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Zusammenfassung

Bayes-Faktoren werden neuerdings als Ersatz für die stark kritisierten frequentistischen Hy-
pothesentests propagiert. Allerdings beruhen Bayes-Faktoren häufig auf denselben statis-
tischen Hypothesen, die in den frequentistischen Verfahren verwendet und wegen man-
gelnder praktischer Relevanz kritisiert wurden. Um Bayes-Faktoren vor ähnlichen Un-
zulänglichkeiten zu bewahren, wird in der vorliegenden Dissertation versucht, herauszuar-
beiten, wie die praktische Relevanz von Bayes-Faktoren verbessert werden kann. Es zeigt
sich, dass eine formale Definition des Begriffs der praktischen Relevanz innerhalb der statis-
tischen Entscheidungstheorie zu finden ist. Die Relevanz eines Ergebnisses hängt natürlich
davon ab, wofür es verwendet wird, und eine solche Verwendung ist - formal gesehen - eine
Entscheidung. Dementsprechend wurden die Bayes-Faktoren im Rahmen der Bayes’schen
Entscheidungstheorie dargestellt und bewertet, wobei die Spezifikation der Verlustfunk-
tion das größte Hindernis für ihre Anwendung zu sein scheint. Typischerweise sind die
Informationen über Konsequenzen einer Entscheidung knapp, vage und mehrdeutig, was
eine eindeutige und präzise Spezifikation der Verlustfunktion nahezu unmöglich macht.
Um dieses Spezifikationsproblem zu lösen, werden zwei Möglichkeiten diskutiert: Erstens
kann die Verlustfunktion durch die Verwendung eines hypothesenbasierten Ansatzes vere-
infacht werden, und zweitens können die geforderten Spezifikationen mengenwertig, d.h.
verallgemeinert, anstelle von präzisen Werten aufgefasst werden. In diesem Sinne wurde
eine zweifache Verallgemeinerung der Bayes-Faktoren in die Entscheidungstheorie und in
das Feld der verallgemeinerten Wahrscheinlichkeiten entwickelt und anschließend in einen
anwenderfreundlichen statistischen Leitfaden verdichtet. Außerdem wurde das Wesen von
statistischen Hypothesen kritisch bewertet, wobei gezeigt wurde, dass sie - im Gegensatz
zur gängigen Auffassung in der Literatur über Bayes-Faktoren - lediglich Teilmengen des
Parameterraums sind.

Die vorliegende kumulative Dissertation besteht aus acht veröffentlichten Beiträgen,
die jeweils unterschiedliche Aspekte dieses Themas abdecken. Zusammen behandeln diese
Beiträge, wie die praktische Relevanz von Bayes-Faktoren verbessert werden kann, indem
sie die dazu notwendigen konzeptionelle Grundlagen (Definition der praktischen Relevanz,
Natur von statistischen Hypothesen), methodologische Grundlagen (zweifache Verallge-
meinerung von Bayes-Faktoren) und Methoden für Anwendungen (benutzerfreundliche
Schritt-für-Schritt-Anleitungen, Vergleich mit anderen Methoden) ausarbeiten.
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Abstract

Bayes factors are recently promoted as replacement for the heavily criticized frequentist
hypothesis tests. Yet, Bayes factors are oftentimes based on the same statistical hypotheses
that were employed in frequentist procedures and criticized for lacking practical relevance.
To guard Bayes factors of similar shortcomings, the present dissertation attempts to elab-
orate on how to improve the practical relevance of Bayes factors. It appears that a formal
definition of the notion of practical relevance is located within the framework of statistical
decision theory. The relevance of a result naturally depends on what it is used for, and –
formally speaking – such a use is a decision. Accordingly, Bayes factors were depicted and
evaluated within the framework of Bayesian decision theory, in which the specification of
the loss function seems to be the major obstacle to its application. Typically, information
about the consequences of a decision are scarce, vague, partial, and ambiguous, prohibit-
ing an unambiguous specification of the loss function. To deal with these specification
issues, two options are discussed: First, the loss function can be simplified by employing
a hypothesis-based account and, second, the required specifications can be allowed to be
set-valued, i.e. imprecise, instead of precise values. In this regard, a twofold generalization
of Bayes factors into the framework of decision theory and into the framework of imprecise
probabilities was developed and condensed into a straightforward framework for applica-
tions. Besides, the nature of statistical hypotheses was critically evaluated, showing that
– in contrast to the current conception within the literature of Bayes factors – they are
merely subsets of the parameter space.

The present cumulative dissertation thesis consists of eight published contributions,
each delineating different topics within this framework. Together, these contributions
elaborate on how to improve the practical relevance of Bayes factors by providing con-
ceptual foundations (definition of practical relevance, nature of statistical hypotheses),
methodological foundations (twofold generalization of Bayes factors), and methodologies
for applications (user-friendly step-by-step guides, comparison to other methods).
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Chapter 1

Introduction

1.1 Goal of the Dissertation

Statisticians and methodologists develop statistical methods and empirical scientists em-
ploy them. To use them, certain essential quantities need to be specified properly by the
empirical scientist, such that they correctly reflect their counterpart within the applied field
of science. How to specify these quantities properly is one of the fundamental issues at the
interface of statistics and applied science: On the one hand, the applied scientist who seeks
methodological guidance wants to know how to specify these quantities properly. On the
other hand, the statistician who develops statistical methods assumes that these quantities
are specified properly, as their specification is an applied, not a statistical problem, and
depends on the actual field of applied research. As a consequence, the body of scientific
elaborations about this issue is quite small compared to the amount of methodological
developments or the amount of applied studies. Nevertheless, a correct specification of the
essential quantities required within statistical methodologies is of paramount importance.
If these quantities are misspecified, results will inform past the research question of inter-
est. In severe cases, incorrect results might render the scientific endeavor as a waste of
time and money.

This general lack of methological guidance on how to specify the essential quantities prop-
erly might lead to an increasing use of default specifications, a trend in applied sciences
with a very long and striking history. In the case of frequentist hypothesis tests, default
specifications of the employed hypotheses have become that omnipresent that critics refer
to their use as a mindless ritual (Gigerenzer, 2004) called Null-Hypothesis-Significance-
Testing (NHST). Naturally, mindlessly analyzing empirical data does impair the value
scientific results and the integrity of science. While characteristics of NHST have been
criticized for decades (with critique dating back to Berkson, 1938), critique intensified (e.g.
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Dienes and Mclatchie, 2018; Kruschke and Liddell, 2018) in the context of the replicability
crisis (Ioannidis, 2005).

In line with the critique against frequentists methods, especially against NHST, and the
increasing popularity of Bayesian statistics (see e.g. van de Schoot et al., 2017), a massive
amount of effort (see e.g. Kass and Raftery, 1995; Gönen et al., 2005; Rouder et al., 2009)
was put into the development of Bayes factors – a Bayesian quantity in the context of
hypothesis comparisons (dating back to Jeffreys, 1961). Now, Bayes factors are argued to
replace frequentist hypothesis tests.

However, also the calculation of the Bayes factor requires certain essential quantities to be
specified properly in accordance with the research problem of interest. While discussions
and developments about these issues are still ongoing, one might find all sorts of different
opinions about it, ranging from default specifications (see e.g. Rouder et al., 2009; Ly et al.,
2016) to an emphasis on individual specifications that capture the research context (see
e.g. Rouder et al., 2018a; Dienes, 2019; Gronau et al., 2019). In the course of the last
decades, there are also some researchers, who changed their view on this topic (cp. e.g.
Rouder et al., 2009, 2018b), underlining that the current development of Bayes factors is
far from being completed.

There are, however, two aspects that are predominantly missing in this development of
Bayesian methods for hypothesis comparisons:

• While it is easy to see that misspecifying essential quantities might lead to irrelevant
results, an exact formal definition of a relevant result is missing. Yet, by developing
the notion of practical relevance on a formal level, mathematical concepts and frame-
works are opened up, which are required to ensure the relevance of a result. These
concepts and frameworks might then be incorporated into the statistical methods in
the context of Bayes factors.

• Essential quantities are typically required to be precisely specified. To do so, the
applied scientist needs to have quite a high level of certainty about the relevant
information for this specification. However, information is rarely that abundant to
allow unambiguous precise specifications. The applied topic under investigation is
still not fully known, else it might not be subject to a scientific endeavor. In that,
it suggests itself to refrain from requiring the applied scientists to provide precise
specifications and allowing rather imprecise1 specifications that include the available
(partial) information and uncertainty as is.

1A conventional conception is that the mathematical formalization, which is used to elaborate on
a certain phenomenon of interest in a scientific way, is merely an idealization of the actual real world
characteristics. In that sense, one might argue that it is only natural to have a certain (ideally small)
degree of misspecification within the employed mathematical formalization. Yet, a distinction has to be
made:

– A misspecification might arise because the phenomenon of interest in the real world is quite compli-
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Figure 1.1: Thesis Overview. The elaborations within this dissertation thesis can be divided
coarsely into conceptual foundations (light gray), methodological foundations (gray), and method-
ologies for applications (dark gray). The main concepts (squared boxes) and their relations (ar-
rows) are shown, to which all contributions of this thesis (circles) are related to. The numbers
of the contributions relate to the listing in Section 1.2. Black rounded boxes denote the chapters
within the following elaboration.

Following the first aspect, it appears that decision theoretic concepts are required to for-
mally define the notion of practical relevance (Schwaferts and Augustin, 2021d). To follow
the second aspect, imprecisely specified quantities and their integration into statistical
methods is the primary matter of the field of imprecise probabilities. Therefore, in order
to further develop the existing Bayesian methods for hypothesis comparisons (especially
Bayes factors) w.r.t. these two neglected aspects, their generalization into both the frame-
work of decision theory (see e.g. Berger, 1985; Robert, 2007) and the framework of imprecise

cated and the researcher decides to employ a simpler (and therefore idealized) formalization, such
that a scientific treatment of the phenomenon of interest becomes feasible.

– A misspecification might rise because knowledge about the phenomenon of interest in the real world
is scarce, vague, partial, and ambiguous, rendering different possible formalizations plausible, such
that choosing any of these formalizations might be considered arbitrary.

These two types of misspecifications are completely different! While the context of idealization requires
sufficient information about the phenomenon of interest to argue that such an idealization is appropriate,
the context elaborated on in this dissertation thesis assumes that information is – in general – insufficiently
available for precise specifications. Accordingly, precise specifications cannot be treated as idealization if
the available information is insufficient. They would rather constitute arbitrary choices, emphasizing the
need to use imprecisely specified quantities to formalize partial information.
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probabilities (see e.g. Walley, 1991; Augustin et al., 2014) is crucial.

Working towards this two-fold generalization is the goal of this dissertation thesis, thereby
allowing Bayes factors to be employed in a more practically relevant manner (Figure 1.1).

1.2 Overview of Contributions

This dissertation thesis consists of eight contributions2. These are listed with regard to a
logical structure of their content (Figure 1.1):

[1] Schwaferts P. and Augustin T. (2021d). Practical relevance: A formal definition.
URL http://arxiv.org/abs/2110.09837

[2] Schwaferts P. and Augustin T. (2021e). Updating consistency in Bayes factors. Tech-
nical Report 236, Ludwig-Maximilians-University Munich, Department of Statistics.
URL http://dx.doi.org/10.5282/ubm/epub.75073

[3] Schwaferts P. and Augustin T. (2021a). Bayes factors can only quantify evidence
w.r.t. sets of parameters, not w.r.t. (prior) distributions on the parameter. URL
http://arxiv.org/abs/2110.09871

[4] Ebner L., Schwaferts P., and Augustin T. (2019). Robust Bayes factor for indepen-
dent two-sample comparisons under imprecise prior information. In J. De Bock, C.P.
de Campos, G. de Cooman, E. Quaeghebeur, and G. Wheeler, editors, Proceedings
of the Eleventh International Symposium on Imprecise Probability: Theories and Ap-
plications, volume 103 of Proceedings of Machine Learning Research, pages 167–174.
PMLR. URL http://proceedings.mlr.press/v103/ebner19a.html

[5] Schwaferts P. and Augustin T. (2019). Imprecise hypothesis-based Bayesian de-
cision making with simple hypotheses. In J. De Bock, C.P. de Campos, G. de
Cooman, E. Quaeghebeur, and G. Wheeler, editors, Proceedings of the Eleventh

2Besides these contributions, two additional scientific works were published that do not constitute this
dissertation thesis:

• Hilbert S., McAssey M., Bühner M., Schwaferts P., Gruber M., Goerigk S., and Taylor P.C.J. (2019).
Right hemisphere occipital rTMS impairs working memory in visualizers but not in verbalizers.
Scientific Reports, 9(1):1–8. URL http://dx.doi.org/10.1038/s41598-019-42733-6

• Schwaferts C., Schwaferts P., von der Esch E., Elsner M., and Ivleva N.P. (2021). Which particles
to select, and if yes, how many? subsampling methods for Raman microspectroscopic analysis of
very small microplastic. Analytical and Bioanalytical Chemistry, 413(14):3625–3641. URL http:
//dx.doi.org/10.14459/2021mp1596628

http://arxiv.org/abs/2110.09837
http://dx.doi.org/10.5282/ubm/epub.75073
http://arxiv.org/abs/2110.09871
http://proceedings.mlr.press/v103/ebner19a.html
http://dx.doi.org/10.1038/s41598-019-42733-6
http://dx.doi.org/10.14459/2021mp1596628
http://dx.doi.org/10.14459/2021mp1596628
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International Symposium on Imprecise Probability: Theories and Applications, vol-
ume 103 of Proceedings of Machine Learning Research, pages 338–345. PMLR. URL
http://proceedings.mlr.press/v103/schwaferts19a.html

[6] Schwaferts P. and Augustin T. (2021c). Imprecise hypothesis-based Bayesian deci-
sion making with composite hypotheses. In A. Cano, J. De Bock, E. Miranda, and
S. Moral, editors, Proceedings of the Twelveth International Symposium on Imprecise
Probability: Theories and Applications, volume 147 of Proceedings of Machine Learn-
ing Research, page 280–288. PMLR. URL https://proceedings.mlr.press/v147/
schwaferts21a.html

[7] Schwaferts P. and Augustin T. (2021b). How to guide decisions with bayes factors.
URL http://arxiv.org/abs/2110.09981

[8] Schwaferts P. and Augustin T. (2020). Bayesian decisions using regions of practi-
cal equivalence (ROPE): Foundations. Technical Report 235, Ludwig-Maximilians-
University Munich, Department of Statistics. URL http://dx.doi.org/10.5282/
ubm/epub.74222

The fist contribution (Schwaferts and Augustin, 2021d) develops a formal definition of the
notion of practical relevance. To do so, previous elaborations on the concept of practical
significance (see e.g. Kirk, 1996, 2001) were assessed and it appeared that all elaborations
had two common characteristics: An applied decision that should be guided and – implicitly
employed – a way to determine the optimal action for each possible effect. Formally,
these characteristics relate to a decision problem with all potential actions and a loss
function in the context of statistical decision theory (see e.g. Berger, 1985; Robert, 2007).
Naturally, the practical relevance of some results depends on what the results are used for,
and this use is formalized as a decision problem. In that, it appears that the notion of
practical relevance is a decision theoretic concept. The contribution distinguishes between
two different, but connected concepts of practical relevance: The practical relevance of
an effect and hypotheses which incorporate the notion of practical relevance. With these
definitions, one might employ the context of decision theory to understand the requirements
of specifying hypotheses reasonably in an applied study.

Unfortunately, this understanding of how to specify hypotheses in a practically relevant
manner does not match with the current elaborations about hypothesis specifications in
the Bayes factor literature. While the previously developed decision theoretic elaboration
states that a reasonable hypothesis specification depends on the potential actions and the
loss function of the underlying decision problem only, the current conception of hypotheses
in the context of Bayes factors relates them to the Bayesian prior distribution (cp. e.g.
Vanpaemel, 2010; Vanpaemel and Lee, 2012; Morey et al., 2016; Rouder et al., 2018a;
Dienes, 2019; Tendeiro and Kiers, 2019). However, this prior distribution formalizes only
prior knowledge (or uncertainty or degrees of belief or information), but not a hypothesis,

http://proceedings.mlr.press/v103/schwaferts19a.html
https://proceedings.mlr.press/v147/schwaferts21a.html
https://proceedings.mlr.press/v147/schwaferts21a.html
http://arxiv.org/abs/2110.09981
http://dx.doi.org/10.5282/ubm/epub.74222
http://dx.doi.org/10.5282/ubm/epub.74222
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about the effect of interest. How can this disagreement be explained? Where are potential
shortcomings?

The second contribution (Schwaferts and Augustin, 2021e) is a groundwork to investigate
these questions. In the context of Bayesian statistics, a prior distribution gets updated by
the data to a posterior distribution. It is typically assumed that – if specified correctly – the
prior distribution reflects all available knowledge before the data were obtained, such that
the posterior distribution reflects all available knowledge after the data were obtained. In
that, the posterior distribution might be employed as a prior distribution for the assessment
of a second data set (of the same structure). Naturally, the final posterior distribution
should be identical whether both data sets are considered subsequently or merged first and
considered at once. If so, updating is called consistent, else it is called inconsistent. This
contribution provides a proof that updating with Bayes factors is consistent. This detailed
depiction of updating with Bayes factors emphasizes that it is important to consider that
the complete prior distribution gets updated by observing the data, not only parts of it.
If only some parts of the prior distribution get updated, updating is inconsistent.

The third contribution (Schwaferts and Augustin, 2021a) uses these insights to discuss the
notion of a statistical hypothesis. In the context of Bayes factors, there are two hypotheses
being contrasted against each other. Each of those hypotheses formalizes a theory, which
are contrasted against each other in the research question. The goal of the scientific
investigation is to assess the quality of these theories, i.e. to alter their plausibility or even to
dismiss one of the theories in favor of the other. In such a contrasting setting, it is incorrect
to change the theories themselves by seeing the data, only their plausibility should be
adapted. If the contrast of the initially stated theories is of interest, changing them does not
inform the research question. Based on these considerations about the nature of statistical
hypotheses and the technical elaborations of the previous contribution, the question about
the relation between the prior distribution and statistical hypotheses can be answered:
Prior distributions change by seeing the data, statistical hypotheses must not change by
seeing their data (only their plausibility should), so prior distributions cannot be used to
formalize the theory that should be reflected by the statistical hypothesis. This conclusion
argues against recommendations in the Bayes factor literature (cp. e.g. Vanpaemel, 2010;
Vanpaemel and Lee, 2012; Morey et al., 2016; Rouder et al., 2018a; Dienes, 2019; Tendeiro
and Kiers, 2019), but shows that the previously elaborated decision theoretic concept
of statistical hypothesis is not inherently contradicting – despite disagreements with the
current literature. A clear definition of and distinction between the employed mathematical
concepts is paramount.

The fourth contribution (Ebner et al., 2019) starts tackling generalization of Bayes factors
into the framework of imprecise probabilities by allowing imprecisely specified prior distri-
butions. The generalized Bayes factor is then called robust Bayes factors. The elaboration
was based on a common, widely used case within the framework of Bayes factors: Normally
distributed data, where the mean parameter has a normal prior distribution. The hyper-
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parameters of this normal prior were now allowed to be interval-valued, such that they can
better incorporate the (potentially available) uncertainty inherent to the Bayesian prior
specification. The resulting interval-valued robust Bayes factor does no longer sweep this
uncertainty under the carpet and results are closer to the applied context.

The fifth contribution (Schwaferts and Augustin, 2019) elaborates on the generalization
of hypothesis-based Bayesian decision theory into the framework of imprecise probabili-
ties (see e.g. Walley, 1991; Augustin et al., 2014). In order to employ the framework of
hypothesis-based Bayesian decision theory, the applied scientist has to specify hypotheses,
a prior distribution, and a loss function. Typically, information about these three quan-
tities is partial, such that their unambiguous precise specification is not possible. Forcing
the applied scientist to make a commitment to precise values might result in arbitrary
specifications. In that, it is better to allow for imprecise specifications of hypotheses, prior
distributions, as well as loss functions. To keep the notation within appropriate limits, this
contribution was restricted with its generalization into the framework of imprecise prob-
abilities to simple hypotheses, i.e. hypotheses which hypothesize only a single parameter
value.

The sixth contribution (Schwaferts and Augustin, 2021c) extends this generalization of
hypothesis-based Bayesian decision theory into the framework of imprecise probabilities to
composite hypotheses. This is crucial for its employment in applied studies, as they typi-
cally employ composite hypotheses. Again, an imprecise specification of (now composite)
hypotheses, prior distributions, and loss functions is allowed.

The seventh contribution (Schwaferts and Augustin, 2021b) delineates such a hypothesis-
based Bayesian decision theoretic account in a user-friendly manner and illustrates the
involvement of Bayes factors therein. Also, an extra focus was put on how to use (pre-
existing) Bayes factors in a subsequent, more comprehensive decision theoretic account.
While the loss function is a component of a decision theoretic account, the hypotheses and
the prior distribution are components of every hypothesis-based Bayesian analysis, espe-
cially Bayes factors. In that, it seems that a precise loss specification might be the biggest
obstacle in applying a decision theoretic framework. Therefore, this contribution restricts
itself to employ only an imprecise loss function (with precise hypotheses and a precise prior
distribution). Nevertheless, imprecisely specified hypotheses or prior distributions might
still be included into the hypothesis-based Bayesian decision theoretic account, as they
might be included into analyses with Bayes factors. A special feature of the framework
with imprecise loss is that it also allows for results stating that information is insufficient
to yield reliable conclusions. In that, no precision will be pretended which is not available.

The eighth contribution (Schwaferts and Augustin, 2020) deals with another method in
the context of Bayesian hypothesis-based analyses, that allows for results to be indecisive:
A decision rule that compares Bayesian highest density intervals (HDI) with regions of
practical equivalence (ROPE), and is therefore referred to as HDI+ROPE decision rule
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(Kruschke, 2015, 2018). This contribution establishes the decision theoretic foundation
of the HDI-ROPE decision rule and shows that it is not grounded on imprecise specifica-
tions of relevant quantities. Instead the employed decision theoretic quantities seem to be
rather artificially specified than to be connected with an underlying applied decision prob-
lem. Consequently, it seems that by using a hypothesis-based Bayesian decision theoretic
account with imprecise specifications one might obtain results that are closer to the applied
context, i.e. more practically relevant, than by using the HDI+ROPE decision rule.

In summary, it seems that with the first three contributions a lot of foundational work
(Figure 1.1, light gray) was done within the field of methodologies, especially Bayes factors,
before the two-fold generalization of Bayes factors towards the decision theoretic framework
and towards the framework of imprecise probabilities was tackled (Figure 1.1, gray). This,
however, is crucial to connect the status quo in the context of Bayes factors with the
provided generalizations. Without this connection to the available literature about Bayes
factors, the two-fold generalization might be of little use to the applied scientist. The
resulting framework and its condensed version for applications (Figure 1.1, dark gray)
might then seem as something completely different, although, in fact, it is merely an
advancement of methods already employed.

The following elaborations are structured as follows (Figure 1.1, black boxes). First, the
mathematics of Bayes factors are outlined (Chapter 2) and special emphasis was put on the
decomposition of the prior distribution in the context of hypotheses. By defining the notion
of practical relevance on a formal level (Chapter 3), a connection was established between
hypotheses, the practical relevance of research results, and statistical decision theory. This
connection was elaborated on mathematically in the context of hypothesis-based Bayesian
decision theory (Chapter 4), pointing out that the employment of hypotheses corresponds
to an assumption on the loss function (Section 4.2). The nature of hypotheses was then
compared to current conceptions about hypotheses in the literature about Bayes factors.
Their disagreement was assessed and solved (Chapter 5). With a unified understanding
about hypotheses, the hypothesis-based Bayesian decision theoretic framework was gener-
alized into the context of imprecise probabilities (Chapter 6). An easy and straightforward
framework was delineated in detail that might be seen as the next development from the
current status quo about Bayes factor in the literature (Chapter 7). With this new under-
standing about Bayes factors in the context of decision theory, the interpretation of Bayes
factors are finally evaluated w.r.t. their practical usefulness (Chapter 8).
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Chapter 2

Bayes Factors

2.1 Prior Situation

In the context of Bayesian statistics, the data x = (x1, ..., xn) is typically assumed to be
parametrically distributed according to the density f(x|θ), where θ ∈ Θ is the parameter of
interest and Θ is the parameter space. There is a Bayesian prior distribution with density
π(θ) on the parameter that formalizes the available knowledge1 about the parameter. Bayes
rule

π(θ|x) = f(x|θ) · π(θ)
f(x) , (2.1)

with
f(x) =

∫
Θ

f(x|θ) · π(θ) dθ (2.2)

being the marginal density of the data x, dictates how to update the prior density π(θ)
into the posterior density π(θ|x) once the data x were observed. As it is assumed that
the prior distribution formalizes all the relevant knowledge about the parameter before the
data were observed, the posterior distribution formalizes all relevant knowledge about the
parameter after the data were observed. In that sense, results are derived solely from the
posterior distribution in a Bayesian analysis.

In the context of Bayes factors, there need to be two statistical hypotheses h0 and h1, that
are contrasted against each other. These hypotheses

h0 : θ ∈ Θ0 vs. h1 : θ ∈ Θ1 (2.3)
1There are also other interpretations of Bayesian parameter distributions than knowledge (e.g. in Jaynes,

2003), e.g. uncertainty (e.g. in Kruschke, 2015) or degrees of belief (e.g. in Jeffreys, 1961) or information
(e.g. in Berger, 1985). Within this dissertation thesis, the exact interpretation of the parameter distribution
is irrelevant, so the term knowledge was arbitrarily chosen to denote the interpretation of parameter
distributions. Nevertheless, the other possible interpretations might instead be employed as well.
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are subsets Θ0 ⊂ Θ, Θ1 ⊂ Θ of the parameter space that are typically assumed to be a
non-overlapping partition: Θ0 ∪ Θ1 = Θ and Θ0 ∩ Θ1 = ∅. Unless stated otherwise, this
assumption will be maintained in the following. Based on these two hypotheses, the prior
density π(θ) might be used to calculate both the prior probabilities

p(h0) =
∫

Θ0
π(θ) dθ (2.4)

p(h1) =
∫

Θ1
π(θ) dθ (2.5)

of the hypotheses and the within-hypothesis prior parameter densities

π0(θ) := π(θ|h0) = 1
p(h0)

· π(θ) · 1(θ ∈ Θ0) (2.6)

π1(θ) := π(θ|h1) = 1
p(h1)

· π(θ) · 1(θ ∈ Θ1) , (2.7)

where 1(s) is the indicator function that equals 1(s) = 1 if the statement s is true and
1(s) = 0 if s is false. With these quantities the initial overall prior density π(θ) can be
decomposed as (cp. also Rouder et al., 2018b)

π(θ) = p(h0) · π0(θ) + p(h1) · π1(θ) . (2.8)

An illustration of such a prior decomposition is provided in Figure 2.1.

Figure 2.1: Prior Decomposition. Assume the parameter θ is distributed according to a standard
normal distribution N(0, 1) and the hypotheses are defined by Θ0 = [−1, 1] and Θ1 = (−∞, −1)∪
(1, ∞). The left plot depicts the overall prior density π(θ) and the prior probabilities p(h0), p(h1)
of the hypotheses. The middle and right plot depict the within-hypothesis prior densities π0(θ)
and π1(θ), respectively. This figure was taken from (Schwaferts and Augustin, 2021b) with an
adapted notation.

In that, it is possible to specify the prior situation for an analysis with Bayes factors in
two different ways:
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• Specify the overall prior density π(θ) and the hypotheses as subsets Θ0, Θ1 of the
parameter space.

• Specify the hypotheses as subsets Θ0, Θ1 of the parameter space and supplement them
with specifications of their prior probabilities p(h0), p(h1) and the within-hypothesis
prior parameter densities π0(θ), π1(θ).

Both ways of specification are equivalent as they provide exactly the same amount of
information. The respective unspecified information might by obtained by equations (2.4),
(2.5), (2.6), (2.7) or by equation (2.8), respectively. Naturally, this equivalence depends on
the previously made assumption2 that the hypotheses form a non-overlapping partition of
the parameter space.

2.2 Posterior Situation

Applying Bayes rule (2.1), the prior densities and probabilities get updated by observing
the data x to the within-hypothesis posterior parameter densities

π0(θ|x) = f(x|θ) · π0(θ)
f(x|h0)

(2.9)

π1(θ|x) = f(x|θ) · π1(θ)
f(x|h1)

, (2.10)

where

f(x|h0) =
∫

Θ0
f(x|θ) · π0(θ) dθ (2.11)

f(x|h1) =
∫

Θ1
f(x|θ) · π1(θ) dθ (2.12)

2Without this assumption the second type of specification contains more information than the first
type of specification, as there might be multiple different specifications of the second type that lead to the
same specification of the first type. This, however, requires the hypotheses to be overlapping, a case that
is typically considered problematic in the Bayes factor literature (cp. Morey and Rouder, 2011). If the
true parameter values lies within the overlapping part, the Bayes factor value will never approach ∞ or 0
(i.e. lead to unambiguous evidence (cp. also Rouder et al., 2018b, p. 105)) even if the sample size will be
increased infinitely (in this context compare also Jeffreys (1961, e.g. p. 269) arguments for his decisions on
default prior distributions, especially the Cauchy distribution on the normal mean: It seems that he tried
to avoid the possibility of unambiguous evidence at all costs.). Interpreting this characteristic, one might
say that the scientific setting allows for result that are barely capable of distinguishing between the two
theories of interest that are contrasted against each other in the research question. It might be argued
that such a setting is suboptimal for optimizing the information gain of the scientific investigation and
it is recommended to rethink the investigational design, such that non-overlapping hypotheses might be
employed.
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are the marginal densities of the data x under the respective hypotheses h0, h1, and to the
posterior probabilities

p(h0|x) = f(x|h0) · p(h0)
f(x) (2.13)

p(h1|x) = f(x|h1) · p(h1)
f(x) (2.14)

of the hypotheses, respectively.

The overall posterior density π(θ|x) can, again, be depicted as a decomposition

π(θ|x) = p(h0|x) · π0(θ|x) + p(h1|x) · π1(θ|x) (2.15)

of the within-hypothesis posterior parameter densities (equations (2.9) and (2.10)) and
the posterior probabilities (equations (2.13) and (2.14)). Naturally, the calculation of the
overall posterior density via this hypothesis-based decomposition (equation (2.15)) yields
the same density as simply updating the overall prior distribution π(θ) with Bayes rule
(equation (2.1)).

Inspecting this hypothesis-based Bayesian update in greater detail, one might relate the
probabilities of the hypotheses with each other. The ratio p(h0)/p(h1) of the prior proba-
bilities forms the prior odds and the ratio of the posterior probabilities forms the posterior
odds

p(h0|x)
p(h1|x) =

f(x|h0)·p(h0)
f(x)

f(x|h1)·p(h1)
f(x)

= f(x|h0)
f(x|h1)

· p(h0)
p(h1)

, (2.16)

where
BF01 := f(x|h0)

f(x|h1)
(2.17)

is defined as the Bayes factor3. Therefore, the posterior odds

p(h0|x)
p(h1|x) = BF01 · p(h0)

p(h1)
(2.20)

can be calculated by simply multiplying the prior odds with the Bayes factor.
3The index 01 indicates that the hypothesis h0 (numerator) is compared to the hypothesis h1 (denom-

inator). Naturally, this comparison might equivalently be the other way round with

BF10 := f(x|h1)
f(x|h0) (2.18)

and
BF10 = 1

BF01
. (2.19)
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Note, that it is not possible to employ improper prior parameter distributions if the Bayes
factor value is of interest. With improper prior distributions, the marginal densities f(x|h0)
or f(x|h1) (equations (2.11) or (2.12)) are unbounded, such that the Bayes factor cannot be
calculated properly. However, if the posterior odds are of interest, it is possible to employ
an improper prior density π(θ), as long as it yields a proper posterior density π(θ). The
posterior probabilities of the hypotheses can then be derived (analogue to equations (2.4)
and (2.5)) by (compare equations (2.13) and (2.14))

p(h0|x) =
∫

Θ0
π(θ|x) dθ (2.21)

p(h1|x) =
∫

Θ1
π(θ|x) dθ , (2.22)

which form the posterior odds.

2.3 Interpretation

Altogether, there are two different formulas that involve the Bayes factor:

• After plugging in equations (2.11) and (2.12) into equation (2.17) one obtains the
depiction of the Bayes factor

BF01 =
∫

Θ0
f(x|θ) · π0(θ) dθ∫

Θ1
f(x|θ) · π1(θ) dθ

(2.23)

as a ratio of marginal densities.

• After reordering equation (2.20) one obtains the depiction of the Bayes factor

BF01 = p(h0|x)
p(h1|x)

/
p(h0)
p(h1)

(2.24)

as the ratio of the posterior odds to the prior odds.

Based on these two formulas, two different interpretations of the Bayes factor can typically
be found (cp. also Morey et al., 2016; Rouder et al., 2018a):

• Comparison of prior predictive performances. The marginal densities f(x|h0) (equa-
tion (2.11)) and f(x|h1) (equation (2.12)) integrate the density of the data f(x|θ)
over the within-hypothesis prior parameter densities π0(θ) and π1(θ), respectively.
In that sense, the marginal density of the observed data x is a weighted average,
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in which the weights are given in the hypothesis-based prior parameter distribution.
As the parametric density f(x|θ) provides values that are higher for data values x
that are considered to be more likely for the given parameter value θ, the marginal
densities f(x|h0) and f(x|h1) provide values that are higher for data values x that
are considered to be more likely on average for the given averaging weights within
π0(θ) and π1(θ), respectively. As two hypotheses h0 and h1 are considered, two such
values, namely f(x|h0) and f(x|h1), are provided for the actually observed data set
x. The hypothesis with the higher value has considered the actually observed data
x to be more likely on (weighted) average than the other hypothesis. These values
f(x|h0) and f(x|h1) (the marginal densities) are typically referred to as the prior
predictive likelihoods of the data x for each hypothesis h0 and h1, respectively. By
relating these two values with each other (via ratio as in equation (2.23)), one might
compare the prior predictive performance of one hypothesis h0 with the prior pre-
dictive performance of the other hypothesis h1: The prior predictive performance of
hypothesis h0 is BF01-times better than the prior predictive performance of hypothesis
h1.

• Evidence. The prior odds p(h0)/p(h1) state how much higher the probability p(h0) of
hypothesis h0 is compared to the probability p(h1) of hypothesis h1 before the actual
data x were observed. In that sense, they are typically interpreted as the degrees of
belief in the respective hypotheses before the scientific investigation was conducted.
Analogously, the posterior odds p(h0|x)/p(h1|x) state how much higher the probabil-
ity p(h0|x) of hypothesis h0 is compared to the probability p(h1|x) of hypothesis h1
after the actual data x were observed. In that sense, they are typically interpreted
as the degrees of belief in the respective hypotheses after the scientific investigation
was conducted. As the Bayes factor is a multiplicative factor that describes how the
prior odds change into the posterior odds by seeing the data (equation (2.20)) it is
interpreted as quantifying how the prior beliefs in the hypotheses change into the
posterior beliefs in the hypotheses by seeing the data. In that, the Bayes factor re-
lates the posterior odds to the prior odds (equation (2.24)) and extracts the influence
of the latter on the former (as the prior odds are in the denominator). Therefore, it is
argued that the Bayes factor itself is cleansed of the influence of how the prior proba-
bilities of the hypotheses were chosen. This can also be seen in equation (2.17), which
allows to calculate the Bayes factor based on the within-hypothesis prior parameter
distributions (π0(θ), π1(θ)) and without the prior probabilities of the hypotheses
(p(h0), p(h1)). Accordingly, the Bayes factor BF01 is interpreted as quantification
of the evidence w.r.t. the hypotheses h0 and h1, as it states how beliefs about the
hypotheses change by observing the data x, but is unaffected by the prior beliefs in
the hypotheses: The data x are evidence favoring hypothesis h0 BF01-times as much
as hypothesis h1.

While these two interpretations seem to be in line with the mathematical foundation of
Bayes factors, their use in the greater research context must be assessed. Only because a
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Bayes factor value was calculated and its interpretation as comparison of prior predictive
performances or as evidence is mathematically correct, it is – in general – not correct to
derive any arbitrary conclusion that seems to be deducible from a statement about the
comparison of prior predictive performances or from an evidence statement on an intu-
itive, i.e. non-mathematical, level. Science is about critical self-reflection in the context of
knowledge discovery and urges to scrutinize every step taken in the scientific process. It is
of little value, if scientists put a lot of effort (i.e. time and money) into a thorough investi-
gational setup and a soundly founded statistical analysis, only to use their results in a way
that does not correspond to what would be correct in a scientific and mathematical-logical
way. In that, after delineating the involvement of Bayes factors in the more comprehensive
decision theoretic framework, which is able to formally elaborate on how to properly use
scientific results, both interpretations of the Bayes factor will be finally be evaluated w.r.t.
its practical usefulness (Chapter 8).
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Chapter 3

Defining Practical Relevance

In the course of the investigation about a proper use of statistical results, such as Bayes
factors, it is easy to stumble upon the concept of practical significance (e.g. Kirk, 1996).
Conventionally, the omnipresent framework of NHST yields results that are either statis-
tically significant or not statistically significant. But by mistaking the mathematical term
statistically significant as “plain-English significant” and exaggerating it to “highly sig-
nificant or very highly significant, important, big!” (Cohen, 1994, p. 1001 (both quotes))
statistically significant effects or results are frequently depicted as very impactful, although
some are rather practically negligible. In that sense, one needs to distinguish between the
statistical significance and the practical relevance of an effect or a result. Although Kirk
(1996) worked within the frequentist framework and coined the term practical significance,
the main considerations about practical significance do also apply to the Bayesian frame-
work, in which the term significance is typically avoided. Therefore, the term practical
relevance is employed within this dissertation thesis.

Interestingly, over two decades have passed since Kirk (1996) urged to consider the practical
significance in addition to the statistical significance, yet not formal definition of it was
available. Merely stating that effect sizes are “measures” (see e.g. Ellis and Steyn, 2003)
or “indices” (see e.g. Thompson, 2002; Hojat and Xu, 2004) of practical significance which
indicate if results are “meaningful” (see e.g. Vaske, 2002) or “useful” (see e.g. Kirk, 1996)
seemed to be sufficient. However, in order to grasp the concept of practical relevance on
a mathematical level and integrate it into the existing methodologies, its formal definition
is mandatory.

Searching the literature about practical significance and considering the cases in which a
statistically significant, but not practically relevant result was obtained, two main charac-
teristics emerged (Schwaferts and Augustin, 2021d)

• There was an (sometimes implicitly assumed) underlying decision that had to be



20 CHAPTER 3. DEFINING PRACTICAL RELEVANCE

guided, creating the context in which the practical relevance of an effect or of the
result could be evaluated.

• There was – by and large – an implicit agreement on how one would decide in this
underlying decision problem for each possible effect magnitude.

Both these characteristics are central components of statistical decision theory (e.g. Berger,
1985; Robert, 2007), rendering statistical decision theory the framework to rely on for
formalizing the notion of practical relevance.

Put the other way round, the practical relevance of a result naturally depends on what it
is used for, and on a formal level such a use is a decision problem. Analogously, Berger
and Wolpert (1988, p.55) reason that “no matter what is meant by inference, if it is to be
of any value, then somehow it must be used, or acted upon, and this does indeed lead back
to the decision-theoretic framework.”

3.1 Practically Relevant Effects

Accordingly, the decision theoretic framework will be depicted in the following, in which
the notion of practical relevance can be defined.

In a decision, one has to choose between several different actions. In the context of hy-
pothesis comparisons, in which there are typically only two hypotheses being contrasted
against each other, only two actions shall be considered. Denote these actions as a0 and
a1, which are comprised in the action space A = {a0, a1}. The objective in the decision
theoretic framework is now to decide between these two actions.

Following the notation of Chapter 2, the parameter θ is of interest. Typically, the parameter
formalizes an effect and is such that the absence of an effect is represented by θ = 0. This
shall be assumed1 in the following. Of the two actions a0 and a1, denote that action which
is appropriate in the absence of an effect, i.e. if θ = 0, as a0.

Deciding for one of the actions a ∈ A if a certain parameter value θ ∈ Θ is true has certain
consequences, and the “badness” of these consequences is quantified in a loss function

L : Θ × A → R+
0 : (θ, a) 7→ L(θ, a) . (3.1)

1If there are also nuisance parameters, one might employ a parameter density f(x|θ, φ), in which θ is
the effect parameter of interest and φ is the (vector of) nuisance parameter(s). If the absence of an effect
is indicated by a different parameter value than θ = 0, one might – without loss of generality – transform
the parameter θ accordingly.
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Naturally, the exact specification of such a loss function depends on the applied research
context and the decision problem. In that, its specification is an applied problem. The-
oretical elaborations in the framework of statistical decision theory typically assume the
existence of such a loss function. However, in general, its specification constitutes a serious
issue2 for applied scientists: There are a lot of aspects to consider in a decision context and
many of them are less clear, characterized by missing information, and all these shall be
consolidated into a single precise numerical entity. Not to mention that such a consolida-
tion should be done for every parameter value θ, of which there are – frequently – infinitely
many (as typically Θ is a continuous subset of R), and for every action a ∈ A. Accordingly,
it is expected that the willingness of applied researchers to use a decision-theoretic frame-
work will be at the mercy of the fact that a loss function must be specified. Nevertheless,
the primary goal of this elaboration is to formally define, and thus better understand,
the notion of practical relevance, and it appears that decision theoretic concepts, such as
actions and a loss function, are required to do so. The mere fact that its feasibility for
applied scientists might be low, does not mean that such decision theoretic characteristics
are irrelevant in a statistical analysis that aims at producing practically relevant results.
Instead, it seems that a loss consideration (i.e. an involvement of the “badness” of the
consequences of potential actions) is – although implicitly – indeed somehow present when
elaborating on the practical relevance of an effect. In that, in the following it is first as-
sumed that such a loss function is available, to develop the concepts of practical relevance
formally, and then tried to loosen the strict requirements for applied scientists w.r.t. its
specification (Chapters 4 and 6).

