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Zusammenfassung (Summary in German)

Quantenstörstellenmodelle stellen eine einfache, aber mächtige Plattform für die Untersuchung
von elektronischen Korrelationen in der Festkörperphysik dar. Hierbei wird der exponentiell
große Hilbertraum eines wechselwirkenden Quantenvielteilchenproblems auf eine einzelne
Störstelle reduziert, welche alle relevanten Freiheitsgrade enthält, während die Umgebung
durch ein nichtwechselwirkendes Bad approximiert wird. Dies erlaubt eine detaillierte Unter-
suchung physikalischer Eigenschaften, die aus lokalen Korrelationen resultieren. Gleichzeitig
können Störstellenmodelle als Ausgangspunkt für eine systematische Integration von lokalen
und nichtlokalen Korrelationen über die Störstelle hinaus dienen. Interessante Observable für
Quantenstörstellenmodelle sind dynamische Korrelationsfunktionen wie beispielsweise Spin-
und orbitale Suszeptibilitäten, welche Informationen zu Quantenfluktuationen enthalten. Viele
theoretische Zugänge zu solchen Korrelationsfunktionen werden im sogenannten Imaginärzeit-
Matsubara-Formalismus konstruiert. Das erschwert den Vergleich mit experimentellen Daten,
die natürlich in reeller Zeit gemessen werden. Daher ist es wünschenswert, mit Methoden zu
arbeiten, die direkt auf der reellen Zeit- oder Frequenz-Achse konstruiert werden.

In dieser Dissertation werden zwei Projekte vorgestellt, in denen zwei verschiedene
Quantenstörstellenmodelle mit unterschiedlichen Realfrequenzmethoden studiert werden.
Der erste Teil konzentriert sich auf eine methodische Weiterentwicklung der Funktiona-
len Renormierungsgruppe (fRG), ein vielseitiges Tool für die Berechnung von Ein- und
Zweiteilchen-Korrelationsfunktionen. Einige Probleme der konventionellen sogenannten Ein-
Loop-Trunkierung wurden durch die kürzlich vorgestellte Multiloop-fRG (mfRG) beho-
ben. Dieser Ansatz wurde aber bislang nur im Matsubara-Formalismus angewandt. Ande-
rerseits wurde fRG bereits im sogenannten Keldysh-Formalismus implementiert, welcher
Realfrequenz-Rechnungen ermöglicht. Aufgrund der größeren numerischen Komplexität des
Keldysh-Formalismus wurden dabei aber stets Näherungen bemüht, die noch stärkere Ein-
schränkungen als die Ein-Loop-Trunkierung darstellen. Wir verbinden nun die Möglichkeiten
des Keldysh-Formalismus mit den Vorteilen von Multiloop-fRG und implementieren zum
ersten Mal einen Keldysh-mfRG-Code, der fRG zu einer quantitativen Realfrequenz-Methode
weiterentwickelt. Wir testen diese Methode für das Single-Impurity-Anderson-Modell, das
bereits gut verstanden ist und leicht zu komplexeren Modellen verallgemeinert werden kann.
Dies erlaubt uns, Keldysh-mfRG als quantitative Methode systematisch zu testen, und eröffnet
die Möglichkeit verschiedenster zukünftiger Erweiterungen der Methodik.

Im zweiten Teil beantworten wir eine viel direktere physikalische Fragestellung, nämlich
die nach dem Ursprung und den Eigenschaften von Nicht-Fermi-Flüssigkeitsverhalten (NFL)
in Hund-Metallen. Diese Materialien zeichnen sich durch elektronische Korrelationen aus,
die von der ersten Hund’schen Regel verursacht werden, welche besagt, dass der gesamte
Elektronenspin eines multiorbitalen Atoms im Grundzustand maximal ist. Charakteristische
Eigenschaften einer Nicht-Fermi-Flüssigkeit wurden in solchen Systemen bereits vorhergesagt,
speziell fraktionales Potenzverhalten der dynamischen Spin- und orbitalen Suszeptibilitäten,
wobei der Ursprung dieses Verhaltens jedoch bislang unklar blieb. Hund-Metalle werden gut
durch ein Kondo-Störstellenmodell mit drei Orbitalen beschrieben. Wir untersuchen dieses
Modell mit einem kombinierten numerischen und analytischen Ansatz. Dabei verbinden wir
eine numerisch exakte Lösung des Modells mittels der Numerischen Renormierungsgruppe
(NRG) mit einem analytischen Ansatz ausgehend von einer konformen Feldtheorie (CFT).
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Dies erlaubt uns, das NFL-Regime ausführlich zu charakterisieren. Wir können insbesondere
das charakteristische Potenzverhalten, welches vermutlich für die supraleitende Phase in
Hund-Metallen verantwortlich ist, analytisch erklären. Außerdem liefern wir eine Erklärung
für die außergewöhnlich niedrige Kohärenzskala vom Nicht-Fermi-Flüssigkeits- zum Fermi-
Flüssigkeitsverhalten in Hund-Metallen.
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Summary (Summary in English)

Quantum impurity models provide a simple but powerful framework for studying electronic
correlations in solid-state physics. Reducing an exponentially large interacting quantum
many-body problem to a single impurity containing all relevant degrees of freedom—immersed
in a noninteracting bath that approximately describes its environment—allows for a detailed
study of physical properties originating from local correlations. At the same time, impurity
models provide a starting point for systematically incorporating local and nonlocal correlations
beyond the impurity level. Useful observables for quantum impurity models are dynamical
correlation functions such as spin or orbital susceptibilities, since they allow for important
insights on quantum fluctuations in the system of interest. Many theoretical approaches for
computing correlation functions are formulated in the imaginary-time Matsubara formalism,
which complicates the comparison to experimental data measured (obviously) in real time.
Therefore, methods working directly on the real-time or real-frequency axis are highly
desirable.

In this thesis, we present two projects studying two different quantum impurity models with
different real-frequency methods. In the first part, we focus on methodological advancement
in the context of the functional renormalization group (fRG), a versatile tool for computing
dynamical one- and two-particle correlation functions. Many caveats of the conventional so-
called one-loop approximation in fRG have recently been overcome through the development
of multiloop fRG (mfRG). The mfRG approach has however only been implemented in the
Matsubara formalism yet, bringing along the issues mentioned above. On the other hand,
fRG has been implemented in the Keldysh formalism before, which allows for direct real-
frequency calculations. However, due to the increased numerical complexity of the Keldysh
framework, approximations even stronger than the one-loop truncation were made. Here, we
combine the power of the Keldysh formalism with the benefits of the multiloop extension and
implement for the first time a full Keldysh mfRG code, which elevates fRG to a quantitative
real-frequency method. We test this method for the single-impurity Anderson model, which
is well understood and straightforwardly generalizable to more complex models. This allows
for a systematic evaluation of the capabilities of Keldysh mfRG and opens up the route to
various nontrivial extensions of the method in the near future.

In a second part, we aim to answer a much more direct physical question, namely, on
the origin and nature of non-Fermi-liquid (NFL) behavior in so-called Hund metals. These
materials are characterized by electronic correlations that originate from Hund’s first rule,
stating that the total electronic spin of a multiorbital atom should be maximized. Properties
characteristic of a non-Fermi liquid have been observed in such systems before, in particular
through fractional power laws in dynamical spin and orbital susceptibilities, but a detailed
understanding was lacking thus far. The physics of Hund metals is well captured by a
three-orbital Kondo impurity model. To study this model, we combine a numerically exact
solution by means of the numerical renormalization group (NRG) and an analytical treatment
within a conformal field theory (CFT). This hybrid numerical and analytical approach
allows us to fully characterize the NFL regime in this model for Hund metals. We provide
analytical explanations for the characteristic power laws in the susceptibilities, which have
been conjectured to be relevant for superconductivity in Hund metals, and explain the origin
of the unusual suppression of the Fermi-liquid coherence scale.
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1 Introduction

1.1 Motivation
Interacting quantum many-body systems are among the most fascinating and intriguing
problems theoretical condensed matter physics is faced with. On the one hand, a naive
treatment of a full many-body system is immediately deemed to fail due to the macroscopically
large number of coupled degrees of freedom. On the other hand, a purely reductionist approach
that treats the individual constituents independently can never account for the extremely rich
variety of emergent phenomena that have been observed in such systems [And72]. Examples
include high-temperature superconductivity, novel non-Fermi-liquid phases, or magnetic
phases with fractional excitations such as spin liquids. Many of those phenomena have
been lacking theoretical understanding for decades, and the reason is that they cannot be
explained from a single-particle picture, while a full many-body description is notoriously hard.
Therefore, the challenge is to neglect enough details to allow for predictions with a limited
amount of computational resources, while concurrently keeping all necessary ingredients
responsible for the fascinating phenomena to be described in the system of interest.

A prototypical attempt to bridge this gap between simplification and completeness of
the description of the relevant physics are quantum impurity models. This class of models
focuses on a single impurity, representing e.g. a single atom, on which interactions between
constituents are incorporated to a maximal degree. In contrast, the environment of the
impurity, e.g. the surrounding atoms in a solid, is treated as a noninteracting “bath”, such that
its influence on the impurity is only captured approximately. Impurity models have proven to
be a very useful framework for the description of phenomena that are caused by the interplay
and correlations of local degrees of freedom. A prime example is the Kondo effect [Kon64],
i.e., the screening of a magnetic impurity in a solid by the surrounding conduction electrons.
Despite their apparent simplicity, impurity models often host emergent energy scales (such as
the Kondo temperature) that cannot be explained from the single-particle properties of the
model, but instead require a genuine many-body treatment. On the other hand, impurity
models serve as an excellent starting point for a systematic inclusion of correlations beyond the
bare impurity level, e.g. within the dynamical mean field theory (DMFT) [MV89, GKKR96]
and diagrammatic extensions thereof [RHT+18], which can account for nonlocal correlations
to some degree.

While a lot of the complication is reduced by treating the surroundings of the impurity as
a noninteracting bath, solving impurity models often still remains a very nontrivial task on
its own, which requires sophisticated many-body techniques. Many available methods for
this purpose originate from the ideas of quantum field theory and are often formulated in the
imaginary-time Matsubara formalism. A prime example is the widely-used continuous-time
quantum Monte Carlo (CTQMC) method [GML+11], but also the functional renormalization
group (fRG) [KBS10, MSH+12] is usually implemented on the imaginary-time axis. The
Matsubara formalism is a very convenient framework for computing dynamical correlation
functions. However, in experiment, dynamical properties are of course measured as a function
of real frequencies, and the analytic continuation of numerical data from the imaginary- to
the real-frequency axis is numerically ill-conditioned [SS86, GJSS91], which poses a major
obstacle for comparing Matsubara results to experiments. It is therefore desirable to work
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with methods that provide numerical data for dynamical correlation functions directly on the
real-frequency axis, without the need for analytic continuation.

In this thesis, we present the results of two independent projects, studying two different
quantum impurity models with different methodological approaches, which both accomplish
this task. Conceptually, they are in a sense complementary: The (multiloop) functional
renormalization group (mfRG) [KvD18b, KvD18c, KvD18a] studied in Part I is very flexible
and not even restricted to impurity models. However, for practical purposes, certain trunca-
tions are necessary, and as a result the method only works reliably for weak to intermediate
interaction strength and cannot fully capture the strongly correlated regime. By contrast,
the numerical renormalization group (NRG) [Wil75, BCP08] and the conformal field theory
(CFT) analysis of fixed points [Aff90, AL91b, AL91a, AL93, LA94] used in Part II are both
fully nonperturbative and thus allow for full control of the physical behavior at arbitrarily
large interaction strength. However, they are limited to the impurity picture, and cannot
simply be extended from local to nonlocal correlations on a lattice. Nevertheless, the impurity
picture is still understood to be a valid approximation if the physics in the system of interest
is dominated by the interplay of local degrees of freedom.

Despite being conceptually quite different, all methods used in this thesis share the ability
to compute real-frequency dynamical quantities: The mfRG will be formulated in the Keldysh
formalism, which alleviates the constraints of Matsubara formalism at the expense of increased
numerical costs. NRG is not formulated in quantum field theoretical language, but instead
works with quantum states and thus is constructed directly on the real-frequency axis. The
CFT description of fixed points is also based on a Hamiltonian picture and does not require
artificial imaginary times. In the following, we introduce the models and methods studied in
these two projects in more detail.

1.1.1 Keldysh mfRG for the single-impurity Anderson model
The functional renormalization group (fRG) [KBS10, MSH+12] is a conceptually extremely
versatile tool for studying interacting quantum many-body systems: It is a priori exact, can
treat both local and nonlocal correlations, and if formulated in the Keldysh formalism, it
allows to treat systems in and out of thermal equilibrium. However, for actual calculations
approximations need to be made, and thereby the method loses its initially nonperturbative
character. As a consequence, reliable predictions can only be made at not too large interaction
strength, beyond which fRG loses its validity.

The standard so-called one-loop truncation introduces a variety of problems, which are
partially cured in multiloop fRG (mfRG) [KvD18b, KvD18c, KvD18a]. In particular, multiloop
fRG restores the independence of physical results on the so-called regulator, a technical
ingredient of fRG that can be chosen arbitrarily and thus should not affect physical results.
Thereby, the multiloop extension turns fRG into a quantitatively reliable method [Kug19].
mfRG has so far only been implemented in the imaginary-frequency Matsubara formalism (e.g.
[KvD18c, THK+19]). Here, we extend it to the Keldysh formalism, within which correlation
functions are computed directly on the real-frequency axis, thereby avoiding the need for
performing analytic continuation numerically. Even further, the Keldysh formalism is not
restricted to thermodynamic equilibrium, but allows for nonequilibrium studies without
further complication. However, this power comes at the price of strongly increased numerical
complexity.

Keldysh fRG has been frequently used before (e.g. [JMS07, JPS10a, SBvD17, WvD19]).
However, due to the large numerical costs, it has not been extended beyond the one-loop
truncation so far, and even further, a strong simplification of the frequency dependence of the
four-point vertex has routinely been applied. However, the four-point vertex is known to be
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important for accurately capturing two-particle properties [RHT+18], hence a parametrization
of the Keldysh vertex including its full frequency dependence is highly desirable. To achieve
this, and thereby to allow to elevate Keldysh fRG to the (quantitative) multiloop level, has
been the main goal of this project.

