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Abstract

Cluster analysis is one of the fundamental tasks in exploratory data mining. Data
scientists use cluster analysis to discover previously unknown structures within a
data set. Over the years, a vast variety of specialized clustering methods have been
developed to deal with the high diversity of data domains, which can be found in
industry and science.

Clustering methods are the central topic of this cumulative dissertation. We
discuss our contribution of five peer-reviewed and published clustering techniques
aiming at different applications. The common ground of all proposed methods
is the joint optimization of clustering objectives with linear and nonlinear feature
transformations. The general idea behind the joint optimization is that a feature
transformation can provide a clustering algorithm with a refined representation
of the data. In return, the clustering target function provides information on how
to improve and refine the data transformation. This joint optimization approach
contrasts with the ‘classical approach’, in which the data scientist first transforms
the data and then applies the cluster analysis in a separate step.

With extensive experiments using synthetic and real-world data sets, we empir-
ically show that the simultaneous optimization of both objectives has an advan-
tage over separate optimization steps. With the data transformation, we pursue a
twofold goal. First, it mitigates the influence of irrelevant, structure-less features
on the clustering objective. Second, the transformation often results in a substantial
dimensional reduction. This reduction, in turn, promises an easier (visual) inspec-
tion of the representation itself, as well as, the structures found by the clustering
method.

The first contribution is the SubKmeans algorithm. It extends the classic and
well-known Lloyd’s k-means method in a novel and elegant way to incorporate a
linear feature transformation. SubKmeans aims to find a k-means-style clustering
partition and transform the clusters linearly into a common, arbitrarily oriented
subspace which is optimal for the cluster structures. Our method is able to pursue
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Abstract

these two goals simultaneously. The dimensionality of this subspace is found
automatically, and therefore the algorithm does not have any additional parameters
compared to k-means. At the same time, this subspace helps to mitigate the curse
of dimensionality.

The second presented clustering method tackles the phenomenon that data in
high-dimensional spaces can often be meaningfully clustered in multiple ways. For
instance, objects could be grouped either by their shape, their material, or their color.
Each of these groupings provides a unique view of the structures contained in the
data, which is not covered by the other clusterings. With the Nr-Kmeans clustering
algorithm, we follow the approach that different, non-redundant, k-means-like
clusterings may exist in different, arbitrarily oriented subspaces of the high-dimen-
sional input space. We assume that these subspaces (and optionally an additional
subspace without any cluster structure) are orthogonal to each other. We empirically
show that the orthogonality constraint induces the desired non-redundancy.

Although Nr-Kmeans can find multiple non-redundant clusterings within a data
set, a user must specify the number of clusters within each subspace as an input
parameter. With Nr-DipMeans, we propose a method that automatically finds
the number of clusters. The only remaining parameter is the number of expected
subspaces. Nr-DipMeans harnesses Hartigan’s dip test to identify the number of
clusters for each subspace under the assumption that clusters follow a unimodal
distribution.

Deep clustering—the idea of combining deep learning techniques with cluster-
ing algorithms—has attracted much interest in recent years. With DeepECT, we
contribute a novel method to this research area. DeepECT is the first method to
combine a divisive, hierarchical clustering objective with the nonlinear transforma-
tion of an auto-encoding neural network (autoencoder). Previous deep clustering
methods have only provided the user with a flat-clustering result where the user
must specify the number of clusters. However, finding a suitable value for the
number of clusters for these methods can be more complicated than in classical
clustering settings. The nonlinear embedding adapts almost perfectly to the chosen
number of clusters and destroys structural information not captured by the clusters.
DeepECT utilizes a specialized optimization procedure that circumvents this prob-
lem. The level of detail to be analyzed (i.e., the selected number of clusters) can be
chosen afterward and separately for each sub-tree.

With the final contribution, we demonstrate that the non-redundant clustering
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Abstract

objective of Nr-Kmeans can also be incorporated with deep clustering methods.
ENRC is the first non-redundant clustering algorithm that utilizes the nonlinear
transformation of an autoencoder. Like Nr-Kmeans, it can find multiple highly-
non-redundant clusterings in subspaces of different dimensionality within a data
set. In contrast to Nr-Kmeans, which hard-assigns each dimension of the rotated
space to one clustering, we use in ENRC a differentiable soft assignment within
the autoencoder’s embedded space. The autoencoder’s nonlinear transformation
allows ENRC to cluster complex data sets like image data without the need for any
explicit feature engineering.

VI



Zusammenfassung

Die Clusteranalyse ist eine der grundlegenden Aufgaben des explorativen Data
Minings. Data Scientists verwenden die Clusteranalyse, um bisher unbekannte
Strukturen innerhalb eines Datensatzes zu entdecken. Über die Jahre wurden eine
Vielzahl spezialisierter Clustering-Methoden entwickelt, welche für die vielfältigen
Einsatzbereiche in Industrie und Wissenschaft notwendig sind.

Clusterverfahren sind auch das zentrale Thema dieser kumulativen Dissertati-
on. Wir diskutieren fünf von uns veröffentlichte Verfahren, mit welchen wir zu
diesem Forschungsfeld beigetragen. Die gemeinsame Grundlage aller vorgeschlage-
nen Methoden ist die eng verbundene Optimierung einer Clustering-Zielfunktion
mit einer linearen bzw. nichtlinearen Merkmalstransformation. Die grundlegende
Idee hinter dieser gemeinsamen Optimierung ist, dass die Merkmalstransformation
der Clustering-Zielfunktion eine verfeinerte Repräsentation der Strukturen in den
Daten liefert. Im Gegenzug liefert die Clustering-Zielfunktion Informationen dar-
über, wie die Datentransformation verbessert und verfeinert werden kann. Dieser
Ansatz der gemeinsamen Optimierung steht im Kontrast zur “klassischen Herange-
hensweise”, bei dem der Data Scientist zunächst die Daten transformiert und dann
in einem separaten Schritt die Clusteranalyse anwendet.

Durch umfangreiche Experimente zeigen wir mit Hilfe von synthetischen und
realen Datensätzen empirisch, dass die gleichzeitige Optimierung beider Ziele einen
Vorteil gegenüber der getrennten Optimierung hat. Mit der Datentransformation
werden dabei zwei Absichten gleichzeitig verfolgt. Erstens verringert diese den Ein-
fluss irrelevanter, strukturloser Merkmale auf die Clustering-Zielfunktion. Zweitens
führt die Transformation häufig zu einer substanziellen Dimensionsreduktion. Die-
se wiederum verspricht eine leichtere (visuelle) Überprüfung der Transformation
selbst, als auch der von der Clustring-Methode gefundenen Strukturen.

Der erste wissenschaftliche Beitrag ist der SubKmeans-Algorithmus. Das Verfah-
ren erweitert die klassische und sehr bekannte Lloyd’s k-means-Methode auf eine
neuartige und elegante Art und Weise, um eine lineare Merkmalstransformation
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Zusammenfassung

zu integrieren. SubKmeans zielt darauf ab, eine Clustering-Partition im Stil von
k-means zu finden sowie die Cluster linear in einen gemeinsamen, beliebig orien-
tierten Unterraum zu transformieren, welcher für die Clusterstrukturen optimal ist.
Unsere Methode ist in der Lage, diese beiden Ziele gleichzeitig zu verfolgen. Die
Dimensionalität des Unterraums wird automatisch gefunden, weshalb der Algorith-
mus über keine zusätzlichen Parameter gegenüber k-means verfügt. Gleichzeitig
trägt dieser Unterraum dazu bei, den Fluch der Dimensionalität abzuschwächen.

Die zweite vorgestellte Clustering-Methode befasst sich mit dem Phänomen, dass
Daten in hochdimensionalen Räumen oft auf mehr als eine Weise sinnvoll geclustert
werden können. Beispielsweise könnten Objekte entweder nach ihrer Form, ihrem
Material oder ihrer Farbe gruppiert werden. Jede dieser Gruppierungen stellt eine
einzigartige Sicht auf die in den Daten enthaltenen Strukturen dar, die von den
anderen Gruppierungen nicht abgedeckt wird. Mit dem Nr-Kmeans-Clustering-
Algorithmus verfolgen wir den Ansatz, dass in verschiedenen, beliebig orientierten
Unterräumen des hochdimensionalen Ausgangsraums unterschiedliche, nicht red-
undante, k-means-ähnliche Clusterings existieren können. Wir gehen davon aus,
dass diese Teilräume (und optional ein weiterer Teilraum ohne jegliche Cluster-
struktur) orthogonal zueinanderstehen. Wir zeigen empirisch, dass die Orthogona-
litätsbeschränkung die gewünschte Nicht-Redundanz induziert.

Obgleich Nr-Kmeans mehrere nicht redundante Cluster innerhalb eines Daten-
satzes finden kann, hat ein Benutzer die Bürde, dass er die Anzahl der Cluster inner-
halb jedes Unterraumes als Eingabeparameter angeben muss. Mit Nr-DipMeans

schlagen wir eine Methode vor, welche in der Lage ist, die Anzahl der Cluster
automatisch zu finden. Der einzige verbleibende Parameter ist die Anzahl der
erwarteten Unterräume. Nr-DipMeans macht sich den Dip-Test von Hartigan zu-
nutze, um die Anzahl der Cluster für jeden Unterraum unter der Annahme zu
identifizieren, dass Cluster einer unimodalen Verteilung unterliegen.

Deep Clustering - die Idee, Techniken des Deep Learings mit Clustering-Algo-
rithmen zu kombinieren - hat in den letzten Jahren großes Interesse gefunden. Mit
DeepECT tragen wir eine neuartige Methode zu dieser Forschungsrichtung bei.
DeepECT ist die erste Methode, die ein hierarchisches Top-Down-Clustering-Ziel
mit der nichtlinearen Transformation eines autocodierenden neuronalen Netzes
(Autoencoder) kombiniert. Bisherige Methoden des Deep-Clustering haben dem
Benutzer nur ein flaches Clustering-Ergebnis mit einer vorgegebenen Anzahl von
Clustern geliefert. Das Finden eines passenden Wertes für die Anzahl von Clustern

VIII



Zusammenfassung

für diese Art von Methoden kann jedoch komplizierter sein als bei klassischen
Clustering-Verfahren. Die nichtlineare Transformation passt sich an die gewählte
Clusterzahl nahezu perfekt an und zerstört dabei Strukturinformationen, welche
nicht durch die Cluster erfasst werden. DeepECT verwendet ein spezialisiertes Op-
timierungsverfahren, das dieses Problem umgeht. Der Detailgrad der Analyse (d.h.
die gewählte Cluster-Anzahl) kann nachträglich und für jeden Teilbaum separat
gewählt werden.

Mit dem letzten Clustering Algorithmus zeigen wir, dass das nichtredundante
Clusteringziel von Nr-Kmeans auch mit Deep-Clustering Algorithmen umgesetzt
werden kann. ENRC ist der erste nicht-redundante Clustering-Algorithmus, wel-
cher die nichtlineare Transformation eines Autoencoders nutzt. Wie Nr-Kmeans

kann er in einem Datensatz mehrere hochwertige, nicht-redundante Clustering-
Ergebnisse in Unterräumen unterschiedlicher Dimensionalität finden. Im Gegen-
satz zum Nr-Kmeans Verfahren, welches jede Dimension des eingebetteten Raums
einem Clustering fest zuordnet, verwenden wir in ENRC eine differenzierbare wei-
che Zuordnung. Die nichtlineare Transformation des Autoencoders ermöglicht es
ENRC, komplexe Datensätze wie z. B. Bilddaten zu gruppieren, ohne dass ein
explizites Feature-Engineering erforderlich ist.
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1 Introduction

The technological advances of the last decades have made it increasingly easier
to accumulate data with unprecedented speed and level of detail. Consequently,
the amount of stored data has doubled every two years since the beginning of
the 1980s [GR12]. The collection and storing of data is nowadays an everyday
experience. Some even go so far as to call data the oil of the 21st century [Too14].
This era of big data is usually characterized by the three v’s standing for volume,
variety, and velocity [GH15]. But this characterization has also been extended by
other properties [KM16], such as: exhaustivity, resolution, indexicality, relationality,
extensionality, and scalability. Of course, the collection and storage of data is not
an end in itself. Scientists, Companies, and Governments collect the data with
the intention to verify assumptions and extract previously unknown patterns that
provide information about underlying processes. The knowledge gathered this way
grants new insights that guide future decision-making processes or even allows
automating these processes entirely.

