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Introduction

A contest is a game in which participants can exert costly effort to improve their

chances of winning a valuable prize. Such an allocation mechanism describes many

real-life situations: In election campaigns, political parties spend resources to sway

voters in their favour. Interest groups try to influence political decisions by organising

meetings with politicians and drafting competing legal bills. Battling factions buy

weapons and hire soldiers to win violent confrontations. Firms invest in research to

obtain patents before their competitors do. Contests are also deliberately designed,

for example in the form of innovation and design contests, admission competitions for

job positions, colleges, and grants, and sports tournaments.

In this thesis, I use game-theoretical models to analyse important aspects of real-

world contests that have so far either not been considered or looked at from a different

angle in the literature: In Chapter 1, I modify the model on group contest so that

individuals are a member of more than one group. In Chapter 2, I allow for the

endogenous formation of such “non-exclusive” groups. And in Chapter 3, I investigate

how the ability of players to copy their opponent’s effort affects innovation contests.

The literature on contest theory can be traced back to a number of seminal contri-

butions. Tullock (1980) studies rent seeking and formulates a contest success function

with noise—that is, the contestant who exerts the highest effort does not necessarily

win. This type of contest is usually referred to as “Tullock contest” and sometimes as

“lottery contest”. Hillman and Riley (1989) study a contest in which the contestant

who exerts the highest effort wins with certainty, usually referred to as an “all-pay

auction”. This model is applied to the selection of contestants in a lobbying contest by

Baye et al. (1993). The equilibrium in the all-pay auction with complete information

is fully characterised by Baye et al. (1996). Hirshleifer (1989) introduces a contest

success function in which a contestant’s winning probability depends on the difference

between her effort and the other contestants’ efforts.

Throughout this thesis, I use the Tullock contest success function. It has been

axiomatised for single players by Skaperdas (1996) and for groups by Münster (2009).

This means that the Tullock contest success function can be derived from a set of
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Introduction

intuitive rules a contest allocation mechanism should fulfil. It can also be underpinned

with a microeconomic foundation: Hirshleifer and Riley (1992) demonstrate that it

can be derived departing from an all-pay auction with noise, a property I make use

of in my analysis of copying in contests in Chapter 3. Baye and Hoppe (2003) show

that a Tullock contest is strategically equivalent to a patent race and an innovation

tournament under certain conditions.1 Analytically, the Tullock contest has the nice

property that it allows for the derivation of Nash equilibria in pure strategies, both

with single as well as group contestants, for a wide range of parameters.

The contest literature has been extended to incorporate many important aspects of

real-world competitions. For instance, dynamic contests have been thoroughly inves-

tigated by Rosen (1986), Gradstein and Konrad (1999), Moldovanu and Sela (2006),

Konrad and Kovenock (2009b), and Groh et al. (2012). Pre-commitment and se-

quential moves in contests have been analysed by Dixit (1987) and Perez-Castrillo and

Verdier (1992). Contestants may not be fully informed about the nature of the game—

for example, the value of the prize—and not all participants in a contest may share

the same information. Variants of such settings have been investigated by Glazer and

Hassin (1988), Amann and Leininger (1996), Krishna and Morgan (1997), Moldovanu

and Sela (2001), and Wärneryd (2003). The fact that it is not uncommon to have

more than one prize allocated in a contest is reflected in the work of Clark and Riis

(1998a) and Moldovanu and Sela (2001). Roberson (2006), Clark and Konrad (2007),

and Kovenock and Roberson (2010) analyse settings in which players compete in mul-

tiple contests. The theoretical predictions developed in the contest theory literature

have also been extensively tested in laboratory experiments. Important contributions

include Millner and Pratt (1989, 1991), Davis and Reilly (1998), Potters et al. (1998),

and Sheremeta (2010). A comprehensive overview of the contest literature can be

found in Konrad (2009). For a more recent survey of the contest literature in general,

see Corchón and Serena (2018), and for a survey of experimental research on contests

in particular, consult Dechenaux et al. (2015).

One important aspect of contests is that they are often carried out between groups:

interest groups and political parties consist of individuals with similar goals, wars are

often fought between alliances, and firms may join forces in research contests. Such

a group contest, in which effort contribution has a public-good character for fellow

group members, has been analysed by Katz et al. (1990). In their model, groups fight

1The Tullock contest success function can additionally be derived from an optimal-design perspec-
tive, from incomplete information and search based foundations, and from Bayesian foundations. See
Jia et al. (2013).
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Introduction

in a Tullock contest over a prize which is a public good to the winning group. Due

to linear effort costs, only the players with the highest valuation of the prize exert

effort, and group size is irrelevant. Nitzan (1991a) considers a group contest in which

a private prize is partly distributed equally among members of the winning group and

partly dependent on effort contributions. Baik (1993) considers a more general contest

success function and allows for players who have different prize valuations. In Riaz

et al. (1995), players have budget constraints and additionally consume a private good,

which leads to increasing marginal effort costs and thus makes group size “matter”. A

majority of the literature on contests between groups uses the Tullock contest success

function or a more generalised success function with similar properties. One exception

is Baik et al. (2001), who show that a Nash equilibrium in pure strategies does not

exist in an all-pay auction between groups. Esteban and Ray (2001) analyse contests

between groups over a prize with a varying mix of public and private characteristics.

They find that, if the prize is sufficiently public and the elasticity of the marginal

effort cost sufficiently high, an increase in a group’s size increases its probability to

win the prize. This finding qualifies the “group size paradox” described by Olson

(1965) according to which larger groups are less effective in furthering their interests.

The impact of the size of a group on its effectiveness in a contest is further investi-

gated by Nitzan and Ueda (2009, 2011). Baik (2008) considers contests between an

arbitrary number of groups and investigates how individual budget constraints affect

free-riding behaviour. In the majority of the group contest literature, as well as in

this thesis, efforts by members of a group are treated as subsitutes. Alternatives are

investigated by Lee (2012), Chowdhury et al. (2013), and Kolmar and Rommeswinkel

(2013). There is a growing literature that tests theoretical predictions on group con-

tests in experiments. See, for example, Nalbantian and Schotter (1997), Abbink et al.

(2010), Sheremeta and Zhang (2010), and Chowdhury et al. (2016), and for a recent

survey, consult Sheremeta (2018). If the prize is not a pure public good for the winning

group, the question arises how the prize is allocated within this group. One approach

is to analyse potentially endogenous sharing rules, which is done for example by Nitzan

(1991a,b), Davis and Reilly (1999), and Nitzan and Ueda (2011). If such sharing rules

do not exist or cannot be enforced, members of the winning group might enter an

additional intra-group contest. Notable contributions on this form of multiple-stage

contest are Katz and Tokatlidu (1996), Wärneryd (1998), Konrad (2004), Münster

(2007b), and Choi et al. (2016). Note that the question of intra-group prize allocation

does not arise in Chapter 1 since I consider a public-good prize, and in Chapter 2, I

3



Introduction

assume a simple egalitarian sharing rule for simplicity.

In real-life group contests, individuals are often members of more than one group.

For instance, firms can support different lobby groups who fight for industry-specific

subsidies. In distributional conflicts, individuals naturally belong to multiple inter-

est groups, such as “rich”, “young”, and “urban”. In such contests between what I

call non-exclusive groups, players have multiple channels to win the prize, and must

decide which of their groups to support with effort. However, non-exclusive group-

membership has so far been absent from the contest literature. I try to fill this gap in

Chapter 1 and Chapter 2 of this dissertation.

In Chapter 1, I introduce a model of Tullock group contest in which individuals

are partitioned into two groups in two dimensions each.2 Individuals can exert effort

for both of their groups and are indifferent which of their groups wins and provides

the public-good prize. Their marginal effort cost is increasing in effort. Individual

efforts for a group are summed up and in the baseline model enter a concave impact

function. In this framework, I show that the additional partition dimension does

not alter the level of aggregate and individual effort in equilibrium compared to the

canonical model in which individuals belong to only one group. This means that

also equilibrium utilities are equivalent. This equivalence result supports the validity

of the model of group-contest that has been predominantly used in the literature.

Additionally, I investigate asymmetries in group size and effort cost. Non-exclusive

group membership allows players to shift their effort between groups. This leads to

non-monotonic effects of asymmetries and qualifies the results on group-effectiveness

by Esteban and Ray (2001). I further show that it is beneficial for individuals to

be a member of additional groups if others are not. It provides them with additional

channels to exert effort and allows them to free-ride on the effort of group-members who

do not have access to additional groups. The main result of equilibrium equivalence

to the model of exclusive group membership carries over to a setting with an arbitrary

number of symmetric groups in an arbitrary number of dimensions. Finally, I show

that this equivalence also holds to a certain extent if we loosen the concavity restriction

on the group impact function.

The question how groups in contests form endogenously has received significant

attention in the literature. Baik and Shogren (1995a) analyse a contest in which

players decide simultaneously whether to join a group which distributes the prize

2A version of Chapter 1 has been published as: Send, J. (2020). Conflict between non-exclusive
groups. Journal of Economic Behavior & Organization, 177, 858-874.
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according to an endogenous sharing rule. Baik and Lee (1997) allow for inter-group

mobility before the contest. Esteban and Sákovics (2003) investigate group formation

in contests in the light of subsequent intra-group contest. Konrad and Kovenock

(2009a) make the point that budget constraints can make groups more attractive to

form. Other important contributions on the formation of groups include Skaperdas

(1998) and Garfinkel (2004a,b). For surveys of the literature on endogenous group

formation in contests see Bloch (2012) and Konrad (2014). The topic has been analysed

experimentally by Herbst et al. (2015) and Ke et al. (2013, 2015). A natural extension

of Chapter 1 is to ask how group formation in contests is affected by non-exclusive

membership and whether such non-exclusivity can arise endogenously.

To answer these questions, in Chapter 2, I analyse a stylised model of group contest

in which the leaders of two groups can decide over two dimensions of membership-

exclusivity: whether an additional member is allowed to join their group at all, and

whether this member is allowed to join the other group as well. The potential addi-

tional member does not have access to the contest on her own. Following the literature

on the group-size paradox, I consider a prize with a private and public component

and an effort cost that is convex of a variable degree. If the prize is mostly private,

group leaders do not offer membership in equilibrium. If the prize is mostly public

or the elasticity of marginal effort cost high, they offer exclusive membership. Non-

exclusive membership is never offered in this baseline setting. However, I show that

membership commitment, membership fees, and the introduction of a third group

all lead to the emergence of equilibria with endogenous non-exclusive membership.

This underlines the importance to investigate non-exclusive membership in contests.

Commitment by the potential member to join non-exclusive groups rather than ex-

clusive ones harms group leaders. If group leaders can charge a membership fee, they

offer non-exclusive membership and extract the member’s surplus if groups are less

likely to win the contest—less effective—than singletons. This mitigates conflict and

is beneficial to group leaders. Otherwise, group leaders compete for the member by

offering potentially negative fees for exclusive membership. This is harmful to group

leaders compared to the baseline without fees. The introduction of a third group to

the baseline model makes it more likely for the member to be able to join a group and

allows for an equilibrium with non-exclusive membership if the prize is highly public.

The latter is due to the fact that, with three groups, a group leader cannot make all

groups effectively exclusive on her own. I also look at the game from the perspective

of a contest designer interested in maximising effort, and show that she would like to

5
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prohibit non-exclusive membership and allow exclusive membership only if groups are

more effective than singletons. The results are robust to a higher number of groups

and a higher number of potential members.

In many contests, exerting effort may not be the only way for participants to

increase their chances of winning. Before a contest starts, contestants may try to

enhance their performance, which has been investigated, among others, by Berentsen

(2002), Haugen (2004), and Kräkel (2007). Contestants can try to sabotage their

opponents’ efforts, an activity that has been studied by Konrad (2000), Chen (2003),

and Münster (2007a). Especially in innovation contests, contestants may benefit from

spying on their opponents and copying their ideas. Examples of such behaviour have

been documented in the race to develop the first atomic bomb (Haynes and Klehr,

2000), the space race between the United States and the Soviet Union (Wesley, 1967),

and in Formula 1 (Solitander and Solitander, 2010). However, such a copying of contest

effort has so far not been studied in the theoretical literature.

In Chapter 3, I try to fill this gap and analyse a contest between two players

who can pay a fixed cost for the ability to copy their opponent’s effort and add it to

their own.3 I allow one player to be more productive than the other. I characterise

the unique Nash equilibrium of this game in dependence on the cost of copying and

the stronger player’s productivity advantage. In many cases, players play a mixed

strategy and copy their opponent’s effort only with a certain probability. Intuitively,

players copy more often if their relative productivity or the cost of copying declines.

However, also a number of surprising effects emerge: First, if the cost of copying is

low, the weaker player is more likely to win the prize in equilibrium. Second, the more

productive player’s utility can decrease in her productivity advantage. This implies

that a government who wants to increase a domestic firm’s profit may not want to

subsidise this firm’s innovative effort, even if the subsidy were costless. Third, the

aggregate effort players exert can also decrease in the stronger player’s productivity

advantage. Hence, in contrast to the baseline without copying, a contest designer who

would like to maximise aggregate innovative effort in a contest between two players

may want to exclude a more productive contestant in favour of a weaker one. Finally,

I show that the expected winner’s effort—potentially including effort copied from an

opponent—is generally increasing in the cost of copying. The designer of an innovation

contest would thus like to make copying of effort prohibitively costly, even though

3A version of Chapter 3 has been published as: Send, J. (2022). Contest Copycats: Adversarial
Duplication of Effort in Contests. Defence and Peace Economics.
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copying allows players to have access to both their own as well as their opponent’s

effort.

7



Chapter 1

Conflict between Non-exclusive

Groups

1.1 Introduction

Political conflict over scarce resources often takes place between many non-exclusive

groups. For example, a society can be divided into urban and rural, and wealthy and

poor residents, into atheist and religious, and liberal and conservative communities,

or into different ethnic and cultural groups. Individuals usually are members of more

than one of these groups and can also support more than one of these groups at the

same time.

For instance, consider a wealthy individual living in a rural area who lobbies for

a subsidy for the construction of a public yacht haven and at the same time for the

public extension of digital infrastructure to the countryside. Both projects are financed

from the same public budget. The first one only benefits the wealthy who can afford a

yacht, whereas the second one only benefits rural residents. In the spatial dimension,

the rural group might oppose an urban group lobbying for urban public transportation.

In the class dimension, the wealthy might oppose the poor, who want to secure public

resources to build a community centre. Hence, four groups are in a conflict over

the same prize to finance a group-specific public good, and individuals can support

multiple groups. Figure 1.1 illustrates this example.

Real-world instances include wealthy donors supporting multiple candidates in po-

litical races, both within and across parties; companies organising in multiple interest

groups to lobby on different, at times conflicting issues; and individuals being members

of various activist groups that want to implement different projects financed as part

8
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Figure 1.1: A society divided into two groups in two dimensions

of a finite public budget.1

I capture conflict between multiple non-exclusive groups in a novel theoretical

framework: Individuals are partitioned in two dimensions into two groups as in Fig-

ure 1.1. All groups compete in a Tullock contest over a single public prize, where

I assume convex effort cost and a Tullock exponent r smaller than 1. New to the

literature, individuals can exert multiple efforts for all groups they are a member of

simultaneously.

If groups have the same size and individuals face the same effort cost, aggregate

effort and expected individual utility is the same as in the standard Tullock group con-

test model with only one partition dimension. All groups win the prize with the same

probability. Group-size asymmetry in one dimension leads members of the smaller

group to focus their effort on that small group. Members of the larger group on aver-

age shift some of their effort to the groups in the other dimension. If a group becomes

sufficiently large, its members’ win probability and expected utility rise, while mem-

bers of the small group see their win probability and expected utility decline. An

asymmetry in effort cost has non-monotonic effects: At first, it benefits members of

the ‘weak’ group while having a negative effect on individuals in the ‘strong’ group. If

the asymmetry is high enough, it benefits individuals with low effort cost while hurting

those with high effort cost.

If only one of the two groups in the second dimension can take part in the contest

over the prize, its members will direct their effort to this additional effective channel.

In their first-dimension group, they free-ride to at least some extent on the effort of

individuals who cannot support an additional group. This is beneficial for individuals

1The potential influence on group policy in these examples goes beyond the scope of this paper.
But they show that non-exclusivity of groups is a wide-spread phenomenon in conflicts.

9



Chapter 1 – Conflict between Non-exclusive Groups

who have access to two groups and harms individuals who are not a member of a group

in the second dimension.

In a general setting with an arbitrary number of symmetric groups in an arbitrary

number of dimensions, aggregate effort is independent of the number of dimensions

in which individuals are partitioned into groups. The existence of a unique Nash

equilibrium on the level of group-level effort, and thus individual utility, is not ensured

under r ≥ 1. Irrespective of r, expected individual utilities of existing equilibria are

not altered by the addition of new group dimensions.

In Section 1.2, I review the related literature. I introduce a two-by-two model

in Section 1.3 and solve for its unique Nash equilibrium under symmetry and under

group-size and effort-cost asymmetry, respectively, in Section 1.4. In Section 1.5, I

analyse only one additional group in the second dimension and a more general model

with symmetry. In Section 1.6, I sum up my contribution.

1.2 Related literature

The first to formulate group contests were Katz et al. (1990) and Ursprung (1990),

both in the context of rent seeking for public goods and both using the success function

introduced by Tullock (1980). Whereas Katz et al. (1990) focus on heterogeneous prize

valuations and risk aversion, Ursprung (1990) investigates endogenous prize value in

the setting of political candidate competition. In both approaches, the number of group

members does not matter for the aggregate expenditure of effort if effort cost is linear.

Nitzan (1991a) considers a contest between groups in which part of a private prize

is distributed on egalitarian grounds and the rest is distributed according to relative

effort. Baik (1993) also considers players who have heterogenous prize valuations.

Riaz et al. (1995) formulate a more generalised model with a budget constraint and

private good consumption and conclude that collective rent seeking over a public good

is increasing in group size and wealth levels. Nti (1998) investigates per-capita payoffs

in an asymmetric two-group contest over a public good. He shows that payoff per

capita for a group increases with its own valuation and decreases with the opposing

group’s valuation and that per capita payoff for a group increases with its size. In an

important contribution, Esteban and Ray (2001) study a collective contest over a prize

with a varying mix of public and private characteristics and with nonlinear effort cost.

They find that, if the prize is sufficiently public and the elasticity of the marginal effort

cost sufficiently high, an increase in group size increases group effectiveness. Nitzan

10



Chapter 1 – Conflict between Non-exclusive Groups

and Ueda (2009, 2011) further analyse group-size effectiveness in contests by allowing

for endogeneous usage of and sharing rules for the prize. Baik (2008) considers contests

between an arbitrary number of groups with individual budget constraints. Münster

(2009) axiomatises the group contest success function. Related to my work, Cherry

and Cotten (2011) consider a setting in which a group competes with a subset of it,

but individuals can only support one group. Since I consider a contest over a public

good, I do not consider in-group fighting. For the latter, see e.g. Konrad (2004)

for hierarchies in contests, Hausken (2005) and Münster (2007b) for simultaneous

between- and within-group fighting, and Choi et al. (2016) for within-group power

asymmetry and complementarity in group members’ efforts. Refer to Ke et al. (2013)

for an experimental approach.

Multiple group membership offers individuals multiple channels to exert effort. In

a sense, my model thus offers individuals multiple ‘arms’ or ‘activities’. For work on

multi-activity contests without the strategic aspects of group contest see Epstein and

Hefeker (2003) and Arbatskaya and Mialon (2010), who consider different activities

as multiplicative strategic complements, Hausken et al. (2020) who analyses additive

efforts, and Rai and Sarin (2009), who treat one effort as fixed. Closely related to

my work, but focussing on two individuals fighting alone, Osório (2018) considers a

framework in which two issues are disputed and a single prize is awarded. For a

comprehensive introduction into various aspects of contest design, see Konrad (2009).

For a recent survey of the contest literature see Corchón and Serena (2018).

My work is in contrast to the concept of multiple identities and their shifting

salience by Sen (2007) in the sense that group membership is fixed and the valuation

of their success is equal and fixed as well. Further, any in-group altruism or out-group

spite is absent from my model.

My work is further related to Esteban and Ray (2008). They consider a society

split into cross-cutting economic and ethnic groups who can compete in a Tullock

contest over a group-specific public good. However, there is either conflict between

classes or between ethnicities, but not both at the same time; the same is true for

Robinson (2003).

In the network literature, externalities of conflict effort have been modelled for

example by Chowdhury and Kovenock (2012), Franke and Öztürk (2015), König et al.

(2017) and Bozbay and Vesperoni (2018). To my knowledge, there is no framework in

which individuals simultaneously exert effort for multiple groups involved in the same

contest.

11
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1.3 A two-by-two model

There are N = 2n, n ≥ 2, risk neutral individuals and a set of four groups Γ =

{W,P,U,R}. A group is defined as a non-empty set of individuals who can bundle

their contest effort and benefit from the same public good as specified below. Each

individual i is a member of two groups, i ∈ c and i ∈ l, where c ∈ {W,P} and

l ∈ {U,R}. We have W ∩ P = U ∩ R = ∅ and |W ∪ P | = |U ∪ R| = N . All groups

compete in the same contest over a public-good prize valued at V > 0 by all individuals

i ∈ {1, ..., N}. See again Figure 1.1 for an illustration. The contest technology which

determines the probability pg with which group g ∈ Γ wins the prize is the general

Tullock function

pg =
(Xg)r∑
j∈Γ(Xj)r

,

where the group-level effort Xg is the sum of individual efforts of its members on

behalf of it, Xg =
∑

i∈g x
g
i . Efforts from different individuals are perfect substitutes.

If no group exerts any effort,
∑

j X
j = 0, the prize is randomly allocated, pg = 1/4. I

assume that r ∈ (0, 1). A concave group-level impact function is intuitive: The first

unit of money or time spent lobbying will be more effective than the hundredth. For

example, the first contact to a politician leads to the latter knowing of one’s cause in

the first place and is thus very effective. The hundredth meeting will hardly introduce

additional arguments to sway the politician’s opinion. For a brief investigation of the

case r ≥ 1, see Subsection 1.5.3.

Expected utility of individual i who is a member of c ∈ {W,P} and l ∈ {U,R} is

ui =
(Xc)r + (X l)r∑

j∈Γ(Xj)r
V − (xci + xli)

1+α

1 + α
, (1.1)

where effort cost is convex, α > 0. Convexity in the cost function is intuitive: the first

unit of money or time spent on lobbying should have lower opportunity cost than the

last penny of one’s budget or the last minute of one’s day. Effort for both groups is

provided in the same unit and enters the cost function as a sum. This is an important

simplifying assumption. If we consider political lobbying, it is intuitive since lobbying

groups are mostly supported with money. I briefly come back to this assumption when

I discuss the symmetric equilibrium in Subsection 1.4.1. The first term of (1.1) is a

sum of the two Tullock terms for the two groups i is a member of. The individual

derives the same utility of a group-specific public good irrespective of which group

provides it.
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Individuals have two decision variables: effort for each of the two groups they are

a member of, xci and xli. I denote the sum of individual effort as total individual effort

xi = xci + xli and the set of groups that i is a member of as Gi = {c, l}. Individuals

simultaneously choose their two effort levels to maximise their expected utility. It

can never be an equilibrium to have xi = 0 ∀ i, since then any individual could win

the prize for one of her groups for sure with an infinitesimal effort. Taking the first

derivative of (1.1) with respect to xgi , g ∈ Gi, yields the first order conditions

∂ui
∂xgi

=
r(Xg)r−1

∑
j∈Γ\Gi

(Xj)r

(
∑

j∈Γ(Xj)r)2
V − (xi)

α
!

≤ 0, (1.2)

If any group that i is not a member of has strictly positive group-level effort, ∃ Xj >

0, j ∈ Γ \ Gi, for finite xi the left-hand side of (1.2) tends to infinity as Xg tends

to zero. Hence, in any equilibrium, all group-level efforts must be strictly positive,

Xj > 0 ∀ j ∈ Γ and thus also all individual efforts, xi > 0, ∀ i. We ensure concavity

of the objective function by looking at the second order conditions

r(Xg)r−2
∑

j∈Γ\Gi
(Xj)r

(
(r − 1)

∑
j∈Γ(Xj)r − 2r(Xg)r

)
(
∑

j∈Γ(Xj)r)3
V − α(xi)

α−1 < 0. (1.3)

Since r < 1 and α > 0 by assumption, the second order conditions hold for any strictly

positive group-level efforts. Thus, any interior solution we find to the system of first

order conditions (1.2) constitutes a Nash equilibrium in pure strategies. I show bellow

that such a solution exists and yields unique expected individual utility.

1.4 Equilibrium

I consider a symmetric setting before investigating non-monotonic effects of asymme-

tries in group size and effort cost.