We study the single-impurity Anderson model (SIAM) [And61] as a testbed for method
development. The SIAM is one of the most iconic models in condensed-matter physics
[Hew93]. It involves a single energy level that can be occupied by up to two electrons and is
immersed in a noninteracting bath to which it hybridizes. On the impurity level, electrons
experience a Coulomb repulsion. Originally introduced to study the behavior of magnetic
impurities in metals [And61], it has much wider implications: Physically, it also serves as a
simple model for a single-electron quantum dot [GGSM+98, GGGK+98]. More generally, it
can be understood as a minimal model for studying electron-electron interactions in solids: It
allows for interactions at one single “impurity” site, and treats the surrounding electrons as a
noninteracting bath that couples to the impurity. This concept is the starting point for a zoo
of models: It can be extended from a single impurity orbital to multiorbital impurities, a
Schrieffer-Wolff transformation at low energies leads to the Kondo model that describes the
formation of a Kondo singlet between the localized impurity and the bath [SW66], and an
extension of the Anderson model to a lattice of impurities is called periodic Anderson model,
which is the prototypical model for heavy-fermion systems [Hew93]. Furthermore, a lattice of
Anderson-like impurities with hopping between neighboring sites and interaction on every
site leads to Hubbard-like models that are believed to be a useful starting point for studying
the cuprate high-Tc superconductors [ZR88, Dag94]. The Anderson model is also of central
importance in the study of lattice models: In the context of DMFT [MV89, GKKR96], the
lattice is mapped to an effective Anderson-type impurity again, but the coupling to the bath
now has to be determined self-consistently.

Due to its long history, there are many previous works on the SIAM: Exact perturbation
theory results [YY70, Yam75a, YY75, Yam75b], analytic solutions via the Bethe ansatz
[TW83, ZH83], fRG studies, e.g. [HMPS04, GPM07, KHP+08, JPS10a, RMJ16, CGKH+21],
and NRG calculations, e.g. [KmWW80a, KmWW80b, BPH97, BHP98].

Our goal here is to reproduce known results with Keldysh mfRG, and answer the following
questions: How well does the method perform on a quantitative level? Which parameter
regimes can we reach, and where does also multiloop fRG fail due to inevitable truncations?
Can we improve (compared to the standard one-loop truncation) on the fulfillment of Ward
identities, which are important in particular for computing transport properties [WvD19]?
Answering these questions for the SIAM in equilibrium, where numerically exact benchmark
results from NRG are available, allows us to characterize the capabilities of Keldysh mfRG as
a quantitative method. This is essential if one wants to study the SIAM in nonequilibrium,
which is not accessible by NRG.

Furthermore, applications of Keldysh mfRG beyond the SIAM, which can build on the
developments presented in this thesis, are manifold:

• Introducing an orbital degree of freedom to the impurity allows to study multiorbital
quantum dots. Here, one would focus on nonequilibrium transport properties, which
are directly accessible in the Keldysh formalism.

• As a further generalization, one can add one spatial dimension to the zero-dimensional
SIAM and continue on previous work on transport through a 1-dimensional nanocon-
striction (or quantum point contact) [BHS+13, SBvD17, WSSvD18], where one-loop
fRG has been shown to be insufficient due to the violation of Ward identities [WvD19].
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• One can include a rotationally-invariant momentum dependence to the bath and the
impurity in order to study the so-called Fermi-polaron problem [SEPD12, Gie21].

• By adding a lattice-momentum dependence to the impurity, one can extend the SIAM
to the (2-dimensional) Hubbard model [Hub63, Rit21b], which is believed to be relevant
for the physics of the cuprate high-temperature superconductors [ZR88, Dag94].

• One could overcome some limitations of fRG by starting an mfRG flow not from
a trivial initial condition, but from a DMFT vertex and self-energy. In this way,
one would use mfRG to include nonlocal correlations in addition to the local ones
captured in DMFT, thereby curing issues induced by conventional approximations.
This method, combining the power of DMFT to study strongly correlated systems
nonperturbatively and of fRG to compute nonlocal correlations, has been coined
DMF2RG [TAB+14, VTM19]. It has only been implemented in the Matsubara formalism
so far, but it would be very interesting to elevate it to the Keldysh framework as well,
in order to obtain real-frequency spectral information for the 2d Hubbard model. A
method to compute the DMFT vertex in the Keldysh formalism has been introduced
very recently by an extension of NRG from two-point to multipoint correlation functions
[KLvD21, LKvD21].

For the last three projects, first steps have already been taken by Marcel Gievers and Nepomuk
Ritz in the group of Jan von Delft, alongside further methodological advances pursued by
Anxiang Ge.

1.1.2 NRG+CFT for a three-channel spin-orbital Kondo model
While the first project presented in this thesis pursued methodological advances, the second
one was guided by a very direct physical question: Can the incoherent low-temperature
regime in Hund metals be attributed to a non-Fermi-liquid (NFL) fixed point, and what is
the origin and the nature of this non-Fermi liquid?

Hund metals [GdMM13] are multiorbital materials in which electronic correlations orig-
inate not primarily from the Coulomb repulsion, but from Hund’s first rule [dMMG11,
SKWvD19, DSH+19]: This phenomenological rule states that for a multiorbital atom
with a given number of electrons in some shell, the ground state is the one where the
total spin is maximal. Since a maximized spin corresponds to a symmetric representa-
tion of the SU(2) spin symmetry group, due to the fermionic statistics of electrons it is
accompanied by an antisymmetric orbital configuration, which lowers the potential energy
[GdMM13]. Typical Hund metals are transition metal oxides with partially filled d shells,
such as the ruthenates [WGTM08, MAM+11, TZR+19], iron pnictides and chalcogenides
[YHK11b, YHK11a, YHK12, YLY+13, HBA+13], and also nickelates [WH20]. Hund metals
have raised a lot of interest in recent years. Originally, this was mainly triggered by the dis-
covery of unconventional superconductivity in the iron pnictides [KWHH08, Ste11]. However,
also the normal state of Hund metals is of great interest, since it shows bad-metal behavior
in a large incoherent regime and a very low Fermi liquid coherence scale, related to a large
effective mass of quasiparticles [dMMG11, YLY+13, HBA+13]. The superconductivity is
believed to originate from strong spin fluctuations in the incoherent regime [LCMK18], which
enhances the need for thoroughly understanding the normal state of Hund metals.

In typical Hund metals, the five 3d orbitals are split into three so-called t2g and two eg
orbitals through the presence of oxygen ligands, with the t2g orbitals being most relevant for
electronic properties [YHK12]. Therefore, the natural minimal model for describing Hund
physics is a three-band Hubbard model with an onsite Hund coupling that enforces Hund’s rule
by favoring maximal spin [GdMM13]. In the context of DMFT [MV89, GKKR96], this model
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is mapped onto a three-orbital Anderson model [GdMM13, SYvD+15], which is a multiorbital
generalization of the aforementioned SIAM, but in addition also includes a Hund coupling
J , making it a “Hund impurity model”. This model shows a remarkable behavior, coined
spin-orbital separation (SOS) [SYvD+15, SKWvD19, DSH+19]: A Kondo-like screening of the
impurity happens both in the spin and orbital sector, but spin and orbital degrees of freedom
are screened on different energy scales, Tsp < Torb. Below the spin Kondo temperature Tsp,
coherent Fermi-liquid behavior is observed. However, in the intermediate SOS energy window
[Tsp, Torb], incoherent behavior is visible, characterized by screened orbital degrees of freedom
but an unscreened spin [YHK12, SYvD+15]. This behavior was conjectured to be a non-Fermi
liquid [AT13], but the nature of this NFL state remained unclear, in particular since the SOS
regime is rather small, preventing a more detailed analysis.

Here, we go one step further: Just as the Kondo model emerges from the SIAM [SW66],
one can do a Schrieffer-Wolff transformation on the three-orbital Anderson model, projecting
out charge fluctuations, to arrive at a three-orbital Kondo-type model [AK15]. This Kondo
model has not only a spin-spin Kondo coupling, but also an orbital-orbital one (and even one
that mixes the spin and orbital degrees of freedom). By (artificially) tuning those couplings,
one can open up the SOS regime and study its nature in detail. In particular, we identify a
fixed point in the renormalization group (RG) flow of the model that is responsible for the
NFL, and study it in detail.

Methodologically, we use a combined numerical and analytical approach: On the one hand,
we solve the model numerically using NRG [Wil75, BCP08]. Its implementation within the
QSpace library [Wei12a, Wei12b] enables us to exploit Abelian and non-Abelian symmetries,
which makes a numerically exact treatment of three-orbital models possible. On the other
hand, fixed points in the RG flow identified by NRG can be expected to be scale-invariant,
which allows a description in terms of a conformal field theory (CFT). We generalize the
CFT approach to fixed points of multichannel Kondo models devised by Affleck and Ludwig
[Aff90, AL91b, AL91a, AL93, LA94] from multichannel spin to multiorbital impurities, which
allows us to study the fixed points of our multiorbital Kondo model analytically. The numerical
and the analytical approach work hand in hand very fruitfully: NRG can provide numerically
exact results for spectra and dynamical correlation functions; but of course it cannot deliver
explanations for the observed behavior, which we do get from analytical understanding,
thereby enhancing the abilities of numerics by helping to interpret numerical results. On
the other hand, our extension of the CFT methodology was guided by the numerical results,
which provided insights about the fixed points that the model hosts and their qualitative
(and quantitative) behavior. As a result, we get a very detailed understanding of the NFL
fixed point and regimes influenced by it: One can compute the exact fixed point spectrum
(both numerically and analytically) and derive power laws of dynamical spin and orbital
susceptibilities with fractional exponents. These directly relate to previous observations in the
incoherent regime of Hund metals, e.g. in [SYvD+15]. Note that a real-frequency treatment
(built in to our approach) is indispensable for the description of dynamical spin fluctuations,
which are believed to be responsible for the pairing in the iron-pnictide superconductors.

In a further step, we freely tune the couplings of the model to compute its full phase
diagram. One can identify three different phases, a Fermi liquid (FL), an NFL, and a so-called
singular Fermi liquid (SFL) obtained by incomplete spin screening, featuring a fluctuating
(residual) spin with a marginal coupling to the bath. These phases are connected by quantum
phase transitions at zero temperature, i.e., quantum critical points (QCP) (or lines in the
phase diagram). The proximity to such a QCP leads to the suppression of the Fermi liquid
scale in the FL phase, which explains the unusually small coherence scale of Hund metals.
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1.2 Outline
As introduced above, this thesis is divided into two parts, discussing two separate projects.

Part I (comprising Chapters 2 – 9) presents the background, methodological advances
and results of the first project. In Chapter 2, we introduce the basic building blocks of
quantum field theory in the Keldysh formalism: The Keldysh time contour that is crucial for
finite-temperature real-frequency calculations, and definitions of the fundamental elements
of diagrammatic field theory in this framework, namely, one- and two-particle correlation
functions, or propagators and interaction vertices. Chapter 3 provides a brief introduction to
fRG, the method we use to explicitly compute such correlation functions. We explain the basic
idea and the conventional one-loop truncation, and then focus on the multiloop extension
which overcomes limitations thereof. mfRG is most elegantly defined in the framework
of parquet theory, which provides relations that connect different classes of diagrams in a
self-consistent manner.

To implement mfRG in the Keldysh formalism, we need to treat the Keldysh four-point
vertex in its full glory, which is a very complicated object. In Chapter 4, we illustrate how
to efficiently parametrize it. Here we employ simplifications that go beyond the state of
the art (as opposed to previous chapters). The main achievement of this chapter is the
parametrization of the combined frequency and Keldysh structure of the four-point vertex,
making use of various symmetries. While in Chapters 2 and 3 we try to keep the discussion
almost entirely on a diagrammatic level (allowing for a particularly concise and illustrative
notation of all important equations), in Chapter 4 we will provide more explicit expressions
in terms of useful parametrizations.

After this methodological part (Chapters 2 – 4), which aims to be as generic (i.e., model-
independent) as possible, we focus on a specific model as a proof of principle. Chapter 5
introduces the model of interest—the single-impurity Anderson model—and model-specific
simplifications. In Chapter 6, we discuss specific issues that arise in the numerical treatment
of real frequencies, and how to solve them. While the problems discussed in this section are
generic for a real-frequency implementation, some details of the solutions are specific for the
SIAM.

Chapters 7 – 9 present results for the SIAM within our implementation of Keldysh mfRG.
In Chapter 7, we first study the SIAM in perturbation theory, where analytical benchmark
results are available. We then perform various other consistency checks that allow for a
systematic evaluation of the validity of the code. In Chapters 8 and 9 we continue with
presenting mfRG results for one- and two-particle correlation functions.

In Part II (Chapter 10) we present the results of the second project. These are summarized
in two journal publications that are reprinted in this chapter.

Finally, we conclude the thesis in Chapter 11.
Appendix A provides details on the Keldysh vertex frequency parametrization that are

omitted in Chapter 4 for clarity. In Appendix B we briefly outline a different frequency
parametrization as the one used in Chapter 4 which was recently introduced [KVC19], the
so-called single-boson exchange decomposition, and we derive mfRG flow equations within
this parametrization. We also illustrate how the two parametrizations are related.
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2 Quantum field theory in the Keldysh formalism

The Keldysh formalism is a very powerful framework extending quantum field theory to
nonequilibrium systems. The basic idea was introduced by Keldysh in 1964 [Kel64], following
work by Schwinger [Sch61] and Kadanoff and Baym [KB62], thus sometimes also called
Schwinger-Keldysh formalism. An extensive pedagogical discussion of the topic can be found
in [Kam11], more compact introductions in the context of fRG are also given in related PhD
theses [Jak09, Sch17, Klö19].