Many different methods and algorithms have been proposed to extract informa-
tion from and make predictions based on data. These techniques are researched
and applied in data mining and the closely related fields of data science, artificial
intelligence, statistics, and machine learning. The influence of these fields in to-
day’s society is increasingly prominent, and they make regular appearances in the
headlines of mainstream media, e.g., in [Tau20; Wax13; Wei13; Bro20; Ros20]. The
Harvard Business Review even goes as far as declaring a data scientist’s job as ’The
Sexiest Job of the 21st Century’ [DP12]. The boundaries between the fields men-
tioned above are vague, and different conflicting definitions exist, e.g., in [Val18b;
Val18a; Lip15; Cas16; Rap17; May16; Hei17].

An influential view on data mining is described by Usama Fayyad in [FPS96] that
defines data mining as one step in the process of knowledge discovery in databases
(KDD). The five-step pipeline starts with a raw and unprocessed database. In the
first step, we select objects and variables from the whole database, which promise to
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1 Introduction

correspond to our research goal. For this selection, we should also consider criteria
such as availability and quality. Next, we need to preprocess the data. This includes
removing noise, handling missing values, or normalizing and standardizing the
data representation. In the third step, we apply dimensional reduction and feature
transformation methods to reduce the number of effective variables or gain a task-
specific representation. The fourth step is the central Data Mining task. We use
various algorithms to extract patterns and information from the transformed data.
The concrete algorithms to be used depend heavily on our goal, and selecting
suitable methods is a non-trivial problem. Finally, we interpret and evaluate the
found patterns, which broadens our understanding and increases our knowledge
of the mechanisms and processes underlying the data. Last but not least, we can
also use the patterns to re-iterate the pipeline partially or entirely to refine and
distill the found information.

Depending on the concrete research goal, we have to choose different types of
Data Mining algorithms. For instance, we might want to summarize the data,
detect unusual or uncommon instances (outliers), classify objects based on their
properties, or find discrete groups of clusters. Each of these research targets requires
different types of methods. In this dissertation, we focus on unsupervised clustering
algorithms. The general goal of cluster analysis is to partition the instances of a data
set in such a way that objects within the same group are more similar to each other
than to objects of a different group. These algorithms are unsupervised, meaning
that they require no further information about structures and patterns within the
given data set. Instead, it can be used to find these structures.

1.1 Research Goal

This cumulative dissertation contributes five publications proposing algorithms for
cluster analysis. The common denominator and goal of all proposed algorithms
is the objective to fuse the third and fourth step of the KDD process into a single
technique that jointly optimizes an unsupervised feature transformation and a clus-
tering objective. Thereby, the unsupervised feature transformation can provide the
clustering objectives with a refined representation of the data. In turn, the clus-
tering objective provides information on how this representation can be improved.
The empirical evaluation of these algorithms on various data sets shows that jointly
optimizing both objectives is advantageous over the combination of algorithms that
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perform those two steps separately.
The feature transformations integrated into the algorithms are either linear or

nonlinear. A linear transformation has the advantage that, in general, it is regarded
as easier to interpret. The interpretability increases even further when the linear
transformation is further restricted to be an orthogonal matrix, as used in three
of the contributed algorithms. An orthogonal matrix allows its weights to be
interpreted directly as feature importance. Further, all proposed linear methods also
perform a projection onto a subspace of the original space. From the perspective
of the clustering objective, this is also a type of reduction of dimensionality. This
provides for easier subsequent visualization and supports the interpretation of the
found patterns.

However, a linear transformation may be too restricted in some cases. In these
scenarios, more powerful nonlinear transformations can help. The general concept
of these transformations is to extract more abstract, higher-level structures within
the provided low-level features. Since the number of higher-level features is usually
(but not necessarily) far lower, it also is often used as a dimensionality reduction
method. Further, it even has the chance to find structures in the low-level features
that would have never been extracted by hand-crafted features. A downside of
nonlinear transformation is its interpretability, which is much harder than with a
linear model. In the literature, such transformations are called black-box methods—
in contrast to easy to interpret white-box methods, such as linear transformations.
Nevertheless, in recent years different methods have been proposed to analyze
neural-network-based nonlinear transformations, e.g., in [MSM18; Ola+20; Car+20].

1.2 Thesis Structure

The remainder of this thesis is ordered as follows. Chapter 2 describes fundamental
data mining methods directly related to the contributions of this dissertation. Chap-
ter 3 provides general information about the contributed publications and other
publications written at the time of the doctorate. Chapter 4 discusses the common
and distinguishing properties among the contributions and the preliminary meth-
ods described in Chapter 2. Chapter 5 offers potential future research directions
based on the contributions and concluding remarks. The appendix contains the five
publications, as well as the attribution of work for all co-authors.

3



2 Preliminaries

This thesis’s contributions rest on two central areas within data science: dimensional
transformation and cluster analysis. This chapter discusses several fundamental
techniques directly related to the methods and algorithms we contribute through
this thesis. We introduce and discuss each technique only to the depth necessary to
understand the connection between them and the thesis contributions. Interested
readers can find more comprehensive discussions in more subject-specific literature
referenced in the respective sections.

2.1 Centroid-based Cluster Analysis

In general, cluster analysis is an unsupervised learning task that aims to find
structures within a set of data objects.

Clustering is an ill-posed and only vaguely-defined problem. In its most general
form, one could say that clustering methods aim to group instances of a data set,
such that objects within a group are more similar to each other than to data points
of other groups. More formally defined, the optimization goal can be described
as ’maximizing the intraclass similarity and minimizing the interclass similarity’
[HPK11, p.20]. However, it can be shown that even a simple set of three axiomatic
and desirable properties for a partitioning technique is impossible to fulfill [Kle03].
Nevertheless, this result should not be seen as a coffin nail for the clustering en-
deavor. Instead, different algorithms yield different relaxations and trade-offs of
such axiomatic properties. Further, clustering algorithms define their objective
through explicit and implicit assumptions about patterns and structures that they
aim to unveil. Selecting a suitable clustering algorithm for a given data set is part
of a data scientist’s job.

Cluster algorithms with a hard and exclusive object-to-cluster assignment are also
called partition-based clustering methods. Determining the optimal partition for a
given loss function and set of objects is usually NP-hard. Therefore, clustering al-
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2 Preliminaries

gorithms only aim to find a sufficient local optimum. They utilize different starting
conditions to reach different local optima of their respective clustering objective. All
contributed algorithms in this thesis are partition-based clustering algorithms. Fur-
ther, they have in common that they represent clusters by representatives, usually
termed centroids. Often a centroid can be seen as a model object representing the
typical and specific properties of its cluster. However, this is only valid if the cluster
contains objects that are similar enough to each other such that the representative
is able to express their common properties. Because each cluster has only a single
centroid, an implicit assumption of these methods is that clusters of objects tend to
have a spherical or at least a convex shape. However, this is a soft requirement. All
methods can cope with a violation of this property up to a certain degree.

Numerous different clustering methods have been developed and applied to
different areas in science and industry. Therefore, the following books and surveys
are only a small selection for more comprehensive discussions: [AR16; HPK11;
Ber06; GMW07; XT15; XW05; KKZ09].

2.1.1 k-means Clustering Algorithm

Algorithm 1: Lloyd’s k-means algorithm

1 Input: data set D; number of clusters k
2 Output: clusters {C1, . . . , Ck};
// Random initialization:

3 ∀i ∈ [1, k] : µi ← random data point of D
4 repeat

// Assignment step
5 Cj ← ∅
6 ∀x ∈ D:
7 j← arg min

i∈[1,k]
∥x− µi∥2

8 Cj ← Cj ∪ {x}
// Update step

9 ∀i ∈ [1, k]:
10 µi ← 1

|Ci| ∑x∈Ci
x

11 until convergence;
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2 Preliminaries

The k-means clustering algorithm is one of the most influential data mining
algorithms [Wu+08]. A key element of its success is the variability and simplicity
of this clustering approach, which allows it to be easily implemented and applied
in various scenarios. The central idea of k-means is that we want to find a set of
k clusters Ci, with 1 <= i <= k, which partitions the data such that the sum of
squared errors is minimized,

k

∑
i=1

∑
x∈Ci

∥x− µi∥2
2 , (2.1)

where x represents a data point, µi represents the cluster representative of cluster i,
and ∥ · ∥2 represents the Euclidean norm.

This loss can be optimized in different ways. The most common way to op-
timize this loss function is Lloyd’s algorithm [Llo82] shown in Algorithm 1. It
alternates between assigning each data point to the nearest centroid and updating
the centroid locations based on the assigned data points. Both steps are repeated
until convergence, i.e., the assignment does not change anymore. Figure 2.1 shows
an example of the k-means algorithm for a simple data set. One can also apply
other stopping criteria; for instance, the number of iterations reaches some speci-
fied value or difference in the loss of two consecutive iterations falls below some
threshold. The solution found at convergence is only a local optimum because, as
with most clustering objectives, finding the global optimum for the loss function
shown above is NP-hard, even for k = 2 [GJW82]. The optimization method it-
self is a particular instance of Newton’s method [BB95], and the convergence is at
least quadratic [BBV04, p. 488]. We can find different local optima by running the
algorithm with different initialization for the centroids. The center initialization
strategy using random data points shown in Algorithm 1 is only one possibility.
Nowadays, a widespread way is to use the k-means++ method[AV07], which is
O(log k)-competitive to the global optimum.

When we use k-means, we have to select a value for the number of clusters
k. Different methods have been proposed to guide this selection process. The
silhouette coefficient [Rou87] and the elbow method [KS96] are both techniques
that aim to help the researcher to determine the right number of clusters by running
the algorithm multiple times and evaluating the clustering outcome with different
metrics. The silhouette coefficient determines the cluster quality by comparing
an object’s similarity to the objects of its cluster compared to objects from the

6



2 Preliminaries

other clusters. For the elbow method1, we create a line-diagram with the number
of clusters on the x-axis and the percentage of explained variance on the y-axis.
When doing this, we can often find a characteristic change in the slope of the line—
the elbow. X-means [PM+00], Dip-means [KL12], and G-means [HE04] are three
methods that aim to automatically determine the number of clusters by applying
statistical measures and hypothesis testing.

k-means with the Euclidean norm is the standard version of this algorithm. How-
ever, one could also use other distance measures or norms, which has implications
on how the cluster centroids µi are calculated. For instance, in k-medians the L1-
norm is used. As a consequence, the centroid is calculated using the median instead
of the mean. The algorithm k-medoids exclusively selects data points as centroids
instead of calculating them based on the assigned data objects. This method can be
used in situations where we want to use a similarity measure that is not based on a
metric, and a proper way to calculate the centroids is undefined.

The extensions mentioned above are relevant for the contributions in this the-
sis, but the list is nowhere complete. The simplicity of k-means inspired many
researchers to propose different extensions and modifications. A starting point for
a more comprehensive view of these algorithms can be found in [Wu12]. Despite its
age, k-means is actively researched with extensions proposed at top-tier conferences
and in high-impact journals.

