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Zusammenfassung
In dieser Arbeit beschreibe ich den Aufbau eines neues Quantengasmikroskops. Das Ziel des Experi-
ments ist die Simulation von topologischen Vielteilchensystemen in optischen Gittern. Als Atomspezies
wurde aufgrund einer leicht zugänglichen Feshbach Resonanz bei niedrigem magnetischem Feld und
seiner großen Feinstrukturaufspaltung Cäsium gewählt. Die Feshbach Resonanz erlaubt die Änderung
derWechselwirkung zwischen denAtomen. Die große Feinstrukturaufspaltung ermöglicht es die Atome
in ein anti-magisches Gitter zu laden ohne in der experimentellen Versuchsdauer durch die Photon-
streurate limitiert zu sein. Durch Ramanübergänge zwischen unterschiedlichen Hyperfeinzuständen
von Cäsium kann dann ein künstliches Magnetfeld simuliert werden, eine essenzielle Methode für
die Realisierung von Chernisolatoren.

Die hohe numerische Apertur die für ein Quantengasmikroskop benötigt wird beschränkt den
optischen Zugang zu den Atomen. Dies erschwert den Aufbau der optischen Laserstrahlen zum
Kühlen und Manipulieren der Atome. Wir verwenden optischen Transport mithilfe eines laufenden
optischen Gitters um die Atome nach einer Vorkühlphase in einen anderen Teil der Vakuumkammer,
einer Glaszelle, zu schieben. Dies erlaubt es, die Laserstrahlen die fürs Vorkühlen benötigt werden
unabhängig vomMikroskopobjektiv auf die Atome auszurichten. Das Transportgitter wird durch die
Interferenz zwischen einem Gauß-förmigen Laserstrahl und einem Bessel-förmigen Laserstrahl erzeugt.
Der Besselstrahl, ein nahezu beugungsfreier Laserstrahl, erlaubt es die Atome über eine 43 cm lange
Transportdistanz gegen Gravitation zu halten. Wir transportieren 3× 106Atome von der MOT Kammer
in die Glasszelle in weniger als 26ms, ohne dabei die Temperatur zu erhöhen. Die Transporteffizienz
ist etwa 75% und durch Gravitation und Atomverluste am Anfang des Transports limitiert.

Sobald die Atome in der Glaszelle ankommen, werden sie in eine gekreuzte Dipolfalle umgeladen.
Wir evaporieren indem die Fallentiefe reduziert und die Falle gekippt wird. Nach der Kondensation
wird das BEC in eine einzelne Ebene eines vertikalen Gitters und darauf folgend in ein horizontales
Gitter geladen. Um die Atome durch das Mikroskopobjektiv abzubilden wird Fluoreszenzlicht verwen-
det. Während der Fluoreszenzabbildung werden die Atome durch optische Molasse gekühlt und die
optischen Gitter auf etwa 120µK vertieft damit die Atome in 1 s um die 25.000 Fluoreszenzphotonen
streuen können ohne im Gitter zu tunneln.

Der in dieser Arbeit beschriebene experimentelle Aufbau wird es uns ermöglichen den Einfluss von
Wechselwirkungen auf topologische Phasen mit Einteilchenauflösung zu untersuchen. Dies erlaubt
es, Annahmen über die mikroskopische Dynamik in diesen Phasen zu testen und unser Verständ-
nis zu vertiefen.
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Abstract
In this work I describe the setup of a new quantum gas microscope. The goal of the experiment is the
simulation of topological many-body systems in lattices. Caesium was picked as atomic species, because
of its easily accessible Feshbach resonance at low magnetic fields and its large fine-structure splitting.
The Feshbach resonance allows changing the interaction between atoms. The large fine-structure
splitting enables loading the atoms into an anti-magic lattice without limiting the experiment duration
via scattering of lattice photons. Using Raman transitions between different hyperfine states of caesium,
an artificial magnetic field can be simulated, an essential method for the realization of Chern insulators.

The high numerical aperture necessary for a quantum gas microscope limits the optical access to the
atoms. This complicates the setup of the optical laser beams for cooling and manipulating the atoms.
We use optical transport based on a running wave optical lattice to transfer the atoms after pre-cooling
into a different section of the vacuum system, a glass cell. This allows alignment of the pre-cooling laser
beams independent of the microscope objective. The transport lattice is created via interference between
a Gaussian laser beam and a Bessel beam. The Bessel beam, a diffractionless laser beam, enables us to
hold the atoms against gravity over the transport distance of 43 cm. We transport 3 × 106 atoms from
the MOT chamber to the glass cell in less than 26ms without any temperature increase. The transport
efficiency is around 75%, limited by gravity and loss at the start of transport.

After the atoms have arrived in the glass cell they are transferred into a crossed dipole trap. We
evaporate the atoms by reducing the trap depth and tilting the trap. After condensation we trap
the BEC in a single plane of a vertical lattice. The BEC is subsequently loaded into a 2D horizontal
lattice. Fluorescence light is used to image the atoms through the microscope objective. During
fluorescence imaging, the atoms are cooled using an optical molasses and the optical lattice depth
is increased to around 120µK to allow the atoms to scatter up to 25.000 fluorescence photons in 1 s
without tunneling in the lattice.

The experimental setup detailed in this thesis will allow us to study the effects of interactions on
topological phases ofmatterwith single particle resolution. This paves theway to testing our assumptions
and extending understanding of the microscopic dynamics in these phases.
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CHAPTER 1

Introduction

The predictive power of simulation is invaluable to modern live. However, what to do when the
computational requirements for simulation become impossible to satisfy? For instance, the difficulty to
simulate interacting quantum systems scales exponentially in the system size. One way around this
problem is to use a controllable system of quantum particles instead of a classical simulator and map
the many-body system of interest on the dynamics of the particles. This approach, quantum simulation,
has already yielded numerous exciting results [1–10].

One platform that offers precise control and access to the microscopic observables of the system
are quantum gas microscopes [11–17]. In these, neutral atoms are trapped in optical lattices. Tunable
interactions [18], control of individual atoms [19] and the potential landscape [20] allow implementation
of various many-body Hamiltonians [21]. Single site resolved imaging gives direct access to the parity
projected density. Doublon detection (i.e. two particles on one lattice site) has been achieved by
separating the doublons into separate layers of a vertical lattice [22–24], or selectively removing singly
occupied sites and a single particle from doubly occupied sites [25]. Finally, spin and density resolved
imaging is achieved in Ref. [26] by splitting different spins with a magnetic field gradient in a horizontal
doublewell. From the density, information about the dynamics [7], the entanglement [27] or correlations
between atoms [12, 26] can be extracted.

Within the field of quantum simulation in general [28–35] and quantum simulation with cold atoms
specifically [6, 36–46], one avenue of research that has garnered attention in the past decade is the
simulation of topological phases of matter. As opposed to Landau’s theory of phase transitions, where
the phases are distinct due to spontaneous symmetry breaking, topological phases are separated by
non-local invariants with identical symmetries between the phases. Using ultracold atoms trapped
in optical lattices, celebrated models of topological physics, such as the Harper-Hofstadter model [6,
36, 37, 42], the SSH model [38, 40, 41] or the Haldane model [39, 44] can be implemented. Adding
interactions between particles to these models can transform the topological properties of these systems
in non-trivial ways [43, 47–49], for example turning the collective excitations [50, 51] of the system into
anyons, pseudo particles exhibiting neither fermionic nor bosonic statistics [52–55].

Both the Harper-Hofstadter [56, 57] and the Haldane model [58] require complex tunneling between
lattice sites. This is often realized via Floquet engineering [59]. In resonant Floquet engineering,
tunneling between sites is first suppressed, typically by tilting neighboring lattice sites. Afterwards,
a periodic modulation is added to the Hamiltonian to reintroduce tunneling, with a tunneling phase
controlled by the parameters of the modulation. However, adding interactions in Floquet systems
leads to heating [60, 61]. Jaksch and Zoller [62] proposed a different scheme to implement complex
tunneling between lattice sites (see also Refs. [63, 64]). The atoms are loaded into a state-dependent
lattice, and tunneling is introduced by two-photon Raman transitions. The complex phase is controlled
by the angle and wavelength of the Raman beams. This scheme avoids the heating problems associated
with Floquet engineering.
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2 Introduction

In this thesis I describe the construction of a new quantum gas microscope. We use caesium, which
due to a wide Feshbach resonance [18] at low magnetic fields readily lends itself for investigating the
effects of interactions on many-body systems. We plan to implement a state-dependent lattice and
introduce tunneling between sites with Raman beams to investigate interacting topological systems.
By transporting the atoms into a different section of the vacuum system before condensing, we can
place the microscope objective close to the atoms without suffering from reduced optical access. This
enables a large numerical aperture [12, 15, 16, 65], even at large working distance, so no in-vacuum
lenses [11], or hemispheres contacted to the vacuum viewport [13, 66] are required.

The thesis is outlined as follows:

• In the first chapter, I explain why we have chosen caesium for our quantum gas microscope.

• The second chapter outlines the laser setup for pre-cooling, the vacuum system and the pre-cooling
steps before the transport.

• The running wave optical transport is described in the third chapter, which details the loading
scheme, measurements on the Bessel beam and the control of the detuning and closes with a
discussion of our transport efficiency.

• I proceed in chapter 4 with the description of our evaporation sequence to BEC. Chapter 4 also
gives information on our vertical lattice, that is used to constrain the dynamics of the atoms into
two dimensions, and the updated evaporation sequence after the experimental setup around the
glass cell was upgraded in march 2021.

• Finally, in chapter 5, I discuss the first steps towards fluorescence imaging of single caesium atoms
in a pinning lattice using our high resolution imaging setup.

Publications The following publications have been published in the context of this thesis:

• T.Klostermann, C. R. Cabrera, H. vonRaven, J. F.Wienand, C. Schweizer, I. Bloch,M.Aidelsburger,
Fast long-distance transport of cold cesium atoms, Arxiv 2109.03804, submitted to Physical Review
A



CHAPTER 2

Why Caesium?

This chapter explains why we set up a Caesium quantum gas microscope experiment. The aim is to
study 1D and 2D topological interacting lattice systems. The fact that the systems we want to study are
1D or 2D naturally lends itself to quantum gas microscope experiments [17], which typically also work
with 2D lattices. The microscope will then allow direct observation of density correlations [12], from
which a trove of information about the many-body system can be deduced (see e.g. Refs. [3, 5, 17, 21]).

The choice to use Caesium has more to do with wanting to study topological and interacting
systems [34, 43, 67, 68]. For the latter, Caesium offers tunable interactions even at low magnetic fields
using a broad magnetic Feshbach resonance [69]. Concerning the former, some topological systems
require time reversal symmetry to be broken (e.g. the quantum Hall effect) [43]. In systems of ultra
cold atoms trapped in a lattice, time reversal symmetry can be broken by making the tunnel coupling
between lattice sites complex valued. We plan to use a novel scheme to create and control the phase of
the tunnel coupling [62–64], utilizing an anti-magic lattice with Raman-assisted tunneling. This makes
Caesium an attractive choice, having the largest finestructure splitting among the alkalis.

2.1 Berry phase
The introduction in this subsection largely follows Ref. [43], Section II.B and II.C. Bloch’s theorem
states that the eigenstates in a crystal can be decomposed into a plane wave with quasi momentum 𝑞
and a periodic function 𝑢(𝑛)𝑞 , which has the same periodicity as the unit cell. Here 𝑛 labels the band
index. The Bloch periodic functions 𝑢(𝑛)𝑞 are the eigenstates of a Hamiltonian �̂�𝑞, parameterized by the
quasi momentum. The eigenvalues 𝐸(𝑛)𝑞 of �̂�𝑞 form the energy bands of the crystal. If the lowest band
remains gapped, a continuous, adiabatic variation of the quasi momentum will transform an eigenstate
𝑢(𝑛)𝑞𝑖 at quasi momentum 𝑞𝑖 into one at 𝑞𝑓, 𝑢

(𝑛)
𝑞𝑓 . If 𝑞𝑖 = 𝑞𝑓, i.e. traversing the Brillouin zone along a

closed contour, the final state differs from the initial one only by a phase factor

𝑢(𝑛)𝑞𝑓 = exp
[
𝑖
(
𝜙(𝑛)𝑑𝑦𝑛 + 𝜙(𝑛)𝑔𝑒𝑜

)]
𝑢(𝑛)𝑞𝑖 , (2.1)

with dynamical phase 𝜙(𝑛)dyn = − 1
ℏ

∫ 𝑡𝑓
𝑡𝑖
𝐸(𝑛)𝑞 (𝑡′)d𝑡′ and geometric or Berry phase 𝜙(𝑛)geo = ∮ 𝑢(𝑛)𝑞 𝜕𝑞𝑢

(𝑛)
𝑞 d𝑞.

The Berry phase [70, 71] allows the distinction between different topological phases, as illustrated below.
The Berry phase can be rewritten as the integral over the Berry connection𝐀(𝑛) = 𝑖𝑢(𝑛)𝑞 𝜕𝑞𝑢

(𝑛)
𝑞 or, provided

that the Brillouin zone is two dimensional, the flux of the Berry curvature Ω(𝑛)
𝑖𝑗 = 𝜕𝑞𝑖𝐴

(𝑛)
𝑗 − 𝜕𝑞𝑗𝐴

(𝑛)
𝑖

through the area bounded by the loop.
The quasi momentum is periodic, i.e. �̂�𝑞 = �̂�𝑞+𝐺 with 𝐺 a reciprocal lattice vector. In 1D the

transformation 𝑞 → 𝑞 + 𝐺 therefore corresponds to a closed loop and the Berry phase along the loop
is called Zak’s phase 𝜙Zak =

∫ 𝑞+𝐺
𝑞 𝑖𝑢(𝑛)𝑞 𝜕𝑞𝑢

(𝑛)
𝑞 d𝑞. Zak’s phase [38, 72] can for instance be used to

3



4 Why Caesium?

characterize the different phases of the 1D SSH model [73, 74]. The 1D SSH model is a tight binding
model with two sites (orbitals) per unit cell (and subsequently two bands1)

�̂�SSH = −
∑
𝑗

(
𝐽′�̂�†𝑗 �̂�𝑗 + 𝐽�̂�†𝑗 �̂�𝑗−1 + ℎ.𝑐.

)
. (2.2)

The sum runs over all sites 𝑗 of the 1D chain. It exhibits two topologically distinct phases, depending
on the ratio of 𝐽∕𝐽′, with the transition at 𝐽 = 𝐽′. At the transition point the band gap closes, so an
adiabatic transformation of the Berry phase becomes impossible. This is a generic feature of topological
insulators, and allows the definition of an equivalence partition, with two Hamiltonian being topologi-
cally equivalent if they can be transformed into each other by varying their parameters without closing
the energy gap. In the case of the 1D SSH model, Zak’s phase differs by 𝜋 between the two phases.
Because the value of Zak’s phase in the 1D SSH model depends on the choice of basis for the sub lattice,
only differences between topological phases for a given sub lattice basis are physically meaningful,
and it is not meaningful to distinguish a topologically trivial phase from a non-trivial one [38]. This
distinction becomes possible when the SSH chain has a finite length, as in this case the system has a
boundary with a topologically trivial phase (the vacuum). Generically, at the boundary between two
topologically distinct phases, edge modes occur [75]. So the existence or lack of an edge mode localized
to the boundary of the chain allows the differentiation between the topologically trivial and non-trivial
phase [41, 45, 73, 76]. The SSH model has been implemented in cold atoms using, for example, optical
super lattices [38], momentum space lattices [41], chirped amplitude lattices [40] and tweezer arrays [45].
Ref. [38] measured the Zak phase difference between the two distinct phases. Ref. [41] observe the edge
mode at the corners of the SSH model, while the authors of Ref. [40] create an interface between the
two SSH model phases and observe the edge mode at the interface. Finally, Ref. [45] studies the bosonic
many-body SSH-model and observes symmetry protected topological edge modes.

In two dimensions, it becomes possible to define the Berry curvature. The integral of the Berry
curvature over the full Brillouin zone is quantized in multiples of 2𝜋 [77], i.e.

C(𝑛) = 1
2𝜋

∫
BZ
𝛀(𝑛)(𝐪)d2𝑞 ∈ ℤ. (2.3)

C(𝑛) is called the Chern number, defined for each band 𝑛. In two dimensions, the Chern number is zero
if the Hamiltonian is time-reversal symmetric. For charged particles magnetic fields can be used to
break time reversal symmetry, as is done for example in the quantum Hall effect. However, as ultra-cold
atoms are charge neutral this is not an option. Instead, artificial magnetic fields can be created by
making the tunneling between sites complex valued. The complex phase of the tunnel coupling is
analogous to Peierls phases [78, 79] of electrons in a solid subject to a magnetic field [57]. The dynamics
of non-interacting atoms in a lattice with complex tunneling is described by the (Harper-)Hofstadter
Hamiltonian (Ref. [56, 57], given here in tight binding formulation as in [43], Eq. 45):

�̂�HH = −𝐽
∑
𝑗,𝑚

(
𝑒2𝜋𝑖𝛼𝑚𝑎†𝑗+1,𝑚𝑎𝑗,𝑚 + 𝑎†𝑗,𝑚+1𝑎𝑗,𝑚 + h.c

)
(2.4)

with the phase 2𝜋𝛼 picked up while tunneling around a plaquette and 𝑗,𝑚 labeling sites in the 𝑥, 𝑦
direction. Adding on-site interactions the resulting Hamiltonian becomes the Harper-Hofstadter-
Hubbard Hamiltonian. The Hofstadter Hamiltonian may be thought of as a lattice analog of quantum
Hall liquids, with the topological insulator phases referred to as Chern insulators. Similarly, adding
on-site interactions is believed to result in fractional Chern insulators, lattice analogs of fractional
quantum Hall states [80–82].

1This is the minimum number of bands/orbitals required for a non-zero Berry phase.



2.2 Dipole traps and optical lattices 5

λ (nm) 767 1064 1534 871.1, π-pol 871.1, σ+-pol

− α

2ε0c
( nK

W∕cm2 ) 3.4 -2.4 -1 -7.5 1.5

Table 2.1 | Example polarizabilities of the |F = 3,mF = 3⟩ state of Caesium. 1064 nm is the laser wavelength used
for the dipole traps in the experiment and the running wave lattice. 767 nm and 1534 nm lasers are planned for
superlattice potentials and 871.1 nm is planned to be used for an antimagic lattice. A negative sign indicates atoms
are trapped in intensity maxima

To induce complex tunnel couplings in optical lattices, Floquet engineering can be used (e.g. Refs. [6,
36, 37, 44, 46]). One issue with Floquet engineering of topological band structures is that interactions
tend to lead to heating [83, 84]. We hope to address this issue by engineering the complex tunneling
using a state dependent lattice and Raman transitions between different spin states [62].

2.2 Dipole traps and optical lattices
Ref. [62] proposes to trap atoms in an anti-magic optical lattice. Before the scheme is described in
detail in section 2.3, I briefly want to explain how optical lattices are created. Given an electric field
𝐸 = 𝐸0 cos(𝑘𝑧 − 𝜔𝑡) = 𝐸+0 𝑒

𝑖(𝑘𝑧−𝜔𝑡) + 𝐸−0 𝑒
−𝑖(𝑘𝑧−𝜔𝑡), with intensity 𝐼 = 2𝜖0𝑐|𝐸+0 |

2 = 1
2
𝜖0𝑐|𝐸0|2 the dipole

potential seen by an atom is given by 𝑉 = −𝛼 𝐼
2𝜖0𝑐

[85], with 𝛼 the polarizability of the atoms at the
laser wavelength 𝜆, 𝜖0 the permittivity of vacuum and 𝑐 the speed of light. For alkali atoms, with the
detuning from resonance ∆ = 𝜔𝐿 − 𝜔0 much larger than the hyperfine splitting of the excited state
(∆ ≫ ∆′𝐻𝐹𝑆), the polarizability of a ground state atom in |𝐹,𝑚𝐹⟩ is given as [85]

𝛼 = −
𝜋𝜖0𝑐3Γ
𝜔30

(
2 + P𝑔𝐹𝑚𝐹

∆2,𝐹
+ 1 − P𝑔𝐹𝑚𝐹

∆1,𝐹
) . (2.5)

Here 𝑔𝐹 is the Landé factor (𝑔𝐹=3 = −1∕4 and 𝑔𝐹=4 = 1∕4 for the ground state of Cs), P is the laser
polarization (P = 0,±1 for 𝜋, 𝜎± light), Γ the linewidth and ∆2,𝐹 and ∆1,𝐹 are the detuning from the
D2 and D1 line respectively (see Table 2.1 for explicit values of the polarizability for some wavelengths
relevant for the experiment). For a Gaussian laser beam with waist in the focus 𝑤0, wavelength 𝜆 and
Rayleigh range 𝑧𝑅 =

𝜋𝑤2
0

𝜆
, the intensity in the focus is given by 𝐼0 =

2𝑃
𝜋𝑤2

0
. Close to the center, the radial

profile is approximately quadratic in 𝑟. Atoms trapped in the focus of a Gaussian laser beam therefore
experience a harmonic confinement with trap frequency

𝜔 =
√

−2𝛼𝐼0
𝜖0𝑐𝑚𝑤2

0
. (2.6)

Optical Lattices Two counter-propagating laser beams at the same wavelength interfere and create
an optical lattice. For atoms trapped in this lattice, the potential is given by

𝑉 = 𝛼
2𝜖0𝑐

|||||
√
𝐼1𝑒𝑖(𝑘𝑧−𝜔𝑡) +

√
𝐼2𝑒𝑖(−𝑘𝑧−𝜔𝑡)

|||||
2
= 𝛼𝐼1
2𝜖0𝑐

+ 𝛼𝐼2
2𝜖0𝑐

+ 2
𝛼
√
𝐼1𝐼2

2𝜖0𝑐
(
1 − 2 sin2(𝑘𝑧)

)
(2.7)
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Figure 2.1 | a) Bandstructure for Vlatt = 3ER and b) for Vlatt = 13ER. The first and second excited state from the
harmonic oscillator approximation ωlatt (see Equation 2.8) are quite different to the energy difference at q = 0. c)
Relative error ε = 2((n − 1)ωlatt − ∆1n)∕((n − 1)ωlatt + ∆1n), withωlatt computed according to Equation 2.8 and h̄∆1n

the energy difference between the first and nth band at q = 0. Note thatωlatt underestimates ∆12 for low lattice depth
and overestimates it for large ones. d) Tunnel coupling J extracted from the numerically computed bandwidth for
different sizes of ĤFT (Equation 2.10, sampling per site = number of sites). Red shows the tunnel coupling estimate
from the Mathieu equation. For large trap depth, the size of ĤFT becomes critical. At this point, the approximation of
J via the Mathieu equation is fairly accurate and faster.

with 𝑘 = 2𝜋∕𝜆 the lattice wavevector. The lattice depth 𝑉latt and lattice trap frequency 𝜔latt are given by

𝑉latt = 4 𝛼
2𝜖0𝑐

√
𝐼1𝐼2, 𝜔latt =

√
2𝑉latt𝑘2
𝑚 . (2.8)

Note that for small trap depths, the anharmonicity of the sinusoidal potential becomes important and
the energy spacing between bands deviates from ℏ𝜔latt (Figure 2.1). Figure 2.1c shows the relative error
(𝑛𝜔latt − ∆1𝑛)∕(𝑛𝜔latt + ∆1𝑛) between the harmonic approximation to the trap frequency 𝜔latt and the
band gap ∆1𝑛 at 𝑞 = 0. 𝑛 = 2, 3 labels the excited band. For small lattice depths (𝑉latt < 10𝐸𝑅) the
difference is on the order of 6-30%. The comparison is with the bandgap at 𝑞 = 0 because this is the
modulation frequency relevant for amplitude modulation to measure lattice depths (subsection 3.3.3).
An optical lattice is also created if the lasers interfere at an angle. With 𝛼 the half opening angle
between the beams, 𝑘 in the equations above should be replaced with 𝑘 = 2𝜋 sin(𝛼)∕𝜆, which gives
a lattice spacing of 𝑑latt = sin(𝛼)𝜆∕2.

Degenerate atoms loaded into an optical lattice can be used to simulate the low-energy physics of
condensed matter models. To this end, the full dynamics of the system get approximated by a tight
binding model. This model captures the essential features of the system relevant at low energies e.g.
tunneling between lattice sites or interaction between atoms on the same site. Numerical values for the
coupling between sites or the on-site interaction can be extracted from the Schrödinger equation for
non-interacting atoms trapped in an optical lattice. This system is identical to that of non-interacting
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electrons trapped in a solid. As such, we can use Bloch’s theorem to separate the wavefunction into
a plane wave of quasi momentum 𝑞 and a Bloch periodic function 𝑢(𝑛)𝑞 , labeled by the quasi momen-
tum and the band index 𝑛. The band structure of the optical lattice 𝐸(𝑛)𝑞 can then be determined by
solving the Schrödinger equation for the Bloch periodic function 𝑢𝑞. Following the derivation given
in Ref. [86] Section 3.1.3 we write:

�̂�𝑞𝑢
(𝑛)
𝑞 = (

(�̂� − 𝑞)2
2𝑚 − 1

4𝑉latt
(
2 + 𝑒𝑖2𝑘𝑧 + 𝑒−𝑖2𝑘𝑧

)
)𝑢(𝑛)𝑞 = 𝐸(𝑛)𝑞 𝑢(𝑛)𝑞 . (2.9)

Discrete Fourier transformation of the equation above yields

�̂�𝐹𝑇𝑐(𝑛,𝑞) = 𝐸(𝑛)𝑞 𝑐(𝑛,𝑞), (2.10)

with �̂�𝐹𝑇 an 𝑁 ×𝑁 matrix having the 𝓁-th entry on the diagonal (2𝓁 + 𝑞∕ℏ𝑘)2𝐸𝑅 and first off diagonal
entries −1∕4𝑉latt. Note that the dimension of �̂�𝐹𝑇 implicitly discretizes a single lattice period into 𝑁
points. Numerically diagonalizing Equation 2.10 for all 𝑞 gives the Bloch bands 𝐸(𝑛)𝑞 . With increasing
lattice depth, 𝑁 has to be increased for accurate determination of the band structure (Figure 2.1d).
The Bloch periodic function 𝑢(𝑛)𝑞 is related to 𝑐(𝑛,𝑞) via an inverse Fourier transformation. From the
Bloch periodic function 𝑢(𝑛)𝑞 , the Wannier function centered on site 𝑖 can by found as 𝑤(𝑥 − 𝑥𝑖) =
N

∑
𝑞 𝑒

𝑖𝑞(𝑥−𝑥𝑖)∕ℏ𝑢(𝑛)𝑞 with N chosen such that |𝑤(𝑥 − 𝑥𝑖)|2 = 1.

From the ground state energy band, the tunneling matrix element 𝐽 between adjacent sites 𝑖 and 𝑗
can be computed from the first energy band’s width𝑊 or the Wannier function 𝑤(𝑥 − 𝑥𝑖) as [86, 87]

𝐽 =
∫
𝑤(𝑥 − 𝑥𝑖) (

𝑝2
2𝑚 + 𝑉(𝑥))𝑤(𝑥 − 𝑥𝑗)d𝑥 =

𝑊
4 ≈ 4𝐸𝑅√

𝜋
(𝑉latt𝐸𝑅

)
3∕4

exp
⎡
⎢
⎣
−
√

4𝑉latt
𝐸𝑅

⎤
⎥
⎦
. (2.11)

The approximation in Equation 2.11 is due to theMathieu equation and becomes accurate for large lattice
depth (Figure 2.1d). 𝐸𝑅 = ℏ2𝑘2∕2𝑚 in Equation 2.11 is the lattice recoil energy, where 𝑘 = 2𝜋 sin(𝛼)∕𝜆
(see paragraph below Equation 2.8). The onsite interaction can be computed as

𝑈 = 4𝜋ℏ2𝑎
𝑚

∫
|𝑤𝑥(𝑥)𝑤𝑦(𝑦)𝑤𝑧(𝑧)|4dx ≈

√
2𝑚ℏ𝑎2
𝜋

√
𝜔(𝑥)latt𝜔

(𝑦)
latt𝜔

(𝑧)
latt, (2.12)

with ℏ𝜔(𝑖)latt the energy difference between first and second band along axis 𝑖 and 𝑎 the scattering length.
𝑤𝑖(𝑥) is the Wannier function in the direction 𝑖, centered on an arbitrary site. For a 2D lattice these
will be different in the horizontal and vertical direction. 𝑤𝑖(𝑥) is reasonably well approximated by a
harmonic oscillator wavefunction (Ref. [87] Table I) with ∆12 the excitation frequency from the first
to the second band as the oscillator frequency.

Using 𝐽 and 𝑈, we can rewrite the Hamiltonian for the low temperature dynamics of the atoms
using a single-band tight binding model (i.e. no atomic internal degrees of freedom or sub-structure
to the unit cell). For the specific example given here, this tight binding model corresponds to the
Bose-Hubbard model [1, 88]

�̂�Hubbard = −𝐽
∑
⟨𝑖,𝑗⟩

�̂�†𝑖 �̂�𝑗 +
𝑈
2
∑
𝑖
�̂�𝑖(�̂�𝑖 − 1) −

∑
𝑖
(𝜖𝑖 − 𝜇)�̂�𝑖 (2.13)

with ⟨𝑖, 𝑗⟩ indicating that the sum should be over nearest neighboring sites, �̂�†𝑖 (�̂�𝑖) the creation (an-
nihilation) operator on site 𝑖, �̂�𝑖 = �̂�†𝑖 �̂�𝑖 the number operator and 𝜖𝑖 an energy offset on site 𝑖 and 𝜇
the chemical potential. In the experiment, the energy offset is given by the harmonic confinement of
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Figure 2.2 | a) Sketch of Raman induced tunneling in an anti-magic wavelength lattice (wavelength λ). Atoms in
|F = 3,mF = 3⟩ (orange) and |F = 3,mF = 2⟩ (green) sit in the minima and maxima of the optical lattice respectively.
Tunneling between nearest neighbor sites can be induced using microwaves or a pair of Raman beams (detuning ∆)
to drive transitions (Rabi frequencyΩR) between the different internal states. The figure illustrates the case of Raman
induced tunneling. While hopping, the atoms gain a phase 2παm = 2k sin(φ)mλ∕2 dependent on the wavelength
of and angle φ between the Raman beams (purple,Ω1, k1 andΩ2, k2). The tunneling amplitude Jx depends on the
overlap between adjacent sites (red). Contrary to Ref. [62], there is no tilt of the lattice. b) Light shift of |F = 3,mF = 3⟩
(orange) and |F = 3,mF = 2⟩ (green) for different wavelengths and polarization. The grey vertical dashed lines
indicate the anti-magic wavelengths for σ+ (green and orange dashed lines) and σ− (green and orange sold lines).
The grey solid line between the curves corresponds to the light shift with π-polarized light.

the atoms in the lattice. Let 𝜖𝑖 = 0 for now and the mean density in the lattice be 𝑛 ∈ ℕ atoms per
site. In this case the model exhibits a phase transition when varying 𝐽∕𝑈. For large 𝐽∕𝑈, the system
is superfluid, for small 𝐽∕𝑈 the system becomes a Mott insulator [1, 12, 89, 90]. In the Mott insulator
phase, the fluctuations in the on-site occupation are suppressed and each site is occupied by 𝑛 atoms.
To observe this transition, precise tuning of the chemical potential to reach 𝑛 would be required. In the
experiment, the harmonic confinement 𝜖𝑖 leads to a smooth variation of the local chemical potential. As
a result, the Mott insulator becomes observable as a density plateau of constant filling without precise
tuning of 𝜇. For dense clouds, multiple shells of constant filling become observable, with decreasing
site occupation towards the edges. Each shell is separated from the others by a superfluid layer. These
superfluid layers are also where the entropy of the system is concentrated.