1.4.1 Symmetric benchmark

Each of the four groups has n = N/2 members, as in Figure 1.1.2 Since r < 1, the

marginal impact of group effort is decreasing. Hence, individuals have an incentive to

exclusively provide effort to their group with the lowest total effort. I show in Proof

1 in Appendix 1.A that this, together with symmetric group size, implies symmetric

2Symmetric size of subgroups—the intersections of two groups—is not a necessary assumption.
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group-level effort in any equilibrium, Xg∗ = X∗/4 ∀ g ∈ Γ. The first term of (1.2)

must then be identical across groups and individuals. Thus, in equilibrium all first

order conditions must bind. Since α > 0, individual effort must be identical across

individuals, x∗i = X∗/N ∀ i ∈ {1, ..., N}. We can rewrite (1.2) as

rV

2X
−
(
X

N

)α
= 0. (1.4)

The left hand side of this condition is defined for any positive aggregate effort X and

monotonically decreasing. It tends to infinity as X tends to zero and to negative

infinity as X tends to infinity. Hence, condition (1.4) uniquely pins down X∗ in

equilibrium and we can formulate:

Proposition 1 (Solution to the symmetric benchmark). Suppose individuals

are partitioned into two groups of equal size in two dimensions each. Unique aggregate

effort in equilibrium is then

X∗ =

(
rNαV

2

)1/(1+α)

,

which equals aggregate effort in a setting with only one partition dimension.

The symmetric corresponding group-level effort is Xg∗ = X∗/4 and symmetric indi-

vidual effort is x∗i = X∗/N . Because individual effort on behalf of the two groups enters

the cost function as a sum, we cannot determine how much an individual contributes

to each group. Both aggregate effort X∗ and individual effort x∗i are identical to the

equilibrium that arises when two exclusive groups of size n compete over a prize V .

The effect of additional effective channels to win the prize—and thus a higher marginal

impact of effort—is offset by the same technology available to all other individuals and

the negative externality of effort that non-exclusive membership introduces: Exerting

effort for one of your groups increases this group’s chance of winning. But at the

same time, it also decreases the chance of winning for the other group you are a mem-

ber of. This finding relies on the assumption that the efforts an individual exerts for

her groups enter a single cost function as a sum. Whether it generalises to multiple

types of effort with separate cost functions, for example time and money, depends on

the modelling choices. If all groups benefit from a sum of all effort types, additional

group dimensions will not alter aggregate effort. If new groups can be supported with

new types of effort that enter separate cost terms, additional group dimensions will

increase aggregate effort. The fact that equilibrium utilities and aggregate efforts are
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U

R

PW V

Figure 1.2: Group U has more members than group R

equivalent to the canonical contest model with only one partition dimension does not

depend on the assumption that the prize is public. Moreover, this equivalence result

does not depend on the assumption that there is no in-group fighting if the in-group

fighting is symmetric within all groups.3

1.4.2 Group-size asymmetry

Suppose individuals move from the countryside into the cities, increasing the size of

the urban group U and reducing that of the rural group R—see Figure 1.2 for an

illustration. We can use our model to investigate the consequences of this migration

for the equilibrium conflict outcome.

Groups in the second partition dimension are of potentially different sizes, namely

|U | ≡ nU ≥ |R| ≡ nR.4 Group-size symmetry is still given in the first dimension,

nW = nP . The total number of individuals remains N . Suppose that the size of the

group does not lead to an efficiency loss in the public good provision, i.e. that prize

valuation is independent of group size.5 We can formulate:

Proposition 2 (Effects of group-size asymmetry). Suppose group U is potentially

larger than group R, nU ≥ nR. As long as nU ≤ 3nR, individual, group-level, and

3Naturally, in the following sections in which I allow for asymmetries in group size and effort cost,
these assumptions become more important.

4The findings are also valid if the asymmetry of group sizes goes into the other direction or is
in the other dimension. The same is true for the later considered effort cost asymmetry and the
formation of an additional group.

5We will see below that large enough groups also win the prize with higher probability. Thus,
this assumption leads to an increase in expected aggregate utility. This is valid if the prize is truly
public—for example, if the prize is the avoidance of a public bad, such as the storage of nuclear waste,
and all residential areas have enough capacity for all residents. In other contexts, independence of
prize valuation from group size can be more problematic—for example, public transport systems
might have finite passenger capacity.
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aggregate effort as well as expected individual utility do not change relative to the

symmetric case characterised in Proposition 1. If nU ≥ 3nR, members of the small

group R only provide effort to R. If the size of U further increases at the expense of

R, individual total effort decreases for members of the majority group U , and increases

for members of the minority group R. Expected utility increases for the majority and

decreases for the minority. Aggregate effort decreases.

I show in Proof 2 in Appendix 1.B that all groups must exert the same effort in

equilibrium if nU ≤ 3nR. All first order conditions must bind. Symmetric utility

functions imply x∗i = X∗/N ∀ i, where X∗ is the same as in Proposition 1. For

Xg∗ = X∗/4 ∀ g ∈ Γ and x∗i = X∗/N ∀ i to hold, any increase in nU < 3nR must on

average lead effort from members of the larger group U to increasingly crowd out effort

provided by members of R to groups W and P . At nU = 3nR, individual equilibrium

effort x∗i is symmetric and all first order conditions still bind, but members of R only

exert effort for group R. Unchanged effort levels imply unchanged equilibrium utilities.

If nU > 3nR, even if members of R only contribute effort to R, group-level and

individual effort cannot be symmetric at the same time.6 Thus, only the first order

conditions with respect to xRi are necessarily binding in equilibrium. I show in Proof

3 in Appendix 1.B that groups W , P , and U must receive symmetric total effort

in equilibrium, XW = XP = XU . This implies symmetric first order conditions,

∂ui/∂x
W
i = ∂ui/∂x

P
i = ∂ui/∂x

U
i ∀ i ∈ U and ∂ui/∂x

R
i ∀ i ∈ R, respectively. It

follows that individual total effort xi is symmetric within U and within R, respectively.

Then XU = nUxi/3 ∀ i ∈ U and XR = nRxi = (N − nU)xi ∀ i ∈ R. Divide the

first order condition that does necessarily bind for members of R, ∂ui/∂x
R
i , i ∈ R by

∂ui/∂x
U
i , i ∈ U to get

2

1 + (XR/XU)r

(
3(N − nU)

nU

)α
=

(
XR

XU

)1+α−r

. (1.5)

It follows that XR < XU and xi > xj ∀ i ∈ R, j ∈ U if nU > 3nR. The total effort of

a sufficiently small group is lower than that of the larger groups. Its members exert

more effort than members of the large group.

If we define ρ ≡ XR/XU and treat ρ and nU as continuous variables, we can derive

the total differential of (1.5) to show that dρ/dnU < 0. It follows that dpi/dnU >

0 ∀ i ∈ U and dpi/dnU < 0 ∀ i ∈ R. The win probability increases for members

6If there is group-size asymmetry in both dimensions, additionally, some first order conditions
cannot bind in equilibrium if there exists a subgroup which is larger than half of the whole population.
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nU X XU XR xi xj ui uj

10 6.06 1.51 1.51 0.30 0.30 4.89 4.89
15 6.06 1.51 1.51 0.30 0.30 4.89 4.89
16 6.01 1.55 1.37 0.29 0.34 5.00 4.77
17 5.93 1.58 1.20 0.28 0.40 5.12 4.61
18 5.80 1.60 0.99 0.27 0.50 5.28 4.40
19 5.58 1.62 0.71 0.26 0.71 5.50 4.01

Table 1.1: Numerical example of group-size asymmetry

For i ∈ U , j ∈ R; parametric specification: r = 2/3, α = 1/2, V = 10, N = 20

of the large group U while it decreases for members of the small group R. Further,

if we write xi as an implicit function of ρ, we can show that dxi/dnU < 0 ∀ i ∈ U

and dxi/dnU > 0 ∀ i ∈ R. Individual effort increases for members of the small group

and decreases for those of the large group as the size of U increases. It follows that

dui/dnU > 0 ∀ i ∈ U and dui/dnU < 0 ∀ i ∈ R. We can show that aggregate utility∑
i∈{1,...,N} ui is increasing in nU if nU > 3nR. Aggregate effort X decreases in nU . See

Proofs 4 and 5 in Appendix 1.B for the derivations of dρ/dnU , dxi/dnU , d
∑
ui/dnU ,

and dX/dnU .

As long as the urban and rural groups are somewhat similar in size, namely nU ≤
3nR, migration from the countryside into the cities has no utility implications. Rural

individuals will on average shift more and more of their effort to group R, while urban

individuals will shift on average some of their effort towards W and P . When enough

people have moved into the cities and nU ≥ 3nR, rural individuals will only provide

effort to R; small enough minorities only support their minority group. Any further

shift of individuals from R to U will make members of R worse off and members of

U better off.7 Table 1.1 illustrates a numerical example of group-size asymmetry with

r = 2/3, α = 1/2, V = 10, and N = 20. Up to nU = 3nR = 3N/4 = 15, all relevant

values remain the same. If the size of U grows further, we see the discussed effects.

These findings add to the debate started by Olson (1965) and advanced markedly

by Esteban and Ray (2001) on the group-size paradox: If groups are overlapping

and the prize is public, a change in group sizes may only shift individual effort from

group to group while holding win probabilities and individual utilities constant. Only

7If group membership were to some degree endogenous, individuals within R would have an in-
centive to retain members while individuals within U would try to lure mobile members of R into the
cities. However, with fully endogenous group membership, in the context of public goods the trivial
equilibrium entails only one group per dimension and no conflict. For work on endogenous group
membership in the context of private-good prizes, see e.g. Baik and Shogren (1995a), Baik and Lee
(1997, 2001), Konrad and Kovenock (2009a), and Herbst et al. (2015).

17



Chapter 1 – Conflict between Non-exclusive Groups

if the group-size asymmetry grows large enough do we see the common finding of a

large-group advantage to win a public prize reconfirmed.

1.4.3 Effort-cost asymmetry

Assume group- and subgroup-size symmetry for simplicity. Suppose the cost function

for the wealthy takes on the form (1−c)(xi)1+α/(1+α) ∀ i ∈ W , whereas for members

of P effort cost is (1 + c)(xi)
1+α/(1 + α), where c ∈ [0, 1). The unweighted average

effort cost is unchanged by a change in c. At the same effort level, the effort cost for

wealthy individuals is lower than for poor individuals. This could simplistically model

the wealthy having a higher income to spend on effort. Define γ ≡ (1 + c)/(1− c). We

can formulate:

Proposition 3 (Non-monotonic effects of effort-cost asymmetry). Individual

total effort of members of W and aggregate effort is increasing in c. Individual total

effort of members of P is decreasing in c. If γ ≤ 3α, win probabilities remain unchanged

and if γ < 3α expected utility increases for members of P and decreases for members of

W in c. If γ ≥ 3α, members of P only provide effort to P . Expected utility decreases

for members of P when c further increases and increases for members of W .

For an individual of the wealthy group W , who is also a member of group l ∈
{U,R}, the first order condition with respect to xgi , g ∈ {W, l} is

r(Xg)r−1((XP )r + (X−l)r)

(
∑

i∈Γ(Xj)r)2
V − (1− c)(xi)α

!

≤ 0, (1.6)

where −l = {U,R} \ l. The second order conditions hold for any strictly positive

group-level efforts. I show in Proof 6 in Appendix 1.C that in any equilibrium groups

W , U , and R must exhibit the same total effort. Thus, both first order conditions

must bind for all members of group W .

For a member of the poorer group P and group l ∈ {U,R}, the first order conditions

are
r(Xg)r−1((XW )r + (X−l)r)

(
∑

i∈Γ(Xj)r)2
V − (1 + c)(xi)

α
!

≤ 0, (1.7)

where g ∈ {P, l}. The second order conditions hold for any strictly positive group-

level efforts. The first order condition with respect to xli does not necessarily bind in

equilibrium. Members of W might already exert so much effort for l that XW = XU =

XR > XP and members of P do not have an incentive to provide effort for l at all.
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Suppose group-level effort is symmetric, Xg = X/4. Then, all first order conditions

are symmetric for members of W and P , respectively, and must bind in equilibrium.

Divide (1.6) by (1.7) to get

xi
xj

=

(
1 + c

1− c

)1/α

= γ1/α. (1.8)

for i ∈ W, j ∈ P . Under group-level-effort symmetry, individual effort by members of

W can be up to three times as large as individual effort by members of P and still

fulfil the group-effort condition Xg =
∑

i∈g x
g
i . Hence, the equilibrium with symmetric

group-level effort exists as long as γ ≤ 3α. If γ > 3α, there is no feasible solution

to binding equations (1.6) to (1.8) and in any equilibrium we must have that XW =

XU = XR > XP . Then, individual effort of members of group W must be more than

three times as large as that of members of group P , who only support P .

If γ < 3α, equation (1.8) pins down the equilibrium and group-level effort is sym-

metric. Plugging X = nxi(1 + 1/γ1/α), i ∈ W into the first order conditions, we can

show that dxi/dc > 0 ∀ i ∈ W and dxi/dc < 0 ∀ i ∈ P . As c increases, individual

effort of members of W increases while individual effort of members of P decreases.

Further, aggregate effort X increases in c. Win probabilities remain the same as long

as group-level effort remains symmetric. Expected utility of members of P increases

in c. For members of W , we can show that expected utility is decreasing in c. The fact

that an increase in c leads members of the weak group P to free-ride more intensely

in groups U and R harms members of W despite their lowered effort cost. Moreover,

we can show that dui/dc = −duj/dc if γ < 3α. Hence, aggregate utility is unaffected

by cost asymmetry if it is sufficiently small. At γ = 3α, equation (1.8) still pins down

the equilibrium with symmetric group-level effort, but members of P only exert effort

for group P .

If γ > 3α, individuals within W must in equilibrium exert more than three times as

much effort as members of group P and XW = XU = XR > XP = nxi, i ∈ P . Then,

(1.7) binds only for g = P but not for g = l. Similar to the previous subsection about

group-size asymmetry, ‘minorities’ with relatively higher effort cost only support their

minority group with effort. Using XW = nxi/3, i ∈ W we can divide the first order

condition that does bind for members of P , (1.7) with g = P , by (1.6) to get

2

1 + (XP/XW )r
3α(1− c)

1 + c
=

(
XP

XW

)1+α−r

. (1.9)
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c γ X XW XP xi xj ui uj

0.0 1.00 6.06 1.51 1.51 0.30 0.30 4.89 4.89
0.1 1.22 6.12 1.53 1.53 0.37 0.25 4.87 4.91
0.2 1.50 6.31 1.58 1.58 0.44 0.19 4.85 4.93
0.3 1.86 6.61 1.68 1.58 0.50 0.16 4.88 4.90
0.6 4.00 8.40 2.42 1.15 0.73 0.11 5.38 4.42
0.9 19.00 18.29 5.90 0.60 1.77 0.06 6.06 3.77

Table 1.2: Numerical example of effort-cost asymmetry

For i ∈W , j ∈ P ; parametric specification: r = 2/3, α = 1/2, V = 10, N = 20

If we define ρ ≡ XP/XW , we can show that dρ/dc < 0. It follows that dpi/dc >

0 ∀ i ∈ W and dpi/dc < 0 ∀ i ∈ P . As c increases, the win probability increases for

members of W and decreases for members of P . Formulating individual effort xi as

implicit function of ρ, we can show that dxi/dc > 0 ∀ i ∈ W and dxi/dc < 0 ∀ i ∈ P .

Aggregate effort again increases in c.

Formulating expected individual utility ui as an implicit function and taking the

total differential yields dui/dc > 0 ∀ i ∈ W and dui/dc < 0 ∀ i ∈ P . If the effort

cost asymmetry is high enough to fulfil γ ≥ 3α, any further increase in c increases

expected utility of members of W and decreases expected utility of members of P .8

This can intuitively be explained by the fact that members of P cannot further increase

the extent to which they free-ride on the effort exerted by members of W . Similar

to the case of group-size asymmetry, the cost asymmetry has to be large enough to

confirm previous findings in the literature. Lastly, aggregate utility increases in c if

γ > 3α. I refer the interested reader to Proofs 7 to 10 in Appendix 1.C for derivations

of dρ/dc, dxi/dc, dui/dc, d
∑
ui/dc, and dX/dc. Table 1.2 illustrates a numerical

example of effort-cost asymmetry, with r = 2/3, α = 1/2, V = 10, and N = 20. Up

to γ = 3(1/2) ≈ 1.73, group-level effort remains symmetric and utility increases for the

poor and decreases for the wealthy. Beyond that threshold, the effect of an increase

in c is flipped.

8The effort cost asymmetry investigated here has a similar effect on members of group P as a
higher prize valuation by members of W , irrespective of which group provides the prize, would have.
If members of W only valued the prize more highly if it were provided by group W—for example,
due to efficiency/productivity reasons—an increasingly asymmetric prize valuation would have a
monotonic negative effect on members of P .
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U

R

PW V

Figure 1.3: One additional group in the second dimension

1.5 Extensions

In the model presented above, individuals are partitioned into two groups in two di-

mensions. I now first turn to a setting in which only one group in the second dimension,

the urbanites, can influence the prize allocation. Second, I generalise the model to an

arbitrary number of groups of the same size in an arbitrary number of dimensions.

Third, I discuss issues with linear and convex group-level impact functions.

1.5.1 Additional group

Consider two exclusive groups W and P of equal size n that are in conflict over a

public prize of value V . Expected utility of an individual i ∈ c, where c ∈ Γ = {W,P}
is

ui =
(Xc)r∑
j∈Γ(Xj)r

V − (xci)
1+α

1 + α
. (1.10)

The symmetric Nash equilibrium in pure strategies is then uniquely given by the

individual total effort x∗i = (rV/(2N))1/(1+α) ∀ i. Both groups have the same win

probability.

Now, assume half of the members of both W and P form an additional group U

which also participates in the conflict. The other half of both groups, whom I call again

R, does not have the opportunity to form their own group. This setup is exemplified

in Figure 1.3. We can formulate:

Proposition 4 (Additional group). The formation of an additional group U in the

second dimension that participates in the same conflict as groups W and P benefits

members of U and harms members of the inactive group R. Individual effort increases

for members of R and decreases for members of U . The winning probability increases
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for members of U and decreases for members of R. Aggregate effort increases if α < 1,

remains the same if α = 1, and decreases if α > 1.

After the formation of the additional group U , the utility function for members

of R remains the same as in (1.10) where now Γ = {W,P,U}. Expected utility for

members of group U is

ui =
(Xc)r + (XU)r∑

j∈Γ(Xj)r
V − (xci + xUi )1+α

1 + α
,

where c ∈ {W,P}. The first order conditions are derived as before. The second order

conditions again hold for strictly positive group-level efforts. Due to r < 1 and group-

size symmetry, in equilibrium we must have XW = XP . Moreover, it must hold that

XU ≤ Xc, c ∈ {W,P}. Otherwise, members of U would have an incentive to shift

some of their effort from U to their other group c ∈ {W,P}, which cannot be an

equilibrium. Additionally, from the first order conditions and group-size symmetry it

is clear that xi < xj ∀ i ∈ U, j ∈ R. This is intuitive since members of U gain from

two groups and thus have less incentive to exert effort.

In Proof 11 in Appendix 1.D, I show that if α < 1, it follows that XU < XW = XP .

If α = 1 then XU = XW = XP . Hence, if α ≤ 1, members of U only contribute effort

to group U . If α > 1 members of U also contribute to W and P . Moreover, I show in

Proof 12 in Appendix 1.D that the introduction of an active group U always increases

individual effort xi for i ∈ R and decreases individual effort xi for i ∈ U . Thus, the

introduction of an additional group U leads to a higher expected individual utility for

all members of U and to a reduction of expected individual utility for all members of

R. Aggregate effort X increases if α < 1, remains the same if α = 1 and decreases if

α > 1; if the effort cost is sufficiently convex, the reduction in effort by members of U

is not offset by an increase in effort by members of the inactive group R.

The formation of U gives its members another channel to exert effort to win the

prize. Since r < 1, this additional channel makes effort exerted by individuals within

U more effective. Consequently, members of U free-ride—the extent depends on α—

on the effort of members of R within their classes W and P and by exerting effort

for U increase their win probability. This harms members of R who do not have an

additional channel for their effort.
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1.5.2 A general model with symmetry

What happens if there are more than two partition dimensions and more than two

groups per dimension? For example, a society could be split into an urban, suburban,

and rural population, an upper, middle, and lower class, and three different ethnicities

who have additional conflicting interests. Let us extend the symmetric model to more

dimensions and more groups per dimension.

Consider N = mn identical individuals who are partitioned into m ≥ 2 groups of

n members in d ≥ 2 dimensions. Denote the set of md groups by Γ. Each individual

i is a member of exactly d groups, one in each dimension. Denote this set of groups

by Gi ⊂ Γ. A subgroup h is the intersection of d groups, one group per dimension.

Denote the set of non-empty subgroups by Ψ.

All groups in Γ compete over the same prize to finance a group-specific public

good, valued at V across all groups and individuals. The technology of contest which

determines the win probability pg(X
g11 , ..., Xgkm) of group g ∈ Γ is the general Tullock

function,

pg(X
g11 , ..., Xgkm) =

(Xg)r∑
j∈Γ(Xj)r

,

where group effort Xg is the sum of individual efforts of its members on behalf of it,

Xg =
∑

i∈g x
g
i .

Expected utility of an individual i, who is a member of d different groups Gi ⊂ Γ,

is

ui =

∑
j∈Gi

(Xj)r∑
j∈Γ(Xj)r

V −
(
∑

j∈Gi
xji )

1+α

1 + α
,

where α > 0. The individual maximisation problem of choosing individual effort for

group g ∈ Gi yields the first order condition

∂ui
∂xgi

=
r(Xg)r−1

∑
j∈Γ\Gi

(Xj)r

(
∑

j∈Γ(Xj)r)2
V − (xi)

α
!

≤ 0. (1.11)

Equation (1.11) is identical for all members of any subgroup h ∈ Ψ. The second order

conditions are still given by (1.3) and hold for any strictly positive group-level efforts.

Since r < 1, there are d idiosyncratic first order conditions for all subgroups h ∈ Ψ.

I prove in Appendix 1.A that all of these conditions must bind in any equilibrium since

all groups have to exert the same effort in any equilibrium, Xg = X/(md) ∀ g ∈ Γ.

The following proposition characterises the Nash equilibrium in pure strategies:

23



Chapter 1 – Conflict between Non-exclusive Groups

Proposition 5 (Nash equilibrium in the general symmetric setting). Suppose

individuals are partitioned into m groups in d dimensions each. Unique aggregate effort

in equilibrium is

X∗ =

(
r(m− 1)NαV

m

)1/(1+α)

, (1.12)

and the corresponding symmetric group-level effort Xg∗ = X∗/md. Conflict effort is

independent of the number of dimensions d along which individuals are partitioned into

groups.

The corresponding symmetric individual equilibrium effort is x∗i = X∗/N . Note

that there would naturally be multiple equilibria on the individual level if effort cost

were linear, α = 0. The result from Subsection 1.4.1 that the higher effectiveness of

additional effort channels is offset by the same ‘technology’ being available to all other

conflict parties holds also in the general symmetric case. Individual group-level effort

xgi is indeterminate since there is no discrimination between groups in the individual

cost function. Aggregate effort in equilibrium is independent of the number of partition

dimensions d, and increasing in the Tullock exponent r, the value of the prize V , the

number of groups per partition dimension m, and the number of individuals N . The

effect of cost parameter α on aggregate equilibrium effort X∗ is ambiguous: it is

positive if r(m − 1)V < mN or alternatively xi < 1, zero if xi = 1 and negative if

xi > 1. If individual effort is smaller than one, an increase in the convexity of the cost

function decreases the marginal cost and thus gives incentive to raise effort.

1.5.3 Linear and convex group-level impact functions

The assumption r < 0 is reasonable in many contexts, but it might not always hold.

For example, if overlapping interest groups develop different project proposals whose

quality can be quite easily assessed, r = 1 or even r > 1 might be a better reflection

of reality. What happens if impact functions are not concave?

If r = 1, there is only one idiosyncratic first order condition per subgroup. Then

∂ui/(∂x
g
i ) > 0 whenever

∑
j∈Γ\Gi

Xj > 0 and xi = 0 and thus all first order conditions

must bind in equilibrium: ∑
j∈Γ\Gi

Xj

(
∑

j∈ΓX
j)2
V − (xi)

α !
= 0, (1.13)

which is identical for each individual within any subgroup h, respectively. The second
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order condition holds for any positive individual effort.

The symmetric solution dictated by a concave group-level impact function with

aggregate effort (1.12) also characterises a Nash equilibrium in pure strategies in the

linear case. However in general, the system of first order conditions does not have a

unique solution since there are more unknowns than equations.

Due to group-size symmetry, we can sum (1.13) over all individuals to get

∑
i

(xi)
α
∑
i

(xi) = N
m− 1

m
V.

The right-hand side of this equation is a constant. The left hand side is homogeneous

of degree 1 + α in symmetric individual effort. Thus, any equilibrium whose aggre-

gate effort differs from the one characterised by (1.12) cannot be symmetric on the

individual level.

If α 6= 1, aggregate effort X in equilibrium does not necessarily equal aggregate

effort in the symmetric equilibrium X∗S = ((m− 1)NαV/m)1/(1+α). If α ∈ (0, 1), then

X∗ ≥ X∗S in any equilibrium and, if α > 1, then X∗ ≤ X∗S; aggregate effort may be

larger or smaller than in the one-dimensional group conflict case, dependent on the

convexity of the cost function.

The case α = 1 allows us to infer that any Nash equilibrium in pure strategies has

the same unique aggregate-effort level. If α = 1, due to symmetry we can sum up

(1.13) over all individuals to see that

X∗ =

(
(m− 1)NV

m

)1/2

,

which is a special case of the formula derived under concavity (1.12). Due to convex

effort cost, individual effort is equal within subgroups. Equilibrium effort on the

individual or group level is not uniquely defined, however.