2.1.2 Fuzzy-c-Means

The Fuzzy-c-Means clustering algorithm [Dun73; Bez81] is a flat clustering algo-
rithm closely related to k-means. The name-giving difference of Fuzzy-c-Means to
k-means is its property to assign data points softly and with a certain degree to all
clusters. This concept is represented by a positive weight uj,i indicating how much
the j’th data object belongs to the i’th cluster:

N

∑
j=1

k

∑
i=1

um
j,i
∥∥xj − µi

∥∥2
2 . (2.2)

The sum over all weights for a given data point sums up to one. The parameter m
with m ≥ 1 is called the fuzzifier and determines how crisp the cluster assignments

1Sometimes this method is also termed as ’finding the knee of a curve.’
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(a) Data set (b) Random Initalization (c) 1. Iteration

(d) 4. Iteration (e) 7. Iteration (f) 8. Iteration

Figure 2.1: The plots show an example of the k-means method for a toy data set.
Each plot shows one iteration of the loop in Algorithm 1. The lines rep-
resent decision boundaries for the assignment of data points to clusters.
Figure (f) shows the converged algorithm.
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are. In the limit m = 1, the objective is equal to k-means. In the limit m going to
infinity, the algorithm assigns objects equally to all clusters.

We can optimize the cost function with an adapted version of Algorithm 1. The
update equations full-filling the constraints on m can be found with a Lagrange
multiplier. In the update step, we update the centroids with a weighted average of
all data points, where the weights are the ’fuzzified’ weights uj,i:

µi =
∑N

j=1 um
j,ixj

∑N
j=1 um

j,i
. (2.3)

In the assignment step, we update the soft-assignments uj,i for each data point j to
each centroid i based on the distance:

uj,l =
1

∑k
i=1

(
∥xj−µl∥2
∥xj−µi∥2

) 2
m−1

. (2.4)

An illustration of the Fuzzy-c-Means algorithm is shown in Figure 2.2.

2.1.3 Gaussian Mixture Models

A Gaussian mixture model is a probabilistic model that combines several multivari-
ate normal distributions—each representing one cluster—to a single probability:

p(x) =
k

∑
i

πiN (x|µi, Σi), (2.5)

where µi is the mean vector and Σi is the covariance matrix of the i’th normal
distribution. πi is called the mixing component. It can be seen as the probability
that a data point is created by the i’th Gaussian distribution.

Usually, we use the expectation-maximization algorithm, an iterative procedure
related to Lloyd’s k-means algorithm, to optimize the likelihood function of this
probability distribution for a given data set (e.g., see [Bis06, p. 430ff]).

In the expectation-step (the assignment-step in k-means), we determine the soft-
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(a) Random Initalization (b) 1. Iteration (c) 2. Iteration

(d) 3. Iteration (e) 4. Iteration (f) 5. Iteration

f
(g) 6. Iteration (h) 7. Iteration (i) 8. Iteration

Figure 2.2: The figure shows an illustration of the Fuzzy-c-Means algorithm for a
toy data set. The fuzzifier was set to m = 3. We used the same initial
centroids for k-means in Figure 2.1. We use the colors red, green, and
blue to represents each of the clusters. The colors of the data points
represent the soft-assignments to each cluster in the RGB color model.
The last plot shows the converged algorithm.
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assignment of a data point j to a cluster i:

γj,i =
πiN (xi | µi, Σi)

∑k
l=1 πlN (xi | µl , Σl)

. (2.6)

Within the Gaussian mixture model, this is equivalent to the posterior probability
that the data point j was generated by the Gaussian distribution representing this
cluster i.

In the maximization-step (the update-step in k-means), we optimize the distribu-
tion parameters of each cluster. The mean vector is the weighted empirical average
over all data points:

µi =
1

∑N
j=1 γj,i

N

∑
j=1

γj,ixj. (2.7)

The covariance matrix is updated with the weighted empirical covariance matrix:

Σi =
1

∑N
j=1 γj,i

N

∑
j=1

γj,i
(
xj − µi

) (
xj − µi

)T . (2.8)

We perform both steps until convergence. Figure 2.3 shows an example of the
expectation-maximization optimization algorithm applied to a Gaussian mixture
model for a simple data set.

The k-means cost function is the limit to a Gaussian Mixture Model, where the
covariance matrix is isotropic σ2I and where we let σ go to zero [KJ12].

2.1.4 Bisecting-k-means

The bisecting-k-means [SKK+00] is a simple hierarchical top-down clustering method
that harnesses k-means. Initially, we consider the whole data set as a single cluster.
Then, we recursively apply k-means with k = 2 to a selected cluster. In that way,
we create a binary-tree-like hierarchy of clusters and sub-clusters. We can apply
different strategies for the selection of the next cluster we want to split. The same
is true for the stopping criteria. A typical selection strategy is always to split the
largest cluster [SKK+00]. We stop the recursive process when a specific desired
condition is met. Examples of such conditions could be the number of leaf nodes,
the maximum number of data objects assigned to a leaf node, or when the sum of
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(a) Random Initalization (b) 1. Iteration (c) 3. Iteration

(d) 6. Iteration (e) 9. Iteration (f) 12. Iteration

(g) 15. Iteration (h) 18. Iteration (i) 21. Iteration

Figure 2.3: The plots show the iterations of a Gaussian mixture model on the toy
data set. Figure (a) shows the random initialization with spherical co-
variance matrices. We use the colors red, green, and blue to represent
the clusters. The colors of the data points represent the soft-assignments
to each cluster in the RGB color model. The ellipses over each centroid
show the standard deviation and twice the standard deviation of the
underlying multivariate Gaussian distribution. Figure (i) shows the con-
verged algorithm.
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(a) Initialization (b) 1. Iteration (c) 2. Iteration

Figure 2.4: The figures show the application of Bisecting-k-means on the toy data set.
Figure (a) shows the single root node with all data points assigned to it.
Figure (b) and (c) show the iterations until three clusters, represented by
the leaf nodes, are found. In each iteration, we apply k-means with k = 2
to the leaf node with the highest sum of squared distances between the
points and the centroid. The centroids of inner nodes are hollow. Leaf
node centroids are filled. The centroid of each level has its respective
symbol. If we compare the decision boundaries with the ones of k-means
in Figure 2.1, we can see slight differences, which are due to the divisive,
top-down assignment approach of Bisecting-k-means.

squared distances of the leaf nodes is all below a specified threshold. In the extreme
case, we stop when every data point resides in its own leaf node cluster. Figure 2.4
shows the application of Bisecting-k-means for a simple data set.

2.2 Feature Transformation

The related research areas of feature transformation, dimensionality reduction,
feature extraction, and representation learning can roughly be described as aiming
to transform the given presentation of a data set such that they are more suited for
subsequent data science tasks. A tightly related field is feature selection, in which
methods aim to select appropriate features and remove the unimportant ones from
the data set representation.

An important application of this technique is to provide a researcher with useful
low-dimensional visualizations of the structures and patterns hidden in the data’s
high-dimensionality. A low-dimensional presentation can help to understand the
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processes underlying the data set. However, feature transformation and dimen-
sionality reduction are not only useful for visualization but are also often able
to improve the performance of unsupervised, semi-supervised, and supervised
learning tasks.

Data transformation also touches on some of the aspects of the infamous curse
of dimensionality. With increasing dimensionality, the notion of naive similarities
between two data points gets increasingly vague. The underlying obstacle is that
in each feature-dimension, small dissimilarities add up to influence the measure
considerably. In addition, it can be assumed that the data set also contains features
that do not add relevant information to a research task such as clustering; yet, these
features also contribute to the similarity measure [KKZ09].

A common assumption for high-dimensional spaces is that the data is contained
in a lower-dimensional manifold. This manifold can be locally approximated as
a Euclidean space, while this does not hold for the global space. An informal yet
illustrative example of a manifold is a metal spring. If we ignore the wire’s width,
we can treat the spring as a one-dimensional object that is embedded in our three-
dimensional world. Consequently, a sheet of paper—ignoring the thickness—is a
two-dimensional manifold.

Dimensional transformation methods aim at approximating such a manifold in
a lower-dimensional space. The most common methods are unsupervised and
do not use any target information. Nevertheless, there are also supervised and
semi-supervised methods, exploiting target labels that are available for all, or at
least some data objects. In the following, we introduce the unsupervised methods
Principal Component Analysis as a linear dimensionality reduction method and
autoencoder as a potentially nonlinear dimensionality reduction method.

t-distributed stochastic neighbor embedding (t-SNE) [MH08] and Uniform manifold
approximation and projection (UMAP) [MH18] are two nonlinear dimensionality re-
duction methods, which have become popular in recent years for the visualization
of high-dimensional data. Other essential methods are Multidimensional Scaling,
Independent Component Analysis, and Non-Negative Matrix Factorization. A more gen-
eral overview of different methods can be found in the following books and surveys:
[Aar13], [CHU07], [LV07].
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Figure 2.5: The diagram shows a two-dimensional example data set. The arrows
are indicating the two principal, orthogonal directions of maximal vari-
ance found by PCA. The arrows’ length is equal to the variance in the
respective direction.

2.2.1 Principal Component Analysis

Principal Component Analysis (PCA) is a commonly used linear dimensional reduc-
tion method. In PCA, we want to find a matrix U ∈ Rd×n, which represents a
linear transformation of the original data space with dimensionality d onto a lower-
dimensional subspace with dimensionality m, m < d, such that we can transform
the data points onto the lower-dimensional space by UT(x− µ), where µ represents
the data mean. Thereby, each column in U represents an orthogonal direction
within the data set, in which the spread of the data (i.e., the variance) is maximal.
Figure 2.5 illustrates this for an example data set. PCA does not compress or stretch
the data. Therefore, we constrain the Principal components—the columns of U—to
be orthonormal. This transformation relates to a rigid transformation ( rotation and
reflection, where only the former is desired and the latter can be ignored), followed
by a projection where we remove the dimensions with low-spread.

These properties can be formalized into a cost function, where we want to maxi-
mize the spread of the data in the transformed space under the constraint that U is
orthogonal:

max
1
|D| ∑

x∈D

∥∥∥UT(x− µ)
∥∥∥

2

2
s.t. UTU = In×n. (2.9)
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We can utilize the cyclic properties of the trace operations to rewrite this loss
function:

max Tr
(

UT
[ 1
|D| ∑

x∈D
(x− µ) (x− µ)T

]
U
)

s.t. UTU = In×n. (2.10)

The term in the square brackets is the data covariance matrix. Since it is symmetric
and positive definite, we can optimize this loss function using the eigendecom-
position [NBS10]. Thereby, we put the eigenvectors corresponding to the largest
eigenvalues as columns in U, until we have the desired number of dimensions in
the projection. Thereby, the trace itself is the sum of these largest eigenvalues, as
well as the sum of the variances in the directions of the eigenvectors [Bar12, p.
329ff].

The loss function above does not have a unique solution. All sets of orthonormal
vectors spanning the same subspace are a solution to the optimization problem.
However, only the eigenvectors (the Principal components ) have the property
that the m eigenvectors corresponding to the largest eigenvalues are a solution for
dimensionality m. In other words, the eigenvector corresponding to the largest
eigenvalue minimizes the loss for m = 1. Adding the eigenvector of the second
largest eigenvalue, we get the solution for m = 2, and so forth. None of the other
minimizers have this property.

Further, we should mention that above we implicitly assumed that the data
covariance matrix is of full rank. If this is not the case, there is a strong direct
linear correlation among the data set’s dimensions. In [Bis06, p. 562], the interested
reader can find another detailed explanation for the emergence of the eigenvector,
which does not rely on the trace optimization trick. However, the above-shown way
allows us to highlight the relationship between PCA and the contributions in this
thesis.

An alternative view on PCA aims to minimize the mean squared error between
a data point and its reconstruction. We will utilize this definition without deriving
it explicitly in Section 2.2.3 to explain the connections to autoencoders. In [Bis06, p.
563f], the interested reader can find a detailed derivation from this point of view
on PCA.