2.3 State dependent lattice
From Equation 2.5 it is clear that the dipole potential of an atom depends on its internal state (𝐹,𝑚𝐹), i.e.
different ground states experience different light shifts. Given two different internal ground states |𝑔1⟩
and |𝑔2⟩, the wavelength can be chosen such that the light shift for one ground state disappears (tune
out wavelength), the light shift is the same for both states (magic wavelength) or the light shift is exactly
opposite (anti-magic wavelength). We are planning to implement an optical lattice at the anti-magic
wavelength in our experimental setup. This allows us to induce tunneling between adjacent lattice sites
using microwaves or Raman transitions ([62], Figure 2.2a). During the Raman induced tunnelling, the
atom gains a phase factor, which is given by the wavelength and angle between the two Raman beams.
This phase factor is analogous to a Peierls phase that tight binding electrons gain when hopping in a
lattice pierced by a magnetic flux. Therefore, using Raman-assisted tunneling, artificial magnetic fields
can be introduced into the system. More precisely, let the Raman coupling between the anti-magic
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lattices sites be Ω𝑅 =
Ω1Ω2
∆

𝑒𝑖(𝐤1−𝐤2)𝐱 = Ω1Ω2
∆

𝑒𝑖𝑞𝑦 , where Ω1,2 is the Rabi frequency of the first (second)
Raman beam, ∆ the detuning of the lasers from the excited state and we have chosen the angles between
the beams and the lattice such that the wavevector difference projected along the anti-magic lattice axis
is zero ((𝐤1 − 𝐤2)𝐱 = 𝑞𝑦, as in Ref. [62]). The tunneling matrix element between the sites is given by
⟨𝑛−1, 𝑚|Ω𝑅|𝑛,𝑚⟩ =

1
2

∫
𝐰∗(𝐱−𝐱𝑛−1,𝑚)Ω𝑅𝐰(𝐱−𝐱𝑛,𝑚)d3𝑥. Since the optical lattice potential separates

(𝐰(𝐱 − 𝐱𝑛−1,𝑚) = 𝑤𝑥(𝑥 − 𝑥𝑛−1)𝑤𝑦(𝑦 − 𝑦𝑚)𝑤𝑧(𝑧), tunneling along 𝑥), this can be rewritten as [62]:

⟨𝑛 − 1, 𝑚|Ω𝑅|𝑛,𝑚⟩ =
1
2Ω𝑅Γ𝑦(𝛼)Γ𝑥𝑒2𝜋𝑖𝛼𝑚 = 𝐽𝑥𝑒2𝜋𝑖𝛼𝑚, (2.14)

with 𝛼 = 𝑞𝜆∕4𝜋 and

Γ𝑥 =
∫
𝑤∗
𝑥(𝑥)𝑤𝑥(𝑥 − 𝜆∕4) (2.15)

Γ𝑦(𝛼) =
∫
𝑤∗
𝑦(𝑦)𝑤𝑦(𝑦) cos(4𝜋𝛼𝑦∕𝜆). (2.16)

The complex tunneling phase 2𝜋𝛼𝑚 can be tuned by varying 𝐪, the wavevector difference between
the two Raman beams (Figure 2.2a).

While the setup described above in shown in Figure 2.2a allows complex tunneling with a tunable
phase, it does not implement the Harper-Hofstadter-Hamiltonian (Equation 2.1). The same Raman
laser pair driving transitions form 𝑛 → 𝑛 + 1 also drives transitions from 𝑛 + 1→ 𝑛 + 2. However, the
phase picked up during tunneling from 𝑛 to 𝑛 + 1, 𝜙𝑛→𝑛+1 is the negative of the one picked up when
tunneling from 𝑛+ 1 to 𝑛+ 2, i.e. 𝜙𝑛→𝑛+1 = −𝜙𝑛+1→𝑛+2, or 𝜙even→odd = −𝜙odd→even. Intuitively, this is
because the order of the virtual Raman lasers is reversed. The one driving the virtual excitation in case
of a transition from even to odd sites drives the virtual deexcitation for the odd to even transition. This
role reversal inverts the sign of 𝑞 and thereby 𝛼 and 𝜙. The flux, the phase difference picked up while
traveling around a plaquette, implemented with the scheme is called staggered, i.e. it reverses sign
between even and odd columns. A system with staggered flux has zero Chern number. For a non-zero
Chern number, the flux needs to be rectified [6]. To rectify the flux and have 𝜙even→odd = 𝜙odd→even,
Ref. [62] proposes to tilt the potential, while Ref. [64] proposes using a superlattice (implemented for
instance in [6] with Floquet engineering to produce the complex tunneling). Finally, Ref. [63] suggests
using three internal states instead of two. Notably, all the schemes have in common that at least two
pairs of lasers, driving independent Raman transitions are required.

2.4 Caesium for interacting topological many-body phases
2.4.1 State dependent lattice with Caesium
Off-resonant photon scattering in an optical lattice leads to heating and limits the lifetime of the atoms
in the lattice. The off-resonant photon scattering Γsc can be expressed in terms of the dipole potential
depth 𝑉 as Γsc ∝ ∆−1 with the detuning from the resonance ∆ [85]. At constant trap depth, the
scattering rate decreases with increasing detuning. For an anti-magic lattice, this detuning cannot
be chosen, since the wavelength is fixed by the anti-magic condition of the polarizability. For the
alkali-metal atoms, the anti-magic wavelength will typically lie between the 𝐷1 and 𝐷2 transition. The
maximum detuning ∆ therefore depends on the finestructure splitting between the 𝐷1 and 𝐷2 line,
which increases with the charge of the nucleus. For this reason, the finestructure splitting is largest
in Caesium among the alkali-metal atoms. Specificially, the splitting is 42 nm (17THz) in Caesium,
compared to 15 nm (7THz) in 87Rb.

This makes Caesium a very attractive choice for an anti-magic lattice experiment. Specifically,
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we are planning to use the hyperfine states |𝐹 = 3, 𝑚𝐹 = 3⟩ and |𝐹 = 3, 𝑚𝐹 = 2⟩, because they
have a small differential Zeeman shift and are thus less susceptible to magnetic field fluctuations.
The anti-magic wavelength for these states is at 871nm for 𝜎+-polarized light and at 889nm for 𝜎−-
polarized light (Figure 2.2b). There is no anti-magic wavelength for 𝜋-polarized light, as the light
shift is identical for the two states (for 𝜋-polarized light P = 0 in Equation 2.5). Among these two
wavelengths, 889 nm provides a stronger lightshift, so less power would be required for the same lattice
depth. However, the associated scattering rate is also necessarily stronger, which is why we plan to
use 871 nm for our state dependent lattice.

Using 871nm light with a laser power of 100mW and waists of 300× 45µm2 gives an optical lattice
with bare (𝐹 = 3, 𝑚𝐹 = 3 → 𝐹 = 3, 𝑚𝐹 = 3) tunneling of 𝐽 = 2𝜋 × 1Hz and a lattice depth of 30𝐸𝑅.
The off-resonant scattering rate is around 500mHz. With a pair of Raman beams detuned from the
6𝑆1∕2, 𝐹 = 3 → 6𝑃3∕2, 𝐹 = 2 transition of 500GHz, a power of 20mW and a circular waist of 250µm
gives an induced coupling between the 𝐹 = 3, 𝑚𝐹 = 3 and 𝐹 = 3, 𝑚𝐹 = 2 states of 430Hz. The
off-resonant scattering rate is 2Hz. Working with the Raman beams closer to the 𝐷1 line (500GHz
from 6𝑆1∕2, 𝐹 = 3 → 6𝑃1∕2, 𝐹 = 2 transition) gives comparable coupling (460Hz) with lower off-
resonant scattering rate (0.5Hz). This coupling can be compared to tunneling achieved in Floquet
systems. Ref. [6] realizes the Hofstadter model with Floquet engineering. The induced coupling is
75Hz. Ref. [59] reports an induced coupling of 270Hz in a ladder system and Ref. [44] uses induced
couplings on the order of 500Hz to study the Haldane phase.

A different kind of state dependent lattice is used in Refs. [91, 92]. The experiments use Caesium
in states |𝐹 = 4, 𝑚𝐹 = 4⟩ and |𝐹 = 3, 𝑚𝐹 = 3⟩. The wavelength is chosen such that it is a tune-out
wavelength for |𝐹 = 4, 𝑚𝐹 = 4⟩ when the light is 𝜎− polarized and close to a tune-out wavelength for
|𝐹 = 3, 𝑚𝐹 = 3⟩ if the light is 𝜎+ polarized2. In the experiments, this kind of lattice is used to simulate
quantum random walks. Note that a similar lattice has also been implemented for 87Rb [94]. A magic-
wavelength dipole trap [95] for Caesium in any of the 𝑆1∕2 or 𝑃3∕2 states was implemented in Ref. [96].

2.4.2 Feshbach resonance
Apart from the large fine structure splitting, Caesium is also interesting because it allows tuning the
interacting strength between the atoms using a Feshbach resonance. In this subsection, I give a very brief
introduction into Feshbach resonances [18]. At low temperatures the scattering cross section 𝜎 between
bosons is determined by the s-wave scattering length 𝑎: 𝜎 = 8𝜋𝑎2. Odd partial wave contributions
vanish for bosons and higher even partial waves (e.g. d and g) do not contribute because the centrifugal
barrier prevents collisions [69]. The value of the scattering length 𝑎bg (in the absence of a Feshbach
resonance) depends on the depth of the (s-wave) molecular potential between the scattering atoms [97],
and diverges if the potential has a depth that admits a bound state at the continuum threshold.

Feshbach resonances allow tuning of the interaction between atoms. They occur when the unbound,
scattering atoms (open channel) have an energy close to a bound molecular state (closed channel) of
a different internal state configuration [18, 69]. If the free atoms couple to the molecular state, for
example via relativistic spin-spin interactions, the scattering length diverges when the energy difference
between the bound state and the scattering state is zero (Figure 2.3a–b). While the open channel is
limited to only s-waves due to the low temperature, the closed channel can be made of higher partial
waves of even symmetry.

The scattering length of Caesium at low magnetic fields is dominated by a large s-wave Feshbach
resonance at−11.7G [18]with the zero crossing of the resonance at 17.12G [98]. This enables easy tuning
of the scattering length over a range of a few hundred Bohr radii 𝑎0 at low magnetic fields. In addition,

2This is possible for these states since they are close to stretched states, i.e. |𝐹 = 4, 𝑚𝐹 = 4⟩ has𝑚𝐽 = 1∕2 and |𝐹 = 3, 𝑚𝐹 = 3⟩
has mostly𝑚𝐽 = −1∕2. See Ref. [93], section 5.1 for a more detailed explanation



2.4 Caesium for interacting topological many-body phases 11

20 30 40 50
Magnetic field (G)

0

250

500

750

1000

S
c
a
tt

e
ri
n

g
 le

n
g

th
 a

 (
a
0
)

19.84 G

47.97 G

Magnetic field (arb. u.)

S
c
a
tt

e
ri
n

g

L
e
n

g
th

 (
a
rb

.u
.)

a) c)

b)

+

+

open channel
closed channel

ΔE(B)

a>abg a<abg

ΔE(B)=0
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two narrower resonances at magnetic fields relevant to our experiment, at 19.84G (g-wave molecular
potential) and 47.97G (d-wave molecular potential) exist (see Ref. [18], Table IV and Figure 2.3c).

We condense Caesium in its absolute ground state (𝐹 = 3, 𝑚𝐹 = 3), where two-body inelastic
collisions are forbidden. As a result, the dominant loss channel in our experiment are three-body
collisions. For large scattering length and low temperatures, a universal relation between the three-body
recombination coefficient 𝛼rec and the scattering length 𝑎 exists (Ref. [99], Sec. 5.2.2). This relation
is typically expressed in terms of the three-body loss rate3:

𝐿3 = 𝑛𝑙𝛼rec = 𝑛𝑙𝐶(𝑎)ℏ𝑎4∕𝑚, (2.17)

and was measured in experiment in Refs. [100–102]; 𝑛𝑙 is the number of atoms lost in a recombination
process and usually 𝑛𝑙 = 3 is assumed [103]. The factor 𝐶(𝑎)modifies the regular 𝐿3 ∝ 𝑎4 scaling of
the loss rate and is due to Efimov physics [104, 105] (see e.g. Ref. [103] for a measurement of Efimov
resonances using Caesium and Refs. [106–109] for more recent experiments). The Efimov physics lead
to an enhanced three-body loss rate at certain negative scattering lengths and a reduction of the loss
rate at certain positive scattering lengths. The first of these minima is at 𝐵 ≈ 21G where 𝑎 = 210 𝑎0.
This minimum of the scattering length is important during evaporation of Caesium (see chapter 5).

The expression for 𝐿3 becomes invalid for very large and very small absolute values of the scattering
lengths [105]. At very large values, the recombination rate (and scattering cross section) is limited by
unitarity [18]. At very small values, comparable to the range of the two-body potential, the scattering
properties depend sensitively on the precise form of the scattering potential. This range is typically
given as the van der Waals length 𝓁vdW = 1

2

( 2𝑚𝐶6
ℏ2

)1∕4
(see Ref. [18] section B.1). The van der Waals

length is larger in Caesium (𝓁vdW = 101𝑎0, [18], Table I) than in other alkali atoms, which implies that
the scaling of the 𝐿3 coefficient starts to deviate from the expected scaling at higher scattering lengths.
The result is an unusually large three-body loss rate at low scattering lengths (𝐿3 ≈ 3 × 10−28 cm6∕s),
which makes condensation more difficult.

3Or the three-body recombination rate 𝐾3 = 2
√
(3)𝛼rec ≈ 3.5𝛼rec
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CHAPTER 3

Experimental Setup

This chapter gives an overview of the experimental setup up to the optical transport. It starts out by
detailing the laser setup for pre-cooling in section 3.1. Section 3.2 describes the full vacuum system,
including the glass cell. Section 3.3 explains some of the ways in which we measure observables in our
system. Finally, the chapter closes in section 3.4 with a description of the pre-cooling before transport.

3.1 Optical Setup
Wehave three lasers used for pre-cooling, running on the D2 line of Caesium (6𝑆1∕2 → 6𝑃3∕2, Figure 3.1).
The master laser is locked to the 𝐹 = 4→ 𝐹′ = 5 transition, the repumper is detuned by close to 9.2GHz
and repumps atoms from 𝐹 = 3 during the MOT, compressed MOT and molasses phases and to polarize
the atoms during the degenerate Raman sideband cooling (dRSC) stage. The repumper is offset-locked
to the master. An additional injection locked laser system creates the light for the Raman lattice used
during dRSC, one free-running grating based external cavity diode laser (ECDL) with a small linewidth
but low power and another high power laser diode that is injection locked by the low power ECDL.
These lasers and their optical setup are described in detail in the following.
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Figure 3.2 | Overview of the lasers used for pre-cooling and imaging of the atoms. GC = Glass cell

3.1.1 Master laser
Figure 3.3 sketches the setup for the master laser used for the cooling in the Zeeman slower and the
MOT, and repumping during dRSC. For the master laser we use a Toptica DLPro laser1. The laser has
an output power of around 50mW and an elliptical beam profile. After removing the ellipticity using
a cylindrical telescope, the power is split into four arms, one for locking the laser to a spectroscopy
cell, one for a repumper running on 𝐹 = 4 → 𝐹′ = 4 used during dRSC, one for imaging on the
𝐹 = 4 → 𝐹′ = 5 transition and one to seed a tapered amplifier (TA).

Modulation transfer lock, 𝐹 = 4 → 𝐹′ = 5

We lock the laser to a Cs spectroscopy cell using modulation transfer spectrocopy [112–114], with our
setup in particular described in [115]. Similar to saturated absorption spectroscopy, we split the beam
in two and send the two beams, called pump and probe, through the spectroscopy cell from opposite
directions. The probe is then focused on a photodiode. Contrary to regular saturated absorption
spectrocopy, we send the pump through an electro-optic modulator (EOM)2 driven with a 3MHz RF
signal before it passes through the spectroscopy cell. The EOM generates sidebands on the pump
beam at 𝑓 ± 3MHz. On an atomic resonance, four-wave mixing replicates these sidebands on the
probe (hence modulation transfer spectroscopy) [116]. Focusing the probe on a photodiode leads to
a beat of the probe with its sidebands.

The phase of the 3MHz beat signal encodes information about the detuning of the probe from
resonance. Therefore, a phase detection circuit may be used to produce an error signal [113–115]. To
this end we high-pass filter the photodiode signal to remove the DC signal, send it through a delay
line (in this case a 10m coaxial cable) and mix it with a copy of the 3MHz RF signal that was sent
to the EOM. This gives a DC signal which around the resonance has a linear, negative slope ideal
for locking the laser via a PID controller.

Themodulation transfer only happens when the sub-Doppler resonance condition [114], 𝑣 = ∆𝜔∕2𝑘,
is satisfied, where ∆𝜔 is either zero on an atomic transition or the frequency difference between two

1Laserdiode: EYP-RWE-0860-06010-1500-SOT02-0000, EYP
2EO TFL3-NIR, Qubig
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Figure 3.3 | Sketch of the master laser setup. The top right inset shows the relative frequency detuning of the different
lasers generated from the master laser. Some representative laser powers at different positions throughout the setup
are indicated. These were taken in November 2021.

transitions on a crossover peak. Therefore, the background of the error signal is flat. The non-linear
four-wave mixing is strongest on the closed 𝐹 = 4→ 𝐹′ = 5 resonance, where the master laser is locked.

Figure 3.4 shows a sketch of the setup used to create the modulation transfer locking signal and the
inset in the same figure shows both the saturated absorption signal as well as the modulation transfer
signal after phase detection. The laser is locked to the zero crossing of the modulation transfer signal.

The 3MHz frequency signal is delivered from a DDS chip (Direct Digital Synthesis Chip3). The
3MHz are split for the delay line lock and the EOM and the EOM signal is amplified by a 28 dBm
gain RF amplifier4.

Raman repumper, 𝐹 = 4 → 𝐹′ = 4

The Raman repumper is used to repump atoms from 𝐹 = 4 back into 𝐹 = 3 during the degenerate
Raman sideband cooling (dRSC) stage (see subsection 3.4.4). It runs on the 𝐹 = 4→ 𝐹′ = 4 resonance,
which is −200MHz detuned from the 𝐹 = 4 → 𝐹′ = 5 resonance the laser is locked to. We bridge
the frequency gap using a 200MHz acousto-optic modulator (AOM)5. During dRSC only very little
repumper light is required, typically less than 1mW is sufficient. Increasing the repumper power does
not decrease the atom number or increase the temperature after dRSC. Note that even without the
repumper dRSC works, but slightly worse, i.e. afterwards fewer atoms remain.

The frequency for the AOM is supplied by a DDS chip (as is the case for almost all AOMs used
in the lab). This frequency is then amplified with an in-house developed RF amplifier box housing a
Minicircuits amplifier and additional electronics to toggle the output and control the RF power sent to
the AOM. Up to 2W of RF power can be supplied by the AOM driver. This is lower than the optimum
for the used AOM model, but sufficient for us.

3AD9910, Analog Devices
4ZFL-1000H, Minicircuits
5MT250-B100A0,5-800, AA Opto-Electronic
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Imaging light, 𝐹 = 4 → 𝐹′ = 5

Due to the transport we need imaging light at different positions around the experiment table. It has
also proven to be invaluable to have imaging along more than one axis, preferably two perpendicular
ones. Additionally, we want to be able to image at zero magnetic field (during time of flight for instance)
but also at high magnetic fields (for in-situ imaging of the BEC for example). Due to the Zeeman shift
of the atomic states, we therefore need to be able to tune the imaging frequency over a range of tens of
MHz. We use a set of two double-pass AOMs (DPAOMs, [117]) for this. The first one shifts the frequency
by 2 × −230MHz, the second one shifts it back close to the 𝐹 = 4 → 𝐹′ = 5 resonance.

In the double passAOMsetup the first diffracted order is retro reflected back through theAOM.A lens
between the AOM and the retro mirror (not shown in Figure 3.3), placed a distance of one focal length
from each, compensates changes in the diffraction angle with RF frequency. By overlapping the first
diffracted order of the retro-reflection with the incoming beam, the AOM frequency can be tuned over a
wide range without significant changes in the pointing of the first diffracted order of the retro-reflected
beam. The frequency shifted beam can therefore be fiber coupled and sent to the experiment chamber,
and the frequency can be tuned over a range of tens of MHz without complete loss of the fiber coupling6.

Because we want to be able to image atoms in both 𝐹 = 3 and 𝐹 = 4 states, we overlap the
𝐹 = 4→ 𝐹′ = 5 imaging light with 𝐹 = 3→ 𝐹′ = 2 light before splitting that light into different paths.
Each path is fiber coupled and serves as a separate imaging path in either the MOT chamber or the glass
cell. The optical power available for the𝐹 = 4→ 𝐹′ = 5 imaging light is limited to a fewmW.To still have
sufficient power on the atoms for each imaging path, we use 𝜆∕2 waveplates mounted in piezo-driven
sliders7 to shift the light into the appropriate path for the imaging axis we want to use (Figure 3.5).

Tapered Amplifier

The master laser outputs about 50mW, which is insufficient for all its applications. We use a tapered
amplifier (TA8) to increase the available power and use the amplified light for the MOT and Zeeman
slower cooling beams. The tapered amplifier is seeded with about 15mW, that has been frequency

6The resonance frequency shift with magnetic field for the 𝐹 = 4→ 𝐹′ = 5 transition is 1.4MHz∕G
7ELL-6k, Thorlabs
8BoosTA pro, Toptica
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the imaging axis by moving waveplates in and out of the beam path (movement indicated by arrows).

shifted beforehand by passing through a DPAOM (the same one as the first DPAOMused for the imaging
light). The output of the TA is fiber coupled and at a current of 3A, about 1W of power exits the fiber.

We originally used an self-built TA9. This TA was replaced because more power was needed be-
hind the fiber coupler and because the TA output was very sensitive to the current and input cou-
pling. At non-optimal current or coupling, the output power would fluctuate rapidly and randomly,
reminiscent of mode hops.

MOT and Zeeman slower paths, 𝐹 = 4 → 𝐹′ = 5

The MOT and Zeeman slower paths are replicas of each other. After splitting the light, each passes
through a DPAOM which shifts the light back close to the 𝐹 = 4 → 𝐹′ = 5 resonance and are
subsequently fiber coupled to send the light to the experiment table. The Zeeman slower is detuned
from resonance by −100MHz, the detuning of the MOT light varies during the different cooling stages.

3.1.2 Repumper laser
As for the Master laser, the repumper laser light is provided from a Toptica DLPro10. Contrary to
the Master setup, the beam output is circularized using an anamorphic prism pair and then fiber
coupled before splitting it into different arms for the laser cooling stages. This leads to some power
loss, as an additional fiber coupling is inserted between the laser output and the atoms, but eases
the replacement of the laser diode compared to the master laser as only a single fiber coupling has
to be recovered instead of three.

We have not had to replace the laser diodes of either laser so far. However, we started to observe
horizontal drifts of the laser head output after about two years of continuous operation11. These could
be related to the aging of the laser diodes, or changes in the environment, e.g. the humidity. The fiber
directly behind the repumper laser head made recovery from such drifts particularly easy.

After the fiber the light is split into five arms for locking, Zeeman and MOT repumpers, the polar-
izer for degenerate Raman sideband cooling and imaging on the 𝐹 = 3 → 𝐹′ = 2 transition (see
Figure 3.6 for a sketch).

9TA chip: TPA-0850-02000-4006-CMT04, EYP
10EYP-RWE-0860-06010-1500-SOT02-0000, EYP (Laser diode)
11These drifts were also observed for the master laser
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Offset lock

The repumper laser is locked to the master laser by beating the two on a fast, biased photodiode12. The
beat note is down converted using a reference PLL13 running close to the Caesium clock transition
(8.79GHz). The difference frequency between beat note and PLL is stabilized via a delay line lock
(homodyne detection). Here, the signal is split in two, one copy is sent through a long cable and the
two copies are then mixed. The delay leads to a frequency dependent phase difference between the two
signals at the detector.The two signals then interfere leading to a variation in the DC voltage from the
mixer dependent on the phase difference and thus the frequency difference between PLL and beatnote
between master and repumper. This way we lock the repumper to a frequency detuned −150MHz from
the 𝐹 = 3→ 𝐹′ = 4 transition. The top right inset in Figure 3.6 shows the thus generated locking signal.

Repumper light, 𝐹 = 3 → 𝐹′ = 4

The Zeeman slower repumper light is sent through a single pass AOM14, shifting the frequency by
100MHz. We have found that the exact frequency of the Zeeman slower repumper is not very criti-
cal, with comparable loading rates for AOM frequencies between 60-100MHz. At the experiment,
4.5mW are available.

The light for the MOT repumper is passed through a double-pass AOM setup before coupling it
into two fibers, one for the glass cell and one for the MOT chamber. The double-pass AOM shifts the
light in resonance with the 𝐹 = 3 → 𝐹′ = 4 transition. In the glass cell the repumper is required
for repumping the atoms during imaging.

12Hamamatsu
13KMU LO 8-13 PLL, Kuhne
143080-125, Crystal Tec
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with higher power output. The injected light forces the second laser diode to lase at the same wavelength. An optical
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to intensity stabilize the power of the Raman lattice, and a separate monitoring fiber is used to confirm if the injection
lock is working.

Polarizer and Imaging light, 𝐹 = 3 → 𝐹′ = 2

The polarizer and imaging light share a double-pass AOM setup that brings the frequency close to the
𝐹 = 3→ 𝐹′ = 2 resonance. The double pass AOM allows us to use different frequencies during imaging
and dRSC, and in principle also allows imaging at high fields, where the Zeeman shift of the hyperfine
states leads to a change in the resonance frequency. However, the 𝐹 = 3 → 𝐹′ = 2 resonance is not
closed, as atoms from 𝐹 = 2, 𝑚𝐹 = 2 can decay into 𝐹 = 3, 𝑚𝐹 = 1, 2, 3. Therefore imaging at high
fields should preferably be performed on the 𝐹 = 4 → 𝐹′ = 5 resonance, which does have a closed
transition (|𝐹 = 4, 𝑚𝐹 = 4⟩ → |𝐹′ = 5, 𝑚𝐹 = 5⟩ and |𝐹 = 4, 𝑚𝐹 = −4⟩ → |𝐹′ = 5, 𝑚𝐹 = −5⟩).

3.1.3 Raman lattice laser
The Raman lattice laser is used to trap the atoms and induce spin flips via Raman transitions during
the degenerate Raman sideband cooling phase of pre cooling. It is detuned by around −20GHz from
the 𝐹 = 3→ 𝐹′ = 4 transition. This is sufficiently far detuned that small drifts of the laser frequency
are not critical to the cooling performance and we can use an unlocked external cavity diode laser
(ECDL)15 to injection lock a separate, high power laser diode16.

In an injection lock, the seed (in our case the ECDL) forces a second laser diode to lase at the
same frequency as the seed [118–121]. This works within a small capture window of temperature and
current of the second laser diode, where the injected diode would lase close to the seed frequency in
any case. Once injected, the second laser diode outputs light of the same linewidth as the seed. This
setup therefore allows easy amplification of narrow linewidth lasers.

To check whether the injected diode is locked, we pick off some of its light and measure its frequency
with a wavemeter. We vary the current to the injected diode while monitoring the frequency. Once the
diode is injected, the frequency on the wavemeter jumps to the frequency of the seed and remains there
within a small range of currents, before falling out of lock and jumping back to the free-running frequency
of the diode. The range of the currents for which the injected diode remains locked depends not only
on the injected diode’s current and temperature settings but also on the coupling and power of the seed.

Before coupling the output of the injected diode into a fiber to send to the MOT chamber, it is sent
through an AOM, which is used to stabilize the intensity of the Raman lattice. A photodiode on the
experiment table measures the power of the lattice light arriving at the MOT chamber. This power
is stabilized using a PI loop box which feeds back to the RF amplitude of the AOM. This intensity
stabilization also allows us to vary the power of the Raman lattice during a sequence by varying the
setpoint of the PI loop. While this feature is not too important for dRSC, it is indispensable for the optical
dipole traps used in later stages of the experiment. Note that because the light for the Raman lattice

15Housing: DLPro, Toptica; Laserdiode: EYP-RWE-0860-06010-1500-SOT02-0000, EYP
16Laser diode: 854 ± 7nm, Part No. 22045504, Lumentum
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is split on the experiment table and fiber coupled again before it is sent through the MOT chamber,
only one axis (the 𝑦 axis) is properly intensity stabilized.

3.1.4 Blue laser
We want to reach single site resolution in optical lattices with relatively small spacings (e.g. 767∕2nm),
which is difficult to reach with the usual imaging wavelength of 852nm. For instance, with the NA
of our objective of 0.8, the Abbe radius of the point spread function for 852nm, i.e. the resolution
according to the Rayleigh criterion is around 𝑑 = 0.61𝜆∕NA = 650nm. Post-processing and techniques
from super resolution microscopy might still be able to provide single site resolution at 852nm [122,
123]. However, another method would be to use a different imaging wavelength. The next obvious
choice for Caesium is to use the 6S→7P transition instead of the usual 6S→6P one. The wavelength of
the 6𝑆1∕2 → 7𝑃3∕2 transition is 456nm, which would reduce the Abbe radius by almost a factor of 2.

Using this transition for imaging brings its own problems [121]. Unlike the 6P transition, the 7P
transition can not only decay back into the ground state manifold 6S, but also into the 7S and 5D mani-
folds (cf. Figure 3.1). This creates two problems; one, not every emitted photon actually has a wavelength
of 456nm and two, the decay over these other states might bring about other sources of heating.

For example, the lifetime of the 5D state is on the order of a few µs [124, 125], about 100 times longer
than the 6P states. The long lifetime can cause heating due to the motion of the atom in the lattice
potential while in an excited state. The lattice potential will generally be different for an excited state
atom than for the ground state. Assuming the atom is in both the internal and motional ground state,
excitation will first project the motional state onto the (different) motional states of the internal excited
state. The inverse happens during the decay back to the internal ground state. Provided the decay is fast,
the projection back to the motional states of the internal ground state will lead to very small occupation
in higher energy motional states and the associated heating will be negligible.

However, if the decay is long and the potentials experienced by internal ground and excited state
atoms is very different, the projection of the motional state during decay to the ground state will lead to
non-negligible occupation of the excited motional degrees of freedom and thus to heating. This and
other possible heating processes have been analyzed theoretically in Refs. [121, 126].

Nevertheless, we decided to setup a laser system for imaging on the blue line (Figure 3.8). The light
is provided by a Toptica DLPro. We lock the laser to the 5S1∕2 → 7P3∕2 resonance using frequency
modulation spectroscopy [127]. We chose to use frequency modulation spectroscopy as opposed to
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modulation transfer spectroscopy because modulation transfer spectroscopy works best with a mod-
ulation frequency close to the linewidth of the transition [114]. In addition, the modulation transfer
is strongest on closed transitions, which does not exist for the 5S1∕2 → 7P3∕2 resonance. In frequency
modulation spectroscopy the probe (as opposed to the pump) passes through an EOM. The sidebands
modulated onto the probe are split by more than the transition linewidth. Only one of the sidebands
will typically be overlapped with a resonance, leading to an imbalance in phase and amplitude of the
sidebands (see inset of Figure 3.8). This can be detected by beating the sidebands with the carrier on a
photodiode, and demodulating the signal in the same way as in the modulation transfer spectroscopy
setup. The details of the locking of the blue laser are described in [121].