If r > 1, Nash equilibria in pure strategies might not be unique on the aggregate-

effort level: If the group-level impact function is convex and thus the marginal return

to group-level effort increasing in group-level effort, individuals would like to provide

all their effort to the group with the highest total effort. This mechanism introduces

a complex coordination problem and the potential for multiple equilibria with varying

utilities. In any equilibrium in pure strategies that does exist, there is at least one

group g ∈ Γ with effort Xg ≥ Xj ∀ j ∈ Γ and Xg−xi ≥ Xg′ ∀ g∩g′ 6= ∅, i ∈ g∩g′, and
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this group will receive the total effort from all its members.9 Symmetric group-level

effort can never be an equilibrium. Individuals within a subgroup must only provide

effort to one of their mutual groups. Moreover, solutions that can be derived from

first order conditions might not constitue Nash equilibria due to known problems with

potentially negative expected utility that arise with a Tullock exponent r larger than

1.10

Regardless of the specification of r > 0, if we consider any existing Nash equilib-

rium, the later addition of a new group-partition dimension does not alter expected

individual utility. If r ≥ 1, no individual has an incentive to shift their effort to a

newly existing group or alter the effort provided to their old groups. If r < 1, indi-

viduals shift some of their effort to their new groups to equalise group-level efforts.

But as is clear from Proposition 5, this will not change individual total effort levels or

individual win probabilities.

In the future, it should be of interest to analyse how equilibrium outcomes are

affected if conflict between non-exclusive groups is combined with weakest-link and

best-shot contest success functions. For the former, see for example Lee (2012), for

the latter Chowdhury et al. (2013), and for a combination Chowdhury and Topolyan

(2016).

1.6 Conclusion

I introduce a conflict model in which individuals are members of and can contribute

effort to two groups simultaneously. Group impact functions are concave and effort

cost is convex. Group-size asymmetry in one partition dimension crowds out effort

by individuals of the smaller group provided to their groups in the other dimension.

Up to a threshold, group-size asymmetry does not affect expected individual utility.

Beyond that threshold, it hurts members of the minority and benefits members of the

majority. Asymmetric effort cost has an inverted U-shaped effect on the utility of

individuals with the higher relative effort cost and a U-shaped effect on the utility of

individuals with the lower relative cost. In general, individuals who form a minority in

one dimension focus their conflict effort on this minority group. The formation of one

additional group in a standard two-group setting benefits individuals who have access

9If Xg−xi < Xg′ for any i ∈ g∩g′, i would have an incentive to change her behaviour and provide
her effort to the other group due to increasing marginal returns.

10See e.g. Perez-Castrillo and Verdier (1992) Baye et al. (1994), Cornes and Hartley (2005), and
Lee (2015).
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to this new group as an additional channel to win the prize. It harms those who have

only one group membership.

With multiple groups of symmetric size in an arbitrary number of partition dimen-

sions, only a concave group-level impact function ensures the existence of a unique

Nash equilibrium in pure strategies. Then, conflict effort is independent of the num-

ber of partition dimensions. The later addition of additional group dimensions does

not alter expected utilities of existing equilibria. This equivalence result supports the

validity of the canonical model of group contest with only one partition dimension.

The model makes a couple of predictions that can be policy relevant. First, the

introduction of additional contentious points that split society into additional interest

groups does not increase the intensity of political conflict. An increase in the number

of lobbying groups only aggravates conflict if it is due to smaller groups, not if it is

due to groups in more dimensions. Second, members of a minority group, be it due to

group-size or strength, focus their efforts on this minority group. This does not reflect

a higher valuation of this particular group’s success but simply the lack of support

by other individuals. Third, group-size and effort-cost asymmetries, if large enough,

facilitate social efficiency by increasing aggregate utility.

There are a number of avenues for future research. One is endogenous group

membership. In practice, players can often to some extent choose to which groups

they want to belong to: individuals may join or leave activist groups; companies can

team up with other companies in lobby groups or fight alone. A second one is to

investigate whether the effort and utility equivalence under non-exclusivity of group

membership also holds with weakest-link or best-shot contest technologies. A third

one is the modelling of influence on a group’s policy goals, which is often inherent in

real-world examples. Lastly, to gain insights into recent issues of political polarisation,

it might be fruitful to analyse in-group altruism in combination with varying overlap of

non-exclusive groups. In such a framework, one would expect increased ‘redundancy’

of group membership (e.g. all urbanites are wealthy and vice versa) to increase conflict

intensity.
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Appendices

1.A Appendix – Symmetric benchmark

Proof 1 (Group-level effort symmetry). Individuals are partitioned into m ≥ 2

groups of equal size in d ≥ 1 dimensions each. Suppose that not all groups exert

the same level of effort in equilibrium. Then, ∃ L,H ∈ Γ : XH > XL, XH ≥ Xg ≥
XL ∀ g ∈ Γ.

Define a multidimensional group cluster ΓL ⊂ Γ where L ∈ ΓL, Xj = XL ∀ j ∈ ΓL,

and if g1 ∈ ΓL, there is a ‘chain’ of intersecting groups g1, ..., gk, k ≥ 2, gk = L such

that gj ∩ gj+1 6= ∅ ∀ j ∈ {1, ..., k− 1}. Thus, all groups within the cluster ΓL have the

same effort in equilibrium, Xj = XL. Moreover all groups within this cluster share

at least one member with at least one other group in this cluster, and all groups can

be ‘connected’ via intersecting groups with group L. Due to r < 1, ∂ui/∂x
g
i is strictly

decreasing in Xg. Hence, in any equilibrium individuals will only exert effort for their

groups with the lowest total effort. Then, any individual who is a member of any of

the groups in cluster ΓL only supports groups within this cluster since she cannot be

a member of any other group with lower or equal total effort. Otherwise, this group

would be a part of the cluster as well. The effort for any individual iL who is a member

of any of the groups in cluster ΓL is given by the first order condition

r
∑

j∈Γ\GiL
(Xj)r

(XL)1−r(
∑

j∈Γ(Xj)r)2
V = (xiL)α . (1.14)

Denote by xL the average effort of members of ΓL. Members of the cluster ΓL can at

most support d groups within ΓL. Then,

XL ≥ nxL/d. (1.15)

Now, define a group cluster ΓH ⊂ Γ where H ∈ ΓH , Xj = XH ∀ j ∈ ΓH , and if

g1 ∈ ΓH , there is a ‘chain’ of intersecting groups g1, ..., gk, k ≥ 2, gk = H such that

gj ∩ gj+1 6= ∅ ∀ j ∈ {1, ..., k− 1}. Due to concavity in the group-level impact function,

individuals who are a member of ΓH only support groups within this cluster if all the

groups they are a member of are within this cluster. The individual effort of any of
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these individuals iH is given by

r
∑

j∈Γ\GiH
(Xj)r

(XH)1−r(
∑

j∈Γ(Xj)r)2
V = (xiH )α . (1.16)

Denote by xH the average effort of members of ΓH that support the groups within this

cluster. Groups within ΓH have at most n active supporters who support d groups

within ΓH . Then,

XH ≤ nxH/d. (1.17)

We know that ∑
j∈Γ\GiL

(Xj)r =
∑
j∈Γ

(Xj)r −
∑
j∈GiL

(Xj)r

and ∑
j∈Γ\GiH

(Xj)r =
∑
j∈Γ

(Xj)r − d(XH)r.

Since any individual iL is the member of at least one group exerting effort XL and all

her other groups cannot exert a higher effort than XH by assumption,

∑
j∈Γ\GiL

(Xj)r >
∑

j∈Γ\GiH

(Xj)r

for all iL, iH . Looking at (1.14) and (1.16), this means that

xL > xH . (1.18)

However, combining (1.15), (1.17), and (1.18) yields

XL ≥ nxL/d > nxH/d ≥ XH .

This is a contradiction of the starting assumption. Hence, group-level effort must be

symmetric in any equilibrium, Xg = X/(md) ∀ g ∈ Γ. �

1.B Appendix – Group-size asymmetry

Proof 2 (Group-level effort symmetry if nU ≤ 3nR). Suppose that ∃ L,H ∈ Γ :

XH > XL, XH ≥ Xg ≥ XL ∀ g ∈ Γ. If an individual exerts positive effort for group

H, all her groups must have the same effort XH . There are thus three cases: There are
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two groups in different dimensions with effort XH , and either two groups with effort

XL or one group with effort XL and one group with effort XM , XH > XM > XL.

Or there are three groups with effort XH and one group with effort XL. Denote the

average effort of individuals who exert positive effort for H as xH and the average

effort of individuals who exert effort for L as xL. Since nU ≤ 3N/4, nR ≥ N/4, and

nW = nP = N/2 we can write in all three cases

XH ≤ NxH
4

and

XL ≥ NxL
4

.

However, we can derive from the first order conditions that xL > xH , which means

that XH < XL. This is a contradiction. Hence, Xj = X/4 ∀ j ∈ Γ in equilibrium if

nU ≤ 3nR. �

Proof 3 (Group-level effort symmetry XW = XP = XU if nU > 3nR). Suppose

XU > XW . Then, the subgroup W ∩U only exerts effort for group W . The subgroup

P ∩ U must exert effort for U for XU > 0 to hold, from which follows XU ≤ XP and

XW < XP . Further, it must hold that XR ≤ XP since otherwise R would have no

supporters. But by the group-size assumptions and the first order conditions we can

write XW > Nxi/4 > Nxj/4 ≥ XP , i ∈ W ∩ U, j ∈ P ∩ U , which is a contradiction.

Now, suppose XU < XW . Then, the subgroup W ∩U only supports U . This means

that W∩R exerts effort for W and thus XW ≤ XR. But then XU < XR, which implies

by the first order conditions that xi > xj ∀ i ∈ W ∩ U, j ∈ W ∩ R. Subgroup-size

asymmetry implies XU > xiN/4 > xjN/4 > XW , i ∈ W ∩ U, j ∈ W ∩ R, which is a

contradiction.

Thus, XU = XW in equilibrium. The same reasoning yields XU = XP . In any

equilibrium XW = XP = XU and all first order conditions bind for all individuals in

the larger group U . �

Proof 4 (dxi/dnU < 0 ∀ i ∈ U and dxi/dnU > 0 ∀ i ∈ R if nU > 3nR). The

total differential of (1.5) is

dρ

dnU
=

−(2/(1 + ρr))α(3(N − nU)/nU)α−13N/n2
U

2rρr−1/(1 + ρr)2(3(N − nU)/nU)α + (1 + α− r)ρα−r
< 0. (1.19)

If nR = N − nU ≤ nU/3, we can plug XR = nRxi, i ∈ R, XW = XP = XU =
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xinU/3, i ∈ U , and ρ = XR/XU into the first order conditions to write individual

effort xi as implicit functions of ρ and nU :

xi =

(
r(1 + ρr)V

(nU/3)(3 + ρr)2

)1/(1+α)

, i ∈ U (1.20)

and

xi =

(
rρr2V

(N − nU)(3 + ρr)2

)1/(1+α)

, i ∈ R. (1.21)

We can derive the total differential of (1.20) to get

dxi
dnU

=
1

1 + α

(
nU/3(3 + ρr)2

r(1 + ρr)V

)α/(1+α)
3rV

nU(3 + ρr)2

(
rρr−1(1− ρr)

3 + ρr
dρ

dnU
− 1 + ρr

nU

)
< 0

for i ∈ U . Individual effort in the larger group U is decreasing in the group size of U

if nU > 3nR.

The total differential of (1.21) is

dxi
dnU

=
1

1 + α

(
(N − nU)(3 + ρr)2

rρr2V

)α/(1+α)
2rρrV

((N − nU)(3 + ρr))2

(
r(3− ρr)(N − nU)

ρ(3 + ρr)

dρ

dnU
+ 1

)

for i ∈ R. The first three terms are positive. Hence, the sign of dxi/dnU , i ∈ R is the

sign of the term in the last bracket. Plugging the formula for dρ/dnU , (1.19), into this

bracket and rearranging yields

1− 3− ρr

3 + ρr
2/(1 + ρr)αN/nU

2ρr/(1 + ρr)2 + ((1 + α)/r − 1)ρ1+α−r(nU/(3(N − nU)))α
.

Making use of equation (1.5), we can simplify this to

1− αN/nU
(3 + ρr)/(3− ρr)((1 + α)/r − 1/(1 + ρr))

. (1.22)

Since r < 1 and ρr ≥ 0, we know that ((1 + α)/r − 1/(1 + ρr)) > α. Moreover, since

ρ ≤ 1 and xi ≥ xj, i ∈ R, j ∈ U we know that ρr ≥ ρ = 3(N − nU)xi/(nUxj) ≥
3(N − nU)/nU , i ∈ R, j ∈ U and thus

3 + ρr

3− ρr
≥ 3 + 3(N − nU)/nU

3− 3(N − nU)
.
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It follows that (1.22) is strictly larger than

N/nU − 1 ≥ 0.

Hence, dxi/dnU > 0, i ∈ R. Individual effort of individuals in the smaller group R is

increasing in the group size of U if nU > 3nR. �

Proof 5 (d
∑∑∑
ui/dnU and dX/dnU if nU > 3nR). Using (1.20) and (1.21), we

can write aggregate utility as

∑
i∈{1,...,N} ui = nUuk + (N − nU)uj =

(
nU

2

3 + ρr
+ (N − nU)

1 + ρr

3 + ρr

)
V − rV

1 + α
3(1+ρr)+2ρr

(3+ρr)2

for k ∈ U and j ∈ R. Then,

d
∑
ui

dnU
=

(
1− ρr

3 + ρr
− (2nU −N)

2rρr−1

(3 + ρr)2

dρ

dnU

)
− rV

1 + α
rρr−1 dρ

dnU

9− 5ρr

(3 + ρr)3
> 0

since dρ/dnU < 0 and ρr < 1 if nU > 3nR.

Using (1.20) and (1.21), we can write aggregate effort X as

X = nU

(
r(1 + ρr)V

(nU/3)(3 + ρr)2

)1/(1+α)

+ (N − nU)

(
rρr2V

(N − nU)(3 + ρr)2

)1/(1+α)

.

Taking the total derivative of this term gives

dX

dnU
=

(
V

(3 + ρr)2

)1/(1+α)
α

1 + α

((
3(1 + ρr)

nU

)1/(1+α)

−
(

2ρr

N − nU

)1/(1+α)
)

+

dρ

dnU
rρr−1(rV )1/(1+α) 1

1 + α

(
(3(nU)α)1/(1+α)

(
1 + ρr

(3 + ρr)2

)−α/(1+α)
1− ρr

(3 + ρr)3
+

(2(N − nU)α)1/(1+α)

(
ρr

(3 + ρr)2

)−α/(1+α)
3− ρr

(3 + ρr)3

)
< 0.

To see this, recall that 3(1 + ρr)/nU ≤ 2ρr/(N − nU) and dρ/dnU < 0. �

1.C Appendix – Effort-cost asymmetry

Proof 6 (Binding first order conditions with effort cost asymmetry). Suppose

XW > XU . The subgroup W ∩ U then only exerts effort for group U . The subgroup

W ∩R must exert effort for W for XW > 0 to hold, from which follows that XW ≤ XR.
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But then XU < XR, which implies by the first order conditions that xi > xj ∀ i ∈
W ∩U, j ∈ W ∩R. Subgroup-size symmetry means XU ≥ xin/2 > xjn/2 ≥ XW . This

is a contradiction.

Now, assume XW < XU . Then, the subgroup W ∩ U only supports W . It follows

that P ∩U exerts effort for U and thus XU ≤ XP . But then XW < XP , which implies

xi > xj ∀ i ∈ W ∩ U, j ∈ P ∩ U , especially since members of W face lower effort cost

by assumption. Subgroup-size symmetry means that XW ≥ xin/2 > xjn/2 ≥ XU ,

which is a contradiction.

Thus XW = XU in equilibrium. The same reasoning yields XW = XR. It follows

that in any equilibrium XW = XU = XR and all first order conditions hold for all

individuals in group W . �

Proof 7 (dxi/dc > 0 ∀ i ∈ W , dxi/dc < 0 ∀ i ∈ P , and dX/dc > 0 if

γ < 3α). Suppose γ < 3α. Plugging X = nxi(1+1/γ1/α), i ∈ W and Xj = X/4 ∀ j ∈
Γ into the first order condition (1.6), we can write

xi =

(
rV

2n(1 + 1/γ1/α)(1− c)

)1/(1+α)

, i ∈ W. (1.23)

Then,

dxi
dc

=
xi

(1 + α)(1− c)

(
1 +

2/α ((1− c)/(1 + c)1+α)
1/α

1 + 1/γ1/α

)
> 0. (1.24)

Individual effort of individuals in W is increasing in c if γ < 3α.

Plugging X = nxi(1 + γ1/α), i ∈ P and Xj = X/4 ∀ j ∈ Γ into the first order

condition (1.7) yields

xi =

(
rV

2n(1 + γ1/α)(1 + c)

)1/(1+α)

, i ∈ P. (1.25)

Then,

dxi
dc

= − xi
(1 + α)(1 + c)

(
1 +

2/α ((1 + c)/(1− c)1+α)
1/α

1 + γ1/α

)
< 0. (1.26)

Individual effort of individuals in P is decreasing in c if γ < 3α.

Due to group-size and individual symmetry dX/dc = n(dxi/dc+dxj/dc), i ∈ W, j ∈
P . To determine how aggregate effort changes in response to effort cost asymmetry,

we can look at whether −(dxi/dc)/(dxj/dc), i ∈ W, j ∈ P is smaller or larger than
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one. Dividing (1.24) by (1.26) yields

−dxi/dc
dxj/dc

=
α(1 + γ1/α)(1 + c) + 2

α(1 + γ1/α)(1− c)/γ1/α + 2
> 1,

where we make use of γ ≥ 1 and α > 0. It follows that dX/dc > 0 if γ < 3α. �

Proof 8 (dui/dc < 0 ∀ i ∈ W and dui/dc > 0 ∀ i ∈ P if γ < 3α). Using

(1.23), we can write expected utility for i ∈ W as

ui =
V

2
− rV

2n(1 + 1/γ1/α)(1 + α)
.

The total differential is

dui
dc

= −(xi)
1+α

1 + α

2((1− c)/(1 + c)1+α)1/α

α(1 + 1/γ1/α)
< 0. (1.27)

Expected utility for members of the wealthy group W is decreasing in c if γ < 3α.

Using (1.25), we can write expected utility for i ∈ P as

ui =
V

2
− rV

2n(1 + γ1/α)(1 + α)
.

The total differential is

dui
dc

=
(xi)

1+α

1 + α

2((1 + c)/(1− c)1+α)1/α

α(1 + γ1/α)
> 0. (1.28)

Expected utility for members of the poor group P is increasing in c if γ < 3α. To see

that dui/dc = −duj/dc, plug (1.23) and (1.25) into (1.27) and (1.28), respectively. �

Proof 9 (dxi/dc > 0 ∀ i ∈ W , dxi/dc < 0 ∀ i ∈ P , and dX/dc > 0 if

γ > 3α). Assume γ > 3α. Then W , U , and R are only supported by members of

W and have symmetric total effort. Individuals in P only support P and XP < XW .

Using ρ ≡ XP/XW and XW = nxi/3, i ∈ W , we can write individual effort as

xi =

(
3r(1 + ρr)V

n(3 + ρr)2(1− c)

)1/(1+α)

for i ∈ W . The total differential is

dxi
dc

=
xi

(1 + α)(1− c)

(
1 + (1− c)dρ

dc

rρr−1(1− ρr)
(1 + ρr)(3 + ρr)

)
. (1.29)
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The total differential of (1.9) is

dρ

dc
=

−(4/(1 + ρr))3α/(1 + c)2

(2rρr−1/(1 + ρr)2)3α(1− c)/(1 + c) + (1 + α− r)ρα−r
< 0. (1.30)

If we plug (1.30) into (1.29) and simplify using (1.9), we get

dxi
dc

=
xi

(1 + α)(1− c)

(
1− 2(1− ρr)/1 + c)

(3 + ρr)(1 + ((1 + α)/r − 1)(1 + ρr)/ρr)

)
> 0. (1.31)

Individual effort of individuals in W is increasing in c if γ > 3α.

For i ∈ P , we can write individual effort as

xi =

(
2rρrV

n(3 + ρr)2(1 + c)

)1/(1+α)

.

Using (1.30) and (1.9), the total differential can be written as

dxi
dc

=
xi

(1 + α)(1 + c)

(
1 +

2(3− ρr)(1 + ρr)/((1− c)ρr)
(3 + ρr)(1 + ((1 + α)/r − 1)(1 + ρr)/ρr)

)
< 0. (1.32)

Individual effort of individuals in P is decreasing in c if γ > 3α.

To determine how aggregate effort changes, we can again look at whether−(dxi/dc)/

(dxj/dc), i ∈ W, j ∈ P is smaller or larger than one. Dividing (1.31) by (1.32) and

making use of xi/xj = 3/ρ yields

−dxi
dxj

=
3(1 + c)

ρ(1− c)

(
(3 + ρr)(1 + ((1 + α)/r − 1)(1 + ρr)/ρr) + 2(1− ρr)/(1 + c)

(3 + ρr)(1 + ((1 + α)/r − 1)(1 + ρr)/ρr) + 2(3− ρr)(1 + ρr)/(1− c)

)
.

Making use of ρ ∈ (0, 1], c ∈ (0, 1), and r < 1, it is enough to show that (4 +

c(3 + ρr))/r > (1 + ρr)(3− ρr)/ρr to conclude that −(dxi/dc)/(dxj/dc) > 1 and thus

dX/dc > 0 if γ > 3α. �

Proof 10 (dui/dc > 0 ∀ i ∈ W , dui/dc < 0 ∀ i ∈ P , and d
∑∑∑
ui/dc > 0 if

γ > 3α). Expected utility for members of group W can be written as

ui =
2

3 + ρr
V − 3r(1 + ρr)

n(3 + ρr)2(1 + α)
V.

The total differential is

dui
dc

= −dρ
dc

rρr−1V

(3 + ρr)2

(
2 +

3r(1− ρr)
n(3 + ρr)(1 + α)

)
> 0. (1.33)
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Expected utility of individuals in W is increasing in c if γ > 3α.

Expected utility for members of group P can be written as

ui =
1 + ρr

3 + ρr
V − rρr2

n(3 + ρr)2(1 + α)
V.

The total differential is

dui
dc

=
dρ

dc

2rρr−1V

(3 + ρr)2

(
1− r(3− ρr)

n(3 + ρr)(1 + α)

)
< 0. (1.34)

Expected utility of individuals in P is decreasing in c if γ > 3α.

Combining (1.33) and (1.34), we can write the total differential of aggregate utility

as
d
∑
ui

dc
= −dρ

dc

3r2ρr−1(3− ρr)V
(3 + ρr)3(1 + α)

> 0.

Aggregate utility is increasing in c if γ > 3α. �

1.D Appendix – Additional group

Proof 11 (Group-effort contribution). In the case with three groups W , P , and

U , we can derive three first order conditions:

(xi)
α =

r(Xc)r−1((X−c)r + (XU)r)

(
∑

j∈Γ(Xj)r)2
V (1.35)

for i ∈ c ∩R, c ∈ {W,P} and Γ = {W,P,U} and where −c = {W,P} \ c. Moreover,

(xi)
α =

r(XU)r−1((X−c)r)

(
∑

j∈Γ(Xj)r)2
V (1.36)

and

(xi)
α ≥ r(Xc)r−1((X−c)r)

(
∑

j∈Γ(Xj)r)2
V, (1.37)

for i ∈ c ∩ U , c ∈ {W,P}.
Now, suppose members of U do not contribute to W or P . Then, xi = XU/n ∀ i ∈

U and xi = 2XW/n ∀ i ∈ R, where XW = XP due to subgroup-size symmetry. We

can divide (1.35) by (1.36) and rearrange to obtain

2α
(
XW

XU

)(1+α)

=

(
XW

XU

)r
+ 1. (1.38)
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It follows that XU < XW and that (1.37) is non-binding if α < 1. If α = 1, XU =

XW = XP and all first order conditions bind. Thus, if α ≤ 1, members of U only

contribute effort to group U .

If α > 1 all conditions bind since there is no feasible solution for equation (1.38).

In this latter case, members of U also contribute to W and P . �

Proof 12 (Individual and aggregate effort). Let ρ = XW/XU . For α ≤ 1 we can

rearrange (1.35) as

xi =

(
2rV ρr(1 + ρr)

n(2ρr + 1)2

)1/(1+α)

,

∀ i ∈ R. In equilibrium with only two groups, individual effort is x∗i = (rV/(4n))1/(1+α).

Since ρ ≥ 1, xi > x∗i ∀ α ≤ 1, i ∈ R.

We can write the total individual effort of individuals in U as

xi =

(
rρrV

n(2ρr + 1)2

)1/(1+α)

, (1.39)

which is smaller than individual effort in the setting with only two groups.