In the literature, we can also find extensions and modifications of PCA. A close
relative to PCA is a preprocessing procedure called whitening, which transforms
the data such that its data covariance matrix is the identity matrix. Other extensions
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(b) The general architecture of autoencoder.

Figure 2.6: A stylized version of a single neuron and the architecture of a typical
bottlenecked autoencoder.

make use of Kernels in Kernel-PCA, the use of the L1-norm instead of the Euclidean
norm in Robust PCA, or probabilistic interpretations as in Probabilistic PCA and
Bayesian PCA. We can find a more comprehensive look at various extensions, for
example, in [Bar12, p. 338ff] or [Bis06, p. 570ff]).

2.2.2 Autoencoder

As deep learning is a vast and very fast developing research area, the following
short paragraphs to neural networks and autoencoders only provide a very brief
introduction needed to link it with our contributions. We will not touch on more
specific topics like convolution networks, recurrent networks, or specific types of
network architectures. A recent comprehensive introduction to deep learning can
be found in [GBC16].

The smallest building block of a neural network is a neuron. A neuron has a—
potentially multi-dimensional—input and builds the weighted sum of this input
using its weight vector w. Next, a constant bias b term is added to this weighted
sum. Then, this linear combination is passed through an activation function a(·),
which often is a nonlinear function. If this output is large, neurons are usually
considered to be active and inactive if the output is small. Figure 2.6a shows a
stylized version of a neuron. Mathematically it can be expressed by the following
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formula:

y = a(wTx + b), (2.11)

where w is the weight vector and b the bias term of the neuron. Common activation
functions a(·) are:

• Identity function (for a linear activation),

• Sigmoid: 1
exp(−x)+1 ,

• Hyperbolic tangent: 1− 2
exp(2x)+1 ,

• Rectified linear unit: max(0, x).

A single neuron with a linear activation function is equivalent to the statistical
linear regression model, and with the sigmoid activation, it is similar to the logistic
regression model.

Usually, multiple neurons are arranged in layers so that all neurons of a layer
use the previous layer’s output as input and provide the next layer in turn with
their output. This simple type is called a feed-forward or fully-connected neural
network. The weights of such a layer can be represented as a matrix and the biases
as a vector.

The network parameters and the input values are only one part. Further, we
need some kind of target value the network should produce for a given input. For
example, this target could be the label information in a classification task. Specific to
the task, we also need some differentiable loss function. Common loss functions are
the squared error or the cross-entropy loss. Finally, we have to initialize the network
parameters for which researchers have introduced many different strategies for
general and architecture-specific situations.

We can optimize the network parameters with respect to the loss function by
a procedure called backpropagation. The underlying idea is to apply the chain
rule to derive the gradient for the parameters of each layer. Modern frameworks
for neural networks such as Pytorch [Pas+19] or Tensorflow [Mar+15] facilitate
this for their users through automatic differentiation. The gradient is then used
to update the network parameters. Besides pure stochastic gradient descent, other
algorithms have been proposed for this task, such as Averaged Stochastic Gradient
Descent [PJ92], Adadelta [Zei12], RmsProp [TH12], or Adam [KB15]. These algorithms
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utilize different tricks like running averages and momentum over several update
steps to accelerate the convergence speed.

An autoencoder (AE) is a particular type of neural network that aims to replicate
the input at the output in an unsupervised manner. Let us assume that we have
a neural network where the number of neurons in each layer is equal to the input
dimensionality. This neural network could simply learn to copy the input faithfully
to the output, i.e., it learns the identity function. Therefore it would not learn
anything sensible. However, the goal of autoencoders is to learn a transformation
of the data that extracts meaningful patterns and structural information. Therefore,
we have to remove the network’s ability—its capacity—just to copy the data and
instead extract sensible structural information that abstracts from the input but
also allows the network to reconstruct it. A common way for this is to define
the autoencoder’s architecture to have a bottleneck in the middle layer, where
the number of neurons is much fewer than the number of input dimensions. An
optimized bottlenecked autoencoder, able to replicate the input, cannot simply copy
the input to the output. Instead, it has to extract sensible information and patterns
within the input data, pass it through the bottleneck, and replicate the input based
on this high-level information. The network part from the input up until the middle
layer is called the encoder. The part from the middle to the output is called the
decoder. The bottlenecked middle part is also called the embedding layer. Figure
2.6b shows a stylized version of these parts.

Autoencoders pose a vast area of research. For instance, a sub-field follows
the direction of probabilistic generative models, where the embedded space is
considered as an unobserved, latent variable. Other strategies aim to provide sparse
representations or introduce regularization terms penalizing higher derivatives.
More details regarding different kinds of autoencoders can be found, for example,
in [Bal12], [GBC16, p. 493ff], or [Aar13].

2.2.3 Relationship between PCA and Autoencoder

There exists a well-known relationship between PCA and autoencoders.
Let us assume that we define an autoencoder with a single layer as an encoder

and decoder, respectively. The decoder uses the same weight matrix as the encoder
only transposed. This is a commonly used technique in autoencoders and is called
tied weights. Further, we use a linear activation and fix the bias term to be zero.
Also, we use the squared Euclidean distance as an error loss. Finally, for simplicity,
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we assume that the data has been centered in a preprocessing step. The loss term
we get in this way is:

min
1
|D| ∑

x∈D

∥∥∥x−WWTx
∥∥∥

2

2
, (2.12)

where W ∈ Rd×m is the weight matrix.
This loss function itself is equivalent to the minimum reconstruction error defi-

nition of PCA. The difference is that PCA requires the explicit constraint that the
weight matrix is orthogonal WWT = I. The autoencoder formulation does not
require this constraint explicitly. Instead, during stochastic optimization of the loss
function, the constraint WWT ≈ I is approximated, but it is not guaranteed that
it holds. Furthermore, the weights only approximate a basis that spans the same
subspace as the Principal components of PCA. In general, there is no incentive for
the autoencoder to learn the Principal components directly. However, this can be
accomplished using specific optimization schedules [Oja89]. These learning sched-
ules can be of use in the face of a large data set, where one wants to approximate
Principal Component Analysis.

More details about the relationship between PCA and autoencoders can, for
instance, be found in [Pla18].
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3 General Overview of the
Contributions

This cumulative dissertation aggregates five previously published contributions.
The publications were accepted at prestigious venues. In the following, we provide
general information about the contributed work and their respective publication
outlet. The appendix contains all five publications with additional information,
including detailed listings of co-author contributions.

3.1 Impact of Publication Outlets

All contributions are published at prestigious, high-impact, peer-reviewed venues,
which are specialized in research in knowledge discovery, data mining, machine
learning, and artificial intelligence. While the reputation of a venue in itself is no
indicator of the importance and impact of a publication, it is the case that more
esteemed conferences and journals are highly competitive. Therefore, there is a
strong tendency for original and influential content. For readers from other fields,
we should mention that in computer science, commonly conferences are regarded
as more prestigious than journals [Ern06]. Most publications were published at the
following conferences ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining (KDD), IEEE International Conference on Data Mining (ICDM), and
Association for the Advancement of Artificial Intelligence Conference on Artificial Intelli-
gence (AAAI). These conferences take place once per year in different cities around
the world. One contribution was published in the journal ACM Transactions on
Knowledge Discovery from Data (TKDD).

Determining the importance and influence of venues is an intricate problem
that we will not discuss here. Instead, we provide the results—from the time of
writing—of two rankings by CORE and Google Scholar. The Computing Research

21



3 General Overview of the Contributions

and Education Association of Australasia1 (CORE)—an association of university de-
partments of computer science in Australia and New Zealand—provides a ranking
system for computer science conferences. Every publication of this dissertation was
published at an outlet having the best ranking of A∗. Google Scholar provides a
ranking system for several research fields, where both journals and conferences are
ranked together. In the category data mining & analysis, KDD is ranked 1st, ICDM is
ranked 5th, and TKDD is ranked 15th [Goo20b]. AAAI is ranked 4th in the category
of artificial intelligence [Goo20a].

3.2 Contributed Publications

The list below shows the five contributed publications ordered by year. Publications
1− 4 were published at conferences. Publication 5 was invited to the TKDD journal.
It is an extension of the second publication with at least 30% new content, discussing
more aspects of the original publication and proposing a new algorithm.

1. Dominik Mautz, Wei Ye, Claudia Plant and Christian Böhm
Towards an Optimal Subspace for K-Means
Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, 2017; [Mau+17]

2. Dominik Mautz, Wei Ye, Claudia Plant and Christian Böhm
Discovering Non-Redundant K-means Clusterings in Optimal
Subspaces
Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Dis-
covery and Data Mining, 2018; [Mau+18]

3. Dominik Mautz, Claudia Plant and Christian Böhm
Deep Embedded Cluster Tree
Proceedings of the IEEE International Conference on Data Mining, ICDM, 2019;
[MPB19]

1http://www.core.edu.au

22

http://www.core.edu.au


3 General Overview of the Contributions

4. Lukas Miklautz∗, Dominik Mautz∗, Muzaffer Can Altinigneli, Christian Böhm
and Claudia Plant
Deep Embedded Non-Redundant Clustering
Proceedings of the 34th AAAI Conference on Artificial Intelligence, 2020; [Mik+20];
Note: ∗ marks authors with equal contribution

5. Dominik Mautz, Wei Ye, Claudia Plant and Christian Böhm
Non-Redundant Subspace Clusterings with Nr-Kmeans and Nr-DipMeans
ACM Transactions on Knowledge Discovery from Data, Vol 14, Nr. 5, 2020; [Mau+20]

3.3 Other Publications

The author also contributed to the following publications during his doctorate.
However, these are not part of this dissertation. Publication iii. is an extended
abstract of the second publication in the list above. Publication v. is an extended
journal version of the fourth publication above with an additional 30% new content.

i. Dominik Mautz, Christian Böhm and Claudia Plant
Subspace Clustering Ensembles through Tensor Decomposition
Proceedings of the IEEE 16th International Conference on Data Mining Workshops,
ICDM Workshops, 2016

ii. Wei Ye, Linfei Zhou, Dominik Mautz, Claudia Plant and Christian Böhm
Learning from Labeled and Unlabeled Vertices in Networks
Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, 2017

iii. Dominik Mautz, Wei Ye, Claudia Plant and Christian Böhm
Discovering Non-Redundant K-means Clusterings in Optimal
Subspaces (Extended Abstract)
Proceedings of the INFORMATIK 2019: 50 Jahre Gesellschaft für Informatik

iv. Fiete Lüer, Dominik Mautz and Christian Böhm
Anomaly Detection in Time Series using Generative Adversarial
Networks (Abstract)
Proceedings of the IEEE International Conference on Data Mining Workshops, ICDM
Workshops, 2019
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v. Dominik Mautz, Claudia Plant and Christian Böhm
DeepECT: The Deep Embedded Cluster Tree (Journal extension)
Springer Journal, Data Science and Engineering, 2020

vi. Wei Ye, Dominik Mautz, Christian Böhm, Ambuj Singh and Claudia Plant
Incorporating User’s Preference into Attributed Graph Clustering
In IEEE Transactions on Knowledge and Data Engineering, 2021

vii. Lukas Miklautz, Lena Bauer, Dominik Mautz, Sebastian Tschiatschek, Chris-
tian Böhm and Claudia Plant
Details (Don’t) Matter: Isolating Cluster Information in Deep Embedded
Spaces
Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence,
IJCAI 2021

viii. Collin Leiber, Dominik Mautz, Claudia Plant and Christian Böhm
Automatic Parameter Selection for Non-Redundant Clustering
Proceedings of the 2022 SIAM International Conference on Data Mining, SDM 2022

Further, the following publication is, at the time of writing, under review:

ix. Walid Durani, Dominik Mautz, Claudia Plant, Christian Böhm
DBHD: Density-based clustering for highly varying density
Submitted to the 28th ACM SIGKDD International Conference on Knowledge Dis-
covery and Data Mining, 2022
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4 Contributions in Detail

In this chapter, we provide more details for each contribution. We start by dis-
cussing central common properties and features shared among the methods. Fur-
ther, we characterize and summarize the central ideas of each method. Finally, we
provide links between them.