To prevent the atoms from decaying slowly via the 5D manifold, we have bought DFB lasers running
at the 5D→7P lines, 1340nm17 and 1360nm18. These are intended for repumping atoms that decayed
into the 5D manifold. Currently, a master student in our lab is setting up the repumping setup [128].

17NLK1B5E, NTT
18NLK1E5G, NTT
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Figure 3.9 | Cut through the vacuum system after the oven upgrade (see subsection 3.2.2). The oven serves as the
atomic source, the Zeeman slower slows the atomic beam from the oven into the 3D MOT chamber, where the atoms
are pre-cooled and subsequently transported optically to the glass cell. The final evaporation and experiments
happen in the glass cell. The Rb 2D MOT is intended for possible future dual species experiments and will not be
described in detail in this thesis.

3.2 Vacuum system
This chapter describes the vacuum system. The system consists of an oven, a Zeeman slower, a MOT
chamber and a glass cell. Initial capture and pre-cooling of the atoms happens in the MOT chamber.
The atoms are then transported to the glass cell, where they are condensed and loaded into lattices for
2D physics experiments. Figure 3.9 shows a cut through the chamber from the oven through the Zeeman
slower to the MOT chamber, and Figure 3.10 shows a more technical drawing of the vacuum system.

3.2.1 General considerations
The experiment has to occur at ultra high vacuum conditions (low 1×10−11mbar), as collisions between
trapped atoms and the background gas (in thermal equilibrium with the chamber) will lead to atomic
loss and heating. This ultimately limits the lifetime of the trapped atoms. In principle, one way to reach
low pressures is to actively cool the vacuum system itself, for example by running liquid nitrogen across
the outside of the chamber. This makes the setupmore complex, so we decided not to pursue this kind of
vacuum system. To still reach low pressures, all vacuum components have to be cleaned prior to assembly
(residual contaminants on the chamber surface will outgas, making the background pressure worse)
and the chamber has to be baked to remove adsorbed water in the steel chamber (see subsection 3.2.5).

Finally, to reach low pressures in the MOT chamber and glass cell, high vapor pressure sections (e.g.
oven) are separated from low pressure sections with differential pumping tubes (e.g. Ref. [129], Sec. 4.1).
Differential pumping tubes are small diameter connections between different vacuum sections. The
low transmission probability (conductivity) of atoms through these tubes leads to a low flux of atoms
between the sections. A vacuum pump connected behind the tube can then lead to a lower pressure
behind the tube than before it. For the low pressures we are working at, one can typically assume
that the mean free path of the atoms is large compared to the diameter the of tubes connecting two
sections of the vacuum system, so any atom is more likely to hit a wall than to hit another atom. In
this case, the conductivity is given by 𝐶 = 𝜋𝑑3

12𝑙
⟨𝑣⟩(𝑇). In case multiple differential pumping section

follow after one another, the total conductivity is given as 1∕𝐶 = 1∕𝐶1 + 1∕𝐶2. The pressure drop
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Figure 3.10 | Schematic of the full chamber, with pumps, connections to the outside for evacuating the system and
straight valves indicated, after the oven upgrade (see subsection 3.2.2)

across the differential pumping sections is given by the ratio of the conductivity to the pumping speed
𝐶pump of the vacuum pump behind the tube: 𝑝out =

𝐶
𝐶pump

𝑝in.

3.2.2 Oven
The oven serves as the source for Caesium atoms. In the oven Caesium atoms are heated to 60-100 ◦C,
temperatures at which Caesium is gaseous. The hot atoms escape the oven through a collimator,
generating an atomic beam with low transverse velocities. Initially we used a microchannel plate
[130, 131], an array of steel tubes with small diameter19, in the hope to create a bright atomic beam
to facilitate fast loading of the MOT (Figure 3.11a–b).

The microchannels were mounted inside a CF40 double blind flange with a hexagonal cut out. The
hexagonal cut out enforces tight packing of the microchannels [132]. In our case the hexagon had a
sidelength of 2.7mm resulting in 217 microchannels (𝑁tot = 3𝑁side(𝑁side − 1) + 1,𝑁side = 9). The oven
flux can be estimated from Φtot = 𝑁ch

𝜋𝑑3

12𝑙
𝑛(𝑇)⟨𝑣⟩(𝑇) [131, 133] assuming a large ratio of channel length

𝑙 to channel diameter 𝑑. Here 𝑛(𝑇) is the vapor density at temperature 𝑇 and ⟨𝑣⟩(𝑇) = 2
√
2𝑘𝐵𝑇∕𝜋𝑚Cs

the mean thermal velocity. For 80 ◦C the flux amounts to around 2 × 1012 atoms∕s. The actual flux of
the oven was reduced by a differential pumping piece (𝑑 = 8mm, 𝑙 = 100mm) between the oven tank
and the Zeeman slower (Figure 3.11a). The microchannel oven has a large flux at low divergence. The
divergence is low because of the large ratio of channel length to diameter, and the flux can be increased
by adding more channels. We wanted a large loading rate of the MOT, so the large expected flux is why
we opted for the more difficult to machine microchannel plate over a more conventional oven design.

Unfortunately, we never observed a clear signal of a collimated atom beam exiting the microchannel
plate. In addition, the section behind themicrochannel plates quickly filled with Caesium. The Caesium
deposited on the ion pump (IGP) and ion gauge and eventually lead to failure of both. This failure
telegraphed itself by the steady increase of the pressure reading of both IGP and vacuum gauge. This
increase was attributed to Caesium covering the electrodes of both devices and leading to increased
currents between them. Also, we saw what looked like corrosion on the seals of the CF40 viewports.
Because of these issues, we rebuilt the oven section in July 2020 (Figure 3.11c). At that time we also
replaced themicrochannel platewith a different design adapted from theChin group [134] (Figure 3.11d).
This new design consists of two plates with 2mm holes separated by a distance of 144mm. The plates
are heated while the tube between them is cooled as much as possible. Any Caesium atoms hitting

19EN 1.4301, Rohrabschnitte Ø 0,30 x 0,20 x 10 mm, Robert Helwig GmbH
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Figure 3.11 | a Sketch of the old oven section. Ti:Sub: Titanium Sublimation Pump, Gamma Vacuum, Partnr. 360819;
NEG: Non-evaporable getter, SAES NexTorr D 200-5; IGP: Ion getter pump, Gamma Vacuum, 75S TiTan CV; Valve: VAT,
All-Metal Gate Valve, Series 48.1; Atomic Beam Shutters: Magidrive, MD16N b Drawing and picture of the assembled
micro channel plate, c Sketch of the new oven section with the d double aperture oven. The section between the two
apertures (red) is cooled with peltier elements and water.

this middle tube section get adsorbed to the wall and do not leave the oven section, where it could
potentially contaminate the ion pump and gauge.

The new oven section has a single IGP20. From the temperature of the oven (80 ◦𝐶) we expect
a vapor pressure inside the oven of around 2 × 10−4mbar. Assuming that the vacuum conductivity
through the oven collimator can be approximated by a single tube of diameter 2mm and length 144mm
(𝐶 = 𝜋𝑑3

12𝑙
⟨𝑣⟩(𝑇)) and neglecting the conductivity to the IGP, the expected pressure in the section behind

the oven is around 𝑝 = 𝐶
𝐶pump

𝑝oven ≈ 2 × 10−8mbar. This is close to the pressure read by the gauge
at the time of writing but off by more than one order of magnitude from the pressure read by the IGP
(5× 10−10mbar). In the new oven section, we have placed a glass ampule of 1 g Caesium21. The ampule
was placed in a CF16 bellow and broken by bending the bellow. The breaking was tricky, because the
ampule was only slightly longer than the non-flexible end piece of the bellow.

3.2.3 Zeeman slower
The atomic beam is slowed by a spin-flip Zeeman slower [135, 136]. A spin-flip Zeeman slower flips
the direction of the magnetic field, hence the spin, over the slowing distance. It aims to combine

2025 L/s, DI element, 25SDI2VSCNN, Gamma Vacuum
211g 99.98% Caesium, Alfaaesar, Articlenr. 10146
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the benefits of a decreasing field slower and an increasing field slower. The decreasing field slower
has the highest field at its entry and goes to zero at its end. The low field at the exit of the slower
causes less interference with the magnetic fields in the MOT chamber. However, the atoms at the
exit remain in resonance with the Zeeman slower light, which can interfere with the MOT operation.
The inverted configuration, the increasing field Zeeman slower has the largest field at the exit, so the
slowed atoms are not on resonance with the cooler light outside the solenoid anymore, however the
magnetic field might interfere with the MOT.

In the case of a spin-flip Zeeman slower, the field minimum is somewhere in the middle of the
solenoid, so the atoms exiting the solenoid are off-resonance, but the magnetic field is not as high
as in the increasing field slower.

In our case, the solenoid is 66 cm long and is wound from rectangular (4 × 3 mm2) copper wire
with a hollow core (2mm dia)22. The copper wire has a Kapton sheathing. The hollow core allows
us to cool the solenoid by letting water run through. To find a good winding configuration, we first
compute the ideal Zeeman slower field and then try to approximate it as well as possible with copper
wire loops we can make from the rectangular wire.

The deceleration of the slower is limited by the saturation of the atomic transition, with a maximum
acceleration given by 𝑎max = − ℏ𝑘

2𝑚
Γ
2
. Typically, the Zeeman slower is designed assuming a slightly

lower acceleration than this maximum to allow for imperfections. Here, 𝑎 = 0.64𝑎max ≈ 37 km∕s2.
In addition, we choose a length of the Zeeman slower of 𝑙 = 60 cm and a MOT capture velocity of
𝑣MOT = 40m∕s. These were chosen based on reported values from other Caesium experiments [98,
137]. For a decreasing field Zeeman slower, these parameters set the capture velocity 𝑣ZS of the slower
and the detuning 𝛿0 of the laser via 𝑣ZS =

√
2𝑎𝑙 + 𝑣2MOT and 𝛿0 = 𝜔0∕(1 − 𝑣MOT∕𝑐). 𝑣ZS is fixed by

the constant deceleration the atoms experience over a distance 𝑙 and 𝛿0 by the Doppler shift at the exit
of the Zeeman slower. Similarly, the magnetic field at the entry of the Zeeman slower is set via the
resonance condition 𝛿0 + 𝑘𝑣ZS − 𝜇𝐵0∕ℏ = 0. Here 𝜇 = 𝜇𝐵(5𝑔𝐹=5 − 4𝑔𝐹=4) captures the differential
Zeeman shift of the coupled states, |62𝑆1∕2, 𝐹 = 4, 𝑚𝐹 = 4⟩ and |62𝑃3∕2, 𝐹 = 5, 𝑚𝐹 = 5⟩. The magnetic
field along the solenoid then varies as 𝐵(𝑧) = 𝐵0

√
1 − 𝑧∕𝑙. For a spin-flip Zeeman slower, this relation

is modified according to 𝐵(𝑧) = 𝐵0
√
1 − 𝑧∕𝑙 − 𝐵exit, where 𝐵exit determines the position along the

solenoid where the magnetic field crosses zero. Here, we chose 𝐵( 5
6
𝑙) = 0G. See Ref. [135] for a more

in-depth discussion on optimal Zeeman slower design. The parameters for our Zeeman slower are
𝑣MOT = 40m∕s, 𝑙 = 60 cm, 𝑣ZS = 215m∕s, 𝐵0 = 150G, 𝐵exit = 46G.

Once 𝐵(𝑧) has been fixed, we iteratively add or subtract windings at possible positions along the
Zeeman slower axis starting from an initial guess that simply uses the mean magnetic field value 𝐵mean
at each axial winding position. The magnetic field of a current loop of radius 𝑅 is 𝐵 = 𝜇0𝐼∕2𝑅 with
current 𝐼. The initial guess for the number of radial windings is then 𝐵∕𝐵mean∕4, with 𝑅 chosen to be the
minimal radius of a winding. The factor 1∕4 is phenomenological, giving a better initial guess in our case.

As shown in Figure 3.12a, we find good agreement between the expected and measured magnetic
fields from the Zeeman slower. The field was measured using a flux gate sensor23 and at reduced
current. The measured field was scaled to the same current that was used in the coil design to com-
pare with the expected field.

The Zeeman slower is wound on a steel pipe that is slid over the Zeeman slower vacuum tube
(𝑑 = 10.3mm, 𝑙 = 66 cm) before full assembly of the vacuum system. The tube is only rigidly connected
to the oven section. A CF16 bellow (43mm long) between the Zeeman slower and the MOT chamber
allows stress relief in case the oven andMOT section expand differently during bake-out or aremisaligned
with respect to each other.

22OF-OK®oxygen free copper, Hollow Conductor OD 4x3/ID Ø2 mm, Luvata tool # 8329, Luvata
23Mag-03MC100, Bartington
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Figure 3.12 | a Comparison of ideal, theoretical and measured Zeeman slower. The blue curve follows B(z) =
B0
√

1 − z∕l − Bexit. The orange curve was computed from the expected field profile using the optimized windings
shown in b and using the formula for the on-axis magnetic field of a current loop [138] Eq. 30. b Number of windings
of the Zeeman slower.

3.2.4 MOT chamber
In the MOT chamber the atoms from the Zeeman slower are captured and pre-cooled before being
transported to the glass cell. The MOT chamber has 9 CF40 and 3 CF16 viewports to enable access for
the many different beams we need for cooling and trapping of the atoms (cf. Figure 3.20). Most of the
CF40 viewports are angled by 5 ◦ to avoid backreflections hitting the atoms. In addition to the Zeeman
slower input (CF16) and output (CF64) ports, we also have an input port (CF16) for a Rb 2D MOT.
The Rb 2D MOT has not been used to far, but was included in the design to enable future experiments
with two different atomic species. Additionally, we have six viewports, two along z and four in the
horizontal plane for the 3D MOT beams, four (2 CF40, 2 CF16) additional horizontal viewports for
dipole traps and Raman sideband cooling and two ports for the transport axis (cf. Figure 3.20). We had
ordered coated viewports from Lesker with a low magnetic permeability (316L, 𝜇𝑟 < 1.01). The CF40
viewport were coated for 750-900nm and 1064nm the CF16 ones only for 750-900nm. Upon arrival, we
found a higher than expected relative magnetic permeability (𝜇𝑟 ≈ 1.4) of the CF40 viewports. We were
worried that they could create unwanted magnetic fields around the experiment chamber. Therefore, we
replaced them with different viewports. Because these were the only components missing to assemble
the vacuum chamber up to the MOT we chose to use stock viewports from different companies24. Most
of the viewports are uncoated, except the top and bottom viewports25 and the CF16 viewports26.

The exit of the Zeeman slower axis is connected to a large steel tank in which we have installed an ion
pump and a Ti:Sub for pumping the MOT chamber. In addition a straight valve separates the Zeeman
slower entry window from the MOT chamber. The Zeeman slower window may get contaminated
with Caesium over time. Deposited Caesium can corrode the seal of the viewport (cf. subsection 3.2.2)
and reduce the Zeeman slower power via absorption. Therefore, we added this separate section to
allow exchanging the viewport without venting the full vacuum system. In the Zeeman slower window
section, we have added a NEG+IGP pump27. Around the MOT chamber we set up both horizontal
and vertical breadboards for installation of the required optics.

To generate magnetic fields, we have two pairs of coils along the z-axis of the chamber, one connected
in Helmholtz and one in anti-Helmholtz configuration (cf. ??). The coils are wound from hollow core

24VPCF40DUVQ-L-BBAR650/950-NM and VPCF40UVQ-L-NM, Vacom; SFQ 40T/29, VAB; VPZL-SPL194, Lesker
25VPCF40DUVQ-L-BBAR650/950-NM, Vacom
26VPZL-SPL194; VPU3036064, Lesker, 750-900 nm
27NexTorr D 200-5, SAES
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Coil Field Windings inner Radius Distance between coils
MOT Offset 2.261G/A 4 × 5 72m 55.2mm
MOT Gradient 1.328G/cm/A 8 × 5 40mm 55.2mm
MOT Compensation, z 1.5G/A 20 77.5mm 113mm
MOT Compensation, x, y 0.5G/A 20 45 × 100mm 240mm

Table 3.1 | Coils around the MOT chamber, see Ref. [139] for more precise information.

copper wire28, with a 3 × 4mm2 cross section and a 2mm diameter hole. Water is run through the
hollow core to cool the copper coils29. The Helmholtz coils produce an offset field of 2.261G∕A at
the atoms, the anti-Helmholtz coils produce a gradient of 1.328G∕cm∕A at the atoms (Table 3.1, see
Ref. [139] for details). We use MOSFETs to quickly switch off the coils.

For switching the coils on or changing the field we are limited by the current supplies30. Originally
we thought that switching times on the order of a few ms (e.g. 5ms at 10% load for SM 18-50) would be
sufficient for the cooling stages in the MOT. As we were worried that at low loads the fast version of
the power supplies would have increased noise, we chose to buy the regular PSU version. This turned
out to limit the speed with which we could start degenerate Raman sideband cooling (dRSC) after
the molasses phase as the offset coil needed around 10ms to reach the desired field, i.e. longer than
the actual dRSC duration. We therefore use a different power supply31 and the 𝑧-axis compensation
coils for the offset field during dRSC.

Apart from the compensation coils along the 𝑧-axis, we also have compensation coils in the 𝑥 and 𝑦
direction, which we use to remove the background magnetic field at the position of the atoms (Table 3.1,
see Ref. [139] for details). The coils are wound from 1mm diameter copper wire and produce magnetic
fields of 500mG∕A in the 𝑥 and 𝑦 axis and 1.5G∕A along the 𝑧-axis. The current in the 𝑥 and 𝑦 coils
are not varied during the sequence. As mentioned already, we use the 𝑧-axis compensation coil to tune
the offset field during dRSC, and also to produce a larger offset field during loading of the reservoir
dipole trap (see subsection 4.2.2). The power supply connected to the 𝑧-axis coils allows switching of
the current in a few µs as measured using a current clamp.

3.2.5 Bake-out
To reach the ultra high vacuum conditions required in our setup, we need to bake the assembled vacuum
system. This bake-out serves to remove water adsorped to the steel components, that would otherwise
gas out continuously and create a constant gas load that would limit the minimum pressures attainable.
Typical temperatures for a bake-out are around 150 ◦C. In principle, by baking at higher temperatures,
other contaminants such as hydrogen can be desorped and pumped from the chamber. However, those
higher temperatures would damage the viewports connected to the vacuum system, so this was not
possible with the assembled system. Some of the custom components we ordered for the vacuum system
have been baked at higher temperature by the manufacturer32.

Prior to assembly all vacuum components were cleaned in an ultrasonic bath, first filled with
deionized water and in a second step in acetone to remove contaminants (e.g. oil, hydrocarbons) from
the steel surfaces [140, 141]. They were subsequently wrapped in aluminium foil until everything
was ready for assembly. Because the glass cell was not finished at the time we had all components
for the chamber up to the MOT chamber we decided to assemble the MOT chamber first, and attach
the glass cell separately once it arrives.

28OF-OK®oxygen free copper, Hollow Conductor OD 4x3/ID Ø2 mm, Luvata tool # 8329, Luvata
29Kühlmobil 101-WW-B400-SA-16D Gr. 00, Van der Heijden Labortechnik GmbH
30Gradient: SM 15-100-P001, 100A output, Offset: SM 18-50-P001, 50A output, both Delta elektronika
31BCS 5/5, High Finesse
32VAB, who produced our MOT chamber, Oven tank and MOT tank
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Figure 3.13 | a)-b) Exemplary temperatures at the beginning and the end of the bakeout of the MOT chamber. In
total 16 temperature sensors were connected to the chamber during bakeout. c)-d) Pressure at the beginning and
the end of the bakeout of the MOT chamber.

After assembly, a turbo pump was connected to the vacuum system and started. In preparation
for the bake-out, temperature sensors33 were connected to the vacuum system and it was wrapped in
aluminium foil and heating tapes. While the sensors where stuck to the chamber directly using Kapton
tape or copper wire, we added a layer of aluminium foil before adding the heating tapes34. The full
chamber was subsequently wrapped in more aluminium foil. Once wrapped, we started slowly ramping
up the temperature taking care to avoid large temperature gradients across the chamber (Figure 3.13a,b).
We kept a heating rate of ≈ 10 ◦C∕h, well below the maximum recommended heating rate for the
viewports (2–3 ◦C∕minute according to Lesker, 25◦C∕minute according to VACOM). Once the pressure
had settled we activated the NEG and TSP pumps. After waiting once again for the pressure to settle, we
turned on the IGP. As suggested by Edwards Vacuum [142], we closed the edge valves to the turbo pump
once the voltage of the IGP settles and start cooling down the system slowly afterwards (Figure 3.13c,d).
After the bake-out we reached pressures of 1 × 10−11mbar once the system was fully cooled down.

3.2.6 Glass cell
The glass cell (Figure 3.14a,c) has twelve sides with two viewports above and below. One of the twelve
sides is occupied by the glass to metal transition, the rest are covered by 11mm diameter fused silica
viewports. The fused silica viewports above and below the glass cell have a T-cross section with a larger
diameter of 30mm and a smaller one of 21mm35. All viewports are optically contacted to the glass
cell body by Precision Glass Blowing. Additionally, all viewports have a nano-structured coating on

33K-type thermocouple, readout with TC-08, Pico technology
34VOLTRON-PLUS, Omnilab; KM-HT-BS30, SAF Wärmetechnik
35Lasercomponents, Thickness tolerance ±0.01mm, <5 arcsec parallelism, L/10 surface irregularity, 10-5 S/D
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Figure 3.14 | a Drawing of the glass cell, b Structure of the nano textured window, c Photo of the glass cell. Figure b
was taken from Ref. [147]

the in and outside made by TelAztec (Figure 3.14b). The nano-structured coating is etched into the
fused silica. It works analogous to a moth eye. The spikes of subwavelength size and spacing effectively
produce a gradient of the refractive index. This promises extremely low reflectivity [143–145], low
dependence on the angle of incidence and very high resistance to temperatures. However, the coating
may not be physically touched, so cleaning is only possible with solvents and without tissues. Note that
the reflectivity increases as the wavelength increases as the ratio of spike depth to wavelength decreases
so the index gradient effect is reduced [146]. This, combined with the increased reflectivity at large
angle of incidence (AOI) leads to a reflectivity of about 3% for 1064nm at 60◦ AOI.

The glass cell was installed after the main vacuum system had already been installed and pumped to
vacuum. We baked the glass cell separately from the main system and attached it to the main chamber
afterwards. During the installation we filled both vacua with Argon. After removing the viewports
sealing both chambers we ensured a constant flow of Argon out from the systems to avoid contamination
of the chamber with water. We used Argon because we had a vacuum compatible pressure reducer for
an Argon bottle but not for a Nitrogen bottle. After attaching the glass cell we tried to pump the system
but found that we did not reach sufficiently low pressures. We concluded that the Argon flow during
reattachment was insufficient, that the vacuum system had been contaminated and had to be rebaked.

After rebaking we reached acceptable pressures in the MOT and glass cell of close to 4 × 10−11mbar
and 2 × 10−11mbar respectively. This is larger than we had after the initial bake-out of only the MOT
chamber. However, we hoped that it is sufficiently low for our purposes and proceeded with setting
up the experiment. Lifetime measurements in the glass cell upwards of 20 s36 eventually confirmed
that the pressure was acceptable.

After having used the glass cell for a while with temporary coils and breadboards, we installed the
final coils and breadboards around the glass cell in April 2021. During the time we checked the glass
cell viewports again, more carefully perhaps than during the initial installation. We observed milky

36Thermal cloud in dipole trap. 60 s lifetime in magnetic trap of |3,−3⟩ atoms in the MOT chamber. 11 s BEC lifetime.
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Blue Tint
Milky Residue

a) b)

c)

Figure 3.15 | a) Locations of viewports where contamination was observed. For some we observe milky residue
similar to what is seen in c), for some we observe a bluish tint compared to other viewportsas shown in b). In a) the
green box marks the same viewport as the one marked in c)

spots on some of the viewports (Figure 3.15) and a bluish tint of two viewports. It is unclear if these
discolorations have been present before the initial installation or if they are residue fromworking around
the glass cell since installation. We did not attempt to clean the viewports since the most likely result
would have been to make it worse as touching the viewports would break the coating and simply letting
solvent drip over the surface would leave solvent residue. We have checked an identical replacement
glass cell for similar blemishes and did not find any.

Around the glass we have two pairs of coils in the 𝑧-direction, to produce offset and gradient fields,
another two pairs of coils in the 𝑌′ direction and one coil pair in the 𝑋′ direction (see Table 3.2 and
Ref. [139]). The 𝑧-axis gradient coil produces a field of 0.34G∕cm∕A and is driven by the same power
supply as the MOT gradient coils. Switching between them is achieved via MOSFETs. An additional
set of MOSFETs in the gradient coil’s path also allows us to switch the gradient direction. This allows
us to levitate the atoms by compensating the force of gravity, or increasing the combined force due to
gravity and the magnetic field by a factor of two depending on the direction of the gradient.

Coil Field Windings inner Radius Distance between coils
GC z Offset 2.06G/A 2 × 5 48mm 39mm
GC z Gradient 0.34G/cm/A 9 40mm 44mm
GC X

′ 0.966G/A 2 × 5 55mm 94mm
GC Y

′, outer 1.19G/A 4 × 4 63mm 136mm
GC Y

′, inner uncalibrated 2 × 2 40 × 50mm 94mm

Table 3.2 | Coils around the glass cell chamber, see Ref. [139] for more precise information.
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Figure 3.16 | Magnetic field stability measured in the lab during the day (a–c) and at night (d–f). The DC variation
is significantly larger during the day due to the subway. The horizontal axis ticks in the figure are located at the
scheduled arrival times of the subway. BEW is the magnetic field in the east-west direction, BUD the magnetic field in
the up-down direction and BNS the magnetic field in the north-south direction. The magnetic field was measured
with a flux gate sensor from Sensys (FGM3D). (g–i) Fourier transform of the magnetic field measurement shown in
(a–f). Blue is the daytime measurement, orange the nighttime measurements. The noise due to electronics is barely
changed between day and nighttime, only the DC component is decreased significantly.

3.2.7 Magnetic field stability and stabilization
For experiments in the anti-magic wavelength lattice, hopping between the states is induced via a two
photon Raman transition between the two hyperfine states |𝐹 = 3, 𝑚𝐹 = 3⟩ and |𝐹 = 3, 𝑚𝐹 = 2⟩. To
understand howmagnetic field fluctuations affect the Hamiltonian, it is helpful to consider the effective
Hamiltonian coupling two states 𝑎 = |3, 3⟩ and 𝑏 = |3, 2⟩ via a Raman transition in a Λ-system [148]:

𝐻ef f = −ℏ
⎛
⎜
⎝

𝛿
2
+ |Ω𝑎|2

4∆
Ω∗
𝑅
2

Ω𝑅
2

− 𝛿
2
+ |Ω𝑏|2

4∆

⎞
⎟
⎠
. (3.1)

Here, 𝛿 is the energy difference between 𝑎 and 𝑏 in the absence of coupling, Ω𝑅 = Ω𝑎Ω∗
𝑏∕2∆ is the

Raman coupling, Ω𝑎(𝑏) is the Rabi coupling of 𝑎(𝑏) to the excited state and ∆ is the detuning Raman
beams to a third excited state. From this Hamiltonian, one can see that to first order magnetic field
fluctuations enter the Hofstadter Hamiltonian as an energy offset between even and odd sites (�̂� =
𝛿∕2

∑
(−1)𝑖�̂�𝑖), which can inhibit hopping between sites if the differential Zeeman shift 𝛿 = 𝑔𝐹=3𝜇𝐵𝐵

becomes comparable to the tunnel coupling. For this reason, the magnetic field has to be actively
stabilized during the experiment.

As a first step, we characterized the magnetic field fluctuations we observe in the lab. We find
strong drifts of the magnetic field associated with the subway close to the lab (Figure 3.16a–c), and
oscillations at 50Hz and harmonics thereof due to the mains line and electronic equipment around
the lab (Figure 3.16g–i).

The peak variation in the offset field of 28mG during the day is in the up-down direction. During
the night, i.e. without the subway running, the root mean square error (rmse) of the magnetic field
amplitude is 500µG. This corresponds to an energy difference between 𝑚𝐹 = 2 and 𝑚𝐹 = 3 atoms
of 175Hz, comparable to typical hopping rates in lattice experiments.

To address the fluctuations of the environment magnetic field, we have installed a commercial
magnetic field cancellation system37 (A more detailed explanation of the stabilization setup and perfor-
mance, with the experimental coils running, will be given in Ref. [139]). The cancellation system uses

37MK5, IDE (Integrated Dynamics Engineering)
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flux gate sensors to measure the magnetic field and feedbacks to a compensation coil cage mounted
around the glass cell. The sensors need to be placed as close as possible to the glass cell so the field
measured by the sensors and the field at the atoms is not too different. As the sensors saturate at 1G,
they have to be placed such that they do not measure the magnetic field due to the offset coils around
the glass cell. The sensor is therefore split into three38, one for each axis, and each sensor is placed
at a zero crossing of the magnetic field coils.

The compensation cage for the stabilization has a side length of around 2m, with the glass cell in
the center. Each axis has 10 windings. Because of a large offset field along the 𝑧 direction, we have an
additional coil pair39 along that axis, which is not driven by the cancellation system (see also Ref. [139]).
The large side length ensures that the magnetic field due to the compensation coils is homogeneous
around the glass cell. The power supply driving the compensation coils can compensate an offset field
of a few 100mG, with a bandwidth of around 500Hz. The compensation uses three separate PID loops
internally. One to compensate slow drifts up to a few 10Hz, another faster one spanning up to 500Hz
and up to 7 small bandwidth loops that stabilize oscillations at a specific frequency such as 50Hz. With
all three loops enabled, we reach a rmse of the magnetic field amplitude of around 134µG or 49Hz
energy difference between 𝑚𝐹 = 2 and 𝑚𝐹 = 3 atoms measured with the in-loop sensor.

38Mag-03MC100, Bartington
3911 windings, 1 mm2 cross section, copper, driven by Rhode und Schwarz HMP4040
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3.3 Metrology

3.3.1 Absorption imaging

Absorption imaging [149, 150] is used for most of the data taken throughout the course of this thesis.
In absorption imaging, atoms are illuminated with resonant light and the transmitted light is imaged on
a CCD. Some of the light will be absorbed by the atoms. Provided the intensity is much smaller than the
saturation intensity, the reduction in transmitted light can be mapped to the column density 𝑛(𝑥, 𝑦)
of the atoms along the imaging direction via Lambert-Beers law [149, 150]

𝐼 = 𝐼0𝑒−𝜎𝑛(𝑥,𝑦), (3.2)

with the scattering cross section 𝜎 = 𝜎0
1+4(∆∕Γ)2+𝐼∕𝐼sat

and the resonant cross section 𝜎0 = ℏ𝜔0Γ∕2𝐼sat;
𝐼sat is the saturation intensity, Γ the linewidth, 𝐼 the intensity and ∆ the detuning from resonance. For
Caesium, with isotropically polarized light resonant on the 𝐹 = 4→ 𝐹′ = 5 transition the saturation
intensity is given by 𝐼sat = 2.7mW∕cm2 and the resonant cross section 𝜎0 = 1.4 × 10−9 cm2 [111].
For 𝜎+ polarized light, resonant with the cycling transition 𝐹 = 4, 𝑚𝐹 = 4 → 𝐹′ = 5, 𝑚𝐹′ = 5,
𝐼sat = 1.1mW∕cm2 and 𝜎0 = 3.5 × 10−9 cm2.