The lower the loss value of an action a ∈ A for a given parameter value θ ∈ Θ, the better
is the action. Accordingly, if each parameter value θ ∈ Θ is considered separately, one is
required to decide for the action with lower loss:

• a0 is preferred over a1, if L(a0, θ) < L(a1, θ).

• a1 is preferred over a0, if L(a1, θ) < L(a0, θ).

• Both actions are considered equivalent (w.r.t. the quantification of the “badness” of
their consequences) and there is no preference, if L(a1, θ) = L(a0, θ).

As a0 denotes the action that is appropriate if the effect is absent, i.e. if θ = 0, its loss
2Although there are elaborations on how to elicit loss functions, utilities, or preferences (cp. e.g. Ab-

dellaoui, 2000; Chajewska et al., 2000), which might then be used in a decision theoretic context, many of
these elaborations are located within the field of economics, in which the utility might be quantified more
easily by applying monetary considerations. Yet, in many other fields it might not be that easy. In this
context, it shall be noted that even money itself might not have a utility which is linear in its amount, as
there might be a variety of different conceptions of utility (cp. e.g. Diener and Oishi, 2000). Further, there
is also a high degree of variability in preference elicitation, even if the same subject was asked repeatedly
(cp. e.g. Froberg and Kane, 1989), emphasizing the need to deal with vague, partial, and ambiguous loss
information.
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L(a0, 0) is smaller than L(a1, 0). Similarly, other effects θ which also prefer a0 over a1
lead to the same decision as an absence of an effect, so they cannot be practically relevant
effects. Accordingly, practically relevant effects are those effects that prefer a1 over a0
(reprinted from Schwaferts and Augustin, 2021d):

Definition 1 (Practical Relevance of an Effect) Within this framework, an effect θ
is practically relevant (or practically significant) w.r.t. the actions a0, a1, and the corre-
sponding loss function L, if a1 is preferred over a0, i.e. if

L(θ, a1) < L(θ, a0) , (3.2)

else the effect θ is negligible (or practically zero) w.r.t. these actions and this loss function.

This definition emphasizes that the notion of the practical relevance of an effect is embedded
into a specific decision theoretic context. The practical relevance (or negligibility) of an
effect depends on the specific decision problem and the specific loss function. With different
actions or a different loss function, different parameter values would be practically relevant
(or negligible).

Further, it appears that the definition of a practically relevant (or practically negligible)
effect does not involve an observed data set and this does indeed match with the intuition:
A researcher is able to state which action a ∈ A is to be preferred if certain parameter
values θ are true before the data were observed. There is merely low certainty about which
parameter is true without the observed data.

3.2 Practical Relevance w.r.t. Hypotheses

In the context of the hypothesis specification as in equation (2.3), NHST specifies the null
hypothesis such that it contains only the zero effect, i.e. Θ0 = {0}, and the alternative
hypothesis such that it contains all other effects, i.e. Θ1 = {θ ∈ Θ|θ ̸= 0}. The critique
against NHST, that it might yield statistically significant but not practically signification
results (e.g. Cohen, 1994), relates on a formal level to the fact that h1 hypothesizes not
only practically relevant but also practically negligible effects (for a – potentially implicitly
assumed – given decision problem and loss function). To tackle this critique, Θ0 should not
contain practically relevant effects and Θ1 should not contain practically negligible effects.
If so, one might say that the hypotheses h0 and h1 incorporate the notion of practical
relevance (w.r.t. the given decision problem and loss function) (reprinted from Schwaferts
and Augustin, 2021d) (illustrated in Figure 4.2).

Definition 2 (Practical Relevance w.r.t. Hypotheses) Within this framework, two
hypotheses about an effect θ (equation 2.3) completely incorporate the notion of practical
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relevance (or practical significance) w.r.t. two associated actions a0, a1 and the corre-
sponding loss function L, if Θ1 contains all practically relevant effects and Θ0 contains all
negligible effects, i.e.

∀θ ∈ Θ : L(θ, a0) ≤ L(θ, a1) ⇒ θ ∈ Θ0 (3.3)
∀θ ∈ Θ : L(θ, a1) < L(θ, a0) ⇒ θ ∈ Θ1 . (3.4)

These hypotheses (equation 2.3) partially incorporate the notion of practical relevance
(or practical significance) w.r.t. these actions and this loss function, if Θ1 contains only
practically relevant effects and Θ0 contains only negligible effects, i.e.

∀θ ∈ Θ0 : L(θ, a0) ≤ L(θ, a1) (3.5)
∀θ ∈ Θ1 : L(θ, a1) < L(θ, a0) . (3.6)

This definition, as elaborated on in the contribution (Schwaferts and Augustin, 2021d),
distinguishes between hypotheses that completely incorporate the notion of practical rel-
evance and hypotheses that only partially incorporate the notion of practical relevance.
However, hypotheses that incorporate the notion of practical relevance only partially (and
not completely) do not constitute a partition of the parameter space, especially the con-
dition Θ0 ∪ Θ1 = Θ does not hold, a case that is rather irrelevant for further elaborations
about the practical relevance of Bayes factors. Therefore, in the remainder of this dis-
sertation – unless otherwise stated – hypotheses are assumed to incorporate the notion of
practical relevance completely whenever they are said to incorporate the notion of practical
relevance.

Although connected with each other, it is important to consider the practical relevance
(or negligibility) of an effect and the notion of practical relevance w.r.t. hypotheses as
two disjoint concepts. In the context of the practical relevance of an effect, the parameter
space Θ was basically separated into two subset, each one only containing parameter values
that favor the same action. Parameter values within one of these sets are then labeled as
practically relevant, parameter values within the other set as practically negligible. The as-
signment of these labels might seem somehow arbitrary: If these two labels were swapped,
the definitions of the practical relevance and of the practical negligibility of an effect would
still have the same mathematical structures. In that sense, these labels were simply selected
in a manner to match with the intuition that a zero-effect is practically negligible and to
match with the employment of term practical significance for effects essentially different
from zero. Of importance here is that the parameter space was separated into two disjoint
subset due to the nature of the decision problem and the loss function. The notion of prac-
tical relevance w.r.t. hypotheses regards whether the hypotheses are specified in line with
these two disjoint subsets or not. If so, one might call the specification of the hypotheses
as a practically relevant specification, if not, one might say that the specification of the
hypotheses lacks practical relevance. In that sense, the notion of practical relevance w.r.t.
hypotheses refers to the match of a specification with the underlying decision problem.
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In such a way, one might assess the complete statistical analysis: If the practical relevance of
a result is of interest, there is – at least implicitly assumed – an underlying decision problem.
Necessary quantities for this analysis are specified in a practically relevant manner (w.r.t.
this decision problem), if their specification matches with the underlying decision problem.
If all quantities that are required by the statistical analysis are specified in a practically
relevant manner and the statistical analysis is performed correctly, then the results are of
practical value, as they are able to inform the underlying decision problem.

Accordingly, in order to evaluate the practical relevance of Bayes factors, it is mandatory
to depict Bayes factors in the context of statistical decision theory.
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Chapter 4

Hypothesis-Based Bayesian Decision
Theory

4.1 Formal Framework

Analogue to the structure of Chapter 2, the general framework of Bayesian decision theory
shall be outlined first, before its adaptation towards Bayes factors is addressed.

Following the notation of Chapter 2, the objective is to decide between the actions within
A = {a0, a1} on the basis of a loss function L as in equation (3.1). By observing the data x,
the prior density π(θ) was updated via Bayes rule (equation (2.1)) to the posterior density
π(θ|x). It is now possible to calculate the expected posterior loss

ρ : A → R+
0 : a 7→ ρ(a) =

∫
Θ

L(θ, a) · π(θ|x) dθ (4.1)

for each action a ∈ A. The conditional Bayes decision principle (cp. e.g. Berger, 1985,
p. 16) in the context of Bayesian decision theory states that an action is considered as
optimal action

a∗ = argmin
a∈A

ρ(a) (4.2)

if it has minimal expected posterior loss.

As delineated in the previous chapter, this loss function L might also be used to separate
the parameter space Θ into two disjoint (partitioning) parameter sets Θ0 and Θ1, forming
the hypotheses as in equation (2.3).

Hypothesis-based decision theory, however, is based on a loss function

LH : H × A → R+
0 : (h, a) 7→ LH(h, a) (4.3)
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that is defined on the hypothesis space H = {h0, h1} instead of the parameter space Θ
(as in equation (3.1)). In this simple setting with only two hypotheses and two actions,
this hypothesis-based loss function LH consists of only four values. In addition, deciding
for a0 if h0 is true and for a1 if h1 is true is typically considered to be a correct decision.
Without loss of generality, respective loss values might then be set to zero, i.e. LH(h0, a0) =
LH(h1, a1) = 0, rendering the loss function LH to be in regret form. The other two loss
values quantify the “badness” of the consequences of the type-I-error (k1 := L(h0, a1)) and
the type-II-error (k0 := L(h1, a0)), if deciding correctly has loss zero. These two values are
assumed to be non-zero. In order to determine the optimal action with this hypothesis-
based loss function LH , only the ratio of these loss values is necessary. In that, define

k := k1

k0
= L(h0, a1)

L(h1, a0)
, (4.4)

quantifying how bad the type-I-error is compared to the type-II-error.

As elaborated within Chapter 2, assessing the hypotheses in the light of the data x allows
to calculate the posterior probabilities p(h0|x) and p(h1|x) of the hypotheses (equations
(2.13) and (2.14)).

The expected posterior loss ρ(a) (equation (4.1)) can now be calculated without a compli-
cated integration via

ρ(a) = L(h1, a) · p(h1|x) + L(h0, a) · p(h0|x) . (4.5)

In order to determine the optimal action, the minimal expected posterior loss has to be
found (equation (4.2)). As there are only two actions, the minimum can be found by
considering the ratio of expected posterior losses

r : = ρ(a1)
ρ(a0)

= L(h0, a1) · p(h0|x)
L(h1, a0) · p(h1|x) (4.6)

= k · p(h0|x)
p(h1|x) (4.7)

and checking whether it is above or below 1. In that, the set A∗ of optimal actions is1

A∗ =


{a0} if r > 1
{a1} if r < 1
{a0, a1} if r = 1

. (4.8)

If r = 1, then both actions are considered to be optimal, as they are expected to yield
exactly the same “badness” of their consequences, and might be treated as practically
equivalent, such that any of these action actions might selected arbitrarily.

1This equation (4.8) was taken from (Schwaferts and Augustin, 2021c), in which the conditions are
erroneously reversed. The version of the equation depicted here is correct and the version reported in
(Schwaferts and Augustin, 2021c) is incorrect. Nevertheless, the final formula for the optimal actions in
the imprecise case within (Schwaferts and Augustin, 2021c) is correct.
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4.2 Simplification Assumption

Formally, the parameter-based loss function L (equation (3.1)) and the hypothesis-based
loss function LH (equation (4.3)) are two different mathematical objects, yet it is possible
to depict the hypothesis-based loss function LH in terms of a parameter based loss function
L, which is constant on the parameter values within the parameter sets Θ0 and Θq that
define the hypotheses (illustrated in Figure 4.1).

Figure 4.1: Simplified Loss Function. Assume a hypothesis-based loss function LH in regret
form is given by a specification of the values k0 and k1. Depicting this loss function in dependence
of the parameter θ, the corresponding parameter-based loss function L (equation (3.1)) is constant
within the sets Θ0 and Θ1, respectively. Within this example, these are Θ0 = [−1, 1] and Θ1 =
(−∞, −1)∪(1, ∞). The plots depict the loss value L(θ, a) (y-axis) in dependence of the parameter
θ (x-axis) and the actions a0 (left plot) or a1 (right plot). This figure was taken from (Schwaferts
and Augustin, 2021b).

Naturally, this hypothesis-based loss function LH contains way less information than the
parameter-based loss function L (as illustrated in Figure 4.2). By using L to obtain pa-
rameter sets Θ0 and Θ1, which are then used in the context of LH , information is lost.
And the question arises of why a researcher should do so?

Obviously, if a parameter-based loss function L is available, then the optimal action a∗

can be found easily (equation (4.2)), and there is no need to use such a hypothesis-based
simplification. However, such a specific loss function L is rarely available in an unambigu-
ous specification. So there is the need – for researchers being interested in the practical
relevance of their obtained results – to deal with decision problems in which information
about the loss function is scarce. So while such scarce information about the consequences
of potential actions might be insufficient for the researcher to specify the full parameter-
based loss function L unambiguously, it might be adequate to inform about the parameter
sets Θ0, Θ1 and the value k, allowing a less ambiguous specification of the hypothesis-based
loss function LH .
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Now, in order to guarantee that results obtained with such a simplified hypothesis-based
loss function LH do actually inform the decision problem of interest – which is assumed
to be characterized by the unknown parameter-based loss function L – it is mandatory to
understand the connection between L and LH . And this connection is via hypotheses that
incorporate the notion of practical relevance w.r.t. the underlying decision problem. If
these hypotheses are used within the hypothesis-based loss function LH , latter becomes as
close as possible to the underlying decision problem. Then the researcher has to specify the
value k in a way that best captures the available (potentially partial) information about
the consequences of the type-I-error and the type-II-error.

Accordingly, by using the hypothesis-based loss function LH instead of the full parameter-
based loss function L an assumption was made, namely that it is possible to simplify the
rather complicated loss L into the simpler form of LH . This assumption shall be referred
to as simplification assumption (illustrated in Figure 4.2). Naturally, by the nature of
an assumption, this simplification assumption might be (and most likely is) incorrect,
introducing a potential error that might lead to incorrect results, i.e. false decision. In
that, there might be the case that – for a given data set x – the optimal action a∗ might
be different whether the full (but unknown) loss function L or the simplified loss function
LH were employed. However, it might be expected that the better LH matches with L the
less severe is the error due to the simplification assumption, emphasizing the importance
of using hypotheses that incorporate the notion of practical relevance.

Figure 4.2: Example: Simplification Assumption. Assume the parameter of interest is the
bias b of a presumably fair coin in a gamble, and the actions refer to whether (a1) or not (a0)
to accuse the person who offers the gamble of cheating. Further, assume the parameter-based
loss function within the left plot is given. According to the definitions of practical relevance
(Chapter 3), hypotheses that incorporate the notion of practical relevance are then given by Θ0 =
[−0.106, 0.106] and Θ1 = [−0.5, −0.106) ∪ (0.106, 0.5]. A simplified loss function in accordance
with these hypotheses is constant within the respective parameter sets (right plot). These plots
illustrate that the simplification of the loss function by using hypotheses is an assumption, namely
that it is possible to depict the actual loss (left plot) by a loss function that is constant within
the hypotheses. Finding these (constant) loss values in the context of the hypothesis-based loss
function might be difficult and somewhat erroneous. Within this example, the loss values for this
simplification (right plot) were chosen arbitrarily. This example and the left part of the figure
were taken from (Schwaferts and Augustin, 2021d).
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By no means is this potential error due to the simplification assumption a reason to refrain
from a hypothesis-based Bayesian decision theoretic account! The aim here is to mathemat-
ically understand the process involved in the context of using results of hypothesis-based
statistical analyses in a practical context. Within this process, it appears that this simplifi-
cation assumption was made, and now – being stated explicit – its implications and poten-
tial errors become aware. As there is an underlying decision problem involved (or implicitly
assumed) when dealing with the practical relevance of research results, a hypothesis-based
statistical analysis will (usually silently) make this simplification assumption. Accordingly,
instead of considering the simplification assumption as a malign part of the framework of
hypothesis-based Bayesian decision theory, it should rather be considered as an integral
part of every hypothesis-based statistical analysis whose results are used in a practical
context.

4.3 Decision Theory: Bayes Factors

With the hypothesis-based Bayesian decision theoretic framework outlined (Section 4.1),
it is possible to delineate its relation with Bayes factors.

As elaborated (equation (2.20)), Bayes factors are used to update the prior odds p(h0)/p(h1)
to the posterior odds p(h0|x)/p(h1|x), which are used to calculate the ratio r of expected
posterior losses (equation (4.7)). Accordingly, it might be formulated as

r = k · BF01 · p(h0)
p(h1)

, (4.9)

emphasizing its dependence on the Bayes factor BF01. The set of optimal actions A∗ can
then be found analogously via equation (4.8).

Accordingly, it appears that in order to guide a decision in the context of Bayes factors,
three quantities are necessary: The prior odds, the Bayes factor itself, and the value k
representing the hypothesis-based loss function. How do each of those these three quantities
relate to the underlying decision problem?

To investigate this question in greater detail, consider the case of Bayesian decision theory
without hypotheses (as depicted in the beginning of Section 4.1) first: The prior density
π(θ) was updated to the posterior density π(θ|x), which is then used to find the optimal
action based on the loss function L (Figure 4.3, top scheme). The prior and the posterior
distribution are central parts of Bayesian statistics and do not necessarily require a decision
theoretic account. In that, they can be classified as non-decision-theoretic quantities. The
loss function, in turn, is inevitably tied to the underlying decision problem and therefore
a decision-theoretic quantity (Figure 4.3, light-and-dark gray coloring).
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After introducing hypotheses into the Bayesian decision theoretic account and simplifying
the loss function L towards the hypothesis-based loss function LH , the situation is as
follows: Again, the prior density π(θ) was updated to the posterior density π(θ|x), however,
then assessed w.r.t. the hypotheses to obtain the posterior odds, which, in turn, are used
to derive the optimal action based on the simplified loss LH . As hypotheses need to be
related to the underlying loss function L to incorporate the notion of practical relevance
(Chapter 3), they are tied to the underlying decision problem and, therefore, actually a
decision-theoretic quantity. In that, as the posterior odds depend on the hypotheses, they
are also a decision-theoretic quantity (Figure 4.3, middle scheme).

In the context of calculating a Bayes factor, the prior density π(θ) is decomposed into
the prior odds and the within-hypothesis prior parameter distributions, all depending on
a hypothesis specification. The Bayes factor is then based only on the hypotheses and the
within-hypothesis prior parameter distributions, leaving out the prior odds (Figure 4.3, bot-
tom scheme). As hypotheses, which incorporate the notion of practical relevance, are con-
sidered to be a decision-theoretic quantity, so are the prior odds and the within-hypothesis
prior parameter distributions: Without an underlying decision problem, it is not possible
to specify the hypotheses such that they incorporate the notion of practical relevance, and
therefore it is not possible to derive the prior odds and the within-hypothesis prior pa-
rameter distributions such that they are in accordance with the practical purpose of the
study.

In summary, if the practical relevance of Bayes factors is of interest, Bayes factors are con-
sidered to be a decision-theoretic quantity, which cannot be reasonably (i.e. being in line
with the practical purpose of the investigation) calculated without considering the under-
lying decision problem. Respective hypotheses are derived by considering the underlying
decision problem and separating the parameter space according to the notion of practical
relevance (Chapter 3).



4.3. DECISION THEORY: BAYES FACTORS 31

Figure 4.3: Guiding Decisions with Bayes Factors. These schemes illustrate the steps involved
in deriving optimal actions from observed data. Round boxes depict additional specifications that
are required besides the data and squared boxes depict the quantities that can be calculated from
the data with the respective additional quantities. A light gray shading of these boxes states that
these quantities can be specified and derived without considering a certain (underlying) decision
problem, and a dark gray shading states that these quantities can only be reasonable specified or
calculated when considering the underlying decision problem. Depicted are schemes for Bayesian
decision theory (top), hypothesis-based Bayesian decision theory (middle) and Bayes factor based
Bayesian decision theory (bottom). The dark-and-light gray shading of the hypothesis-based
priors and the prior odds indicates that it is actually a specification that is independent of the
underlying decision problem if taken together as overall prior, but separated in the context of the
underlying decision problem by considering the hypotheses. In that sense, both these quantities
cannot be reasonably specified without considering the underlying decision problem.
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Chapter 5

Statistical Hypotheses

Derived within the previous chapters and in line with the current employment of hypotheses
in frequentist statistics, statistical hypotheses are considered to be subsets of the parameter
space.

In the literature of Bayes factors, however, hypotheses are depicted as mathematical objects
that consist of both a subset of the parameter space and the respective within-hypothesis
prior parameter distribution, which together represent a to-be-evaluated theory of interest
(cp. e.g. Vanpaemel, 2010; Vanpaemel and Lee, 2012; Morey et al., 2016; Rouder et al.,
2018a; Dienes, 2019; Tendeiro and Kiers, 2019). In this regard, it is argued, that the
(within-hypothesis) prior distributions have “empirical content” (e.g. in Vanpaemel and
Lee, 2012, p. 1052).

This conception is in disagreement with the notion of statistical hypotheses as being only
subsets of the parameter space, and might complicate the employment of a hypothesis-
based Bayesian decision theoretic account. In that, this disagreement should be addressed
further and it appears that the – seemingly unrelated – concept of updating consistency
of Bayes factors allows to find a solution.

5.1 Updating Consistency

Assume that, besides the data set x, there is an additional data set y which arose from the
same investigational setup, such that it is distributed according to the same parametric
density.

As the prior density π(θ) is assumed to formalize all available knowledge about the param-
eter before any data were observed, the posterior density π(θ|x) formalizes all available
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knowledge about the parameter after the data x were observed. Accordingly, this posterior
density π(θ|x) might be employed as a new prior density for the assessment of the new
data set y, leading to the final posterior density π(θ|y, x). Naturally, it should not matter
if the prior distribution was subsequently updated twice with both data sets x and y in
two steps or if both data sets were merged first z = (x, y) and then used to update the
initial prior distribution at once (Figure 5.1):

π(θ|y, x) = π(θ|z) (5.1)

If equation (5.1) holds Bayesian updating is called consistent, else Bayesian updating is
called inconsistent (cp. Rüger, 1998, p. 190).

Figure 5.1: Consistent Bayesian Updating. Bayesian updating is consistent if it does not
matter whether two separate data sets (following the same parametric sampling distribution) are
considered separately (top path) or merged first and the considered at once (bottom path). This
figure was taken from (Schwaferts and Augustin, 2021e).

When considering the decomposed prior density (equation (2.8)) as in the context of Bayes
factors, subsequently updating works as follows (Figure 5.2):

Denote the Bayes factor1 (equation (2.23)) that is based on the first data set x as BF x and
the Bayes factor (again equation (2.23)) that is based on the second data set y as BF y.
Please note, that now BF y was calculated without considering that the previous data set
x was already observed.

1Within this chapter the index 01 of the Bayes factor BF will be omitted to keep the notation simple
and easily readable. Still, hypothesis h0 (numerator) is compared to hypothesis h1 (denominator).
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Figure 5.2: Consistent Updating with Bayes Factors. Scheme a) depicts consistent updating
and scheme b) depicts inconsistent updating with Bayes factors. Updating the prior distribution,
which was decomposed w.r.t. to the hypotheses (equation (2.8)), has to consider the update of
both the prior odds and the within-hypothesis prior parameter distributions, although the Bayes
factors is only required within the update of the prior odds (a, left). Nevertheless, the update of
the within-hypothesis prior distributions has to be considered to conduct a consistent calculation
of the Bayes factor of a second data set y (a, right). Ignoring the update of the within-hypotheses
prior parameter distributions leads to a Bayes factor value of the second data set y that results
in inconsistent Bayesian updating (b). This figure was taken from (Schwaferts and Augustin,
2021a).

After observing the first data set x, the prior odds get updated by the Bayes factor BF x to
the posterior odds (this is the same formula as equation (2.20), only adapting the notation
with BF x)

p(h0|x)
p(h1|x) = BF x · p(h0)

p(h1)
. (5.2)

In addition, also the within-hypothesis prior parameter densities π0(θ) and π1(θ) get up-
dated via Bayes rule to their posterior densities π0(θ|x) (equation (2.9)) and π1(θ|x) (equa-
tion (2.10)) as depicted in Chapter 2 (Figure 5.2, top). However, by using these within-
hypothesis posterior densities π0(θ|x) and π1(θ|x) as new within-hypothesis prior densities
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for the calculation of the Bayes factor based on the second data set y, the resulting Bayes
factor

BF y|x = f(y|h0, x)
f(y|h1, x) =

∫
Θ0

f(y|θ) · π0(θ|x) dθ∫
Θ01 f(y|θ) · π1(θ|x) dθ

(5.3)

is, in general, different to the Bayes factor BF y obtained with the initial within-hypothesis
prior densities π0(θ) and π1(θ):

BF y|x
in

general

̸= BF y . (5.4)
It is this Bayes factor BF y|x that allows to update the previous posterior odds to the final
posterior odds

p(h0|y, x)
p(h1|y, x) = BF y|x · p(h0|x)

p(h1|x) (5.5)

consistently. By using BF y instead of BF y|x in equation (5.5), updating with Bayes fac-
tors is inconsistent (Figure 5.2, bottom). Again, the previous within-hypothesis posterior
densities π0(θ|x) and π1(θ|x) get updated via Bayes rule to the final within-hypothesis
posterior densities

π0(θ|y, x) = f(y|θ) · π0(θ|x)
f(y|h0, x) (5.6)

π1(θ|y, x) = f(y|θ) · π1(θ|x)
f(y|h1, x) , (5.7)

where

f(y|h0, x) =
∫

Θ0
f(y|θ) · π0(θ|x) dθ (5.8)

f(y|h1, x) =
∫

Θ1
f(y|θ) · π1(θ|x) dθ (5.9)

are respective marginal densities.

In summary, it appears that the update of the within-hypothesis prior densities π0(θ) and
π1(θ) to the within-hypothesis posterior densities π0(θ|x) and π1(θ|x) must not be neglected
in an analysis with Bayes factors, even if only one data set x is present and a Bayes factor
value can be calculated without considering this update. Mathematically, this update
occurs, a fact often neglected (as e.g. recognized by Rouder and Morey, 2011) or depicted
wrongly (e.g. Tendeiro and Kiers, 2019, p. 776, footnote 2 therein) in the literature about
Bayes factors.

5.2 Big Picture

Being aware of this update of the within-hypothesis prior distributions, it is now possible to
assess the nature of statistical hypotheses. To do so, the big picture of statistical inference
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(cp. Kass, 2011) shall be regarded in the context of Bayes factors.

This big picture of statistical inference (Figure 5.3) distinguishes between a real world and
a theoretical world, in which the real world objects are formalized as mathematical objects.
Interpreting mathematical objects from the theoretical world leads to their counterpart in
the real world. In the context of a statistical analysis, the phenomenon of interest in
the real world is represented as the parameter of the corresponding parametric sampling
distribution in the theoretical world. The quality of this representation depends on the
quality of the investigational setup.

Figure 5.3: Bayes Factors: Big Picture. The big picture of statistical inference (Kass, 2011)
differentiates between a real world (left side) and a theoretical world (right side). This scheme
depicts how the essential theoretical quantities in the context of Bayes factors are related to their
real world interpretations. This figure was taken from (Schwaferts and Augustin, 2021a).

In the context of Bayes factors, on the theoretical side, there is a Bayesian parameter
distribution and – due to the comparative nature of Bayes factors (or hypothesis-based
analyses in general) – two mathematical objects that should be contrasted against each
other. These objects are referred to as (statistical) hypotheses (but are sometimes also
denoted as models (cp. esp. Tendeiro and Kiers, 2019, p. 775, footnote 1 therein)). The
interpretation of the Bayesian (prior or posterior) parameter distribution is knowledge2

about the phenomenon of interest (before or after the data were observed). The hypotheses
in the theoretical world formalize two theories about the phenomenon of interest in the real
world that should be contrasted against each other by the research question. Due to their
contrasting nature, the theories will be referred to as theoretical positions. Essentially, they

2Cp. footnote 1 on page 11 of this thesis.
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are two yet uninvestigated conjectures about the phenomenon of interest. In a Bayesian
analysis, the prior distribution will get updated to the posterior distribution that is said
to contain all relevant knowledge about the parameter (i.e. phenomenon of interest in the
real world) after the data are observed, so it is this posterior knowledge that is able to
answer the research question in the real world.

In such a contrasting research question, the theoretical positions should be compared
against each other. The desired outcome is a statement about the relative plausibility
of the theoretical positions. There are two theoretical positions about the phenomenon of
interest, which is more plausible? Which one is favored by the data? It is not: There are
two theoretical positions about the phenomenon of interest, how do both theoretical posi-
tions change by seeing the data? If so, the results would be two new theoretical positions,
not an assessment of the relative plausibility of the initially stated theoretical positions.
However, it were the initially stated theoretical positions which were of scientific interest
and contrasted in the research question. So, the initially stated theoretical positions must
not change by seeing the data, only their plausibility should. This requirement is in line
with the interpretation of Bayes factors as a quantification of evidence: Evidence does not
change a theory, only its plausibility. Theories with low evidence might be dismissed for
the sake of a different theory, but this is a different step that comes after evidence quan-
tification. How to quantify evidence and how to use evidence are two separate aspects.
Bayes factors per se only concern the quantification of evidence.

Now, assume that – as frequently stated in the literature about Bayes factors – hypotheses
(i.e. the mathematical objects that are contrasted by Bayes factors) are represented by
both sets of parameters and within-hypothesis prior parameter distributions, such that the
theoretical positions are formalized by both these mathematical objects. It was shown in
the Section 5.1 that the within-hypothesis prior parameter distributions do get updated
by seeing the data. If these within-hypothesis prior parameter distributions formalize
the theoretical positions of interest, after seeing the data the within-hypothesis posterior
distribution formalize different theoretical positions, which are, in general, not of interest
for the research question. It appears that a proper and useful interpretation of Bayes factors
as evidence quantification is no longer possible, if the within-hypothesis prior distributions
are also used to formalize theoretical positions. In that, they cannot be constituents of
those mathematical objects (hypotheses) that are contrasted with each other by the Bayes
factor.

Further, it appears that both updating consistency of Bayes factors and a proper interpre-
tation of Bayes factors as evidence quantification can be maintained if hypotheses are only
defined by sets of parameters and not by prior distributions (Schwaferts and Augustin,
2021a). In that, this nature of statistical hypotheses is in line with the derivation of sta-
tistical hypotheses as subsets of the parameter space in the context of the simplification of
a loss function (Chapter 4).
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Naturally, the question arises of how to specify the prior distribution, if not by the content
of the theoretical positions of interest. Sorting back to the interpretation of Bayesian
parameter distributions as knowledge about the phenomenon of interest, the answer to
this question is: The prior distribution specifies what is known about the phenomenon of
interest before conducting the investigation, the hypotheses specify what should be assessed
about the phenomenon of interest in the context of the research question. Former is actual
knowledge, latter are some hypothetical conjectures.

Elaborating this difference between the real-world counterparts of both hypotheses and
prior distributions, it appears that there is a clear guidance on the structure of the specifi-
cation of the prior parameter distribution. In Section 2.1 two different ways to specify the
prior parameter distribution were depicted: Either as an overall prior parameter density
π(θ) or as the within-hypothesis prior parameter densities π0(θ) and π1(θ) together with the
prior odds p(h0)/p(h1). Former specification is independent of the hypotheses and latter
specification is dependent on the hypotheses. However, by combining the within-hypothesis
prior parameter densities π0(θ) and π1(θ) with the prior odds p(h0)/p(h1) to the overall
prior parameter density π(θ) (equation (2.8)), there is no dependence on the hypotheses
anymore. In that, using latter specification of the prior situation with a correct relation
to the real world seems to be nearly impossible: The within-hypothesis prior parameter
densities π0(θ), π1(θ) and the prior odds p(h0)/p(h1) should be specified such that they
contain the actual knowledge about the phenomenon of interest in dependence on some
hypothetical conjectures, but by merging them to the overall prior parameter density π(θ)
its dependence on these hypothetical conjectures has to be gone, containing only the actual
knowledge about the phenomenon of interest as if there were no hypothetical conjectures.
This seems a remarkable procedure. In that sense, it suggests itself to simply specify the
overall prior density π(θ), representing the actual knowledge about the phenomenon of
interest, and the hypotheses, representing the hypothetical conjectures of interest, in two
independent steps.
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Chapter 6

Generalizations with Imprecise
Specifications

After consolidating that the disagreement about the nature of statistical hypotheses be-
tween the previous decision theoretic considerations (Chapter 4) and the current recom-
mendations in the literature about Bayes factors (primarily elaborated in Vanpaemel, 2010;
Vanpaemel and Lee, 2012) does indeed arise from an erroneous conception within the lit-
erature, the focus of this thesis can be brought back on how to improve the practical
relevance of Bayes factors.

The general insight from the development of the definition of the notion of practical rele-
vance (Chapter 3) was that all essential quantities that are used within a statistical analysis
need to be specified such that they match best with the underlying (potentially implicitly
assumed) decision context. Put the other way round: By misspecifying essential quantities
results are obtained that do inform past the practical purpose of the investigation. In that
sense, these results lack practical relevance.

It was elaborated that it is important to specify the hypotheses such that they incorporate
the notion of practical relevance (Section 3.2) and to specify the simplified loss function LH

via the value k (equation (4.4)) such that it captures the available information about the
consequences of the type-I-error and the type-II-error. Besides, also the prior parameter
distribution needs to be specified to perform a hypothesis-based Bayesian decision theoretic
analysis. Also this quantity needs to be specified such that it properly captures the relevant
knowledge about the parameter.

Typically, information about the prior distribution, the hypotheses, and the value k in the
context of the simplified loss function LH might be scarce, vague, and partial. It might
rather be seen as an exception if an applied scientist is able to unambiguously specify
these quantities as precise values without pretending a level of certainty that is actually
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not available.

In line with the basic understanding of the framework of imprecise probabilities (see e.g.
Walley, 1991; Augustin et al., 2014), researchers should be allowed to specify these quan-
tities (prior, hypotheses, loss) in a less precise, i.e. imprecise, way, such that the scarcity,
vagueness, and incompleteness of the available information about these quantities is cap-
tured within the specification more accurately. So, instead of requiring these quantities to
be precise single-valued entities, they should rather be interval- or set-valued entities.

In that, the prior distribution might be generalized to be a set of prior distributions, the
parameter sets in the context of the hypotheses might be generalized to be sets of parameter
sets, and the value k of the hypothesis-based loss function LH might be generalized to be
a set of reasonable values for k. With these imprecise specifications, the applied researcher
might be more comfortable to determine these essential quantities in accordance with
the available scarce, vague, and partial information. How to deal with these imprecise
quantities in the hypothesis-based Bayesian decision theoretic framework will be outlined
in the following. These elaborations are published within (Schwaferts and Augustin, 2019,
2021c), and a special case of Bayes factors with an imprecisely specified prior distribution
is published within (Ebner et al., 2019).

6.1 Imprecise Prior Distribution

While the previous chapters omitted an explicit notation for the prior parameter distribu-
tion and employed only a notation for the prior parameter density π(θ), former will come
in handy for the elaboration about the generalization into the framework of imprecise
probabilities. In that, denote the prior parameter distribution as πθ which has the density
π(θ).

The set of prior distributions that are all considered to be reasonable in the actual re-
search context shall be denoted by Πθ. This set is referred to as imprecise prior parameter
distribution and constitutes an entity on its own that represents the prior (partial) knowl-
edge about the phenomenon of interest. After observing the data x, this imprecise prior
parameter distribution Πθ gets updated to the imprecise posterior parameter distribution

Πθ|x = {πθ|x|πθ ∈ Πθ} , (6.1)

where each posterior parameter distribution πθ|x was obtained separately from one of the
prior parameter distributions πθ ∈ Πθ via Bayes rule (equation (2.1) (in this regard cp.
also the generalized Bayes rule (Walley, 1991) and sensitivity considerations in the context
of robust statistics (Ríos Insua and Ruggeri, 2012)).
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6.2 Imprecise Hypotheses

As elaborated in Chapters 3 and 4, hypotheses are specified such that they incorporate the
notion of practical relevance, if the parameter values θ within each hypothesis would favor
to the same action, respectively. There might, however, be some parameter values θ ∈ Θ
for which the applied researcher is not able to determine the preferred action, especially
for those parameter values close to the borders between the hypotheses. Loosening this
strict requirement that every parameter value has to be in either of the hypotheses, and
allowing that parameter values might be in both, either, or none of the hypotheses, the
specification of the hypotheses might be closer to the actual research question.

Formally, this leads to sets

[Θ]0 := {Θ0 ⊂ Θ | Θ0 reasonable under H0} (6.2)
[Θ]1 := {Θ1 ⊂ Θ | Θ1 reasonable under H1} , (6.3)

of parameter sets for the imprecise hypotheses

H0 : θ ∈ [Θ]0 vs. H1 : θ ∈ [Θ]1 . (6.4)

Similarly, these sets [Θ]0 and [Θ]1 of parameter sets are considered as entities on their own
and as representing the theoretical positions that are contrasted in the research question.

The imprecise posterior probabilities

P (H0|x) =
{
p(h0|x)

∣∣∣ Θ0 ∈ [Θ]0, πθ|x ∈ Πθ|x
}

(6.5)

P (H1|x) =
{
p(h1|x)

∣∣∣ Θ1 ∈ [Θ]1, πθ|x ∈ Πθ|x
}

. (6.6)

of the imprecise hypotheses H0 and H1 are then derived element-wise by considering every
combination of each posterior distribution πθ|x ∈ Πθ|x and each parameter set Θ0 ∈ [Θ]0 or
Θ1 ∈ [Θ]1, respectively.

These imprecise posterior probabilities then form the imprecise posterior odds[
P (H0|x)
P (H1|x)

]
:=

{
p(h0|x)
p(h1|x)

∣∣∣∣∣ p(h0|x) ∈ P (H0|x), p(h1|x) ∈ P (H1|x)
}

, (6.7)

having the supremum

P := sup
[

P (H0|x)
P (H1|x)

]
(6.8)

and the infimum
P := inf

[
P (H0|x)
P (H1|x)

]
. (6.9)
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6.3 Imprecise Loss

In order to generalize the hypothesis-based loss function LH such that imprecise speci-
fications are allowed, the value k needs to be considered to be a set-valued quantity K
instead. This set K contains all precise values k that are considered to be in line with the
available (potentially partial) information about the consequences of the type-I-error and
the type-II-error. This set K together with the imprecise hypotheses H0 and H1 delineate
the imprecise hypothesis-based loss function. Denote the supremum and infimum of this
set K as K := sup K and K := inf K, respectively. An illustration of such an imprecise
hypothesis-based loss function, depicted terms of a parameter-based loss function, is shown
in Figure 6.1.

With an element-wise combination of every k ∈ K and every precise posterior odds p(h0|x)
p(h1|x) ∈[

P (H0|x)
P (H1|x)

]
within the imprecise posterior odds, the imprecise ratio of expected posterior losses

can be calculated:

R :=
{

r = k · p(h0|x)
p(h1|x)

∣∣∣∣∣ k ∈ K,
p(h0|x)
p(h1|x) ∈

[
P (H0|x)
P (H1|x)

]}
. (6.10)

With the supremum and infimum

R := sup R = K · P (6.11)
R := inf R = K · P , (6.12)

of this imprecise ratio R of expected posterior losses, the set A∗ of optimal actions can be
determined by:

A∗ =


{ } if R < 1 < R

{a0} if 1 ≤ R, 1 < R

{a1} if R < 1, R ≤ 1
{a0, a1} if R = R = 1

. (6.13)

If R < 1 < R, there are possibilities within the imprecise specifications that results in
a0 to be optimal and possibilities within the imprecise specifications that results in a1
to be optimal. In that, information is insufficient to unambiguously guide the decision
and the decision should be withheld. Therefore, no action can be considered as optimal
and the set A∗ of optimal actions is empty. If either 1 ≤ R, 1 < R or R < 1, R ≤ 1,
then all possibilities within the imprecise specifications yield the same action a0 or a1,
respectively, to be optimal and the decision can be guided unambiguously. The condition
R = R = 1 arises only if the ratio of expected posterior losses is actually precise. In that
sense, equation (6.13) can be seen as a generalization of equation (4.8).
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Figure 6.1: Simplified Loss Function within the Imprecise Framework. The top plot depicts a
precise simplified loss function with k = 3 on the parameter δ of interest for the precise hypotheses
defined by Θ0 = (−∞, 8] and Θ1 = (8, ∞) for both actions a0 (black) and a1 (gray). The middle
plot depicts this loss function with an imprecise hypothesis specification by H0 : δ ∈ [∆]0 ={

∆0 = (−∞, δ̃]
∣∣∣ δ̃ ∈ [5, 8]

}
and H1 : δ ∈ [∆]1 =

{
∆1 = [δ̃, ∞)

∣∣∣ δ̃ ∈ [5, 8]
}

. Note the overlapping
lines within δ = [5, 8]. The bottom plot does consider an imprecisely specified loss function with
K = [3, 15] in addition to the imprecise hypotheses H0 and H1. This figure was taken from
(Schwaferts and Augustin, 2021c).

If the decision should be withheld, i.e. if R < 1 < R, then additional information is
required to eliminate the uncertainty that prohibits an unambiguous conclusion. By col-
lecting additional data, additional information about the phenomenon of interest, about
the differentiation between the contrasted theoretical positions, or about the consequences
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of the type-I-error or the type-II-error, the imprecise ratio R of expected posterior losses
might be narrowed down to exclude the number 1, allowing to guide the decision unam-
biguously.