If we use (1.39) and ρ = XW/XU , we can express aggregate effort as

X =

(
rV nαρr(2ρ+ 1)1+α

(2ρr + 1)2

)1/(1+α)

(1.40)

Dividing (1.40) by aggregate effort in the case with only two groups, (rV (2n)α/2)1/(1+α),

yields (
21−αρr(2ρ+ 1)1+α

(2ρr + 1)2

)1/(1+α)

. (1.41)

Using numerical simulations and the condition 2αρ1+α = ρr + 1, we can show that this

ratio is always larger than one if α < 1. This ratio is equal to one if α = 1.

Moreover, if α > 1, we can divide (1.35) by (1.36) to show that xi = 21/αxj,∀ i ∈
R, j ∈ U , where we made use of the fact XW = XP = XU . For α > 1, we can rewrite

(1.35) as

xi =

(
2rV

3n(1 + 1/21/α)

)1/(1+α)

,

which is larger than x∗i . Thus, the formation of an active group U always makes

members of R exert more effort. Following the same logic, it is straightforward to

show that members of U always exert less effort if they alone get the choice between

two groups.
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Aggregate effort can be written as

X =

(
rV nα(21/α + 1)α

3

)1/(1+α)

,

which, using α > 1, can be shown to be smaller than aggregate effort in the setting

with only two groups. �
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Chapter 2

Exclusivity of Groups in Contests

2.1 Introduction

Many settings in real life resemble contests. Examples include tendering for public con-

tracts,1 design contests for construction projects, lobbying to sway politicians, election

campaigns, and implicit and explicit innovation competitions. Often, there are groups

or players with restricted access to these contests, due to domain-specific know-how,

licences, or other formal or informal constraints. These groups may decide whether

they allow other players to join them and, potentially, share the prize. Importantly,

groups have power over two dimensions of exclusivity: whether additional members

may join at all and whether they are allowed to join other groups simultaneously.

Group membership in contests is often exogenously non-exclusive; for instance,

distributional conflicts may arise between the rich, the poor, the young, and the old,

and individuals are members of two of these groups simultaneously. But it remains an

open question whether non-exclusive membership is ever an optimal endogenous choice

from a group leader’s perspective. For example, should political parties allow their

members to also join other parties? Should companies with access to public tenders

join forces with other companies and allow them to do so with other competitors

as well? Or should lobby groups allow donations only conditional on the donor not

supporting other competing groups? If non-exclusive membership arises endogenously

in a contest, is this in the interest of a contest designer who wants to maximise the

aggregate effort contestants exert? Unfortunately, the existing literature has little to

say about exclusivity decisions of groups in contests.

I devise a stylised Tullock contest model with two group leaders and one potential

1For examples of (sometimes non-exclusive) subcontracting in public procurement, see Marion
(2015) and Moretti and Valbonesi (2015).
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member to investigate these questions. In this three-stage model, group leaders first

decide simultaneously whether they allow group entry and whether group membership

is exclusive. The potential member then decides which group(s) to join. The member

only has access to the contest if she joins a group. In the third stage, groups compete

over a prize which is shared equally within the winning group. I solve for the equilibria

in this game dependent on the degree of publicness of the prize and the elasticity of

marginal effort cost, two parameters that have been of particular importance in the

literature on the “group-size paradox” in group contests (see Esteban and Ray (2001)).

If the prize is mostly private, group leaders do not offer membership in equilib-

rium. If the prize is mostly public or the elasticity of marginal effort cost high, group

leaders offer exclusive membership. Non-exclusive membership is never offered in the

baseline setting. However, I present several relevant extensions to the model which

lead to the emergence of equilibria in which groups offer non-exclusive membership: If

the potential member can commit to join non-exclusive groups rather than exclusive

ones, she may ‘force’ group leaders to make their groups non-exclusive. This harms

group leaders. If group leaders can charge a membership fee, they offer non-exclusive

membership and extract the member’s surplus if groups are less likely to win the

contest—less effective—than singletons. This mitigates conflict and is beneficial to

group leaders. The introduction of a third group to the baseline model makes it more

likely for the member to be able to join a group and allows for an equilibrium with

non-exclusive membership if the prize is highly public. The latter is due to the fact

that, with three groups, a group leader cannot make all groups effectively exclusive on

her own. A contest designer interested in maximising aggregate effort, such as a uni-

versity running an innovation competition, would always like to prohibit non-exclusive

membership. The same contest designer prefers allowing exclusive membership only

if groups are more effective in the contest than singletons.

After a brief literature review in Section 2.2, I introduce and solve the baseline

model in Section 2.3. Section 2.4 contains extensions to membership commitment,

membership fees, and a third group. I conclude with a summary of my results and a

brief discussion of limitations and avenues for future research in Section 2.5.

2.2 Related literature

The existing literature on endogenous group membership in contests considers players

who participate in a contest either alone or as a member of only one group. In Baik
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and Shogren (1995a), players decide simultaneously whether to join a group which

distributes the prize according to an endogenous sharing rule. Baik and Lee (1997)

allow for inter-group mobility before the contest. A considerable share of the literature

uses group stability as an equilibrium concept. Prominent examples include Skaperdas

(1998), Baik and Lee (2001), Noh (2002), Esteban and Sákovics (2003), and Garfinkel

(2004a,b). Bloch et al. (2006) analyse secession and group formation in a general

contest model. Sánchez-Pagés (2007) considers two modi of group formation: in the

first, players simultaneously announce groups to be formed, while in the second, groups

are formed sequentially. For an overview of endogenous group formation in contests see

Bloch (2012) and Konrad (2014), and for experimental analyses Herbst et al. (2015)

and Ke et al. (2013, 2015). For a broader perspective on coalition formation in strategic

games see Ray and Vohra (2015).

Related to my work is the analysis of cross-shareholdings in contests by Konrad

(2006) and Heijnen and Schoonbeek (2020). In their models, players’ preferences for

who wins the contest are to some extent aligned, reducing effort expenditure. In the

present paper, a member who is a member of more than one group simultaneously also

generally exerts less effort—for each group, as well as in total—than the group leaders.

Two overlapping effects are at work: First, the member has a lower incentive to support

one of her groups with effort since this decreases the winning probability of her other

group. Second, the member’s opportunity costs are higher because in contrast to the

group leaders, she also has the option of providing effort to a second group. These

effects link my model to the literature on public good provision following Bergstrom

et al. (1986), in which players with lower marginal benefit or higher opportunity cost

typically contribute less.

I find that a contest designer interested in maximising aggregate effort would like

to allow exclusive membership only if groups are more effective in the contest than

singletons. The threshold at which this change in effectiveness happens has been

investigated by Esteban and Ray (2001).2 The effectiveness of groups also influences

the exclusivity decisions of group leaders. If they can charge fees for membership, the

threshold described by Esteban and Ray (2001) separates existing equilibria.

None of the related studies looks at non-exclusive groups in contests. The exception

is Send (2020),3 whose focus is on exogenous non-exclusive group membership by all

players instead of endogenous group membership, however.

2The analysis of the “group size paradox” is furthered by Nitzan and Ueda (2009, 2011).
3Chapter 1 is based on this paper.
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2.3 The baseline model

There are three risk neutral players: two group leaders, lA and lB, and one potential

member, m. Group leader lg is the only member of group g ∈ {A,B} at the start,

but cannot be a member of group h 6= g. A group is defined as a non-empty set of

individuals who can bundle their effort in a Tullock contest and benefit if their group

wins a prize as specified below. At the start of the game, m is not a member of

any of the two groups. The game has three stages. In the first stage, group leaders

simultaneously choose the membership menu they offer the potential member. The

membership menu is characterised by two dimensions of group exclusivity: First, a

group leader can decide whether to allow m to enter her group. Second, the group

leader can make group membership conditional on m not being a member of the other

group. A group leader lg’s strategy space in the first stage is thus Mg ∈ {N,E,O}. N
denotes not allowing the member to join the group. E represents the decision to make

membership exclusive: m may join the group, but only if she does not join the other

group. If a group leader chooses O, a member can join her group non-exclusively.

In the second stage, m observes both groups’ membership menus and decides which

group(s) to join. If both group leaders play O in stage 1, she may join both groups

simultaneously. In the third stage, the two groups enter a Tullock contest, which is

described in more detail in Section 2.3.1. The winning group receives a prize with

value V > 0 with degree of publicness λ ∈ [0, 1]. The prize is shared equally within

the winning group and I abstract from within-group conflict. I briefly come back to

this important assumption in Section 2.5. For a given prize value V , the utility a

player receives from winning the prize with a group of size n is (λ+ (1−λ)/n)V .4 An

example for a fully private prize is fixed prize money which has to be shared and which

contestants care about exclusively. A more public prize can for instance represent

reputation that all contestants can attain by winning. All players can support all

groups they are a member of with contest effort, which is chosen simultaneously. If

m is not a member of any group, she has no access to the contest. In what follows, I

solve for the Nash equilibrium in pure strategies of the game by backward induction

and offer a more formal description of each stage.

4This closely follows Esteban and Ray (2001), who additionally allow for different valuations for
the public and private component of the prize.
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2.3.1 Stage 3: contest

At this stage, group leaders have chosen their membership menus, m has decided which

group(s) to join, and group membership is fixed. The contest between the two groups

is modelled as a Tullock contest. The expected utility of group leader lg, g ∈ {A,B} is

ulg =

∑
i∈g x

g
i∑

i∈g x
g
i +

∑
i∈h x

h
i

(
λ+

1− λ
ng

)
V −

(xlg)1+α

1 + α
, (2.1)

where h 6= g, ng is the number of members of group g, and α ≥ 0 is the elasticity

of marginal effort cost. The effort player i provides to group g is denoted xgi . For

group leader lg, who can only be a member of one group, the effort she provides to her

group g equals her total effort, xglg = xlg . A group’s aggregate effort is the sum of its

members’ efforts in support of it. The first fraction in (2.1) is the probability pg with

which group g wins the prize. If all efforts are zero, the prize is allocated at random

and pg = 1/2.5 The expected utility of m who is a member of group(s) Gm ⊆ {A,B}
is

um =

∑
g∈Gm

∑
i∈g x

g
i∑

i∈g x
g
i +

∑
i∈h x

h
i

(
λ+

1− λ
2

)
V − (xm)1+α

1 + α
.

If m is not a member of any group, the first term simplifies to zero. If m is a member

of both groups, the first term reduces to one. Additionally, if m is a member of both

groups, her individual effort is the sum of the two efforts she exerts for her two groups,

xm = xAm + xBm.

There are three cases: m is not a member of any group, m is a member of one

group, and m is a member of both groups. I analyse these three cases in the following

subsections.

Singleton conflict

If m is not a member of any group, the contest reduces to a singleton contest between

group leaders lA and lB. With one player per group, the publicness of the prize does

not matter and its value simplifies to V . The Nash equilibrium in pure strategies of

this subgame is characterised by symmetric individual effort xs = (V/4)(1/(1+α)) for

5This contest function based on Tullock (1980) is the most widely used specification in the lit-
erature on group contest. I restrict my analysis to its simplest form to retain tractability. It is
axiomatised in its general form in Münster (2009). There is inherent uncertainty in the contest; the
group whose members exert the highest effort does not necessarily win. This is intuitive if we consider
for example design, lobbying, or election contests, in which efforts might not translate one-to-one into
effective impact or in which the winning conditions might not be fully transparent.
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group leaders. Their expected equilibrium utility is

us =
1 + 2α

4(1 + α)
V. (2.2)

Player m has no access to the contest and thus exerts zero effort and has zero utility.

Group versus singleton

Suppose m is a member of group g ∈ {A,B} but not of group h 6= g. Then, players lg

and m can both exert effort for group g. If they win, they share the prize and receive

V (1 + λ)/2. Publicness of the prize matters in this case. Player lh fights alone. From

the first order conditions follows that members of group g exert symmetric effort in

equilibrium if α > 0. For simplicity, I assume symmetry also for linear cost, α = 0.

Denote individual equilibrium effort by members of g by x2v1 and effort by lh by x1v2.

We can write the first order conditions as

x1v2

(2x2v1 + x1v2)2

V (1 + λ)

2
= (x2v1)α (2.3)

for members of group g and

2x2v1

(2x2v1 + x1v2)2
V = (x1v2)α (2.4)

for player lh. Second order conditions hold for strictly positive efforts. By dividing

(2.3) by (2.4) and rearranging, we can write

x2v1 = ((1 + λ)/4)(1/(1+α))x1v2. (2.5)

In Nash equilibrium, members of g exert less individual effort than the sole member of

h. Intuitively, this effect decreases in the publicness of the prize λ and the elasticity of

marginal cost α. We can use equation (2.5) to solve for individual equilibrium effort

in group g as

x2v1 =

(
(1 + λ)((1 + λ)/4)1/(1+α)

2(1 + 2((1 + λ)/4)1/(1+α))2
V

)1/(1+α)

.

The leader of group h exerts

x1v2 =

(
2((1 + λ)/4)1/(1+α)

(1 + 2((1 + λ)/4)1/(1+α))2
V

)1/(1+α)

.
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Individual equilibrium utilities are thus

u2v1 =
2((1 + λ)/4)(2+α)/(1+α)(1 + 2α + 4(1 + α)((1 + λ)/4)1/(1+α))

(1 + α)(1 + 2((1 + λ)/4)1/(1+α))2
V (2.6)

for the members of group g and

u1v2 =
1 + α(1 + 2((1 + λ)/4)1/(1+α))

(1 + α)(1 + 2((1 + λ)/4)1/(1+α))2
V. (2.7)

for the leader of group h, who fights alone.

Group versus group

If m enters both groups, she wins the contest with one of these groups with probability

one. She will thus not exert any effort, and her utility is ub = V (1 + λ)/2. The

subgame effectively becomes a contest between the two group leaders over a prize

valued at V (1 + λ)/2. In equilibrium, individual efforts of group leaders are x2v2 =

(V (1 + λ)/8)1/(1+α). These result in the expected utilities

u2v2 =
(1 + λ)(1 + 2α)

8(1 + α)
V (2.8)

for the two group leaders.

2.3.2 Stage 2: member decision

The member’s decision in stage 2 is trivial: she joins as many groups as she can. This

becomes clear by comparing the member’s expected utilities in the three possible cases.

If m does not join any group, her utility is zero. Further, it is clear that her utility if

she joins one group, (2.6), is larger than zero. The member’s utility if she joins both

groups, V (1 + λ)/2, is in turn larger than (2.6). The membership menus chosen by

both group leaders in stage 1 are (MA,MB) ∈ {N,E,O}2. Then, m cannot join any

group if (MA,MB) = (N,N). If (MA,MB) ∈ {(N,E), (E,N), (N,O), (O,N)}, m joins

the group she is allowed to. Due to symmetry, m picks one group to join at random

if (MA,MB) ∈ {(E,E), (E,O), (O,E)}. Finally, m joins both groups if both groups

allow non-exclusive membership, (MA,MB) = (O,O). The potential member can only

join both groups if both groups allow non-exclusive membership.
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us u2v1 u2v1

us u1v2 u1v2

u1v2 (u2v1 + u1v2)/2 (u2v1 + u1v2)/2

u2v1 (u2v1 + u1v2)/2 (u2v1 + u1v2)/2

u1v2 (u2v1 + u1v2)/2 u2v2

u2v1 (u2v1 + u1v2)/2 u2v2

N

N

E

E

O

O

MA

MB

Table 1: Expected utilities for group leaders in stage 1

2.3.3 Stage 1: membership menu

In stage 1, group leaders can anticipate the potential member’s decision in stage 2 and

the resulting contest equilibria in stage 3. The group leaders’ expected utilities given

their membership menu decisions are depicted in Table 1. If both group leaders offer

group membership, but at least one of them exclusively, the potential member joins a

group at random. Hence, the expected utility of a group leader is (u2v1 + u1v2)/2 in

this case.

A two-dimensional membership menu (MA,MB) ∈ {N,E,O}2 constitutes a Nash

equilibrium in pure strategies if none of the group leaders has an incentive to devi-

ate. Figure 1 illustrates the Nash equilibria in stage 1 dependent on the elasticity

of marginal effort cost α and the publicness of the prize λ. If λ is large enough, i.e.

the price public enough, we have (u2v1 + u1v2)/2 ≥ u1v2 and it becomes attractive

to fight together with an additional member. Then, both group leaders offer group

membership, at least one of them exclusively, (M∗
A,M

∗
B) ∈ {(E,E), (E,O), (O,E)}.

Vice versa, if λ is small, we have us ≥ u2v1 and it is attractive to fight alone, and

both group leaders do not offer any membership, (M∗
A,M

∗
B) = (N,N). An increase

in the elasticity of marginal effort cost α makes fighting together with an additional

group member more attractive. If α is small, there is a parametric region in which

we have us ≤ u2v1 and (u2v1 + u1v2)/2 ≤ u1v2 and the Nash equilibrium is asymmet-

ric. One group leader offers group membership, and the other leader keeps her group

fully exclusive, (M∗
A,M

∗
B) ∈ {(N,E), (N,O), (E,N), (O,N)}. If α is large, there is

a region in which both the fully exclusive equilibrium (N,N) as well as the exclu-
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Figure 1: Nash equilibria in stage 1.

For the sake of brevity, the legend shows only one possible constellation of asymmetric equilibria.

sive group membership equilibrium {(E,E), (E,O), (O,E)} exist since us ≥ u2v1 and

(u2v1 + u1v2)/2 ≥ u1v2. If we use payoff dominance as refinement concept, only (N,N)

survives as equilibrium in this region since there us > u2v1 > (u2v1 +u1v2)/2. Strategy

O is weakly dominated by E since (u2v1 + u1v2)/2 > u2v2, which I briefly show in Ap-

pendix 2.A. In the baseline model, there is no equilibrium in which both group leaders

offer non-exclusive membership simultaneously.

Figure 1 is based on numerical simulations. We can confirm analytically what

happens along the margins, i.e. α = 0 and/or λ = 0 or λ = 1. Moreover, both

equalities us = u2v1 and u1v2 = u2v1 define a continuous implicit function

F (α, λ) = 0

which makes λ a continuous function of α and uniquely pins down the threshold at

which equilibrium existence changes.6 However, we cannot find closed-form equilib-

rium solutions for stage 1 for the whole α-λ-plain.

If neither (N,N) nor {(E,E), (E,O), (O,E)} or both of them constitute a Nash

equilibrium, there is a Nash equilibrium in mixed strategies in which both group

leaders play N with symmetric probability p = (u2v1 − u1v2)/(us − (u2v1 + u1v2)/2)/2

6See Appendix 2.A for more detail.
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and E with probability (1 − p).7 Only strategies that are not strictly dominated can

be played in a mixed-strategy equilibrium. If (N,N) is a pure-strategy equilibrium,

but not {(E,E), (E,O), (O,E)}, N strictly dominates both E and O. Vice versa,

if {(E,E), (E,O), (O,E)} are pure-strategy equilibria, but (N,N) is not, E strictly

dominates N . To find the symmetric mixed-strategy equilibrium in the case where

both N and E are not strictly dominated, we solve the indifference equation σus +

(1− σ)u1v2 = σu2v1 + (1− σ)(u2v1 + u1v2)/2 for σ, which gives us p. For simplicity, I

restrict the rest of my analysis to pure strategies.

If we use payoff dominance, we can also make some welfare judgements. The switch

from (N,N) to (N,E) or (N,O), which happens at the line us = u2v1 but below the

line u1v2 = u2v1, is beneficial to both group leaders and thus automatically welfare

increasing. The switch from (N,N) to (E,E) however is harmful to both group leaders,

while again being welfare increasing since there 2u2v1 + u1v2 > 2u2v1 = 2us. Since the

switch from (N,E) or (N,O) to (E,E) happens at a point where u1v2 = u2v1, there

is no discontinuous jump in utility of group leaders or overall welfare. If we look at

the game from the perspective of a contest designer who wants to maximise aggregate

effort, we can confirm numerically that left to the dotted line in Figure 1 she has an

incentive to enforce full exclusivity, while to the right of it aggregate effort is higher

if m is allowed to join one group. This line is where both groups have the same

probability of winning the prize and is given by λ(α) = 21−α − 1. For the singleton

player, it does not matter whether she competes against another singleton or a group.

Naturally, if her opposing group exerts combined effort xs, her best response is the

same as in the singleton case, effort xs as well. To the left of this line, the singleton

group is more likely to win—more ‘effective’—and to the right of it, the 2-member

group is more likely to win. This threshold is the focal point of Esteban and Ray

(2001).8

7In this case, there are also infinite payoff-equivalent asymmetric mixed-strategy equilibria in which
one leader plays the weakly dominated strategy O instead of E with some probability ε(1−p), ε ∈ [0, 1].
Naturally, also when the equilibrium in pure strategies (E,E) exists, there is an infinite number of
mixed-strategy equilibria in which one of the leaders sometimes plays O instead of E.

8In our case of a switch from singleton players to a two-player group, the threshold derived by
Esteban and Ray (2001) is given by the equation λ = 1−α. Above their threshold, groups are always
more effective. Below it, group effectiveness depends on the starting group size. In our case, the
exact threshold at which a two-player group is more effective than a singleton is λ = 21−α− 1, which
we get by solving 2x2v1 = x1v2 for λ, and which we can confirm is below λ = 1−α. The finding that
a contest designer in many cases prefers to allow exclusive membership is in line with the fact that
firms are often legally allowed to bid jointly in public procurement if a firm does not have access as
a solo bidder; see for example Albano et al. (2009).
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us u2v1 u2v1

us u1v2 u1v2

u1v2 (u2v1 + u1v2)/2 u2v1

u2v1 (u2v1 + u1v2)/2 u1v2

u1v2 u1v2 u2v2

u2v1 u2v1 u2v2

N

N

E

E

O

O

MA

MB

Table 2: Expected utilities for group leaders in stage 1 with commitment

2.4 Extensions

2.4.1 Membership commitment

In the baseline game above, there is never an equilibrium in which both group lead-

ers offer non-exclusive membership. Thus, in equilibrium the potential member m

is never a member of both groups simultaneously. However, if group leaders prefer

the group-versus-group contest to fighting alone against a group, there is a way for

m to improve her outcome: she can commit to join the group whose leader offers

non-exclusive membership. Is this commitment credible? In the described model, the

answer is ambiguous: in stage 2, m is indifferent between the two groups. However,

even a minuscule reputation cost or the slightest chance of a repeated game would

make the commitment credible. For the sake of analysis, I will assume that the com-

mitment is credible without introducing an additional aspect to the model that would

unambiguously make it so.

If the potential member m credibly commits to join the group whose leader has

chosen O in stage 1, the expected-utility matrix of stage 1 changes to Table 2. Now,

it does make a difference to group leaders whether they choose E or O whenever the

other group leader chooses E. In this case, a group leader can ‘convince’ m to join her

group for sure by offering non-exclusive membership.

This change in the game leads to the existence of the additional Nash equilibrium

in pure strategies in stage 1 with non-exclusive membership offered by both group

leaders, (O,O). This equilibrium arises if the prize is highly public and effort cost

convex. See Figure 2, which is again based on numerical simulations: instead of
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Figure 2: Nash equilibria in stage 1 with commitment

For the sake of brevity, the legend shows only one possible constellation of asymmetric equilibria.

two regions ‘(E,E), (E,O)’ and ‘(N,N), (E,E), (E,O)’ we get four regions ‘(O,O)’,

‘(N,O), (E,O)’, ‘(N,N), (O,O)’, and an additional region where (N,N) is the only

equilibrium in stage 1. If we use payoff dominance as refinement concept, in the region

‘(N,N), (O,O)’ only (N,N) survives as equilibrium because us > u2v2 if λ < 1. In

addition to the comparisons that are relevant in the baseline game, we also need to

compare group leaders’ utility fighting alone against two players u1v2 and their utility

in case m is a member of both groups u2v2. See Appendix 2.B for additional detail.

As before, for all relevant boundaries we can define continuous implicit functions of

the marginal elasticity of effort cost α and the publicness of the prize λ, F (α, λ) = 0,

making λ a continuous function of α.

With commitment by m to join non-exclusive groups, (E,E) can only be an equi-

librium in stage 1 if u1v2 = u2v1. Given that the other group leader chooses E, a leader

only has an incentive to also play E instead of N if u1v2 ≤ u2v1. But if u1v2 < u2v1, a

leader would like to make sure that m joins her group, which she can by choosing O

instead of E.

If we think of the commitment decision by player m as stage 0 that comes before

stage 1, we can determine her equilibrium strategy in this initial stage. For any (α, λ)

tuple for which u1v2 ≤ u2v2 and us ≤ u2v1 holds, member m is better off in expectation

by committing to join non-exclusive groups. Below the line u1v2 = u2v1 as well as in

50



Chapter 2 – Exclusivity of Groups in Contests

the region ‘(N,O), (E,O)’ in Figure 2, m is indifferent between commitment and no

commitment. In the region between the line us = u2v1 and the line u1v2 = u2v1, the

existence of multiple equilibria makes the member’s decision ambiguous. If we use

payoff dominance as equilibrium refinement concept in stage 1, m is indifferent there

and thus in general never worse off by committing.

If the member m can commit to join groups who offer non-exclusive membership,

in contrast to the baseline game above there is a wide range of parameters in which

the Nash equilibrium in stage 1 is (O,O). For the two group leaders, this outcome is

worse than (E,E). However, it can be shown numerically that it is welfare increasing.