In the experiment, to improve the signal to noise ratio three images are taken, one with the atoms
(absorption image 𝐼A), one without atoms (bright image 𝐼B) and one without atoms or light (dark image,
𝐼D). The images are used to compute the optical density (OD)

OD𝑖𝑗 = ln ( 𝐼B − 𝐼D
𝐼A − 𝐼D

) , (3.3)

where the indices 𝑖, 𝑗 run over the camera pixels. The atom number can be estimated from the OD
by integration. This requires knowledge of the size of one camera pixel at the position of the atoms
∆𝑥px . The total atom number is given as

𝑁 =
∆𝑥𝑝𝑥
𝜎

∑
𝑖𝑗
OD𝑖𝑗 (3.4)

This bare pixel sum is sensitive to noise and offsets of the computed OD. To avoid these errors, we
typically fit a 1D normal distribution 𝐴N (𝑥, 𝜎𝑥) + 𝑂 to the OD summed along one of the pixel axes.
Provided a proper normalization of the distribution (

∫
N (𝑥, 𝜎𝑥)d𝑥 = 1), the total atom number is

then simply the fitted amplitude 𝐴.

3.3.2 Time of Flight

In time of flight, the atoms are released from a trap and absorption images are taken at different times
𝑡tof after the release. For a thermal cloud in free fall the expansion of the cloud follows [98]

𝜎(𝑡tof ) =
√
𝜎0 +

𝑘𝐵𝑇
𝑚 𝑡2tof (3.5)

with initial size 𝜎0. The free fall of the cloud may also be used to calibrate the magnification of the
imaging system, as the cloud’s center will follow

𝑥(𝑡tof ) = 𝑥 − 1
2𝑔𝑡

2
tof . (3.6)
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Figure 3.17 | a) Center of mass oscillation of the cloud in a dipole trap versus time. The fitted trap frequency is 80 Hz.
b) Parametric heating at the frequency corresponding to the bandgap between the first and third band of an optical
lattice leads to loss of atoms. Here the resonance is at 39 kHz, in a 767 nm lattice, corresponding to a lattice depth of
24 ER. c) Pulsing the lattice for a short duration leads to Kapitza-Dirac scattering. The population in the n-th band
approximately follows a Bessel function of the n-th order [152]. From the fit, a lattice depth of 16 ER is extracted. d)
Interference pattern of a BEC loaded into a 2D 767 nm optical lattice. The lattice was loaded at low power (200 mW,
10 ER, J = 50Hz) with an exponential ramp of 100 ms duration and 20 ms time constant. After holding the atoms for
100 ms the lattice power was increased to full power in 1 ms to compress the Wannier functions in each lattice site
and increase the amplitude of the interference peaks.

In case of levitation using a magnetic field gradient, the harmonic anti- confinement due to the gradient
leads to a modification of the horizontal expansion of the cloud according to (Ref. [151], Eqs. 3.12, 3.13)

𝜎(𝑡tof ) =

√
√√√𝜎20 cosh

2(𝜔lev𝑡tof ) +
𝑘𝐵𝑇
𝑚

sinh2(𝜔lev𝑡tof )
𝜔2lev

. (3.7)

with 𝜔lev = −
√
𝑚𝐹𝜇𝐵𝑔𝐹𝜕𝐵2∕𝑚𝐵0, where 𝜕𝐵 is the magnetic gradient along the expansion direction

and 𝐵0 the magnetic offset field. An anti-Helmholtz coil pair aligned along axis 𝑧 produces a gradient of
𝜕𝑧𝐵∕2 along 𝑥 and 𝑦. For an offset field of 20G and a gradient of 31.3G/cm along 𝑧 the anti-harmonic
confinement along 𝑥 and 𝑦 is 𝜔lev ≈ −2𝜋 × 3Hz

3.3.3 Trap frequency measurement
We measure trap frequencies either using parametric heating or exciting a center of mass oscillation of
the cloud [149]. We typically use center of mass oscillations for the dipole traps and parametric heating
for the optical lattices. To excite the center of mass of the atoms, we briefly switch off and on one of the
dipole traps. This typically causes the cloud to start sloshing in the dipole potential. For sufficiently weak
excitation, the oscillation will be dominated by the dipole mode at the trap frequency𝜔trap (Figure 3.17a).
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We hold the atoms in the dipole trap for a variable amount of time 𝑡hold and subsequently measure the
position of the cloud after a fixed time of flight 𝑡tof . The position versus 𝑡hold oscillates with 𝜔trap.

Alternatively, in parametric heating experiments, we modulate the intensity of the optical potential
at varying frequency 𝜔mod (Figure 3.17b). The amplitude modulation couples quantum states of the
same parity, i.e. atoms in the ground state can only be excited to the second excited level, not the
first [153]. At ℏ𝜔mod = ℏ∆𝜔13, the energy difference between ground state and second excited state,
atoms are excited, the system heats up and, if the driving is sufficiently strong, atoms are lost from the
trap. Note that in a lattice 𝜔mod is the difference between the first and third band, which depending
on the lattice depth may be quite different from 2∆𝜔12.

The lattice depth can be independently calibrated using Kapitza-Dirac scattering (Figure 3.17c).
Here, the lattice is pulsed for a brief period of time 𝜏. The atoms diffract off the standing wave and
populate higher momentum states spaced by 2ℏ𝑘 with 𝑘 the lattice wavevector. If the pulse duration
is short compared to the harmonic oscillator frequency of a lattice site [152] (Raman-Nath regime),
the population of the n-th momentum state follows 𝑃𝑛 = 𝐽2𝑛(

𝑉0𝜏
2ℏ
) with 𝐽𝑛 Bessel functions of the

first kind. By varying 𝜏, and measuring the change in the momentum state occupation, the lattice
depth 𝑉0 can be extracted.

To test the coherence of atoms loaded into a lattice, one can measure their momentum distribution.
Abrupt release of the atoms from the lattice leads to interference between atoms released from different
lattice sites [86, 154, 155]. This interference, analogously to double slit interference, reveals itself as
sharp peaks at 2𝑛ℏ𝑘, similar to Kapitza-Dirac scattering (Figure 3.17d). In the double slit analogy, the
slits are lattice sites and the slit width are the size of the Wannier functions on each site. Therefore, the
size of the Wannier function is related to the number of observable interference peaks, since its Fourier
transform acts as an envelope on the interference pattern. Compressing the Wannier function increases
its Fourier transform’s width and thereby the amplitude of the interference peaks. To compress the
Wannier function, the lattice depth is increased, which however also reduces the tunneling between
sites and thereby the extent of coherence between lattice sites. Therefore, in the sequence, to observe the
superfluid interference peaks, we load the atoms into the lattice at low power and just before detection
rapidly increase the lattice depth. If the lattice depth ramp is fast compared to the tunneling time, the
coherence should not be affected much and if it is slow compared to the lattice trap frequency, the local
Wannier orbitals will follow the potential adiabatically and compress.

3.3.4 Microwave spectroscopy
Microwaves can be used to drive atoms between the different hyperfine states of the ground state
manifold. Since both hyperfine states are stable, the resolution with which the resonance frequency
can be determined is limited by the microwave pulse duration or the time between the two pulses in
a Ramsey sequence (i.e. the linewidth is Fourier limited40). The resonance frequency is dependent
on the magnetic field due to the Zeeman effect. Therefore, microwaves can be used to calibrate the
magnetic field at the position of the atoms. Starting with atoms in |𝐹 = 3, 𝑚𝐹 = 3⟩, we use microwaves
to excite them into |𝐹 = 4, 𝑚𝐹 = 4⟩. We can detect the excited atoms by using absorption imaging
on the 𝐹 = 4 → 𝐹′ = 5 transition. The excitation frequency required can be computed from the
Breit-Rabi formula [111]. At 100G the energy shift computed with the Breit-Rabi formula (∆𝐸BR)
differs from the one computed within the anomalous Zeeman effect (∆𝐸 = 𝜇𝐵𝑔𝐹𝑚𝐹𝐵41) by around
(∆𝐸BR − ∆𝐸)∕ℎ ≈ −1MHz for the |𝐹 = 3, 𝑚𝐹 = 3⟩ state (Figure 3.18a). The exact frequency shift
according to the Breit-Rabi formula at 100G is -106.2MHz.

To use microwaves to calibrate the magnetic field coils, we search for the resonance that excites the

40assuming perfectly stable magnetic fields
41𝑔𝐹𝜇𝐵 = ±ℎ × 350 kHz∕G for 𝐹 = 3 (-) and 𝐹 = 4 (+)
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Figure 3.18 | a) Energy difference between the Breit-Rabi resonance frequency ∆EBR and the anomalous Zeeman
shift ∆E for |F = 3,mF = 3⟩ and |F = 4,mF = 4⟩. b) Sketch of the level scheme for Zener sweeps. In the dressed
picture, increasing the microwave photon energy shifts the energy of ground state |g⟩ plus photon field h̄ωw.r.t. the
energy of the excited state |e⟩. The coupling between the states via the microwave field leads to an avoided crossing.
Adiabatically sweeping the frequency across the resonance transfers atoms from |g⟩ to |e⟩. c) Transfer of population
from |3, 3⟩ to |4, 3⟩ and |4, 4⟩ versus center frequency of the microwave Zener sweep and magnetic field. The insets
above the figure show absorption images of atoms in F = 4 for two sample pairs of center frequency and magnetic
field, once with and once without any state transfer. As the magnetic field changes, the resonance frequency shifts
according to the Breit-Rabi formula. The offset field can be extracted from the resonance frequency extrapolated to
zero magnetic field. d) Offset calibration by inverting the magnetic bias field direction. The resonances are offset by
2Boffset, projected along the bias field axis (provided that Bbias ≫ Boffset). For the plotted measurement, the offset field
points in the same direction as the bias field for the blue data points.

atoms from |𝐹 = 3, 𝑚𝐹 = 3⟩ to |𝐹 = 4, 𝑚𝐹 = 4⟩ and find the magnetic field that corresponds to this
frequency difference between the levels. For excitation we use Zener sweeps, where the microwave
frequency is swept over the resonance and population is adiabatically transferred from the ground into
the excited state (Figure 3.18b). Repeatedly finding the resonance for different currents sent through
the magnetic field coils allows reconstruction of the magnetic field generated per ampere of current
and the magnetic background field along the bias field direction (Figure 3.18c). Note that the applied
bias field should be much greater than the background offset field, since only in this case the measured
offset field corresponds to its projection along the bias field axis. Alternatively, the offset field can be
found by finding the microwave resonance frequency for opposite polarizations of the bias field. The
frequency difference corresponds to twice the offset field, projected on the bias field axis (Figure 3.18d).
The second method gives more accurate results from our experience, though the first was sufficient for
the molasses phase in the MOT chamber (subsection 3.4.3). The accuracy of the magnetic background
field measurement is limited by its random fluctuations. In our case, without the active magnetic field
stabilization enabled, we find fluctuations of the background magnetic field on the order of 25mG
(cf. subsection 3.2.7 and Ref. [139]).
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Figure 3.19 | Summary of the sequence up to and including dRSC. After completing dRSC, the atoms are ready to be
loaded into the transport lattice

3.4 Pre-cooling
This section describes the pre-cooling sequence up to the transport. In brief, we collect atoms in a MOT,
compress them, and after a short molasses phase capture them in an optical lattice for degenerate Raman
sideband cooling. At the end of pre-cooling, 2 × 107 atoms at <1µK and a density of 3 × 1010 cm−3 are
ready to be loaded into the transport lattice. Figure 3.19 summarizes the pre-cooling steps, giving the
step durations and parameter values. The full pre-cooling sequence takes 3.045 s, with most of the time
spent loading the MOT. Figure 3.20 and Figure 3.21 show the optical setup around the MOT chamber
and how the different cooling lasers are oriented with respect to each other.

Atom number Temperature (µK) Density (1∕cm3)
cMOT 3 × 107 30-40 5 × 1010

Molasses 3 × 107 10 3 × 1010
dRSC 2 × 107 <1 3 × 1010

Table 3.3 | Atom numbers, temperatures and densities during the pre-cooling stages

3.4.1 MOT and Zeeman slower
For slowing the atoms in the Zeeman slower we use around 5mW of light detuned by −100MHz from
the 𝐹 = 4→ 𝐹′ = 5 transition and 4.5mW repumper light running on the 𝐹 = 3→ 𝐹′ = 4 transition.
The beam is expanded to 9mm beam diameter and slightly converging towards the oven chamber. At
5A current and −100MHz detuning from the 𝐹 = 4→ 𝐹 = 5 transition atoms are slowed from around
200m∕s to around 40m∕s, sufficient to capture the atoms in the 3D MOT.

To align the cooling beam through the chamber we use a webcam with the IR filter removed, first
aligning the beam through the MOT chamber and then aligning the beam on the oven output by
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looking at the fluorescence signal from the atomic beam at the viewports close to the oven output.
The final alignment optimization, as well as the power, detuning and current optimization is done
with the MOT fluorescence signal.

For our MOT cooling we use 16 mm diameter beams. The horizontal beams are retro reflected, along
the vertical direction we have two independent beams. This makes it easier to add additional beams
along the vertical axis, required for e.g. Raman sideband cooling. We initially used dielectric mirrors
which prevented us from observing a MOT signal, because dieletric mirrors can distort the circular
polarization required for a MOT due to different reflectivities for 𝑠 and 𝑝 polarized light. Therefore we
replaced any mirror behind the 𝜆∕4 waveplate with 2" gold mirrors, which don’t distort the polarization.
The beams have powers of 50mW along X′, 7mW along Y′ and beams coming from the top and the
bottom have 6mW and 9mW respectively. For initial alignment we center the incoming beam on the
retro mirror and align the retro mirror such that the beam gets coupled back into the input fiber. If
the polarization of the beams is correct, this alignment should be sufficient to capture some atoms
in a MOT. We find that perfect retro reflection makes the MOT unstable. Hence, the retro beam is
slightly misaligned from the incoming.

Once there is a signal, we optimize the Zeeman slower alignment, current, detuning, polarization
and power to maximize the fluorescence. A photodiode records the fluorescence of the MOT versus
time. By blocking one of the MOT beams, the MOT is destroyed and a new loading curve can be taken.
After optimization, we tune the alignment, polarization of the MOT beams and the balance between
them to again maximize the fluorescence signal. For MOT optimization a CCD is useful as it also allows
us to optimize for the shape of the cloud. The beam balance and magnetic field compensation can be
optimized by suddenly switching off the gradient and observing the subsequent expansion of the atomic
cloud on the CCD. By switching off the gradient, one effectively creates a molasses. Therefore, ideally
the atoms should spread slowly and symmetrically once the gradient has been turned off. Note that all
these parameters also affect the position of the MOT. With the subsequent stages in mind, the MOT
position should be close to the zero of the gradient field, which can be found by increasing the gradient
and trying to minimize the change in position of the atomic cloud. Finally, we optimize the gradient
field, detuning and total power of the beams using absorption imaging.

After optimization, we load around 3 × 107 atoms in 3 s with a gradient of 9G∕cm and a cooler
detuning of −20MHz.

3.4.2 cMOT
After theMOT loading we switch off the Zeeman slower light and compress the atomic cloud by ramping
up the magnetic field gradient and cooler detuning. At the same time we reduce the repumper and
cooler powers. In our compressed MOT we reach peak densities of a few 1010 cm−3 (Table 3.3) with
negligible atom loss. The detuning and gradient are ramped to −40MHz and 17.5G∕cm in 20ms. The
cooler and repumper power are reduced to 25mW and 60µW. After the ramp we hold all parameters
fixed for another 10 ms before continuing with the molasses phase.

While optimizing the cMOT, we found that detuning and gradient are coupled, similar to [156]. A
higher detuning can compensate for a lower gradient and vice versa. We eventually settled on scanning
both parameters simultaneously, sometimes even together with the repumper power as well. The
signal was then optimized on the atomic density after short time of flight, not the atom number or
temperature, because the cMOT phase is intended for compression only. Due to the high density,
most light typically gets absorbed, making optimization impossible. To alleviate this, we detune the
imaging beam from resonance. The resulting atom numbers are inaccurate, however it still allows
relative comparison for optimization.
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Beam Power Diameter Intensity
MOT X 50 mW 16 mm 50 mW/cm2

MOT Y 7 mW 16 mm 7 mW/cm2

MOT Ztop 6 mW 16 mm 6 mW/cm2

MOT Zbot 9 mW 16 mm 9 mW/cm2

MOT Total 72 mW 16 mm 71.6 mW/cm2

MOT Rep 2.2 mW 6 mm 15.6 mW/cm2

cMOT Total 25 mW 16 mm 24.8 mW/cm2

cMOT Rep 60 µW 6mm 0.4 mW/cm2

Molasses Total 0.2 mW 6 mm 0.2 mW/cm2

dRSC Y 31.2 mW 2.2 mm 1567.1 mW/cm2

dRSC X 8.3 mW 2.2 mm 417.9 mW/cm2

dRSC Z 6.9 mW 2.2 mm 348.2 mW/cm2

dRSC Total 46.4 mW 2.2 mm 2333.2 mW/cm2

dRSC Pol 650 µW 2.2 mm 32.7 mW/cm2

dRSC Rep 25 µW 2.2 mm 1.3 mW/cm2

ZS 5 mW 9 mm 15.7 mW/cm2

ZS Rep 4.5 mW 9 mm 14.1 mW/cm2

Table 3.4 | Powers, waists and intensities of the beams used for pre-cooling in our setup.

3.4.3 Molasses
After the compressed MOT we have a short molasses phase. For the molasses, we ramp the repumper
back to full power, increase the detuning of the cooler to −100MHz and switch off the gradient. The
molasses cools the atoms to a few µK (2µK with good magnetic field compensation) in a few ms.

For the molasses to work well, the background magnetic field has to be compensated to high
(better than ≈ 50mG) precision. We measure the background magnetic field by driving Landau-Zener
transitions between the 𝐹 = 3 and 𝐹 = 4 hyperfine groundstates using microwaves. The different sign
of the Landé factor for 𝐹 = 3 and 𝐹 = 4 leads to a magnetic field dependence of the energy splitting
of the two states. For all magnetic fields we are using in our lab the energy of a given hyperfine states
scales approximately linearly with magnetic field (𝐸𝐹,𝑚𝐹 = 𝜇𝐵𝑔𝐹𝑚𝐹𝐵). However, for calibration we use
the more exact Breit-Rabi formula (Eq. 26 in [111]) to compute the energy shift. If one irradiates the
atoms with microwave radiation tuned to resonance, atoms are transferred from one hyperfine state to
the other. In the case of a Zener sweep, the microwave frequency is swept over the resonance, which, if
slow enough, transfers the population from one hyperfine state into the other.

To measure the background magnetic offset field, we send different currents through the magnetic
field coils and find the resonance. The offset can be extracted from the offset of a linear fit to the
resonance frequency versus current. With this method, we were able to compensate the field in the
MOT chamber sufficiently to reach 2µK temperatures after the molasses phase. Without magnetic field
compensation, the molasses phase typically reached only 10-20µK. In principle it is possible to reach
even lower temperatures with molasses (Ref. [157] reports 0.7µK), but because we follow the molasses
stage up with degenerate Raman sideband cooling the temperatures we reach after molasses are not
too critical (some Caesium experiments skip the molasses stage entirely [158]).

3.4.4 Degenerate Raman sideband cooling
After molasses we perform an additional cooling stage, degenerate Raman sideband cooling (dRSC), as
is typical for Caesium BEC experiments [98, 137, 159]. During degenerate Raman sideband cooling
the atoms are loaded into a 3D optical lattice (Figure 3.22). By appropriate choice of the lattice beam’s
polarizations, the lattice itself can induce Raman transition between different, degenerate𝑚𝐹 states. By
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Figure 3.20 | Sketch of the laser beam setup around the MOT chamber. The view shows a crosscut through the
chamber from the top. The axes orientations are indicated in the top right. The glass cell is located towards the
right, the oven towards the top. We have retro reflected MOT (light red) beams along Y′′ and X′′, both of which are
expanded with a telescope to 16 mm beam diameter. The MOT repumper, running on the F = 3 → F

′ = 4 transition,
is overlapped with the MOT beam along the X′′ direction. Two of the Raman lattice arms (darker red) are oriented
along the Y′ and X′ axes. Only the beam along the Y′ axes is retro reflected. The reservoir dipole trap (solid green) used
for loading the atoms after degenerate Raman sideband cooling is oriented along the same axes as the Raman lattice
arms. It is split from the Bessel beam laser output via a motorized waveplate. The Bessel beam for the transport
lattice (dashed green) is expanded to 5 mm before passing through the axicon. Imaging axes are indicated with light
blue colors, and are oriented along the X′ and Y′ direction. In both cases, the beams are overlapped with the reservoir
dipole traps. The reservoir dipole trap light is filtered from the imaging light using dichroic mirrors and line filters.

applying a small magnetic field, it is possible to tune the resonance such that different vibrational states
are degenerate. Here, the states that are brought into degeneracy are |𝑚𝐹 , 𝜈⟩, |𝑚𝐹 − 1, 𝜈 − 1⟩. By adding
a 𝜎+ polarized repumper, the atoms in𝑚𝐹 < 2 are pumped to the excited state (6𝑃3∕2, 𝐹 = 2). During
the decay from the excited state the vibrational quantum number remains unchanged, leading to cooling
in the case that the decayed state magnetic quantum number 𝑚𝐹 is larger than the initial one. This
cycle of Raman transition and repumping eventually stops when all atoms end up in |𝑚𝐹 = 3, 𝜈 = 1⟩,
|𝑚𝐹 = 2, 𝜈 = 0⟩ or |𝑚𝐹 = 3, 𝜈 = 0⟩. To repump the last atoms remaining in |𝑚𝐹 = 3, 𝜈 = 1⟩ and
|𝑚𝐹 = 2, 𝜈 = 0⟩ one adjusts the polarization of the repumper to also include some 𝜋 component. This
ideally results in all atoms in the |𝐹 = 3, 𝑚𝐹 = 3, 𝜈 = 0⟩ state, i.e. a fully polarized sample in the ground
state of the lattice well. For this reason the repumper is sometimes also called polarizer.

The Raman lattice is generated from three linearly polarized beams, one of which (𝑌′ in our case) is
retro reflected after passing through a 𝜆∕4 waveplate. The 𝑋′ (𝑍) lattice beam’s polarization is chosen
such that they are aligned with the propagation direction of the Z (X′) beam to prevent interference
between the two. The 𝑌′ beam and its retro interfere with each other and the 𝑋′ and Z beams (cf. inset
of Figure 3.22). The polarization of the 𝑌′ beam and its retro reflection typically subtend an angle
of a few tens of degrees, however we have found that the cooling efficiency is not very sensitive to
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Figure 3.21 | Sketch of the laser beam setup around the MOT chamber, viewed from the side. The axes orientations
are indicated in the top right. The oven is located towards the left. The orange squares above and below the chamber
indicate the offset and gradient coils. There are two counter propagating MOT cooler beams (light red). The lower
one passes through its waveplate after being expanded, the upper one is expanded after setting the polarization.
Both are expanded to 16 mm. For degenerate Raman sideband cooling (darker red), one lattice arm and the Raman
repumper (RRep) are first overlapped with each other and subsequently expanded to 2.2 mm beam diameter. The
foci of the Raman and top MOT telescopes are overlapped to align the Raman beams along the MOT axes. The Raman
polarizer is sent through the chamber from below. To align the polarization, we use a λ∕2 and λ∕4 waveplate. The
λ∕4 waveplate is mounted in a micrometer actuated rotation stage. The two waveplates allow us to precisely set the
polarization to be only σ+ or π at the position of the atoms. The polarizer is overlapped with the bottom MOT beam
with a D-shaped mirror placed in the focus of the expansion telescopes, same as for the Raman lattice and repumper
beams from the top.

this degree of freedom. Each beam has a waist of 1.1 mm and we have powers of 8.3mW, 31.2mW
and 6.9mW in the 𝑋′, 𝑌′ and 𝑍 axis respectively.

The four beams generate a 3D lattice, albeit one with asymmetric trap frequencies along different
directions. The benefit of using 4 beams instead of 6 is a reduced sensitivity to phase fluctuations, which
in this case only cause an overall translation [160]. Due to the strong Raman coupling during cooling,
the difference in lattice trap frequencies is not resolved [161].

To align the lattice beams on the atoms we tune them on resonance and pulse them at the atomic
cloud after the molasses [121]. This allows rough alignment by trying to minimize the pulse duration
required to completely kill the atomic cloud. Finer alignment is possible by increasing the detuning
from resonance. In this case the atoms in the center of the Raman lattice beam are killed first, leading
to a hole in the atomic cloud. By symmetrizing this hole (or its projection along the imaging axis)
we optimize the fine alignment for the 𝑋′ and 𝑍 axis and the incoming Y′ beam. The 𝑌′-retro beam
is simply coupled back into the 𝑌′-axis fiber.

The Raman lattice is approximately −20GHz detuned from 𝐹 = 3 − 𝐹′ = 2 resonance. This is in
contrast to some other Caesium experiments [98, 137], where the lattice is detuned by −10GHz and
serves as depumper for atoms in 𝐹 = 4. We need a seperate depumper, which in our case is running
on the 𝐹 = 4 − 𝐹′ = 4 transition. While the cooling does not work as well without the repumper, we
have found that even µW’s of power are already sufficient.

In addition to the lattice and depumper beam we have a polarizer/repumper beam running on the
𝐹 = 3 − 𝐹′ = 2 transition. The polarizer beam has a beam waist of 1.1mm and a power of 650µW. It
is mostly 𝜎+ polarized, and repumps the atoms that underwent Raman transitions from𝑚𝐹 < 2. To
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Figure 3.22 | Sketch of dRSC. Balls represent atoms in different internal (mF ) and vibrational (n) states. Different
vibrational levels of different mF states are brought into degeneracy by a magnetic field that shifts the states by
mF gFµBB. The Raman lattice (detuning ∆) couples the energetically degenerate states (atoms of the same color) via
two photon Raman transitions. The σ+ polarized component (red squiggly line) of the polarizer pumps the atoms
into 6P3∕2, F = 2, from where they decay. During the decay, the vibrational quantum number remains the same.
If the mF quantum number increases during the decay, the atom’s energy is reduced by mF gFµBB = hν, with ν the
vibrational frequency of the lattice. The π polarized components (blue squiggly line) of the polarizer is required to
pump atoms in mF = 2, n = 0 and reach the absolute ground state (green ball). The inset in the top left shows the
beam configuration of the Raman lattice. The polarization (grey) of all beams is linear. The polarizations of the beam
along X′ and Z are both in the X′-Z plane, preventing any interference between the two beams. The polarization of
the Y′ beams is angled such that it interferes with all other Raman lattice beams.
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reach low temperatures it is critical that the polarizer does not have any 𝜎− component. To achieve
this we have used a sequence suggested by Elmar Haller [162]. After the MOT (or cMOT or molasses)
phase, we pump all atoms into F=3 using the depumper beam and add an offset magnetic field along
the propagation direction of the polarizer. We subsequently turn on the polarizer beam at maximum
power for a few ms. In case the polarizer has both 𝜎+ and 𝜎− components, the atoms will never be dark
to the polarizer and the cloud will be blown away. However, for a purely 𝜎+ (or 𝜎−) polarized beam,
the atoms will be pumped into the dark state |𝐹 = 3, 𝑚𝐹 = 3⟩ (|𝐹3, 𝑚𝐹 = −3⟩). So the polarization
may be optimized by minimizing the effect of the polarizer beam on the atomic cloud. This method is
extremely sensitive and allowed us to reduce the temperature from around 3µK to around 400nK. To
measure these low temperatures, we use levitation and up to 150ms time of flight, taking the correction
due to the anticonfinement of the magnetic field gradient (Equation 3.3.2) into account.

After optimization, we slightly rotate themagnetic field axis by adding an offset field in the horizontal
axis, which adds a small 𝜋 polarization component to the repumper.

During optimization of the laser powers and detunings we have found that the final temperature
after dRSC is most sensitive to the polarizer power and the offset field. We typically don’t have to scan
neither polarizer detuning nor depumper power. During optimization we minimize the cloud size
after around 30ms ToF as a proxy for the atomic temperature.

Once optimized, we have around 2 × 107 atoms at <1µK after 6ms of cooling, at a density of
around 3 × 1010 cm−3.
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CHAPTER 4

Optical transport

Optical transport is a common technique for increasing the optical access for quantum gas experiments.
This is especially interesting for quantum gas microscope experiments, as the objective severely restricts
the optical access. Over the years, several different methods have been used to transport atoms from
one place in the vacuum system to another (e.g. Refs. [129, 163–171]). These include moving the
minimum of a magnetic trap [163], the focus of an optical trap [164, 168, 169, 171] or creating a running
wave lattice [165, 167, 170].

We use a running wave lattice, formed from two slightly detuned lasers, to transport the atoms from
the MOT into the glass cell. This allows faster transport compared to moving a magnetic or optical trap,
and has no moving components, thereby avoiding vibrations as a possible heating or loss channel.

Because of the large distance between the MOT chamber and glass cell in our experiment, we use a
Bessel beam, which does not expand during propagation. This beam provided the dipole trap to hold
the atoms against gravity. To create the running wave lattice, we add a counter propagating Gaussian
beam. We can control the detuning between Bessel and Gaussian beam using DDS boards.

This section describes the details of our optical transport and presentsmeasurements on the transport
efficiency and stability. The contents of this section have also been presented in Ref. [172].

4.1 Transport schemes
Cold, trapped atoms can be transported by moving the trap. Magnetically trapped atoms can be trans-
ported by either moving the coils generating the magnetic field gradient directly [129, 166], or by using
a stack of displaced coil pairs and varying the current in each pair so as to move the minimum of the
trap [163]. Caesium in its absolute ground state can not be magnetically trapped, so these schemes
cannot be used in this experiment.

In our case, only optical transport is possible. The simplest schemes translate the lens focusing a
dipole trap using a motorized translation stage [164] (Figure 4.1a). The atoms trapped in the dipole trap
move with the focus of the trap provided that the axial trap frequency is sufficiently large compared
to the acceleration of the stage. The axial trap frequency for Gaussian dipole traps is typically quite
a lot weaker than the radial one (𝜔ax∕𝜔𝑟 =

√
𝜆2∕2𝑤2

0 ≈ 3.5 × 10−2 for 𝑤0 = 20𝜆). The critical
acceleration, where the trap is not sufficiently steep to keep the atoms in the potential and they all
spill out is accordingly lower, with the ratio 𝑎critax ∕𝑎crit𝑟 = 0.54𝑤0∕𝑧𝑅. For a given trap depth 𝑉0, the
critical accelerations are 𝑎critax = 3

√
3𝑉0∕8𝑚𝑧𝑅 and 𝑎crit𝑟 =

√
4𝑒−1∕2𝑉0∕𝑚𝑤0 where 𝑤0 is the beam waist

and 𝑧𝑅 the Rayleigh range. As an example, Caesium in a 1064nm dipole trap made by a 10W round
Gaussian with waist 𝑤0 = 20 µm gives 𝑎critax ≈ 130m∕s2 or about half the gravitational acceleration
on the sun. To improve the axial trap frequency, experiments have used a crossed dipole trap [169].

45
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a)

b)

c)

Figure 4.1 | Optical transport via a) lens translation, b) using focus tunable lenses or c) a running wave lattice

The small projection of the radial trap frequency along the direction of transport provides a slightly
steeper trap and thereby allows for higher accelerations.