47

Chapter 7

Framework for Applications

Now, after generalizing Bayes factors to both the decision theoretic framework and the
framework of imprecise probabilities, a simple and straightforward framework shall be
outlined that can be applied in empirical studies.

On the one hand, it appears that applying a comprehensive decision theoretic account in
an empirical context typically fails due to requirement of specifying the loss function. On
the other hand, it appears that applying the framework of imprecise probabilities in an
empirical context might happen to fail due to potentially complicated calculations.

However, by using a hypothesis-based analysis, i.e. by accepting the simplification assump-
tion (Section 4.2), and using the imprecise specification with K, the requirements for the
specification of the loss function are extremely mitigated. Further, it appears that com-
plicated calculations in the context of the imprecise hypothesis-based Bayesian decision
theoretic account are primarily centered around the parameter distributions and the calcu-
lation of the posterior odds. By using a precise prior distribution and precise hypotheses,
but an imprecise loss function LH with an interval-valued specification of K, calculations
are hardly more complicated than in the precise case. In that, a framework might be
outlined that uses an imprecise loss function in an otherwise precise setting, therefore
mitigating the requirements on the loss function as much as possible, but still keeping
calculations feasible.

Certainly, including imprecise specifications of the prior distribution and the hypotheses is
expected to provide more reliable results and is recommended if reasonable (i.e. if available
relevant information is scarce, vague, and partial) and feasible. How to do so was elaborated
on in Chapter 6. Yet, it should be considered that the specification of a prior distribution
and of the hypotheses is an integral part of every analysis that is based on Bayes factors
and the status quo is to employ precise specifications thereof. Further, the status quo is
also to refrain from considering a loss function – or, more generally, the consequences of
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certain decisions that are based on Bayes factor results. In order to improve the practical
relevance of Bayes factors, one has to start at this status quo and ask, which improvement in
methodology is the most suitable to achieve this goal. The suitability of an methodological
improvement does, of course, include its ease in applications. And by merely including
an imprecise loss function into the analysis with Bayes factors (and not imprecise prior
distributions or hypotheses), computations will still have a similar level of feasibility, but
an essential step was taken towards an improvement of the practical relevance of Bayes
factors: The practical relevance of Bayes factors (or any result) simply depends on what
they are used for (Chapter 3). Formally, this use is a decision and a decision cannot be
guided without considering (the badness of) its consequences. Yet without considering a
loss function, the consequences of the decision are ignored at all, and the practical relevance
cannot be assessed on a formal level. So, to establish a connection between the practical
purpose and the Bayes factors, a loss consideration is mandatory. And the simplified
hypothesis-based loss function with imprecise K allows to include such a loss consideration
into the analysis without overloading the applied scientist with too many specification
requirements (in contrast to a full precise parameter-based loss function L).

7.1 Framework

This hypothesis-based Bayesian decision theoretic framework with imprecise loss function
is outlined in detail within the contribution (Schwaferts and Augustin, 2021b).

In essence, the Bayesian analysis of the data x follows the typical Bayesian structure (as
outlined in Chapter 2): In the context of the scientific investigation that is described by
the parametric sampling distribution f(x|θ), the applied scientist has to specify the prior
density π(θ) and the hypotheses h0, h1 (equation (2.3)) to be in accordance with the prior
knowledge and the theoretical positions of interest, respectively. The prior density gets
updated via Bayes rule (equation (2.1)) to the posterior density π(θ|x), which in turn
allows to calculate the posterior probabilities of the hypothesis p(h0|x), p(h1|x), forming
the posterior odds.

Considering the intended use of the scientific investigation, actions a0, a1 need to be stated
and their consequences in dependence of the respective hypotheses h0, h1 assessed. This
leads to the specification of the ratio k of loss values for the type-I-error and the type-
II-error. This specification might be provided as an interval1 K = [K, K], for which the

1While the elaborations in Chapter 6 used a set-valued specification of K, this framework is depicted
with an interval-valued specification of K, because it is to expect that applied scientists might be able to
consider an upper and a lower bound of this ratio, rating every value in between as plausible as well. If
there are certain values of k in between these bounds, they might be excluded leading to a set-valued (and
not interval-valued) specification. As the resulting set A∗ of optimal actions (equation (6.13)) depends
only on the supremum and the infimum of the set K (which are also the bounds K and K, if K is an
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applied scientists has to specify the maximal and minimal reasonable values for k.

The supremum and the infimum of the imprecise ratio R of expected posterior losses
(equation (6.10)) can now be calculated by (compare equations (6.11) and (6.12))

R = K · p(h0|x)
p(h1|x) (7.1)

R = K · p(h0|x)
p(h1|x) , (7.2)

due to the precise nature of the posterior odds. The optimal action can then, again, be
found by simply comparing these two values (equation (7.1) and equation (7.2)) with the
value 1, as in equation (6.13).

7.2 Step-By-Step Guide

A step-by-step guide for this framework intends to provide an orientation for applied sci-
entist who are interested in increasing the practical relevance of their hypothesis-based
Bayesian analyses. This guide is provided in (Schwaferts and Augustin, 2021b) and mostly
adopted verbatim here:

Step 1: Actions. First of all, the researcher needs to specify the actions. It is recom-
mended to explicitly state and report these actions, e.g.2 by

a0: do not administer aspirin to prevent myocardial infarction

a1: administer aspirin to prevent myocardial infarction

If the researcher has difficulties stating the actions, maybe there is no decision to guide
and a descriptive analysis might suffice.

Step 2: Sampling Distribution. Next, the researcher should provide a detailed de-
scription of the investigation and how it is characterized (i.e. the sampling distribution).
It is recommended to also explicitly state the employed parameter θ and its interpretation.
This is the basis for specifying the hypotheses.

Step 3: Prior Distribution. In the Bayesian setting, it is possible to include prior
knowledge about the phenomenon of interest into the analysis. In that, the researcher has
to specify a prior distribution on the parameter. It is recommended to fully report the

interval), this will not affect the results.
2The example here (as well as the example in Step 6) refers to Bartolucci et al. (2011).
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available prior knowledge about the parameter θ and why this leads to the prior density
π(θ).

It is recommended at this step of the analysis to also state all other possible prior densities
that are in accordance with the available prior knowledge, as these serve as basis for a sub-
sequent sensitivity analysis or an analysis with an imprecisely specified prior distribution
(as outlined in Chapter 6).

Naturally, also non-informative priors might be specified and they might also be improper
(as long as they lead to proper posterior distributions).

Step 4: Assumption. If the researcher is unable to specify the loss function L, then a
simplification as in Section 4.2 might be a solution. This simplification is an assumption on
the loss function, namely that the loss function is constant within each of two parameter
sets. If this assumption is not appropriate, it might lead to errors (which are inherent to
every hypothesis-based analysis in the context of a practical purpose) and the researcher
needs to be aware of this consequence. It is recommended to explicitly report that this
assumption was made. Transparency is one of the basic principles in science (cp. Gelman
and Hennig, 2017).

Step 5: Hypotheses. Now, the researcher has to consider each possible parameter value
θ and assess which action should be preferred if this parameter value would be true. All
parameters for which a0 or a1 should be preferred are comprised within the sets Θ0 or Θ1,
respectively. Certainly, there are parameter values that define the border between both
sets Θ0 and Θ1. It is recommended to explicitly state what these values mean in real life
and why they define reasonable borders between Θ0 and Θ1.

Step 6: Errors. Deciding for a1 if θ ∈ Θ0 is the type-I-error and deciding for a0 if θ ∈ Θ1
is the type-II-error. Both errors should be delineated, as they serve as basis for specifying
the ratio k. It is recommended to explicitly state these errors and their consequences, e.g.
by

Type-I-error: administer aspirin to prevent myocardial infarction, but the effect is
negligible. Consequence: patients unnecessarily suffer side effects of aspirin.

Type-II-error: do not administer aspirin to prevent myocardial infarction, although
it would have an effect. Consequence: some patients suffer a myocardial infarction,
which could have been prevented.

Of course, this is only a schematic illustration and in real empirical studies these elabora-
tions will be more comprehensive.

Step 7: Loss Magnitude. The researcher has to imagine that the “badness” of deciding
correctly is 0. In this context, the researcher has to determine how much worse the type-
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I-error is compared to the type-II-error. This is the value k. As a precise value for k is
difficult to determine, it might be easier to specify a range [K, K] of plausible values for
k. It is recommended to report all considerations that lead to this specification.

Step 8: Investigation. Now, the investigation can be conducted and it is recommended
to preregister3 the previous specifications, the design of the experiment, and the planned
(decision theoretic) analysis of the data (cp. Nosek et al., 2018; Klein et al., 2018). Regis-
tered reports4 even allow to obtain a peer-review prior to collecting the data.

Step 9: Posterior Distribution. The observed data are used to obtain the posterior
distribution as well as the posterior probabilities of the hypotheses p(h0|x) and p(h1|x).
There are countless references on how to do this (e.g. Gelman et al., 2013; Kruschke, 2015).

Step 10: Optimal Action. The researcher has to calculate R and R as in equations
(7.2) and (7.1) to find the optimal action as in equation (6.13).

For R < 1 < R, the decision should be withheld, because the data or the information about
the decision problem are not sufficient to unambiguously guide the decision. In this case, a
reasonable strategy might be to collect more data or to gather more information about the
decision problem, especially about the consequences of the errors, to narrow down [K, K].
However, it is recommended to transparently report that a decision was withheld at first
and which subsequent steps were taken to obtain more information.

Step 11: Publish Data. Of course, other researchers might need the data to guide
their decisions. It is to expect that they have different prior knowledge and that their
decisions employ different hypotheses. Without having access to the data set (but only
to the reported analysis), it might be difficult, or even impossible, for them to guide their
decisions properly, emphasizing the importance of open science5.

7.3 Comparison

In relation to Bayes factors, this hypothesis-based Bayesian decision theoretic framework
with imprecise loss function has two new characteristics: First, there is a direct relation
with the practical purpose of the scientific investigation on a formal level. Second, scarcity,
vagueness, or incompleteness about the consequences of respective decisions might yield
unambiguous results that do not pretend a level of precision which is not available and
advise to withhold the decision (until more information or data were obtained).

3Study designs can be preregistered e.g. at www.cos.io/initiatives/prereg.
4Information about registered reports can be found e.g. at www.cos.io/rr.
5Comprehensive information about open science are provided e.g. by the LMU Open Science Center:

www.osc.uni-muenchen.de.

www.cos.io/initiatives/prereg
www.cos.io/rr
www.osc.uni-muenchen.de
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In the current literature about hypothesis-based Bayesian analyses in context of applied
sciences, there is another methodology that also stands out with exactly these character-
istics: The so called HDI+ROPE decision rule (Kruschke, 2015, 2018).

In the context of this decision rule, it is assumed that the researcher is interested in a certain
parameter null value θ∗ and whether to accept or to reject this value for practical purposes.
To do so, the researcher needs to specify a region of practical equivalence6 (ROPE) around
this null value θ∗, which is a “range of parameter values that are equivalent to the null
value for practical purposes” (Kruschke, 2018, p. 272). After observing the data x, the 95%-
highest density interval (HDI) of the posterior density π(θ|x) is calculated and compared
to the ROPE:

• If the HDI falls completely inside the ROPE, then accept the null value for practical
purposes.

• If the HDI falls completely outside the ROPE, then reject the null value for practical
purposes.

• Else, withhold a decision.

In order to compare this decision rule with the hypothesis-based Bayesian decision theo-
retic framework with imprecise loss, the decision theoretic foundation of the HDI+ROPE
decision rule was derived in contribution (Schwaferts and Augustin, 2020). It appears
that the outcome of withholding a decision in the context of the HDI+ROPE decision
rule cannot be derived from an imprecise specification. In that, scarcity, vagueness, and
incompleteness of the available information about the essential quantities do not seem to
be included into the analysis. The indecisiveness seems to arise solely from observed data
sets that do not contain enough information. Further, it appears that the underlying loss
function behind this decision rule is artificial: Its values are set such that certain decision
will be derived under certain circumstances, but its values are not primarily in line with the
actual underlying decision problem. In that, it seems that the HDI+ROPE decision rule
includes the practical purpose only in the specification of the ROPE, but not in formalizing
the “badness” of consequences within the loss function. In that, an important link between
the practical purpose and the final decision (result of the analysis) is not available in the
HDI+ROPE decision rule: Practical consequences of incorrect decisions were not included
into the formal analysis.

As a result of this comparison of the decision theoretic foundation of the HDI+ROPE
decision rule with the hypothesis-based decision theoretic framework with imprecise loss,
it appears that latter is closer to the practical purpose of the investigation and is better

6Using the notation of the present thesis, this region of practical equivalence appears to relate to the
parameter set Θ0 of the hypothesis h0.
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capable of including scarcity, vagueness, and incompleteness of the available information
about the consequences of incorrect decision into the analysis.

Consequently, it is recommended to prefer the hypothesis-based Bayesian decision frame-
work with imprecise loss for a Bayesian analysis in the context of the practical purpose of
a scientific investigation.
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Chapter 8

Conclusion

A formal definition of the notion of practical relevance was established (Chapter 3), outlin-
ing that formal considerations about the practical relevance of effects or about the practical
relevance w.r.t. hypotheses require an underlying decision problem (i.e. a formal description
of the practical purpose of the scientific study). In that sense, Bayes factors were depicted
within the greater context of hypothesis-based Bayesian decision theory (Chapter 4) and
generalized into the framework of imprecise probabilities by allowing an imprecise speci-
fication of the prior distribution, the hypotheses, and the hypothesis-based loss function
(Chapter 6). In order to condense these generalizations into a simple and straightforward
framework for applications, only an imprecise loss function was employed in the hypothesis-
based Bayesian decision theoretic framework, ensuring feasible calculations and a relation
of the analysis to the underlying decision problem (Chapter 7).

Yet, besides developing these twofold generalizations of Bayes factors into the decision
theoretic framework and the framework of imprecise probabilities, one fundamental but
important question was continuously addressed in the course of this thesis: What is a
statistical hypothesis? The answer to this question is multifaceted and requires elaborations
from several different points of view:

• From a definition point of view, statistical hypotheses (in the context of a parametric
sampling distribution) are subsets of the parameter space. There are different con-
ceptions (primarily elaborated in Vanpaemel, 2010; Vanpaemel and Lee, 2012) about
this mathematical nature of hypotheses (namely, as sets of parameters together with
prior distributions), yet it was outlined within this thesis that these conceptions are
problematic (Chapter 5).

• From a point of view about the employment of hypotheses in statistical analyses,
statistical hypotheses are mathematical objects with a contrasting nature. In the
context of most statistical analyses, there are (at least) two hypotheses that are
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compared against each other.

• From an interpretation point of view, statistical hypotheses are the formalization
of theories1 that are statistically evaluated. These are hypothetical conjectures and
might be true or false. The purpose of the scientific investigation is to derive state-
ments about these conjectures, such as whether they are in line with the data, whether
they might be falsified, or which probabilities they might be assigned with. The sta-
tistical analysis does not change these conjectures themselves, it only provides their
assessments.

• From a decision theoretic point of view, statistical hypotheses are a component in the
simplification of a loss function. In that sense, the employment of hypotheses corre-
sponds to accepting the simplification assumption about the shape of the loss function
(Section 4.2). With more information to specify the non-simplified parameter-based
loss function, a hypothesis-based analysis is not necessary.

Finally, one last aspect needs to be brought into a conclusion: The evaluation of the
interpretations of Bayes factors. In Section 2.3, the two interpretations of Bayes factors
as comparison of prior predictive performances and as evidence were outlined. Assume
an empirical scientist conducts an investigation and calculates a Bayes factor. And now?
What is it that the empirical scientist can do with the Bayes factor? To answer this
question, consider both interpretations:

• Comparison of prior predictive performances. The Bayes factor states how much
higher the prior predictive performance of one hypothesis is compared to the other
hypothesis. However, it is not possible to use the prior predictive likelihood of that
hypothesis with the higher prior predictive performance for future prediction. As
illustrated in the context of updating consistency (Section 5.1), the prior gets updated
by seeing the data to the posterior. In that, the prior predictive likelihoods are
already outdated when calculating a Bayes factor. Consistent Bayesian predictions
use posterior predictive likelihoods for future predictions, once data were already
observed. Consequently, although interpreted w.r.t. prior predictive performances,
Bayes factors cannot be usefully employed when future predictions are of interest.

• Evidence. The Bayes factor states how much more the data favor one hypothesis over
the other hypothesis. In that sense, the data are interpreted as evidence and the Bayes
factor quantifies this evidence. Evidence changes beliefs, as delineated in equation
(2.20). Interestingly, there is no other formula than this equation that states how to
use Bayes factors. Accordingly, there is no other use for Bayes factors than to change
the beliefs in the hypotheses! The question of what to do with Bayes factors leads

1Within this thesis, the term theoretical position was employed to emphasize both its contrasting nature
and its interpretation as theory.
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to the question of what to do with the posterior odds. In general, posterior odds are
neither 0 nor ∞, and there is still a non-zero belief in both hypotheses. So falsifying
and, therefore, dismissing one of the hypotheses cannot be derived solely from the
posterior odds in a mathematically correct manner. Accepting one hypothesis and
dismissing the other hypothesis is thus a subsequent step that comes after calculating
the posterior odds. In effect, it is a decision about the hypotheses. And it is decision
theory that elaborates on how to guide it properly.

In summary, the Bayes factor is a quantity that appears within the determination of the
optimal action in a hypothesis-based Bayesian decision problem, and even its interpretation
as evidence emphasizes its involvement in guiding decisions. While some decisions might
be of mere scientific interest (e.g. which of the theoretical positions to dismiss and which to
pursue in further scientific investigations), others might be related to a practical purpose.
By including information about this practical purpose into the analysis in the potentially
vague form it is available, a researcher is able to improve the practical relevance of Bayes
factors.
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Abstract

There is a general agreement that it is important to consider the practical rel-
evance of an effect in addition to its statistical significance, yet a formal definition
of practical relevance is still pending and shall be provided within this paper. It
appears that an underlying decision problem, characterized by actions and a loss
function, is required to define the notion of practical relevance, rendering it a de-
cision theoretic concept. In the context of hypothesis-based analyses, the notion of
practical relevance relates to specifying the hypotheses reasonably, such that the null
hypothesis does not contain only a single parameter null value, but also all parameter
values that are equivalent to the null value on a practical level. In that regard, the
definition of practical relevance is also extended into the context of hypotheses. The
formal elaborations on the notion of practical relevance within this paper indicate
that, typically, a specific decision problem is implicitly assumed when dealing with
the practical relevance of an effect or some results. As a consequence, involving de-
cision theoretic considerations into a statistical analysis suggests itself by the mere
nature of the notion of practical relevance.

Keywords: Practical Significance, Practical Relevance, Nil Hypothesis, Decision
Theory, Reproducibility Crisis, Null Hypothesis Significance Testing

1 Introduction

More than twenty years have passed since Kirk (1996) urged to consider the practical rele-
vance of research results in addition to their statistical significance with his paper entitled
“Practical Significance: A Concept Whose Time Has Come,” yet no formal definition of
this concept is currently available. Instead, merely stating that effect sizes are “measures”
(see e.g. Ellis and Steyn, 2003) or “indices” (see e.g. Thompson, 2002; Hojat and Xu, 2004)
of practical significance which indicate if results are “meaningful” (see e.g. Vaske, 2002)
or “useful” (see e.g. Kirk, 1996) seemed to be sufficient. This, however, is by no means a
proper mathematical incorporation of the notion of practical relevance (or practical signif-
icance) within the frameworks of statistical methodologies. In that, this paper attempts
to provide a formal definition of practical relevance.

There are two different lines of research that lead to a definition of practical relevance, which
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appear to be closely related. The first one is mentioned above and directly concerned with
the practical relevance of an effect (see e.g. Kirk, 1996). The second one is based on the
criticism (see e.g. Cohen, 1994) that null hypotheses within the omnipresent approach of
null hypothesis significance testing (NHST) typically hypothesize a single parameter value
representing a zero effect size, yet this is not of interest as it does not matter if the effect is
literally zero, but only practically zero (e.g. a parameter value of, say, 0.01 is not exactly
zero but might be practically equivalent to zero in most cases). In that regard, currently
promoted statistical methods use reasonably specified null hypotheses, considering smallest
effect sizes of interest in equivalence tests (see e.g. Lakens, 2017; Lakens et al., 2018), regions
of practical equivalence (ROPE) around the null value in Bayesian decision rules (see e.g.
Kruschke, 2015, 2018), or interval-valued null hypotheses in the context of Bayes factors
(see e.g. Morey and Rouder, 2011; Hoijtink et al., 2019; Heck et al., 2020).

By evaluating both of these lines of research, it seems that practical relevance can only
be described by referring to a (potentially implicitly assumed) decision problem in which
one of two actions should be chosen, one being associated with an effect that is practically
zero and one being associated with an effect that is practically relevant (i.e. non-zero).
In that regard, the context of decision making is necessary to formalize this situation
and to provide a definition of practical relevance. In accordance with both of these lines
of research, two different definitions of practical relevance might be distinguished, one
referring to effects (Section 2) and one referring to hypotheses (Section 3). The implications
of these definitions for applied sciences will be discussed (Section 4).

2 Practical Relevance of an Effect

2.1 Context

Practical significance is typically introduced in research papers by stating that effect sizes
are measures of it which indicate the importance of the result. However, there is a general
agreement that effect sizes are not synonymous with practical significance (see e.g. Vaske,
2002; Peeters, 2016) and that there is more to practical significance than the mere size of
the effect. In this regard, Kirk (2001, p. 213, line breaks added) states that “[r]esearchers
want to answer three basic questions:

(a) Is an observed effect real or should it be attributed to chance?

(b) If the effect is real, how large is it? and

(c) Is the effect large enough to be useful?”

The first question (a) might be answered by assessing the uncertainty within the observed
effect, which is conventionally done by conducting a statistical test, although recently
different approaches are promoted, such as Bayesian statistics (see e.g. van de Schoot
et al., 2017) or estimation methods that acknowledge the available uncertainty, such as
confidence intervals (see e.g. Cumming, 2014). The second question (b) might be answered
by the effect size estimate, however, the answer to the third question (c) is more difficult.
The usefulness of an effect naturally depends on what it is used for.

Consider the following stereotypical example that is aptly illustrated by Sullivan and Feinn
(2012, p. 279):

2
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A commonly cited example of this problem is the Physicians Health Study
of aspirin to prevent myocardial infarction (MI). [(Bartolucci et al., 2011)] In
more than 22000 subjects over an average of 5 years, aspirin was associated
with a reduction in MI (although not in overall cardiovascular mortality) that
was highly statistically significant: P < .00001. The study was terminated
early due to the conclusive evidence, and aspirin was recommended for general
prevention. However, the effect size was very small: a risk difference of 0.77%
with r2 = .001 – an extremely small effect size. As a result of that study, many
people were advised to take aspirin who would not experience benefit yet were
also at risk for adverse effects. Further studies found even smaller effects, and
the recommendation to use aspirin has since been modified.

Similar examples can be found easily, e.g. analogously about whether a medication should
be administered or not in the context of a certain disease (Baicus and Caraiola, 2009),
about the gain in knowledge and the ability to think critically of university students in
the context of deciding about different teaching methods (Peeters, 2016), or fictitiously
about assessing IQ differences between two arbitrary groups of students that might lead
to decisions about where to erect new schools for talented students (Thompson, 1993).

All those examples have two characteristics in common. First, a decision has to be be
guided (e.g. administer aspirin to prevent MI or not), such that the usefulness of the
reported effect can be assessed w.r.t. this decision, creating the framework to answer ques-
tion (c). Second, there is agreement on the lack of practical relevance of the reported effect,
such that it seems reasonable to decide as if no effect was present. Accordingly, a way to
determine how to decide for each possible effect is implicitly employed, which allows to
implicitly answer question (c) in the framework of the decision of interest.

Both a decision and a way to decide for each possible effect are central components of
statistical decision theory (see e.g. Berger, 1985; Robert, 2007). Therefore, it suggests
itself to employ decision theoretic concepts in order to define the practical relevance of an
effect.

2.2 Formal Definition

Assume the observed data y are modelled as realization of the random variable Y with
parametric density f(y|θ, ϕ), where θ is the effect parameter of interest (e.g. a standardized
or non-standardized difference in means between two groups or a correlation between two
features) and ϕ is a vector of nuisance parameters being not of interest. Without loss of
generality, the effect parameter θ is such that θ = 0 indicates the absence of an effect (else
available parameters might be transformed accordingly).

A decision should be guided between two actions a0 and a1, where a0 should denote the
action that is appropriate if the effect is absent, i.e. if θ = 0.

For each possible effect θ ∈ Θ within the parameter space Θ, each of both actions has cer-
tain consequences and the “badness” of these consequences is quantified by a loss function

L : Θ×A → R+
0 : (θ, a) 7→ L(θ, a) , (1)

where A = {a0, a1} is the action space. So, e.g. L(0, a0) and L(0, a1) quantify how bad it
would be to decide for a0 and a1, respectively, if θ = 0 is true.
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The loss function might be seen as representing the consequences of the applied decision
on a formal level. In order to obtain such a loss function for a certain decision problem,
one needs to think about the consequences of deciding for a0 or a1 in dependence of the
parameter value θ and then find a function L that mathematically represents the badness
of those consequences. Naturally, information about these consequences might be vague,
such that specifying a loss function unambiguously might be difficult, as many different
loss functions might be in accordance with the available vague information. However,
the fact that it might be difficult to specify such a loss function unambiguously does not
prohibit that an appropriate mathematical formulation of the notion of practical relevance
is embedded within a decision theoretic context. The aim of this paper is to derive the
concept of practical relevance on a formal level to gain a better mathematical understanding
of it. Therefore, assume for now that such a loss function is available.

For each effect θ the action with smaller loss should be preferred. Therefore, one of the
following holds for each effect θ:

• If L(a0, θ) < L(a1, θ), then a0 is preferred over a1.

• If L(a1, θ) < L(a0, θ), then a1 is preferred over a0.

• If L(a0, θ) = L(a1, θ), then there is no preference between a0 and a1.

Due to choosing a0 to be appropriate in the absence of an effect, L(0, a0) is smaller than
L(0, a1). Intuitively, other effects θ that also prefer a0 over a1 cannot be practically relevant
as they lead to the same decision as the absence of an effect. Consequently, it must be
those effects θ that prefer a1 over a0 which are practically relevant.

Summing up, these considerations lead to the definition of the practical relevance of an
effect:

Definition 1 (Practical Relevance of an Effect). Within this framework, an effect θ is prac-
tically relevant (or practically significant) w.r.t. the actions a0, a1, and the corresponding
loss function L, if a1 is preferred over a0, i.e. if

L(θ, a1) < L(θ, a0) , (2)

else the effect θ is negligible (or practically zero) w.r.t. these actions and this loss function.

The terms practical relevance and practical significance shall be used interchangeably,
because although these considerations arise from the frequentist literature about the prac-
tical significance of an effect, they also apply to the Bayesian context in which the term
“significance” is typically avoided.

2.3 Example

An artificial coin flipping example shall be used as illustration. Person A offers a gamble
to person B: Person A will flip a presumably fair coin 10 times. If the number of heads
is between 4 and 6, then person B wins, else person A wins. However, person B manages
to check the coin in advance. To do so, person B plans to flip the coin several times to
estimate its probability of heads π and calculate the coins’ bias b := π − 0.5 ∈ [−0.5, 0.5] ,
which represents the effect parameter. Depending on the outcome, person B might think
about accusing person A of cheating. In that, the possible actions of person B are:
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Figure 1: Example: Loss Function. The loss value (y-axis) is depicted for each possible bias b
(x-axis) and each of both actions a0 (dotted line) and a1 (solid line). Both lines cross at bias
values b = −0.106 and b = 0.106. Within this example, this loss function was arbitrarily chosen
and is treated as given.

a0: not accuse person A of cheating

a1: accuse person A of cheating

For each potential bias b, person B assesses how bad each of both actions would be,
and reasons that this badness might be represented mathematically by the loss function
depicted in Figure 1 (As mentioned, specifying such a loss function unambiguously in an
applied context is a difficult task. Therefore, for this example, this loss function shall be
treated as given.).

With this loss function, it appears that bias values b within B0 = [−0.106, 0.106] are
negligible and bias values within B1 = [−0.5,−0.106)∪ (0.106, 0.5] are practically relevant
w.r.t. to the decision of person B.

2.4 Discussion

As made explicit by this definition, the practical relevance or negligibility of an effect
involves certain actions and a specific loss function. For different actions or with a different
loss function, different effects might be practically relevant or negligible. In that, it is
recommended to explicitly state the actions and describe corresponding consequences in
an applied context.

In order to keep the formal definitions simple, an effect θ for which both actions have the
same loss, i.e. L(a0, θ) = L(a1, θ), is arbitrarily treated as negligible. Nevertheless, it might
be equally valid to treat it as practically relevant, yet this will hardly be of importance in
applied investigations.

The decision theoretic concepts employed within this definition are the actions themselves
and the loss function. As latter allows to determine which action should be preferred for
each effect θ, these concepts are exactly those needed to answer question (c) about whether
the effect θ is useful (i.e. practically relevant) or not (Kirk, 2001). Naturally, the observed
data y have not been involved so far, as determining which potential effects θ are practically
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relevant is possible (and actually necessary) before collecting the data.

Although only few decision theoretic concepts (actions and loss function) are necessary to
define the practical relevance (or negligibility) of an effect, decision theory is an extensive
framework for deciding in the face of uncertainty. In addition to well-founded work on
how to include data in this decision process, it is possible to include a variety of different
external information, e.g. within the loss function, within a prior distribution or by choosing
a certain decision paradigm or decision principle (see e.g. Berger, 1985).

The reliance on decision theoretic concepts has already been anticipated by those scientists
dealing with practical significance. For example, Pintea (2010, p. 103) emphasized the
importance of the decision for which a research result is used: “An increasing number of
authors underline the gap between researchers who only report the statistical significance of
their results and practitioners who need relevant information for their decisions in clinical,
counseling, educational, and organizational practice.” Also the necessity to include the
usefulness or value of each effect into a statistical analysis, which can be achieved by a
loss function, was highlighted e.g. by Thompson (1993, p. 365): “If the computer package
did not ask you your values prior to its analysis, it could not have considered your value
system in calculating p[-value]s, and so p[-value]s cannot be blithely used to infer the value
of research results.”

3 Practical Relevance in the Context of Hypotheses

3.1 Context

An additional characteristic of the examples, that lead to the definition of a practically
relevant effect, is that a conventional null hypothesis significance test leads to a questionable
result. Null hypothesis significance testing (NHST) typically involves a null hypothesis that
hypothesizes only a single parameter value representing a zero effect – such that this null
hypothesis is frequently referred to as nil hypothesis (see e.g. Cohen, 1994) – and a general
alternative hypothesis that hypothesizes all other possible parameter values. For over 80
years, this approach has been subject to the critique of being not of interest (see e.g.
Berkson, 1938; Cohen, 1994; Gigerenzer, 2004). In that, the conventional NHST approach
might lead to a conclusion which favors the alternative hypothesis (commonly interpreted
as presence of an effect) even if the observed effect is negligible (as e.g. in the aspirin
example). This is because also negligible effects are hypothesized within such a general
alternative hypothesis.

Similar issues might arise in the context of Bayes factors (Jeffreys, 1961; Kass and Raftery,
1995; Gönen et al., 2005; Rouder et al., 2009), a Bayesian alternative to frequentist hypoth-
esis tests. Frequently, Bayes factors are also calculated with sharp null hypotheses (see e.g.
Jeffreys, 1961; Rouder et al., 2009, 2018a,b; Lakens et al., 2020), such that corresponding
alternative hypotheses might also contain negligible effects. However, it has to be noted
that there are exceptions, which consider interval-valued null hypotheses (see e.g. Morey
and Rouder, 2011; Hoijtink et al., 2019; Heck et al., 2020).

Critics claim that – using the terminology of this paper – the null hypothesis should hy-
pothesize all negligible effects, not only the zero effect, and that the alternative hypothesis
should hypothesize practically relevant effects (see e.g. Berger, 1985; Morey and Rouder,
2011; Lakens et al., 2018; Kruschke, 2018; Blume et al., 2019). As the definition of a
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practically relevant or a negligible effect requires the presence of two actions and a loss
function, so does meeting this claim. In that, appropriately specified hypotheses are to be
defined within the context of decision theory.

3.2 Formal Definition

Continuing with the previous notation, hypotheses about the effect θ are subsets Θ0 and
Θ1 of the parameter space Θ:

H0 : θ ∈ Θ0 vs. H1 : θ ∈ Θ1 . (3)

In NHST, Θ0 = {0} contains only the zero effect and Θ1 = {θ ∈ Θ|θ 6= 0} contains all
other effect values. However, for a given decision between the actions a0 and a1 and a
given loss function L, this Θ1 (representing the general alternative) typically contains also
effects θ that are negligible w.r.t. the given decision problem, resulting in the critique
outlined above.

Instead, Θ0 should contain no practically relevant effects and Θ1 should contain no negli-
gible effects, yet this is possible in two different ways:

• All effects within the subsets Θ0 and Θ1 are negligible and practically relevant, re-
spectively.

• All negligible and practically relevant effects are within the subsets Θ0 and Θ1, re-
spectively.

In the first case, there might still be (negligible or practically relevant) effects left which
are not contained in either hypothesis, i.e. Θ = Θ0 ∪Θ1 need not hold, and in the second
case, any effect is contained in one of the hypotheses, i.e. Θ = Θ0 ∪Θ1 holds. Accordingly,
in the former case the hypotheses might incorporate the notion of practical relevance only
partially, in the latter case even completely, leading to the following definition1:

Definition 2 (Practical Relevance w.r.t. Hypotheses). Within this framework, two hy-
potheses about an effect θ (equation 3) completely incorporate the notion of practical rel-
evance (or practical significance) w.r.t. two associated actions a0, a1 and the corresponding
loss function L, if Θ1 contains all practically relevant effects and Θ0 contains all negligible
effects, i.e.

∀θ ∈ Θ : L(θ, a0) ≤ L(θ, a1)⇒ θ ∈ Θ0 (4)

∀θ ∈ Θ : L(θ, a1) < L(θ, a0)⇒ θ ∈ Θ1 . (5)

1Within this definition, hypotheses are separated in a mathematically exact way based on the loss
function: Even for very small differences between the loss values of both actions, an effect value is placed
within one of the hypotheses if its loss value is smaller than the other loss value. In this regard, an
idealized precise underlying loss function is assumed and dealt with in an numerical exact way, leading to
a precise boundary between both hypotheses. In contrast, a more applied and less idealized view of the
loss function might be to allow a rather vague boundary between the hypotheses, consisting of a range
of different effect values. Consequently, all these effects, which characterize this vague boundary, cannot
differentiate between both hypotheses and might be (arbitrarily) referred to negligible. With regard to
its interpretation, this emphasizes a rather subjective nature of the loss function: The badness of the
consequences of the different actions are perceived as somehow equivalent for these ranges of effects.
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These hypotheses (equation 3) partially incorporate the notion of practical relevance (or
practical significance) w.r.t. these actions and this loss function, if Θ1 contains only prac-
tically relevant effects and Θ0 contains only negligible effects, i.e.

∀θ ∈ Θ0 : L(θ, a0) ≤ L(θ, a1) (6)

∀θ ∈ Θ1 : L(θ, a1) < L(θ, a0) . (7)

3.3 Discussion and Example

Naturally, if hypotheses incorporate the notion of practical relevance completely they also
do so partially. Continuing the previous coin flipping example, the hypotheses

H0 : b ∈ [−0.106, 0.106] vs.

H1 : b ∈ [−0.5,−0.106) ∪ (0.106, 0.5] (8)

incorporate the notion of practical relevance both completely and partially w.r.t. the un-
derlying actions and loss function.

However, this implication does not hold in the reverse direction. For example, the (arbi-
trarily chosen) hypotheses

H0 : b ∈ {0} vs. H1 : b ∈ {0.3} (9)

incorporate the notion of practical relevance only partially, but not completely, w.r.t. the
underlying actions and loss function.

Incorporating the notion of practical relevance into hypotheses only partially, and not com-
pletely, is equivalent to a restriction on the parameter space. The union of both of these hy-
potheses constitutes a new restricted parameter space {0, 0.3}, in which they (equation (9))
incorporate the notion of practical relevance completely. Accordingly, this implies that all
other parameter values [−0.5, 0.5] \ {0, 0.3} are irrelevant within the conducted analysis.
This is a strong claim and needs to be justified. Therefore, it is recommended to primarily
employ a parameter space that is meaningful in the context of the sampling distribution
and then derive hypotheses that incorporate the notion of practical relevance completely
w.r.t. this parameter space and the underlying decision problem.

4 In Practice

This paper offers a formal definition of the concept of practical relevance (or practical
significance) for both effects and hypotheses. It appears that a proper definition of this
concept depends on an underlying decision problem. Without such a decision problem, it
is neither possible to assess the practical relevance of an effect nor to specify practically
relevant hypotheses, as their practical relevance naturally depends on what they are used
for.

The main goal of this elaboration is to understand the notion of practical relevance on a
formal level. This is necessary to include it into a statistical analysis in a mathematically
correct manner. Without it, the discussion about the practical relevance of an observed
effect or of some research results is of mere qualitative nature. The researcher interprets
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the observed effect and the results, and integrates them into the broader research context.
If this context relates to a practical problem, there will be a judgment about the practical
relevance of the results. Yet, this judgment might be biased and debatable. Humans are
prone to fallacies, and critical self reflection is the foundation of science. By considering
the concept of practical relevance of a formal level, a mathematically and logically correct
evaluation of the practical relevance of an observed effect or of some research results is
possible.

Just because decision theoretic concepts were employed in the definitions provided within
this paper does not mean that these concepts are dispensable in the absence of a formal
representation of the notion of practical relevance. As outlined (Section 2.1), elaborations
in the context of practical relevance did indeed – at least implicitly – employ decision
theoretic concepts, yet in an informal way. Accordingly, the elaborations within this paper
aim only to set out these implicit decision theoretic considerations.

While it is easier to see that there is an underlying decision problem in an applied scientific
investigation, it might not be that apparent in the context of foundational scientific work.
Typically, an attempt to describe the statistical analysis of foundational investigations in
terms of statistical decision theory yields loss functions that appear to be quite artificial,
employing default loss values (see e.g. Berger, 1985). Potential actions might be rather
unspecific, such as e.g. “dismiss hypothesis H0”, “do not dismiss hypothesis H0”, or “follow
the line of research that is in accordance with hypothesis H0”. In such a context, it might
be argued that it is beneficial to refrain from making decisions (e.g. Rouder et al., 2018b,
p. 110), putting an emphasis on describing the observed data, allowing others to use it in
their specific context. Also, there might be scientific research situations in which a sharp
null hypothesis might be reasonable (see e.g. Heck et al., 2020). If there are good reasons
to do so, a sharp null hypothesis, that might not relate to a practical context, might
naturally be employed. Science is very versatile and no single method or consideration
does apply to every scientific context. Yet, for all those scientific investigations that are
actually interested in the practical implications of their results, the definitions given within
this paper might come into play.

Naturally, the question arises, whether it is necessary to have a fully specified loss function
L to assess the practical relevance of an effect or of a result. The unambiguous specification
of such a loss function might be seen as an unsolvable task within an applied context.
Information about the consequences of respective actions is expected to be scarce, vague,
ambiguous, and partial, yet it should be condensed into a single quantitative entity. To
make things worse, this should be done for all possible parameter values θ (of which there
are frequently infinitely many) and for all actions. Consequently, it appears that the
willingness of applied scientists to employ a decision theoretic account goes down to the
necessity of having a loss function.

Of course, if such a loss function L is fully available, then a decision theoretic analysis can
be performed (as e.g. outlined in Berger, 1985; Robert, 2007). However, as can be seen
in the definitions within this paper, not all information from a loss function is required
to determine the practical relevance of an effect or to specify hypotheses such that they
incorporate the notion of practical relevance completely. In that, it is possible to assess
the practical relevance without fully knowing the loss function. Instead, the researcher has
to merely gather all available information about the consequences of the respective actions
and separate the parameter space according to the preference for each action. In detail,
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the procedure is as follows:

• Think about what your research should be used for.

• Explicitly state and describe the actions a0 and a1 of the decision problem that
represents the purpose of your research.

• After specifying the (parametric) statistical model, gather all available information
about the consequences of deciding for a0 and a1 in dependence of the parameter
value.

• Using this information, determine for each parameter value which of both actions
should be preferred over the other.

This leads to two parameter sets that define hypotheses that completely incorporate the
notion of practical relevance. In that, hypotheses were specified reasonably w.r.t. the
practical purpose of the investigation.

In general, this is considered to be an applied, not a statistical, problem: It is the applied
scientists who have the knowledge about the practical context of interest, such that it is
them who can best specify the hypotheses reasonably (see e.g. Kirk, 1996, 2001; Morey
and Rouder, 2011; Lakens, 2017; Lakens et al., 2018; Kruschke, 2018). Usually, the statis-
ticians, who develop a statistical method, do not know the specific research context. Even
further, any recommendation about default hypothesis specifications cannot match with
all the different contexts a statistical method can be applied in. In many scientific fields,
comprehensive guidelines on how to specify hypotheses reasonably are the exception rather
than the rule. In that sense, the procedure above is a general guideline that might help
applied scientists to specify their hypotheses reasonably, without being restricted to the
characteristics of a specific field of applied science.

