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Summary

The validity of the results of statistical models depends on the quality of the underlying
data. This cumulative thesis addresses problems associated with limited data quality in
response variables of statistical models due to missing information or misclassification.
Based on two applied research projects it is shown how ignoring limited data quality can
bias the results of statistical analyses and how advanced and newly developed statistical
models can be used to draw adequate inference from the data.

The first part of the thesis addresses the problem of response misclassification in
data on bilateral diseases, i.e., diseases that may affect either one, or two entities of a
paired organ. In such data, misclassification in the person-specific disease status may
result from ignoring missing information in one of the two entities or due to entity-specific
misclassification. Ignoring such misclassification leads to biased parameter estimates in
regression models, and it is shown how correct results can be obtained through an adequate
maximum likelihood analysis using internal validation data. The research was motivated by
work in the field of genetic epidemiology, where information about the occurrence of an eye
disease in a large study was available only through an error-prone, automated classification
of retinal images. When investigating the association of genetic variants with the disease, it
is important to account for the existing misclassification in the disease status, as a varying
performance of the classification algorithm may be associated with factors determined by
some genetic variants studied, leading to potentially large biases.

The second part of the thesis focuses on infectious disease surveillance and research
projects on SARS-CoV-2 surveillance data. To gain situational awareness on the current
state of an infectious disease outbreak, it is important to track the epidemic curve, i.e.,
the number of new disease onsets over time. To assess the current pandemic situation, it
is common to interpret the time series of newly reported cases. However, due to reporting
delays between disease onset and reporting by the health authorities, the two time series
can differ substantially. In this thesis, it is shown, how the epidemic curve can be estimated
from available surveillance data in near real-time based on a Bayesian hierarchical model.
In addition, work is presented on adjusting case reporting numbers for misclassification in
person-specific disease diagnostics and consequences of such misclassification for assessing
current dynamics of an infectious disease outbreak.
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Zusammenfassung

Eine eingeschränkte Datenqualität kann Ergebnisse statistischer Auswertungen stark be-
einflussen und zu fehlerhaften Schlüssen führen. In dieser kumulativen Dissertation werden
solche Probleme anhand zweier angewandter Forschungsprojekte aufgezeigt und fortge-
schrittene statistische Modelle entwickelt, um trotz eingeschränkter Datenqualität adäqua-
te Schlüsse aus den vorhandenen Daten ziehen zu können.

Der erste Teil der Arbeit handelt von Fehlklassifikation in Daten zu bilateralen Krank-
heiten, das heißt Krankheiten, die entweder eine oder beide Ausführungen eines paarwei-
se angelegten Organs betreffen können. In solchen Daten kann der personenspezifische
Krankheitsstatus sowohl durch das Ignorieren fehlender Informationen in einer der beiden
Ausführungen, als auch aufgrund von Fehlklassifikation des Krankheitsstatus der einzelnen
Ausführungen, fehlerbehaftet sein. Das Ignorieren der Fehler führt zu verzerrten Parame-
terschätzungen in Regressionsmodellen. Es wird gezeigt, wie unverzerrte Ergebnisse durch
eine adäquate Maximum-Likelihood-Analyse unter Verwendung interner Validierungsdaten
erzielt werden können. Die Forschung wurde im Rahmen eines Projektes auf dem Gebiet der
genetischen Epidemiologie durchgeführt. In der Studie waren Daten zum Auftreten einer
Augenkrankheit nur durch eine fehleranfällige, automatisierte Klassifikation von Fundusbil-
dern verfügbar. Bei der Untersuchung des Zusammenhangs von genetischen Varianten mit
der Krankheit sollte die Fehlklassifikation im Krankheitsstatus berücksichtigt werden, da
eine variierende Prognosegüte des Klassifikationsalgorithmus mit untersuchten genetischen
Varianten in Zusammenhang stehen kann. Dies kann sonst zu substantieller Verzerrung
der Schätzung des Zusammenhangs führen.

Der zweite Teil der Arbeit behandelt die Analyse von Meldedaten zur Überwachung
von Infektionskrankheiten am Beispiel der COVID-19 Pandemie. Die sogenannte epidemi-
sche Kurve, die Zeitreihe der Anzahl an Infizierten im Bezug auf den Tag ihres Krank-
heitsbeginns, ist ein geeigneter Indikator zur Beschreibung der Ausbreitungsdynamik ei-
ner Infektionskrankheit. Aufgrund von Verzögerungen zwischen Krankheitsbeginn und der
Meldung eines Falles durch die Gesundheitsbehörden, entspricht die häufig betrachtete
Zeitreihe neu gemeldeter Fälle nicht der epidemischen Kurve und beide Zeitreihen können
erheblich voneinander abweichen. In dieser Arbeit wird gezeigt, wie die epidemische Kurve
aus verfügbaren Meldedaten mittels eines Bayesianischen hierarchischen Modells in Echt-
zeit geschätzt werden kann. Außerdem wird untersucht, wie groß eine mögliche Verzerrung
der Meldedaten durch Fehler in den diagnostischen Tests einzelner Personen sein kann und
wie diese Fehler bei der Einschätzung der aktuellen Lage berücksichtigt werden können.
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Chapter 1

Introduction

1.1 Overview

This thesis addresses the analysis of data with limited quality due to constraining factors
in the data collection process. These factors may include, e.g., finite time and financial
resources, high time pressure in data collection and provision, and general limitations in
the methods used to measure and collect data.

The cumulative thesis consists out of four articles that illustrate the topic in two
different application areas: first, response misclassification in logistic regression for bilat-
eral disease data and, second, infectious disease modeling and the real-time analysis of
surveillance data where important information is partly missing and the available data is
potentially error-prone. The contributions of those articles were motivated by applied re-
search projects in the field of genetic epidemiology, more precisely, genome-wide association
studies, as well as surveillance of the acute COVID-19 pandemic.

This chapter is a preface to the contributing articles in this thesis. It introduces the
scientific context of the articles and presents statistical concepts and models that form the
basis for the newly developed methods. Section 1.2 reviews basic concepts from the field of
statistical research on measurement error and misclassification, with a focus on response
misclassification in Section 1.2.1 and an introduction to misclassification in bilateral disease
data in Section 1.2.2. These topics are of direct relevance to the contributing articles in
Chapters 2, 3, and 5. Section 1.3 provides an introduction to genome-wide association
studies, the application area of the article in Chapter 3. Section 1.4 introduces key concepts
from the area of infectious disease surveillance, the topic of the contributing articles in
Chapter 4 and 5.



2 1. Introduction

1.2 Measurement error and misclassification

The central task of statistical data analysis is to investigate properties (of the distribution)
of a specific random variable Y , or to understand the relationship between a dependent
outcome or response variable Y and one or several explanatory variables (covariates) X
by means of statistical models. This is done based on multiple observations of these
variables (data) collected from different observational units. The statistical research field
of measurement error and misclassification is concerned with what happens when the actual
variables of interest, Y or X, cannot be measured precisely. Instead, only data on error-
prone variables Y ∗ and/or X∗ could be collected. The problem of measurement errors and
inaccuracies is manifold and occurs in almost any research area where statistical methods
are used.

That measurement error or, more generally, low-quality data can cause problems for
statistical analyses and the interpretation of their results is intuitively straightforward and
has also been formally demonstrated for a wide variety of analytical methods and model
classes. It is established that the consequences of ignoring measurement error can be very
different depending on the specific situation, the magnitude and type of the errors and
which variables are affected.

In order to characterize a certain measurement error scenario, it is therefore necessary
in a first step to distinguish which variable(s) of the respective analysis are affected by
measurement error. In a regression context, this can be either the response Y ∗, and/or one
or more covariates X∗, further covariates Z can be assumed to be measured without error.

In a second step, it is necessary to specify how the existing measurement error can be
adequately described based on a measurement error model. This measurement error model
is usually expressed on the basis of assumptions about the (conditional) distribution of
the measured variable and the true (unobserved) variable. For a covariate X measured
with error, this can, for example, be done based on an assumption regarding the condi-
tional probability density function of the error-prone variable, given the truth, dX∗|X(x∗|x).
A special case is the classical measurement error model for continuous random variables,
where the observed variable is assumed to equal X∗ = X+U , where U is a random variable
independent of X with expectation zero and fixed variance. If U is assumed to be nor-
mally distributed with variance σ2

U , this is equivalent to assuming that X∗|X ∼ N(X, σ2
U).

In other situations it might be more reasonable to assume that E(X∗) corresponds to a
linear function of X, or that the classical error model holds for a transformation of X∗,
e.g., log(X∗) = log(X) +U , implying a multiplicative error structure on the original scale.
In some cases it is also meaningful to characterize the measurement error based on the
conditional distribution dX|X∗(x|x∗). This can be adequate when X∗ is an observed aver-
age or a predicted value and the true X corresponds to an observation-specific realization
that exhibits additional variation around X∗. This type of error is called Berkson error
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(Berkson, 1950). The above considerations can also be applied to categorical variables
by utilizing categorical distributions for dX∗|X(x∗|x), where the measurement error model
can, for example, be specified by generalized linear models for the respective class prob-
abilities of the conditional distribution (cf. Section 1.2.1). Note that measurement error
in binary/categorical variables is often referred to as misclassification. The characteriza-
tion of measurement error or misclassification in outcome variables Y ∗ can be done in an
analogous way, e.g., using the conditional density dY ∗|Y (y∗|y).

When analyzing the association of several variables, for example, in multiple regres-
sion, it is important to distinguish between non-differential and differential measurement
error. The mathematical definition of these terms depends on whether the outcome variable
or covariates of the model suffer from measurement error. Suppose there are data available
on an outcome Y , an error-prone covariate X∗, and additional error-free covariates Z. In
such a situation, one speaks of non-differential error with respect to the outcome Y when
the conditional distribution of the outcome, given all (partly unobserved) variables does
not depend on the error-prone variable X∗, that is, dY |X∗,X,Z(y|x∗, x, z) = dY |X,Z(y|x, z).
If X∗ contains additional information about Y , one speaks of differential error with re-
spect to Y . Alternatively, non-differential error can be expressed based on the conditional
distribution of X∗: the error is non-differential if dX∗|X,Z,Y (x∗|x, z, y) = dX∗|X,Z(x∗|x, z).
That is, if the conditional distribution of X∗ is independent of the outcome Y (Keogh
et al., 2020). A classical example of differential error is recall bias in case-control studies,
when, e.g., cases are more aware of certain exposures than controls. For outcomes, one
can define differential measurement error with respect to the covariate X as the scenario
where dY ∗|Y,X,Z(y∗|y, x, z) 6= dY ∗|Y,Z(y∗|y, z). The distinction between differential and non-
differential error is important, as ignoring the existence of differential error yields often
a bigger bias for parameter estimates and is more difficult to account for. An example
is given in Section 1.2.1 for the case of logistic regression with misclassification in the
response.

The general problem of ignoring the existence of measurement error during statistical
analyses is that the conditional distributions that are approximated by a statistical model,
for example, the conditional distribution of the response given covariates dY |X(y|x) in a
generalized linear model, do not necessarily correspond to the distribution of the observed
data dY |X∗(y|x∗), dY ∗|X(y∗|x) or dY ∗|X∗(y∗|x∗). Ignoring this and estimating the standard
regression model based on observed, error-prone data can yield biased estimates that do not
adequately describe the association of the true outcome Y and covariates X. The type and
extent of bias depends on the actual error-structure in the data (the true measurement error
model) and can be investigated based on theoretical considerations or simulation studies.
It can range from (almost) no consequences, through substantially increased uncertainty
in unbiased estimates, to quantitatively and qualitatively strongly biased results.

This has led to the development of a large number of different analytical approaches
that can be used to adjust for the existence of measurement error and to eliminate bias.
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These methods are based either on prior knowledge and assumptions about the structure
of the measurement error or on additional information from data on the performance of
the measurement instruments. The latter can stem from ancillary or validation studies
with, for example, different measurement instruments applied to the observational units or
repeated measurements per observational unit using the error-prone instrument (Carroll
et al. (2006, Ch. 2.3.); Keogh et al. (2020)).

The existing literature on measurement error and ways to account for it in applied
analyses is extensive and focuses, partly, on very specific situations. There are, however,
also several books and articles covering a broad range of basic and advanced methods
and scenarios. Classic references are, for example, Carroll et al. (2006) covering a wide
range of topics on measurement error in (non-linear) regression models, also including
measurement error in the response of statistical models; Gustafson (2003) on Bayesian
methods for measurement error in continuous and categorical covariates; and Grace (2016)
covering methods for, i.a., survival data, longitudinal data, multi-state models, case-control
studies and response measurement error. Buzas et al. (2005) provide an overview over
measurement error in epidemiology, and the two-part article series of Keogh et al. (2020)
and Shaw et al. (2020) provides guidance on measurement error and misclassification on a
wide range of topics in observational studies in epidemiology.

The following section provides more details on misclassification of categorical and
binary response variables, as this topic is of direct relevance to the contributing articles of
this thesis.

1.2.1 Misclassification in categorical and binary response vari-
ables

Let Y be a categorical random variable with K classes and pY be the K-dimensional vector
of class probabilities whose entries sum to one. Let Y ∗ be an observed, error-prone version
of Y with L classes, in most cases L equals K. Misclassification in Y ∗ can be expressed
based on the (mis-)classification probabilities P (Y ∗ = l|Y = k) = πl,k, l = 1, . . . , L, k =
1, . . . , K. For binary variables Y ∗ and Y with l, k ∈ {0, 1}, the classification probabilities
π1,1 and π0,0 are often referred to as sensitivity and specificity. They fully characterize the
misclassification model, as π0,1 = 1 − π1,1 and π1,0 = 1 − π0,0. In such a case, the class
probabilities of Y ∗ are given, based on the law of total probability, as

pY ∗ = Π× pY , (1.1)

where Π is the L×K-dimensional matrix with entries πl,k in row l and column k.
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Estimation of class probabilities

Equation (1.1) shows directly that the class probabilities pY ∗ and pY are only equal if L = K
and Π = I, that is, if no misclassification is present. Consequently, any estimator of class
probabilities based on error-prone data on Y ∗, e.g., the maximum likelihood estimator
based on relative class frequencies p̂Y ∗ , is biased for the class probabilities pY of the true
Y . On the other hand, equation (1.1) also indicates that an estimate of p̂Y can be obtained
from p̂Y ∗ based on assumed or known misclassification probabilities Π as

p̂Y = Π−1 × p̂Y ∗ . (1.2)

For the binary case, this corresponds to the results of Rogan and Gladen (1978), who
also show that such an estimate of the true classification probabilities p̂Y is asymptotically
unbiased if the classification probabilities in Π̂ are estimated as binomial fractions from
independent samples. Obviously, the misclassification adjustment from equation (1.2) is
valid only if Π adequately describes the misclassification process in the current problem. In
case of classification probabilities estimated from external data, this is only true if the mis-
classification process of the analyzed and the independent (external) sample are the same.
In the contributing article in Chapter 5 of this thesis, we use a similar adjustment for
deriving misclassification-adjusted aggregated SARS-CoV-2 case numbers using assump-
tions regarding the sensitivity and specificity of person-specific SARS-CoV-2 examinations
based on PCR tests.

Response misclassification in logistic regression

In logistic regression, a binary response variable Y is modeled based on a set of covariates
X by assuming that the observation-specific response, Yi, i = 1, . . . , n, is, conditional on
the covariates, Bernoulli distributed with success probability πi, Yi|xi ∼ B(πi). Thereby,
πi is modeled based on πi = H(x′iβ), where xi is the observation-specific covariate vector
with first entry 1, and β is the vector of covariate effects including an intercept term. H(·)
is the logistic response function H(·) = 1/(1 + exp(−·)). In the following, it is assumed
that the covariates X are observed error-free.

Consider now that the true outcome Y was not observed but instead an error-prone
version Y ∗. The misclassification model is expressed in terms of the sensitivity, P (Y ∗i =
1|Yi = 1, xi) = π1,i, and specificity, P (Y ∗i = 0|Yi = 0, xi) = π0,i, that might vary between
observations i in association with the covariates X. The conditional probability of P (Y ∗i =
1|xi) = π∗i can then be derived as

π∗i =
∑

y=0,1
P (Y ∗i = 1|xi, Yi = y)P (Yi = y|xi)

= (1− π0i) + (π1i + π0i − 1)H(x′iβ) = H∗(x′iβ). (1.3)
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This result is investigated in detail by Neuhaus (1999). In short, it implies that for fixed
classification probabilities π1,i = π1 > 0.5 and π0,i = π0 > 0.5 (i.e., for non-differential mis-
classification), the observed Y ∗ still follows a generalized linear model, but with a different
response function compared to standard logistic regression for the error-free Y . Applying
standard logistic regression to the observed Y ∗ corresponds to estimating a misspecified
model and leads to biased parameter estimates that do not describe the association be-
tween the true Y and covariates X, but are on average attenuated. In case of differential
misclassification, i.e., with sensitivity and specificity varying in association with the covari-
ates, the situation becomes more complex. The link function H∗−1(π∗i ) is not necessarily
monotone anymore (Neuhaus, 1999; Grace, 2016, Ch. 8.2.1.) and, in this case, Y ∗ does not
follow a generalized linear model. This can yield bias in any direction for the parameter
estimates β̂.

For fixed and known classification probabilities, equation (1.3) can be used as response
function for setting up the Bernoulli likelihood of a generalized linear model. Given the
true classification probabilities, this yields unbiased estimates of β̂. As a consequence of
the misclassification, however, the estimator is less efficient compared to logistic regression
for the true Y . Such an approach can also be used to perform sensitivity analyses for
different assumptions regarding π1 and π0. When the sensitivity and specificity are un-
known, the parameters of the model (1.3) are only weakly identifiable, even in the case of
non-differential misclassification. This is the fundamental problem of response misclassifi-
cation in (logistic) regression when no further information on the misclassification process
is available (see also Carroll et al., 2006, Ch. 15.3.2.).

When external information on the classification probabilities is available, e.g., based
on expert knowledge on the performance of the measurement instrument or based on esti-
mates from external validation data, it can be incorporated into the analysis by specifying
corresponding priors for π1,i and π0,i and perform a Bayesian analysis (e.g., Paulino et al.,
2003) or by plugging in the (point) estimates in a pseudolikelihood approach (Carroll et al.,
2006, Ch. 15.3.2.) ignoring associated uncertainty.

When internal validation data is available (measurements of a gold-standard Y and
the error-prone Y ∗) for a (randomly selected) subset of nv out of the n observations, it
is possible to set up a full likelihood model to simultaneously estimate parameters of the
logistic regression model for the true outcome and the misclassification model (Lyles et al.
(2011); Carroll et al. (2006, Ch. 15.4.); Grace (2016, Ch. 8.3.)). For observations from the
validation data, the joint conditional density of the true and the error-prone response can
be factorized into fY ∗,Y |X(y∗, y|x; β, γ) = fY ∗|Y,X(y∗|y, x; γ)fY |X(y|x; β). Here, fY |X(y|x; β)
is the (model-based) density of the true outcome given the covariates and (logistic regres-
sion) parameters β. The density fY ∗|Y,X(y∗|y, x; γ) corresponds to the measurement error
(misclassification) model that is governed by the parameters γ. It can be specified to
also account for differential misclassification. For observations from the main study data
(without information on Y ), the conditional density of the error-prone response is given in
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terms of the true outcome model and the misclassification model by summing over the un-
observed true outcome, fY ∗|X(y∗|x; β, γ) = ∑

y=1,2 fY ∗|Y,X(y∗|Y = y, x; γ)fY |X(Y = y|x; β).
This yields the overall likelihood

L(β, γ) =
nv∏

i=1
fY ∗,Y |X(y∗i , yi|xi; β, γ)×

n−nv∏

j=1
fY ∗|X(y∗j |xj; β, γ)

=
nv∏

i=1
fY ∗|Y,X(y∗i |yi, xi; γ)fY |X(yi|xi; β)×

n−nv∏

j=1

{ ∑

y=1,2
fY ∗|Y,X(y∗j |Yj = y, xj; γ)fY |X(Yj = y|xi; β)

}
. (1.4)

Maximization of the likelihood with respect to the parameters (β, γ) gives consistent esti-
mators of the parameters of the true response model and the misclassification model. A
correct specification of the misclassification model is, however, crucial for valid results. In
the case discussed here, the misclassification model corresponds to modeling the sensitivity
and specificity. They might either be assumed to be constant (non-differential misclassi-
fication), or can be modeled parametrically based on (a subset of) the covariates X, for
example, using the logistic response function.

This approach to adjust for response misclassification in logistic regression falls into the
broader class of likelihood-based correction methods (Grace (2016, Ch. 2.5.1., 8.3., 8.4.),
Shaw et al. (2020, Sec. 2.1.), Carroll et al. (2006, Ch. 8., 15.4)). This framework can also
be used in different measurement error problems, for example, in the case of measurement
error of continuous or discrete covariates, continuous outcomes, or measurement error in
outcomes as well as covariates. The general approach of factorizing the (conditional)
density of the observed data into a model for the (partly unobserved) error-free variables
and a measurement error model and integrating over the unobserved true variables remains
the same. If, for example, there is data on a true outcome Y , an error-prone covariate X∗,
and error-free covariates Z, one can proceed with rewriting the likelihood of the observed
data

fY,X∗|Z(y, x∗|z; θ) =
∫
fY,X∗|Z,X(y, x∗|z,X = x; θ)× fX|Z(X = x|z; θ) dx

=
∫
fY |Z,X,X∗(y|z,X = x, x∗; β)× fX∗|Z,X(x∗|z,X = x; γ)×
fX|Z(X = x|z;α) dx

=
∫
fY |Z,X(y|z,X = x; β)× fX∗|Z,X(x∗|z,X = x; γ)×
fX|Z(X = x|z;α) dx, (1.5)

where the last equality holds in case of non-differential measurement error. The likelihood
of an observed data point is therefore factorized in the true data model, a measurement
error model, and a model of the true (unobserved) covariate, with corresponding parameters
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β, γ, and α, respectively. It is based on the integration over the (conditional) density of the
unobserved true covariate. Other measurement error model situations can be tackled in a
similar way, correct specification of the different model components is, however, crucial and
hard to evaluate. Optimization of the resulting likelihood (including numerical integration)
can be challenging and identifiability of the model parameters is questionable without
additional information, for example, from validation data.

The above described situation of response misclassification in logistic regression with
observed true covariates X has some central advantages: firstly, integrating over the true
response boils down to a summation over the two potential values and, secondly, distribu-
tional assumptions for a binary/discrete variable are straight-forward to specify based on
the respective class probabilities.

In the contributing articles of Chapter 2 and 3 of this thesis, we present an approach for
analyzing error-prone response data on bilateral diseases. It is based on similar considera-
tions as the likelihood-based correction for logistic regression with response misclassification
and the following section provides an introduction to the developed model.

1.2.2 Bilateral disease data and response misclassification

The work presented in Chapters 2 and 3 of this thesis was motivated by data on age-related
macular degeneration (AMD). AMD is an eye disorder that affects the macular region of
the retina, causing progressive loss of central vision and is one of the leading causes of
severe irreversible vision loss worldwide (Mitchell et al., 2018). The clinical endpoint of
the disease is late AMD, which can appear in two different forms (neovascular or atrophic).
Late AMD is typically preceded by early AMD stages that are clinically asymptomatic and
determined by yellowish deposits of extracellular material (drusen) and/or irregularities of
the retinal pigment epithelium (hyper-/hypopigmentation). The standard of AMD diag-
nosis in epidemiological studies is to collect color fundus images of the participants’ eyes,
which are then manually classified as a disease stage according to standardized protocols.
There are various classification systems that differ in their definition of early AMD stages
and it is subject of ongoing research which definition of early disease stages predicts pro-
gression towards late AMD best (Klein et al., 2014; Brandl et al., 2018; Thee et al., 2020).
All stages of AMD can appear in a single or both eyes of a person; it is also possible that
both forms of late AMD occur in a single eye. Therefore, AMD is an example of a bilateral
disease that can affect neither, one, or both entities of a paired organ.

When interest lies in the investigation of person-specific risk factors for bilateral dis-
eases, a person-specific disease status is often defined as the disease status of the worse
entity. In case of binary entity-specific information (each entity is or is not affected), this
corresponds to disease occurrence in at least one entity of the organ. Such a worse-entity
status can then be analyzed with regression models for binary or categorical outcomes.
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In Chapter 2 and 3, we analyze binary bilateral disease data on the occurrence of
worse-eye any AMD. Let Z1,i, Z2,i ∈ {0, 1} be the true disease status of each of the two
eyes of person i = 1, . . . , n, e.g., Zl,i = 1 indicates than an eye is affected by AMD and
Zl,i = 0 indicates that an eye is not affected by AMD; l ∈ {1, 2} for the two eyes of a
person. Note that the notation Z was used in Section 1.2 for error-free covariates as it
is common in many publications on measurement error. To remain consistent with the
notations in the publications from Chapters 2 and 3, we now use Zl as notation for the
entity-specific disease indicators that define the overall outcome. Taken together, Z1,i and
Z2,i define four different patterns of disease occurrence (0, 0), (0, 1), (1, 0), and (1, 1). The
worse-entity disease status of participant i is defined as Yi := max(Z1i, Z2i), which means
that the participant has the disease (Yi = 1) if any or both entities are affected, and no
disease (Yi = 0) otherwise.

Using logistic regression to model the worse-entity outcome corresponds to the as-
sumption that Yi|xi ∼ B(πi), where the success probability πi of the Bernoulli distri-
bution is modeled based on a a linear predictor and the logistic response function as
πi = 1/(1 + exp(−x′iβ)) = H(ηi) and consequently P (Yi = 1|xi) = πi. With respect to the
different pattern of disease occurrence, it follows that P (Z1,i = 0, Z2,i = 0|xi) = P (Yi =
0|xi) = 1 − πi. Furthermore, one can derive P (Z1,i = 1, Z2,i = 1|xi) = P (Z1,i = 1, Z2,i =
1|xi, Yi = 1)× P (Yi = 1|xi) = δi × πi, where δi is the conditional probability of disease in
both entities, given disease in at least one entity. Lastly, assuming symmetric probabilities
for disease in one but not the other entity gives

P (·, ·|xi) Z2,i = 1 Z2,i = 0
Z1,i = 1 δi × πi 1−δi

2 × πi
Z1,i = 0 1−δi

2 × πi 1− πi
(1.6)

as the conditional probability mass function for all potential disease pattern.

Estimation and inference for the regression parameters β can be done based on stan-
dard likelihood inference for logistic regression using the observed worse-entity outcomes
yi or by setting up the likelihood based on the entity-specific outcome observations

L(δi, β)i = {δiH(ηi)}z1,iz2,i ×
{1− δi

2 H(ηi)
}z1,i(1−z2,i)+(1−z1,i)z2,i

×
{

1−H(ηi)
}(1−z1,i)(1−z2,i)

. (1.7)

Both approaches are equivalent for the estimation of β̂, and consideration of δi is irrelevant
when data on Z1 and Z2 (and consequently the worse-entity outcome Y ) is available for all
observational units. The latter formulation of the likelihood becomes, however, relevant
when accounting for missing inforation in single entity outcomes (see below).

The true outcome Y in bilateral logistic regression can be affected by misclassification
out of two different reasons. First, due to ignoring missing disease information in one
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of two entities and utilizing the disease classification of a single entity as person-specific
response. Second, due to misclassified observations for the single entities. Both problems
can be adressed by setting up an an adequate likelihood for the estimation of associations
of exposures/risk factors with disease.

In many epidemiological or clinical studies on bilateral diseases, entity-specific disease
information is missing for one of two entities in a subset of study participants. On the
example of AMD, most studies have a certain fraction of study participants with missing
AMD diagnosis in one of two eyes due to fundus images of inferior quality that can not be
classified with respect to their AMD status, competing retinal diseases hampering AMD
diagnosis, or missing images. This missing data problem is often ignored and the single
observed entity, z1i or z2i is used as outcome instead of the actual worse-entity yi =
max(z1i, z2i). With this analysis strategy, the binary response Y is inconsistently defined
between the two subsets of participants: for individuals with missing information the
response corresponds to the occurrence of disease in a single entity, for individuals with
full data it corresponds to disease occurrence in at least one of the two entities. This missing
data problem can be treated in the context of response misclassification models. Assume
that the observed disease status for participants j with missing data in one of two entities
is an error-prone observation of the binary outcome, and that the observed disease status is
selected randomly from the two entities independent of their disease status, Y ∗j = zr,j. The
specificity of this observed outcome, P (Y ∗j = 0|Yj = 0), is one, since, by definition, both
eyes (and consequently a randomly selected eye) is unaffected from AMD in case of Yj = 0.
The sensitivity is, however, in general smaller than one, P (Y ∗j = 1|Yj = 1) = (1+δi)/2 ≤ 1,
when the probability of disease in only one entity given disease in at least one entity is
bigger than 0 (i.e., as soon as disease occurs occasionally in only one of two entities, that
is δi < 1). Note that the specificity of P (Y ∗j = 1|Yj = 1) = (1 + δi)/2 implies differential
misclassification when the probability of disease in both entities given disease in at least one
entity, δi, is associated with a risk factor of disease, or when the probability of observing
the disease status only in one of the two entities is associated with a risk factor. The
latter would imply a specificity that is on average associated with the risk factor due to
the changing probability of missing data and the specificity of one for observations without
missing data.

The missing data problem can be addressed by optimizing a likelihood that explicitly
accounts for the fact of missing information in single entities in a subset of individuals.
Based on equation (1.6) one can derive the probability of disease in a single observed entity
as P (Zr,j = 1|xj) = (1/2 + 1/2× δj)H(ηj) and the likelihood contributions of individuals
j with missing information for single entities is

L(δj, β)j =
{(1

2 + 1
2δj

)
H(ηj)

}zr,j

×
{

1−
(1

2 + 1
2δj

)
H(ηj)

}1−zr,j

. (1.8)

The full likelihood is then the product over all contributions of individuals with information
on both entities based on equation (1.7) and for the individuals with missing information
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on single entities based on equation (1.8). The former observations provide information
for modeling δj, which can, e.g., be done parametrically using the logistic function and
accounting for differential misclassification when the (conditional) probability of disease in
both entities is associated with risk factors of interest. More details and an application
example of this kind of analysis is presented in the contributing article in Chapter 2 of this
thesis. There, it is also shown based on simulation studies that the correct specification of
the model for δj is crucial for obtaining unbiased estimates of the regression parameters β.

The second source of response misclassification in bilateral logistic regression, errors
in the entity-specific classification, can be addressed in the framework of likelihood-based
correction approaches as well. Assume that instead of the true (Z1,i, Z2,i) error-prone
observations (Z∗1,i, Z∗2,i) were collected and the misclassification process is described based
on the classification probabilities

P (Z∗l,i = 1|Zl,i = 1, xi) = π1,i

P (Z∗l,i = 0|Zl,i = 0, xi) = π0,i, l ∈ {1, 2}, (1.9)

where the classification probabilities of the observed error-prone outcomes is independent,
given the true entity-specific outcomes, P (Z∗1,i = z∗1,i, Z

∗
2,i = z∗2,i|Z1,i = z1,i, Z2,i = z2,i, xi) =

P (Z∗1,i = z∗1,i|Z1,i = z1,i, xi)P (Z∗2,i = z∗2,i|Z2,i = z2,i, xi). The likelihood can then be set up
based on the conditional probabilities of the observed data

P (Z∗1,i = z∗1,i, Z
∗
2,i = z∗2,i|xi) =

∑

z1,i,z2,i∈{0,1}

{
P (Z∗1,i = z∗1,i|Z1,i = z1,i, xi)×

P (Z∗2,i = z∗2,i|Z2,i = z2,i, xi)×

P (Z1,i = z1,i, Z2,i = z2,i|xi)
}
, (1.10)

where the first two multiplicative terms correspond to the classification probabilities from
equation (1.9) (misclassification model) and the last term to the true data model as in
(1.6). If an error-prone classification is only observed for one (randomly selected) entity,
Z∗r,j = z∗r,j, the conditional probability of this outcome is given by

P (Z∗r,j = z∗r,j) =
∑

zr,j∈{0,1}
P (Z∗r,j = z∗r,j|Zr,j = zr,j, xj)P (Zr,j = zr,j|xj), (1.11)

where P (Zr,j = zr,j|xj) is defined as above. As for standard logistic regression with response
misclassification, parameters of the misclassification model can not be reliably estimated
from observed error-prone data alone, but a likelihood based on equation (1.10) can be
used for performing sensitivity analyses under different assumptions on the classification
probabilities. Such an analysis is presented and discussed in Chapter 2.

In the contributing article of Chapter 3, we examine data of a study, in which error-
prone eye-specific AMD classifications are available based on predictions of an externally
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pre-trained convolutional neural network for all participants. In addition, the fundus im-
ages of a subset of individuals were also manually classified towards their AMD status
by an experienced ophthalmologist (gold standard classification, considered as true disease
status). This corresponds to eye-specific internal validation data, and we show how such
information can be utilized to simultaneously estimate the association of risk factors with
the true worse-entity disease status (worse-eye AMD) and parameters of the misclassifica-
tion model, also accounting for differential entity-specific misclassification. Conceptually,
this is similar to the likelihood approach for logistic regression with internal validation data
as in equation (1.4), but is based on deriving the likelihood contributions for individuals
with all possible subsets of available response observations (z∗1,i, z∗2,i, z1,i, z2,i). We compare
results of misclassification adjusted and unadjusted estimates and show based on the con-
crete scenario that conclusions drawn from unadjusted analyses can be highly misleading,
especially in case of differential misclassification in the entity-specific observations.

1.3 Genome-wide association studies

Genome-wide association studies (GWAS) are a widely established and successful experi-
mental design for the identification of the association of genetic variants or regions (loci)
with human traits and diseases. Detected associations have led to the discovery of novel
biological mechanisms and GWAS findings have diverse clinical applications, as they are,
for example, increasingly used for identifying individuals at high risk of developing certain
diseases (Visscher et al., 2017; Tam et al., 2019; McCarthy et al., 2008). The formation
of international consortia and the adoption of relatively standardized evaluation routines
for GWAS have made results comparable and relatively easy to combine in meta-analyses.
This enables reproducibility of results from single studies and leads to the large sample
sizes that are necessary to continue to make progress in the discovery of genetic associations
(Evangelou and Ioannidis, 2013).

The general idea of GWAS is to investigate the association of large sets of genetic
variants (typically single-nucleotide polymorphisms, SNPs) spread over the whole genome
for association with a specific trait, e.g., a disease in a case-control setting. SNPs are
variations of single nucleotides at specific base positions in the genome that occur for a
specific fraction from a population. Therefore, they correspond to locations in the genome
where genotypes vary between individuals. At a given SNP position, each of the two
nucleotides of the base pair can take one of two alleles, thus one of three allele combinations
can occur for an individual (e.g., CC, CT, TT). The number of variants that define variation
between genomes is huge, the 1000 Genomes Project Consortium et al. (2015) characterized
genomic variation based on 88 million variants and found that a typical genome differs
from the reference human genome at 4.1 million to 5.0 million sites (depending on the
ancestry). The different variants (SNPs) are, however, not independent of each other but
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show a correlation structure (linkage disequilibrium). To describe the genome of a person,
it is therefore not necessary to measure the variants/alleles at each SNP. Instead, it is
possible to use SNP-arrays that include, e.g., 200.000 to 2 million SNPs (Visscher et al.,
2017) and exploit the linkage disequilibrium for imputing genotypes of unobserved genetic
variants.

After imputation, a GWAS is performed by screening all considered genetic variants
for association with the phenotype of interest (see below). Associated variants are identified
by a stringent significance threshold to account for multiple testing. This can lead to the
detection of associations (signals) at one or several genetic regions. When interpreting the
results, it is important to consider that detected variants are not necessarily causally asso-
ciated with the phenotype of interest and also do not clearly indicate one specific gene or
biological mechanism that leads to the detected association. Once a specific locus is identi-
fied to be associated with a phenotype, additional steps are required to identify potentially
causal variants and their target genes, including statistical, bioinformatic, functional or
evolutionary genetic analyses (Gallagher and Chen-Plotkin, 2018; Tam et al., 2019).

