is sharp in the case where the Fourier coefficients of f are
supported on sets of size 0 or 1. In these cases, it also follows
that any decision tree determining the value of f always reveals
the variables with positive influence.

The OSSS inequality was proven by O’Donnell, Saks, Schramm
and Servedio in 2005 [48]. We will first look at their original
proof, since it is in some sense the most straightforward. In a
later section, we will also look at an inductive proof of the OSSS
inequalty by O’Donnel [47].

Proof. Let f ∶{−1, 1}n → R, and let T be a decision tree determin-
ing the value of f . Let x, y ∈ {−1, 1}n be independent and have
law P1/2. The proof strategy is to take the configuration x, and
change the values of its variables one by one to the values of
y. In this way, we bound E1/2[∣ f (x) − f (y)∣] by a sum over the
variables using the triangle inequality. We let i1, . . . , it be the
sequence in [n] that corresponds to the path in the decision tree
on input x. Note that t depends on x as well. For 1 ≤ s ≤ n, we
let xsy be the configuration that agrees with x for the variables
in is+1, . . . , it, and with y for all other variables:

(xsy)i =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

xi if i = ik, s < k ≤ t,

yi otherwise.

In particular, we have xty = y, and, since T determines the value
of f , f (x0y) = f (y). Using the triangle inequality, we find

E1/2[∣ f (x)− f (y)∣] = E1/2[∣ f (x0y)− f (xty)∣]

≤ E1/2[
t
∑
s=1

∣ f (xs−1y)− f (xsy)∣].
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Setting is = 0 for s > t, we see that s ≤ t if and only if there exists
1 ≤ i ≤ n such that is = i. This gives

E1/2[∣ f (x)− f (y)∣] ≤
n
∑
s=1

n
∑
i=1

E1/2[∣ f (xs−1y)− f (xsy)∣1{is=i}].

For s ≥ 1, we define the filtration Fs ∶= σ(xi1 , . . . , xis∧t), and we set
F0 ∶= σ(∅), the trivial σ-algebra. Note that i1 is F0-measurable,
since it is deterministic. Moreover, it is Ft−1-measurable for all
t ≥ 1, since the decision tree chooses the next variable to reveal
as a function of the previously revealed vertices. Furthermore,
the collection of random variables {xi ∶ i ≠ i1, . . . , is∧t} is inde-
pendent of Fs, and so is y, so that conditionally on Fs these
variables retain their original distribution. We therefore find

E1/2[∣ f (xs−1y)− f (xsy)∣1{is=i} ∣Fs−1]

= 1{it=i}E1/2[∣ f (x1, . . . , xi−1, yi, xi+1, . . . , xn)− f (x)∣]

= 1{it=i}E1/2[1/4∣2Di f ∣+ 1/4∣2Di f ∣]

= 1{it=i}E1/2[∣Di f ∣]. (2.9)

Hence,

E1/2[∣ f (xs−1y)− f (xsy)∣1{is=i}]

= E1/2[E1/2[∣ f (xs−1y)− f (xsy)∣1{is=i} ∣Fs−1]]

= E1/2[1{it=i}]E1/2[∣Di f ∣]. (2.10)

The result now follows, since
n
∑
t=1

E1/2[1{it=i}] = P1/2(∃t ∈ [n] such that it = i) = Revi(T).
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2.3 finite product spaces

We will now generalize the results we have seen so far to general
finite product spaces. For a single variable, we consider the
probability space (Ω,F , π), for some finite set Ω with ∣Ω∣ ≥ 2,
σ-algebra F given by the power set of Ω, and a probability
measure π. We assume that π has full support. For n ∈ N, we
then consider the product space (Ωn,Fn, P), where the σ-algebra
Fn is the n-fold product of F (which is also the power set of
Ωn), and the product probability measure defined by

P({x}) =
n
∏
i=1

π({xi}).

A Boolean function in this setting is a function f ∶Ωn → R. Similar
to the inner product that we defined in section 2.1, we define for
Boolean functions f and g the inner product

⟨ f , g⟩ = E[ f g],

where E denotes the expectation with respect to P. We denote
the inner product space of Boolean functions on Ωn by L2(Ωn).
Since Ωn is finite, any Boolean function is integrable.

The first issue we run into is that we do not a have natural
set of basis functions for L2(Ωn). A possible basis is the set of
indicator functions {1x ∶ x ∈ Ωn}. These functions are orthogonal
and span L2(Ωn), since for all functions f we can write

f (y) = ∑
x∈Ωn

f (x)1x(y).

A nice property of this basis is that it is a product basis, that is,
all basis function can be written as

1x(y) =
n
∏
i=1

1xi(yi),
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where the set {1xi ∶ xi ∈ Ω} is a basis for the space of Boolean
function on Ω. We could even make the indicator basis for
L2(Ωn) orthonormal by applying an appropriate rescaling. How-
ever, the problem with this basis is that it lacks the constant
function 1. If this function is included in an orthonormal ba-
sis, we have E[φi] = 0 for all other basis functions φi. This in
turn implies E[ f ] = ⟨ f , 1⟩ and Var( f ) = ∑i f̂ (i)2 − ⟨ f , 1⟩2, where
f̂ (i) = ⟨ f , φi⟩ are the Fourier coefficients of f . We therefore aim
to find a basis that includes the constant function. As a first step,
we construct a basis for L2(Ω). Note that an orthonormal basis
including 1 always exists for L2(Ω), since we can extend {1} by
adding linearly independent functions until the set spans L2(Ω),
and then apply the Gram-Schmidt procedure to orthonormalize
this set. Once we have a basis for L2(Ω), we find a basis for
L2(Ωn) by taking products of these basis functions. Let m = ∣Ω∣.
This is the dimension of L2(Ω), since the indicator basis con-
sists of m functions. Let φ0, . . . , φm−1 be an orthonormal basis for
L2(Ω) with φ0 = 1. We define the product basis for L2(Ωn) by
the set of functions given by

φα(x) =
n
∏
i=1

φαi(xi), α ∈ In
m ∶= {0, . . . , m − 1}n. (2.11)

Note that φ0 = 1. We check that the above set indeed forms an
orthonormal basis for L2(Ωn). For α, β ∈ In

m, we compute

⟨φα, φβ⟩ = E[φαφβ] = E[
n
∏
i=1

φαi φβi]

=
n
∏
i=1

E[φαi φβi] =
n
∏
i=1

1{αi=βi} = 1{α=β},
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since P is a product measure, and since the basis of L2(Ω)

is orthonormal. Now that we have a basis for L2(Ωn), every
function f can expressed in terms of the basis functions:

f = ∑
α∈In

m

f̂ (α)φα = ∑
α∈In

m

⟨ f , φα⟩φα.

This is the Fourier expansion of f , and the f̂ (α) are called the
Fourier coefficients of f on α. The inner product can be expressed
in terms of these coefficients:

⟨ f , g⟩ = ⟨ ∑
α∈In

m

f̂ (α)φα, ∑
β∈In

m

ĝ(β)φβ⟩

= ∑
α∈In

m

∑
β∈In

m

f̂ (α)ĝ(β)⟨φα, φβ⟩ = ∑
α∈In

m

f̂ (α)ĝ(α).

Since we have taken φ0 = 1, it now follows from the above
representation of the inner product, that

E[ f ] = ⟨ f , φ0⟩ = f̂ (0), E[ f 2] = ⟨ f , f ⟩ = ∑
α∈In

m

f̂ (α)2. (2.12)

Furthermore, the variances and covariances satisfy

Var( f ) = E[ f 2]−E[ f ]2 =∑
α≠0

f̂ (α)2, (2.13)

Cov( f , g) = E[ f g]−E[ f ]E[g] =∑
α≠0

f̂ (α)ĝ(α). (2.14)

We now turn our attention to the influence of variables. In
the case of Ω = {−1, 1} we defined this by flipping bit i from −1
to 1, or vice versa. Now that Ω can consist of more than two
elements, we cannot use this definition. Instead, we make us of
the distribution of the single variable π. We do this by means of
the ith expectation operator.



24 boolean functions

Definition 2.10. The ith expectation operator on L2(Ωn) is given by

Ei f (x) = ∫
Ω

f (x1, . . . , xi−1, s, xi+1, . . . , xn)π(ds).

In particular, Ei f (x) does not depend on xi. If we apply the
ith expectation operator to a basis function φα, we find

Eiφα(x) = ∫
Ω

φαi(s)
n
∏
j≠i

φαj(xj)π(ds) = ⟨φαi , 1⟩
n
∏
j≠i

φαj(xj)

=

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

φα if αi = 0,

0 if αi ≠ 0.

The fact that Ei is linear implies the following proposition.

Proposition 2.11. Let f ∈ L2(Ωn). The ith expectation operator
satisfies

Ei f = ∑
α∈In

m
αi=0

f̂ (α)φα.

We now define the ith Laplacian operator.

Definition 2.12. The ith Laplacian operator on L2(Ωn) is given by

Li f ∶= f − Ei f .

This gives a decomposition of f into a part that depends on
xi, and a part that is independent of xi:

f (x) = Li f (x)+ Ei f (x) = ∑
α∈In

m
αi≠0

f̂ (α)φα + ∑
α∈In

m
αi=0

f̂ (α)φα. (2.15)

In the case of Ω = {−1, 1}, the basis functions are indexed by
S ⊆ [n], but the basis is still of the from of Definition 2.11, since
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χS is a product of the variables indexed by S, and χ∅ = 1. The
case αi ≠ 0 corresponds to i ∈ S. Proposition 2.3 says that in the
case {−1, 1}n, the influences are given by

Infi( f ) = ∑
S⊆[n]

i∈S

f̂ (S)2.

We therefore find in this case, that Infi( f ) = ⟨ f , Li f ⟩. We use
this as the definition for the influence of i in the case of general
product spaces.

Definition 2.13. For f ∈ L2(Ωn), the influence of i on f is defined by

Infi( f ) ∶= ⟨ f , Li f ⟩ = ∑
α∈In

m
αi≠0

f̂ (α)2.

The total influence of f is given by

I( f ) =
n
∑
i=1

Infi( f ).

We can characterize the influence of i independently of the
basis as follows.

Proposition 2.14. Let f ∈ L2(Ωn). The influence of i on f satisfies

Infi( f ) = E[Ei f 2 − (Ei f )2].

In particular, if f is {0, 1}-valued:

Infi( f ) = 1
2 P( f (x) ≠ f (xi↦π)),

where xi↦π = (x1, . . . , xi−1, x′i , xi+1, . . . , xn), where x′i is independent
of x and has law π.
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Proof. Starting on the right hand side, and using Proposition
2.11, we find

E[Ei f 2 − (Ei f )2] = E[ ∑
α∶αi=0

f̂ 2(α)φα − ( ∑
α∶αi=0

f̂ (α)φα)
2
]

= f̂ 2(0)− ∑
α∶αi=0

f̂ (α)2,

since E[φα] = 1{α=0}, and since the basis is orthonormal. The
Fourier coefficient of f 2 on 0 is given by

f̂ 2(0) = ⟨ f 2, 1⟩ = E[ f 2] = ∑
α∈In

m

f̂ (α)2,

by equation (2.12). It follows, that

E[Ei f 2 − (Ei f )2] = ∑
α∶αi≠0

f̂ (α)2 = Infi( f ).

We now consider the case where f is {0, 1}-valued. We have

P( f (x) ≠ f (xi↦π)) = E[( f (x)− f (xi↦π))
2
]

= ∫
Ωn−1 ∫Ω

∫
Ω
( f (x)− f (xi↦π))

2
π(dx′i)π(dxi)π(dx)

= ∫
Ωn−1 ∫Ω

( f (x)2 − 2 f (x)Ei f (x)+ Ei f 2(x))π(dxi)π(dx)

= 2E[Ei f 2 − (Ei f )2]. (2.16)

We end this section by showing that the Poincaré inequality
also holds for general product spaces.

Theorem 2.15. Let f ∶Ωn → R. Then,

Var( f ) ≤ I( f ). (Poincaré inequality)
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Proof. Using the definition of the influence, we find

I( f ) =
n
∑
i=1

⟨ f , Li⟩ =
n
∑
i=1
∑

α∈In
m

αi≠0

f̂ (α)2 = ∑
α∈In

m

f̂ (α)2∣{i ∶ αi ≠ 0}∣

≥∑
α≠0

f̂ (α)2 = Var( f ),

by equation (2.13).

2.4 the osss inequality for finite product spaces

We now return to the OSSS inequality, and see how we can gen-
eralize it to general product spaces. In the previous section we
have introduced the definition of the influence of a variable in a
finite product space. Hence, in order to state the OSSS inequality
in this setting, it remains to define the notion of a decision tree.
The informal description remains unchanged: an algorithm that
sequentially reveals the variables until it has gathered enough
information to determine the value of f . Formally, we use Defi-
nition 2.6, but require that every vertex in the decision tree that
is not a leaf has ∣Ω∣ children instead of 2, and that the labels of
the edges are given by ψ ∶ E → {1, . . . , ∣Ω∣}. The revealment of a
variable caries over directly from Definition 2.7 as well, taking
x ∈ Ωn instead of {−1, 1}n. We can now state the OSSS inequality
in this setting. We give the covariance version of the inequality,
a more familiar form is recovered by taking f = g.

Theorem 2.16 (OSSS inequality for finite product spaces). Let
f , g ∶ Ωn → {0, 1}, and let T be a decision tree that determines the
value of f . Then,

Cov( f , g) ≤ 2
n
∑
i=1

Infi(g)Revi(T). (2.17)
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We have chosen to state the version for {0, 1}-valued functions,
since it is the most useful version for percolation models. The
same statement without the factor 2 on the right-hand side can
be proven for {−1, 1}-valued functions with the same proof. The
above version of the OSSS inequality can be proven in the same
way as 2.8. In fact, the OSSS inequality is proven in [48] for the
same general finite product space as we have introduced in the
previous section. We choose to present a different proof here
that is due to O’Donnell [47]. This proof differs substantially
from the original proof, and relies more heavily on the Fourier
analysis of Boolean functions.

Proof. Let f , g ∶ {−1, 1}n → {0, 1} be two Boolean functions, and
let T be a decision tree determining the value of f . We define
the depth of a decision tree T with vertex set V to be δ(T) ∶=

maxv∈V ∣π(v)∣. It is therefore the maximum number of vertices
that are revealed by the tree. We prove (2.17) by induction on
the depth of T. If δ(T) = 0, then the decision tree does not reveal
any vertices, and it follows, that f is a constant function. The
inequality then follows, since Cov( f , g) = 0, and the right hand
side is non-negative.

Now suppose the δ(T) = k ∈ N, and suppose that (2.17) holds
for all f ′, g′ ∈ L2(Ωn) and all decision trees of depth at most k− 1
computing f ′. Let r be the root of T, and let i1 = φ(r). Thus, i1 is
the first variable revealed by T. In particular, it is revealed with
probability 1. For ω ∈ Ω, we define fω, gω ∶ Ωn → {0, 1}, given by

fω(x) = f (xi1↦ω),

gω(x) = g(xi1↦ω),
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where xi1↦ω = (x1, . . . , xi1−1, ω, xi1+1, . . . , xn). Using the Fourier
formulas for Ei and Li of (2.15), we find for all i ∈ [n],

Cov( f , g) = ⟨ f , g⟩−E[ f ]E[g] = ⟨Ei f , Eig⟩+ ⟨Li f , Lig⟩−E[ f ]E[g].

We can further write

⟨Ei f , Eig⟩−E[ f ]E[g] = Eω,ω′∼π[E[ fωgω′]−E[ fω]E[gω′]]

= Eω,ω′∼π[Cov( fω, gω′)],

where the outer expectation is taken with respect to the measure
where ω and ω′ are independent, and have law π. In particular
we have for i = i1,

Cov( f , g) = Eω,ω′∼π[Cov( fω, gω′)]+ ⟨Li1 f , Li1 g⟩. (2.18)

Suppose xi1 = ω, and let Tω be the decision tree determining the
value of fω obtained by considering the subtree of T rooted at the
child v of r with ψ((r, v)) = ω. This child exists, since δ(T) ≥ 1.
Furthermore, since we consider the subtree, δ(Tω) ≤ k − 1. We
use the induction hypothesis to find

Cov( f , g) ≤ Eω,ω′∼π[2∑
i≠i1

Infi(gω′)Revi(Tω)]+ ⟨Li1 f , Li1 g⟩.

Using the Fourier formulas for Ei1 and Li1 , we have ⟨Ei1 f , Li1 g⟩ =
0, so that

⟨Li1 f , Li1 g⟩ = ⟨ f , Li1 g⟩.

Since ∣ f ∣ ≤ 1, we find

⟨ f , Li1 g⟩ ≤ E[∣ f Li1 g∣] ≤ E[∣Li1 g∣].
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Since g is {0, 1}-valued, we can bound the right-hand side as
follows:

E[∣Li1 g∣]

= ∫
Ωn−1 ∫Ω

(1{g=1}(1− Ei1 g)+1{g=0}Ei1 g)π(dxi1)π(dx)

= ∫
Ωn−1 ∫Ω

(1{g=1} + Ei1 g − 21{g=1}Ei1 g)π(dxi1)π(dx)

= ∫
Ωn−1

2Ei1 g − 2(Ei1 g)2 π(dx)

= 2E[Eig2 − (Eig)2] = 2Infi1(g),

by Proposition 2.14. Using the fact that Revi1(T) = 1, we now
find

Cov( f , g) ≤ Eω,ω′∼π[2∑
i≠i1

Infi(g∣ω′)Revi(Tω)]+ 2Infi1(g)

= 2∑
i≠i1

Eω,ω′∼π[Infi(g∣ω′)Revi(Tω)]+ 2Infi1(g)

= 2∑
i≠i1

Infi(g)Revi(T)+ 2Infi1(g)

= 2
n
∑
i=1

Infi(g)Revi(T).

This concludes the inductive proof of Theorem 2.16.

2.5 infinite spaces

So far we have considered finite product spaces, in the sense
that ∣Ω∣ <∞, and in the sense that we only considered a finite
number of variables. This suffices for most applications in perco-
lation models, since we typically consider consider the Boolean
function 1{0←→∂Λn}, which only depends on the state of the ver-
tices or edges inside the box. Nevertheless, applying the Boolean



2.5 infinite spaces 31

function framework to the contact process requires to weaken
the assumption that Ω is finite, whereas for the orthant model
we need to consider infinitely many variables. We will start by
examining this assumption.

2.5.1 Infinite products

Let (Ω,F , π) be a finite probability space. We consider the prod-
uct space (ΩN,FN, P), where the σ-algebra is generated by the
cylindrical events:

FN = σ({{ωi ∈ A} ∶ i ∈ N, A ∈ F}).

The product probability measure is then uniquely defined by
setting

P(ωi ∈ Ai for all i ∈ I) =∏
i∈I

π(Ai),

for all finite I ⊆ N, and all Ai ∈ F . We denote the expectation
with respect to P by E.

We refrain from generalizing the Fourier framework to this
setting. Instead, we introduce only the objects we need for the
OSSS inequality. Nevertheless, these definitions are direct ana-
logues to the results in Section 2.3, so that the Fourier theory is
still lingering in the background. We define Lp(ΩN) to be the
set of measurable functions from ΩN to R with finite Lp-norm,
which is given by

∥ f ∥p = E[ f p]1/p.

We define the ith expectation operator on L2(ΩN) as

Ei f (x) = ∫
Ω

f (x1, . . . , xi−1, s, xi+1, . . . )π(ds), i ∈ N.
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Inspired by Proposition 2.14, we define for f ∈ L2(ΩN) the
influence of i on f as

Infi( f ) = E[Ei f 2 − (Ei f )2]. (2.19)

Jensen’s inequalty implies Infi( f ) ≥ 0. Furthermore, since f ∈

L2(ΩN), we have

Infi( f ) ≤ E[Ei f 2] = E[ f 2] <∞.

The computation in (2.16) carries over to the infinite case, so that
if f is {0, 1}-valued, we find

Infi( f ) = 1/2P( f (x) ≠ f (xi↦π)), (2.20)

where xi↦π = (x1, . . . , xi−1, x′i , xi+1, . . . ), and x′i is independent of
x and has law π.

The definition of a decision tree that determines the value of
f largely carries over from Definition 2.6, except the tree can
be infinite. In other words, we do not require the algorithm
to terminate. Recall that for a vertex v in the decision tree,
ρ(v) denotes the set of vertices on the path from the root to v,
including the root and excluding v.

Definition 2.17. A decision tree T on ΩN consists of a directed rooted
tree (V ∪U, E), and maps φ∶V →N, ψ∶E → Ω. Every v ∈ V has ∣Ω∣

children, while every u ∈ U is a leaf. For any v ∈ V, the map φ satisfies
φ(w) ≠ φ(v) for all w ∈ ρ(v).

We say that a decision tree on ΩN determines the value of
a Boolean function f ∶ΩN → R if the following two conditions
are satisfied: for all leaves u ∈ U, the values of xφ(w) for w ∈ ρ(v)
determine the value of f , that is, if x, y ∈ ΩN with xφ(w) = yφ(w)
for all w ∈ ρ(u), then f (x) = f (y); secondly, for all infinite paths
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ρ∞ starting at the root, the values of xφ(w) for w ∈ ρ∞ determine
the value of f , that is, if x, y ∈ ΩN with xφ(w) = yφ(w) for all
w ∈ ρ∞, then f (x) = f (y). Even if the decision tree does not
terminate, the condition for infinite paths implies that a decision
tree must acquire information that is relevant to the value of
f , and that this information determines the value of f in an
asymptotic sense. An example that satisfies this condition is
the important case where f is {0, 1}-valued, and the decision
tree terminates on the set { f = 1}. If x ∈ ΩN corresponds to an
infinite path in the decision tree, and thus the decision does not
terminate, then it follows that f = 0, so that the condition on
infinite paths is indeed satisfied.

The revealment of a variable is defined as in Definition 2.7,
taking x ∈ ΩN instead of {−1, 1}n. We can now state the OSSS
inequality for the case of countable product spaces.

Theorem 2.18 (OSSS inequality for infinite product spaces). Let
f ∈ L1(ΩN), and let T be a decision tree that determines the value of
f . Then,

E[∣ f (x)−E[ f (x)]∣] ≤
∞
∑
i=1

E[∣ f (x)− f (xi↦π)∣]Revi(T). (2.21)

In particular, if f is {0, 1}-valued,

Var( f ) ≤
∞
∑
i=1

Infi( f )Revi(T). (2.22)

In the original paper of O’Donnell, Saks, Schramm and Serve-
dio the inequality is only given for the finite case. In the paper of
Duminil-Copin, Raoufi and Tassion [15] Inequality 2.22 has been
stated without proof. Hence, the following proof of Theorem
2.18 has not appeared in the literature before.
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Proof. We will modify the proof of Theorem 2.8. Let x, y ∈ ΩN

be independent and have law P. We let i1, . . . , it be the sequence
in N that corresponds to the path in the decision tree on input
x, where t ∈ N∪ {∞}. Note that ik ≠ il , for all 1 ≤ k < l ≤ t, by the
definition of a decision tree on ΩN. For n ≥ 1 we define

Fn ∶= σ(xi1 , . . . , xin∧t), F∞ = σ(xi1 , xi2 , . . . , xit).

Then f (y) is independent of Fn for all n ≥ 1, and f (x) is F∞-
measurable, since T determines the value of f . We therefore
find

E[∣ f (x)−E[ f (x)]∣] = E[∣E[ f (x)∣F∞]−E[ f (y)]∣]

= lim
n→∞

E[∣E[ f (x)∣Fn]−E[ f (y)]∣],

(2.23)

since

E[ f (x)∣Fn]→ E[ f (x)∣F∞], as n →∞, (2.24)

almost surely and in L1, see Theorem 5.5.7 of Durrett [19].
We let xsy be the configuration that agrees with x for the

variables in is+1, . . . , it, and with y for all other variables:

(xsy)i =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

xi if i = ik, s < k ≤ t,

yi otherwise.