Here, we only give a very brief summary of the key ideas that allow to do nonequilibrium
quantum field theory on the real-frequency axis, and present the most important formulas
necessary for the rest of the thesis. We start by introducing the notion of a Keldysh contour
for computing the time evolution of expectation values (roughly following [Kam11]). Without
going into details, we will sketch the main idea and in particular point out the conceptual
difference to the widely-used equilibrium imaginary-time Matsubara formalism. Then we
define the basic building blocks of quantum field theory in the Keldysh formalism. Here
we adopt a diagrammatic language from the very beginning, since it proves very useful in
particular in the context of the functional renormalization group and the parquet formalism.

2.1 Keldysh time contour
Consider some physical system described by a (potentially time-dependent) model Hamiltonian
H(t). The goal is to compute correlation functions (i.e., expectation values of some linear
operators) for this model, since they correspond to experimentally measurable quantities. A
general thermal (finite-temperature) expectation value of an operator Ô in a quantum state
at time t described by a density matrix ρ(t) is

〈Ô〉(t) = Tr Ôρ(t)
Tr ρ(t) = 1

Z Tr Ôρ(t) , with the partition function Z = Tr ρ(t) . (2.1)

The time evolution of ρ(t) from a given initial state ρ0 = ρ(t0) can be obtained from an
equation of motion (von Neumann equation), which is formally solved by the time-evolution
operator,

ρ(t) = U(t, t0) ρ0 U(t0, t) , (2.2)

with (in units where ~ = 1)

U(t, t0) = T exp
(
−i
ˆ t

t0

dt′H(t′)
)
, (2.3)

and U(t0, t) = (U(t, t0))†. Here T denotes time ordering of the operators in the exponential.
Using the cyclicity of the trace, we obtain

〈Ô〉(t) = 1
Z Tr

[
U(t0, t) Ô U(t, t0) ρ0

]
= 〈Ô(t)〉 , (2.4)
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which we can also interpret as the operator being time-evolved from time t0 to t and back,
and evaluated in the initial state ρ0. The time evolution thus goes in two different directions,
which seems cumbersome at first view. With the Matsubara and the Keldysh formalism, two
different strategies of handling this complication have been established.

(A) Matsubara formalism: In equilibrium, we have no explicit time-dependence of the
Hamiltonian, H(t) = H, therefore the time-evolution operator simplifies to

U(t, t0) = e−iH(t−t0) . (2.5)

On the other hand, the equilibrium density matrix is just a thermal state and can thus be
expressed through U ,

ρ0 = e−βH = U(−iβ, 0) , (2.6)

with the inverse temperature β = 1/kBT . Due to time-translational invariance in equilibrium,
we can define t0 = 0. We then have (using cyclicity of the trace again)

〈Ô(t)〉 = 1
Z Tr

[
U(−iβ, 0)U(0, t) Ô U(t, 0)

]
. (2.7)

Defining an imaginary time τ = it and Ũ(τ, τ0) = e−(τ−τ0)H(= U(t, t0)), we can substitute

〈Ô(τ)〉 = 1
Z Tr

[
Ũ(β, 0)Ũ(0, τ) Ô Ũ(τ, 0)

]
= 1
Z Tr

[
Ũ(β, τ) Ô Ũ(τ, 0)

]
. (2.8)

This can be interpreted as an evolution along the compact imaginary time interval (0, β)
according to the imaginary time evolution operator Ũ . While this trick of rotating the time
onto the imaginary axis strongly simplifies the expression Eq. (2.4), it strictly relies on the
assumption of the system being in equilibrium. Furthermore, correlation functions that are
computed on the imaginary time or frequency axis have to be analytically continued to real
frequencies. For discrete numerical data, this is an ill-defined problem [SS86, GJSS91]. Thus,
a different approach to this problem is desirable.

(B) Keldysh formalism: Here we simply accept the fact that we have to do forward and
backward time evolution. Taking Eq. (2.4) at face value, we have

〈Ô(t)〉 = 1
Z Tr

[
U(t0, t) Ô U(t, t0) ρ0

]
= 1
Z Tr

[
T̃ e−i

´ t0
t dt′H(t′) Ô T e−i

´ t
t0

dt′H(t′)
ρ0

]
, (2.9)

where T̃ indicates anti-time ordering, i.e., the operators in the expansion of the exponential are
placed from right to left with decreasing times. We can interpret the forward and backward
time evolution as a closed time contour C,

〈Ô(t)〉 = 1
Z Tr

[
TC
{
e−i

´ t0
t dt′H+(t′) Ô e

−i
´ t
t0

dt′H−(t′)
ρ0

}]
= Ô

t t0time

−

+
,

(2.10)
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where now each operator has an additional contour index j = ∓, indicating whether it has to
be put on the forward (−) or backward (+) branch of this “Keldysh” contour.1 The contour
time ordering TC puts all operators on the backward branch left of those on the forward
branch, and anti-time-orders (time-orders) them on the backward (forward) branch. The
operator Ô is inserted at time t.

This structure implies that if Ô consists of several operators, they also need to be equipped
with contour indices to ensure correct ordering. Consider e.g. the correlation function of two
operators Ô1, Ô2 inserted at times t1 > t2:

Ô−1 Ô−2

t1 t2 t0

−

+
6=

Ô+
1 Ô+

2

t1 t2 t0

−

+

〈TC Ô−1 (t1)Ô−2 (t2)〉 = 〈Ô−1 (t1)Ô−2 (t2)〉 6= 〈Ô+
2 (t2)Ô+

1 (t1)〉 = 〈TC Ô+
1 (t1)Ô+

2 (t2)〉 , (2.11)

where clearly the order of the two operators along the contour is exchanged between the left
and the right expression, since time-ordering exchanges the operators on the backward branch.
This implication in particular holds for field operators appearing in one- and two-particle
correlation functions, which we are usually interested in. As a conclusion, all fields have to
bear a contour index, thus n-point correlation functions will generically have 2n Keldysh
components. This makes it very challenging to compute such functions numerically. We will
see later how to simplify the Keldysh structure of the four-point function to deal with this
problem at least to some degree.

2.2 Quantum field theory in the Keldysh formalism
2.2.1 Building blocks of diagrammatic quantum field theory
Let us now move to the convenient path integral formalism. We will be interested in fermionic
theories henceforth, thus we replace the trace over states by a functional integral over fermionic
Grassmann fields ψ, ψ̄. We again leave out the details and refer the reader to the standard
literature (e.g. [NO88], or [Kam11] in the Keldysh context).

To be specific, we will assume that the Hamiltonian of the system of interest consists of
two terms, H = H0 +HI : a noninteracting (quadratic) part H0 that describes free dynamics
in some potential, and a two-particle interaction HI . The partition function Z then becomes
a path integral over the action S 2:

Z =
ˆ
Dψ̄Dψ eiS[ψ̄,ψ] , S[ψ̄, ψ] = ψ̄1′(G−1

0 )1′|1ψ1︸ ︷︷ ︸
S0

+ 1
4(Γ0)1′2′|12 ψ̄1′ψ̄2′ψ2ψ1︸ ︷︷ ︸

SI

. (2.12)

For notational brevity, we use a multi-index 1 =̂ (j1, σ1, ν1, k1,m1, . . . ), combining the Keldysh
contour index j1 = ∓, spin σ1 = ↑, ↓, time t1 (or frequency ν1 in the Fourier domain), position

1 This convention is used in [Jak09, Sch17, HBSvD17], while in [Kam11] the contour labels − and + are
exchanged.

2 Note that this definition of SI includes a relative minus sign compared to the usual convention in the
Keldysh context, e.g. [Kam11] or [Jak09]. This is motivated by the fact that in this way, the bare vertex
Γ0, which absorbs this relative minus sign, has the same sign as the one typically used in the Matsubara
context (compare Eq. (2.13) to Fig. 2(a) of [Kug18]).
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x1 (or momentum k1), orbital m1 etc. Repeated indices are always understood to be summed
or integrated over, respectively.

The action again consists of a noninteracting part S0 and a two-particle interaction SI ,
specified by G0 and Γ0, respectively. These are derived from their Hamiltonian counterparts
and are thus the basic constituents of the theory. It is very useful to introduce diagrammatic
representations for them: If one expands the exponential eiSI in Eq. (2.12) (and similarly in
general correlation functions introduced below in Eq. (2.16)) in powers of the bare interaction
Γ0 and decomposes the resulting noninteracting correlation functions using Wick’s theorem
[NO88, Wic50], one obtains products of bare propagators and bare vertices, connected in all
possible different ways. This is most conveniently noted in a diagrammatic language.3 Its
building blocks are4

(G0)1|1′ = −i〈TC ψ1ψ̄1′〉0 = 1 1′
, (Γ0)1′2′|12 =

1′

2′

1

2
=

σ

σ

σ̄

σ̄ −
σ̄

σ

σ̄

σ

.

(2.13)

Here we have identified G0 with the noninteracting one-particle correlation function, or bare
propagator, with

〈· · ·〉0 = 1
Z0

ˆ
Dψ̄Dψ eiS0[ψ̄,ψ](· · · ) , with Z0 =

ˆ
Dψ̄Dψ eiS0[ψ̄,ψ] . (2.14)

For the bare vertex, we use the compact Hugenholtz notation (single dot) [NO88], which
is an antisymmetric combination of the direct and exchange Feynman vertices (boson line).
In Eq. (2.13) we have also indicated that for local vertices, Pauli’s principle ensures that
only opposite spins can interact, i.e., the bare vertex has only two possible spin components.
Furthermore, for all models where the bare interaction is local (instantaneous) in time (i.e.,
frequency-independent), all four legs of the bare vertex have the same Keldysh contour
index [Jak09]. This property turns out to be very useful in a numerical treatment, and it
is quite generic, since it holds in particular for all impurity as well as lattice models with
a Hubbard-like interaction (including the single-impurity Anderson model studied in this
thesis). In summary, we have explicitly [Jak09]

(Γ0)j
′
1j
′
2|j1j2

σ′1σ
′
2|σ1σ2

(t′1, t′2|t1, t2; q′1, q′2|q1, q2)

= −j1 δ(t′1 = t′2 = t1 = t2) δj′1=j′2=j1=j2 δσ1,σ̄′2
(δσ′1,σ2δσ′2,σ1 − δσ′1,σ1δσ′2,σ2) (Γ0)q′1,q′2|q1,q2 ,

(2.15)

where the q’s encode momentum or position dependence of the bare interaction. (For the
SIAM, (Γ0)q′1,q′2|q1,q2 7→ U , the bare interaction strength.) The bare interaction acquires a

3 Technical remark: As a result of the factors of i appearing in the expansion of eiSI (along with a minus
sign coming from the definition of the bare vertex, see Footnote 2 above), each sum over independent
internal arguments (only implicit in the diagrammatic language) comes with a prefactor (−i). Working in
the frequency domain, we will absorb this into the integrals over internal frequencies νj , which we define as´ dνj

2πi , the factor 2π coming from the definition of the Fourier transform Eq. (2.27). Note that here we have
again a relative minus sign compared to the convention of [Jak09], where frequency integrals are defined
as i

2π
´

dνj . This exactly cancels the relative sign of the bare vertex (cf. previous footnote), such that the
values of all diagrams are equivalent.

4 Notational remark: We will use the convention that barred fields have indices with a prime, while unbarred
fields have unprimed indices. As a result, for vertices, arguments at outgoing legs have a prime, while those
at incoming legs do not, and for propagators vice versa.
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minus sign −j1 when moved from the forward (j1 = −) to the backward (j1 = +) branch of
the Keldysh contour.

Experimental observables can be expressed through n-point correlation functions of the
interacting theory, defined as

〈ψ1 · · · ψ̄n〉 = 1
Z

ˆ
DψDψ̄ eiS[ψ,ψ̄] ψ1 · · · ψ̄n . (2.16)

Of particular interest are one- and two-particle correlation functions, which describe dynamics
of particles in their interacting environment as well as their effective (dressed) interactions.

The one-particle propagator G can be expressed through the bare propagator G0 and the
self-energy Σ via the Dyson equation

G1|1′ = −i〈TC ψ1ψ̄1′〉 = 1 1′ = 1 1′

G0
+ Σ

1 2′ 2 1′

G0 G
. (2.17)

This self-consistent equation can be solved, G = (G−1
0 − Σ)−1. The two-particle correlation

function G(4) can be expressed through the 4-point vertex Γ,

G
(4)
12|1′2′ = i〈TC ψ1ψ2ψ̄2′ψ̄1′〉 = G(4)

2′ 2

1 1′
=

2′ 2

1 1′
−

2′ 2

1 1′
+ Γ

2′ 2

1 1′

4 4′

3′ 3

,

(2.18)

i.e., the 4-point vertex is the connected amputated part of the 4-point function. Internal
arguments (3, 3′, 4, 4′) are again summed over. One- and two-particle properties are thus fully
captured by the self-energy and the 4-point vertex,

Σ1′|1 = Σ
1′ 1

, Γ1′2′|12 = Γ
2 2′

1′ 1
, (2.19)

which contain all amputated connected one-particle-irreducible one- and two-particle vertex
diagrams, i.e., diagrams that cannot be split into two pieces by cutting a single bare propagator
line [NO88].

The structure of Σ and Γ becomes most transparent by studying their leading contributions
in perturbation theory (PT). Up to 2nd order (PT2) we obtain5

Σ = − − 1
2 + + . . . , (2.20a)

Γ = + + 1
2 − + . . . (2.20b)

5 A complete list of all vertex diagrams for the spin component Γ↑↓|↑↓ up to 4th order (PT4) is presented in
Sec. 7.1.2 below.
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Here gray lines are again identified with the bare propagator G0, while external lines are
amputated. The sign prefactors come from the fermionic anticommutation relations, and
the prefactors 1/2 are introduced to avoid overcounting diagrams with two indistinguishable
parallel lines.

Having defined the central objects of interest, Σ and Γ, let us now investigate their
structure in the Keldysh formalism. For the rest of this chapter, we follow the notational
conventions of [Jak09], and we recommend the corresponding chapters there for more details
on the Keldysh structure of correlation functions.