The appendix contains all five publications with additional information, includ-
ing detailed listings of co-author contributions.

4.1 Common Properties and Features

All contributions are focused on unsupervised cluster analysis combined with
unsupervised linear or nonlinear transformations. In this section, we describe the
central properties and features of the contributed methods. Table 4.1 gives an
overview of which clustering method has which feature or property.

4.1.1 Centroid-Based Cluster Representation

Many different clustering algorithms utilize centroids. Each cluster found is thereby
characterized by such a representative. The coordinates of this centroid are often
calculated and are, in general, not equal to an object of the cluster. Its feature values
can be seen as prototypical for this cluster and are what one can expect on average
to see within this cluster. Algorithms that use centroids to represent clusters have
the implicit assumption that clusters have a spherical or at least convex shape.

4.1.2 Clustering Specific Subspaces

Classic clustering algorithms aim to provide the user with a result that considers
all features of a data set. In contrast, most of our proposed algorithms provide a
clustering together with an arbitrarily-oriented subspace of the original data space,
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Table 4.1: The table shows the prominent features of each contributed clustering
algorithm.

Features Su
b
Km

e
a

n
s

Nr
-Km

e
a

n
s

Nr
-Dip

Me
a

n
s

ENRC
DeepECT

centroid representation ✓ ✓ ✓ ✓ ✓

clustering specific subspaces ✓ ✓ ✓ ✓

non-redundant ✓ ✓ ✓

flat clusterings ✓ ✓ ✓ ✓

hierarchical clustering ✓

learn number of clusters k ✓ (✓)

linear transformation ✓ ✓ ✓

nonlinear transformation ✓ ✓

noise space ✓ ✓ ✓

visualization-friendly ✓ ✓ ✓ (✓)
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in which the clustering structure can be found. Subspace clustering algorithms are
a related field, which provide for each cluster an axis-parallel subspace [KKZ09].

4.1.3 Non-redundant Clustering Results

Much like the goal of clustering itself, non-redundant clustering is only vaguely
defined. Algorithms that are attributed to target non-redundancy share the idea
that multiple, equally-meaningful partitions can be found within the data set such
that these clusterings do not share structural information. Since non-redundant
clustering is an ill-posed problem, and each algorithm uses a slightly different defi-
nition. However, from its general notion, it has parallels to the concept of statistical
independence in probability theory. There are two different types of non-redundant
clustering algorithms. The first type extracts the different clusterings sequentially,
whereas the second type extracts all clusterings in parallel. All contributed non-
redundant clustering algorithms belong to the latter type.

Further, non-redundant clustering is related to alternative or multiple clusterings.
The distinguishing feature is that non-redundant clustering algorithms aim to find
non-overlapping subspaces of the data space for each clustering, whereas alternative
clustering aims to find the different clusterings in the same data space. Subspace
clustering algorithms assign each cluster to its own (overlapping) subspace. Finally,
algorithms in the field of multi-view clustering aim to find clusters that are observed
from different views or sources (e.g., audio and video). A more comprehending
discussion of these different fields can be found in [Mul+12; KKZ09; Kri+10; YW18].

Non-redundant cluster structures can be found in data domains with natural
high-dimensional data sets, for instance, in medicine [Cui09] or genomics [TBB13].
Figure 4.2 shows an example of such non-redundant, equally valid groupings for
an image data set.

4.1.4 The noise space

A noise space builds the complement to clustering-specific subspaces. We define it
as an arbitrarily-oriented subspace complementing one or more clustered spaces. It
does not contain any structural information important to any found clustering. We
expect that such a subspace follows a unimodal distribution such that its dimen-
sions cannot be used to distinguish between the different clusters in the clustered
spaces. In our methods, we are not interested in the actual distribution of these
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Figure 4.2: The image shows an illustrative example of non-redundant structures
within a data set. The four objects can either be grouped by color or by
shape. Both clusterings are sensible, non-redundant, and reveal different
patterns.

noise dimensions. Therefore, we assume that this space can be described as a single
cluster.

4.1.5 Linear and nonlinear Transformation

Mathematically a linear transformation or linear mapping is defined as a mapping f
between two vector spaces over a field such that addition and scalar multiplications
are preserved [Hef14, p. 176]:

f (a · x⃗ + b · y⃗) = a · f (x⃗) + b · f (⃗y), (4.1)

where a and b are some scalar values of a field and x⃗ and y⃗ are some vectors
of a vector space over the same field. In the case of data mining and machine
learning, this field is almost always the real numbers R. A major advantage of
linear transformations is the ease of interpretability, especially if we constrain the
linear mapping further to build an orthonormal basis (i.e., a rotation or reflection).
All contributed methods utilize this constraint, which allows us to directly interpret
the absolute values of the mapping matrix as feature importance indicators for the
directions in the rotated space. The example for a PCA in Figure 2.5 of Chapter 2
shows a linear transformation of a data set.
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Nonlinear transformations are not restricted to the rules of linear transformations
and therefore allow more complex manipulations of the data features, allowing it
to find more abstract representations. A downside of these transformations is
that they are, in general, harder to interpret. Further, the mapping is in danger of
becoming arbitrary. Our contributions constrain the nonlinear transformations to be
approximatively invertible, such that the original data point can be approximated
from the representation.

4.1.6 Visualization-Friendly

We call a clustering result visualization-friendly if the clustering algorithm also
provides the user with an accompanying subspace of the transformed space, in
which the data manifests the clustering structure. Further, the dimensions may be
ordered according to how well the clustering pattern is exhibited by them. Both the
selection of a subspace and the ordering of its dimensions help a user to examine
the found patterns visually.

4.1.7 Flat and Hierarchical Clustering Results

Flat clustering algorithms split a data set into groups, but the groups themselves do
share any structural sub-cluster information. The majority of published clustering
algorithms produce a flat clustering structure.

In contrast, hierarchical clustering algorithms yield a tree of clusters, where an
inner node represents the join of its child nodes. In a complete tree, the root
node cluster contains the whole data set, and each leaf node represents a cluster
containing one single data point of the data set. The tree usually is build up either
top-down or bottom-up and—depending on the use-case—may not build to its full
height.

4.1.8 Learn Number of Clusters k

Almost all clustering algorithms require the user to provide and tune algorithm-
specific parameters. A common parameter is the expected number of clusters a
user wants to find. However, some algorithms also provide mechanisms to learn
these parameters. Common approaches utilize statistical hypothesis testing. Others
use model complexity measures like the Akaike Information Criterion [Aka98], the
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Bayesian Information Criterion [Sch78], or the Minimum Description Length Principle
[Ris78; GGR07].

4.2 Core Idea of each Method

In this section, we provide a basic overview of each proposed method and give a
short explanation of the core ideas. The contributions are discussed in order of
publication.

4.2.1 SubKmeans

The first and simplest proposed algorithm is SubKmeans [Mau+17]. This algo-
rithm can be seen as an extension of the well-known Lloyd’s k-means clustering
method. It aims to solve the problem that not all available features within a data
set contain clustering structures. Due to correlations and causal relations among
the dimensions, these structures might not follow the coordinate-axis but may ex-
ist in an arbitrarily oriented, linear subspace (called clustered space) of the data
space. SubKmeans aims to find a k-means-style clustering partition within such a
subspace. The complementing space without any clustering structure (called noise
space) is thereby assumed to be unimodal. The dimensionality of this subspace
is found automatically, and therefore the algorithm does not have any additional
parameters compared to k-means. An illustration of SubKmeans for an example
data set and a comparison to the results of standalone k-means, as well as a PCA
transformation followed by k-means is shown in Figure 4.3.

4.2.1.1 General Concept and the Clustering Objective Function

Based on the above-described assumptions, we define that the clustering structure
can be captured by the k-means algorithm and fix this representation in the loss
function. Further, we assume that this structure lies in an arbitrarily oriented
clustered space. Therefore, we need a rotation matrix V that rotates the data space
in such a way that the clustered space aligns with the coordinate axis. We describe
the dimensionality of the clustered space as m. Note that this is not a parameter set
by the user but is found automatically during optimization. As a consequence, the
dimensionality of the noise space is d−m, where d is the dimensionality of the full
space.
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m

m

k-means

PCA+k-means

SUBKMEANS

1

clustered space

noise space

Figure 4.3: The three scatter plots show the result of k-means, PCA+k-means, and
SubKmeans of an artificial data set with three ground truth clusters.
In each plot, the found clusters are color-coded. The upper left plot
shows the original data set together with the result of k-means, which
recovers the ground truth for this simple data set, but the result is hard
to interpret, and the visualization is not helpful to identify the actual
cluster structure. The PCA transformation rotates the space, but the
clustering structure is not clearly visible. The large plot on the right
shows the result of SubKmeans. The method rotates the data set, finds
the correct cluster partition, and automatically identifies the first two
features in the transformed space as the clustered space. The remaining
feature dimensions do not contain any clustering structures and are
therefore identified as the noise space.
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Once the data space is rotated, we can extract the clustered space using a simple
projection matrix Pc, which we also call a masking matrix. We can do the same with
and a noise space and a masking matrix Pn, respectively. Without loss of generality,
we assume that V rotates the data in such a way that the first m dimensions repre-
sent the clustered space and the remaining d−m dimensions the noise space. Given
these assumptions, the matrices Pc and Pn can be defined as:

Pc =

[
Im

0d−m,m

]
, Pn =

[
0m,d−m
Id−m

]
, (4.2)

where I is the identity and 0 is the zero matrix. We can then project a data point
x into the clustered space by PT

c VTx and onto the noise space in a similar manner
using Pn.

The last remaining puzzle piece is the presentation of the data in the noise space.
Our assumption above is that the data in this subspace follows a unimodal distri-
bution without clustering structures. Further, we have the assumption of a k-means
clustering structure in the clustered space. Therefore, a straightforward and natural
representation of the data in the noise space is a single k-means-like cluster.

Once we put these concepts together, we get the following loss function:

J =
k

∑
i=1

∑
x∈Ci

∥∥∥PT
c VTx− PT

c VTµi

∥∥∥
2

+ ∑
x∈D

∥∥∥PT
n VTx− PT

n VTµD
∥∥∥

2
, (4.3)

where µD is the data set mean vector and all other definitions of symbols not
defined in this section can be found in Section 2.1.1.

4.2.1.2 Optimization Procedure

We can optimize this loss function by adapting the alternating k-means algorithm
shown in Algorithm 1. We alternate between assigning the data points and updating
the parameters until we converge to a local minimum. In the assignment step, we
assign each data point to the cluster with the closest centroid in the clustered space.
As in the cost function, we use for this the euclidean norm. Additionally, we assign
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all data objects to the single cluster in the noise space.
In the update step, we first update the cluster centroids. This update is inde-

pendent of the other parameters because we defined the centroids in terms of the
original space and only project them onto the clustered space. We simply have to
update the centroid µi of cluster i with the arithmetic mean of the data points
assigned to the cluster:

µi :=
1
|Ci| ∑

x∈Ci

x.

Next, we update the rotation matrix V and m. For this, we can show that we have
to minimize the following loss:

Tr
(

PT
c VT

[ k

∑
i=1

∑
x∈Ci

(x− µi)(x− µi)
T − ∑

x∈D
(x− µD)(x− µD)

T

]
VPc

)
, (4.4)

where Tr(·) represents the trace of the matrix. Inside the square brackets is a
symmetric matrix, consisting of the difference of a double sum on the left and a
single sum on the right. The single sum on the right is the scatter matrix of the data
set. A scatter matrix is the unnormalized empirical covariance matrix. The double
sum on the left is the sum over all cluster-specific scatter matrices.