Moreover, if u1v2 ≤ u2v1, us ≤ u2v1 and u1v2 ≥ u2v2, the equilibrium (E,E) is replaced

by the asymmetric equilibria (N,O) and (E,O). This has no impact on the member’s

utility or overall welfare, but benefits the group leader offering non-exclusive member-

ship and harms the other one. A contest designer would like to rule out non-exclusive

membership, since we can show numerically that aggregate effort in the 2-versus-1

scenario is always higher than in the 2-versus-2 scenario. As in the baseline game,

left to the dotted line in Figure 2 the contest designer has an incentive to enforce full

exclusivity.

2.4.2 Membership fee

Access to a group often comes with a price tag. In our setting, we can think of

entry fees as a third dimension of exclusivity. I model this by allowing group leaders

lg, g ∈ {A,B} in stage 1 in addition to deciding the degree of membership exclusivity

to simultaneously choose a (potentially negative) fee fg ∈ R that member m has to

pay if she joins the group. Naturally, setting fg is only meaningful if Mg ∈ {E,O}.
I abstract from any potential membership commitment discussed in Section 2.4.1. I

again restrict my analysis to pure-strategy equilibria.

Stage 3 again remains the same as before. Stage 2 now becomes more intricate. If

both group leaders allow no membership, m has no choice but to not join any group. If

only one group g ∈ {A,B} offers membership, member m joins this group g if fg ≤ u2v1

and otherwise is better off by not joining any group. If the group membership menu

decided in stage 1 is (MA,MB) ∈ {(E,E), (E,O), (O,E)} and it is cheaper to join

one group than it is to join the other, fg < fh, g 6= h, m joins the cheaper group g if

fg ≤ u2v1 and no group otherwise. If access to both groups cost the same, m chooses to

join one of them at random if again fg ≤ u2v1 and no group otherwise. If both groups

offer non-exclusive membership, (MA,MB) = (O,O), and one group g offers cheaper
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membership, m joins the cheaper group if 0 ≤ u2v1−fg and ub− (fg +fh)) < u2v1−fg,
joins both groups if max(0, u2v1 − fg) ≤ ub − (fg + fh), and does not join any group

otherwise. If both groups offer non-exclusive membership for the same fee, m joins

one of them at random if 0 ≤ u2v1 − fg and ub − 2fg < u2v1 − fg, both groups if

max(0, u2v1−fg) ≤ ub−2fg, and no group otherwise. I assume here that m joins both

groups if she is indifferent between joining one and both groups.

For stage 1, we cannot write down a simple payoff matrix as before since fg is a

continuous decision variable. Rather, we can go through each potential membership-

menu profile, consider which associated fee structure is stable, and again use a mixture

of numerical and analytical approaches to determine whether and when these strategies

constitute a Nash equilibrium.

Consider the strategy profile (N,N) and fg ∈ R. If one group leader lg deviates,

she can charge fg = u2v1 and thus have utility 2u2v1. The stage-1 strategy profile

(N,N) and fg ∈ R thus constitutes a Nash equilibrium if us ≥ 2u2v1. You can see in

Figure 3, which is based on numerical simulations, that this only holds if the marginal

elasticity of effort cost α and the publicness of the prize λ are both close to zero.9 All

equilibria in pure strategies in which one leader plays N can be substituted with the

same leader playing E or O but setting a prohibitively high fee that makes the group

effectively fully exclusive.

For the profiles (N,E) and (E,N), the only fee for group g that allows membership

that can constitute a Nash equilibrium which is not equivalent to (N,N) is fg = u2v1.

Why? If group leader lg sets a lower fee, she would have an incentive to deviate and set

a higher fee at which m still joins, thus increasing the utility of lg. If fg > u2v1, m does

not have an incentive to join the group and the strategy profile is equivalent to (N,N).

Given this optimal fee fg = u2v1, two conditions need to hold for (N,E) and (E,N)

to constitute a Nash equilibrium: us ≤ 2u2v1 and u1v2 ≥ 2u2v1. To understand the

latter, note that the player lh playing N has expected utility u1v2. She could deviate

to playing E or O and either set fee fh = u2v1 to secure (2u2v1 + u1v2)/2 or choose

fh = u2v1 − ε, ε > 0 to secure 2u2v1 − ε.
For the profiles (N,O) and (O,N), the optimal fee set by the player lg choosing O is

again fg = u2v1. The additional condition (compared to (N,E) and (E,N)) that must

hold for these profiles to constitute a stage-1 Nash equilibrium is u2v2 + (ub − u2v1) ≤
u1v2, where ub − u2v1 is the fee the leader playing N can extract from m by switching

9All lines shown in Figure 3 are again defined by implicit continuous functions F (α, λ) = 0. See
Appendix 2.C.

52



Chapter 2 – Exclusivity of Groups in Contests

us = 2u2v1us = 2u2v1

u1v2 = 2u2v1u1v2 = 2u2v1

u2v2 + ub 2 = 2u2v1u2v2 + ub 2 = 2u2v1

0.00

0.25

0.50

0.75

1.00

0 1 2 3 4

Elasticity of marginal effort cost (α)

Pu
bl

ic
ne

ss
 o

f t
he

 th
e 

pr
iz

e 
(λ

) Equilibria
(E,E)
(E,E), (O,O)
(N,E), (O,O)
(N,N), (O,O)

Figure 3: Nash equilibria in stage 1 with membership fees

For the fee profiles that correspond to each equilibrium membership menu, see the text. Instead

of playing N , group leaders can also set prohibitively high fees. Below the dashed line, we have

u1v2 > u2v2 +ub/2, a condition required for equilibrium refinement by payoff dominance. For the sake

of brevity, the legend shows only one possible constellation of asymmetric equilibria.

to playing O as well. I briefly show in Appendix 2.C that this condition never holds.

For the profile (E,E), the only stable fee profile which is not equivalent to at least

one leader choosing N is fg = fh = u1v2− u2v1. It guarantees group leaders the utility

(u1v2 + u2v1 + (u1v2 − u2v1))/2 = u1v2. If one group leader raises the fee, m always

joins the other group, and her utility becomes u1v2, the same as before. If one group

leader decreases the fee to join her group by ε, m joins her group for sure, making her

new utility u1v2 − ε < u1v2. It follows that the condition for this strategy profile to be

a Nash equilibrium which is not equivalent to (N,N) is u1v2 ≤ 2u2v1, since otherwise

m will not join any group. You can see in Figure 3 that (E,E) is the only Nash

equilibrium if α and/or λ get large.

To constitute a Nash equilibrium , the profiles (E,O) and (O,E) require the addi-

tional condition (compared to (E,E)) that u2v2 + (ub−u2v1) ≤ u1v2, where ub−u2v1 is

the maximum fee the leader playing E can extract from m if she deviates to O. Recall

that this condition never holds.

Lastly, consider the strategy profile (O,O). If ub > 2u2v1, the optimal fee set by

both group leaders is fg = ub/2,10 at which m is indifferent between joining both

10Or any fee schedule with fA + fB = ub and u2v1 −min(fA, fB) ≤ 0, u2v2 + min(fA, fB) ≥ 2u2v1,
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groups and not joining any group. Given this optimal fee, two conditions need to hold

for (O,O) to be a Nash equilibrium in stage 1. First, u2v2 + ub/2 ≥ 2u2v1, where the

right hand side is the utility a group leader lg can get by deviating to E and charging

the lower fee fg = u2v1.11 Second, u2v2 + ub/2 ≥ us, where the right hand side is

the utility a group leader gets by deviating to N (or a fee higher than ub/2). It is

straightforward to show that this latter condition always holds. If ub ≤ 2u2v1, the

optimal fee for the profile (O,O) which is not equivalent to a group leader playing N

is fg = ub − u2v1 for both group leaders. If one group leader sets a higher fee, m only

joins the other group. If one group leader sets a lower fee, she loses utility while m still

joins both groups. For this optimal fee, there are three conditions for (O,O) to be a

Nash equilibrium in stage 1: u2v2+ub−u2v1 ≥ (ub+u1v2)/2, u2v2+ub−u2v1 ≥ u1v2, and

u2v2 + ub − u2v1 ≥ ub − ε, ε > 0. The last condition reduces to u2v2 > u2v1. We always

have that u2v2 < ub/2. Since we consider the parametric range where ub ≤ 2u2v1, it

is clear that u2v2 ≤ u2v1. Hence, the third condition does not hold and (O,O) cannot

be a Nash equilibrium if ub ≤ 2u2v1. Consequently, (O,O) is a Nash equilibrium if

u2v2 + ub/2 ≥ 2u2v1, which is the case if neither α nor λ is too large.

Figure 3 shows that the introduction of membership fees completely alters the

membership menus that are offered by group leaders compared to the baseline model’s

depicted in Figure 1. Remember that instead of playing N in equilibrium, group

leaders can also play E or O and setting a prohibitively high fee, which is not depicted

in Figure 3. Numerical simulations show that the equilibrium (O,O) is payoff dominant

in stage 1 whenever it exists, except within the region ‘(N,E), (O,O)’ below the dashed

line where u1v2 > u2v2 + ub/2.

If we compare the payoff dominant equilibria to those of the baseline model, the

introduction of membership fees can have different effects on players’ utility: If a group

is less effective than a singleton, the region to the left of the line u2v2 + ub/2 = 2u2v1

in Figure 3,12 the member is indifferent if us >= u2v1 and worse off otherwise. In

both cases, the group leader(s) whose group(s) she joins extract her full utility via

fees, whereas in the latter case she could receive u2v1 without fees. If a group is

more effective than a singleton, the member is unambiguously better off after the

introduction of fees, since her utility is then 2u2v1−u1v2. Using numerical simulations,

and u2v2 + min(fA, fB) ≥ us. I restrict my analysis to the symmetric case.
11If u2v2 + ub/2 ≥ 2u2v1 holds, it is clear that also ub > 2u2v1 holds since u2v2 < ub/2.
12As noted above, if 2x2v1 + x1v2 = 2xs, we also have that 2x2v1 = x1v2 = xs. From our formulas

for effort follows that then λ = 21−α − 1. If we plug these conditions into our formulas for u2v2, ub

and u2v1 we can see that u2v2 + ub/2 = 2u2v1 holds.
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we can make additional welfare judgements: Irrespective of asymmetric equilibria in

stage 1 in both scenarios, group leaders are better off with fees if groups are less

effective than singletons and worse off otherwise. In the latter case, their competition

to lure the member into their exclusive groups harms them compared to the baseline.

The introduction of membership fees leads to an outcome that is weakly more efficient.

As above, a contest designer would like to always rule out non-exclusive membership

and enforce full exclusivity if groups are less effective than singletons.

2.4.3 Three groups

Another natural way to extend our baseline model is to allow for more groups and

see how this affects equilibrium outcomes. For simplicity, I consider three groups and

relegate a brief analysis of more groups to Appendix 2.D.

Stage 3

Consider again our baseline model from Section 2.3 with the sole addition of a third

group leader lC . Nothing changes in stage 3 except that there are now three groups,

each with one or two members, who compete over the prize. It follows that, dependent

on which groups m joins in stage 2, there are four scenarios: singleton conflict, a group

of two competing against two singletons, two groups of two competing against one

singleton, and three groups of two competing against each other.

If m is not a member of any group, the contest reduces to a singleton contest

between the three group leaders lA, lB, and lC . With one player per group, the

publicness λ of the prize does not matter and its value simplifies to V . The Nash

equilibrium in pure strategies of this subgame is characterised by symmetric individual

effort xs
′
= (2V/9)(1/(1+α)) for group leaders. Their expected equilibrium utility is

us
′
=

1 + 3α

9(1 + α)
V.

Player m has no access to the contest and thus exerts zero effort and has zero utility.

If m is a member of one group g, we cannot generally get closed-form solutions for

efforts and utilities. However, we can use first order conditions to arrive at a numerical

equilibrium solution. If we assume that under constant marginal cost, that is if α = 0,

both members of g exert the symmetric effort x2v11, which follows from the first order
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conditions if α > 0, we can write its members’ first order condition as

2x1v21

(2x2v11 + 2x1v21)2

1 + λ

2
V = (x2v11)α, (2.9)

where x1v21 is the symmetric effort exerted by the two group leaders competing on

their own. These two leaders’ first order conditions are

2x2v11 + x1v21

(2x2v11 + 2x1v21)2
V = (x1v21)α. (2.10)

Second order conditions hold for strictly positive efforts. If we divide (2.9) by (2.10)

and define ρ = x2v11/x1v21, we get

2

2ρ+ 1

1 + λ

2
= ρα. (2.11)

If α = λ = 0, we get x2v11 = 0 and x1v21 = V/4. Otherwise, we can numerically solve

(2.11) for ρ and use that to derive efforts and consequently utilities. Denote the utility

of m and the leader of the group she joins as u2v11 and the utility of the two group

leaders competing alone as u1v21.

If m enters two groups, we can again not get closed-form solutions for efforts and

utilities. If we assume that m divides her effort x22v1 symmetrically between the two

groups she is a member of,13 we can write the first order condition for m as

x1v22

(x22v1 + 2x2v21 + x1v22)2

1 + λ

2
V ≤ (x22v1)α, (2.12)

where x2v21 is the effort of both group leaders who have m as a member—which we

can assume to be symmetric in any equilibrium due to symmetry—and x1v22 is the

effort of the group leader competing alone. The first order condition for the leaders of

the groups m is a member of are

x22v1/2 + x2v21 + x1v22

(x22v1 + 2x2v21 + x1v22)2

1 + λ

2
V = (x2v21)α. (2.13)

13We can assume this to be the payoff dominant equilibrium for m. Suppose m is a member of
groups A and B but not C and exerts symmetric efforts for both of her groups in equilibrium. Unless
α = 0, if m shifts some of her effort from group A to group B, in the new equilibrium the leader
of B reduces her effort by more than the leader of A increases hers, in turn reducing the member’s
aggregate win probability.
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For the group leader who competes on her own, the first order condition is

x22v1 + 2x2v21

(x22v1 + 2x2v21 + x1v22)2
V = (x1v22)α. (2.14)

If α = 0, (2.12) and (2.13) cannot bind at the same time and we have that x22v1 = 0.

Then we can derive that x2v21 = 2((1 +λ)/(5 +λ))2V and x1v22 = (3−λ)/(1 +λ)x2v21

which gives us the expected utilities for all players. If α > 0, we can divide (2.12),

which now binds, by (2.14) to get

x1v22 =

(
(x22v1)α(x22v1 + 2x2v21)

2

1 + λ

)1/(1+α)

. (2.15)

Dividing (2.12) by (2.13) yields

1

(x22v1/2 + x2v21)/x1v22 + 1
=

(
x22v1

x2v21

)α
. (2.16)

For positive efforts it follows that we must have x22v1 < x2v21 and naturally x22v1/2 <

x2v21 in equilibrium. We see that in general a player who is a member of multiple

groups exerts less effort for each group, as well as in total, than the group leaders.

Two effects are at work here: First, the member has a lower incentive to support one of

her groups with effort since this decreases the winning probability of her other group.

Second, the member’s opportunity costs are higher because in contrast to the group

leaders, she also has the option of providing effort to a second group. If effort cost is

linear, α = 0, m does not exert effort when she is a member of more than one group.

If m is a member of all groups, the first effect makes her generally abstain completely

from exerting any effort. If we plug (2.15) into (2.16) and define ρ = x22v1/(2x2v21),

we can write
2

((1 + 1/ρ)α(1 + λ)/2)1/(1+α) + 2
= (2ρ)α. (2.17)

Solving (2.17) numerically for ρ enables us to derive efforts and thus utilities. Denote

the utility of m as u22v1, the utility of the leaders of the two groups m joins as u2v21

and that of the group leader competing alone as u1v22.

If m joins all three groups, she wins the contest with probability one. She will

thus not exert any effort, and her utility is ua = V (1 + λ)/2. The subgame effectively

becomes a contest between the three group leaders over a prize valued at V (1 + λ)/2.

In equilibrium, individual efforts of group leaders are x2v22 = (V (1 + λ)/9)1/(1+α). For
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the three group leaders, these result in the expected utilities

u2v22 =
(1 + λ)(1 + 3α)

18(1 + α)
V.

Stage 2

It can be shown numerically that the decision of the potential member in the second

stage remains trivial: she will join as many groups as she can. A situation is now

possible in which two group leaders have chosen O in stage 1 and one group leader

has chosen N or E. Then, m will join the two groups which allow for non-exclusive

membership. If no or only one leader chooses O in stage 1, m will again randomly

pick one of the groups she is allowed to join.

Stage 1

For the first stage of the game with three groups, if we neglect which exact group leader

offers which membership menu, there are still ten strategy profiles that are candidates

to constitute a Nash equilibrium. I refer the interested reader to Appendix 2.D for a

short case-by-case analysis and present the Nash equilibria that arise in dependence

of the marginal elasticity of effort cost α and the publicness of the prize λ in Figure

4. The results are based on numerical simulations.

The introduction of a third group into the game lowers the λ-threshold above which

all group leaders offer exclusive membership. Additionally, unless α is small, it lowers

the λ-threshold below which groups remain fully exclusive. Interestingly, a third group

allows for a Nash equilibrium in stage 1 in which all group leaders offer non-exclusive

membership, resulting in m joining all three groups at once. Whereas in the two-

group baseline, a group leader can deviate from (O,O) and play E to still have an

even chance to have m only join her group, in the three-group setting, a deviation from

(O,O,O) results in a leader competing on her own against two two-player groups.14

For large α and λ, this is not an attractive outside option, making (O,O,O) a Nash

equilibrium. Payoff dominance eliminates the equilibrium (O,O,O) in general, and the

equilibria (E,E,E) and (E,E,O) if the equilibrium (N,N,N) exists.15 In Appendix

2.D, I consider k ≥ 3 groups and use numerical simulations to derive the existence of

14This mechanism is similar to the commitment by m to join non-exclusive groups discussed in
Section 2.4.1, which also lead to the emergence of non-exclusive equilibria.

15I restrict the notation of asymmetric equilibria to one of their constellations in the three-group
case for the sake of brevity.
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Figure 4: Nash equilibria in stage 1 with three groups

For the sake of brevity, the legend shows only one possible constellation of asymmetric equilibria.

There are additional equilibria (N,E,E) and (N,E,O) and all their other constellations on the line

u2v11 = u1v21. The lines u1v22 = u2v22 and (u2v11 + 2u1v21)/3 = u2v21 never intersect.

symmetric stage-1 equilibria with five and ten groups to illustrate how the results from

this section generalise. It appears that they do with two caveats: First, if α is very

small, a higher number of groups appears to increase the λ above which all groups

offer exclusive membership. Second, the region in which groups offer non-exclusive

membership shrinks if additional groups are added.

2.5 Conclusion

In order to understand how groups in contests manage their membership exclusivity, I

devise a stylised theoretical framework with two group leaders with access to a contest

and one potential member without direct access. This model predicts that groups

choose full exclusivity if the prize is mostly private—as we could expect to be the case

in public tenders and explicit design contests—and exclusive membership otherwise—

for example in lobbying or election campaigns, where a win can benefit a number

of agents simultaneously. Moreover, groups tend to bar additional members if the

elasticity of marginal effort cost is low; this might correspond to a setting in which

effort represents monetary payments in a complete financial market. If the elasticity of
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marginal effort cost is high—as might be the case if effort represents invested time—

groups tend to offer exclusive membership.

I present three extensions to the model in which non-exclusive membership emerges

endogenously. The member may improve her utility by committing to join non-

exclusive groups and forcing groups to offer non-exclusive instead of exclusive mem-

bership. This harms group leaders. If groups can charge a membership fee, they offer

non-exclusive membership if singletons are more effective than groups and exclusive

membership otherwise. Group leaders are better off with fees in the former case and

worse off in the latter. For the potential member, this effect is reversed. The ad-

dition of a third group allows for an equilibrium in which groups offer non-exclusive

membership—without commitment or fees.

A contest designer who wants to maximise effort, such as a government that aims

to enhance competition in public tenders, would always like to prohibit non-exclusive

membership. Moreover, such a contest designer wants to allow exclusive membership

only if groups are more effective than singletons. Naturally, in settings in which the

contest designer perceives contest effort as a loss, the opposite applies.

The complexity of endogenous, non-exclusive group membership in contests has

imposed a number of restrictions. First, although I am interested in ‘group’ exclusiv-

ity, decisions about it are made by single group leaders. However, modelling a number

of symmetric decision makers for each group would not yield much additional insight

but add more complexity. Only heterogeneous group leaders would generate poten-

tially novel results, but add even more complexity. Second, I assumed that the prize is

shared equally within the winning group without intra-group conflict or sharing-rule

endogeneity. Introducing intra-group conflict will most likely lead to fewer incentives

for group leaders to offer membership. However, in settings like public tenders and

design contests where a certain level of legal certainty can be assumed, this omission

should not be too severe. It could be interesting to investigate whether competi-

tion among group leaders via contractual sharing rules leads to similar results as the

competition via membership fees that I consider. Third, my model has rather tight re-

strictions on possible group structures: group leaders cannot join each other’s groups

and the potential member cannot found its own group with access to the contest.

While these restrictions are informed by some of the described applications and are

not straightforward to lift, it might be fruitful to further investigate this issue in the

future. Fourth, my analysis of the first stage and most of the three-group extension is

to a varying extent based on numerical solutions. This does not curb the validity of
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my results, but might make it difficult to generalise the framework or apply it to other

settings. I leave it to future research to develop a more tractable model or further

analyse the present one. Lastly, throughout my analysis I have only considered one

potential member. However, I show in Appendix 2.E that up to five members who join

groups in stage 2 sequentially and in a forward-looking manner do not substantially

change the membership menu offered in my baseline model.

Appendices

2.A Appendix – Stage 1: membership menu

In order to know when (N,N) is a Nash equilibrium in pure strategies, we need to

know when us ≥ u2v1. If λ = 0, we can compare (2.2) and (2.6) to show that us > u2v1

by simplifying this condition to 1 + 2y + 2α + 4αy > 4y2 where y = (1/4)1/(1+α) ≤ 1.

So see this, note that 4y2 ≥ 1 only if α ≥ 1 but then 4αy ≥ 4y2. If λ = 1, we can show

that us < u2v1 by simplifying to 1 + 2α < 12y2 + 8αy2 where y = (1/2)1/(1+α) ≥ 1/2.

Moreover, it is straightforward to show that dus/dλ = 0. Taking the total derivative

of (2.6) with respect to λ gives us du2v1/dλ > 0. Both expected-equilibrium-utility

functions us and u2v1 are continuously differentiable functions on their domain α ≥ 0,

λ ∈ [0, 1], and V > 0. Define the implicit function F (α, λ) = 0 by the equality

us = u2v1. By the Implicit Function Theorem, this assignment makes λ a continuous

function of α. This means that there is a continuous boundary λ(α) implicitly defined

by the equation us = u2v1, separating the region where the equilibrium (N,N) exists

and the region where it does not. As α tends to infinity, this boundary converges to

λ = 1/2, since us converges to V/2 and u2v1 converges to V (1 + λ)/3.

The Nash equilibrium (E,E) exists if u1v2 ≤ u2v1. If we compare (2.6) with (2.7)

at λ = 0, we can show that u1v2 > u2v1. We do this by simplifying to

1− y
(

1

2
+ 2y

)
+ αy(1 + 2y)

(
1

y
− 1

)
> 0,

where y = (1/4)1/(1+α), and noting that this is true for α ≤ 1 and that this is also true

for α > 1 since α(1/y− 1) > 1. It follows that the equilibrium (E,E) does not exist if

λ = 0. If λ = 1 however, u1v2 < u2v1, a condition that simplifies to 1+α < y+4y2+4αy2

where y = (1/2)1/(1+α) ≥ 1/2. Further, since d(u2v1/u1v2)/dλ > 0, there must be a

continuous boundary λ(α) implicitly defined by u1v2 = u2v1 between the region where
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the equilibrium (E,E) exists and the region where it does not. As α tends to infinity,

this boundary converges to λ = 0, since u1v2 converges to V/3 and u2v1 converges to

V (1 + λ)/3.

The asymmetric Nash equilibria {(N,E), (E,N)} exist above us = u2v1 and below

u1v2 = u2v1. For {(N,O), (O,N)} to constitute equilibria, we must additionally have

that u1v2 ≥ u2v2. Below u1v2 = u2v1 and above us = u2v1 we have that u1v2 ≥ us.

Moreover, it is easy to show that us ≥ u2v2 ∀ α ≥ 0, λ ∈ [0, 1]. Therefore, the

equilibria (N,O), (O,N) also exist above us = u2v1 and below u1v2 = u2v1.

Finally, for (O,O) to be a Nash equilibrium in the first stage, we must have that

u2v2 ≥ max(u1v2, (u2v1 + u1v2)/2). We can show that u2v2 < (u2v1 + u1v2)/2 ∀ α ≥
0, λ ∈ [0, 1]: Assume the opposite, u2v2 ≥ (u2v1 +u1v2)/2. Plugging in (2.6), (2.7), and

(2.8) and simplifying yields

y
(
1 + 2y1/(1+α) − 4y2/(1+α)

)
+ 2αy + 4αy(2+α)/(1+α) > 1 + α + 2αy1/(1+α),

where y = (1 + λ)/4 ≤ 1/2. Since 2αy ≤ α and 4αy(2+α)/(1+α) ≤ 2αy1/(1+α), we

must have that 1 + 2y1/(1+α) − 4y2/(1+α) > 2. This implies 2y1/(1+α)(1− 2y1/(1+α)) > 1

which is a contradiction since x(1 − x) < 1 ∀ x ∈ R. Hence, (O,O) can never be an

equilibrium in the baseline game.