1.3.1 Statistical methods in GWAS

In order to estimate and test the association of the individual genetic variants with the
phenotype under investigation, different approaches can be considered in principle. For a
binary phenotype (as in our application in Chapter 3), it is now most common to estimate
the odds ratio per risk allele by logistic regression, assuming that the number of “risk
alleles” ∈ {0, 1, 2}, or the quantitative dosage ∈ [0, 2] in case of imputed variants, has
an additive, linear effect on the log odds of the response. The association can then be
tested, for example, by Wald or likelihood ratio tests. The use of logistic regression has the
advantage that estimated odds ratios can be compared between different types of studies
and further covariates can be taken into account when estimating the genetic association.
This provides one solution for the common problem of population stratification in the
analyzed GWAS data. The background of this problem is that alleles of certain genetic
variants occur with different frequencies in different population groups. If the phenotype
(e.g., the occurrence of a disease) also occurs at different frequencies in the sub-populations
(for other reasons), this leads to confounding of the estimated genetic association. By
taking into account the population structure in the data through appropriate covariates
(e.g., Price et al., 2006), it is possible to adjust for confounding. It is also possible to
include other covariates into the model, e.g., known and strong (clinical) risk factors of
disease, for example, the age of the individuals. If those risk factors are independent of the
genetic variants, inclusion is not necessary for the estimation of the genetic association but
can increase power of the statistical tests for continuous phenotypes and in some situations
(e.g., in population based studies) also for binary phenotypes (Pirinen et al., 2012).
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Due to the large number of analyzed variants, GWAS suffer from a large multiple-
testing burden (Tam et al., 2019). In practice, the multiple testing problem is usually
addressed by comparing the results of the association tests with the p-value threshold of
p ≤ 5 × 10−8. Only in this case is one speaking of a confirmed genome-wide significant
association. This is based on the assumption that approximately 1 million independent
statistical tests are performed in a (European-descent) GWAS for common variants. Un-
der this assumption, the p-value threshold of p ≤ 5× 10−8 corresponds to controlling the
family-wise error rate at ≤ 0.05. The (theoretical) appropriateness of this threshold can be
debated, for example, as the use of state-of-the-art sequencing increases genomic coverage
and increasingly rare variants are studied. As a result, more independent tests are per-
formed in a screening. On the other hand, there are also proposals to increase statistical
power based on controlling false discovery rates or incorporating prior information. Over-
all, however, the fundamental problem exists that very large sample sizes are required to
provide convincing evidence for the existence of a true association in genome-wide scans,
especially considering the commonly small effect sizes of single variants. Especially for
phenotypes that are difficult and complex to collect, this can lead to high costs and be a
hurdle for the successful implementation of GWAS.

1.3.2 Measurement error in GWAS

There exists relatively little work on consequences of measurement error and misclassi-
fication for GWAS results or applied work on adjusting for measurement errors in such
analyses. However, the estimation of association between the phenotypes (response) and
genetic variants (covariates) is often based on standard models, e.g., linear regression for
quantitative phenotypes and logistic regression for binary phenotypes. Therefore, results
on the consequences of measurement error for parameter estimates from these models are
in general transferable. Since GWAS are fundamentally about discovering associations
between a phenotype and genetic regions, and not about perfectly quantifying the asso-
ciation/effects of individual variants, it can be argued that some bias in the association
estimates is in general acceptable and unavoidable. However, especially claiming the exis-
tence of false positive associations would be problematic, as this can also lead to a waste
of resources in follow-up studies. The reduction of statistical power due to the existence
of measurement error is, of course, a fundamental problem and should serve as motivation
for high-quality and consistent measurement.

With respect to the genetic variants, data are generally assumed to be rather ac-
curately measured. Genotyping error based on SNP microarrays occurs with rather low
frequencies (Hong et al., 2012) and can in most cases assumed to be non-differential with
respect to the phenotype. Such an error reduces statistical power for detecting associations,
but effects are expected to be rather small and is in not necessary to explicitly account for
the error during analysis (Heid et al., 2008). Differential measurement error might, how-
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ever, occur in case-control studies where genotype data on cases and controls stem from
different data sources and can yield increased type-1 error probabilities (Moskvina et al.,
2006). In the context of single studies and meta-analyses for GWAS data, standardized
protocols for quality control of the genetic data have been proposed (Anderson et al., 2010;
Winkler et al., 2014). These are widely used in practice to prevent erroneous conclusions
due to limited quality of the collected and imputed genetic data.

Regarding measurement error in the phenotype variable, it is established that a lack
of precision in measurement, or misclassification, can affect the association estimates, re-
ducing statistical power in case of non-differential error (Barendse, 2011; Liao et al., 2014;
Edwards et al., 2005; Rekaya et al., 2016). One consequence is that between study hetero-
geneity in the phenotype measurements/definitions can make it difficult to compare their
results. This includes the problem that locations of detected associations (lead variants)
may shift between studies due to inconsistent or erroneous measurement (Barendse, 2011).
In Chapter 3 of this thesis, we illustrate the problem of phenotype misclassification in
a GWAS for age-related macular degeneration, a phenotype that is expensive to collect
because fundus images have to be manually classified by ophthalmologists with respect to
the disease. In our example, we instead use a pre-trained neural network to classify the
images and perform the GWAS based on the resulting error-prone response data. Such
an approach is appealing as it allows cheap phenotype measurement in large studies, but
can yield biased results. Using an internal validation data set with manual gold-standard
classifications, we investigate the misclassification and adjust the association estimates of
detected variants based on the maximum likelihood approach from Section 1.2.2. In doing
so, we find a false positive association in the unadjusted analysis, which is due to a differ-
ential performance of the classification algorithm with respect to a genetic variant, more
specifically with respect to eye color, which is strongly associated with this variant.

1.4 Infectious disease surveillance

The spread of the novel SARS-CoV-2 virus and the resulting COVID-19 pandemic have
profound implications for humans and societies worldwide. Since early 2020, policy mak-
ers, public health, and scientific institutions have faced the challenge of evaluating existing
surveillance data in real-time to assess the current pandemic situation as a basis for appro-
priate responses. Because the readily available data often do not come from well-designed
studies, evaluation and interpretation are challenging, and inadequate analysis can also
lead to erroneous conclusions. Key problems include delays in the reporting data, underre-
porting and lack of representativeness, and also measurement error and misclassification,
e.g., in diagnostic tests. The contributing articles in Chapters 4 and 5 discuss ways to
account for at least some of those aspects in the real-time analysis of available data. As an
introduction, this section presents the available surveillance data in Germany and intro-
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duces basic statistical concepts for the real-time analysis of reporting data on the spread
of infectious diseases.

1.4.1 Surveillance data

Infectious disease surveillance data, due to their nature, contain some peculiarities that
need to be taken into account for an adequate analysis and interpretation of the numbers.
In the following, some details of the official reporting data on the COVID-19 pandemic in
Germany are presented, which also motivate the contributions of the work from Chapters
4 and 5. Similar issues arise for data on other diseases and from other countries, as the
surveillance systems are often similar.

For SARS-CoV-2, each infected person goes through different stages, as illustrated
in Figure 1.1 for a symptomatic case. After infection and an incubation period, there is
a disease onset, followed by recovery or severe disease progression, potentially leading to
death. Testing for SARS-CoV-2 infection, subsequent registration and reporting in case of
a positive test result is usually after symptom onset, as testing is in many cases symptom
based. However, as part of contact tracing and increasingly available screening tests, some
cases may also be identified in the presymptomatic stage and asymptomatic cases might
be detected as well.

In Germany, legally defined by the Infection Protection Act (IfSG), different infor-
mation is recorded for each case, so that each infected case potentially has multiple time
stamps in the surveillance data. Each record contains the registration date on a specific
date when a positive PCR test result is reported to the local health authorities (at the pa-
tient’s place of residence). Due to the federal structure of the German healthcare system,
it is then passed on to the respective state counterpart and finally to the federal health
authority. This reporting chain is not generally digitized and, therefore, reporting be-
tween each stage can yield delays and the reporting/registration date might vary between
different data sources. Those dates are either given in the data or can be derived from com-
paring data sets of consecutive days. Information on the date of disease onset (symptom
onset) is also recorded in the German surveillance data. This is done during registration or
retrospectively, based on personal communication between health authorities and affected
individuals. This date is, however, only available in about 50% of all cases (as of March,
2021), either because no information was collected or because the corresponding infections
are identified in the pre- or asymptomatic stage. In addition to information on reporting
dates and onset of disease, publicly available reporting data also contains information on
death counts with respect to their time of case registration, but these are not considered
further in the work presented here.

The particular temporal structure must be taken into account in any analysis of the
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Figure 1.1: Schematic time course of a SARS-CoV-2 infection for an individual with symp-
tomatic course of infection.

surveillance data and can pose a challenge with regard to the temporal allocation and in-
terpretation of the data. Particularly in the context of real-time analysis of the surveillance
data, it is necessary to check exactly which numbers are already complete at a suitable
reference time and which information is still incomplete and might change in future. If
this is not taken into account, the conclusions drawn from the data can be systematically
biased. This is relevant, e.g., for the real-time determination of the epidemic curve, as the
number of persons must be taken into account for whom disease onset has already occurred
but who have not yet been reported (see Section 1.4.2 and the contributing article in Chap-
ter 4). However, similar considerations also apply to seemingly simpler tasks, such as the
calculation of reporting incidence, for which a reference date (registration date) must be
used on which there is no subsequent change in the reported number of new cases.

There are two other key aspects that need to be considered when interpreting case
reporting data. First, such data suffer from underreporting, as not all infected persons are
covered by the health and testing system. This is especially true for infectious diseases,
for which some of the infected have only mild courses of disease or are even asymptomatic
(Gibbons et al., 2014). If underreporting changes over time, for example, due to changes in
the testing regime, this can distort conclusions drawn from the data regarding the dynamics
of infection spread. Second, the surveillance data consist of the number of individuals who
tested positive for the infectious disease. Such diagnostic tests can yield erroneous results
and therefore false positives (uninfected individuals) can be included in the data as well
as actual infected individuals not being included in the data (false negatives). Erroneous
diagnostic tests have consequences for the individuals tested, since in the case of SARS-
CoV-2, consequences such as isolation or quarantine are drawn from the test results, or
false negative individuals can pass on the infection to personal contacts. The predictive
values of the test (probability of correct classification) depend not only on the quality of
the test (sensitivity and specificity) but also on the actual prevalence of infection or the
pre-test probability in the corresponding testing regime (see e.g., Watson et al., 2020, for
the concrete example of SARS-CoV-2). Additionally, the erroneous tests, especially with
changes in the number of tests performed over time, migh potentially also bias apparent
trends in the surveillance data. The plausible magnitude of such bias for the German
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SARS-CoV-2 surveillance data is investigated in more detail in the contributing article in
Chapter 5.

1.4.2 Real time estimation of the epidemic curve - nowcasting

The epidemic curve is a central indicator for describing the dynamics of the spread of an
infectious disease over time. It is defined as the time series of the number of infected
with disease onset per time interval (usually per day or week). Compared to the time
series of newly reported cases, the epidemic curve better reflects the dynamics of disease
spread, since the onset of a person’s disease differs from the time of infection only by the
incubation period. The (distribution of the) incubation time can plausibly be assumed to
be stable over time in many situations. Given a valid estimate of the epidemic curve, it is
also possible to estimate the time-series of the number of infections based on backprojection
methods (e.g., Küchenhoff et al., 2021). For the time series of newly reported cases, there
is the additional delay due to testing and reporting that has to be taken into account for
interpretation. This delay may also change over time, e.g., if reporting structures change
because the burden on health systems varies over time.

For the estimation of the epidemic curve in close to real-time, it is important to
account for the reporting delay in the case reporting data. On a specific day T the data on
individuals with disease onset on day t ≤ T is not complete and underreporting is biggest
for days t close to T . Ignoring the reporting delay and focusing on the available data only
leads to a systematic underestimation of the number of disease onsets close to the current
time T .

Figure 1.2 shows a schematic representation of the available data on a given day T .
Let Nt,d = nt,d be the number of cases, with disease onset on day t and reported with a
delay of d days (case report arrives on day t + d). On the “current” day T , information
is available on N(t, T ) = ∑T−t

d=0 nt,d cases that had disease onset on day t and are reported
until day T . The aim of nowcasting is to predict the unobserved total number of cases
with disease onset on day t, N(t,∞) = ∑∞

d=0 Nt,d, based on information available up until
the current day T .

Therefore, the general task of nowcasting is to set up a model for the count data
nt,d, t ≤ T, d ≤ D that are observed for t + d ≤ T and unobserved for t + d > T . For
identifiability reasons, one defines a maximum relevant delay of d = D and considers each
observation with an observed delay > D as having a delay of D days. Based on such a
model, it is then possible to draw inference about the quantity of central interest, the num-
ber of new disease onsets on day t, N(t,D) = ∑D

d=0 nt,d, t = 1, . . . , T . Different approaches
have been proposed in the literature that can be applied to surveillance data with different
levels of complexity, e.g., Lawless (1994); Höhle and an der Heiden (2014); Bastos et al.
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Figure 1.2: Schematic representation of the data situation in a nowcasting task at a given
day T . The circles nt,d represent the number of events occurred on day t and reported with
a delay of d days. Solid circles correspond to the observed data, dashed circles indicate
occurred-but-not-yet-observed events. The green solid boxes indicate the sum of events on
day t ≤ T that have already been observed, the dashed orange boxes correspond to the
sum of events that have not been observed until day T . Within the model, a maximum
reporting delay of D days is considered.

(2019); McGough et al. (2020). The need for providing timely and reliable information on
the current SARS-CoV-2 pandemic has generated increased interest in nowcasting meth-
ods. Nowcasting is used in the official surveillance system in Germany (an der Heiden and
Hamouda, 2020), and recent publications on the topic present use cases for nowcasting of
infection and death counts in different regions. Partly, they also evaluate the performance
of the models and/or suggest methodological developments and adaptations, e.g., Greene
et al. (2021); Schneble et al. (2020); Seaman et al. (2020); Hawryluk et al. (2021).

In the contributing article from Chapter 4, we proposed a Bayesian hierarchical
nowcasting model for the real-time estimation of the epidemic curve for the Bavarian
COVID-19 data that builds up on the work of Höhle and an der Heiden (2014) and
McGough et al. (2020). Let the expected number of new disease onsets on day t be
E(N(t,D)) = λt. Additionally, let the probability of a reporting delay of d days for an in-
dividual with disease onset on day t be P (delay = d|disease onset = t) = pt,d. We propose
to model the reported case counts Nt,d as Negative-binomial distributed with expectation



20 1. Introduction

E(Nt,d) = λt × pt,d and overdispersion parameter φ. For modeling λt we account for the
expected smoothness of the epidemic curve based on a first-order random walk on the
log-scale, log(λt)|λt−1 ∼ N(log(λt−1), σ2), and model the time-varying reporting delay dis-
tribution based on a discrete time hazard model. This flexible nowcasting approach allows
to account for changes in the reporting delay distribution over time and allows to directly
incorporate specific features of the reporting system, such as reduced reporting of cases on
weekends, into the model. Allowing for overdispersion in the reporting numbers enables
adequate quantification of uncertainty for the estimation of the epidemic curve. These
aspects have been found to be central to good performance in a retrospective evaluation
of the model and a comparison with simpler nowcasting approaches.

1.4.3 Estimation of the effective reproduction number Rt

The basic reproduction number R0 is an established metric for characterizing the transmis-
sibility of an infectious agent in a population. It describes the average number of secondary
cases a single infected case produces in a completely susceptible population. It is important
to understand that R0 is not a biological constant of a pathogen, but should be interpreted
in relation to the population and, e.g., its contact behavior (Delamater et al., 2019). As
an infectious disease outbreak continues over time, the average number of secondary infec-
tions from an infected case changes, as the number of susceptibles decreases. Furthermore,
the behavior and contact frequency of the population can change over time, e.g., due to
implementation or relaxation of containment measures. The (time-varying) effective re-
production number Rt is then used to describe the expected number of infections caused
by an infected person at time t and serves as a measure to describe the dynamics of the
outbreak over time.

By estimating the effective reproduction number from existing data, the (time series)
of R̂t can be used to retrospectively analyze the course of the spread of an infectious dis-
ease or to describe the current infection dynamics in (near) real-time. Estimates of the
effective reproduction number can either be derived from fitting mechanistic transmission
models/compartmental models to available data, or by directly estimating it from time-
series of, e.g., case counts. Two popular approaches for the latter are Wallinga and Teunis
(2004) and Cori et al. (2013). These approaches are relatively straight-forward to apply
to existing time series of infection numbers and require as a central assumption informa-
tion on the serial interval (or the generation time interval), that is the distribution of the
time between the disease onset (or infection) of two generations of infected individuals.
For interpretation, it must be taken into account that both approaches estimate a slightly
different version of the effective reproduction number. The method by Wallinga and Te-
unis (2004) estimates the so-called case- or cohort reproduction number. It is a direct
generalization of the basic reproduction number R0 and describes the average number of
secondary cases infected from a person who had their disease onset at time t. Cori et al.
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(2013) estimate the instantaneous reproduction number, which uses a backward-looking
perspective to describe infectiousness at the current time t, assuming that current infection
dynamics behave as they did in the immediate past. This leads in most situations mainly
to a horizontal time-shift in the estimated effective reproduction number R̂t, but has to be
considered for interpretation and comparison of different analyses.

The interpretation of the effective reproduction number is generally straightforward
and it is therefore an appealing metric for communicating the current dynamics of disease
spread. However, estimating the current reproduction number based on surveillance data
can be challenging, in part because of underreporting in the underlying data near the
current time (Gostic et al., 2020). In the contributing article of Chapter 4, we therefore
propose to estimate R̂t based on the reporting delay adjusted epidemic curve from the
nowcast model. In doing so, we propose to account for the associated uncertainty by
repeatedly estimating the effective reproduction number for draws from the posterior of the
epidemic curve, and averaging over the results for inference and uncertainty quantification.
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Chapter 2

Response misclassification in studies
on bilateral diseases

Chapter 2 discusses the problem of response misclassification in logistic regression for
bilateral disease data. We show how misclassification due to missing disease information
in single entities, or due to entity-specific misclassification with known misclassification
probabilities can be accounted for in a maximum likelihood analysis.
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Abstract
Misclassification in binary outcomes can severely bias effect estimates of regression
models when the models are naively applied to error-prone data. Here, we discuss
response misclassification in studies on the special class of bilateral diseases. Such
diseases can affect neither, one, or both entities of a paired organ, for example, the
eyes or ears. If measurements are available on both organ entities, disease occurrence
in a person is often defined as disease occurrence in at least one entity. In this setting,
there are two reasons for response misclassification: (a) ignorance of missing disease
assessment in one of the two entities and (b) error-prone disease assessment in the
single entities. We investigate the consequences of ignoring both types of response
misclassification and present an approach to adjust the bias from misclassification
by optimizing an adequate likelihood function. The inherent modelling assumptions
and problems in case of entity-specific misclassification are discussed. This work
was motivated by studies on age-related macular degeneration (AMD), a disease that
can occur separately in each eye of a person. We illustrate and discuss the proposed
analysis approach based on real-world data of a study on AMD and simulated data.

K E Y W O R D S
age-related macular degeneration, bilateral diseases, maximum likelihood, measurement error, response
misclassification

1 INTRODUCTION

This paper discusses response misclassification in bilateral diseases, that is, diseases that can occur in neither, one or both
entities of paired organs. Examples are, amongst others, eye diseases or hearing impairment. The modelling of such paired
binary outcomes is in general not straightforward, since the disease status of both entities of a person cannot be treated as
independent conditional on covariates. Here, we discuss the situation in which interest lies in person-specific risk factors for
disease occurrence, like age, sex, or genetic factors. In this case, a person is usually diagnosed as having the disease when at
least one entity of the organ is affected. This worse-entity outcome can then be analysed with regression models for binary
outcomes. Such a definition of the outcome bears, however, problems in case of missing disease information for one of the two
entities. A naive analysis, that ignores the missing data problem and uses the disease status of the single observed entity as
response for persons with missing information, can lead to misclassification in the outcome compared to the true worse-entity
response. A second, related issue is response misclassification resulting from error-prone disease information for the single
entities due to imperfect sensitivity or specificity of disease diagnosis. In the remainder of this paper, we will discuss response
misclassification in bilateral diseases and its consequences based on the example of age-related macular degeneration (AMD)
but our considerations are generally transferable to other diseases.

AMD is a degenerative disorder of the central retina and a leading cause of severe vision impairment in the older popula-
tion (Lim, Mitchell, Seddon, Holz, & Wong, 2012). The clinical endpoint of the disease is late AMD, which can appear as a
Biometrical Journal. 2019;61:1033–1048. © 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim 1033www.biometrical-journal.com
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neovascular complication characterised by choroidal/sub-retinal ingrowth of diseased blood vessels or an atrophic form known
as geographic atrophy of the retinal pigment epithelium. Late AMD is typically preceded by early AMD stages that are clinically
asymptomatic and determined by differently sized yellowish deposits of extracellular material (drusen) and/or irregularities of
the retinal pigment epithelium (hyper/hypopigmentation). The standard in epidemiological studies is to collect colour fundus
images of the participants’ eyes, which are then manually classified as a disease stage according to standardised protocols. There
are various classification systems that differ in their definition of early AMD stages and it is still subject of research which def-
inition of early disease stages predicts progression towards late AMD best (Klein et al., 2014; Brandl et al., 2018). All stages
of AMD can appear in neither, one, or both eyes of a study participant; it is also possible that both forms of late AMD occur
in the same single eye. The complexity of diagnosis gives rise to methodological questions regarding the definition of disease
status in statistical models. Researchers often use logistic regression to estimate effects of risk factors for a binary outcome of
early or late or any AMD. Most studies have a subset of participants where disease information is missing in one of the two eyes
due to various reasons: colour fundus images can be ungradable with respect to AMD because of low image quality with regard
to brightness, contrast, and focus or competing retinal diseases blurring the image (e.g., glaucoma). A common approach is to
utilise the worse-eye disease status to define the participants’ disease status when disease information is available for both eyes
and the single eye disease status of the participants when disease information is available only for one eye (naive analysis). This
approach corresponds to a definition of the binary response as AMD in at least one eye for participants without missing data.
Compared to this response definition, an outcome derived from a single eye is misclassified towards no AMD, if the observed
eye is unaffected, but the second unobserved eye of the study participant is affected by AMD. The response observations of
study participants with missing disease diagnosis in one of two eyes are thus potentially misclassified compared to the “true”
worse-eye disease status if the observed eye is unaffected.

From the literature on measurement error, it is known that response misclassification in regression models leads to biased
effect estimates if it is not accounted for (see, e.g., Carroll, Ruppert, Stefanski, & Crainiceanu, 2006, Chapter 15). If the mis-
classification is non-differential, that is the misclassification probabilities do not depend on covariates, this leads, on average,
to attenuated effect estimates. If the misclassification is differential, it is not possible to make any general statements regarding
the direction of bias and spurious associations can occur (Neuhaus, 1999). In case of AMD and response misclassification from
utilizing the single eye disease status for persons with disease information only available in one eye, differential misclassification
can occur because of two reasons: (a) if the probability of missing single eye information varies between study participants, the
probability of observing only an unaffected single eye when the worse eye is affected can vary as well; (b) if the (conditional)
probability of being affected by AMD in both eyes (given AMD in at least one eye) varies between individual study participants,
the probability of observing only an unaffected single eye when the worse eye is affected varies as well, even if the probability
of missing single eye diagnosis is constant. Such settings appear quite plausible. This gives rise to serious concerns regarding
the estimates of the naive modelling strategy and motivates the following derivation of a maximum likelihood approach that
explicitly considers missing single eye diagnosis within analysis. Our approach is based on a consistent definition of the binary
response as AMD occurrence in at least one eye (worse-eye diagnosis) and considers potential response misclassification for
study participants with missing disease information in single eyes. In Section 2.1, we provide the likelihood of modelling worse-
eye AMD occurrence by logistic regression, expressed in terms of observed single eye disease statuses per participant. Since we
assume that similar data situations can also occur for data on different diseases, we formulate the derivations with respect to the
more general notion of bilateral diseases. Section 2.2 focuses on missing disease diagnosis in single entities (e.g., in one of two
eyes in the case of AMD) and the consequences of ignoring them in the naive modelling strategy. We derive the model-based
conditional probability of disease in randomly selected single entities and propose to optimise a likelihood based on the derived
conditional probabilities to estimate regression parameters. In Section 2.3, we discuss additional misclassification in the single
entity disease diagnosis and, in Sections 3 and 4, we compare the different estimation approaches in a real data example of the
AugUR study on AMD (Age-related diseases: Understanding genetic and nongenetic influences—a study at the University of
Regensburg, Stark et al., 2015) and based on simulated data. In Section 5, we discuss the proposed modelling approach and its
assumptions and give recommendations for application.

2 METHODS AND MODELS

2.1 General approach of modelling binary bilateral disease data
We assume a disease that we examine for each of two entities of paired organs, from which we deduce the disease status of
the person. Let 𝑍1𝑖, 𝑍2𝑖 ∈ {0, 1} be the true and here assumed as observable disease status of each of the two entities for
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T A B L E 1 Probability mass function of disease patterns conditional on covariate
vector 𝐱𝑖, with 𝜋𝑖 = H(𝐱𝑡𝑖𝜷) and 𝛿𝑖 = 𝑃 (𝑍1𝑖 = 1, 𝑍2𝑖 = 1|𝑌𝑖 = 1, 𝐱𝑖)

P(⋅, ⋅|𝐱𝒊) 𝒁𝟐𝒊 = 𝟏 𝒁𝟐𝒊 = 𝟎
𝑍1𝑖 = 1 𝛿𝑖𝜋𝑖

1−𝛿𝑖
2

𝜋𝑖

𝑍1𝑖 = 0 1−𝛿𝑖
2

𝜋𝑖 1 − 𝜋𝑖

study participant 𝑖, where 𝑍𝑙𝑖 = 1 indicates disease at entity 𝑙 of participant 𝑖 and 𝑍𝑙𝑖 = 0 represents a healthy entity (𝑙 = 1, 2;
𝑖 = 1,… , 𝑛). Taken together, 𝑍1𝑖 and 𝑍2𝑖 define four different patterns of disease occurrence (0,0), (0,1), (1,0), and (1,1). In
case of AMD, 𝑍𝑙𝑖 corresponds to the observed AMD disease status in eye 𝑙 of participant 𝑖. The true worse-entity disease status
of participant 𝑖 is defined as 𝑌𝑖 ∶= max(𝑍1𝑖, 𝑍2𝑖), which means that the participant has the disease (𝑌𝑖 = 1) if any of the two
entities or both are affected, and no disease (𝑌𝑖 = 0) otherwise. In our AMD example, this corresponds to the AMD status in the
worse eye, which is commonly used as the AMD status of a person.

When we are interested in factors that are associated with the disease status, we model 𝑌𝑖 as response based on a generalised lin-
ear model for binary outcomes, for example, a logistic regression model. The probability of disease occurrence in participant 𝑖 is
modelled depending on a k-dimensional person-specific covariate vector 𝐱𝑖, 𝜋𝑖 ∶= P(𝑌𝑖 = 1|𝐱𝑖) = H(𝛽0 + 𝛽1𝑥1𝑖 +⋯ + 𝛽𝑘𝑥𝑘𝑖) =
H(𝐱𝑡𝑖𝜷) = H(𝜂𝑖). H(⋅) is an appropriate response function, for example, the logistic function H(⋅) = 1∕{1 + exp(−⋅)}. As usual
in the context of generalised additive models, this allows a quite flexible modelling of covariate effects including, e.g., dummy
effects for binary or categorical covariates, linear and nonlinear effects of continuous covariates, and the inclusion of potential
interaction terms. In the AMD example, one might be interested in the estimation of the association of age, sex, life-style factors
like smoking, or genetic factors with AMD.

The disease patterns (𝑍1𝑖, 𝑍2𝑖) follow a four-categorical distribution, where the conditional probability of no disease at both
entities, given the covariate vector 𝐱𝑖 is given by

P(𝑍1𝑖 = 0, 𝑍2𝑖 = 0|𝐱𝑖) = P(𝑌𝑖 = 0|𝐱𝑖) = 1 − 𝜋𝑖.

The conditional probability of disease at both entities can be written as
P(𝑍1𝑖 = 1, 𝑍2𝑖 = 1|𝐱𝑖) = P(𝑍1𝑖 = 1, 𝑍2𝑖 = 1|𝑌𝑖 = 1, 𝐱𝑖)P(𝑌𝑖 = 1|𝐱𝑖)

= P(𝑍1𝑖 = 1, 𝑍2𝑖 = 1|𝑌𝑖 = 1, 𝐱𝑖)𝜋𝑖.

We introduce the notation 𝛿𝑖 ∶= P(𝑍1𝑖 = 1, 𝑍2𝑖 = 1|𝑌𝑖 = 1, 𝐱𝑖) for the conditional probability of disease at both entities given
covariates 𝐱𝑖 and disease in participant 𝑖, so the conditional probability of disease at both entities is

P(𝑍1𝑖 = 1, 𝑍2𝑖 = 1|𝐱𝑖) = 𝛿𝑖𝜋𝑖.

Under the assumption that the conditional probability of disease in one, but not the other entity is symmetric, P(𝑍1𝑖 = 1, 𝑍2𝑖 =
0|𝐱𝑖) = P(𝑍1𝑖 = 0, 𝑍2𝑖 = 1|𝐱𝑖), the probability mass function of the conditional two entity disease status distribution can be
written concisely as given in Table 1.

This probability mass function implies a specific correlation structure between the disease status in each of the two entities
of participant 𝑖 depending on 𝐱𝑖 and 𝛿𝑖: the bigger 𝛿𝑖, the bigger the (Pearson) correlation 𝜙𝑖 between the entities’ disease
statuses given a fixed person-specific disease probability. If 𝛿𝑖 = 1 for all participants, all individuals affected by the disease are
affected at both entities and the correlation coefficient 𝜙 of Table 1 is 1. In this case, the knowledge of the disease status in one
entity perfectly predicts the disease status of the second and no information is lost from only observing the disease status in a
single entity. Figure 1 illustrates the correlation between the disease status of each of the two entities depending on different
person-specific disease probabilities 𝜋𝑖 and different values of 𝛿𝑖.

Based on the probability mass function of Table 1, the conditional probabilities of disease in only one specific entity, given
𝑌𝑖 is without loss of generality P(𝑍1𝑖 = 1, 𝑍2𝑖 = 0|𝑌𝑖 = 1, 𝐱𝑖) = (1 − 𝛿𝑖)∕2 and it is possible to set up the likelihood function of
the parameters (𝜹𝑖,𝜷). The contribution of a single study participant 𝑖 to this likelihood is given by

𝐿(𝛿𝑖, 𝜷)𝑖 =
{
𝛿𝑖H(𝜂𝑖)

}𝑧1𝑖𝑧2𝑖 ×
{1 − 𝛿𝑖

2
H(𝜂𝑖)

}𝑧1𝑖(1−𝑧2𝑖)+(1−𝑧1𝑖)𝑧2𝑖
×
{
1 − H(𝜂𝑖)

}(1−𝑧1𝑖)(1−𝑧2𝑖). (1)
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F I G U R E 1 Illustration of the correlation
coefficients 𝜙𝑖 between two binary single entity disease
statuses for different probabilities of disease occurrence
in at least one entity, 𝜋𝑖, and probabilities of disease at
both entities given disease in at least one entity 𝛿𝑖

The full likelihood function is the product over the contribution of all 𝑛 participants and the regression parameters can be
estimated by minimizing the negative log-likelihood with respect to 𝜷. The score functions (partial derivatives of the log-
likelihood) with respect to the regression coefficients 𝜷 are independent of 𝛿𝑖 and identical to the score functions of a logistic
regression model with response 𝑌𝑖 = max(𝑍1𝑖, 𝑍2𝑖) (see (A4) in the appendix). Consequently, the two different approaches
to estimate 𝜷 are equivalent. If disease diagnosis is available for each of the two entities of all participants, 𝛿𝑖 are nuisance
parameters for the estimation of 𝜷 based on the likelihood of (1). A more detailed derivation of the likelihood and the following
formulas can be found in the appendix.

2.2 Partly missing response observations
In epidemiological or clinical studies, entity-specific disease information is often missing for a subset of study participants due to
various reasons. On the example of AMD, most studies have a proportion of study participants with missing AMD diagnosis in
one of two eyes due to fundus images of inferior quality disenabling diagnosis (e.g., too bright/dark, lack of contrast, not capturing
the whole macular region), competing retinal diseases hampering AMD diagnosis, or missing images. Here, we discuss how to
deal with this missing data problem in cross-sectional data. The naive analysis strategy is to ignore the missing data: To utilise
the disease status of the single observed entity, 𝑍1𝑗 or 𝑍2𝑗 , as response for study participants 𝑗 with missing diagnosis for one
entity and the worse-entity diagnosis, max(𝑍1𝑖, 𝑍2𝑖), for study participants 𝑖 with diagnosis in both entities. When applying
this strategy, the binary response 𝑌 is inconsistently defined between the two subsets of participants: In the former, subset
the response corresponds to the occurrence of disease in a single entity, in the latter to disease occurrence in at least one of
two entities.

We propose to discuss this missing data problem in the context of response misclassification. As before, we define the true
response 𝑌 to indicate the person-specific disease status as the worse-entity disease status, 𝑌 = max(𝑍1, 𝑍2). For participants
for which both diagnoses, 𝑍1 and 𝑍2, are available, the true response Y is here considered as known. For participants with
missing disease information in one entity, we cannot observe this response, but only a potentially misclassified response 𝑌 ∗, the
disease status in a single entity,𝑍1 or𝑍2. The specificity of 𝑌 ∗, P(𝑌 ∗ = 0|𝑌 = 0), is 1, since a single entity is necessarily healthy
if both entities are unaffected. The sensitivity of 𝑌 ∗ is, however, P(𝑌 ∗ = 1|𝑌 = 1) ≤ 1, since it can happen that an unaffected
entity is observed while the diagnosis of the second, affected entity is missing.

This resembles the situation of misclassified data with an internal validation sample that is discussed in the measurement
error literature: The subsample with missing single disease diagnosis can be referred to as “main study sample” for which only
a potentially misclassified response 𝑌 ∗ is observed. The subsample with information on both entities represents the “validation
sample” for which the true responses 𝑌 = max(𝑍1, 𝑍2), as well as some kind of misclassified response 𝑌 ∗, the disease diagno-
sis 𝑍1 and 𝑍2 of both single entities separately, are observed. Those terms are somewhat confusing in the context of bilateral
diseases since observations of study participants with disease diagnosis for both entities should be the standard and participants
with missing information on a single entity the exception instead of the “main study sample”. We will therefore call the partic-
ipants from the “main study sample” the participants with missing data and the participants from the “validation sample” the
participants with full data when referring to the missing data problem in datasets on bilateral diseases.

It is known that a naive application of regression models to partly misclassified binary responses yields biased effect estimates.
In case of misclassified data with an internal validation sample, different modelling strategies exist to obtain meaningful results.
A simple strategy is to focus only on the validation data subsample and estimate the model based on the observed true responses.
This yields valid results if selection into validation data is independent of the true disease status and risk factors, for example,
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in case of AMD if the probability of obtaining disease diagnosis for both eyes is constant for all study participants. It also yields
unbiased effect estimates if selection into validation data depends on risk factors that are considered within the regression model
estimated on the validation data (e.g., if the probability of obtaining disease diagnosis for both eyes depends on the well known
risk factor age but age is considered as covariate in the regression model) (Carroll et al., 2006, Chapter 15.5). This approach is
straightforward to implement, since it corresponds simply to applying the model of choice to a subset of the data and can be a
good solution for analysis. It ignores, however, a potentially big part of the collected data and might therefore be suboptimal.