In particular, f (x0y) = f (x), since T is a decision tree. Instead
of applying the triangle inequality t times as in the proof of
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Theorem 2.8, we now apply it t ∧ n times, and later let n → ∞.
We find

E[∣E[ f (x)∣Fn]−E[ f (y)]∣] = E[∣E[ f (x0y)∣Fn]−E[ f (y)]∣]

≤
t∧n
∑
s=1

E[∣E[ f (xs−1y)∣Fn]−E[ f (xsy)∣Fn]∣]

+E[∣E[ f (xt∧ny)∣Fn]−E[ f (y)]∣]. (2.25)

The configuration xt∧ny is independent of Fn, and has law P.
Hence,

E[∣E[ f (xt∧ny)∣Fn]−E[ f (y)]∣] = 0.

We can handle the first term of (2.25) by using Jensens’s inequal-
ity to bound

E[∣E[ f (xs−1y)∣Fn]−E[ f (xsy)∣Fn]∣]

≤ E[E[∣ f (xs−1y)− f (xsy)∣ ∣Fn]]

= E[∣ f (xs−1y)− f (xsy)∣], (2.26)

by the law of total expectation. The proof now continues as the
proof of Theorem 2.8:

t∧n
∑
s=1

E[∣ f (xs−1y)− f (xsy)∣]

≤
∞
∑
s=1

∞
∑
i=1

E[∣ f (xs−1y)− f (xsy)∣1{is=i}]

=
∞
∑
s=1

∞
∑
i=1

E[∣ f (x)− f (xi↦π)∣]E[1{is=i}]

=
∞
∑
i=1

E[∣ f (x)− f (xi↦π)∣]Revi(T). (2.27)
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where the interchange of sum and expectation is justified by
Tonelli’s theorem. The result follows by combining (2.25), (2.26)
and (2.27).

We now suppose that f is {0, 1}-valued, so that f ∈ L2(ΩN),
and compute

2Var( f ) = 2E[ f 2]− 2E[ f ]2 = 2P( f = 1)(1−P( f = 1))

= E[∣ f (x)−P( f = 1)∣]

= E[∣ f (x)− f (y)∣].

Using (2.20), we see that the factor 2 is compensated by the
influence of i:

Infi( f ) = 1/2P( f (x) ≠ f (xi↦π)) = 1/2E[∣ f (x)− f (xi↦π)∣].

2.5.2 Infinite spaces

We now consider the case where ∣Ω∣ = ∞. Let (Ω,F , π) be
a probability space. Let n ∈ N. For simplicity we take a n-
fold product of these spaces, although we can also consider a
countable product using the methods introduced earlier in this
section. We consider the probability space (Ωn,Fn, P), where
the σ-algebra is given by

Fn = σ({{ωi ∈ A} ∶ i ∈ [n], A ∈ F}),

and the probability measure is defined by

P(ω1 ∈ A1, . . . , ωn ∈ An) =
n
∏
i=1

π(Ai),
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with Ai ∈ F for all i ∈ [n]. We again denote the expectation with
respect to P by E, and we define the space Lp(Ωn) in the usual
way. If f ∈ L2(Ωn), we define the inluence of i on f as in (2.19):

Infi( f ) = E[Ei f 2 − (Ei f )2].

The OSSS inequality holds in this setting, and can be proven
in the same way as Theorem 2.18. However the definition of a
decision tree has to be adapted, because in the case of uncount-
able Ω, we would have an uncountable tree. This not strictly
problematic for our purposes, but it would be an uncommon
notion. We therefore choose for a more abstract definition of a
decision tree. Let

Is = {(i1, . . . , is) ∈ [n]s ∶ ik ≠ il for all k ≠ l}.

Definition 2.19. Let i1 ∈ [n]. A decision tree T is a collection of
measurable functions (φs)

n
s=1, where φ1 ≡ i1 ∈ [n], and

φs ∶ Is−1 ×Ωs−1 → [n], s = 2, . . . , n,

such that

φs(i1, . . . , is−1; xi1 , . . . , xis−1) ≠ i1, . . . , is−1, (i1, . . . , is−1) ∈ Is−1,

for all (xi1 , . . . , xis−1) ∈ Ωs−1.

The sequence of variables that are revealed by T is given by
(i1, . . . , in), where

is ∶= φs−1(i1, . . . , is−1, xi1 , . . . , xis−1).

The main difference to the original definition of decision trees
is that the tree now does not terminates once it has determined
the value of f . In order to encode this, we introduce a stopping
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with respect to the filtration Fs = σ(xi1 , . . . , xis). For a measurable
f ∶Ωn → R and a decision tree T we define

τ ∶= τ(T, f ) ∶= inf{s ∈ [n] ∶ f (x) = f (y)

∀x, y ∈ Ωn ∶ xik = yik , k = 1, . . . , s}.

In this way, τ is the first time at which T has determined the
value of f . The revealment of a variable i is then given by

Revi(T) = P(i = ik for some 1 ≤ k ≤ τ).

We can now state the OSSS inequality for infinite spaces.

Theorem 2.20 (OSSS inequality for infinite spaces). Let f ∈

L1(Ωn), let T be a decision tree, and let τ be the corresponding stop-
ping time. Then

E[∣ f (x)− f (y)∣] ≤
n
∑
i=1

E[∣ f (x)− f (xi↦π)∣]Revi(T), (2.28)

where x, y ∈ Ωn are independent and have law P. In particular, if f is
{0, 1}-valued,

Var( f ) ≤
n
∑
i=1

Infi( f )Revi(T). (2.29)

Proof. We can use the same proof as for Theorem 2.8, and we
will omit most of it. The only change we make is to apply the
triangle inequality τ times instead of t times. We then find

E[∣ f (x)− f (y)∣] ≤
n
∑
s=1

n
∑
i=1

E[∣ f (xs−1y)− f (xsy)∣1{is=i}1{s≤τ}].
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Similar to (2.10), we obtain

E[∣ f (xs−1y)− f (xsy)∣1{is=i}1{s≤τ}]

= E[1{is=i}1{s≤τ}]E[∣ f (x)− f (xi↦π)∣]

= E[∣ f (x)− f (xi↦π)∣]Revi(T).

where the factorization is valid, since τ is an Fs-stopping time.
The result for {0, 1}-valued functions follows as in the proof of
Theorem 2.18.

The application we have in mind for this setting is the contact
process, which has an underlying point process, so that we
require Ω to be uncountably infinite. The above construction
is sufficient for this purpose. We do mention however that a
version of the OSSS inequality has been proven by Last, Peccati
and Yogeshwaran that is native to Poisson point processes [40].

2.6 monotonic measures

So far we have only considered product measures. We will now
see how we can loosen this assumption. Many percolation mod-
els do not have a product structure. The contact process and the
corrupted compass model are two examples where the status
of the vertices or edges are not independent, although for these
models we can still find an underlying product measure. For
yet other models, we can not even find an underlying product
structure. An example of this is the Ising model, or more gen-
erally the random-cluster model. We will see that for measures
satisfy a particular condition that is weaker than being a product
measure, we can still prove the OSSS inequality.

In this section we take Ωn = {0, 1}n, equipped with the σ-
algebra F being the power set, and a probability measure P. For
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x, y ∈ Ω, we say that x ≤ y whenever xi ≤ yi for all i ∈ [n]. We call
an event A ∈ F increasing, when

x ≤ y Ô⇒ 1A(x) ≤ 1a(y), x, y ∈ Ωn. (2.30)

Similarly, a function f ∶Ωn → R is called increasing, whenever

x ≤ y Ô⇒ f (x) ≤ f (y), x, y ∈ Ωn.

Definition 2.21. A probability measure P is called positively-associated,
whenever

P(A ∩ B) ≥ P(A)P(B) (2.31)

for all increasing events A, B ∈ F .

The inequality (2.31) is known as the FKG inequality, named
after Fortuin, Kasteleyn and Ginibre, who introduced the in-
equality in a 1971 paper [24], along with a condition that implies
the inequality, that we will introduce later in the section. Grim-
mett has written a detailed history on the origins of the inequal-
ity, including correspondences between him and the original
authors [26].

The FKG is a very practical inequality in the analysis of perco-
lation models, allowing us the decouple events and treat them
separately, as long as the events are increasing. An even stronger
property is when this inequality holds even if we condition on
the state of a subset of the variables. For I ⊆ [n] and x ∈ Ωn, let

ΩI
x ∶= {y ∈ Ωn ∶ yi = xi for all i ∈ I}.

Definition 2.22. A probability measure P is called strongly positively-
associated, if for all I ⊆ [n] and x ∈ Ωn with P(ΩI

x) > 0, the condi-
tional measure P(⋅ ∣ ΩI

x) is positively-associated, i.e., whenever

P(A ∩ B ∣ ΩI
x) ≥ P(A ∣ ΩI

x)P(B ∣ ΩI
x) (2.32)

for all increasing events A, B ∈ F .
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We recover positive-associativity by taking I = ∅, so that it
is indeed a stronger property. In between these two properties
we have the so-called downward FKG property, where we only
condition on variables being 0.

Definition 2.23. A probability measure P is called downward FKG if
for all I ⊆ [n] with P(ΩI

0) > 0, the conditional measure P(⋅ ∣ ΩI
0) is

positively-associated.

A closely related notion is that of the monotonicity of a mea-
sure.

Definition 2.24. A probability measure is called monotonic, when

P(A ∣ ΩI
x) ≤ P(A ∣ ΩI

y) whenever x ≤ y, (2.33)

for all increasing events A ∈ F .

It can be difficult to directly prove that a probability measure
satisfies the above definitions. Luckily, there is a criterion that
implies the above properties, and which is easier to check.

Definition 2.25. A probability measure P satisfies the FKG lattice
condition whenever

P({x∧ y})P({x∨ y}) ≥ P({x})P({y}) for all x, y ∈ Ωn, (2.34)

where (x ∧ y)i = xi ∧ yi and (x ∨ y)i = xi ∨ yi, for all i ∈ [n].

Theorem 2.26. Let P be a probability measure with full support. The
following statements are equivalent.

a) The measure P satisfies the FKG lattice condition.

b) The measure P is strongly positively-associated.
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c) The measure P is monotonic.

This is Theorem 2.24 of [26], and the proof can be found
therein. A rather trivial example of a probability measure on
{0, 1}n that satisfies the FKG lattice condition is the product
measure. If P is the product measure under which P(xi = 1) = pi,
then

P({x ∧ y})P({x ∨ y}) =
n
∏
i=1

pxi+yi
i = P({x})P({y}).

An important and less trivial example is the random-cluster
measure with parameter q ≥ 1. This is a measure on {0, 1}E,
where E is the edge set of a finite graph. For this parameter
choice, this measure favours clusters of edges, which makes
the measure satisfy the FKG lattice condition. This is stated in
Theorem of 3.8 of [26], but was already proven by Fortuin in
1972 [23].

If a measure satisfies the FKG lattice condition, and is thus
monotonic, it also satisfies the OSSS inequality, although a slight
modification is necessary. In the previous sections the influence
of a variable i was obtained by resampling the ith variable. Now
that we no longer have a product measure, we can no longer
resample only one variable. We therefore replace the influence
of i on a Boolean function f by the covariance between xi and f .

Theorem 2.27. Let f ∶ Ωn → {0, 1} be increasing, and let T be
a decision tree that determines the value of f . Suppose that P is a
monotonic measure on Ωn. Then,

Var( f ) ≤
n
∑
i=1

Cov( f , xi)Revi(T). (2.35)

This generalization of the OSSS inequality has been proven
by Duminil-Copin, Raoufi and Tassion [15]. The proof follows
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in a broad sense the proof of Theorem 2.8, the original proof
by O’Donnell et al.. However, since we no longer have a prod-
uct measure, much more care has to be taken to decouple the
configuration xsy from the variables we have seen before. This
is done with an appropriate coupling using uniform random
variables, that encode the conditional probabilities E[xis ∣Fs−1].
The strong positive-associativity of the measure is then essential,
since there is no control over the conditioning.





3
B E R N O U L L I P E R C O L AT I O N

Bernoulli percolation is the prototypical percolation model. In
Bernoulli bond percolation, the edges of a graph are removed
with probability 1 − p, and thus kept with probability p, inde-
pendently of each other. In Figure 1.2 this model is shown on
the graph Z2 with nearest neighbour edges, for several values of
p. In Bernoulli site percolation, the vertices are removed instead
of the edges. We restrict ourselves to Bernoulli bond percolation
in this chapter, although all results we will encounter are valid
for Bernoulli site percolation as well.

Bernoulli percolation is one of the simplest probabilistic mod-
els that exhibits a phase transition: for small p there exist only
finite clusters, but when we increase p, at some point an infinite
cluster will appear. If we consider a regular tree as the underly-
ing graph, we see that Bernoulli percolation on this tree is just
a branching process with binomially distributed offspring. For
this process, we know that the process dies out if and only if the
expected number of children is at most 1. This is precisely the
percolation phase transition if we view it from the point of view
of Bernoulli percolation. Moreover, if the expected number of
children in the branching process is less than 1, the process dies
out exponentially quickly; we say that the phase transition is
sharp. In this chapter we will prove that this not only holds on
trees, but for general transitive graphs using Boolean function
theory.

45
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Bernoulli percolation was first introduced in a mathematical
rigorous way by Broadbent and Hammersley in 1957 [11]. Many
questions regarding the model have since been answered, and
many more remain. We will restrict ourselves to introducing the
basic quantities and definitions, in particular those required to
prove the sharp phase transition that the model exhibits. For
a broader exposition of the subject, we refer to Percolation by
Grimmett [25].

3.1 introduction

Let G = (V, E) be an infinite, locally finite, connected, vertex-
transitive graph. A locally finite graph is a graph for which
every vertex has finitely many neighbours. A vertex-transitive
graph looks the same from every vertex: for all v, w ∈ V there
exists a graph automorphism φ ∶ V → V such that φ(v) = φ(w).
In particular, every vertex of a vertex-transitive graph has the
same degree. For simplicity we assume that G is vertex-transitive,
although the results that follow are also valid for quasi-transitive
graphs. We fix an arbitrary vertex of V as the origin and denote
it by 0. For x, y ∈ V, we define d(x, y) to be the graph distance
between x and y, that is, the length of a shortest path between x
and y in G. We define the ball and the sphere of radius n around
x ∈ V as

Λx
n ∶= {y ∈ V ∶ d(x, y) ≤ n}, ∂Λx

n ∶= {y ∈ V ∶ d(x, y) = n}.

For x = 0 we drop part of the notation: Λn = Λ0
n and ∂Λn = ∂Λ0

n.
Let 0 ≤ p ≤ 1. We consider the probability space (Ω,F , Pp),

where

Ω = {0, 1}E, F = σ({{ωe = 1} ∶ e ∈ E}),
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and the measure is uniquely defined by setting

Pp(ωe = 1, ω f = 0, ∀e ∈ I,∀ f ∈ J) = p∣I∣(1− p)∣J∣,

for all finite I, J ⊆ E. We say that an edge e is open whenever ωe =

1, and closed otherwise. We are interested in the connectivity
properties of the graph obtained by keeping only the open edges.
For x, y ∈ V, we say that x ←→ y whenever there exists a path
from x to y using only open edges. Similarly, for A ⊆ V, we say
that x ←→ A whenever there exists y ∈ A with x ←→ y. We say
that x ←→∞, whenever x ←→ ∂Λx

n for all n ∈ N. We define

θn(p) ∶= Pp(0←→ ∂Λn).

The percolation function is defined by

θ(p) ∶= lim
n→∞

θn(p) = Pp(0←→∞).

The critical point is given by

pc ∶= sup{p ∶ Pp(0←→∞) = 0}.

This is the point at which the phase transition occurs. If d denotes
the degree of an arbitrary vertex in the graph, we can prove
that pc ≥ 1/(d − 1), by comparing the exploration process that
explores the cluster of 0 with a branching process. First of all
this shows that pc is bounded away from zero. Secondly, we see
that for some graphs pc = 1. For example, the graph G = (Z, E),
where E is the set of pairs of neighbouring integers, has degree
d = 2, so that pc = 1. On the other hand, for a large class of
graphs, one can show that θ(p) > 0 for some p < 1. This can be
done with Peierls’ argument, which entails counting the number
of blocking surfaces that separate the origin from infinity. In
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particular this argument can be used to prove that pc < 1 for the
graph Zd with nearest neighbour edges and d ≥ 2.

The exact value of pc is often intractable, but we will mention
the celebrated result that pc = 1/2 for Z2 with nearest neighbour
edges. This was proven by Kesten in 1980 [38], building on
work of Harris [28]. Without going into detail, the symmetry
properties of the graph Z2 allow us to prove this result.

The function p ↦ θn(p) is increasing in p, and hence, so is
θ(p). Furthermore, θn(p) is a polynomial in p and is therefore
differentiable. This property is not maintained when taking the
limit n →∞, however, since limn→∞ θn(p) is a decreasing limit
of continuous functions, and since θn(p) is increasing in p, we
have that θn(p) is right-continuous. For p < pc, θ(p) = 0, so that
θ(p) is continuous on [0, pc). It can also be shown that θ(p)
is left-continuous in the supercritical phase (pc, 1]. All things
considered, we know that θ(p) is continuous at p ≠ pc, which
leaves the question if θ(p) is also continuous at pc. Since θ(p) = 0
for p < pc and θ(p) is right-continuous, this is equivalent to
Ppc(0 ←→ ∞) = 0. This is an open question in general, and
arguably one of the largest open problems in probability theory.
For Z2 however, we know that θ(pc) = 0 [28], again using the
symmetry properties of this graph. Furthermore, for Zd, with d ≥

11, we can also prove θ(pc) = 0. In this case, the large dimension
allows for a sufficient amount of control over the dependencies
between open paths [22]. This technique is know as the lace
expansion. We refer to [29] for an extensive background on
high-dimensional percolation.

We will focus on the sharpness of the phase transition on
general transitive graphs. This means that for p < pc the clusters
are exponentially small.
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Theorem 3.1. Consider Bernoulli bond percolation on a transitive
graph G with parameter p. If p < pc, then there exists a constant c > 0
such that for all n ∈ N,

Pp(0←→ ∂Λn) ≤ exp(−cn).

This theorem was first proven by Menshikov [45] and indepen-
dently by Aizenman and Barsky [1] in 1986 and 1987 respectively.
Both proofs are rather lengthy, and heavily rely on the specifics
of the measure Pp. It is not true that these proofs only work
for product measures, since Aizenman, Barsky and Fernandez
have also managed to apply this proof strategy to Ising-type
models [2], but carrying over this strategy to other models with
dependencies has been difficult. More recently, Duminil-Copin
and Tassion have given a shorter and very elegant proof of the
sharpness of the phase transition for Bernoulli percolation and
the Ising model, which is worth reading [17, 18]. However, this
proof is also rather specific to these models, since it relies on
decoupling the configuration inside a set S ⊂ V from the con-
figuration on Sc by conditioning on the configuration on the
boundary of S. The proof using the OSSS inequality has proven
to be more broadly applicable, which is the reason why we
state this proof here. Bernoulli percolation will be one of the
simplest settings where we can apply this proof strategy, and
it will therefore serve as a stepping stone to more complicated
models.

What all these proofs have in common, is that they all feature
a differential inequality from which the sharpness of the phase
transition follows. In our case we will take the derivative of
θn(p) to p. If this derivative is large, we see a large change in the
behaviour of the model for a small increase of p. Asymptotically,
this should give us the sharpness of the phase transition as
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n →∞. In order to implement this strategy, we first need to get
a handle on the derivative of θn(p) to p. This will be done by
means of Russo’s formula. In order to state it, we introduce two
definitions that we have already seen in the context of Boolean
functions. We say that an event A ∈ F is increasing, whenever
1A(ω) ≤ 1A(ω′) for all ω ≤ ω′, where the latter inequality is
interpreted pointwise. We call an edge e ∈ E pivotal for an event
A, whenever A occurs depending on the status of e:

{e is pivotal for A} ∶= {ω ∈ Ω ∶ 1A(ωe↦0) ≠ 1A(ωe↦1)}, e ∈ E,

where ωe↦0 is the configuration obtained taking ω and setting
ωe = 0, and similarly for ωe↦1. Note that this event is indepen-
dent of ωe.

Proposition 3.2 (Russo’s formula). Let A ∈ F be an increasing
event depending on the state of finitely many edges, and let 0 < p < 1.
Then,

d
dp

Pp(A) =∑
e∈E

Pp(e is pivotal for A).

Proof. We first note that, since A depends on the state of only
finitely many edges, Pp(A) is a polynomial in p, and is there-
fore differentiable. Let e1, . . . , en denote these edges. We set
p = (p1, . . . , pn), with 0 < pi < 1 for all i = 1, . . . , n. We first con-
sider the product probability measure Pp under which ωei = 1
with probability pi. Later we recover Pp by setting pi = p for all i.
In order to make sense of the derivative to pi, we need to couple
the percolation configuration for different values of pi. This is
done by introducing a uniformly distributed random variable
Ui ∈ [0, 1] that is independent of the state of the other edges.
The coupling is obtained by setting ωei = 1 whenever Ui ≤ pi.
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We abuse notation and also write Pp for the probability mea-
sure where the coupling is defined. Let ωpi be the configuration
where ωei = 1 whenever Ui ≤ pi, and all other edges ej are open
with probability pj. For i = 1, . . . , n, we compute

∂

∂pi
Pp(A) = lim

h↓0

1
h

Pp(ωpi /∈ A, ωpi+h ∈ A)

The configurations ωpi and ωpi+h can only differ at edge ei. It
follows that e is pivotal for A. Furthermore since A is increasing,
we see that (ωpi)ei = 0 and (ωpi+h)ei = 1. By the independence of
ωe and the pivotality of e we obtain

∂

∂pi
Pp(A) = lim

h↓0

1
h

Pp(e is pivotal for A)Pp(pi ≤ Ui ≤ pi + h)

= Pp(ei is pivotal for A). (3.1)

We conclude by observing

d
dp

Pp(A) =
n
∑
i=1

∂

∂pi
Pp(A)∣ pj=p

j=1,...,n
=∑

e∈E
Pp(e is pivotal for A).

In the case where A depends on infinitely many edges, we
do not know if Pp(A) is differentiable with respect to p. Indeed,
if A = {0 ←→ ∞}, even continuity of Pp(A) is an important
open problem. Nevertheless, in this case we can still give a
weaker form of Russo’s formula in terms of the lower-right Dini
derivative, which is also useful.
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Proposition 3.3. Let A ∈ F be an increasing event, and let 0 ≤ p < 1.
Then,

D+Pp(A) ∶= lim inf
h↓0

1
h
(Pp+h(A)−Pp(A))

≥∑
e∈E

Pp(e is pivotal for A).

Proof. This result is obtained using a variation of the previous
proof. Let e1, e2, . . . be an enumeration of the edges on which
A depends. Let n ∈ N, and let p = (p1, . . . , pn), with 0 ≤ pi < 1
for all i = 1, . . . , n. Denote by Pp the product measure under
which ωei = 1 with probability pi for i = 1, . . . , n, and ωei = 1 with
probability p for i > n. Let ei denote the ith unit vector. Then
similarly to (3.1), we have

lim inf
h↓0

1
h
(Pp+hei(A)−Pp(A)) = Pp(ei is pivotal for A).

Since A is increasing, it follows for all n ∈ N, that

lim inf
h↓0

1
h
(Pp+h(A)−Pp(A)) ≥

n
∑
i=1

lim inf
h↓0

1
h
(Pp+hei(A)−Pp(A))

=
n
∑
i=1

Pp(ei is pivotal for A).

The result follows by letting n →∞.

3.2 proof of the sharp phase transition

We now present the proof by Duminil-Copin, Raoufi and Tas-
sion [15] in the case of Bernoulli percolation. We note that this
proof is also valid for the random-cluster model by using the
OSSS inequality for monotonic measures, Theorem 2.27, and
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by replacing Russo’s formula with an appropriate derivative
formula for this model.

For n ∈ N, let Sn ∶= Sn(p) ∶= ∑n
k=1 θk(p). We prove the following

differential inequality from which Theorem 3.1 will follow.

Proposition 3.4. Consider Bernoulli percolation with paramater 0 <

p < 1. Then,

d
dp

θn(p) ≥
1

4p(1− p)
n
Sn

θn(p)(1− θn(p)),

for all n ∈ N.

Before proving this differential inequality we give some intro-
ductory considerations on how to obtain a differential inequality
for θn such as the above inequality. We let An ∶= {0 ←→ ∂Λn},
and fn = 1An . Then, An depends only on the edges inside Λn.
Denote this set of edges by En. For the purpose of proving the
differential inequality, we can restrict ourselves to the probability
space on {0, 1}En . Russo’s formula gives

d
dp

θn(p) =
d

dp
Pp(An) = ∑

e∈En

Pp(e is pivotal for An).