2.B Appendix – Membership commitment

To determine equilibrium existence under membership commitment, we need to ad-

ditionally compare u2v2 to u1v2. Only if the former is equal to or larger than the

latter does the equilibrium (O,O) exist. If α = 0 and λ = 1, it is easy to verify that

u1v2 = u2v2 = V/4. It is straightforward to show that u1v2 > u2v2 if λ = 0 and that

u1v2 ≤ u2v2 if λ = 1. Moreover, if α = 0 and λ < 1, we have that u1v2 > u2v2. Since

d(u2v2/u1v2)/dλ > 0, there is a boundary λ(α), running through the point α = 0, λ = 1,

separating the region where (O,O) is a Nash equilibrium and the region where it is

not. This boundary converges to λ = 1/3 as α tends to infinity since u1v2 converges

to V/3 and u2v2 converges to V (1 + λ)/4.

2.C Appendix – Membership fee

The stage-1 equilibrium candidates (N,O) and (O,N) require that u2v2 +(ub−u2v1) ≤
u1v2. Assume this holds. By plugging in our utility formulas and simplifying, we can
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show that this condition can only hold if y(1 + 4y2/(1+α) + 8αy2/(1+α)) < α/2 where

y = (1 + λ)/4 ≥ 1/4. Since 1 + 4y2/(1+α) ≥ 5/4 we must have that α > 5/8. But then

8αy(3+α)/(1+α) > α/3 which further implies α > 30/16 for α/6 > 5y/4 to hold. But

this in turn means 8αy(3+α)/(1+α) > α/2 which is a contradiction.

The Nash equilibrium (N,N) (with arbitrary membership fees) exists if us ≥ 2u2v1.

It is clear that for this to hold, us ≥ u2v1 must hold, a condition we investigated in

the baseline setting. Moreover, it is easy to show that if λ = 0 and α grows large,

us < 2u2v1. Since d(2u2v1/us)/dλ > 0, us = 2u2v1 implicitly defines a continuous

boundary λ(α).

For u1v2 ≥ 2u2v1 to hold, it is clear that u1v2 ≥ u2v1 has to hold, a condition we

looked into for the baseline model. It follows that u1v2 ≥ 2u2v1 does not hold if α

grows large. Since d(2u2v1/u1v2)/dλ > 0, u1v2 = 2u2v1 implicitly defines a continuous

boundary λ(α).

If ub > 2u2v1, for (O,O) to constitute a Nash equilibrium in stage 1 we first must

have that u2v2+ub ≥ us. It is straightforward to show that this always holds. Second, it

must hold that u2v2 +ub/2 ≥ 2u2v1. If α = 0, this condition simplifies to 11 ≥ 6λ+5λ2,

which always holds and binds if additionally λ = 1. Since d((u2v2+ub/2)/(2u2v1))/dλ <

0, u2v2 + ub/2 = us implicitly defines a continuous boundary λ(α) that intersects the

α-axis at α = 1.

Since d(u1v2/(u2v2+ub/2))/dλ < 0, u1v2 = u2v2+ub/2 implicitly defines a continuous

boundary λ(α).

2.D Appendix – Three groups (and more)

In stage 1, with three groups there are ten potential strategy profiles to constitute Nash

equilibria (ignoring which exact group leader plays which strategy). For (N,N,N) to

be an equilibrium, we must have that us
′ ≥ u2v11. (N,N,E) requires that us

′ ≤ u2v11

and u1v21 ≥ (u2v11 + u1v21)/2 which simplifies to u1v21 ≥ u2v11.16 (N,N,O) is an

equilibrium strategy profile if additionally to the conditions for (N,N,E) the condition

u1v21 ≥ u2v21 holds. For (N,E,E) to be a stage-1 equilibrium we need that u1v21 ≥
u2v11 and u1v21 ≤ u2v11, reducing to u1v21 = u2v11. The fully asymmetric equilibrium

(N,E,O) requires u1v21 = u2v11, u1v21 ≥ u2v21, and u2v21 ≤ (u2v11 + u1v21)/2. Given

that the first condition holds, the second and the third conditions are equivalent. The

third condition can be shown numerically to always hold. Thus (N,E,O) effectively

16As in the main body, I restrict the notation of asymmetric equilibria to one of their constellations
in the three-group case for the sake of brevity.
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requires the same as (N,E,E): u1v21 = u2v11. For (N,O,O) to be an equilibrium, we

need u1v22 ≥ u2v22, u1v21 ≤ u2v21, and u2v21 ≥ (u2v11 + u1v21)/2. The last condition

never holds and thus (N,O,O) can never be an equilibrium. For (E,E,E) we simply

require u1v21 ≤ u2v11. (E,E,O) in addition requires (u2v11 + 2u1v21)/3 ≥ u2v21. For

(E,O,O) to be an equilibrium, we must have that u1v22 ≥ u2v22, u1v21 ≤ u2v21, and

(u2v11 + 2u1v21)/3 ≤ u2v21. Finally, (O,O,O) simply requires that u1v22 ≤ u2v22.

Now, consider our game with k ≥ 3 groups and one member m. In order to know

whether the three symmetric strategy profiles for stage 1, in which all group leaders

play N , E, or O, respectively, constitute Nash equilibria, we need the group leaders’

utilities in stage 3. Specifically, we need to look at the singleton case, the case in which

m only joins one group, the case in which m joins all but one group, and the case in

which m joins all groups.

In the singleton contest, individual efforts by group leaders are xs
′′

= ((k −
1)V/k2)1/(1+α)) which leads to expected utilities us

′′
= (1 + kα)V/(k2(1 + α)).

Suppose m joins one group. Denote her effort, as well as that of the group leader

whose group she joins, as x2. Here, symmetry is only an assumption if α = 0 and

otherwise follows from first order conditions. Denote the symmetric effort of group

leaders who compete on their own as x1. The two first order conditions are

(k − 1)x1

(2x2 + (k − 1)x1)2

1 + λ

2
V ≤ xα2 (2.18)

and
2x2 + (k − 2)x1

(2x2 + (k − 1)x1)2
V = xα1 . (2.19)

If α = 0 and (k− 1)(1 +λ)/(2(k− 2)) ≤ 1, we have that x2 = 0 and x1 = (k− 2)/(k−
1)2V . Otherwise, we can divide (2.18) by (2.19) and define ρ = x2/x1 to get

k − 1

2ρ+ k − 2

1 + λ

2
= ρα.

We can solve numerically for ρ to calculate efforts and utilities.

If m joins all but one group and we assume m spreads her effort symmetrically

across her groups, we can denote her effort as xm, the effort of group leaders whose

groups she joins as x2, and the effort of the group leader who competes alone as x1.

The first order conditions are

x1

(xm + (k − 1)x2 + x1)2

1 + λ

2
V ≤ xαm (2.20)
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for m,
(k − 2)(xm/(k − 1) + x2) + x1

(xm + (k − 1)x2 + x1)2

1 + λ

2
V ≤ xα2 (2.21)

for group leaders whose groups m joins, and

xm + (k − 1)x2

(xm + (k − 1)x2 + x1)2
V ≤ xα1 (2.22)

for the group leader who competes on her own. If α = 0, we must have that xm = 0 and

can derive that x2 = (k−1)((1+λ)/(2k−1+λ))2V and x1 = (k− (k−2)λ)/(1+λ)x2,

from which we can calculate utilities. Otherwise, we can divide (2.20) by (2.22) to

write ρ = xm/x2 and get x1 = xm(2/(1 + λ)(1 + (k− 1)/ρ))1/(1+α). If we divide (2.20)

by (2.21) and plug in our formula for x1 we get

1

(k − 2)/(k − 1)((1 + (k − 1)/ρ)α(1 + λ)/2)1/(1+α) + 1
= ρα,

which we can solve numerically for ρ to get efforts and utilities.

Finally, if m joins all groups, she will not exert any effort and we can solve for

group leaders’ symmetric individual efforts as x = ((k − 1)(1 + λ)V/(2k2))1/(+α) and

their resulting utilities as u = (1 + kα)(1 + λ)V/(2k2(1 + α)).

For simplicity, I make the reasonable assumption that m again joins as many groups

as she can in stage 2. In stage 1, all group leaders playing N is a Nash equilibrium if

their utilities in the singleton contest is higher than their utility if m only joins their

group. All group leaders allowing exclusive membership E is an equilibrium if the

utility of having m only joining their group is higher than competing alone against

(k−2) other singletons and one group of two. Lastly, all leaders offering non-exclusive

group membership O is an equilibrium in stage 1 if the utility of having m join all

groups simultaneously is higher than competing alone against (k− 1) groups which m

all joins. Figure 2.D.1 illustrates symmetric stage-1 equilibria for five and ten groups,

respectively. You can see that a higher number of groups, unless α is small, decreases

the λ above which groups offer exclusive membership and that the region in which

groups offer non-exclusive membership shrinks.

2.E Appendix – Additional potential members

Let there be n ≥ 1 potential members. Groups cannot discriminate: if they allow

exclusive or non-exclusive membership, all potential members can make use of it.
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Figure 2.D.1: Symmetric Nash equilibria in stage 1 with five and ten groups

In the second stage, members are sorted randomly and sequentially decide which

group(s) to join, taking into account how members that may come after them will

decide. Membership decisions are final. Stage-3 outcomes change dependent on how

many potential members play the the game. The strategy space in stage 1 remains

the same. I apply sub-game-perfect Nash equilibrium as solution concept and solve

the game for up to five potential members. If both groups offer non-exclusive group

membership, all members join both groups. The members’ choices in stage 2 for

two, three, four, and five members in the case of both groups offering non-exclusive

membership are depicted in Figure 2.E.1. The resulting stage-1 equilibria are shown

in Figure 2.E.2. While I analytically derived utilities for all group structures in stage

3, stage-1 and stage-2 results are based on numerical simulations. Equilibria in stage

1 are not qualitatively changed by the introduction of additional potential members.
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Figure 2.E.1: Members’ stage-2 choices with two to five potential members in the case
of both groups offering non-exclusive membership
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Figure 2.E.2: Nash equilibria in stage 1 with two to five potential members

For the sake of brevity, the legend shows only one possible constellation of asymmetric equilibria.
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Contest Copycats: Adversarial

Duplication of Effort in Contests

3.1 Introduction

In innovation contests, participants may try to increase their chance of winning by

spying on their opponents and copying their ideas. For example, the space race between

the United States and the Soviet Union was accompanied by constant espionage, which

went as far as “kidnapping” a Soviet lunar spacecraft from an exhibition for a thorough

inspection by the CIA (Wesley, 1967). In the race to develop the first atomic bomb,

the Soviet Union made significant efforts to gain access to the Manhattan Project

(Haynes and Klehr, 2000). Attempts to steal other contestants’ ideas have also been

documented in Formula 1 (Solitander and Solitander, 2010). In 2004, back when it

was a world leader in wireless technology, the Canadian company Nortel was hacked

and had a large amount of its reports, design details, and top-secret source code

stolen. While some have suspected an involvement of the Chinese government and

the Chinese company Huawei, which subsequently gained a large share of the global

wireless market, the hackers have never been identified (Pearson, 2020). In general,

evidence on economic espionage is scarce since firms who are spied on often are either

ignorant of their situation or reluctant to report on it. But the US Intellectual Property

Commission (2017) estimates the annual cost of IP theft to the US economy to be

between $225 billion and $600 billion.

To enhance our understanding of how spying on other participants’ ideas affects

contests, I analyse a stylised model of a Tullock contest between two players. Both

players can exert effort—which I interpret as generating ideas—to increase their chance

of winning the prize. I allow one player to be more productive in exerting contest effort.
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Both players can pay a fixed cost for the ability to copy their opponent’s effort and

add it to theirs—representing stealing the other’s ideas and combining it with one’s

own. Let me briefly illustrate this concept: Without copying, if player 1 and player

2 exert efforts x1 and x2, their respective probabilities of winning the contest are

x1/(x1 + x2) and x2/(x1 + x2). If player 2 copies the effort that player 1 exerts, her

effective effort becomes x1+x2, and the probability that player 2 wins the prize becomes

(x1 + x2)/(2x1 + x2), while player 1’s win probability decreases to x1/(2x1 + x2). I

characterise the unique Nash equilibrium in this game and show how copying behaviour

depends on the cost of copying and the stronger player’s productivity advantage.

If the cost of copying is low, the weaker player is more likely to win the prize in

equilibrium. Both the more productive player’s utility as well as the aggregate effort

players exert can decrease in the stronger player’s productivity advantage. This is in

contrast to the baseline without copying. It implies that a government who wants to

increase a domestic firm’s profit may not want to subsidise this firm’s effort, even if

the subsidy were costless. It also means that a contest designer who would like to

maximise aggregate effort in a contest may in some circumstances want to exclude

a more productive contestant in favour of a weaker one. Moreover, I show that the

expected winner’s effort—potentially including effort copied from an opponent—is

generally increasing in the cost of copying. The designer of an innovation contest

would like to make copying of effort prohibitively costly.

In Section 3.2, I review the related literature. I introduce and motivate a two-

player contest model with copying of effort in Section 3.3. I characterise the unique

Nash equilibrium in Section 3.4 and discuss the model’s comparative statics and its

implications in Section 3.5. In Section 3.6, I briefly sum up my contribution and

present promising future avenues of research.

3.2 Related literature

In my model, I interpret contest effort as generating ideas, and the sum of ideas in turn

to determine the quality of a player’s innovation. I assume a noisy contest, in which the

player wins whose effort multiplied by an independent random variable is the highest.

Following Hirshleifer and Riley (1992), this contest, including copying decisions, can be

formulated as a standard lottery contest introduced by Tullock (1980). The resulting

contest success function was axiomatised by Skaperdas (1996) and Clark and Riis

(1998b). Baye and Hoppe (2003) discuss two other microfoundations of innovation
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contests from which the Tullock contest can be derived. They show that under certain

conditions, there is a strategic equivalence between innovation tournaments in the

sense of Fullerton and McAfee (1999), patent races in the tradition of Loury (1979),

and the Tullock rent-seeking game. The copying mechanism I introduce is not directly

compatible with the framework by Fullerton and McAfee (1999), but can be integrated

in the model discussed by Loury (1979); see Section 3.3.

If players copy their opponents’ effort, this introduces an additional effect of effort,

which relates my work to that by Baye et al. (2012) on spillovers in contests, although

they focus on a rank-order contest, the effort spillover does not enter the contest

function, and the spillover is exogenously given. My paper has direct applications to

the field of innovation contests, which is surveyed in Adamczyk et al. (2012).

Whereas I focus on the adversarial duplication, or copying, of another player’s

effort, others have analysed harmful behaviour such as cheating, doping, and sabotage

in contests. Enhancing one’s own performance is for example treated by Eber and

Thépot (1999), Berentsen (2002), Haugen (2004), Konrad (2005), Kräkel (2007), and

Gilpatric (2011). The concept of sabotage—reducing the other’s effective effort—was

introduced into contests by Konrad (2000) and subsequently analysed by Münster

(2007a), Kräkel (2005), Gürtler (2008), and Gürtler and Münster (2010). Related to

the notion of sabotage in contests is the work on negative campaigning by Skaperdas

and Grofman (1995) and Chaturvedi (2005). Baumol (1992) considers sabotage in

innovation processes. An earlier consideration of sabotage in a competitive structure

can be found in Lazear (1989). For an overview of the literature on sabotage in

contests, see Chowdhury and Gürtler (2015).1 Spying on another player’s ability in

contests with uncertainty about the latter has been studied by Baik and Shogren

(1995b), though issues with inconsistent beliefs in their work have been pointed out

by Bolle (1996). Chen (2019) analyses a setting in which contestants can spy on

their opponent’s valuation of the prize. In my model, players do not spy on contest

productivity or private prize valuation, but rather copy their opponent’s exerted effort.

Since the main field of application of this paper is innovation contests, my work

is related to innovation tournaments investigated by Taylor (1995), Fullerton and

McAfee (1999), and Che and Gale (2003), and patent races in the sense of Loury

(1979), Dasgupta and Stiglitz (1980), and Lee and Wilde (1980). A player copying

her opponent’s effort can be interpreted as a form of spillover or imitation. Seminal

1Note that copying of effort is strategically equivalent to “full sabotage”—reducing the opponent’s
effort to zero—if the contest success function is of the ”all-pay” or ”difference” form. For the Tullock
contest considered here, the effects differ, however.
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contributions on spillovers in innovation races are Spence et al. (1984) and d’Aspremont

and Jacquemin (1988). There is a large literature on imitation in innovation races and

its impact on economic growth and consumer welfare, with influential contributions by

Scherer (1967), Reinganum (1982), Katz and Shapiro (1987), Grossman and Helpman

(1991), Segerstrom (1991), Helpman (1993), and Aghion et al. (2001). Gallini (1992)

considers costly innovation in the form of “innovating around”. The copying of effort

that I consider is a more active mechanism than passive spillovers, and more immediate

and more immediately targeted against another player than imitation. Moreover, in

my model players can copy and exert effort themselves simultaneously.

The act of copying of another player’s contest effort which I consider is a form

of espionage. Cozzi (2001) and Cozzi and Spinesi (2006) conceptualise espionage in

patent races as stealing an innovation from an innovator on their way to the patent

office. They focus on the implications of this spying on economic growth. Whereas I

consider the direct duplication of an opponent’s ideas, spies in their model have the

opportunity to potentially steal all the ideas which are produced in a given economy.

Moreover, I focus on effects on player’s utilities and aggregate innovative effort, and

on the effects of copying costs and productivity asymmetries. In a related paper,

Grossman (2005) analyses the creation, protection, and pirating of ideas and focusses

on the choice of players to either be an inventor or a “pirate”.

A small game-theoretical literature on espionage models the ability to spy on other

players’ strategies (Matsui, 1989; Solan and Yariv, 2004; Alon et al., 2013; Barrachina

et al., 2014), characteristics (Ho, 2008; Wang, 2020; Barrachina et al., 2021), or pri-

vate signals (Kozlovskaya, 2018; Pavan and Tirole). In the literature on espionage in

oligopolistic competition, there are some exceptions, in which players can duplicate

their opponents’ technologies. In the work by Whitney and Gaisford (1996, 1999),

firms (or their governments) can steal their opponent’s production technology before

entering a Cournot competition. Chen et al. (2016) builds on this and endogenises

additional innovation. Similarly, in Billand et al. (2010), firms can spy on other com-

petitors to improve their product before competing in oligopolistic markets, and Marjit

and Yang (2015) model imitators who can steal the production technology of an inno-

vator in a duopoly model with binary choices. Grabiszewski and Minor (2019) analyse

a game in which a foreign firm can duplicate the effort a domestic firm exerts to inno-

vate. Unfortunately, their model is not analytically tractable and leads to multiplicity

of equilibria. In contrast, I investigate a contest in which both players can exert effort

and copy their opponent’s effort and derive closed-form solutions.
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3.3 The model

Two risk neutral players, i ∈ {1, 2} engage in a costly contest to win a prize of value

V > 0. This prize may represent the value of being the first to patent a new invention,

winning a research competition, or putting the first man on the moon. Both players

simultaneously choose effort xi ≥ 0, with effort cost defined as (1 − αi)xi. Player 1

might have a productivity advantage: α1 = α ∈ [0, 1) and α2 = 0. Effort costs are

common knowledge. I interpret effort as directly translating into ideas whose sum

determine the quality of a player’s innovation; the more effort a player exerts, the

more ideas she generates, and the higher is the quality of her innovation.

In addition, players have the option to pay the fixed cost β to copy their opponent’s

effort and add it to theirs. This cost represents, for example, required expenditures—

such as hiring hackers and spies—to be able to copy an opponent’s ideas, or expected

future costs, such as potential legal fees and penalties.2 Copying decisions are made

simultaneously and at the same time as efforts are chosen.3 Denote a player’s choice to

copy by ci ∈ {0, 1}, where ci = 1 means player i copies and ci = 0 means she refrains

from copying. Denote a player’s effective effort as yi = xi + cixj, i 6= j. Additionally

to exerting effort and thus generating ideas, a player can also copy their opponent’s

ideas and add it to their own.

That the copying of an opponent’s effort is successful with certainty is a simplifying

assumption. While copying might be highly successful in contests with low protection

barriers, such as innovation contests within a specific company, this might not be

the case in other settings: attempts to hack into a competitor’s IT system might be

thwarted, and spies might be captured. Unfortunately, modelling copying success as

uncertain in the presented framework would not allow me to solve for all equilibrium

candidates. However, we can expect the model with certain copying success to be a

good approximation for settings in which the probability of copying success is high.

Moreover, in settings in which this probability is low, copying is not a very viable

option unless its cost is sufficiently low too, making it a less relevant aspect of the

contest anyway. I thus argue that certain copying success is not only a necessary

2See Crane (2005) for examples of such legal fees and penalties.
3This corresponds to effort and copying decisions being made sequentially if the effort decision by

the other player is unknown at the time of the copying decision. This is intuitive: the level of the
effort is unknown to the opposing player before it is copied. Another form of sequentiality is copying
decisions being made before efforts are chosen. Again, this is congruent with the simultaneous model
if players are uninformed about the other player’s choices. This reflects a reality in which espionage
is often hard to detect.
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assumption, but also a reasonable one.

Let player i 6= j win the prize if θiyi > θjyj, where θi and θj are independent draws

from an exponential distribution F (θ) = 1− e−λθ with λ > 0. The more ideas a player

has, the higher is the quality of her innovation, captured by her effective effort yi.

However, there is randomness involved in the contest: The submissions in a research

competition might be hard to evaluate. In the race to the moon, the more innovative

contestant might face random setbacks such as accidents and illnesses. Following

Hirshleifer and Riley (1992), it is straightforward to show that player i’s probability

to win this contest can be formulated as

pi =
yi

yi + yj
, i 6= j, (3.1)

which corresponds to the standard Tullock contest success function; for a brief deriva-

tion, see Appendix 3.A.

There are other ways to derive a Tullock contest from the microfoundations of

an innovation contest. Namely, Baye and Hoppe (2003) show that under certain

conditions, there is a strategic equivalence between innovation tournaments in the

sense of Fullerton and McAfee (1999), patent races in the tradition of Loury (1979),

and the Tullock rent-seeking game. However, in the case of Fullerton and McAfee

(1999), this equivalence is not robust to the introduction of copying in the form that I

use, since they consider a model in which a single drawn idea wins the game.4 In the

framework of Loury (1979), effort yields a hazard rate at which an innovation arrives.

If we allow effort to be copied in order to simply increase one’s own hazard rate in

this framework, and if we assume a discount rate of zero, this game is strategically

equivalent to the model I present here.

I make the usual assumption that p1 = p2 = 1/2 if y1 = y2 = 0. One way to

motivate it is to interpret the status quo as a split prize. For example, if no competitor

innovates, firms continue to share the market. If no country makes it to the moon,

no country gains, but at the same time, no country loses.5 Related is the fact that in

4In Fullerton and McAfee (1999), effort translates into random draws of ideas and the player
with the best idea wins. In this framework, if we assume that a winner is picked at random if
both players have access to the (same) best idea, the success function with copying becomes palti =
(1 + ci)xi + ci(1 + cj)xj
(1 + ci)(1 + cj)(xi + xj)

, i 6= j. However, many innovations or achievements are a combination of

a number of ideas rather than a single one, especially the most significant ones. The first iPhone
combined innovations in display technology, user interface, design, and many more. The moon landing
required, among others, innovations in rocket and computer technology and the development of new
fabrics and other materials. The model reflects this interpretation.

5In the model, the issue of zero total effort only arises in equilibrium with symmetric players. In
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the model, the level of effort does not play a role in the sense that the contest success

function (3.1) is homogeneous of degree zero in effective efforts. In a game like the race

to the moon, where a higher overall level of innovative effort can be expected to lead

to a player winning the game earlier, this implies a discount rate of zero (which is the

assumption required for the models’ equivalence with the Loury (1979) framework).

If player i copies the effort xj of player j 6= i, player i’s effective effort becomes

yi = xi+xj. This assumes that efforts are additive. If we interpret effort as translating

into innovative ideas, this means that these ideas are original. However, simultaneous

research effort may sometimes lead to redundant innovations.6 If a player copies an

idea that she already has, this should arguably not increase her chance of winning as

much as gaining access to an original idea. To test the importance of the assumption of

additive efforts, I also analyse the model with redundant effort, where formally effective

effort is yi = max(xi, cixj), i 6= j, and show that my findings generalise; see Appendix

3.C. Ideas and innovations (and the ways by which they are generated) are rarely

exactly the same. For instance, the different Covid-19 vaccines that have recently been

developed most likely have different strengths and weaknesses, and may even be more

effective when used in combination. It is highly unlikely that two active contestants in

an innovation contest can learn nothing from each other. The assumption of additive

efforts is thus both intuitive, as well as uncritical to my findings.

Given the players’ effort and copying decisions, a player’s expected utility is

ui(xi, xj, ci, cj) =
xi + cixj

(1 + cj)xi + (1 + ci)xj
V − (1− αi)xi − βci, (3.2)

where i 6= j. Denote by qi = P (ci = 1) ∈ [0, 1] the probability with which player i

decides to copy. Additionally, denote by xi|ci=0 = xni the effort a player chooses if she

does not copy and by xi|ci=1 = xci the potentially different effort she chooses if she

does. If a player chooses not to copy, her first order condition with respect to exerted

reality, productivity of players is often heterogeneous. Furthermore, in some contests, such as for
example Kaggle machine-learning challenges, there is often a benchmark publicly available whose
submission might represent exerting no effort, but cannot easily be ruled out as a winning approach
by a contest designer. For an example of explicit modelling of draws, see Blavatskyy (2010).