In the field of methodologies, there are plenty of methods that require statistical hypotheses
to be specified reasonably w.r.t. the underlying practical purpose. Examples are equiva-
lence tests (see e.g. Lakens, 2017; Lakens et al., 2018) in the frequentist setting, and Bayes
factors (see e.g. Morey and Rouder, 2011; Hoijtink et al., 2019; Heck et al., 2020) or de-
cision rules that consider the region of practical equivalence (ROPE) around a null value
(see e.g. Kruschke, 2015, 2018) in the Bayesian setting. The present elaboration might be
helpful for these methodologies. Yet, it should be noted that the mentioned methodologies,
which employ reasonably specified hypotheses, do not yield an optimal action in the con-
text of a practical decision problem as their result: Equivalence tests result in classic tests
decisions about rejecting or not rejecting a hypothesis, Bayes factors quantify evidence,
and ROPE-based decision rules accept or reject a parameter null value (or withdraw the
decision). In order to find the optimal action in the context of a practical decision, further
loss considerations with regard to this practical decision need to be performed.

Accordingly, another alternative is to use a hypothesis-based decision theoretic analysis.
Then, however, it is necessary to provide additional quantitative specifications in the con-
text of the loss function, than merely specifying the hypotheses reasonably. Yet, it appears
that – in the context of hypothesis-based decision theory with only two hypotheses and two
actions – it is only one loss value that needs to be specified, relating the consequences of
the type-I-error (decide for a1 if H0 is true) to the consequences of the type-II-error (decide
for a0 if H1 is true). Further, this loss value might also be allowed to be interval-valued (in
this regard, cp. Walley, 1991; Augustin et al., 2014), such that a range of plausible values
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might be specified, representing a rather robust loss specification. In that sense, the speci-
fication requirements of the loss function are extremely mitigated, allowing its employment
in applied empirical investigations. How to derive the optimal action in a Bayesian setting
with such a robust loss specification is elaborated on elsewhere (Schwaferts and Augustin,
2019, 2021, 2020).

5 Discussion

Critics might argue that the definitions of practical relevance, as provided within this paper,
merely shift the difficulty of specifying hypotheses reasonably w.r.t. a practical purpose to
the difficulty of specifying a loss function. Yet, it needs to be distinguished between

• [Understanding] formulating these definitions in an attempt to understand the notion
of practical relevance on a formally exact level (which is the purpose of this paper),

• [Development of Methodologies] developing statistical methodologies for applied sci-
entists (which might be motivated by the elaborations within this paper and can
be located within the frameworks depicted in (Schwaferts and Augustin, 2019, 2021,
2020)), and

• [Promotion of Methodologies] claiming that certain statistical methodologies are ap-
propriate in a variety of different contexts.

It is not the formulation of these definitions that shifts the difficulty to the specification of
the loss function. Formulating these definitions merely generates understanding. If there is
a practical purpose, then there is an underlying decision problem. A statistical analysis that
wants to derive conclusions about the practical relevance of an effect or of the results needs
to consider this underlying decision problem. In this context, the difficulty of specifying a
loss function has – although mainly hidden – always been there, and current methodologies
that try to circumvent loss considerations might be suboptimal in assessing the practical
relevance of the observed effect or of the obtained results. Accordingly, it is not a shift
in difficulty, but a disclosure of where the difficulty truly is. As outlined (Section 4), the
direction of the development of appropriate methodologies might be indicated, but their
development is another issue. Naturally, of importance for this development is how to deal
with the difficulties in the specification of the loss function. Yet, ignoring loss considerations
at all cannot yield results that are related to the practical purpose of the study. In that,
the claim that such methodologies without loss considerations yield practically relevant
results should be treated with caution. Although these methodologies might appear to be
applied more easily because of their ignorance to loss considerations, this cannot be an
argument to promote them for scientific investigations with a practical purpose.
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Abstract

When it comes to extracting information from data by means of Bayes rule, it
should not matter if all available data are considered at once or if Bayesian updating
is performed subsequently with partitions of the data. This property is called up-
dating consistency. However, in the context of Bayes factors, a prominent Bayesian
tool that is used for comparing hypotheses, some researchers illustrated that updat-
ing consistency might not be given. Therefore, this technical report addresses the
updating consistency of Bayes factors and shows its existence. In that, it serves
as mathematical basis for the evaluation of the origin of putative updating incon-
sistencies. In addition, results about updating mixture priors are brought into the
terminology commonly employed in the context of Bayes factors, as these were used
in the elaboration about updating consistency. The depicted results imply that a
necessary condition for updating consistency is to consider and report not only the
Bayes factor value alone but also the posterior distributions as outcome of the ana-
lysis.

Keywords: Bayesian Statistics, Bayes Factor, Sequential Updating, Updating
Consistency, Mixture Prior, Spike-and-Slab Prior

1 Introduction

Within the context of Bayesian statistics, the knowledge about a phenomenon of interest
that is available prior to an investigation is typically formalized as a (subjective) prior
probability distribution. Once a respective investigation has been performed, the obtained
data are used to update this initial prior distribution via Bayes rule, yielding a posterior
distribution. This posterior is said to reflect all relevant knowledge which is available af-
ter the investigation (see Figure 1, top-left). In that, the posterior distribution might be
treated as prior distribution for a subsequent statistical analysis of a newly obtained data
set (based on the same investigational setup). Naturally, the final posterior distribution af-
ter sequentially updating twice (see Figure 1, top-right) should be identical to the posterior
distribution that is obtained by merging both data sets first and then updating the initial
prior distribution at once (see Figure 1, bottom). If so, the Bayesian updating procedure
is called “consistent” [cp. Rüger, 1998, p. 190].

However, the most prominent Bayesian method for hypothesis comparisons employed in
psychological research - the so called Bayes factor [see e.g. Kass and Raftery, 1995, Gönen
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Figure 1: Consistent Bayesian Updating.

et al., 2005, Rouder et al., 2009] - might be characterized by an inconsistent Bayesian
updating, as already indicated by Rouder and Morey [2011]. In contrast to specifying only
one prior distribution that reflects the available knowledge prior to the investigation, an
analysis with Bayes factors allows the specification of a prior distribution for each employed
hypothesis, which is said to reflect its content [see e.g. Vanpaemel, 2010, Vanpaemel and
Lee, 2012, Morey et al., 2016, Rouder et al., 2018a]. Although more than just a single
prior distribution is employed, together with a distribution on the hypotheses themselves
it is possible to merge all these hypothesis-based priors to an overall mixture distribu-
tion [see e.g. Rouder et al., 2018b]. By considering this mixture prior distribution, its
updating might be assessed w.r.t. consistency, such that the origin of putative updating
inconsistencies in the context of Bayes factors might be evaluated.

Accordingly, Bayes factors shall be outlined in Section 2 before considering the updating of
the corresponding mixture prior in Section 3. These considerations are used to show that
updating with Bayes factors is consistent (Section 4), but also that inconsistent updating
might occur easily (Section 4.3). Implications about the minimal requirement of what is
considered as outcome of an analysis with Bayes factors of a single data set are depicted
in Section 5.

This technical report intends to depict the mathematical background of updating consis-
tency in the context of Bayes factors in greater detail. Special emphasize will be given to
explain mathematical transformations step by step with numerous references to previous
definitions and equations. In addition, as all data, parameter, and hypotheses are ran-
dom quantities, which are related to each other, Bayes rule is always applied meticulously,
allowing clarity about which quantities are conditioned on.

2 Bayes Factors

Assume the observed data x = (x1, . . . , xn) are modeled as realizations of independent and

identically distributed (iid) random quantities Xi
iid∼ PXi|θ with parametric density f(xi|θ)

2
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for all i = 1, . . . , n and a parameter value θ ∈ Θ, such that X ∼ PX|θ with density

f(x|θ) =
n∏

i=1

f(xi|θ) . (1)

Statistical hypotheses
H0 : θ ∈ Θ0 vs. H1 : θ ∈ Θ1 (2)

contrast two subsets Θ0 and Θ1 of the parameter space Θ. Frequently, the null hypothesis
is sharp and consists of only a single parameter value θ0, i.e. Θ0 = {θ0}.
In the Bayesian setting, there is a prior distribution (P ◦θ , see below) on the parameter θ. In
the context of Bayes factors, however, a prior distribution is typically provided separately
for each hypothesis: The prior distribution P

(1)
θ with density

π1(θ) := π(θ|H1) (3)

is restricted to the (parameter subset specified within the) alternative hypothesis H1, and

the prior distribution P
(0)
θ with density

π0(θ) := π(θ|H0) (4)

is restricted to the (parameter subset specified within the) null hypothesis H0. If the

null hypothesis is sharp, the corresponding prior distribution P
(0)
θ is degenerate with all

probability mass on θ0 .

In addition to P
(1)
θ and P

(0)
θ , a prior distribution on the hypotheses themselves needs to be

specified by
ρ := p(H0) and p(H1) = 1− p(H0) = 1− ρ , (5)

yielding the so called prior odds p(H1)/p(H0).

The density of PX|θ is assumed to be related to the hypotheses H1 and H0 only via the
parameter value θ, i.e.

f(x|H1, θ) = f(x|H0, θ) = f(x|θ) . (6)

The marginal density of the data x might be calculated w.r.t. each hypothesis

f(x|H1)
marg.

=

∫
f(x|H1, θ) · π(θ|H1) dθ

eq.
(6)
(3)
=

∫
f(x|θ) · π1(θ) dθ (7)

f(x|H0)
marg.

=

∫
f(x|H0, θ) · π(θ|H0) dθ

eq.
(6)
(4)
=

∫
f(x|θ) · π0(θ) dθ (8)

and the Bayes factor based on data x w.r.t. the hypotheses H0 and H1 is defined as the
ratio of these marginal densities

BFx
10 :=

f(x|H1)

f(x|H0)

eq.
(7)
(8)
=

∫
f(x|θ) · π1(θ) dθ∫
f(x|θ) · π0(θ) dθ

, (9)

3
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with a said interpretation of the data x being BFx
10 times as much evidence for H1 than

for H0 [see e.g. Morey et al., 2016]. In that regard, consider the discussion in Section 5.
Analogously, its inverse

BFx
01 :=

1

BFx
10

(10)

should quantify the evidence within the data favoring H0 over H1.

The prior odds can be updated by the Bayes factor to the posterior odds

p(H1|x)

p(H0|x)

Bayes
rule=

f(x|H1)·p(H1)
f(x)

f(x|H0)·p(H0)
f(x)

eq.
(9)
= BFx

10 ·
p(H1)

p(H0)
. (11)

In that, the posterior probability of H0 denoted by

ρ|x := p(H0|x) (12)

can be calculated as

p(H1|x)

p(H0|x)
= BFx

10 ·
p(H1)

p(H0)

eq.
(5)
(12)⇔ 1− ρ|x

ρ|x
= BFx

10 ·
1− ρ
ρ

⇔ 1− ρ|x = BFx
10 ·

1− ρ
ρ
· ρ|x ⇔ 1 = BFx

10 ·
1− ρ
ρ
· ρ|x + ρ|x

⇔ 1 = ρ|x

[
BFx

10

1− ρ
ρ

+ 1

]
⇔ ρ|x =

1

BFx
10

1−ρ
ρ

+ 1

⇔ ρ|x =
ρ

BFx
10(1− ρ) + ρ

. (13)

3 Updating of Mixture Priors

Instead of treating the priors under both hypotheses separately, they might be merged to
a single mixture prior distribution

P ◦θ := ρ · P (0)
θ + (1− ρ) · P (1)

θ , (14)

which has the density
π◦(θ) = ρ · π0(θ) + (1− ρ) · π1(θ) . (15)

With P
(0)
θ being degenerate this mixture prior is also referred to as spike-and-slab prior

[see e.g. Rouder et al., 2018b], consisting of a spike-part P
(0)
θ and a slab-part P

(1)
θ .

Theorem 1 (Updating of Mixture Priors). Updating the prior mixture distribution P ◦θ
using data x leads to the posterior distribution P ◦θ|x with density

π◦(θ|x) = ρ|x · π0(θ|x) + (1− ρ|x) · π1(θ|x) , (16)

where π0(θ|x) as well as π1(θ|x) are posterior densities of θ, which arise from updating the
prior densities π0(θ) as well as π1(θ) separately, i.e.

π0(θ|x) := π(θ|H0,x)
Bayes
rule=

f(x|H0, θ) · π(θ|H0)

f(x|H0)

eq.
(6)
(4)
(8)
=

f(x|θ) · π0(θ)∫
f(x|θ) · π0(θ) dθ

, (17)

4
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π1(θ|x) := π(θ|H1,x)
Bayes
rule=

f(x|H1, θ) · π(θ|H1)

f(x|H1)

eq.
(6)
(3)
(7)
=

f(x|θ) · π1(θ)∫
f(x|θ) · π1(θ) dθ

. (18)

Proof. Before calculating the density

π◦(θ|x)
Bayes
rule=

f(x|θ) · π◦(θ)
f(x)

(19)

of the posterior distribution P ◦θ|x with

f(x)
marg.

=

∫
f(x|θ) · π◦(θ) dθ , (20)

consider the following first:

f(x)

eq.
(20)
=

∫
f(x|θ) · π◦(θ) dθ

eq.
(15)
=

∫
f(x|θ) [ρ · π0(θ) + (1− ρ) · π1(θ)] dθ

=

∫
[ρ · f(x|θ) · π0(θ)] + [(1− ρ) · f(x|θ) · π1(θ)] dθ

= ρ

∫
f(x|θ) · π0(θ) dθ + (1− ρ)

∫
f(x|θ) · π1(θ) dθ (21)

This can be transformed in two different ways:

f(x)

eq.
(21)
= ρ

∫
f(x|θ) · π0(θ) dθ + (1− ρ)

∫
f(x|θ) · π1(θ) dθ

⇔ f(x)− ρ
∫
f(x|θ) · π0(θ) dθ = (1− ρ)

∫
f(x|θ) · π1(θ) dθ

⇔ f(x)∫
f(x|θ) · π0(θ) dθ

− ρ = (1− ρ)

∫
f(x|θ) · π1(θ) dθ∫
f(x|θ) · π0(θ) dθ

eq.
(9)⇔ f(x)∫

f(x|θ) · π0(θ) dθ
− ρ = (1− ρ)BFx

10

⇔ f(x) = [(1− ρ)BFx
10 + ρ]

∫
f(x|θ) · π0(θ) dθ (22)

or

f(x)

eq.
(21)
= ρ

∫
f(x|θ) · π0(θ) dθ + (1− ρ)

∫
f(x|θ) · π1(θ) dθ

⇔ f(x)− (1− ρ)

∫
f(x|θ) · π1(θ) dθ = ρ

∫
f(x|θ) · π0(θ) dθ

5
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⇔ f(x)∫
f(x|θ) · π1(θ) dθ

− (1− ρ) = ρ

∫
f(x|θ) · π0(θ) dθ∫
f(x|θ) · π1(θ) dθ

eq.
(9)
(10)⇔ f(x)∫

f(x|θ) · π1(θ) dθ
− (1− ρ) = ρBFx

01

⇔ f(x) = [ρBFx
01 + (1− ρ)]

∫
f(x|θ) · π1(θ) dθ . (23)

In addition, consider

1− ρ|x
eq.

(13)
= 1− ρ

(1− ρ)BFx
10 + ρ

=
(1− ρ)BFx

10 + ρ− ρ
(1− ρ)BFx

10 + ρ
=

(1− ρ)BFx
10

(1− ρ)BFx
10 + ρ

=
BFx

10(1− ρ)

BFx
10

[
(1− ρ) + 1

BFx
10
ρ
] =

(1− ρ)

(1− ρ) + 1
BFx

10
ρ

eq.
(10)
=

(1− ρ)

(1− ρ) +BFx
01ρ

=
(1− ρ)

ρBFx
01 + (1− ρ)

. (24)

Now, the posterior density π◦(θ|x) can be calculated as

π◦(θ|x)
Bayes
rule=

f(x|θ) · π◦(θ)
f(x)

eq.
(15)
=

f(x|θ) [ρ · π0(θ) + (1− ρ) · π1(θ)]

f(x)

= ρ
f(x|θ) · π0(θ)

f(x)
+ (1− ρ)

f(x|θ) · π1(θ)

f(x)

eq.
(22)
(23)
=

ρ

(1− ρ)BFx
10 + ρ

· f(x|θ) · π0(θ)∫
f(x|θ) · π0(θ) dθ

+
1− ρ

ρBFx
01 + (1− ρ)

· f(x|θ) · π1(θ)∫
f(x|θ) · π1(θ) dθ

eq.
(17)
(18)
=

ρ

(1− ρ)BFx
10 + ρ

π0(θ|x) +
1− ρ

ρBFx
01 + (1− ρ)

π1(θ|x)

eq.
(13)
(24)
= ρ|x · π0(θ|x) + (1− ρ|x) · π1(θ|x) ,

Certainly, this is not a new result as e.g. Mitchell and Beauchamp [1988] already employed
spike-and-slab priors (which are a special case of mixture priors) and e.g. Rouder et al.

6
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[2018b] depicted the priors in the context of Bayes factors by an overall spike-and-slab prior.
However, these considerations explicitly utilize a notation typically employed in analyses
with Bayes factors and are needed for further elaboration on the updating consistency of
Bayes factors.

4 Updating Consistency

4.1 Framework

In order to assess Bayes factors w.r.t. updating consistency two different data sets are
necessary. Accordingly, in addition to x and X as in Section 2, consider a second data
set y = (y1, . . . , ym) being independent of the previous one and modeled analogously, i.e.

Yj
iid∼ PYj |θ with the same parametric density f(yj|θ) for all j = 1, . . . ,m. Therefore,

Y ∼ PY |θ with density

f(y|θ) =
m∏

j=1

f(yj|θ) . (25)

Analogue to equation (6), the density of PY |θ is also assumed to be related to the hypotheses
H1 and H0 only via the parameter value θ, i.e.

f(y|H1, θ) = f(y|H0, θ) = f(y|θ) . (26)

Define Z := (X, Y ) and z := (x,y). As

f(z|θ)
X,Y
ind.= f(y|θ) · f(x|θ) , (27)

the density of z is related to the hypotheses only via the parameter value θ as well:

f(z|H1, θ) = f(z|H0, θ) = f(z|θ) . (28)

Analogue to the marginal densities of x (equations (7) and (8)), those of y and z are
calculated as

f(y|H1)
marg.

=

∫
f(y|H1, θ) · π(θ|H1) dθ

eq.
(26)
(3)
=

∫
f(y|θ) · π1(θ) dθ (29)

f(y|H0)
marg.

=

∫
f(y|H0, θ) · π(θ|H0) dθ

eq.
(26)
(4)
=

∫
f(y|θ) · π0(θ) dθ (30)

f(z|H1)
marg.

=

∫
f(z|H1, θ) · π(θ|H1) dθ

eq.
(28)
(3)
=

∫
f(z|θ) · π1(θ) dθ (31)

f(z|H0)
marg.

=

∫
f(z|H0, θ) · π(θ|H0) dθ

eq.
(28)
(4)
=

∫
f(z|θ) · π0(θ) dθ . (32)

7
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and the marginal densities of y w.r.t. to the posterior distributions of θ given the first data
set x are

f(y|H1,x)
marg.

=

∫
f(y|H1, θ,x) · π(θ|H1,x) dθ

X,Y
ind.=

∫
f(y|H1, θ) · π(θ|H1,x) dθ

eq.
(26)
(18)
=

∫
f(y|θ) · π1(θ|x) dθ (33)

f(y|H0,x)
marg.

=

∫
f(y|H0, θ,x) · π(θ|H0,x) dθ

X,Y
ind.=

∫
f(y|H0, θ) · π(θ|H0,x) dθ

eq.
(26)
(17)
=

∫
f(y|θ) · π0(θ|x) dθ . (34)

The corresponding Bayes factor values are

BF y
10 :=

f(y|H1)

f(y|H0)

eq.
(29)
(30)
=

∫
f(y|θ) · π1(θ) dθ∫
f(y|θ) · π0(θ) dθ

(35)

BF z
10 :=

f(z|H1)

f(z|H0)

eq.
(31)
(32)
=

∫
f(z|θ) · π1(θ) dθ∫
f(z|θ) · π0(θ) dθ

(36)

BF
y|x
10 :=

f(y|H1,x)

f(y|H0,x)

eq.
(33)
(34)
=

∫
f(y|θ) · π1(θ|x) dθ∫
f(y|θ) · π0(θ|x) dθ

. (37)

4.2 Consistent Updating

Theorem 2 (Subsequent Updating with Bayes Factors). Based on the framework above,
updating the prior odds p(H1)/p(H0) using both x and y subsequently yields the posterior
odds

p(H1|y,x)

p(H0|y,x)
= BF

y|x
10 ·BFx

10 ·
p(H1)

p(H0)
. (38)

Proof.

p(H1|y,x)

p(H0|y,x)

Bayes
rule=

f(y|H1,x)

f(y|H0,x)

p(H1|x)

p(H0|x)

Bayes
rule=

f(y|H1,x)

f(y|H0,x)

f(x|H1)

f(x|H0)

p(H1)

p(H0)

8
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eq.
(37)
(9)
= BF

y|x
10 ·BFx

10 ·
p(H1)

p(H0)
.

Theorem 3 (Consistent Updating with Bayes Factors). Based on the framework above,
updating the prior odds p(H1)/p(H0) with the corresponding Bayes factor values is consis-
tent, i.e.

p(H1|z)

p(H0|z)
=
p(H1|y,x)

p(H0|y,x)
. (39)

Proof. At first, consider

BFx
10 = BFx

10

ρ+ (1− ρ)BFx
10

ρ+ (1− ρ)BFx
10

=
BFx

10 [ρ+ (1− ρ)BFx
10]

BFx
10

[
ρ

BFx
10

+ (1− ρ)
] =

ρ+ (1− ρ)BFx
10

ρ
BFx

10
+ (1− ρ)

eq.
(10)
=

(1− ρ)BFx
10 + ρ

ρBFx
01 + (1− ρ)

. (40)

Now, the Bayes factor value BF z
10 might be decomposed:

BF z
10

eq.
(36)
=

∫
f(z|θ) · π1(θ) dθ∫
f(z|θ) · π0(θ) dθ

X,Y
ind.=

∫
f(y|θ) · f(x|θ) · π1(θ) dθ∫
f(y|θ) · f(x|θ) · π0(θ) dθ

=

1
f(x)

∫
f(y|θ) · f(x|θ) · π1(θ) dθ

1
f(x)

∫
f(y|θ) · f(x|θ) · π0(θ) dθ

eq.
(22)
(23)
=

1

[ρBFx
01+(1−ρ)]

∫
f(x|θ)·π1(θ) dθ

∫
f(y|θ) · f(x|θ) · π1(θ) dθ

1

[(1−ρ)BFx
10+ρ]

∫
f(x|θ)·π0(θ) dθ

∫
f(y|θ) · f(x|θ) · π0(θ) dθ

=
(1− ρ)BFx

10 + ρ

ρBFx
01 + (1− ρ)

·
∫
f(y|θ) · f(x|θ)·π1(θ)∫

f(x|θ)·π1(θ) dθ
dθ

∫
f(y|θ) · f(x|θ)·π0(θ)∫

f(x|θ)·π0(θ) dθ
dθ

eq.
(17)
(18)
=

(1− ρ)BFx
10 + ρ

ρBFx
01 + (1− ρ)

·
∫
f(y|θ) · π1(θ|x) dθ∫
f(y|θ) · π0(θ|x) dθ

eq.
(37)
=

(1− ρ)BFx
10 + ρ

ρBFx
01 + (1− ρ)

·BF y|x
10

eq.
(40)
= BFx

10 ·BF y|x
10 . (41)
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Therefore:

p(H1|z)

p(H0|z)

Bayes
rule=

f(z|H1)

f(z|H0)
· p(H1)

p(H0)

eq.
(36)
= BF z

10 ·
p(H1)

p(H0)

eq.
(41)
= BF

y|x
10 ·BFx

10 ·
p(H1)

p(H0)

eq.
(38)
=

p(H1|y,x)

p(H0|y,x)
.

4.3 Inconsistent Updating

Remark that in order to update consistently with Bayes factors, the Bayes factor value
BF

y|x
10 of the second data set y need to be based on the posterior distributions π1(θ|x) and

π0(θ|x) that incorporate the information of the previous data set x.

However, using BF y
10 instead of BF

y|x
10 is erroneous and yields odds

p(H1|y,x(!))

p(H0|y,x(!))
:= BF y

10 ·BFx
10 ·

p(H1)

p(H0)
, (42)

which are in general different to the posterior odds obtained by updating consistently, i.e.

p(H1|y,x(!))

p(H0|y,x(!))

in
gen.

6= p(H1|y,x)

p(H0|y,x)
. (43)

This is due to ignoring the information about θ within the first data set x while calculating
the Bayes factor value based on the second data set y, and the superscript (!) indicates
this loss of information.

Bayes factor updating inconsistencies might occur e.g. in the following scenario: Two
different research teams are interested in the same research question and utilize the same
hypotheses and employ the same prior distributions on the parameter of interest. Both
teams conduct a scientific investigation with identical design and calculate a Bayes factor
value independently of each other. As each value is said to describe the change in belief
within the hypotheses, it is tempting (e.g. in a meta-analysis of both investigations) to
utilize both Bayes factor values to calculate the final belief (posterior odds) within the
initially stated hypotheses. This, however, is exactly the error displayed in equation (42).

5 Outcome of Analyses with Bayes Factors

In order to avoid updating inconsistencies, both the Bayes factor value BFx
10 and the

posterior distributions π1(θ|x) as well as π0(θ|x) are required to perform the analysis
(with Bayes factors) of the second data set y once the first data set x is available.

Accordingly, considering solely the Bayes factor value BFx
10 as the outcome of the first

analysis (of data x) is not sufficient. Also the updated posterior distributions π1(θ|x) and
π0(θ|x) need to be considered and reported. This appears to be obvious in the face of the
posterior mixture distribution described in theorem 1, which cannot be described by the
Bayes factor value BFx

10 alone. This is summarized in the following theorem.

10
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Theorem 4 (Outcome of Analyses with Bayes Factors). A necessary condition for updating
consistency in Bayes factors is to consider and report both the Bayes factor value BFx

10 and
the posterior distributions π1(θ|x) as well as π0(θ|x) as outcomes of the analysis (of the
data set x).

These considerations about updating inconsistency in Bayes factors might also be relevant
e.g. in the following case: It is argued that, in the context of Bayes factors, the shape of
the prior distributions (π1(θ) and π0(θ)) reflects the content of the hypotheses [see e.g.
Vanpaemel, 2010, Vanpaemel and Lee, 2012, Morey et al., 2016, Rouder et al., 2018a], but
by incorporating the information of the data x into these distributions by means of Bayes
rule, these distributions change to π1(θ|x) and π0(θ|x), which might then reflect different
contents. Although erroneous, it is tempting to treat the Bayes factor value BFx

10 as
quantification of the evidence within the data x w.r.t. to the hypotheses that are described
by the initial prior distributions π1(θ) and π0(θ), as these hypotheses were formulated to
answer the research question of interest. By doing so, the change within the distributions
of θ is discarded and inconsistent updating might occur.

6 Summary

With theorem 1 results about updating mixture distributions are brought into the notation
typically involved in the context of Bayes factors. Theorem 2 describes the final posterior
odds after considering two separate data sets subsequently and theorem 3 argues that this
updating procedure is consistent. As elaborated in Section 4.3, updating inconsistencies
occur by discarding information and an exemplary situation was provided, in which this
might happen unintentionally. Theorem 4 provides a minimum requirement on what to
consider and report as outcome of a statistical analysis with Bayes factors, and a context
in which this might oppose other recommendations about Bayes factors was illustrated in
Section 5. However, a thorough discussion of the occurrence and consequences of updat-
ing inconsistencies in applied Bayes factors was not intended within this technical report
and is still pending. Yet, this report enables this discussion by providing the necessary
mathematical foundations.
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Bayes Factors can only Quantify Evidence w.r.t. Sets of Parameters,
not w.r.t. (Prior) Distributions on the Parameter
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Bayes factors are characterized by both the powerful mathematical framework of Bayesian
statistics and the useful interpretation as evidence quantification. Former requires a parameter
distribution that changes by seeing the data, latter requires two fixed hypotheses w.r.t. which
the evidence quantification refers to. Naturally, these fixed hypotheses must not change by
seeing the data, only their credibility should! Yet, it is exactly such a change of the hypotheses
themselves (not only their credibility) that occurs by seeing the data, if their content is rep-
resented by parameter distributions (a recent trend in the context of Bayes factors for about
one decade), rendering a correct interpretation of the Bayes factor rather useless. Instead,
this paper argues that the inferential foundation of Bayes factors can only be maintained, if
hypotheses are sets of parameters, not parameter distributions. In addition, particular attention
has been paid to providing an explicit terminology of the big picture of statistical inference
in the context of Bayes factors as well as to the distinction between knowledge (formalized
by the prior distribution and being allowed to change) and theoretical positions (formalized as
hypotheses and required to stay fixed) of the phenomenon of interest.

Introduction

Statistical hypotheses have always been sets of parame-
ters in classic frequentist hypothesis tests. However, in the
context of Bayes factors – a prominent Bayesian method for
hypothesis comparisons (Gönen, Johnson, Lu, & Westfall,
2005; Jeffreys, 1961; Kass & Raftery, 1995; Rouder, Speck-
man, Sun, Morey, & Iverson, 2009) – it is argued that also
the prior distribution on the parameter might be employed to
represent the hypotheses (or “models”) that should be con-
trasted against each other. This view was promoted primar-
ily by Vanpaemel (2010) in an attempt to turn one of the
fundamental issues of Bayes factors, namely its prior sensi-
tivity (see e.g. Kass & Raftery, 1995; Kruschke, 2015; Liu
& Aitkin, 2008; Sinharay & Stern, 2002), from a limitation
to a feature. By now, this view can be found within many
other publications, sometimes rather explicitly, sometimes
only implicitly (see e.g. Dienes (2019, p. 364f), Etz, Gronau,
Dablander, Edelsbrunner, and Baribault (2018, p. 228), Heck
et al. (2020, p. 5), Morey, Romeijn, and Rouder (2016,
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Methodological Foundations of Statistics and its Applications
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p. 16), Rouder, Morey, and Wagenmakers (2016), Tendeiro
and Kiers (2019, p. 776, 780), Vanpaemel and Lee (2012)).
Even the authors of this paper were previously influenced by
this view (Ebner, Schwaferts, & Augustin, 2019). However,
as will be outlined within this paper, the inferential founda-
tion of Bayes factors is severely impaired when representing
statistical hypotheses via parameter distributions. Instead,
statistical hypotheses need to be sets of parameters only, even
in Bayesian statistics.

In order to elaborate these considerations, an explicit ter-
minology is outlined first, building on the framework by Kass
(2011). Subsequently, updating consistency of Bayes fac-
tors is given a detailed account to determine conditions that
lead to inconsistencies. Finally, the representation of hy-
potheses by sets of parameters and by prior distributions is
assessed, respectively, showing that former does not suffer
foundational issues, only latter does.

Big Picture

Formalization and Interpretation

A comprehensive view of statistical inference distin-
guishes between the real world and a theoretical world
(Kass, 2011), where latter contains mathematical formaliza-
tions of the relevant characteristics in the real world. Inter-
preting the components of the theoretical world leads to their
counterparts in the real world. In that sense, both worlds
can be connected by formalization and interpretation (see
Figure 1). Based on this general view by Kass (2011), the
pig picture of statistical inference in the context of the Bayes
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factors shall be derived in detail in the following.
Typically, a researcher designs a scientific investigation to

assess a phenomenon of interest. This scientific investigation
leads to data that are described by a parametric sampling dis-
tribution, and the parameter (which lives in the theoretical
world) should correspond to phenomenon of interest in the
real world. If the correct interpretation of the parameter does
not match with the phenomenon a researcher is interested in,
then the design of the scientific investigation might be recon-
sidered. For the reminder of this paper, a proper correspon-
dence between the parameter and the phenomenon of interest
is assumed.

Figure 1. Big Picture of Statistical Inference in the Con-
text of Bayes Factors. While the general view about the
real world and the theoretical world is elaborated on by Kass
(2011), the big picture of statistical inference in the context
of Bayes factors is elaborated on in detail within this paper.

Within this fundamental framework, the big picture of sta-
tistical inference in the context of Bayes factors shall be es-
tablished (as eventually depicted in Figure 1). This, how-
ever, is not easy, as relevant terms, as e.g. “theory”, “model“,
or “hypothesis”, have a multitude of different meanings and
usages. In that, it is mandatory to explicitly define the em-
ployed terms such that their usage can be universally agreed
on. Therefore, this elaboration should start at the very begin-
ning, namely with two undeniable mathematical properties
of Bayes factors.

Common Ground: The Bayes Factor

The Bayes factor (formulas below) is a quantity that is
used within a statistical analysis and lives in the theoretical
world. Two mathematical properties of Bayes factors cannot
be denied:

• It is a Bayesian quantity, such that it requires a distri-
bution on the parameter.

• It has a contrasting nature and contrasts two mathemat-
ical objects against each other (frequently referred to
as hypotheses or models) (cp. e.g. Rouder et al., 2016,
Element #2 on p. 16).

Put the other way: Without a parameter distribution or
without contrasting two mathematical objects (hypotheses
or models) there cannot be a Bayes factor. Accordingly,
whenever a Bayes factor is employed it is safe to assume
the existence of a parameter distribution and the existence
of a contrast and its two contrasted objects. Although these
two simple facts about Bayes factors might seem trivial, it is
important to state them explicitly, as it is exactly these two
properties that serve as the basis to derive the big picture of
statistical inference in the context of Bayes factors. While
it is expected that there is a common agreement upon these
two facts, there might be different views about other concepts
employed in the context of Bayes factor (e.g. about the na-
ture of hypotheses). By starting the elaboration with these
two facts that can be agreed on, it is possible to assess the
origin of disagreements about other concepts.

Parameter Distribution and Knowledge

Parameter distributions (e.g. prior or posterior) live in the
theoretical world and are typically interpreted as knowledge
(see e.g. Jaynes, 2003) or uncertainty (see e.g. Kruschke,
2015) or degrees of belief (see e.g. Jeffreys, 1961) or infor-
mation (see e.g. Berger, 1985) about the phenomenon of in-
terest. Within this paper, the term knowledge shall be em-
ployed, as the exact label is not relevant for the elaborations
below, only the fact that it is the interpretation of the pa-
rameter distribution. Accordingly, define the term knowledge
(about a phenomenon of interest) within this paper as the
interpretation of a Bayesian parameter distribution.

Hypotheses (or Models)

The mathematical objects in the theoretical world that are
contrasted by the Bayes factor shall be referred to as (sta-
tistical) hypotheses (although the attribute “statistical” will
e omitted as the term hypothesis is not employed in a non-
statistical sense within this paper). Other publications (e.g.
Rouder, Haaf, & Aust, 2018; Rouder et al., 2016) might state
that the Bayes factor contrasts two models against each other,
yet the formula of the Bayes factor is exactly the same as
in those publications that contrast hypotheses against each
other (cp. also Morey et al., 2016, p. 11). Therefore, these
models are the same mathematical objects as the hypotheses
within this paper (namely those mathematical objects that are
contrasted against each other by the Bayes factor). Other au-
thors (e.g. Kruschke & Liddell, 2018) use both terms (model
and hypothesis) rather interchangeably (cp. also Tendeiro &
Kiers, 2019, p. 775, esp. footnote 1). In the remainder of this
paper, the term “model” shall be avoided, as it appears to
have a variety of different other usages as well. Accordingly,
define the term hypothesis within this paper as one of the two
mathematical objects that are contrasted against each other
by the Bayes factor.
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To assess the nature of this mathematical object is the aim
of this paper and it will be argued that it can only be a set of
parameters and not a parameter (prior) distribution.

Theoretical Positions (or Theories) and Research Ques-
tion

The Bayes factor contrasts two mathematical objects
against each other in the theoretical world, and the same
scheme applies to the real world after interpretation: There
is a contrast between two theoretical positions about the phe-
nomenon of interest in the real world. In that sense, define
the term theoretical position within this paper as the inter-
pretation of a hypothesis.

The respective research question contrasts these two the-
oretical positions against each other. Please note that, in gen-
eral, the nature of potential research questions about the phe-
nomenon of interest is extremely versatile. However, only
those research questions can be answered by Bayes factors,
that contrast two theoretical positions against each other. If
a research question contrasts two theories against each other,
which cannot be formalized as those mathematical objects
that are contrasted by the Bayes factor, then the Bayes factor
is not suitable to answer such a research question.

Typically, the term “theory” is employed instead of “theo-
retical position”, and it is said that the Bayes factor compares
two “theories” (cp. also Rouder, Haaf, & Aust, 2018, who
use both terms). In this context, both terms (theory or the-
oretical position) denote the same, namely the interpretation
of a hypothesis (i.e. the interpretation of the mathematical
objects that are contrasted against each other by the Bayes
factor). However, the term “theory” might be used in a multi-
tude of different other ways as well, e.g. in a non-contrasting
context or such that it cannot be formalized as a hypothesis
in the context of Bayes factors. To avoid confusion and to
emphasized its contrasting nature, only the term “theoretical
position” shall be employed within this paper.

Summary Terminology

So far, the concepts of the big picture of statistical infer-
ence in the context of Bayes factor have been outlined and
it should be emphasized that the terms “hypothesis”, “theo-
retical position”, and “knowledge” are used within this paper
to facilitate an understandable elaboration. In fact, it might
have been possible to merely use the descriptions “mathe-
matical objects that are contrasted against each other by the
Bayes factor” (hypotheses), “interpretation of these mathe-
matical objects” (theoretical positions), and “interpretation
of a parameter distribution” (knowledge). Together with the
two above mentioned undeniable properties about Bayes fac-
tors, namely the existence of a contrast (of two mathemati-
cal objects) and the existence of a Bayesian parameter dis-
tribution, the employed concepts should have been explicitly

outlined. Other publications might employ a different termi-
nology, such that it is necessary to check which concepts are
actually referred to by each term in each publication.

Statistical Inference with Bayes Factors

Statistical inference is the procedure of deriving conclu-
sions from observed data. Naturally, there is a variety of dif-
ferent inferential approaches, each using different principles
to extract information from the observed data. The elegance
of Bayes factors might be attributed to the fact that they com-
bine two different approaches to statistical inference in one
single quantity: Bayesian learning and evidential quantifica-
tion.

• Within the Bayesian approach to statistical inference, a
parameter prior distribution gets updated to a parame-
ter posterior distribution by including the information
from the observed data via Bayes rule. Conclusions
are then derived solely from the parameter distribution.

• Within the evidential approach to statistical inference
(cp. e.g. Berger & Wolpert, 1988; Blume, 2011; Roy-
all, 1997, 2004), the information within the data are
used to quantify evidence w.r.t. two different fixed the-
oretical positions about a phenomenon of interest. As-
sume two theoretical positions A and B are of interest
(and specified in the research question) and assume the
evidence within the data is quantified to be 5, then the
evidential interpretation is: After observing the data
the credibility of A over B is 5-times higher than before
the data were observed (see e.g. Morey et al., 2016)

On the one hand, while Bayesian statistics is able to answer
also different research questions, by using Bayes factors the
nature of potential research questions is limited to those that
contrast theoretical positions, thus allowing a useful and in-
tuitive interpretation in the context of evidential quantifica-
tion. On the other hand, while the framework of evidential
quantification might consider a variety of different contrast-
ing statistical analysis, by using Bayes factors the statistical
analysis is restricted to the Bayesian framework, providing
a thorough and powerful mathematical foundation (see e.g.
Berger, 1985; Jeffreys, 1961).

Knowledge vs. Theoretical Positions

Accordingly, to consider the inferential foundation of
Bayes factors comprehensively, both the knowledge about
the phenomenon of interest (Bayesian inference) and the the-
oretical positions about the phenomenon of interest (eviden-
tial inference) need to be distinguished. These concepts are
fundamentally different! While Bayesian learning allows (or
even requires) the knowledge itself to be altered, theoreti-
cal positions in the context of evidential quantification stay
fixed, only their credibility may change. Without such a clear
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distinction, the inferential foundation of Bayes factors might
break apart:

• If the theoretical positions themselves (not only their
credibility) are allowed to change by observing the
data, then the useful and intuitive interpretation as ev-
idence quantification is lost. Assume two theoretical
positions A and B are of interest (and specified in the
research question) but change by seeing the data to
the theoretical positions C and D, respectively, and as-
sume the evidence within the data is quantified to be
5, then the correct but useless interpretation is: The
credibility of C over D after the data were observed is
5-times higher than the credibility of A over B before
the data were observed.

• If the knowledge (and thus the parameter distribution)
is forced to stay fixed although some data were ob-
served, then Bayes rule is not applied, leading to up-
dating inconsistencies (outlined in detail below).

Accordingly, a clear distinction between knowledge (for-
malized as parameter distributions and being allowed to
change) and theoretical positions (formalized as statistical
hypotheses which stay fixed) about a phenomenon of inter-
est is mandatory. In that, the framework depicted here (Fig-
ure 1) does account for the fundamental different nature of
knowledge and theoretical positions about a phenomenon of
interest.

Interestingly, on a side note, it might be stated that – by
its nature – also the prior knowledge is able to inform the
research question. Typically, prior knowledge is insufficient
to answer the research question adequately, justifying the ne-
cessity to conduct a scientific investigation. However, the
structure of how to answer the research question with the
available knowledge is independent of whether data were ob-
served or not: In a Bayesian context, it is a parameter dis-
tribution from which the answer to the research question is
derived, and this way of deriving answers might work both
for the prior and the posterior distribution.