2.2.2 Single-particle correlation functions
Recall that all fields carry a contour index, specifying the branch of the Keldysh contour on
which they are to be placed. G thus has a matrix structure,

G−|+(t1, t2) = −i〈TC ψ−(t1)ψ̄+(t2)〉 ≡ +i〈ψ̄(t2)ψ(t1)〉 = G<(t1, t2) , (2.21a)
G+|−(t1, t2) = −i〈TC ψ+(t1)ψ̄−(t2)〉 ≡ −i〈ψ(t1)ψ̄(t2)〉 = G>(t1, t2) , (2.21b)
G−|−(t1, t2) = −i〈TC ψ−(t1)ψ̄−(t2)〉 ≡ Θ(t1 − t2)G>(t1, t2) + Θ(t2 − t1)G<(t1, t2) , (2.21c)
G+|+(t1, t2) = −i〈TC ψ+(t1)ψ̄+(t2)〉 ≡ Θ(t1 − t2)G<(t1, t2) + Θ(t2 − t1)G>(t1, t2) . (2.21d)

In the expressions on the right-hand side, fields are brought into the correct order along the
Keldysh contour C, therefore the contour index is dropped. For G−|+ and G+|−, the order
is fixed independent of the order of t1 and t2, and for G−|− and G+|+, Θ functions ensure
correct contour ordering.

For t1 > t2, we immediately see that G−|+ = G+|+ and G+|− = G−|−. Analogously, for
t1 < t2 we have G−|+ = G−|− and G+|− = G−|−. We can combine these causal relations to
obtain

G−|+ +G+|− −G−|− −G+|+ = 0 . (2.22)

The Keldysh structure of G can thus be simplified by the so-called Keldysh rotation,

ψ1 = 1√
2(ψ− − ψ+) , ψ2 = 1√

2(ψ− + ψ+) , (2.23)

and equivalently for bar fields.6 We can define a basis transformation matrix D via ψα =
Dα|jψj 7:

D = 1√
2

(
1 −1
1 1

)
, D−1 = 1√

2

(
1 1
−1 1

)
. (2.24)

If we rotate G to this new basis, Gα|α′ = Dα|jGj|j
′(D−1)j′|α′ , we have

Gα|α
′ =

(
G1|1 G1|2

G2|1 G2|2

)
=
(

0 GA

GR GK

)
, (2.25)

6 Note that this convention is different from [Kam11], but follows the convention of [Jak09] and [HBSvD17]
(and [Sch17] with the Keldysh indices (1, 2) identified with (q, c)).

7 In [Jak09], D and D−1 are exchanged.
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where G1|1 = 0 follows from the causality argument mentioned above. The remaining nonzero
components in Eq. (2.25) are

GR(t1, t2) = −iΘ(t1 − t2)〈{ψ(t1), ψ̄(t2)}〉 , (2.26)

the retarded propagator, GA(t1, t2) = (GR(t2, t1))∗ the advanced one, and GK(t1, t2) = G> +
G< = −(GK(t2, t1))∗ the Keldysh propagator [Jak09]. {•, •} denotes the anticommutator.

In equilibrium as well as in a nonequilibrium steady state, we have time-translational
invariance, G(t1, t2) = G(t1 − t2), and therefore energy conservation. Going to Fourier space,

G(ν) =
ˆ

dt eiνtG(t) , G(t) =
ˆ dν

2π e
−iνtG(ν) , (2.27)

the propagator is thus diagonal in the frequency arguments.8 In equilibrium, the Keldysh
components of the propagator fulfill the fluctuation-dissipation theorem (FDT) [Kam11,
Jak09]

GK(ν) = (1− 2nF (ν))(GR(ν)−GA(ν)) = 2i tanh
(
ν − µ

2T

)
ImGR(ν) , (2.28)

where nF (ν) = 1/(exp(ν−µT ) + 1) is the Fermi-Dirac distribution function (in natural units
where kB = 1), µ is the chemical potential, and T the temperature. This result is a special
case of the more general FDTs for n-point functions mentioned below.

The bare propagator G0 is related to the noninteracting Hamiltonian H0 = c†1ε1|1′c1′ , with
fermionic creation (annihilation) operators c† (c). In the eigenbasis of H0 where ε1|1′ = ε1δ1|1′ ,
it has the well-known form

(GR/A0 )1|1′(ν) =
δ1|1′

ν − ε1 ± i0+ . (2.29)

With Eq. (2.28), its Keldysh component reads

(GK0 )1|1′(ν) = −2i(1− 2nF (ν)) lim
η→0+

η

(ν − ε1)2 + η2 = −2i(1− 2nF (ν))δ(ν − ε1) . (2.30)

The self-energy has a similar structure as the propagator after Keldysh rotation, inferred
from the defining Dyson equation G = G0 +G0 ΣG:

Σα′1|α1 =
(

Σ1|1 Σ1|2

Σ2|1 Σ2|2

)
=
(

ΣK ΣR

ΣA 0

)
. (2.31)

Here causality implies Σ2|2 = 0 [Jak09], and we have ΣA = (ΣR)∗. In complete analogy to
Eq. (2.28) we have the FDT

ΣK(ν) = 2i tanh
(
ν − µ

2T

)
Im ΣR(ν) . (2.32)

8 Notational remark: We will use ν for fermionic frequencies and ω for bosonic ones. (In the Keldysh
formalism, there is no conceptual difference between bosonic and fermionic frequencies, but it still is useful to
make this notational distinction when comparing to the Matsubara formalism, where bosonic and fermionic
(imaginary) frequencies are inherently different.)
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The Dyson equation reads component-wise9

GR = GR0 +GR0 ΣRGR , (2.33a)
GA = GA0 +GA0 ΣAGA , (2.33b)
GK = GR ΣK GA . (2.33c)

Note that Eqs. (2.21) are ambiguous at t1 = t2, since the step functions Θ(t1 − t2) are
not uniquely defined at this point. This is related to the fact that if the two fields ψ, ψ̄ are at
the very same point on the Keldysh contour, it is not a priori clear how to order them. The
ambiguity is resolved by demanding that in this case barred fields should be ordered to the
left of unbarred ones. This implies that G−|−(t, t) = G<(t, t) = G+|+(t, t), so that Eq. (2.22)
does not hold at t1 = t2 = t. Therefore, one also has to be careful with Keldysh-rotated
quantities in this case. Since the point t1 = t2 is of zero measure in integrals over time
arguments, which we have to perform when computing diagrams, this subtlety is irrelevant for
almost all practical purposes, at least in our context. However, there is indeed one exception
that explicitly has an equal-time nature: The first-order PT (or Hartree) contribution to the
self-energy,

ΣH = − . (2.34)

Due to the instantaneous nature of the bare interaction, both incoming and outgoing legs have
the same time argument. A naive computation of the retarded component of this diagram
after the Keldysh rotation (and in the frequency domain) would yield

ΣR
H = Σ1|2

H = −
1 2

= −
1 2
1 1

︸ ︷︷ ︸
G

1|1
0

?= 0

−
1 2
2 2 ?= −Γ0

ˆ dν ′
2πi G

K
0 (ν ′) . (2.35)

(Other terms in the internal Keldysh sum are zero due to the Keldysh structure of the bare
vertex mentioned below in Eq. (2.39), and other quantum numbers are dropped for simplicity.)
This result is however not correct: Since Eq. (2.22) does not hold at equal times, we have
G

1|1
0 (t|t) 6= 0 after Keldysh rotation.
We get the correct result by staying in the contour basis: At equal times, retarded and

advanced components do not differ, and indeed, since only Σ−|−H (t, t) = −Σ+|+
H (t, t) are

nonzero at equal time arguments, after Keldysh rotation one finds that ΣR
H(t, t) = Σ−|−H (t, t).

For this component, however, we obtain in the frequency domain

ΣR
H = Σ−|−H = −

− −

− −
= −Γ0

ˆ dν ′
2πi G

<
0 (ν ′) = Γ0 〈n〉 , (2.36)

which is the known result for the Hartree term, relating it to the particle density 〈n〉.10

9 Writing out the Dyson equation (2.17) explicitly in the Keldysh basis, one obtains for the Keldysh component
GK = GR

[
(GR0 )−1GK0 (GA0 )−1 + ΣK

]
GA. Since (GR/A0 )−1

1|1′ = (ν − ε1) δ1|1′ and (GK0 )1|1′ ∼ δ(ν − ε1) δ1|1′ ,
the first term in the square brackets vanishes.

10 Explicitly including spin indices, we have ΣRH,σ = −(Γ0/2πi)
´

dν′G<0,σ̄(ν′) = Γ0〈nσ̄〉 due to the structure of
the bare vertex (Eq. (2.15)), connecting opposite spins σ and σ̄.
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If one needs to compute this expression explicitly, one can relate G< to GR by use of an
FDT [Jak09] (see also section on FDTs below)

G<(ν) = −nF (ν)(GR(ν)−GA(ν)) . (2.37)

This issue is also discussed in more detail in Section 2.1.13 of [Wei20]. An introduction to
the Keldysh formalism with a careful distinction between equal and different time arguments
is given in [Klö19] (followed by a detailed analysis of Keldysh perturbation theory, including
the Hartree diagram mentioned here).

2.2.3 Two-particle correlation functions
General n-point functions have 2n Keldysh indices, thus the 4-point vertex is a 4× 4 matrix
in Keldysh space. After the Keldysh rotation, similar to the self-energy (2-point vertex),
causality implies that the Keldysh component with only indices 2 is zero,

Γ22|22 = 0 , (2.38)

which generalizes to all n-point vertices. A special candidate is the bare vertex: Since all its
contour indices are equal (see Eq. (2.15)), after Keldysh rotation it strongly simplifies to

(Γ0)α
′
1α
′
2|α1α2

q′1q
′
2|q1q2

=
{

1
2(Γ0)q′1q′2|q1q2 , Pα odd ,
0 , else , (2.39)

where

Pα = α′1 + α′2 + α1 + α2 (2.40)

is the sum of all four Keldysh indices.

2.2.3.1 Symmetries

The vertex has a number of generic symmetries that are crucial in particular for a numerical
calculation, since they allow us to simplify the structure of the vertex, which strongly reduces
the numerical cost. These symmetries are discussed in great detail in [Jak09, JPS10b]. Here
we only briefly summarize the main results.

Crossing symmetries: Since the fields in SI anticommute, exchanging any pair of incoming
or outgoing legs of the bare vertex just gives a minus sign. This property translates to the
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full vertex also:

Γ1′2′|12 =
2 2′

1′ 1
= −

1 2′

1′ 2
= −Γ1′2′|21 , S1 (exchange incoming legs),

(2.41a)

= −
2 1′

2′ 1
= −Γ2′1′|12 , S2 (exchange outgoing legs),

(2.41b)

= +
1 1′

2′ 2
= +Γ2′1′|21 , S3 (exchange incoming

and outgoing legs).
(2.41c)

Here the subscript indices are again composite indices, i.e., all external arguments attached to
a pair of legs have to be exchanged. Graphically, these symmetries Si correspond to mirroring
the diagrams along one of the diagonals (or both for S3). Obviously, S3 = S1S2 = S2S1.

From this the prefactors in the perturbation expansion Eq. (2.20) become directly apparent:

= + , = − . (2.42)

Complex conjugation: Exchanging incoming with outgoing fields is essentially equivalent
to complex conjugation of the corresponding correlation function. The acquired sign is less
trivial to see than for the crossing symmetries; we again refer to [Jak09, JPS10b] for a detailed
derivation. The vertex transforms under complex conjugation as

Γ1′2′|12 = (−1)1+Pα
(
Γ12|1′2′

)∗
, SC (complex conjugation). (2.43)

Fluctuation-dissipation theorems (FDT): In equilibrium, the cyclicity of correlation
functions on the imaginary time axis can be expressed via the so-called Kubo-Martin-
Schwinger (KMS) conditions [Kub57, MS59, Kub66]. Together with time-reversal symmetry,
the KMS conditions lead to so-called fluctuation-dissipation theorems, which are linear
relations between different Keldysh components. While the FDT one the one-particle level
(Eq. (2.28)) has been well-known for a long time, the generalization to n-point functions is
due to [WH02] (also see [Ge20]). A detailed summary is again given in [Jak09, JPS10b].

In the contour basis, the FDTs for n-point vertices Γ(n) read [Jak09]

e∆j′|j(ν′|ν)/T (Γ(n))j
′|j
J ′|J = −(−1)mj′|j

[
(Γ(n))j̄

′|j̄
J ′|J

]∗
, (2.44)

and similarly for correlation functions, where j′|j = (j′1, . . . | . . . , jn), j̄ = ∓ for j = ±,
ν ′|ν = (ν ′1, . . . | . . . , νn), and J ′|J = (1′, . . . | . . . , n), with 1′ etc. again being composite indices
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collecting all other quantum numbers. Furthermore,

∆j′|j(ν ′|ν) =
∑

ji∈j

ji=+

(νi − µ)−
∑

j′
i
∈j′

j′i=+

(ν ′i − µ) , mj′|j =
∑

ji∈j

ji=+

1−
∑

j′
i
∈j′

j′i=+

1 . (2.45)

On the two-point level, this simplifies to Eq. (2.37). The rotation of Eq. (2.44) into the
Keldysh basis is quite tedious. It is done in detail in [WH02], including explicit expressions
for two-, three-, and four-point functions. On the two-point level, the Keldysh-rotated FDT
gives the well-known Eq. (2.28).
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3 Multiloop functional renormalization group

In the last chapter, we have defined the basic objects we are interested in, namely, one- and
two-particle correlation functions in the Keldysh formalism, or more precisely, the self-energy
Σ and the 4-point vertex Γ. We have seen that we can easily write down a diagrammatic
perturbation series for them, but ultimately we are interested in resumming infinitely many
diagrams in order to go beyond the perturbative regime. The functional renormalization
group is a powerful method that can achieve this; a priori it allows us to compute Σ and Γ
exactly. The goal of this chapter is to introduce the general framework and provide the flow
equations that will be used in later chapters. Naturally, this introduction is by no means
meant to be complete. For a more in-depth discussion, we refer the reader to the pertinent
literature. Compact introductions to fRG with different perspectives are given in several
PhD theses [Jak09, Sch17, Kug19]; the more extensive standard literature in the context
of condensed matter physics contains [MSH+12, KBS10]. For multiloop fRG, we strongly
recommend reading the original papers [KvD18c, KvD18b, KvD18a], summarized in [Kug19].