6Famous historical examples include the independent formulation of calculus by Newton and
Leibniz, the development of the theory of natural selection by Darwin and Wallace, and the invention
of the telephone by Gray and Bell. See Ogburn and Thomas (1922) for an early and fascinating
account of almost 150 multiple inventions and discoveries. It is noteworthy that Gray and Bell ended
up in a controversy over who had been first to invent the telephone, a controversy which did not
remain free of accusations of copying the other’s ideas.
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effort xni is

∂ui
∂xni

=

(
(1− qj)

xnj
(xni + xnj )2

+ qj
xcj

(2xni + xcj)
2

)
V − (1− αi)

!

≤ 0, (3.3)

where i 6= j. If player i chooses to copy, her first order condition with respect to

exerted effort xci is

∂ui
∂xci

= (1− qj)
xnj

(xci + 2xnj )2
V − (1− αi)

!

≤ 0. (3.4)

If both players copy, effort is wasted and thus has no marginal benefit. If player j

always copies, qj = 1, player i optimally exerts zero effort when copying. Lastly, if

player i mixes, 0 < qi < 1, it must hold in equilibrium that she is indifferent between

not copying and copying:(
(1− qj)

xni
xni + xnj

+ qj
xni

2xni + xcj

)
V − (1− α)xni

!
=(

(1− qj)
xci + xnj
xci + 2xnj

+ qj
1

2

)
V − (1− α)xci − β.

(3.5)

It cannot be an equilibrium to have both players play a pure strategy and always

copy, i.e. q1 = q2 = 1. This would imply zero efforts and u1 = u2 = V/2 − β. It is

clear that a player would have an incentive to deviate and not copy and receive V/2

for sure. This means that at least one player at least sometimes does not copy in any

equilibrium. Moreover, it cannot be an equilibrium for a player to exert zero effort in

expectation. To see this, assume xni = xci = 0 in equilibrium. If qi < 1, player j 6= i

optimally responds by not copying, cj = 0, and exerting infinitesimal effort xj = ε

where ε→ 0 cannot be pinned down.7 If qi = 1, player j’s best response is then to not

copy cj = 0 and exert zero effort xj = 0. But then, i would have an incentive to deviate

to qi = 0 and xi = ε with ε→ 0. This means that in any equilibrium, both players must

exert strictly positive effort in expectation. The second order conditions of equation

(3.3) and, if qj < 1, equation (3.4) hold for any non-zero effort of the opposing player

j and on the whole domain xi ≥ 0. Hence, players’ best reply functions with respect

to effort are single peaked given a strictly positive expected effort by their opponent.8

7Even if we could fix a very small ε, player i would then have an incentive to deviate and exert
strictly positive effort.

8This also holds if the opponent were to play a mixed strategy with respect to effort, given her
copying decision. It follows that players, given their copying decision, do not play a mixed strategy
with respect to the effort they exert in equilibrium.
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Figure 1: Nash equilibria in dependence of the normalised cost of copying β/V and
player 1’s productivity advantage α

In the following section, I derive the unique solution to equations (3.3) to (3.5) for all

combinations of productivity advantage α ∈ [0, 1) and copying cost β > 0, which pins

down the unique Nash equilibrium.

3.4 Equilibrium

Both players can never copy, mix between copying and not copying, or always copy. As

stated above, it cannot be an equilibrium for both players to always copy. Moreover,

I show in Appendix 3.B that it cannot be an equilibrium for player 1 to copy with a

higher probability in equilibrium than player 2. This leaves us with five combinations

as equilibrium candidates: both players never copy, player 1 never copies and player

2 mixes, player 1 never copies and player 2 always copies, player 1 mixes and player 2

always copies, and both players mix.

Figure 1 anticipates the results of this section and illustrates in which parametric

regions the five equilibrium candidates exist. In what follows, I characterise these

equilibria and derive the boundaries which separate them. I briefly sum up the results

in Section 3.4.6 and formulate the first proposition.
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3.4.1 Both players never copy

Start by assuming that both payers never copy, c1 = c2 = 0. This case corresponds to

the standard model without copying. The first order condition (3.3) reduces to

∂ui
∂xi

=
xj

(xi + xj)2
V − (1− αi)

!

≤ 0.

We can solve this for equilibrium efforts x∗1 = V/(2− α)2 and x∗2 = V (1− α)/(2− α)2

which yield equilibrium utilities u∗1 = V/(2 − α)2 and u∗2 = V ((1 − α)/(2 − α))2.

Intuitively, as player 1’s productivity advantage α increases, her utility increases as

well, while the utility of player 2 decreases.

This equilibrium exists if no player has an incentive to deviate by copying the effort

of the other player. If player 2 deviates and copies, c2 = 1, her best-response effort is

xc2 = 0. This gives her the utility V/2− β. Thus, player 2 has an incentive to copy if

player 1 never copies if
V

2
− β > V

(
1− α
2− α

)2

. (3.6)

If player 1 deviates and copies, her best-response effort is xc1 = αV/(2− α)2, yielding

the utility V (1 + (1−α)2)/(2−α)2− β. This means that player 1 has an incentive to

copy given that player 2 never copies if

1 + (1− α)2

(2− α)2
V − β > V

(2− α)2
. (3.7)

Since ((1 − α)/(2 − α))2 ≤ 1/4, condition (3.6) always holds if condition (3.7) holds.

Thus, both players never copying is a Nash equilibrium if

α ≤
1− 2

√
1/2− β/V

1−
√

1/2− β/V
, (3.8)

which follows from (3.6). The term 1/2 − β/V is the utility a player receives if she

copies and does not exert effort, normalised by the value of the prize.9 You can see in

Figure 1 that this holds if the cost of copying, normalised by the value of the prize,

β/V , is sufficiently large. If player 1’s productivity advantage α is high, player 2 is

willing to pay a higher price for the ability to copy.

9The term
√

1/2− β/V is only well defined if β/V ≤ 1/2. If β/V > 1/2, copying of effort is never
optimal for any player.
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3.4.2 Player 1 never copies, player 2 mixes

Consider an equilibrium in which player 1 never copies, q1 = 0 and thus x1 = xn1 , and

player 2 plays a mixed strategy, q2 ∈ (0, 1). This means that player 2 copies the effort

of player 1 with probability q2 and refrains from doing so with probability (1 − q2).

For player 2, condition (3.3) reduces to

∂u2

∂xn2
=

x1

(x1 + xn2 )2
V − 1

!

≤ 0,

and condition (3.4) becomes

∂u2

∂xc2
=

x1

(2x1 + xc2)2
V − 1

!

≤ 0. (3.9)

If x1 > xn2 , we must have that xc2 = 0, and xc2 = xn2 − x1 otherwise. Since the marginal

cost of effort is constant, a player would like to have the same equal marginal benefit

of effort, regardless whether she copies or not.

First, assume x1 > xn2 . Then, condition (3.9) cannot bind and in equilibrium

we must have xc∗2 = 0. We can solve for the probability that player 2 copies and

get q∗2 = 1 − (1 − α)(1/
√

1/2− β/V − 1) < 1. Equilibrium efforts are x∗1 = (1 −√
1/2− β/V )2V and xn∗2 = (

√
1/2− β/V − (1/2 − β/V ))V . This equilibrium can

only exist if β/V < 1/2. Additionally, we must have that q∗2 > 0. This is the case

if α > (1 − 2
√

1/2− β/V )/(1 −
√

1/2− β/V ), which corresponds to (3.8). Further,

x1 > xn2 is true if β/V > 1/4. Player 1 never has an incentive to deviate and copy if

these conditions hold.10

Now, assume x1 ≤ xn2 . First order conditions in this case yield equilibrium efforts

x∗1 = β, xn∗2 =
√
βV − β, and xc∗2 =

√
βV − 2β. Win probabilities are independent of

whether or not player 2 copies, and player 2 is (weakly) more likely to win. Player 2

copies with probability q∗2 = 1/
√
β/V + α − 2 ≥ 0 in this equilibrium. For x∗1 ≤ xn∗2

to hold, we must have that β/V ≤ 1/4. For q∗2 < 1 to hold, we must have that

α < 3− 1√
β/V

. (3.10)

Again, an increase in player 1’s productivity advantage α increases player 2’s inclina-

10Note that 1/4 is the effort players exert if they are symmetric and do not copy, normalised by
the value of the prize. If players are symmetric, they start to copy if the normalised cost of copying
β/V falls below this threshold. See Figure 1.
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tion to copy. Player 1 does not have an incentive to deviate and copy if

α ≥
1/2−

√
β/V

β/V
. (3.11)

Intuitively, an increase in her productivity advantage makes player 1 less inclined to

copy. The light blue region in Figure 1 depicts the combinations of the normalised

cost of copying β/V and player 1’s productivity advantage α that make player 1 never

copy and player 2 mix between copying and not copying in equilibrium.

3.4.3 Player 1 never copies, player 2 always copies

Consider an equilibrium in which player 1 never copies, q1 = 0 and x1 = xn1 , and

player 2 always copies, q2 = 1 and x2 = xc2. Efforts are then x∗1 = V/(3 − α)2 and

x∗2 = (1−α)V/(3−α)2. Player 1 has no incentive to deviate and copy if her productivity

advantage is large enough:

α ≥ 3−

√
2

1/2− β/V
. (3.12)

Player 2 does not have an incentive to deviate and not copy if α ≥ 3−1/
√
β/V , which

corresponds to (3.10). The region on the β/V -α-plane where this Nash equilibrium in

asymmetric pure strategies exists is shown in dark blue in Figure 1.

3.4.4 Player 1 mixes, player 2 always copies

Assume that in equilibrium, player 1 mixes between copying and not copying, q1 ∈
(0, 1), and player 2 always copies, q2 = 1 and x2 = xc2. If player 1 copies, she has no

incentive to exert effort since she wins the price with probability 1/2 in any case, xc∗1 =

0. We can solve for the probability that player 1 copies as q∗1 = 1−(
√

2/(1/2− β/V )−
2)/(1 − α) < 1 and for her equilibrium effort if she does not copy as xn∗1 = (1 −
q∗1)/(2 + (1 − α)(1 − q∗1))2. Moreover, x∗2 = (1 − α)(1 − q∗1)xn∗1 . We have that q∗1 > 0

if α < 3 −
√

2/(1/2− β/V ), which corresponds to (3.12). Further, player 2 has no

incentive to deviate and not copy if her opponent’s productivity advantage is large

enough:

α ≥
1/2−

√
(1/2− β/V )/2

β/V
. (3.13)

These conditions hold if the normalised cost of copying β/V is low and player 1’s

productivity advantage α is high, but not too high, as illustrated by the violet region
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in Figure 1.

3.4.5 Both players mix

Lastly, consider an equilibrium in which both players play a mixed strategy, qi ∈
(0, 1) ∀ i ∈ {1, 2}. We can solve for equilibrium efforts as xn∗1 = β, xc∗1 = 0, xn∗2 =

β(1/2 + αβ/V )/(1/2 − αβ/V ) ≥ xn∗1 , and xc∗2 = β(2αβ/V )/(1/2 − αβ/V ) = xn∗2 −
xn∗1 . The equilibrium probabilities with which players copy are given by q∗1 = 1 −
(β/V )/(1/2 − αβ/V )2 < 1 and q∗2 = (1/2 − β/V )/(1/2 − αβ/V )2 − 1. Note that

q∗1 ≤ q∗2. We have that q∗1 > 0 if α < (1/2 −
√
β/V )/(β/V ), which corresponds to

(3.11). Further, q∗2 < 1 if α < (1/2 −
√

(1/2− β/V )/2)/(β/V ), which corresponds

to (3.13). Both players mixing between copying and not copying is an equilibrium if

the normalised cost of copying β/V and player 1’s productivity advantage α are both

sufficiently low. This region is depicted in orange in Figure 1.

3.4.6 Summary

As is evident in Figure 1, the five described equilibria are mutually exclusive and cover

the entire area where the game is defined. This means that for player 1’s productivity

advantage α ∈ [0, 1) and the normalised cost of copying β/V > 0, the Nash equilibrium

of the contest with copying exists and is unique. Moreover, the transition between the

different types of equilibria is “smooth”: for example, at the switch from player 2

mixing to copying, her probability of copying converges to zero as α approaches the

threshold characterised by (3.8). This means that there are no discontinuous jumps

in the decision and outcome variables. Some intuitive patterns emerge: In general,

players copy more often if the cost of copying, normalised by the value of the prize,

β/V is lower. Additionally, players copy more often if the relative productivity with

which they exert effort declines.

Having solved for the equilibrium for all combinations of normalised copying cost

β/V and productivity advantage α of player 1, we can formulate the first proposition.

The expected probability of winning the contest for player 1 in equilibrium is p∗1 ∈ [0, 1].

We have:

Proposition 1 (Probability of winning). If β/V < 1/4 and α > 0, p∗1 < 1/2.

If the normalised cost of copying is sufficiently low, player 1 is less likely to win the

contest in equilibrium if she has a productivity advantage. If β/V > 1/4 and α > 0,

p∗1 > 1/2. Naturally, p∗1 = p∗2 = 1/2 if α = 0.
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Proof. If β/V > 1/4, both players do not copy if condition (3.8) holds. The probability

that player 1 wins in this baseline case is x∗1/(x
∗
1 + x∗2) = 1/(2 − α). It is clear that

p∗1 > 1/2 if α > 0. If condition (3.8) does not hold, player 1 does not copy, and player

2 mixes between copying and not copying in equilibrium. The probability that player

1 wins the contest is then

p∗1 = (1− q∗2)
x∗1

x∗1 + xn∗2

+ q∗2
1

2
.

Since x∗1/(x
∗
1 + xn∗2 ) = 1−

√
1/2− β/V > 1/2 if β/V > 1/4, we have that p∗1 > 1/2.

If β/V < 1/4, we know from Figure 1 that there are four cases to consider. If

player 1 never copies and player 2 mixes, p∗1 =
√
β/V < 1/2. If player 1 never copies

and player 2 always copies, we have p∗1 = 1/(3−α) < 1/2. If player 1 mixes and player

2 always copies, p∗1 = (1− q∗1)
√

(1/2− β/V )/2 + q∗1/2 < 1/2. Finally, if both players

mix between copying and not copying, the probability that player 1 wins the contest

is given by p∗1 = 1/2− α(β/V )2/(1/2− β/V )2. If α > 0, p∗1 < 1/2.

Intuition. In sharp contrast to the baseline contest model without copying, a player

with a productivity advantage is less likely to win the contest if the cost of copying

is low. If player 2 copies, her chance of winning is at least 1/2 since her effort when

she copies is positive, xc2 ≥ 0. Copying by player 2 reduces the incentive for player 1

to exert effort. This in turn can be exploited by player 2 when she does not copy, in

which case she exerts more effort than player 1, xn2 > xn1 if β/V < 1/4 and α > 0,

giving her a higher probability of winning than player 1. Despite this, player 1 does

not have an incentive to copy more often than she does, since effort is not very costly

to her relative to copying due to her productivity advantage.11 If the cost of copying

is high, i.e. β/V > 1/4, player 2 does not have an incentive to copy often enough

to cause the same effect and player 1 is more likely to win. Note that both players

have an equal chance of winning in equilibrium, p∗i = 1/2, if they are symmetric, i.e.

α = 0. The same holds if β/V = 1/4. Further, from our results we can easily deduct

the probability of winning for the potentially weaker player 2 since p2 = 1− p1.

11To some extent, this mechanism resembles the “paradox of power” discussed by Hirshleifer (1991),
which describes the phenomenon in a guns-and-butter model that poorer contenders appropriate a
larger share of the pie relative to their endowment than richer contenders. Although in the present
model there are no resource constraints, one player is more productive in generating innovative contest
effort, which leads the “weaker” player to be more motivated to “appropriate” this effort by copying.
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3.5 Comparative statics

Suppose that a government wants to enhance the winning chances or the profit of a

domestic firm that competes in an innovation contest by subsidising the firm’s innova-

tive effort. Or imagine that a contest designer considers changing the cost of copying

to maximise the innovative effort exerted by all participants. In these situations, it

is important to know how changes in player 1’s productivity advantage α and the

cost of copying β affect the equilibrium outcome. In this section, I go through the

comparative statics of the model and highlight the most surprising effects that arise

when players can copy effort in contests.

3.5.1 Decision variables

Let us first consider the players’ decision variables: the probability with which a player

copies qi, the effort she exerts if she does not copy xni , and the effort if she does xci . In

general, and unsurprisingly, we have that dq∗1/dα ≤ 0 and dq∗2/dα ≥ 0, and dq∗1/dβ ≤ 0

and dq∗2/dβ ≤ 0. The probability with which a player copies decreases in their relative

productivity advantage and the cost of copying.

The effort player 1 exerts when she does not copy weakly increases in both her

productivity advantage and the cost of copying, dxn∗1 /dα ≥ 0 and dxn∗1 /dβ ≥ 0. The

latter effect is driven by the fact that player 2 copies less often if β increases, making it

more attractive for player 1 to exert high effort. Since player 1 never exerts effort if she

does copy, we naturally have dxc∗1 /dα = dxc∗1 /dβ = 0. If player 2 does never copy in

equilibrium, q∗2 = 0, her effort is decreasing in player 1’s productivity advantage. If she

copies at least sometimes however, her effort if she does not copy is weakly increasing,

dxn∗2 /dα|q∗2>0 ≥ 0. Copying by player 2, which is increasing in α, lowers the incentive

for player 1 to exert high effort, which in turn increases the incentive for player 2 to

exert high effort herself when she does not copy. If the normalised cost of copying is

sufficiently high, β/V > 1/4, player 2’s effort when she does not copy is decreasing in

said cost, dxn∗2 /dβ|β/V >1/4 < 0. In contrast, we have dxn∗2 /dβ|β/V <1/4 > 0. If player

1 never copies, player 2’s effort if she does copy is weakly decreasing in both α and

β, dxc∗2 /dα|q∗1=0 ≤ 0 and dxc∗2 /dβ|q∗1=0 ≤ 0. If player 1 mixes between copying and not

copying, the opposite is the case, dxc∗2 /dα|q∗1>0 > 0 and dxc∗2 /dβ|q∗1>0 > 0. In this latter

case, a decrease in player 1’s probability to copy incentivises player 2 to exert higher

effort.
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3.5.2 Win probabilities

In the baseline case without copying, player 1’s probability of winning the contest is

intuitively increasing in her productivity advantage α. If at least one player copies,

this only holds if player 1 never copies and player 2 always copies, dp∗1/dα|q∗i =0,q∗2=1 > 0.

In both cases, both players do not or cannot react to a change in α by adjusting their

probability of copying. Otherwise, player 1’s win probability is weakly decreasing in

α, dp∗1/dα ≤ 0 if q∗1 ∈ (0, 1) ∨ q∗2 ∈ (0, 1). This surprising effect is closely related

to Proposition 1 and follows the same intuition. If player 1 does not copy, her win

probability is weakly increasing in the cost of copying, dp∗1/dβ|q∗1=0 ≥ 0. If player 1

mixes between copying and not copying, an increase in the cost of copying leads to a

decrease in her chance of winning the contest, dp∗1/dβ|q∗1>0 < 0.

3.5.3 Utilities

The changes in the players’ equilibrium behaviour in reaction to changes in player

1’s productivity advantage α and the cost of copying β lead to some counter-intuitive

effects on the game’s outcomes. Let us consider the players’ expected utilities and first

discuss the most surprising effect that arises.

Proposition 2 (Player 1’s utility can decrease in α). If player 2 mixes between

copying and not copying while player 1 never copies, and if the cost of copying is

sufficiently high, β/V >
√

2−1, an increase in player 1’s productivity advantage leads

to a decrease in her expected utility. Otherwise, we have du∗1/dα ≥ 0.

Proof. In the baseline without copying, the expected utility of player 1 is u∗1 = V/(2−
α)2. It is clear that then du∗1/dα > 0. If player 2 mixes between copying and not

copying and player 1 never copies, and if additionally β/V > 1/4, we have that

u∗1 = V

(
1

2
+ (1− α)

1−
√

1/2− β/V√
1/2− β/V

((
1−

√
1/2− β/V

)2

− 1

2

))
.

We see that du∗1/dα < 0 if (1−
√

1/2− β/V )2 > 1/2 which is the case if β/V >
√

2−1.

Otherwise, du∗1/dα ≥ 0. If β/V ≤ 1/4 and player 2 mixes between copying and not

copying while player 1 never copies, player 1’s utility is u∗1 =
√
βV − (1 − α)β. It is

easy to see that here du∗1/dα > 0. If payer 2 always copies and player 1 never copies in

equilibrium we have that u∗1 = 2V/(3−α)2 and it is clear that du∗1/dα > 0. If player 1

mixes between copying and not copying, she exerts zero effort when she copies. This
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means that her utility when she copies is V/2 − β. Since she must be indifferent

between copying and not copying, this means her expected utility is u∗1 = V/2− β. It

is clear that then du∗1/dα = 0.

Intuition. An increase in her productivity advantage α benefits player 1 in the baseline

without copying and in equilibria with copying if the cost of copying is sufficiently low.

However, if the cost of copying is high, β/V >
√

2−1, and the productivity advantage

high enough to incentivise player 2 to copy, i.e. condition (3.8) does not hold, a

further increase in α harms player 1. This means for example that a government who

subsidises a domestic firm’s effort in a contest can end up harming the firm, even

without taking into account the additional cost such a subsidy would incur. The effect

can be explained by the fact that if the cost of copying is high but not prohibitive, an

increase in α eventually leads to a sharp increase in player 2’s probability of copying

q2, which more than offsets the benefit for player 1 of the decrease in her effort cost.

More intuitively, player 1’s expected equilibrium utility is weakly increasing in the

cost of copying β if player 1 never copies, and decreasing in β if player 1 mixes between

copying and not copying. We can write du∗1/dβ|q1=0 ≥ 0 and du∗1/dβ|q1>0 < 0. This

result is similar for player 2, for whom we have du∗2/dβ|q2=0 = 0, since then no player

ever copies, and du∗2/dβ|q2>0 < 0. The effect of an increase in α on player 2’s utility

is negative if player 1 never copies, du∗2/dα|q1=0 ≤ 0, and positive if player 1 mixes,

du∗2/dα|q1>0 > 0. The latter effect is also somewhat counter-intuitive. It is due to

the fact that an increase in α leads player 1 to copy less often, which benefits player

2. If we combine these effects and look at aggregate expected utility in equilibrium,

U∗ =
∑

i u
∗
i , we find that an increase in α leads to an increase in U∗ and, if at least

one player copies at least sometimes, an increase in β leads to a decrease in U∗. For

each effect, there is one exception: First, we have dU∗/dα|q∗2>0 ∧ β/V >
√

2−1 < 0, which

is driven by the decrease in player 1’s utility discussed in Proposition 2. Second, it is

the case that dU∗/dβ|q∗2>0 ∧ α<γ > 0, where

γ =
1/(2(1/2− β/V ))− 3

1/(2(1/2− β/V ))− 3 + 2
√

1/2− β/V
.

3.5.4 Aggregate effort

A contest designer might not take into account the participants’ utilities. Rather, she

might aim to maximise aggregate exerted contest effort X =
∑

i xi. This reflects the

sum of generated original ideas. Why would a contest designer care about aggregate
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exerted effort? For instance, original research generated within a specific contest often

has major positive externalities beyond this contest. Examples include the race to the

moon, which lead to innovations for instance in freeze-drying of foods, fireproof mate-

rials, and integrated circuits, and The Netflix Prize, a machine learning competition

with a $1 million award announced by the content platform Netflix in 2006, which

spurred innovation in recommender systems and machine learning in general.12 As

with players’ utilities, when considering aggregate exerted effort, copying of effort in

contests can change some of the dynamics compared to the baseline without copying.

Proposition 3 (Aggregate exerted effort can decrease in α). If player 2 mixes

between copying and not copying while player 1 never copies, expected aggregate exerted

effort in equilibrium X∗ decreases in α. This is in contrast to the the baseline case

without copying and the cases in which player 2 always copies. If both players mix, the

sign of dX∗/dα is ambiguous.

Proof. In the baseline without copying, the aggregate exerted effort in equilibrium is

X∗ = V/(2 − α), and it is clear that then dX∗/dα > 0. If player 1 never copies in

equilibrium while player 2 mixes between copying and not copying, expected aggregate

exerted effort is

X∗ = x∗1 + (1− q∗2)xn∗2 + q∗2x
c∗
2 .

Since dx∗1/dα = dxn∗2 /dα = dxc∗2 /dα = 0, xn∗2 > xc∗2 , and dq∗2/dα > 0, we have

that then dX∗/dα < 0. If player 2 always copies while player 1 never copies, X∗ =

V (2−α)/(3−α)2. Then, dX∗/dα > 0. If player 2 always copies and player 1 mixes in

equilibrium, aggregate effort is X∗ = (1− q∗1)xn∗1 + x∗2. Since in this case dq∗1/dα < 0,

dxn∗1 /dα > 0, and dx∗2/dα > 0, we have that dX∗/dα > 0. If both players mix between

copying and not copying, we can write

dX∗

dα
= −dq

∗
1

dα
xn∗1 +

dq∗2
dα

(xc∗2 − xn∗2 ) +
dxn∗2

dα
.