Apart from the limits placed on the transport due to the low trap frequency, vibrations of the transla-
tion stage lead to pointing fluctuations of the dipole trap beams which can heat the atoms in the dipole
trap. To alleviate this, air bearing stages may be employed [169], or the translation of the lens is avoided
altogether. The second option can be realized by using focus tunable lenses [168, 171] (Figure 4.1b).
While using focus tunable lenses certainly avoids a linear translation stage and the associated pointing
fluctuations during movement, the axial trap frequency is still the same as in regular dipole traps.

To address the issue of the low axial trap frequency we use an optical lattice [165, 167, 170]
(Figure 4.1c). In an optical lattice, the axial trap frequency scales with 1∕𝜆, i.e. will typically be
much larger than the radial trap frequency (𝑎critlatt = 4𝜋𝑉0∕𝑚𝜆). To transport atoms loaded into the
lattice, a small frequency detuning ∆𝑓 is introduced between the counter propagating beams. The
resulting potential is proportional to cos(2𝑘𝑧 − ∆𝜔𝑡), where 𝑘1 + 𝑘2 = 2𝑘1 + O(∆𝑓∕𝑓) ≈ 2𝑘 is the
lattice wavevector and ∆𝜔 = 2𝜋∆𝑓 = 𝜔1 − 𝜔2 is the frequency difference between the beams. This
potential moves with a velocity of 𝑣 = ∆𝜔∕2𝑘 = 𝜆∆𝑓∕2 in the direction of propagation of the beam
with the higher frequency. In addition to allowing much larger accelerations, this transport scheme has
no moving mechanical components. Apart from controlled transport of atoms from one place to the
next, running wave lattices are also used for launching atoms in atomic fountain clocks [157, 173].

4.2 Transport setup
4.2.1 1064 nm Lasers
For all dipole traps, and for the transport lattice we use three 1064nm fiber amplifiers1. One 45W
laser2 produces the reservoir dipole trap in the MOT chamber and the Bessel beam for the transport
lattice, another 50W laser3 is used for the 𝑋 & 𝑌 dipole traps in the glass cell and the Gaussian beam of
the transport lattice. A third 35W laser4 is currently only used for the shallow angle vertical lattice in
the glass cell (see section 5.3). The 50W Gaussian laser and 35W vertical lattice laser are both seeded
by a 200mWMephisto5 (Figure 4.2). The Bessel laser is seeded using light from the Gaussian. This
seeding setup will be described in detail later (subsection 4.2.3). To avoid interference between the
different dipole traps and lattices entering the glass cell we use AOMs that shift the frequencies by ±80
or 100MHz (cf. inset of Figure 4.2). The seed for the 35W vertical lattice laser is also shifted by 80

1Azur Light System (ALS)
2ALS-IR-1064-50-A-SF, power stabilized, ALS
3ALS-IR-1064-50-A-SF, current stabilized, ALS
4ALS-IR-1064-30-A-SF, current stabilized, ALS
5Mephisto S 200 NEFC, Coherent
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Figure 4.2 | Sketch of the seeding setup and the Gaussian laser setup before the fiber coupling to the experiment.
The seed is used to seed two amplifiers, the Gaussian laser and the shallow angle vertical lattice (shallow VL, see
section 5.3). To avoid interference between beams of the two amplifiers, one of the seeds is frequency shifted before
fiber coupling. The amplifier is used for the Gaussian beam of the transport lattice and the X and Y dipole traps in the
glass cell (see section 5.2). Finally, part of the Gaussian beam is also used to seed the amplifier used to generate the
Bessel beam. The inset at the bottom left shows the relative frequencies of all the lasers as they enter the experimental
chamber.

MHz before being amplified. In conjunction with another AOM at the output, this gives a total shift of
160MHz from the Mephisto frequency. In addition to avoiding interferences, these AOMs also allow
us to stabilize and control the intensity of the dipole trap and vertical lattice.

4.2.2 Reservoir
After pre-cooling the next step would be to load the transport lattice and transport the atoms into the
glass cell. However, after dRSC the cloud is cold but relatively dilute. Because of the small diameter of
the Bessel beam (<400µm), the overlap between the transport lattice and the cloud is relatively small
and therefore the loading efficiency is small. In addition, the atoms that are loaded into the lattice
would be compressed. This causes an increase in temperature even for adiabatic transfer as the phase
space density 𝜙 = 𝑛𝜆3dB is conserved. Here 𝜆dB =

ℎ√
2𝜋𝑚𝑘𝐵𝑇

is the thermal de Broglie wavelength and 𝑛
the peak density of the cloud. To match the phase space density of the dilute Raman cloud, the denser
cloud trapped in the transport lattice has to increase its temperature.

We address this issue by loading the transport lattice in a three step process (Figure 4.3, Ref. [174]).
We first load a large, shallow crossed dipole trap, the reservoir. The laser for the reservoir is the same
as the one for the Bessel beam and the crossed trap is formed by passing the same beam through the
MOT chamber twice with perpendicular polarization (Figure 4.4). To control the power in the reservoir
and Bessel traps, we opted to use motorized6 waveplates instead of AOMs to avoid pointing instabilities
and thermalization effects as these would be detrimental to the optical transport. The drawback of the
motorized waveplates is that they are slow compared to an AOM,with a rotation of 45 ◦ in around 500ms.

The reservoir beams have a diameter of 1mm and a power of 14W and 10W for the first and second
arm respectively. The reduction in power for the second arm is due to reflections off the vacuum
viewports and sub-optimal angle of incidence on some of the mirrors along the path. This gives trap

6DDR25-M, Thorlabs
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Figure 4.3 | Illustration of the loading of the transport lattice using the reservoir dipole trap. The atoms are first loaded
into a shallow dipole trap. The Bessel beam is subsequently ramped up and the atoms are allowed to thermalize
with those in the reservoir. Finally, the reservoir is removed and the lattice ramped up to its full depth.
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Figure 4.4 | Setup of only the reservoir dipole trap and transport lattice around the vacuum chamber. The light from
the Bessel laser is used for both Bessel beam and reservoir. The relative power between them is controlled using
polarizing beam splitters and λ∕2 waveplates mounted in motorized rotation mounts. Counter propagating with the
Bessel beam is the Gaussian.

depths of 8µK and 6µK and trap frequencies of𝜔𝑌′ = 2𝜋×15Hz,𝜔𝑋′ = 2𝜋×12Hz and𝜔𝑧 = 2𝜋×19Hz.
The resulting trap is large enough to capture all atoms after dRSC. It is however not strong enough
to hold the atoms against gravity. We therefore apply a magnetic field gradient to levitate the atoms
(𝐹grad = 𝜇𝐵𝑔𝐹𝑚𝐹𝜕𝑧𝐵 = 𝑚𝑔 ⇒ 𝜕𝑧𝐵 = 31.3G∕cm)7. This has the additional benefit of spin-purifying the
sample, as only the atoms in |3, 3⟩ are levitated against gravity. The captured atoms are heated up to
match the phase space density, causing some loss from the reservoir of the hottest atoms. After 250ms
of thermalization we add the Bessel beam, which is overlapped with the reservoir. Some of the atoms
in the reservoir get trapped in the deeper Bessel trap and heat up as they are compressed. However,
they are still in thermal equilibrium with the atoms in the reservoir. Hot atoms in the Bessel trap
scatter with colder atoms in the reservoir. The thus heated atoms in the reservoir subsequently escape
from the shallow reservoir trap, leading to an evaporative cooling effect on the atoms remaining in

7Since Caesium in the state |3, 3⟩ is a high fields seeker, the current through the upper anti-Helmholtz coil has to run in the
same direction as the upper bias coil for levitation.
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reservoir and Bessel trap. After another 650ms the reservoir is removed and the Bessel power increased
to its maximum. As the reservoir is removed, the Gaussian beam is ramped up to keep the atoms
from spreading along the transport axis.

Other loading schemes Initially we did not try and load the transport lattice using a shallow reservoir
trap. Instead, we started out with a crossed dipole trap formed by the Gaussian beam (or Bessel beam)
of the transport lattice (entering from the glass cell, or MOT chamber side for the Bessel beam) and a
second dipole trap entering the chamber at a 30° angle w.r.t. the transport axis. In addition, we chose
the waist of this second dipole trap such that the trap would be steep enough to hold the atoms against
gravity. However, using this dipole trap configuration we were faced with a relatively low confinement
along the transport axis and a large temperature increase when loading the Raman cooled cloud into
the dipole trap. This lead to a relatively low atom number captured in the transport lattice, compared
to the current scheme with a crossed dipole trap of much larger waist.

We have also tried to cool the atoms after they are loaded in the reservoir or transport lattice. To
cool the atoms after loading them into the reservoir, we pulsed the degenerate Raman sideband cooling
sequence. The idea was to let the atoms evolve in the dipole trap potential for a quarter period and
switch the Raman lattice back on when the density in the dipole potential was maximal [175, 176](See
also Ref. [159], p.47). The density would increase, while the temperature would remain the same as
after regular dRSC. This scheme did help a bit in increasing the atom number trapped in the original
(small waist) crossed dipole trap. However, after switching to the reservoir trap we could not use
the scheme anymore, as we required a magnetic field gradient to keep the atoms in the trap, which
interfered with the Raman cooling. Turning the gradient on and off was not an option since we could
not switch off and on the gradient fast enough.

We also tried cooling the atoms after they were loaded into the transport lattice. Here, we tried to
implement the scheme from Ref. [177]. The polarizations between the two lattice arms are slightly tilted
with respect to each other. We managed to increase the phase space density measured directly after
transport using this scheme. However, the PSD would not increase as efficiently during the following
evaporation stages. We attributed this to the fact that after the Raman cooling in the 1d lattice not all
atoms where in the |3, 3⟩ state, but some were in other hyperfine states (|3, 2⟩, |3, 1⟩ were observed in
the glass cell using microwave spectroscopy), leading to more inelastic collisions.

4.2.3 Transport lattice
The transport lattice is formed from the interference of a Bessel and Gaussian laser. We need to be
able to control the relative detuning of the lasers precisely in order to start and stop the atoms at
different positions. As the transport velocity scales linearly with the detuning between the laser beams
(𝑣 = 𝜆∆𝑓∕2), a larger detuning bandwidth enables faster transport. Because in optical transport with
a lattice the axial trap frequency is quite large, high accelerations on the order of km∕s2 are possible
before atoms start to be lost. So in addition to having a large detuning bandwidth, we want to be
able to quickly ramp the detuning.

Because we are using two externally seeded fiber amplifiers, we can split off light from one amplifier,
shift it using double pass AOMs and use it to seed the other (Figure 4.5). This avoids relative drifts
between the lasers, and they do not have to be locked to one another. Double pass AOM setups
allow us to shift the frequency quickly and over a broad range, and no AOMs need to be placed
in the amplifier output. We therefore don’t have to worry about thermal lensing or pointing drifts
induced by the AOM crystal.

In our experiment, we use light from the Gaussian to seed the Bessel. The seed passes through
two double pass AOM setups, optimized for −225MHz and 175MHz respectively. Running at these
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MOT chamber (see also subsection 4.3.1). Using ∆fmax = 25 MHz and a = 2.8 MHz∕ms. Different colors correspond to
different transport distances. t1 = 8.9 ms is the duration of the frequency ramp and t2 = 7.3 ms the time between
the start and stop frequency ramp and are indicated for the blue curve (see Equation 4.1). For the green curve, the
frequency ramp duration t1 is insufficient to reach ∆fmax.

frequencies, the output is shifted by −100MHz to the same frequency as the Gaussian beam after it
passes through its intensity stabilizing AOM. The subsequently amplified seed therefore produces a
standing wave when interfering with the Gaussian beam. By ramping the frequency of the −225MHz
AOM to−200MHz the standingwave turns into a running one travelling towards the glass cell. Ramping
the frequency back to −225MHz stops the atoms, and ramping the other AOM to 150MHz drags the
atoms back to the glass cell.

To control the frequency of the AOMs we use two AD9914 DDS evaluation boards (Figure 4.6a).
We initially used signal generators to produce the frequencies for the DDS board. The ones we tested
were however not well suited for the task8. They did not have the option to program and externally
trigger a linear frequency ramp. Instead, when specifying a frequency step and step duration (dwell
time) for a sweep, the signal generator would increment the frequency by the given amount and fix
the frequency for the given step duration. However, when changing the frequency the output of the
signal generator became unstable. This was the expected behaviour, the dwell time essentially only

8SMY01, Rhode&Schwarz
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specified the duration for which the output frequency was certain to be within some band around the
set frequency. We also tried to control the signal generators’ output using the analog modulation input.
This however implied that either the bandwidth of detuning was very small or the output frequency
was extremely sensitive to noise on the analog signal. We found that the for large detuning bandwidth,
the analog modulation input stability was insufficient for transport to the glass cell.

Using a DDS chip for the frequency generation allowed for essentially arbitrarily fast, broadband
frequency ramps. There is no time window where the output frequency is unstable between steps
(Figure 4.7). The temporal and frequency step size during the ramp is limited by the system clock for
the DDS. For the 2.5 GHz system clock we are using, these are ∆𝑓min = 580mHz and ∆𝑡min = 9.6ns.
The DDS board has an internal VCO and PLL lopp, which would allow one to generate the 2.5GHz
system clock with a slower signal (e.g. 10MHz). However, another experiment in our group made
the experience [178] that for a different DDS chip9 the internal PLL loop is not particularly good. We
therefore supply our own 2.5GHz clock10, locked to a 10MHz signal from a Rb reference clock. This
same clock is also used for the signal generator11 supplying the 100MHz for the Gaussian beam’s
intensity stabilization AOM.

Given the linear rate of change to the laser detuning 2∆𝑓rate and themaximum detuning 2∆𝑓max , the
velocity and acceleration are given as 𝑣max = 𝜆∆𝑓max and 𝑎 = 𝜆∆𝑓rate. The factor 2 in the laser detuning
rate and amplitude is due to the double pass AOM setup and cancels with a factor 2 in the formulas for
𝑣max and 𝑎. The laser detuning is varied linearly. Define 𝑡1 the time of the stop of the linear acceleration
ramp and 𝑡2, the time between the end of the acceleration ramp and the start of the deceleration ramp as:

𝑡1 =
⎧

⎨
⎩

𝑣max
𝑎

𝑑 > 𝑣2max
𝑎√

𝑑
𝑎

𝑑 < 𝑣2max
𝑎

𝑡2 =
⎧

⎨
⎩

𝑑
𝑣max

− 𝑡1 𝑑 > 𝑣2max
𝑎

0 𝑑 < 𝑣2max
𝑎

. (4.1)

Here 𝑑 is the distance to be transported. The position and velocity during transport is then given as

𝑥 =

⎧
⎪
⎨
⎪
⎩

1
2
𝑎𝑡2 𝑡 < 𝑡1

𝑥(𝑡1) + 𝑣max(𝑡 − 𝑡1) 𝑡1 ≤ 𝑡 ≤ 𝑡1 + 𝑡2
𝑥(𝑡1 + 𝑡2) + 𝑣max(𝑡 − 𝑡1 − 𝑡2) −

1
2
𝑎(𝑡 − 𝑡1 − 𝑡2) 𝑡1 + 𝑡2 < 𝑡

(4.2)

𝑣 =

⎧
⎪
⎨
⎪
⎩

𝑎𝑡 𝑡 < 𝑡1
𝑎𝑡1 𝑡1 ≤ 𝑡 ≤ 𝑡1 + 𝑡2
𝑎𝑡1 − 𝑎(𝑡 − 𝑡1 − 𝑡2) 𝑡1 + 𝑡2 < 𝑡

(4.3)

Exemplary ramps to illustrate the above equations are shown in Figure 4.6b. Linear ramps of the
velocity are easier to implement, but are not ideal when trying to avoid heating during transport. The
heating after the transport has ended can be estimated from the amplitude of the Fourier transform
of the velocity profile at the trap frequency of the lattice. For our linear frequency ramps, assuming
a triangular velocity profile and oneway transport for simplicity, we have

𝑣(𝑡) = 𝑣maxTri (
𝑡
𝑇 ) (4.4)

𝑣(𝜔) = 𝑣max𝑇√
2𝜋

sinc2 (𝜔𝑇2 ) , (4.5)

9AD9910, Analog Devices
10KU LO 2500 PLL-849, Kuhne; Splitter ZB 8PD-362-S+, Mini Circuits
11SMC 100A, Rhode & Schwarz
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Figure 4.7 | Illustration of the frequency ramps generated by the DDS board. a) Change of the frequency (blue) and
phase (orange) during a ramp of the DDS from 200 MHz to 225 MHz with frequency step size of 1 MHz and frequency
step rate of 1/0.2µs. b) Measured DDS output signal at the transition between frequency steps (blue). The steps are
at 0.2µs in c) and 4.2µs in d).

where 𝑣max is the maximum velocity, 𝑇 the transport duration and Tri the unit triangular function. For
our typical transport durations of around 25ms and lattice trap frequencies of around𝜔latt = 2𝜋×60 kHz,
the expected oscillation amplitude is around 0.08𝓁0 =2.7 nm, with 𝓁0 =

√
ℏ∕𝑚𝜔latt the harmonic

oscillator length. The heating due to the abrupt start of the transport can be reduced by more involved
transport ramps [179–182]. In the simplest case, the acceleration profile is simply linear and the
associated displacement of the atoms follows a cubic profile [167, 181].

We control the frequency ramps by setting the DRCTL pin of the DDS board to high (ramp to high
frequency) or low (ramp to low frequeny). The ramp to higher frequencies starts the moment the
DRCTL pin is set high and stops after reaching ∆𝑓max . The inverse ramp, to lower frequencies, is started
immediately when the DRCTL pin is set low (i.e. the current ramp does not finish before inverting the
ramp). Note that the DDS board discretizes the frequency ramp. During programming a frequency
step size ∆𝑓step and a frequency step rate 1∕𝜏 is specified. However, the signal changes continuously,
i.e. the phase of the signal after the step is chosen such that there is no abrupt change of the signal
voltage when the frequency is changed (see Figure 4.7a). Figure 4.7b illustrates the effect of varying
the phase as well as the frequency at two frequency steps. The plots show the measured frequency
output around two representative frequency steps.

4.2.4 Bessel beam

Like a Gaussian beam, a Bessel beam is a solution to the Helmholtz equation (∇2 + 𝑘2)𝐸(𝑥, 𝑦, 𝑧) = 0.
The Bessel beam solution has the form

𝐸(𝑥, 𝜌) = exp[𝑖𝛽𝑥]𝐽0(𝛼𝜌), (4.6)

where 𝑦2 + 𝑧2 = 𝜌2, 𝑥 is the propagation direction, 𝑘2 + 𝑘2 = 𝑘2 and 𝐽0 the zeroth order Bessel function
of the first kind (Figure 4.8a). It is non-diffracting, i.e. the size of the beam profile does not depend
on 𝑥. Expressing the Bessel function as an integral

𝐽0(𝛼𝜌) =
∫ 2𝜋

0
exp[𝑖𝛼(𝑦 cos𝜙 + 𝑧 sin𝜙)]d𝜙∕2𝜋, (4.7)
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Figure 4.8 | a) Bessel beam formation with an axicon. The axicon has an opening angle τ. After passing through
the axicon, the incident plane waves have a wavevector k⃗ with radial component α = |k⃗| sin θ and axial component
β = |k⃗| cos θ. The interference of the plane waves generates a Bessel beam over a distance xB. b) Sample profiles of
the Bessel beam. The distance between the profile and the axicon is indicated in the images. The incident Gaussian
beam has a diameter of 5.3 mm. c) Intensity of the Bessel beam versus distance for three different axicon apex angles.
In the experiment, the axicon angle 179◦ is used. d) Radial derivative of the intensity of the Bessel beam for three
different axicon apex angles. The optical potential gradient due to the Bessel beam is proportional to the radial
derivative. A large derivative implies that trapped atoms are held against gravity at lower intensity. e) Schematic of
a round tip axicon. The round tip is approximated as a hyperboloid with semi major axis a and linear eccentricity√

a2 + b2. f) Effect of the round tip on the axial intensity. The intensities were computed numerically for different
axicon semi major axes a.

one sees that the Bessel beammay be interpreted as a superposition of plane waves with an angle sin 𝜃 =
𝛼∕|𝑘| with the optical axis [183] (Figure 4.8a). These Bessel beams may therefore be generated from a
plane wave using an axicon [184–186], a type of lens with a conical cross-section instead of the typical
spherical one. Given the apex angle of the axicon 𝜏, the angle of the interfering plane waves is found to be

𝜃 = arcsin
[
𝑛 sin

(𝜋 − 𝜏
2

)]
− 𝜋 − 𝜏

2
𝜏≈𝜋
≈ 𝜋 − 𝜏

2 (𝑛 − 1), (4.8)

where 𝑛 is the refractive index of the axicon. The axicon used in the experiment12 is made from
fused silica, has a diameter of 1" and an apex angle 𝜏 = 179◦. Other ways of producing Bessel beams
include placing a circular aperture one focal length before a singlet lens [187], using holographic optical
elements [188, 189], Mach-Zehnder interferometers [190] or diffractive phase elements [191].

An axicon transforms an infinitely extended plane wave into the ideal Bessel beam exactly. A finitely
extended plane wave reproduces the non-diffracting Bessel beam over a finite range 𝑥𝐵 = 𝑤0∕ tan 𝜃,
determined by the opening angle of the axicon 𝜏 via Equation 4.8 and the radius of the incident
plane wave 𝑤0 (Figure 4.8a).

12XFL25-005-U-U, C-coating, Asphericon
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Typically, one works with Gaussian beams instead of perfect plane waves. In this case [186], the
peak intensity becomes dependent on 𝑧

𝐼BG(𝑥, 𝜌) = 𝐼0𝐽20(𝛼𝜌)
2𝜋𝛼𝑥𝑤0
𝑥𝐵

exp [−2𝑥
2

𝑥2𝐵
] , (4.9)

where 𝐼0 = 2𝑃∕𝜋𝑤2
0 is the peak intensity of the incident Gaussian (Figure 4.8c,d). The 𝑥 dependence is

due to the radial intensity dependence of the Gaussian leading to a decreasing intensity of the interfering
plane waves on the optical axis. The peak intensity is at 𝑥 = 𝑥𝐵∕2 with 𝐼BG,max = 𝐼0𝜋𝛼𝑤0. Increasing
the apex angle 𝜏 increases the Bessel range 𝑥𝐵 at the cost of a lower on-axis intensity and a larger
radius (𝛼 ∝ 𝜋−𝜏

2
(𝑛 − 1) for 𝜏 ≈ 𝜋).

In addition, real axicons have rounded tips due to fabrication (Figure 4.8e). These lead to a modula-
tion of the central spot’s intensity. This may be intuitively understood by separating the round tip axicon
into a spherical lens in the center and a perfect axicon ring around it [186]. The lens part focuses the
central spot of the incident Gaussian and produces a new Gaussian beam. This copropagates with the
Bessel-like beam produced by the perfect axicon ring. The two beams interfere, resulting in amodulation
of the intensity. Additionally, the round tip leads to a lower than expected intensity immediately behind
the axicon. Ref. [186] gives the expected electric field directly behind the axicon for such a round tip
axicon. In Figure 4.8f, this field was propagated numerically [192] for different semi major axes values 𝑎.

To estimate the trap depth along the transport axis, we have measured the beam profile of a Bessel
beam resulting from Gaussian beams with different diameters passing through our axicon (Figure 4.8b).
We don’t observe a fully formed Bessel beam immediately behind the axicon. Instead the beam starts
out Gaussian shaped and transforms into a zeroth order Bessel-like beam after a few cm of propagation.
As the beam propagates, the intensity of the rings around the central spot tends to increase and the
intensity of the central spot tends to decrease. However, the radius of the central spot remains fairly
constant over a distance greater than 50 cm for sufficiently large incident beams. At some point, the
central spot appears to vanish and the beam starts to resemble a doughnut mode. All this is in good
agreement with the expectation from a round tip axicon.

To analyze the taken images more quantitatively and use them to estimate dipole and lattice depth,
we have fitted each image. We crop the image around the central spot and fit either a 2D Gaussian or a
2D Bessel profile, depending on whether or not rings are visible on the image. In addition we estimate
the laser power in the full beam by performing a pixel sum over the whole, uncropped image. This step
is necessary because in order to measure the profiles further away from the axicon, the exposure time of
the camera had to be changed. By extracting the total power, each fitted Gaussian or Bessel beam can be
scaled to a common optical power level. From the thus extracted power we estimate the peak intensity in
the central spot by computing the ratio of the peak pixel value to the power. We do not use the previously
fitted amplitude because this typically underestimates the peak intensity of the Bessel beam (Figure 4.9a).

Figure 4.9 shows the beam diameter (c) and peak intensity (b) versus distance from the axicon for
a Gaussian beam with a waist of 𝑤in = 5mm before the axicon. The beam diameter initially drops
and eventually levels off with some small amplitude modulation. We extract a 1/e2 beam radius of 80–
100µm. The peak intensity initially increases before falling off again further away from the axicon. Also,
the fall off is not continuous but exhibits a small modulation. This modulation can be approximately
reproduced by using the round tip axicon model.

From the fits, we can estimate the trap depth (Figure 4.9d) and lattice depth (Figure 4.9e) along
the transport. For the counter propagating Gaussian, we use the beam waist (179µm) and its position,
measured by reflecting the beam before it enters the glass cell. The potential depth along the direction
of gravity (𝑧), taking gravity into account, is dominated by the Bessel beam. It increases rapidly at the
start of the transport to 150µK and then drops off. At the center of the glass cell, the trap depth is
around 18µK. Meanwhile, the lattice depth ramps up similarly to the trap depth along 𝑧 but peaks
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Figure 4.9 | a) Sample fits of a Bessel beam profile (orange) to the measured beam profiles (blue points). The distance
from the axicon is indicated in the top right. The plots show crosscuts through the image and fit at the peak pixel
value position. b) Power in the central spot of the Bessel beam as a function of the distance from the axicon. The
total power before the axicon is 35 W. The inset shows the power between 30–80 cm. c) Fitted radius of the Bessel
beam profile as a function of the distance from the axicon. Shown is the 1/e2 waist of the central spot. d) Potential
depth in the z direction versus distance from the axicon, taking gravity into account. The potential solely due to the
Bessel VB is plotted in orange, the one solely due to the Gaussian VG is shown in green and the combined trap of
Bessel and Gaussian Vz is shown in blue. e) Lattice depth versus distance from the axicon for two different powers of
the Gaussian beam (PG = 6.5 W in orange and PG = 2 W in green). For comparison the vertical potential depth Vz is
also shown (blue).

later at around 240µK (power of Gaussian beam 𝑃𝐺 = 6.5W). The lattice depth remains larger than
the trap depth for the rest of the transport distance.

For our transport we were also worried about pointing drifts and fluctuations of the beam (see also
Ref. [193]). We measured pointing drifts and fluctuations before installing the laser on the experiment
table. In order to characterize the pointing fluctuations we can expect over the transport distance, we
placed a four quadrant photodiode (4QP 13) 65 cm behind the output of the 45W ALS laser we planned
to use for the Bessel beam. We performed two measurements, one with just waveplates and polarizing
beamsplitters inserted into the beam path to reduce the power and another with the axicon placed 45 cm
from the 4QP and an isolator and telescope inserted into the beam path. This second measurement
roughly corresponds to the final setup we have around the experiment. In order to avoid the effect of
the Bessel rings distorting the second measurement, we have placed an iris before the 4QP.

13QP45-Q, First Sensor
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Figure 4.10 | Pointing drifts during warm-up (a,d) and after the laser was running for 30minutes (b,e), plotted as
deviation of the pointing angle. The distance between the 4QP and axicon was 45 cm. Color indicates time, the range
of which is indicated in the colorbar above each plot. c) and f) show the time trace of the pointing fluctuations in the
horizontal direction on short (c) and long (f) timescales. The warm-up phase is blue, the running laser measurement
is shown in orange. A change of 10µrad corresponds to a change of around 6.5µm at the position of the atoms.

We found relatively small drifts and fluctuations of the pointing after some thermalization of the
amplifier, on the order of 10µrad (Figure 4.10). These are relatively slow, on the order of 1 s. We
therefore were quite confident that we would not need to think of additional pointing stabilization
schemes for the transport.

Using two Gaussians Considering the relatively small size of the central spot of the Bessel beam
and the fact that far from the atoms only a small percentage of the total power is actually contained
in the central spot, one may consider using two Gaussian beams for the transport. Though Gaussian
beams will diffract, it might be possible to work with larger waists and two Gaussians to hold the atoms
against gravity. For the distance in our experiment and the axicon we use, the Bessel-Gauss lattice
combination gives favorable lattice and trap depths at the same total laser power available. For this
comparison, I chose the Gaussian Rayleigh range 𝑧𝑅 to be half the total transport distance and the
waist position to be 3∕4𝑧𝑅 from the start and end of the transport distance for the two beams. This
configuration gives comparable trap depth in the center of the transport distance and the start and
ends. In addition, the transport lattice configuration made from two Gaussians is potentially more
sensitive to alignment between the Gaussian beams since the beam that holds the atoms against gravity
changes during transport. We have noticed something similar during early stages of working with our
transport configuration. At that time, we had the Gaussian beam focused in the MOT chamber to hold
and capture the atoms and had moved the axicon closer to the glass cell. This way the Gaussian would
hold the atoms initially, and the Bessel beam would supply the confinement against gravity towards
the end of the transport. The idea was that the Gaussian, being larger in waist, would capture more
atoms from the Raman cloud. As the Bessel beam is initially very Gaussian like and then starts to
compresses to form the actual Bessel beam (cf. Figure 4.8b), the atoms would be compressed into the



4.2 Transport setup 57

a) b)

Figure 4.11 | a) Bessel profile with sub-optimal alignment, where the power in the outer rings is distributed asym-
metrically. b) Better alignment makes the power distribution in the rings more symmetric. Note that the two images
were taken at different positions and with different color scales, hence the different intensities in the rings.

central maximum of the Bessel beam during the transport, and thus more atoms would be transported
into the glass cell. This setup did not work for us. Instead we found that a large number of atoms were
lost a short distance from the MOT chamber. This might be because the atoms are not compressed into
the central peak of the Bessel beam as we expected, the system is significantly more sensitive to the
precise alignment between the Bessel and Gaussian beam or the compression increased the temperature
of the atoms too much and they were lost from the trap.

4.2.5 Alignment of the transport lattice
For initial alignment through the chamber, we set up an imaging system along the transport axis. We
first image the atoms in the MOT chamber along that axis and subsequently align the Bessel beam
on the camera. This was only necessary once at the very beginning. Since then, fine alignment of
the Bessel beam pointing is possible by maximizing the atom number trapped in the transport lattice
after removing the reservoir. This is rarely necessary once optimized, only if significant work on the
experiment table (installing new breadboards for instance) was performed.

For maximum transport efficiency we have found that the Bessel profile at the exit of the glass
cell should be as symmetric as possible (Figure 4.11). To ensure that all required degrees of freedom
are available, the axicon is mounted in a four axis mount (tip, tilt and displacement perpendicular
to the optical axis). From our experience, it is not obvious from the Bessel beam profile at the glass
cell axis which of the degrees of freedom need to be touched to improve the Bessel profile. To some
degree, displacement and tilt along one axis are interchangeable. Typically however we tune the
displacement. After tuning the axicon orientation and placement, the beam will have moved. We
therefore follow an iterative procedure, where we maximize the atoms loaded into the transport lattice
and then the Bessel beam profile. Note that this does not fix the position of the atomic cloud at the
glass cell. This we typically do not try to do.