3.1 Functional renormalization group
The name “functional” RG indicates that this method originated in the context of quantum
field theory in the path integral formulation, where one can derive a flow equation for the
generating functional of one-particle-irreducible vertices, called Wetterich equation [Wet93].
An expansion of this functional equation in terms of n-point correlation functions leads to an
infinite hierarchy of flow equations for n-point vertices [MSH+12].

Here, we take a slightly different, very pragmatic point of view: We are interested in
finding the solution of an interacting theory, which is inaccessible from a perturbative point
of view, since it requires a resummation of infinitely many diagrams. The fRG provides a
“trick” that allows to compute such an infinite sum of diagrams directly without the necessity
of actually computing diagrams perturbatively. The general strategy can be summarized in
four steps (we restrict ourselves to fermionic fRG):

• The starting point is a (fermionic) theory, as introduced Section 2.2. It is governed
by a self-energy Σ and a two-particle vertex Γ. These objects can be derived from a
generating functional, but one can also view self-energy and vertex as the collection
of all one-particle-irreducible one- or two-particle diagrams, respectively, as already
argued in Chapter 2. The goal is to compute Σ and Γ explicitly.

• We introduce a parameter Λ into the bare propagator G0 such that GΛ
0 vanishes for an

initial value Λ = Λi, while the full theory is recovered at a final value Λ = Λf . From
the perturbation expansion Eq. (2.20) we see that Σ and Γ inherit a Λ dependence
from G0. In this way, we smoothly connect the theory to a very simple solvable one: At
Λ = Λi, we see from Eq. (2.20) that if all bare propagator lines G0 vanish, the self-energy
vanishes as well, ΣΛi = 0, and the vertex is just the bare interaction, ΓΛi = Γ0 (⇒ the
problem is solved at Λi!). The dependence on the parameter Λ, called regulator, can in
principle be arbitrary. Usually, one might choose a Λ dependence that resembles an
infrared cutoff (connecting to the original physical picture of RG, where high-energy
degrees of freedom are successively integrated out) or another way of systematically
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suppressing “complicated” behavior. For the SIAM (introduced in Chapter 5), we will
use the hybridization ∆ as a flow parameter: At ∆i → ∞, the impurity is strongly
hybridized to the bath and interactions become negligible, such that the model is
solvable. At ∆f , the interacting model is recovered.

• Now we take the derivative of Σ and Γ w.r.t Λ. This is in general a nontrivial step,
since one would need an explicit form of Σ and Γ in terms of G0 and Γ0 in order to
obtain closed expressions. Usually, this is circumvented by deriving a flow equation for
the generating functional of n-point vertices [Wet93], which can be expanded in the
fields in order to obtain Σ̇ = ∂ΛΣ and Γ̇ = ∂ΛΓ. In this way, one obtains flow equations

Σ̇ = − Γ , (3.1a)

Γ̇ = Γ Γ + 1
2 Γ Γ −

Γ

Γ

+ Γ(6) ,

(3.1b)
Γ̇(6) = . . . , (3.1c)

...

Here propagator lines with a dash correspond to the so-called single-scale propagator

S = ∂ΛG|Σ=const. , (3.2)

and bubbles with a dash are understood as a sum of two terms,

= + . (3.3)

• The flow equations are ordinary differential equations for self-energy and vertex, with
the known initial condition ΣΛi = 0, ΓΛi = Γ0. Hence, they can be integrated,

ΣΛf =
ˆ Λf

Λi
dΛ Σ̇Λ , ΓΛf =

ˆ Λf

Λi
dΛ Γ̇Λ , (3.4)

yielding the solution of the interacting problem.

This elegant strategy a priori allows one to obtain the exact solution of the interacting
theory. However, looking at Eq. (3.1), a problem becomes immediately clear: The flow
equation for Γ includes a contribution from the 6-point vertex Γ(6), the flow equation for
Γ(6) depends on Γ(8) etc. One obtains an infinite hierarchy of equations that cannot be
solved exactly and thus needs to be truncated. The standard one-loop truncation simply sets
Γ(6) = 0. Since Γ(6) depends on six external arguments, it would be far too complicated for a
realistic numerical treatment. In this way, one obtains a closed set of relations for Σ and
Γ that can be solved numerically. Note that even without the input of the 6-point vertex
Eq. (3.1b) contains all three diagrammatic channels (formally introduced below) and thus
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provides a channel-unbiased approach, in contrast to a mere resummation of ladder diagrams
in one particular channel.

However, the approximation Γ(6) = 0 still comes at a price. Since the right-hand side of
the flow equation for Γ is truncated, it does not form a total derivative w.r.t Λ any more.
Therefore, the result of the flow will acquire an unphysical dependence on the choice of
regulator, which was a priori completely arbitrary. This strongly limits the quantitative
predictive power of the approach. Furthermore, ladder-type diagrams are fully captured even
in this truncation, while other classes of diagrams are not. This leads to a bias toward ladder
diagrams, which are particularly prone to divergences [KvD18b]. In the following section,
we discuss a way to cure these issues without strongly increasing the numerical complexity,
introduced in [KvD18c, KvD18b, KvD18a].

3.2 Multiloop fRG
For any realistic numerical calculation, approximations of the exact flow equations are
unavoidable. However, they can be done more systematically than a crude one-loop truncation.
In particular, it is possible to capture parts of the 6-point vertex while staying on the two-
particle (4-point) level, and thereby restore the total derivative structure of the flow equations,
such that the flow stays independent of the choice of regulator. This is achieved in the
multiloop flow equations, which are most conveniently derived from the parquet formalism.

3.2.1 Parquet formalism
The parquet formalism (for a review see [Bic04]) provides a systematic classification of
vertex diagrams on the two-particle level, by distinguishing diagrams w.r.t their two-particle
reducibility. It constitutes a set of equations that can again be deduced from generating
functionals of correlation functions (a concise overview is given in [Kug19]). From a diagram-
matic perspective, the parquet equations self-consistently relate different classes of diagrams
to each other.

The parquet formalism is defined through the following set of equations:

• Firstly, the one-particle self-energy is related to the two-particle vertex via the Schwinger-
Dyson equation (SDE):

Σ = − − 1
2 Γ . (3.5)

• On the two-particle level, the starting point of the parquet classification is the so-called
parquet equation,

Γ = R + γa + γp + γt . (3.6)

It states that all vertex diagrams can be assigned to one of the following four classes:
those diagrams γr, r = a, p, t, which are reducible in either the antiparallel (a), parallel
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(p), or transverse antiparallel (t) channel,1 and the fully two-particle-irreducible vertex
R. Importantly, these four classes are exclusive. To illustrate the notion of two-particle
reducibility, we show the lowest-order contributions in perturbation theory for each of
these classes:

γa = + . . . , γp = 1
2 + . . . ,

γt = − + . . . , R = + + + . . . (3.7)

Diagrams reducible in the a, p, or t channel can be split into two parts by cutting
two antiparallel, parallel, or transverse antiparallel propagator lines, respectively. The
diagrams in R cannot be cut into two parts by cutting two propagator lines.

• Since the four classes in the parquet equation are exclusive, one can decompose Γ
w.r.t its reducibility in one of the channels r: Γ = Ir + γr, where Ir = R + γr̄, with
γr̄ = ∑

r′ 6=r γr′ , the sum of all diagrams irreducible in channel r. The Bethe-Salpeter
equations (BSE) relate the irreducible diagrams to the reducible ones:

γa = Ia Γ = Γ Ia , (3.8a)

γp = 1
2

Ip Γ = 1
2 Γ Ip , (3.8b)

γt = −

It

Γ

= −
Γ

It

. (3.8c)

This closes the set of self-consistent relations, with R remaining as an input. Note that
all propagator lines in these equations are full propagators, which leads to feedback of
the self-energy into the vertex.

The only class of diagrams that is not related to other classes is the fully irreducible vertex
R. If R is known, everything else can be computed self-consistently via the parquet equations.
But R itself is the most complicated object: R diagrams contain several nested integrals/sums
over internal arguments, while the integrals in reducible diagrams partially factorize. This
makes R diagrams beyond the bare vertex hardly tractable numerically. Therefore, one
usually approximates R ≈ Γ0, which is known as the parquet approximation (PA). The PA
results in an error in 4th order in the bare interaction (cf. Eq. (3.7)), but otherwise provides a
solvable set of equations that give an infinite set of diagrams, the so-called parquet diagrams.

1 In the literature, there are various different names for these channels: In [RVT12, Roh13] and related works,
a =̂ ph (particle-hole crossed), p =̂ pp (particle-particle), t =̂ ph (particle-hole). In [Jak09, Sch17] and related
works, a =̂x (exchange particle-hole), p =̂ p (particle-particle), t =̂ d (direct particle-hole), sometimes also
capitalized (X,P,D). In [HS09], a =̂ ph,cr (crossed particle-hole), p =̂ pp (particle-particle), t =̂ ph,d (direct
particle-hole). In [Reu11] and related works, (a, p, t) =̂ (u, s, t).
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The PA is a useful approximation for various reasons, which are nicely summarized in Section
2.3.1.7 of [Kug19]: Besides including all diagrams that are still numerically tractable with
available resources, the parquet diagrams are a fully self-consistent set of diagrams which is
therefore channel-unbiased, and they fulfill various diagrammatic identities, and in particular
also fulfill the Mermin-Wagner theorem. In Chapter 4, we will keep all relations general,
allowing for a future extension beyond the PA in the context of DMF2RG. From Chapter 5
on, we will explicitly work in the parquet approximation.

3.2.2 mfRG flow equations
The mfRG flow equations [KvD18b] are derived by again introducing a regulator Λ into the
bare propagator G0, which makes all objects in the parquet equations Λ-dependent [KvD18a].
Here, the fully irreducible vertex R is treated as an input to the theory and is thus assumed
to be Λ-independent, RΛ ≈ R. (This is trivially fulfilled in the PA.) Taking the derivative of
the SDE and the BSE w.r.t Λ gives flow equations for Σ and Γ.

When computing γ̇r via the BSE, one obtains terms including İr = ∑
r′ 6=r γ̇r′ . Thus, one

has to iteratively insert the flow equation for γr into the equations of the other channels
r′ 6= r, yielding an infinite set of contributions of increasing “loop order”:

Γ̇ = γ̇a + γ̇p + γ̇t , γ̇r =
∞∑

`=1
γ̇(`)
r . (3.9)

The individual `-loop contributions in the a channel are

γ̇
(1)
a = Γ Γ , (3.10a)

γ̇
(2)
a = γ̇

(1)
ā Γ

γ̇
(2)
a,L

+ Γ γ̇
(1)
ā

γ̇
(2)
a,R

, (3.10b)

γ̇
(`+2)
a = γ̇

(`+1)
ā Γ

γ̇
(`+2)
a,L

+ Γ γ̇
(`)
ā Γ

γ̇
(`+2)
a,C

+ Γ γ̇
(`+1)
ā

γ̇
(`+2)
a,R

,

(3.10c)

where Eq. (3.10c) applies for `+ 2 ≥ 3. Here γ(`)
r̄ = ∑

r′ 6=r γ
(`)
r . The double-dashed bubble

corresponds again to a sum of two terms (cf. Eq. (3.3)), where double-dashed propagators
are fully differentiated ones,

∂ΛG = S +G Σ̇G , (3.11)

with the single-scale propagator S from Eq. (3.2).
The flow equations for γ(`)

p and γ(`)
t follow completely analogously: All subscripts a simply

have to be replaced by p or t, and the (regular and differentiated) a bubbles (i.e., pairs of
propagators reducible in the a channel) are replaced by p or t bubbles.
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The self-energy flow equation reads

Σ̇ = − Γ − γ̇t̄,C

︸ ︷︷ ︸
Σ̇t̄

− Γ

Σ̇t̄

︸ ︷︷ ︸
Σ̇t

, (3.12)

with γ̇t̄,C = ∑
` γ̇

(`)
t̄,C

= ∑
`(γ̇

(`)
a,C + γ̇

(`)
p,C). Note that there are two more terms in addition

to Eq. (3.1a), even though the latter is in principle exact and is not truncated even in the
one-loop approximation. However, if the vertex Γ has been truncated, the first term alone
would not yield a total derivative any more. The multiloop corrections to the self-energy flow
restore this total derivative structure. These terms naturally arise in the Λ derivative of the
SDE within the PA [KvD18a]. One should also mention that the differentiated propagators
(Eq. (3.11)) appearing in the flow equation (3.10a) of the vertex include the differentiated
self-energy, while the flow equation for the self-energy includes parts of the differentiated
vertex. Therefore, the flow equations for vertex and self-energy are coupled and should in
principle be iterated in order to get the correct derivative of Γ and Σ.

Note that the one-loop contribution Eq. (3.10a) of the vertex flow with a single-dashed
bubble (i.e., with the single-scale propagator) would be equivalent to the usual one-loop
flow equation Eq. (3.1b), neglecting the contribution of the 6-point vertex. Replacing the
single-scale propagator by the fully differentiated one, S 7→ ∂ΛG, as done in Eq. (3.10a),
corresponds to the so-called Katanin substitution [Kat04] that contains the feedback of
the differentiated self-energy into the vertex flow, and already goes beyond the standard
one-loop approximation. By adding higher-loop contributions until convergence is reached,
one effectively solves the self-consistent parquet equations through an fRG flow. On the
one hand, this strongly improves upon the standard one-loop approximation; in particular,
regulator independence is restored, curing issues mentioned above [KvD18c, THK+19]. On
the other hand, it also provides a more stable way of reaching a solution of the parquet
equations by simply integrating ordinary differential equations. This is numerically favorable
compared to an iteration of the self-consistent equations, which is generically much harder to
get converged.