One-to-One Correspondence

Ideally, the correspondence between the concepts of the
real world with those in the theoretical world (gray dashed
arrows in Figure 1) should be one-to-one, mathematically
described by a bijective mapping. Without such a bijec-
tive mapping, chosen formalizations might be arbitrary or
the interpretation of the results might inform past the re-
search question. While the correspondence between the phe-
nomenon of interest and the parameter depends on the quality
of the experimental design, and the mapping between param-
eter distributions and knowledge is typically assumed to be
bijective in the Bayesian setting (two different distributions
represent two different bodies of knowledge), of interest for

this elaboration is the relation between theoretical positions
and hypotheses. Consider two cases:

• There is a bijective mapping between theoretical posi-
tions and hypotheses. Then, different hypotheses rep-
resent different theoretical positions.

• A variety of different hypotheses formalize one single
theoretical position. When forced to commit oneself
to one of those hypotheses (as typically required by
the statistical analysis), this choice might intuitively
be called instantiation: The theoretical position is for-
mally instantiated by one of the hypotheses. This ter-
minology is frequently employed it the literature that
(potentially implicitly) assume hypotheses to be rep-
resented by distributions (see e.g. Morey et al. (2016,
p. 13), Rouder, Haaf, and Aust (2018, p. 2), Vanpaemel
(2010, p. 491), Vanpaemel and Lee (2012, p. 1054)),
suggesting that such a non-bijective relation might be
implicitly assumed. Other publications do also employ
such a non-bijective relation without using the term in-
stantiation (e.g. Dienes, 2019, Box 3 on p. 369).

In that, these two types of relations between theoretical posi-
tions and hypotheses might describe the ideal and the actual
situation, respectively, and will be used below for elaborat-
ing issues inherent to representing hypotheses by parameter
distributions.

Updating Consistency

In Bayesian statistics, it is Bayes rule and not another prin-
ciple, which states how a prior distribution gets updated to a
posterior distribution (i.e. how information is extracted from
the observed data; see Figure 2, top-left). If the prior distribu-
tion reflects all available knowledge about the phenomenon
of interest before the investigation is conducted, then the cor-
responding posterior distribution reflects all available knowl-
edge about the phenomenon of interest after the investigation
is conducted. Disagreeing would imply that Bayes rule is not
able to extract all information within the observed data that
is relevant for the phenomenon of interest (and no Bayesian
would do so). As a consequence, the posterior distribution
might be employed as a prior distribution for the Bayesian
analysis of a data set obtained in a subsequent investigation
with the same design (see Figure 2, top-right). Naturally, the
final posterior distribution after subsequently updating twice
should be identical to the posterior distribution obtained by
merging both data sets first and then updating the initial prior
distribution at once (see Figure 2, bottom). If so Bayesian
updating is consistent (cp. Rüger, 1998, p. 190), else it is
inconsistent.

In general, updating with Bayes factors is consistent
(Schwaferts & Augustin, 2021) (see Figure 3a). Assume the
observed data x = (x1, . . . , xn) consists of independent and
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Figure 2. Consistent Bayesian Updating. Updating subse-
quently with two independent data sets x and y (top path)
should yield the same final posterior distribution than merg-
ing both data sets first and then updating at once (bottom
path).

identically distributed observations xi (i = 1, . . . , n) that fol-
low the parametric sampling distribution with density f (xi|θ),
where θ ∈ Θ is the parameter (representing the phenomenon
of interest), such that the density of the complete data set x
is f (x|θ) =

∏n
i=1 f (xi|θ). The hypotheses H0 and H1 have

prior probabilities p(H0) and p(H1) = 1 − p(H0), and the
corresponding densities of the hypothesis-based parameter
distributions are π(θ|H0) and π(θ|H1), respectively. Then the
density of the overall prior distribution is (see e.g. Rouder,
Haaf, & Vandekerckhove, 2018)

π(θ) = p(H0) π(θ|H0) + p(H1) π(θ|H1) . (1)

The Bayes factor

BF x =

∫
f (x|θ) π(θ|H1) dθ∫
f (x|θ) π(θ|H0) dθ

(2)

is calculated using only the data x and the hypothesis-based
parameter densities π(θ|H0) and π(θ|H1), and allows to up-
date the prior probabilities of the hypotheses to their poste-
rior probabilities (see Figure 3a, left):

p(H1|x)
p(H0|x)

= BF x ·
p(H1)
p(H0)

. (3)

In addition, revealed by simply applying Bayes rule con-
sistently to the overall prior density π(θ) (depicted in detail
by Schwaferts & Augustin, 2021), also the hypothesis-based
parameter densities π(θ|H0) and π(θ|H1) get updated by the
data x to their posterior densities π(θ|H0, x) and π(θ|H1, x)
(gray arrow in Figure 3a, left) (cp. also Kruschke & Liddell,
2018). In general (i.e. for non-degenerate prior distributions),
these posteriors are different than the priors. These updated
hypothesis-based posterior densities together with the poste-
rior probabilities on the hypotheses describe the overall pos-
terior distribution:

π(θ|x) = p(H0|x) π(θ|H0, x) + p(H1|x) π(θ|H1, x) . (4)

If a new data set y was observed (using the same experimen-
tal setup, i.e. following the same sampling distribution), this

updated posterior distribution describes the starting point for
a subsequent analysis with Bayes factors (Figure 3a, right).
Consequently, the corresponding Bayes factor

BFy|x =

∫
f (y|θ) π(θ|H1, x) dθ∫
f (y|θ) π(θ|H0, x) dθ

(5)

is also inherently influenced by the information within the
previous data set x. In that, however, updating is consistent
(a complete proof is provided by Schwaferts & Augustin,
2021).

Figure 3. Consistent (a) and Inconsistent (b) Updating with
Bayes Factors. Superscript (!) indicates that not all relevant
information was extracted from the data set x.

Updating inconsistencies occur, if the second data set y
is analyzed with the initial hypothesis-based prior distribu-
tions (i.e. π(θ|H0) and π(θ|H1) as in equation (2)) although
the first data set x was already observed (Figure 3b). This
happens, if the initial hypothesis-based prior distributions do
not get updated in the analysis of the first data set x, which
is a violation of Bayes rule (cp. also Rouder & Morey, 2011,
who noticed this issue and solved it properly by merging all
data sets first). It is difficult to assess the prevalence of such
updating inconsistencies in the current scientific literature, as
the data is typically analyzed at once (not subsequently), and
the calculation of the Bayes factor can be done without ex-
plicitly updating the hypothesis-based priors. Nevertheless,
this update must not be neglected to be consistent (Figure
3a) and the extent to which this fact is overlooked might be
indicated by Tendeiro and Kiers (2019): After a year of lit-
erature review about Bayes factors to understand them, the
authors (and possibly their reviewers from the journal Psy-
chological Methods as well) were convinced (see footnote 2
on p. 776 therein) that the hypothesis-based priors do not get
updated to their posteriors. Interestingly, at the same place,
the authors refer to Kruschke and Liddell (2018), who, in
contrast, elaborated on the update of the hypothesis-based
priors rather explicitly (see p. 157f and Fig. 4 and 6 therein).
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This is a vivid sign of the confusion a researcher faces in the
literature about Bayes factors.

Hypotheses as Sets of Parameters

At first, assume that hypotheses are represented by two
disjoint subsets Θ0,Θ1 ⊂ Θ of the parameter space Θ:

H0 : θ ∈ Θ0 vs. H1 : θ ∈ Θ1 . (6)

These subsets need to be chosen to correspond to the theo-
retical positions that are contrasted within the research ques-
tion. In addition to these theoretical positions, there is knowl-
edge about the phenomenon of interest that is formalized by
a parameter distribution with density π(θ). Without loss of
generality, assume that this distribution has a positive den-
sity only for parameter values that are contained in one of
the hypotheses. The prior probabilities of the hypotheses are
obtained from this parameter distribution by

p(H0) =

∫
Θ0

π(θ) dθ and p(H1) =

∫
Θ1

π(θ) dθ , (7)

and, once the data x were observed and the prior density π(θ)
was updated to π(θ|x), the posterior probabilities of the hy-
potheses are

p(H0|x) =

∫
Θ0

π(θ|x) dθ and p(H1|x) =

∫
Θ1

π(θ|x) dθ .

(8)
How the data change the probabilities of the hypotheses is
described by the Bayes factor

BF x =
p(H1|x)
p(H0|x)

/
p(H1)
p(H0)

. (9)

Accordingly, the probabilities of the hypotheses change but
the hypotheses themselves, i.e. the sets Θ0 and Θ1, stay the
same. In that, the Bayes factor can be interpreted appropri-
ately as evidence quantification. Further, the overall prior
distribution (π(θ)) was updated completely to the overall pos-
terior distribution (π(θ|x)), providing updating consistency.
Consequently, hypotheses can safely be represented by sets
of parameters in the context of Bayes factors.

Before continuing, the current situation shall be character-
ized further (which will be needed below). Any given prior
distribution with density π(θ) formalizes knowledge about
the phenomenon of interest. One part of this knowledge re-
lates to the one and another part to the other theoretical posi-
tion (which are contrasted within the research question), for-
malized by the hypothesis-based prior densities π(θ|H0) and
π(θ|H1). Mathematically, these densities are obtained from
the initial density π(θ) by

π(θ|H0) =
1

p(H0)
· π(θ)|Θ0 (10)

π(θ|H1) =
1

p(H1)
· π(θ)|Θ1 , (11)

where π(θ)|Θ0 and π(θ)|Θ1 are the densities π(θ) restricted to
the sets Θ0 and Θ1, respectively. Now, consider the set X of
all potentially observable data sets of any size n ∈ N0, with
n = 0 referring to the empty data set (representing the prior
situation). For a given prior distribution with density π(θ),
denote the set of all potentially obtainable posterior densities
as

Π := {π(θ|x) | x ∈ X} . (12)

This set contains all possible posterior distributions, i.e.
represents all possible bodies of knowledge about the phe-
nomenon of interest, that might be available after some (yet
unknown) data x were observed. Analogously, all different
possible bodies of knowledge about the theoretical positions,
respectively, are formally contained within the sets

Π0 := {π(θ|H0, x) | x ∈ X} (13)
Π1 := {π(θ|H1, x) | x ∈ X} . (14)

These sets contain only probability distributions with prob-
ability mass in the sets Θ0 and Θ1, respectively. In sum-
mary, a hypothesis and all potentially obtainable bodies of
knowledge about this hypothesis (in the context of given
prior knowledge and a certain experimental setup) can be de-
scribed by the sets Θ0 and Π0 or Θ1 and Π1, respectively.

Hypotheses as Parameter Distributions

Now, prior distributions with densities π(θ|H0) and
π(θ|H1) shall represent the hypotheses H0 and H1, respec-
tively. Ideally, the mapping between theoretical positions
and hypotheses should be bijective, updating should be con-
sistent, and theories should not change by seeing the data x,
only their credibility should. In the following, two of each
of these properties shall be assumed first and then evaluated
w.r.t. the third.

Case 1: Bijective Mapping and Updating Consistency

Assume there is a bijective mapping between theoretical
positions and hypotheses. As hypotheses are represented
by prior distributions, not only by a set of parameters, two
different parameter distributions represent two different hy-
potheses, i.e. two different theoretical positions. Consistent
Bayesian updating dictates to update the prior distributions
to the posterior distributions, which are (for non-degenerate
cases) different than the respective prior distributions. As the
parameter distributions change by observing the data, so do
the hypotheses and theoretical positions. It that, observing
data changes the theories that should be contrasted with each
other, not only their credibility. This does not match with
the fundamental characteristics of statistical inference by evi-
dence quantification, leading to issues with the interpretation
of Bayes factors.
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Case 2: Bijective Mapping and Unchanged Theories

Again, assume there is a bijective mapping between the-
oretical positions and hypotheses, and that hypotheses are
represented by the prior distributions, such that two different
parameter distributions represent two different hypotheses,
i.e. two different theoretical positions. If theories should not
change by observing data, the posterior distribution needs
to be the same as the prior distribution, which is outlined in
Figure 3b and leads – for non-degenerate prior distributions –
to updating inconsistency. In that, inference does not follow
Bayes rule.

Case 3: Updating Consistency and Unchanged Theories

Now, also allow the mapping between theoretical posi-
tions and hypotheses to be non-bijective, in a sense that a
single theoretical position might be formalized by a multi-
tude of different hypotheses. If hypotheses are represented
by prior distributions, then a set of different distributions cor-
responds to one theoretical position. How does this set look
like, if updating should be consistent and a proper evidential
interpretation of Bayes factors shall be kept?

To answer this question, assume that in the specifications
of a statistical analysis each of both theoretical positions
is instantiated by only one prior distribution with density
π(θ|H0) or π(θ|H1), respectively, such that their supports do
not overlap with each other (overlapping hypotheses will be
discussed subsequently). Denote their supports (i.e. the sets
of parameters in which the density has non-zero, positive
mass) with Θ0 and Θ1, respectively. If updating shall be con-
sistent, then parameter distributions are allowed to change
by seeing the data. Considering all potentially observable
data sets x ∈ X (of any size n ∈ N0), the initial prior densi-
ties π(θ|H0) and π(θ|H1) might result in any posterior density
within the sets Π0 and Π1 (equations (13) and (14)), respec-
tively. To keep the proper evidential interpretation of Bayes
factors, all these parameter densities within the sets Π0 and
Π1 need to represent the same theoretical position, respec-
tively. In that, the hypotheses H0 and H1 are represented by
the sets Π0 and Π1, which, however, contain all potentially
observable parameter distributions with positive probability
mass restricted to the parameter sets Θ0 and Θ1, respectively.
Two different parameter distributions with the same support
(either Θ0 or Θ1) do not differentiate between two theoretical
positions, only two different supports, i.e. sets of parameters,
do. Accordingly, this situation is practically equivalent to
representing hypotheses as sets of parameters.

Overlapping Hypotheses

Within these elaborations, it was assumed that the hy-
potheses are non-overlapping. Mathematically, they might
also be overlapping. Consider the case, in which Θ0 and Θ1

are not (almost everywhere w.r.t. the prior density π(θ)) dis-
joint. Then there are parameter values θ that are contained
within both Θ0 and Θ1, such that, if these parameter values
are true, the posterior distribution will be shifted – for an
increasing sample size n – within this overlapping part. As
a consequence, even an infinitely large data set cannot deci-
sively distinguish between both hypotheses (i.e. answer the
research question), and the Bayes factor has a finite limit.
Formally, the behavior1 of the Bayes factor is

BF


→ 0 if θ∗ ∈ Θ0 \ Θ1

→ ∞ if θ∗ ∈ Θ1 \ Θ0

→ c(θ∗) if θ∗ ∈ Θ0 ∩ Θ1

for n→ ∞ , (15)

where θ∗ is the true parameter and c(θ∗) is a fixed value that
depends on θ∗ (cp. Morey & Rouder, 2011, p. 411).

In that, if – for a given investigational setup – the theo-
retical positions (that are of interest in the context of the re-
search question) are reasonably formalized by overlapping
hypotheses, it might happen that the scientific investiga-
tion cannot answer the research question. This might be a
waste of time and money, and cannot be argued to yield a
“strong inference” (Platt, 1964) or constitute a “severe test”
(Popper, 2002[1935]), claims frequently raised by promot-
ers of the Bayes factor (see e.g. Dienes (2019, p. 365), Etz
et al. (2018, p. 228), Schönbrodt and Wagenmakers (2018,
p. 130)), which apparently require non-overlapping hypothe-
ses. In this context it shall be noted that even Jeffreys (1961,
e.g. p. 269) himself tried to avoid the possibility of obtaining
a finite, non-zero Bayes factor limit at all costs: His deriva-
tion of the prior distributions for Bayes factors (now some-
times referred to as default Bayes factors (see e.g. Ly, Verha-
gen, & Wagenmakers, 2016)) aimed at being able to state de-
cisive evidence (which corresponds to Bayes factors tending
to ∞ or 0) even for a fixed number of observations (which is
an even stronger requirement than within equation (15)). In
this regard, it seems advisable to rethink the investigational
setup such that overlapping hypotheses can be avoided.

Example

An example shall be provided that leads to a paradox with
the representation of hypotheses via parameter distributions.

1This equation (15) has been formulated in a mathematically
imprecise way in order to present the relevant points clearly. Ac-
tually, the condition θ∗ ∈ Θ0 \ Θ1 constitutes the case in which the
true parameter θ∗ is within the set Θ0 \ Θ1 such that for increas-
ing n the posterior distribution will be shifted into this set Θ0 \ Θ1.
The other conditions have to be read analogously. There might be
cases in which – mathematically – θ∗ is within one of the parameter
sets that define the conditions, but the posterior distribution will not
be shifted completely within the respective set for n → ∞. These
cases, however, lie exactly at the borders between the set-valued hy-
potheses and are expected to occur almost never w.r.t. the parameter
distribution.
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Assume the data x is characterized by the binomially dis-
tributed random quantity X ∼ Bin(n, θ), with n = 20 and
θ ∈ [0, 1] (probability of success) being the parameter of
interest. Both hypotheses shall have an identical support
Θ0 = Θ1 = [0, 1], but different prior (beta) distributions (see
Figure 4 left, rounded boxes):

H0 : θ ∼ Beta(1, 1) vs. H1 : θ ∼ Beta(15, 7) . (16)

Further, both hypotheses shall have equal prior probabilities
p(H0) = p(H1) = 0.5 (see Figure 4 left).

Figure 4. Example. Theoretical positions are represented by
parameter distributions with consistent (a) and inconsistent
(b) Bayesian updating. Consistent updating yields a situation
in which the prior alternative hypothesis and the posterior
null hypothesis represent the same theoretical position (This
illustration of the hypothesis-based parameter distributions
was inspired by Kruschke & Liddell, 2018).

Now, assume that s = 14 successes were observed. The
resulting Bayes factor is BF = 2.89 leading to posterior prob-
abilities p(H0|s) = 0.257 and p(H1|x) = 0.743, favoring the
alternative hypothesis H1 (see Figure 4 right). However, also
the within-hypothesis beta distributions get updated by ob-
serving s to (see Figure 4a, right, rounded boxes; else updat-
ing is inconsistent (see Figure 4b))

H0|s : θ|s ∼ Beta(15, 7) vs. H1|s : θ|s ∼ Beta(29, 3) .
(17)

This example was constructed such that the posterior null hy-
pothesis H0|s has the same distribution as the prior alternative
hypothesis H1. If a theoretical position is represented by a
parameter distribution, then both of these hypotheses repre-
sent the same theoretical positions (Figure 4a). Although the

prior alternative hypothesis H1 gains credibility by observing
s, the posterior null hypothesis H0|s has less credibility due
to observing s. Paradoxically, both hypotheses represent the
same theoretical position, so it is not clear whether the data
agree or disagree with this theoretical position.

In order to solve this paradox, hypotheses need to be con-
sidered as sets of parameters. Both hypotheses hypothesize
the same parameter set, representing the same theoretical po-
sition. Accordingly, the research question, that will be an-
swered within this analysis, contrasts a theoretical position
against itself. Naturally, no data can inform this pointless
contrast.

Discussion

This paper elaborated that hypotheses should be repre-
sented by sets of parameters only, not by parameter distri-
butions. If so, updating consistency and a proper eviden-
tial interpretation of Bayes factors are given, and if not, the
foundational or evidential basis of Bayes factors is severely
impaired. In that, a clear distinction between theoretical po-
sitions and knowledge about the phenomenon of interest is
mandatory. It is important that the content of theoretical posi-
tions should only inform the specification of hypotheses (sets
of parameters) and that the available knowledge should only
inform the specification of the prior distribution.

Empirical Content

It is argued that by using parameter distributions to rep-
resent hypotheses, their empirical content can be increased
(Vanpaemel & Lee, 2012, p. 1052), supplemented by refer-
ences to Popper (2002[1935]). However, the elaborations
within this paper might cast doubt. According to Popper
(2002[1935], p. 103), the empirical content of a statement
is “the class of its potential falsifiers”, such that a higher em-
pirical content is characterized by a larger class of potential
falsifiers. Now, one needs a proper concept of “falsifiability”
in the Bayesian framework, and it appears that defining such
a concept is fundamentally difficult, as Popper’s elaborations
of induction are restricted to the modus tollens of deductive
tests (Popper, 2002[1935], p. 19) while the Bayesian frame-
work tries to formalize induction by a logic of partial beliefs
(cp. e.g. Ly et al., 2016, p. 20). If, at all, one tries to find such
a concept, one might say that a hypothesis is falsified if its
probability is zero. Naturally, a zero probability of a hypoth-
esis will not be obtained in a scientific investigation (which
assumes non-zero prior probabilities), so – practically – one
might stop if the probability of a hypothesis is sufficiently
small and then decide to treat this hypothesis as falsified. In
terms of the limit behavior of Bayes factors, this resembles
the case in which the Bayes factor tends towards∞ or 0 (cp.
also Rouder, Haaf, & Vandekerckhove, 2018, p. 105). This
refers to the first two cases in equation (15). In the third case,
however, evidence will never be conclusive if n → ∞, so it
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will not be possible to “falsify” any of the hypotheses with
the given experiment. In that, the class of potential falsifiers
of H0 is Θ1 \ Θ0 and the class of potential falsifiers of H1 is
Θ0 \ Θ1. Therefore, it is only the supports Θ0 and Θ1 that
determine the empirical content of the hypotheses, not the
exact shape of the prior distributions (π(θ|H0) and π(θ|H1)).
Consequently, beyond their mere supports, prior distributions
do not increase the empirical content of hypotheses.

Nil-Hypotheses

Acknowledging that hypotheses are only the supports
of the within-hypothesis prior distributions, it appears that
many elaborations in the context of Bayes factors (e.g. Di-
enes, 2019; Gönen et al., 2005; Rouder, Haaf, & Aust, 2018;
Rouder, Haaf, & Vandekerckhove, 2018; Rouder et al., 2009)
do still use a sharp null hypothesis, which hypothesizes only
one single parameter value (cp. also Tendeiro & Kiers, 2019,
p. 787). In that, these hypotheses are identical to those em-
ployed in conventional null hypothesis significance testing
(NHST), such that its heavy critique about the uselessness
of these hypotheses (see e.g. Berkson, 1938; Cohen, 1994;
Gigerenzer, 2004; Kirk, 1996) does apply to these Bayes
factors as well. The inclusion of the parameter distribu-
tion into the statistical analysis does not tackle these issues
(about the uselessness of the employed hypotheses). To do
so, hypotheses need to be specified as sets of parameters
that correspond to the theoretical positions that are of in-
terest within the research question. Then, these hypothe-
ses are typically not single-valued anymore. In this regard,
the methodological development of Bayes factors with rea-
sonably specified interval-valued hypotheses needs to be ad-
dressed more intensively. Although few elaborations exist
(cp. Heck et al., 2020; Hoijtink, Mulder, van Lissa, & Gu,
2019; Morey & Rouder, 2011), this development is treated
as rather ancillary within the Bayes factor literature. Alter-
native hypothesis-based methods (see e.g. Kruschke, 2015,
2018; Lakens, 2017; Lakens, Scheel, & Isager, 2018) already
started to primarily address this necessity of allowing reason-
ably specified interval-valued hypotheses, and Bayes factors
need to go along with them.

Knowledge vs. Theoretical Positions

The central message of this paper is that knowledge and
theoretical positions about the phenomenon of interest need
to be distinguished. Former inform the specification of the
prior distribution, latter inform the specification of the hy-
potheses. In that sense, both of these mathematical ob-
jects (prior distribution, hypotheses) or real world concepts
(knowledge, theoretical positions) are independent of each
other. This can also be seen, as it is possible to specify a
prior distribution without having hypotheses (as in a non-
hypothesis-based Bayesian analysis) or as it is possible to
specify hypotheses without having a prior distribution (as in

non-Bayesian hypothesis-based analyses). Yet, it is possible
to depict the prior distribution in dependence of the hypothe-
ses via the within-hypothesis prior distributions (equations
(10) and (11)) and the prior probabilities of the hypotheses
(equation (7)). Strikingly, after combing these components
to the overall prior distribution (equation (1)), its dependence
on the hypotheses is gone! Naturally, what is known about
the phenomenon of interest does primarily not depend on
which hypothetical conjectures might be possible about it.
This has serious implications about how to specify the es-
sential quantities in a hypothesis-based Bayesian analysis: It
is recommended to specify the overall prior distribution (as
density π(θ)) and the hypotheses (via Θ0 and Θ1) indepen-
dently. If, in contrast, the within-hypothesis prior distribu-
tions shall be specified (via π(θ|H0) and π(θ|H1)), the applied
scientist needs to make sure that by combining them with
the prior probabilities of the hypotheses to the overall prior
distribution (equation (1)) its dependence on the hypotheses
is gone. This seems quite remarkable.

Outlook

Looking at the history of Bayesian statistics, it appears
that prior distributions have always had a bad reputation. In
this context, it seems that the idea of using prior distribu-
tions to formalize theoretical positions was motivated by the
intention of correcting this bad reputation of prior distribu-
tions. For example, Vanpaemel and Lee (2012, both quotes
on p. 1048) stated that they “do not agree that priors are an
unwanted aspect of the Bayesian framework” and that they
“believe that it is wrong to malign priors as a necessary evil”.
It can only be agreed on! Parameter distributions are a vital
part of Bayesian statistics and must not be condemned! This
elaboration clarified the distinction between knowledge (pa-
rameter distribution) and theoretical positions (hypotheses),
and, therefore, tried to contribute to a correct employment of
parameter distributions in the Bayesian framework.
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Abstract
This paper proposes the robust Bayes Factor as a

direct generalization of the conventional Bayes Factor
for a special case of independent two-sample com-
parisons. Such comparisons are of great importance
in psychological research, and more generally wher-
ever the scientific endeavour is to ascertain a potential
group effect. The conventional Bayes Factor as the
ratio of the marginal likelihoods under two considered
hypotheses demands for a precise, subjective speci-
fication of the prior distribution for the parameter of
interest. Thus, it lacks the possibility of incorporating
prior knowledge that is only available partially. Draw-
ing on the theory of Imprecise Probabilities, the robust
Bayes Factor is presented in view of lifting the restric-
tions on the specification of the prior distribution as
being precise. In practice, the robust Bayes Factor ap-
proach enables an analyst to specify hyperparameter
intervals, whose lengths correspond to the degree of
subjective prior uncertainty. Based thereon, a set of
(infinitely) many subjective prior distributions is es-
tablished to substitute one precise prior distribution.
Finally, the robust Bayes Factor is defined as an inter-
val, bounded by the minimal and the maximal resultant
Bayes Factor values. Latter are obtained by optimizing
the conventional Bayes Factor over the predefined set
of prior distributions. This explicit incorporation of
incomplete prior knowledge increases the feasibility of
applying a Bayesian approach to hypothesis compar-
isons in scientific practice. It reduces error-proneness,
enables for an inclusion of multiple perspectives and
encourages cautious, more realistic conclusions in hy-
pothesis comparisons.
Keywords: Bayes Factor, Imprecise Probabilities, Ro-
bustness, Bayesian Statistics, Prior Specification, Psy-
chological Research, Two-Sample Comparison

1. Introduction

The evaluation of statistical hypotheses is among the main
targets of applied sciences, especially in psychological re-
search (see e.g. Liu and Aitkin, 2008). Although being
analyzed frequentistically in the past by means of classic

hypothesis tests, a Bayesian approach to compare hypothe-
ses is gaining popularity (Van De Schoot et al., 2017). In
that, the so called Bayes Factor (BF) is a key quantity for
assessing the evidence within the data w.r.t. statistical hy-
potheses (see e.g. Gönen et al., 2005; Rouder et al., 2009),
whose recent developments are located within the field of
psychological research, such that a similar perspective is
adopted within this paper. A crucial difference between the
frequentist and the Bayesian approach is the presence of
subjective prior distributions in latter, which on the one
hand allows including prior knowledge into the statistical
analysis, but on the other hand yields results - especially
the Bayes Factor - that might be influenced strongly by
the exact specification of the prior distribution, leading to
heavy debates about how to specify these priors (see e.g. the
debate about extrasensory perception between Bem et al.
(2011) and Wagenmakers et al. (2011)).

Conventionally, a Bayesian analysis requires the prior
distribution to be precise: There should be a single proba-
bility distribution describing the prior knowledge. Yet, this
is a very strong requirement as, within a Bayes Factor anal-
ysis, the prior distribution formalizes the available knowl-
edge or beliefs about the parameter prior to the scientific
investigation, which might be accessible to the applied sci-
entist only vaguely (see e.g. Joyce, 2010; Goldstein, 2006).
Furthermore, requiring the researcher to specify a precise
and unambiguous probability distribution to represent the
available knowledge might be regarded as impossible in a
real-world situation. This might be easily realized as the
plethora of different “non-informative” priors (found in
almost all introductory text books about Bayesian statistics)
indicates that there is no agreement on how to formalize
non-knowledge even in the simplest contexts. Accordingly,
mis-specifying a precise prior distribution might seem un-
avoidable within an applied Bayes Factor analysis and re-
sults might be misleading. A conventional way to cope
with this issue is a sensitivity analysis (see e.g. Ríos In-
sua and Ruggeri, 2012), which assesses how a change in
prior distribution would have changed the result. However,
the researcher still needs to decide on a certain precise
distribution to use, which might be arbitrary, as many pre-
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cise prior distributions might be in accordance with the
(vaguely) available prior knowledge. In that sense, the most
reasonable solution is to use all these reasonable prior distri-
butions in the Bayes Factor analysis, which shall be referred
to as robust Bayes Factor (rBF) analysis, leading to a more
robust and less arbitrary result.

The purpose of this paper is to formally describe the
robust Bayes Factor in the context of two independent nor-
mally distributed samples with identical variance, which
is a commonly employed scenario within psychological
research, e.g. to assess gender differences. Therefore, a
conventional Bayes Factor analysis for this setting shall
be outlined in Section 2 first and its generalization to in-
clude sets of prior distributions instead of a single precise
prior distribution follows in Section 3.1, concluded by an
example (Section 3.2) and a short discussion (Section 4).

2. Bayes Factor

The experimental setup leading to the calculation of this
particular Bayes Factor may accord to that of a classical
two-sample t-test, whose basic endeavour is to examine
a potential group difference. Accordingly, observed data
z := (x,y) with x = (x1, . . . ,xn) and y = (y1, . . . ,xm) may be
realizations of independent, normally distributed random
variables Xi and Yj, i.e.

Xi
iid.∼ N(µ,σ2) i ∈ 1, ...,n (1)

Yj
iid.∼ N(µ +α,σ2) j ∈ 1, ...,m . (2)

Here, µ is the unknown mean of the first sample, σ2 the
unknown variance within each sample and α describes the
difference in means between both groups, which may be
referred to as the total effect (see e.g. Rouder et al., 2009).

For the purpose of consistent scalability across different
scientific contexts and as commonly done in psychological
research, latter shall be reparameterized as standardized
effect size

δ :=
α
σ
. (3)

Accordingly, the parameters δ and σ2 are not independent
of each other.

As δ explicitly represents the group difference of interest,
the hypothesis set may be outlined conventionally as

H0 : δ = 0 vs. H1 : δ 6= 0 . (4)

Whereas the null hypothesis H0 implies strict group
mean equality, the alternative H1 assumes a group effect
of yet unspecific extent. The corresponding Bayesian ap-
proach is to compare H0 and H1 by means of the Bayes
Factor as a measure of how well the hypotheses under
consideration predict observed sample data relatively.

Naturally, employing a simple null hypothesis, which
hypothesizes only one single δ value, is subject to heavy cri-
tique (see e.g. Cohen, 1994). A recently promoted Bayesian
alternative is to consider a region of practical equivalence
(ROPE) around δ = 0 (see e.g. Kruschke, 2018). This,
however, was mainly developed using Bayesian estima-
tion rather than Bayesian hypothesis comparison (see e.g.
Kruschke, 2015, Chapter 12), yet a few approaches to in-
corporate these considerations into Bayes Factor analyses
do exists (see e.g. Morey and Rouder, 2011). Nevertheless,
a simple null hypothesis was chosen within this paper to
build on the existing literature about Bayes Factors (see e.g.
Gönen et al., 2005; Rouder et al., 2009).

The calculation of the Bayes Factor is based on the idea
that the support for a scientific hypothesis depends on how
its marginal likelihood matches with an observed sample
in comparison to that of the other hypothesis under consid-
eration (see e.g. Morey et al., 2016). As to that, any Bayes
Factor calculation presumes the specification of a marginal
likelihood under either hypothesis.

Due to the precise assignment of δ under H0,
the corresponding likelihood function is defined as
f (z|µ,σ2,δ = 0). As µ and σ2 depict unknown param-
eters, prior densities π(µ) and π(σ2) need to be specified
in line with the Bayesian parameter conception. Finally,
this yields

m0(z) =
∫∫

f (z|µ,σ2,δ = 0)π(σ2)π(µ) dµ dσ2 (5)

as the marginal likelihood under H0.
In the case of H1, however, the unspecific claim that δ

holds any other value but 0 still leaves δ an unknown pa-
rameter. Therefore, not only µ and σ2, but also δ needs to
be given a prior distribution under H1 to obtain the poste-
rior likelihood function. Due to its dependence on σ2 the
prior on δ is conditional and denoted as π(δ |σ2). It assigns
varying probability mass to a range of potential δ values in
accordance with their plausibility under H1. This modifica-
tion transforms H1 from a general into a specific hypothesis
and yields the corresponding Bayesian hypotheses set (see
e.g. Gönen et al., 2005; Rouder et al., 2009) as

H0 : δ = 0 vs. H1 : δ |σ2 ∼ π(δ |σ2) . (6)

Finally, the marginal likelihood under H1 ensues as

m1(z)=
∫∫∫

f (z|µ,σ2,δ )π(δ |σ2)π(σ2)π(µ)dµ dσ2dδ .

(7)
The priors π(µ), π(σ2) and π(δ |σ2) need to be spec-

ified by the respective analyst according to her/his prior
information and beliefs. As stated above, π(µ) and π(σ2)
enter the posterior likelihood functions under both hypothe-
ses. It is argued that this common occurrence largely can-
cels their effects on the result of a hypothesis comparison
(see e.g. Wagenmakers et al., 2010). As to that, µ and σ2

168

111



ROBUST BAYES FACTOR

may be referred to as common or nuisance parameters. Ac-
cording to an initial proposal by Jeffreys (Jeffreys, 1961),
they shall herein be assigned the improper priors (see e.g.
Wang and Liu, 2016; Gönen et al., 2005)

π(µ) ∝ c and π(σ2) ∝
1

σ2 , (8)

where c > 0 is a constant value. The prior on µ states that
all potential values have equal credibility. The prior on σ2

states that larger values are less credible than smaller ones
and variance values very close to 0 have the highest cred-
ibility. This, however, might be questioned in real-world
applications so that informative priors for µ and σ2 might
be employed. Yet, for the context within this paper, the
choice of nuisance prior distribution does not affect the
Bayes Factor value (Wagenmakers et al., 2010). Accord-
ingly, σ2 might be treated as nuisance parameter, despite δ
being dependent on it.

The specification of the prior on δ on the other hand is
given an emphasized position within this evaluation pro-
cess. As it will later on enter the Bayes Factor only through
the marginal likelihood under H1, it considerably affects
on its outcome. Thus, π(δ |σ2) may be stated the (only)
test-relevant prior (Ly et al., 2016). The choice of a normal
distribution for the effect size prior is chiefly promoted in
psychological research (see e.g. Berger and Sellke, 1987;
Gönen et al., 2005; Rouder et al., 2018), as its shape is most
often reasonable to describe prior assumptions regarding
an yet unknown effect size. After all, probability mass is
hereby spread symmetrically around a certain mean µδ that
is deemed plausible and this probability mass declines as
the distance to the mean increases (see e.g. Rouder et al.,
2009; Matthews, 2011). This facilitates reasonable hyper-
parameter choices and in turn an alternative hypothesis
that might have a reasonable counterpart in the real-world.
Accordingly, a normal distribution, with parameters inde-
pendent of σ2, is chosen within this paper to represent prior
knowledge about the value of δ :

δ |σ2 ∼ N(µδ ,σ2
δ ). (9)

In that, µδ and σ2
δ are the only hyperparameters to be cho-

sen subjectively by the respective analyst (see e.g. Berger
and Sellke, 1987).

Finally, based on equations (7) and (5) the Bayes Factor
is commonly defined as the ratio

BF =
m1(z)
m0(z)

. (10)

The numerator measures the marginal likelihood of z un-
der the assumption of a π(δ |σ2) - distributed effect size.
The denominator depicts the counterpart under the assump-
tion of equal group means. As such, the above stated
Bayes Factor is typically interpreted as quantifying the
statistical evidence the data z hold for the presence of a

π(δ |σ2)-distributed effect size in comparison to an ab-
sence of an effect. Therefore, BF values larger than 1 favor
H1 and BF values smaller than 1 favor H0.

For precisely the above stated case, Gönen et al. (2005)
reported a closed-form implementation, which allows a
Bayes Factor formula that is solely dependent on the
pooled-variance two-sample t-statistic t under H0 and H1,
each. Its concrete implementation applies as

BF =
Tν(t |n1/2

δ µδ ,1+nδ σ2
δ )

Tν(t |0,1)
, (11)

where Tν(·|a,b) is the probability density function of the
non-central t-distribution with location a, scale

√
b and

ν = n+m−2 degrees of freedom. Eventually,

nδ =

(
1
n
+

1
m

)−1

(12)

is typically termed the effective sample size.
In addition to specifying the test-relevant prior π(δ |σ2),

a Bayes Factor analysis in a broader sense requires the spec-
ification of prior probabilities of the hypotheses themselves:
P(H1) and P(H0) = 1−P(H1). The Bayes Factor value BF
is used to update these beliefs in the hypotheses, resulting
in the posterior odds

P(H1|z)
P(H0|z)

= BF · P(H1)

P(H0)
, (13)

stating how strongly H1 is preferred over H0 after seeing
the data z.

Certainly, the prior situation consists of treating both the
hypotheses and the parameters as random variables with
probability distributions, allowing for Bayesian hierarchical
modeling (see e.g. Gelman et al., 2013; Rouder et al., 2018).

In summary, it can be stated that this special case
Bayes Factor for independent two-sample comparisons de-
pends on observed data only through their corresponding
t-statistic and on (subjective) prior knowledge in terms of
the hyperparameters µδ and σ2

δ . This enables for a facile
calculation and standardized software implementations –
pleasant features that are otherwise unusual in the con-
text of Bayesian analyses. Among others, this granted the
Bayes Factor quite some popularity not only in psycholog-
ical research, as mentioned in the introduction, but also
in a number of other research domains (see e.g. Rouder
et al., 2018; Van De Schoot et al., 2017). Among its prefer-
able properties are the possibility to include data-external
information, its interpretation as evidence statement and
its foundation following the likelihood principle (Berger
and Wolpert, 1988) as well as the law of likelihood (Hack-
ing, 1965). In line with latter, the analysis is conditional
on the data and therefore sequential experimental designs
are argued to be no problem (Rouder, 2014), which allow
increasing the sample size if the evidence within the data is
not sufficient enough (see e.g. Schönbrodt et al., 2017).
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The basic cause, for which the Bayes Factor is ground-
edly criticized and backed away from, is mostly down to the
strict demand for a precise, test-relevant prior π(δ |σ2). Fi-
nally, this is the motivation for a generalizing robust Bayes
Factor, dedicated to loosen the Bayes Factors’ flawed de-
mand for prior precision.

3. Robust Bayes Factor

3.1. Theory

As outlined in the previous section, a common approach to a
Bayes Factor analysis is to assume a normal prior for δ (see
e.g. Berger and Sellke, 1987; Gönen et al., 2005; Rouder
et al., 2018). Accordingly, a first attempt to generalize
the Bayes Factor to allow sets of prior distributions is by
considering a set of normal distributions. In that, all normal
distributions with parameter values

µδ ∈ [µδ ,µδ ] (14)

σ2
δ ∈ [σ2

δ ,σ2
δ ] (15)

shall be considered, where the intervals specify the param-
eter values that are considered as being in accordance with
the (potentially vague) prior knowledge about the respec-
tive parameter values, given the alternative hypothesis H1
is true and this prior knowledge is truly expressible as nor-
mal distribution. Therefore, in consequent generalization
of equation (9), the set

M := {N(µδ ,σ2
δ )|µδ ∈ [µδ ,µδ ],σ2

δ ∈ [σ2
δ ,σ2

δ ]} (16)

represents the test-relevant prior, such that the hypotheses
might be formulated as

H0 : δ = 0 vs. H1 : δ |σ2 ∼M , (17)

with priors for the nuisance parameters as in equation (8).
Within this formulation, “δ |σ2 ∼M ” is analogue to the al-
ternative hypothesis in equation (6), in which a distribution
of δ |σ2 is provided. Within the framework of the robust
Bayes factor, however, the set M of prior distributions is
employed instead of a single prior distribution1. Therefore,
the alternative hypothesis states that δ is distributed in ac-
cordance with the (vaguely available) knowledge about δ ,
mathematically expressed by the set M . This set – or its
convex hull – shall be considered as an entity of its own
(c.p. Walley, 1991). Accordingly, the alternative hypothesis
H1 is allowed to contain all available information without
being overly precise.

For every precise distribution within M , it is possible to
calculate the corresponding precise Bayes Factor, leading

1. Technically, one could also argue that the convex hull of M can be
considered.

to a range of different Bayes Factor values, which shall be
referred to as robust Bayes Factor

rBF = [BF ,BF ] , (18)

where

BF = min
µδ∈[µδ ,µδ ]

σ2
δ∈[σ2

δ ,σ
2
δ ]

BF (19)

BF = max
µδ∈[µδ ,µδ ]

σ2
δ∈[σ2

δ ,σ
2
δ ]

BF . (20)

Analogue to the precise case, prior probabilities of the
hypotheses (P(H1) and P(H0)) might be updated by the
robust Bayes Factor, leading to a range of posterior odds

[
BF · P(H1)

P(H0)
, BF · P(H1)

P(H0)

]
. (21)

Although not addressed within this paper, it might be possi-
ble to also specify the prior probabilities of the hypotheses
interval-valued (c.p. Schwaferts and Augustin, 2019).