Aligning the Gaussian on the Bessel beam is relatively straight forward. The beams are simply
overlapped at two points. The Bessel beam becomes ring shaped about 30 cm behind the glass cell.
Here, the Gaussian can be aligned to the center of the Bessel beam. Note that we have found that the
overlap needs to be quite good to be able to transport the atoms all the way to the glass cell. Once some
atoms arrive in the glass cell, this atom number can be maximized by further tuning the alignment.

4.2.6 Magnetic fields during transport
Wewere initially worried about the magnetic field during transport. The cloud loaded from the reservoir
into the optical lattice is purely |3, 3⟩ polarized. This is, to my knowledge, the only internal state of
Caesium people have been able to condense. As such, we do not want any depolarization of the cloud
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during transport, as this would necessitate an additional spin purification in the glass cell and therefore
fewer available atoms. We keep the magnetic offset field in the MOT chamber on during transport (23G
in the center of the MOT chamber) and ramp up the offset field in the glass cell before transport (28.2G).
There are no additional bias coils to keep a fixed quantization axis during transport. The transport
passes underneath an IGP14 (Figure 3.10), which adds a small magnetic field (about 1G). We do not
observe any spin depolarization after transport as measured using microwave spectroscopy.
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Figure 4.12 | Absorption image of the cloud after transport to the glass cell

Having loaded the atoms into the transport lattice, we can start the transport to the glass cell
(Figure 4.12). We only vary the frequency of one DDS board. This is mostly for convenience, as we
sometimes need the second DDS board to transport the atoms back to the MOT chamber. As the
transport duration is already relatively short, we decided to keep the second DDS board programmed,
and second DPAOM setup optimized for transport back to the MOT chamber. Typically, the DDS
ramp settings are 𝑓low = 200MHz, 𝑓high = 225MHz for the first DDS board and 𝑓low = 150MHz and
𝑓high = 175MHz for the second DDS board. The frequency step size for both boards is 550Hz and the
frequency step rate is 0.2µs. The counter propagating Gaussian beam typically has a power of 6.5W.

With these settings, we transport around 3 × 106 atoms to the glass cell out of 4 × 106 loaded into
the transport lattice in 25.1ms over the 43 cm transport distance. After transport the atoms have a
temperature of 5µK compared to 10µK before transport.

4.3.1 Round trip measurements

Because we cannot reprogram the DDS boards within the sequence, we perform round trip transport by
using one of the DPAOMs to transport the atoms towards the glass cell and the other to transport the
atoms back towards the MOT chamber. Round trip measurements allow us to characterize the transport
efficiency versus transported distance. As such, they are useful for checking for alignment errors
between Gaussian and Bessel beam. In case the alignment between Gaussian and Bessel is not optimal,
the atoms may not be transported all the way to the glass cell but only part of the way. Apart from this,
we can also use round trip measurements to try and understand the limitations of the transport.

To this end, we repeatedly transport the atoms from theMOT chamber towards the glass cell and back.
By varying the timing between setting the DRCTL pin to high or low we control the transport distance.
Specifically, the transport to the glass cell starts with setting the pin on the 225MHzAOM to low at 𝑡low =

14Titan 10ST, Gamma Vacuum
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Figure 4.13 | a) Sample images taken in the MOT chamber of round trip transported atoms taken at PG = 6.5W
and a = 2.9 km∕s2. The given duration and distance refers to the one-way transport duration and distance. The
first two images (0ms and 100µs illustrate the immediate loss of atoms at the start of the transport. The second
pair of images illustrate the complete loss of round trip transported atoms once the atoms crash into the glass
cell’s exit viewport. The offset between the cloud center in the first image pair and second image pair is due to a
slight difference in transport duration for the transport to and from the glass cell. This difference is used during the
experiment to visualize to the experimenter whether the atoms are transported at all and is not present in case there
is no or negligible transport. b) Round trip transport efficiency for three different accelerations and PG = 6.5W. Left
vertical axis shows atom number measured in the MOT chamber after transporting, on the right vertical axis all data
points were normalized to the mean atom number at 0 cm transport distance and PG = 6.5W, averaged over all
accelerations. The dashed line indicates the center of the glass cell, 43 cm. Beyond 47 cm the transported atoms
have crashed into the glass cell exit viewport and do not return to the MOT. The inset shows the one-way velocity
ramps for the transport to the center of the glass cell for the different accelerations. c) Round trip transport efficiency
for four different powers PG. Axes and dashed line as in b). The inset shows the transported cloud at PG = 1W and
after d = 47.7 cm transport distance, where no transported atoms return to the MOT chamber. Due to the low lattice
depth, quite a few atoms remain in the MOT chamber and are not transported at all. The color scale in the inset is
different form the one in a) with the maximum color (dark red) being lower by a factor of 3. In all plots circles denote
the mean of 5 repetitions, error bars correspond to the standard error of the mean and the shaded area corresponds
to one standard deviation. The error bars are often smaller than the marker size.

0 s. The distance traveled can be computed from 𝑡high, the timewhere the pin is set high and the frequency
ramp to 225MHz starts. Using the notation introduced above (cf. Figure 4.6b and Equation 4.1)

𝑡1 =
⎧

⎨
⎩

∆𝑓max
∆𝑓rate
𝑡high

, 𝑡2 =
⎧

⎨
⎩

𝑡high − 𝑡1
0

, 𝑑 =
⎧

⎨
⎩

𝜆[∆𝑓rate𝑡1 + ∆𝑓max(𝑡high − 𝑡1)] 𝑡high >
∆𝑓max
∆𝑓rate

𝜆∆𝑓rate𝑡high 𝑡high ≤
∆𝑓max
∆𝑓rate

. (4.10)

After the second ramp has finished, the atoms have stopped at some distance from the glass cell. To
transport them back to the MOT chamber, the second DDS board’s frequency (the 175MHz one) is
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Figure 4.14 | a)Loss in atom number for short transport durations. The atoms are either transported towards the
glass cell for a short duration (oneway, blue), transported back and forth for a short duration (round trip, orange) or
not transported at all (static, green). In all cases the atoms are imaged in the MOT. For the one-way transport, the
transport duration is insufficient to remove them from the imaging area. The circles denote the mean, errorbars are
the standard error of the mean and the shaded area corresponds to one standard deviation. Starting the transport
ramps leads to almost immediate and dramatic loss of atoms on the order of 20-25%. The round trip measurement is
about a factor of two worse than the one-way measurement. The measurements series were normalized separately
to the mean atom number without transport. For these measurement a = 2.9 km∕s2 and PG = 6.5 W. b) Ratio of
atom number after a d = 5 cm round trip and without transport versus the frequency step rate of the frequency ramp.
The frequency step size was adjusted to keep the acceleration fixed at a = 2.9 km∕s2. The dashed line indicates the
regular frequency step rate. The transported atom number starts to drop for step rates greater than 5µs.

ramped using the same ∆𝑡 = 𝑡high − 𝑡low , which transports the atoms back to the starting position
in the MOT chamber.

We investigate the dependence of the round trip transport on the acceleration 𝑎 and power of the
Gaussian beam 𝑃𝐺 (Figure 4.13). The general form of the atom number as a function of transport
distance 𝑑 shows a sharp drop at the start of the transport. This happens nearly instantaneously,
for a transport duration of 100µs the atom number is already reduced by 20–25%. This is followed
by a plateau of almost constant transport efficiency, that slowly drops off towards the center of the
glass cell. Finally, transporting the atoms into the exit viewport of the glass cell (𝑑 ≳ 47 cm) leads
to complete loss of the transported atoms and the only atoms that remain are those that were not
transported at all. For round trips to the center of the glass cell (𝑑 = 43 cm) and back (dashed line
in Figure 4.13b–c) and 𝑃𝐺 = 6.5W, 𝑎 = 2.9 km∕s2 we find around 2.3 × 106 atoms remaining out of
4 × 106 atoms, corresponding to 57.5%.

Varying the acceleration does not appear to have a significant effect on the transport efficiency
(Figure 4.13b). For very low accelerations (𝑎 = 1.3 km∕s2) the transport efficiency is slightly lower
for longer transport distances. Varying the power 𝑃𝐺 does have a significant effect on the transported
atom number (Figure 4.13c). Not only is the atom number remaining after the initial jerk significantly
reduced, but for the lowest Gaussian power (𝑃𝐺 = 1W) about 1×106 atoms remain in theMOT chamber
and are never transported. The inset in Figure 4.13c shows an image of the atom number remaining
in the MOT chamber at 𝑃𝐺 = 1W.

To better understand the initial atom number loss at the start of the transport we perform a compar-
ative measurement between round trip and one-way transport and a static lattice for different transport
duration (Figure 4.14a). In case of the static lattice measurement, the atoms were simply held in the
lattice for the specified duration before imaging. For the one-way transport measurement, the atoms
were transported towards the glass cell but not back to the MOT chamber. Due to the short transport
duration, the atoms do not leave the field of view of the MOT imaging system and can still be imaged
in the MOT chamber. For the round trip measurements the atoms are transported the same distance
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Figure 4.15 | a) Atom number versus number of round trips. The decay appears exponential with increasing number
of round trips. a = 2.9 km∕s2 and PG = 6.5 W. b) Very short round trip transport, repeated multiple times. The sketch
above the image serves as illustration of the velocity ramps used. Every time the acceleration is inverted, some atoms
are not stopped but keep traveling. The straight lines serve as guides to the eye. a = 2.9 km∕s2 and PG = 6.5 W

as for the one-way transport measurement and then back to the center of the MOT chamber. From
Figure 4.14a it is clear that the initial loss is not due to holding the atoms in the lattice but related
to the start of the transport.

To check if the initial loss is related to the discretization of the frequency ramp we vary the frequency
step rate 𝛿𝜏 and adjust the frequency step size ∆𝑓step to keep the acceleration 𝑎 = 𝜆∆𝑓step∕𝛿𝜏 fixed
at 𝑎 = 2.9 km∕s2. We compute the ratio of the atom number returning from a 5 cm long round trip
with the atom number without transport. This ratio does not improve for discretizations finer than the
typically chosen one (𝛿𝜏 = 0.2 µs,∆𝑓step = 550Hz). For step rates above 5µs (1∕𝛿𝜏 = 2𝜋 × 32 kHz) we
observe a decrease of the atom number ratio with the step rate. For reference, the trap frequency of the
lattice is expected to be 𝜔 ≈ 2𝜋 × 90 kHz at the start of the transport (Figure 4.9e). The fact that the
atom number ratio is unaffected up to frequency step rates of 𝛿𝜏 = 5 µs suggests that the initial loss of
atoms at the start of the transport is not due to the discretization of the frequency ramps.

Another option for the initial loss may be the sudden jump in the acceleration. Instead of a smooth
increase of the acceleration as for example in Ref [167, 194], we turn on the acceleration instantaneously
to a constant value. This type of ramp is easily programmable using the ramp register of the DDS board.
More complicated ramps may be possible using the parallal data port. At our clock speeds, this would
allow updates of the frequency at a rate of up to 103MSPS. We have not tested the transport using the
parallel data port for communication. Instead we have only used the digital ramp modulation mode
of the DDS chip for the measurements presented here due to its ease of use.

Repeating the back and forth transport multiple times shows a roughly exponential decay in the
atom number with iteration (Figure 4.15), suggesting that the loss may not be due to temperature, since
the hottest atoms should escape during transport leaving a slightly colder sample. Instead, the loss of
atoms may be predominantly due to the jerk at the change of acceleration as this jerk remains the same
at each step. Furthermore, using multiple very short back and forth transport sequences, we observe
that at every time the acceleration is inverted, some of the atoms keep traveling with the prior lattice
velocity, i.e. these atoms are not stopped by the deceleration ramp.

4.3.2 One-way transport
In addition to the round trip measurements, we also measure the dependence of the atom number
arriving in the glass cell, again as a function of the power 𝑃𝐺 and the acceleration 𝑎 (Figure 4.16). For
one-way transport, the second DDS ramp is simply omitted. With 𝑃𝐺 = 6.5W and 𝑎 = 2.9 km∕s2 around
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Figure 4.16 | Atom number arriving in the glass cell versus a) PG and b) a. Relative efficiency is the atom number
scaled to the number of atoms at a = 2.9 km∕s2 and PG = 6.5W. Markers indicate the mean of 5 measurements,
errorbars the standard error of the mean (sem) and the shaded area indicates one standard deviation of the atom
numbers, not the relative efficiency. Some of the markers do not show a shaded region because before computing
the error, measurements with fitted atom numbers smaller 0 or greater 5 × 106 were discarded, and only a single
point remained.

3 × 106 atoms arrive in the glass cell. The one-way transport with this acceleration and a maximum
velocity of 26.6m∕s (laser detuning of 50MHz) is 25.1ms.

Varying the Gaussian power we find that the transported atom number scales roughly with
√
𝑃𝐺 ,

suggesting a linear dependence of the transport efficiency with the lattice depth. We find a decreasing
efficiency as the acceleration is increased. This too suggests a linear dependence of the transport
efficiency on the lattice depth when considering that the acceleration introduces a linear tilt on the
lattice potential (𝑉(𝑥) = 𝑉𝐿 sin(4𝜋𝑥∕𝜆) −𝑚𝑎𝑥). At least for𝑚𝑎𝑥 ≪ 𝑉𝐿 the effect of the acceleration is
mostly a decrease of the lattice depth by𝑚𝑎𝜆∕2. Additionally, we observe that for low accelerations
and high lattice depth the transported atom number saturates. This suggests that neither parameter
ultimately limits the transport efficiency. We tried to model the transport using a classical model
described in the appendix, section A.



CHAPTER 5

Evaporation to BEC

After transporting the atoms to the glass cell, the atoms are collected in a crossed dipole trap. We
subsequently evaporate by tilting the dipole trap and reducing the optical power. This chapter gives
details on the evaporation sequence. The evaporation technique was changed after an upgrade to the
experimental setup in Spring of 2021. Section 5.2 describes the old evaporation sequence that was
developed initially. For future 2D physics experiments the atoms will be loaded into a single plane
of a vertical lattice. In section 5.3 I describe the optical setup for the shallow angle vertical lattice. A
smaller spacing vertical lattice is currently being installed to increase the confinement along the vertical
direction and provide more homogeneous trapping frequencies. This will be described in [139]. The
chapter closes in section 5.4 by describing the changes to the evaporation sequence after the upgrade
in Spring 2021 (see also [139]).

5.1 Production of a Caesium BEC
The first Caesium BECwas produced in 2003 in Innsbruck byWeber et. al [174]. Reaching condensation
of Caesium atoms had proved difficult before due to large inelastic two-body losses in the magnetically
trappable states |4, 4⟩ and |3,−3⟩ [137]. Condensation was only achieved when working in the absolute
ground state |3, 3⟩. Because the state is not magnetically trappable, optical evaporation has to be used.

While the absolute ground state is protected against inelastic two-body collisions, three-body col-
lisions still play a role. It was found that the three-body loss rate in Caesium is large compared to
other alkali atoms (𝐿3 > 1 × 10−28 cm6∕s [99] compared to 2 × 10−29 cm6∕s in 87Rb [195]). This makes
evaporation of Caesium more difficult. However, there exists a minimum of the three-body loss rate,
due to Efimov physics, which is exploited to improve the ratio of elastic to inelastic collisions [103].

The first successful production of a Caesium BEC first increased the phase space density by loading
a smaller diameter dipole trap (dimple) from a larger reservoir dipole trap [100, 174]. Thermalization
between the atoms in the two traps enabled an increase in the densitywithout increasing the temperature.
Condensation was subsequently reached by reducing the laser power and controlling the scattering
length to lie close to the minimum of the three-body loss rate at 𝑎 ≈ 200𝑎0 (𝐵 ≈ 21G).

Later, a second evaporation scheme was developed [196], which skipped the dimple loading step.
Instead of reducing the trap depth, the trap was tilted by increasing the levitating gradient. Tilting the
trap does not alter the trap frequency as much as reducing the laser power. The higher trap frequency
allows for faster thermalization during evaporation. The gradient tilt evaporation also proceeds close
to the three-body loss rate minimum.

The gradient tilt evaporation proceeds quite fast (pure condensate after 2.5 s starting from the finished
loading of the crossed dipole trap), though at comparatively low efficiency (𝜂 = 1.9). Alternatively,
the authors of Ref. [196] also present a slower evaporation sequence (6.5 s instead of 2.5 s), which is
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Figure 5.1 | Current setup of the dipole traps around the glass cell. The vertical lattice splitter (VL splitter, see sec-
tion 5.3) is shown from above, and from the side in the inset. Y dipole and vertical lattice are overlapped by reflecting
the Y dipole trap off a 7 mm ⌀mirror, and passing the beams of the vertical lattice above and below the mirror.

more efficient (𝜂 = 3.6). The dimple evaporation is quite comparable in speed (6.5 s [151] or 6 s [98]
after loading the dimple) and efficiency (≈ 3 [151]).

The initial evaporation sequence implemented in our setup is closer to the one presented in [197]
and [198], where both the trap depth and the tilt are varied. This was necessary because we were unable
to create sufficiently steep gradients to completely tilt the dipole traps. After an update of the setup in
Spring 2021, the evaporation sequence was changed, and currently does not utilize a gradient, neither
for levitation during loading from the transport lattice nor for tilting of the trap during evaporation (see
section 5.4). In a sense the scheme is still a hybrid scheme, since the effect of gravity always tilts the
trap, and the dimple evaporation scheme cancels the effect of gravity using a levitating gradient.

5.2 Gradient evaporation to BEC
5.2.1 Dipole trap
After transport we collect the atoms in a crossed dipole trap in the glass cell. The dipole trap is formed
by an elliptical beam along the 𝑦 axis (𝑤𝑥 = 650 µm, 𝑤𝑦 = 80 µm waist) and a circular beam along
the 𝑥 axis (100 µm waist). Both beams use 1064nm light (Figure 5.1). The light is taken from the
same source as the Gaussian transport beam (Figure 4.2). To avoid interference between the 𝑥 and
𝑦 dipole traps, we have made sure that the beams are frequency shifted w.r.t. each other and have
crossed polarization (𝑦 is polarized parallel to the bread board, 𝑥 perpendicular). For both beams we
measure the waist at the position of the atoms by reflecting the light out before the vacuum system
and measuring the waist where the atoms are expected to be. The 𝑦 dipole trap is elliptical to match
the shape of the atomic cloud after transport (see Figure 4.12).

The y dipole trap is aligned with an absorption imaging system along the same axis. To overlap the
imaging light with the y dipole trap we use a dichroic that reflects 1064nm light and transmits 852nm
light. Behind the glass cell a dichroic splits the imaging light (852nm) and the dipole light again. The
small leak of the dipole trap light through the dichroic can be used to overlap the dipole trap with the
atomic cloud observed in absorption imaging. In normal operation, an additional interference filter
before the camera chip removes the 1064nm leak, allowing only 850nm± 10nm light to pass1. The

1FBH850-10, Thorlabs
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Dipole trap Waists Power (max) Depth at 1W Trap Freq. at 1W
x (old) 100 × 100 µm 1W 16µK fz, fy = 100Hz
y (old) 650 × 80 µm 6W 3.1µK fx = 7Hz, fz = 56Hz
x (current) 100 × 100 µm 1W 15µK fz, fy = 97Hz
y (current) 370 × 110 µm 7W 3.6µK fx = 13Hz, fz = 42Hz
Shallow VL 74 × 270 µm 2 × 5.5W 15µK (lattice) fy = 8.3Hz, fx = 36Hz, fz = 2580Hz

Table 5.1 | Summary of dipole traps around the glass cell. VL = vertical lattice. All dipole traps have a wavelength of
1064 nm. "old" refers to the original evaporation sequence. After an upgrade of the setup around the experimental
table the trap waists changed. Notably, the horizontal waist of the y dipole trap was significantly reduced (see
section 5.4)

imaging system uses a single achromat (𝑓 = 100mm, Magnification ≈ 2) to image the atomic cloud
on the camera2. In principle there should be no chromatic shifts between the dipole trap beam and
the imaging light, so overlapping the dipole trap and atomic cloud on the camera should immediately
give a signal of atoms trapped in the 𝑦 dipole trap. We have found that this is not the case, the 𝑦 dipole
is typically slightly below the atomic cloud in the vacuum chamber when overlapped on the camera.
Final alignment of the y dipole is done by letting the atoms expand in the Bessel beam by switching
off the transport lattice. The expanded cloud is less sensitive to horizontal misalignment so a trapping
signal from the 𝑦 dipole trap can be found by only tuning the vertical alignment.

The 𝑥 dipole trap is aligned along the transport axis. We do not have an imaging system along
that axis, but the 𝑥 dipole trap can be aligned with the Bessel beam. To overlap the 𝑥 dipole trap
with the transport axis we use a polarizing beam splitter cube just before the glass cell. The Gaussian
transport lattice beam is transmitted through the cube, the 𝑥 dipole trap is reflected. The 𝑥 dipole
trap has to be precisely overlapped with the Bessel beam before the glass cell and before the axicon
to get a trapping signal from the atoms.

The transfer of the atoms from the transport lattice into the crossed dipole trap is done in two steps
(see also Figure 5.3). In a first step, the Gaussian transport lattice beam is linearly ramped to 0W in
350mswhile simultaneously ramping up the 𝑦 dipole trap beam to 5.7W. After the ramps have finished,
we ramp up the 𝑥 dipole trap to 1W in 100ms. Afterwards the atoms are trapped in a trap formed from
the 𝑦 dipole trap, the 𝑥 dipole trap and the Bessel beam. We then reduce the offset field to 27G in 200ms.
The end of the offset field ramp defines 𝑡 = 0 in Figure 5.4. As a second step we now remove the Bessel
beam by rotating the motorized waveplate. This process takes around 500ms. We have found that
reducing the power of the 𝑦 dipole trap to 2W during this time helps to increase the phase space density
Φ = 𝑛0𝜆3𝑑𝐵. Here 𝜆𝑑𝐵 = ℎ∕

√
2𝜋𝑚𝑘𝐵𝑇 is the thermal de-Broglie wavelength with Planck’s constant ℎ,

Boltzmann’s constant 𝑘𝐵, the temperature 𝑇 and the peak density 𝑛0.
After the Bessel has been fully removed, we start evaporation to reach condensation of the atomic

cloud into a BEC. At this point we have 0.9×106 atoms at 𝑇 = 2 µK. The geometric mean trap frequency
is �̄� = 2𝜋 × 40Hz. The peak density is 𝑛0 = 𝑁�̄�3(𝑚𝜆𝑑𝐵∕ℎ)3 = 6 × 1011 cm3 and the phase space
density is Φ = 3 × 10−3.

5.2.2 Gradient Evaporation
The evaporation sequence we followed initially was inspired by the gradient evaporation technique
described in [196]. The trap depth is reduced by tilting the optical dipole trap. Tilting the trap is quite
easy, as the effect of gravity already produces a tilt of the potential (𝑉 = 1∕2𝑚𝜔2𝑧2−𝑚𝑔𝑧). For the optical
evaporation of Caesium this tilt is compensated by adding a levitation gradient (𝜕𝑧𝐵 = 31.3G∕cm). This
means the trap may be tilted by either increasing the gradient (as in [196]) or slowly removing it (cf.

2Manta G-235B, Allied Vision, CMOS chip
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Figure 5.2 | a) Scheme for evaporation. The trap depth is reduced by decreasing the magnetic field gradient that
levitates the atoms against gravity. The hottest atoms escape the trap decreasing the temperature of the remaining
atoms. The insets show absorption images after 30 ms time of flight. b) Simulated dipole trap potential along x, y

and z during the evaporation. Bessel (blue) refers to the configuration just after loading the crossed dipole trap (see
Figure 5.3), where the Bessel is still on. XY (orange) refers to the dipole trap after the Bessel has been removed, 1st
Tilt (green) is the dipole trap after the first reduction of the gradient, and Final Tilt (red) shows the dipole trap at the
point where we observe a BEC.
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trap frequency remains the lowest trap frequency throughout the evaporation.

Sec. 3.1.6 in Ref. [199]). The benefit of this technique is that the reduction of the trap frequency with
reducing trap depth (increasing tilt) is smaller than when simply reducing the optical power (cf. Fig.3 in
Ref. [196]). Therefore, faster thermalization is possible and evaporation to degeneracy may be quicker.

In our case we reduce the levitation gradient (Figure 5.2). This is technically simpler as it requires
less current than increasing the gradient for the same amount of tilt. Because the crossed dipole trap
after having fully removed the levitating gradient (maximum tilt due to gravity) is still too deep to
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Figure 5.4 | a) Atom number N, b) temperature T , and c) density n0 during evaporation in the glass cell. The Bessel
beam is removed at t = 0, the dashed lines at 500ms, 1 s and 3 s indicate the start of the first gradient ramp, the start
of the second gradient ramp and the end of the x dipole trap power ramp respectively. d) Evolution of the PSDΦ
(left y axis, blue points) and the condensed fraction N0∕N (right axis, orange points) during evaporation. The vertical
dashed lines indicate the same times as in a)–c). The horizontal dashed line atΦ = 2.6 is the phase space density at
which condensation occurs. The shaded regions show purely optical evaporation (gray), pure gradient evaporation
(light gray) and combined optical and gradient evaporation (dark gray). Error bars in a)–d) are one standard deviation
of 3 repetitions. e) Sample images illustrating the change in the time of flight distribution during condensation. From
top to bottom the trap depth is decreased slowly. The images are the mean of 10 repetitions. f) Horizontal pixel sums
of the images in e). The fitted bimodal distribution is shown in darker shading. Dashed lines indicate the thermal and
the condensed fits.

reach condensation, we also reduce the power of the 𝑥 dipole trap while reducing the gradient. We
have found that to reach condensation, the crossed dipole trap has to barely hold against gravity at
zero magnetic field gradient.

We reduce the gradient in two linear ramps. First, it is reduced to 11.5G∕cm in 500ms. This reduces
the atom number to around 600 000 atoms, the temperature to 1µK and increases the phase space
density to around 1 × 10−2. In the second ramp the gradient is reduced to 0G∕cm in 5 s. During the
first 2 s of the second ramp we linearly reduce the power of the 𝑥 dipole trap to 160mW. We reduce
the magnetic bias field to 23G during the final evaporation stages where the density is highest to
reduce three body losses. The lower magnetic field also reduces the scattering length, so the value
of 23G was optimized experimentally for the best ratio of elastic collisions to inelastic ones (three
body losses). The evaporation efficiency 𝜂 = − ln(Φ𝑓∕Φ𝑖)∕ ln(𝑁𝑓∕𝑁𝑖) is 𝜂 = 1.3 during the first ramp
and 𝜂 = 2.5 during the second Figure 5.5. Here Φ𝑖,𝑓 and 𝑁𝑖,𝑓 are the initial (𝑖) and final (𝑓) phase
space density and atom number. At the end of the second ramp we find a pure BEC with typically
around 2.2 × 104 atoms (Figure 5.4e–f).

We measure the temperature and condensed fraction around the onset of condensation to find the
critical temperature of the BEC. Temperature and condensed fraction are extracted from absorption
images taken after 𝑡tof = 80ms time of flight. For these measurements, the magnetic gradient and offset
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field are ramped to 30G∕cm and 18G in the first 3ms of expansion. 4ms before taking the image, both
are switched off. Expansion at positive scattering length ensures that the BEC does not collapse. The
images are fitted with two Gaussian distributions of different sizes. The larger distribution corresponds
to the thermal fraction, the smaller distribution to the condensed fraction. The temperature is estimated
via 𝑇 = 𝑚𝜎2

𝑘𝐵𝑡tof
, where 𝜎 is the fitted width of the thermal fraction. The initial size is assumed to be

negligible after 80ms time of flight and does not need to be taken into account. The condensed fraction
is given by 𝑁0∕𝑁 = 𝑁0

𝑁0+𝑁thermal
, with 𝑁0 and 𝑁thermal the fitted amplitudes of the two Gaussians and

is plotted in Figure 5.4d in orange.
The condensed fraction depends on the temperature as𝑁0∕𝑁 = 1−(𝑇∕𝑇𝑐)3 for 𝑇∕𝑇𝑐 < 1. We fit this

formula (Figure 5.5) to the measured ratios and find 𝑇𝑐 ≈ 60nK. We use our value of 𝑇𝑐 to calibrate the
atom number in the BEC. The atom number at the critical temperature is 𝑁 = (𝑘𝐵𝑇𝑐∕0.94ℏ�̄�)3 without
taking interactions and the harmonic confinement into account. We take these into account [200–202]
and find𝑁 = 130 000 atoms. The measured atom number is𝑁exp = 54 000 atoms using the theoretically
expected photon scattering cross section 𝜎0 = 1.4 × 10−9 cm2. The ratio of the two atom numbers gives
us the actual photon scattering cross section in our imaging system, which is a factor 𝑁∕𝑁exp = 2.3
smaller. This calibration factor was taken into account for any atom numbers reported in the glass cell so
far (also in the previous chapter, imaging axis indicated in Figure 5.1). However, this factor is dependent
on the imaging parameters, so not directly transferable to other imaging axes around the vacuum system.
For any other imaging axis the reported atom number is computed with an uncalibrated scattering cross
section (isotropically polarized light, resonant with 𝐹 = 4 → 𝐹′ = 5, 𝜎0 = 1.4 × 10−9 cm2).

Fringes of the 𝑦 dipole trap After condensing for the first time, we noticed that some times the BEC
cloud at short time of flight fragmented. After installation of the high resolution objective for insitu
absorption and fluorescence imaging of the BEC (see next chapter for more details on the objective),
we found that the cloud reliably splits into stripes at low temperatures. These stripes/fringes were
aligned with the y-dipole trap and reminiscent of a lattice. The spacing of the fringes was found to be
around 4− 5µm. These stripes appear to be related to the y-dipole trap because they disappear once the
y-dipole trap is turned off, however we were unable to remove them. We suspect that the cause may
be some interference effect between the beam and a second, weak copy of the beam co-propagating
at a small angle between the two (6 − 7◦). However, changing the tilt of the y-dipole trap through the
glass cell viewport, replacing all the optics in the path, simplifying path to only the coupler, a pickup
for intensity stabilization and mirror to align the beam through the chamber, or sending the beam



5.3 Shallow angle vertical lattice 69

0

2

P
o

s
it
io

n
 (
µ

m
)

2α

cyl.
Lens

VL Splitter

59%

69%

a) c) d) e)

f)

b)

d= λ
2sin(α)

remove
Lattice

ToF
after

τ/4

-2.9

0.0

2.9

Δ
z 

(%
 a

la
tt
)

0 100 200
Time (min)

-245

0

245

Δ
z 

(n
m

)

Lattice Drift d

½mω2z2

p=-mωd

0 1 2 3
Time (h)

0.7

0.8

0.9

R
a
ti
o

0 1 2 3
Time (h)

g) h)

Figure 5.6 | a) Stability of the vertical lattice phase measured outside the experiment with temperature stabilization
of the vertical lattice splitter. Measured over 3:20 h with a sampling of 2 s. The tick marks are at the mean and 2σ
standard deviation of the lattice drifts. Left axis shows drift in nm, right axis in percent of lattice spacing. b) Sketch of
the shallow angle vertical lattice setup. The beam is split into two parallel beams using a stack of polarizing beam
splitters (PBS, VL Splitter). The two beams are focused on the atoms using a f = 100mm cylindrical lens. The two
arms interfere at the focus producing a vertical lattice. The VL Splitter can be temperature stabilized using a peltier
element. The temperature is measured with a 10 kΩ thermistor (not shown). c) Sketch of the lattice produced by
the interfering beams. The lattice is at λ = 1064 nm, so the atoms are trapped in the lattice maxima. d) Sketch of
matter wave focusing. Atoms trapped on different lattice sites are released from the lattice and move in the potential
of a harmonic trap with angular frequency ω. After one quarter period τ = 2π∕ω the atoms are released from the
harmonic trap and expand during time of flight. e),f) Absorption images and pixel sums for two different alignments
of the vertical lattice. In e), the atoms are almost evenly distributed between two sites, in f) most of the atoms are in
a single site. g) Position of the central lattice site and h) percentage of atom number in the central lattice site versus
time. The position is scaled to the in-situ position of the atoms using the magnification of the matter wave focusing
technique. These measurements were taken with a lattice constant of the vertical lattice of 8µm and a harmonic trap
frequency of the focusing potential of 90 Hz.

through the glass cell from the other side did not remove the fringes. Since these fringes will cause
issues in future experiments, the plan is to try and work without the y-dipole trap once the atoms
are loaded into the shallow angle vertical lattice (see section 5.3). Note that similar fringes were also
observed in another Caesium experiment (Ref. [203], Sec. 2.4) and attributed to interference between
a dipole trap beam with reflections off the glass cell.