It is also worth mentioning that while the mfRG equations are derived from the parquet
equations, no assumption is made on the fully irreducible vertex R, except for the fact that
its Λ dependence is ignored. And indeed, the resulting equations only need the full Γ (and
Σ) at Λ = Λi as an input. Therefore, the limitations of the parquet approximation can be
overcome by starting the mfRG flow from an initial ΓΛi that is not just the bare vertex
Γ0, but a correlated one, e.g. obtained from DMFT, which implicitly contains nontrivial
information from R as well [TAB+14, VTM19]. Furthermore, sometimes vertex divergences
of the building blocks Ir and γr of the parquet formalism appear, while the full vertex stays
finite [SRG+13, SCW+16, GRS+17, CGS+18, TGCR18]. Such unphysical divergences, which
are a huge problem for numerics, do not show up in mfRG, since only the full vertex enters
the right-hand side of the flow equations.
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4 Keldysh vertex parametrization

In the previous two chapters, we have introduced all ingredients in terms of diagrammatic
equations that are necessary to perform Keldysh mfRG computations. However, when it
comes to an actual calculation, we need to think carefully about how to handle the building
blocks of these equations numerically.

The Keldysh vertex is a huge and complicated object: it depends on four Keldysh indices
αi, spin indices σi, frequencies νi, and potentially other quantum numbers qi that can include
momentum, position, orbital, etc.:

Γ = Γ1′2′|12 = Γ
α′1α
′
2|α1α2

σ′1σ
′
2|σ1σ2

(ν ′1ν ′2|ν1ν2 ; q′1q′2|q1q2) . (4.1)

When evaluating the right-hand sides of the flow equations introduced in the previous chapter,
we need to perform sums and integrals over internal arguments. For bubbles Br(ΓL,ΓR) in
the r = a, p, t channel, connecting a left and right vertex ΓL and ΓR, we have explicitly

(Ba)1′2′|12 = Ba

2 2′

1′ 1

= ΓL ΓR

2 4′ 4 2′

1′ 3 3′ 1

a =
∑

3,3′,4,4′
ΓL1′4′|32G3|3′ G4|4′ ΓR3′2′|14 ,

(4.2a)

(Bp)1′2′|12 = Bp

2 2′

1′ 1

= 1
2 ΓL ΓR

2
4 4′

2′

1′ 3 3′ 1

p = 1
2

∑

3,3′,4,4′
ΓL1′2′|34G3|3′ G4|4′ ΓR3′4′|12 ,

(4.2b)

(Bt)1′2′|12 = Bt

2 2′

1′ 1

= −
ΓL

ΓR

2

4′

4

1′

2′

3

3′

1

t = −
∑

3,3′,4,4′
ΓL4′2′|32G3|3′ G4|4′ ΓR1′3′|14 ,

(4.2c)

and for a self-energy loop L(Γ, G)

L1′|1 = L
1′ 1 = − Γ

2 2′

1′ 1

= −
∑

2,2′
Γ1′2′|12G2|2′ , (4.3)

where we have included a minus sign into the definition of L, since such loops always come
with a minus sign in the self-energy flow equations (3.1a) or (3.12), the SDE (3.5), or in
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perturbation theory (cf. Eq. (2.20a)). Each sum includes a sum over Keldysh indices and spins
(and potentially lattice sites, orbitals etc.) and integration over frequencies (and potentially
momenta).

For completeness, we also introduce differentiated bubbles and loops,

Ḃ(ΓL,ΓR) ∼ ΓL ◦ [∂Λ(G ◦G)] ◦ ΓR , L̇(Γ, G) = L(Γ, S) , (4.4)

which appear in the flow equations (3.10a) and (3.12), respectively. Here the ◦ operation is
defined in complete analogy to Eq. (4.2), and the product rule has to be applied as indicated
in Eq. (3.3).

By doing a rough estimate, it quickly becomes clear that even for quite simple models such
as a single-band Hubbard model in a naive treatment the required numerical resources easily
surpass the limits even of the largest supercomputers. Therefore, it is vital to efficiently store
the vertices and efficiently compute bubbles and loops by finding a suitable parametrization
and employ all available symmetries, and thereby reduce the numerical cost as much as
possible. In the following sections, we will analyze the three generic dependencies that have
to be dealt with always, independent of the specific model: The frequency structure, spin
structure, and Keldysh index structure. We employ symmetries to simplify the structure in
each of these sectors, and find ways to compactly represent the vertex, bubbles, and loops.

Remark: While the decomposition into diagrammatic classes according to their high-
frequency asymptotic behavior was introduced in [WLT+20] and the spin structure is also
well-known (see e.g. [RVT12]), the simplification of the Keldysh structure of those asymptotic
classes using parity and crossing symmetries is new. The latter work was done in close
collaboration with Santiago Aguirre. Many of the following relations are therefore already
presented in his master’s thesis [Agu20]. We still give a summary here including all essential
ideas and relations, for completeness of this thesis, and to give somewhat more details on the
symmetry reduction of the vertex. We refer the interested reader to [Agu20] for additional
details that are only briefly mentioned here.

4.1 Frequency structure
4.1.1 Channel decomposition
To simplify the frequency structure, we first recall the parquet decomposition of the vertex into
different diagrammatic channels (Eq. (3.6)), Γ = R+∑

r=a,p,t γr. While this decomposition
relies purely on diagrammatic properties, it has direct consequences for the frequency (and
momentum) structure, since one can choose different natural parametrizations for each
channel.1 Energy conservation implies ν ′1 + ν ′2 = ν1 + ν2, hence three frequencies are sufficient
to parametrize the vertex. In each channel, we express the four fermionic frequencies
ν ′1, ν

′
2, ν1, ν2 at the vertex legs through one bosonic transfer frequency ωr and two fermionic

1 For DMF2RG [TAB+14, VTM19] (cf. Sec. 1.1.1), the input of the fRG flow is the full DMFT vertex that
is only known numerically. In this case, a channel decomposition is a priori not possible. However, by
taking appropriate limits of combinations of frequencies, one can in fact deduce the asymptotic classes Kr1
and Kr2(′) (introduced in the next subsection) in each channel r = a, p, t, such that the channel-dependent
frequency parametrization is indeed useful also in this context. Only K3 +R has to be treated on general
grounds (also discussed in [Kug19], Fig. 2.15). This is in fact ongoing work in the group of Jan von Delft,
pursued by Johannes Halbinger [Hal21].
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frequencies νr, ν ′r:

Γ(ν ′1ν ′2|ν1ν2)

= Γ

ν2 ν′2

ν′1 ν1

= R

ν2 ν′2

ν′1 ν1

+ γa

νa+ ωa

2 ν′a+ ωa

2

νa− ωa

2 ν′a− ωa

2

+ γp

ωp

2 −ν′p
ωp

2 −νp

ωp

2 +νp ωp

2 +ν′p

+ γt

νt+ ωt

2 νt− ωt

2

ν′t+ ωt

2 ν′t− ωt

2

=
[
R(ν ′1ν ′2|ν1ν2) + γa(ωa, νa, ν ′a) + γp(ωp, νp, ν ′p) + γt(ωt, νt, ν ′t)

]

× δ(ν ′1 + ν ′2 − ν1 − ν2) . (4.5)

Note that we choose symmetric parametrizations with ±ωr
2 on all vertex legs. This ensures

that the peaks of the vertices are centered around ωr = 0,2 which is numerically preferable.
However, other conventions are of course possible, e.g. the parametrization obtained by adding
ωa
2 on all legs in the a channel (and similar replacements in the p and t channel).3

When inserting γr into the flow equation of a different channel r′, one needs to express
ωr, νr, ν

′
r in the parametrization of channel r′. The corresponding transformations are simple

linear combinations which are given explicitly in Appendix A (cf. [Agu20], Sec. 3.1).
The bubbles can be written as follows in these natural parametrizations of the channels

(for clarity ignoring the dependence on all other arguments):

ΓL ΓR

νa+ ωa

2 ν′′a+ ωa

2 ν′a+ ωa

2

νa− ωa

2 ν′′a− ωa

2 ν′a− ωa

2

a =
ˆ dν ′′a

2πi ΓL(ωa, νa, ν ′′a )G(ν ′′a− ωa
2 )G(ν ′′a+ ωa

2 ) ΓR(ωa, ν ′′a , ν ′a) ,

(4.6a)

1
2 ΓL ΓR

ωp

2 −ν′p
ωp

2 −ν′′p
ωp

2 −νp

ωp

2 +νp ωp

2 +ν′′p
ωp

2 +ν′p

p = 1
2

ˆ dν ′′p
2πi ΓL(ωp, νp, ν ′′p )G(ωp2 +ν ′′p )G(ωp2 −ν ′′p ) ΓR(ωp, ν ′′p , ν ′p) ,

(4.6b)

−
ΓL

ΓR

νt+ ωt

2 νt− ωt

2

ν′′t + ωt

2 ν′′t − ωt

2

ν′t+ ωt

2 ν′t− ωt

2

t = −
ˆ dν ′′t

2πi ΓL(ωt, νt, ν ′′t )G(ν ′′t − ωt
2 )G(ν ′′t + ωt

2 ) ΓR(ωt, ν ′′t , ν ′t) .

(4.6c)

2 To see this, consider Eq. (4.6): The frequency arguments of the two internal bubble lines are shifted by
±ωr

2 , i.e., the combination of the two propagators is symmetric or antisymmetric around ωr = 0. This of
course has to hold as well for the result of the diagram after integration over ν′′r .

3 Such a parametrization can be useful in particular in the Matsubara formalism. There, ωr is of bosonic
nature, while νr, ν′r are fermionic frequencies. Importantly, the external frequencies ν(′)

i at all legs have to
be fermionic as well. While e.g. νa + ωa

2 is either bosonic or fermionic (since ωa
2 is alternatingly bosonic or

fermionic) and thus requires cumbersome rounding procedures, νa + ωa would always be fermionic (since it
is a sum of a bosonic and a fermionic Matsubara frequency).
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Each bubble thus involves an integral over one single internal (fermionic) frequency. We
can write the corresponding expressions more compactly by defining the product of two
propagators,

Π(ν1, ν2) = G(ν1)G(ν2) . (4.7)

Encoding the channel-specific frequency dependence as

Πa(ωa, ν ′′a ) = Π
(
ν ′′a − ωa

2 , ν
′′
a + ωa

2
)
, (4.8a)

Πp(ωp, ν ′′p ) = Π
(
ωp
2 + ν ′′p ,

ωp
2 − ν ′′p

)
, (4.8b)

Πt(ωt, ν ′′t ) = Π
(
ν ′′t − ωt

2 , ν
′′
t + ωt

2
)
, (4.8c)

the frequency-dependence of the bubbles simplifies to

Br(ωr, νr, ν ′r) = αr
2πi

ˆ
dν ′′r ΓL(ωr, νr, ν ′′r ) Πr(ωr, ν ′′r ) ΓR(ωr, ν ′′r , ν ′r) , (4.9)

with the channel-specific prefactors

αa = 1 , αp = 1
2 , αt = 1 . (4.10)

For the loop, it is most convenient to stay in the natural fermionic frequency parametriza-
tion,

− Γ

ν ′

ν ν

= −
ˆ dν ′

2πi Γ(νν ′|νν ′)G(ν ′) (4.11)

To illustrate the usefulness of these channel-dependent frequency parametrizations, we
consider the vertex in 2nd order perturbation theory (Eq. (2.20b)):

+ νa ν′a

ωaνa+ ωa

2 ν′a+ ωa

2

νa− ωa

2 ν′a− ωa

2

+ 1
2

νp ν′p

ωp

ωp

2 −ν′p
ωp

2 −νp

ωp

2 +νp ωp

2 +ν′p

−

νt

ν′t

ωt

νt+ ωt

2 νt− ωt

2

ν′t+ ωt

2 ν′t− ωt

2

. (4.12)

The bosonic frequency ωr is “transferred” through the bubble in which each diagram is
reducible, while the fermionic frequencies νr, ν ′r parametrize the frequency dependence on
each side of the bubble.

Another important implication becomes very clear in PT2: Obviously, the internal
propagator lines only depend on the bosonic transfer frequency of the corresponding channel
(and the internal integration frequency), while the external fermionic frequencies directly flow
in and out of the diagram at the same bare vertex, such that the value of each diagram is
independent of νr, ν ′r. This notion can be generalized, leading to the decomposition of each
reducible vertex γr into four different asymptotic classes.
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4.1.2 Asymptotic classes
This decomposition was introduced in [WLT+20] to correctly capture the high-frequency
asymptotic behavior of the vertices. The authors realized the following: Since the frequency
dependence enters the denominator of the propagators, diagrams decay as a function of
all frequencies which appear in internal propagator lines. However, diagrams that do not
depend on some external frequency ν, as illustrated for PT2 above, will stay finite in the
limit ν →∞. Therefore, sampling the vertices γr in a finite three-dimensional frequency box
will not properly capture the high-frequency asymptotic behavior. Instead, one should treat
classes of diagrams with nontrivial asymptotics separately.

Schematically, we define these classes as follows:

γa(ωa, νa, ν ′a) = γa

νa+ ωa

2 ν′a+ ωa

2

νa− ωa

2 ν′a− ωa

2

= Ka1νa ν′a

ωa

+ Ka2νa ν′a

ωa

+ Ka2′νa ν′a

ωa

+ Ka3νa ν′a

ωa

= Ka1(ωa) + Ka2(ωa, νa) + Ka2′(ωa, ν ′a) + Ka3(ωa, νa, ν ′a) , (4.13a)

γp(ωp, νp, ν ′p) = γp

ωp

2 −ν′p
ωp

2 −νp

ωp

2 +νp ωp

2 +ν′p

= Kp1νp ν′p

ωp

+ Kp2νp ν′p

ωp

+ Kp2′νp ν′p

ωp

+ Kp3

ωp

νp ν′p

= Kp1(ωp) + Kp2(ωp, νp) + Kp2′(ωp, ν ′p) + Kp3(ωp, νp, ν ′p) , (4.13b)

γt(ωt, νt, ν ′t) = γt

νt+ ωt

2 νt− ωt

2

ν′t+ ωt

2 ν′t− ωt

2
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= Kt1

νt

ν′t

ωt + Kt2

νt

ν′t

ωt + Kt2′

νt

ν′t

ωt + Kt3

νt

ν′t

ωt

= Kt1(ωt) + Kt2(ωt, νt) + Kt2′(ωt, ν ′t) + Kt3(ωt, νt, ν ′t) . (4.13c)

Formally, Kr1 contains those diagrams where (in r parametrization) the left two legs
connect to the same bare vertex, and the right two legs also connect to the same bare vertex.
Those diagrams are thus independent of νr, ν ′r and stay finite in the limit νr →∞, ν ′r →∞,

lim
νr→∞

lim
ν′r→∞

γr(ωr, νr, ν ′r) = Kr1(ωr) . (4.14)

Kr2 (Kr2′) analogously contains the part of the vertex that is finite for ν ′r → ∞ (νr → ∞),
while decaying in the limit νr →∞ (ν ′r →∞),

lim
ν′r→∞

γr(ωr, νr, ν ′r) = Kr1(ωr) +Kr2(ωr, νr) , (4.15a)

lim
νr→∞

γr(ωr, νr, ν ′r) = Kr1(ωr) +Kr2′(ωr, ν ′r) . (4.15b)

Kr3 contains all diagrams that depend on all three frequencies and thus decay if any of them
is sent to infinity. It is also worth mentioning that the reducible vertex in a channel r′ decays
as a function of both fermionic frequencies of the other channels r 6= r′,

lim
νr→∞

γr′ 6=r = lim
ν′r→∞

γr′ 6=r = 0 . (4.16)

Since the fully two-particle-irreducible vertex R decays to the bare vertex for any frequency
going to infinity (see the structure of its perturbation expansion in Eq. (3.7)), similar equations
to Eqs. (4.14) and (4.15) consequently also hold for the full vertex Γ, the only exception
being that the (frequency-independent) bare vertex Γ0 appears on the right-hand side as well.