Since ωe is independent of the pivotality of e, we obtain

d
dp

θn(p) =∑
e∈E

Pp(e is pivotal for An)

=∑
e∈E

1
2p(1− p)

Pp( fn(ω) ≠ fn(ωe↦π)),

where ωe↦π is the configuration obtained from ω by resampling
ωe independently with law Ber(p). Using Proposition 2.14, we
find

d
dp

θn(p) =
1

p(1− p)
∑
e∈E

Infe( fn). (3.2)
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If we use the Poincaré inequality, Theorem 2.5, we obtain the
differential inequality

d
dp

θn(p) ≥
1

p(1− p)
θn(p)(1− θn(p)).

However, this inequality is not strong enough to imply the
sharpness of the phase transition. Using the stronger OSSS
inequality will allow us to gain the factor n/Sn, which in turn
will be enough to prove Theorem 3.1.

3.2.1 Bound on the Revealment

We now give the proof of Proposition 3.4. Since fn only depends
on the edges En, we can apply Theorem 2.16 for finite product
spaces. We then also need a decision tree that determines the
value of fn. If T is such a decision tree, Theorem 2.16 implies

θn(p)(1− θn(p)) ≤ ∑
e∈En

Infe( fn)Reve(T). (3.3)

The aim is to find a decision tree such that we can find a strong
bound on the revealment, that is uniform in the edges. In this
way we can pull the revealment out of the sum, and recover
θ′n(p) by (3.2). If we only use one decision tree, the first edge
that is revealed has Reve(T) = 1, so that we cannot find a mean-
ingful uniform bound on the revealment. We therefore introduce
several decision trees, T1, . . . , Tn, and average over these trees.
For 1 ≤ k ≤ n, we let Tk be the decision tree that determines the
value of fn by exploring the cluster of ∂Λk. If 0 is connected to
∂Λn, this connection must go through ∂Λk, so that Tk indeed
determines the value of fn. We now give a more formal descrip-
tion of this exploration process, which in turn can be made to
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fit Definition 2.6. For x, y ∈ V and A ⊂ E, we say that x
A
←→ y

whenever there exists a path from x to y using only open edges

in A. Similarly, for B ⊆ V, we say that x
A
←→ B whenever there

exists y ∈ B with x
A
←→ y. We denote by A the set of active edges;

that is, edges that have not been revealed yet, but are connected
to ∂Λk using revealed edges. We denote the set of revealed edges
by R. We fix an arbitrary ordering of the edges. The exploration
process of Tk is then given by the pseudocode of Algorithm 1. A
possible realization of this process is shown in Figure 3.1.

A ∶= {{x, y} ∈ En ∶ x ∈ ∂Λk or y ∈ ∂Λk};
R ∶= ∅;
while A ≠ ∅ do

Take minimal e ∈ A;
Reveal ωe;
R ∶=R∪ {e};
A ∶= A/{e};

A ∶= A∪ {{x, y} ∈ En/R ∶ x
R
←→ ∂Λk or y

R
←→ ∂Λk};

if 0
R
←→ ∂Λn then return 1;

end
return 0;

Algorithm 1: The exploration algorithm Tk.

We now proceed to bound the revealment of the edges. If an
edge e is revealed by Tk, then one of its endpoints is connected
to ∂Λk. Hence, for e = {x, y},

Reve(Tk) ≤ Pp(x ←→ ∂Λk)+Pp(y ←→ ∂Λk)

≤ Pp(x ←→ ∂Λx
d(x,∂Λk))+Pp(y ←→ ∂Λy

d(y,∂Λk)
),

(3.4)



56 bernoulli percolation

0

∂Λk

∂Λn

Figure 3.1: The decision tree Tk exploring the cluster of ∂Λk.

where d(x, ∂Λk) and d(y, ∂Λk) are the distances from x to ∂Λk
and y to ∂Λk respectively. We now sum over k, so that we essen-
tially average over k = 1 . . . , n. We find

n
∑
k=1

Reve(Tk) ≤
n
∑
k=1

Pp(x ←→ ∂Λx
d(x,∂Λk))+

n
∑
k=1

Pp(y ←→ ∂Λy
d(y,∂Λk)

)

≤ 2
n
∑
k=1

Pp(x ←→ ∂Λx
k)+ 2

n
∑
k=1

Pp(y ←→ ∂Λy
k)

= 4
n
∑
k=1

Pp(0←→ ∂Λk) = 4Sn, (3.5)
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by translation invariance. Summing (3.3) with T = Tk over k gives

nθn(p)(1− θn(p)) ≤
n
∑
k=1
∑

e∈En

Infe( fn)Reve(Tk)

≤ 4Sn ∑
e∈En

Infe( fn) = 4p(1− p)Sn
d

dp
θn(p),

(3.6)

by (3.2). We thus arrive at the differential inequality of Proposi-
tion 3.4.

3.2.2 Analysis of the differential inequality

We now derive Theorem 3.1 from the differential inequality. Let
p < pc. For simplicity we bound

1
4p(1− p)

≥ 1,

as this will only result in slightly weaker constants. Let p < p1 <

p2 < pc. We further bound for all p′ ≤ p2,

1− θn(p′) ≥ 1− θ1(p′) ≥ 1− θ1(p2) = (1− p2)
2d =∶ C.

From (4.3), it follows that

d
dp

log θn(p) ≥ C
n
Sn

,

for all n ∈ N. Integrating the above inequality from p1 to p2 gives

− log θn(p1) ≥ log θn(p2)− log θn(p1) ≥ C(p2 − p1)
n

Sn(p2)
,
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so that

θn(p1) ≤ exp(−C(p2 − p1)
n

Sn(p2)
) . (3.7)

If Sn(p2) is bounded in n, i.e., if ∑∞
k=0 θk(p2) converges, the

desired exponential decay would follow from the above inequal-
ity. In fact, it suffices if Sn(p2) ≤ n1−α for 0 < α < 1 and n large
enough: from (3.7) it then follows that

θn(p1) ≤ exp (−C(p2 − p1)nα) ,

for n large enough, so that ∑∞
k=0 θk(p1) converges. We can then

bootstrap this result by using the inequality (3.7) again to find
the desired exponential decay. This motivates the definition of
the following critical point, which we will show to be equal to
pc:

p̃c ∶= sup{p ∶ lim sup
n→∞

log Sn

log n
< 1}.

If p2 < p̃c, there exists 0 < α < 1 such that Sn(p2) ≤ n1−α for n
large enough. It then follows that we have stretched exponential
decay at p1 and exponential decay at p.

It remains to show that pc = p̃c. Let p̃c < p1 < p, and set
C ∶= C(p) ∶= (1− p)2d. Using (4.3), we find

d
dp

n
∑
k=1

θk(p)
k

≥ C
n
∑
k=1

θk(p)
Sk

≥ C
n
∑
k=1
∫

Sk+1

Sk

1
t

dt

= C
n
∑
k=1

(log Sk+1 − log Sk)

= C(log Sn+1 − log S1) ≥ C log Sn+1
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We define Tn(p) ∶= 1
log n ∑

n
k=1

θk(p)
k , and find

d
dp

Tn(p) ≥ C
log Sn+1

log n
.

Integrating the above inequality from p1 to p gives

Tn(p)− Tn(p1) ≥ C
log Sn+1(p1)

log n
(p − p1).

Note that for all p, 1
log n Tn(p)→ θ(p) for n →∞, so that

θ(p) ≥ θ(p)− θ(p1) = lim sup
n→∞

(Tn(p)− Tn(p1))

≥ C lim sup
n→∞

log Sn+1(p1)

log n
(p − p1)

≥ C ⋅ (p − p1) > 0, (3.8)

since p1 > p̃c. Because p > p̃c is arbitrary, it follows that p̃c = pc.
This concludes the proof of Theorem 3.1. However, we proved
slightly more than this theorem. Namely, the above computation
also gave us an interesting result on the behaviour of the model
in the supercritical parameter range p > pc. If we let p1 → pc in
3.8, we find the following result.

Proposition 3.5. Consider Bernoulli bond percolation on a transitive
graph G with parameter p. There exists a constant c > 0 such that for
all p > pc,

θ(p) = Pp(0←→∞) ≥ c(p − pc). (3.9)

The above bound is known as a mean-field lower bound, since
is is satisfied with equality in high dimensions. To be specific,
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for Bernoulli percolation on Zd with d ≥ 11, we know the value
of the critical exponent

β ∶= lim sup
p↓pc

log θ(p)
log(p − pc)

= 1.

See [29] for details. For general graphs, Proposition 3.5 implies
the bound β ≤ 1.

3.3 the hutchcroft proof

There is a different way of utilizing the OSSS inequality to prove
the sharp phase transition for Bernoulli percolation. This is the
proof by Hutchcroft [37]. It uses a different decision tree as in the
previous section, and is to some extent inspired by the original
proof for the sharpness of the phase transition by Aizenman and
Barsky [1]. This proof is also valid for the random-cluster model,
but we will again present the proof for the case of Bernoulli
percolation. Another appeal of this proof is that it gives two
inequalities between certain critical exponents.

Let C be the cluster of 0:

C = {x ∈ V ∶ 0←→ x}.

We will prove the following result regarding the sharpness of
the phase transition.

Theorem 3.6. Consider Bernoulli bond percolation on a transitive
graph G with parameter p. If p < pc, then there exists a constant c > 0
such that for all n ∈ N,

Pp(∣C∣ ≥ n) ≤ exp(−cn).
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This statement is stronger than Theorem 3.1, since Pp(0 ←→
∂Λn) ≤ Pp(∣C∣ ≥ n). However, if ∣∂Λn∣ grows slower than ex-
ponentially in n, then both statements are equivalent. We will
prove the following differential inequality, from which Theorem
3.6 will follow.

Proposition 3.7. Consider Bernoulli percolation with parameter 0 <

p < 1. Then for all λ > 0, and all n ∈ N,

d
dp

Pp(∣C∣ ≥ n)

≥
1
8

1
p(1− p)

(
1− e−λ

Ep[1− exp(−λ∣C∣/n)]
− 1)Pp(∣C∣ ≥ n).

Proof. In order to prove this inequality, we define the Boolean
function fn ∶= 1{∣C∣ ≥ n}. Note that this function only depends
on the edges in Λn, which we again denote by En. We will
colour a vertex in Λn green with probability q > 0, independent
of the the other vertices, and independent of the percolation
configuration. Let G denote the set of green vertices. To encode
this setting, we consider the probability space (Ω ×Ξ,F , Pp,q),
where Ω = {0, 1}En , Ξ = {0, 1}Λn , the σ-algebra F is given by the
power set, and Pp,q is given by

Pp,q(ωe = 1, ω f = 0, ∀e ∈ I,∀ f ∈ Ic, ∣G∣ = k)

= p∣I∣(1− p)∣En ∣−∣I∣qk(1− q)∣Λn ∣−k,

for all I ⊆ En, and k = 0, 1, . . . , ∣Λn∣. In this way, we retain the
product structure, although not all variables have the same law.
Therefore, Theorem 2.16 is not directly applicable, but its proof
can be made to accompany this situation without any problems.
Let Ep,q denote the expectation with respect to Pp,q. We define a
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second Boolean function gn ∶= 1{0
Λn
←→ G}. It then follows from

Theorem 2.16, that for a decision tree T determing the value of
gn, we have

Cov( fn, gn) ≤ 2 ∑
e∈En

Infe( fn)Reve(T)+ 2 ∑
v∈Λn

Infv( fn)Revv(T).

(3.10)

We first note that the colour of v, ξv, is independent of fn, so
that Infv( fn) = 0 for all v ∈ Λn. Hence, the second term in the
above inequality vanishes. Furthermore, the decision tree can
reveal all ξv, without deteriorating the bound.

3.3.1 Bound on the Revealment

We now describe the decision tree T. It starts by revealing ξv

for all v ∈ Λn. We then know which vertices in Λn are green.
The decision tree subsequently explores the clusters of these
vertices inside Λn. In particular, we then know if Cn contains a
green vertex. The pseudocode of T is given in Algorithm 2, and
a possible realization is shown in Figure 3.2.

By exploring from the green vertices, we can find a good
uniform bound on the revealment of an edge. For e = {x, y}, we
the obtain

Reve(T) ≤ Pp,q(x
Λn
←→ G)+Pp,q(y

Λn
←→ G).

We set q ∶= 1− e−λ/n, with λ > 0. Since the colour of the vertices
is independent of the percolation configuration, we find

Reve(T) ≤ Ep[1− exp(−λ∣Cx
n ∣/n)]+Ep[1− exp(−λ∣C

y
n ∣/n)],

where

Cv
n ∶= {w ∈ Λn ∶ v

Λn
←→ w},
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for v ∈ Λn do
Reveal ξv;

end
G ∶= {x ∈ Λn ∶ ξv = 1};
A ∶= {{x, y} ∈ En ∶ x ∈ G or y ∈ G};
R ∶= ∅;
while A ≠ ∅ do

Take minimal e ∈ A;
Reveal ωe;
R ∶=R∪ {e};
A ∶= A/{e};

A ∶= A∪ {{x, y} ∈ En/R ∶ x
R
←→ G or y

R
←→ G};

if 0
R
←→ G then return 1;

end
return 0;

Algorithm 2: The exploration algorithm T.

0

Λn

Figure 3.2: The decision tree T exploring the clusters of green vertices.
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for v ∈ Λn. Disregarding the restriction of the connections being
inside Λn, and using translation invariance, we obtain

Reve(T) ≤ 2Ep[1− exp(−λ∣C∣/n)]. (3.11)

We now turn our attention to the covariance between fn and
gn. We compute

Cov( fn, gn) = Ep,q[ fngn]−Ep,q[ fn]Ep,q[gn]

= Pp(∣C∣ ≥ n)(Pp,q(0
Λn
←→ G ∣ ∣C∣ ≥ n)−Pp,q(0

Λn
←→ G))

= Pp(∣C∣ ≥ n)(Ep,q[1− exp(−λ∣C0
n∣/n) ∣ ∣C∣ ≥ n]

−Ep,q(1− exp(−λ∣C0
n∣/n)]).

If ∣C∣ ≥ n, then also ∣C0
n∣ ≥ n. Hence,

Cov( fn, gn) ≥ Pp(∣C∣ ≥ n)((1− e−λ)−Ep,q[1− exp(−λ∣C∣/n)]).

Combining this with (3.10) and (3.11) gives

∑
e∈En

Infe( fn) ≥
1
4
(

1− e−λ

Ep[1− exp(−λ∣C∣/n)]
− 1)Pp(∣C∣ ≥ n).

To prove the differential inequality it thus remains to compute
the derivative of Pp(∣C∣ ≥ n) with respect to p. We use Russo’s
formula, Propopsition 3.2, to find

d
dp

Pp(∣C∣ ≥ n) = ∑
e∈En

Pp(e is pivotal for ∣C∣ ≥ n)

=∑
e∈E

1
2p(1− p)

Pp( fn(ω) ≠ fn(ωe↦π))

=∑
e∈E

1
2p(1− p)

Infe( fn),

by Proposition 2.14, and where ωe↦π is the configuration ob-
tained from ω by resampling ωe independently with law Ber(p).
This completes the proof of Proposition 3.7.
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3.3.2 Analysis of the differential inequality

We will now Theorem 3.6. The analysis of the differential in-
equality of Proposition 3.7 is quite similar to the analysis of
the inequality in Section 3.2.2. Let ψn(p) ∶= Pp(∣C∣ ≥ n), and
Sn ∶= Sn(p) = ∑n

k=1 ψk. Since 1− e−x ≤ x ∧ 1, we can bound

Ep[1− exp(−λ∣C∣/n)] ≤
λ

n
E[∣C∣∧

n
λ
] ≤

λ

n
S⌈n/λ⌉.

We further bound 1
4

1
p(1−p) ≥ 1, and obtain for all n ∈ N,

d
dp

ψn(p) ≥
1
2
(

n
λ(1− e−λ)

S⌈n/λ⌉
− 1)ψn(p). (3.12)

We again define an auxiliary critical point:

p̃c ∶= sup{p ∶ lim sup
n→∞

log Sn(p)
log n

< 1}.

Let p < p1 < p2 < p̃c. Then there exists a constant α > 0 such that
Sn(p2) ≤ n1−α, for n large enough. Taking λ = 1, it then follows
from (3.12), that for n large,

d
dp

log ψn(p2) ≥
1
2

nα(1− 1/e)−
1
2

.

Since Sn(p′) ≤ Sn(p2) for all p′ ≤ p2, we can integrate the above
inequality from p1 to p2, to obtain

− log ψn(p1) ≥ log ψn(p2)− log ψn(p1)

≥ (
1
2

nα(1− 1/e)−
1
2
)(p2 − p1),
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so that

ψn(p1) ≤
√

e exp (−
1
2
(1− 1/e)(p2 − p1)nα).

In particular, ∑∞
k=1 ψk(p1) converges. Applying (3.12) again with

λ ↓ 0, gives for all n ∈ N,

d
dp

ψn(p) ≥
1
2
(

n
∑∞

k=1 ψk(p1)
− 1)ψn(p),

so that

Pp(∣C∣ ≥ n) = ψn(p) ≤
√

e exp (
p1 − p

∑∞
k=1 ψk(p1)

n).

This proves the desired exponential decay below p̃c. If desired,
the constant

√
e can be removed by changing the constant in the

exponential accordingly.
It thus remains to show that p̃c = pc. This part is also similar

to the calculation in Section 3.2.2, apart of the −1 term, which
is somewhat of a nuisance. Let p̃c < p1 < p. We define Tn(p) ∶=

1
log n ∑

n
k=1

ψk(p)
k . We set λ = 1 in (3.12), and compute

d
dp

Tn(p) ≥
1

2 log n

n
∑
k=1

((1− 1/e)
ψk(p)

Sk
−

ψk(p)
k

) (3.13)

For the first term we set C = (1− 1/e)/2, and find

1− 1/e
2 log n

n
∑
k=1

ψk(p)
Sk

≥
C

log n

n
∑
k=1
∫

Sk+1

Sk

1
t

dt

=
C

log n

n
∑
k=1

(log Sk+1 − log Sk)

= C
log Sn+1 − log S1

n
≥ C

log Sn+1

log n
,
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so that

d
dp

Tn(p) ≥ C
log Sn+1

log n
−

1
2 log n

n
∑
k=1

ψk(p)
k

.

Integrating the above inequality from p1 to p, gives

Tn(p)−Tn(p1) ≥ (p− p1)(C
log Sn+1(p1)

log n
−

1
2 log n

n
∑
k=1

ψk(p1)

k
)

For n →∞, we have Tn(p) → Pp(∣C∣ =∞), so that by the defini-
tion of p̃c, we have

Pp(∣C∣ =∞) ≥ Pp(∣C∣ =∞)−Pp1(∣C∣ =∞)

≥ (p − p1)(C −
Pp(∣C∣ =∞)

2
).

We conclude

Pp(∣C∣ =∞) ≥
C(p − p1)

1+ (p − p1)/2
> 0.

This shows p̃c = pc, and completes the proof of Theorem 3.6.
We remark that by taking p1 ↓ pc, we have a different proof for

Proposition 3.5, since ∣C∣ =∞ if and only if 0←→∞. Furthermore,
Proposition 3.7 implies two other inequalities for certain critical
exponents, namely

γ ≤ δ − 1, ∆ ≤ γ + 1,

if the exponents exists, where

Ep[∣C∣
k] ≈ (pc − p)−(k−1)∆−γ, as p ↑ pc, k ∈ N

Ppc(∣C∣ ≥ n) ≈ n−1/δ, as n →∞. (3.14)

See [37] for the proof of these inequalities.





4
T H E C O R R U P T E D C O M PA S S M O D E L

Let G = (V, E) be an infinite, connected, locally finite, vertex-
transitive graph. We consider the corrupted compass model on
G, which is informally defined as follows. Each vertex v ∈ V
is corrupted with probability p, independently of each other.
For each corrupted vertex, we declare each neighbouring edge
to be open. On the other hand, for an uncorrupted vertex, we
choose one neighbouring edge to be open uniformly at random.
A possible configuration of this model on the triangular lattice
is shown in Figure 4.1.

The corrupted compass model was introduced by Hirsch,
Holmes and Kleptsyn [30] in the context of reinforcement mod-
els for neural networks. They show that in a class of reinforce-
ment models the reinforced edges almost surely do not form an
infinite cluster if the reinforcement is strong enough. They show
this by making a coupling between the reinforcement model and
the corrupted compass model, and subsequently showing that
in the latter model there exists only finite clusters almost surely
for p small enough.

The corrupted compass model is not only relevant to rein-
forcement models, as the model was also used in the context of
alignment percolation by Beaton, Grimmett and Holmes [3]. In
the one-choice alignment percolation model on Zd introduced
by these authors, a Bernoulli site percolation configuration with
parameter p is taken. Subsequently, for each occupied vertex,
one of the 2d directions is chosen uniformly at random the entire
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Figure 4.1: The corrupted compass model on the triangular lattice.

line segment in this direction until the next occupied vertex is
declared blue. The authors then ask the question whether there
exists an infinite blue cluster. The main problem in the analysis
of this model is the lack of monotonicity in p. Nevertheless, the
authors show that for p large enough there exists no infinite
blue clusters almost surely. They show this by dominating the
alignment percolation model by a corrupted compass model
with parameter 1− p. Since the corrupted compass model does
not have infinite clusters for 1− p small enough, the one-choice
alignment percolation model does not have any infinite clusters
for p large enough.

This chapter is an adaption of a paper that has appeared in
Indagationes Mathematicae [4].

4.1 framework and main result

We will show that this model exhibits a sharp phase transition
as well. Since the state of the edges depend on each other, the
proofs of Aizenman and Barsky, and of Menshikov cannot be
applied in this model. The φp(S) proof of Duminil-Copin and
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Tassion faces the same issue. Therefore, we have to rely on the
strategy using the OSSS inequality.

For v ∈ V, let N (v) denote the set of edges that include v, and
let d = ∣N (v)∣ (which is independent of v). We fix an arbitrary
vertex 0 ∈ V to be the origin. For v, w ∈ V, let d(v, w) denote the
graph distance between v and w in G. For n ∈ N, we define the
balls

Λv
n ∶= {w ∈ V ∶ d(v, w) ≤ n}, ∂Λv

n ∶= {w ∈ V ∶ d(v, w) = n}.

For v = 0, we drop part of the notation: Λn = Λ0
n and ∂Λn = ∂Λ0

n.
For a bond configuration η and v, w ∈ V, we say that v ←→ w,
if there is a path of open edges starting in v and ending in w.
Similarly, for A ⊂ V we say that v ←→ A, whenever there exists
w ∈ A, such that v ←→ w. We say that 0 ←→ ∞, if for all n ∈ N,
we have 0←→ ∂Λn. We define the critical value for percolation
as

pc ∶= sup{p ∶ Pp(0←→∞) = 0}.

Hirsch, Holmes and Kleptsyn [30] have shown that, for p small
enough, all clusters are finite almost surely. From this it follows
that pc > 0. On the other hand the corrupted compass model
dominates the Bernoulli site percolation model that only uses the
corrupted compasses. Therefore, we have pc ≤ psite

c (G), where
psite

c (G) is the critical threshold for Bernoulli site percolation on
G. Depending on the graph G, this threshold is nontrivial, so
that also pc < 1.

The corrupted compass model is defined by the probability
space (Ω,F , Pp), where

Ω =∏
v∈V

[0, 1]×N (v),
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the σ-algebra F is generated by the cylindrical events, and Pp is
the product measure of the uniform measures on [0, 1]×N (v).
For ω ∈ Ω, we denote Uv ∶= ωv,1, i.e., the uniform random
variable on [0, 1] associated to v, and Av ∶= ωv,2, the uniformly
chosen edge in N (v). We define Xv ∶= (Uv, Av). Let K denote
the set of corrupted vertices, i.e.,

K ∶= {v ∈ V ∶ Uv < p}.

We can obtain the bond configuration η as follows. Let η ∶ Ω →
{0, 1}E be given by

ηe(ω) ∶= 1{e ∈ ⋃
v∈K
N (v) ∪ ⋃

v∈Kc
{Av}} .