5.3 Shallow angle vertical lattice
For future experiments and fluorescence imaging, the atomswill be loaded into a single plane of a vertical
lattice. We produce a vertical lattice by interfering two beams at a shallow angle (half opening angle 𝛼),
which produces a large lattice spacing, facilitating the loading of a single plane. The interference of the
beams will produce a lattice at a spacing of 𝜆∕2 sin(𝛼). We use light from a third ALS fiber amplifier
capable of producing 30W of optical power. The lattice light is detuned from the 𝑥 dipole trap by 80MHz
to avoid interference. To split the light we use two polarizing beamsplitter (PBS) cubes mounted on
top of each other (Figure 5.6b, see Ref. [204], p. 73 and Ref. [205] for the original design). By tuning
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the polarization before the first PBS the power balance between the two arms of the vertical lattice
is controlled. Nylon tipped set screws control the relative pointing of the beams exiting the splitter.
A 10 k thermistor connected to the base of the splitter mount and a Peltier element mounted on the
top allow stabilization of the temperature3. The two PBS have a side length of 1/2", so the beams are
separated by 𝐷 = 12.7mm. A cylindrical lens with focus length 𝑓 = 100mm focuses both beams
onto the atoms. The beams interfere at an angle of 𝛼 = arctan(𝐷∕2𝑓) = 3.6◦ giving a lattice spacing
of 𝑑 = 8.4 µm. At the position of the atoms the shallow angle vertical lattice has an elliptical beam
profile with waists 𝑤𝑧 = 74 µm and 𝑤𝑥 = 270 µm.

We measured the stability of the vertical lattice planes outside of the experiment by placing a camera
at the crossing of the beams4. With temperature stabilization of the splitter, we find a variation of the
lattice phase of 123nm (one standard deviation) over 3:20 h (Figure 5.6a). We found that the measured
lattice stability also depended on actively stabilizing the temperature of the camera. As this is an artefact
of the measurement method, the recorded stability should still be accurate.

The shallow angle vertical lattice enters the glass cell through the same viewport as the 𝑦 dipole
trap. Since the beams of the vertical lattice are displaced w.r.t. the regular beam height, we can overlap
the two using a small mirror (⌀ = 7mm). The 𝑦 dipole trap is reflected off this mirror whereas the
vertical lattice beams pass above and below the mirror. Before aligning the 𝑦 dipole trap on the atoms, it
helps to make the two lattice beams as parallel as possible. For this we place common mirrors for both
arms behind the splitter and use them to fold the beam path to a length of a few m. By placing a CCD at
different distances from the splitter the parallelity of the beams can be checked and optimized using the
set screws pressing against the PBS. After ensuring good parallelism, the vertical lattice may be roughly
aligned in the same way as the the 𝑦 dipole trap, by overlapping the beams with the atomic cloud using
the imaging camera along the 𝑦 axis. The lattice spacing of the vertical lattice is slightly larger than
the pixel size, so it is possible to see the lattice on the camera. This allows initial optimization of the
relative power and the polarization of the beams to maximize the lattice contrast.

Finer alignment of the vertical lattice is done by maximizing the number of atoms held only by the
lattice at very low lattice powers. At this stage, we typically try and move only common mirrors behind
the splitter and the cylindrical lens before the chamber to maximize the trapping signal. In the same
way, the lattice power balance and polarization can be further optimized. To measure the trap frequency
of the lattice we pulse off the 𝑦 dipole trap. This is sufficient to cause the atoms to start oscillating in
their lattice potential wells. At 1W optical power before the splitter we measure trap frequencies of
around 2.6 kHz, in agreement with the expectation from the beam waists and powers (Table 5.1).

The techniques described so far allow alignment of the lattice on the atomic cloud, but not de-
termination of the atomic distribution over the planes of the vertical lattice. We can’t observe this
distribution directly in absorption imaging because the resolution of the imaging system is insufficient.
To still measure the single plane occupation we use matter wave focusing [206–208]. This technique is
sketched in Figure 5.6d. Initially the atoms are loaded into the vertical lattice with some distribution
over the lattice sites. Due the crossed dipole trap, adjacent lattice sites have slight offsets in energy.
Turning off the lattice, the individual wavepackets at each lattice site are free to evolve in the harmonic
potential of the crossed dipole trap. Let 𝜔𝑧 be the harmonic trap frequency in the vertical direction, then
after holding the atoms in the harmonic trap for a quarter period 𝑡 = 𝜏∕4 = 2𝜋∕4𝜔𝑧 different initial
positions of the atoms are mapped to different momenta [206]. The harmonic confinement is turned off
at this time. The atoms are then falling due to gravity, but because of their different initial momenta
𝑝𝑖, atoms originating from different planes of the lattice separate by ∆𝑥 = 𝑡TOF∆𝑝 with 𝑡TOF the time
of flight and ∆𝑝 = −𝑚𝜔𝑧𝑑 the momentum difference between atoms from different sites spaced by
the lattice constant 𝑑 (and neglecting interactions) [208]. After sufficiently long time of flight, ∆𝑥 is

3TED200C, Thorlabs
4Raspberry Pi Noir Camera v2, Sony CMOS IMX219PQ-Sensor
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large enough to be resolved in our imaging system. Figure 5.6e– f show absorption images taken after
𝑡TOF = 12ms and 𝜔𝑧 = 2𝜋 × 78Hz (magnification𝑀 ≈ 𝜔𝑧𝑡TOF). While for Figure 5.6e the atoms are
almost equally distributed over two planes of the lattice, in Figure 5.6f about 70% of the atoms are in
a single plane. We fit the cloud with three Gaussians of different amplitude and width. The distance
between the Gaussians and the position of the central Gaussian are fit parameters, instead of fitting
each Gaussian center individually. Note that this same technique is used in Ref. [208] to resolve the
occupation of a 3D quantum gas in a 2D lattice.

We measured the stability of the vertical lattice loading using the matter wave focusing technique.
The results are displayed in Figure 5.6g and h. We observe a slow drift of the lattice with time, on
the order of around 2µm over 3 hours. This results in a slight decrease of the percentage of atoms
loaded into the central lattice site, from 80 - 90% to 70 - 80%. The shot-to-shot fluctuations of the lattice
position have a standard deviation of around 220 nm or 2.6% of a lattice constant, about a factor of 2
larger than the measurement with the camera (Figure 5.6a).

The expansion of a BEC loaded into the vertical lattice is highly asymmetric. This is because the
expansion of a BEC from a trap largely follows the momentum distribution of the ground state of the
harmonic trap [209, 210]. As such, a large confinement translates to a faster expansion in time of flight.
The trap frequency along the lattice is much larger than the harmonic horizontal trap frequency, leading
to asymmetric expansion which is referred to as inversion of ellipticity. We have found that loading
our BEC from the crossed dipole trap into the vertical lattice appears to lead to some non-adiabatic
heating because for vertical lattice power of a few hundred mW the inversion of ellipticity disappears,
suggesting that the atoms do not occupy the ground state of the potential anymore. This may be related
to the large increase in density of the BEC as it is loaded into the lattice, and the associated increase
in three body losses. To avoid this heating process we have, after an upgrade to the experimental
setup around the glass cell, developed a different evaporation sequence, that loads the atoms into the
vertical lattice before condensation.

5.4 Upgrade of the setup and new BEC sequence
In April 2021 we mounted the final set of coils around the glass cell and replaced the aluminium
breadboards with fiber reinforced plastic ones [139].

With the new setup we initially were unable to reach degeneracy with the old sequence described
above. In fact we found that having amagnetic field gradient for levitation decreased the atomnumber in
later stages of the evaporation. We therefore developed a new evaporation sequence. Figure 5.7 presents
the new sequence and Table 5.1 gives power and waist of the 𝑥 and 𝑦 dipole traps after the upgrade.

The new evaporation sequence is all optical, without tilting the dipole traps using magnetic field
gradients. After the atoms have arrived in the glass cell, we simultaneously ramp up the 𝑦 dipole trap to
7W and ramp down the Gaussian beam in 350ms. Afterwards we ramp up the 𝑥 dipole trap to 1W
in 600ms. We then remove the Bessel beam in 500ms by rotating the waveplate. In the next step we
jump the magnetic offset field to 26G (410 𝑎0) and start ramping down the dipole trap depth for forced
evaporation. We linearly ramp down the 𝑦 dipole trap to 2.6W and exponentially ramp down the 𝑥
dipole trap to 100mW in 3.5 s. Simultaneously, we reduce the scattering length in an exponential ramp
to 318 𝑎0 (23.5G). The exponential ramps follow 𝑓(𝑡) = ∆(𝑒−𝑡∕𝜏 − 𝑒−𝑡end∕𝜏)∕(1− 𝑒−𝑡end∕𝜏) + 𝑓end, where
∆ is the change in the 𝑥 dipole trap power or the magnetic offset field, 𝜏 is the decay time, 𝑡end the time
where the ramp ends and 𝑓end the final value of the dipole trap power of offset field.

2 s after the ramps finished, the vertical lattice power is ramped up to 20mW with a sinusoidal
ramp of 1 s duration. We ramp up the vertical lattice towards the end of the evaporation sequence
to reduce the number of atoms loaded into different planes. During the evaporation, the cloud size
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Figure 5.7 | New sequence used to produce a BEC in the combined trap of shallow angle vertical lattice and x and y

dipole trap. The choice of t = 0 s is identical to the one in Figure 5.4a–d, namely the start of the removal of the Bessel.
Trap depth and frequencies are estimated from the measured trap frequencies of the x and y dipole traps and the
shallow angle vertical lattice at higher powers.

reduces which makes loading of a single plane easier. The full evaporation after the removal of the
Bessel beam takes 6 s. Using this sequence we can produce a BEC of around 20 000 atoms. See [139]
for a future description of the sequence.

At the end of the sequence we have a BEC, but we still have some population in other planes of
the vertical lattice. We remove the population from other planes by tilting the trap to the side using a
magnetic field gradient and an offset field along the horizontal direction. Because the atom number is
lower in the other planes, all atoms are lost from those planes while some still remain in the central
plane. This evaporation is analogous to the one used in the Rb microscope at the MPQ [211].



CHAPTER 6

Quantum Gas Microscope

After production of our BEC, with the atoms loaded into a single plane of the vertical lattice, we load the
atoms into horizontal lattices. By tuning the lattice potential (using e.g. super lattices [212, 213]), the
on-site interaction, projecting sharp edges on the lattice (using a DMD [20, 214]) ormaking the tunneling
between sites complex (e.g. in an anti-magic lattice [62–64]), we want to study different many-body
lattice Hamiltonians. To read out the quantummany-body state, a quantum gas microscope will be used.

This chapter describes our currently installed horizontal optical lattices as well as the single atom
images we have recently been able to capture with our quantum gas microscope. I describe the cooling
and imaging setup and the ongoing efforts to achieve single site reconstruction.

6.1 Fluorescence imaging
The working principle of a quantum gas microscope is relatively simple. Fluorescence from atoms
trapped in a pinning lattice are captured using an objective and imaged on aCCD. Provided the resolution
of the imaging system is comparable to the lattice spacing, the (parity projected) occupation of the
pinning lattice can be reconstructed from these images. The imaging resolution is related to the
numerical aperture (NA) of the objective and the imaging wavelength 𝜆 via 𝑟A = 0.61𝜆∕NA, where 𝑟A
corresponds to the Rayleigh resolution criterion. Typical lattice spacings on the order of the imaging
wavelength imply that a high NA (≈ 0.8) is required. Two approaches to reach high numerical apertures
have been implemented in other quantum gas microscopes. First, the atoms may be placed close to
a hemispherical lens [11, 13, 14, 66], where the lens is either inside the vacuum or contacted to the
glass cell. An out-of-vacuum objective of comparatively low NA (e.g. NA=0.5 [11]) completes the
collection optics. Provided the atoms are sufficiently close to the hemisphere (on the order of the
imaging wavelength), the NA is increased by a solid immersion effect [215] to NASIL = 𝑛NA, with 𝑛
the refractive index of the hemisphere1. The alternative is a fully custom objective of high NA and
long working distance outside the vacuum chamber [12, 15, 16, 65, 216]. This is the approach we have
taken. The objective used is described in more detail in section 6.4.

To produce the fluorescence for the imaging, the atoms need to be excited. The excitation and the
subsequent emission of fluorescence leads to recoil heating of the atom. To prevent the atoms from
escaping the lattice or tunneling to other lattice sites, deep lattices and cooling is required. The lattice
depth typically is on the order of a few hundred µK, dependent on the equilibrium temperature of the
cooling. The first quantum gas microscopes used bright optical molasses [11, 12] for cooling. Other
microscopes use Raman sideband cooling [13, 65, 66] and EIT cooling [15, 16] (see also [217]) and
for ytterbium it was possible to avoid cooling altogether by making the lattice exceptionally deep [14]

1Alternatively, the refractive index of the hemisphere reduces the wavelength of the imaging light to 𝜆∕𝑛
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Figure 6.1 | a) For single site resolved imaging, fluorescence photons of atoms trapped in an optical lattice are
captured using a high NA objective and imaged on a CCD. To create the fluorescence, the atoms have to be excited.
As excitation and emission leads to recoil heating, the atoms need to be cooled during imaging using molasses (as in
our case) or other optical cooling techniques. b) Superimposing two optical lattices at lattice spacing a (orange) and
2a (red) produces a super lattice potential (blue). Depending on the phase difference between the lattices, the shape
of the super lattice potential changes (left and right plots). c) Slight variations in the wavelength of two lattices leads
to an effective phase difference at the position of the atoms and allows tuning of the relative phase between the two
optical lattices forming the super lattice.

(68mK). Here we opted for molasses cooling due to its simplicity and the relatively low temperatures
achievable in Caesium (see section 6.3).

Quantum gas microscopes have already been implemented for Rubidium [11, 12], Ytterbium [14,
216], fermionic Potassium [13, 15, 16] and fermionic [13, 15, 16, 65, 66] and bosonic [218] Lithium.
Similarly, for Caesium, single site resolved imaging of atoms has been shown in Refs. [93, 123, 219,
220]. The cited Caesium experiments load their lattices directly from a MOT. In contrast, we will work
with degenerate atomic samples, which will allow us to study the low-temperature or ground-state
properties of many-body phases.

6.2 Lattices
Our glass cell is twelve-sided and as such offers 3 pairs of perpendicular axes for dipole traps and
optical lattices. One pair is being used for the transport lattice and the optical dipole traps used during
evaporation, as well as for the shallow angle vertical lattice. We plan to use the other two pairs for two
different sets of 2d horizontal lattices. One pair is planned to be used for a 2d super lattice potential
(Figure 6.1b) made from 767nm and 1534nm laser light, the other is intended for the anti-magic lattice
along one axis and a super lattice along the other. Currently we are only working with a 767nm lattice
along the future double super lattice viewport pair (see Figure 6.2a). This is in some sense the simplest
configuration to start with, as the 767nm lattice can be used for loading the atoms into the lattice and
for pinning them during fluorescence imaging. It suffers from the drawback of a shorter lattice spacing
compared to the 1534nm lattice, which makes reconstruction of the lattice occupation more difficult
(see section 6.6). However, we do not have sufficient power at 1534nm to pin the atoms to their lattice
site during imaging. We would require both the 1534nm and the 767nm lattice to make use of the larger
spacing of the 1534nm lattice in imaging and reconstruction. In this case the atoms would be loaded
in the 1534nm lattice initially and for imaging the 767nm lattices would be ramped up. The 767nm
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lattice would split the larger 2D 1534nm unit cell into four sites. Phase control between the 767nm
lattice and the 1534nm lattice would be required to deterministically load a specific site of the smaller
spaced lattice. In this experiment, this phase control will be achieved by variation of the frequency
difference between the 1534nm and the 767nm laser light. Small changes in the frequency lead to a
phase shift of ∆𝜙 = 2𝜋𝐿∆𝑓∕𝑐, where 𝐿 is the distance from the atoms to the retro mirror (Figure 6.1c).
𝐿 ≈ 200mm in our setup, so ∆𝑓 = 1.5GHz for a 2𝜋 phase shift. The control of the frequency difference
between the two lattices necessitates a frequency lock scheme. We have frequency doubled our 1534nm
light, but so far have not locked it to the Ti:Sa producing the 767nm light. We have decided to proceed
with the 767nm lattice setup instead of waiting for the lock setup to be finished.

The light for the lattices is produced by two separate Ti:Sa ring lasers2 each capable of up to 8W
output power at 780nm. The Ti:Sa are set to run at 767nm to allow for future installation of a super
lattice, where the long wavelength lattice is produced by a 1534nm fiber amplifier3. Apart from physics
experiments, the 767nm lattices are also used to pin the atoms during fluorescence imaging. From
previous experience in the single-site Rb experiment of our group [211], we chose the waists for the
767nm lattice such that at 3.5W power on the atoms, the trap depth is around 200µK. This trap depth
should be much larger than the temperature of the atoms to avoid thermal hopping. Thermal hopping
may be modeled using Arrhenius’ law Γℎ = Γ𝑎erfc[

√
𝑉latt∕𝑘𝐵𝑇] [211, 220], where Γ𝑎 can be interpreted

as the rate at which hopping is attempted. Ref. [220] reports Γ𝑎 = 265 s−1 with Caesium in a lattice of
4.9µm spacing, ref. [211] reports Γ𝑎 ≈ 20

√
𝜋 s−1 with Rubidium in a lattice of 680nm. Assuming that

we can reach comparable temperatures to Ref. [220] (𝑇 = 10 µK), we can expect Γℎ(≈ 7 × 10−8 s−1)
to be negligible for a lattice depth of 200µK.

We have chosen to use elliptical waist beams tominimize the horizontal trap frequency perpendicular
to the lattice direction. As we plan to do experiments in 2D systems, the vertical trap frequency can in
principle be almost arbitrary. In practice, very small waist lead to higher sensitivity to the alignment of
the lattices. The compromise we have chosen are waists of 𝑤𝑧 = 45 µm and 𝑤ℎ = 303 µm. The optics
used consist of the 𝑓 = 20mm collimator lens4, a cylindrical 𝑓 = 400mm lens, a 𝑓 = 150mm singlet
lens5 and a cat eye reflector6 on the other side of the glass cell (Figure 6.2a). The cylindrical lens forms
a telescope with the singlet lens to reduce the horizontal beam diameter, the beam’s vertical direction
is simply focused on the atoms. This lattice is around 210µK (2900𝐸𝑅) deep at 3.5W input power.
At 25mW, the lattice frequency is 𝜔latt = 2𝜋 × 18 kHz, the depth is 13𝐸𝑅 and the tunneling rate is
𝐽 = 2𝜋 × 25Hz. From these considerations, it becomes clear that stabilizing the lattice intensity during
the experiment (𝑃latt ≈ 25mW) and the imaging (𝑃latt ≈ 3.5W) is tricky since either the photodiode
recording the intensity is saturated or the signal is barely above the noise level of the photodiode. The
power stabilization is less critical at pinning powers as the power fluctuations will typically be much
slower than the trap frequencies. Therefore, we only actively stabilize the lattices at low powers during
the experiments and simply set the RF power sent to the stabilizing AOM to maximum during pinning.

In the experiment, we do not reach 3.5W but rather 3W. This is due to low fiber coupling efficiency
from the Ti:Sa output and an additional isolator placed at the fiber output on the experiment table. In
addition, the waist at the position of the atoms appears to be slightly larger. From parametric heating
measurement we deduce a lattice depth which is 60% of the expected depth (120µK).

We use a sinusoidal ramp of 200ms duration to 80mW to load the horizontal lattices. For fluores-
cence imaging, we then jump the lattice power to the maximum value.

2Matisse CS, Sirah
3Koheras, NKT; Rio, Orion; Nufern
460FC-SMA-T-23-M20-10, Schäfter+Kirchhoff
5#47380, Edmund Optics
6lens: f150, #47380, Edmund Optics along Y”, f100, #45806, Edmund Optics along X”
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Figure 6.2 | a) Orientation of the lattice beams for the 767 nm lattice and the molasses beams used for cooling the
atoms in the pinning lattice. In addition, the beam shaping lenses for the lattices and the dichroics to overlap imaging
light and 1534 nm light with the lattice axes are shown. Each lattice axis has its own imaging camera used for rough
alignment of the lattice beam on the atoms. The lenses in front of the lattice retro mirrors are different because of
space constraints. b) Orientation of the out-of-plane molasses beams and beam path used for the imaging setup.
The f = 150mm and f = 75mm lens are matched achromats. Distances not to scale. A dichroic mirror allows us
to overlap blue detuned light with the imaging axis to project additional potentials through the objective. Another
dichroic mirror behind the f = 0.5m tube lens transmits 456 nm light and reflects 852 nm. The reflectivity and
transmission of the imaging optics are listed for 852 nm. In total, we expect to catch around 15% of the emitted
fluorescence photons, taking the solid angle of the objective into account (20% of emitted photons are captured by
the objective).

6.3 Molasses
During fluorescence imaging we use an optical molasses on the D2 line to cool the atoms and generate
the fluorescence photons. We opted to use molasses cooling instead of Raman sideband cooling as the
experimental setup for molasses cooling is simpler, and in Caesium the temperatures that can be reached
with free-space bright molasses on the D2 line are quite low (<10µK). We split off some of the light used
in the MOT and fiber couple it. Using fiber splitters7, we split the light into three arms. We have one
molasses axis in the horizontal plane. The other two are entering the glass cell at a 30° angle with the
horizontal plane, passing between the coils and the objective (Figure 6.2a,b). All beams are circularly
polarized before entering the chamber and retro reflected with a 𝜆∕4 waveplate mounted before the
retro mirror. The retro mirrors are mounted on ring piezos8. These will be driven at low frequency
to wash out the interference between the molasses beams, as is done in Ref. [211]. In Ref. [211] a

7PN850R3A1 (75:25 Split) and PN850R5A1 (50:50 Split), Thorlabs
8PI, Drivers: PDu150CL, PiezoDrive
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modulation of the fluorescence intensity from the atoms in the lattice is observed, and attributed to
the interference between the molasses beams. By modulating the retro mirrors this interference could
be removed. Alternatively, the different molasses beams can be frequency offset from each other [11],
though this is not an option in our setup because we are using fiber splitters.

Using fiber splitters also implies that we are unable to control the beam balance between the fiber
outputs. We control the balance between the molasses axes by tuning the transmission through the
cleaning cube at the fiber exit. Since very little power is required for the molasses, this is not a big
constrain on the power needed on the optical table before the molasses fibers.

The vertical molasses beams are tightly constrained by the coil mount and the objective. Alignment
of the beams through the coil mount to the other side is sufficient for an initial alignment, as the
beams are relatively large (2mm diameter). Alignment of the retro mirror is possible by coupling
the retro light back into the fiber. For the initial alignment of the polarization for the vertical beams
we minimize the reflection of the retro reflected beam off the cleaning cube. This ensures circular
polarization, though the helicity is not determined. Aligning the horizontal beams is simpler in some
sense, as it can be centered on the entry and exit viewport of the glass cell, and a tool to measure the
polarization can be easily placed into the beam path.

6.4 Objective
To image the atoms, we use a high NA (NA = 0.8, solid angleΩ = 4𝜋 × 0.2) objective specially designed
for our experiment9. The objective was designed to be diffraction limited at the imaging wavelengths
456nm and 852nm as well as 780nm (imaging wavelength of 87Rb) and 532nm (for repulsive potentials
projected through the objective). The objective has a focal length of 25mm and a backward working
distance from the top of the glass cell of 2.34mm. The objective is mounted in a custom designed [139] 5
axis mount, which uses picomotors10 to control the tip, tilt, and 𝑥, 𝑦 and 𝑧 position of the objective. An
additional set of closed loop piezos11 allows fast, reproducible changes of the 𝑧 position of the objective
for refocusing. There are 9 lenses inside the objective, each with a broadband AR coating of 𝑅 < 0.15%
per surface. The expected transmission for 852 nm light is 98.6%, for 456 nm it is 97.6%.

Before installation of the objective, both the mount and the objective were tested (Figure 6.3a). To
test the objective, we used a star target [glockner]. The star target is a glass plate with a thin reflective
chrome coating on one side. Small holes with diameters of a few hundred nm have been pierced into
the coating. By illuminating the star target from one side and imaging with the objective from the other,
the point spread function (PSF) of the objective can be measured (provided ⌀hole < 𝜆imag) (Figure 6.3b).
In addition to allowing tests of the objective, it also allows us to test alignment strategies. For initial
alignment, we first align a reference beam perpendicular to the viewport by overlapping the incoming
beam with its reflection. Part of the reference beam is reflected off each lens of the objective. We overlap
those reflections with the incoming beam for rough alignment of the objective. Finer alignment is
done with the camera and the emission from the star target holes by minimizing the size and distortion
of the PSF. To measure the magnification we used a USAF target 12. Figure 6.3c and d show sample
PSFs measured in the test setup with 852 nm and 456 nm light respectively. We find and average PSF of
𝑟A = 780nm at 𝜆 = 852nm (Figure 6.3d) and 𝑟A = 430nm at 𝜆 = 456nm by evaluating multiple PSFs
from a single image. This size is slightly larger than what was expected theoretically.

954-41-25@456-852nm, Special optics
10Picomotor 8301, Newport
11P885.90 with strain gauge, PI
12Highres-1, Newport
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Figure 6.3 | a) Sketch of the test setup. The Star target is a chrome coated glass plate with tiny holes etched into it.
The viewport is a replica of the glass cell viewports, but without the nano textured coating. b) Images taken of the
star target with the camera. Each point is a hole in the PSF. The inset shows an enlarged view of an area around the
middle left edge. c) Radially averaged PSF (blue points) of one of the stars, with 852 nm illumination. The orange
curve is the expectation, taking the finite size of the star target holes into account (≈100 nm). The green curve is a
Gaussian fit to the measured PSF. The dashed line indicates the resolution according to the Rayleigh criterion. This is
a particularly small PSF, the average size is larger. The inset shows the image of the PSF. d) Fitted resolution to 18
PSFs from b). The images are fit using a 2D Gaussian. The mean resolution in the x and y direction is 872 nm and
713 nm respectively. e) Radially averaged PSF of a single star similar to b) but using 456 nm light (6S → 7P transition
of Caesium) for imaging.

Initial objective alignment on the atoms

• Before installing the objective, we made sure that the top and bottom viewports of the glass cell are
perpendicular to the direction of gravity. This was done by placing a water basin underneath the
glass cell and sending a laser beam from the top through the glass cell into the basin (Figure 6.4 1 ).
This laser is aligned perpendicular to the viewports of the glass cell and the optical table is
subsequently tilted to make the laser beam perpendicular to the water surface. Note that we
observe two reflections from the glass cell viewports, spaced by around 2mm 99 cm from the
glass cell. The two reflections are most likely from the top and bottom viewport, suggesting a tilt
between the two of 2mrad.

• The same laser beam is then aligned to hit the atoms while still being perpendicular to the glass
cell viewports (Figure 6.4 2 ). We use resonant light to kill the atomic cloud just after transport to
the glass cell. This reference beam is then used to roughly align the objective, the tube lens and
the mirrors in the imaging path. For this we use the same strategy as in the test setup.

• Wemove and tilt the objective such that the reflections of the reference beam from the lenses inside
the objective are rotationally symmetric around the incoming reference beam. The reflections are
viewed on a screen with a hole for the reference beam (Figure 6.4 3 ).
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Figure 6.4 | 1 Aligning the glass cell viewports perpendicular to the direction of gravity using a water basin. The
glass cell is tilted by tilting the optical table. Right: Alignment of the objective. 2 The reference beam is aligned
perpendicular to the bottom viewport of the glass cell while also hitting the atoms. 3 The objective is moved such
that the reflections from the objective are symmetric w.r.t. the incoming reference beam as viewed on a screen above
the glass cell. 4 The imaging lens and the folding mirrors are centered on the reference beam using an iris right
behind the imaging lens.

• The next step is to roughly align the imaging system. For this step, it helps to temporarily work at
a lower magnification to have a larger field of view. We worked with a magnification of 20 (focal
length of the tube lens 𝑓 = 500mm). We roughly align the tube lens and the imaging mirrors
such that the reference beam hits the imaging CCD. Since the reference beam is overlapped
with the atoms in the imaging plane, the atoms should then also be visible on the CCD. We take
fluorescence images and move the mirrors before the camera to see the atoms on the CCD.

• With the imaging system roughly aligned, we place an iris between objective and tube lens
(Figure 6.4 4 ). We place the iris such that when closing it the reference beam is at the same
position on the CCD camera as the atoms. In this way, we can use the reference beam in the next
steps to center the image of the atoms on the tube lens and the imaging mirrors.

• After placing the iris, the tube lens can be exchanged for the one needed for the desired magnifi-
cation (in our case 𝑓 = 1.5m yielding a magnification of 60). We center the tube and the mirrors
behind the tube lens on the reference beam that is passing through the iris. We also optimize the
tilt of the tube lens, be overlapping the back reflection off the lens with the incoming beam. This
procedure results in a decent alignment of the imaging system. For further improvements, we
image single atoms and move the objective to minimize the size of the point spread function.
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Figure 6.5 | a)Image of a dilute cloud with single atoms trapped in the pinning lattice. b) Sample crops around single
atoms from a and the upsampled and averaged image of the point spread function. Logarithmic scale. c) Radial
average and Gaussian fit to the averaged point spread function shown in c. The inset shows the averaged PSF with a
linear color scale. d) Histogram of fitted PSF sizes along x and y. The error bars specify the standard deviation of a
Gaussian fit to the distribution. The solid black line is the expectation from a diffraction limited imaging system, the
dotted line is the result from the test setup. Imaging wavelength is 852 nm. e) Photon count histogram of regions
with (blue) and without (orange) single atoms. For computing the histograms, an area of the image was cropped to a
9 × 9 region and the pixel counts summed up. This corresponds to an area of about 910 nm× 910 nm in the atomic
plane (M ≈ 128). The exposure time was 1 s. For the background crops, we randomly picked locations in the image
that were more than 8 pixel (810 nm) from any single atom.