In this case of a normal test-relevant prior, the robust
Bayes Factor and the corresponding posterior odds are in-
tervals, as the Bayes Factor is continuous in the parameters
µδ and σ2

δ . As illustrated within the following example,
this allows the interpretation of the resulting robust Bayes
Factor to be straight forward.

3.2. Example

A fictitious example with simulated data (reproducible with
the R code in the electronic appendix) shall be given to il-
lustrate the methodology of the robust Bayes Factor, which
is based on a study by van Loo et al. (2017). The occur-
rence of major depression (MD) is about twice as high in
women than in men, however, once diagnosed potential
gender differences are less investigated. In that, it might be
assessed, if there is a gender difference in the recurrence of
MD, as some previous studies reported similar recurrence
rates and others reported higher recurrence rates for women
than for men (a summary of these studies is found in van
Loo et al., 2017). The risk of recurrence might be captured
by a score, which can calculated by a number of different
risk predictors (see van Loo et al., 2017). Within this exam-
ple, it is simply assumed that the score might be modeled
by a normal distribution and that both women (Y ) and men
(X) have an equal variance in score values (as in equations
(1) and (2)).

With Jeffreys priors for the nuisance parameters (see
equation (8)) and the standardized difference in score
means δ being hypothesized to be 0 (H0) or normally dis-
tributed N(µδ ,σ2

δ ) conditional on σ2 (H1), the fictitious re-
search group is unable to precisely specify the test-relevant
prior due to a lack of overly excessive information and
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Figure 1: Dependence of the Bayes Factor value (color) on
the mean µδ (x-axis) and variance σ2

δ (y-axis)
of the normal effect size prior within the first
exemplary analysis.

therefore employs the hypotheses as in equation (17). In
accordance with the previous studies, if there is a gender
effect (H1), δ might be positive but rather small. In that,
the research team figures out that normal prior distributions
for δ might be plausible with a mean parameter µδ rang-
ing from 0 to 0.5 and with a variance parameter σ2

δ being
within the interval [0.5,3], leading to

M = {N(µδ ,σ2
δ )|µδ ∈ [0,0.5],σ2

δ ∈ [0.5,3]} . (22)

Note, that these considerations need to be based on previous
knowledge, which might be available more profoundly in a
real-world investigation (as it is the scientist performing the
investigation, who knows most about the effect of interest)
than in this simple example.

The research group now assess the recurrence rate scores
x and y of n = 10 men and m = 10 women, respectively,
which yield t = 1.46, nδ = 5 and accordingly

rBF = [0.67,1.50] . (23)

Figure 1 illustrates the dependence of the Bayes Factor
value on the hyperparameters µδ and σ2

δ .
Due to the disagreement within the previous studies, the

research team did not prefer any hypothesis over the other,
prior to the investigation, so they set P(H1) = P(H0) = 0.5
as prior probabilities of the hypotheses, leading to posterior
odds with the same range (equation (23)).

Therefore, the data z favor H1 0.67 to 1.5 times as much
as H0 and there is no unambiguous evidence for either
hypothesis, because rBF contains both values larger and
smaller than 1. Analogously, expressed by the posterior
odds, the research team cannot believe in one hypothesis
more strongly than in the other. However, if the test-relevant
prior would have been specified precisely, there might have
been a single Bayes Factor value that might have favored
one of the hypotheses, but this conclusion would have been
arbitrary and therefore potentially misleading. In that, given
that the available prior information is only imprecisely
available within this example, the data is inconclusive about
the hypotheses, so the research team can neither state that
recurrence rates are similar for both women and men nor
that they are larger for women than for men.

In order to obtain more evidence, the research team as-
sess another 20 women and 20 men, so that n = m = 30.
The new results are

rBF = [0.18,0.42] (24)

with t = 0.65 and nδ = 15. Now, the data might be in-
terpreted as favoring the null hypothesis H0 1/0.42 = 2.4
to 1/0.18 = 5.5 as much as the alternative hypothesis H1,
being not inconclusive anymore. Analogue, Figure 2 illus-
trates the dependence of the Bayes Factor value on the
hyperparameters µδ and σ2

δ . The data might be treated as
(slightly) favoring the hypothesis of similar recurrence rates
between women and men and, based on the prior probabili-
ties of the hypotheses, the research team believes into H0
2.4 to 5.5 times as much as into H1.

As illustrated by this example, the imprecision of prior
information leads to an inconclusive, but robust and less
arbitrary result that indicates a lack of information even
after collecting the first data set, which might have been
masked by pretending an arbitrary precision and is tackled
appropriately by collecting more data.

4. Discussion

This paper depicts the robust Bayes Factor both as a gen-
eralization of the conventional Bayes Factor and also as
a possibility to tackle one of the main criticisms against
the Bayes Factor, namely the arbitrariness of specifying a
precise prior distribution. Clearly, this asks for a discussion
of rBF’s effective advantages in scientific practice.

Put simply, the robust Bayes Factor generalizes the classi-
cal Bayes Factor in a way to render it more compatible with
scientific reality. It faces up to the fact, that numerically
precise credences are hardly ever attainable in practice and
precise prior choices can thus be alleged arbitrariness or un-
justified make-belief of precision (see e.g. Goldstein, 2006;
Kass and Raftery, 1995). Following a truly intuitive gener-
alization principle, the robust Bayes Factor is constructed to
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Figure 2: Dependence of the Bayes Factor value (color) on
the mean µδ (x-axis) and variance σ2

δ (y-axis)
of the normal effect size prior within the second
exemplary analysis.

provide reliable results also in situations where prior knowl-
edge is partial: If one is unable to specify precise parameter
values in accordance with their prior knowledge, one might
still be able to locate parameters in value ranges and thus
specify intervals, which allow to represent the available un-
certainty in a more comprehensive way. At the same time,
the robust Bayes Factor approach upholds the notion that
subjective prior knowledge is a gain to statistical analyses
(compare e.g. Gelman et al., 2017; Matthews, 2011; Van-
paemel, 2010; Kass and Raftery, 1995). In that, it prompts
the respective researcher to reason about suitable param-
eter values and claim choices on parameter bounds, such
that the interval length reflects, but not exceeds, the actual
amount of uncertainty. In addition, prior assumptions are
laid out transparently through the set of prior distributions.
Furthermore, the robust Bayes Factor approach may be
approved for encouraging scientific consensus by enabling
multiple prior perspectives on the parameter of interest to
be merged into the set of prior distributions. The resulting
robust Bayes Factor might then yield greater acceptance
in the face of prior disagreement on a single precise prior
distribution (see e.g. Berger, 1990). One may even state
that the rBF result provides an analyst with an extended
overall impression of comparative evidence. Based on the
resulting interval length, (s)he may reflect about the Bayes
Factors overall robustness against differing hyperparameter
assumptions or individual uncertainty. As the resulting rBF

interval is considered and interpreted as an entity of its
own, cautious and solid conclusions are encouraged. The
demand for any evidence statement to be expressed with
reference to inherent prior imprecision, makes conclusions
less over-precise and withal more honest (see e.g. Augustin
et al., 2014).

Of course, the robust Bayes Factor approach has its limi-
tations. For the certain context employed within this paper,
the resulting robust Bayes Factor is a convex interval of
values. This, however, is not given in general and in certain
situations the robust Bayes Factor might only be a non-
convex set of values rather than an interval, which bears
difficulties for its interpretation. Assume a robust Bayes
Factor set contains two values, e.g. 3.0 and 3.2, but not
those values in between. The correct interpretation would
be that the data are evidence favoring H1 3.0 or 3.2 times as
much, but not e.g. 3.1 times as much, as H0. More research
is necessary on how to deal with this issue.

It may also be countered that the strengths of the robust
Bayes Factor approach are at cost of more vague statements
of comparative evidence. The expressiveness and clarity of
conclusions implies reasonably narrow rBF intervals and
if the rFB bounds are not either both above or below 1,
comparative evidence remains somewhat ambiguous, as in
the first part of the example (Section 3.2). If the specified
prior intervals of the hyperparameters are too broad to yield
conclusive results, one could either try to narrow them by
collecting additional information prior to the experiment or
collect additional data, as illustrated within the second part
of the example (Section 3.2). Finally, if neither is possible,
Berger (1990, p. 307) reasons that

”[...] then there are legitimate differences or un-
certainties in opinion which lead to different con-
clusions, and it seems wisest just to conclude that
there is no answer; more evidence is needed to
solve the ambiguity. Any ’alternative’ [approach]
which claims to do more, would simply be mask-
ing legitimate uncertainty by ’sweeping it under
the carpet’. ”

5. Outlook
The robust Bayes Factor was described for a first context of
two independent normally distributed samples with an im-
precise normal effect size prior within this paper. Besides
employing it within an applied scientific investigation, its
further development might comprise two different steps.
First, the robust Bayes Factor might be extended to different
experimental setups, such as those that assess correlations
or dependent variables within more than two groups. Sec-
ond, the restriction of the prior distributions being normal
within the prior set of distributions might be removed to
allow all desired shapes of prior distributions. Latter, how-
ever, might require a solution to interpreting non-convex
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sets of Bayes Factor values and advanced computational
methods to calculate respective Bayes Factor values, which
could be avoided within this paper due to the availability
of close form formulas.

Appendix A. R Code

R code to replicate the example and generate Figures 1
and 2 is provided electronically.
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Abstract
Applied real-world decisions are frequently guided by
the outcome of hypothesis-based statistical analyses.
However, most often relevant information about the
phenomenon of interest is available only imprecisely,
and misleading results might be obtained, in particular,
by either ignoring relevant information or pretending a
level of knowledge that is not given. In order to be able
to include (partial) information authentically in the im-
precise form it is available, this paper tries to extend
the framework of hypothesis-based Bayesian decision
making with simple hypotheses to be able to deal with
imprecise information about the three relevant quan-
tities: hypotheses, prior beliefs, and loss function. Al-
though straightforward at first glance, it appears that
by specifying the hypotheses imprecisely, Bayesian
updating of the prior beliefs might be inconsistent. In
that, this paper provides the basic mathematical for-
mulation to further extend imprecise hypothesis-based
Bayesian decision theory to more elaborate contexts,
such as those involving composite imprecise hypothe-
ses, and in addition highlights the necessity of paying
particular attention to the depicted updating issues.
Keywords: Hypotheses, Likelihood Ratio, Imprecise
Probabilities, Bayesian Decision Theory, Sequential
Updating, Inconsistency, Statistics in Psychological
Research

1. Introduction

In the face of the currently discussed reproducibility cri-
sis in psychological research (Ioannidis, 2005), Bayesian
statistics is gaining popularity (e.g. Van De Schoot et al.,
2017) also in this area. Classical hypotheses tests are ar-
gued to be replaced by the so called Bayes factor (e.g. Kass
and Raftery, 1995; Gönen et al., 2005; Rouder et al., 2009),
a Bayesian quantity for hypothesis comparisons, which
might be seen as a generalization of the likelihood ratio to
include prior information about the parameter of interest by
employing prior distributions on it. If these distributions are
degenerate, i.e. have all mass on a single parameter value,
the Bayes factor equals the likelihood ratio.

In addition to the prior distributions on the parameter,
a Bayesian analysis in the context of statistical hypothe-
ses requires prior probabilities of these hypotheses, which

might be interpreted as subjective belief in the respective
hypotheses and get updated by the data. It is the Bayes
factor, which quantifies the change in these subjective prob-
abilities (e.g. Morey et al., 2016), and therefore the Bayes
factor is interpreted as quantification of the evidence in the
data w.r.t. the hypotheses. The posterior probabilities of the
hypotheses might then be used to guide a decision together
with an appropriately specified loss function in the context
of Bayesian decision theory (see e.g. Berger, 1995; Huntley
et al., 2014).

In that, the changing focus onto Bayesian statistics within
psychological research might be seen as a step towards ris-
ing awareness of the distinction between evidence, belief
and decision in the context of an analysis of statistical
hypotheses (see e.g. Lavine and Schervish (1999) and espe-
cially Royall (2004)).

Naturally, statistical hypotheses depend on the real-world
research question, which might not always be unambigu-
ously formalized mathematically. Prior probabilities of the
hypotheses are subjective in nature and only rarely accessi-
ble as precise numerical values. The loss function depends
on a putative real-world decision problem such that a pre-
cise specification of the loss function might not be given by
the researcher.

Yet, certain potentially incomplete information about
hypotheses, prior beliefs and the loss function might be
available, such that both ignoring these information or spec-
ifying the respective quantities in an overly precise way
might yield misleading results or decisions. In order to
avoid untrustworthy results, it is thus necessary to allow
researchers to include information into a statistical analysis
specifically in the imprecise form it is available. Therefore,
this paper intends to formulate the simplest case (using
simple hypotheses) of hypothesis-based Bayesian decision
theory in a way to include partial information about hy-
potheses, prior beliefs and the loss function. This might
be seen as a fundamental, but necessary step to extend
the imprecise probability framework (Walley, 1991) to the
Bayes factor analyses that are recently applied in psycho-
logical research, working at the interface between statistical
developments and empirical sciences.

As mentioned above, there are two different types of
prior distributions inherent to a Bayes factor analysis:

© 2019 P. Schwaferts & T. Augustin.
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(hypothesis-based) priors on the parameters and a prior
on the hypotheses that is used to further guide decisions.
In that, the Bayes factor analysis might be generalized
within the framework of imprecise probabilities at these
two distinct parts. Allowing the priors on the parameter to
be specified imprecisely is restricted to the Bayes factor
analysis itself and given an account by Ebner et al. (2019).
However, considerations about allowing imprecise priors
on the hypotheses and imprecise quantities relevant for a
corresponding decision might apply to more situations than
typically addressed in a Bayes factor analysis. Therefore,
it will be given a separate account within this paper and
discussed by referring to the likelihood ratio, which might
be seen as both special case (using degenerate priors on the
parameters) and foundational basis (see e.g. Royall, 2004)
of the Bayes factor.

The present paper is structured as follows. Section 2 col-
lects the basic ingredients of the classical case of Bayesian
decision making based on two precise simple hypotheses.
This framework will in Section 3 be powerfully extended
to the situation where single hypotheses are interval-valued
and the loss functions and prior odds are imprecise. Sec-
tion 4 warns that, however, in this context some inconsis-
tency issues may arise under updating and assess them in
greater detail. Section 5 provides a numerical example as
illustration and Section 6 concludes with a brief outlook.

2. Precise Hypothesis-Based Bayesian
Decision Making

Assume a parametric statistical model, such that observed
data x = (x1, . . . ,xn) are modeled as realizations of inde-
pendent and identically distributed random variables Xi,
i = 1, . . . ,n, with parametric probability density f (xi|θ),
θ ∈Dθ , which specifies the joint density as

f (x|θ) =
n

∏
i=1

f (xi|θ) . (1)

All considered parameter vales θ are comprised within the
parameter space Dθ and, for the sake of simplicity (espe-
cially w.r.t. notation), the parameter is assumed to be a
single real-valued scalar here. Generalizations to multidi-
mensional parameters are possible, but are left to further
research.

Further assume two precise simple hypotheses

H0 : θ = θ0 vs. H1 : θ = θ1 , (2)

where θ0 and θ1 are precise hypothesized parameter val-
ues, which implies that one of these two values is con-
sidered to be true. In a Bayesian context there is a sub-
jective prior distribution on the hypotheses (p(H0) and
p(H1) = 1− p(H0)), forming the prior odds

π :=
p(H0)

p(H1)
. (3)

The prior odds can be updated by the observed data x via
Bayes rule to the posterior odds

p(H0|x)
p(H1|x)

=

f (x|θ0)·p(H0)
f (x)

f (x|θ1)·p(H1)
f (x)

= LRx(θ0,θ1) ·π , (4)

where

LRx(θ0,θ1) =
f (x|θ0)

f (x|θ1)
(5)

is the likelihood ratio and frequently referred to as Bayes
factor (see e.g. Liu and Aitkin, 2008), as both hypotheses
in equation (2) might be formulated by degenerate proba-
bility distributions with all probability mass on θ0 and θ1,
respectively.

In order to guide a decision between two actions a0 and
a1, a loss function

L : H ×A → R+
0

(H,a) 7→ L(H,a) (6)

with H = {H0,H1} and A = {a0,a1} need to be specified,
quantifying the “badness” of choosing a if H is true. The
expected posterior loss

ρ : A → R+
0

a 7→ p(H0|x)L(H0,a)+ p(H1|x)L(H1,a) (7)

can be used to find the optimal action(s)

a∗ = argmin
a∈A

ρ(a) . (8)

Assume that, as is common practice in empirical re-
search, the decision problem is formulated in regret form,
where a0 is associated with H0 and a1 with H1 such that
the correct decisions are evaluated to have zero loss, i.e.
L(H0,a0) = L(H1,a1) = 0. Then it is only necessary to
specify the ratio

k :=
L(H0,a1)

L(H1,a0)
(9)

in order to calculate the ratio of expected posterior losses

r :=
ρ(a1)

ρ(a0)
= π ·LRx(θ0,θ1) · k (10)

to determine

a∗ =

{
a0 if r > 1
a1 if r < 1

. (11)

For r = 1 any action might be chosen.
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3. Imprecise Hypothesis-Based Bayesian
Decision Making

Within applied research, it is typically extremely difficult to
specify the quantities θ0, θ1, π and k, which are necessary
to determine a∗, as precise values. This is due to the fact
that commonly some (potentially imprecise) information
is available and several choices of precise values for these
quantities are in accordance with it. Both ignoring the avail-
able relevant information and arbitrarily choosing among
those plausible values, can hardly be an optimal strategy.
Therefore, these quantities shall be specified imprecisely
as an interval of values. Following Dubois’ distinction (cp.
Dubois, 1986, Section 1.4), these intervals have to be in-
terpreted as conjunctive sets: they must be treated as a
generalization of a single value and thus as an entity of its
own. In that, as the interval of values replaces the respective
precise value, the distribution is parametrically constructed
by an interval (e.g. Augustin et al., 2014, Section 7.3.2).
Also note that all four quantities θ0, θ1, π and k might
be specifiable independently of each other, which allows
subsequent calculations to be straightforward.

3.1. Imprecise Simple Hypotheses

Instead of a precise parameter value θ , the (imprecise)
density of the data x is now dependent on an imprecise
interval-valued parameter Θ = [Θ,Θ], i.e.

f (x|Θ) = { f (x|θ)|θ ∈Θ} (12)

with Θ and Θ being precise valued bounds on the parameter
that are considered as defining the imprecise parameter Θ.
Accordingly, the parameter space of Θ is now the set of all
closed parameter intervals

DΘ = {[Θ,Θ]|Θ ∈Dθ ,Θ ∈Dθ ,Θ≤Θ} . (13)

Consider imprecise, but simple hypotheses

H0 : Θ = Θ0 vs. H1 : Θ = Θ1 , (14)

where

Θ0 = [Θ0,Θ0] , (15)

Θ1 = [Θ1,Θ1] (16)

and Θ0 (or Θ1) is the lower bound as well as Θ0 (or Θ1)
the upper bound for the simple hypothesized parameter
value Θ under H0 (or H1). Although specified as intervals
within this paper, simple imprecise hypotheses might also
be generalized to hypothesize (convex) sets of parameters
in general. Note that these hypotheses are not composite,
as they consist only of one single, but imprecisely speci-
fied value. In contrast, composite hypotheses, for instance
specified as

H0 : θ ∈ [Θ0,Θ0] vs. H1 : θ ∈ [Θ1,Θ1] , (17)

would contain all precise parameter values within the re-
spective intervals. That is exactly the crucial difference in
interpreting composite and simple imprecise hypotheses.
While the latter states that there is only one single parame-
ter value which represents the hypothesis, yet there is not
enough information available to precisely specify this sin-
gle value, the former states that all the different parameter
values, as a whole, represent the hypothesis. In that, com-
posite hypotheses bound the unknown parameter value of
a precise sampling model, while an imprecise parameter
specifies an imprecise sampling model (e.g. Augustin et al.,
2014, Section 7.2.5). As an outlook, composite imprecise
hypotheses would be subsets of DΘ containing more than
one parameter interval.

The Bayesian account to composite hypotheses is to em-
ploy a prior distribution on the hypothesized values and to
calculate the respective marginal density of the observed
data (as in a typical Bayes factor analysis (e.g. Morey et al.,
2016)). While this prior is on the parameter values them-
selves within a precise composite hypothesis, it is on param-
eter intervals within an imprecise composite hypothesis. A
simple imprecise hypothesis might therefore be described
by a degenerate distribution with all mass on the respective
parameter interval.

Accordingly, the fundamental technical difference be-
tween precise composite and simple imprecise hypotheses
within the Bayesian framework is that only former requires
the specification of a prior distribution on the hypothesized
parameter values. In that, former might be incorporated
within the Bayesian analysis by means of a marginal den-
sity and latter by means of the imprecise-valued density as
in equation (12).

3.2. Imprecise Likelihood Ratio, Imprecise Prior
Odds, and Imprecise Loss Function

Given data x, instead of a precise likelihood ratio, there is
an interval-valued likelihood ratio

LRx = [LRx,LRx] , (18)

with

LRx = min
θ0∈Θ0
θ1∈Θ1

LRx(θ0,θ1) , (19)

LRx = max
θ0∈Θ0
θ1∈Θ1

LRx(θ0,θ1) . (20)

Note that within this paper a precise likelihood ratio
value is denoted with its dependence on θ0 and θ1, whereas
a interval-valued likelihood ratio is denoted without this
dependence.

In addition, the prior odds

[π,π] (21)
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might be interval-valued with π being the lower bound and
π being the upper bound of the subjectively specified prior
odds, leading to the imprecisely defined posterior odds

[LRx ·π , LRx ·π] . (22)

The loss function might also be specified imprecisely by

[k,k] , (23)

where, analogously, k is the lower bound and k is the up-
per bound for stating, in generalization of (9), how much
"worse" a1 would be under H0 than a0 would be under
H1, if deciding correctly has 0 "badness" (for a more gen-
eral account on robust loss functions see Dey and Michaes
(2000)).

In contrast to the precise case, the ratio of expected
posterior losses r, which was used to determine the optimal
action, is not precise anymore:

[r,r] , (24)

where

r = π ·LRx · k (25)

r = π ·LRx · k (26)

can be calculated from the respective lower and upper
bounds of π , LRx and k, as all these quantities are posi-
tive, and they vary independently. If one of these quantities
is still precise, its lower and upper bounds are equal, for
instance for a precise k it holds that k = k = k.

The optimal action is

a∗ =

{
a0 if r ≥ 1
a1 if r ≤ 1

, (27)

however, for r < 1 < r, the decision cannot be guided un-
ambiguously and more information is required. This might
be accomplished by collecting more data, such that the
imprecise likelihood ratio interval will become smaller, or
by obtaining more information about the decision problem,
such that θ0, θ1, π or k might be specified more accurately,
i.e. by smaller intervals. With this additional information,
the resulting imprecise ratio of expected posterior losses
[r,r] might become smaller and with sufficient information
might exclude 1, allowing the determination of the opti-
mal action a∗. This will be illustrated by an example in
Section 5.

Certainly, not being able to determine an optimal action
in the context of a given data set might at first glance seem
to be a disadvantage of the imprecise framework. However,
this might only occur if some of the available information
is imprecise, such that specifying precise values for the
necessary quantities is arbitrary, can be characterized as
overprecision and might yield potentially misleading, en-
forced decisions. Nevertheless, if necessary, enforcing a
decision is still possible for r < 1 < r, yet the researcher
is now aware of its spuriousness, which might have been
masked due to the overprecision within the precise case.

4. Potential Bayesian Updating Issues with
Imprecise Hypotheses

Although within the last section simple hypotheses were
allowed to be imprecisely specified, this might be accom-
panied by Bayesian updating inconsistencies that appear
while sequentially considering two separate data sets. On
that note, (e.g. Seidenfeld, 1994; Huntley et al., 2014) al-
ready emphasized the importance of being cautions with
sequential decision problems in the context of imprecise
probabilities.

4.1. Precise Case

Consider the presence of a second data set y = (y1, . . . ,ym)
being modeled analogously to x, i.e.

f (y|θ) =
m

∏
i=1

f (yi|θ) , (28)

and denote z = (x,y) as the merged data set with

f (z|θ) =
n+m

∏
i=1

f (zi|θ) = f (y|θ) · f (x|θ) . (29)

Therefore, with precise simple hypotheses as in equation
(2) it holds that

LRz(θ0,θ1) = LRy(θ0,θ1) ·LRx(θ0,θ1) (30)

and the posterior odds after seeing all the data z

LRz(θ0,θ1) ·π = LRy(θ0,θ1) ·LRx(θ0,θ1) ·π (31)

(as well as the ratio of expected posterior losses r) do not
depend on whether the data was merged or not.

4.2. Imprecise Case

However, in the context of the imprecise hypotheses from
equation (14), define

(θ x
0 ,θ

x
1 ) := argmin

(θ0,θ1):
θ0∈Θ0,θ1∈Θ1

LRx(θ0,θ1) , (32)

(θ y
0 ,θ

y
1 ) := argmin

(θ0,θ1):
θ0∈Θ0,θ1∈Θ1

LRy(θ0,θ1) , (33)

(θ z
0,θ

z
1) := argmin

(θ0,θ1):
θ0∈Θ0,θ1∈Θ1

LRz(θ0,θ1) (34)

as the respective tuples of hypothesized parameter values,
which lead for each data set to the respective minimal like-
lihood ratio. As in general

θ x
0 6= θ y

0 6= θ z
0 , (35)

θ x
1 6= θ y

1 6= θ z
1 , (36)

it follows that

f (z|θ z
0) 6= f (y|θ y

0 ) · f (x|θ x
0 ) , (37)
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f (z|θ z
1) 6= f (y|θ y

1 ) · f (x|θ x
1 ) (38)

and accordingly

LRz 6= LRy ·LRx . (39)

Analogue considerations lead to

LRz 6= LRy ·LRx , (40)

and an example of this inequality is provided within Sec-
tion 5.

Therefore, in general, the imprecise posterior odds after
considering the merged data

[LRz ·π , LRz ·π] 6= [LRy ·LRx ·π , LRy ·LRx ·π] (41)

differ from those after subsequently considering both data
sets separately, which treats the posterior odds after the first
data set x as prior odds for the second data set y.

Accordingly, it might seem that the imprecise ratio of
expected posterior losses and the resulting decision might
depend on whether the data was merged or not. In that, the
Bayesian updating procedure for the odds on the hypotheses
might be characterized as ‘inconsistent’ in terms of Rüger
(1998, p. 190)’s work on the foundations of statistics.

4.3. Evaluation

Evaluating these updating inconsistencies in greater detail,
two characteristics emerge.

First, although the interval-valued likelihood ratio LRx of
the data set x might be outlined by its bounds LRx and LRx,
consistent updating dictates to also consider the dependence
of the likelihood ratio values within LRx on the parameter
values θ0 and θ1 as the result of the analysis.

This can be seen based on the following considerations.
The interval-valued likelihood ratio LRx of equation (18)
consists of all likelihood ratio values obtained with param-
eters θ0 ∈Θ0 and θ1 ∈Θ1, i.e.

LRx = {LRx(θ0,θ1)|θ0 ∈Θ0,θ1 ∈Θ1} . (42)

In this regard, the values within the interval-valued likeli-
hood ratio of the merged data z might be decomposed using
equation (30) to

LRz = {LRz(θ0,θ1)|θ0 ∈Θ0,θ1 ∈Θ1} (43)
= {LRy(θ0,θ1) ·LRx(θ0,θ1)|θ0 ∈Θ0,θ1 ∈Θ1} . (44)

It appears that for each value within LRz the complete data
set has to be evaluated using the same parameter values θ0
and θ1. However, for calculating e.g. LRy ·LRx, the first part
of the data x was evaluated with different parameter values
(θ x

0 and θ x
1 ) than the second part of the data y (evaluated

with θ y
0 and θ y

1 ). Accordingly, the value LRy ·LRx might not
be contained within LRz and updating might be inconsistent.

To enable consistent updating, from the first analysis of data
set x, all values within the interval-valued likelihood ratio
LRx together with their dependence on θ0 and θ1, not only
the bounds LRx and LRx, are necessary to calculate the final
interval-valued likelihood ratio LRz in a subsequent analysis
of both data sets x and y using equation (44).

Second, the values LRy ·LRx and LRy ·LRx might be con-
sidered as approximation of the interval LRz by providing
outer bounds, i.e.

LRz = [LRz,LRz]⊆ [LRy ·LRx,LRy ·LRx] . (45)

This becomes apparent by considering the lower bound LRz,
which is obtained with parameter values θ z

0 ∈Θ0 , θ z
1 ∈Θ1.

Applying equation (30) leads to

LRz = LRz(θ z
0,θ

z
1) = LRy(θ z

0,θ
z
1) ·LRx(θ z

0,θ
z
1) (46)

and as LRx and LRy are minima, it also holds that

LRx ≤ LRx(θ z
0,θ

z
1) (47)

LRy ≤ LRy(θ z
0,θ

z
1) , (48)

so that together (as all likelihood ratios are positive)

LRy ·LRy ≤ LRy(θ z
0,θ

z
1) ·LRx(θ z

0,θ
z
1) = LRz . (49)

Analogue considerations lead to

LRy ·LRy ≥ LRz , (50)

finally allowing the approximation in equation (45).

5. Example
A short fictitious example shall serve as illustration (repli-
cable with the R code in the electronic appendix).

Person A provides a huge amount of allegedly fair coins
and offers a bet to person B for 1C: Person A will randomly
take one of the coins and flip it. If tails, then person B will
get back 4C. Naturally, person B is suspicious about the
coins being fair and eventually obtains the permission to
examine some coins. Based on the outcome of that sample,
person B will have to decide whether to accuse person A
of cheating (action a1) or not (action a0).

Modelling the coin flips as independent Bernoulli experi-
ments with parameter p for the probability of heads, person
B considers the possibility of the coins being fair with the
precise null hypothesis H0 : p = 0.5. However, person B is
unsure about the parameter p if person A is cheating. Due
to the offer of person A, p might be at least 0.75, but on
the other hand, if p might be too high, say p > 0.9, it might
be too suspicious. Person B regards those parameter values
[0.75,0.9] as plausible, but is not able to further describe
the plausibility of each of these parameter value. Further-
more, person B considers the possibility that different coins
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might have (slightly) different probabilities of heads and,
therefore, chooses as alternative hypothesis the imprecise
simple hypothesis H1 : p = [0.75,0.9].

The loss L(H1,a0) of not doing anything if the coins
are truly biased is not too high, as the price of the bet is
only 1C. Accusing person A of cheating if the coins are
actually fair (L(H0,a1)), however, might result in a rather
unpleasant situation. Naturally, both these losses are on a
different scale, but need to be expressed in relation to each
other. As this is rather difficult, Person B figures out that
k might be somewhere between 8 and 20, being unable to
further specify this value.

In a situation before checking the coins, person B is also
not exactly sure what to belief about the coins. Certainly,
with the offer of person A, the alternative hypothesis is at
least as plausible as the null hypothesis. However, the coins
look normal and so the null hypothesis is not absolutely
implausible. After some consideration, person B determines
that the prior odds are captured by π = [1,4].

Now, person B flips n = 10 coins, yielding heads x = 9
times. Based on this observation and the specifications
given, person B calculates the interval-valued likelihood
ratio

LRx = [0.025,0.052] (51)

and the ratio of expected posterior losses

[0.202,4.162] , (52)

which does not unambiguously favor one of the actions, as
it contains the value 1.

Additional information is necessary to do so and person
B flips another m = 10 coins, yielding heads y = 5 times.
The corresponding interval-valued likelihood ratio is

LRy = [4.214,165.4] . (53)

Combining those interval-valued likelihood ratios yields

[LRy ·LRy,LRy ·LRy] = [0.105,8.601] , (54)

but knowing of the updating inconsistencies, person B treats
this interval only as an approximation, resulting in an ap-
proximation of the ratio of expected posterior losses by

[0.843,688.1] . (55)

Still the value 1 is included within the interval and this
approximation does not allow an unambiguous decision.

In order to account for the updating inconsistencies, per-
son B merges both data sets z= 9+5= 14 with n+m= 20,
leading to the interval-valued likelihood ratio

LRz = [0.219,4.169] , (56)

which is truly different to and included by the interval in
equation (54). The resulting ratio of expected posterior
losses is

[1.754,333.5] , (57)

which finally favors to not accuse person A of cheating
(action a0).

By providing the data (n, m, x and y), sufficient infor-
mation is available for subsequent analyses to consider the
dependency of respective likelihood ratio values on the
parameter θ1.

Person B specified the relevant quantities as best as possi-
ble to the partially available knowledge and the analysis of
the first data set indicated a lack of information for guiding
the decision. A precise account of the situation, on the other
hand, might have pretended a precision, which is not avail-
able. For example, person B might have arbitrarily chosen
H1 : p = 0.8, k = 8 and π = 1 of those possible values that
are in accordance with the available knowledge, leading
to a precise likelihood ratio of LRx(0.5,0.8) = 0.036 and a
ratio of expected posterior losses of r = 0.29 that favoured
a1.

Accordingly, person B would have accused person A
of cheating, although the available information are rather
ambiguous. Even worse, person B would not even be aware
of the lack of information, as it was masked by the false
precision of the arbitrarily chosen values.

6. Concluding Remarks

This paper elaborated on how to include partial information
about simple hypotheses, prior beliefs and the loss function
in the context of hypothesis-based Bayesian decision the-
ory and depicted inconsistencies within the procedure of
Bayesian updating that might arise from the use of impre-
cise simple hypotheses.

Typically, there is only one data set for the statistical
analysis of an empirical study, so that the updating incon-
sistencies as depicted in Section 4 might not become visible.
Furthermore, for guiding the decision based on a single data
sets, within the context employed in this paper, only the
bounds of the interval-valued likelihood ratio are necessary.
Nevertheless, properly reporting the results of the analysis
also requires to include the dependence of the likelihood ra-
tio values within the interval-valued likelihood ratio on the
parameter values. Naturally, as an alternative, the data can
be made publicly accessible, so that all relevant informa-
tion necessary for subsequent analyses might be extracted
directly from the data.

Although two data sets were considered to outline the
updating inconsistencies, this cannot be regarded as an
unnatural approach, as one of the central characteristics
of Bayesian learning is to employ a posterior distribution
obtained from previous data as prior distribution for a sub-
sequent analysis. Certainly, this reflects the natural way to
accumulate information.

In addition, remark that within this paper, the (imprecise)
prior odds are updated first to obtain the posterior odds
before determining a potentially optimal decision. How-
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ever, a different procedure might be possible as well. For
each hypothesis a decision strategy might be calculated,
which maps the potentially observed data to the optimal ac-
tion. In that, a decision strategy might be chosen first based
on the prior odds and then the optimal decision might be
determined based on the observed data. While this equiva-
lence of prior risk optimality and posterior loss optimality
holds in the traditional case of precise probabilities and
loss functions, it is no longer satisfied in more general set-
tings (see explicitly Augustin (2003) and more generally
the references in Section 4).

Sometimes, an applied researcher is not primarily in-
terested in guiding a decision, but just in investigating a
real-world phenomenon. In this case, a hypothesis-based
statistical analysis might be superfluous and descriptive
statistics seem to be sufficient (see also the literature about
“new statistics”, e.g. Cumming, 2014). Nevertheless, all
information should be provided, such that other researchers
are able to guide a decision.

Furthermore, the only quantities treated imprecisely
within this paper were the hypotheses, the prior odds and
the loss function, however, also the data themselves might
be available imprecisely, representing ambiguity in the data
values. Although, most commonly, data values in psycho-
logical research represent scores that are designed to be
precise, extending this framework to allow imprecise data
looks very promising, as the data are independent of the
other imprecisely specified quantities.

In summary, this paper addressed the imprecise gener-
alization of hypothesis-based Bayesian decision making
using simple hypothesis and, therefore, employed the likeli-
hood ratio. A Bayes factor analysis typically employs com-
posite hypotheses as well and might therefore be considered
as more complex than the context depicted here. Yet, even
within this simple context updating inconsistencies might
occur, emphasizing the importance of investigating them in
greater detail particularly with regard to their presence in
analyses using Bayes factors.

Appendix A. R Code

R code to replicate the example is provided electronically.
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Abstract
Statistical analyses with composite hypotheses are
omnipresent in empirical sciences, and a decision-
theoretic account is required in order to formally con-
sider their practical relevance. A Bayesian hypothesis-
based decision-theoretic analysis requires the specifi-
cation of a prior distribution, the hypotheses, and a loss
function, and determines the optimal decision by mini-
mizing the expected posterior loss of each hypothesis.
However, specifying such a decision problem unam-
biguously is rather difficult as, typically, the relevant in-
formation is available only partially. In order to include
such incomplete information into the analysis and to
facilitate the use of decision-theoretic approaches in
applied sciences, this paper extends the framework
of hypothesis-based Bayesian decision making with
composite hypotheses into the framework of impre-
cise probabilities, such that imprecise specifications
for the prior distribution, for the composite hypothe-
ses, and for the loss function are allowed. Imprecisely
specified composite hypotheses are sets of parameter
sets that are able to incorporate blurring borders be-
tween hypotheses into the analysis. The imprecisely
specified prior distribution gets updated via general-
ized Bayes rule, such that imprecise probabilities of
the (imprecise) hypotheses can be calculated. These
lead – together with the (imprecise) loss function – to a
set-valued expected posterior loss for finding the opti-
mal decision. Beneficially, the result will also indicate
whether or not the available information is sufficient to
guide the decision unambiguously, without pretending
a level of precision that is not available.
Keywords: Decision Theory, Bayesian Statistics,
Composite Hypotheses, Imprecise Probabilities

1. Introduction

There is an increased awareness within the applied sciences
that it is important to consider the practical relevance of
an effect in addition to its statistical significance (see e.g.
Kirk, 1996). Implemented in hypothesis-based methodolo-
gies, this relates to specifying the hypotheses reasonably
w.r.t. their practical implications (see e.g. methods using
regions of practical equivalence (Kruschke, 2015, 2018)

or equivalence tests (Lakens, 2017; Lakens et al., 2018)).
Practical implications naturally depend on what results are
used for. Aptly put by Berger and Wolpert (1988, p. 55):
“But no matter what is meant by inference, if it is to be of
any value, then somehow it must be used, or acted upon,
and this does indeed lead back to the decision-theoretic
framework.” However, a decision-theoretic analysis (see
e.g. Berger, 1985) is typically avoided in applied sciences
(cp. e.g. the recommendation in Rouder et al., 2018, p. 110).
This might be explained by the fact that many required
quantities are very difficult to specify unambiguously, as
relevant information is typically available only partially.

In order to facilitate such a decision-theoretic analysis,
this paper intends to extend hypothesis-based analyses into
a decision-theoretic framework that allows for impartial
information to be included properly, building on the frame-
work of imprecise probabilities (see e.g. Augustin et al.,
2014a; Walley, 1991). Therefore, previous elaborations
on imprecise hypothesis-based Bayesian decision making
(Schwaferts and Augustin, 2019) shall be extended to com-
posite hypotheses.

The paper starts by presenting the precise framework
of hypothesis-based Bayesian decision making with com-
posite hypotheses in Section 2, which serves as basis for
its extension to the framework of imprecise probabilities
in Section 3 by allowing imprecisely specified prior distri-
butions (Section 3.1), composite hypotheses (Section 3.2),
and loss functions (Section 3.3). A schematic example is
provided in Section 4, followed by a discussion about scal-
ability (Section 5.1) and the conditional perspective (Sec-
tion 5.2), as well as by a brief outlook in Section 6.

2. Precise Hypothesis-Based Bayesian
Decision Making

Within the context of decision making (for an extensive
overview see Berger, 1985), the observed data x are com-
monly assumed to be parametrically distributed with den-
sity f (x|θ) and parameter θ ∈Θ. Although generalizations
to multidimensional parameters are possible, the parameter

© P. Schwaferts & T. Augustin.
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θ is assumed to be a single real-valued scalar within this
paper to keep the notation simple.

In the Bayesian setting, there is a prior distribution πθ
on the parameter θ with density π(θ). In the presence of
the observed data x, this prior distribution gets updated via
Bayes rule to the posterior distribution πθ |x with density

π(θ |x) = f (x|θ) ·π(θ)
f (x)

, (1)

where
f (x) =

∫

Θ
f (x|θ) ·π(θ)dθ (2)

is the marginal density of the data x, assumed to be strictly
positive for all x.

Within a Bayesian analysis, results are derived from this
posterior distribution πθ |x exclusively, e.g. by considering
mean, median, or certain credibility intervals (see e.g. Kr-
uschke, 2015). If a research question contrasts different
theoretical positions, these need to be formalized as statisti-
cal hypotheses, which are then evaluated using the posterior
distribution. Formally, composite hypotheses

h0 : θ ∈Θ0 vs. h1 : θ ∈Θ1 (3)

are subsets Θ0,Θ1 ⊂Θ of the parameter space.
For the given prior distribution on θ and the observed

data x, the posterior probabilities of the hypotheses are

p(h0|x) := p(Θ0|x) =
∫

Θ0

π(θ |x)dθ , (4)

p(h1|x) := p(Θ1|x) =
∫

Θ1

π(θ |x)dθ , (5)

where we assume non-degenerated cases with p(h0|x)> 0
and p(h1|x)> 0.