Here, we introduce an approach to obtain unbiased estimates for the regression parameters based on all collected data. It is
based on a likelihood with different contributions of participants with full data and participants with missing data. The partic-
ipants with full data provide information regarding the potential misclassification from observing only the disease status of a
single entity, which can be used for an appropriate consideration of the observations with missing data.

The general idea of such an approach is that the likelihood contribution for observations with information on 𝑌 and 𝑌 ∗ (valida-
tion data or participants with full data) can be constructed based on the decomposition of the joint distribution of P(𝑌 , 𝑌 ∗|𝑋) into
a model for the misclassification process and a model of the true response given covariates, P(𝑌 , 𝑌 ∗|𝑋) = P(𝑌 ∗|𝑌 ,𝑋)P(𝑌 |𝑋).
For observations with information only on 𝑌 ∗ (main study data or participants with missing data), it is possible to set up their
likelihood contribution correspondingly by applying the law of total probability, P(𝑌 ∗|𝑋) =

∑
𝑦 P(𝑌 ∗|𝑌 = 𝑦,𝑋)P(𝑌 = 𝑦|𝑋)

(see, for example, Lyles et al., 2011; Carroll et al., 2006, Chapter 15.4).
To apply such an approach to data of paired organs with a subset of participants with missing diagnosis in one of two entities,

we make the assumption that the entity with missing diagnosis is missing independently of the entity’s true disease status.
That is, we assume that the observed disease status for participants with missing data is assumed to be the disease status of a
single entity 𝑍𝑟, selected randomly from the two entities with disease statuses 𝑍1 and 𝑍2. For participants with full data, we
can replace the conditional probabilities P(𝑌 ∗|𝑌 ,𝑋) from the previous paragraph by P(𝑍1, 𝑍2|𝑌 ,𝑋), and for participants with
missing diagnosis, we replace P(𝑌 ∗|𝑌 = 𝑦,𝑋) by P(𝑍𝑟|𝑌 = 𝑦,𝑋). The corresponding derivations are given in the appendix,
where we show in (A5), that for study participant 𝑗 with missing data

P(𝑌 ∗
𝑗 = 1|𝐱𝑗) = P(𝑍𝑟𝑗 = 1|𝐱𝑗) =

(1
2
+ 1

2
𝛿𝑗
)

H(𝜂𝑗).

Therefore, the conditional probability of observed disease for persons with missing data depends on the conditional probability of
disease at both entities, given disease in at least one entity, 𝛿𝑗 . Participants with full data provide information on this probability.
If we had 𝛿𝑗 = 1, we would yield P(𝑍𝑟𝑗 = 1|𝐱𝑗) = H(𝜂𝑗). This is, in fact, the assumption of the naive modelling strategy, but
𝛿𝑗 is usually smaller than one. For AMD, it is known that persons can be affected only in one eye and be healthy in the other,
which violates the assumption of the naive model.

Based on the derived conditional probabilities, the likelihood contributions are: For each observation 𝑖 = 1,… , 𝑛full with full
data, the likelihood contribution is, as already given in (1),

𝐿(𝛿𝑖,𝜷)full
𝑖 =

{
𝛿𝑖H(𝜂𝑖)

}𝑧1𝑖𝑧2𝑖 ×
{(1

2
− 1

2
𝛿𝑖
)

H(𝜂𝑖)
}𝑧1𝑖(1−𝑧2𝑖)+(1−𝑧1𝑖)𝑧2𝑖

×
{
1 − H(𝜂𝑖)

}(1−𝑧1𝑖)(1−𝑧2𝑖); (2)

each observation 𝑗 = 1,… , 𝑛miss from the subsample with missing data contributes with

𝐿(𝛿𝑗, 𝜷)miss
𝑗 =

{(1
2
+ 1

2
𝛿𝑗
)

H(𝜂𝑗)
}𝑧𝑟𝑗

×
{
1 −

(1
2
+ 1

2
𝛿𝑗
)

H(𝜂𝑗)
}(1−𝑧𝑟𝑗 )

. (3)
The complete likelihood function is then given by

𝐿(𝜹, 𝜷) =
𝑛full∏
𝑖=1

𝐿full
𝑖 ×

𝑛miss∏
𝑗=1

𝐿miss
𝑗 .

If the conditional probability of disease at both entities given disease, 𝛿𝑖, is assumed to be constant for all study participants, it is
straightforward to optimise the log-likelihood with respect to the parameters (𝛿,𝜷) (the subscript 𝑖 is here used for all 𝑛full + 𝑛miss
observations). If the probability is assumed to potentially change with specific characteristics of the study participants, this can
be considered by specifying a parametric model for it. It can, for example, be modeled by again using the logistic function
of a linear predictor, 𝛿𝑖 = H(𝛾0 + 𝛾1𝑢1𝑖 +⋯ + 𝛾𝑚𝑢𝑚𝑖) = H(𝐮𝑡𝑖𝜸), where 𝐮𝑖 is an m-dimensional vector of observed participant
characteristics that might or might not be similar to the covariates 𝐱𝑖 of the main model for disease. In that case, the log-likelihood
has to be optimised with respect to the parameters (𝜸,𝜷). If the vector of covariates 𝐮𝑖 for modelling 𝛿𝑖 contains only an intercept
term, this corresponds to assuming a constant 𝛿 for all analysed subjects.
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2.3 Additional misclassification in entity-specific disease diagnosis
So far, we considered misclassification in the person-specific worse-entity disease status 𝑌 from missing disease information in
one of the two entities, while we assumed the entity-specific disease statuses, 𝑍1, 𝑍2, and 𝑍𝑟, to be observed without error. A
second source of response misclassification can result from a misclassification of the entity-specific disease status: Instead of the
true disease status 𝑍1, 𝑍2, or 𝑍𝑟, only a potentially misclassified disease status 𝑍∗

1 , 𝑍∗
2 , or 𝑍∗

𝑟 is observed. The misclassification
process can be described by the sensitivity and specificity of diagnosis

P(𝑍∗
𝑙𝑖 = 1|𝑍𝑙𝑖 = 1) = 𝜋1𝑖 and

P(𝑍∗
𝑙𝑖 = 0|𝑍𝑙𝑖 = 0) = 𝜋0𝑖,

respectively, with 𝑙 ∈ {1, 2, 𝑟} and 𝑖 referring to all 𝑛miss + 𝑛full observations. By applying the law of total probability iteratively,
the conditional probabilities P(𝑍∗

1𝑖 = 𝑧∗1𝑖, 𝑍
∗
2𝑖 = 𝑧∗2𝑖|𝐱𝑖) and P(𝑍∗

𝑟𝑖 = 𝑧∗𝑟𝑖|𝐱𝑖) can be derived and used to set up a likelihood with
the following contribution for full and missing data participants:

𝐿(𝜋1𝑖, 𝜋0𝑖, 𝛿𝑖, 𝜷)full
𝑖 =

[
(1 − 𝜋0𝑖)2 +

{
(1 − 𝜋0𝑖)𝜋1𝑖(1 − 𝛿𝑖) + 𝜋2

1𝑖𝛿𝑖 − (1 − 𝜋0𝑖)2
}H(𝜂𝑖)

]𝑧∗1𝑖𝑧∗2𝑖

×
[
𝜋0𝑖(1 − 𝜋0𝑖) +

{(
𝜋1𝑖𝜋0𝑖 + (1 − 𝜋1𝑖)(1 − 𝜋0𝑖)

)(1
2
− 1

2
𝛿𝑖
)

+𝜋1𝑖(1 − 𝜋1𝑖)𝛿𝑖 − 𝜋0𝑖(1 − 𝜋0𝑖)
}

H(𝜂𝑖)
](1−𝑧∗1𝑖)𝑧∗2𝑖+𝑧∗1𝑖(1−𝑧∗2𝑖)

×
[
𝜋2
0𝑖 +

{
(1 − 𝜋1𝑖)𝜋0𝑖(1 − 𝛿𝑖) + (1 − 𝜋1𝑖)2𝛿𝑖 − 𝜋2

0𝑖
}H(𝜂𝑖)

](1−𝑧∗1𝑖)(1−𝑧∗2𝑖),

𝐿(𝜋1𝑗 , 𝜋0𝑗 , 𝛿𝑗 , 𝜷)miss
𝑗 =

[
(1 − 𝜋0𝑗) + (𝜋1𝑗 + 𝜋0𝑗 − 1)

(1
2
+ 1

2
𝛿𝑗
)

H(𝜂𝑗)
]𝑧∗𝑟𝑗

×
[
𝜋0𝑗 + (1 − 𝜋1𝑗 − 𝜋0𝑗)

(1
2
+ 1

2
𝛿𝑗
)

H(𝜂𝑗)
]1−𝑧∗𝑟𝑗

. (4)

The sensitivity and specificity, 𝜋1𝑖 and 𝜋0𝑖, are in general unknown and can vary between study participants, for example, if
specific participant characteristics make diagnosis more difficult or if subsets of participants are examined by different inves-
tigators. Often it is, however, not possible to estimate those classification probabilities based on collected data, since the true
entity-specific disease status of the participants is unknown. The likelihood can then be used for estimation making assumptions
regarding the classification probabilities (in sensitivity analyses), with knowledge from external data, or in simulation studies
with known parameters.

3 EXAMPLE: MAXIMUM LIKELIHOOD APPROACH APPLIED TO
CROSS-SECTIONAL DATA ON AMD AND RISK FACTORS IN THE AugUR
STUDY

We illustrate the proposed maximum likelihood approach based on data of a cross-sectional survey within the AugUR study on
AMD. Detailed information on this data can be found in Stark et al. (2015). Briefly, the AugUR study is a prospective study in
the elderly population in the city and county of Regensburg in Eastern Bavaria, Germany. It explicitly aims at collecting data
of persons with an age of ≥ 70 years to build a database that enables the investigation of genetic and nongenetic risk factors
for late-onset diseases like type-2 diabetes, cardiovascular complications, and eye diseases like AMD. Here, we analyse the
baseline survey, which was conducted from 2013 to 2015, that includes an interview based questionnaire, bio-banking, and
physical examinations for each participant. Data on at least one gradable fundus image and genetic and nongenetic covariates
is available for 1, 034 participants, which constitute the analysed data here. AMD diagnosis was performed based on the Three
Continent AMD Consortium Severity Scale (Klein et al., 2014). This grading system was developed in 2014 and differentiates
no AMD from mild early, moderate early, and severe early AMD stages (according to respective drusen sizes and area and/or
pigmentary abnormalities) as well as from late AMD (defined as neovascularization and/or geographic atrophy). To illustrate
our approach, we focus on modelling the probability of any AMD (early or late AMD) and define any AMD in a person as any
AMD in at least one eye (worse-eye definition), as described above.
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T A B L E 2 Estimated coefficients of logistic regression models for modelling the occurrence of AMD in at least one eye on AugUR data by (I)
naive logistic regression, (II) logistic regression based on 880 participants with available diagnosis for both eyes, (III) maximum likelihood with
constant 𝛿 = H(�̂�0) = 0.59, (IV) ML with varying 𝛿𝑖 = H(𝐱𝑡𝑖 �̂�), (V) ML with varying 𝛿𝑖 = H(𝐱𝑡𝑖 �̂�) and assumed sensitivity of 0.95 and specificity of
0.97

(I) (II) (III) (IV) (V)
Est. Std. err. Est. Std. err. Est. Std. err. Est. Std. err. Est. Std. err.

�̂� (Int.) −2.28 0.17 −2.14 0.18 −2.23 0.17 −2.21 0.17 −3.08 0.28
Age 0.47 0.10 0.52 0.11 0.50 0.11 0.47 0.10 0.59 0.13
Sex:f 0.00 0.16 −0.07 0.17 −0.03 0.16 −0.02 0.16 0.05 0.22
rs10490924 0.86 0.13 0.87 0.14 0.88 0.13 0.86 0.13 1.21 0.17
rs1061170 0.69 0.11 0.67 0.12 0.70 0.11 0.68 0.11 0.94 0.15
Age×sex:f −0.09 0.15 −0.16 0.16 −0.11 0.15 −0.09 0.15 −0.11 0.20

�̂� (Int.) – – – – 0.35 0.14 −0.51 0.31 2.33 1.69
Age – – – – – – 0.64 0.20 1.56 0.92
Sex:f – – – – – – 0.01 0.30 −0.53 0.92
rs10490924 – – – – – – 0.42 0.23 −0.61 0.72
rs1061170 – – – – – – 0.49 0.22 0.06 0.53
Age×sex:f – – – – – – −0.31 0.29 −1.01 0.98

Of the 1,034 AugUR participants 154 participants (14.9%) have missing AMD information in one of two eyes. Ignoring
missing single eyes, 237 participants (22.9%) were affected by AMD in at least one or the single observed eye. Focusing on the
participants with missing eyes, 23 (14.9%) have AMD in the single observed eye. Of the 880 participants with disease diagnosis
for both eyes, 214 (24.3%) are affected by AMD in at least one eye. Of those, 87 (40.7%) are affected in only one eye. Of all
1, 760 eyes of the participants with diagnosis for both eyes, 341 (19.4%) are affected by AMD.

We aim to quantify the effects of the covariates age, sex, and lead variants of two known genetic loci on the occurrence of
AMD in at least one eye by estimating a logistic regression model with linear effects of the standardised age and the binary sex,
their interaction, and linear (additive) effects of two genetic lead variants (genotyped SNPs, number of effect alleles ∈ {0, 1, 2}).

All computations where performed in R, version 3.5.1 (R Core Team, 2018). Code to perform and reproduce the analysis is
available in the Supporting Information (https://onlinelibrary.wiley.com/doi/10.1002/bimj.201900039). The proposed analysis
approach for logistic regression on bilateral disease data is implemented in an R package bilateralogistic that can be found
there, as well. The data available on the web page is, however, a simulated dataset mimicking the original data since the original
data of the AugUR study cannot be published online due to data protection reasons. Results based on the original code and the
simulated data deviate, therefore, slightly from the results shown here. The code used for simulating the artificial data is part of
the Supporting Information as well. Interested researchers can get access to the original data after getting into contact with the
corresponding author and signing a data privacy statement.

Table 2 shows the estimated coefficients of five different models. Model (I) corresponds to the naive logistic regression
analysis where the disease status of the single observed eye is used as response for participants with missing diagnosis in one
eye and the worse-eye disease status for study participants with diagnosis for both eyes. Model (II) is a logistic regression
model using the worse-eye disease status as response. It is estimated based on the subset of participants for which diagnosis in
both eyes is available and corresponds therefore to the validation data (full data) only strategy. Models (III) and (IV) apply the
maximum likelihood estimation of Section 2 to all data assuming a constant and varying conditional probability of AMD in both
eyes, 𝛿𝑖, respectively. In Model (IV), the 𝛿𝑖’s are modelled based on the same linear predictor as used in the model for AMD
occurrence and using the logistic response function. If there exists external information on misclassification in the observed
(eye-specific) diagnosis, such information should be considered within the analysis. Here, we do not have such information
available, the performed manual disease diagnosis of the fundus images based on standardised protocols can be seen as a gold
standard diagnosis. Therefore, the available data would normally be analysed without assuming misclassification in the observed
data. Nevertheless, we decided to present for illustrative purposes the estimates of Model (V), in which we assume a constant
sensitivity and specificity of the single eye diagnosis of 0.95 and 0.97, respectively.

The estimated parameters in Table 2 are additive effects on the log odds for the occurrence of AMD in at least one eye (�̂�)
and on the log odds for the occurrence of AMD in two eyes, given AMD in at least one eye (�̂� in Models (IV) and (V)), for
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F I G U R E 2 Results of Model (IV) on AugUR data under various assumptions of misclassification in single eye specific diagnosis with
constant sensitivity and specificity. In panel (A) and (B) estimates are shown for fixed sensitivity of 1 and 0.97 and varying specificity between 1 and
0.94. In panel (C) and (D) for fixed specificity of 1 and 0.97 and varying sensitivity between 1 and 0.9. Shown are the estimated probabilities of
AMD in at least one eye H(�̂�0) and AMD in two eyes, given AMD in at least one eye H(�̂�0) for males of mean age and without effect alleles (black
solid/dotted line) in the first row. The second row shows the estimated odds ratios 𝑒𝑥𝑝(�̂�𝑘) in the main logistic regression model (with outcome AMD
on at least one eye) for changes of one unit in sd(age) (red), sex (blue), one positive effect allele of SNPs rs10490924 (green), rs1061170 (purple),
and the age-sex interaction (orange) under varying assumptions for sensitivity and specificity of diagnosis in single eyes; y-axis is on log scale. The
third row shows the odds ratios 𝑒𝑥𝑝(�̂�𝑘) of the misclassification model with outcome parameter 𝛿𝑖. Solid lines refer to estimates of the main logistic
regression model, dotted lines to the misclassification model.

a one unit increase in the respective covariates. Looking at the results of Model (IV), we see evidence for a higher risk of
AMD occurrence with increasing age. The odds ratio of AMD occurrence for a one standard deviation (≈ 5 years) increase
in age is estimated as 𝑒𝑥𝑝(0.47) = 1.60 for men and 𝑒𝑥𝑝(0.38) = 1.46 for women. Furthermore, we estimated increased prob-
abilities for being affected by AMD on both eyes, given any AMD occurrence with increasing age. The odds ratio for men is
𝑒𝑥𝑝(0.64) = 1.90 and for women 𝑒𝑥𝑝(0.33) = 1.39 with an age increase of 5 years. We also find strong effects of the genetic
variants rs10490924 and rs1061170. Both increase the probability of AMD occurrence and for being affected by AMD in both
eyes.

To test for differences in, for example, sex, it is possible to conduct a likelihood ratio test against the nested model without the
main and age-interaction effect of sex (on 𝜋𝑖 and 𝛿𝑖). The corresponding test statistic is ≈ 1.66 and is under the null hypotheses
𝜒2
𝑑𝑓=4 distributed, which corresponds to a p-value of 0.80. Therefore, we do not have evidence for substantial differences in

AMD occurrence between men and women.
Comparing the estimated regression parameters �̂� of Models (I)–(IV), we find that they are quite similar. The estimated �̂�

parameters of Model (IV) indicate that the assumptions for modelling the observations with missing diagnosis in one of two
eyes based on Models (I) and (III) are questionable. The overall resulting estimates with respect to the occurrence of AMD in at
least one eye, �̂�, are, however, qualitatively similar. Comparing the results of Model (V) to Model (IV), we find that assuming
a constant sensitivity of 0.95 and specificity of 0.97 for diagnosis in single eyes leads to effect estimates �̂� that are bigger in
absolute value compared to Model (IV) with sensitivity and specificity of 1. The estimated parameters �̂� vary as well, some
change also their direction. The associated standard errors of �̂� are, however, relatively big and the uncertainty in the effect
estimates is therefore is rather high.

Figure 2 continues such kind of sensitivity analyses and illustrates the results of Model (IV) under various assumptions for
single eye specific misclassification with constant misclassification probabilities for all study participants. Results are shown
depending on the assumed combination of sensitivity and specificity in the single eye diagnosis. In each panel (A)–(D) of
the figure, the upper plots show the estimated predicted probabilities for the occurrence of AMD (solid line) and for AMD in
both eyes, given at AMD in at least one eye (dotted line) for a reference participant (male, mean age, no positive genetic effect
alleles) for fixed sensitivity and varying specificity ((A) and (B)), and fixed specificity and varying sensitivity ((C) and (D)). The
coloured lines in the second and third row represent the estimated odds ratios for a one unit increase of the respective covariates
on the occurrence of AMD (second row) and the occurrence of AMD in both eyes given any occurrence of AMD (third row) on
a log scale.
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Assuming a decreasing specificity of diagnosis, the effect estimates on AMD occurrence get bigger in absolute value (and
therefore odds ratios are more different from 1; second row, panels (A) and (B)). The intercept �̂�0, and therefore the estimated
probability of AMD occurrence decreases with decreasing specificity (solid line, upper plot). A specificity < 1 implies that
some of the single eyes that were observed as being affected by AMD are in fact not affected. The smaller the specificity, the
bigger the probability that an eye observed to be affected is actually unaffected. While a smaller specificity leads on average
to a decreased estimated probability of being affected in at least one eye, it results, however, in a bigger probability of being
affected in both eyes, given AMD occurrence in at least one eye (dotted line, upper plot). The smaller the specificity, the lower
the overall estimated probability of AMD occurrence. The remaining probability mass accumulates in the eyes with relatively
biggest (observed) probability for AMD occurrence, what corresponds to the increased odds ratios. If we assume a specificity
of 0.94 or 0.95 (with assumed sensitivity of 1 or 0.97, respectively), the estimated probability of AMD in both eyes, given AMD
in at least one eye, 𝛿𝑖, is near 1 for most study participants and the probability of observing AMD in at least one eye is quite
low. The effect estimates �̂� are in general quite unstable with varying assumptions regarding the specificity of the single eye
diagnosis. At first sight, the assumption of a constant single eye specificity less than 0.95 might appear plausible. However,
such an assumption is, combined with a high sensitivity, problematic with respect to the observed data. The fraction of affected
single eyes in the dataset is not huge and a low specificity implies that a relevant fraction of the observed affected eyes are in fact
healthy since 1 − 𝜋0 of all unaffected eyes are assumed to be falsely classified as diseased. The resulting estimates are strongly
influenced by the model specification and the assumption of constant single eye misclassification probabilities.

Parts (C) and (D) of Figure 2 show the results of reducing the assumed sensitivity in the single eye observation process from
1 to 0.9. With respect to the estimated �̂�’s (row 2), we observe hardly any differences. The estimated �̂�’s change and the average
probability of AMD occurrence in two eyes increases. A single eye specific sensitivity smaller than one implies that some of
the truly affected single eyes are graded as non-affected. The (model based) probability of such an observation depends on the
probability of AMD occurrence in a single eye. Therefore, an assumed sensitivity smaller than one places a higher probability
of unobserved AMD in eyes that have in general a relatively bigger probability of being affected by AMD. This assumption gets
incorporated into estimation, and yields an increased probability of AMD in both eyes, given AMD in at least one eye. If the
assumed sensitivity is further reduced, the estimated �̂� coefficients change as well, and the estimated probability of AMD in
at least one eye increases. With, for example, a constant sensitivity of only 𝜋1 = 0.75, the probability of AMD in at least one
eye is estimated as 0.364 for males of mean age with one effect allele at each genetic locus instead of approximately 0.338 with
𝜋1 = 1.

4 SIMULATION STUDY

4.1 Design of simulation study
To further analyse the behaviour of the different modelling strategies, we performed a simulation study. We sampled data mim-
icking studies on bilateral diseases the following way: Binary response data of worse-entity disease occurrence was simulated
for 1, 000 “participants” based on a logistic regression model with two independent standard normal distributed covariates 𝑥. If
a (true) response 𝑌𝑖 = 0 was sampled for participant 𝑖, the disease status of both single entities 𝑍1𝑖, 𝑍2𝑖 are set to zero. If 𝑌𝑖 = 1,
a Bernoulli random variable was sampled with probability 𝛿𝑖 to define whether both entities of the participant were affected
(𝑍1𝑖 = 𝑍2𝑖 = 1). If only one entity was affected for participant 𝑖, 𝑍1𝑖 or 𝑍2𝑖 was chosen randomly and set to 1. For a differing
proportion of randomly selected participants, the disease diagnosis of a randomly selected entity was set to missing. Additional
entity-specific misclassification was incorporated with constant sensitivity and specificity 𝜋1, 𝜋0.

4.1.1 Simulation scenarios
We sampled data based on two different scenarios: The outcome occurrence of worse-entity disease 𝑌 was sampled based on
a logistic regression model with parameters 𝜷 = (0, 1,−.75)′ in both scenarios. 𝛿𝑖 is specified based on the logistic function
as well with a linear predictor 𝐱′𝑖𝜸. In Scenario 1, 𝜸 was set to 𝜸 = (−.5, 0, 0)′, which corresponds to a constant 𝛿 = 0.38. In
Scenario 2, we set 𝜸 = (−.5, 0.75, 0)′, which corresponds to 𝛿𝑖’s with an empirical mean of 0.39 and standard deviation of 0.16,
where 𝛿𝑖 varies with 𝑥1.

Entity-specific misclassification is simulated in four different ways, (A) no misclassification, (B) (constant) sensitivity 𝜋1 = 1,
specificity 𝜋0 = 0.95, (C) 𝜋1 = 0.95, 𝜋2 = 1, (D) 𝜋1 = 0.95, 𝜋2 = 0.95.

For each of the eight different combinations (1A–2D) data was sampled with an expected fraction of participants with missing
disease status in one of two entities of 20%, 50%, and 80%. This was done by sampling a Bernoulli random variable with
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probability of 0.2, 0.5, and 0.8 for each “participant,” where 1 indicates full available data and 0 lead to removal of the disease
status in a randomly selected entity.

For each combination of scenario, misclassification in entity-specific diagnosis, and probability of missing single entity
disease status, we sampled 5,000 datasets.

4.1.2 Estimated models in simulation study
For each dataset we estimated the following seven models: (1) Naive logistic regression model using worse-entity disease status
of participants with information on both entities and single entity disease status for participants with missing information in a
single entity, (2) logistic regression with worse-entity disease status as response on subset of participants with disease status
available for both entities (focus on full data only), (3) maximum likelihood estimation of Section 2 with constant 𝛿 estimated
from data, (4) maximum likelihood estimation of Section 2 with potentially varying 𝛿𝑖 modelled via the logistic function H(𝐱′𝑖 �̂�),(5)–(7) as Model (4) but with additionally assumed constant entity-specific misclassification with sensitivity 𝜋1 = 1, specificity
𝜋0 = 0.95; 𝜋1 = 0.95, 𝜋0 = 1; and 𝜋1 = 0.95, 𝜋0 = 0.95, respectively.

Source code to reproduce the results or change simulation settings is available as Supporting Information
(https://onlinelibrary.wiley.com/doi/10.1002/bimj.201900039).

4.2 Results of simulation study
The results of the simulation study can be found in Tables S1–S4 in the online Supporting Information. For each effect estimate
in �̂� and �̂�, we report the average point estimate, standard deviation of point estimates, their average bias, mean squared error,
and coverage frequencies of 95%-confidence intervals (CIs). Figures S1–S8 illustrate the empirical distributions of estimated
regression parameters. In the following, we describe some central findings.

4.2.1 Performance of naive model
The naive modelling strategy (Model 1) yields biased estimates. In simulation Scenario 1, the estimated regression parameters
are on average attenuated, which is expected given the constant probability of missing single entity diagnosis and constant 𝛿.
This corresponds to a non-differential response misclassification with constant sensitivity < 1 and a specificity of 1 for the
true response. The bigger the fraction of participants with missing diagnosis in single entities, the lower the sensitivity of the
observation process and the bigger the bias. For a fraction of only 0.2 participants with available diagnosis in both entities, the
average bias of 𝛽1 is in 1A, for example, −0.28, which is quite substantial given the true slope effect of 1. If there exists additional
non-differential single entity misclassification (Scenarios 1B–1D), the slope estimates are even slightly more attenuated.

In Scenario 2, the probability of being diseased in both entities, 𝛿𝑖, varies with the covariate 𝑋1. The bigger 𝑥1𝑖 the bigger 𝛿𝑖.
Compared to Scenario 1, the bias in 𝛽1 of the naive Model 1 is reduced, since the effect of not observing the disease in affected
entities is somewhat reduced by the fact that with increasing 𝑥1, the probability of being affected in both entities is increased as
well (𝛽1 and 𝛾1 are effects of 𝑥1 in the same direction). This is not explicitly considered within the model, but reduces the bias
of 𝛽1 in Model 1. The 𝛽2’s of Model 1 are on average still quite strongly attenuated.

Coverage frequencies of the 95%-CIs are in both scenarios below the desired level.

4.2.2 Models considering missing diagnosis in entities
The models accounting for response MC due to missing diagnosis in one of two entities (i.e., focus on validation data only,
and MC adjusted maximum likelihood estimation with constant/potentially varying parameter 𝛿𝑖∕𝑗 , Models 2–4) yield unbiased
parameter estimates in Scenario 1A. Coverage frequencies of the 95%-CIs vary between 94% and 96% indicating a performance
as expected.

The variance of the estimates (and consequently the MSE) is biggest in Model 2 and smallest in Model 3. Model 2 utilises
less data than Models 3 and 4, while Model 3 estimates only one parameter for modelling 𝛿 instead of the three of Model 4. This
is sufficient in Scenario 1, since we used a constant 𝛿 in the data generating process; the differences between Models 3 and 4
are very small.

In Scenario 2, Models 2 and 4 yield in 2A unbiased estimates, as well. Model 3 assumes a constant parameter 𝛿 and yields on
average inflated estimates of 𝛽1, since it does not account for the increase of 𝛿𝑖 with increasing 𝑋1. The 95%-CIs for 𝛽1 cover
the true effect estimate only in 71–94%, depending on the fraction of participants with a missing entity. 𝛽2 is not biased from
the model misspecification since 𝑋2 is unrelated to 𝛿𝑖 in the data generating process and 𝑋1 and 𝑋2 are independent.
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Misclassification in the diagnosis for single entities (Scenarios 1B–1D, 2B–2D) biases effect estimates of Models 2–4, that
assume a correct diagnosis in the single entities.

4.2.3 Misclassification in diagnosis of single entities
If the assumptions regarding entity-specific sensitivity and specificity are correct, the optimization of the corresponding like-
lihood yields unbiased estimates with correct coverage frequencies of the CIs (Models 5–7 in Scenarios 1B–1D and 2B–2D,
respectively). Falsely assuming entity-specific misclassification yields, however, biased parameter estimates. The slope param-
eters 𝜷1 and 𝜷2 are in 1A and 2A (without entity-specific misclassification) on average inflated compared to the truth. If mis-
classification exists, but the sensitivity and/or specificity are falsely specified, this leads to biased estimates.

5 SUMMARY, DISCUSSION, AND GUIDE FOR EPIDEMIOLOGISTS

Statistical models need clear definitions of the response variable and covariates to yield meaningful and interpretable results.
Without missing values, the general approach of modelling binary bilateral disease data based on the worse disease status per
participant corresponds to the definition of a binary response that indicates the occurrence of disease in at least one entity.
If diagnosis is missing in one of the two entities for some study participants, the naive modelling strategy of ignoring those
missing values and utilizing the observed disease status of the single entity as response yields a misspecified model in which
the response is not consistently defined between the two different subsets. This leads to biased estimates compared to a model
with the worse disease status as response. The bigger the fraction of study participants with missing diagnosis in one entity, the
bigger the resulting bias.

Here, we derived an approach to avoid this bias by performing a maximum likelihood estimation in which we explicitly
consider the conditional probability mass function of the binary disease status of a randomly selected entity for study participants
with missing information in one of the two entities. We model concurrently the probability of disease in at least one entity and
the probability of disease in both entities given disease in at least one entity based on observed participant characteristics. The
latter part of the model specifies the potential response misclassification for participants with missing single entity disease
information. It is a crucial part of the modelling approach and has to contain the relevant covariates to yield unbiased estimates.
In the context of modelling the occurrence of AMD, it seems plausible that the conditional probability of AMD in both eyes,
given AMD in at least one eye, 𝛿𝑖, depends on characteristics like age, which is established as main risk factor of disease onset
and progression.

The proposed analysis is based on several assumptions: (I) a logistic regression model for disease occurrence in at least one
entity, and (II) a logistic regression model for disease occurrence in both entities, given disease in at least one; (III) for observa-
tions with missing diagnosis in one of two entities randomly missing disease information with respect to the true disease status
of the single entities, and (IV) the transferability of 𝛿𝑖 from the study participants with diagnosis for both entities (validation/full
data) to the participants with a missing diagnosis in a single entity (main study/missing data subset). Assumption (I) appears to
be a reasonable approach to model binary bilateral disease data with respect to person-specific risk factors and is standard for the
analysis of binary responses. In the context of progressing diseases like AMD it is, however, necessary to thoroughly think about
the definition of the (binary) response. If different factors are associated with the onset of early AMD stages and the progression
to late stages, a response definition of “any AMD” as in Section 3 might be problematic and a separate analysis of the different
disease stages or a multinomial modelling approach might be preferable. Assumption (II) is also related to the definition of
response/disease within the statistical model and can be seen as an approach to deal with the two separate disease diagnoses
for each study participant. The explicit modelling of the conditional probability of being affected in both entities, given disease
occurrence in at least one entity can yield interesting and practically relevant insights into disease occurrence/progression and
allows us to consider potentially differential response misclassification from missing diagnosis in single entities. As described in
Section 2, the modelling strategy implies a specific correlation structure of the two single entities within each participant. This
correlation structure is different to other modelling approaches like the estimation of a generalised linear mixed model where
each binary single entity disease status would represent a separate observation and the correlation structure of the observations
could be considered by specifying an appropriate random effects structure. A comparison of such approaches could be an inter-
esting future research project. Our proposed modelling approach implies identical disease probabilities for both entities of each
study participant. If entity-specific information should be incorporated into analysis, alternative modelling approaches have to
be considered. Assumption (III) is central to the proposed modelling approach: If the probability of missing disease information
per entity is structurally related to the true disease status of the entities, the likelihood of the proposed model is misspecified for
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the data subset with partly missing response data and the analysis can yield erroneous results. If diagnosis is, however, mainly
missing independently of the true disease status, the proposed approach should produce meaningful results. In case of AMD,
this is the case if diagnosis in single eyes is missing (mainly) because of randomly occurring low quality fundus images or other
reasons that are unrelated to the actual AMD disease status of the eyes. The modelling approach can, in general, successfully deal
with differing probabilities for missing disease information between the study participants that might be related to risk factors of
disease occurrence as long as the entity with missing disease information within the study participant is missing independently
of the true disease status. As in each model that adjusts for measurement error or misclassification based on validation data, the
model controlling the misclassification process has to be transferable from the validation to the main study data. Here, this is
strongly connected to Assumption (III) and a correct specification of the model for the conditional probability of disease in both
entities given disease in at least one entity, 𝛿𝑖. It might be helpful to have this transferability assumption explicitly in mind when
thinking about potential covariates that are related to disease occurrence and the misclassification process (i.e., the conditional
probability of disease in both entities 𝛿𝑖), which should be considered in the respective linear predictors, and/or covariates that
are related to selection into validation data, that is, the probability to obtain disease information for both entities.

We discussed consequences of additional misclassification in single entity diagnosis. If such misclassification occurs ran-
domly with constant sensitivity and specificity and is ignored, existing associations in the data are blurred and effect esti-
mates are on average attenuated. Differential misclassification can also lead to inflated estimates. If there exists indication
for a big amount of response misclassification, this raises serious concerns regarding the conclusions from statistical models
applied to such data. We derived the likelihood of the proposed model also based on potentially error-prone single entity dis-
ease diagnosis and showed in the simulation study that we can obtain unbiased estimates with known (constant) sensitivity
and specificity of the observation process. It is, however, not possible to estimate the relevant misclassification probabilities
without additional data. The analysis of the example data of the AugUR study showed that it can be challenging to make
reasonable assumptions for the misclassification probabilities. This gets even more difficult if the entity-specific diagnosis suf-
fers from differential misclassification. The practical value of such (sensitivity) analyses is therefore rather limited, a naive
assumption of error-free diagnosis is, on the other hand, questionable as well. If information on entity-specific misclassifi-
cation is available, the derived likelihood can be used to obtain reasonable effect estimates. One application scenario in the
context of AMD could be the modelling of response data that results from an automated and error-prone disease classification
of retinal images based on neural networks (e.g., Grassmann et al., 2018) if reliable information on the performance of the
automated diagnosis is available. Further research could be spent on the incorporation of information from repeated (indepen-
dent) classification of the same fundus images to consider the variation and potential misclassification of the diagnosis within
the models.