6.5 Imaging
After loading the atoms into the horizontal and vertical lattices and ramping up the lattice powers for
pinning (𝑃𝑥,𝑦 ≈ 3W, 𝑃𝑧 ≈ 11W), the molasses beams (cooling on 𝐹 = 4 → 𝐹′ = 5) and a repumper
(pumping atoms from |𝐹 = 3⟩ to |𝐹′ = 4⟩, aligned with the transport axis) are turned on. In addition,
we change the magnetic field to fully compensate the previously measured background magnetic field.
We initially tried to observe the fluorescence from the side, as here, due to the smaller magnification
and the fact that the imaging system was already aligned, we were expecting to have an easier time to
see some signal. Indeed we did observe a signal more or less out of the box. Surprisingly, we found
that the atomic cloud in the fluorescence image was aberrated much more strongly compared to the
absorption image on the same camera. Trying to correct for those aberrations by changing the position
of the camera made the absorption image aberrations worse.

Having seen a signal on the camera from the side, we then aligned the imaging system through the
objective, with an initial magnification of 60. Here too we quickly got a first fluorescence signal on
the camera13. Because of the large pixel size of the camera (13µm), the PSF only extended over a few
pixels in diameter. We chose to increase the magnification to better resolve the PSF by installing two

13CCD camera, iKon DU934N-BR-DD, Andor
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Figure 6.6 | Effect of different Seidel aberrations on the PSF. From left to right, the defocus is varied. Both astigmatism
and coma lead to asymmetric PSFs, whereas the the PSF remains rotationally symmetric (for a given defocus) for
spherical aberrations. The PSF was computed as PSF = |FT {P}|2 via the pupil function P = S0ρ
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coma respectively, and φ the tilt of the optical system. The left side sketches the origin of the different aberrations.

achromats14, magnifying the image by a factor of 2 (Figure 6.5a). With this new magnification, and by
optimizing the position and tilt of the objective and ensuring that a beam entering the center of the
𝑓 = 1.5m imaging lens is centered on all subsequent mirrors, we managed to reach a Airy radius of
𝑟A = 830nm of the point spread function of a single atom (Figure 6.5d,e). Note that in order to avoid
aberrations from stress on the mirrors, all mirrors have been glued into their mounts. The measured
PSF is larger than what is expected from using the NA of the objective (𝑟A = 0.61𝜆∕NA ≈ 650nm) or
what was measured in a test setup (𝑟A = 780nm for 𝜆 = 852nm). The PSF was measured by taking
multiple images similar to Figure 6.5a. Isolated atoms in each image where found15 (see Figure 6.5b)
and fitted with a 2D Gaussian. The 1/e size of the Gaussian 𝑟G was then converted into an Airy radius
𝑟A = 2.865𝑟G. The factor 2.865 was found numerically by fitting a Gaussian to an Airy disk. To produce
the averaged image of the PSF (Figure 6.5c), the isolated atom images where upsampled and overlapped
using the fitted centers of the PSFs.

It is not clear at this point what is limiting the size of the PSF. The PSF size may increase due
to aberrations, or an aperture in the imaging beam path reducing the effective NA. The dominant
aberrations that distort the PSF are spherical aberrations, coma and astigmatism, shown in Figure 6.6 at
different positions along the focus. They are part of the Seidel aberrations and arise due to corrections
to the linear approximation of Snell’s law used in paraxial optics (sin(𝑥) = 𝑥 − 𝑥3∕6 + O(𝑥6)) [221].
Coma and astigmatism are relevant for objects that do not lie on the optical axis of the imaging system
and lead to asymmetric deformations of the PSF. Spherical aberrations are due to stronger refractions
of beams off the optical axis. The images shown in Figure 6.6 where simulated using the effect of the
aberrations on the wavefront in the entry pupil 𝑃 (Ref. [221], p. 206, Table 7.2) and the relation between
the entry pupil and the PSF: PSF = |𝐹𝑇{𝑃}|2 (Ref. [222], Fig. 2).

The measured PSF is fairly rotationally symmetric (Figure 6.5c), making coma or astigmatism
unlikely. When scanning the focus, the size of the PSF increases asymmetrically, as would be expected
for spherical aberrations. However, it seems unlikely that the 1.5m singlet lens causes any spherical
aberrations. The spot diameter due to third order spherical aberrations of a singlet lens may be estimated
using 𝑑sph = 0.067𝑓∕(𝑓∕#)3 ([223], p.13), where 𝑓∕# = 𝑓∕𝐷 is the f-number of the singlet lens. For
the 2", 𝑓 = 1.5m lens, this yields 𝑑sph ≈ 4 µm, much smaller than the magnified (×60) PSF of an

14f75 and f150, MAP1075150, Thorlabs
15skimage.feature.peak_local_max of the skiimage python package
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Figure 6.7 | a) Example of a fluorescence image used for extracting the lattice orientation. The blue circles mark
atoms that the algorithm will use for the Fourier transform. b) Black dots mark the centers of single atoms extracted
from 10 different images like the one in a. For each of the 10 images, isolated atoms are found (marked in blue in a)
and a 2D Gaussian is fitted to the images. All fitted centers are combined into a single image as the one shown. c)
2D Fourier transform of the image in b. The Fourier transform exhibits peaks at the reciprocal lattice vectors and
multiples thereof. The circles mark the positions of the reciprocal lattice vectors. From these, the lattice orientation
and the magnification of the imaging system can be extracted. The lattice orientation is illustrated in the top right of
panels a and b. The extracted magnification in c) is around 128, or 101.6 nm/px, close to the expected magnification
of 120.

NA = 0.8 objective (𝑟𝐴 ≈ 60 µm). Using Zemax, this assumption was also tested. To reach a diffraction
limited resolution (Strehl ratio > 0.8), the lens should be centered on the imaging beam better than
±7mm and the tilt w.r.t. the imaging axis should be better than ±2◦. Away from these, the imaging
system is not diffraction limited anymore, however the PSF also gets distorted significantly more than
what is apparent in the measured PSF.

Another idea we had, which may explain the larger than expected PSF size is the extent of the atoms
along the imaging direction. Due to its high NA, the imaging system has a very short depth of focus
(𝑧dof = 𝜆∕NA2 ≈ 1.3 µm at 𝜆 = 852nm). If the confinement along the vertical direction is small, the
atom may be spread over a comparable distance, resulting in blurring of the PSF. Using Zemax, we have
simulated the expected change in the PSF radius from an atom that extends over 8µm along the focal
direction and assuming a flat top density profile. This should overestimate the distortion of the PSF due
to the spread of the atomic wavepacket at 10µK. We find that the change in the PSF size is negligible.
The effect of the increased spread is mostly a disappearance of the first Airy disk minimum, which is
replaced by a shoulder with an amplitude of around 20% of the maximum of the PSF.

6.6 Reconstruction
Because the PSF is larger than the lattice spacing 𝑎latt = 767nm∕2 = 383.5nm, atoms in adjacent lattice
sites will not be resolved. This is not atypical for quantum gas microscopes, though the discrepancy
between PSF radius and lattice spacing is particularly large in our case (𝑟A∕𝑎latt ≈ 2.1, typical values
are 𝑟A∕𝑎latt = 1 − 1.3). To still reconstruct the lattice occupation, we need to deconvolute the image.

The first step is to reconstruct the lattice orientation and phase. In our case, this works well by taking
images at low filling (Figure 6.7a) and fitting the position of single atoms. From the fitted positions
an artificial image is created where a pixel is set to 1 if an atom was centered at that position and
0 otherwise (Figure 6.7b). The Fourier transform of that image (Figure 6.7c) exhibits spikes at the
reciprocal lattice spacing from which lattice orientation and spacing can be extracted via �⃗�𝑖𝑏𝑗 = 2𝜋𝛿𝑖𝑗 .
In principle, the phase of the lattice can be extracted from the phase of the Fourier transform at the
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reciprocal lattice vectors 𝑏𝑗 . Alternatively, it can be fixed by finding a single (or more) atom somewhere
on the image and fixing the origin at the atom’s position (or using the average offset of more than one
atom). The advantage of the second approach is that it is easy to implement for individual images,
whereas the Fourier transformation would either rely on negligible drifts of the lattice phase between
shots so averages over multiple images can be used or the ability to extract lattice spacing, orientation
and phase from a single shot, which can be tricky at the low resolutions we are working with, especially
when going to larger fillings.

Once the lattice sites have been determined, other experiments have used deconvolution algorithms
such as the Richardson-Lucy algorithm [126] or Wiener deconvolution [13, 66, 123]. The idea behind
these algorithm is that the recorded image 𝐼(𝑛,𝑚) is the convolution of the lattice occupation 𝑂(𝑛,𝑚)
with the PSF (PSF(𝑛,𝑚)). This is equivalent to the product of their Fourier transforms, so in the absence
of noise the lattice occupation may be reconstructed via

𝑂(𝑛,𝑚) = FT−1 {FT[𝐼(𝑛,𝑚)]∕FT[PSF(𝑛,𝑚)]} . (6.1)

Noise will interfere with this reconstruction by artificially amplifying regions where the Fourier trans-
form of the PSF is small. Wiener deconvolution attempts to address this by using a more robust inverse
filter instead of 1∕FT[PSF(𝑛,𝑚)]:

𝑂(𝑛,𝑚) = FT−1 {𝐺(𝑓𝑛, 𝑓𝑚)FT[𝐼(𝑛,𝑚)]} , (6.2)

with the Wiener filter

𝐺(𝑓𝑛, 𝑓𝑚) =
1

PSF(𝑓𝑛, 𝑓𝑚)
{

|PSF(𝑓𝑛, 𝑓𝑚)|2

|PSF(𝑓𝑛, 𝑓𝑚)|2 + |SNR(𝑓𝑛, 𝑓𝑚)|−2
} , (6.3)

where PSF = FT[PSF(𝑛,𝑚)] and SNR is the ratio of the Fourier transforms of the occupations and the
noise. Both, occupation and noise are not known initially, however, Ref. [224] describes an algorithm to
estimate this from the input image16. The Richardson-Lucy algorithm on the other hand starts from an
initial guess on the occupation and iteratively improves upon this according to [126, 225, 226]

𝑂𝑟+1(𝑛,𝑚) = 𝑂𝑟(𝑛,𝑚) (
𝐼(𝑛,𝑚)

𝑂𝑟(𝑛,𝑚) ∗ PSF(𝑛,𝑚)
∗ PSF†(𝑛,𝑚)) , (6.4)

where PSF†(𝑛,𝑚) is the PSF mirrored about the origin (i.e. PSF(𝑟) = PSF†(−𝑟)) and ∗ denotes convo-
lution. Typically, 𝑂0, the initial guess for the occupation is simply the measured image 𝐼. However,
from the form of Equation 6.4 it becomes clear that the reconstructed occupation 𝑂𝑟 will only have
finite amplitude where 𝑂0 ≠ 0. This can be used during reconstruction by only setting those pixels
in 𝑂0 ≠ 0 that are closest to the center of a site.

The default initial guess for the Richardson Lucy algorithm does not work very well for our imaging
system, as the PSF extends over multiple lattice sites and therefore multiple PSFs will typically overlap.
The algorithm in this case tends to merge multiple single emitters into one. However, choosing the
initial guess such that its zero everywhere but at the lattice site center gives reasonable results for the
reconstruction (Figure 6.8). Because the single site amplitudes of the algorithm are not constrained
to integer values, the sites need to be thresholded to assign the occupation to a given site. Ideally, this
should be done by fitting the histogram of the reconstruction with two Poisson distributions. The
overlap between the two distribution gives a limit on the possible fidelity of the reconstruction.

To test the performance of the reconstruction, we repeated the deconvolution on simulated images
for different filling and resolutions (Figure 6.9). To simulate the image, we specify a filling and the

16This algorithm is implemented in skimage.restoration.unsupervised_wiener of the skimage python package
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Figure 6.8 | a) Simulated image of 15×15 sites with 4×103 photons per atom, a PSF size of 860 nm and a filling fraction
of 70%. b) Reconstructed amplitudes on each lattice site using the Richardson Lucy algorithm. The reconstructed
image can be produced by convolution of the shown image with the PSF. As initial guess for the algorithm, only
pixels closest to centers of lattice sites were set to non-zero values (see text). c) Histogram of the Richardson Lucy
reconstruction shown in b). There is a clear bimodality, associated with atoms present or not a given lattice site. The
dashed line at 35 counts indicates the threshold chosen for the occupation reconstruction shown in e) d) Occupation
used to produce the simulated image shown in a). e) Occupation reconstructed from b) after thresholding, i.e.
setting site amplitudes to 0 or 1 depending if the reconstructed amplitude at the given site is larger or smaller than
the threshold. f) Difference between the correct and reconstructed occupation. 6 sites are wrongly empty in the
reconstruction and 3 sites are wrongly filled. For 15 × 15 lattice sites this corresponds to a 96% of the lattice sites
being reconstructed correctly.

number of lattice sites 𝑁sites. We generate a random array of size 𝑁sites ×𝑁sites, which represents the
site occupation, and which has the chosen filling. Next we iterate over each site. If the site is filled, we
pick 𝑁ph samples from the PSF distribution of a single atom. 𝑁ph is the number of photons per atom.
We do not specify𝑁ph, but rather𝑁ph, the mean photon number per atom, and pick𝑁ph from a Poisson
distribution of mean 𝑁ph. Furthermore, we allow 𝑁ph to fluctuated for each site to model the intensity
variation of the atom emission over the lattice. This variation can for instance be due to differences in
molasses intensity. These samples are then binned into a second array, where each array entry represents
a camera pixel. Finally, we add Gaussian distributed noise to each pixel to model read-out noise.

We find decentmean reconstruction fidelities> 90% for all fillings and tested resolutions (Figure 6.9).
As expected, the reconstruction fidelity dropswith the size of the PSF. The fidelity also dropswith increas-
ing filling and is minimal at 60–70% filling. Somewhat unexpected, the reconstruction fidelity increases
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Figure 6.9 | a) Using simulated data at different filling and different resolution (PSF size indicates Airy radius), the
reconstruction fidelity of a 15 × 15 site lattice using the Richardson-Lucy deconvolution is estimated. In all cases the
photons per atom was 4×103 and the thresholding was fixed at a value of 35 counts. The open small symbols indicate
individual reconstructions, the filled circles the mean and the shaded areas 1 standard deviation. The different PSF
size data sets are offset from each other by 0.005 along the filling axis for visibility. b) The same data, but computing
the squared error between the simulated image I and the reconstructed image R (

∑√
(I − R)2). For the squared

error, no thresholding was performed. It is not clear where the large difference in squared error for 860 nm PSF
size compared to 800 nm or 900 nm comes from. The increase in error with filling may be due to the increase in
fluorescence and the associated noise (

√
N for N photons).

again for very high filling, but is not symmetric about 50% filling. If the reconstruction were symmetric,
this would suggests that the reconstruction is equally good at reconstructing single atoms and holes.

As an alternative to the deconvolution based on the Richardson Lucy algorithm, the occupation
may be fitted, or machine learning can be used [227]. To fit the occupation, we compute the image
𝑃𝑖𝑗𝑘 generated by an atom on site 𝑘 for each site. Given an occupation vector 𝑂𝑘 (i.e. the flattened
occupation matrix), the resulting image can be computed via matrix multiplication 𝐺𝑖𝑗 = 𝑃𝑖𝑗𝑘𝑂𝑘. To fit
a measured atom number distribution then involves optimization of the entries of the vector 𝑂𝑘. If 𝑂𝑘
is not restricted to integer values, regular gradient descent techniques can be used. This yields similar
results to the deconvolution based on the Richardson Lucy algorithm. We have also written an algorithm
that tests a chosen set of changes to 𝑂𝑘 (e.g. add an atom on site 𝑘 or switch the occupation on site 𝑘
with that on site 𝑘+ 1). The algorithm computes the squared difference between the measured image 𝐼𝑖𝑗
and the reconstructed images 𝐺(𝑛)

𝑖𝑗 , where 𝑛 labels the possible changes applied to 𝑂𝑘 . This algorithm is
slow compared to deconvolution, but allows us to change the onsite occupation by finite values only (e.g.
𝑂𝑘 ∈ {0, 1}). In this algorithm, the switching of site occupations is included to avoid getting stuck in local
minima. For instance, the algorithm may have converged to a configuration where the site 𝑖 is occupied
instead of the sites 𝑖−1 and 𝑖+1. Adding atoms to site 𝑖−1 or 𝑖+1 or removing the atom from site 𝑖makes
the least square error worse, but permutations of the local lattice occupation can improve on the fit.

The machine learning approach also allows us to fix the onsite occupation to either 1 or 0. In
addition, once trained, the algorithm is also quite fast compared to the other methods. One problem in
this approach is that a lot of training data is required. Assuming that one would train the algorithm
on e.g. a 10 × 10 lattice, the training data set becomes rather big since each possible configuration
(2100) should be in the training data at least once. A more tractable approach is to train the algorithm
to determine if the center site of a 5 × 5 lattice site array is occupied or not. Reconstruction can then
proceed by feeding the neural network 5 × 5 lattice site crops around each lattice site. The choice of
5 × 5 lattice sites is determined by the extent of the single atom PSF, which in our case extends over this
region. The training data is still relatively large, since one wants to train on all possible configurations
in this array and also account for the noise due to read-out, dark current and the photon shot noise.
Ideally, the training data would be generated by the experiment. There are two problems with this



86 Quantum Gas Microscope

0 25 50 75

0

20

40

60

80

0 25 50 75

0

20

40

60

80

0 25 50 75

0

20

40

60

80

Figure 6.10 | Sample reconstructions of images of the atoms using the current code base for the Richardson-Lucy
reconstruction. The blue circles indicate possible lattice sites, the blue dots indicate positions of reconstructed atoms.
While the majority of the fitted atom locations seem plausible, some of the reconstructed sites are obviously wrong.
A few are indicated with arrows in the figure. In the first, one atom was missed, likely because the offset of the lattice
was not quite correct.

approach. One is that the experimental data is not labeled, the other is that so far we have not been
able to control the filling in the lattices very well. In order to still push ahead, we have used simulated
images for training. The simulations take the above noise sources into account and also allow a normal
distributed variation of the fluorescence intensity of each atom. Some initial work on the machine
learning based reconstruction has been done by one of the current PhD students in the lab, Alexander
Impertro, and is currently being extended by a masters student [228].

At the time of writing of this thesis, the reconstruction of single atoms from fluorescence images is,
unfortunately, still work in progress. While the different approaches outlined above have been tested
on simulated images with reasonable success, their adoption to experimental images is still lacking.
Figure 6.10 gives sample reconstructions of images taken at low filling using the Richardson-Lucy
algorithm. While many atoms are properly found, some atoms are missed or some sites are filled even
though the site seems empty when checked by eye.

6.7 Molasses optimization
Even without a fully working reconstruction, we can optimize the molasses cooling. We pin atoms in
our lattice and turn on our molasses light. 60ms after the start of the molasses we open the shutter
in front of our CCD camera and take an image with 100ms exposure time. We close the shutter, and
wait for 680ms before opening the shutter again for a second image, again with an exposure time of
100ms. Between the two images the molasses is kept on.

We compare the first and second image to measure the hopping rate. Since we do not have a full
reconstruction algorithm yet, we try to find single atoms in both images and compare their locations.
Figure 6.11a illustrates the reconstruction. First, we find local maxima in a cropped region of both
images. The peak finder finds not only atoms, but also many spurious background maxima. To remove
those we sum in a 3× 3 region around each found local maxima and fit a single Gaussian distribution to
the resulting histogram. From the fit, we choose a threshold to filter out the found peaks. The threshold
is chosen to be the fluorescence counts where the fitted distribution has dropped to 1% of its maximum.

The molasses optimization was still in progress during writing of this thesis, so only parts of the
results are shown, and these are preliminary. In Figure 6.11b and c we scanned the molasses cooler
detuning. We extract a signal to noise ratio as 1∕(𝑥0 + 𝜎) from the histograms where 𝑥0 (𝜎) is the center
(1/e width) of the Gaussian distribution fitted to the data. This can be used because the fluorescence
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counts are normalized to the interval [0, 1]. We find two maxima in the signal to noise ratio, one at
around 40MHz detuning, the other around 87MHz detuning. Away from these the signal to noise
ratio is worse, indicating that separating single atoms from the background becomes hard to impossible.
Apart from the signal to noise ratio, we also extract the distance between peaks in the first and second
image. Ideally, the distance will be zero for all points, and by considering the distribution of the distances
between closest points in the first and second image we hope to extract information about the hopping
rate. In Figure 6.11c, an estimate of the number of atoms that hopped or were lost between the two
images is plotted. For the estimate, the peaks left after thresholding are fitted with a 2D Gaussian. We
use only those peaks where the 2D Gaussian has a 1/e size between 1 and 2 pixels. For those peaks,
we compute for each peak in the first image the closest peak in the second image. If the distance
between the peaks is larger than one lattice site (1.8 pixel), they are counted as having hopped. The
number of lost atoms is given by the absolute value of the difference between the number of atoms in
the two images. We find that, similar to the signal to noise ratio, the half distance is minimal around
50MHz detuning and 87MHz detuning. We also find that at the optimal signal to noise ratio (41Hz),
the half distance is slightly larger than at 87MHz.

We also scanned themagnetic field during themolasses phase (Figure 6.11d,e). Themolasses cooling
efficiency is expected to be sensitive to the residual background field. By scanning the field, we can
estimate how sensitive it is. We find that while the signal to noise ratio hardly changes, the number
of hopped or lost atoms starts to increase beyond a field of 200mG. Note that we have calibrated the
magnetic background field independently using microwaves and find it compensated at 135mG.
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Figure 6.11 | a) Example images from a scan of the cooler detuning to illustrate the single atoms location reconstruc-
tion. The first row is the analysis of the first fluorescence image, the second row of the second fluorescence image
taken 680 ms later. The blue circles in the fluorescence images indicate atom locations after thresholding. In the
histogram plots, the orange curve is a Gaussian fit to low fluorescence count data. The black curve indicates the
chosen threshold. Finally, the overlap on the right shows the identified peak locations in the first (red rings) and
second (blue dots) image. The fluorescence data is from the detuning scan of the molasses cooler and corresponds
to a detuning of 53 MHz. b) Signal-to-noise ratio (SNR) estimated from histograms as in a versus detuning (see text for
definition). Blue and orange points show the signal to noise ratio in the first and second image respectively. The scan
of the detuning was performed twice. c) Percentage of atoms that were lost or have hopped between the two images.
If, for a given point in the first image, the closet point in the second image was further away than 1.7 pixel (1 lattice
site), the atoms was counted as having hopped. The inset shows the distribution of distances between closest points.
The number of lost or hopped atoms was normalized to the maximum number of atoms found in the first or second
image. d) and e) show similar data as in b) and c) but versus magnetic offset field during imaging. The detuning for
these images was 87 MHz. For b) and c) the magnetic offset field was 135 mG.
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Figure 7.1 | First images of a Caesium Mott insulator taken with our fluorescence imaging system.

CHAPTER 7

Conclusion and Outlook

This thesis has described the general setup of the new Caesium quantum gas microscope, up to the
point of loading atoms into a pinning lattice and imaging them with fluorescence photons. While
the pre-cooling steps follow similar Caesium experiments (e.g. [98, 159]), the transport step between
pre-cooling and condensation is novel [171] and makes direct adaption of the evaporation strategies of
other Caesium experiments less straightforward. However, the transport allows us to move the atoms
into a new section of the vacuum system, improving the optical access and thereby easing installation of
lattices and objectives required for the quantum gas microscope. Even with the intermediate transport
step, we reach condensation in a bit more than 10 s. We have successfully loaded those atoms into
a pinning lattice and managed to image single atoms using fluorescence photons captured by our
high resolution microscope.

Though the construction of the experiment has progressed quite far, it is still not finished. As
mentioned in the introduction, the goal of the experiment is the study of interacting topological many-
body systems with single site resolution. As a first step in that direction, we plan to study the interacting
Su-Schrieffer-Heeger (SSH) model in one and two dimensions. The canonical SSH model ([73], see
Chapter 1 of [74] for an introduction), based on non-interacting fermions, exhibits edge modes that
are protected by a chiral symmetry. For bosons, interactions are required to observe these modes [45,
48]. The higher-dimensional analog (2D SSH model) can exhibit symmetry protected corner modes
in the presence of either flux [35] or interactions [229]. To realize these models in our system, a few
key ingredients are still missing.

First, a superlattice is required to realize the staggered tunneling of the SSH model. For the super-
lattice, an optical lattice made from 1534nm light will be locked to and overlapped with the existing
767nm lattices. Secondly, we want sharp edges on the lattice potential to observe the corner modes.
To do this, we plan to project repulsive potentials on the atoms using a digital micro mirror device
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(DMD) and our high resolution objective. Third, the atoms need to be loaded into the lattices and a
Mott insulator state needs to be prepared. So far, we have not worried much about the temperature of
the atoms loaded into the lattices as we were mostly busy trying to align and characterize our imaging
system. We got the first signal of a Mott insulator just before this thesis was finished. Figure 7.1 shows
an image of the parity projected Mott insulator, with the right image showing a reduced density at the
𝑛 = 2 Mott lobe and 𝑛 = 1 and 𝑛 = 3 Mott lobes at the edge and center of the cloud respectively.

Another avenue of futureworkwill be the installation of an anti-magic lattice. While the introduction
mostly focuses on the use of the lattice for simulating artificial gauge fields, the small lattice spacing in
the anti-magic lattice in principle also allows for non-negligible nearest neighbor interaction between
atoms in different spin states. This would open the way for studying extended Bose-Hubbard models,
which a exhibit a rich phase diagram [230–232]. Steps in this direction would be to load the atoms into
an anti-magic lattice and trying to measure inter- and intra-species scattering lengths [69, 233].

Further in the future, the state-dependent lattice will be used to study interacting topological phases
in the presence of a magnetic flux through the lattice. This may enable the realization and study of
fractional Chern insulator states [81] on a new, highly tunable experimental platform.



Appendices

Appendix A Classical transport model
The apparent linear scaling of the relative transport efficiency with acceleration and Gaussian power
is not understood. We tried modeling the system classically, by considering the dynamics of an atom
in a tilted lattice potential 𝑉(𝑥) = −𝑉𝐿 cos(4𝜋𝑥∕𝜆) − 𝑚𝑎𝑥 [165] (Figure A.1a–b). Here 𝑉𝐿 ∝

√
𝑃𝐺

is the lattice depth, 𝜆 the lattice laser wavelength, 𝑚 the mass and 𝑎 the acceleration. Substituting
𝑥 → 𝑥′ = 4𝜋𝑥∕𝜆 and 𝑎 → 𝑎′ = 𝑚𝑎𝜆∕4𝜋𝑉𝐿 gives 𝑉(𝑥)∕𝑉𝐿 = −𝑎′𝑥 − cos𝑥. 𝑉(𝑥)∕𝑉𝐿 has extrema
at 𝑥1 = sin−1(𝑎) + 2𝜋𝑛 and 𝑥2 = − sin−1(𝑎) + 2𝜋(𝑛 + 1∕2), where the potential is 𝑉(𝑥1)∕𝑉𝐿 =
−𝑎′ sin−1(𝑎′) −

√
1 − 𝑎′2 and 𝑉(𝑥2)∕𝑉𝐿 = 𝑎′(sin−1(𝑎′) + 𝜋) +

√
1 − 𝑎′2 respectively. From this model,

we can extract for example a critical acceleration 𝑎crit, beyond which the lattice does not have a local
minimum anymore ∆𝑉∕𝑉𝐿 = 𝑎crit(𝜋 + 2 sin−1(𝑎crit)) + 2

√
1 − 𝑎2crit = 0.

However, for sufficiently strong accelerations and instantaneous changes of the acceleration, the
shift of the lattice minimum when changing the acceleration leads to a sudden increase of the atoms
potential energy (Figure A.1a–b). This additional increase in potential energy would happen at every
change of the acceleration and effectively reduce the critical acceleration. For a single acceleration,
without deceleration, the critical acceleration is given by 𝑎crit(sin

−1(𝑎crit) + 𝜋) +
√
1 − 𝑎2crit + 1 = 0.

Numerically, the critical acceleration in oneway transport (two accelerations with opposite sign) is found
to be 𝑎′𝑐𝑟𝑖𝑡 = 0.42 (Figure A.1c). Plugging in number from our experiment (𝑃𝐵𝑒𝑠𝑠𝑒𝑙 = 2.5W, 𝑃𝐺 = 6.5W,
𝑤Bessel = 80 µm, 𝑤𝐺 = 200 µm) this gives a critical acceleration in physical units 𝑎𝑐𝑟𝑖𝑡 ≈ 23 km∕s2,
i.e. much greater than what we test in experiment, suggesting that this is not the transport efficiency
limiting process in the experiment.

The model so far does not take temperature into account. We tried to model the effect of tem-
perature on the classical model above following [234, 235]. The density of states of thermal atoms
in a potential is given by a Chi-squared distribution with 6 degrees of freedom (3 for kinetic and 3
for potential energy) provided the equipartition theorem applies. In this case the density of states
is 𝑓(𝐸) = 𝐸2 exp[−𝐸∕𝑘𝐵𝑇]∕2(𝑘𝐵𝑇)2 (Figure A.1d). Note that we estimate lattice trap frequencies of
around 60–90 kHz, corresponding to harmonic oscillator energies of 3–4µK. The temperature of the
atoms in the lattice is measured to be 10µK, so the equipartition theorem may still be applicable. We
compute the transport efficiency by integrating the density of states up to the maximum effective po-
tential depth, taking its reduction due to multiple accelerations into account. The resulting efficiency
curves are illustrated in (Figure A.1e–f). Unfortunately, the resulting efficiency curves do not fit the
measured data when using the lattice depth and the temperature as a free parameter.

91



92 Appendices

0.0 0.2 0.4 0.6 0.8 1.0

Acceleration a'

−2

0

2

4

P
o

si
ti
o

n

0.0 0.5 1.0 1.5 2.0

Energy (arb.u.)

0.0

0.2

0.4

0.6

0.8

1.0
P

ro
b

a
b

ili
ty

 (
a
rb

.u
.)

0.0 0.1 0.2 0.3 0.4

Acceleration a'

0.0

0.2

0.4

0.6

0.8

1.0

E
ffi

c
ie

n
c
y

VG=1.0
VG=0.8
VG=0.5

0.0 0.2 0.4 0.6 0.8 1.0

Power PG (arb.u.)

0.0

0.2

0.4

0.6

0.8

1.0

E
ffi

c
ie

n
c
y

a'=0.01
a'=0.05
a'=0.25

0.0 0.2 0.4 0.6 0.8 1.0

Acceleration a'

0.0

0.5

1.0

1.5

2.0

P
o

te
n

ti
a
l D

e
p

th

Potential maximum
Back and forth (N=3)
Single transport (N=2)
no deceleration (N=1)

0 2 4 6 8 10

Distance x (arb.u.)

−2

0

2

4

P
o

te
n

ti
a
l V

(x
) 
(a

rb
.u

.)

a)

c)

e)

b)

d)

f)

Figure A.1 | a) Effect of multiple accelerations on the back and forth transport. Shown are potential curves for static
lattice (black), acceleration towards glass cell (increasing x, blue) and deceleration (orange). Arrow sketches how the
non-adiabatic tilt of the lattice leads to an effective increase in the particles energy. b) Potential depth of the tilted
lattice versus acceleration. Blue = local minimum, Orange = local maximum, Green = x = 0. c) Effective potential depth
for different number of accelerations. The critical acceleration for a given number of accelerations and decelerations
is where the potential depth crosses zero. d) Density of state (blue) for two different temperatures (solid line T = 0.1,
dotted line T = 0.3) and cumulative distribution (orange) for classical particles trapped in a harmonic potential. e)
Efficiency versus power of the laser generating the lattice at different accelerations. f) Efficiency versus acceleration
for different powers. The temperature in e) and f) is T = 0.3.
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