This simplifies to (β/V )2(4β/V − 1/2 − αβ/V )/(1/2 − αβ/V )3. We can show that

dX∗/dα > 0 if α < 4− 1/(2β/V ) and dX∗/dα < 0 if α > 4− 1/(2β/V ).

Intuition. A contest designer interested in maximising aggregate exerted effort in a

contest might not always benefit from a contest participant becoming more productive.

This is due to the fact that an increase in productivity for player 1 incentivises player

12Related are arguments made by Terwiesch and Xu (2008) and Bessen and Maskin (2009) for why
diversity of ideas might be good from the perspective of a contest designer.
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2 to copy more frequently, which in turn lowers the expected effort for player 2 and

lowers the incentive for player 1 to exert effort. For intermediary cost of copying, this

means that such a contest designer would like to exclude a “strong” player in favour

of a “weaker” player whose productivity is more similar to her opponent’s.13

More intuitively, expected aggregate exerted effort is generally weakly increasing

in the cost of copying, dX∗/dβ ≥ 0. This implies that an international coalition of

governments who would like to increase global research efforts have an incentive to

make copying more costly, for example by increasing the punishment of intellectual

property law infringements.

3.5.5 Winner’s effort

While some contest designers might take into account positive externalities of innova-

tion and thus try to maximise aggregate exerted effort, others might only care about

the innovation that wins the contest. For example, a company running a research con-

test might only implement the winning entry.14 The natural objective of such a contest

designer is the expected winner’s effort, yw =
∑

i E[piyi]. Recall that yi denotes player

i’s effective effort and is defined as yi = xi + cixj, i 6= j. For the contest designer, it

is irrelevant whether the innovation is completely original or at least partly copied.

While intuitively we might expect copying of effort to be potentially beneficial for a

contest designer who wants to maximise the winner’s effort, we can formulate our last

proposition, which disagrees with this intuition.

Proposition 4 (The expected winner’s effort increases in β). The expected

winner’s effort weakly increases in the cost of copying, dy∗w/dβ ≥ 0.

Proof. In the baseline case without copying, the winner’s expected effort in equilibrium

is y∗w = V (1 + (1 − α)2)/(2 − α)3, and naturally independent of the cost of copying

β. If player 2 mixes between copying and not copying and player 1 does not copy in

equilibrium, and if additionally β/V > 1/4, we can write

y∗w =
(

(1− α)
(

2
√

1/2− β/V − 1
)

+ 1
)(

1−
√

1/2− β/V
)2

.

Making use of condition (3.8), one can show that then dy∗w/dβ > 0. In the same case,

if we have β/V ≤ 1/4, the expected winner’s effort is β(2
√
β/V + 1/

√
β/V − 2). Its

13Note that a contest designer would still prefer two strong players, however.
14See Serena (2017) for a deeper exploration of this idea and more examples of such settings, which

he calls “quality contests”.
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derivative is dy∗w/β = 3
√
β/V +1/(2

√
β/V )−2 ≥ 2(

√
3/2−1) > 0. If player 2 always

copies and player 1 never copies in equilibrium, we have y∗w = V (1 + (2−α)2)/(3−α)3

and thus dy∗w/dβ = 0. If player 2 always copies while player 1 mixes, the expected

winner’s effort is

y∗w = (1− q∗1)
(xn∗1 )2 + (xn∗1 + x∗2)2

2xn∗1 + x∗2
+ q∗1x

∗
2.

Since dq∗1/dβ < 0, dxn∗1 /dβ > 0, dx∗2/dβ > 0, and xn∗1 > x∗2, we have that dy∗w/dβ > 0.

Lastly, if both players mix, the expected winner’s effort is y∗w = (1 − q∗1)ŷ + q∗1((1 −
q∗2)xn∗2 + q∗2x

c∗
2 ), where ŷ = ((xn∗1 )2 + (xn∗2 )2)/(xn∗1 +xn∗2 ) is the expected winner’s effort

if no one copies. The derivative is then

dy∗w
dβ

=
dq∗1
dβ

(xn∗2 − q∗2β − ŷ) + (1− q∗1)
dŷ

dβ
+ q∗1

(
−βdq

∗
2

dβ
+ (1− q∗2)

dxn∗2

dβ
+ q∗2

dxc∗2
dβ

)
.

Since dq∗1/dβ < 0, xn∗2 − q∗2β − ŷ < 0, dŷ/dβ > 0, dq∗2/dβ < 0, dxn∗2 /dβ > 0, and

dxc∗2 /dβ > 0, we must have that dy∗w/dβ > 0.

Intuition. An increase in the cost of copying β makes players less likely to copy and

thus less likely to have access to the other player’s effort. However, this is offset by the

fact that players usually also increase their exerted effort in response to an increase in

β. This means that a contest designer who wants to maximise the expected winner’s

effort would like to increase the cost of copying, for example by punishing players who

are caught copying or by making it technically more difficult to copy.15

The expected winner’s effort in equilibrium y∗w is also generally weakly increasing

in player 1’s productivity advantage α, with the exception of the case that both players

mix between copying and not copying and the normalised cost β/V being very small.

Specifically, we can write dy∗w/dα|β/V >1/4 > 0, dy∗w/dα|q∗1=0,q∗2∈(0,1)∧β/V≤1/4 = 0, and

dy∗w/dα|q∗2=1 > 0. If both players mix, q∗i ∈ (0, 1) ∀ i, dy∗w/dα is strictly negative as

β/V tends to zero and positive as β/V tends to 1/4.16 This implies that a contest

designer aiming to maximise the expected winner’s effort in most cases benefits from

one player gaining a productivity advantage.

15Note that an increase in the cost of copying β might not be costless to the contest designer,
complicating her optimal policy.

16The derivative of the expected winner’s effort is given by the rather tedious term
β2/V (−3/16 + 7/4(β/V ) + αβ/(2V ) + 4(β/V )2 + α(β/V )2 + (αβ/V )2/2 + α2(β/V )3 − 2(αβ/V )3 − 4α3(β/V )4 + (αβ/V )4

(1/2− β/V )5
in this

case.
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3.6 Conclusion

In innovation contests, participants may try to enhance their chance of winning by

spying on and copying their opponents’ effort. I investigate this mechanism in a

stylised model and characterise the Nash equilibrium in dependence on the cost of

copying and the potential productivity advantage of one of the players. I show that,

when copying of effort is possible, the weaker player is more likely to win the contest

if copying costs are low, that the more productive player’s utility and the aggregate

effort may decrease in the productivity advantage of the more productive player, and

that the expected winner’s effort generally increases in the cost of copying. Hence, a

government trying to increase the profit of a domestic firm competing in an innovation

contest may not want to subsidise this firm’s efforts, even if this subsidy were costless.

The designer of a contest who tries to maximise aggregate innovative effort may want

to handicap a player with a productivity advantage or substitute her for a weaker one.

And a contest designer whose objective is the maximisation of the expected winner’s

effort generally has an incentive to make copying of effort more costly.

There are multiple avenues for future research, which relate to some of the potential

limitations of my model I have discussed. I assume players are successful to copy their

opponent’s effort with certainty. The model becomes mostly intractable if copying

success is uncertain, unfortunately. Specifying a model that is fully tractable also

with uncertain copying success may allow us to test the robustness of the stylised

model I have presented and may offer additional insights. One may even go further

and endogenise the probability of copying success by allowing players to take protective

action, such as for example increasing IT security. Another improvement in realism

might be to make the cost of copying dependent on the magnitude of the effort that

is to be copied. Moreover, I solve the model in its main specification with additive

efforts and briefly show that the resulting findings are robust to modelling efforts as

redundant. It might still be interesting to analyse an intermediate case, in which

some of the ideas the players generate are redundant by chance while the rest are not.

Finally, the game I describe is static. Large innovation contests such as the space race

often have multiple stages and involve dynamic interaction of the players’ strategies.

It might be fruitful to see how the integration of such dynamic interactions affect the

results I have presented.
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Appendices

3.A Appendix – Derivation of Tullock success function

We have that player i 6= j wins the prize if θiyi > θjyj, with θi and θj being independent

draws from the distribution F (θ) = 1 − e−λθ, λ > 0. Fix θj = θ̂j. Then, P (θiyi >

θ̂jyj) = P (θi > θ̂jyj/yi) = 1− P (θi ≤ θ̂jyj/yi), and thus

P (θiyi > θ̂jyj) = e−λ(θ̂jyj/yi).

We can write the unconditional probability as

P (θiyi > θjyj) =

∫ ∞
0

e−λ(θjyj/yi)f(θj)dθj

=

∫ ∞
0

e−λ(θjyj/yi)λe−λθjdθj

= λ

∫ ∞
0

e
−λθj

yj+yi
yi dθj

= λ

(
−1

λ

yi
yi + yj

e
−λθj

yj+yi
yi

)∣∣∣∣∞
0

,

which simplifies to

P (θiyi > θjyj) =
yi

yi + yj
.

�

3.B Appendix – Proof: player 1 copies less often than player

2

I prove that player 1 cannot copy with a higher probability than player 2 in equilibrium.

Throughout Section 3.4 we have that q1 ≤ q2. We must additionally show that it

cannot be an equilibrium if player 1 always copies while player 2 mixes or never copies,

or if player 1 mixes and player 2 never copies.

Proof that player 1 always copying and player 2 never copying/mixing

cannot be an equilibrium

Assume that player 1 always copies in equilibrium. Additionally, assume that player

2 never copies. Solving the first order conditions yields efforts x1 = V/(3 − 2α)2 and

x2 = (1 − α)V/(3 − 2α)2. If player 2 deviates and copies, she optimally exerts effort
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xc2 = 0. For her to not have an incentive to do so it must hold that

β

V
≥ 1

2
− 2

(
1− α
3− 2α

)2

. (3.14)

If player 1 deviates and does not copy, she optimally exerts effort xn1 = (2− α)V/(3−
2α)2, which keeps her probability of winning unchanged. She does not have an incen-

tive to do so if
β

V
≤
(

1− α
3− 2α

)2

. (3.15)

It is straightforward to show that the right-hand side of inequality (3.14) is strictly

larger than the right-hand side of (3.15) since α ∈ [0, 1). Hence, both inequalities

cannot be true at the same time. It follows that player 1 always copying and player 2

never copying cannot be an equilibrium.

Now assume an equilibrium exists in which player 1 always copies while player 2

mixes, q2 ∈ (0, 1). We can solve for efforts as x1 = (1− q2)2V/((1− q2) + 2(1− α))2,

xn2 = (1− α)(1− q2)V/((1− q2) + 2(1− α))2, and, naturally, xc2 = 0. The probability

with which player 2 copies is q2 = 1 − (1 − α)(
√

2/(1/2− β/V ) − 2). If player 1

deviates and does not copy, she optimally exerts effort xn1 = x1 + xn2 , which keeps

her probability of winning unchanged. She does not have an incentive to do so if

β ≤ (1− α)xn2 . Plugging in the closed form solution for xn2 yields the condition

α ≤ 1− β/V√
(1/2− β/V )/2− (1/2− β/V ))

. (3.16)

Since
√

(1/2− β/V )/2 < 1/2 due to β > 0, the right hand side of inequality (3.16)

is smaller than 0. As we have α ≥ 0, this condition can never hold. It follows that

player 1 always copying and player 2 mixing cannot be an equilibrium. �

Proof that player 1 mixing and player 2 never copying cannot be an equi-

librium

Assume that player 1 mixes between copying and not copying, q1 ∈ (0, 1), and that

player 2 never copies in equilibrium. First order conditions yield that we must have

xc1 = 0 if xn1 < x2 and xc1 = xn1 − x2 otherwise.

First, assume that xn1 < x2 and thus xc1 = 0. It follows from the first order

conditions that x2 = (1 − α)(1 − q1). We can solve for the probability that player 1

copies as q1 = 1 − (1/
√

1/2− β/V − 1)/(1 − α). For xn1 < x2 to hold, we must have
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that β/V > 1/4. But this implies that q1 < 0, which is a contradiction.

Now, assume that xn1 ≥ x2 and xc1 = xn1 − x2. This implies efforts x2 = β/(1− α),

xn1 = (
√
βV − β)/(1 − α), and xc1 = (

√
βV − 2β)/(1 − α). For xn1 ≥ x2 to hold we

must have that β/V ≤ 1/4. We can solve for the probability that player 1 copies as

q1 =
√

1/(β/V )− (2−α)/(1−α). Player 2 has an incentive to deviate and copy while

exerting effort xc2 = 0 unless
√
β/V − β/(V (1− α)) ≥ 1/2− β/V . This only holds if

β/V = 1/4 and α = 0, which implies q1 = 0, which is a contradiction. �

3.C Appendix – Redundant efforts

If efforts are not additive but redundant, the effective effort of player i is yi =

max(xi, cixj), i 6= j. Thus, a player’s expected utility given the players’ decisions

is

ui(xi, xj, ci, cj) =
max(xi, cixj)

max(xi, cixj) + max(cjxi, xj)
V − (1− αi)xi − βci,

instead of (3.2). If efforts are redundant, it can never be an equilibrium for a player

to copy and exert non-zero effort. Moreover, it cannot be an equilibrium for a player i

to always copy. Then, the opponent j’s optimal reply would be to not copy and exert

no effort. But then, i has an incentive to not copy and exert an infinitesimal effort

instead.

With redundant efforts, there are three cases of equilibria: both players never copy,

player 2 mixes and player 1 never copies, and both players mix between copying and not

copying. Figure 3.C.1 shows these equilibria in dependence of player 1’s productivity

advantage α and the normalised cost of copying β/V .

If β/V ≥ 1/4 and efforts are additive, player 2 does not exert effort when copying.

This means that the players’ incentives are exactly the same as with effort redundancy.

Hence, the analysis of Section 3.4.1 and Section 3.4.2 goes through. If β/V < 1/4

and player 2 mixes between copying and not copying while player 1 never copies in

equilibrium, we can use the same equilibrium values we have derived in Section 3.4.2

for the case that xc∗2 = 0, which must hold with redundant efforts by necessity. We

can show that player 1 does not have an incentive to deviate and copy if

α ≥ 1− β/V

(1/
√

1/2− β/V − 1)(1/2−
√

1/2− β/V )2
.

If both players mix between copying and not copying in equilibrium, we can unfortu-

nately not derive closed-form solutions and thus not evaluate comparative statics ana-
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Figure 3.C.1: Nash equilibria in dependence of the normalised cost of copying β/V
and player 1’s productivity advantage α when efforts are redundant

lytically. However, we can show that equilibrium efforts are given by xn∗1 = (1−q∗1)/(1+

(1−q∗1)(1−α)/(1−q∗2))2 and xn∗1 = (1−q∗1)2(1−α)/((1−q∗2)(1+(1−q∗1)(1−α)/(1−q∗2))2).

Using the indifference equations for both players, and defining ρ = (1 − q1)/(1 − q2),

we can show that

ρ
(αρ)2 − (1 + αρ)2/2

1− (1− αρ)2/2
= 1 (3.17)

must hold in equilibrium. Equation (3.17) can be solved numerically, which allows a

full numerical characterisation of the equilibrium.

Since the equilibrium with redundant efforts mirrors that with additive efforts if

β/V ≥ 1/4, naturally all four propositions also hold. If β/V < 1/4 and only player 2

mixes in equilibrium, the win probability of player 1 is p∗1 = (1−q∗2)(1−
√

1/2− β/V )+

q∗2/2 < 1/2, confirming Proposition 1. In the same case, we have that du∗1/dα > 0,

confirming Proposition 2 as well. Since equilibrium exerted efforts are unaffected by

a change in α and dq∗2/dα > 0, we have that dX∗/dα < 0, confirming Proposition

3. Further, also Proposition 4 holds in this case since we have that dy∗w/dβ > 0.

Interestingly, expected winner’s effort y∗w is decreasing in α in this case, in contrast to

the baseline without copying and to the model with additive efforts with copying.

It can be shown numerically that all four propositions are also valid if both players

mix. The only qualification is that if efforts are redundant, we have that, if both
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players mix between copying and not copying in equilibrium, dX∗/dα > 0.

93



References

Abbink, K., Brandts, J., Herrmann, B., and Orzen, H. (2010). Intergroup conflict

and intra-group punishment in an experimental contest game. American Economic

Review, 100(1):420–47.

Adamczyk, S., Bullinger, A. C., and Möslein, K. M. (2012). Innovation contests: A re-

view, classification and outlook. Creativity and Innovation Management, 21(4):335–

360.

Aghion, P., Harris, C., Howitt, P., and Vickers, J. (2001). Competition, imitation and

growth with step-by-step innovation. The Review of Economic Studies, 68(3):467–

492.

Albano, G. L., Spagnolo, G., and Zanza, M. (2009). Regulating joint bidding in public

procurement. Journal of Competition Law and Economics, 5(2):335–360.

Alon, N., Emek, Y., Feldman, M., and Tennenholtz, M. (2013). Adversarial leakage

in games. SIAM Journal on Discrete Mathematics, 27(1):363–385.

Amann, E. and Leininger, W. (1996). Asymmetric all-pay auctions with incomplete

information: the two-player case. Games and Economic Behavior, 14(1):1–18.

Arbatskaya, M. and Mialon, H. M. (2010). Multi-activity contests. Economic Theory,

43(1):23–43.

Baik, K. H. (1993). Effort levels in contests: The public-good prize case. Economics

Letters, 41(4):363–367.

Baik, K. H. (2008). Contests with group-specific public-good prizes. Social Choice and

Welfare, 30(1):103–117.

Baik, K. H., Kim, I.-G., and Na, S. (2001). Bidding for a group-specific public-good

prize. Journal of Public Economics, 82(3):415–429.

94



References

Baik, K. H. and Lee, S. (1997). Collective rent seeking with endogenous group sizes.

European Journal of Political Economy, 13(1):121–130.

Baik, K. H. and Lee, S. (2001). Strategic groups and rent dissipation. Economic

Inquiry, 39(4):672–684.

Baik, K. H. and Shogren, J. F. (1995a). Competitive-share group formation in rent-

seeking contests. Public Choice, 83(1-2):113–126.

Baik, K. H. and Shogren, J. F. (1995b). Contests with spying. European Journal of

Political Economy, 11(3):441–451.

Barrachina, A., Tauman, Y., and Urbano, A. (2014). Entry and espionage with noisy

signals. Games and Economic Behavior, 83:127–146.

Barrachina, A., Tauman, Y., and Urbano, A. (2021). Entry with two correlated signals:

the case of industrial espionage and its positive competitive effects. International

Journal of Game Theory, 50(1):241–278.

Baumol, W. J. (1992). Innovation and strategic sabotage as a feedback process. Japan

and the World Economy, 4(4):275–290.

Baye, M. R. and Hoppe, H. C. (2003). The strategic equivalence of rent-seeking,

innovation, and patent-race games. Games and Economic Behavior, 44(2):217–226.

Baye, M. R., Kovenock, D., and De Vries, C. G. (1993). Rigging the lobbying process:

an application of the all-pay auction. American Economic Review, 83(1):289–294.

Baye, M. R., Kovenock, D., and De Vries, C. G. (1994). The solution to the tullock

rent-seeking game when r >2: Mixed-strategy equilibria and mean dissipation rates.

Public Choice, 81(3):363–380.

Baye, M. R., Kovenock, D., and De Vries, C. G. (1996). The all-pay auction with

complete information. Economic Theory, 8(2):291–305.

Baye, M. R., Kovenock, D., and De Vries, C. G. (2012). Contests with rank-order

spillovers. Economic Theory, 51(2):315–350.

Berentsen, A. (2002). The economics of doping. European Journal of Political Econ-

omy, 18(1):109–127.

95



References

Bergstrom, T., Blume, L., and Varian, H. (1986). On the private provision of public

goods. Journal of Public Economics, 29(1):25–49.

Bessen, J. and Maskin, E. (2009). Sequential innovation, patents, and imitation. The

RAND Journal of Economics, 40(4):611–635.

Billand, P., Bravard, C., Chakrabarti, S., and Sarangi, S. (2010). Spying in multi-

market oligopolies.

Blavatskyy, P. R. (2010). Contest success function with the possibility of a draw:

Axiomatization. Journal of Mathematical Economics, 46(2):267–276.

Bloch, F. (2012). Endogenous formation of alliances in conflicts. Oxford Handbook of

the Economics of Peace and Conflict. Oxford University Press, New York.

Bloch, F., Sánchez-Pagés, S., and Soubeyran, R. (2006). When does universal peace

prevail? secession and group formation in conflict. Economics of Governance,

7(1):3–29.

Bolle, F. (1996). Contests with spying: A comment. European Journal of Political

Economy, 12(4):729–734.

Bozbay, I. and Vesperoni, A. (2018). A contest success function for networks. Journal

of Economic Behavior & Organization, 150:404–422.

Chaturvedi, A. (2005). Rigging elections with violence. Public Choice, 125(1-2):189–

202.

Che, Y.-K. and Gale, I. (2003). Optimal design of research contests. American Eco-

nomic Review, 93(3):646–671.

Chen, K.-P. (2003). Sabotage in promotion tournaments. Journal of Law, Economics,

and Organization, 19(1):119–140.

Chen, P.-L. et al. (2016). Cross-country economic espionage and investment in research

and development. International Journal of Economics and Finance, 8(4):146–155.

Chen, Z. C. (2019). Spying in contests. Available at SSRN 2874296.

Cherry, T. L. and Cotten, S. J. (2011). Sleeping with the enemy: The economic cost

of internal environmental conflicts. Economic Inquiry, 49(2):530–539.

96



References

Choi, J. P., Chowdhury, S. M., and Kim, J. (2016). Group contests with internal

conflict and power asymmetry. The Scandinavian Journal of Economics, 118(4):816–

840.
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Kräkel, M. (2007). Doping and cheating in contest-like situations. European Journal

of Political Economy, 23(4):988–1006.

Krishna, V. and Morgan, J. (1997). An analysis of the war of attrition and the all-pay

auction. Journal of Economic Theory, 72(2):343–362.

Lazear, E. P. (1989). Pay equality and industrial politics. Journal of political economy,

97(3):561–580.

Lee, D. (2012). Weakest-link contests with group-specific public good prizes. European

Journal of Political Economy, 28(2):238–248.

Lee, D. (2015). Group contests and technologies. Economics Bulletin, 35(4):2427–2438.

Lee, T. and Wilde, L. L. (1980). Market structure and innovation: A reformulation.

The Quarterly Journal of Economics, 94(2):429–436.

Loury, G. C. (1979). Market structure and innovation. The Quarterly Journal of

Economics, 93(3):395–410.

Marion, J. (2015). Sourcing from the enemy: Horizontal subcontracting in highway

procurement. The Journal of Industrial Economics, 63(1):100–128.

Marjit, S. and Yang, L. (2015). Does intellectual property right promote innovations

when pirates are innovators? International Review of Economics & Finance, 37:203–

207.

Matsui, A. (1989). Information leakage forces cooperation. Games and Economic

Behavior, 1(1):94–115.

Millner, E. L. and Pratt, M. D. (1989). An experimental investigation of efficient

rent-seeking. Public Choice, 62(2):139–151.

Millner, E. L. and Pratt, M. D. (1991). Risk aversion and rent-seeking: An extension

and some experimental evidence. Public Choice, 69(1):81–92.

102



References

Moldovanu, B. and Sela, A. (2001). The optimal allocation of prizes in contests.

American Economic Review, 91(3):542–558.

Moldovanu, B. and Sela, A. (2006). Contest architecture. Journal of Economic Theory,

126(1):70–96.

Moretti, L. and Valbonesi, P. (2015). Firms’ qualifications and subcontracting in

public procurement: an empirical investigation. The Journal of Law, Economics,

and Organization, 31(3):568–598.

Münster, J. (2007a). Selection tournaments, sabotage, and participation. Journal of

Economics & Management Strategy, 16(4):943–970.

Münster, J. (2007b). Simultaneous inter-and intra-group conflicts. Economic Theory,

32(2):333–352.

Münster, J. (2009). Group contest success functions. Economic Theory, 41(2):345–357.

Nalbantian, H. R. and Schotter, A. (1997). Productivity under group incentives: An

experimental study. American Economic Review, 87(3):314–341.

Nitzan, S. (1991a). Collective rent dissipation. The Economic Journal, 101(409):1522–

1534.

Nitzan, S. (1991b). Rent-seeking with non-identical sharing rules. Public Choice,

71(1-2):43–50.

Nitzan, S. and Ueda, K. (2009). Collective contests for commons and club goods.

Journal of Public Economics, 93(1-2):48–55.

Nitzan, S. and Ueda, K. (2011). Prize sharing in collective contests. European Eco-

nomic Review, 55(5):678–687.

Noh, S. J. (2002). Resource distribution and stable alliances with endogenous sharing

rules. European Journal of Political Economy, 18(1):129–151.

Nti, K. O. (1998). Effort and performance in group contests. European Journal of

Political Economy, 14(4):769–781.

Ogburn, W. F. and Thomas, D. (1922). Are inventions inevitable? a note on social

evolution. Political Science Quarterly, 37(1):83–98.

103



References

Olson, M. (1965). The logic of collective action. Harvard University Press.
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