The analysis of the example data of the AugUR study revealed only slight differences between the naive modelling approach
and the more complex maximum likelihood analysis considering misclassification. A quite natural question for an analyst dealing
with data of bilateral diseases is to ask in which situation the additional effort of the more complex analysis, including an
implementation of the maximum likelihood optimization, is really necessary. In the simulation study, we showed that the bias
of coefficient estimates increases with an increasing fraction of study participants with missing diagnosis in single entities. The
fraction of participants with only one graded eye in the AugUR baseline study is 15%, which might be quite low compared
to other studies. If response misclassification occurs only because of (ignoring) missing single entity diagnosis, the specificity
of the response observation process is 1, and only participants with an observed single entity disease status 𝑌 ∗ = 0 might be
misclassified. This further decreases the number of potentially misclassified response observations compared to the fraction of
participants with missing single entity diagnosis. In studies with only a small fraction of missing diagnoses and/or a high fraction
of observed cases in the fraction of participants with missing diagnosis, the complex maximum likelihood analysis considering
MC might not be indispensable. It is in general rather easily possible to compare the results of the naive modelling approach
ignoring response misclassification with the results of applying the same model to validation/full data with available diagnosis
for both entities only. If the results of both models differ substantially, this would be rather suspicious and indicate problems in
the results of the naive analysis resulting from the missing data.

In general, we strongly encourage researchers to think about measurement quality when analyzing data on bilateral diseases.
Based on the created R package bilateralogistic that is provided as part of this paper, the implementation of the maximum
likelihood optimization considering response misclassification is not too complicated for a sufficiently experienced analyst. If
the results of a naive modelling approach and the maximum likelihood approach match, this can increase trust in the substantial
conclusions of the analysis. If not, the results of the latter should in general be more trustworthy and additional insights can
be gained from identifying factors that drive the differences and are related to the occurrence of response misclassification in
the data.
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APPENDIX

A.1 Derivation of the likelihood functions
A.1.1 General approach
The contribution of participant 𝑖 to the likelihood is given by the conditional probability mass function of P𝜸,𝜷 (𝑍1𝑖 = 𝑧1𝑖, 𝑍2𝑖 =
𝑧2𝑖|𝐱𝑖) evaluated at the observed data as a function of the regression parameters 𝜸 and 𝜷. Those parameters relate a vector
of covariates 𝐱𝑖 to the conditional probabilities of P(𝑍1𝑖 = 1, 𝑍2𝑖 = 1|𝑌𝑖 = 1, 𝐱𝑖) = H(𝐱′𝑖𝜸) and P(𝑌𝑖 = 1|𝐱𝑖) = H(𝐱′𝑖𝜷), where
𝑌𝑖 ∶= max(𝑍1𝑖, 𝑍2𝑖) and H(⋅) are adequate response functions, for example, the logistic function. P𝜸,𝜷 (𝑍1𝑖 = 𝑧1𝑖, 𝑍2𝑖 = 𝑧2𝑖|𝐱𝑖)
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can be expressed as

P𝜸,𝜷 (𝑍1𝑖 = 𝑧1𝑖, 𝑍2𝑖 = 𝑧2𝑖|𝐱𝑖) = P𝜸(𝑍1𝑖 = 𝑧1𝑖, 𝑍2𝑖 = 𝑧2𝑖|𝑌𝑖 = 1, 𝐱𝑖)P𝜷 (𝑌𝑖 = 1|𝐱𝑖)
+ P𝜸(𝑍1𝑖 = 𝑧1𝑖, 𝑍2𝑖 = 𝑧2𝑖|𝑌𝑖 = 0, 𝐱𝑖)P𝜷 (𝑌𝑖 = 0|𝐱𝑖). (A1)

The joint probabilities of 𝑍1𝑖 and 𝑍2𝑖 given 𝑌𝑖 and 𝐱𝑖 can be derived from Table 1 to be

P𝜸(𝑍1𝑖 = 1, 𝑍2𝑖 = 1|𝑌𝑖 = 1, 𝐱𝑖) = 𝛿𝑖

P𝜸(𝑍1𝑖 = 0, 𝑍2𝑖 = 1|𝑌𝑖 = 1, 𝐱𝑖) = P𝜸(𝑍1𝑖 = 1, 𝑍2𝑖 = 0|𝑌𝑖 = 1, 𝐱𝑗) =
1
2
− 1

2
𝛿𝑖

P𝜸(𝑍1𝑖 = 0, 𝑍2𝑖 = 0|𝑌𝑖 = 1, 𝐱𝑖) = 0

P𝜸(𝑍1𝑖 = 0, 𝑍2𝑖 = 0|𝑌𝑖 = 0, 𝐱𝑖) = 1. (A2)

Assuming a logistic regression model for modelling P𝜷 (𝑌𝑖 = 1|𝐱𝑖) = H(𝐱′𝑖𝜷) = H(𝜂𝑖), with H(⋅) the logistic function, we can
plug the conditional probabilities of (A2) into (A1) and yield

P𝜸,𝜷 (𝑍1𝑖 = 1, 𝑍2𝑖 = 1|𝐱𝑖) = 𝛿𝑖H(𝜂𝑖)

P𝜸,𝜷 (𝑍1𝑖 = 1, 𝑍2𝑖 = 0|𝐱𝑖) = P𝜸,𝜷 (𝑍1𝑖 = 0, 𝑍2𝑖 = 1|𝐱𝑖) =
(1
2
− 1

2
𝛿𝑖
)

H(𝜂𝑖)

P𝜸,𝜷 (𝑍1𝑖 = 0, 𝑍2𝑖 = 0|𝐱𝑖) = 1 − H(𝜂𝑖). (A3)

The full likelihood is the product over all single contributions and therefore given by

𝐿(𝜸, 𝜷) =
𝑛∏
𝑖=1

{
𝛿𝑖H(𝜂𝑖)

}𝑧1𝑖𝑧2𝑖 ×
{(1

2
− 1

2
𝛿𝑖
)

H(𝜂𝑖)
}𝑧1𝑖(1−𝑧2𝑖)+(1−𝑧1𝑖)𝑧2𝑖

×
{
1 − H(𝜂𝑖)

}(1−𝑧1𝑖)(1−𝑧2𝑖).

The corresponding log-likelihood is

𝑙(𝜸,𝜷) =
𝑛∑
𝑖=1

𝑧1𝑖𝑧2𝑖 log
{
𝛿𝑖H(𝜂𝑖)

}
+ {𝑧1𝑖(1 − 𝑧2𝑖) + (1 − 𝑧1𝑖)𝑧2𝑖} log

{(1
2
− 1

2
𝛿𝑖
)

H(𝜂𝑖)
}

+ (1 − 𝑧1𝑖)(1 − 𝑧2𝑖) log
{
1 − H(𝜂𝑖)

}
.

The score functions with respect to 𝜷𝑘 are

𝑠(𝜷𝑘) =
𝑛∑
𝑖=1

{𝑧1𝑖𝑧2𝑖 + 𝑧1𝑖(1 − 𝑧2𝑖) + (1 − 𝑧1𝑖)𝑧2𝑖}𝑥𝑖𝑘 − H(𝜂𝑖)𝑥𝑖𝑘, (A4)

which are identical to the score functions of a logistic regression model with response 𝑌 = max(𝑍1, 𝑍2) (see, for example,
Agresti, 2002, eq. 5.17).

A.1.2 Missing diagnosis in single entities
If diagnosis for a single entity is missing for study participant 𝑗, we assume that the disease status of a randomly selected entity
𝑍𝑟𝑗 = 𝑧𝑟𝑗 was observed. We can derive the conditional probability as

P(𝑍𝑟𝑗 = 𝑧𝑟𝑗|𝐱𝑗) =
∑

𝑧1𝑗 ,𝑧2𝑗=0,1
P(𝑍𝑟𝑗 = 𝑧𝑟𝑗|𝑍1𝑗 = 𝑧1𝑗 , 𝑍2𝑗 = 𝑧2𝑗)P(𝑍1𝑗 = 𝑧1𝑗 , 𝑍2𝑗 = 𝑧2𝑗|𝐱𝑗).
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Plugging the conditional probabilities of (A3) in yields, under the assumption of randomly missing entities P(𝑍𝑟𝑗 = 1|𝑍1𝑗 =
1, 𝑍2𝑗 = 0) = P(𝑍𝑟𝑗 = 1|𝑍1𝑗 = 0, 𝑍2𝑗 = 1) = 0.5:

P(𝑍𝑟𝑗 = 1|𝐱𝑗) =
(1
2
+ 1

2
𝛿𝑗
)

H(𝜂𝑗). (A5)

It is then possible to set up a likelihood based on 𝑛full observations with available diagnosis for both entities and 𝑛miss observations
with diagnosis missing in one of two entities

𝐿(𝜸,𝜷) =
𝑛full∏
𝑖=1

{
𝛿𝑖H(𝜂𝑖)

}𝑧1𝑖𝑧2𝑖 ×
{(1

2
− 1

2
𝛿𝑖
)

H(𝜂𝑖)
}𝑧1𝑖(1−𝑧2𝑖)+(1−𝑧1𝑖)𝑧2𝑖

×
{
1 − H(𝜂𝑖)

}(1−𝑧1𝑖)(1−𝑧2𝑖)

×
𝑛miss∏
𝑗=1

{(1
2
+ 1

2
𝛿𝑗
)

H(𝜂𝑗)
}𝑧𝑟𝑗

×
{
1 −

(1
2
+ 1

2
𝛿𝑗
)

H(𝜂𝑗)
}1−𝑧𝑟𝑗

.

A.1.3 Additional misclassification in single entity diagnosis
In this scenario, a potentially misclassified disease diagnosis 𝑍∗

1 , 𝑍∗
2 , or 𝑍∗

𝑟 is observed instead of the true disease status 𝑍1,
𝑍2, or 𝑍𝑟 of the entities. The misclassification process can be described by the sensitivity and specificity of the single entity
diagnosis

P(𝑍∗
𝑙𝑖 = 1|𝑍𝑙𝑖 = 1) = 𝜋1𝑖

P(𝑍∗
𝑙𝑖 = 0|𝑍𝑙𝑖 = 0) = 𝜋0𝑖; 𝑙 ∈ {1, 2, 𝑟}; 𝑖 = 1,… , 𝑛full + 𝑛miss.

We further assume that the observation process of the two entities of a single subject 𝑖 is independent, that is
P(𝑍∗

1𝑖 = 𝑧∗1𝑖, 𝑍
∗
2𝑖 = 𝑧∗2𝑖|𝑍1𝑖 = 𝑧1𝑖, 𝑍2𝑖 = 𝑧2𝑖) = P(𝑍∗

1𝑖 = 𝑧∗1𝑖|𝑍1𝑖 = 𝑧1𝑖)P(𝑍∗
2𝑖 = 𝑧∗2𝑖|𝑍2𝑖 = 𝑧2𝑖).

The conditional probabilities of P(𝑍∗
1𝑖 = 𝑧∗1𝑖, 𝑍

∗
2𝑖 = 𝑧∗2𝑖|𝐱𝑖) can be derived as

P(𝑍∗
1𝑖 = 𝑧∗1𝑖, 𝑍

∗
2𝑖 = 𝑧∗2𝑖|𝐱𝑖) =

∑
𝑧1𝑖,𝑧2𝑖=0,1

P(𝑧∗1𝑖, 𝑧∗2𝑖|𝑍1𝑖 = 𝑧1𝑖, 𝑍2𝑖 = 𝑧2𝑖, 𝐱𝑖)P(𝑍1𝑖 = 𝑧1𝑖, 𝑍2𝑖 = 𝑧2𝑖|𝐱𝑖)

= P(𝑧∗1𝑖|𝑍1𝑖 = 0, 𝐱𝑖)P(𝑧∗2𝑖|𝑍2𝑖 = 0, 𝐱𝑖)

+
[{

P(𝑧∗1𝑖|𝑍1𝑖 = 1, 𝐱𝑖)P(𝑧∗2𝑖|𝑍2𝑖 = 0, 𝐱𝑖)

+ P(𝑧∗1𝑖|𝑍1𝑖 = 0, 𝐱𝑖)P(𝑧∗2𝑖|𝑍2𝑖 = 1, 𝐱𝑖)
}(1

2
− 1

2
𝛿𝑖
)

+ P(𝑧∗1𝑖|𝑍1𝑖 = 1, 𝐱𝑖)P(𝑧∗2𝑖|𝑍2𝑖 = 1, 𝐱𝑖)𝛿𝑖

− P(𝑧∗1𝑖|𝑍1𝑖 = 0, 𝐱𝑖)P(𝑧∗2𝑖|𝑍2𝑖 = 0, 𝐱𝑖)
]
H(𝜂𝑖). (A6)

The conditional probability of a randomly selected single entity of participant 𝑗 is given by
P(𝑍∗

𝑟𝑗 = 𝑧∗𝑟𝑗|𝐱𝑗) =
∑

𝑧𝑟𝑗=0,1
P(𝑧∗𝑟𝑗|𝑍𝑟𝑗 = 𝑧𝑟𝑗 , 𝐱𝑗)P(𝑍𝑟𝑗 = 𝑧𝑟𝑗|𝐱𝑗)

=
∑

𝑧𝑟𝑗=0,1

{
P(𝑧∗𝑟𝑗|𝑍𝑟𝑗 = 𝑧𝑟𝑗 , 𝐱𝑗)

×
∑

𝑧1𝑗 ,𝑧2𝑗=0,1
P(𝑍𝑟𝑗 = 𝑧𝑟𝑗|𝑍1𝑗 = 𝑧1𝑗 , 𝑍2𝑗 = 𝑧2𝑗) × P(𝑍1𝑗 = 𝑧1𝑗 , 𝑍2𝑗 = 𝑧2𝑗|𝐱𝑗)

}

= P(𝑧∗𝑟𝑗|𝑍𝑟𝑗 = 0, 𝐱𝑗) +
{

P(𝑧∗𝑟𝑗|𝑍𝑟𝑗 = 1, 𝐱𝑗) − P(𝑧∗𝑟𝑗|𝑍𝑟𝑗 = 0, 𝐱𝑗)
}(1

2
+ 1

2
𝛿𝑗
)

H(𝜂𝑗). (A7)
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The likelihood can be set up by multiplying (A6) and (A7) evaluated at the observed data of all study participants

𝐿(𝜸, 𝜷) =
𝑛full∏
𝑖=1

[
(1 − 𝜋0𝑖)2 +

{
(1 − 𝜋0𝑖)𝜋1𝑖(1 − 𝛿𝑖) + 𝜋2

1𝑖𝛿𝑖 − (1 − 𝜋0𝑖)2
}H(𝜂𝑖)

]𝑧∗1𝑖𝑧∗2𝑖

×
[
𝜋0𝑖(1 − 𝜋0𝑖) +

{(
𝜋1𝑖𝜋0𝑖 + (1 − 𝜋1𝑖)(1 − 𝜋0𝑖)

) (1
2
− 1

2
𝛿𝑖
)

+𝜋1𝑖(1 − 𝜋1𝑖)𝛿𝑖 − 𝜋0𝑖(1 − 𝜋0𝑖)
}

H(𝜂𝑖)
](1−𝑧∗1𝑖)𝑧∗2𝑖+𝑧∗1𝑖(1−𝑧∗2𝑖)

×
[
𝜋2
0𝑖 +

{
(1 − 𝜋1𝑖)𝜋0𝑖(1 − 𝛿𝑖) + (1 − 𝜋1𝑖)2𝛿𝑖 − 𝜋2

0𝑖
}H(𝜂𝑖)

](1−𝑧∗1𝑖)(1−𝑧∗2𝑖)

×
𝑛miss∏
𝑗=1

[
(1 − 𝜋0𝑗) + (𝜋1𝑗 + 𝜋0𝑗 − 1)

(1
2
+ 1

2
𝛿𝑗
)

H(𝜂𝑗)
]𝑧∗𝑟𝑗

×
[
𝜋0𝑗 + (1 − 𝜋1𝑗 − 𝜋0𝑗)

(1
2
+ 1

2
𝛿𝑗
)

H(𝜂𝑗)
]1−𝑧∗𝑟𝑗

.
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Chapter 3

Chances and challenges of machine
learning-based disease classification
in genetic association studies

Chapter 3 illustrates the problem of response misclassification in genome-wide association
studies for case-control phenotypes. We perform a GWAS screening using an error-prone
AMD phenotype obtained from predictions of a pre-trained neural network ensemble. Af-
terwards, we perform follow-up analyses accounting for response misclassification based on
a maximum likelihood approach utilizing internal validation data. In doing so, we find ev-
idence for a false positive association signal from the standard analysis, i.e., when ignoring
misclassification. This is due to the existence of differential response misclassification with
respect to a specific genetic variant.
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the maximum likelihood approach with internal validation data and performed the data
analysis with support by Winkler for the genome-wide association screen. Brandl per-
formed manual disease classification in internal validation data. Stark performed follow-up
investigation on the HERC2 variant. Wanner performed a literature search on machine
learning based phenotypes in GWAS. Günther and Heid created the first draft of the
manuscript. All authors contributed to the interpretation of the results and to writing and
revising the manuscript.
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Abstract

Imaging technology and machine learning algorithms for disease classification

set the stage for high‐throughput phenotyping and promising new avenues for

genome‐wide association studies (GWAS). Despite emerging algorithms, there

has been no successful application in GWAS so far. We establish machine

learning‐based phenotyping in genetic association analysis as misclassification

problem. To evaluate chances and challenges, we performed a GWAS based on

automatically classified age‐related macular degeneration (AMD) in UK

Biobank (images from 135,500 eyes; 68,400 persons). We quantified mis-

classification of automatically derived AMD in internal validation data (4,001

eyes; 2,013 persons) and developed a maximum likelihood approach (MLA) to

account for it when estimating genetic association. We demonstrate that our

MLA guards against bias and artifacts in simulation studies. By combining a

GWAS on automatically derived AMD and our MLA in UK Biobank data, we

were able to dissect true association (ARMS2/HTRA1, CFH) from artifacts

(near HERC2) and identified eye color as associated with the misclassification.

On this example, we provide a proof‐of‐concept that a GWAS using machine

learning‐derived disease classification yields relevant results and that mis-

classification needs to be considered in analysis. These findings generalize to

other phenotypes and emphasize the utility of genetic data for understanding

misclassification structure of machine learning algorithms.

KEYWORD S

age‐related macular degeneration (AMD), genome‐wide association study, machine learning‐based
disease classification, response misclassification, UK Biobank
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1 | INTRODUCTION

Imaging technology allows for noninvasive access to de-
tailed disease features in large studies and genome‐wide
association studies (GWAS) on such disease phenotypes
can be expected to accelerate knowledge gain. However,
image‐based disease classification can be challenging for
large sample sizes due to time‐intensive, tiresome manual
inspection. This limitation can be overcome by auto-
mated disease classification via machine learning and
particularly deep learning algorithms. Such emerging
approaches (Litjens et al., 2017) can classify diseases ef-
fortlessly also for huge sample sizes as needed for GWAS
or other Omics approaches.

Deep learning algorithms require enormous input data
with available gold standard classification, to “learn” classi-
fication reliably. Once trained and tested, the algorithms can
be applied to external image data, but they cannot critically
reflect unusual findings or incorporate unforeseen aspects,
for which the human eye and brain have unmet capability.
At the current time, input data to train algorithms are limited
and often specific to a certain setting (e.g., patients from a
clinic). Some characteristics that appear useful for disease
classification in one setting might be misinterpreted in an-
other, which can hamper transferability of trained models; a
topic discussed as dataset shift or domain shift (Csurka, 2017;
Heinze‐Deml & Meinshausen, 2017; Moreno‐Torres, Raeder,
Alaiz‐Rodríguez, Chawla, & Herrera, 2012). Most predictions
of deep learning algorithms for image‐based disease classifi-
cation will be error‐prone and the structure of mis-
classification will generally be unknown. When using
automated disease classification as outcome for association
analyses and GWAS, the underlying response misclassifica-
tion is usually unaccounted for, giving rise to biased
effect estimates and potentially false‐positive associations
(Carroll, Ruppert, Stefanski, & Crainiceanu, 2006; Hausman,
Abrevaya, & Scott‐Morton, 1998; Neuhaus, 1999). Extent and
structure of the misclassification process can be assessed by
internal validation data, that is, a subset of participants with
both automated and gold standard classification, which can
also be utilized to account for response misclassification in
statistical models (Carroll et al., 2006; Lyles et al., 2011).

At present, it is unclear whether machine learning‐
based disease classification is of any utility for association
analyses, particularly for detecting disease signals in
GWAS. We thus set out to evaluate machine learning‐
derived disease classification in GWAS on the example of
age‐related macular degeneration (AMD) and we devel-
oped a statistical approach accounting for the implied
response misclassification. AMD is an ideal role model,
as a common disease ascertained via imaging of the
central retina (Klein et al., 2014) and with particularly
strong known genetic effects (Fritsche et al., 2016). The

manual grading of images for AMD requires a substantial
effort by trained staff and is currently an obstacle for
homogeneous disease classification within and across
large studies. For example, in UK Biobank (Bycroft
et al., 2018), >135,000 color fundus images are available
for >68,000 study participants, but there is no manually
classified AMD available so far. Several machine learning
algorithms have been emerging to classify AMD: they
show promising performance, but still yield misclassified
predictions, have acknowledged issues due to domain
shift or insufficient sample size for training, or lack
validation in external studies (Burlina et al., 2017;
Grassmann et al., 2018; Peng et al., 2019; Ting
et al., 2017). So far, there is no GWAS on fundus image
ascertained AMD available in UK Biobank, manually
classified or machine learning based.

2 | MATERIALS AND METHODS

2.1 | Machine learning‐based disease
classification in GWAS as misclassification
problem

We consider a binary disease Y, for which each individual
has a true status of disease (disease yes/no). A gold
standard classification often involves manual grading of
medical images via trained medical staff, which is con-
sidered here to correspond to the true disease classifica-
tion. When applying a trained machine learning
algorithm on medical images, we yield an automated
disease classification Y * for each individual. For an in-
dividual i with true disease status Y y=i i, the classifica-
tion can either be correct or wrong (y y* =i i, or y y*i i≠ ).
If a gold standard classification is available (for at least a
subset of study participants, internal validation data), the
performance of the algorithm can be quantified by cross‐
tabulation of the observed error‐prone y* and the gold‐
standard classification y across all participants in the
validation substudy (confusion matrix); the (mis‐)
classification process can be characterized by classifica-
tion probabilities P Y k Y( *= | = l), for l k, {0, 1}∈ . For
l k= = 1 and l k= = 0, these probabilities correspond to
the sensitivity and specificity of the algorithm,
respectively.

In the following, we focus on bilateral diseases due to
our motivating example of an eye disease (AMD): for
each individual i, two entity‐specific binary disease vari-
ables Z Z, {0, 1}i i1 2 ∈ (here: AMD per eye) are used to
define the binary person‐specific disease status as the
“worse entity disease status” Y Z Zmax( , )i i i1 2≔ , corre-
sponding to “AMD in at least one eye” versus “AMD in
none of the two eyes” in our example. The error‐prone
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machine learning‐based classification of entity‐specific
disease Z Z* , *i i1 2 , will propagate to error‐prone person‐
specific disease status, Y Z Z= max( , )* * *i i i1 2 , when com-
pared to the manually graded “true” Yi .

We were interested in evaluating the potential and con-
sequences of such automatically classified disease in GWAS.
The standard approach in GWAS is logistic regression for
modeling the association of a genetic variant (observed as
genotypes {0,1,2}∈ or imputed allelic dosages [0,2]∈ ) with a
binary disease status, usually adjusted for other covariates
like age, sex, and genetic principal components; Wald tests
are used to test for genetic association, accounting for mul-
tiple testing by judging at a Bonferroni‐corrected significance
level of p<5 × 10−8. When the association of the genetic
variant with the true disease status Y (here: manually clas-
sified person‐specific AMD) follows a logistic regression
model, a naïve usage of the error‐prone disease status Y*
(here: automatically derived person‐specific AMD) in stan-
dard logistic regression corresponds to the utilization of a
misspecified model for the observed data (naïve association
analysis). This has known consequences of decreased power,
biased (genetic) association estimates, and potentially false‐
positive associations (Carroll et al., 2006; Hausman
et al., 1998; Neuhaus, 1999). With additional information on
the misclassification process, it is possible to correct for the
bias and inflated type‐I error. However, it is in general not
possible to recover power lost due to misclassification.

2.2 | MLA to adjust for response
misclassification in bilateral disease

In contrast to classical diseases and logistic
regression (Carroll et al., 2006; Hausman et al., 1998;
Neuhaus, 1999), no method is currently available to
adjust for response misclassification in bilateral dis-
eases. As described previously (Günther, Brandl,
Heid, & Küchenhoff, 2019), the conceptual challenge
is to account for two types of misclassification:
(a) entity‐specific misclassification that propagates to
an error‐prone person‐specific disease status; and
(b) person‐specific misclassification from a missing
disease status in one of the two entities. We thus de-
veloped an MLA to account for the fact that we are
using an error‐prone response Y Z Z* max( * , * )i i i1 2≔ ,
Z Z* , * {0,1}i i1 2 ∈ , in the association analysis, while the
true disease Y Z Zmax( , )i i i1 2≔ , Z Z, {0,1}i i1 2 ∈ is as-
sumed to follow a logistic regression model.

Details are provided in Appendix A. The general idea
of the MLA is to factorize the likelihood of the observed,
error‐prone response data into two parts, the model for
the association between risk factor and true (but in
general unobserved) response (true association model)

and a model for the misclassification process (mis-
classification model). We adapted this well‐established
methodology for analyzing misclassified binary response
data (Carroll et al., 2006; Lyles et al., 2011) to the scenario
of bilateral disease with a “worse‐entity” disease defini-
tion (i.e., the person‐specific disease status is defined as
the status of the worse entity). We assume conditional
independence of the classification in the two entities
z z* , *li i2 of an individual i, given the true disease status.
This assumption can be checked by validation data.
Then, we have

P z z x P z z x P z z x

P z z x

, | = | , × | ,

× , , |

( ) ( ) ( )

( ) .

* * * *i i i

z z
i i i i i i

i i i

, { , }
1 2

0 1
1 1 2 2

misclassification model

1 2

true association model

i i1 2
  

  


∑

The misclassification model is characterized by the
sensitivity and specificity of the entity‐specific classifica-
tion process; the true association model is the assumed
logistic regression model for the person‐specific disease
status. When internal validation data are available, the
parameters of both models can be estimated jointly by
optimizing a likelihood with different contributions of
participants with only the error‐prone response and
participants in the validation data with true and error‐
prone response available.

Our developed approach allows us to adjust for both
the entity‐specific misclassification from an automated
classification and the misclassification of the person‐
specific status when one entity is ungradable. Alto-
gether, we model four parameters in the MLA: (a) the
conditional probability of worse entity disease given
the covariate of interest; (b) the probability of disease
in both entities conditional on the disease in at least
one entity (to adjust for missing information of one of
two entities); as well as (c) the sensitivity and (d) the
specificity of the entity‐specific misclassification pro-
cess. For each parameter, the conditional probabilities
are modeled using the logistic function (as in standard
logistic regression) allowing for a dependency on a
parameter‐specific set of person‐specific covariates. An
open source R (R Core Team, 2019) implementation is
available.

2.3 | Simulation study to investigate the
performance of the MLA

We repeatedly simulated association data for a standard
normal covariate X and a (true and error‐prone) binary
outcome of a bilateral disease. To do this, we (a) sampled
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the true, person‐specific worse entity status associated
with X for 5,000 individuals, (b) derived the true entity‐
specific disease status (e.g., manual eye‐specific AMD
classification) given assumptions, (c) sampled the entity‐
specific error‐prone disease status (e.g., automated AMD
classification), and (d) derived an error‐prone, person‐
specific disease status. Afterward, we removed the true
disease status for 4,000 individuals, yielding a subset of
1,000 with both true and error‐prone disease status
available (validation data). In different simulation sce-
narios, we varied sensitivity and specificity of the entity‐
specific classification. Classification probabilities were
either constant for all individuals (nondifferential mis-
classification) or varying with X (differential mis-
classification). We also varied the fraction of individuals
with missing classification in one of two entities
(25–75%). Data were sampled with or without an effect of
X on the true person‐specific response Y (β {0, 1}Y ∈ , log
odds ratio [OR]) and on the probability δ of having dis-
ease in both entities given disease in at least one entity
(β {0, 1}δ ∈ , log OR). We estimated the covariate effect
using the naive analysis (logistic regression, which ig-
nores misclassification) and the developed MLA1 and
MLA2 accounting for response misclassification without
(MLA1) and with allowing (MLA2) for differential mis-
classification, respectively. To compare the performance
of the naïve analysis and the derived MLA, we in-
vestigated the distribution of effect estimates β̂Y across
1,000 simulation runs in each scenario, computed the
mean squared error of estimates relative to true effects,
frequencies of rejected tests for no association, and cov-
erage frequencies of 95% confidence intervals (CI). A
detailed description of the simulation study, data sam-
pling, and estimated models is given in Appendix B.

2.4 | UK Biobank study information
and data

UK Biobank recruited ∼500,000 individuals aged 40–69 years
from across the United Kingdom. Genetic data are available
from the Affymetrix UK Biobank Axiom Array imputed to
the Haplotype Reference Consortium (McCarthy et al., 2016)
and the UK10K haplotype resource (Walter et al., 2015);
details described elsewhere (Bycroft et al., 2018). The UK
Biobank baseline data contains 135,500 fundus images of
68,400 individuals. The images are taken with the Topcon 3D
OCT‐1000 Mark II system with a field angle of 45° without
application of mydriasis (Keane et al., 2016). The images can
be utilized for automated or manual AMD classification;
however, there is no image‐based AMD classification pub-
licly available so far.

2.5 | AMD classification in UK Biobank
derived from a machine learning
algorithm and manually

We performed an automated AMD classification for
68,400 individuals with available fundus images in UK
Biobank with additional manual classification in a subset
of 2,013 participants, as described in Figure 1.

In epidemiological studies, AMD is usually classi-
fied per eye via manual grading of color fundus images
by trained graders using established classification sys-
tems. One such system is the nine‐step Age‐Related Eye
Disease Study (AREDS) severity scale (Davis
et al., 2005), which defines early AMD combining a six‐
step drusen area scale with a five‐step pigmentary ab-
normality scale and is therefore particularly detailed
and time‐consuming when applied manually. Another
more recent system is the Three Continent AMD Con-
sortium severity scale (3CC; Klein et al., 2014), which
defines early AMD based on drusen size, drusen area,
and the presence of pigmentary abnormalities and is
thus more practical to apply manually. While the defi-
nition of “advanced AMD” is fairly robust across sys-
tems, each system defines “early” or “intermediate”
AMD differently, but provides a clear assignment
strategy to “no,” “early/intermediate,” or “advanced
AMD” (or “no” and “any AMD”).

To obtain an eye‐specific AMD status for the 135,500
images of the UK Biobank (≤1 image per eye; 67,100
individuals with images for both eyes, 1,300 with image
for only one eye), we applied a published convolutional
neural network ensemble (Grassmann et al., 2018) to the
fundus images following recommendations of the au-
thors. The ensemble was trained to classify each image
into the AREDS nine‐step severity scale or three addi-
tional categories for advanced AMD (GA, NV, mixed
GA+NV, “AREDS9 + 3 steps”) or “ungradable.” From
this, we derived the person‐specific automated AMD
status as the AMD status of the worse eye (i.e., the higher
score of the AREDS9 + 3) or as the status of the only eye,
if applicable. We collapsed AREDS AMD severity steps
2–9 or any of the three advanced AMD categories to
“any AMD.”

To generate internal validation data, we selected a
subset of UK Biobank individuals for additional manual
grading. When randomly sampling participants, one
would expect to catch only few AMD individuals; we thus
selected (a) persons with high genetic risk score for AMD
based on the known 52 variants for advanced AMD
(Fritsche et al., 2016; >99th percentile, n= 829); (b)
persons with low genetic risk score (<1st percentile,
n= 828); and (c) persons with self‐reported AMD not
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already selected (n= 356). Results of the machine
learning‐based AMD classification were not used to select
individuals into the validation subset and we can there-
fore validly estimate the algorithm's classification per-
formance (sensitivity/specificity given the manual
classification).

Each of the two eyes of the selected 2,013 individuals
was manually classified for AMD according to the 3CC
system (Klein et al., 2014) by a trained ophthalmologist
(five AMD categories, 1 for no AMD, 3 for early, 1 for
advanced AMD, and 1 “ungradable”). We collapsed the
five AMD categories to “any AMD," “no AMD," or “un-
gradable” and derived a person‐specific AMD status as
the AMD status of the worse eye. Assuming neglectable
misclassification in the eye‐specific manually classified
AMD status, this corresponds to the true person‐specific
AMD status if both eyes are manually gradable or one eye
is manually ungradable and the second eye is manually
graded as having AMD. If one eye is ungradable and the
second, gradable eye is manually classified as “no AMD,"
the true person‐specific disease status is unknown.

We derived eye‐specific as well as person‐specific
confusion matrices based on the detailed (AREDS9 + 3
and five‐category 3CC) and collapsed classifications. To
conduct the GWAS with automatically derived “any
AMD," we restricted the data with available automated
AMD classification to unrelated individuals of European
ancestry with valid GWAS data (see below), and derived
the confusion matrices also for the restricted valida-
tion data.

2.6 | Genetic association analyses for
AMD without and with accounting for
misclassification

We performed a GWAS on the automatically derived
“any AMD” versus “no AMD” in unrelated UK Biobank
participants (relatedness status >3rd degree) of European
ancestry (self‐report “White," “British," “Irish,” or “Any
other White background”) as recommended (Loh, Ki-
chaev, Gazal, Schoech, & Price, 2018). For each variant,
we applied standard logistic regression (i.e., the naïve
analysis ignoring misclassification in the automatically
derived AMD status) under the additive genotype model
and applied a Wald‐test as implemented in QUICKTEST
(Kutalik et al., 2011). We included age and the first two
genetic principal components as covariates. We excluded
variants with low minor allele count (MAC< 400, cal-
culated as NMAC = 2 × × MAF, sample size N, minor
allele frequency MAF) or with low imputation quality
(rsq < 0.4) yielding 11,567,158 analyzed variants. To cor-
rect for potential population stratification, we applied a
Genomic Control correction (λ= 1.01 based on the ana-
lyzed variants excluding the 34 known AMD loci; Devlin,
Roeder, & Devlin, 2013).

We selected genome‐wide significant variants (pGC<
5.0 × 10−8), clumped them into independent regions
(≥500 kB between independent regions) and selected the
variant with lowest p value in each region (“lead var-
iant”). We also selected 21 of the 34 reported lead var-
iants from the established advanced AMD loci, for which

FIGURE 1 Schematic diagram of AMD classification and analyzed data. 3CC, Three Continent AMD Consortium severity scale; AMD,
age‐related macular degeneration; AREDS, Age‐Related Eye Disease Study severity scale; GWAS, genome‐wide association studies
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we had ≥80% power to detect them in a UK Biobank
sample size of 3,544 cases and 44,521 controls with
Bonferroni‐adjusted significance—under the assumption
that the reported effect sizes for advanced AMD were the
true effect sizes and ignoring any misclassification in the
AMD classification (Appendix C). Information on linkage
disequilibrium in Europeans was obtained from LDLink
(Machiela & Chanock, 2015). Enrichment of directionally
consistent or enrichment of nominally significant asso-
ciation for the 21 reported lead variants (when compared
to the reported direction in literature) was tested based
on the Exact Binomial test for H :Prob = .50 or
H :Prob = .050 , respectively.