We say that an edge e is open whenever ηe = 1, and closed
otherwise.

The sharpness of the phase transition of this model is formu-
lated as follows.

Theorem 4.1. Consider the corrupted compass model with parameter
p. For all p < pc, there exists a constant c > 0, such that for all n ∈ N,

Pp(0←→ ∂Λn) ≤ exp(−cn).

Similar to the case of Bernoulli percolation, we also obtain a
lower bound in the supercritical regime.

Proposition 4.2. There exists a constant c > 0, such that for all
p > pc,

Pp(0←→∞) ≥ c(p − pc).
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4.2 proof of the sharp phase transition

We will apply the OSSS inequality to the Boolean function fn ∶=

1{0 ←→ ∂Λn} for fixed n ∈ N. This function only depends on
the variables in {Xv ∶ v ∈ Λn}. Therefore, we define the truncated
space

Ωn = ⊗
v∈Λn

[0, 1]×N (v),

so that we can directly apply the OSSS inequality for finite
probability spaces, Theorem 2.16. We write θn(p) ∶= Pp(0 ←→
∂Λn). For 1 ≤ k ≤ n, let Tk be the decision tree that explores
the cluster of ∂Λk. This decision tree determines f , since a path
from 0 to ∂Λn must go through ∂Λk. To precisely describe the
decision tree Tk, we need a subalgorithm Determine(v), for v ∈

Λn. When Determine(v) is called, Xv is revealed, as well as Xw

for all neighbours w of v. This determines the state of the edges
in N (v). The decision tree Tk then start by setting the active set
of vertices, A, equal to ∂Λk. The algorithm then goes trough
the vertices in the active set, according to some predetermined
ordering of the vertices. If a vertex v is taken from the active
set, Determine(v) is called, and the active set is updated by
removing v, and adding vertices that are now connected to ∂Λv

by the revealed edges. This process continues until a connection
0←→ ∂Λn is found, or until the active set is empty. In either case,
it is then determined whether there is a connection from 0 to
∂Λn. For x ∈ Λn, and A ⊆ Λn, we say that x

R
←→ A, whenever

there is a path from x to some y ∈ A, using only open edges in
{N (v) ∶ v ∈R}.

The pseudocode of Tk is given in Algorithm 3. A possible
realization of the exploration process carried out by Tk for the
model on the triangular lattice is shown in Figure 4.2.
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Function Determine(v):
for w ∈ Λv

1 do
Reveal Xw;
R ∶=R∪ {w};
A ∶= A/{w};

end

A ∶= ∂Λk;
R ∶= ∅;
while A ≠ ∅ do

Take minimal v ∈ A;
Determine(v);

A ∶= A∪ {w ∈ Λn/R ∶ w
R
←→ ∂Λk};

if 0
R
←→ ∂Λn then return 1;

end
return 0;

Algorithm 3: The exploration algorithm Tk.
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Λk Λn
0

w Λw
d(w,∂Λk)

v

Figure 4.2: The decision tree Tk exploring the cluster of ∂Λk. When
Xv is revealed, there must be a neighbour w of v that is
connected to ∂Λk.
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Applying the OSSS inequality to f and Tk, and summing over
k gives

nθn(p)(1− θn(p)) ≤ ∑
v∈Λn

n
∑
k=1

Revv(Tk)Infv( f ). (4.1)

4.2.1 Bound on the Revealment

By summing over k, we essentially average over all spheres ∂Λk
with radius up to n, so that the average revealment is small. This
is in spirit the same as taking 1 ≤ k ≤ n uniformly at random. We
note that if Xv is revealed by Tk, it follows that Λv

1 ←→ ∂Λk. We
obtain

n
∑
k=1

Revv(Tk) ≤
n
∑
k=1

Pp(Λv
1 ←→ ∂Λk)

≤
n
∑
k=1

∑
w∈Λv

1

Pp(w ←→ ∂Λk)

≤
n
∑
k=1

∑
w∈Λv

1

Pp(w ←→ ∂Λw
d(w,∂Λk)).

Using translation invariance, we have

n
∑
k=1

Pp(w ←→ ∂Λw
d(w,∂Λk)) ≤ 2

n
∑
k=1

Pp(0←→ ∂Λk).

If we define Sn = Sn(p) ∶= ∑n
k=1 θk(p), it follows that

n
∑
k=1

Revv(Tk) ≤ 2dSn.
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4.2.2 Bound on the Influence

For ω ∈ Ω, we say that v ∈ V is a pivotal corrupted compass
for an event A, whenever 1A(ω) ≠ 1A(ω̂v), where ω̂v is ob-
tained from ω by corrupting v if v is uncorrupted in ω, or by
uncorrupting v if v is corrupted in ω. Russo’s formula gives

d
dp

θn(p) =
d

dp
Pp(0←→ ∂Λn)

= ∑
v∈Λn

Pp(v piv. corr. compass for 0←→ ∂Λn).

This can be proven similarly as Theorem 3.2. The aim is to relate
the above quantity to the total influence, so that we obtain a
differential inequality. By Proposition 2.14, we have

∑
v∈V

Infv( f ) =
1
2
∑
v∈V

Pp( f (ω) ≠ f (ω̃v)),

where ω̃v is obtained from ω by resampling Xv independently.
If f (ω) = 0, and f (ω̃v) = 1, it follows that v is not corrupted
in ω. Therefore, corrupting v will put f to 1, because this will
open at least as much edges as the resampling of Xv. Thus, v
is a pivotal corrupted compass. The same argumentation holds
when f (ω) = 1 and f (ω̃v) = 0. We obtain

∑
v∈V

Infv( fn) ≤
1
2
∑
v∈V

Pp(v piv. corr. compass for 0←→ ∂Λn).

Hence,

d
dp

θn(p) ≥ 2 ∑
v∈V

Infv( fn).
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Combining the OSSS inequality, Theorem 2.16, and the bounds
on the revealment and the influence gives

d
dp

θn(p) ≥
n

2dSn
θn(p)(1− θn(p)). (4.2)

4.2.3 Analysis of the differential inequality

To finish the proof, we distinguish between the cases pc = 1
and pc < 1. First we assume that pc = 1. Let p0 < pc. We have
θn(p0)→ 0 as n →∞. Let N be such that θn(p0) ≤

1
2 for all n > N.

Then for all p ≤ p0 and for all n > N we have

d
dp

θn(p) ≥
n

2dSn
θn(p)(1− θn(p))

≥
n

2dSn
θn(p)(1− θn(p0)) ≥

1
4d

n
Sn

θn(p).

From this inequality we can obtain the sharpness of the phase
transition, which we will show in the next section. First we
will find the same differential inequality, but with a different
constant for the case pc < 1. We can assume that d ≥ 3, since the
only infinite, connected, transitive graph with d = 2 is Z with
nearest neighbour edges, for which pc = 1. Let pc < δ < 1. For
n ≥ 2 and p ≤ δ, we bound

1− θn(p) ≥ 1− θ2(δ) = Pδ(0 /←→ ∂Λ2).

We can construct a configuration in which 0 /←→ ∂Λ2, and which
has positive probability, as follows. Let v be the vertex that the
compass of 0 points to, i.e., A0 = {0, v}. We require that the
compass of v points back to 0, which happens with probability
1/d. Furthermore we want 0, v, and all other neighbours of 0
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and v to be uncorrupted, which costs at most (1− δ)2d. Finally,
we want that the compasses of the other neighbours of 0 and
v do not point towards 0 or v, which happens with probability
( d−2

d )2d−2. All together we find

Pδ(0 /←→ ∂Λ2) ≥ (1− δ)2d 1
d
(

d − 2
d

)
2d−2

=∶ C0 > 0,

so that for all n ≥ 2 and all p ≤ δ, we have

d
dp

θ′n(p) ≥ C1
n
Sn

θn(p), (4.3)

where C1 ∶= C0/2d. Since C1 ≤ 1/4d, the above inequality holds
for the case where pc = 1 as well, for n > N. The remainder of
the proof of Theorem 4.1 and Proposition 4.2 involves analyzing
the differential inequality as in Section 3.2.2, and we omit this
part of the proof.





5
T H E C O N TA C T P R O C E S S

The contact process is a stochastic process that can be used to
model the spread of an infection on a network. We use a graph
to model the network, and each vertex of the graph has a state
associated with it that is either 0 or 1. The vertices in state 1 are
thought of as infected, while the vertices in state 0 are thought
of as healthy. The dynamics of the system are as follows: the
state of a vertex changes from 1 to 0 with rate 1, independently
of the rest of the system. On the other hand, if a vertex is in
state 0, its state changes to 1 with rate λ times the number of
neighbours that are infected, where λ ≥ 0 is the parameter of the
model. A common choice for the graph is the hypercubic lattice
Zd, with d ≥ 1, which is also the graph we will work with.

The contact process undergoes two phase transitions as λ

increases. The first one occurs at the critical point λc: above this
point the infection survives indefinitely with positive probability,
if at least one vertex is infected at the start. The second phase
transition occurs at λp ≥ λc, this is the point above which there
exists an infinite cluster of infected vertices with positive proba-
bility in the limit as the time t →∞, again in the case where some
vertex is infected initially. For both transitions we can talk about
a sharp phase transition. For the transition at λc, this means that
the infection only survives for an exponentially small time if
λ < λc. This is a classical result of Bezuidenhout and Grimmett
[10], but we will give a new proof using the OSSS inequality in
this chapter. Afterwards, we will focus on the transition at λp,
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and prove several results regarding the sharpness of this phase
transition.

5.1 preliminaries

We start by introducing the objects and results pertaining to the
contact process that we need to prove the sharpness of the phase
transitions, starting with the definition of the model. For a wider
exposition of the contact process we refer to Stochastic Interacting
Systems by Liggett [42].

We consider the graph Zd with nearest neighbour edges. For
n ∈ N, and x ∈ Zd, we define the boxes

Λx
n ∶= {y ∈ Zd ∶ ∥x− y∥∞ ≤ n}, ∂Λx

n ∶= {y ∈ Zd ∶ ∥x− y∥∞ = n}.

For x = 0 we suppress part of the notation: Λn ∶= Λ0
n, and ∂Λn ∶=

∂Λ0
n. We denote the space of configurations by S = {0, 1}Zd

. This
set is equipped with the product topology τ, that is, the topology
generated by the sets

{{η ∈ S ∶ ηv = a} ∶ v ∈ Zd, a ∈ {0, 1}}.

This topology is metrized by the metric ρ on S, given by

ρ(η, ξ) ∶= ∑
v∈Zd

α(v)∣ηv − ξv∣,

for a summable α ∶ Zd → (0,∞). The space S is a compact set
with respect to this topology, since, informally speaking, sets
in the topology only fix the state of finitely many vertices. We
further denote the set of continuous functions from S to R by
C(S). We also associate the σ-algebra S with S, generated by

S ∶= σ({{ηv = 1} ∶ v ∈ Zd}),
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similar to the σ-algebra we defined for Bernoulli percolation. For
a configuration η ∈ S, we write η⊕v for the configuration with
the status of v flipped:

η⊕v
w =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

1− ηv if v = w,

ηw if v ≠ w.

For λ ≥ 0, we define the flip rates c ∶ Zd × S → [0,∞), by

c(v, η) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

λ∑w∼v ηw if ηv = 0,

1 if ηv = 1,

where w ∼ v denotes that w is a neighbour of v. The above sum
is therefore the number of infected neighbours of v. Note that
the flip rates are uniformly bounded by 2dλ + 1. To define the
contact process by means of a generator, we define for all λ ≥ 0
the operator Lλ ∶ D → C(S), given by

Lλ f (η) = ∑
v∈Zd

c(v, η)( f (η⊕v)− f (η)),

on the domain

D ∶= { f ∈ C(S) ∶ ∑
v∈Zd

sup
η∈S

∣ f (η⊕v)− f (η)∣ <∞}.

The closure of Lλ is a probability generator that generates the
contact process.

Definition 5.1. The contact process with parameter λ ≥ 0 is the Feller
process with generator Lλ on the domain D(L).

The fact that Lλ is a probability generator follows from the
fact that the flip rates are uniformly bounded. See Theorem 4.3
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of Liggett [44] for details. We do not have an explicit form of the
domain D(Lλ), but we know that D ⊂ D(Lλ) is a core for Lλ.

Feller processes are defined on the space of càdlàg functions:

X = {σ∶ [0,∞)→ S ∶ σ is right-continuous and has left limits}.

This space is equipped with a σ−algebra A, which is gener-
ated by the one-dimensional projections, as well as the right-
continuous filtration (At)t≥0 such that σ is adapted to this filtra-
tion. Furthermore, there exists a unique family of probability
measures (Pη)η∈S corresponding to the contact process that we
have defined by means of the generator, one measure for each
starting configuration, satisfying Pη(σv(0) = ηv, v ∈ Zd) = 1.

5.2 the graphical representation

It is more convenient to work with an alternative construction
of the process than to work with the generator directly. In this
section we introduce the graphical representation for the contact
process. This a construction of the process which is essential in
the analysis of the process. For every vertex v ∈ Zd, we create a
time axis [0,∞), so that we obtain the space-time Zd × [0,∞). We
then create a marked Poisson process on every axis {v}× [0,∞):
with rate 1 there appears a point marked by a cross, which
corresponds to the healing of v, i.e., a change of σv from 1 to
0. Furthermore, for every neighbour w of v, we have a point
marked with an arrow that points to w, which corresponds to
the infection of w by v. We denote the set of marks by

M ∶= {×}∪ I, I ∶= {±e1,±e2, . . . ,±ed},

where ei is the ith unit vector, so that the mark ±ei corresponds
to an infection of v ± ei by v. The marked Poisson point process
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has rate 2dλ + 1, however for our purposes it is convenient to
rescale time so that the combined process has rate 1.

We now consider a Poisson point process on Zd × [0,∞) with
intensity 1. In order to obtain a coupling between contact pro-
cesses with different values of λ, we associate to every Poisson
point x two random variables Ux and ρx, which are indepen-
dent of each other and of the point process. Furthermore, Ux is
uniformly distributed between 0 and 1, and ρx ∈ I uniformly at
random. From these random variables, we obtain the mark mx

of x as follows:

mx ∶=

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

× if Ux ≤
1

2dλ+1 ,

ρx otherwise.
(5.1)

Let ω be the configuration of the Poisson point process along
with the marks (Ux, ρx) for all Poisson points x. We denote the
probability space associated to ω by (Ω,F , Pλ). If we want to
emphasize the initial configuration, we write P

η
λ. We further

denote by P the coupling of the processes for different values of
λ.

Let s < t. An active space-time path from (v, s) to (w, t) is a
path in Zd × [0,∞) starting in (v, s) and ending in (w, t) that is
allowed to move upward in time without hitting points marked
with a cross and is allowed to move to a neighbouring vertex
along arrows that point to that particular vertex. We denote
the event that such a path exists by (v, s) Ð→ (w, t). Moreover,

for Λ ⊆ Zd, we define (v, s)
Λ
Ð→ (w, t) to be the event that a
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space-time path exists from (v, s) to (w, t) using only vertices in
Λ. In general we define for A, B, Λ ⊆ Zd, and T1, T2 ⊆ [0,∞),

(A, T1)
Λ
Ð→(B, T2) ⇐⇒

∃v ∈ A, w ∈ B, s ∈ T1, t ∈ T2 s.t. (v, s)
Λ
Ð→ (w, t).

We will now define a stochastic process σ ∶ [0,∞)→ S. We fix
an initial configuration η ∈ S, and set σv(0) ∶= ηv. For t > 0, let
σv(t) be the status of v at time t, that is,

σv(t) = 1 ⇐⇒ ∃w ∈ Zd s.t. σw(0) = 1, (w, 0)Ð→ (v, t).

A realization of the graphical representation for the process on
Z is shown in Figure 5.1, along with the values of σv(t), for
several vertices v ∈ Z. In this realization all vertices are set to be
infected initially.

The first useful consequence of the graphical representation
of the contact process is the self-duality property of the process.

Proposition 5.2 (Self-duality). Let A, B ⊆ Zd. The contact process
is self-dual in the following sense:

Pλ((A, 0)Ð→ (B, t)) = Pλ((B, 0)Ð→ (A, t)), (5.2)

for all t ≥ 0 and λ ≥ 0.

Proof. The statement follows from considering the graphical
representation with time reversed, and reversing the direction
of the arrows: we call a path from (w, t) to (v, s), t ≥ s a reversed
active space-time path when it starts in (w, t) and ends in (v, s),
and that is allowed to move backward in time without hitting
points marked with a cross and is allowed to move from u ∈ Zd

to a neighbouring vertex u ± ei at time t′, whenever there is a
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t

1 1 1 1 1 1 1 1 1 1 1

1 1 100 0 0 0 0 0 0

Zd

Figure 5.1: The graphical representation of the contact process

point x ∈ ω ∩ {u± ei}× {t′} with mx = ∓ei. Note that the existence
of such paths have the same law as normal active space-time
paths. This then implies the duality relation. We refer to Theorem
1.7 of Chapter 4 of [43] for a more formal proof.

A second useful result is a bound on the rate of growth of the
infection.

Proposition 5.3. For all λ > 0 and all c > 0, there exists a > 0, such
that for all t > 0, and s ≤ t,

∑
v∈Zd

∥v∥∞≥at

Pλ((0, 0)Ð→ (v, s)) ≤ a exp(−ct). (5.3)

Moreover, for all c > 0, there exists a > 0 and C > 0, such that for all
t > 0,

Pλ((0, 0)Ð→ (∂Λ⌈at⌉, [0, t])) ≤ C exp(−ct). (5.4)
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Proof. We refer to [42], Proposition 1.21 and Lemma 1.22, for
the full proof of (5.3), and only give a short sketch here. The
growth of the infection can be dominated by suppressing all
healings. This corresponds to ignoring all crosses in the graphi-
cal representation. The resulting process is a branching random
walk, which is well-understood. In particular we have exponen-
tial bounds on the probability that this process grows linearly.
For (5.4) we assume without loss of generality that t ≥ 0 is
integer-valued. We note that (0, 0)Ð→ (∂Λ⌈at⌉, [0, t]) is indepen-
dent of the configuration of the Poisson points on ∂Λ⌈at⌉ × [0, t].
Therefore, we find for 1 ≤ s ≤ t,

Pλ((0, 0)Ð→ (∂Λ⌈at⌉, [s − 1, s]))

≤
1

exp(−1/(2dλ + 1))
∑

v∈∂Λ⌈at⌉
Pλ((0, 0)Ð→ (v, [s − 1, s]),

∣{x ∈ ω ∩ {v}× [s − 1, s] ∶ mx = ×}∣ = 0)

≤ e ∑
v∈∂Λ⌈at⌉

Pλ((0, 0)Ð→ (v, s))

≤ ae exp(−ct),

by (5.3). Summing k from 1 to t gives

Pλ((0, 0)Ð→(∂Λ⌈at⌉, [0, t]))

≤
t
∑
k=1

Pλ((0, 0)Ð→ (∂Λ⌈at⌉, [s − 1, s]))

≤ aet exp(−ct)

≤ C exp(−ct/2),

for some C > 0, and all t ≥ 0. Since c > 0 can be chosen arbitrarily,
the result follows.
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5.2.1 Russo’s Formula

We can prove a version of Russo’s formula that is valid on
the graphical representation, similar to Russo’s formula for
Bernoulli percolation, Proposition 3.2. This formula will be es-
sential to obtain the desired differential inequalities. In order to
state the formula, we first introduce the concept of an increasing
event. Informally speaking, an event is increasing if it still occurs
after the addition of infection arrows or the removal of healings.

Definition 5.4. An event A ∈ F is called increasing, whenever
1A(ω) ≤ 1A(ω′) for all ω, ω′ ∈ Ω such that

{x ∈ ω ∶ mx = ρx} ⊆ {x ∈ ω′ ∶ mx = ρx}, and

{x ∈ ω ∶ mx = ×} ⊇ {x ∈ ω′ ∶ mx = ×}.

If an event A is increasing, then 1A(ω) ≤ 1A(ω̃), where ω̃ is
obtained from ω by changing the mark of a point x ∈ ω with
mx = × to ±ei for any 1 ≤ i ≤ d. We further define the notion of
pivotality in this context:

Piv ∶= {x ∈ ω ∶ 1A(ω) ≠ 1A(ω⊕x)},

where ω⊕x is the configuration obtained from ω by changing
the mark of x from × to ρx or vice versa, and leaving all other
points unchanged.

Proposition 5.5 (Russo’s formula for the contact process). Let
A ∈ F be an increasing event that depends only on the space-time
Λn × [0, t], for some n ∈ N and t ≥ 0. Then, Pλ(A) is differentiable
with respect to λ for any λ > 0, and

d
dλ

Pλ(A) =
2d

(2dλ + 1)2 Eλ∣Piv∣. (5.5)
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Proof. Let A be an increasing event that depends on the space-
time Λn × [0, t], for n ∈ N and t ≥ 0. We will condition on the
location of the points in ω. Let G be the σ-Algebra generated
by the locations of the points in ω. The marks mx are thus
independent of G. For δ > 0, we can write

Pλ+δ(A)−Pλ(A) = E[Eλ+δ[1A∣G]−Eλ[1A∣G]],

since increasing λ only changes the marks of the points, not
the location of the points. For x ∈ ω, denote by Ex

λ+δ[⋅∣G] the
conditional expectation with respect to the measure that samples
the mark of x with parameter λ + δ, and all other marks with
parameter λ. Then, using the fact that A is increasing, we obtain

Ex
λ+δ[A ∣G]−Ex

λ[A ∣G]

= Ex
λ[1{

1
2d(λ + δ)+ 1

≤ Ux ≤
1

2dλ + 1
, x ∈ Piv} ∣G]

=
2dδ

(2dλ + 1)(2d(λ + δ)+ 1)
Ex

λ[1{x ∈ Piv} ∣G],

since the mark of x is independent of the event that x is pivotal,
and of G. It now follows that

d
dλ

Eλ[1A ∣G] = lim
δ↓0

∑
x∈ω

Ex
λ+δ[1A ∣G]−Ex

λ[1A ∣ η]

δ

=∑
x∈η

C(λ)Eλ[1{x ∈ Piv} ∣G] = C(λ)Eλ[∣Piv∣ ∣G],

where C(λ) = 2d/(2dλ + 1)2. Therefore, we find

Pλ+δ(A)−Pλ(A) = E[∫
δ

0
C(λ + s)Eλ+s[∣Piv∣ ∣G]ds]

= ∫
δ

0
C(λ + s)E[Eλ+s[∣Piv∣ ∣G]]ds (5.6)

= ∫
δ

0
C(λ + s)Eλ+s∣Piv∣ds, (5.7)
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by Fubini’s theorem. Since A only depends on ω ∩ Λn × [0, t],
we have the following domination

∣Piv∣ ≤ ∣ω ∩ Λn × [0, t]∣,

which is integrable. It follows that Eλ∣Piv∣ is continuous in λ.
Therefore, if we divide both sides of (5.7) by δ and take the limit
δ ↓ 0, we obtain

d
dλ

Pλ(A) = C(λ)Eλ∣Piv∣,

where we used the continuity of Eλ∣Piv∣.

5.2.2 BK Inequality

In this section we state a BK inequality for the graphical rep-
resentation of the contact process. This inequality bounds the
probability of the disjoint occurrence of two events by the prod-
uct of the probabilities of both events. We say that A, B ∈ F occur
disjointly, denoted A ○ B, when there are two disjoint subsets
Zd × [0,∞) such that the configuration on each of these subsets
assures the occurrence of one of the events. More precisely,

A ○ B ∶= {ω ∈ Ω ∶ ∃K, L ⊆ Zd × [0,∞), K ∩ L = ∅, s.t.

[ωK] ⊆ A, [ωL] ⊆ B},

where [ωK] and [ωL] are the cylinder events generated by K
and L:

[ωM] ∶= {ω′ ∈ Ω ∶ ω ∩ M = ω′ ∩ M}, M ⊆ Zd × [0,∞).