In order to minimize this function, we take an approach that is similar to the
eigen-decomposition we use to solve PCA, as shown in Section 2.2.1. We can
minimize the loss by setting m to the number of negative eigenvalues. Then, we
put the calculated eigenvectors of the matrix inside the square brackets into V, such
that Pc selects the eigenvectors with negative eigenvalues. Essentially, we let the
trace sum up all the negative eigenvalues and thereby minimize the sum.

We can initialize the parameters of SubKmeans by first selecting a random or-
thogonal matrix for V and a value for m smaller than the dimensionality of the data
set. We then initialize the centroids like in k-means and can therefore use strate-
gies proposed for this step, such as the previously mentioned k-means++[AV07]
procedure.
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4.2.2 Nr-Kmeans

Nr-Kmeans [Mau+18] tackles the phenomenon that data in high-dimensional
spaces can often be meaningfully clustered in more than one way. Figure 4.2
illustrates this situation. The underlying assumption of Nr-Kmeans is that each
of these cluster partitionings is non-redundant. Each clustering lies in its own ar-
bitrarily oriented, linear subspace of the high-dimensional input space (a clustered
space). We assume that these subspaces (and optionally an additional noise space
without any cluster structure) are orthogonal to each other. Further, we assume that
k-means can comprise each clustering structure. These assumptions share some
similarities to SubKmeans, and therefore the cost functions and the optimization
procedure are quite similar to SubKmeans. In fact, both SubKmeans and k-means
can even be seen as special cases of Nr-Kmeans. However, the central idea of mul-
tiple, non-redundant clusterings in Nr-Kmeans is very different from the single
clustering problem the former two algorithms aim for.

One difference between SubKmeans and Nr-Kmeans is that in the former, the
noise space is an important and necessary part of the algorithm, whereas it is just
an optional extension in Nr-Kmeans.
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Figure 4.4: The diagrams illustrate how Nr-Kmeans optimizes the rotation matrix
V in the general case with more than two subspaces. The central idea is
to consider each pair of clusterings and their corresponding subspaces
separately and seeing them as an instance of the two-subspace case. (a)
Here, we assume that we want to optimize V the rotation matrix w.r.t to
the two clusterings s (■) and t (■), where rows in the illustrations of the
data matrix D represent features. (b) First, we project both subspaces
onto the combined s-t-subspace (with Ps,t). (c) Next, we assume that
the rotation in not yet optimal w.r.t. to these two clusterings and find
a rotation matrix V⟨c⟩s,t and corresponding projections that optimize the
loss in this subspace for s (■ → ■) and t (■ → ■)—as shown in
(d). (e) Then, we can translate the rotation matrix V⟨c⟩s,t into its full-

space equivalent V⟨f⟩s,t . Further, we have to update the dimension-to-

subspace assignments accordingly. (f) Finally, we update V ← VV⟨f⟩s,t .
Updating these parameters optimizes the objective function w.r.t to both
clusterings. Performing these actions for all clustering pairs optimizes
the loss function w.r.t. V and the subspace projections Pi.
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4.2.2.1 General Concept and the Clustering Objective Function

We adopt most of the notation as introduced for SubKmeans in Section 4.2.1. Like
in SubKmeans, we assume that a clustering structure can be captured by the
k-means algorithm and keep this representation in the loss function. However,
with Nr-Kmeans, we have not one, but S-many of these clusterings and the same
amount of arbitrarily oriented clustered spaces, each with its own dimensionality mj.
The desired non-redundancy property is induced by the constraint that these sub-
spaces are non-overlapping and orthogonal to each other. Like in SubKmeans, we
have to align these subspaces with the coordinate axis. Again we use the orthogonal
transformation matrix V for this task.

We can project the by V rotated space onto the subspace of clustering j via the
masking matrices Pj ∈ Rmj×d that is defined as follows:

Pj[a, b] :=





1, if dimension a of the rotated data space maps
to subspace dimension b of clustering j

0, otherwise,
(4.5)

where each dimension a is only assigned once to a subspace. Putting all definitions
together, we get the following loss function:

F =
S

∑
j=1

kj

∑
i=1

∑
x∈Cj,i

∥∥∥PT
j VTx− PT

j VTµj,i

∥∥∥
2

(4.6)

The clustered space is defined similarly to SubKmeans. However, in contrast to
SubKmeans, we are more flexible in Nr-Kmeans and can, depending on our task
and goals, decide whether to use or not to use it.

4.2.2.2 The Non-Redundancy Aspect

Our experiments show that Nr-Kmeans indeed finds—induced by the orthog-
onality constraint—non-redundancy clusterings of high quality. We can give a
further theoretic justification for these empirical results by highlighting the rela-
tionship of Nr-Kmeans to a mixture of Gaussian mixture models (GMM) with
statistically independent subspaces. It is a well-known fact that there exists a di-
rect connection between GMM as defined through the probability distribution
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p(x) = Πk
i πiN (x|µi, σI) and the k-means cost function. The cost function of

k-means is the limit of the GMM’s likelihood function, where we let σ go to zero
[KJ12].

We can follow the same approach for Nr-Kmeans. It can be viewed as the limit
of the log-likelihood function (w.r.t. σ→ 0) of the following mixture model with S
statistically independent subspaces:

p(x) =
S

∏
j

kj

∑
i

πj,iN (PT
j VTx|PT

j VTµj,i, σI). (4.7)

This connection shows that the orthogonal subspaces of the Nr-Kmeans model are
the limit of the statistically independent components of the above-defined mixture
model.

4.2.2.3 Optimization Procedure

The optimization procedure again alternates between the assignment step and the
update step. In the assignment step, we assign for each clustering each data point
to the closest centroid of the corresponding subspace. In the update step, we first
update the centroids as we do in SubKmeans. Next, we have to update V and each
masking matrix. Updating V and the masking matrices is not as straightforward as
in SubKmeans. However, we can utilize the same building block. The essential idea
is to consider each pair of clusterings as a special case with only two clusterings s
and t. We can optimize the rotation in the combined subspace of s and t and then
translate this rotation into an update for V and the masking matrices. Applying
this procedure to all pairs optimizes V for the overall loss function. Figure 4.4
illustrates this procedure.

In addition, we can speed the process of optimizing V up. The key trick is that
we can determine the sum of scatter matrices of a clustering s within a combined
subspace with a second clustering t based on the full-dimensional sum. That way,
we have to determine the sum of scatter matrices for each clustering only once
after we update the centroids and can use them to optimize V. For each combined
subspace, we thereby have to perform the eigen-decomposition like in the following
term:

eig
(

PT
s,tV

T [Ss − St]VPs,t

)
, (4.8)
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where Ss and St is the full-dimensional scatter matrix of the respective clustering,
defined as:

Sc =
kc

∑
i=1

∑
x∈Cc,i

(x− µc,i)(x− µc,i)
T, (4.9)

for some clustering c.

4.2.3 Nr-DipMeans

One disadvantage of Nr-Kmeans is that the user has to specify the number of
clusters for each of the non-redundant clusterings as an input parameter. With
the extension Nr-DipMeans [Mau+20], we propose a method that automatically
determines the number of clusters in each subspace. This, in essence, leaves only
the number of expected subspaces to be specified by the user, which is by far easier
to estimate. As an extension of Nr-Kmeans, Nr-DipMeans has the additional
assumption that clusters are unimodal (along its direction of highest variance).
It utilizes Hartigan’s dip test of unimodality [HH85] to identify if a cluster is
multimodal and must therefore be split.

4.2.3.1 General Concept

The essential idea of Nr-DipMeans is to lift the user from the burden to specify
the number of clusters within each subspace. The general concept of k-means
assumes that a single representative centroid can be found, which resides in the
center of a cluster. Its connection to Gaussian mixture models also suggests that the
assumption of a unimodal cluster—containing only one peak, when regarded as
a probability distribution—is sensible. We, therefore, decided to utilize Hartigan’s
dip test [HH85] to test if a cluster is unimodal.

The problem of using Hartigan’s dip test is that it is only defined for one-
dimensional data. Yet, Nr-DipMeans is not the first algorithm that combines
k-means clustering with one-dimensional statistical hypothesis testing. Thus, we
can draw ideas from Dip-means [KL12]—utilizing the dip test—and from G-means
[HE04]—utilizing the Anderson-Darling hypothesis test. The Anderson-Darling
test determines if data is normally distributed, which we consider too much of a
constraint, and instead use the dip test. However, in our experiments, the strategy
of G-means—to project the data of a cluster into a single dimension along the direc-
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tion of highest variance—worked sufficiently well. Hence, we use this projection
strategy and combine it with Hartigan’s dip test.

Hartigan’s dip test [HH85] is a classical hypothesis test. With the null hypothesis,
we assume that a given one-dimensional data set is unimodally distributed. The
alternative hypothesis suggests that the data is multimodal. Roughly spoken, if
the null hypothesis is true, the empirical cumulative distribution function (CDF)
is first convex—up to the mode—and then concave. With the dip test, we can
measure the deviation from this expected shape of the CDF, and we can reject the
null hypothesis for some significance level.

4.2.3.2 Clustering Objective and the Optimization Algorithm

The clustering objective is essentially the same as in Nr-Kmeans. The big difference
is that in addition to the loss function in Eq. 4.6, we have the further constraint that
the one-dimensional projection of each cluster along the direction of the highest
variance must be unimodal. We can find this direction within a cluster approx-
imately by applying two-means (k-means with k = 2) to the data points of the
cluster. k-means usually splits a cluster along the direction of the highest variance
[FS19]. Therefore, we can use a projection onto the connection line between the two
centroids as an approximation for this direction. If we can reject the null hypothesis,
we found a potential cluster that actually consists of at least two clusters. We will
use this in the greedy optimization procedure, explained in the following.

During optimization, our algorithm has to overcome two issues. In the first situ-
ation, the clusters in all clustered spaces are unimodal, but the optional noise space
might still contain relevant cluster structures. In the second situation, the current
number of clusters is too low for a clustering a. These structures might ’show
through’ in one or more other subspaces corresponding to other clusterings. As a
consequence, one or more clusters in these other subspaces might look multimodal.
Splitting these multimodal clusters then might strengthen this phenomenon instead
of removing it. An example of these issues can be found in the paper [Mau+20].

The Nr-DipMeans algorithm has to address both of these issues. The method
starts with two clusters in each clustered space.

While Hartigan’s dip test indicates that the noise space seems to be multimodal,
we create J new Nr-Kmeans candidate configurations, where we increase in the
j’th candidate configuration the number of clusters in the j’th clustering by one. We
do this by splitting the cluster into two clusters that seems the least unimodal (ac-
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cording to the dip test). We then run Nr-Kmeans for each of these candidates and
keep the candidate that minimizes the Nr-Kmeans loss function. This procedure
only applies if the user wants to utilize the optional noise space. It solves the first
issue described above.

Once the noise space seems to be unimodal, we test each cluster in the clustered
spaces if they are unimodal. If one of them does not pass the test, we perform the
same procedure as described in the last paragraph. We stop the algorithm once
every cluster passes the dip test. We circumvent the second issue described above
by creating one candidate configuration for each subspace and keeping only the
one minimizing the loss function.

4.2.4 DeepECT

In recent years, deep clustering methods have been a very active research direction.
Most of these methods share the same conceptional idea, as illustrated in Figure
4.5: an autoencoder is used to perform a nonlinear transformation on the data
space. The clustering method operates on the embedded space and aims to provide
feedback to the autoencoder on how to improve the representation of the found
clustering structure. However, in contrast to the rigid linear transformation, which
we employ for SubKmeans, Nr-Kmeans, and Nr-DipMeans, the nonlinear trans-
formation of the autoencoder is powerful enough to transform the embedded space
in arbitrary ways. This leads to the problem that the embedded space of a flat deep
clustering method will resemble the chosen number of clusters, regardless of the
actual number of clusters. Figure 4.6 illustrates this problem. As a result, classical
internal cluster evaluation methods, like the in Section 2.1.1 described silhouette
coefficient or the elbow method, are not applicable.