Frequently, contrasting statistical hypotheses (and the
corresponding theoretical positions) is related to an applied
research question or some practical implications, being
formalized by a decision problem. Consider the case of a
decision between two actions a0 and a1 (as only two hy-
potheses are considered within this paper). A loss function

L : H ×A → R+
0 : (h,a) 7→ L(h,a) , (6)

with H = {h0,h1} being the hypothesis space and A =
{a0,a1} being the action space, quantifies the “badness” of
deciding for a ∈A if h ∈H is true.

Typically, deciding for a1 if h1 is true and for a0 if h0
is true is considered to be a correct decision, such that –
without loss of generality – the loss function can be stated
in regret form, in which deciding correctly has zero loss, i.e.
L(h1,a1) = L(h0,a0) = 0. The remaining values refer to
the type-I-error (L(h0,a1)) and the type-II-error (L(h1,a0))
and are assumed to be non-zero. In that, it is possible here
to specify the loss function L by one single quantity

k :=
L(h0,a1)

L(h1,a0)
, (7)

which specifies how bad the type-I-error is compared to
type-II-error (if deciding correctly has zero loss).

As the hypotheses (equation (3)) represent sets of pa-
rameters, the loss function L – which was defined on the
hypothesis space H and the action space A within this
paper (equation (6)) – might also be depicted w.r.t. the
parameter space Θ and the action space A , formally

Lθ : Θ×A → R+
0 : (θ ,a) 7→ Lθ (a) . (8)

An example of such a loss function in regret form w.r.t.
the hypotheses is illustrated in the context of the example
(Section 4) in Figure 1 (top).

With the expected posterior loss ρ : A → R+
0 :

a 7→ ρ(a) = L(h1,a) · p(h1|x)+L(h0,a) · p(h0|x) , (9)

the ratio of expected posterior losses

r : =
ρ(a1)

ρ(a0)
=

L(h0,a1) · p(h0|x)
L(h1,a0) · p(h1|x)

(10)

= k · p(h0|x)
p(h1|x)

(11)

allows to determine the set A ∗ of optimal actions (in the
context of the conditional Bayes decision principle Berger,
1985, p. 16)

A ∗ =





{a0} if r < 1
{a1} if r > 1
{a0,a1} if r = 1

. (12)

Both actions are optimal, if r = 1. In this case, one might
arbitrarily select one of the actions, as both actions have
exactly the same expected posterior loss and can, therefore,
be considered as practically equal.

3. Imprecise Hypothesis-Based Bayesian
Decision Making

Within the framework of hypothesis-based Bayesian deci-
sion theory, imprecision shall be investigated for the prior
distribution, the composite hypotheses, and the loss func-
tion, as an unambiguous precise specification of those quan-
tities appears to bear the most difficulties for applied scien-
tists (in contrast to precise data, likelihoods and parameters).
Nevertheless, an extension towards imprecise data, impre-
cise likelihoods (see e.g. Walley, 1991, ch. 8) and imprecise
parameters (for imprecise parameters in the context of sim-
ple hypotheses Schwaferts and Augustin, 2019) seems very
powerful and shall be considered in future developments.

3.1. Imprecise Prior Distribution

A Bayesian analysis requires the specification of a prior dis-
tribution on the parameter. However, it is often impossible

2
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to determine one single precise prior distribution describing
adequately the extent and homogeneity of the knowledge
at hand (e.g. Augustin et al., 2014b, Section 7.2). This im-
possibility is further illustrated by the fact that even the
interpretation of a prior distribution is not unambiguously
agreed on, with interpretations as knowledge (e.g. in Jaynes,
2003) or information (e.g. in Berger, 1985) or degrees of be-
lief (e.g. in Jeffreys, 1961) or uncertainty (e.g. in Kruschke,
2015) about the parameter before observing the data. In-
stead, following the framework of imprecise probabilities
(Walley, 1991), a set of prior distributions is considered
to be more suitable. This set shall be denoted by Πθ and
referred to as imprecise prior distribution. It constitutes a
quantity of its own and represents the prior situation. This
imprecise prior gets updated after observing the data x to
an imprecise posterior distribution

Πθ |x =
{

πθ |x
∣∣πθ ∈Πθ

}
, (13)

where each posterior distribution πθ |x is obtained via Bayes
rule (equation (1)) from one of the prior distributions
πθ ∈Πθ . Updating such a set of prior probabilities element
by element is very natural in the context of Bayesian sensi-
tivity analyses and so-called robust Bayesian approaches
(e.g. Rios Insua and Ruggeri, 2000). Moreover, it can be
justified by Walley’s general coherence theory (Walley,
1991, Chapter 6ff.), where equation (13) is deduced from
Walley’s generalized Bayes rule.1

The resulting posterior distribution Πθ |x represents the
posterior situation (given the prior Πθ and the data x) and
underlies all further derivations in a Bayesian analysis.

3.2. Imprecise Composite Hypotheses

If two theoretical positions should be contrasted with each
other, these need to be formalized as statistical hypotheses.
However, determining which parameter values correspond
to which theoretical position might not be unambiguous for
all parameter values θ . To account for this, a hypothesis
should comprise not only a single set of parameters (as in
equation (3)) but a set of parameter sets. Denote these sets
of parameter sets as

[Θ]0 := {Θ0 ⊂Θ |Θ0 reasonable under H0} (14)
[Θ]1 := {Θ1 ⊂Θ |Θ1 reasonable under H1} , (15)

where [Θ]0 contains all parameter sets Θ0 that are reason-
able for one hypothesis and [Θ]1 contains all parameter sets
Θ1 that are reasonable for the other hypothesis.

These sets are considered as entities on their own and
formalize the theoretical positions that should be contrasted
with each other, considering the available information as is.

1. See, in particular, the corresponding lower envelope theorem (Wal-
ley, 1991, Section 6.4.2) and (Walley, 1991, Section 7.8.1) on the
coherence of envelopes of standard Bayesian inference.

Accordingly, the respective imprecisely specified hy-
potheses are

H0 : θ ∈ [Θ]0 vs. H1 : θ ∈ [Θ]1 . (16)

This notation can be read as: The imprecise hypothesis H0
states that the parameter θ is of a set Θ0, which itself is
only vaguely defined by [Θ]0 (H1 analogously).

The crucial difference between precise hypotheses (equa-
tion (3)) and imprecise hypotheses (equation (16)) is that
in the precise case, a certain parameter value θ might be
assigned to either one hypothesis, the other hypothesis,
both hypotheses (such that hypotheses are overlapping), or
no hypothesis (such that this parameter value is not con-
sidered at all), while in the imprecise case, the assignment
of a certain parameter value θ to the hypotheses might be
any combination of these four options. Also note that the
imprecise parameter sets [Θ]0 and [Θ]1 are different from

⋃

Θ0∈[Θ]0

Θ0 = {θ ∈Θ |θ ∈Θ0,Θ0 ∈ [Θ]0} (17)

⋃

Θ1∈[Θ]1

Θ1 = {θ ∈Θ |θ ∈Θ1,Θ1 ∈ [Θ]1} , (18)

which would represent two – most likely overlapping –
precise hypotheses, and not two imprecisely specified hy-
potheses. Precise overlapping composite hypotheses imply
that there is certainty that some parameter values θ ∈ Θ
are contained in both hypotheses, while the imprecise com-
posite hypotheses state that there is uncertainty to which
hypothesis some parameter values might be attributed. In
that, latter hypotheses inherit far less requirements on the
available information for their specification.

Although these formulations of imprecisely specified
hypotheses might be employed in statistical analyses with-
out being embedded into the decision theoretic context,
this paper focuses on their use for guiding decisions. Then,
imprecisely specified hypotheses might also be expressed
by an imprecision in the parameter-based loss function Lθ
(equation (8)), as illustrated in Figure 1 (center).

In order to obtain the (imprecise) posterior probabili-
ties P(H0|x) and P(H1|x) of the imprecise hypotheses H0
and H1 using the imprecise posterior distribution Πθ |x,
one might consider each combination of the distributions
πθ |x ∈Πθ |x and the parameter sets Θ0 ∈ [Θ]0 or Θ1 ∈ [Θ]1,
respectively, using equations (4) and (5):

P(H0|x) =
{

p(h0|x)
∣∣Θ0 ∈ [Θ]0,πθ |x ∈Πθ |x

}
(19)

P(H1|x) =
{

p(h1|x)
∣∣Θ1 ∈ [Θ]1,πθ |x ∈Πθ |x

}
. (20)

The (imprecise) ratio between these two imprecise quan-
tities is
[

P(H0|x)
P(H1|x)

]
:=
{

p(h0|x)
p(h1|x)

∣∣∣∣ p(hi|x) ∈ P(Hi|x), i = 0,1
}

(21)

3
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with supremum

P := sup
[

P(H0|x)
P(H1|x)

]
(22)

and infimum

P := inf
[

P(H0|x)
P(H1|x)

]
. (23)

3.3. Imprecise Loss Values

Typically, the value k (see equation (7)), which completely
specifies the loss function (as in Section 2), is difficult to
specify unambiguously as a precise value due to insufficient
information. An imprecise loss function, however, allows
to consider a set K of reasonable values for k (illustrated in
Figure 1, bottom).

The imprecise ratio of expected posterior losses is a set

R :=
{

r = k · p(h0|x)
p(h1|x)

∣∣∣∣ k ∈ K,
p(h0|x)
p(h1|x)

∈
[

P(H0|x)
P(H1|x)

]}

(24)
that considers all obtainable ratios r of expected posterior
losses (equation (11)) that arise within the imprecisely spec-
ified setting.

With the supremum K := supK and infimum K := infK
of K, the imprecise ratio of expected posterior losses R is
bounded by

R := supR = K ·P (25)
R := infR = K ·P , (26)

as all these quantities are non-negative.
Now, the set A ∗ of optimal actions is

A ∗ =





{ } if R < 1 < R
{a0} if 1≤ R,1 < R
{a1} if R < 1,R≤ 1
{a0,a1} if R = R = 1

. (27)

The case with R = R depicts the precise case (as in Sec-
tion 2) generalized within the imprecise framework. For
R < 1 < R, the available information is not sufficient to un-
ambiguously declare one of the actions as optimal. There-
fore, the set A ∗ of optimal actions is empty and the deci-
sion should be withheld. If so, further information about
the imprecisely specified quantities might be obtained, such
that they can be specified more precisely (i.e. by smaller
sets), or additional data might be collected, allowing to
obtain a less imprecise ratio of expected posterior losses R
to obtain an optimal action unambiguously.

In a sense, one might say to be “indecisive” if A ∗ = { }
or if A ∗ = {a0,a1}, as both cases do not yield a single
optimal action. However, these cases are fundamentally
different. In the first case, there is not enough information
to declare one action as superior, in the second case, there

is enough information to state that both actions should be
rated as practically equal. In that, we want to emphasize
that an action is to be considered optimal within this paper,
if there is enough information available to declare it as
superior or practically equal to the other action (or actions;
for the more general case see Section 5.1).

4. Example
Does drug Z help to treat the symptoms of disease D, mea-
sured on scale S? Respective actions are

a0: do not administer drug Z to patients with disease D

a1: administer drug Z to patients with disease D

To assess this question, a team of investigators plans to
run an experiment, in which a number n = 100 of patients
with disease D are treated with drug Z and the change s j
( j = 1, . . . ,100) of their symptoms on a metric scale S is
measured.

Previous investigations showed that treating patients with
disease D with a placebo did not increase the symptoms and
the standard deviation of the change in symptoms on scale S
was 15. Therefore (and for the sake of simplicity within this
example), the changes s j ( j = 1, . . . ,100) are modelled as
(independent and identically) normally distributed random
quantities S j

iid∼ N(δ ,(15)2), where the effect parameter
δ ∈ ∆ =R represents the difference in change of symptoms
compared to the zero-change of the placebo.

A prior distribution for δ is difficult to determine. Al-
though the investigators agree that a normal distribution
δ ∼ N(µ,σ2) might be reasonable (with µ ∈M and σ ∈ Σ,
such that the hyperparameter space is M×Σ), they disagree
slightly about the specification of the hyperparameters. Af-
ter some discussions they determine that the set

Πδ =
{

N(µ,σ2)
∣∣µ ∈ [3,12],σ ∈ [10,20]

}
(28)

covers all different opinions about the hyperparameters,
and decide to use it as imprecise prior distribution.

Further, determining whether (a1) or not (a0) to adminis-
ter drug Z to treat disease D for which effect values δ is not
easy. The investigators try to consider the consequences of
different scenarios, but these cannot be outlined unambigu-
ously as this is a new field of research and some essential
information is still pending from other investigations. They
can agree that it is safe to assume that effects δ smaller
than δ = 5 do not justify administering the drug Z due to
adverse effects, and that effects δ larger than δ = 8 do
justify administering the drug Z as the benefits outweigh
the adverse effects. For effect values within [δ ,δ ] = [5,8]
the situation is less obvious. Therefore, they decide to use
the imprecise composite hypotheses

H0 : δ ∈ [∆]0 vs. H1 : δ ∈ [∆]1 (29)

4
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with

[∆]0 :=
{

∆0 = (−∞, δ̃ ]
∣∣∣ δ̃ ∈ [5,8]

}
(30)

[∆]1 :=
{

∆1 = [δ̃ ,∞)
∣∣∣ δ̃ ∈ [5,8]

}
. (31)

Weighting potential adverse effects against possible ben-
efits of the drug Z is challenging, due to impartial informa-
tion about the adverse effects. After considering different
cases, the investigators determine that a loss function with
k ∈ K = [K,K] = [3,15] might represent the current knowl-
edge about the consequences of drug Z quite well.

This specification of K is sufficient for the remaining
analyses, however, as illustration, consider that the loss
function might also be expressed more extensively by re-
lating it directly to the parameter δ (compare equation (8))
via the imprecise specifications (Figure 1, bottom)

Lδ (a0) =





{0} if δ < 5
{0,1} if 5≤ δ ≤ 8
{1} if 8 < δ

(32)

and

Lδ (a1) =





[3,15] if δ < 5
{0}∪ [3,15] if 5≤ δ ≤ 8
{0} if 8 < δ

. (33)

Also note, that by using this depiction, the loss function
Lδ (a) might also be interpreted – for each action a∈A – as
an imprecise gamble (illustrations in Figure 1), bridging to
the mathematical foundation of the framework of imprecise
probabilities in the spririt of Walley (1991) (see also e.g.
Quaeghebeur, 2014; Miranda and de Cooman, 2014).

Now, the investigators perform the experiment, obtain
the data s = (s1, . . . ,s100), and estimate the effect size (with
the in-sample mean) to be δ̂ = m(s) = 10.03.

Updating the imprecise prior Πδ using the generalized
Bayes rule (in this case element-wise using the Bayesian
normal-normal model with known sample variance) results
in the imprecise posterior distribution

Πδ |s =
{

N(µ,σ2)
∣∣ (µ,σ) ∈F

}
, (34)

where F is the set (within the hyperparameter space M×Σ)
as displayed in Figure 2. It can be seen that, compared to
the prior distribution Πδ , the posterior distribution Πδ |s
is extremely narrowed down. This is because there is no
prior-data-conflict (see e.g. Walter and Augustin, 2009)
and the study is highly informative with n = 100 patients,
such that the data s might easily overwhelm the initial prior
uncertainty expressed by Πδ .

Figure 1: Loss Function. Loss values for both actions a0
(black) and a1 (gray) are depicted for varying
effect values δ . The top plot illustrates a precise
loss function in regret form with δ̃ = 8 (boundary
between hypotheses) and k = 3. The center plot
illustrates how using imprecisely specified hy-
potheses with δ̃ ∈ [5,8] can also be expressed by
an imprecisely specified loss function, although
k = 3 is still precise (please note the overlapping
lines at Lδ (a) = 0). The bottom plot adds an im-
precisely specified k ∈ [3,15], leading to the loss
function of the example (Section 4). Both the
top and center plot are included to illustrate the
extension of the precise case into the imprecise
framework.

5
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Figure 2: Prior and Posterior Distribution. The gray area
(top plot) depicts the set of hyperparameters
(µ,σ) ∈ M × Σ for the normal distributions
N(µ,σ2) that define the imprecise prior dis-
tribution Πδ . This set is bounded by the val-
ues (3,10), (3,20), (12,10), and (12,20). Up-
dating the respective distributions leads to nor-
mal distributions with parameters (9.87,1.48),
(9.99,1.49), (10.07,1.48), and (10.04,1.49), re-
spectively, being extremal elements of the set F
of hyperparamters that define the imprecise pos-
terior distribution. This set is depicted as black
area in the top plot bottom-right and enlarged
in the bottom plot. Please note the substantial
difference in scales between both plots and that
this posterior set is not convex (despite its ap-
pearance).

With the stated hypotheses (equation (29)), the imprecise
posterior probabilities P(H0|s) and P(H1|s) are bounded
by

0.0003≤ P(H0|s)≤ 0.103 (35)
0.897≤ P(H1|s)≤ 0.9997 , (36)

leading to ratios

0.0003 = P≤ P(H0|s)
P(H1|s)

≤ P = 0.115 . (37)

Together with K the imprecise ratio R of expected poste-
rior losses is characterized by

R = 0.0009 and R = 1.725 . (38)

As R< 1<R, the investigators cannot state an unambigu-
ous conclusion with the obtained data s and the available
vague information.

Some time later, other investigations about the adverse
effects of drug Z were finalized showing that the adverse
effects are rather mild. This allows the investigators to
specify the loss function more precisely by K = [3,5] and
the imprecise ratio R of expected posterior losses narrows
down to lie between

R = 0.0009 and R = 0.575 , (39)

now permitting to state a1 as the optimal action, as R < 1.
Accordingly, the investigators recommend to administer
drug Z to treat patients with disease D.

R code to replicate the example is provided electroni-
cally.

5. Discussion
5.1. Scalability

The elaborations within this paper were restricted towards
a framework that uses only two hypotheses and, therefore,
only two actions. While this is currently the most used
framework for hypothesis-based analyses in applied sci-
ences, the considerations within this paper might naturally
be scaled towards using multiple hypotheses and actions.

In fact, the depicted case (with only two hypotheses
and actions) that determines the optimal action(s) (equa-
tion (27)) by considering the ratio R of expected posterior
losses (equation (24)) might be considered as a special case
in the context of interval dominance in the imprecise deci-
sion theoretic framework. This shall be illustrated within
the context of the example (Section 4).

As outlined in equations (32) and (33), the loss function
might also be viewed w.r.t. the parameter δ , such that the
conditions in these multi-case equations are determined
by the hypothesis specifications and the values by the ac-
tual consequences of the decision. Naturally, additional

6
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hypotheses and actions can easily be incorporated using
this formulation (although the applied scientists might have
more values to specify).

These conditions need to be evaluated w.r.t. the poste-
rior distribution Πδ |s, determining the (imprecise) posterior
probabilities to be bounded by

0.0003≤ P(δ < 5|s) ≤ 0.0005 (40)
0.0806≤ P(5≤ δ ≤ 8|s)≤ 0.1024 (41)
0.8970≤ P(8 < δ |s) ≤ 0.9189 . (42)

The expected posterior loss ρδ : A → R+
0 :

a 7→ ρδ (a) =
∫

∆
Lδ (a) ·π(δ |s)dδ (43)

is now based on the parameter-based loss function Lδ (in
contrast to the hypothesis-based loss function L as in equa-
tion (6)), and needs to consider that Lδ is an imprecise quan-
tity and that π(δ |s) denotes the probability densities of the
imprecise posterior Πδ |s. Respective values are bounded by

0.897 ≤ ρδ (a0)≤ 1.021 (44)
0.0009≤ ρδ (a1)≤ 1.544 . (45)

Interval dominance (see e.g. Huntley et al., 2014) com-
pares interval-valued expected posterior losses. Then, an
action is declared dominated if there exists another action
that has an interval-valued expected posterior loss being
strictly less. Such a dominated action can be ruled out. In
line with the considerations about optimal actions in Sec-
tion 3.3, we consider an action as optimal (in the context of
interval dominance) if it dominates or practically equals2

every other action. If there are other actions that cannot
be dominated by an action, information is lacking to treat
this action as superior and it should not be considered as
optimal. In the case considered here, ρδ (a0) lies within the
range of ρδ (a1), so neither expected posterior loss interval
dominates the other one. Thus, no action proves itself as
superior.

If, as in the example, additional information were gath-
ered to narrow k down to be within [3,5], the expected
posterior loss ρδ (a1) of action a1 is then bounded by

0.0009≤ ρδ (a1)≤ 0.514 , (46)

now being completely below the expected posterior loss
ρδ (a0) of action a0. Action a1 dominates action a0 and is
thus considered to be optimal. Apparently, these are the
same results as in Section 4 and R code to replicate these
numbers is provided electronically.

This illustrates that the framework depicted within this
paper can be considered as a special case of the imprecise
Bayesian decision theoretic framework using the concept

2. As depicted in Section 2, an action practically equals another action
if their expected posterior losses are precise and with identical value.

of interval dominance and the conditional Bayes principle,
which might be easily extended to additional hypotheses
and actions. By being restricted to this special case of only
two hypotheses and actions, a simple regret form of the
loss function can be used, allowing to determine the opti-
mal action easily via the ratio of expected posterior losses.
This allows to extend hypothesis-based analysis into the im-
precise decision theoretic framework without exceedingly
complicated mathematical formulas, a fact that might be
welcomed by applied scientists.

5.2. Conditional Perspective

A rigorous conditional perspective was taken within this
Bayesian decision-theoretic approach: The prior gets up-
dated first to the posterior before considering the decision
problem and finding the optimal action based on this pos-
terior distribution. However, there is also a different, i.e.
unconditional, decision-theoretic approach, which starts by
finding an optimal decision function (mapping all possible
data sets to optimal actions) by minimizing the prior risk.
This approach takes all potentially observable data sets into
account, and focuses on the actually observed data only
as a second step, evaluating the decision function at the
concretely observed sample. Within the precise case, both
approaches yield eventually the same optimal action (cp.
e.g. Berger, 1985, p. 159). This is, however, not necessarily
true within the imprecise case (Augustin, 2003),3 see also
(Seidenfeld, 1994) in a related game theoretic context, –
a fact that breathes new life into an old debate between
the conditional and the frequentist point of view. The exis-
tence of this decision-theoretic dynamic inconsistency in
the context of point-wise updating set-valued distributions
requires the applied scientists to reason about whether to
use the conditional or the unconditional perspective in their
analyses. However, the conditional perspective is gener-
ally considered to be the preferred point of view within
Bayesian statistics, as it does not consider other potential
data sets that were not observed (Jeffreys, 1961). The argu-
mentation by Berger (1985, p. 160, notation adapted, italics
preserved)

Note that, from the conditional perspective to-
gether with the utility development of the loss,
the correct way to view the situation is that
of minimizing [ρ(a)]. One should condition on
what is known, namely [x] (...), and average the
utility over what is unknown, namely θ . The de-
sire to minimize [the prior risk] would be deemed
rather bizarre from this perspective.

3. The proof of the equivalence of prior risk and posterior loss essentially
relies on the interchangeability of integrals over the parameter space
and the sample space, which is no longer valid if also maxima/minima
of distributions have to be considered in between. This suggests that
similar dynamic inconsistencies may occur as soon as imprecise
losses are considered.
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carries over to the rigorous generalization developed here,
at least as long as single experiments with a single decision
are considered.

6. Outlook

Within this paper, the hypothesis-based Bayesian decision-
theoretic framework with composite hypotheses was ex-
tended to include imprecise specifications of the prior dis-
tribution, the hypotheses, and the loss function. These three
quantities are expected to be the most difficult to specify
in current applied sciences, if a hypothesis-based decision-
theoretic Bayesian analysis is intended. Therefore, their
imprecise extension might provide a useful framework for
applied scientists.

This approach might also be seen as an extension to the
Bayes factor (Gönen et al., 2005; Kass and Raftery, 1995;
Rouder et al., 2018), a quantity involved in updating prior
probabilities of hypotheses to their posterior probabilities
(as in Section 2, equations (4) and (5)) and interpreted
as quantification of the evidence within the data w.r.t. the
hypotheses. This extension covers the ability to include
actions and a (hypothesis-based) loss function into the sta-
tistical analysis (such that the practical implication of the
study can be considered on a formal level) and the opportu-
nity to treat impartial information about the prior (see also
Ebner et al., 2019), the hypotheses, and the loss function
as it is, without requiring a level of precision that is not
available.

Appendix A. R Code

R code to replicate the example is provided electronically.
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Abstract

Some scientific research questions ask to guide decisions and others do not. By
their nature frequentist hypothesis-tests yield a dichotomous test decision as result,
rendering them rather inappropriate for latter types of research questions. Bayes
factors, however, are argued to be both able to refrain from making decisions and
to be employed in guiding decisions. This paper elaborates on how to use a Bayes
factor for guiding a decision. In this regard, its embedding within the framework of
Bayesian decision theory is delineated, in which a (hypothesis-based) loss function
needs to be specified. Typically, such a specification is difficult for an applied scientist
as relevant information might be scarce, vague, partial, and ambiguous. To tackle
this issue, a robust, interval-valued specification of this loss function shall be allowed,
such that the essential but partial information can be included into the analysis as is.
Further, the restriction of the prior distributions to be proper distributions (which
is necessary to calculate Bayes factors) can be alleviated if a decision is of interest.
Both the resulting framework of hypothesis-based Bayesian decision theory with ro-
bust loss function and how to derive optimal decisions from already existing Bayes
factors are depicted by user-friendly and straightforward step-by-step guides.

Keywords: Bayesian Statistics, Bayes Factor, Decision Theory, Robustness, Im-
precise Probabilities

1 Introduction

The result of a classic frequentist hypothesis test is a dichotomous test decision. How-
ever, scientific research questions are very versatile and there is not always the demand
to guide a decision. By the their nature, frequentist hypothesis tests prohibit a statistical
hypothesis-based analysis without making decisions. In that sense, a statistical framework
that provides results without requiring an underlying (potentially artificially constructed)
decision problem seems to be advantageous. The Bayes factor – a Bayesian quantity that
is used for hypothesis comparisons (Jeffreys, 1961; Kass and Raftery, 1995; Gönen et al.,
2005; Rouder et al., 2009) – is argued to do so, as it is typically interpreted as evidence
quantification w.r.t. the contrasted hypotheses (see e.g. Morey et al., 2016) without requir-
ing a decision to be made. In this regard, Rouder et al. (2018) state that “[r]efraining from
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making decisions strikes [them] as advantageous in most contexts.”

Naturally, the evidence (as quantified by the Bayes factor) might then be used to update
beliefs in the considered hypotheses and subsequently to guide a respective decision. The
essential point, however, is that the researcher might stop the analysis after calculating
a Bayes factor without guiding a decision, e.g. if merely the evidence quantification is of
interest. Then the result of the Bayesian analysis is the Bayes factor itself and not a
decision. Yet, for those research situations that do indeed aim at guiding a decision, the
Bayes factor might naturally be used to do so. The aim of this elaboration is to outline
the decision theoretic framework in which Bayes factors are involved.

Further, it shall be acknowledged that the specification of the relevant quantities within
such a decision theoretic framework as precise values might not always be possible for
an applied scientist, as the available relevant information might be scarce, vague, partial,
and ambiguous. To tackle this issue, also a robust version of the framework shall be
outlined in which the applied researcher is allowed to specify the essential quantities less
precisely as sets of values, such that the partial nature of the relevant information might
be captured more accurately. Although such robust specifications might be possible for all
essential quantities (see e.g. Schwaferts and Augustin, 2019, 2021), the present elaboration
is restricted to a robustly specified inverval-valued loss function, as it is this quantity
which characterizes the difference between a decision-theoretic and a non-decision-theoretic
analysis, yet its precise specification is expected to bear serious difficulties for applied
scientists.

The elaborations within this paper are structured as follows: After delineating the general
(Section 2) and the hypothesis-based (Section 3) framework of Bayesian decision theory, its
relation with Bayes factors is depicted (Section 4). To facilitate a more user-friendly em-
ployment of the hypothesis-based Bayesian decision theoretic framework, a robust interval-
valued specification of the loss function was allowed (Section 5) and the restriction of the
prior distributions to be proper can be alleviated (Section 6). Both the resulting frame-
work (Secion 7.1) and how to derive optimal actions from existing Bayes factor values
(Secion 7.2) are presented in respective step-by-step guides.

2 Bayesian Decision Theory

Within the framework of Bayesian decision theory (e.g. Berger, 1985; Robert, 2007), the
objective is to decide between different actions. In accordance with the context of Bayes
factors, only two actions shall be considered, namely a0 and a1, being comprised within
the action space A = {a0, a1}.
The researcher plans to conduct an investigation that yields data x, which is characterized
by a parametric sampling distribution with parameter θ ∈ Θ, where Θ is the parameter
space. Accordingly, the density of the data is f(x|θ).
In a Bayesian setting, a prior distribution on the parameter θ with density π(θ) needs to
be specified. This prior reflects the information (or belief or knowledge or uncertainty)
about the parameter before the investigation is conducted.

In addition, also a loss function L : Θ × A → R+
0 : (θ, a) 7→ L(θ, a) needs to be specified,

which quantifies the “badness” of the consequences of deciding for the action a ∈ A if the
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parameter value θ ∈ Θ is true. Usually, the exact shape of this loss function is inaccessible
and hypothesis-based analyses are able to tackle this issue. These are depicted within the
next section, but first – to delineate the ideal Bayesian solution – assume L is fully known.

Now, after specifying the parametric sampling distribution, the prior, as well as the loss
function, the investigation can be conducted and the data x are observed. This allows to
update the prior distribution via Bayes rule to the posterior distribution with density

π(θ|x) =
f(x|θ) π(θ)

f(x)
=

f(x|θ) π(θ)∫
Θ
f(x|θ) π(θ) dθ

. (1)

There are plenty of resources available about how to obtain this posterior (e.g. Gelman
et al., 2013; Kruschke, 2015), which reflects the information (or belief or knowledge or
uncertainty) about the parameter after the investigation was conducted.

Based on this posterior distribution, it is possible to calculate the expected posterior loss
ρ : A → R+

0 for each action by integrating the loss function L over the posterior density:

ρ(a) =

∫

Θ

L(θ, a) π(θ|x) dθ . (2)

The optimal action a∗ has minimal expected posterior loss:

a∗ = arg min
a∈A

ρ(a) . (3)

3 Hypothesis-Based Bayesian Decision Theory

As mentioned, typically, the loss function L is not fully accessible as the essential infor-
mation about it might be scarce, vague, partial, and ambiguous. A commonly employed
solution is a hypothesis-based analysis: The researcher considers each possible parameter
value θ and assesses which action should be preferred if this parameter value would be
true. These considerations lead to two sets of parameters Θ0 and Θ1 for which the actions
a0 and a1 should be preferred, respectively. These sets define the hypotheses

H0 : θ ∈ Θ0 vs. H1 : θ ∈ Θ1 (4)

employed in conventional analyses, such as hypothesis tests or Bayes factors.

From the posterior density π(θ|x) it is possible to determine the posterior probabilities of
the parameters sets Θ0 and Θ1, i.e. of the hypotheses H0 and H1, by

P (H0|x) =

∫

Θ0

π(θ|x) dθ and P (H1|x) =

∫

Θ1

π(θ|x) dθ , (5)

respectively. The ratio of these beliefs P (H0|x)/P (H1|x) is referred to as posterior odds.

The underlying assumption of hypothesis-based analyses is that the loss values within these
sets Θ0 and Θ1 are constant, respectively (see Figure 1). This assumption shall be referred
to as simplification assumption and is inherent to a statistical analysis which considers
statistical hypotheses and derives applied conclusions based on respective (hypothesis-
based) results. In addition (without loss of generality), the loss values for deciding correctly
(i.e. for a0 if θ ∈ Θ0 or for a1 if θ ∈ Θ1) can be set to 0. The resulting loss function is

3
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Table 1: Simplified Hypothesis-Based Loss Function.

L(θ, a) θ ∈ Θ0 θ ∈ Θ1

a = a0 0 k0

a = a1 k1 0

Figure 1: Hypothesis-Based Loss Function. Assume Θ = R, Θ0 = [−1, 1], and Θ1 = (−∞,−1)∪
(1,∞). The hypothesis-based loss function L (y-axis) in regret form (see Table 1) in dependence of
the parameter θ (x-axis) and the actions a0 (left) and a1 (right) is assumed to be constant within
the sets Θ0 and Θ1, respectively. This is an assumption (simplification assumption) inherent to a
hypothesis-based statistical analysis which – at least implicitly – considers an underlying applied
decision problem.

in regret form (depicted in Table 1) and has only two values to specify: k0 := L(a0, θ) if
θ ∈ Θ1 and k1 := L(a1, θ) if θ ∈ Θ0.

With this simplified loss function (Table 1), the expected posterior loss of each action can
be calculated as

ρ(a0) =

∫

Θ

L(θ, a0) π(θ|x) dθ = k0 · P (H1|x) (6)

ρ(a1) =

∫

Θ

L(θ, a1) π(θ|x) dθ = k1 · P (H0|x) (7)

and the action with minimal expected posterior loss shall be selected.

Only the ratio k := k1/k0 is required to determine this optimal action. This ratio k states
how much worse it would be to decide for a1 if θ ∈ Θ0 is true (type-I-error) than to decide
for a0 if θ ∈ Θ1 is true (type-II-error), if deciding correctly has loss 0. With the ratio of
expected posterior losses

%(k) :=
ρ(a1)

ρ(a0)
= k · P (H0|x)

P (H1|x)
(8)

the optimal action is

a∗ =

{
a0 if %(k) > 1

a1 if %(k) < 1
. (9)

For %(k) = 1 any action might be chosen.
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4 Bayes Factors

By assessing even the prior distribution in the light of the hypotheses, it is possible to
obtain the prior probabilities in the hypotheses (illustrated in Figure 2, left):

P (H0) =

∫

Θ0

π(θ) dθ and P (H1) =

∫

Θ1

π(θ) dθ , (10)

Analogously, the ratio of these beliefs P (H0)/P (H1) is referred to as prior odds.

In addition, the prior distribution can be restricted to each of the hypotheses, referred to as
within-hypothesis priors (illustrated in Figure 2, middle and right), and the corresponding
densities are

π(θ|H0) =
1

P (H0)
π(θ) · 1(θ ∈ Θ0) (11)

π(θ|H1) =
1

P (H1)
π(θ) · 1(θ ∈ Θ1) , (12)

where 1(s) = 1 if the statement s is true and 1(s) = 0 if s is false.

The overall prior distribution can be decomposed (cp. Rouder et al., 2018) into the prior
probabilities of the hypotheses and the within-hypothesis priors (Figure 2):

π(θ) = P (H0) π(θ|H0) + P (H1) π(θ|H1) . (13)

Figure 2: Prior Decomposition. Assume Θ = R, Θ0 = [−1, 1], Θ1 = (−∞,−1) ∪ (1,∞) and a
standard normal distribution for θ ∼ N(0, 1). Left: The prior density π(θ) is depicted as solid line.
P (H0) and P (H1) can be calculated as respective areas under this density, depicted as light gray
and dark gray, respectively. Middle: The within-hypothesis density π(θ|H0) as in equation (11)
is depicted as solid line. Right: The within-hypothesis density π(θ|H1) as in equation (12) is
depicted as solid line.

Instead of considering the overall prior distribution together with the hypotheses (which
leads to the posterior odds, as in Section 3), the Bayes factor is obtained by considering
only the within-hypothesis priors together with the hypotheses:

BF :=

∫
Θ0
f(x|θ) π(θ|H0) dθ∫

Θ1
f(x|θ) π(θ|H1) dθ

. (14)

5
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The posterior odds can then be calculated from the Bayes factor and the prior odds:

P (H0|x)

P (H1|x)
= BF · P (H0)

P (H1)
. (15)

The optimal decision can now be obtained as in the previous section (Section 3) by con-
sidering the loss function.

5 Robust Loss Function

However, a precise specification of the value k is typically not accessible, as essential infor-
mation about the “badness” of the consequences of the decision are scarce, vague, partial,
and ambiguous. Yet, this partial information needs to be included into the analysis, as
ignoring it facilitates suboptimal decisions. A decision cannot be guided properly without
considering its consequences.

This partial information about the loss can be captured less arbitrarily and more robustly
by an interval [K,K] than by a precise value k (cp. e.g. Walley, 1991; Augustin et al.,
2014). To do so, the researcher has to determine a lower bound K and an upper bound K
for reasonable k values (i.e. for the ratio of how much worse the type-I-error is compared
to the type-II-error, if deciding correctly has a loss of 0).

To perform a robust analysis (cp. also Rı́os Insua and Ruggeri, 2012) with this interval-
valued specification, it is possible to obtain and consider the optimal action for each value
within this interval [K,K].

If the optimal action is the same for each k within [K,K], then this action should be
chosen. If not, the decision should be withheld, because the data or the information about
the decision problem are not sufficient to unambiguously guide the decision.

Formally (see also Schwaferts and Augustin, 2019, 2020, 2021), the ratios of expected
posterior losses need to be calculated for both the lower and upper bound, respectively:

%(K) = K · P (H0|x)

P (H1|x)
and %(K) = K · P (H0|x)

P (H1|x)
. (16)

Then, the optimal action is

a∗ =

{
a0 if %(K) ≥ 1

a1 if %(K) ≤ 1
. (17)

For %(K) < 1 < %(K), the decision should be withheld.

6 Improper Priors

Furthermore, the calculation of Bayes factors comes along with a restriction (Jeffreys, 1961)
on the prior distribution: It must be a proper distribution, i.e. the density has to integrate
to 1: ∫

Θ

π(θ) dθ = 1 . (18)
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In contrast, an improper prior distribution is characterized by a non-integrable function
(e.g. π(θ) ∝ c with c > 0 being a constant, see Figure 3, dotted line) and, technically, this
prior distribution is no proper probability distribution. However, these improper priors
are frequently allowed within Bayesian prior specifications, because they might lead to
proper posterior distributions (see Figure 3, solid line). In this case, the posterior odds
P (H0|x)/P (H1|x) can be calculated reasonably and a decision can be guided consistently.

The prior odds, however, might not be reasonable (e.g. with P (H0)/P (H1) = 0 as in
Figure 3). Accordingly, the Bayes factor (calculated via equation (15))

BF =
P (H0|x)

P (H1|x)

/
P (H0)

P (H1)
(19)

cannot be calculated reasonably due to its dependence on the prior odds. Therefore, Bayes
factors require – in contrast to a Bayesian analysis in general – proper prior distributions.
This is truly a limitation, as improper priors are frequently employed for representing
non-knowledge or for letting the data speak for themselves (e.g. Gelman et al., 2013).

Figure 3: Improper Prior. Assume the model Xi
iid∼ N(µ, σ2) for i = 1, . . . , n, with known

variance σ2 = 1 and unknown parameter µ ∈ R, the hypotheses Θ0 = [−1, 1], Θ1 = (−∞,−1) ∪
(1,∞). The function π(µ) = c, with c = 0.2 being an arbitrary constant, characterizes the
improper prior distribution for µ (dotted line). For a sample of size n = 10 with in-sample mean
x̄ = 0.5, the posterior distribution is proper (solid line), such that its density integrates to 1.
The prior “beliefs” into the hypotheses are with P (H0) = 2c and P (H1) = ∞ not reasonably
interpretable (light gray and dark gray, respectively).

This issue is alleviated in hypothesis-based Bayesian decision theoretic accounts, as im-
proper priors typically yield proper posterior odds. Accordingly, a researcher who is inter-
ested in guiding a decision might employ the decision theoretic framework directly without
explicitly calculating the Bayes factor. Then, also improper priors might be employed.

Please note that it is still an ongoing debate whether non-knowledge can be formalized by
a precise improper prior distribution and if so, which improper prior distribution shall be
employed. Although the authors of this paper doubt that non-knowledge can be formalized
by a precise prior distribution, even if it is improper (cp. e.g. Augustin et al., 2014),

7
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this issue shall not be addressed here. In general, it is important that the employed
prior distribution matches with the available information (or non-information) about the
phenomenon of interest, and this applies to every point of view within this debate. In
this regard, the present elaboration emphasizes only that it is mathematically possible to
employ improper priors if decisions are of interest, which is an advantage of the (more
general) hypothesis-based Bayesian decision theoretic account over Bayes factors.

7 Step-By-Step Guides

7.1 Hypothesis-Based Bayesian Decision Theory

In order to apply this hypothesis-based Bayesian decision theoretic framework with robust
loss function, a researcher might follow the following steps.

Step 1: Actions. First of all, the researcher needs to specify the actions. It is recom-
mended to explicitly state and report these actions, e.g. by (this example is taken from
Bartolucci et al., 2011)

a0: do not administer aspirin to prevent myocardial infarction

a1: administer aspirin to prevent myocardial infarction

If the researcher has difficulties stating the actions, maybe there is no decision to guide
and a descriptive analysis might suffice (cp. also Cumming, 2014; Kruschke and Liddell,
2018).

Step 2: Sampling Distribution. Next, the researcher should provide a detailed de-
scription of the investigation and how it is characterized (i.e. the sampling distribution).
It is recommended to also explicitly state the employed parameter θ and its interpretation.
This is the basis for specifying the hypotheses.

Step 3: Prior Distribution. In the Bayesian setting, it is possible to include prior
information (or belief or knowledge or uncertainty) into the analysis. In that, the researcher
has to specify a prior distribution on the parameter. It is recommended to fully report the
available prior information about the parameter θ and why this leads to the prior density
π(θ).

Of course, this specification is far from being unambiguous. However, this is a fundamental
issue inherent to every Bayesian analysis (not only Bayesian decision theoretic accounts)
and solving this issue is not the intention of this elaboration. Nevertheless, solutions, such
as sensitivity analyses (found in almost every Bayesian textbook, e.g. Gelman et al., 2013),
exist. It is recommended at this step of the analysis to also state all other possible prior
densities that are in accordance with the available prior information, as these serve as basis
for a subsequent sensitivity analysis.