Theorem 5.6 (BK Inequality for the contact process). Let A, B ∈ F

be increasing events that depends only on the space-time Λn × [0, t],
for some n ∈ N and t ≥ 0. Then, for any λ > 0,

Pλ(A ○ B) ≤ Pλ(A)Pλ(B). (5.8)
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This inequality is names after Van den Berg and Kesten, who
proved the result for Bernoulli percolation [8]. In this case the
assumption that the events are increasing can be removed, which
is the celebrated result of Reimer [50]. In the case of the graphical
representation of the contact process the result is proven by
Bezuidenhout and Grimmett in Section 2 of [10]. They make a
minor technical assumption regarding the stability of the events
with respect to a discretization of the space. The same result
for more general marked Poisson processes and without the
technical assumption is given by Van den Berg. [6].

5.2.3 The graphical representation yields the contact process

In this section we show that the process obtained by the graphi-
cal representation is a Feller process, and furthermore that it is
the contact process, which we defined by means of a probability
generator.

Proposition 5.7. The process (σt)t≥0 obtained by the graphical repre-
sentation is a Feller process.

Proof. The properties that make up the definition of a Feller
process, as given in Definition 3.1 of [44], follow directly from
the properties of the Poisson process, with the exception of the
Feller property. In particular the Markov property follows from
the domain Markov property of the Poisson process. For the
Feller property, we let t ≥ 0, f ∈ C(S), and (ηn)n∈N ⊆ S, such that
ηn → η ∈ S with respect to the metric ρ. In particular, ηn → η

pointwise, as n →∞.
The graphical representation allows for a natural coupling

between the processes with different initial configurations. We
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underline the dependence on the initial configuration ξ ∈ S by
defining

σ
ξ
v(t) = 1 ⇐⇒ ∃w ∈ Zd s.t. ξw(0) = 1, (w, 0)→ (v, t).

If we let P̃λ be the coupling between different initial configura-
tions, we can use Jensen’s inequality to find

lim
n→∞

∣E
ηn
λ
[ f (σ(t))]−E

η
λ
[ f (σ(t))]∣

≤ lim
n→∞

Ẽλ[∣ f (σηn(t))− f (ση(t))∣]

= Ẽλ[ lim
n→∞

∣ f (σηn(t))− f (ση(t))∣],

by the dominated convergence theorem, since f is bounded. We
will now show that σηn(t) converges pointwise to ση(t) almost
surely, und thus also almost surely with respect to ρ. Let v ∈ Zd.
Using Proposition 5.2 and Proposition 5.3, we see that there
exists a random N ∈ N, such that

(w, 0) /→ (v, t) for all w ∈ Zd/Λv
N .

Using this observation, it follows that σηn(t) converges pointwise
to ση(t), almost surely, since ηn → η pointwise. We conclude

lim
n→∞

∣E
ηn
λ
[ f (σ(t))]−E

η
λ
[ f (σ(t))]∣

≤ Ẽλ[ lim
n→∞

∣ f (σηn(t))− f (ση(t))∣] = 0,

since f is continuous.

Proposition 5.8. The Feller process (σ(2dλ+1)t)t≥0 is the contact pro-
cess with parameter λ.
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Proof. Let L′ ∶ D′ → C(S) be the generator of (σt)t≥0, which is
given by

L′ f (η) = lim
t↓0

E
η
λ[ f (σt)− f (η)]

t
,

where the domain D′ is the set of functions in C(S) for which the
above limit exists with respect to the supremum norm. Using the
chain rule, we see that (σ2d(λ+1)t)t≥0 has generator (2dλ+ 1)L′. It
suffices to show that this generator coincides with Lλ on D and
that D ⊆ D′. It then immediately follows that D(L) = D′, since D
is a core of Lλ and since the domain of a probability generator
cannot be extended. Let ε > 0 and f ∈ D. There exists n ∈ N such
that

∑
v∈Λc

n

sup
η∈S

∣ f (η⊕v)− f (η))∣ < ε.

If we can show that

lim
t↓0

∥(2dλ + 1)
1
t

Eη[ f (σt)− f (η)]−Lλ f (η)∥
∞
= 0,

then f ∈ D′ and Lλ f = (2dλ + 1)L′ f . The configuration σt can
be obtained from η by subsequently changing the status of the
vertices at which the configurations disagree. We do this such
that the state of the first vertex we change is inside Λn. Let An(t)
be the number of Poisson points in Λn+1 × [0, t). Then, An(t) = 1
with probability e−∣Λn+1∣t∣Λn+1∣t, and An(t) ≥ 2 with probability at
most Ct2, for a constant C > 0. Since f is a continuous function on
a compact set, we can find M > 0 such that ∣ f ∣ ≤ M. If An(t) ≥ 2,
we bound ∣ f (σt) − f (η)∣ ≤ 2M. If on the other hand An(t) = 1,
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the configurations σt and η differ in at most one vertex of Λn.
We obtain

lim
t↓0

∥(2dλ + 1)
1
t

Eη[ f (σt)− f (η)]−Lλ f (η)∥
∞

≤ lim
t↓0

∥(2dλ + 1)
1
t

E
η
λ
[1{An(t)=1} ∑

v∈Λn

1{(σt)v≠ηv}

⋅ ( f (η⊕v)− f (η))]−Lλ f (η)∥
∞

+ ∥(2dλ + 1)
1
t

E
η
λ
[1{An(t)=1} ∑

w∈Λc
n

1{(σt)w≠ηw}

⋅ sup
ξ∈S

( f (ξ⊕w)− f (ξ))]∥
∞
+ 2MCt.

By considering all possible locations and marks of the Poisson
point, we see that the status of v ∈ Λn changes with conditional
probability c(v, η)/(2dλ + 1)∣Λn+1∣, given that An(t) = 1. Simi-
larly, the configurations σt and η differ at a vertex w ∈ Λc

n with
probability c(w, η)t +O(t2). We find

lim
t↓0

∥(2dλ + 1)
1
t

Eη[ f (σt)− f (η)]−Lλ f (η)∥
∞

≤ lim
t↓0

∥
1
t

Pλ(An(t) = 1) ∑
v∈Λn

c(v, η)

∣Λn+1∣
( f (η⊕v)− f (η))

−Lλ f (η)∥
∞
+ (2dλ + 1)ε

= ∥ ∑
v∈Λc

n

c(v, η)( f (η⊕v)− f (η))∥
∞
+ (2dλ + 1)ε

≤ (4dλ + 4)ε.

Taking ε → 0 finishes the proof.
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5.3 sharp phase transition at λ c

Let η0 ∈ S be the configuration for which only 0 is infected:
η0

v = 1{v = 0}. We define the critical point above which the
infection survives indefinitely with positive probability:

λc ∶= λc(Zd) ∶= sup{λ ∶ Pη0
(σ(t) /≡ 0, ∀t ≥ 0) = 0}. (5.9)

The first thing to note about this critical point is that λc ≥ 1/2d.
This bound follows by dominating the process by a branch-
ing random walk, which arises if we suppress all healings.
This branching random walk can in turn be compared with
a branching process by disregarding all spatial information, and
recording only the number of particles. The branching process
is well-known to die out if the expectation of its offspring distri-
bution, 2dλ in our case, is less than 1. On the other hand we can
bound

λc(Zd) ≤ λc(Z), d ≥ 1,

by a natural domination that arises from the graphical repre-
sentation. For the process on Z it is known that the infection
survives if λ ≥ 2, which was proven by Holley and Liggett [31].
In particular it follows that λc(Z) ≤ 2. On the whole, we see that
λc is non-trivial.

We record one more result regarding the phase transition
at λc before we move on to the sharpness of this transition.
The celebrated result of Bezuidenhout and Grimmett is that
the contact process dies out for λ = λc [9]. This is in particular
remarkable, since the corresponding question remains open for
Bernoulli percolation, which is in many ways a simpler model.
A minor consequence of this result is that λc(Z) < 2, which is
however relevant for our purposes in Section 5.5.
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We now focus on the sharpness of the phase transition at λc.

Theorem 5.9. Consider the contact process on Zd with parameter
λ < λc. Then there exists a constant c > 0, such that for all t ≥ 0,

Pη0
(σ(t) /≡ 0) ≤ exp(−ct). (5.10)

This result is due to Bezuidenhout and Grimmett [10], who
exploit the dynamical renormalization scheme of Grimmett and
Marstrand [27]. A simpler proof was given by Swart using har-
monic functions [51]. We will give a new proof using the OSSS
inequality here.

Proof. Let t > 0. Instead of considering the process on Zd directly,
it is more convenient to first consider the process on the torus of
size N ≫ t. Let TN = (ΛN , ET

N) be the graph on the vertex set ΛN

with nearest neighbour edges, complemented by the edges that
join the boundaries together. Note that this is a transitive graph.
Let 0 < ε ≪ t be such that t ∈ εZ. We partition the time axis of
every vertex in intervals of size ε. For v ∈ Λn and s ∈ εZ with
0 ≤ s < t, Let (Ωv,s,Fv,s, Pλ;v,s) be the probability space for the
marked Poisson process on {v} × [s, s + ε). Then Ω = ∏v,s Ωv,s,
and Pλ is the associated product measure. We can apply the
OSSS inequality, Theorem 2.20, to this product space.

Let ft ∶= ft(N) ∶= 1{(0, 0)
TN
Ð→ (ΛN , t)}, and

θN
t (λ) ∶= P

η0

λ ((0, 0)
TN
Ð→ (ΛN , t)).

For z ∈ εZ, ε ≤ z < t, we introduce a decision tree Tz that deter-
mines the value of ft. Informally speaking, this decision tree
explores the graphical representation starting from time z. It
explores both forward and backward in time. If there is a space-
time connection from (0, 0) to some vertex at time t, then this
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connection must go through time z, so that this decision tree
determines the value of ft.

We now describe the decision tree in more detail. We introduce
the active sets A,B ⊆ {(v, s) ∶ v ∈ ΛN , s ∈ εZ, 0 ≤ s < t}, where A
is the set of variables from which we will explore forward in
time, and B is the set of variables from which we will explore
backward in time. At the start of the algorithm we set

A ∶= A0 ∶= {(v, z) ∶ v ∈ ΛN}, B ∶= B0 ∶= {(v, z− ε) ∶ v ∈ ΛN}.

The forward exploration process and the backward exploration
process are two separate processes that do not interact with each
other, since the forward exploration takes place in the space-time
after time z, and the backward exploration before time z. We
choose to subsequently do one step for each process in order
to have a single algorithm. One step in the forward process is
to reveal a variable from A, and add any variables to A that
have not been revealed yet and can now be reached using the
revealed variables.

The backward exploration is slightly more complicated, since
it is unknown from which variables we can reach the explored
space-time cluster. During one step of the backward exploration
process we reveal one variable (v, s) ∈ B, and add the unrevealed
variables (w, s′) to B that can potentially be connected to the
explored space-time cluster, depending on the configuration
ωw,s′ . The pseudocode of the decision tree is given in Algorithm
4. A realization of this exploration algorithm is shown in Figure
5.2.
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A ∶= {(v, z) ∶ v ∈ ΛN};
B ∶= {(v, z − ε) ∶ v ∈ ΛN};
R ∶= ∅;
while A∪B ≠ ∅ do

Take minimal (v, s) ∈ A;
Reveal ωv,s;
R ∶=R∪ {(v, s)};
A ∶= A/{(v, s)};

A ∶= A∪ {(w, s) ∈ (Zd × εZ)/R ∶ z ≤ s < t, (Λn, z)
R
Ð→

(w, s)};

Take minimal (v, s) ∈ B;
Reveal ωv,s;
B ∶= B/{(v, s)};
B ∶= B ∪ {(w, s′) ∈ (ΛN × εZ)/R ∶

0 ≤ s′ ≤ z − ε, ∃x ∼ w, s′′ ∈ [s′, s′ + ε), (x, s′′)
R
Ð→

(ΛN , z)};
B ∶= B ∪ {(w, s′) ∈ (ΛN × εZ)/R ∶ 0 ≤ s′ ≤

z − ε, (w, s′ + ε)
R
Ð→ (ΛN , z)};

if (0, 0)
R
Ð→ (ΛN , t) then return 1;

end
return 0;

Algorithm 4: The exploration algorithm Tz.
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ΛN

0

z

t

Figure 5.2: The algorithm Tz exploring the forward and backward
space-time clusters of (ΛN , z). The revealed variables are
shaded blue, while the forward and backward space-time
clusters of (ΛN , z) are shown in green.
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5.3.1 Bound on the revealment

We will now bound the revealment of a variable ωv,s by the
decision tree Tz. We first assume that z ≤ s < t, so that the
variable is revealed in the forward exploration process. We find

Revv,s(Tz) ≤ Pλ((Λn, z)Ð→ (v, s)) = Pλ((v, 0)Ð→ (ΛN , s− z)),

by the duality property of the contact process. We now use trans-
lation invariance, which follows the fact that TN is transitive, to
find

Revv,s(Tz) ≤ Pλ((0, 0)Ð→ (ΛN , s − z)) = θN
s−z(λ).

Now suppose 0 ≤ s ≤ z − ε, so that the variable is revealed in the
backward exploration cluster. Then either (v, s + ε)Ð→ (ΛN , z),
or there exists a vertex w ∼ v, such that (w, s′) Ð→ (ΛN , z), for
some s′ ∈ [s, s + ε). We can therefore bound

Revv,s(Tz) ≤ Pλ((v, s + ε)Ð→ (ΛN , z))

+∑
w∼v

Pλ(∃s′ ∈ [s, s + ε) ∶ (w, s′)Ð→ (ΛN , z))

≤ Pλ((v, s + ε)Ð→ (ΛN , z))

+∑
w∼v

Pλ((w, s + ε)Ð→ (ΛN , z))+ 2dλε,

since if (w, s′)Ð→ (ΛN , z) for some s′ ∈ [s, s + ε), but (w, s + ε)↛

(ΛN , z), there must be an infection arrow in v × [s, s + ε). Using
the duality property and translation invariance, we find

Revv,s(Tz) ≤ (2d + 1)Pλ((0, 0)Ð→ (ΛN , z − s − ε))+ 2dλε

= (2d + 1)θN
z−s−ε(λ)+ 2dλε.
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Summing over z gives

∑
z∈εZ
ε≤z<t

Revv,s(Tz) ≤∑
z<s

Revv,s(Tz)+ ∑
s≤z<t

Revv,s(Tz)

≤ ∑
0≤z<t

θN
z (λ)+ (2d + 1) ∑

0≤z<t
θN

z (λ)+ 2dλt

≤ (2d + 2) ∑
z∈εZ
0≤z<t

θN
z (λ)+ 2dλt. (5.11)

5.3.2 Analysis of the differential inequality

We now apply the OSSS inequality, Theorem 2.20, and sum over
z to find

⌊t/ε⌋θN
t (λ)(1− θN

t (λ)) ≤ ∑
v∈ΛN

∑
s∈εZ
0≤s<t

∑
z∈εZ
ε≤z<t

Revv,s(Tz)Infv,s( ft). (5.12)

Applying (5.11) gives

⌊t/ε⌋

(2d + 2)∑ z∈εZ
0≤z<t

θN
z (λ)+ 2dλt

θN
t (λ)(1− θN

t (λ))

≤ ∑
v∈ΛN

∑
s∈εZ

0≤s≤t−ε

Infv,s( ft). (5.13)

In order to obtain a differential inequality, we bound the sum of
the influences by the expected number of pivotal Poisson points
and relate this to the derivative to λ by Russo’s formula. Let

A ∶= (0, 0)
TN
Ð→ (ΛN , t). Note that this is an increasing event. We

define the pivotal set of Poisson points for A and a configuration
ω:

Piv ∶= {x ∈ [ω] ∶ 1A(ω) ≠ 1A(ω⊕x)},
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where ω⊕x is the configuration obtained from ω by changing
the mark of x from × to ρx or vice versa, and leaving all other
points unchanged. When we resample ωv,s, the value of 1A
can only change when there is at least one point in ωv,s ∪ ω̃v,s.
Furthermore, the probability that there are two or more points
in ωv,s ∪ ω̃v,s is of order O(ε2). Therefore, since ω and ω̃ are
interchangeable, we can bound

Infv,s(A) ≤ 1
2 2Pλ(1A(ω) ≠ 1A(ω̃), ∣[ωv,s]∣ = 1, ∣[ω̃v,s]∣ = 0)

+O (ε2) .

Under the above event, [ωv,s] must contain a pivotal point. There-
fore,

Infv,s(A) ≤ Pλ(Piv∩ [ωv,s] ≠ ∅)+O (ε2)

≤ Eλ∣Piv∩ [ωv,s]∣+O (ε2) .

Summing over all v and s gives

∑
v∈ΛN

∑
s∈εZ

0≤s≤t−ε

Infv,s(A) ≤ Eλ∣Piv∣+O (ε) .

Combining this inequality with (5.13), and letting ε → 0 gives

Eλ∣Piv∣ ≥ lim
ε↓0

⌊t/ε⌋

(2d + 2)∑ z∈εZ
0≤z<t

θN
z (λ)+ 2dλt

θN
t (λ)(1− θN

t (λ)).

Using Russo’s formula, Proposition 5.5, and bounding (1 −
θN

t (λ)) ≥ 1/(2dλ + 1), gives

d
dλ

θN
t (λ) ≥

1
(2d + 2)(2dλ + 1)

t
SN

t
θN

t (λ), (5.14)
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for all t > 0, where

SN
t (λ) ∶= ∫

t

0
θN

z (λ)dz.

From here the analysis is similar to the analysis in Section
3.2.2, however we still have to let N →∞ at the right moment,
so that we have a result on Zd instead of on the torus. Let
θt(λ) ∶= Pλ((0, 0) Ð→ (Zd, t)), and St ∶= St(λ) ∶= ∫

t
0 θz(λ)dz.

Note that θN
t (λ)→ θt(λ) as N →∞. We define

λ̃c ∶= sup{λ ∶ lim sup
t→∞

log St

log t
< 1}.

We will show that this alternative critical point is equal to λc,
and prove Theorem 5.9 in the process. Let λ1 < λ2 < λ̃c. Then
there exists α > 0 and t0 > 0 such that St(λ2) ≤ t1−α for all t ≥ t0.
Let t ≥ t0 and let a > 0 be such that for N ≥ at, we have

Pλ2((0, 0)Ð→ (Λc
N , t)) ≤ a exp(−t).

The constant a > 0 exists by Proposition 5.3. We then find

SN
t (λ2) = ∫

t

0
θN

z (λ2)dz ≤ ∫
t

0
θz(λ2)dz + (t + 1) exp(−t)

≤ t1−α + (t + 1) exp(−t).

We write C(λ) ∶= 1/(2d + 2)(2dλ + 1), and use (5.14) to obtain

d
dλ

log θN
t (λ) ≥ C(λ2)

t
t1−α + (t + 1) exp(−t)

≥
C(λ2)

2
tα,

for all λ ≤ λ2, and all t > t1, for some t1 ≥ t0. Integrating the
above inequality from λ1 to λ2 gives

− log θN
t (λ1) ≥ log θN

t (λ2)− log θN
t (λ1) ≥

C(λ)

2
tα(λ2 − λ1).
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Letting N →∞ gives

θt(λ1) = lim
N→∞

θN
t (λ1) ≤ exp (−

C(λ2)

2
(λ2 − λ1)tα).

This proves stretched exponential decay below λ̃c. From this fact
we can conclude that limt→∞ St(λ1) <∞. We can then bootstrap
the argument to find proper exponential decay for all λ0 < λ1 ∶

θt(λ0) ≤ exp (−
C(λ1)

2
(λ1 − λ0)t),

for all t ≥ t1. It follows that λ̃c ≤ λc.
Now suppose λ̃c < λ1 < λ2. Similar as in Section 3.2.2, we

define for t > 1

TN
t (λ) ∶=

1
log t ∫

t

0

θN
z (λ)

z
dz, Tt(λ) ∶=

1
log t ∫

t

0

θz(λ)

z
dz.

We use 5.14 to find

d
dλ

TN
t =

1
log t ∫

t

0

d
dλ θN

z (λ)

z
dz ≥

C(λ)

log t ∫
t

0

θN
z (λ)

SN
z (λ)

dz

=
C(λ)

log t ∫
t

0

d
dz

log SN
z (λ)dz

= C(λ)
log SN

t (λ)

log t
.

Hence,

TN
t (λ2)− TN

t (λ1) ≥ C(λ2)
log SN

t (λ2)

log t
(λ2 − λ1).

Letting N →∞, gives

Tt(λ2)− Tt(λ1) ≥ C(λ2)
log St(λ2)

log t
(λ2 − λ1).
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Defining θ(λ) ∶= limt→∞ θt(λ), we can let t → ∞ and use the
definition of λ̃c to conclude

θ(λ2) ≥ θ(λ2)− θ(λ1) = lim
t→∞

Tt(λ2)− Tt(λ)

≥ C(λ2)(λ2 − λ1). (5.15)

This proves λ̃c = λc, and completes the proof of Theorem 5.9.

Remark 5.10. We could have avoided the use of the torus, by applying
the OSSS inequality directly on the full space Zd. This would have
required a version of the OSSS inequality that is a combination of The-
orem 2.20 and 2.27: defined for Boolean functions on infinite products
of infinite probability spaces. We have chosen not to include this most
general version of the OSSS inequality for simplicity. Furthermore, the
application of Russo’s formula would have been more delicate, since
the event in question would depend on the entire space-time.

The above analysis of the diffential inequality gave us more
than the exponential decay in the subcritical phase. Similar to
Proposition 3.5, we obtain a lower-bound in the supercritical
regime. Inequality (5.15) implies the following corollary, since
C(λ) is bounded away from 0 around λc.

Proposition 5.11. There exists a constant c > 0, such that for all
λ > λc,

Pη0
(σ(t) /≡ 0, ∀t > 0) ≥ c((λ − λc)∧ 1). (5.16)

This lower bound also appeared as a by-product of the original
proof for the sharp phase transition at λc by Bezuidenhout and
Grimmett [10].
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5.3.3 Exponential bound in the supercritical regime

The exponential decay of the survival time of the infection in
the subcritical regime is complemented by an exponential decay
result in the supercritical regime. If λ > λc, there is a positive
probability that the infection survives indefinitely. However, if
the infection dies out, it must do so exponentially quickly. To
state this result, we introduce the stopping time

τ ∶= inf{t ≥ 0 ∶ σ(t) ≡ 0},

so that τ =∞ if the infection survives indefinitely.

Theorem 5.12. Let λ > λc. There exists a constant c > 0 such that for
all t ≥ 0,

Pη0
(t ≤ τ <∞) ≤ exp(−ct). (5.17)

This result can be found as Theorem 2.30 in [44]. The proof
uses ideas of Durrett [20], building on the comparison between
the contact process with oriented percolation by Bezuidenhout
and Grimmett [9]. The OSSS inequality does not seem to lend
itself to proving this result: if we take ft ∶= 1{t ≤ τ <∞} as the
Boolean function, it seems hard to find a decision tree such that
the revealment of a variable by this decision tree can be bounded
by an event of the form {s ≤ τ <∞}, for some s > 0 depending
on the variable in question.

5.4 sharp percolation phase transition for µ t

In this section we will consider a different phase transition
than in the previous section. Instead of looking at the spread of
infection through time, we take a fixed time t ≥ 0, and investigate
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the configuration at this fixed time. In particular we ask whether
there exists an infinite cluster of infected vertices at that time.
We first introduce the relevant measure on S, which is obtained
from the process by projecting on time t. We consider the process
started with all vertices infected: η̄ ≡ 1. For t ≥ 0 we define the
measure on (S,S) by

µt(A) = P
η̄
λ(σ(t) ∈ A),

for A ∈ S. Note that µs dominates µt for all s ≤ t, in the sense
that

µt(A) ≤ µs(A), s ≤ t, (5.18)

for all increasing events A ∈ S. (We call A ∈ S increasing when-
ever 1A(η) ≤ 1A(η′) for all η, η′ ∈ S with η ≤ η′.) We write µ ⪯ ν

if ν dominates µ. Naturally, the measure µt exhibits dependen-
cies between the states of different vertices, which makes the
analysis much more involved compared to the case of Bernoulli
percolation, for which there are no dependencies under Pp. Nev-
ertheless, the question we investigate is the same as for Bernoulli
percolation: is there a non-trivial percolation phase transition,
and is this transition sharp? In order to define this phase tran-
sition, we recall the events from Chapter 3 on Bernoulli perco-
lation: For v, w ∈ V, we say that v ←→ w whenever ηw = 1 and
there exists a path from v to w for which every intermediate
vertex u satisfies ηu = 1. In particular, we do not require v to be
infected. This is a slightly uncommon definition of a connection
event in site percolation, but is technically convenient for our
purposes. For A ⊆ V, we say that v ←→ A whenever there exists
w ∈ A with v ←→ w. We say that v ←→ ∞, whenever v ←→ ∂Λv

n
for all n ∈ N. We define the critical point for percolation as

λp(t) ∶= sup{λ ∶ µt(0←→∞) = 0}.
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From the domination of µt, (5.18), it follows that λp(t) is in-
creasing in t. There is no simple argument to show that λp(t)
is non-trivial. In fact, if t < − log pc(Zd), then λp(t) = 0, since by
taking λ = 0 we are left with only recoveries, which results in a
Bernoulli percolation process. However, we can prove that for
large t, λp(t) is non-trivial.