The asymptotic decomposition is also useful since for not too strong interaction (i.e.,
in the perturbative regime), the diagrams in K3 that do depend on all three frequencies
are observed to be smaller than those in K1,K2(′) , which might justify resolving them more
coarsely in a numerical implementation. This is very helpful since K3 is most expensive
numerically, due to the three-dimensional frequency dependence, while K2(′) only needs to be
sampled on a two-dimensional frequency grid (and K1 on a one-dimensional one).4

It is important to mention that in previous works on Keldysh fRG (e.g. [JMS07, JPS10a,
SBvD17, WvD19]), the vertices γr have always been approximated to depend on the bosonic
transfer frequency ωr only. This is equivalent to neglecting all diagrams in K2(′) and K3
altogether. While this approach drastically reduces the numerical complexity by going from
a three-dimensional to a one-dimensional frequency dependence, it is clear that neglecting a

4 One might also be tempted to assume that K3 should be more localized in frequency space than K1 and
K2(′) , such that a smaller frequency box would be sufficient to properly sample it numerically. However,
in our calculations we have not been able to confirm this; K2(′) and K3 usually have similar extent and
decay even less quickly than K1. This tendency can be seen in Fig. 9.1 below. A more localized behavior of
diagrams with a 3-dimensional frequency dependence has however been observed for ϕirr in the so-called
SBE (single-boson exchange) decomposition [BTH+21], which is discussed in Appendix B.
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huge part of the vertex will certainly have implications on the results of a calculation. Here,
we incorporate the dependence on the fermionic frequencies also, by including all asymptotic
classes, and we will show later that this indeed strongly improves the results for physical
observables.

4.1.3 Susceptibilities
The asymptotic classes also have a physical interpretation: Kr1 is related to a susceptibility in
channel r, Kr2 has properties of a 3-point (fermion-boson) vertex, while Kr3 contains genuine
4-point diagrams.5 The susceptibilities in channel r are obtained from the 4-point correlation
function G(4) (Eq. (2.18)) by closing two pairs of legs in the corresponding channel and
subtracting the disconnected parts afterwards [Roh13],

χa = + Γ ,

χp = 1
2 + 1

4 Γ ,

χt = − + Γ . (4.17)

The wiggly lines are amputated bare vertices Γ0. The generalized particle-hole susceptibility
is usually defined as (cf. [RVT12], Fig. 3, or [VT97])

χσσ′ = − σσ δσσ′ + Γ
σσ

σ′σ′

. (4.18)

The classes Kr1 can be shown to be directly related to these susceptibilities,6

Kr1 = Γ0 χr Γ0 . (4.19)

It is easily seen that χσσ′ = (χt)σσ′ = Γ−1
0 (Kt1)σσ′|σσ′ Γ−1

0 . The physical spin and charge
susceptibilities are then given by [VT97]

χsp/ch = χ↑↑ ∓ χ↑↓ . (4.20)

We thus have Γ0 χsp/ch Γ0 = (Kt1)↑↑|↑↑∓ (Kt1)↑↓|↑↓. Making use of SU(2) symmetry (Kt1)↑↑|↑↑ =
(Kt1)↑↓|↑↓ + (Kt1)↑↓|↓↑ ([Roh13], see Eq. (4.34) below) and crossing symmetry (Kt1)↑↓|↓↑ =
−(Ka1)↑↓|↑↓ (see Sec. 4.3.2 below), we eventually obtain

Γ0 χsp Γ0 = −(Ka1)↑↓|↑↓ , Γ0 χch Γ0 = 2(Kt1)↑↓|↑↓ − (Ka1)↑↓|↑↓ . (4.21)

5 This becomes particularly apparent in the SBE decomposition (Appendix B).
6 This can be derived from the BSE (3.8): In symbolic notation (summation over internal indices is understood),
we have γr = αr Ir Πr Γ = αr Ir Πr (Ir + γr) = αr Ir Πr (Ir + αr Γ Πr Ir). In the limit νr, ν′r →∞, we have
Ir → Γ0, γr → Kr1, and thus Kr1 = αr Γ0 Πr(Γ0 + αr Γ Πr Γ0) = αr Γ0 Πr Γ0 + α2

r Γ0 Πr Γ Πr Γ0, reproducing
the diagrams shown in Eq. (4.17).
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4.1.4 Flow equations for the asymptotic classes
As we represent the vertex through its asymptotic classes, we would like to compute them
directly during the flow, without the need of numerically taking the limits of certain frequencies
to infinity. In this way we can also systematically add or neglect higher asymptotic classes.
Therefore, we now derive flow equations for them explicitly, starting from the general multiloop
flow equations (3.10). We will restrict the explicit derivation to the a channel. The equations
for the p and t channels follow directly by replacing all sub-/superscripts a by p or t and the
a bubbles by p or t bubbles.

Recall the one-loop flow equation in the a channel (3.10a),

γ̇
(1)
a = Γ Γ . (4.22)

We can decompose γ̇(1)
a on the left-hand side into its asymptotic classes,

γ̇(1)
a = K̇a (1)

1 + K̇a (1)
2 + K̇a (1)

2′ + K̇a (1)
3 . (4.23)

On the right-hand side of the flow equation (4.22), we insert the diagrammatic decomposition
of Γ w.r.t the a channel,

Γ = Γ0 +Ka1 +Ka2 +Ka2′ +Ka3 + γā +R− Γ0 . (4.24)

We have already written the fully irreducible vertex R as the sum of the (frequency-
independent) bare vertex Γ0 and other diagrams R − Γ0, which depend on all frequencies
and thus decay to zero in the limits νr → ∞ and ν ′r → ∞ in all channels r. (Of course in
the PA we have R − Γ0 = 0.) In order to see which parts contribute to the flow of which
asymptotic class, we formally take the limits of frequencies νa →∞, ν ′a →∞ on both sides
of the flow equation. We define the parts of Γ that do not decay for ν ′r →∞, νr →∞ as

Γr2(ωr, νr) = lim
ν′r→∞

Γ(ωr, νr, ν ′r) = Γ0 +Kr1 +Kr2 , (4.25a)

Γr2′(ωr, ν ′r) = lim
νr→∞

Γ(ωr, νr, ν ′r) = Γ0 +Kr1 +Kr2′ . (4.25b)

Correspondingly, we define

Γ̄r2(ωr, νr, ν ′r) = Γ−Γr2 = Kr2′ +Kr3 + γr̄ +R− Γ0 , (4.26a)
Γ̄r2′(ωr, νr, ν ′r) = Γ−Γr2′ = Kr2 +Kr3 + γr̄ +R− Γ0 , (4.26b)

which contain all diagrams that do decay for ν ′r →∞, νr →∞, respectively. Diagrammatically,
the left (right) pair of legs (in the r parametrization) of Γr2′ (Γr2) connect to the same bare
vertex, while the left (right) pair of legs of Γ̄r2′ (Γ̄r2) connect to different bare vertices.

The resulting flow equations can also be clearly seen from the diagrams directly: In the
a channel, all diagrams where the left and the right pairs of legs connect to the same bare
vertex, respectively, contribute to the flow of Ka1 , while diagrams, where only the right pair
of legs connect to the same bare vertex but the left one does not, contribute to K̇a,(1)

2 etc.
We show all contributions for K̇a,(1)

1 explicitly; for the other classes they can be written down
analogously:
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K̇a (1)
1 =

+ Ka1 + Ka1 + Ka1 Ka1

+ Ka2 + Ka2′ + Ka2′ Ka2

+ Ka1 Ka2 + Ka2′ Ka1

= Γa2′ Γa2 , (4.27a)

K̇a (1)
2 = Γ̄a2′ Γa2 , K̇a (1)

2′ = Γa2′ Γ̄a2 , (4.27b)

K̇a (1)
3 = Γ̄a2′ Γ̄a2 . (4.27c)

We continue with the two-loop contribution (3.10b)

γ̇
(2)
a = γ̇

(1)
ā Γ

γ̇
(2)
a,L

+ Γ γ̇
(1)
ā

γ̇
(2)
a,R

. (4.28)

Since γ̇(1)
ā has no contribution where the left two or the right two legs connect to the

same vertex, as it only contains contributions from the p and t channel, there is no 2-loop
contribution to K̇a1 . In a similar fashion as before, we obtain

K̇a (2)
1 = 0 + 0 , (4.29a)

K̇a (2)
2 = γ̇

(1)
ā

Γa2

K̇a (2)
2,L

+ 0 , (4.29b)

K̇a (2)
2′ = 0 + Γa2′ γ̇

(1)
ā

K̇a (2)
2′,R

, (4.29c)
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K̇a (2)
3 = γ̇

(1)
ā Γ̄a2

K̇a (2)
3,L

+ Γ̄a2′ γ̇
(1)
ā

K̇a (2)
3,R

. (4.29d)

For the `+ 2-loop contribution (3.10c), with ` ≥ 1,

γ̇
(`+2)
a = γ̇

(`+1)
ā Γ

γ̇
(`+2)
a,L

+ Γ γ̇
(`)
ā Γ

γ̇
(`+2)
a,C

+ Γ γ̇
(`+1)
ā

γ̇
(`+2)
a,R

,

(4.30)

the procedure is just the same. Here, K̇a1 does have contributions again, namely from the
central term K̇a (`+2)

1,C :

K̇a (`+2)
1 = Γa2′ γ̇

(`)
ā

Γa2

K̇a (`+1)
2′,R K̇a (`+1)

2,L

K̇a (`+2)
1,C , (4.31a)

K̇a (`+2)
2 = γ̇

(`+1)
ā

Γa2

K̇a (`+2)
2,L

+ Γ̄a2′ γ̇
(`)
ā

Γa2

K̇a (`+1)
3,R K̇a (`+1)

2,L

K̇a (`+2)
2,C

, (4.31b)

K̇a (`+2)
2′ = Γa2′ γ̇

(`)
ā Γ̄a2

K̇a (`+1)
2′,R K̇a (`+1)

3,L

K̇a (`+2)
2′,C

+ Γa2′ γ̇
(`+1)
ā

K̇a (`+2)
2′,R

, (4.31c)
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K̇a (`+2)
3 = γ̇

(`+1)
ā Γ̄a2

K̇a (`+2)
3,L

+ Γ̄a2′ γ̇
(`)
ā Γ̄a2

K̇a (`+1)
3,R K̇a (`+1)

3,L

K̇a (`+2)
3,C

+ Γ̄a2′ γ̇
(`+1)
ā

K̇a (`+2)
3,R

.

(4.31d)

Note that these equations can also be used in the context of DMF2RG [TAB+14, VTM19].
As already mentioned in Footnote 1 in Sec. 4.1.1, in DMF2RG only the full vertex Γ is
given as an input. While Kr1, Kr2 and Kr2′ can be derived from Γ by considering limits of
certain frequencies to infinity [Hal21], a channel decomposition is not possible on the level
of K3(= Ka3 + Kp3 + Kt3). However, the classes Kr3 also do not enter the right-hand sides of
Eqs. (4.27), (4.29), (4.31) individually (which is already clear from the general formulation
of the mfRG flow equations (3.10)). Consider e.g. the one-loop contribution to the flow of
Ka2 , Eq. (4.27b). If we define γ1,2

r̄ = ∑
r′ 6=r(Kr

′
1 +Kr′2 +Kr′2′) = γr̄ −

∑
r′ 6=r Kr

′
3 , we can write

K̇a (1)
2 = Ka2 +K3 + γ1,2

ā
Γ0 +Ka1 +Ka2 , (4.32)

which only requires knowledge about the full K3. This holds equivalently for all insertions of
the full vertex into flow equations at any loop order. Note that insertions of the differentiated
vertex in loop order ` into the flow equations of order `+ 1 and `+ 2 do require a channel
decomposition on the level of K3, e.g. the two-loop contribution to the flow of Ka2 , Eq. (4.29b),
contains γ̇(1)

ā = γ̇
1,2 (1)
r̄ + K̇p (1)

3 + K̇t (1)
3 . However, this is not an issue since the differentiated

vertices K̇p (1)
3 and K̇t (1)

3 are indeed computed independently via equations analogous to
Eq. (4.27c). Therefore, in the DMF2RG context, one would start with Kr1, Kr2, Kr2′ and
the full K3 from DMFT, compute the differentiated vertices Kri independently (including
K̇r3), and successively insert them in higher loop-orders, and eventually update K3 using
K̇3 = ∑

`,r K̇
r (`)
3 in each step of the flow.