DeepECT [MPB19] circumvents this problem by utilizing a hierarchical clustering
method. We do not have to specify the number of clusters before the optimization
procedure. Instead, we can optimize the tree to a sufficient size. Then, after the
training, we can choose the level of detail we want to analyze and for each sub-tree
separately.

In summary, DeepECT is quite different from the previous contributions. The
first difference is that we employ a nonlinear transformation utilizing autoencoders
instead of a rigid linear transformation. The second difference is that DeepECT
aims to find a hierarchical clustering structure instead of a flat one.
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Figure 4.5: The figure illustrates the general idea behind deep clustering. The au-
toencoder transforms the data such that the structural information is
more prominent in the embedding. The goal is to better capture the
structural information by a joint optimization of the clustering objective
and a nonlinear transformation compared to two separate steps.
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(a) Init (b) k = 2 (c) k = 3

(d) k = 4 (e) k = 5 (f) k = 6

Figure 4.6: The plots show a serious problem of deep clustering methods: the em-
bedded space adapts its appearance to the chosen number of clusters. (a)
shows the pre-trained embedding of a data set with three ground-truth
clusters (colors represent class labels). The plots (b)–(f) show the results
of the deep clustering algorithm IDEC [Guo+17] for different values for
the number of clusters k. We can see that after training, the embedding
reflects the chosen number of clusters. This is one of the problems we
want to overcome with DeepECT.
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Figure 4.7: The diagram shows an illustration of the tree created by DeepECT. The
tree is grown top-down, starting with a single root node. The data
assignment is bottom-up. Each node is represented by a centroid. The
centroids of inner nodes are weighted averages of their child nodes.

4.2.4.1 General Concepts and the Clustering Objective

The general concept of DeepECT is shown in Figure 4.7. The tree grows top-down,
starting with a single root node. We grow the tree at regular intervals within
the optimization procedure. Thereby, we select a leaf-node and split it into two
sub-clusters with the help of Bisecting-k-means, as presented in Section 2.1.4. In
contrast to the top-down Bisecting-k-means algorithm, the data point assignment in
DeepECT is bottom-up. We assign each data point to the leaf node with the closest
centroid. The inner nodes inherit their assigned data points from their child nodes.
Each node is represented by a cluster centroid, much like in k-means. The leaf
node centroids are parameters that need to be optimized. However, the centroids
of the inner nodes are not parameters but are weighted averages of their child
nodes. This reduces the number of parameters to be optimized. Further, it ensures
that an inner node’s centroid is coherent to the child nodes centroids. For the
nonlinear transformation, we make use of an autoencoder with a data-set-specific,
sensible reconstruction loss. This ensures that the data can be approximatively
reconstructed. Thereby, we ensure that the embedding does not become arbitrary.

Combining these assumptions and definitions yield the loss function of DeepECT.
The loss function is defined as the sum of the following three specialized loss
functions:

• Autoencoder reconstruction loss – It ensures that the embedding is sensible and
does not become arbitrary.
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(a) Cluster hardening of flat algorithms (b) Cluster hardening in DeepECT

Figure 4.8: The loss functions of deep centroid-based, flat clustering algorithms
have a cost function that optimizes the embedding to be closer to the
respective centroid, as shown in (a). The optimization procedure of
DeepECT is shown in (b). The loss function only optimizes the em-
bedding along the connection line of two sibling cluster nodes. This
behavior ensures that orthogonal structures are preserved.

• Leaf node centroid loss – This loss ensures that the centroid parameter of each
leaf node is moved towards the average value of the data points assigned to
it.

• Cluster hardening loss – It forces the encoder part of the autoencoder to embed
data points closer to the centroids they are assigned to. From a bird’s eye
perspective, every deep clustering algorithm employs such a loss. However, a
crucial distinction for DeepECT is that this happens only projected onto the
connection line between a cluster node and its sibling node. This ensures that
orthogonal structures are preserved. An illustration comparing the loss of flat
deep clustering methods and DeepECT is shown in Figure 4.8.

4.2.4.2 Optimization Procedure

The optimization itself is straightforward. We can optimize the loss function with
a gradient-based optimization procedure, such as stochastic gradient descent or
Adam [KB15]. Since the data sets in deep learning are usually very large, we utilize
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mini-batches instead of calculating the gradient for the whole data set. An example
of the optimization procedure of a toy data set is shown in Figure 4.9.
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(a) Initial (b) After 100 updates (c) After 1000 updates

(d) After split of left node (e) After 100 updates (f) After 1000 updates

Figure 4.9: The plots show an example of how DeepECT moves data points closer
to the assigned cluster centroids but keeps orthogonal structures un-
changed. (a)-(c) show the optimization of two sibling nodes (squares).
In (d)-(e), the node on the left side is split into two child clusters. We
can see how the margin between the two clusters is increased. At the
same time, the vertical structure on the right is preserved. This behavior
is stable even for a longer training period, as shown in (f).
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4.2.5 ENRC

The final contribution is the algorithm ENRC. This method is the result of our
research endeavor of combining the concept of deep clustering with non-redundant
clustering.

4.2.5.1 General Concept

Much like DeepECT, ENRC employs an autoencoder for the nonlinear transfor-
mation, which ensures that the embedding is not arbitrary and contains sensible
structures. The clustering objective itself is related to the objective of Nr-Kmeans.

We assume a scenario that several non-redundant clusterings can be found in
the embedding of a pre-trained autoencoder. The actual number of clusterings and
clusters within is set by the user. As with Nr-Kmeans, we presume that each clus-
tering resides in its own arbitrarily oriented subspace of the embedding. Further,
we assume that after the nonlinear transformation, we can rotate the embedded
space with an additional linear transformation such that the subspaces axis-align.
For this, we employ an approximative orthogonal matrix V. Since we employ a
gradient-based optimization method, the subspace assignment has to be differen-
tiable. Therefore, each dimension of the embedded and rotated space is (softly)
assigned to a certain (positive) degree to each subspace in such a way that the
weights are differentiable and sum to one. Last, we represent the clusters within
each subspace by centroids like in Nr-Kmeans and many other deep clustering
algorithms. Figure 4.10 gives an illustration of the architecture of ENRC.

4.2.5.2 Clustering Objective

Since we have a soft assignment of the dimensions of the rotated space to a cluster-
ing, we cannot simply employ the Euclidean norm to determine the distance within
the embedded space. Instead, we use the weighted Euclidean distance to measure
the distance between the centroid a and a data point b:

||a− b||2β j
:=

n

∑
i=1

β j[i](a[i]− b[i])2, (4.10)

where a[i] selects the i’th entry of the vector a and β j is the dimension assignment
vector for the clustering j.
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Figure 4.10: The diagram shows a conceptional illustration of ENRC’s architecture.
The layer VT and V share the same parameters (they are tied). Anal-
ogous to the rotation of SubKmeans and Nr-Kmeans, the purpose of
these layers is to align the subspaces of the different clusterings along
the axes. The difference is that both layers are only approximatively
orthogonal. Both linear layers, together with the encoder network, and
the decoder network build a nonlinear transformation of the data space
into an embedded space and back into the original space.

For the soft-assignments of the rotated dimensions to the clusterings, we employ
the softmax function over an unbounded parameter vector. In that way, the weights
are positive and the weights of each dimension sum to one and can be simply
optimized by a gradient-based method.

The loss function contains two parts. The first part is the autoencoders recon-
struction loss, which we have to adapt in one crucial aspect. The second part is
the clustering loss. First, we adopt the reconstruction loss to ensure that V does
not degenerate and is approximately orthogonal. We do this by incorporating the
orthogonality constraint VVT = I into the reconstruction loss of the autoencoder:

Lrec = dist[x, dec(VVT enc(x))], (4.11)

where dist is the regular reconstruction loss function of the autoencoder, for in-
stance, the Euclidean norm. The loss ensures that V will be approximately orthogo-
nal and does not degenerate, but at the same time, it allows V do be optimized w.r.t.
the needs of the clustering loss. The second part of the loss term is the clustering
loss. For this, we simply penalize the weighted Euclidean distance (seen in Eq. 4.10)
between a data point and the cluster centroid it is assigned to for each clustering.
Then, the final loss term is the weighted sum between these two loss terms, where
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the user has to choose an appropriate weight.

4.2.5.3 Optimization Procedure

During the optimization of ENRC, we employ an adapted version of mini-batch
k-means [Scu10] that adjusts the learning rate of each centroid based on the number
of data points assigned to each cluster. The parameters V, the subspace weights,
and the autoencoder weights can be optimized using a standard gradient descent
algorithm. An example application of ENRC can be found in Figure 4.11.

4.3 Connections and Differences among the Methods

We have already introduced the general common properties of the contributed
methods in Section 4.1. We have also already mentioned further direct connec-
tions in the methods summaries above. The most prominent connection is between
SubKmeans and Nr-Kmeans. SubKmeans can be considered as a special case of
Nr-Kmeans, where we configure the method to have only a single clustered space
and a complementing noise space. Yet, the general goal of both methods is very
different. SubKmeans aims to find a single subspace with a clustering structure
hidden in the data, whereas Nr-Kmeans aims to find multiple non-redundant
clusterings in different subspaces of the data. Another obvious connection is be-
tween Nr-Kmeans and Nr-DipMeans, which is by design as Nr-DipMeans is an
extension of Nr-Kmeans.

However, there exist deeper connections and relationships among the contributed
methods. Furthermore, there exist connections to the techniques introduces in
Chapter 2. In the remainder of this section, we discuss these connections and
relationships in more detail.

4.3.1 Eigen-Decomposition – A Central Operation

The eigen-decomposition is an essential part of the optimization procedure for the
three contributed clustering methods SubKmeans, Nr-Kmeans, and Nr-DipMeans.
The way we use it to optimize a rotation matrix is also connected to the optimization
of PCA, presented in Section 2.2.1. All four methods use the eigen-decomposition
to find orthogonal directions in the data space.
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(a) Objects Data Set

(b) Color Centroids (c) Material Centroids (d) Shape Centroids

Figure 4.11: Figure (a) shows a toy data set with images of objects with three dif-
ferent, non-redundant classes: three different shapes (cylinder, sphere,
cube), two different materials (dull rubber, reflective metal), and six
different colors (yellow, green, red, blue, gray, purple). The plots (b)
- (d) show the reconstructed centroids of the ENRC clustering result.
We can see that each centroid captures one class and, at the same time,
represents an average of the classes of the other clusterings.
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The biggest difference between the application in the clustering algorithms com-
pared to PCA is the optimization goal. In PCA, we want to find the direction of
highest variance for the whole data set, whereas in the clustering algorithms we
want to find directions for which the clustering structure for the given clusterings is
most prominent. In case of the used k-means-like loss of the clustering algorithms,
this is equivalent to the question for the directional trade-off between: (a) the di-
rection in which the data points are closest to their respective centroid for a given
clustering and (b) the direction in which the data points are far from the centroids
of the other clusterings or the noise space centroid. For PCA and SubKmeans, this
can be directly seen by comparing the Eq. 2.10 of PCA and Eq. 4.4 of SubKmeans.
The trace function in the first equation contains only the scatter matrix of the whole
data set, whereas the equation of SubKmeans contains the difference between the
sum of scatter matrices of all clusters and the scatter matrix of the whole data set.

The optimization of a rotation itself is also used in ENRC. However, in this
method, we use gradient descent and not an eigen-decomposition, which has the
advantage that we can use mini-batch updates. The disadvantage is that it might
need many mini-batch updates until the rotation is (sufficiently approximately)
optimized.