To evaluate the robustness of the genetic association
upon accounting for the misclassification, we applied the
derived MLAs for the selected variants. For this, we
modeled the conditional probability of AMD depending
on age, genetic variant, and two genetic principal com-
ponents (as in the naïve analysis). The MLAs accounted
for the misclassification of the eye‐specific automated
classification and for the person‐specific misclassification
from missing AMD status in one of two eyes. For the
misclassification process of the eye‐specific automated
classification (quantified by sensitivity and specificity),
we allowed for a linear association with age and modeled
two scenarios for the association with the genetic variant:
(a) no association (nondifferential, MLA1) or (b) linear
association (differential misclassification, MLA2). We
compared association estimates of the naive analysis with
MLA1‐ and MLA2‐analysis and judged significance at
Bonferroni‐corrected significance levels for a family‐wise
error rate of 0.05. To allow for comparisons across dif-
ferent models, we did not apply genomic control correc-
tion for these comparative analyses. In addition, we
evaluated the robustness of findings from the naïve
analysis for the selected lead variants upon adjusting for
20 instead of 2 genetic principal components.

To follow‐up on the HERC2 lead variant finding (see
Section 3), we quantified lightness of fundus images by
calculating gray levels for the “RGB” fundus images
(weighted sum of R, G, and B values, 0.30 × R+ 0.59 ×
G+ 0.11 × B, as implemented in IrfanView).

3 | RESULTS

3.1 | Linking misclassification theory to
machine learning disease classification

We here establish the usage of machine learning‐derived
disease classification in genetic association analyses as a
response misclassification problem in logistic regression
(see Section 2). We present a newly developed maximum

likelihood approach (MLA) for bilateral diseases like
AMD (see Section 2). This includes two versions: (a) as-
suming nondifferential misclassification (MLA1, i.e., no
dependency of misclassification probabilities on the
covariate of interest, here the genetic variant) and (b)
allowing for differential misclassification (MLA2, i.e., de-
pendency on the covariate of interest). There are existing
MLAs for considering response misclassification in lo-
gistic regression using internal validation data (Carroll
et al., 2006; Lyles et al., 2011): these MLAs refer to classic
diseases where the misclassification is on the person‐
specific disease status. Our developed approach provides
a general framework for bilateral diseases with entity‐
specific misclassification that propagates to person‐
specific disease misclassification. Our approach also al-
lows for missing classification in one of two entities,
which is a second source of bias in association analyses
for bilateral diseases as reported previously (Günther
et al., 2019). We exemplify our approach on machine
learning‐derived AMD compared to manually graded
AMD. Since machine learning algorithms for AMD are
trained on images with human manual AMD grading as
benchmark, we assume the manual classification to be
gold standard.

We evaluated the performance of the naïve analysis
and our developed MLA1 and MLA2 in a simulation
study with different misclassification scenarios. By
this, we documented substantial bias when the naïve
analysis was applied to misclassified data, which was
comparable to the theory for classic (nonbilateral)
diseases (Carroll et al., 2006; Neuhaus, 1999). Naïve
association estimates were biased toward zero in case
of nondifferential misclassification and in any direc-
tion in case of differential misclassification. In the
latter scenario, we observed a lack of type I error
control for the naïve analysis. Furthermore, we showed
our MLA1 and MLA2 to effectively remove bias and
keep type I error when specified correctly (Tables 1 and
S1 and Appendix D). In case of differential mis-
classification, MLA1 (assuming nondifferential mis-
classification) yields biased estimates and a lack of type
I error control as well, comparable to the naïve
analysis.

3.2 | AMD in UK Biobank based on
automated classification and
validation data

We applied a published convolutional neural network
ensemble (Grassmann et al., 2018) to automatically de-
rive eye‐ and person‐specific AMD classifications for
68,400 UK Biobank participants with fundus images at
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baseline (135,000 eyes; Table S2a). From this, we derived
eye‐specific “any AMD” status (i.e., any early AMD stage
or advanced AMD versus AMD‐free) and person‐specific
“any AMD” status based on the worse eye (see Section 2).
Among the 68,400 participants, 10,128 were ungradable
for AMD in both eyes by the automated classification
(i.e., missing person‐specific AMD status by the auto-
mated classification, 14.8%), 4,870 were classified as “any
AMD” and 53,402 as AMD‐free (Table S2b). Among the
58,272 automatically gradable participants (of these:
20.2% automatically gradable only in one eye), 8.4% had
AMD and 91.6% were AMD‐free. This included 48,065
unrelated individuals of European ancestry with GWAS
data (3,544 “any AMD” cases, 44,521 AMD‐free controls;
19.8% with only one eye gradable; Table S2b).

To quantify the performance of automated AMD
classification, we manually classified AMD in a subset as
internal validation data (4,001 images, 1≤ image per eye,
2,013 individuals). When comparing automated to man-
ual (true) “any AMD” status, we found an eye‐specific
sensitivity of 73% and specificity of 90% in the full vali-
dation data and a person‐specific sensitivity of 77% and
specificity of 91% among the participants in the GWAS
(Table 2). We found no structural differences between the
full validation data and when restricting to the GWAS
data (1,337 individuals, Table S3a,b). Both, the manual
and automated classification included the category “un-
gradable.” Among the 4,001 eyes, 1,101 were manually
ungradable, of which the automatic classification yielded

74% as ungradable as well, but classified 9% as AMD and
17% as AMD‐free, which raises concerns about these
classifications. In summary, we found the automated
classification to yield reasonable, but error‐prone results.

3.3 | GWAS on automated AMD
classification in naïve analysis identifies
two loci

While we have some idea about the extent of the mis-
classification from validation data and about its impact
on genetic association estimates from simulations, it is
unclear whether the automated any AMD classification is
“good enough” for GWAS. We conducted a GWAS for
person‐specific automatically derived “any AMD” in UK
Biobank (3,544 “any AMD” cases; 44,521 controls) ap-
plying logistic regression as usual, which is without ac-
counting for misclassification (naïve analysis). We found
53 variants with genome‐wide significance (pGC< 5.0 ×
10−8) spread across two distinct loci (defined as lead
variant and proxies +/− 500 kB, Figure 2a,b; Table S4a):
the known ARMS2/HTRA1 locus (lead variant here
rs370974631, pGC= 3.1 × 10−20, effect allele frequency
[EAF] = 0.23) and an unknown locus for AMD near
HERC2 (lead variant rs12913832, pGC= 4.7 × 10−16,
EAF= 0.23). This ARMS2/HTRA1 lead variant was
highly correlated to the reported lead variant for ad-
vanced AMD, rs3750846, and effect estimates were

TABLE 2 Confusion matrices
comparing manual and automated AMD
classification per eye and per person

(a) Per eye (4,001 eyes, 2,013 individuals)

Automated classification

Manual Ungradable No AMD Any AMD Sum

Ungradable 813 (74%) 185 (17%) 103 (9%) 1101 (100%)

No AMD 107 (4%) 2207 (90%) 138 (6%) 2452 (100%)

Any AMD 20 (4%) 103 (23%) 325 (73%) 448 (100%)

(b) Per person (1,337 individuals)

Automated classification

Manual classification No AMD Any AMD Sum

Ungradable/NAa (NA) 210 (80%) 53 (20%) 263 (100%)

No AMD 750 (91%) 72 (9%) 822 (100%)

Any AMD 58 (23%) 194 (77%) 252 (100%)

Note: Shown are absolute numbers and conditional classification probabilities, that is, in row i and
column j,P(automated = j | manual = i) as %, with i, j = “Ungradable,” “No AMD,” “Any AMD”: (a) for
all eyes in the validation data; 4,001 eyes of 2,013 individuals. (b) For all individuals in the overlap
between validation data and GWAS; 1,337 individuals, all gradable with automated classification.
Abbreviations: AMD, age‐related macular degeneration; GWAS, genome‐wide association studies.
aNA, true AMD status based on worse eye not available, since one eye was manually ungradable and the
second AMD‐free.
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directionally consistent (r² = .93; Table S4b). The next
best known locus is the CFH locus, which showed close
to genome‐wide significance here (smallest p value
pGC = 7.0 × 10−7, rs6695321, EAF= 0.62): rs6695321 is in
linkage disequilibrium with two reported CFH variants
(rs61818925, rs570618: r²= .63 or r² = .40, D' = 0.81 or
D' = 1.00, EAF= 0.58 or 0.36, respectively; Table S4b)
suggesting that rs6695321 captures the signals of these
two reported variants.

Among the reported lead variants of the 34 advanced
AMD loci (Fritsche et al., 2016), we had ≥80% power to
detect 21 of these with Bonferroni‐adjusted significance
(Table S5). When comparing effect sizes of these 21
variants from this analysis on “any AMD” in UK Biobank
with reported effect sizes for advanced AMD, we found
15 with directional consistency (pBin = 0.078) and 7 with
directionally consistent nominal significance (pBin = 4.9
× 10−5; Figure 4a and Table S4c). The overall smaller
effect sizes for automated “any AMD” compared to re-
ported effect sizes for advanced AMD can be explained by
a bias from misclassified automated AMD and by smaller
effect sizes for early AMD merged into the definition of
“any AMD.” For the other 13 of the 34 variants, we re-
frained from interpreting results due to lack of power in
this analysis (Table S4c). Results were similar when ad-
justing for 20 instead of 2 genetic principal components
(data not shown). While the yield of only few known
AMD signals in this UK Biobank GWAS may be dis-
appointing, this is not fully unexpected given an effective

sample size (Ma, Blackwell, Boehnke, Scott, & GoT2D
investigators, 2013) of 13,130 and a power estimate of
∼80% (assuming no misclassification and reported effect
sizes) to detect associations with genome‐wide sig-
nificance for only 6 of the 34 established variants (CFH,
C2/CFB/SKIV2L, ARMS2/HTRA1, C3, APOE, SYN3/
TIMP3; Table S5).

In summary, our GWAS on automated AMD in UK
Biobank detected the established ARMS2/HTRA1 locus,
an unknown locus around HERC2 with genome‐wide
significance, and the established CFH locus to some
extent.

3.4 | Applying the developed MLA to
account for misclassification for selected
variants

Due to our simulation results and theory (Carroll
et al., 2006; Neuhaus, 1999), we expected our GWAS on
automated (error‐prone) AMD to yield biased estimates
and, when the misclassification was differential toward
the genetic variant, even potentially false signals. We
applied our developed MLAs for 26 selected variants: (a)
the three lead variants detected here with (near) genome‐
wide significance (CFH: rs6695321, ARMS2/HTRA1:
rs370974631, HERC2: rs12913832), (b) the three reported
independent variants in the CFH locus with MAF≥ 5%
(rs61818925, rs570618, rs10922109; two of these

FIGURE 2 GWAS results in UK Biobank based on automatically derived “any AMD” from naïve analysis. Association analyses
were conducted using the error‐prone, machine learning‐derived AMD classification in UK Biobank participants with 3,544 “any
AMD” cases and 44,521 controls via logistic regression adjusted for age and two genetic principal components, the naïve analysis
ignoring misclassification. Shown are (a) Manhattan plot of 11,567,158 analyzed variants; dark blue: genome‐wide significant and
previously established (Fritsche et al., 2016) locus, light blue: unknown genome‐wide significant locus, orange: other 33 previously
established loci for advanced AMD), and (b) expected versus observed −log10 p values; black: all variants, gray: all variants outside
the 34 previously reported loci. 3CC, Three Continent AMD Consortium; AMD, age‐related macular degeneration; GWAS, genome‐
wide association studie
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correlated to the here identified CFH lead variant), and
(c) the other 20 of the 34 reported lead variants (Fritsche
et al., 2016), for which we had reasonable power in this
analysis (including 1 reported ARMS2/HTRA1 variant
correlated to here identified variant). This yielded a total
of ∼23 independent variants.

Our MLAs estimated simultaneously (a) sensitivity
and specificity of the eye‐specific misclassification pro-
cess and (b) genetic association accounting for the mis-
classification. With regard to sensitivity and specificity,

we found (a) an overall sensitivity of 64.5% (95% CI:
60.1%, 68.7%) and a specificity of 98.6% (98.4%, 98.8%),
that is, a false‐negative “any AMD” proportion of 35.5%
and a false‐positive of 1.4%; (b) few evidence for an as-
sociation of the sensitivity with any selected variant
(p> .05/(23 × 2)= 1.09 × 10−3) and no association with
the specificity, except for two variants: HERC2 lead var-
iant, rs12913832, and the reported CFH lead variant
rs10922109 (ORspec = 0.64, pspec = 7.38 × 10−9 and OR-

spec = 1.36, pspec = 2.29 × 10−4, respectively; Table S6 and

FIGURE 3 Genetic effect estimates for the three lead variants in UK Biobank without and with accounting for misclassification.
Shown are genetic effect estimates (odds ratios [OR]) and 95% confidence intervals for three lead variants from the GWAS on
automated AMD classification with 3,544 “any AMD” cases and 44,521 controls from three models: without accounting for the
misclassification; naïve analysis, red. With accounting for nondifferential misclassification, that is, no dependency on the genetic
variant; MLA1, green. And accounting for a differential misclassification, that is, dependency on the genetic variant; MLA2, blue.
Both MLAs accounted for missing AMD information in one of two eyes and a misclassification associated with age. Y‐axis is on
log‐scale. AMD, age‐related macular degeneration; GWAS, genome‐wide association studies; MLA, maximum likelihood approach

FIGURE 4 Comparison of 21 reported genetic effect estimates for advanced AMD with estimates for automatically derived “any
AMD” from UK Biobank without and with accounting for misclassification. We selected the 21 reported AMD lead variants, for
which we had ≥80% power to detect them in this UK Biobank sample size with Bonferroni‐adjusted significance. Shown are log OR
effect estimates and 95% confidence intervals reported for advanced AMD on x‐axis versus UK Biobank estimates for automatically
derived “any AMD” on y‐axis from the naïve analysis (logistic regression ignoring misclassification), MLA1, and MLA2. AMD,
age‐related macular degeneration; MLA, maximum likelihood approach; OR, odds ratio
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Appendix E). Therefore, we found a misclassification that
was associated with some genetic variants (differential),
which could induce bias into either direction as well as a
severe lack of type I error control.

When comparing genetic association estimates from
our MLA1 and MLA2 with the naïve analysis for our
three detected lead variants, we found interesting pat-
terns (Figure 3 and Table S7a). (a) For CFH and ARMS2/
HTRA1, we found consistent effect estimates across the
three analyses, with larger confidence intervals when
using the more complex models MLA1 or MLA2. (b) For
HERC2, MLA1 yielded comparable results to the naïve
analysis, but when accounting for differential mis-
classification (MLA2), the effect vanished (MLA2: OR=
1.03, p= .76; MLA1: OR= 1.34, p= 1.11 × 10−12; naïve:
OR= 1.26, p= 4.16 × 10−16). The results of MLA1 for this
variant were as expected, since a model considering
nondifferential misclassification leads in general, by as-
sumption, to larger estimates and widened confidence
intervals if any misclassification is present.

When applying MLA1 and MLA2 to the three re-
ported CFH locus variants and the further 20 of the
34 reported lead variants, we found the following
(Table S7b,c): (a) Effect estimates for all three CFH var-
iants increased when applying MLA2 compared to the
naïve analysis. This was particularly interesting for the
reported CFH lead variant rs10922109, where we now
observed a nominally significant association into the re-
ported direction (MLA2: OR= 1.15, p= .047; naïve:
OR= 1.00, p= .98; Table S7c). This is in line with the
observed association of the specificity and this CFH var-
iant. (b) For the other 20 reported lead variants, many
variants showed increased effect estimates by MLA2
compared to the naïve analysis (effect estimates mostly
more comparable to reported effect sizes; Fritsche
et al., 2016; Figure 4c). Altogether, MLA results con-
firmed the CFH and ARMS2/HTRA1 loci and unmasked
the HERC2 finding as false positive.

3.5 | Misclassification depended on eye
and fundus image color

Interestingly, our HERC2 lead variant, rs12913832, is
precisely the variant for which the G allele was con-
sidered causal for blue eyes (Sturm et al., 2008). We were
able to support this in our AugUR (Brandl et al., 2018;
Stark et al., 2015) study (n= 1026; reported “light eye
color” for 14%, 36%, or 97% of participants with A/A, G/
A, or G/G, respectively). Eye color is discussed as AMD
risk factor, but the debate is on blue eyes to increase
risk due to increased susceptibility to UV‐radiation
(Chakravarthy et al., 2010), which is in contrast to our

observation of brown eyes to increase AMD risk and a
challenge for interpreting this finding. It was interesting
to see the HERC2 rs12913832 association vanish when
accounting for rs12913832‐associated misclassification.
This was in line with the observed strong association of
the specificity with this variant (ORspec = 0.64 per A al-
lele; Table S6a) resulting in 3.0%, 1.9%, or 1.2% of false‐
positive AMD classifications among persons with A/A,
A/G, or G/G, respectively. This notion of a larger mis-
classification among A/A versus G/G individuals was
further supported by the larger fraction of manually un-
gradable images that were deemed gradable by the au-
tomatic classification among A/A versus G/G (54.5% vs.
38.8%, respectively; Figure 5). When visually inspecting
fundus images per genotype group, the images for A/A
had a darker appearance than those for A/G or G/G
(Figure 5), which we were able to quantify by means of
average gray level per image of 46.4, 49.0, or 53.6, re-
spectively. Therefore, the HERC2 signal appeared to be
an artifact due to a larger misclassification for brown eyes
linked to darker fundus images. One may hypothesize
that the darker eye color had reduced light exposure
during fundus photography, which gave rise to darker
images and more misclassified AMD‐free eyes. The no-
tion of a differential misclassification due to eye color
was further supported by the fact that the full HERC2
signal disappeared by modeling a misclassification de-
pendency on the causal variant for eye color (rs12913832;
Figure S1a,b), while some signal remained when mod-
eling a misclassification dependency on the respective
HERC2 variant in the model (Figure S1c). In summary,
we found the MLA2 not only to effectively remove the
artifact signal of the naïve GWAS, but also to help un-
derstand the dependencies of the misclassification.

4 | DISCUSSION

GWAS on machine learning‐derived classification of
imaging‐based diseases, like AMD, can be expected to
accelerate knowledge gain and drug target development
(Nelson et al., 2015), since it will enable substantially
increased sample sizes and refined, homogeneous phe-
notyping. To this date, there was no GWAS reported
using a machine learning‐derived classification for AMD
or any other imaging‐based disease—to the best of our
knowledge. We here present a GWAS on machine
learning‐derived AMD in UK Biobank highlighting
chances and challenges. By this GWAS on AMD com-
bined with an evaluation of emerging genetic signals via
our newly developed MLA, we were able to detect known
AMD loci and to distinguish true loci from artifacts.
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Such artifacts, that is, false positives, can derive from
misclassification that is associated with a genetic variant.
Our data and analyses provide a compelling example for
such an artifact: our MLA revealed the HERC2 signal as
false‐positive signal and suggested darker eye color and
darker fundus images as a relevant source of mis-
classification for this machine learning algorithm. It is
perceivable that the misclassification process of other
algorithms for AMD and for other image‐based diseases
will depend on one or the other characteristic as well,
and that such a characteristic is picked up by some ge-
netic variants due to the abundant range of genetically
pinpointed characteristics (see, e.g., NHGRI‐EBI GWAS
Catalog; Buniello et al., 2019), which can yield artifact
signals when left unaccounted.

Our MLA, developed for bilateral diseases, does
not only quantify the misclassification and the
dependencies, but also guards against bias and arti-
facts in association analyses. Our approach has certain
limitations: since we use statistical modeling for the
error‐prone classification, the analysis is only valid if
the corresponding assumptions hold. This concerns
independence of entity‐specific classification given the
true disease status, the correct specification of the
misclassification model based on the validation data,
and a neglectable error in the gold standard classifi-
cation. Similar approaches are available for classic

diseases (Carroll et al., 2006; Lyles et al., 2011). Thus,
this concept can be generalized to other algorithms
and other image‐based diseases. Our work here links
the theory of misclassification to machine learning‐
derived disease classification, which can be general-
ized also to measurement error and quantitative
phenotypes.

We recommend a GWAS combined with a post‐GWAS
evaluation of emerging genetic effects for nondifferential and
differential misclassification not only to search for GWAS
signals on image‐based, machine learning‐derived disease
phenotypes. We also recommend such a GWAS as a quality
control for diseases like AMD, where strong genetic signals
are known: a GWAS on AMD ascertained by any classifi-
cation approach, manual or automatic, should be able to
detect at least the two strong known signals around ARMS2/
HTRA1 and CFH. When a GWAS does not detect these
signals, this indicates issues that can be anything from mis-
matched biosamples, analytical errors, or imperfect disease
ascertainment—like from machine learning algorithms as
highlighted here. A GWAS can be a quick guide toward
phenotype classification quality when genomic data are
available.

Overall, we illustrate chances and challenges of ma-
chine learning‐derived disease classification in GWAS,
and the applicability of our MLA to guard against bias
and artifacts.

FIGURE 5 Evidence for differential misclassification in automatically derived AMD with respect to the HERC2 variant
rs12913832. Shown are (a) estimated odds ratios from the naïve analysis ignoring misclassification and various characteristics per
genotype group; (b) the fraction of persons with self‐reported “light eye color” in the AugUR study; (c) randomly selected fundus
images in UK Biobank; (d) image‐lightness quantified by mean average grayscale; (e) proportion of false‐positive AMD in the
automated classification (1‐specificity) and 95% confidence intervals estimated via MLA2; and (f) observed proportion of manually
ungradable images that were deemed gradable by the algorithm and classified as “any AMD” or “AMD‐free.” AMD, age‐related
macular degeneration; GWAS, genome‐wide association study; MLA, maximum likelihood approach

770 | GUENTHER ET AL.

58
3. Chances and challenges of machine learning-based disease classification in

genetic association studies



ACKNOWLEDGMENTS
This study was supported by the DFG HE 3690/5‐1 (to I.
M. H.) and NIH R01 EY RES 511967 (to I. M. H.), the
University of Regensburg and the Ludwig Maximilians
University Munich. The UK Biobank (accessed via ap-
plication number 33999) was established by the Well-
come Trust medical charity, Medical Research Council,
Department of Health, Scottish Government, and the
Northwest Regional Development Agency. This study
was also supported by the Welsh Assembly Government,
British Heart Foundation and Diabetes UK. The authors
would also like to thank the two anonymous reviewers
whose comments helped improve and clarify this
manuscript. Open access funding enabled and organized
by Projekt DEAL.

CONFLICT OF INTERESTS
The authors declare that there are no conflict of interests.

DATA AVAILABILITY STATEMENT
Data that support the findings of this study are available as
UK Biobank resource (accessed via application number
33999). The fundus‐image derived AMD classifications will
be returned to UK Biobank and can be accessed by other
researchers via the Data Showcase. An open source R
implementation of the developed maximum likelihood
approach to account for misclassification in bilateral disease
is available at: https://www.genepi-regensburg.de/MLA‐
bilateral/. The convolutional neural network ensemble used
for automated AMD classification and recommendations
by the authors can be found at: https://github.com/Re
gensburgMedicalImageComputing/ARIANNA. IrfanView:
https://www.irfanview.com/; GWAS catalogue: https://
www.ebi.ac.uk/gwas/.

ORCID
Felix Guenther http://orcid.org/0000-0001-6582-1174
Caroline Brandl https://orcid.org/0000-0001-8223-6137
Thomas W. Winkler https://orcid.org/0000-0003-
0292-5421
Klaus Stark https://orcid.org/0000-0002-7832-1942
Helmut Kuechenhoff https://orcid.org/0000-0002-
6372-2487

REFERENCES
Brandl, C., Zimmermann, M. E., Günther, F., Barth, T., Olden, M.,

Schelter, S. C., … Heid, I. M. (2018). On the impact of different
approaches to classify age‐related macular degeneration:
Results from the German AugUR study. Scientific Reports,
8(1), 8675. https://doi.org/10.1038/s41598-018-26629-5

Buniello, A., Macarthur, J. A. L., Cerezo, M., Harris, L. W.,
Hayhurst, J., Malangone, C., … Parkinson, H. (2019). The
NHGRI‐EBI GWAS Catalog of published genome‐wide

association studies, targeted arrays and summary statistics
2019. Nucleic Acids Research, 47(D1), D1005–D1012. https://
doi.org/10.1093/nar/gky1120

Burlina, P. M., Joshi, N., Pekala, M., Pacheco, K. D., Freund, D. E.,
& Bressler, N. M. (2017). Automated grading of age‐related
macular degeneration from color fundus images using deep
convolutional neural networks. JAMA Ophthalmology, 135(11),
1170. https://doi.org/10.1001/jamaophthalmol.2017.3782

Bycroft, C., Freeman, C., Petkova, D., Band, G., Elliott, L. T.,
Sharp, K., …Marchini, J. (2018). The UK Biobank resource with
deep phenotyping and genomic data. Nature, 562(7726),
203–209. https://doi.org/10.1038/s41586-018-0579-z

Carroll, R. J., Ruppert, D., Stefanski, L. A., & Crainiceanu, C. M.
(2006). Measurement error in nonlinear models (2nd ed.). Boca
Raton, FL: Chapman and Hall/CRC.

Chakravarthy, U., Wong, T. Y., Fletcher, A., Piault, E., Evans, C.,
Zlateva, G., … Mitchell, P. (2010). Clinical risk factors for age‐
related macular degeneration: A systematic review and meta‐
analysis. BMC Ophthalmology, 10(1), 31. https://doi.org/10.
1186/1471-2415-10-31

Cohen, J. (2013). Statistical power analysis for the behavioral
sciences (2nd ed.). New York, NY: Routledge. https://doi.org/10.
4324/9780203771587

Csurka, G. (2017). A comprehensive survey on domain adaptation
for visual applications, Domain Adaptation in Computer Vision
Applications (pp. 1–35). Cham, Switzerland: Springer.

Davis, M. D., Gangnon, R. E., Lee, L.‐Y., Hubbard, L. D.,
Klein, B. E. K., & Klein, R., … Age‐Related Eye Disease Study
Group. (2005). The Age‐Related Eye Disease Study severity
scale for age‐related macular degeneration: AREDS Report No.
17. Archives of Ophthalmology, 123(11), 1484–1498. https://doi.
org/10.1001/archopht.123.11.1484

Devlin, A. B., Roeder, K., & Devlin, B. (2013). Genomic control for
association. Biometrics, 55(4), 997–1004.

Fritsche, L. G., Igl, W., Bailey, J. N. C., Grassmann, F., Sengupta, S.,
Bragg‐Gresham, J. L., … Heid, I. M. (2016). A large genome‐
wide association study of age‐related macular degeneration
highlights contributions of rare and common variants. Nature
Genetics, 48(2), 134–143. https://doi.org/10.1038/ng.3448

Grassmann, F., Mengelkamp, J., Brandl, C., Harsch, S.,
Zimmermann, M. E., Linkohr, B., … Weber, B. H. F. (2018). A
deep learning algorithm for prediction of age‐related eye
disease study severity scale for age‐related macular
degeneration from color fundus photography. Ophthalmology,
125(9), 1410–1420. https://doi.org/10.1016/j.ophtha.2018.
02.037

Günther, F., Brandl, C., Heid, I. M., & Küchenhoff, H. (2019).
Response misclassification in studies on bilateral diseases.
Biometrical Journal, 61(4), 1033–1048. https://doi.org/10.1002/
bimj.201900039

Hausman, J. A., Abrevaya, J., & Scott‐Morton, F. M. (1998).
Misclassification of the dependent variable in a discrete‐
response setting. Journal of Econometrics, 87(2), 239–269.
https://doi.org/10.1016/S0304-4076(98)00015-3

Heinze‐Deml, C., & Meinshausen, N. (2017). Conditional variance
penalties and domain shift robustness. arXiv:1710.11469 [stat.ML].

Keane, P. A., Grossi, C. M., Foster, P. J., Yang, Q., Reisman, C. A., &
Chan, K., … UK Biobank Eye Vision Consortium. (2016).
Optical coherence tomography in the UK Biobank study–Rapid

GUENTHER ET AL. | 771

59



automated analysis of retinal thickness for large population‐
based studies. PLoS One, 11(10), e0164095. https://doi.org/10.
1371/journal.pone.0164095

Klein, R., Meuer, S. M., Myers, C. E., Buitendijk, G. H. S.,
Rochtchina, E., Choudhury, F., … Klein, B. E. K. (2014).
Harmonizing the classification of age‐related macular
degeneration in the three‐continent AMD Consortium.
Ophthalmic Epidemiology, 21(1), 14–23. https://doi.org/10.
3109/09286586.2013.867512

Kutalik, Z., Johnson, T., Bochud, M., Mooser, V., Vollenweider, P.,
Waeber, G., … Bergmann, S. (2011). Methods for testing
association between uncertain genotypes and quantitative
traits. Biostatistics, 12(1), 1–17. https://doi.org/10.1093/
biostatistics/kxq039

Litjens, G., Kooi, T., Bejnordi, B. E., Setio, A. A. A., Ciompi, F.,
Ghafoorian, M., … Sánchez, C. I. (2017). A survey on deep
learning in medical image analysis. Medical Image Analysis,
42(1995), 60–88. https://doi.org/10.1016/j.media.2017.07.005

Loh, P.‐R., Kichaev, G., Gazal, S., Schoech, A. P., & Price, A. L.
(2018). Mixed‐model association for biobank‐scale datasets.
Nature Genetics, 50(7), 906–908. https://doi.org/10.1038/
s41588-018-0144-6

Lyles, R. H., Tang, L., Superak, H. M., King, C. C., Celentano, D. D.,
Lo, Y., & Sobel, J. D. (2011). Validation data‐based adjustments
for outcome misclassification in logistic regression: An
illustration. Epidemiology, 22(4), 589–597. https://doi.org/10.
1097/EDE.0b013e3182117c85

Ma, C., Blackwell, T., Boehnke, M., Scott, L. J., & GoT2D In-
vestigators (2013). Recommended joint and meta‐analysis
strategies for case‐control association testing of single low‐
count variants. Genetic Epidemiology, 37(6), 539–550. https://
doi.org/10.1002/gepi.21742

Machiela, M. J., & Chanock, S. J. (2015). LDlink: A web‐based
application for exploring population‐specific haplotype
structure and linking correlated alleles of possible functional
variants. Bioinformatics, 31(21), 3555–3557. https://doi.org/10.
1093/bioinformatics/btv402

McCarthy, S., Das, S., Kretzschmar, W., Delaneau, O., Wood, A. R.,
& Teumer, A., … Haplotype Reference Consortium. (2016). A
reference panel of 64,976 haplotypes for genotype imputation.
Nature Genetics, 48(10), 1279–1283. https://doi.org/10.1038/
ng.3643

Moreno‐Torres, J. G., Raeder, T., Alaiz‐Rodríguez, R.,
Chawla, N. V., & Herrera, F. (2012). A unifying view on dataset
shift in classification. Pattern Recognition, 45(1), 521–530.
https://doi.org/10.1016/j.patcog.2011.06.019

Nelson, M. R., Tipney, H., Painter, J. L., Shen, J., Nicoletti, P.,
Shen, Y., … Sanseau, P. (2015). The support of human genetic
evidence for approved drug indications. Nature Genetics, 47(8),
856–860. https://doi.org/10.1038/ng.3314

Neuhaus, J. (1999). Bias and efficiency loss due to misclassified
responses in binary regression. Biometrika, 86(4), 843–855.
https://doi.org/10.1093/biomet/86.4.843

Peng, Y., Dharssi, S., Chen, Q., Keenan, T. D., Agrón, E.,
Wong, W. T., … Lu, Z. (2019). DeepSeeNet: A deep learning
model for automated classification of patient‐based age‐related
macular degeneration severity from color fundus photographs.
Ophthalmology, 126(4), 565–575. https://doi.org/10.1016/j.
ophtha.2018.11.015

R Core Team. (2019). R: A language and environment for statistical
computing. Retrieved from https://www.r-project.org/

Stark, K., Olden, M., Brandl, C., Dietl, A., Zimmermann, M. E.,
Schelter, S. C., … Heid, I. M. (2015). The German AugUR study:
Study protocol of a prospective study to investigate chronic
diseases in the elderly. BMC Geriatrics, 15(1), 130. https://doi.
org/10.1186/s12877-015-0122-0

Stephane, C. (2018). pwr: Basic functions for power analysis.
Retrieved from https://cran.r-project.org/package=pwr

Sturm, R. A., Duffy, D. L., Zhao, Z. Z., Leite, F. P. N., Stark, M. S.,
Hayward, N. K., … Montgomery, G. W. (2008). A single SNP in
an evolutionary conserved region within intron 86 of the
HERC2 gene determines human blue‐brown eye color.
American Journal of Human Genetics, 82(2), 424–431. https://
doi.org/10.1016/j.ajhg.2007.11.005

Ting, D. S. W., Cheung, C. Y.‐L., Lim, G., Tan, G. S. W.,
Quang, N. D., Gan, A., … Wong, T. Y. (2017). Development and
validation of a deep learning system for diabetic retinopathy
and related eye diseases using retinal images from multiethnic
populations with diabetes. Journal of the American Medical
Association, 318(22), 2211–2223. https://doi.org/10.1001/jama.
2017.18152

Walter, K., Min, J. L., Huang, J., Crooks, L., Memari, Y.,
McCarthy, S., … Zhang, W. (2015). The UK10K project
identifies rare variants in health and disease. Nature, 526(7571),
82–89. https://doi.org/10.1038/nature14962

SUPPORTING INFORMATION
Additional supporting information may be found online
in the Supporting Information section.

How to cite this article: Guenther F, Brandl C,
Winkler TW, et al. Chances and challenges of
machine learning‐based disease classification in
genetic association studies illustrated on
age‐related macular degeneration. Genetic
Epidemiology. 2020;44:759–777.
https://doi.org/10.1002/gepi.22336

APPENDIX A: MLA TO ADJUST FOR
RESPONSE MISCLASSIFICATION IN
BILATERAL DISEASES
We developed a maximum likelihood approach (MLA) to
adjust for response misclassification from an error‐prone,
entity‐specific disease classification in bilateral diseases.
Here, we illustrate it based on the example of age‐related
macular degeneration, where AMD can occur in each eye
(eye‐specific AMD) and the person‐specific binary out-
come is defined as worse eye outcome, that is, “AMD in
at least one eye,” and modeled using logistic regression.
We assume that we have an error‐prone, eye‐specific
AMD classification (e.g., from a machine learning‐based
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automated classification) available for nearly all eyes and
true, gold‐standard classifications (e.g., manual classifi-
cation) for a subset of individuals from validation data.

Let Z Z( , ) {0, 1}i i1 2 ∈ be the true, binary disease stages
in the two eyes of study participant i, that is,
Z Z( = 1, = 0)i i1 2 means that participant i suffers from
AMD in the left eye and is unaffected from AMD in the
right. When estimating the association of person‐specific
risk factors with AMD, one often defines a binary
person‐specific disease status as worse eye
AMD,Y max(Z , Z )i 1i 2i≔ , Z Z, {0, 1}i i1 2 ∈ , and uses logis-
tic regression to estimate the association of some cov-
ariates X with AMD: the person‐specific disease status Yi
equals 1, if at least one eye of individual i is classified as
AMD, and Yi equals 0, if both eyes are unaffected. As
described previously (Günther et al., 2019), such a worse
eye disease status can be misclassified because of two
reasons: either, because of missing disease information in
one of two eyes (in this case disease can be overlooked),
or because of error‐prone disease status for any of the two
eyes. Here, we assume that we observed an error‐prone,
eye‐specific disease status Z Z( , )* *i i1 2 for each of the two
eyes of a “main study” participant i and additionally the
true disease status in each of the two eyes (Z Z,j j1 2 ) for a
subset of study participants j from the “validation study.”
For all participants from the main study (error‐prone
classifications only) or the validation subset (error‐prone
and true classification), there is the additional issue that
the disease information can be missing in one of two
eyes, because of missing or ungradable fundus images.
Since the automated (error‐prone) and manual (gold
standard, “true”) classification may judge differently on
whether an image is gradable or ungradable, any possible
subset of Z Z Z Z( , , , )* *i i i i1 2 1 2 might be the available in-
formation for a specific study participant. To obtain valid
estimates for the association of covariates with the true
AMD status, we set up a likelihood based on the condi-
tional probabilities of the observed error‐prone and/or
true eye‐specific disease classifications given covariates.
The product of these conditional probabilities over all
individuals forms the likelihood, which has to be nu-
merically optimized with respect to the regression para-
meters to obtain estimates. The different likelihood
contributions for the individuals depend on the available
AMD classifications (true and/or error‐prone for one or
both eyes).