Proposition 5.13. The critical thresholds for the contact process satisfy

lim
t→∞

λp(t) ≥ λc.

In particular, there exists t0 > 0 such that λp(t) > 0, for all t > t0.

Proof. Suppose λ < λc. We will show that µt(∣C∣ ≥ n) → 0 as
n →∞, for t large enough, where C = C(t) is the cluster of 0 at
time t. We partition Zd into boxes of size L ∈ N. We identify a
box with its minimal corner:

Bx ∶ xL + {0, . . . , L − 1}d, x ∈ Zd.

In particular Bx ∩ By = ∅, for x ≠ y. We say that a box Bx is
good whenever 0←→ Bx. Suppose ∣C∣ ≥ n. Then there are at least
⌈n/Ld⌉ good boxes. Moreover, B0 is good, and the indices of the
boxes form a connected subset of Zd that contains 0. Such a
subset of Zd is called a lattice animal. There exists a constant
A ∈ N independent of n such that the number of lattice animals
of size n is at most An. See Lemma 9.3 of Penrose [49] for details.
Let D = D(C) be the lattice animal of size equal to ⌈n/Ld⌉ with
D ⊆ C obtained from C in a deterministic way. (E.g. we can
choose the good boxes with lexicographical minimal indices that
form a connected subset of Zd.) We find

µt(∣C∣ ≥ n) = ∑
D lattice animal

∣D∣=⌈n/Ld⌉

µt(C ≥ n,D = D).
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We can define truncated versions of σv(t) as follows. For L ∈ N

we define

σL
v (t) ∶= 1{(Λv

L, 0)Ð→ (v, t) ∪ (∂Λv
L, [0, t])Ð→ (v, t)}, v ∈ Zd.

Then σL
v (t) ≥ σv(t). Furthermore, σL

v (t) only depends on the
space-time (Λv

L, [0, t]), so that σL
v (t) and σL

w(t) are independent
whenever ∥v − w∥∞ > 2L. We now take D′ ⊆ D with ∣D′∣ ≥

⌈n/Ld⌉/3d deterministically, such that ∥x−y∥∞ ≥ 3 for all x, y ∈ D′.
It then follows that σL

v (t) and σL
w(t) are independent for all v ∈ Bx

and w ∈ By, for all x, y ∈ D′ with x ≠ y. We say that a box Bx is L-
infected if there exists v ∈ Bx satisfying σL

v (t) = 1. The event that
Bx is L-infected is independent of the event that By is L-infected
for all x, y ∈ D′, x ≠ y. Hence,

µt(∣C∣ ≥ n)

= ∑
D lattice animal

∣D∣=⌈n/Ld⌉

Pλ(C(t) ≥ n,D = D, Bx is L-infected ∀x ∈ D′)

≤ ∑
D lattice animal

∣D∣=⌈n/Ld⌉

Pλ(∃v ∈ Bx ∶ σL
v (t) = 1∀x ∈ D′)

≤ A⌈n/Ld⌉Pλ(∃v ∈ B0 ∶ σL
v (t) = 1)⌈n/Ld⌉/3d

≤ ((A3d
Pλ(∃v ∈ B0 ∶ σL

v (t) = 1)− A3d
µt(∃v ∈ B0 ∶ ηv = 1)

+ A3d
µt(∃v ∈ B0 ∶ ηv = 1))

1/3d

)
⌈n/Ld⌉

.

We now take L ∶= t ∈ N large enough such that

A3d
(Pλ(∃v ∈ B0 ∶ σL

v (t) = 1)− µt(∃v ∈ B0 ∶ ηv = 1))

= A3d
(Pλ(∃v ∈ B0 ∶ (∂Λv

L, [0, t])Ð→ (v, t)))

≤ CA3d
td exp(−t) <

1
4

,
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where we used the union bound and Proposition 5.3. We can
simultaneously take t large enough such that

A3dµt(∃v ∈ B0 ∶ ηv = 1) ≤ A3dtdµt(η0 = 1) <
1
4

,

which is possible by Theorem 5.9 and Proposition 5.2. It follows
that

µt(∣C∣ ≥ n) ≤ exp (−
log(2)
(3t)d n)→ 0, n →∞.

In Section 5.5 we give an argument for limt→∞ λp(t) <∞, so
that λp(t) is indeed non-trivial for large t. We will now show
that the corresponding phase transition is sharp.

Theorem 5.14. Let t ≥ 0, and suppose λ < λp(t). There exists a
constant c ∶= c(t) > 0, such that for all n ∈ N,

µt(0←→ ∂Λn) ≤ exp(−cn). (5.19)

Proof. This proof is in some sense a combination of the proof for
Bernoulli percolation, Section 3.2, and the proof for the sharp
phase transition at λc. Similar to the latter proof, we first consider
the process on a finite domain. Let t ≥ 0, and N, n ∈ N. We then
consider the space-time ΛN+n × [0, t). We take ε > 0, such that
t ∈ εZ, and partition this space by taking Ωv,s = {v} × [s, s + ε),
for s ∈ εZ with 0 ≤ s < t, and v ∈ ΛN+n. The probability space
then satisfies Ω = ∏v,s Ωv,s. We define the Boolean function

fn ∶= 1{0
ΛN+n
←→ ∂Λn}. We further define θN

n (λ) ∶= µt(0
ΛN+n
←→ ∂Λn).

Unsurprisingly, we define a decision tree that determines
the value of fn. It is in this algorithm that the union of both
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proofs is most apparent. As in the proof for Bernoulli percola-
tion, we introduce several decision trees Tk, for 1 ≤ k ≤ n. The
tree Tk then explores the connections from ∂Λk at time t. To
determine whether a vertex is infected at this time, we need
to explore space-time to see if there is a space-time connection
(ΛN+n, 0) Ð→ (v, t). For this exploration process we define a
subalgorithm Explore(v) that explores the backward space-time
cluster of v, the same as the backward exploration process of
Algorithm 4, however we do not stop this process once we have
a connection (ΛN+n, 0)Ð→ (v, t). Instead, we explore the entire
backward space-time cluster of v. After this process is com-
pleted, the state of v is known, and we either add it to the set of
known infected vertices C, or the set of known healthy vertices
T . The main algorithm then resembles Algorithm 1. It explores
the space cluster of ∂Λk by taking vertices from the set of active
set A and determining their state. If at some point the algorithm

sees 0
C
←→ ∂Λn, it returns 1. Otherwise, if the algorithm runs out

of vertices to explore, it returns 0. The pseudocode of Tk is given
in Algorithm 5.

5.4.1 Bound on the Revealment

Recall that the state of w is irrelevant for the event w ←→ ∂Λk.
Therefore, for every vertex w ∈ A, we have w ←→ ∂Λk. When
a variable (v, s) is revealed, this occurs during the exploration
of the backward space-time cluster of a vertex w ∈ A, when
(Λ1

v, s) Ð→ (w, t). Since w ∈ A, we know w ←→ ∂Λk. Moreover,
the variable (v, s) was not revealed during the exploration pro-
cesses of the vertices that make up this path. It follows that
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Function Explore(v):
B ∶= {(v, t − ε)};
while B ≠ ∅ do

Take minimal (v, s) ∈ B;
Reveal ωv,s;
R ∶=R∪ {(v, s)};
B ∶= B/{(v, s)};
B ∶= B ∪ {(w, s′) ∈ (ΛN+n × εZ)/R ∶

0 ≤ s′ < t, ∃x ∼ w, s′′ ∈ [s′, s′ + ε), (x, s′′)
R
Ð→ (v, t)};

B ∶= B ∪ {(w, s′) ∈ (ΛN+n × εZ)/R ∶

0 ≤ s′ < t, (w, s′ + ε)
R
Ð→ (v, t)};

end

A ∶= ∂Λk;
C ∶= ∅;
R ∶= ∅;
T ∶= ∅;
while A ≠ ∅ do

Take minimal v ∈ A;
Explore (v);
A = A/{v};
if σv(t) = 1 then C = C ∪ {v} ;
if σv(t) = 0 then T = T ∪ {v} ;

A ∶= A∪ {w ∈ ΛN+n/(C ∪ T ) ∶ w
C
←→ ∂Λk};

if 0
C
←→ ∂Λn then return 1;

end
return 0;

Algorithm 5: The exploration algorithm Tk.
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(Λ1
v, s) Ð→ (w, t) and w ∈ A, w ←→ ∂Λk occur disjointly. Using

the union bound and the BK inequality, Theorem 5.6, we obtain

Revv,s(Tk) ≤ ∑
w∈ΛN+n

Pλ(w ←→ ∂Λk ○ (Λ1
v, s)

ΛN+n
Ð→ (w, t))

≤ ∑
w∈ΛN+n

Pλ(w
ΛN+n
←→ ∂Λk)Pλ((Λ1

v, s)
ΛN+n
Ð→ (w, t)).

Summing over k gives

n
∑
k=1

Revv,s(Tk) ≤ ∑
w∈ΛN+n

n
∑
k=1

Pλ(w
ΛN+n
←→ ∂Λk)Pλ((Λ1

v, s)
ΛN+n
Ð→ (w, t))

≤ 2SN
n ∑

w∈ΛN+n

Pλ((Λ1
v, s)

ΛN+n
Ð→ (w, t)),

similar to 3.5, where SN
n ∶= SN

n (λ) ∶= ∑n
k=0 θN

k (λ). We now use the
bound on the growth of the infection, Proposition 5.3, with c = 1,
to find a constant a > 0 such that

∑
w∈ΛN+n

Pλ((Λ1
v, s)

ΛN+n
Ð→ (w, t))

≤ 2d ∑
w∈ΛN+n

Pλ((v, 0)
ΛN+n
Ð→ (w, t − s))

≤ 2d(a(t − s))d + 2d ∑
w∈ΛN+n ∶

∥v−w∥≥a(t−s)

Pλ((v, 0)
ΛN+n
Ð→ (w, t))

≤ 2d(at)d + 2da exp(−(t − s))

≤ 2d(at)d + 2da.

Setting C(t) ∶= 4d(at)d + 4da, gives ∑n
k=1 Revv,s(Tk) ≤ C(t)SN

n (λ).
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5.4.2 Analysis of the differential inequality

From here the proof resembles the proof for the sharpness of

the phase transition at λc to a large extent. We set A ∶= 0
ΛN+a
←→

∂Λn, which is an increasing event. By using Russo’s formula,
Proposition 5.5, as in Section 5.3.2 Similar as we obtain

∑
v∈ΛN+n

∑
s∈εZ
0≤s<t

Infv,s( fn) ≤ E∣Piv∣+O(ε) =
d

dλ
θN

n (λ)+O(ε),

where Piv is the set of Poisson points pivotal for A. Using the
OSSS inequality, Theorem 2.20, the bound on the revealment
and letting ε → 0 gives

d
dλ

θN
n (λ) ≥

n
∑
k=1

∑
v∈ΛN+n

∑
s∈εZ
0≤s<t

Infv,s( fn)Revv,s(Tk)

≥
1

C(t)
n

SN
n

θN
n (λ)(1− θN

n (λ)). (5.20)

We can bound

1− θN
n (λ) ≥

1
(2dλ + 1)2d ,

since if the last Poisson point on each of the time axis {v}× [0, t)
is a healing for all v ∼ 0, 0 is not connected to ∂Λn. We thus
obtain

d
dλ

θN
n (λ) ≥

1
C(t)(2dλ + 1)2d

n
SN

n
θN

n (λ),

from which we can obtain the sharpness of the phase transition
similarly to Section 5.3.2. During this analysis we also let N →∞,
noting that θN

n (λ) is increasing in N. We define

θn(λ) = lim
N→∞

θN
n (λ) = µt(0←→ ∂Λn), Sn ∶= lim

N→∞
SN

n .
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We then consider the alternative critical point

λ̃p(t) ∶= sup{λ ∶ lim sup
n→∞

log Sn

n
< 1}.

If λ0 < λ1 < λ2 < λ̃p, we obtain with the same bootstrap argument
as in Section 5.3.2

θn(λ0) ≤ exp (−
1

C(t)(2dλ2 + 1)2d n),

so that λ̃p(t) ≤ λp(t). If on the other λ̃p(t) < λ1 < λ2, we define

TN
n (λ) ∶=

1
log n

n
∑
k=1

θN
k (λ)

k
,

Tn(λ) ∶= lim
N→∞

TN
n (λ) =

1
log n

n
∑
k=1

θk(λ)

k
.

We then obtain as in Section 5.3.2,

TN
n (λ2)− TN

n (λ1) ≥
1

C(t)(2dλ2 + 1)2d
log SN

n (λ2)

log n
(λ2 − λ1),

so that by letting N →∞ and subsequently n →∞, we find

θ(λ2) ≥ θ(λ2)− θ(λ1) ∶= lim
n→∞

(Tn(λ2)− Tn(λ1))

≥
1

C(t)(2dλ2 + 1)2d (λ2 − λ1).

It follows that λ̃p(t) = λp(t), which finishes the proof.

From the analysis of the differential inequality we obtained a
lower bound on the probability that 0 is in an infinite cluster in
the supercritical regime.

Proposition 5.15. There exists constant C, c > 0 such that for all
t ≥ 0 and all λ > λp(t)

µt(0←→∞) ≥
1

ctd +C
((λ − λp(t))∧ 1). (5.21)
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5.5 the upper invariant measure

In the previous section we have introduced the time t measure
µt. In this section we will investigate what happens for t →∞.
As a first consideration we can use the graphical representation
and the duality of the process to find

lim
t→∞

µ(σv = 1) = lim
t→∞

Pλ((0, 0)Ð→ (Zd, t))

= Pη0
(σ(t) /≡ 0, ∀t ≥ 0),

where η0 is the configuration where only 0 is infected. This
last probability is positive if and only if λ > λc. This hints that
µt converges to a non-trivial measure if λ > λc. We will now
make this notion precise. Let P(S) denote the set of probability
measures on (S,S).

Proposition 5.16. There exists ν̄λ ∈ P(S), such that

µt → ν̄λ, as t →∞,

with respect to the topology of weak convergence. I.e.,

∫
S

f dµt → ∫
S

f dν̄λ, as t →∞,

for all bounded f ∈ C(S).

Proof. The fact that S is compact with respect to the chosen topol-
ogy ρ implies that P(S) is compact. (See Klenke [39, Corollary
13.30].) It thus follows that (µt)t≥0 has a convergent subsequence.
We denote the limit of this subsequence by ν1. Then the mono-
tonicity of µt in t implies

∫
S

f dν1 ≤ ∫
S

f dµt, t ≥ 0
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for all increasing f ∈ C(S). This follows from (5.18) and a stan-
dard measure-theoretic approximation of f by simple functions.
( f ∈ C(S) is increasing if f (η) ≤ f (η′) for all η, η′ ∈ S with η ≤ η′.)
Suppose (µt)t≥0 has another convergent subsequence converging
to ν2 ∈ P . Then

∫
S

f dν1 = ∫
S

f dν2, (5.22)

for all increasing functions f . Functions of the form f = 1A,
where A ∈ T , with

T ∶= {{η ∈ S ∶ η(v1) = ⋅ ⋅ ⋅ = η(vn) = 1} ∶ n ∈ N, v1, . . . , vn ∈ Zd},

are continuous and increasing. It then follows from (5.22), that
ν1(A) = ν2(A), and since T is an intersection stable generator of
S , that ν1 = ν2. We conclude that all converging subsequences of
(µt)t≥0 converge to the same limit, which implies that µt itself
converges, as t →∞, since P(S) is compact.

The limiting measure ν̄λ ∈ P(S) is called the upper invariant
measure. This refers to the fact that we have started the process
with all vertices infected, and to the fact that this measure is
invariant under the probability semigroup Tt of the contact
process. The latter is a direct consequence of the fact that ν̄λ is a
limiting measure for t →∞.

We can obtain a second invariant measure by starting the
process with all vertices healthy, and letting t → ∞. However,
this lower invariant measure is trivial:

¯
νλ = δ0, the measure

with all mass on the configuration with all vertices healthy,
since there are no spontaneous infections in the model. Starting
with all vertices infected or all vertices healthy are the most
extreme starting configurations, which also result in the extreme
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invariant measures. To formalize this statement, let µ ∈ P(s),
and let ν ∶= limt→∞ µTt be the weak limiting measure when we
start the process in a configuration with law µ and let t → ∞.
Then we can directly see from the graphical representation, that

∫
S

f d
¯
νλ ≤ ∫

S
f dν ≤ ∫

S
f dν̄λ,

for all increasing functions f ∈ C(S). This is further comple-
mented by the complete convergence theorem.

Theorem 5.17 (Complete convergence theorem). Let µ ∈ P . Then
there exists 0 ≤ α ≤ 1 such that

µTt → α
¯
νλ + (1− α)ν̄λ, weakly as t →∞.

This result is due to Bezuidenhout and Grimmett [9], who
proved this result with the same technique used to prove that
the infection dies out at λc. It shows that ν̄λ is the measure that is
naturally of interest when analyzing the contact process, and the
rest of the chapter is dedicated to the analysis of the properties
of this measure.

Now that we have established the existence of the limiting
measure, we are interested in the rate of convergence. Control
over this rate of convergence is useful in analyzing ν̄λ, since
the measure µt is often more tractable. The next result shows
that there is an exponential rate of convergence in the case
f = 1{σ0 = 1}.

Theorem 5.18. Consider the contact process on Zd with parameter
λ ≠ λc. Then there exists a constant c > 0, such that for all t ≥ 0,

µt(η0 = 1)− ν̄λ(η0 = 1) ≤ exp(−ct). (5.23)
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Proof. Suppose first that λ < λc. Then

µt(η0 = 1)− ν̄λ(η0 = 1) ≤ µt(η0 = 1) = P
η0

λ (σ(t) /≡ 0),

by the duality relation for the contact process, Proposition 5.2,
where η0 is the configuration where only 0 is infected. We con-
clude from Theorem 5.9, that

µt(η0 = 1)− ν̄λ(η0 = 1) ≤ P
η0

λ (σ(t) /≡ 0) ≤ exp(−ct),

for some constant c > 0, independent of t.
Now suppose λ > λc. We can again use the duality of the

process to find

µt(η0 = 1)− ν̄λ(η0 = 1)

= Pλ((0, 0)Ð→ (Zd, t), ∃s > t s.t. (0, 0)↛ (Zd, s)).

In other words, the infection survives up to time t, but dies out
eventually. We can bound this probability using Theorem 5.12,
and find

µt(η0 = 1)− ν̄λ(η0 = 1) ≤ exp(−ct),

for some constant c > 0, independent of t.

We can harvest the previous theorem to find a bound for
events that depend on the state of multiple vertices.

Corollary 5.19. Consider the contact process on Zd with parameter
λ ≠ λc. Then there exists a constant c > 0, such that for all t ≥ 0, and
all events A ∈ S,

∣µt(A)− ν̄λ(A)∣ ≤ ∣ΛA∣ exp(−ct), (5.24)

where ΛA ⊆ Zd is any set of vertices such that A is measurable with
respect to the status of these vertices.
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The above bound is essentially a bound on the total variation
distance between µt and ν̄λ, except that the bound deteriorates
as ∣ΛA∣ grows. The corollary follows directly from Theorem 5.18

and the union bound. Theorem 5.18 can also be used to show
that correlations with repsect to the upper invariant measure
between the state of two vertices decays exponentially as the
distance between the vertices increases.

Corollary 5.20. Suppose λ ≥ 0. There exits a constant c > 0 such that
for all v ∈ Zd

Covν̄λ
(η0, ηv) ≤ exp (− c∥v∥∞).

Proof. The result is trivial if λ ≤ λc, since in this case ν̄λ(η0 = 0) =
1. We thus henceforth assume λ > λc. Let v ∈ Zd. For t ≥ 0 and
a > 0 we define the events

A0 ∶= {(∂Λ0
t , [0, t/a])Ð→ (0, t/a)},

Av ∶= {(∂Λv
t , [0, t/a])Ð→ (v, t/a)}.

We fix a > 0 obtained from Proposition 5.3, such that

Pλ(A0) = Pλ(Av) ≤ aC exp(−t),

for a constant C > 0, and all t > 0. We now take t = ∥v∥∞/3 and
use Theorem 5.18 to show that for some c0 > 0,

Covν̄λ
(η0, ηv) = Eν̄λ

[η0ηv]−Eν̄λ
[η0]

2

≤ Pλ(σ0(t) = σv(t) = 1, Ac
0, Ac

v)+ 2aC exp(−t).
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We note that Ac
0 ∩ {σ0(t) = 1} is independent of Ac

v ∩ {σv(t) = 1},
since the events depend on disjoint regions in space-time. Hence,
using translation invariance,

Covν̄λ
(η0, ηv) ≤ µt(η0 = 1)2 − ν̄λ(η0 = 1)2 + 2aC exp(−t)

≤ 2(µt(η0 = 1)− ν̄λ(η0 = 1))+ 2aC exp(−t)

≤ 2 exp (−
c
3
∥v∥∞)+ 2aC exp (−

1
3
∥v∥∞),

by Theorem 5.18, for all v ∈ Zd. The result follows by adjusting
the constant in the exponent to accommodate vertices v close to
0.

A major source of difficulty in analyzing the upper invariant
measure is the lack of monotonicity of this measure. Here we
mean monotonicity in the sense that the measure is strongly
positively-associated, see Definition 2.24 and Theorem 2.26. We
now give a proof that ν̄λ is not monotonic for the process on
Z, and a specific choice of the parameter. This shows that ν̄λ

is not monotonic in general, and that we cannot rely on the
OSSS inequality for monotonic measures, Theorem 2.27, when
analyzing the properties of the measure. It is conceivable that
similar counterexamples to the monotonicity can be constructed
for Zd and other values of λ.

Proposition 5.21. Consider the contact process on Z. The upper
invariant measure ν̄λ is not monotonic for λc < λ < 2.

Proof. We follow Liggett [41]. We suppose ν̄λ is monotonic, and
work toward a contradiction. For n ∈ N, we define the condi-
tional probability

F(n) ∶= ν̄λ(ηv = 0, 1 ≤ v ≤ n − 1 ∣ η0 = 1),
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which exists, since λ > λc. Using the assumed monotonicty of
ν̄λ, we find for 1 ≤ k ≤ n,

ν̄λ(ηk = 1, ηv = 0, 1 ≤ v ≤ n, v ≠ k)

= ν̄λ(ηv = 0, 1 ≤ v ≤ n, v ≠ k ∣ ηk = 1)ν̄λ(ηk = 1)

≥ ν̄λ(ηv = 0, 1 ≤ v < k ∣ ηk = 1)ν̄λ(ηk = 1)

⋅ ν̄λ(ηv = 0, k < v ≤ n ∣ ηk = 1),

since {ηv = 0, 1 ≤ v < k} and {ηv = 0, k < v ≤ n} are both decreas-
ing events. Using the symmetry and translation invariance of
the process, we obtain

ν̄λ(ηk = 1, ηv = 0, 1 ≤ v ≤ n, v ≠ k) ≥ F(k)F(n− k+ 1)ν̄λ(η0 = 1).

We compute

0 =
d
dt

ν̄λ(ηv = 0, 1 ≤ v ≤ n)∣
t=0

= −λν̄λ(η0 = 1, ηv = 0, 1 ≤ v ≤ n)

− λν̄λ(ηn+1 = 1, ηv = 0, 1 ≤ v ≤ n)

+
n
∑
k=1

ν̄λ(ηk = 1, ηv = 0, 1 ≤ v ≤ n, v ≠ k).

It follows that

n
∑
k=1

F(k)F(n − k + 1)ν̄λ(η0 = 1) ≤ 2λF(n + 1)ν̄λ(η0 = 1).