4.3.2 DeepECT and ENRC

The contributed algorithms DeepECT and ENRC also share interesting connections.
The most evident once is that both algorithms rely on autoencoders for the nonlinear
transformation, whereas the other contributed methods use a linear transformation
matrix, as explained above. The autoencoder allows more complex transformations
but at the cost of being less explainable and being more complex to optimize.

A second connection between both algorithms is the choice to optimize the cen-
troids using gradient-descent-based strategies. However, there is a difference in the
specific optimization strategy. DeepECT introduces a loss term that penalizes the
squared error distance between a leaf node’s centroid and the average of the data
points of the mini-batch assigned to this leaf node. The optimization of this loss is
left to the specific gradient-based optimization algorithm chosen by the user. On
the other hand, ENRC utilizes the centroid optimization procedure of mini-batch
k-means [Scu10]. This optimization strategy updates the centroids directly with the
mean vector of the assigned data points, but the learning rate depends inversely on
the number of data points assigned to the cluster.
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4.3.3 Compatibility to Variants and Extensions of k-means

k-means is a simple but proven algorithm that lends itself to be modified and
adapted to different situations. Over the years, this has led to many proposed
extensions and variants. A common property of SubKmeans, Nr-Kmeans, and
to some degree of Nr-DipMeans is that they are compatible with many of these
extensions.

Some extensions have orthogonal concerns and can be plugged in with minimal
modification of our proposed algorithms. For instance, we can use the widely
used initialization procedure of k-means++ [AV07] to seed the initial centroids in
the beginning. Alternatively, we could use the method k-means|| [Bah+12], which
parallelizes the centroid initialization procedure. Both have stochastic guarantees
that they lead on average to better local minima than with random initializations.
Further, we could speed up the assignment step by exploiting the triangle inequality
[Ham10; Phi02; Elk03], which allows us to minimize the number of clusters a data
point has to be compared to. Yet another way to speed up the assignment step is to
utilize kd-trees [Moo99; PM99].

The above-mentioned k-means extensions are only a small and by far not ex-
haustive set of examples, which can be adopted for the three algorithms in a
straightforward manner. Other extensions and variations can also be adopted and
incorporated but need more elaborated modifications of the respective algorithm.
An example of such a modification is the automated estimation of the number of
clusters k. In this regard, Nr-DipMeans is an extension of Nr-Kmeans that draw
ideas from Dip-means [KL12] and from G-means [HE04]. But we can also propose
extensions for either SubKmeans or Nr-Kmeans that draw exclusively from one
of these papers. Of course, the same is true for other publications. For instance,
instead of hypothesis testing, we could extend the cost function by a term that
penalizes complexity like in X-means [PM+00]. In fact, we worked on such an
idea in the paper ’Automatic Parameter Selection for Non-Redundant Clustering
Algorithms’ (Section 3.3, Item viii.). It proposes an extension of Nr-Kmeans that
utilizes the minimum description length principle [Ris78] to estimate both the num-
ber of subspaces, as well as the number of clusters within each subspace. Further
examples are the loss function variations of k-means like Fuzzy-c-means (Section
2.1.2) or different metrics like k-medians (Section 2.1.1). Indeed, we have already
started to explore both directions. In a bachelor thesis [Sel19], we have combined
SubKmeans with Fuzzy-c-means, which allows finding a fuzzy clustering located in
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a subspace of the data space. In another bachelor thesis [Grö17], we have explored
the idea to use other M-estimators [Mar+19]—a robust generalization of maximum
likelihood estimators, e.g., the median—to estimate centroids and rotation matrix
of SubKmeans, which allows these variants to be more robust against outliers and
noise within a data set.

4.3.4 From SubKmeans to ENRC

In this section, we show the link between SubKmeans and ENRC.
We can see this relationship by approximating SubKmeans with a loss function

that we can optimize with gradient descent. First, we cast the rotation matrix V as
a single-layer linear autoencoder. This also ensures that V remains approximately
orthogonal. We can do this by penalizing the squared euclidean distance between
a data point and its reconstruction after rotation and reverse rotation:

min
∥∥∥x−VVTx

∥∥∥
2

2
w.r.t V. (4.12)

At first glance, this looks like the PCA-like linear autoencoder loss function in Eq.
2.12. Yet, in contrast to Eq. 2.12, here we have defined V as a Rd×d matrix, which
does not introduce a dimensional reduction, i.e., a bottleneck in the embedded
space. Instead, we need to split up the transformed space like the projection
matrices Pc and Pn do in the SubKmeans objective (discussed in Section 4.2.1). At
the same time, this split needs to be differentiable in order to be optimized by
gradient-based methods. Similar to ENRC—as briefly discussed in Section 4.2.5.2
and in more detail in the ENRC paper [Mik+20]—we can introduce a differentiable
variable βi for each dimension i of the rotated space with βi ∈ [0; 1]. This weight
indicates how much this dimension belongs to the clustered space. Consequently,
we define the weight for the noise space as 1− βi. The distance measure between
a data point and the cluster center becomes the weighted Euclidean distance, as
defined in Eq. 4.10. Restricting the βi-weight to the domain [0; 1] is a problem for
gradient-based methods. Either we could clip the values into this range after each
parameter update, or we could use an unconstrained parameter bi and transform it
into the [0; 1] domain, for instance, via the sigmoid function: 1

1+e−b . We can define
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the combined loss term of the clustered space and noise space as follows:

k

∑
i=1

∥∥∥VTx− µi

∥∥∥
2

β
+

∥∥∥VTx− µD
∥∥∥

2

(1−β)
, (4.13)

which we have to optimize w.r.t V, β, µ0, · · · , µk, µD. In contrast to SubKmeans, do
we not need to keep the centroids in the original space, but the gradient-based
optimization function allows us to define them as parameters in the rotated space.
We can simply add the loss terms Eq. 4.12 and Eq. 4.13 to get a loss term that we
can optimize by using an off the shelf gradient-based optimizer. For each provided
mini-batch, we first assign each data point to the closest centroid based on the
weighted euclidean distance and then run the optimizer for one optimization step.
We repeat this procedure until we converge.

To get a gradient-based version of Nr-Kmeans, we can simply add additional
clustered spaces to the loss term in Eq. 4.13. Of course, we then have to assign each
data point to the closest centroid for each clustering for each mini-batch.

Finally, we can modify Eq. 4.12 by adding an additional encoder network before
the rotation and an additional decoder network added after the back-rotation. This
results in the adapted reconstruction loss of ENRC in Eq. 4.11. The steps above
show how we can modify and adapt both SubKmeans and Nr-Kmeans in such a
way that it results in a version of the ENRC method.

However, one property that we cannot directly transfer to ENRC with a nonlinear
autoencoder is the noise space. In the linear case, we have to approximate a rotation
in V. This means we also approximately preserve the variance within the data. Yet,
if we naively apply the noise space loss of SubKmeans and Nr-Kmeans directly to
ENRC, we introduce a term in the loss function that incentives the optimization
algorithm to embed data points closer and closer to the single centroid of the
noise space, without the need to preserve the initial variance. A simple illustrative
example is that the last layer in the encoder just learns to divide the input by a very
large number, and the first nonlinear layer in the encoder learns at the same time
to reverse this division by multiplying its input by the same large number. In that
way, it shrinks the embedded space significantly and, therefore, also any distance
between point-pairs within it. The optimizing procedure is able to reduce the noise
space loss significantly without actually doing what we expect from it: introducing
a variance preserving space that encodes the global, non-cluster-specific variations
within a data set. We should note that such shrinkage, in general, is not a problem
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in deep learning and actually a noise space loss term, where we fix the centroid to
be equal to the origin would be similar to the common L2 parameter regularization
technique.

There are some research directions to prevent this behavior through more elabo-
rate loss functions for the noise space that enforce specific shapes. For instance, we
could use a Kullback-Leibler divergence loss, forcing the shape to follow a standard
normal Gaussian distribution, or we could use adversarial training [Mak+15]. Yet,
these modifications would also require more tuning and adjustments between the
noise space and the clustered spaces losses, which in turn makes the optimization
procedure more complex. Therefore, we decided to make a noise space a non-target
in our research for ENRC. However, this can also be seen as a research opportunity.
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With this cumulative thesis, we have contributed five algorithms: SubKmeans,
Nr-Kmeans, Nr-DipMeans, DeepECT, and ENRC. The main objective of these
algorithms is to combine cluster analysis with unsupervised feature transformation
methods. Each algorithm was designed to assist in the search for structures in an
unknown data set. Further, most algorithms allow us to easily visualize the found
structures, which in turn enables the user to inspect and validate the findings.
The experimental results—found in the respective publication in the appendix—
empirically show that the joint optimization procedure is advantageous compared
to optimizing feature transformations and clustering objectives separately. There-
fore, we claim that all contributed algorithms achieved the primary goal.

However, all contributed algorithms have implicit assumptions and shortcom-
ings, many of which are inherited from k-means, like the convexity assumption
of clusters or the effect that clusters tend to be of uniform sizes [Wu12, p. 32f].
The problem that we can only find local optima is almost universal for cluster-
ing algorithms as they tend to be NP-hard. Other disadvantages stem from the
transformation method, like the black-box property of the autoencoder’s nonlinear
transformation. These drawbacks are by no means a knock-out criteria, but the
taken design decisions and implicit assumptions make the algorithms better suited
for certain data sets than others. This is an inherent problem of all data mining
algorithms and is related to the ’no free lunch theorem’ in supervised machine
learning [Wol96]. Consequently, there is no universally best algorithm, and each
data mining method needs informed users to decide which tools to use in which
situation.

5.1 Future Work

The drawbacks of the contributed algorithms are, at the same time, research op-
portunities for future projects. Each of the contributed algorithms offers concrete
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opportunities for modifications and extensions. We have already discussed some of
these possible extensions for SubKmeans, Nr-Kmeans, and Nr-DipMeans in Sec-
tion 4.3.3. Both SubKmeans and Nr-Kmeans, have already directly influenced the
works of other researchers, which provides further examples for research opportuni-
ties. The authors of [VSS19] propose to use random projections for the optimization
of V in SubKmeans. The researchers in [Zha+19] propose a noise-robust cluster-
ing algorithm that is heavily influenced by SubKmeans and Nr-Kmeans. In the
paper [Le+19], the authors propose to use the cost function of SubKmeans in a
supervised setting for the hierarchical encoding of sequential data. A concrete,
open research question for ENRC is the open question on how to select the number
of subspaces and clusters within, which is more complicated than for its linear
counterpart Nr-Kmeans. Also, selecting a suitable autoencoder architecture is an
open question, which it shares with DeepECT.

Furthermore, the general goal of joint optimizations of transformation and clus-
tering still provides countless research opportunities. This applies in particular to
the combination of unsupervised deep learning and cluster analysis, which offers
many low-hanging fruits. Most deep clustering algorithms utilize centroids, which
are a straightforward choice but might not be the best way to represent clusters
inside a neural network. Therefore, developing algorithms that utilize other repre-
sentations of these clusters is an exciting research direction. Another factor that is
important—not only to deep clustering but to the whole field of deep learning—is
to improve the explainability of neural networks. Deep clustering will benefit from
every advancement in this direction.

Another direction might be to explore other ways to facilitate other nonlinear
transformation methods than autoencoders. One aspect of autoencoders is that
they aim to preserve as many details of the encoded object as possible in order to
be able to reconstruct it faithfully. This facet is in strong contrast to a clustering
algorithm’s goal to find more general structures in the data set and ignore minor
differences and variances within a cluster [EM19; Häu+18].

5.2 Final Remarks

This thesis has contributed five algorithms to the area of cluster analysis with joint
feature transformation. Each contributed algorithm has its own exciting applica-
tions and solves specific problems in the area of unsupervised learning. At the
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same time, each algorithm is only but a small contribution to the vast and ever-
growing field of data mining. Nevertheless, the hope is that these algorithms will
help practitioners and inspire researchers to answer research questions.
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