The general problem of response misclassification
when AMD information is missing in one of two eyes
and/or the eye‐specific classification suffers from
misclassification with known classification prob-
abilities has already been evaluated in a previous
publication (Günther et al., 2019). There, we also de-
rived the corresponding likelihood contributions for

the different scenarios of available outcome data.
Here, we add the aspect that validation data are
available for some study participants or, more speci-
fically, a collection of error‐free (gold‐standard) clas-
sified single eyes, and that we model the eye‐specific
misclassification process based on information from
this validation data.

In the following, we describe the general idea
and provide formulas for the respective likelihood
contributions.

The assumed logistic regression model for the true
worse eye disease corresponds to the assumption that

Z Z Ymax( , ) = ~Bernoulli(π )i i i i1 2 , where we model the
success probability based on a linear predictor via

x β x βπ = 1/(1 + exp(− ′ )) = Logist( ′ )i i i ; xi is a vector of
observed person‐specific covariates and β the vector of
corresponding regression coefficients. It follows that
P Y x( = 1| ) = πi i i. If we focus on single‐eye disease
classifications, there exist four different pattern of true
disease classifications Z Z( , )i i1 2 : (1, 1), (1, 0),(0, 1), (0, 0).
From the assumed logistic regression model for Yi ,
it follows that. P Z x( = 0, Z = 0| ) = 1 − πi i i i1 2 Based
on the law of total probability, we can derive
P Z Z x P Z Z x Y( = 1, = 1| ) = ( = 1, = 1| , = 1) ×i i i i i i i1 2 1 2

P Y x( = 1| )i i and we define the person‐specific
conditional probability of being affected by AMD in
both eyes given AMD in at least one eye as

P Z Z x Yδ ( = 1, = 1| , = 1)i i i i i1 2≔ . When assuming sym-
metric probabilities for disease in one but not the other
eye for left and right eyes (i.e., same probabilities to be
affected in the left but not the right eye and vice versa),
the conditional probability mass function of the two‐
entity disease status distribution can be written con-
cisely as

which specifies the true data model. If we look at a single
eye selected randomly from both eyes, we can derive
(without loss of generality for Z i1 )

P(Z = 1|x ) = P(Z = 1, Z = 1|x )

+ P(Z = 1, Z = 0|x ) =
1

2
+
1

2
δ π .

1i i 1i 2i i

1i 2i i i i⎜ ⎟
⎛
⎝

⎞
⎠ (2)

We now assume that we observed potentially mis-
classified single eye disease stages Z Z( , )* *i i1 2 for each partici-
pant and describe the misclassification process based on the
sensitivity and specificity of the classification
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Z π

Z π

P( = 1|Z = 1, x ) =

P( = 0|Z = 0, x ) =

*

*

li l

li l

i i 1i

i i 0i

(3)

with l = 1, 2; π i1 and π i0 are the person‐specific sensitivity
and specificity from the eye‐specific classification process.
We assume that the eye‐specific classification process within
an individual is independent in the two eyes, that is

Z z Z z

Z z Z z

P( = , = |Z = z , Z = z , x )

= P( = |Z = z , x ) × P( = |Z

= z , x ).

* * * *

* * * *

i i i i

i i i i i

1 1 2 2 1i 1i 2i 2i i

1 1 1i 1i i 2 2 2

2i i

Based on the true data model and the description of
the misclassification process via sensitivity and specificity,
we can now express the conditional probabilities of all
combinations of observed outcomes, by using Bayes' rule
and the law of total probability. If all four AMD classi-
fications were observed for an individual (individual with
full validation data, true and error‐prone disease status
for each of the two eyes), we can derive the following
(omitting a random variable notation and only using the
small z's for the observed data):

z z z z

z z

P( , , z , z |x ) = P( , |z , z , x ) × P(z , z |x )

= P( |z , x ) × P( |z , x )

× P(z , z |x ).

* * * *

* *

i i i i

i i

1 2 1i 2i i 1 2 1i 2i i 1i 2i i

1 1i i 2 2i i

1i 2i i

Here, we fraction the conditional probability of the ob-
served data into terms of the eye‐specific classification
process (depending on sensitivity or specificity when the
observed true outcome z il is 1 or 0, respectively,
Equation 3) and the true data model (1). If only the two
eye‐specific error‐prone classifications are observed (in-
dividual in the main study, not part of the validation
subset), the law of total probability can be used and the
conditional probability can be expressed as

z z z z

z z z

P( , |x ) = P( , |z , z , x ) × P(z , z , |x )

= P( | , x ) × P( |z , x )

× P(z , z |x ).

* * * *

* *

i i
z z

i i

z z
i i

1 2 i

, {0,1}
1 2 1i 2i i 1i 2i i

, {0,1}
1 1i i 2 2i i

1i 2i i

1i 2i

1i 2i

∑

∑

∈

∈

This again yields an expression that depends on the
eye‐specific classification probabilities (3) and the true
data model (1).

If only a classification for one error‐prone outcome
was observed (e.g., Z z=* *i i1 1 ), the conditional probability
is given by

z z Z Z

Z Z Z

P( |x ) = P( | = 0, x ) × P( = 0|x )

+ P( | = 1, x ) × P( = 1|x ),

* *

*

1i i 1i 1i i 1i i

1i 1i i 1i i

where the first terms in each summand depend on the
specificity and the sensitivity of the eye‐specific ob-
servation process; an expression for the second was al-
ready given above (Equation 2).

When three classifications were observed, for example,
z Z z Z z(Z = , * = *, * = *)i i i i1i 1i 1 1 2 2 or z z Z z(Z = , Z = , * = *)i i1i 1i 2i 2i 1 1 , we

can derive

z z z z z z

z

z z z Z

z Z

P( , , |x ) = P( , | , Z = 0, x )

× P( , Z = 0 | x )

+ P( , | , = 1, x )

× P ( , = 1|x )

* * * *

* *

1i 1i 2i i 1i 2i 1i 2i i

1i 2i i

1i 2i 1i 2i i

1i 2i i

z z z Z

z z z Z

z Z

= P( | z , x ) × P( |Z = 0, x ) × P( ,

= 0 | x ) + P( | , x ) × P( | = 1, x )

× P( , = 1 | x ),

* *

* *

1i 1i i 2i 2i i 1i 2i

i 1i 1i i 2i 2i i

1i 2i i

and

z z z z z z z z

z z z z

P( , , , |x ) = P( | , , x ) × P( , |x )

= P( | , x ) × P( , |x ).

* *

*

i i i i i i i i

i i i i

1 2 1 i 1 1 2 i 1 2 i

1 1 i 1 2 i

All conditional probabilities characterizing the
true data model and the misclassification process,
that is, (a) the probability of true worse eye AMD
P Y x( = 1| ) = πi i i, (b) the probability of AMD in
both eyes given AMD in at least one eye
P Z Z Y x( = 1, = 1| = 1, ) = δi i i i i1 2 , (c) the eye‐specific
sensitivity Z ZP( = 1| = 1, x ) = π*i i1 1 i 1i, and (d) the eye‐
specific specificity of the error‐prone classification
Z ZP( = 0| = 0, x ) = π*i i1 1 i 0i, can potentially vary with

person‐specific characteristics. We therefore decided
to model them based on the logistic function of a
linear predictor, where relevant covariates can be
specified for each probability. Combining all these
expressions, we can set up the whole likelihood based
on the derived conditional probabilities and numeri-
cally optimize with respect to the regression coeffi-
cients of the linear predictors for πi, δi, π i1 , and π i0 .
Standard errors of the maximum likelihood estimates
are derived based on standard likelihood theory from
the square root of the diagonal elements of the inverse
of the observed Fisher information (Hessian) and used
for inference. An implementation of the MLA in the
statistical programming language R (R Core
Team, 2019) is available.
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APPENDIX B: SIMULATION STUDY TO
EVALUATE CONSEQUENCES OF
IGNORING MISCLASSIFICATION AND
THE PERFORMANCE OF THE MLA IN
CORRECTING IT
We performed a simulation study to evaluate the con-
sequences of ignoring response misclassification and to
evaluate the performance of the derived MLA in data
scenarios similar to the situations in AMD studies. For
each simulation scenario (data generating process), we
simulated 1,000 datasets, applied different models to the
sampled data, and evaluated the distribution of effect
estimates, frequencies of significant statistical tests, and
coverage frequencies of confidence intervals for a central
covariate of interest.

To sample data mimicking studies on AMD with in-
ternal validation data, we performed the following steps.

1. We sampled the true binary “worse‐eye” AMD data Y
for 5,000 individuals by sampling from a Bernoulli
distribution, where we modeled the success prob-
ability based on the logistic function of a linear pre-
dictor (corresponding to the assumed data generating
process in logistic regression). For the linear predictor,
we used an intercept of −0.25 (corresponding to an
average probability of person‐specific AMD of ∼0.44)
and a continuous standard normal covariate X. We
varied the log OR of X on Y between zero (simulation
under H0 of no effect) and one.

2. To create the true eye‐specific disease data (two binary
observations per individual, (Z , Z )1 2 ) we specified the
conditional probability of being affected in both eyes
given disease in at least one eye (i.e., Y = 1 based on
“worse‐eye definition), δ, to be (on average)
δ = 1/(1 + exp (−1)) = 0.73. We assumed this
probability to be either constant or varying with
the continuous covariate X based on formula
δ = 1/(1 + exp (−(1 + 1 × X))) = Logist(1 + 1 × X).
For all individuals with sampled Y = 1, we sampled a
Bernoulli variable based on probability δ, to decide
whether they were affected in both eyes or not. If they
were affected on only one eye, we sampled randomly
from the left or right.

3. To mimic the situation of missing information in one
of two eyes, we sampled a Bernoulli random variable
for each individual based on a fixed success probability
(e.g., 0.75), to indicate whether information on both
eyes was available. If not, we removed the disease
information from a randomly selected eye.

4. To obtain eye‐specific error‐prone outcome data
Z Z( , )* *1 2 , we conditioned on the true, sampled ob-
servations (Z , Z )1 2 , and sampled the error‐prone out-
comes based on specified classification probabilities,

the sensitivity P Z Z( *=1 = 1) and specificity
P Z Z( *=0 = 0). Sensitivity and specificity were either
fixed (nondifferential misclassification, e.g., sens =
spec= 0.9) or varying between individuals based on
the formula βsens = Logist(2.20 + × X)sens for dif-
ferent values of βsens (analogously for the specificity,
corresponding to an average sens = spec = 0.9).

5. Afterward, we split the data into two parts, the
“main study” and the “validation” subset
(n = 1, 000, n = 4, 000val main ). For the validation sub-
set we kept both, the true and the error‐prone eye‐
specific AMD observations Z Z(Z , Z , , )* *1 2 1 2 ; for the
main study, we kept only the error‐prone outcomes
Z Z( , )* *1 2 (or only the respective information for one of
the two eyes, when information in one eye was
missing for an individual).

6. For the naïve analysis ignoring response mis-
classification, we defined an observed, binary naïve
person‐specific outcome Y *obs the following way: for
individuals from the validation data, we used the true
eye‐specific disease information; for individuals from
the main study data, we used the error‐prone eye‐
specific information. When disease information was
available for both eyes, we defined Y = max(Z , Z )*obs 1 2

or Y Z Z= max( , )* * *obs 1 2 , respectively; for observations
with information only on one eye Z1, we used
Y Z=*obs 1 or Y Z=* *obs 1 . For individuals from the vali-
dation data with information on both eyes,
Y = max(Z , Z )*obs 1 2 corresponds to the true Y; for all
others, Y *obs might be misclassified.

For each sampled dataset we estimated three models:
(a) standard logistic regression based on the error‐prone
naïve worse entity outcome Y *obs, (b) the derived MLA
(see above) modeling the probability of person‐specific
AMD and the probability of AMD in both eyes given
AMD in at least one eye, δ, based on covariate X, while
assuming a constant eye‐specific sensitivity and specifi-
city and accounting for missing information in one of two
eyes (MLA1), and (c) the derived MLA allowing for a
dependency of sensitivity and specificity on X (MLA2).

APPENDIX C: POWER ANALYSIS FOR
REPORTED LEAD VARIANTS BASED ON
UK BIOBANK SAMPLE SIZE
We wanted to evaluate the impact of using the MLA on
selected variants including the 34 reported lead variants
known for their association with advanced AMD. Given
reported effect sizes and EAFs, we expected the power to
detect some of these 34 associations to be limited in a
sample size of approximately 3,500 cases and 44,500
controls. Therefore, we aimed to assess the power to
detect reported genetic associations for AMD in the
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available data of UK Biobank, to focus our analyses with
the MLA only on adequately powered reported associa-
tions and to avoid over‐interpreting noisy results from
underpowered analyses. It is, however, not fully straight
forward how to compute power for the scenario of “any
AMD” from machine learning based disease classifica-
tion, due to the power‐diminishing effect of mis-
classification and some uncertainty of what effect size to
use. We chose to use the reported (Fritsche et al., 2016)
EAFs in advanced AMD cases and AMD‐free controls for
the established 34 lead variants and computed the power
for a test on differences in (effect allele) fractions for
differently sized groups (Cohen, 2013; Stephane, 2018).
Group sizes correspond to the automated “any AMD”
classification in UK Biobank GWAS data (Table S2). The
number of observations in each group is two times the
observed number of individuals, that is, ncase = 2 × 3,500
and ncontr = 2 × 44,500, since each individual contributes
two (independent) alleles.

Based on these power calculations, we selected all
lead variants with at least 80% power to yield Bonferroni‐
corrected (α= .05/34) significant associations in UK
Biobank. By this, we made the assumptions that EAFs in
advanced AMD cases are transferable to EAFs of “any
AMD” cases and that no misclassification was present in
the machine learning‐derived any AMD classification.
Therefore, this is probably an overestimate of available
power. We performed the power analysis, however,
mainly to dismiss variants with an obvious lack of power.

APPENDIX D: MLA AVOIDS BIAS AND
EXCESS OF TYPE I ERROR IN
SIMULATION STUDIES
In our simulation study, we investigated bias and type I
error of logistic regression‐based association estimates for
a binary worse entity outcome Y Z Zmax( , ) {0, 1}1 2≔ ∈

and a continuous covariate X, when error‐prone single‐
entity observations Z Z( , ) {0,1}* *1 2 ∈ are observed instead
of the true entity‐specific disease classifications
(Z , Z ) {0,1}1 2 ∈ . When utilizing the error‐prone observa-
tions for deriving the worse entity outcomes
Y Z Z* max( * , * )1 2≔ , the entity‐specific misclassification
is passed on to the worse entity disease stage. We com-
pare the performance of the naïve analysis (logistic re-
gression ignoring misclassification) and the two versions
of our MLA for different simulation scenarios.

In the naïve analysis, we found a similar pattern for bi-
lateral disease misclassification as reported for classic dis-
eases (Carroll et al., 2006; Neuhaus, 1999): (a) under the null
hypothesis (Tables 1 and S1, β = 0Y ), we found biased esti-
mates and a lack of type I error control (potential for false‐
positive association findings) for differential misclassification.
With nondifferential misclassification, estimates were

unbiased and type I error frequencies were at the desired
levels. (b) When X was associated with true AMD (Tables 1
and S1, β = 1Y ), effect estimates were biased toward the null
for nondifferential misclassification and into any direction for
differential misclassification. Specific for the bilateral disease
situation was (c) increasing bias with increasingly missing
AMD in one of the two eyes, and (d) a larger bias by de-
creased specificity than by decreased sensitivity. (Tables 1
and S1).

In logistic regression, the larger the misclassification
probabilities, the larger the bias of estimates
(Neuhaus, 1999), with similar influence of increased
probabilities for false‐positive and false‐negative classifi-
cations for balanced data. In the following, we provide an
explanation of the findings (c) and (d) for bilateral dis-
eases from above. Finding (c) is explained by the fact that
an increased fraction of missing eyes implies a reduced
sensitivity for person‐specific AMD: AMD in the missing
eye can be overlooked, which can lead to a false‐negative
person‐specific AMD classification if only the missing eye
of an individual is affected. Finding (d) was that de-
creased specificity had larger impact on bias than de-
creased sensitivity, for example, for (sens, spec) = (0.9,
0.9) and a fraction of 25% of individuals with “missing
eyes” and a true log OR of X on Y of 1 the observed bias
was −0.27. When the sensitivity was reduced to 0.8
(specificity = 0.9), the bias increased (in absolute value)
to −0.32; when the specificity was reduced to 0.8 (sen-
sitivity = 0.9), the bias increased to −0.39. This can be
explained by rewriting the probability of misclassification
in the worse entity outcome, P(Y Y)⁎ ≠ as

P(Y* Y) = P(Y*=1|Y = 0)P(Y = 0)

+ P(Y* = 0|Y = 1)P(Y = 1)

≠

Z Z

Z Z

= P(max( , ) = 1|Z = 0, Z = 0)P(Y = 0)

+ P( = 0, = 0|max(Z , Z ) = 1)P(Y = 1)

* *

* *

1 2 1 2

1 2 1 2

= (1 − spec )P(Y = 0) + ((1 − sens) δ

+ spec(1 − sens)(1 − δ))P(Y = 1),

2 2

This illustrates the dependency of P Y Y( * )≠ on entity‐
specific sensitivity, specificity, probability of disease in
both entities given disease in one eye δ, and the fraction
of truly affected individuals P Y( = 1). This probability
can be evaluated for different combinations of para-
meters: for example, in the simulation study, we assumed
P Y( = 1) = 0.44, δ = 0.75 (Appendix B), which leads to a
misclassification probability of 12%, 14%, or 22% for
(sens, spec) = (0.9, 0.9), (sens, spec) = (0.8, 0.9), or (sens,
spec) = (0.9, 0.8), respectively, illustrating the larger im-
pact of reducing specificity. This is even more true in
scenarios with a lower fraction of affected individuals: if
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we assume a probability of person‐specific disease of 0.10
instead of 0.44, we obtain misclassification probabilities
of 17%, 18%, or 33%, for the same combinations of sen-
sitivity and specificity. A reduced entity‐specific specifi-
city increases the probability of falsely classifying healthy
entities toward disease, and falsely classifying only one of
two healthy entities toward disease is sufficient to mis-
classify the person‐specific disease status.

When applying the MLA1, we found it to effectively
correct for bias and to yield the expected confidence in-
terval coverage rates (∼95%) when the misclassification
was nondifferential, but we found it to still result in
biased estimates and excess type I error when the mis-
classification was differential (Tables 1 and S1). When
applying the MLA2, we found it effective in bias correc-
tion and type I error control under all misclassification
scenarios, but with larger standard errors due to the
larger number of parameters in the model (Tables 1 and
S1). Overall, our simulation results documented sub-
stantial bias and lack of type I error control when the
naïve analysis was applied to misclassified data and our
MLA to effectively remove bias and keep type I error
when specified correctly.

APPENDIX E: DETAILED RESULTS OF
MLA FOR THE SELECTED 26 VARIANTS
For estimating sensitivity and specificity, we found the
following: (a) for the three lead variants from this
GWAS (CFH, ARMS2/HTRA1, or HERC2, respectively),
the MLA1‐derived sensitivity and specificity (at mean
age and two copies of the noneffect allele) showed only
small differences between the three variants (sensitiv-
ity = 65%, 67%, 63%; specificity = 98%, 98%, 99%, re-
spectively, Table S6a). From a model without including
a genetic covariate, we obtained an overall sensitivity
of 64.5% (95% CI: 60.1%, 68.7%) and a specificity of
98.6% (98.4%, 98.8%). (b) We did not find strong evi-
dence for associations with age using MLA1 or MLA2
based on any of the 26 selected variants, except for an
association of the specificity with age based on MLA1
for the HERC2 variant that disappeared when applying
MLA2 (age: p = 6.71 × 10−9 or .70, respectively, Table
S6a). (c) Applying MLA2, we found no association of
the sensitivity with any selected variant (p > .05/
[23 × 2]), but a strong association of the specificity with
the HERC2 lead variant rs12913832 and with the

reported CFH lead variant rs10922109 (ORspec = 0.64,
Pspec = 7.38 × 10−9 and ORspec = 1.36, Pspec = 2.29 ×
10−4, respectively; Table S6).

Second, we obtained genetic association estimates
from MLA1 and MLA2 accounting for misclassification
and compared these with naïve analysis estimates. We
found interesting patterns: (a) when applying MLA1, we
found comparable, slightly increased effect estimates for
the CFH, ARMS2/HTRA1, and HERC2 lead variant
when compared to the naïve analysis (MLA1: OR = 1.23,
1.48, 1.34; p= 1.69 × 10−6, 8.9 × 10−18, 1.11 × 10−12;
naïve: OR= 1.14, 1.30, 1.26, p= 6.18 × 10−7, 2.44 × 10−20,
4.16 × 10−16; Figure 2 and Table S7a). These results were as
expected, since a model considering nondifferential mis-
classification leads in general, by assumption, to larger
estimates and widened confidence intervals if any mis-
classification is present. (b) When applying MLA2, we
found similar effect estimates for CFH and ARMS2/HTRA1
compared to MLA1 and naïve analysis (OR= 1.19 or 1.28,
respectively), which is in line with limited bias due to
differential misclassification. We also found larger p values
(p= .02 or 2.47 × 10−4, respectively, which is in line with
larger uncertainty when estimating more model para-
meters. In contrast, we found a completely vanished effect
estimate for the HERC2 variant (MLA2: OR= 1.03, p= .76;
Figure 2 and Table S7a), indicating a bias in the naïve
analysis and MLA1 when ignoring a differential mis-
classification. (c) Effect estimates for the three reported
CFH variants increased when applying MLA2 compared to
the naïve analysis. This was particularly interesting for the
reported CFH lead variant rs10922109, where we now ob-
served a nominally significant association into the reported
direction (MLA2: OR= 1.15, p= .047; naïve: OR= 1.00,
p= .98; Table S7c). This is in line with the observed
association of the specificity with this CFH variant. (d) For
the other 20 reported lead variants, we found many var-
iants with increased effect estimates by MLA1 or MLA2
compared to the naïve analysis; effect estimates were
mostly more comparable to reported effect sizes for ad-
vanced AMD (Fritsche et al., 2016; Figure 3c). For one
variant, this MLA2 analysis yielded an effect into the op-
posite direction compared to the reported effect direction,
which is the C9 lead variant (OR= 0.83, p= .59). With an
effect allele frequency of 1%, it is the rarest analyzed var-
iant of the 26 selected variants and estimates from the
reported association as well as for the MLA2 analysis have
low precision (i.e., large standard errors).

GUENTHER ET AL. | 777

65



66
3. Chances and challenges of machine learning-based disease classification in

genetic association studies



Chapter 4

Nowcasting the COVID-19 pandemic
in Bavaria

Chapter 4 presents a Bayesian hierarchical nowcasting model that we proposed for real-time
analysis of the Bavarian SARS-CoV-2 surveillance data.

Contributing article:
Günther, F., Bender, A., Katz, K., Küchenhoff, H., & Höhle, M. (2021). Nowcasting the
COVID-19 pandemic in Bavaria. Biometrical Journal, 63(3), 490-502.

Copyright: 2020 The Authors. Biometrical Journal published by Wiley-VCH GmbH.
Open Access (CC BY 4.0).

Supplementary material:
https://onlinelibrary.wiley.com/doi/10.1002/bimj.202000112

Author contributions:
Höhle, Küchenhoff, and Günther performed conception of the work. Günther developed
and implemented the nowcasting model(s), performed the data analysis and simulation
study, set up the webpage for an ongoing presentation of current results, and drafted
a first version of the manuscript. Bender implemented the estimation of the effective
reproduction number, Rt, from draws of the nowcast posterior. All authors contributed
to discussions during model development, interpretation of the results, and to writing and
revising the manuscript.

https://onlinelibrary.wiley.com/doi/10.1002/bimj.202000112


Received: 23 April 2020 Revised: 23 August 2020 Accepted: 19 October 2020

DOI: 10.1002/bimj.202000112

RESEARCH PAPER

Nowcasting the COVID-19 pandemic in Bavaria

Felix Günther1,2 Andreas Bender1 Katharina Katz3

Helmut Küchenhoff1 Michael Höhle4

1 Statistical Consulting Unit StaBLab, Department of Statistics, LMUMunich, Munich, Germany
2 Department of Genetic Epidemiology, University of Regensburg, Regensburg, Germany
3 Bavarian Health and Food Safety Authority, Oberschleißheim, Germany
4 Department of Mathematics, Stockholm University, Stockholm, Sweden

Correspondence
FelixGünther, StatisticalConsultingUnit
StaBLab,Department of Statistics, LMU
Munich, Ludwigstr. 33, 80539Munich,
Germany.
Email: felix.guenther@stat.
uni-muenchen.de

This article has earned anopendata badge
“ReproducibleResearch” formaking
publicly available the codenecessary to
reproduce the reported results. The results
reported in this articlewere reproduced
partially for data confidentiality reasons.

Abstract
To assess the current dynamics of an epidemic, it is central to collect informa-
tion on the daily number of newly diseased cases. This is especially important in
real-time surveillance, where the aim is to gain situational awareness, for exam-
ple, if cases are currently increasing or decreasing. Reporting delays between
disease onset and case reporting hamper our ability to understand the dynam-
ics of an epidemic close to now when looking at the number of daily reported
cases only. Nowcasting can be used to adjust daily case counts for occurred-but-
not-yet-reported events. Here, we present a novel application of nowcasting to
data on the current COVID-19 pandemic in Bavaria. It is based on a hierarchical
Bayesian model that considers changes in the reporting delay distribution over
time and associated with the weekday of reporting. Furthermore, we present a
way to estimate the effective time-varying case reproduction number 𝑅𝑒(𝑡) based
on predictions of the nowcast. The approaches are based on previously published
work, that we considerably extended and adapted to the current task of now-
casting COVID-19 cases. We provide methodological details of the developed
approach, illustrate results based on data of the current pandemic, and evalu-
ate the model based on synthetic and retrospective data on COVID-19 in Bavaria.
Results of our nowcasting are reported to the Bavarian health authority and pub-
lished on a webpage on a daily basis (https://corona.stat.uni-muenchen.de/).
Code and synthetic data for the analysis are available from https://github.com/
FelixGuenther/nc_covid19_bavaria and can be used for adaption of our approach
to different data.
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1 INTRODUCTION

Daily reported case numbers of an infectious disease outbreak do not correspond to the actual number of disease onsets
on that day. Due to delays from reporting and testing, the number of newly reported cases and the actual number of newly
diseased cases can substantially differ. It is the latter, however, that is of central interest when assessing the state and
dynamics of an epidemic outbreak. Focusing on the daily number of reported cases hampers our ability to understand
current dynamics of the outbreak close to now. This is especially problematic when one wants to gain insight about the
current trend or if one wants to assess the effects of political and social interventions in real time. Knowledge of the actual
number of new infections per day is highly relevant for the current COVID-19 pandemic, where far-reaching political
action was taken in order to contain the epidemic outbreak in 2020.
The problem of occurred-but-not-yet-reported cases during outbreaks is well known from the HIV/AIDS outbreak and

different statistical approaches have been proposed to handle delayed reporting. A standard reference is Lawless (1994).
A more flexible Bayesian approach, which is the basis of the model we use here, has been developed by Höhle and an der
Heiden (2014). In the following, we will refer to this delay adjustment approach as the nowcast and define the reporting
delay as the time between disease onset and official case reporting by a health authority. Other authors use the term now-
casting for models that focus on adjusting the administrative delay between the first case report to a local health authority
and registration (in aggregated data) at higher (e.g., state and/or federal) authorities (De Nicola, Schneble, Kauermann,
& Berger, 2020), or to perform nowcasting of fatal cases between case registration and fatality date (Schneble, De Nicola,
Kauermann, & Berger, 2020).
The basic idea of the nowcasting approach proposed here is to estimate the reporting delay between disease onset

and reporting date based on reported cases from the past for which the date of disease onset and the reporting date are
known. Given the delay distribution and the current number of case reports with reporting dates close to now, we can
infer the actual number of new disease onsets at current dates. The resulting estimated epidemic curve of disease onsets
per day gives a more realistic picture of the current state of the epidemic than looking at daily counts of new case reports.
Furthermore, the nowcast can facilitate estimation of the time-varying effective reproduction number 𝑅𝑡 (Wallinga &
Teunis, 2004). There are other approaches including mathematical infection models (compartmental models) for the
estimation of 𝑅𝑡, see, for example, Khailaie et al. (2020).
One complication of using nowcasting for COVID-19 reports is that reporting of symptom onset in cases is not complete:

either this information could not be elicited due to difficulties getting in contact with the case or because symptoms had
not manifested (yet) at the time of contact with the case. This point was first addressed in Glöckner, Krause, and Höhle
(2020) and a similar approach based on Lawless (1994) is used by the Robert Koch Institute for analyzing COVID-19 in
Germany (an der Heiden & Hamouda, 2020).
Using our approach, we provide nowcast estimates for the COVID-19 pandemic in Bavaria using data from the Bavarian

Health and Food Safety Authority (LGL) including the estimation of 𝑅𝑡. The results are updated daily with recent data. In
this article, we provide methodological details, show results based on data obtained from the LGL until April 9, 2020, 10
a.m., and provide results of the evaluation of the proposed nowcasting approach.

2 DATA

We use daily data on reported COVID-19 cases from Bavaria from the mandatory notification data based on the German
Infection Protection Act (IfSG). The data are provided by the Bavarian Health and Food Safety Authority (LGL) on a daily
basis and includes a list of all reported cases with the date of reporting to the LGL, the date of reporting to the local health
authority (Gesundheitsamt), the date of disease onset if available, and the district of residence for the case (Kreis). Since we
get our data from the LGL, the number of cases reported to the LGL on a specific date is complete and will not change on
subsequent days. These consistent data offer a valid base for inferring the epidemic curve and the considered associated
quantities.
The date of reporting to the local health authority is closer to disease onset due to a delay between reporting at the

local health authority and transmission to the LGL. However, based on the data obtained from the LGL, the aggregated
number of cases reported to the local health authorities on a given day may be incomplete because a case reported to the
local health authority can be reported to the LGL with a delay of several days and therefore may not be included in the
data yet. Therefore, we use the date of reporting to the local health authority only for the imputation of missing disease
onsets, while the nowcast is based on the date a case was reported to the LGL (cf. Steps 1 and 2 in Section 3.1).

69



492 GÜNTHER et al.

Information on disease onset stems from a retrospective collection of the day of symptom onset. However, the daily
COVID-19 surveillance data of Bavaria contain about 50%–60% cases with missing information on the day of symptom
onset in the weeks close to now. For a specific week, this fraction becomes lower over time since more information on the
cases is collected. The missing onset information exists partly due to the heavy workload imposed on health authorities
during the pandemic, but also because a certain proportion of cases have no or only very mild symptoms. However, we
expect the latter explanation to be less prominent than the former.
Note also that the date of symptom onset does not correspond to the infection date due to a preceding incubation time.

3 METHODS

In the following sections, we provide methodological details regarding the proposed nowcasting (cf. Section 3.1 as well
as the estimation of the time-varying case reproduction number, Section 3.2). The nowcast itself consists of two steps:
imputation of missing disease onset dates (Step 1) and Bayesian nowcasting based on the imputed data (Step 2).

3.1 Nowcasting

Due to the many cases with a missing disease onset date, we decided to proceed with a two-step approach for nowcasting.
First, we impute missing data on disease onset and, second, perform the nowcast based on the information on reporting
date (available for all cases) and the date of disease onset, which is partly available and partly imputed. Imputing miss-
ing disease onset information implies that we also consider presymptomatic and asymptomatic COVID-19 cases in our
analyses (to the part at which they are observed in the official COVID-19 case counts). The rationale is that this allows
to compare the nowcasting results to the daily reported case numbers. In addition, it is not straightforward to limit the
analysis to symptomatic cases, because in cases with missing disease onset date it is not entirely clear whether they are
asymptomatic, just symptomless at the time of reporting (pre-symptomatic), or actually show symptoms, but information
on the symptom onset date is missing for other reasons, for example, not yet collected.

Step 1: Imputation of disease onset
In the imputation step, we fit a flexible generalized additivemodel for location, scale, and shape (GAMLSS, Stasinopoulos,
Rigby, Heller, Voudouris, & De Bastiani, 2017), assuming a Weibull distribution for the delay time 𝑡𝑑 > 0 between disease
onset and reporting date at the local health authority:𝑡𝑑 ∼ 𝑊𝐵(𝜇, 𝜎), 𝜇 > 0, 𝜎 > 0,
where 𝜇 and 𝜎 are the location and scale parameters of the Weibull distribution with density 𝑓(𝑡𝑑|𝜇, 𝜎) = 𝜎 ⋅ 𝜇 ⋅𝑡(𝜎−1)𝑑 exp(−𝜇𝑡𝜎𝑑). The same, additive predictor (1) was defined for both, 𝜇 and 𝜎,

𝜂𝑗 = 𝛽0,𝑗 + 6∑
𝑘=1 𝛽𝑘,𝑗𝐼(𝑥𝑤𝑒𝑒𝑘𝑑𝑎𝑦 = 𝑘) + 𝑓1,𝑗(𝑥𝑤𝑒𝑒𝑘) + 𝑓2,𝑗(𝑥𝑎𝑔𝑒); 𝑗 ∈ {𝜇, 𝜎}, (1)

however, the estimated effects could differ for the two distributional parameters. In (1), parameter 𝛽0,𝑗 is the location- or
scale-specific global intercept and 𝛽𝑘,𝑗 is the effect of the weekday onwhich the report arrived at the local health authority.
Furthermore, 𝑓1,𝑗 and 𝑓2,𝑗 are smooth effects of the calendar week (of report arrival) and age of case, respectively, both
parameterized via cubic splines.
To estimate themodel, we use data of all cases for which the disease onset date and thereby 𝑡𝑑 is available. Afterward, we

impute the delay time 𝑡𝑑, if missing, by sampling from the fitted, conditional Weibull distribution and derive the missing
symptom/disease onset date. No imputation is performed for observations for which the symptom onset date is reported.
Since this imputation induces, conditional on the predictors of the GAMLSS imputation model, a missing at ran-

dom assumption with respect to the time between disease onset and case reporting, we perform a sensitivity anal-
ysis, where we omit (i) all individuals where the reports say explicitly that they were symptom-free and (ii) all
individuals with missing information about symptoms. This allows us to check, whether the dynamics of the daily
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number of individuals with available symptoms are structurally different compared to all registered cases over
time.