Naturally, also non-informative priors might be specified and they might also be improper
(as long as they lead to proper posterior distributions).

Step 4: Assumption. If the researcher is unable to specify the loss function L, then a
hypothesis-based simplification as in Section 3 might be a solution. This simplification is
an assumption on the loss function, namely that the loss function is constant within each
of two parameter sets. If this assumption is not appropriate, it might lead to errors (which
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are inherent to every hypothesis-based analysis) and the researcher needs to be aware of
this consequence. It is recommended to explicitly report that this assumption was made.
Transparency is one of the basic principles in science (cp. Gelman and Hennig, 2017).

Step 5: Hypotheses. Now, the researcher has to consider each possible parameter value
θ and assess which action should be preferred if this parameter value would be true. All
parameters for which a0 or a1 should be preferred are comprised within the sets Θ0 or Θ1,
respectively. Certainly, there are parameter values that define the border between both
sets Θ0 and Θ1. It is recommended to explicitly state what these values mean in real-life
and why they define reasonable borders between Θ0 and Θ1.

Step 6: Errors. Deciding for a1 if θ ∈ Θ0 is the type-I-error and deciding for a0 if θ ∈ Θ1

is the type-II-error. Both errors should be delineated, as they serve as basis for specifying
the ratio k. It is recommended to explicitly state these errors and their consequences, e.g.
by

Type-I-error: administer aspirin to prevent myocardial infarction, but the effect is
negligible. Consequence: patients unnecessarily suffer side effects of aspirin.

Type-II-error: do not administer aspirin to prevent myocardial infarction, although
it would have an effect. Consequence: some patients suffer a myocardial infarction,
which could have been prevented.

Of course, this is only a schematic illustration and in real empirical studies these elabora-
tions will be more comprehensive.

Step 7: Loss Magnitude. The researcher has to imagine that the “badness” of deciding
correctly is 0. In this context, the researcher has to determine how much worse the type-
I-error is compared to the type-II-error. This is the value k. As a precise value for k is
difficult to determine, it might be easier to specify a range [K,K] of plausible values for
k. It is recommended to report all considerations that lead to this specification.

Step 8: Investigation. Now, the investigation can be conducted and it is recommended
to preregister1 the previous specifications, the design of the experiment, and the planned
(decision theoretic) analysis of the data (cp. Nosek et al., 2018; Klein et al., 2018). Regis-
tered reports2 even allow to obtain a peer-review prior to collecting the data.

Step 9: Posterior Distribution. The observed data are used to obtain the posterior
distribution as well as the posterior beliefs in the hypotheses P (H0|x) and P (H1|x). There
are countless references on how to do this (e.g. Gelman et al., 2013; Kruschke, 2015).

Step 10: Optimal Action. The researcher has to calculate %(K) and %(K) as in equa-
tion (16) to find the optimal action as in equation 17).

For %(K) < 1 < %(K), the decision should be withheld, because the data or the information
about the decision problem are not sufficient to unambiguously guide the decision. In this
case, a reasonable strategy might be to collect more data or to gather more information
about the decision problem, especially about the consequences of the errors, to narrow
down [K,K]. However, it is recommended to transparently report that a decision was
withheld at first and which subsequent steps were taken to obtain more information.

1Study designs can be preregistered e.g. at www.cos.io/initiatives/prereg.
2Information about registered reports can be found e.g. at www.cos.io/rr.
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Step 11: Publish Data. Of course, other researchers might need the data to guide
their decisions. It is to expect that they have different prior knowledge and that their
decisions employ different hypotheses. Without having access to the data set (but only
to the reported analysis), it might be difficult, or even impossible, for them to guide their
decisions properly, emphasizing the importance of open science3.

7.2 From Bayes Factors to Decisions

Sometimes, a researcher wants to use the results of a previous study to guide a decision.
Assume a Bayes factor BF was already calculated and shall now be used to guide this
decision.

Step A: Applicability of the Sampling Distribution. Confirm that the interpretation
of the parameter θ is actually relevant for the decision of interest. If this is not the case,
the available data (or Bayes factor) can hardly be used to guide the decision of interest.

Step B: Applicability of the Hypotheses. Certain specific hypotheses were assumed
in order to calculate the Bayes factor. These need to match with the decision problem of
interest. To assess this, the potential actions of the decision problem of interest need to be
delineated as in Step 1 and the parameter sets Θ0 and Θ1 need to be obtained as in Step 5.
These sets have to be equivalent to the hypotheses that were employed in the calculation
of the Bayes factor. If this is not the case, it is recommended to not use this Bayes factor
value and restart the decision theoretic account within the previous section (Section 7.1).
In this regard, it is helpful if the data set, that was used to calculate the original Bayes
factor, is fully accessible.

Step C: Applicability of the Prior Distribution. Confirm that the employed within-
hypothesis prior distributions for calculating the Bayes factor match with the available
information about the phenomenon of interest. If this is not the case, it is recommended
to not use this Bayes factor value and restart the decision theoretic account within the
previous section (Section 7.1). Again, to do so it is helpful if the data set, that was used
to calculate the original Bayes factor, is fully accessible.

Step D: Prior Odds. As the calculation of the Bayes factor does not require the prior
odds, only the within-hypothesis prior distributions, former need to be specified to guide
a decision. In this regard, the researcher has to specify the prior probabilities of the
hypotheses. Analogue to Step 3, as this is part of the Bayesian prior specification, it is
recommended to fully report the available information about the parameter and why it
leads to the prior probabilities of the hypotheses.

Step E: Loss Function. Specify the (interval-valued) loss function by following Steps 4,
6, and 7.

Step F: Posterior Odds. Use the available Bayes factor BF to calculate the posterior
odds via equation (15).

Step G: Optimal Action. The optimal action can be derived as in Step 10.

3Comprehensive information about open science are provided e.g. by the LMU Open Science Center:
www.osc.uni-muenchen.de.
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8 Concluding Remarks

Statisticians and methodologists do – in general – not know all the different fields of
applications and research contexts a statistical method will eventually be employed in.
The scientific endeavor is extremely versatile and research problems might arise that have
not been thought of before. In that, versatility of research methods is of paramount
importance. While it might be considered as disadvantageous that frequentist hypothesis
tests are restricted to a dichotomous decision context, it might similarly be considered as
disadvantageous if Bayes factors are restricted to only an evidential, non-decision context.
Fortunately, the mathematics underlying Bayes factors suggest their involvement in guiding
decisions. In this regard, Bayes factors might be seen as evidential quantification or as
a quantity in the context of guiding decisions, depending on the goals of the scientific
investigation.

In order to use Bayes factors correctly when guiding decision, their embedding within the
framework of Bayesian decision theory has to be considered. It is important that the re-
search context as well as the decision problem are formalized appropriately. If misspecified,
results inform past the research question. Naturally, the specification of essential quan-
tities (such as the prior distribution, the hypotheses, or the loss function) is an applied
problem and might be rather difficult for the applied scientist. In order to alleviate these
issues, these quantities might be specified robustly as interval-valued or set-valued quanti-
ties. Then the researcher might consider a range or a set of plausible values, avoiding the
necessity to (arbitrarily) commit to one single precise value. Within this elaboration only
an interval-valued loss value was considered, as it keeps the calculations simple (compare
Section 5) yet allows to include essential loss information (about the consequences of the
decision) into the analysis. Naturally, also the prior distribution and the hypotheses might
be included into the analysis as set-valued quantities (see e.g. Ebner et al., 2019). How
to deal with set-valued quantities on a formal level is extensively elaborated on within the
field of imprecise probabilities (see e.g. Walley, 1991; Augustin et al., 2014; Huntley et al.,
2014).

In summary, this elaboration delineates the decision theoretic embedding of Bayes factors
by outlining the framework of hypothesis-based Bayesian decision theory, supplemented
by considerations about robust loss specifications and straightforward step-by-step guides.
These guides try to help those applied scientists who want to guide decisions with Bayes
factors.
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Abstract

Kruschke [2018] proposes the so called HDI+ROPE decision rule about accepting
or rejecting a parameter null value for practical purposes using a region of prac-
tical equivalence (ROPE) around the null value and the posterior highest density
interval (HDI) in the context of Bayesian statistics. Further, he mentions the so
called ROPE-only decision rule within his supplementary material, which is based
on ROPE, but uses the full posterior information instead of the HDI.

Of course, if it is about formalizing and guiding decisions then statistical decision
theory is the framework to rely on, and this technical report elaborates the decision
theoretic foundations of both decision rules.

It appears that the foundation of the HDI+ROPE decision rule is rather artificial
compared to the foundation of the ROPE-only decision rule, such that latter might
be characterized as being closer to the underlying practical purpose than former.
Still, the ROPE-only decision rule employs a truly arbitrary, and thus debatable,
choice of loss values.

Keywords: Bayesian Decision Theory, Region of Practical Equivalence, ROPE,
HDI+ROPE, ROPE-only, Imprecise Probabilities

1 Introduction

When it comes to applying statistics, there is an increased awareness that black-and-white
thinking might lead to severe issues within the process of science, and thus binary decisions
should be treated with caution [see e.g. Kruschke, 2018]. Reporting estimates together with
the uncertainty about them might be seen as a fruitful alternative [see e.g. Cumming, 2014].
However, sometimes a decision is necessary and the use of statistical decision theory [see
e.g. Berger, 1995, Robert, 2007] suggests itself. In that regard, every proposed or employed
decision rule might be assessed on the basis of its decision theoretic foundation.

Kruschke [e.g. 2015, 2018] proposes a decision rule based on posterior highest density
intervals (HDI) and regions of practical equivalence (ROPE).

A (1−α) highest density interval for a certain distribution of a parameter (prior or poste-
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rior) is an interval1 that contains all parameter values with the highest probability densities
and integrates to a probability of 1− α. Kruschke [2018] employs (1− α) = 0.95 and uses
the posterior distribution when referring to a highest density interval (HDI; also referred
to as highest posterior density (HPD) interval), which will be adopted within this technical
report.

A region of practical equivalence (ROPE) refers to a certain parameter value of interest,
which might also be called “null value” and frequently (but not necessarily) the parameter
value of interest is zero. A ROPE for a null value is a “range of parameter values that are
equivalent to the null value for practical purposes” [Kruschke, 2018, p. 272]. Accordingly,
“the limits of the ROPE depend on the practical purpose of the ROPE. If the purpose is
to assess the equivalence of drug-treatment outcomes, then the ROPE limits depend on
the real-world costs and benefits of the treatment and the ability to measure the outcome”
[Kruschke, 2015, p. 338].

Once the ROPE is specified (before observing the data) and the HDI is calculated (after
observing the data), the decision rule by Kruschke [2018, p. 272], referred to as HDI+ROPE
decision rule, is as follows:

� If the HDI falls completely inside the ROPE, then accept the null value for practical
purposes.

� If the HDI falls completely outside the ROPE, then reject the null value for practical
purposes.

� Else, withhold a decision.

In addition to the HDI+ROPE decision rule, Kruschke [2018, supp. p. 5] mentions another
exemplary decision rule within his supplementary material2 that is based on the ROPE
alone and considers the posterior distribution instead of the HDI. Referred to as ROPE-
only decision rule, it states:

� If more than 95% of the posterior distribution fall within the ROPE, then accept the
null value for practical purposes.

� If less than 5% of the posterior distribution fall within the ROPE, then reject the
null value for practical purposes.

� Else, withhold a decision.

Within his supplementary material, Kruschke [2018, supp. p. 3–5] delineates preliminary
ideas about the decision theoretic foundation of the HDI+ROPE decision rule. In addition,
a foundation of the ROPE-only decision rule is also pending. In that, the purpose of this

1Certainly, it might be possible that a HDI is a set of parameters, which is not an interval, however, in
accordance with Kruschke [2018], these cases are not considered within this technical report.

2This technical report is based on the supplementary material Version 1 of February 25, 2018, available
at the Open Science Framework with the url https://osf.io/jwd3t/ and downloaded at August 18,
2020.
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technical report is to elaborate the decision theoretic foundations of both decision rules
more profoundly.

Therefore, Bayesian decision theory is briefly recalled in Section 2, before outlining the
foundations of the ROPE-only decision rule (Section 3) and of the HDI+ROPE decision rule
(Section 4). A concluding discussion in Section 5 compares the foundations of both decision
rules w.r.t. their interpretation and connection to the underlying real-world decision.

2 Recall of Bayesian Decision Theory

The observed data x ∈ X , where the sample space X comprises all potential data sets,
are modeled parametrically as realization of the random quantity X with density f(x|θ),
where θ ∈ Θ is a real-valued parameter and Θ the parameter space.

Within a Bayesian context, there is a prior distribution with density π(θ) on the param-
eter θ, which gets updated via Bayes formula to the posterior distribution with density
π(θ|x) once the data x are observed.

In the context of an applied decision, one of different potential actions a ∈ A should be
selected, where A denotes the action space.

Deciding for a certain action a ∈ A if a certain parameter value θ ∈ Θ is true has conse-
quences and the “badness” of these consequences is formally captured by a loss3 function

L : Θ×A → R+
0 . (1)

Naturally, the meaning of this “badness” is comparative and can only be judged w.r.t. the
loss values of other actions and parameter values, yet their comparative meaning should
reflect the characteristics within the applied real-world decision. However, it might be
rather difficult4 to specify an exact loss function that matches those characteristics, which
are usually accessible only vaguely. As a solution, the loss function might be simplified
using ROPE (see Section 3.1) and specified in an imprecise manner (see Section 3.2).

As the posterior density π(θ|x) is available within a Bayesian analysis, it is possible to
calculate the expected posterior loss of each action a ∈ A

ρ : A → R+
0 (2)

by

ρ(a) =

∫

Θ

L(θ, a)π(θ|x)dθ . (3)

3Sometimes decision theory is depicted with a utility function instead of a loss function, which quantifies
the “utility” instead of the “badness” of the respective consequences.

4Of course, there are situations in which a loss function might be specified exactly, as e.g. some special
cases in economy in which the loss might be related to monetary outcomes or obtained from preferences
[see e.g. Berger, 1995, ch. 2.2]. In many research situations, however, the necessary information to do so
might not be available.
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Intuitively and following the conditional Bayes principle [see e.g. Berger, 1995], the action a
with minimal expected posterior loss ρ(a) should be chosen and is called (posterior loss5)
Bayes action.

Taken together, all three quantities π(θ), x, and L are required to find the (optimal) Bayes
action.

Before observing the data, only the prior density π(θ) and the loss function L are available.
Therefore, it is possible to consider each potentially observable data set x ∈ X and evaluate
which action a ∈ A would be the corresponding Bayes action. This is formally captured
by a decision rule

δ : X → A . (4)

In the context of the conditional Bayes principle, the optimal decision rule has the following
shape

δ(x) = arg min
a∈A

ρ(a) = arg min
a∈A

∫

Θ

L(θ, a)π(θ|x)dθ (5)

and states the Bayes action for each potential data set.

Of course, it is possible to formulate other decision rules, but these might not find the
Bayes action for each data set. In that, refer to the decision rule in equation (5), which
matches every data set with the corresponding Bayes action, as Bayes rule6 (not to be
confused with Bayes formula for calculating π(θ|x) from f(x|θ) and π(θ)).

Note that a Bayes action and a Bayes rule always refer to a certain loss function. With a
different loss function a different decision rule might be a Bayes rule and a different action
might be a Bayes action for a given data set.

5Within this technical report, the term “Bayes action” always refers to a posterior loss Bayes action.
6 This depiction of a Bayes rule as minimizing the expected posterior loss is based on one of the fun-

damental theorems of Bayesian decision theory [c.p. e.g. Berger, 1995, p. 159 Result 1]. In general, the
definition of a Bayes rule might involve the minimization of the prior risk (which considers all poten-
tially observable data sets) and this theorem states equivalence with minimizing the expected posterior
loss. In anticipation of Section 3, this theorem, however, might not necessarily hold within the frame-
work of imprecise probabilities in general and counterexamples involve imprecisely specified probabilities
[Augustin, 2003]. Yet the involvement of the framework of imprecise probabilities within this technical
report comprises only an imprecisely stated loss function (and no imprecisely specified probabilities, see
Section 3.2), so that an equivalence analogue to this fundamental theorem should hold within the context
depicted here. This should be addressed in further research. In any case, a Bayesian analysis typically
sticks to a conditional point of view that conditions on the actually observed data and does not consider
other potential data sets, which were not observed. In that, Berger [1995, p. 160, notation adapted, italics
preserved] reasons:

Note that, from the conditional perspective together with the utility development of the loss,
the correct way to view the situation is that of minimizing [ρ(a)]. One should condition on
what is known, namely [x] (...), and average the utility over what is unknown, namely θ. The
desire to minimize [the prior risk] would be deemed rather bizarre from this perspective.

In summary, even if this fundamental theorem might not hold within the context employed here to depict
the foundation of the ROPE-only rule (see Section 3), the depicted approach still appears to be reasonable.
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3 Foundations of the ROPE-only decision rule

3.1 ROPE as Simplification

As made obvious by the quotes about the ROPE in Section 1, the ROPE cannot be sep-
arated from the underlying practical purposes. Implied by both the HDI+ROPE decision
rule and the ROPE-only decision rule, the practical purpose is to decide between two ac-
tions a0 and a1. The first action a0 is in accordance with the null value θ0 ∈ Θ and the
second is in discordance with the null value θ0. Accordingly, indicated by subscript P for
“practical purpose”, the action space AP = {a0, a1} comprises these two actions of the
practical purpose.

Kruschke [2018, p. 272] refers to these actions as “accept the null value for practical
purposes” (a0) and “reject the null value for practical purposes” (a1). However, we want
to refrain from using this terminology, because it tempts to ignore the actual real-world
decision and to derive conclusions about actions that might not even be specified. Instead,
we highly recommend to explicitly state the actions of interest, such that the real-world
decision of interest might be formalized properly.

The corresponding loss function LP : Θ × AP → R+
0 quantifies the “badness” of each

of those two practical actions under each parameter. With this loss function it would
be possible to determine the Bayes action for the observed data set, however, the exact
shape of this loss function LP is hardly accessible in real life. Therefore, a way to deal
with this issue is necessary and a first approach might be to simplify this loss function.
Considerations in the context of ROPE lead to such a simplification.

By construction, under the null value θ0 the loss of a0 is smaller than the loss of a1,
i.e. LP (θ0, a0) < LP (θ0, a1), as former action is in accordance and latter action in discor-
dance with the null value.

If not specifying the exact values of the loss function LP , the researcher might (or should)
still be able to determine the appropriate action for each parameter value θ ∈ Θ. In
that, there is a set Θ0 of parameter values for which a0 is appropriate (containing the
null value θ0) and a set Θ1 = Θ \ Θ0 of the remaining parameter values for which a1 is
appropriate. The first set Θ0 is the ROPE and usually an interval.

However, different parameter values within these sets, respectively, might still have dif-
ferent loss values. As these exact values are still hardly accessible in real life, a possible
simplification is to treat each parameter value within the ROPE Θ0 as “equivalent to the
null value for practical purposes” [Kruschke, 2018, p. 272], i.e. assuming identical loss
values for parameters within Θ0:

∀θi, θj ∈ Θ0 ∀a ∈ AP : LP (θi, a) = LP (θj, a) . (6)

In addition to the paramete values within the ROPE Θ0, also the parameter values out-
side the ROPE, i.e. within Θ1, might be treated as equivalent for practical purposes by
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Table 1: Simplified loss function for the actions of the practical purpose using a regret form.

LP (θ, a) θ ∈ Θ0 θ ∈ Θ1

a = a0 0 k0

a = a1 k1 0

employing identical loss values:

∀θi, θj ∈ Θ1 ∀a ∈ AP : LP (θi, a) = LP (θj, a) . (7)

In that, this simplified loss function needs only four values to be specified and, without
loss of generality, a regret form might be employed, in which a0 and a1 have zero loss if
θ ∈ Θ0 and θ ∈ Θ1, respectively. The remaining two loss values shall be denoted by (see
Table 1)

k0 := LP (θ, a0) ∀θ ∈ Θ1

k1 := LP (θ, a1) ∀θ ∈ Θ0 .

Using this simplification, the expected posterior loss of each action a ∈ AP is

ρ(a0) =

∫

Θ

LP (θ, a0)π(θ|x)dθ

eq.
(6)
(7)
= 0 ·

∫

θ∈Θ0

π(θ|x)dθ + k0 ·
∫

θ∈Θ1

π(θ|x)dθ

= k0 · p(θ ∈ Θ1|x)

and analogously
ρ(a1) = k1 · p(θ ∈ Θ0|x) . (8)

With k := k1/k0, the ratio of expected posterior losses is

%(k) :=
ρ(a1)

ρ(a0)
=
k1 · p(θ ∈ Θ0|x)

k0 · p(θ ∈ Θ1|x)
= k · p(θ ∈ Θ0|x)

p(θ ∈ Θ1|x)
(9)

and the corresponding Bayes action is

aBayes(k) =

{
a0 if %(k) > 1

a1 if %(k) < 1
. (10)

If %(k) = 1, then either action might be chosen.

The term p(θ ∈ Θ0|x)/p(θ ∈ Θ1|x) can be calculated simply from the posterior den-
sity π(θ|x), however, k need to be specified w.r.t. to the practical purpose.

6
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3.2 Framework of Imprecise Probabilities

Specifying a precise value for k, which defines the simplified loss function, might still
be difficult for applied scientists and ideas from the framework of imprecise probabilities
[Walley, 1991] come in handy. In addition, the foundations of the ROPE-only decision rule
can be depicted elegantly within this framework.

In general, this framework is based on the fact that there is more to uncertainty than can
be captured within precise probability values [e.g. Ellsberg, 1961, Levi, 1980, Walley, 1991,
Etner et al., 2012]. As a solution, sets or intervals of probability values, so called imprecise
probabilities, are employed instead of single precise probability values. These intervals are
treated as an entity of its own [c.p. Walley, 1991] and numerous sources on how to calculate
with imprecise probabilities are available [see e.g. Augustin et al., 2014, for a depiction of
the state of the art within different fields of application at that time]. Naturally, this
framework is appropriate whenever some relevant but potentially vague information about
probabilities is available, yet it is not enough to unambiguously specify exact probability
values. For example, within the Bayesian context, a researcher might be unable to specify
the exact shape of a prior distribution and several different distributions are in accordance
with the available prior knowledge. By comprising all these potential distributions within
a set of distributions, the researcher obtains an imprecise prior distribution, which reflects
the available knowledge and uncertainty as is, without pretending a level of precision that
is not available [see also the framework of robust Bayesian statistics, e.g. Ŕıos Insua and
Ruggeri, 2012].

Similarly, in the context of a real-world decision, some potentially vague information about
potential consequences is supposed to be available. Yet, an applied scientist is usually
unable to unambiguously specify a precise loss function as several different loss functions
might be in accordance with the available (vague) information. An arbitrary specification
of a loss function will result in an arbitrary decision. Not employing a loss function at all,
on the other hand, leads to a decision that lacks a relation to the underlying real-world
situation and is therefore arbitrary as well. In that, it seems obvious that partially available
information about the loss function has to be included into the analysis in the form it is
available.

Thus, analogue to imprecisely specified probabilities, the loss function might be specified
imprecisely. In the context of the simplified loss function as depicted in Section 3.1, instead
of a precise value k, an open7 interval of values K =

(
K,K

)
might be employed, where K

and K denote the lower and upper bound, respectively, for stating how much “worse” a1
would be if θ ∈ Θ0 than a0 would be if θ ∈ Θ1 (if deciding correctly has zero “badness”).
As every value k ∈ K defines a different (simplified) loss function, the interval K defines
a set of loss functions. For each of those loss functions, i.e. for every k ∈ K, it is possible

7Of course, K might also be specified by a closed interval
[
K,K

]
and in many situations this might be

more reasonable. However, in order to derive the ROPE-only decision rule, as stated by Kruschke [2018]
within his supplementary material, K needs to be an open interval.
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to determine the Bayes action aBayes(k), once the data are available and the posterior
distribution of θ is calculated. If the Bayes action aBayes(k) is the same for all k ∈ K,
then this action should be selected, else information is lacking to unambiguously guide a
decision and a decision should be withheld.

Formally, an interval-valued ratio of expected posterior losses

(
%(K), %(K)

)
(11)

is obtained by considering the interval-valued K, leading to the Bayes action

aBayes(K) =

{
a0 if %(K) > 1

a1 if %(K) < 1
. (12)

For %(K) ≤ 1 ≤ %(K), the decision should be withheld.

3.3 An Arbitrary Choice

By setting K arbitrarily to K = (1/19, 19), the ROPE-only decision rule is obtained,
because – according to the imprecise decision theoretic framework, especially considering
equation (12) – action a0 (“accept the null value for practical purposes”) is optimal if

%(1/19) > 1

⇔ 1

19
· p(θ ∈ Θ0|x)

p(θ ∈ Θ1|x)
> 1

⇔ p(θ ∈ Θ0|x) > 19 · p(θ ∈ Θ1|x)

⇔ p(θ ∈ Θ0|x) > 19 · (1− p(θ ∈ Θ0|x))

⇔ 20 · p(θ ∈ Θ0|x) > 19

⇔ p(θ ∈ Θ0|x) > 0.95

and, analogously, action a1 (“reject the null value for practical purposes”) is optimal if

%(19) < 1

⇔ p(θ ∈ Θ0|x) < 0.05 ,

which reflect exactly those conditions defining the ROPE-only decision rule.

In any other case, i.e. for 0.05 ≤ p(θ ∈ Θ0|x) ≤ 0.95, both the imprecise decision theoretic
framework using K = (1/19, 19) and the ROPE-only decision rule recommend to withhold
a decision.
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4 Foundations of the HDI+ROPE decision rule

4.1 Action Space and Decision Rule

The general idea of the decision theoretic foundation of the HDI+ROPE decision rule was
described within the supplementary material by Kruschke [2018, supp. p. 3–5]. However,
some aspects depicted there are merely preliminary8, so this technical report intends to out-
line this foundation more profoundly. In line with this idea and the considerations depicted
by Rice et al. [2008] (which are also referred to by Kruschke [2018]), the corresponding
action in the context of the HDI+ROPE decision rule comprises two aspects:

� the determination of the HDI and

� the assessment of the relation between the HDI and the ROPE (inside, outside, or
overlap).

The action space w.r.t. the first aspect – indicated with subscript I for “interval” – contains
all possible closed parameter intervals

AI = {[a, b]|a, b ∈ Θ, a < b} (13)

and the objective is to decide for the element within AI that is the HDI.

The action space w.r.t. the second aspect – indicated with subscript R for “relation” –
contains all three possible relations between a parameter interval and a predefined ROPE:

AR = {r0, r1, r2} (14)

with

r0: The parameter interval falls completely within the ROPE.

r1: The parameter interval falls completely outside the ROPE.

r2: The parameter interval and the ROPE overlap.

In conjunction, the overall action space is AI × AR and the corresponding decision rule
maps the sample space X to this action space:

δHDI+ROPE : X → AI ×AR . (15)

8Within equation (1) on page 4 within Kruschke [2018]’s supplementary material, the argument s of
the function 1(s) is sometimes a set, yet it should be a statement. The explanation of one of the terms
states “cost of reject if HDI overlaps ROPE” [Kruschke, 2018, supp. p. 4 eq. (1)], yet the term might rather
refer to a cost of rejection if the HDI is within the ROPE. As outlined within this technical report (see
esp. equation (30)), the cost of deciding correctly should be identical for each relation between HDI and
ROPE, which is not necessarily the case in Kruschke’s formula (1).

In that regard, Kruschke [2018] states that his ideas are “merely suggestive” [supp. p. 4] and his “goal
is [only] to point out that formal expressions are possible for the loss implicit to the intuitive HDI+ROPE
rule” [supp. p. 5]. In that, the elaborations within this technical report are based on this initial work by
Kruschke [2018].
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The exact shape of this decision rule

δHDI+ROPE(x) =

(
δI(x)

δR(δI(x))

)
(16)

can be depicted using the functions

δI : X → AI , (17)

which maps the data x to the corresponding HDI, and

δR : AI → AR , (18)

which maps an interval in parameter space [a, b] ∈ AI to its correct relation with a prede-
fined ROPE Θ0 by

δR([a, b]) =





r0 if [a, b] ∩Θ0 = [a, b]

r1 if [a, b] ∩Θ0 = ∅
r2 if [a, b] ∩Θ0 6= [a, b] ∧ [a, b] ∩Θ0 6= ∅

. (19)

4.2 Loss Function

4.2.1 Determination of HDI

It is possible to state a loss function for which the determination of the HDI δI is a Bayes
rule, namely [see e.g. Schervish, 1995, Rice et al., 2008]

LI : Θ×AI → R+
0 : LI(θ, [a, b]) = (b− a) + c · 1(θ 6∈ [a, b]) , (20)

where 1(s) = 1 if the statement s is true and 1(s) = 0 if s is false. The value c denotes a
constant which determines the minimum density of a parameter to be included within the
HDI (see below).

The expected posterior loss w.r.t. this loss function is

ρI([a, b]) =

∫

Θ

LI(θ, [a, b])π(θ|x)dθ

=

∫

Θ

[(b− a) + c · 1(θ 6∈ [a, b])]π(θ|x)dθ

= (b− a) + c

∫

Θ

1(θ 6∈ [a, b])π(θ|x)dθ

= (b− a) + c

∫

Θ\[a,b]
π(θ|x)dθ

and minimizing this expected posterior loss over the action space AI yields as Bayes action
the interval [a, b] that contains all parameters with posterior density larger than c−1 [see
e.g. Schervish, 1995, Rice et al., 2008]. By setting c appropriately, the 95%-HDI is obtained
as Bayes action for a given data set x and the decision rule δI is a Bayes rule w.r.t. the
loss function LI .
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4.2.2 Relation between HDI and ROPE

It is also possible to state a loss function LR for which the assessment of the relation
between a parameter interval [a, b] and a predefined ROPE Θ0 is a Bayes rule.

As outlined in Section 2, a loss function is defined on the parameter space Θ and on the
action space, which is AR (as defined in equation (14)) within this context. However, the
employed loss function will depend on the ROPE Θ0 and the parameter interval [a, b] as
well. Although the ROPE might be treated as given, this is not the case for the parameter
interval [a, b], especially when considering the overall decision rule δHDI+ROPE (as in the
following Section 4.2.3). Accordingly, this dependence of LR on [a, b] ∈ AI needs to be
taken into account, so that

LR : Θ×AR ×AI → R+
0 : (θ, r, [a, b]) 7→ L

[a,b]
R (θ, r) . (21)

Considering δR in isolation, as within this subsection, also [a, b] might be treated as given.

Although this loss function is technically defined using the parameter space Θ, this depen-
dence is not necessary:

∀r ∈ AR : ∀θi, θj ∈ Θ : L
[a,b]
R (θi, r) = L

[a,b]
R (θj, r) =: L

[a,b]
R (r) . (22)

A candidate of this loss function is depicted in Table 2, formally stated as

L
[a,b]
R (r) = c1 · 1(r = r0) · 1([a, b] ∩Θ0 = [a, b]) +

c1 · 1(r = r1) · 1([a, b] ∩Θ0 = ∅) +

c1 · 1(r = r2) · 1([a, b] ∩Θ0 6= [a, b] ∧ [a, b] ∩Θ0 6= ∅) +

c2 · 1(r = r0) · 1([a, b] ∩Θ0 = ∅) +

c2 · 1(r = r0) · 1([a, b] ∩Θ0 6= [a, b] ∧ [a, b] ∩Θ0 6= ∅) +

c2 · 1(r = r1) · 1([a, b] ∩Θ0 = [a, b]) +

c2 · 1(r = r1) · 1([a, b] ∩Θ0 6= [a, b] ∧ [a, b] ∩Θ0 6= ∅) +

c2 · 1(r = r2) · 1([a, b] ∩Θ0 = [a, b]) +

c2 · 1(r = r2) · 1([a, b] ∩Θ0 = ∅) , (23)

where c1, c2 are arbitrary positive constants with c1 < c2 and, again, 1(s) = 1 if the
statement s is true and 1(s) = 0 if s is false.

As LR does not depend on the parameter θ, the expected posterior loss ρR of each action
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Table 2: Loss function for finding the relation r between a parameter interval and a ROPE (see equation 23).

L
[a,b]
R (r)

Interval to ROPE
within outside overlap

Decision
r = r0 c1 c2 c2

r = r1 c2 c1 c2

r = r2 c2 c2 c1

r ∈ AR w.r.t. this loss function is the loss value itself:

ρR(r) =

∫

Θ

L
[a,b]
R (θ, r)π(θ|x)dθ

=

∫

Θ

L
[a,b]
R (r)π(θ|x)dθ

= L
[a,b]
R (r)

∫

Θ

π(θ|x)dθ

= L
[a,b]
R (r) (24)

Minimizing ρR over the action space AR results in the relation r that is obtained by the
decision rule δR in equation (19). In that, this decision rule δR is a Bayes rule w.r.t. the
loss function LR for all parameter intervals [a, b] ∈ AI .
The loss function LR was defined using only two different values c1 and c2. In that, two
restrictions are imposed on the loss function LR:

(I) Deciding correctly has the same loss c1 independent of which relation is true.

(II) Deciding falsely has the same loss c2 independent of which relation is true and which
incorrect relation was chosen.

Of course, it would be possible to employ a loss function without these restrictions that
uses e.g. nine different loss values instead of only two. However, the first restriction (I)
will be necessary for combining both loss functions LI and LR, because then, independent
of the parameter value θ ∈ Θ, for every potential interval [a, b] ∈ AI the decision rule δR
yields a relation r ∈ AR with the identical loss c1, i.e.

∀θ ∈ Θ ∀[a, b] ∈ AI : L
[a,b]
R (θ, δR([a, b])) = c1 , (25)

a fact that will be referred to later.

The second restriction (II) is employed both out of convenience and to emphasize an
important characteristic: Assume that up to six different values larger than c1 would be
employed instead of c2 within the loss function LR in equation (23). Still, the expected

posterior loss ρR(r) of each action r is the loss value L
[a,b]
R (r) itself (equation (24)) and,

again, the minimization leads to the action obtained by δR. In that, the decision rule
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δR is a Bayes rule w.r.t. this loss function independent of the exact values that are used
instead of c2. The exact specification of these values does not contribute to guiding the
decision about the relation r ∈ AR, only the fact that they are larger than c1. Therefore,
if important information is incorporated within these values this information will not be
used for guiding the decision, so a single value c2 might be employed out of convenience.

4.2.3 Overall

Adding both loss functions lead to

LHDI+ROPE : Θ× (AI ×AR)→ R+
0 (26)

with
LHDI+ROPE(θ, ([a, b], r)) = LI(θ, [a, b]) + L

[a,b]
R (θ, r) (27)

for which the overall decision rule δHDI+ROPE is a Bayes rule.

This can be seen by considering the expected posterior loss

ρHDI+ROPE([a, b], r) =

∫

Θ

LHDI+ROPE(θ, ([a, b], r))π(θ|x)dθ

=

∫

Θ

[
LI(θ, [a, b]) + L

[a,b]
R (r)

]
π(θ|x)dθ

=

∫

Θ

LI(θ, [a, b])π(θ|x)dθ +

∫

Θ

L
[a,b]
R (r)π(θ|x)dθ

= ρI([a, b]) + L
[a,b]
R (r) . (28)

The corresponding Bayes action

arg min
([a,b],r)∈AI×AR

ρI([a, b]) + L
[a,b]
R (r) , (29)

is obtained by minimizing this expected posterior loss.

The first part ρI([a, b]) does not depend on r ∈ AR and as outlined in in the previous

Section 4.2.2, for all possible parameter intervals [a, b], the second part L
[a,b]
R (r) can be

minimized by choosing its correct relation r ∈ AR with the predefined ROPE, which is
obtained by the decision rule δR. Therefore, for any parameter interval [a, b], the optimal
relation is r = δR([a, b]).

The optimal parameter interval [a, b] ∈ AI can now be obtained as

arg min
[a,b]∈AI

ρI([a, b]) + L
[a,b]
R (δR([a, b]))

eq.
(25)
= arg min

[a,b]∈AI

ρI([a, b]) + c1

= arg min
[a,b]∈AI

ρI([a, b]) , (30)
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which is the 95%-HDI – for an appropriate choice of c (see Section 4.2.1).

Taken together, as stated at the beginning of this subsection, the Bayes action ([a, b], r)
w.r.t. LHDI+ROPE is obtained by δHDI+ROPE.

The first restriction (I) mentioned in the previous Section 4.2.2 (equation (25)) is employed
for finding the optimal parameter interval in the overall case, i.e. within equation (30).

Without this restriction (I), L
[a,b]
R (δR([a, b])) would not be a constant c1, but a value that

depends on the interval [a, b]. In that, the minimization in equation (30) could yield an
interval, which is not the HDI, a fact that is referred to as “paradoxical behavior” by
Kruschke [2018, supp. p. 4] (who also refers to Casella et al. [1993] in this context).

4.3 Final Decision

In contrast to the foundation of the ROPE-only decision rule, the loss function LHDI+ROPE
does not allow a reasonable employment of the framework of imprecise probabilities. This
is because LI need to be as it is in order to obtain the HDI and LR uses only the fact that
c1 is smaller than c2. As depicted in Section 4.2.2, any additional information within these
constants is not being used. Therefore, no potentially vague information can be captured
within LHDI+ROPE. As a consequence, the framework of imprecise probabilities cannot be
employed within this context to elegantly formalize withholding a decision between a0 and
a1. Therefore, the action space of the final decision comprises all a0, a1 and the action to
withhold the decision.

Of course, in the context of the HDI+ROPE decision rule, there is a bijective mapping
between AR and the action space for this final decision:

r0 7→ a0 r1 7→ a1 r2 7→ withhold decision . (31)

Accordingly, this last step does not need a separate decision theoretic account, as the final
actions might be employed instead of the three relations r ∈ AR.

Nevertheless, from a content point of view, this final step should be treated separately from
the determination of the relation between the HDI and the ROPE. As outlined within this
Section 4, the HDI+ROPE decision rule is primarily focusing on technical aspects of how
to obtain the HDI and determine its relation with a predefined ROPE, and it is this final
step that tries to build the connection to the underlying real-world decision of interest.

5 Discussion

The decision theoretic foundations of both Kruschke’s HDI+ROPE decision rule [Kruschke,
2015, 2018] and the ROPE-only decision rule [Kruschke, 2018, supp. p. 5] are outlined
within this technical report. Both decision rules are depicted as Bayes rules w.r.t. certain
loss functions. In that, different loss functions are considered: First, although inaccessible,
there is an underlying “true” loss function characterizing the real-world decision of interest.
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Second, in the context of considerations about the ROPE (see Section 3.1), this “true” loss
function is simplified, such that it might be specified by only a single number. Still, this
simplified loss function characterizes the real-world decision of interest. Third, there is a
loss function w.r.t. to finding the HDI for a given data set and, fourth, a rather artificial
loss function might be employed in the context of determining the relation between a
parameter interval and a pre-defined ROPE. Fifth, the loss function in the context of the
HDI+ROPE decision rule is a combination of the previous two.

Naturally, by considering these different loss functions, different decision rules are char-
acterized as Bayes rules. Put aptly by Rice et al. [2008, p. 3], “for the precise ‘question’
asked by loss function L and the stated modeling assumptions, one can think of the Bayes
rules as providing the ‘best’ answer”. In that, these five loss functions are asking:

� How should I decide in the real-world decision problem?

� Given the simplification, how should I decide in the real-world decision problem?

� Which interval is the HDI of the posterior distribution?

� How is the relation of the HDI and the ROPE?

� Which interval is the HDI of the posterior distribution and how is the relation of it
with the ROPE?

The first question is of interest but cannot be answered, because the loss function is inac-
cessible. The second question does relate to the real-world decision of interest and might be
used as a proxy for the first question (given the employed simplification is reasonable), as
the corresponding simplified loss function still contains information w.r.t. to the real-world
decision of interest. By allowing this loss function to be specified imprecisely, relevant
information might be incorporated into the analysis as it is available. In this context, the
ROPE-only decision rule is optimal when resorting to an arbitrary choice of interval-valued
loss functions.

The third question does not address the real-world decision of interest at all. Although
the fourth question contains the ROPE, the corresponding loss function considers only
the bounds of the ROPE and not respective loss values that are in accordance with the
real-world decision of interest (as within the second (simplified) loss function). In that, the
fourth question relates to the real-world decision of interest only marginally and primarily
addresses a rather technical interval comparison. Therefore, as a combination of the pre-
vious two, the fifth question does not primarily ask about the real-world decision problem,
yet is implicitly used as a proxy for it when employing the HDI+ROPE decision rule.

In summary, the ROPE-only decision rule might be characterized as being closer to the
real-world decision of interest than the HDI+ROPE decision rule. This might also be seen
by the fact, that both the “true” underlying loss function and the posterior distribution
are essential to derive the optimal decision in a Bayesian framework, yet the HDI+ROPE
decision rule uses less of these information than the ROPE-only decision rule: First, former
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simplifies the posterior distribution by sorting back to the less-informative HDI. Second,
former employs only the bounds of the ROPE and latter also information about the loss-
magnitude.

Of course, the arbitrary choice about the loss value interval within the simplified loss
function in the context of the ROPE-only decision rule (see Section 3.3) has to be criticized.
The corresponding interval should be chosen based on the real-world decision of interest.
As it is to expect that at least some information about this loss value in the simplified
loss function is available9, the framework of imprecise probabilities offers an elegant way
to include this essential but vague information.
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