Summing this inequality over n and defining M ∶= ∑∞
n=1 F(n)

gives

M2 ≤ 2λ(M − 1),
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since F(1) = 1. Assuming M < ∞, the above inequality only
has solutions in M if λ ≥ 2. Which contradicts the assumption
λc < λ < 2.

It remains to show that M <∞. Using the FKG inequality we
obtain

M ≤
1

ν̄λ(η0 = 1)

∞
∑
l=0

ν̄λ(η1 = ⋅ ⋅ ⋅ = ηl = 0).

We take t =
√

l, so that by Corollary 5.19 there exists c ≥ 0 such
that

ν̄λ(η1 = ⋅ ⋅ ⋅ = ηl = 0) ≤ µt(η1 = ⋅ ⋅ ⋅ = ηl = 0)+ l exp(−ct). (5.25)

For k = 1, . . . , ⌊
√

t⌋, we define vk ∶= k⌊
√

l⌋, so that ∣vk − vk+1∣ ≥ ⌊
√

l⌋,
for all k = 1, . . . , ⌊

√
t⌋− 1. We define the event

Ak ∶= {(∂Λvk

⌊
√

l⌋/2
, [0, t])Ð→ (vk, t)},

Then, using the union bound,

µt(η1 = ⋅ ⋅ ⋅ = ηl = 0) ≤ µt
⎛

⎝

⌊
√

l⌋
⋂
k=1

Ac
k ∩ {ηvk = 0}

⎞

⎠
+

⌊
√

l⌋
∑
k=1

µt(Ak)

≤
⌊
√

l⌋
∏
k=1

µt(ηvk = 0)+
⌊
√

l⌋
∑
k=1

µt(Ak),

since the events Ac
k ∩{ηvk = 0} are independent for all k, since we

have choosen the vertices vk far enough apart. We use Theorem
5.18 to bound the first term, and the bound on the growth of the
infection, Proposition 5.3 for the second term to obtain

µt(η1 = ⋅ ⋅ ⋅ = ηl = 0) ≤ (ν̄λ(ηvk = 0)+ exp(−c⌊
√

l⌋))⌊
√

l⌋

+ ⌊
√

l⌋ exp(−⌊
√

l⌋),
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for some constant c > 0. Since λ > λc, we have ν̄λ(ηvk = 0) < 1.
Using (5.25), it follows that there exists a constant c0 > 0, such
that for l large enough,

ν̄λ(η1 = ⋅ ⋅ ⋅ = ηl = 0) ≤ µt(η1 = ⋅ ⋅ ⋅ = ηl = 0)+ l exp(−c⌊
√

l⌋)

≤ exp(−c0⌊
√

l⌋)+ l exp(−c⌊
√

l⌋).

We conclude that ∑∞
l=0 ν̄λ(η1 = ⋅ ⋅ ⋅ = ηl = 0) converges, so that

M <∞.

5.6 sharp percolation phase transition for ν̄λ

We are interested in the percolation properties of the upper in-
variant measure. We define the critical threshold for percolation
as

λp ∶= λp(Zd) ∶= sup{λ ∶ ν̄λ(0←→∞) = 0}. (5.26)

As a first consideration we see that this critical value satisfies
λc ≤ λp, so that in particular λp > 0. It is more involved to show
that λp < ∞. In other words, it is more difficult to show that
the cluster of 0 is infinite with positive probability for λ large
enough. In fact, λ(Z) = ∞, since ν̄λ(σ0 = 0) > 0 for all λ > 0.
Nevertheless, it is true that λp < ∞ for d ≥ 2, and this follows
from the domination result, dominating a Bernoulli percolation
measure with an arbitrary density by ν̄λ for some large λ.

Theorem 5.22. Let Pp denote the Bernoulli percolation measure on
Zd, d ≥ 1 with 0 < p < 1. There exists λ > 0 such that the upper
invariant measure for the contact process on Zd dominates Pp:

Pp ⪯ ν̄λ.
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By taking p > pc(Zd) in the above theorem, we obtain the
existence of λ > 0, such that

ν̄λ(0←→∞) ≥ Pp(0←→∞) > 0,

so that λp ≤ λ < ∞. Theorem 5.22 has been proven by Liggett
and Steif [43]. It suffices to prove this theorem for d = 1: for
d ≥ 2 we can suppress all infection arrows of the graphical
representation with direction other than ±e1. This results in
family of independent one dimensional contact processes for
which we can use the result for d = 1. The proof for d = 1 is then
heavily one dimensional in nature. Furthermore, the proof is
rather quantitative: ν̄λ dominates Pp for a given 0 < p < 1 if λ

is such that λ − 2 ≥ pλ. This then implies λp ≤ 6.25 for all d ≥ 2,
using a bound on the critical value of Bernoulli site percolation
on Z2.

We are naturally interested in the question if the phase transi-
tion at λp is sharp. So far this question has only been answered
for the two dimensional process.

Theorem 5.23. Consider the contact process on Z2. Suppose λ < λp.
Then there exists a constant c > 0, such that for all n ∈ N,

ν̄λ(0←→ ∂Λn) ≤ exp(−cn). (5.27)

This theorem has been proven by Van den Berg [7]. It uses
a generization of an influence bound due to Talagrand [52]
applied to box-crossing events. This makes the proof very two
dimensional in nature, and difficult to be generalized to higher
dimensions. In the remainder of this section we reflect on ways to
proof the generalization of Theorem 5.23 to higher dimensions.
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Proposition 5.24. Consider the contact process on Zd, d ≥ 2 with
parameter λ < λp. Assume λp(t)→ λp as t →∞. Then there exists a
constant c > 0, such that for all n ∈ N,

ν̄λ(0←→ ∂Λn) ≤ exp(−cn). (5.28)

Proof. The proof is immediate from Theorem 5.14, since λ < λp

combined with λp(t)→ λp implies λ < λp(t) for some t ≥ 0 large
enough, and since ν̄λ ⪯ µt.

The convergence of λp(t) → λp as t → ∞ is also a necessary
condition for the sharp phase transition at λp. The following
proposition states that for λ ∈ (limt→∞ λp(t), λp), ν̄λ(0←→ ∂Λn)

decays polylogarithmically in n. Thus if limt→∞ λp(t) < λp, we
have a nonempty subcritical parameter range for which ν̄λ(0←→
∂Λn) does not decay exponentially quickly.

Proposition 5.25. Consider the contact process on Zd, d ≥ 2. Suppose
λ > limt→∞ λp(t). Then there exists a constant c0 > 0, such that

ν̄λ(0←→ ∂Λn) ≥
c0

(log n)d . (5.29)

In particular, if λ < λp implies

ν̄λ(0←→ ∂Λn) <
c0

(log n)d ,

for all n ∈ N, then there exists a constant c > 0, such that for all n ∈ N,

ν̄λ(0←→ ∂Λn) ≤ exp(−cn). (5.30)
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Proof. Suppose λ > limt→∞ λp(t). We use proposition 5.15 and
Corollary 5.19 to bound

ν̄λ(0←→ ∂Λn)

≥ µt(0←→ ∂Λn)− (2n + 1)d exp(−c1t)

≥
1

c2td +C
(λ − λp(t))− exp (d log(2n + 1)− c1t)

≥
1

c2td +C
(λ − lim

t→∞
λp(t))− exp (d log(2n + 1)− c1t),

for constants c1, c2 > 0, all n ∈ N, and all t > 0 such that λ > λp(t).
Taking t ∶= t(n) = 2d/c1 log(2n + 1) implies (5.29). The second
statement of the proposition follows directly from Theorem 5.14,
since if the implication holds, then λ < λp = limt→∞ λp(t), so
that we can take t large enough such that λ < λp(t), from which
it follows that

ν̄λ(0←→ ∂Λn) ≤ µt(0←→ ∂Λn) ≤ exp(−cn).

The above proof strategy cannot be used directly to prove
that λp(t) → λp as t → ∞, since 1/(c2td + C) → 0 as t → ∞.
Conversely, if we can prove Proposition 5.15 with a constant that
is independent of t, the convergence of the critical points follows.
The factor 1/(c2td +C) comes from the bound of on the realement
of variable ωv,s in the graphical representation by the decision
tree Tk determining the value of 1{0←→ ∂Λn}. To determine the
state of vertex at time t, we revealed the backward space-time
cluster of v, which size is of order td if σv(t) = 1. Thus, we can
not expect to bound the revealment of the variables uniformly
in t.
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The convergence of critical points such as the convergence of
λp(t)→ λp might be proven by comparing the partial derivatives
with respect to t and with respect to λ of θn(t, λ) ∶= µt(0 ←→
∂Λn). This strategy is not unlike the approach to proving strict
inequalities between critical as described in Section 3.2 of [25].
A Russo’s formula for the derivative with respect to t of θn(t, λ)

would state

−
∂

∂t
θn(t, λ)

= ∑
v∈Λn

Pλ(v pivotal for 0←→ ∂Λn, σv(−t) ≠ lim
s→−∞

σv(−s)),

where we made use of the graphical representation of the con-
tact process defined on Zd × (−∞, 0], which is typically more
convenient when analyzing the upper invariant measure. (In
this case σv(0) = 1 if and only if (Zd,−t) Ð→ (v, 0), for all t ≥ 0,
so that σ(0) has law ν̄λ.) The difficulty then lies in decoupling
the two events in the above probability. If this decoupling is
possible, we can use Theorem 5.18 to obtain

−
∂

∂t
θn(t, λ) = ∑

v∈Λn

Pλ(v pivotal for 0←→ ∂Λn)

⋅Pλ(σv(−t) ≠ lim
s→−∞

σv(s))

≤ exp(−ct) ∑
v∈Λn

Pλ(v pivotal for 0←→ ∂Λn)

=
1
C

exp(−ct)
∂

∂λ
θn(t, λ),

for some constant C depending on λ, which is the expected
surface area in space-time where an infection pointing towards
v can be placed to ensure σv(t) = 1. It can be shown that this
constant is bounded away from 0. Once the above inequality
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between the partial derivatives is established for all t ≥ t0, and all
λ in a neighbourhood around λp, we then take limt→∞ λp(t) <
λ1 < λ2 < λp, assuming limt→∞ λp(t) < λp, and aim to find a
contradiction. We take t1 ≥ t0 such that c(λ2 − λ1)ect1 ≥ 1/C, and
define

λ∶ [t1,∞)→ (0,∞),

λ(t) = λ1 + (λ2 − λ1)(1− e−c(t−t1)),

so that λ(t1) = λ1, and λ(t)→ λ2 as t →∞. We can then compute
the derivative of θn(t) ∶= θn(t, λ(t)), and obtain

d
dt

θn(t) = c(λ2 − λ1)e−c(t−t1) ∂

∂λ
θn(t, λ)∣

λ=λ(t)
+

∂

∂t
θn(t, λ)∣

λ=λ(t)

≥ (c(λ2 − λ1)e−c(t−t1) −
1
C

exp(−ct))
∂

∂λ
θn(t, λ)∣

λ=λ(t)

≥ 0,

by the choice of t1. It then follows that

θn(t1, λ1) = θn(t1) ≤ lim
t→∞

θn(t) = ν̄λ2(0←→ ∂Λn).

Letting n tend to infinity, and recalling limt→∞ λp(t) < λ1 < λ2 <

λp, gives the contradiction:

0 < lim
n→∞

θn(t1, λ1) ≤ ν̄λ2(0←→∞) = 0.

Note that it is essential that t1 is chosen independently of n.
The above ansatz to prove the sharp phase transition for ν̄λ

uses the time t measure µt to approximate the invariant mea-
sure. A different way to approximate the process is to consider
the contact process with spontaneous infections: the dynamics
of the original process are altered such that a vertex in state 0
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becomes infected with rate α > 0, independent of the rest of the
process. For this process the sharpness of the phase transition
can be shown. That is, there exists 0 ≤ λp(α) ≤ λp such that
for λ < λp(α) clusters are exponentially small with respect to
the upper invariant measure of this process, and for λ > λp(α)

there exists an infinite cluster almost surely with respect to this
measure. Similar to Proposition 5.13, it can then be shown that
λp(α) > 0 for small enough α > 0. The sharpness of this phase
transition can be shown by using the OSSS inequality in the
same way as in the proof for the sharpness of the phase tran-
sition for µt. The spontaneous infections ensure that not too
many variables are revealed by the decision tree, since once an
spontaneous infection event is found by the exploration subal-
gorithm of Algorithm 5, we know the state of the vertex whose
space-time we explored. However, this approach suffers from
the same limitations as the approximation by µt: the relevant
constants depend on α, and deteriorate as α ↓ 0. Another suffi-
cient condition for the sharpness of the phase transition for ν̄λ

is now limα↓0 λp(α) = λp. This convergence might be shown in a
similar fashion as the suggested approach for the convergence
of λp(t)→ λp. However, a similar problem arises here: namely
we need to decouple the event that v is pivotal for 0 ←→ ∂Λn

with the size of the backward space-time cluster of v, given that
σv(t) = 0. If that is possible, we see that the expected backward
space-time cluster size of v given that σv(0) is exponentially
small, by Theorem 5.12. We can take α > 0 small enough, similar
to taking t1 large enough in the case of λp(t).





6
T H E O RT H A N T M O D E L

In this chapter we look at the directed percolation model known
as the orthant model. It takes place on the directed graph Zd,
d ≥ 2, with nearest neighbour edges. The model is informally
described as follows. Let e1, . . . , ed be the standard unit basis
vectors of Rd. We set E+ ∶= {e1, . . . , ed}, and E− ∶= {−e1, . . . ,−ed},
as well as E = E+ ∪E−. A vertex v ∈ Zd is connected to the vertices
v + e for all e ∈ E+ with a directed edge with probability p, inde-
pendently of the other vertices. Otherwise, so with probability
1− p, the vertex v is connected to the vertices v + e for all e ∈ E−.
The model is shown in Figure 6.1 for d = 2.

The random directed graph obtained in this way has the
property that every vertex is in an infinite cluster, since, for
example, either the edge in the direction e1 or in the direction
−e2 is always available. Therefore, there is no classical percolation
phase transition in this model, where for small p there are only
finite clusters, and for large p an infinite cluster exists. Instead,
for small p the clusters will have a tendency to move in the
directions of E−, and for large p a tendency in the directions of
E+. We will make this notion precise, and see that this phase
transition is sharp in an appropriate sense.

The orthant model was introduced by Holmes and Salisbury
[32, 33]. It arose from the context of random walks in random
environment. In this branch of probability theory most work has
been done in the elliptic setting. This means that at every step,
all directions are available to the random walk, although some

133
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0

Figure 6.1: The orthant model on Z2. The cluster of the origin is
shaded blue.

directions are more likely to be chosen than others, depending
on the environment. In a non-elliptic random environment this
is no longer the case: the random walk cannot take every direc-
tion in some locations in the graph. The random environment
obtained by the orthant model is an example of a non-elliptic en-
vironment. Hence, the main motivation of studying this model
is to understand how the random walk behaves in this envi-
ronment. By proving the sharpness of the phase transition in
this model, we will be able to conclude detailed results for the
random walk.

This chapter has appeared in Mathematical Physics, Analysis
and Geometry [5].
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6.1 framework and main result

In order to define the phase transition in this model, we intro-
duce a cone oriented in the direction 1 ∶= e1+ ⋅ ⋅ ⋅ + ed. For 0 ≤ η ≤ 1,
we define the convex cone

Kη = {x ∈ Rd ∶ x ⋅ 1 ≥ η∥x∥1}.

Note that K0 is a half-space, and that K1 is the positive orthant.
For v, w ∈ Zd, we say that v Ð→ w, whenever there is a directed

path from v to w. Note that this is not a symmetrical event, since
we are working with a directed graph. Furthermore, for A ⊂ Zd,
we say that v Ð→ A, whenever there exists w ∈ A such that
v Ð→ w. For v ∈ Zd, let Cv denote the forward cluster of v, i.e.,

Cv ∶= {w ∈ Zd ∶ v Ð→ w}.

We can define the critical point above which C0 is contained in a
translated cone with parameter η:

p̃c(η) ∶= inf{p ∶ Pp(C0 ⊂ −n1 +Kη for some n ∈ N) = 1}.

Note that this critical point is increasing in η, and that p̃c(1) = 1,
so that p̃c(η) is of interest for η ∈ [0, 1). In fact, Holmes and
Salisbury [34] have proven that pOSP

c ≤ p̃c(η) < 1 for all 0 < η < 1,
where pOSP

c is the critical parameter for oriented site percolation
on the triangular lattice. Furthermore, from considerations later
in this section, it follows that p̃c(0) > 0. Therefore, p̃c(η) is non-
trivial for 0 ≤ η < 1. The phase transition associated with p̃c(η)

is sharp in the following sense.

Theorem 6.1. Consider the orthant model on Zd with parameter p.
Let 0 ≤ η < 1 and suppose p > p̃c(η). Then, there exists a constant
cp > 0, such that for all n ∈ N,

Pp(0Ð→ (−n1 +Kη)
c) ≤ exp(−cpn).
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The above result for d = 2 was proven by Holmes and Salis-
bury [32] by making a connection with oriented site percolation
on the triangular lattice. As a consequence of the above sharp
threshold result, we can prove a shape theorem for C0 above
p̃c ∶= limη↓0 p̃c(η). This critical point can also be written as

p̃c = inf{p ∶ ∃η > 0 s.t. Pp(C0 ⊂ −n1+Kη for some n ∈ N) = 1}.

A shape theorem for the orthant model was first proven by
Holmes and Salisbury [35] for large p. Using Theorem 6.1, we
can extend this result to all p > p̃c. In order to state the shape
theorem, we introduce for u ∈ Zd

βn(u) ∶= inf{k ∈ Z ∶ k1 + nu ∈ C0}.

Furthermore, let Λr ∶= {v ∈ Zd ∶ ∥v∥∞ ≤ r} be the closed ball
around 0 with radius r with respect to the L∞-norm. Borrowing
the notation from [35], the shape theorem for the orthant model
can be stated as follows.

Corollary 6.2 (Shape theorem). Let p > p̃c. The following hold for
the orthant model on Zd with parameter p.

1. For u ∈ Zd, there is a deterministic γ(u) ∈ R such that βn(u)
n →

γ(u), as n →∞, Pp-almost surely.

2. This limit satisfies γ(u +w) ≤ γ(u) + γ(w), γ(ru) = rγ(u),
γ(u + r1) = γ(u) − r, for u, w ∈ Zd, and r ∈ N. Furthermore,
γ is symmetric under permutation of coordinates, γ(u) ≥ 0 if
u ⋅ 1 ≤ 0, and γ(u) ≤ 0 if u lies in the positive orthant.

3. The limit γ extends to a Lipschitz map Rd → R with these same
properties, but for r ∈ [0,∞) and u, w ∈ Rd.
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4. The set C ∶= {z ∈ Rd ∶ γ(z) ≤ 0} is a closed convex cone, which
is symmetric under permutations of the coordinates, contains
the positive orthant, and is contained in the half-space K0 = {z ∶

z ⋅ 1 ≥ 0}.

5. Let C∗0 ∶= C0 + e1N0, i.e., “C0 with its holes filled in". It holds
that 1

nC
∗
0 → C, in the sense that for every ε > 0 and every r > 0,

the following holds Pp-a.s. for sufficiently large (random) n:

(Λr ∩
1
n
C∗0 ) ⊂ Λε +C, and (Λr ∩C) ⊂ Λε +

1
n
C∗0 .

To prove this theorem for all p > p̃c, we modify the proof in
[35] by using Theorem 6.1 in the places where they require p to
be large. Another consequence of Theorem 6.1 is the ballisticity
of the random walk on C0.

Corollary 6.3 (Ballisticity of the Random Walk). Consider the
orthant model on Zd with parameter p > p̃c. Let Xn be a simple
random walk on C0 and let P be the annealed law of this random walk
(i.e., averaged over C0). Then there exists v > 0 such that 1

n Xn → v1
P-a.s. as n →∞, and

(
X⌊nt⌋ − v1nt

√
n

)
t≥0
⇒ (Bt)t≥0, as n →∞,

weakly under P, in the space of càdlàg functions endowed with the
Skorohod topology, where (Bt)t≥0 is a d-dimensional Brownian motion
with nonsingular covariance matrix Σ.

This is Theorem 1.4 combined with Corollary 1.9 of [34] by
Holmes and Salisbury applied to the orthant model. Their the-
orem is stated for more general models, and requires two con-
ditions, one of which they show to hold for the orthant model
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with any value of p. The other condition is the existence of
η > 0 and c > 0 such that Pp(0 Ð→ (−n1 +Kη)

c) ≤ exp(−cnβ),
for some β > 0. By taking β = 1 and assuming p > p̃c, it fol-
lows from Theorem 6.1 that this condition holds for the orthant
model with parameter p. Corollary 6.3 is therefore an immediate
consequence of combining Theorem 6.1 with Theorem 1.4 of
[34].

Despite the above results, the theoretical picture of the orthant
model is still incomplete. We will use the remainder of this
section to formulate two open questions for the model. The
shape theorem and the ballisticity of the random walk have
now been shown to hold for p > p̃c ∶= limη↓0 p̃c(η). A natural
extension would be to prove these results for p > p̃c(0). This
would follow from the continuity of p̃c(η).

Open Problem 6.4. Consider the orthant model on Zd. The function
η ↦ p̃c(η) is continuous on [0, 1].

A critical value other than p̃c can be defined for the orthant
model. In order to state this definition, we introduce for v ∈ Zd,

Lv ∶= inf{k ∈ Z ∶ v + ke1 ∈ C0}.

The critical value pc is defined as

pc ∶= sup{p ∶ L0 = −∞ a.s.}.

Holmes and Salisbury [36] have shown that this critical value
is nontrivial, i.e., 0 < pc < 1. From the definitions of the critical
values, it is clear that pc ≤ p̃c(0) ≤ p̃c. However, it is as of yet
unclear that above pc there exists a cone with parameter η > 0
that contains the forward cluster of 0.

Open Problem 6.5. Consider the orthant model on Zd. It holds that

pc = p̃c.
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In order to prove this, perhaps it is most natural to first show
that pc = p̃c(0), and subsequently show the continuity of p̃c(η).

The sharp threshold result of Theorem 6.1 will be proven in
Section 6.2, while some preliminaries required for this proof are
introduced in Section 6.2.1. The proof for Corollary 6.2 is given
in Section 6.3.

6.2 proof of the sharp phase transition

6.2.1 Preliminaries

We can couple the model for different values of p by considering
a coupling similar to the standard coupling in Bernoulli perco-
lation: we consider a family of i.i.d. random variables (Uv)v∈Zd ,
and connect v to v + e for all e ∈ E+ whenever Uv < p, and to v + e
for all e ∈ E− if Uv ≥ p. One difficulty in analysing the orthant
model is the lack of monotonicity in p, i.e., a path from v to w
might be lost if we increase p. To deal with this issue, we intro-
duce the half-orthant model. In this model a vertex v is always
connected to v + e for all e ∈ E+, whereas v is connected to v + e,
for all e ∈ E−, with probability 1 − p. This model is monotone
in p, in the sense that 1{v Ð→ w} is monotonically decreasing
in p, under the coupling where v is connected to v + e, for all
e ∈ E−, whenever Uv > p. Let C∗v denote the forward cluster of
v in the half-orthant model. The half-orthant model dominates
the orthant model, in the sense that Cv ⊆ C

∗
v , almost surely under

a suitable coupling between the two models. For v ∈ Zd, we
further define

L∗v ∶= inf{k ∈ Z ∶ v + ke1 ∈ C
∗
0 }.
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From the domination it follows that Lv ≥ L∗v . However, it turns
out that equality holds: L∗v = Lv for all v ∈ Zd [36, Thm. 1.9]. So,
loosely speaking, if we only care about the leftmost boundary
of C0, it does not matter if we consider the orthant model or
the half-orthant model. This allows us to prove statements for
the orthant model by making use of the monotonicity of the
half orthant model. In light of this, we remark that the above
definition of C∗0 coincides with the definition stated in Corollary
6.2. Furthermore, we note that Lv < ∞ for all v ∈ Zd, since
L∗v <∞, but it might be the case that Lv = −∞ for some v ∈ Zd.
In fact, Holmes and Salisbury proved that if Lv is finite for some
v ∈ Zd, then it is finite for all v ∈ Zd [36, Lemma 2.2]. For p < pc

it follows that L∗v = −∞ for all v ∈ Zd, and in this case, C∗0 = Zd.
On the other hand, if p > pc, Lv is finite for all v ∈ Zd using the
monotonicity of the half-orthant model.