Step 2: Bayesian nowcasting
For the nowcasting step, we use a Bayesian hierarchicalmodel based onHöhle and an derHeiden (2014), which associated
implementation in the R-package surveillance (Salmon, Schumacher, & Höhle, 2016). In the present work, we have
extended the approach considerably, adapted it to the context of COVID-19, and provide a novel implementation in rstan
(Stan Development Team, 2020).
Let𝑁𝑡,𝑑 = 𝑛𝑡,𝑑 be the (observed) number of cases, with disease onset on day 𝑡 and reported with a delay of 𝑑 days (case

report arrives on day 𝑡 + 𝑑). On day 𝑇 > 𝑡 (“current” day, i.e., “now”), the information is available on𝑁(𝑡, 𝑇) = ∑𝑇−𝑡𝑑=0 𝑛𝑡,𝑑
cases that had disease onset on day 𝑡 and are reported until day 𝑇. The aim of nowcasting is to predict the unobserved
total number of disease onsets on day t, 𝑁(𝑡,∞) = ∑∞𝑑=0 𝑁𝑡,𝑑, based on information available up until the current day 𝑇.
For identifiability reasons, one defines a maximum relevant delay time of 𝑑 = 𝐷 and considers each observation with an
observed delay > 𝐷 as having a delay of 𝐷. As described in Höhle and an der Heiden (2014), the hierarchical Bayesian
model for nowcasting consists essentially of two parts: a model for the expected number of disease onsets on day 𝑡,𝐸(𝑁(𝑡,∞)) = 𝜆𝑡, and a model for the delay distribution at day 𝑡, specifying the probability of a reporting delay of 𝑑 days
for a case with disease onset at day 𝑡, 𝑃(delay = 𝑑|onset = 𝑡) = 𝑝𝑡,𝑑. Both parts of the model can in general be flexibly
specified. We set the maximum delay to 𝐷 = 21 and utilize the following hierarchical model for nowcasting:log (𝜆0) ∼ 𝑁 (0, 1) , log (𝜆𝑡) |𝜆𝑡−1 ∼ 𝑁 (log (𝜆𝑡−1) , 𝜎2) , (2)𝑁𝑡,𝑑|𝜆𝑡, 𝑝𝑡,𝑑 ∼ 𝑁𝐵 (𝜆𝑡 × 𝑝𝑡,𝑑, 𝜙) , 𝑡 = 1, ..., 𝑇, 𝑑 = 0, ..., 𝐷. (2)

The number of cases with disease onset at day 𝑡 and reporting delay 𝑑 days,𝑁𝑡,𝑑, is assumed to follow a negative binomial
distribution with expectation 𝜆𝑡 × 𝑝𝑡,𝑑, and overdispersion parameter 𝜙. For the delay distribution, we utilize a discrete
time hazard model ℎ𝑡,𝑑 = 𝑃(delay = 𝑑|delay ≥ 𝑑,𝑊𝑡,𝑑) aslogit(ℎ𝑡,𝑑) = 𝛾𝑑 +𝑊′𝑡,𝑑𝜂, 𝑑 = 0,… , 𝐷 − 1; ℎ𝑡,𝐷 = 1, (3)

where𝑊𝑡,𝑑 is a vector of time- and delay-specific covariates and 𝜂 the corresponding regression coefficients. In our main
model, we use linear effects of time with breakpoints every 2 weeks before the current day (corresponding to a first-order
spline), and a categorical weekday effect of the reporting day with a common effect for holidays and Sunday, since there
are substantial differences in the reported case numbers over the week. From model (3), we can derive the probabilities
of interest in (2), 𝑝𝑡,0 = ℎ𝑡,0 and 𝑝𝑡,𝑑 = (1 −∑𝑑−1𝑑=0 𝑝𝑡,𝑑) × ℎ𝑡,𝑑. The main goal of nowcasting is to obtain inference about𝑁(𝑡,∞) = ∑𝐷𝑑=0 𝑁𝑡,𝑑. Based on the described Bayesian hierarchical model, this corresponds to a sum of negative binomial
distributed counts and we can obtain such inference by summing up the Markov chain Monte Carlo (MCMC) samples
of 𝑁𝑡,𝑑 at each timepoint 𝑡. In an alternative specification of the model during evaluation (see below) we assume that𝑁𝑡,𝑑|𝜆𝑡, 𝑝𝑡,𝑑 ∼ Po(𝜆𝑡 × 𝑝𝑡,𝑑). In this case 𝑁(𝑡,∞) is Poisson distributed as well and it is directly possible to sample fromPo(𝜆𝑡) to obtain inference about 𝑁(𝑡,∞).
The utilization of the first-order random walk for modeling 𝜆𝑡 in (2) was motivated by results of McGough, Johansson,

Lipsitch, and Menzies (2020). For the modeling of the delay distribution, we utilized several different approaches and
covariates and evaluated them on synthetic data and retrospectively on the Bavarian COVID-19 data (see below for a
description of the approaches).

3.2 Estimation of the time-varying case reproduction number 𝑹𝒆(𝒕)
Once a depletion of susceptibles occurs during an outbreak of a person-to-person transmitted disease or specific inter-
ventions are made, a key parameter to track is the so-called effective reproduction number (also referred to as case
reproduction number). This time-varying quantity is defined as follows: consider a case with disease onset on day 𝑡—
the expected number of secondary cases one such primary case generates will be denoted by 𝑅𝑒(𝑡). The time until
these secondary cases will show symptoms is governed by the serial-interval distribution, which is defined as the time
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period between manifestation of symptoms in the primary case to time of symptom manifestation in the secondary case
(Svensson, 2007).
We estimate the time-varying case reproduction number by the procedure of Wallinga and Teunis (2004): Consider a

case 𝑗 showing symptoms for the first time on day 𝑡𝑗 . The relative likelihood that a case 𝑖 (with symptom onset on day 𝑡𝑖)
was infected by 𝑗 is given by

𝑝𝑖𝑗 = 𝑔(𝑡𝑖 − 𝑡𝑗)∑𝑘≠𝑖 𝑔(𝑡𝑖 − 𝑡𝑘) ,
where 𝑔 is the probability mass function of the serial-interval distribution. For the serial interval distribution, we use a
discretized version of the results from Nishiura, Linton, and Akhmetzhanov (2020), which find a log-normal distribution
with mean 4.7 days and standard deviation 2.9 as the most suitable fit to data from 28 infector–infectee pairs. An estimate
of the effective reproduction number at time 𝑡 is now given as the average reproduction number of each case 𝑗 showing
first symptoms of the illness on day 𝑡:

�̂�𝑒(𝑡) = 1
|𝑗 ∶ 𝑡𝑗 = 𝑡| ∑

𝑗∶𝑡𝑗=𝑡
∑
𝑖≠𝑗 𝑝𝑖𝑗. (4)

We prefer this 𝑅𝑒(𝑡) estimation over the method used in an der Heiden and Hamouda (2020), because it is unbiased for
our generation time distribution (see the discussion in Höhle, 2020). For each imputed data set, we extract 𝐾 = 500
time series of case counts from the posterior distribution of the nowcast and then estimate 𝑅𝑒(𝑡) as defined in (4) for
each time series using the R-package R0 (Obadia, Haneef, & Boëlle, 2012). Furthermore, each 𝑅𝑒(𝑡) estimation generates𝑀 = 100 samples from the corresponding sampling distribution of 𝑅𝑒(𝑡). Altogether, we report �̂�𝑒(𝑡) as mean of these𝐾 ×𝑀 samples together with the 2.5% and 97.5% quantiles to form a 95% credibility interval for 𝑅𝑒(𝑡). We estimate 𝑅𝑒(𝑡) for
all 𝑡 so that 𝑡 + 𝑞𝑔(0.95) ≤ 𝑇, where 𝑞𝑔(0.95) is the 95% quantile of the serial interval distribution. This avoids a downward
bias in the 𝑅𝑒(𝑡) estimation near “now.” Alternatively, one could employ correction methods near 𝑇 (Cauchemez et al.,
2006).

3.3 Evaluation of the methods

We perform an evaluation of the hierarchical nowcasting based on synthetic data mimicking the reported Bavarian
COVID-19 data and retrospectively on the official data from the LGL that were reported until July 31. For creation of
the synthetic data, we utilized a smoothed version of the observed number of reported disease onsets per day and spec-
ified a reporting delay model similar to the model described in (3) with five changepoints in the linear time effect on
the hazard. This leads first to a slight increase, followed by a decrease and stabilization, and a final slight increase of the
(average) reporting delay over time (see the supplemental material for a detailed description and visualization of the data
generating process). The aggregated daily numbers of disease onsets and daily numbers of reported cases are similar in
structure to the officially reported data. For faster computation during the evaluation, we divided the daily cases by two.
For the retrospective evaluation on the official COVID-19 data, we focus on all reported cases with available disease onset
and on the time period between March 17 and June 30, assuming that all cases that will be reported with disease onset
until June 30 are reported on July 31.
For the evaluation of the nowcasting, we estimate several different models (Table 1). We vary the distributional assump-

tions of𝑁𝑡,𝑑 between Poisson and negative binomial (cf. Section 3.1, Step 2). Furthermore, we vary the specification of the
model for the reporting delay distribution: first, we assume a reporting delay distribution without changes over time, sec-
ond, we estimate linear effects of time on the delay distribution with changepoints every 2 weeks, and third use a different
specification of the discrete time hazard model, where we modellogit(ℎ𝑡,𝑑) = 𝛾𝑑 + 𝛼𝑡, 𝑑 = 0,… , 𝐷 − 1; ℎ𝑡,𝐷 = 1, (5)

with a prior on 𝛼𝑡|𝛼𝑡−1 ∼ 𝑁(𝛼𝑡−1, 𝜎2𝛼𝑡 ) and 𝛼0 = 0. With this model, we aim to estimate smooth daily changes in the
delay distribution over time similar to the first-order random walk in the modeling of 𝜆𝑡. In case of the synthetic data,
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TABLE 1 Estimated hierarchical nowcast models in the evaluation on synthetic and actual Bavarian COVID-19 data

Synthetic data
Distribution𝑵𝒕,𝒅 Delay distribution
Poisson No changes
Poisson Linear time-effect with changepoints every 2 weeks
Poisson Linear time-effect with true changepoints
Negative binomial Linear time-effect with changepoints every 2 weeks
Negative binomial Linear time-effect with true changepoints
Negative binomial Daily changes (first-order random walk)
Retrospective evaluation on Bavarian data
Distribution𝑵𝒕,𝒅 Delay distribution
Poisson No changes
Poisson Linear time-effect with changepoints every 2 weeks
Negative binomial Linear time-effect with changepoints every 2 weeks
Negative binomial Daily changes (first-order random walk)
Negative binomial Linear time-effect with changepoints every 2 weeks + reporting weekday effect
Negative binomial Daily changes (first-order random walk) + reporting weekday effect

we additionally estimate the nowcasting with the known true changepoints in the delay distribution (that are unknown
in real-world applications) and in case of the retrospective evaluation on Bavarian data, we additionally include in some
scenarios dummy effects of the weekday of the reporting date.
To compare the performance of the different models, we estimate the log scoring rule (logS) and the continuous ranked

probability score (CRPS) (Jordan, Krüger, & Lerch, 2019), rootmean squared error (RMSE), as well as coverage frequencies
of 95% prediction intervals. For all those criteria, we average over all dates and nowcast predictions 2–6 days before the
current date. In addition to the quantitative measures, we visually inspect the performance of the different approaches
based on the nowcasting predictions and the estimated delay distribution in comparison to the retrospective truth in order
to identify potential problems of the models.
We extend the retrospective evaluation of the nowcasting on Bavarian data to the estimation of 𝑅𝑒(𝑡) and compare

the estimated �̂�𝑒(𝑡) on the most current day max(𝑡) s.t. 𝑡 + 𝑞𝑔(0.95) ≤ 𝑇 for all 𝑇 to the retrospective true 𝑅𝑒(𝑡) given all
available case data until July 31. This is done based on all evaluated models, and we visually inspect the estimated �̂�𝑒(𝑡)
over time and compute coverage frequencies of 95% credibility intervals.

3.4 Implementation

All calculations were done using the statistical programming environment R (R Core Team, 2020). Nowcasting was per-
formed based on a custom rstan (Stan Development Team, 2020) implementation. Estimation of 𝑅𝑒(𝑡)was based on code
of the R0 package (Obadia et al., 2012) for each selected posterior sample. For computation of the proper scoring rules we
used the scoringRules package (Jordan et al., 2019).
Code to reproduce our analysis and for adaption to other application scenarios is available at https://github.com/

FelixGuenther/nc_covid19_bavaria. There, we also provide an artificial data set based on the observed reporting dates of
cases but for data protection reasons featuring only artificial information on the age and disease onset dates of the cases.

4 RESULTS

4.1 Data

We present results based on data obtained from LGL on April 9, 2020, 10 a.m. The data contain information on 29,262
COVID-19 cases, which we restrict to 29,246 cases reported after March 1, as the first 16 COVID-19 cases reported between
January 28 and February 13 (reported disease onset between January 23 and February 3, three with missing onset infor-
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TABLE 2 Week-specific observed number of cases with available information on disease onset. Empirical mean, median, and 25%/75%
quantile of delay distribution between disease onset and reporting at local health authority. Cases are grouped into weeks based on their
reporting date at local health authority. Data from April 9, 10 a.m.

Rep.
week n

Delay
available % avail. Mean Median 25% quant. 75% quant.

10 114 77 68 5.8 5 4 8
11 1074 459 43 5.4 5 3 7
12 4660 2100 45 6.0 5 4 8
13 8858 4268 48 7.5 7 4 10
14 11,003 4800 44 8.8 8 5 12
15 3532 1335 38 8.9 7 4 12

F IGURE 1 Results of theWeibull GAMLSS imputationmodel. Shown is the estimatedmedian of the delay time given case-specific covari-
ates (reporting week, weekday of reporting, age)

mation) concerned a contained outbreak (Böhmer et al., 2020) and no further cases were detected upon February 27. This
outbreak can therefore be assumed to not have contributed to the later disease spread.
Information on disease onset is available for 13,137 cases, but reported disease onset was past the official reporting date

for 50 cases and before January 23 for 16. We set the disease onset date for these cases as missing, yielding 13,071 cases
with valid information on disease onset (44.7%). For these, the median delay between disease onset and reporting was
7 days (25% quantile: 5, 75% quantile: 11), Table 2 shows observed delay times over the observation period and reveals a
considerable increase in the delay distribution over time.

4.2 Imputation of missing disease onset

For imputation of missing disease onset dates, we estimate aWeibull GAMLSS with smooth effects of the reporting week,
the cases’ age, and a categorical effect of the weekday of report arrival on location and scale. We utilize the reporting date
at the local health authority in the imputation model, since it is closer to the actual disease onset than the reporting date
at LGL and is available for all cases contained in our data. Thereby, we do not have to deal with the additional reporting
delay between the local health authorities and the LGL for the imputation, which might also change over time. Figure 1
shows the estimated association of the covariates with the median delay. All covariates turned out to be relevant: we find
an increase in expected delay time over the reporting weeks, lower reporting delay for older cases, and differences over
the course of a week. The estimated GAMLSS model is used to impute the date of disease onset for cases with missing
onset information.

4.3 Nowcasting

Figure 2 shows the number of daily reported cases and the number of cases with reported and imputed disease onset on
a certain day over time. Furthermore, we display the estimated new cases from nowcasting based on our main model (2).
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F IGURE 2 Nowcasting based on Bavarian COVID-19 data until April 8, 2020. Shown is the point estimate+ 95% prediction interval of the
daily number of disease onsets on a given day based on the Bayesian hierarchical nowcast. Themodel considers changes in the delay distribution
over time based on a linear time effect with 2-week changepoints and effects of the weekday of reporting. The expected number of new disease
onsets is modeled based on a first-order random walk. Additionally, we show the observed number of cases with disease onset (reported and
imputed) that are known on April 8, based on daily bars, the number of newly reported cases per day (red line), and the retrospective true
number of disease onsets known up until July 31 (black dotted line). The current day for nowcasting is April 8, and nowcasts are performed up
until April 6

We observe a clear difference between the estimated new cases from the nowcast and the daily numbers of reported cases.
The induced bias due to the reporting delay is obvious: the estimated daily new cases stabilize from around March 20 on
and start to decrease afterward, while the reported cases still show a rapid increase. The 95% prediction interval, however,
shows substantial uncertainty in estimates, especially for more recent estimates. Note that we set the current day for the
nowcasts to April 8, since we only consider days with fully available reporting data. Furthermore, we set a reporting lag
between the current date and reported nowcast results of 2 days due to considerable uncertainty in the nowcasts for dates
with very few observations with reported or imputed disease onset.
The black dotted line in Figure 2 shows the retrospective true number of disease onsets (reported and imputed) based

on data known on July 31. We can see that the predicted number of new cases per day and the actually observed number
of cases match closely and the prediction intervals contain the actual number of onsets for most days. Note, that the
imputation of missing disease onset dates was performed based on the sameWeibull GAMLSS but based on different data
(all data available on April 8 for nowcasting and July 31 for the retrospective truth), and the number of cases with (imputed
)disease onset on a specific day can therefore vary slightly.

4.4 Estimation of the time-varying case reproduction number

Figure 3 depicts the estimated 𝑅𝑒(𝑡) as defined in (4) for the time frame from February 24 until the March 27. This time
range is defined by the time of the first secondary case observed in the data and the date of the nowcast minus the number
of days it takes for 95% of secondary cases to be observed, which is determined based on 95% quantile of the assumed gen-
eration time distribution (10 days). According to the estimate, 𝑅𝑒(𝑡) decreased steadily since the beginning of the outbreak
and is about 𝑅𝑒(𝑡) = 1 at March 20, with 𝑅𝑒(𝑡) = 0.81 (CI = [0.75, 0.87]) on March 27. However, care is required, if inter-
preting this result with the timing of interventions, because the 𝑅𝑒(𝑡) estimator is defined forward in time and describes
the transmission process within the following 10 days.

4.5 Evaluation of nowcast and estimation of 𝑹𝒆(𝒕)
We performed an evaluation of the nowcasting approach based on synthetic data and retrospectively on the Bavarian
COVID-19 data to investigate the performance of the Bayesian hierarchical model under various model specifications and
gain a better understanding of important aspects of modeling. For the synthetic data, we found the following (Table 3,
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F IGURE 3 Estimated, time-varying effective case reproduction number 𝑅𝑒(𝑡)
TABLE 3 Results of the evaluation of different nowcasting models on synthetic and actual Bavarian data (retrospectively). CRPS is the
continuous ranked probability score, logS denotes the log scoring rule, RMSE denotes the root mean squared error of the posterior median.
Additionally, we provide coverage frequencies of 95% prediction intervals for the number of disease onsets per day and coverage frequencies of
95% credibility intervals in the estimation of 𝑅𝑒(𝑡). All scores are averaged over nowcasts for 𝑇 − 6,… , 𝑇 − 2 days, with 𝑇 from March 17 to
June 30. For R(t), we compute coverage frequencies for the estimate closest to the current date 𝑇 over all 𝑇’s
Synthetic data
Model Cov. 95% PIs
Distr.𝑵𝒕,𝒅 Delay model CRPS logS RMSE 𝑵(𝒕,∞)
Poisson No changes 46.68 13.24 89.75 0.53
Poisson Lin. effect of time changepoints 2 weeks 12.53 3.68 36.22 0.95
Neg. binomial Lin. effect of time changepoints 2 weeks 12.47 3.68 36.01 0.95
Neg. binomial Daily changes (first-order RW) 28.37 3.90 92.33 0.91
Poisson Lin. effect of time true changepoint 11.88 3.63 35.31 0.95
Neg. binomial Lin. effect of time true changepoints 11.90 3.62 35.48 0.96
Retrospective Bavarian COVID-19 data
Model Cov. 95%-PIs/CIs
Distr.𝑵𝒕,𝒅 Delay model CRPS logS RMSE 𝑵(𝒕,∞) 𝑹𝒆(𝒕)
Poisson No changes 193.43 Inf 389.56 0.19 0.56
Poisson Lin. effect of time changepoints 2 weeks 74.32 Inf 226.90 0.67 0.86
Neg. binomial Lin. effect of time changepoints 2 weeks 61.79 5.05 205.59 0.84 0.92
Neg. binomial Daily changes (first-order RW) 79.21 4.83 274.70 0.86 0.95
Neg. binomial Lin. effect of time changepoints 2 weeks + weekday effect 56.63 5.22 170.59 0.82 0.92
Neg. binomial Daily changes (first-order RW) + weekday effect 67.32 4.99 236.05 0.90 0.94

more detailed results in the supplemental material): when we supply the true, in reality unknown changepoints of the
delay distribution to model fitting the nowcasting approach performs best with respect to our evaluation metrics. Aver-
aged over all days 𝑇, and for all nowcast days 𝑡 = 𝑇 − 6,…𝑇 − 2, it shows the lowest log and CRPS score, lowest RMSE
and shows the desired coverage frequencies for the 95%prediction intervals. With the models assuming changepoints in
the linear time effect on the reporting delay every 2 weeks before 𝑇, we obtain similar, but slightly worse performance (see
supplemental material for more details). The approach appears to be able to capture moderate changes in the delay distri-
bution successfully. Modeling the changes on a daily basis shows a slightly worse performance with respect to the CRPS
score and PI coverage frequencies. Assuming a constant reporting delay distribution over time and ignoring the changes
leads to the worst performance with biggest scores and low coverage frequencies of the prediction intervals. When speci-

76 4. Nowcasting the COVID-19 pandemic in Bavaria



GÜNTHER et al. 499

F IGURE 4 Sensitivity analysis. Estimation of nowcast and 𝑅𝑒(𝑡) with associated 95% prediction and credibility intervals based on three
different data subsets: original analysis (red), analysis only with cases with reported COVID-19 symptoms (green), and with all cases excluded
that are reported as having no symptoms (blue)

fying an adequate model for the delay distribution, the distributional assumptions regarding𝑁𝑡,𝑑 play a minor role for the
evaluation based on synthetic data.
In the retrospective evaluation of the Bavarian data, the Poisson model assuming no changes in the reporting delay

distribution performs badly as well. This is in line with the apparent changes in the reporting delay between disease onset
and reporting at LGL over time (supplemental material). Comparing the Poisson model with 2-week changepoints with a
similar model using a negative binomial distribution for𝑁𝑡,𝑑 we find the latter to perform better. Adding weekday effects
to the delay distribution improves the performance of the models as well. Comparing the negative binomial model with
daily changes in the delay distribution with the 2-week changepoint model, we found better coverage frequencies for the
former (e.g., 90% vs. 82% when including the weekday effect) but lower CRPS score and RMSE for the latter. Comparing
the estimated �̂�𝑒(𝑡) at most current 𝑡’s based on the different nowcast models with the retrospective truth based on all
reported data, we find coverage probabilities of the 95% credibility intervals bigger than 90% for all negative binomial
models that consider changes in the delay distribution over time. The estimation of 𝑅𝑒(𝑡) is, however, biased when it is
based on a biased nowcasting approach, for example, when changes in the delay distribution are ignored.

5 DISCUSSION

Our analyses show that nowcasting is a valuable real-time tool to gain situational awareness in the middle of an outbreak.
Based on our evaluation, we found several aspects to be important for the successful application of nowcasts: first and
foremost, it is important to account for existing changes in delay between disease onset and case reporting over time.
Ignoring such changes can severely bias the predicted number of disease onsets. In the Bavarian data, we also found
evidence for changes in reporting delay associated with the weekday of reporting, which should be accounted for. Second,
we found an improved performance when modeling the daily counts of disease onsets with a specific reporting delay 𝑑,𝑁𝑡,𝑑, based on a negative binomial distribution with overdispersion. In our data, the disease onset counts show bigger
variability then implied by a Poisson distribution. Third, utilizing a first-order random walk for modeling the logarithmic
expected daily number of newdisease onsets, 𝜆𝑡, as proposed byMcGough et al. (2020), workedwell.We also tried i.i.d. log-
Gamma priors and a smooth modeling of the epidemic curve based on truncated power splines as proposed in Höhle and
an derHeiden (2014), but found the first-order randomwalk to performbest. Altogether, we found that a negative binomial
model with random-walk prior of 𝜆𝑡 and modeling of the delay distribution via an discrete time hazard model with linear
time effects and 2-week changepoints works satisfactory. With this model, we are able to account flexibly for changes
in reporting delay over time and obtain a satisfactory performance on synthetic data as well as the true retrospective
Bavarian COVID-19 data. The alternative smooth modeling of the delay distribution based on daily changes using a first-
order random walk also worked well for many days,but had convergence problems on some days and might be overly
complex for many scenarios.
However, there are important limitations of any nowcasting estimation: (i) we correct for a bias due to delays between

disease onset and case reporting, but provide no correction for possible cases in the population that were not tested. This
is a big issue in understanding COVID-19 spread, since there are possibly many undetected cases. Assuming a constant
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factor of underreporting, we can analyze the dynamics of the outbreak in a more reliable way by our nowcasting method
compared to focusing on daily counts of newly reported cases. Furthermore, 𝑅(𝑡) estimates would be invariant to such
constant underreporting. However, if the proportion of undetected cases varies over time, then the dynamics of the pan-
demic is not described adequately by our approach as well. (ii) We model the temporal variation in the delay distribution
in a flexible way. However, short-term changes, especially in the time close to the current day can lead to a bias, because it
is particularly hard to distinguish between developments in the epidemic curve and changes in the reporting delay with
no or very less data. (iii) Our imputation method includes a missing at random assumption, which implies that the time
between disease onset and reporting is the same for individuals with and without available symptom onset date. This
could be violated due to many asymptomatic and presymptomatic among the reported COVID-19 cases. However, the
sensitivity analyses in the Appendix show that our results are relatively stable to variations of this definition.
Comparing our approach to the one used by the Robert Koch Institute an der Heiden and Hamouda (2020), we use a

more detailedmodeling of the delay distribution for the nowcast, for example, including the day of the week in ourmodel,
which turned out to be relevant in our data. Furthermore, we observed and modeled a dependence of the delay time on
calendar time as part of the nowcast. This was not originally taken into account by an der Heiden and Hamouda (2020).
When calculating the effective reproduction number𝑅𝑒(𝑡), an derHeiden andHamouda (2020) used a constant generation
time of 4 days, while our approach includes a more realistic assumption of an individually varying time originating from
a lognormal distribution, which also provides a smoother estimate over time.
The approach to estimate 𝑅(𝑡) proposed by Khailaie et al. (2020) includes a complex compartmental model with many

assumptions about the other model parameters, which in part can only be guesstimated from literature sources. Their
procedure of estimating 𝑅(𝑡) is only partly data driven and mainly relies on cumulative reported cases in the federal
states of Germany. Confidence intervals are generated by the variation of the other model parameters. This highlights the
problems of the approach: while compartmental models can be useful for forecasting, its value for real-time estimation of𝑅(𝑡)hinges on it being a realisticmodelwith awell-calibrated parameter estimated. Instead,we prefer themore statistically
driven transmission-tree–based estimates, which rely less onmodel assumptions andmore on a statistically sound analysis
of the available data.
In our retrospective evaluation of the Bavarian COVID-19 data we found, that the estimation of 𝑅𝑒(𝑡) based on the pre-

dicted daily counts of disease onsets fromnowcasting performswell if the nowcastmodel is adequately specified. Coverage
frequencies of the 95% credibility intervals were as desired compared to a calculation of 𝑅𝑒(𝑡) based on all retrospectively
available disease onset data. The utilization of the predictive distribution from the Bayesian nowcast for the estimation of𝑅𝑒(𝑡) helps therefore successfully to avoid a bias close to the current date due to diseased-but-not-yet reported cases. For
interpretation of the estimated �̂�𝑒(𝑡) over time, similar limitations arise as in the interpretation of the estimated epidemic
curve from the nowcast. If the fraction of undetected cases compared to all cases changes strongly over time, for example,
due to changes in testing strategy, this can bias the estimated reproduction number. Compared to the interpretation of the
estimated epidemic curve, the time-varying reproduction numbermight, however, have the advantage that it only requires
stable conditions within a short time window, since it compares the estimated and reported number of disease onsets to
the situation at time points close by, instead of looking at the absolute numbers over a longer period of time.
Summarizing, we believe that our results give a much more reliable picture of the course of the pandemic than the

mostly used time series of reported cases. For the interpretation, it has to be emphasized, that we estimate the number of
persons with disease onset on a certain day.
Our proposed nowcasting model can be applied to other data, when sufficient information about disease onset dates is

available and the numbers are large enough for reliable modeling. On our webpage (corona.stat.uni-muenchen.de), we
present daily results of the nowcasting for Bavaria and, in addition, for the city of Munich.
Since we introduce no correction for cases, which are never detected, our estimated epidemic curve should be related

to other data sources, like hospital admission, ICU admission, or death numbers. This aspect highlights the need for the
collection and combination of many different data sources—each bringing challenges of its own.
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APPENDIX
Sensitivity analysis
Since the amount of data with missing information on disease/symptom onset date are rather high, we perform two sen-
sitivity analyses. The symptom onset date can either be missing because the reporting local health authorities were not
able to provide any information or because a case did not experience any symptoms until case reporting. Based on avail-
able information, we can distinguish between cases for which COVID-19 symptoms are documented at time of reporting
(17,723, 61%; 73% with available onset), cases explicitly without symptoms (2,221, 8%), and cases without any information
on symptoms (9,302, 32%). In the first sensitivity analysis, we focus only on the cases with reported symptoms. In a second
analysis, we exclude all cases that have been explicitly reported to have no symptoms.
Figure 4(A) indicates that the estimated structure of the epidemic curve is very similar to the main analysis when

excluding asymptomatic cases and cases without known symptom status in the sensitivity analyses. This also applies
to the estimated 𝑅𝑒(𝑡) as show in Figure 4(B). Since the sensitivity analyses consider fewer reported cases, the actual
estimated number of disease onsets per day is lower as well. However, the interpretation regarding the dynamics of the
COVID-19 pandemic in Bavaria is similar based on all three analyses.
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Chapter 5

Analysis of COVID-19 case numbers:
adjustment for diagnostic
misclassification on the example of
German case reporting data

Chapter 5 discusses the implications of erroneous diagnostic test results for SARS-CoV-2
infection for disease spread surveillance based on case report data. We show how reported
case counts can be adjusted for misclassification given known misclassification probabili-
ties. This forms the basis for real-time estimation of the misclassification-adjusted epidemic
curve . Based on this work, we discuss in detail the potential magnitude of bias due to
erroneous tests in German surveillance data utilizing plausible assumptions about misclas-
sification probabilities.
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Abstract

Background Reported COVID-19 case numbers are key to monitoring pandemic spread and
decision-making on policy measures but require careful interpretation as they depend substantially
on testing strategy. A high and targeted testing activity is essential for a successful Test-Trace-
Isolate strategy. However, it also leads to increased numbers of false-positives and can foster a
debate on the actual pandemic state, which can slow down action and acceptance of containment
measures.

Aim We evaluate the impact of misclassification in COVID-19 diagnostics on reported case
numbers and estimated numbers of disease onsets (epidemic curve).

Methods We developed a statistical adjustment of reported case numbers for erroneous diag-
nostic results that facilitates a misclassification-adjusted real-time estimation of the epidemic curve
based on nowcasting. Under realistic misclassification scenarios, we provide adjusted case numbers
for Germany and illustrate misclassification-adjusted nowcasting for Bavarian data.

Results We quantify the impact of diagnostic misclassification on time-series of reported case
numbers, highlighting the relevance of a specificity smaller than one when test activity changes over
time. Adjusting for misclassification, we find that the increase of cases starting in July might have
been smaller than indicated by raw case counts, but cannot be fully explained by increasing numbers
of false-positives due to increased testing. The effect of misclassification becomes negligible when
true incidence is high.

Conclusions Adjusting case numbers for misclassification can improve this important mea-
sure on short-term dynamics of the pandemic and should be considered in data-based surveillance.
Further limitations of case reporting data exist and have to be considered.

1 Introduction
In the acute COVID-19 pandemic, politics as well as public health and academic institutions worldwide
are faced with the challenge of evaluating existing surveillance data like time series of reported case
counts in real time. It is important to analyze and interpret this data taking into account all potential
limitations and uncertainties, in order to maintain the highest possible confidence in generated insights.
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This is particularly important the longer the pandemic lasts and ongoing restrictions in public life also
foster a growing wariness of people.

Interpreting daily reported COVID-19 case numbers is pivotal to gain insights into the state and
dynamics of the current pandemic situation in different regions, but has several drawbacks. Problems
can especially occur if the number of performed tests or the testing strategy change over time. The
number of conducted PCR-tests has increased substantially in many European countries in summer
2020 [1], which coincided with an increase in observed case counts in July and August 2020, for example
in Germany. In retrospect, this development of increasing case counts can be seen as a precursor of
the strong second COVID-19 wave in Germany. At that time, however, it led in parts of society
to increased skepticism whether the increasing case numbers were only false-positive test results and
whether implemented measures to control the pandemic situation were superfluous.

There are three main challenges for the analysis and interpretation of reported case counts: first,
the temporal assignment of the reported cases, second, misclassification in diagnostic tests, and third,
a time-varying case detection ratio (dark figure). In this work we focus on the first two problems and
refer to the third in the discussion.

To assess the short-term dynamics of an epidemic, it is common to look at the epidemic curve,
defined as the number of disease onsets per day. Due to reporting delay, there are differences between
date of disease onset and the date of case reporting and the time-series of newly reported cases can
give a lagged and also in its structure incorrect impression of the acute pandemic situation. If data
is collected on the day of disease onset, the epidemic curve can be constructed from this information.
However, the reporting delay gives rise to occurred-but-not-yet-reported cases leading in real-time
surveillance to a downward bias for days close to the current date. Utilizing individual-specific data on
both disease onset and reporting date, it is possible to adjust for the reporting delay and to obtain an
estimate of the epidemic curve based on nowcasting [2, 3, 4]. For SARS-CoV-2 and other pathogens,
there exists the additional complexity that not all infected cases develop disease. Since the epidemic
curve is a proxy for the number of exposed individuals over time (with a small time lag), it is still
reasonable to assign those cases a synthetic disease onset date based on adequate assumptions.

Misclassification in COVID-19 diagnostics manifests in two different ways: infected persons who
receive negative test results (false-negatives) and persons that are not infected but receive positive
results (false-positives). One problem of false-negatives on the individual level is that infected persons
are not aware of infection and not quarantined and can transmit the disease. On the population level,
false-negatives lead to underestimating the number of infected individuals [5, 6]. False-positives lead on
the individual level to superfluous quarantining and contact tracing, wasting time and resources. On
the population level, false-positives lead to overestimating the number of infected individuals and could
be the cause of intervention measures stricter than necessary [7]. In infectious disease surveillance, we
are mainly interested in the population-level effects of misclassification. Since the impact of diagnostic
misclassification depends on the number of tested persons and the true incidence, both changing over
time, the apparent dynamics of reported case numbers can be misleading [8] and it is important to
quantify the potential amount of distortion and adjust for it.

In this work, we provide an approach to adjust reported COVID-19 case counts for diagnostic mis-
classification based on the matrix method [9]. We illustrate the impact of diagnostic misclassification
on reported case counts on the example of Germany and the federal state of Bavaria under realistic as-
sumptions for sensitivity and specificity of person-specific diagnostics and show that the approach can
also be used to establish a lower-bound for the person-specific specificity. Furthermore, we illustrate
how to use adjusted case numbers in downstream analyses like nowcasting or the estimation of the
time-varying reproduction number. By this, it is possible to integrate solutions for both the problem
of diagnostic misclassification as well as the problem of temporal assignment in the real-time analysis
of case reporting data.
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2 Methods
2.1 Data
Data on reported COVID-19 cases in Germany and Bavaria are collected based on the German Infection
Protection Act (IfSG). For our analyses, we use daily German case numbers published by the Robert-
Koch-Institute (RKI) [10], and, for Bavaria, the daily case numbers by the Bavarian Health and Food
Safety Authority (LGL) [11]. In addition, the LGL provided us with person-specific case reporting
data, including information on age, gender, and date of symptom onset if available (i.e., considered
date of disease onset).

Furthermore, we use data on the number of SARS-CoV-2 laboratory tests that are directly reported
by German and Bavarian testing facilities (university hospitals, research institutions, laboratories) to
the respective health authorities. The testing facilities report the number of performed tests (analysed
specimens) and the number of positive tests. The RKI publishes weekly data on the reported number
of tests by German testing facilities [12, 13]. The LGL publishes daily numbers of laboratory tests
and number of positive tests as reported by Bavarian testing facilities [11]. Because the data on case
numbers come from a different source than the data on test numbers, the numbers of positive tests
do not directly match to the number of reported cases and the reported number of performed tests
does not directly correspond to the number of tested persons. Reasons for differences are diverse:
(i) multiple testing of some individuals, (ii) reporting delay between the testing and the reporting of
positive results from laboratories to local, regional and federal health authorities, and (iii) inconsistent
reporting of test numbers by laboratories to the health authorities [14]. Furthermore, for the Bavarian
data, persons whose tests are performed in Bavarian laboratories may not reside in Bavaria or vice
versa.