To prove Theorem 6.1, it therefore suffices to work with the
half-orthant model. We start by giving a formal description of
this model. For p ∈ [0, 1], we consider the probability space
(Ω,F , Pp), where

Ω = {0, 1}Zd
,

the σ-algebra F is generated by the cylindrical events, and
Pp is the product measure on Ω such that Pp(ωv = 1) = p
for all v ∈ Zd. From ω ∈ Ω we obtain the edge configuration
ξ ⊆ {(v, v + e) ∶ v ∈ Zd, e ∈ E} by adding the edge (v, v + e) to
the graph for all e ∈ E+, and for all e ∈ E− whenever ωv = 0. Let
f ∶Ω → {0, 1} be a Boolean function, and let T be a decision tree
that determines the value of f . We apply the OSSS inequality
for infinite product spaces, Theorem 2.18, to obtain,

Varp( f ) ≤ ∑
v∈Zd

Infv( f )Revv(T).
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For v, w ∈ Zd, we say v ∼ w when v is a neighbour of w, i.e.,
whenever w = v + e for some e ∈ E . Furthermore, we say that

v ↝ w, whenever (v, w) ∈ ξ. For A ⊂ Zd, we say that v
A
ÐÐ→ w,

whenever there is a path from v to w using only edges in ξ

with starting points in A. Note that w does not have to be
an element A for this event to hold. For A = Zd we use the
shorthand notation {v Ð→ w} ∶= {v

Zd

ÐÐ→ w}. Furthermore, the

event v
A
ÐÐ→ v trivially holds for all v ∈ Zd, and all A ⊂ Zd. The

Boolean function we are interested in is

fn ∶= 1{0Ð→ (−n1 +Kη)
c},

for η ≥ 0 and n ∈ N.

6.2.2 Exploration algorithm

We now introduce decision trees that determine the value of fn.
A vital point in the proof is that we can uniformly bound the
revealment of the vertices. If we only use one decision tree with
a deterministic starting point, then the starting vertex will have
revealment 1, so that we cannot find a nontrivial uniform bound
on the revealment. Therefore, we will introduce the decision
trees Tk, for 1 ≤ k ≤ n, which all start at different vertices. In
this way, we can average over k and have a meaningful uniform
bound on the revealment. The basic idea of the decision tree
Tk is that it explores the cluster of the boundary of −k1 +Kη .
If 0 Ð→ (−n1 +Kη)

c, this path must go through the boundary
of the cone −k1 +Kη , so that Tk determines fn. Furthermore, Tk
terminates in a finite number of steps when fn = 1.
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We will now describe the exploration algorithm of Tk more
precisely. We define the boundary and the outer boundary of
the cone as

∂(−k1 +Kη) ∶= {v ∈ (−k1 +Kη)∩Zd ∶

∃w ∈ (−k1 +Kη)
c ∩Zd, v ∼ w},

∂+(−k1 +Kη) ∶= {v ∈ (−k1 +Kη)
c ∩Zd ∶

∃w ∈ (−k1 +Kη)∩Zd, v ∼ w}.

The decision tree Tk consists of two phases. In the first phase,
Tk explores the backward cluster of ∂(−k1 +Kη) inside the cone,
that is, it explores the set {v ∈ −k1 +Kη ∶ v Ð→ ∂(−k1 +Kη)}.
When this is finished, the set of vertices

{v ∈ ∂+(−k1 +Kη) ∶ 0
−k1+Kη

ÐÐÐÐ→ v}

has been determined. In the second phase, the algorithm ex-
plores the forward clusters of these vertices. If for one of these
vertices we find that v Ð→ (−n1 + Kη)

c, then we also have
0Ð→ (−n1 +Kη)

c. A schematic visualisation of the algorithm is
shown in Figure 6.2.

There is however one technical issue: since fn depends on the
state of infinitely many vertices, it is possible that the algorithm
gets stuck exploring inside −k1 +Kη , and never gets to explore
the forward clusters outside −k1 +Kη . In order to deal with this,
the decision tree operates in rounds, denoted by i ∈ N. Recall
that Λr is the ball of radius r around 0 with respect to L∞-norm.
In round i we only explore inside Λi, so it is not possible to
get stuck in any particular phase. Note that if 0Ð→ (−n1 +Kη)

c,

there exists i ∈ N such that 0
Λi
ÐÐ→ (−n1 +Kη)

c.
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−k1 +Kη

0

−n1 +Kη

Figure 6.2: The algorithm Tk exploring the cluster of ∂(−k1 +Kη) to
find a path from 0 to (−n1 +Kη)

c. The blue vertices are
revealed.

We denote by R the set of revealed vertices. Furthermore, we
denote by A the set of active vertices for the first phase and
by B the set of active vertices for the second phase. We start
the algorithm by setting A ∶= A0 ∶= ∂+(−k1 +Kη), and B ∶= ∅.
The pseudocode of Tk is given in Algorithm 6. We have to be
careful when updating A in the first phase: by revealing v it is

possible that we create a new path x
R
Ð→ ∂+(−k1 +Kη) for some

x ≠ v. Therefore, it is not sufficient to only consider w ∼ v for the
update of A. Instead, we add w to A if and only if w /∈ R ∩B,

and if there exists x ∈R such that x ∼ w, and x
R
Ð→ ∂+(−k1 +Kη).
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i ∶= n;
A ∶= ∂+(−k1 +Kη)∩Λn;
B ∶= ∅;
R ∶= ∅;

while 0
R
/Ð→ (−n1 +Kη)

c do
while A∩Λi ≠ ∅ do

Take lexicographical minimal v ∈ A∩Λi;
Reveal ωv;
R ∶=R∪ {v};
A ∶= A/{v};
A ∶= A∪ {w ∈ (−k1 +Kη)∩Zd ∶

w /∈R∪B,∃x ∈R, x ∼ w, s.t. x
R
Ð→ ∂+(−k1 +Kη)};

B ∶= B ∪ {w ∈ Zd ∶ w /∈R,∃x ∈

∂+(−k1 +Kη) s.t. 0
R
Ð→ x, x

R
Ð→ w};

A ∶= A/{w ∈ Zd ∶ w /∈R,∃x ∈ ∂+(−k1 +Kη) s.t. 0
R
Ð→

x, x
R
Ð→ w};

if 0
R
Ð→ (−n1 +Kη)

c then return 1;
end
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while B ∩Λi ≠ ∅ do
Take lexicographical minimal v ∈ B ∩Λi;
Reveal ωv;
R ∶=R∪ {v};
B ∶= B/{v};
B ∶= B ∪ {w ∈ Zd ∶ w /∈R,∃x ∈

∂+(−k1 +Kη) s.t. 0
R
Ð→ x, x

R
Ð→ w};

A ∶= A/{w ∈ Zd ∶ w /∈R,∃x ∈ ∂+(−k1 +Kη) s.t. 0
R
Ð→

x, x
R
Ð→ w};

if 0
R
Ð→ (−n1 +Kη)

c then return 1;
end
i ∶= i + 1;

end
return 0;

Algorithm 6: The exploration algorithm Tk.
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At the start of any iteration of the inner loops of the algorithm,
the following hold for the active sets A and B:

A ⊆ A0/R ∪ {v ∈ (−k1 +Kη)∩Zd ∶

v /∈R,∃w ∼ v, s.t. w
R
Ð→ ∂+(−k1 +Kη)},

B = {v ∈ (−n1 +Kη)∩Zd ∶

v /∈R,∃w ∈ ∂+(−k1 +Kη) s.t. 0
R
Ð→ w, w

R
Ð→ v}.

(6.1)

6.2.3 Bound on the revealment

Let θn(p) ∶= Pp( fn = 1). Summing the OSSS inequality over k
gives

nθn(p)(1− θn(p)) ≤ ∑
v∈Zd

Infv

n
∑
k=1

Revv(Tk). (6.2)

We will now bound ∑n
k=1 Revv(Tk) uniformly in v. Let kv be

such that v ∈ ∂+(−kv1+Kη). Note that kv−1 = kv + 1. Suppose first
that k > kv + 1. If v is revealed by Tk in the second phase, we have
0 Ð→ ∂+(−k1 +Kη) by (6.1). On the other hand, if v is revealed
by Tk in the first phase, there exists w ∼ v such that w Ð→

∂+(−k1 +Kη). Since k > kv + 1, we know that v − 1 ∈ −k1 +Kη ,
which implies that every neighbour of v is also contained in
−k1 +Kη . Applying the union bound gives

n
∑
k=1
1{k > kv + 1}Revv(Tk)

≤
n
∑
k=1

1{k > kv + 1}(θk(p)+∑
w∼v

Pp(w Ð→ ∂+(−k1 +Kη))).
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Let

dw
k ∶= sup{l ∈ Z ∶ w − l1 ∈ −k1 +Kη}.

Note that dw
k ≥ 0 for all k > kv +1. Furthermore w−dw

k 1 ∈ −k1+Kη ,
and

w − dw
k 1 +Kη ⊆ −k1 +Kη ,

since −k1 +Kη is a convex cone. Therefore, using translation
invariance, it follows that

n
∑
k=1
1{k > kv + 1}Revv(Tk)

≤
n
∑
k=1

1{k > kv + 1}(θk(p)+∑
w∼v

Pp(w Ð→ ∂+(w − dw
k 1 +Kη)))

=
n
∑
k=1

1{k > kv + 1}(θk(p)+∑
w∼v

Pp(0Ð→ ∂+(− dw
k 1 +Kη))).

(6.3)

We have dw
kv+2 ≥ 0, and using the fact that dw

k+1 = dw
k + 1, we know

dw
kv+l ≥ l − 2, for all l ≥ 2. We can thus bound

n
∑
k=1

1{k >kv + 1}Revv(Tk)

≤
n
∑
k=1

θk(p)+ 2d
n−1

∑
k=0

Pp(0Ð→ ∂+(−k1 +Kη))

=
n
∑
k=1

θk(p)+ 2d
n−1

∑
k=0

θk(p). (6.4)
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Now suppose k < kv, so v /∈ −k1 +Kη ∪ ∂+(−k1 +Kη). If v is

revealed, it holds that 0
R
Ð→ v. In particular, we have 0 Ð→

∂+(−k1 +Kη). We find
n
∑
k=1

1{k < kv}Revv(Tk) ≤
n
∑
k=1

θk(p). (6.5)

Combining (6.4) and (6.5) gives
n
∑
k=1

Revv(Tk) ≤ 2+ 2
n
∑
k=1

θk(p)+ 2d
n
∑
k=0

θk(p) = (2d+ 2)
n
∑
k=0

θk(p).

Writing Sn ∶= ∑
n
k=0 θk(p), gives

∑
v∈Zd

Infv ≥
1

2d + 2
n
Sn

θn(p)(1− θn(p)). (6.6)

6.2.4 Analysis of the differential inequality

We are now able to complete the proof of Theorem 6.1. We
can obtain a differential inequality by using Russo’s formula.
However, since fn depends on infinitely many vertices, θn(p) is
not necessarily differentiable in p. Instead we have to work with
the upper-right Dini derivative:

D+θn(p) ∶= lim sup
h↓0

θn(p + h)− θn(p)
h

.

Using the fact that 0 Ð→ (−n1 +Kη)
c is a decreasing event, i.e.,

fn is a decreasing function of ω, Russo’s formula gives

−D+θn(p) ≥ ∑
v∈Zd

Pp(v is pivotal for { fn = 1})

=
1

2p(1− p)
∑

v∈Zd

Infv( fn).
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This version of Russo’s formula can be found in the book on
Percolation by Grimmett [25]. This is the point in the proof
where we use the monotonicity of the half-orthant model, as
well as the coupling given at the start of Section 6.2.1. Combining
the above inequality with (6.6) gives

−D+θn(p) ≥
1

2d
n
Sn

θn(p)(1− θn(p)), (6.7)

where we use (2d+2)2p(1− p) ≤ 2d for simplicity. The rest of the
proof consists of analysing the above differential inequality. This
analysis follows the line of Duminil-Copin, Raoufi and Tassion
[15], but since it differs on several points, we choose to include
it. We have to work with Dini derivatives instead of regular
derivatives, and, more importantly, in our case we cannot give a
simple lower bound on 1− θn(p).

To analyse the differential inequality, we introduce the auxil-
iary critical point

p̂c(η) ∶= sup{p ∶ lim sup
n→∞

log Sn(p)
log n

= 1} .

Note that by the monotonicity of the model, lim supn→∞
log Sn(p)

log n =

1 for all p < p̂c(η), and lim supn→∞
log Sn(p)

log n < 1 for all p > p̂c(η).
We will first show that p̂c(η) ≤ p̃c(η), for η ≥ 0. To prove this, we
assume the contrary, and let p ∈ (p̃c(η), p̂c(η)). Since p > p̃c(η),
we can fix l ∈ N, such that for all n > l it holds that 1− θn(p) ≥ 1/2.
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We define Tn(p) ∶= 1
log n ∑

n
k=l

θk(p)
k . Taking the upper-right Dini

derivative and using (6.7) gives

−D+Tn ≥
1

2d
1

log n

n
∑
k=l

θk(p)
Sk

(1− θk(p))

≥
1

4d
1

log n

n
∑
k=l

θk(p)
Sk

≥
1

4d
log Sn+1 − log Sl

log n
, (6.8)

where in the last inequality we used

θk(p)
Sk

≥ ∫
Sk+1

Sk

1
x

dx = log Sk+1 − log Sk.

Now let p1 ∈ (p, p̂c(η)). We will integrate the differential inequal-
ity between p and p1 and use the following result regarding
Dini derivatives: the Dini derivative of a decreasing function
f ∶ [a, b]→ R satisfies

f (b)− f (a) ≤ ∫
b

a
D+ f (x)dx. (6.9)

Applying this to Tn(p) and using (6.8) gives

Tn(p1)− Tn(p) ≤ ∫
p1

p
D+Tn(s)ds

≤ −(p1 − p)
1

4d
log Sn+1(p1)− log Sl(p)

log n
.

Furthermore, Tn(p) converges to θ(p) ∶= limn→∞ θn(p) for n →
∞, since for all l < m < n:

θn(p)
∑n

k=l
1
k

log n
≤ Tn(p) ≤ θm(p)

∑n
k=m

1
k

log n
+
∑m−1

k=l
1
k

log n
,
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from which the limit follows by first taking n → ∞, and then
m →∞. We find

θ(p1)− θ(p) ≤ −(p1 − p)
1

4d
lim sup

n→∞

log Sn+1(p1)− log Sl(p)
log n

.

Since p < p̂c(η), we have that lim supn→∞
log Sn(p)

log n = 1 and the
same holds for p1, so that also

lim sup
n→∞

log Sn+1(p)− log Sl(p1)

log n
= 1.

We conclude

θ(p) ≥ θ(p)− θ(p1) ≥
p1 − p

4d
> 0, (6.10)

which contradicts p > p̃c(η), so that we have established that
p̂c(η) ≤ p̃c(η).

Now suppose p > p̂c(η). Then there exists N1 ∈ N and β < 1
such that Sn(p) ≤ nβ for all n ≥ N1, and there exists N2 ∈ N such
that θn(p) ≤ 1

2 for all n ≥ N2. Combining this with (6.7) and using
the chain rule for Dini derivatives gives

D+ log θn(p) ≤ −
1

2d
n1−β(1− θn(p)) ≤ −

1
4d

n1−β,

for all n > N ∶= N1 ∨ N2. Let p1 ∶= (p̃c(η) + p)/2. Integrating the
above inequality between p1 and p and using (6.9) gives

log θn(p) ≤ log θn(p)− log θn(p1) ≤ −
1

4d
(p − p1)n1−β.

It follows that

θn(p) ≤ exp(−
1

8d
(p − p̃c(η))n1−β) .
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It remains to improve the above stretched exponential decay to
proper exponential decay. From the stretched exponential decay
it follows that S(p) ∶= limn→∞ Sn(p) < ∞. Combining this fact
with (6.7), and using that θn(p) ≤ 1

2 for n > N, since p > p̂c(η),
gives

D+ log θn(p) ≤ −
1

4dS(p)
n.

From here the proof is similar as for the stretched exponential
decay, and we conclude

θn(p) ≤ exp(−
1

8dS(p)
(p − p̃c(η))n) .

It follows that p̃c(η) = p̂c(η), and that Theorem 6.1 holds with

cp ∶=
1

8dS(p)
(p − p̃c(η))

∧ sup{C > 0 ∶ θn(p) ≤ exp(−Cn) for all n ≤ N}

> 0.

Remark 6.6. A mean-field lower bound such as Proposition 3.5 can
often be obtained from the analysis of a differential inequality such
as the above one, which would be θ(p) ≥ c(p̃c(η) − p) in our case,
for p < p̃c(η), and some constant c > 0, independent of p. This does
not directly follow from the above analysis, since we have assumed
p ∈ (p̃c(η), p̂c(η)) in the first part of the analysis. If instead we take
p < p̂c(η) such that θ(p) < 1/2, then we can still bound 1− θn(p) ≥
1/2, for n large enough, and obtain the mean-field lower bound at
(6.10). However, this bound is of little interest for the orthant model,
since if p < pc, C∗(0) = Zd almost surely, so that θ(p) = 1. On the
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other hand, if p ∈ (p̃c, p̃c(η)) for some η > 0, Corollary 6.2 implies
that θ(p) = 1 as well. This leaves the interval (pc, p̃c) to be considered,
but we conjecture this interval to be empty.

6.3 proof of the shape theorem

To prove Corollary 6.2, we modify the proof of Holmes and
Salisbury [35] in the places where they require p to be large.
Their proof is structured in seven lemmas, two of which require
a large p. The first of these is Lemma 1 of [35]. This lemma
asserts the existence of θ > 1, such that for every η ∈ [0, 1), there
exists p0 = p0(η, d) < 1, such that for p > p0, there exists c1 > 0
such that Pp(0 Ð→ (−n1 +Kη)

c) ≤ c1θ−nd, for all n ∈ N. In the
remainder of their proof, this lemma is only used for the case
η = 0. Therefore, we can replace this lemma by Theorem 6.1, and
require p > p̃c, instead of p > p0.

The second lemma in the proof of Holmes and Salisbury
which require large p is Lemma 5 of [35]. We will prove this
lemma for p > p̃c, instead of for large p, using Theorem 6.1. To
state this lemma, we let u ∈ Zd/Z1, and fix v ∈ Rd such that
u ⋅ v > 0 and v ⋅ 1 = 0. We define the slab

Λu,v(m, n) ∶= {z ∈ Zd ∶ mu ⋅ v ≤ z ⋅ v < nu ⋅ v}.

We are interested in the following three events. Let A′
n(M) be

the event there exists a path starting in 0 and ending in a point
k1 + nu with k < nγ(u) that hits Λu,v(−∞,−M). Let A′′

n(M) be
the event there exists a path starting in 0 and ending in a point
k1+ nu with k < nγ(u) that hits Λu,v(M + n,∞). Lastly, let Ân be
the event that there is a path starting in 0 and ending in some
point k1, with k < 0, and reaches Λu,v(n,∞). We will prove the
following lemma regarding these events:
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1

0K0

z · v = −Mu · v z · v = nu · v

u

v

nu

nu− nγ(u)1

Yu

x

−a1 +Kη

kx1 +K0

k∗1 +K0

Figure 6.3: When the event A′n(M) occurs, there exists a path from 0
to Yu going through the shaded region

Lemma 6.7. Let p > p̃c. There exists c > 0, such that

Pp(A′
n(⌊cn⌋) i.o.) = Pp(A′′

n(⌊cn⌋) i.o.) = Pp(Ân(⌊cn⌋) i.o.) = 0.

We will prove the above lemma for the event A′
n(⌊cn⌋), the

other two events can be proven similarly. The event A′
n(⌊cn⌋) is

shown in Figure 6.3. Let p > p̃c. By the definition of this critical
point there exists η > 0 such that p > p̃c(η). We fix such an η.
Let c > 0, and let M ∶= M(n) ∶= ⌊cn⌋. We will choose the precise
value of c later on. Let a > 0 and suppose C∗0 ⊆ −a1 +Kη . If
A′

n(M) occurs, there exists x ∈ Zd satisfying

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

(x + a1) ⋅ 1 ≥ η∥x + a1∥1,

x ⋅ v = −Mu ⋅ v,
Ô⇒

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

x ⋅ 1 ≥ −2da + η∥x∥1,

x ⋅ v = −Mu ⋅ v,
(6.11)

such that 0 Ð→ x, and x Ð→ y, with y = k1 + nu for some
k < nγ(u). Since the L1-norm is equivalent to the L2-norm,
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and since the L2-norm is invariant under an orthonormal basis
change, it follows from the above equation that ∥x∥1 ≥ c0M, for
some constant c0 = c0(u, v) > 0. Combining this with the above
inequality gives

x ⋅ 1 ≥ −2da + c0ηM.

Define kx ∶= x ⋅ 1/d, so that x ∈ kx1+K0. Then the above inequality
implies

kx ≥ −2a +
c0ηM

d
.

We define the set

Yu ∶= {y ∈ Zd ∶ y = k1 + nu, with k < nγ(u)}.

We use Theorem 6.1 and the union bound to obtain

Pp(A′
n(M)) ≤ exp(−cpa)+

∞
∑
kx≥

−2a+c0ηM/d

Pp(∃x ∈ Λu,v(−∞,−M) ∶

x ⋅ 1 = dkx, 0Ð→ x, x Ð→ Yu)

≤ exp(−cpa)+
∞
∑
kx≥

−2a+c0ηM/d

∑
x∈Λu,v(−∞,−M),

x⋅1=dkx

Pp(x Ð→ Yu).

We define k∗ ∶= k∗(n) ∶= n(γ(u) + u ⋅ 1/d). With this choice, it
follows that y ∈ (k∗1 +K0)

c for all y ∈ Yu, and all n ∈ N. We can
now use translation invariance to bound

Pp(x Ð→ Yu) ≤ Pp(x Ð→ (k∗1 +K0)
c)

= Pp(x − kx1 Ð→ (−(kx − k∗)1 +K0)
c).
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We now fix

c ∶= (
dγ(u)+ u ⋅ 1

c0η
+ 1)∨ 1.

Let k′ ≥ 0 such that kx = −2a + c0ηM
d + k′. It holds, that

kx − k∗ ≥ −2a +
c0η

d
⌊n(

dγ(u)+ u ⋅ 1
c0η

+ 1)⌋+ k′ − n(γ(u)+
u ⋅ 1

d
)

≥ −2a +
c0η

d
(n − 1)+ k′ =∶ f (n, k′).

It follows, that

Pp(A′
n(M)) ≤ exp(−cpa)

+
∞
∑
k′=0

∑
x∈Λu,v(−∞,−M),

x⋅1=−2da+c0ηM+dk′

Pp(x − kx ⋅ 1 Ð→ (− f (n, k′)1 +K0)
c).

Combining x ⋅ 1 = −2da + c0ηM + dk′ with (6.11), shows that

∥x∥1 ≤ c0M +
dk′

η
.

Using another union bound, translation invariance, and Theo-
rem 6.1, we find

Pp(A′
n(M))

≤ exp(−cpa)+
∞
∑
k′=0

∣{x ∈ Zd ∶ ∥x∥1 ≤ c0M +
dk′

η
}∣

⋅Pp(0Ð→ (− f (n, k′)1 +K0)
c)

≤ exp(−cpa)+
∞
∑
k′=0

(2c0cn + 2
dk′

η
)

d
exp(−cp f (n, k′)). (6.12)
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We now take

a ∶= a(n) ∶=
c0η

4
n,

so that

f (n, k′) = −2a +
c0η

d
(n − 1)+ k′ = c0η(

n
2
− 1)+ k′.

A careful examination of (6.12) shows that the sum over k′ con-
verges for all n ∈ N, and that the result is summable with respect
to n, so that by the Borel-Cantelli lemma Pp(A′

n(⌊cn⌋) i.o.) = 0.
The same result can be proven similarly for the events A′′

n(⌊cn⌋)
and Ân(⌊cn⌋), and we omit the proof.
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