Due to the weekly reporting of test numbers by the RKI, we focus our analysis on aggregated
weekly case numbers for the German data. For Bavaria, we perform analyses based on daily data and
make use of the person-specific information on disease onsets for estimating the epidemic curve.

In our main analysis, we focus on the time between May, 1 and Mid-September (utilizing data
published on Sept 23, 2020, for Germany and data as per Sept 21, 2020, for Bavaria) as this was
the most interesting phase of the pandemic in Germany with respect to changes in testing activity
and their potential effects of misclassification on the epidemic curve, so far. Additionally, we provide
current results for the analysis of the Bavarian data in the Supplemental Material and regular updates
of the analysis on a public webpage (https://corona.stat.uni-muenchen.de/nowcast/).

2.2 Statistical approach to adjust reported case numbers for diagnostic misclassi-
fication

We present an approach to adjust reported case numbers in a given period (e.g., per day or week) for
misclassification in the COVID-19 laboratory diagnostics (called examination in the following). Let
NTt be the number of examined persons whose test results would be reported to the health authorities
on a given day (or within a given period) t in the event of a positive test. We denote the number of
persons with a positive examination reported at time t as T+

t (observed cases). We now assume that
the examination results might be error-prone and the actual number of cases at time t (of all examined
persons during that period) is D+

t . In practice, D+
t is unknown and we want to estimate it based

on the observed case numbers T+
t , the number of examined persons NTt, and assumptions regarding

the sensitivity and specificity of the person-specific examination. Based on elementary probability
calculations, the (expected) number of observed cases can be expressed in terms of the true case
numbers by

E(T+
t |D+

t , NTt) = D+
t · sens+ (NTt −D+

t ) · (1− spec). (1)
Equation (1) shows that the effects of a reduced sensitivity and specificity on the relation of observed
case counts, T+

t , and true case counts, D+
t , differ structurally: while a reduced sensitivity leads to an
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under-estimation of the true number of cases by the factor of the sensitivity, the effect of the specificity
is additive and depends on the number of examined persons, NTt. To adjust the reported case numbers
for misclassification we can re-order equation (1) and estimate the true number of cases at time t based
on the reported case number, the number of examined persons, and the sensitivity and specificity:

D̂+
t =

T+
t −NTt · (1− spec)
sens+ spec− 1 . (2)

This estimator relates to the well known matrix method, see e.g., [9]. As described above, the number
of examined persons, NTt, is not directly available in (German) case reporting data. We therefore
approximate it using a statistical model based on the number of performed and the number of positive
COVID-19 tests reported by laboratories and the number reported cases by the health authorities (cf.
Supplemental Note 1).

2.3 Conceptualizing the sources of misclassification and deriving realistic person-
specific misclassification probabilities

We conceptualize the sources of misclassification per PCR-test and per person-specific examination.
For this, we searched for evidence on the extent of misclassification from literature and by consultation
of experts from public health and virology. Besides the misclassification of PCR-tests under controlled
laboratory conditions, we also consider misclassification from the following: (i) collecting and handling
of specimens, (ii) additional aspects of uncertainty in PCR-tests under realistic conditions, e.g., due
to timing of the test after infection or repeated testing in case of unclear results, (iii) varying testing
strategy (physician-initiated/symptom-based vs. screening).

2.4 Adjusting reported case numbers for diagnostic misclassification
From the observed number of reported cases as published by the RKI (weekly numbers, Germany) or
the LGL (daily numbers, Bavaria) and the estimated numbers of examined individuals, we estimate the
true number of cases per time unit from equation (2) under various realistic misclassification scenarios.
We compare results to reported case counts.

2.5 Estimation of the epidemic curve and the time-varying reproduction number
based on adjusted case numbers

Daily reported case numbers are the basis for more complex downstream analyses, e.g., the real-
time estimation of the epidemic curve (nowcasting) and estimation of the time-varying reproduction
number, R(t). Those analyses provide a better characterization of the current state of the pandemic
than reported case counts but require information on disease onset and reporting dates of cases [2]. To
perform such analyses adjusted for diagnostic misclassification, we propose this general approach: (i)
derive the adjusted number of reported cases per time unit, (ii) remove a randomly selected number of
surplus reported (false-positive) cases per time unit from the data, and (iii) to estimate the epidemic
curve and the reproduction number on the reduced data. Under the assumption of a low sensitivity,
the number of misclassification-adjusted cases per time unit can be higher than the number of reported
cases. We propose the following two-stage approach for the steps (ii) and (iii) from above and show the
analytical validity (cf. Supplemental Note 1): (1) remove a given number of false-positive cases from
the data based on the assumed specificity smaller than one and a sensitivity of one and estimate the
epidemic curve based on these case counts and, (ii) adjust the resulting estimated epidemic curve for
false-negatives based on an assumed sensitivity smaller than one. This procedure avoids the otherwise
necessary up-sampling of data and cuts down considerably on computational resources.
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We exemplify the misclassification-adjusted estimation of the epidemic curve and R(t) based on
Bavarian case reporting data, since we were able to obtain person-specific information on disease onset
for this German federal state.

2.6 Code and data
We provide R-code to reproduce our analyses on Github (https://github.com/FelixGuenther/mc_
covid_cases_public) and update the results of the estimation of the misclassification-adjusted epi-
demic curve on our web page regularly (https://corona.stat.uni-muenchen.de/nowcast/). The
proposed analysis can thus easily be extended to other countries or regions.

3 Results
3.1 Number of reported tests and reported cases in Germany and Bavaria
In the following, we refer to the time period between start of the laboratory reporting of conducted
SARS-CoV-2 tests (calendar week 11 for Germany overall, March 16th for Bavaria) and end of our
work’s observational period (as per calendar week 38 for Germany, Sept 20th for Bavaria), which is
chosen to capture the low-level incidence in summer 2020. Based on the number of tests reported by
laboratories, the testing activity in Germany started increasing in July and stabilized in September
(Figure 1A) and this increase was more pronounced in Bavaria. Altogether, 15.7 million PCR-tests
were reported by laboratories for Germany (i.e. 19 per 100 inhabitants) and 3.5 million by Bavarian
laboratories (26 per 100). During spring/summer 2020, the number of reported positive tests (by
laboratories) and reported cases (by health authorities) were the highest in the beginning of April,
then decreasing to a low level in Mid-May and started rising in June/July (Figure 1B). The summer
rise of case counts coincides with the increase of the test activity.

Note that the number of positive tests reported by laboratories and the number of COVID-19
cases reported by health authorities are not equal due to different reporting institutions. In Germany,
there were 310,630 reported positive tests at the time of our analysis and 272,664 reported cases, in
Bavaria 67,214 positive tests and 63,857 cases. Differences in time-series are particularly apparent in
the daily data from Bavaria (Figure 1B): at the beginning of the first wave in February, more cases were
reported by health authorities than positive tests by laboratories, most likely due to incompleteness
of data reported from laboratories and incomplete coverage of reporting laboratories at this early
phase. In our subsequent analyses, we focus on the time-period from May 1st to Sept 20th, 2020,
where reporting of test numbers by laboratories was established and changes in the testing activity
combined with low-level incidence in Germany is an ideal situation studying the impact of diagnostic
misclassification.

3.2 Evidence on the performance of COVID-19 diagnostics
Routine COVID-19 examination in a screening or hospital setting is currently mostly done based on the
detection of unique sequences of virus RNA using PCR-tests on clinical respiratory tract specimens
of examined individuals [15]. Laboratories use different PCR-tests targeting different viral genes.
The analytic sensitivity and specificity of PCR-tests applied to an adequately collected and handled
specimen are generally reported to be very high [16]. In a proficiency test of German laboratories
from April 2020, the authors found an average target-specific specificity between 97.8% and 98.6% and
a sensitivity between 98.9% and 99.7% [17]. However, such numbers on the analytic performance of
PCR-tests in laboratory settings do not directly relate to the person-specific performance of COVID-
19 examinations in a hospital or screening setting, which is relevant for adjusting the reported case
numbers in real-time surveillance. We systematically document sources of error in the person-specific
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Figure 1: Reported number of performed PCR-tests and COVID-19 cases in Germany and Bavaria.
Panel A shows the daily number of performed COVID-19 PCR-tests per 100,000 inhabitants in Ger-
many and Bavaria as reported by the laboratories. Panel B shows the daily number of positive PCR-
tests as reported by the laboratories and the number of COVID-19 cases as reported by the health
authorities per 100,000 inhabitants. The daily numbers are average numbers from weekly reported
data for Germany and daily reported numbers for Bavaria (with an obvious weekly cycle).

COVID-19 examination (Table 1). While it is a substantial challenge to cover all aspects, some aspects
should be noted in detail:

With respect to the sensitivity, there are two factors that increase the probability of a false-negative
examination result: first, inappropriate pre-analytical collection or handling of specimens, e.g., during
transportation to laboratories, can lead to false-negative results. Second, the performance of PCR-
tests in infected persons is reported to vary strongly depending on the time-point of the test after
infection due to quantitatively insufficient viral RNA in the early pre-symptomatic phase [18]. The
authors report a sensitivity close to zero directly after infection, an increase to 80% on day 8 (i.e.,
three days after typical symptom onset), and a decrease afterwards, all with high uncertainty. Similar
results on the time-varying performance indicate a sensitivity of bigger 90% at the day of symptom
onset with following decline [19]. Therefore, fast symptom-based testing should have a considerably
higher sensitivity than testing in a screening setting. Multiple tests at different time-points (e.g., after
symptom onset for a case with initial negative finding in a pre-symptomatic screening) can increase
the person-specific sensitivity. It is difficult to quantify the overall sensitivity of the person-specific
COVID-19 examination in the general testing regime, but it is certainly much lower than the high
analytic sensitivity reported for tests in a controlled laboratory experiment. We perform our analyses
based on an assumed sensitivity of 70% and 90% as a range of realistic values that also correspond to
previously reported findings [20, 21, 22].

With respect to the specificity of the person-specific examination, chance or cross-contamination
between specimens or swaps between infected and not infected individuals can lead to false-positive
test results. It is recommended that tests are repeated to ascertain unclear results and to use tests
that target two viral genes, which decreases the probability of false-positives considerably compared
to a single PCR-test and/or single target tests [23]. However, the specific approach might depend on
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Drivers of
performance Comment Quantification, implication

Sensitivity

Analytical Very small error,
depends on test Average analytical sensitivity >98%

Specimens Errors in collection
and/or handling

Reduction due to damaged specimen,
extent unclear

Real-world
application

Test result depends
on viral load

Reduction of sensitivity due to wrong timing
of test: close to zero directly after infection,
biggest ∼8 days after infection (or shortly
after/around symptom onset)

Testing
strategy

Infection might be
overlooked in screening
due to wrong timing,
individuals might get
tested a second time
after disease onset

Sensitivity higher in case of targeted testing
or physician-initiated (e.g., due to symptoms):
reduced sensitivity in screening application
or testing of asymptomatic, sensitivity might
change over time; infected individuals might
get detected after repeated testing

Specificity

Analytical Very small error,
depends on test Average analytical specificity >98%

Specimens False-positives due to swaps
or cross-contamination

Reduction due to cross-contamination,
frequency unclear, rather low

Real-world
application

Testing on dual targets and
repeated testing in case of
unclear results

Increase of specificity due to repeated
testing and expert evaluation of results,
extent might vary between laboratories

Testing strategy

Increased testing activity
might reduce quality of
testing due to limited
resources

High workload in laboratories might
decrease specificity of tests due to less
time for validation of unclear results;
might imply changes in specificity
over time, extent of effect unclear

Table 1: Identified drivers of the performance of the person-specific COVID-19 examinations based on
PCR-tests and their impact on sensitivity and specificity.

the laboratory and the overall situation (e.g., workload). Based on the Bavarian data, we show that a
specificity for the person-specific examination lower than 99.5% is not empirically supported: a lower
specificity would imply more false-positive cases than cases reported in the low-incidence phase in June
and beginning of July, given the estimated number of examined persons in the respective time period
(cf. section Adjusted case counts). For our analyses, we thus apply a specificity of 99.9%, 99.7% or
99.5%.

3.3 Number of examined persons in Germany and Bavaria
To adjust reported case counts for misclassification, we first derive the number of examined individuals
per time unit (weekly or daily) based on the best performing varying-coefficient regression model to
relate the number of reported cases to the number of reported positive PCR-tests over time (Supple-
mental Note 2, Supplemental Figure 1).

We find that, for the German data, the number of examined persons increases over time, most
notably in the first half of August, and reaches a plateau in September (Figure 2A). The number of
reported PCR-tests (derived from weekly data) matches the estimated number of examined persons
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Figure 2: Reported number of PCR-tests and model-based number of examined persons in Germany
and Bavaria. Shown are the daily numbers of performed PCR-tests per 100,000 inhabitants as well as
the estimated number of examined persons. The estimated numbers of examined persons result from a
varying-coefficient model fitted based on the association of the number of reported positive PCR-tests
and the number of reported COVID-19 cases. Results for Germany stem from modeling weekly data
and dividing by seven to illustrate results on a daily scale; the results for Bavaria are based on daily
data (with an obvious weekly cycle).

quite closely. For the daily Bavarian data, we find a similar increase in examined persons, but larger
differences in the number of reported PCR-tests by Bavarian laboratories and examined persons resid-
ing in Bavaria (Figure 2B). This difference is most pronounced at the end of German summer holidays
(end of July to early September, where many inhabitants from other federal states were tested for
free in Bavarian testing facilities upon travelling back home from the South through Bavaria). In the
last days of our observation period here, reported numbers of PCR-tests decrease, which reflects the
reporting delays between the time of the tests and the reporting of tests to health authorities. This
reporting delay is also present in the case reporting data with respect to the number of reported cases
per day by the local health authorities and we adjust for the reporting delay based on the nowcasting
described below (cf. section Estimation of the adjusted epidemic curve).

3.4 Misclassification-adjusted case counts
Based on the derived numbers of examined persons in Germany and Bavaria, we adjust observed case
numbers for misclassification in the person-specific diagnostic examination for SARS-CoV-2 infection
under the assumptions of a sensitivity of 90% or 70% and a specificity of 99.9%, 99.7%, or 99.5% (Figure
3). Adjusting for a specificity less than one leads to a reduction of case numbers and adjusting for a
sensitivity less than one increases the case numbers, as expected from theory. The impact of sensitivity
and specificity on adjusted case counts is structurally different: while adjusting for imperfect sensitivity
corresponds roughly to a time-constant upscaling of case numbers by the factor 1/sensitivity, the impact
of the specificity varies over time due to varying numbers of examined individuals. The relative effect
of adjusting for false-positives is the largest during July, when reported case numbers were low and
testing activity started rising (Figure 4). The relative effect diminishes in August/September despite
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Figure 3: Misclassification adjusted case numbers for Germany and Bavaria. Shown are daily mis-
classification adjusted case numbers per 100,000 inhabitants for different assumptions regarding the
sensitivity and specificity of the person-specific COVID-19 examination and the unadjusted reported
case numbers. The smaller the assumed specificity, the higher the number of false-positives in the
reported cases and the bigger the reduction of adjusted case numbers. The smaller the sensitivity,
the bigger the probability of false-negative examinations and the higher the adjusted case numbers.
Results for Germany stem from weekly reported data, the results for Bavaria are based on daily data
(with an obvious weekly cycle). Note the different scales on the y-axis for German and Bavarian data
for better visibility.

the increased testing activity during that time period due to an increased incidence.
Adjusted case numbers in Germany suggest that, dependíng on the extent of the specificity, the

increase in case counts in Beginning of July is indeed partly due to false-positives: adjusted case counts
are lower than the observed under the assumption of a sensitivity of 90%. However, the increase of
cases is still apparent even after the adjustment, which indicates that not the full increase was induced
by false-positives. Based on the daily reported Bavarian data, we find a similar pattern. This daily
data also prompted us to assume a specificity of no lower than 99.5%. Even under the extreme
assumption that there were no true cases in June and July and all observed cases were false-positives,
the false-positive proportion might not plausibly be larger than 0.5%. More precisely, we would have
expected more false-positive cases than actually reported in 20 of the 61 days of June and July given the
estimated number of examined persons and an assumption of 0.5% false-positive examination results.
Of all reported PCR-tests by the Bavarian laboratories in June and July, only 0.56% were reported as
positive.

3.5 Misclassification-adjusted epidemic curve and time-varying reproduction num-
ber in Bavaria

We use misclassification-adjusted case numbers to estimate the epidemic curve or the reproduction
number R(t), which provide key information for real-time surveillance. When comparing the epidemic
curve adjusted for a diagnostic specificity of 99.7% or 99.5% to the unadjusted epidemic curve, we
find structural differences in June/July: while the unadjusted epidemic curve started to rise slowly
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Figure 4: Fraction of false-positives in Germany and Bavaria over time for different assumptions on
the specificity. Shown is the fraction of all cases that is removed in the misclassification adjusted case
counts due to false-positive cases over time assuming different values for the (time-constant) specificity
and a constant sensitivity. For both, German and Bavarian data, the relative effect of the false-positive
cases is biggest during July, i.e., in the time of low reported case numbers and rising testing activity
and is less important with fewer testing and/or higher case numbers. This fraction is independent of
the assumed (constant) sensitivity due to the multiplicative nature of the adjustment for a sensitivity
smaller than 100%.
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around Mid-June, the adjusted epidemic curves remained on a very low level until Mid-July (Figure
5A). When additionally accounting for a sensitivity of 90% or 70%, we find the same (Figure 5B); in
fact, the impact of different values for the sensitivity was low during this time due to the low incidence.
After Mid-July, the increase of the epidemic curve was genuine: in all scenarios, we observe an increase
of case counts. In August/September, the reduction of case counts when accounting for false-positives
based on a specificity of 99.7% is neutralized by the increase of the case count when considering also
false-negatives based on a sensitivity of 70%: the unadjusted and adjusted epidemic curve are basically
the same.

The misclassification-adjusted estimation of the epidemic curve facilitates estimation of an adjusted
time-varying effective reproduction number R(t). It is an estimate of the average number of individuals
that are infected by an individual with disease onset on a given day t. If this factor is smaller than
one, case numbers are decreasing, if it is bigger than one, case numbers are increasing within the
following days. At the beginning of July, adjusted R(t), is smaller than one when assuming a specificity
of 99.5% or 99.7%, while the unadjusted R(t) was slightly larger than one (Figure 5C). This is in
line with the observation that, at that time, true case numbers might have been close to zero or
decreasing, but reported numbers were slightly increasing due to false-positives from increased testing.
However, shortly thereafter in Mid-July, the adjusted R(t) exceeds one for all considered values of
the specificity, which is in line with increasing case numbers in August/September and an actual true
increase in the case counts. The (relative) increase in case numbers in July is bigger when accounting
for a relatively high fraction of false-positives in June, yielding bigger estimates of R(t) the lower the
assumed specificity.

4 Discussion
In this work, we conceptualize sources of uncertainty in person-specific PCR-based COVID-19 diag-
nostics and quantify realistic extents of misclassification in terms of plausible values for sensitivity and
specificity. We provide an approach to adjust reported case counts for the diagnostic misclassification
and extend this approach to a misclassification-adjusted real-time estimation of the epidemic curve
and reproduction number R(t). This helps to solve two important problems of case reporting data in
real-time surveillance: temporal assignment of reported cases and accounting for misclassification in
COVID-19 diagnostics. On the example of data from Germany and Bavaria, we quantify the impact
of diagnostic misclassification on the time series of reported case counts and the real-time estimation
of the epidemic curve.

Sensitivity and specificity of the diagnostics have a structurally different impact on case counts:
a sensitivity smaller than one leads to an underestimation of the true number of cases by a factor
independent of the number persons tested, a specificity is smaller than one leads to an overestimation
of case numbers, the extent of which depends on the number of tested persons and corresponds to the
number of false-positive cases. When the number of tested persons changes over time, the number of
false-positives changes as well. This can distort the estimated epidemic curve and thus the apparent
dynamics of the epidemic.

For the German case counts during summer 2020, we find that the reported case numbers during
the low incidence phase in June and July were to a relevant part false-positives, but that the observed
increase of cases since Mid-July was not entirely driven by false-positives. When accounting for false-
positive and false-negative test results, the adjusted case numbers in August and September were on
a similar level than the unadjusted. Therefore, the increase seen in German case numbers from July
until September, which was debated as being predominantly driven by false-positives due to increased
testing activity, was a genuine increase of infections. Based on our developed analysis approach such
questions can also be answered in future real-time surveillance.

Since the relative impact of misclassification on reported case counts depends on the number of
examined persons and the current incidence, we update our analyses on a regular basis and pro-
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Figure 5: Misclassification adjusted epidemic curve and time-varying reproduction number R(t). Panel
A shows the estimated epidemic curve (number of disease onsets per day) for different assumptions
regarding the specificity (assuming a perfect sensitivity as in the unadjusted analysis). Panel B shows
the results for different assumptions regarding the sensitivity assuming a specificity of 99.7% and
additionally the unadjusted curve. The grey bars show the number of cases with disease onset on
a specific day (or imputed if missing) as reported to the LGL until Sept, 21. Panel C shows the
misclassification adjusted time-varying reproduction number for different assumptions regarding the
specificity. Results are independent of the assumed (time-constant) sensitivity. The epidemic curve
is estimated based on a Bayesian hierarchical nowcasting model considering misclassification adjusted
case counts, the time-varying reproduction number is estimated based on the estimated epidemic
curves.
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vide the results adjusted for various scenarios of sensitivity and specificity on our website (https:
//corona.stat.uni-muenchen.de/nowcast/). Based on current results from January, 2021, it be-
comes obvious that the true number of cases during the strong second wave in Bavaria might be consid-
erably underestimated due to false-negative results (Supplemental Figure 2). The general structure of
the epidemic curve is, however, not changed by taking into account errors in COVID-19 examinations.
The distortion due to false-positive tests hardly plays a role in times of high incidence.

Our analyses have some assumptions and limitations. The adjustment for misclassification in
COVID-19 diagnostics depends on accurate information with respect to the number of examined in-
dividuals. Such information is not directly available in German surveillance data and we rely on a
model-based approach to estimate this number. The results appear plausible, but cannot be directly
validated. Furthermore, we assume constant misclassification probabilities for the COVID-19 diagnos-
tics over time. This assumption is likely violated by changes in the diagnostic procedures, changes in
workload for the laboratories, and changes or improvements in standard operating procedures. We be-
lieve, however, that our calculations over a range of plausible assumptions for sensitivity and specificity
can give a realistic overview about potential biases due to misclassification.

Misclassification in COVID-19 diagnostics is not the only problem for the interpretation of reported
case numbers. It is well known that not all infected persons are captured and examined. This leads to
a relevant difference between the number of infected individuals and the number of reported infections.
This problem is not COVID-19-specific, but also occurs with other diseases when they only cause mild
symptoms in some cases - as typically described by the so-called surveillance pyramid [24]. The case
detection ratio for COVID-19 was estimated in Germany from antibody prevalence studies to be as low
as 0.2 to 0.4 for the first phase of the pandemic in spring 2020 [25, 26, 27]. If the case detection ratio is
constant over time, the structure of the epidemic curve remains unchanged. However, expanding the
testing activity increases the detection ratio. Therefore, one has to be careful when comparing absolute
numbers of cases over longer periods of time. More specifically, the absolute number of reported cases
in Germany during March-April 2020 is not comparable to the case numbers reported during August
and September (and today) due to increased testing. In our analysis and figures, we focused on the
epidemic curve starting in May 2020, i.e., after the first phase of the pandemic. Nevertheless, the
remaining increase of the misclassification-adjusted case numbers during August-September might still
partly be driven by an increasing case detection ratio. This question cannot be answered directly
from reported case numbers, but requires additional information, e.g. numbers of hospital admissions,
deaths or longitudinal data on antibody prevalence. Recent modelling approaches [28] might also be
extended to account for misclassification in COVID-19 testing.

Overall, a thorough analysis of case reporting data adjusting for misclassification is important to
improve monitoring of short-term changes in the pandemic situation. Given the high relevance of
reported case counts for the surveillance of an acute pandemic, we recommend to analyse case counts
adjusted for plausible assumptions regarding diagnostic misclassification in the corresponding testing
regimes to understand potential distortions due to misclassification and avoid the appearance of false
precision. This remains especially important as containment and surveillance of the current pandemic
remains a central task worldwide. Consideration of misclassification in tests will also be relevant with
the increasing use of alternative test methods, especially if their results are not confirmed by the
established PCR-tests. In this work, we have shown that a thorough analysis of surveillance data can
help to capture current trends more reliably and reduce the ambiguity of the available information,
which can ultimately support public confidence in the available evidence. This will also be important
in the event of a future emergence of new virus strains or other pandemic pathogens.
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Supplemental Note 1 - Misclassification adjustment for case numbers

We denote a binary indicator variable Di for the event that a person i is currently infected. Di = 1
means that a person is currently infected by COVID-19 and Di = 0 that a person is not infected. The
result of the person’s COVID-19 examination (e.g., one or multiple sequential PCR-tests) is denoted
by Ti. Ti = 1 corresponds to a classification as infected (positive examination) and Ti = 0 to a
negative COVID-19 examination. Furthermore, the sensitivity (i.e., the probability of a true positive
examination) is defined by sens = P (Ti = 1|Di = 1) and the specificity (probability of true negative
examination) is denoted by spec = P (Ti = 0|Di = 0). Then the probability of a positive examination
is given by

P (Ti = 1) = P (Di = 1) · sens + P (Di = 0) · (1− spec). (1)

We denote the (unknown) number of examined persons at a certain time t by NTt and the number
of positive diagnostic procedures (i.e., reported cases) by T+

t = ∑NTt
i=1 Ti. We can rewrite the expected

number of reported cases on day t as

E(T+
t |D+

t , NTt) = D+
t · sens + (NTt −D+

t ) · (1− spec), (2)

where D+
t denotes the (unknown) number of actually infected persons that are examined on day t.

Equation (2) is derived from equation (1) by replacing the probabilities P (·) by the corresponding
relative frequencies, P (Ti = 1) = T+

t /NTt, P (Di = 1) = D+
t /NTt, and P (Di = 0) = (NTt −

D+
t )/NTt = D−

t /NTt, and multiplying both sides with the number of examined persons, NTt.
Equation (2) shows that the effects of sensitivity and specificity on the observed case counts are

different. While a low sensitivity leads to an underestimation of the number of cases by the factor
sens, the effect of specificity is additive and depends on the number of examined persons.

If all information, i.e., the number of reported cases T+
t , the number of examined persons NTt, and

the sensitivity and specificity of the person-specific examination are known, we can rewrite equation
(2) and estimate the number of true cases D+

t based on

D̂+
t = T+

t −NTt · (1− spec)
sens + spec− 1 . (3)
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This estimator relates to the well known matrix method, see e.g., Rogan and Gladen (1978).
Since only positive COVID-19 examinations are directly reported to German health authorities,

only the overall number of reported cases T+
t is directly available, but the corresponding number of

examined individuals, that would be reported as case on day t in the event of a positive test, NTt, is
unknown. However, the overall number of performed tests is separately reported by the laboratories
as well as the number of positive tests. This data can have a difference in temporal allocation and,
furthermore, we expect more reported tests than examined persons due to multiple tests for single
persons and - in case of the Bavarian data - tests of individuals living outside of Bavaria.

To establish the relationship between the two quantities, we utilize the positive test results and
model the number of reported cases at the health authorities based on the number of positive tests
reported by the laboratories from the current and previous time points (i.e., based on lagged time
series of reported positive tests from the laboratories). We utilize two different models and consider
different degrees for the lag-number of positive tests. The first model corresponds to standard linear
regression with linear effects of the (lagged) number of positive tests from the same and previous time
points:

E(T+
t ) =

∑

k

αk · Test+
t−k, t = May 1st, . . . , T. (4)

Here, the number of positive tests reported by the laboratories at time point t is denoted by Test+
t

and T corresponds to the most current time point. We estimate the model based on all possible
subsets of lags k ⊂ {0, . . . , 7}. As a second model, we consider a varying-coefficient model (Hastie
and Tibshirani, 1993), in which the linear effect fk of the (lagged) number of positive tests, PCR+

t−k,
varies smoothly over time:

E(T+
t ) =

∑

k

fk(t) · Test+
t−l, t = May 1st, . . . , T. (5)

This model is estimated for all different subsets of lags k ⊂ {0, . . . , 7}, as well. From all estimated
models, we select the best performing model based on the Bayesian information criterion (BIC).

Assuming a similar relation between the number of (positively) reported tests for individuals
reported as cases to the Bavarian/German health authorities as for the number of reported tests
per examined persons, we estimate the number of examined persons NTt by using the estimated
parameters of the selected model (4) or (5) and plug-in the total number of reported tests:

N̂T t =
∑

k

f̂k(t) · Testt−k, (6)

where Testt denotes the total number of test reported by the laboratories on day t and f̂k(t) are
the estimated associations for the (lagged) number of tests reported by the laboratories. Depending
on whether a model of type (4) or (5) is selected, they correspond to time-constant (linear) effects
fk(t) = αk or (linear) effects that vary smoothly over time.

Plugging the observed numbers of positively examined persons (new cases), T+
t , and the derived

number of relevant examinations, N̂T t from (6), into (3), we obtain misclassification adjusted estimates
for the number of new COVID-19 cases per time point, D̂+

t .
In the nowcasting, we estimate the number of cases with disease onset on a specific day based

on a complex Bayesian hierarchical model using individual-specific data on the reporting and disease
onset date (cf. Günther et al. (2020)). To apply the proposed adjustment for misclassification, we
first focus on the scenario of no false-negative examinations (sensitivity equals one) and a reduced
specificity smaller than one. We then calculate the expected number of false positives reported to the
health authorities on a certain day based on the difference of

D̂+
t = T+

t −NTt · (1− spec)
spec (7)

and the reported number of new cases T+
t . Then, we remove this number of randomly selected

observations from our data and apply the nowcasting to the reduced data to estimate the false-
positive adjusted epidemic curve. Based on the estimated epidemic curve it is possible to estimate the
effective time-varying reproduction number Re(t) as also described in Günther et al. (2020).
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To take possible false negatives into account, we can rewrite formula (3) by

D̂+
t = T+

t −NTt · (1− spec)
spec · spec

sens + spec− 1 (8)

and plug in different values for the sensitivity, sens < 1. The first term of (8) corresponds to the
false positive adjusted estimate from (7) and the second part is a constant factor independent of the
number of examinations per day.

Since the false-negative adjustment relies on a constant factor which is independent of the number
of tested individuals, the factor spec/(sens+ spec− 1) can be directly applied to the result of the false
positive adjusted nowcasting procedure, which reduces the computational effort considerably compared
to a repeated application of the nowcasting to (upsampled) data. Note, that spec/(sens+ spec− 1) ≈
1/sens for a specificity close to one. The false negative adjustment corresponds therefore roughly to a
point-wise up-scaling of the estimated epidemic curve by the reciprocal sensitivity.
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Supplemental Note 2 - Results of model for approximating the number of examined
persons over time

To approximate the number of examined persons per time interval (week or day) based on the reported
number of performed PCR-tests by the laboratories, we estimate a model that establishes a relation
between the number of reported cases by the health authorities and the number of reported positive
PCR-tests by the laboratories also allowing for lagged associations. We select the best-performing
model out of a set of candidate models with time-varying or time-constant linear associations between
the number of reported cases and the (lagged) number of positive PCR-tests based on the Bayesian
information criterion (BIC) (cf. Supplemental Note 1). With this approach, we aim at capturing
potentially time-varying associations between the available information in a flexible way to obtain a
plausible approximation for the number of examined individuals over time. Nevertheless, a closer look
at the estimated associations might help to understand the structure in the available data better.

For the weekly German data, a varying coefficient model was selected with time-varying effects of
the number of reported PCR-tests in the same week and the previous week. For the daily Bavarian
data, the selected model considers time-varying effects of the number of positive PCR-tests on the
respective day and additionally of the number of positive PCR-tests two and six days before.

At a given time t, the predicted number of reported cases at the health authorities corresponds
to a weighted sum of reported positive PCR-tests at the same time and previous time points (i.e.,
previous week for the German data, and day t− 2 and t− 6 for the Bavarian data). The weights are
given by the estimated effect for time point t. Analogously, our predicted number of examined persons
corresponds to the weighted sum of reported PCR-test counts (positive and negative).

For the German model, we find a positive association between the number of reported cases by
the health authorities and the number of reported positive PCR-tests in the same week that increases
over time towards one. Additionally, we estimated a small positive contribution (around 10%) of the
reported positive PCR-tests in the previous week. The rather low weight of the lag-0 PCR-tests in
the beginning of the observation period corresponds to the observation that the German laboratories
reported more positive PC-tests to the health authorities during May and June than new cases were
reported by the RKI (cf. Figure 1 in the manuscript). This indicates that several laboratories reported
tests that were already performed at in previous weeks (i.e., during the first wave) in this time period.
During the end of the observation period PCR-test reporting by the laboratories was better established
and the weekly number of reported positive tests corresponds closely to the number of reported cases
by the RKI. In fact, for the German data the misclassification adjustment in August/September is
very similar when utilizing the number of reported tests instead of the predicted number of examined
persons (not shown).

For the Bavarian model estimated based on daily data, we obtain somewhat similar results. The
association of the number of reported positive PCR-tests and the number of reported cases at the health
authorities per day increases over time towards around one. Additionally we have a small contribution
of the number of positive PCR-tests two and six days before the current day that remains rather
constant over time. The lag-0 association (i.e., the association of the number of reported positive tests
and the number of reported cases at the same day) shows, however, an additional change in July and
August. At this time, there were more positive tests reported by the Bavarian laboratories than cases
reported by the Bavarian health authorities and the lag-0 association decreases slightly. This pattern
could be related to the German holidays, when many travellers from other federal states were tested
when passing through Bavaria. At the end of the observation period the effect of the number of positive
tests reported by the laboratories is slightly bigger than one: there are (already) more cases reported
by the health authorities than positive tests reported by the laboratories. This might be induced by
a faster reporting of person-specific positive test results to the local health authorities (leading to a
case registration) compared to the reporting of aggregated (positive and overall) test-numbers by the
laboratories. This indicates that the approximation of the number of examined persons based on the
flexible model is an important step for a valid misclassification adjustment, especially when analysing
daily data in close to real-time.

4

101



References
Günther, F., Bender, A., Katz, K., Küchenhoff, H., and Höhle, M. (2020). Nowcasting the COVID-19
pandemic in Bavaria. Biometrical Journal.

Hastie, T. and Tibshirani, R. (1993). Varying-coefficient models. Journal of the Royal Statistical
Society: Series B (Methodological), 55(4):757–779.

Rogan, W. and Gladen, B. (1978). Estimating prevalence from results of a screening-test. American
Journal of Epidemiology, 107(1):71–76.

5

102
5. Analysis of COVID-19 case numbers: adjustment for diagnostic

misclassification on the example of German case reporting data



Supplemental Figures

Supplemental Figure 1: Estimated time-varying association between (lagged) numbers of positive tests
reported by the laboratories and the number of reported cases at the health authorities. The model
for Germany (top row) is based on weekly information and contains time-varying effects of the number
of reported positive tests in the current and the previous week, the model for Bavaria (bottom row)is
based on daily information and contains time-varying effects of the number of reported positive tests
at the current day, and two and six days before.
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Supplemental Figure 2: Estimated misclassification-adjusted epidemic curve for Bavaria based on data
available an January, 21, 2020. They grey bars show the number of disease onsets per day reported
until January, 21. The black line represents the estimated epidemic curve from nowcasting without
adjustment for misclassification. The colored lines show the estimated epidemic curve misclassification
adjustment based on different assumptions regarding the sensitivity and specificity of person-specific
COVID-19 examination. While the true number of cases might be considerably underestimated due
to false-negative results (Supplemental Figure 2), the general structure of the epidemic curve is not
changed by taking misclassification into account.
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