At this point, it is also worth mentioning that quite recently a new parametrization of
the vertex has been developed, namely, the single-boson exchange (SBE) decomposition
[KVC19, KV19]. This parametrization is based on reducibility in bosonic lines instead of
pairs of fermionic ones, motivated by the physical interpretation of boson exchange processes.
It is related to the asymptotic decomposition into Kri used here, in that its constituents can be
expressed through the asymptotic classes Kri . We briefly introduce the SBE parametrization
in Appendix B and also derive multiloop flow equations for its constituents, which can be
done in the same spirit as the derivation of the flow equations for Kri above.
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4.2 Spin structure
As mentioned in Sec. 2.2.1, due to Pauli’s principle, a local bare vertex can only involve
interactions between particles with different spins, i.e., it connects one incoming and outgoing
spin ↑ to one incoming and outgoing spin ↓. The full (screened) interaction vertex can
also mediate interactions between equal spins, but it still needs to fulfill spin conservation,
σ′1 + σ′2 = σ1 + σ2, since all propagator lines and bare vertices in each diagram conserve spin.
Generically, we thus have 6 spin components,

Γσσ̄|σσ̄ =: Γσσ̄ =: V , (4.33a)
Γσσ̄|σ̄σ =: Γσσ̄ =: V̂ , (4.33b)

Γσσ|σσ =: Γσσ
SU(2) symmetry

= V + V̂ , (4.33c)

with σ = ↑, ↓ , and σ̄ means spin inversion. Here we have already indicated that for SU(2)
symmetry, one can deduce that [Roh13]

Γσσ|σσ = Γσσ̄|σσ̄ + Γσσ̄|σ̄σ . (4.34)

Of course with SU(2) symmetry we also have Γσ1σ2 = Γσ̄1σ̄2 , such that the components
V = Γ↑↓ and V̂ = Γ↑↓ are sufficient. We will see later that these are in fact related by crossing
symmetry, such that we only need to compute the V component explicitly. We treat the
relation between V and V̂ in conjunction with the Keldysh structure in the next section to
reduce the number of independent components as much as possible.

For systems with SU(2) symmetry, bubbles contributing to the V component have the
following structure (again ignoring other dependencies for clarity):

Ba

↓ ↓

↑ ↑

= ΓL ΓR

↓ ↓ ↓

↑ ↑ ↑

a = V LG↑G↓V
R , (4.35a)

Bp

↓ ↓

↑ ↑

= 1
2
∑

σ
ΓL ΓR

↓ σ̄ ↓

↑ σ ↑

p = 1
2
(
V LG↑G↓V

R + V̂ LG↓G↑V̂
R
) (∗)= V LG↑G↓V

R ,

(4.35b)

Bt

↓ ↓

↑ ↑

= −
∑

σ

ΓL

ΓR

↓ ↓

σ σ

↑ ↑

t = −
[
(V L + V̂ L)G↓G↓V R + V LG↑G↑(V R + V̂ R)

]
.

(4.35c)

Of course with SU(2) symmetry, G↑ = G↓. We see that due to the spin structure of the
vertices, an explicit spin sum is necessary in the t, but not in the a and p channel. Note that
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in the p channel, the last equality (∗) holds if the left and right vertex are crossing symmetric7
(cf. Eq. (2.41)). We then only need to compute the first term, and the sum simply cancels
the prefactor 1/2. This is the case for full vertices ΓL/R = Γ as well as for Ip = R+ γa + γt

appearing in the BSE (3.8), and also for γ̇(`)
p̄ = γ̇

(`)
a + γ̇

(`)
t in the mfRG flow equations (3.10).

Note that even the not fully symmetric vertices γ̇(`)
p,L and γ̇(`)

p,R , which have to be inserted
into the (`+ 1)-loop equation (3.10c) for computing γ̇(`+1)

p,C , are crossing-symmetric w.r.t S1
and S2 (cf. Eq. (4.55) below), since both incoming and both outgoing legs are attached to a
fully crossing-symmetric vertex (γ̇(`)

p̄ or Γ, respectively). Therefore, the last equality (∗) in
Eq. (4.35b) holds generically for all p bubbles.

In loops, even with SU(2) symmetry a spin sum is in general necessary:

−
∑

σ

Γ
σ σ

↑ ↑
= −

[
(V + V̂ )G↑ + V G↓

] G↑=G↓= −(2V + V̂ )G . (4.36)

An exception are diagrams where at least one of the external legs connects to a bare vertex,
e.g. in 2nd order PT:

−1
2
∑

σ ↑ ↑
σ

↓
σ̄

two identical
terms

= − ↑ ↑
↑

↓
↓

= −V PT2
a G↓ . (4.37)

Here, the structure of the bare vertex (allowing only different spins to scatter) fixes the spin
of the middle propagator line. Thus, in conjunction with crossing symmetry of the left and
right bare vertex, it removes the spin sum (canceling the prefactor 1/2, similar to the p
bubble). The same holds accordingly for the second diagram in the SDE (3.5).

For systems without SU(2) symmetry, one needs to replace V + V̂ in the t bubble and in
the loop by the equal-spin components Γσσ. Since the two components Γσσ are independent
in this case, one additionally needs to compute them separately. The structure of the
corresponding bubbles is similar, but involves a spin sum in the a channel as well.

4.3 Keldysh structure
Here we first briefly investigate the structure of bubbles and loops, before turning to the
vertex Keldysh structure which requires more careful treatment.

For the bubbles, we define the Keldysh structure of the product of two propagators Π
(Eq. (4.7)) as

Πα3α4|α′3α
′
4(ν1, ν2) = Gα3|α′3(ν1)Gα4|α′4(ν2) . (4.38)

7 Applying S1 on the left and S2 on the right only gives minus signs on both sides (which cancel) and
exchanges the arguments of the propagator lines. With G↑ = G↓, they are however indistinguishable.
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With this definition we obtain from Eq. (4.2) (again dropping other quantum numbers)

B
α′1α

′
2|α1α2

a =
∑

α3,α′3,α4,α′4

Γα
′
1α
′
4|α3α2

L Πα3α4|α′3α
′
4

a Γα
′
3α
′
2|α1α4

R , (4.39a)

B
α′1α

′
2|α1α2

p = 1
2

∑

α3,α′3,α4,α′4

Γα
′
1α
′
2|α3α4

L Πα3α4|α′3α
′
4

p Γα
′
3α
′
4|α1α2

R , (4.39b)

B
α′1α

′
2|α1α2

t = −
∑

α3,α′3,α4,α′4

Γα
′
4α
′
2|α3α2

L Πα3α4|α′3α
′
4

t Γα
′
1α
′
3|α1α4

R . (4.39c)

The sums over internal Keldysh indices can be further simplified, since each propagator has
only three nonzero Keldysh components, G2|1 = GR, G1|2 = GA, G2|2 = GK (cf. Eq. (2.25)).
The auxiliary object Π thus has 9 nonvanishing Keldysh components,

Π(ν1, ν2) =




0 0 0 GA(ν1)GA(ν2)
0 0 GA(ν1)GR(ν2) GA(ν1)GK(ν2)
0 GR(ν1)GA(ν2) 0 GK(ν1)GA(ν2)

GR(ν1)GR(ν2) GR(ν1)GK(ν2) GK(ν1)GR(ν2) GK(ν1)GK(ν2)


 . (4.40)

Denoting a collection of four Keldysh indices as ij = (αj1 , αj2 |αj3 , αj4), we can write

Bi0
r = αr

∑

i2∈IΠ

Γi
r
1(i0,i2)
L Πi2

r Γi
r
3(i0,i2)
R , (4.41)

where the sum over i2 only includes the nonzero components of Π,8

IΠ = {(11|22), (12|21), (12|22), (21|12), (21|22), (22|11), (22|12), (22|21), (22|22)} . (4.42)

For a given set of external Keldysh indices i0, the Keldysh indices of the left and right vertex,
i1 and i3, need to be determined for each i2 ∈ IΠ, and they differ between the three channels
a, p, t. The corresponding combinations of indices can be read off from Eq. (4.39). With
i0 = (α′1α′2|α1α2) and i2 = (α3α4|α′3α′4), they read

ia1(i0, i2) = (α′1α′4|α3α2) , ia3(i0, i2) = (α′3α′2|α1α4) , (4.43a)
ip1(i0, i2) = (α′1α′2|α3α4) , ip3(i0, i2) = (α′3α′4|α1α2) , (4.43b)
it1(i0, i2) = (α′4α′2|α3α2) , it3(i0, i2) = (α′1α′3|α1α4) , (4.43c)

also described in [Agu20] (Sec. 2.4.1).
The Keldysh sum of the self-energy loop Eq. (4.3) only involves three terms, since it

only contains a single propagator to be integrated over. Due to the Keldysh structure of
the self-energy (Eq. (2.31)), we usually only need to compute loops for two combinations of
external Keldysh indices (namely for Σ1|2 = ΣR and Σ1|1 = ΣK). For these components, we
have explicitly

L1|2 = −
(
Γ11|22GR + Γ12|21GA + Γ12|22GK

)
, (4.44a)

L1|1 = −
(
Γ11|12GR + Γ12|11GA + Γ12|12GK

)
. (4.44b)

8 In the numerical implementation, we use a flattened version of the indices ij , counting the components in
Eq. (4.40) or Eq. (4.45) from left to right and top to bottom from 0 to 15. This is discussed in detail in
[Agu20], Sec. 2.3.1; the flattened Keldysh indices are also denoted explicitly in Table 4.2. In this notation,
we have IΠ =̂ {3, 6, 7, 9, 11, 12, 13, 14, 15}.
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Now let us investigate the Keldysh structure of the 4-point vertex. Generically, the vertex
is a 4× 4 matrix in Keldysh space,

Γ =




11|11 11|12 11|21 11|22
12|11 12|12 12|21 12|22
21|11 21|12 21|21 21|22
22|11 22|12 22|21 22|22


 . (4.45)

Causality requires Γ22|22 = 0 (cf. Eq. (2.38) and the discussion there). We can further
reduce the number of independent Keldysh components by considering parity symmetries
(originating from the Keldysh structure of the bare vertex) and crossing symmetries and
complex conjugation (generic properties of the 4-point vertex introduced in Chapter 2,
Eqs. (2.41)). This will be discussed in the following two subsections.

4.3.1 Parity symmetries
The bare vertex only depends on the parity of the sum of the Keldysh indices, see Eq. (2.39).
Therefore, all transformations that conjugate any pair of Keldysh indices simultaneously (see
[Agu20], Sec. 3.3.3),

PaL(α′1α′2|α1α2) = (ᾱ′1α′2|α1ᾱ2) : , PaR(α′1α′2|α1α2) = (α′1ᾱ′2|ᾱ1α2) : , (4.46a)

PpL(α′1α′2|α1α2) = (ᾱ′1ᾱ′2|α1α2) : , PpR(α′1α′2|α1α2) = (α′1α′2|ᾱ1ᾱ2) : , (4.46b)

PtL(α′1α′2|α1α2) = (α′1ᾱ′2|α1ᾱ2) : , PtR(α′1α′2|α1α2) = (ᾱ′1α′2|ᾱ1α2) : , (4.46c)

are symmetries of the bare vertex, Γ0 = PrL/R Γ0, for all channels r. Here “conjugation” of
Keldysh indices means ᾱ = { 2

1 for α = { 1
2 , and the red/blue arrows indicate graphically the

positions of the indices that are affected by the corresponding transformation.
This has direct implications on the Keldysh structure of the asymptotic classes. As can

directly be seen from the definition of the asymptotic classes, PrL/R are both symmetries of
Kr1, and PrL (PrR) is a symmetry of Kr2′ (Kr2):

Ka1
2 2′

1′ 1

PaL PaR
, Ka2

2
2′

1′
1

PaR
, Ka2′

2
2′

1′
1

PaL
, (4.47a)

Kp1
2 2′

1′ 1
PpL PpR

, Kp2
2 2′

1′
1
PpR

, Kp2′
2 2′

1′
1PpL

, (4.47b)

Kt1

2 2′

1′ 1

PtL

PtR

,
Kt2

2 2′

1′ 1PtR

, Kt2′

2 2′

1′ 1

PtL

. (4.47c)

Here applying the transformations PrL/R at the indicated positions does not change the value
of the corresponding asymptotic class. The Keldysh structure of Kr1 and Kr2(′) thus simplifies
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as follows,

Ka1 =
( 0

0
0

0

)
, Kp1 =

( 0 0

0 0

)
, Kt1 =

( 0
0

0
0

)
, (4.48a)

Ka2 =
(

0
0

)
, Kp2 =

(

0 0

)
, Kt2 =

(
0

0

)
, (4.48b)

Ka2′ =
(

0

0

)
, Kp2′ =

( 0

0

)
, Kt2′ =

(

0
0

)
, (4.48c)

where boxes with the same color indicate Keldysh components that are equal, as they are
connected by parity transformations. All zero components are symmetry-related to the (22|22)
component, which is zero by causality. The number of independent Keldysh components
thereby already reduces from 15 to 7 for K2(′) , and to 3 for K1. Further simplifications are
obtained by the application of crossing symmetries.

4.3.2 Crossing symmetries and complex conjugation
4.3.2.1 Symmetry transformations

The general symmetries S1,S2,S3,SC have already been introduced in Chapter 2, Eqs. (2.41)
and (2.43). We can use them to additionally simplify the vertex: We can relate two Keldysh
and spin components, if we simultaneously transform the frequencies (and other quantum
numbers) accordingly. For this purpose, we define further transformations9:

incoming legs (S1) : T1 Γ(ν ′1ν ′2|ν1ν2; q′1q′2|q1q2) = −Γ(ν ′1ν ′2|ν2ν1; q′1q′2|q2q1) , (4.49a)
outgoing legs (S2) : T2 Γ(ν ′1ν ′2|ν1ν2; q′1q′2|q1q2) = −Γ(ν ′2ν ′1|ν1ν2; q′2q′1|q1q2) , (4.49b)

inc.+ outg. legs (S3) : T3 Γ(ν ′1ν ′2|ν1ν2; q′1q′2|q1q2) = +Γ(ν ′2ν ′1|ν2ν1; q′2q′1|q2q1) , (4.49c)

comp. conj. (SC) : TC Γ(ν ′1ν ′2|ν1ν2; q′1q′2|q1q2) = (−1)1+Pα
[
Γ(ν1ν2|ν ′1ν ′2; q1q2|q′1q′2)

]∗
.

(4.49d)

Note that these transformations only manipulate frequencies (and other quantum numbers
such as momenta, orbitals, etc.), while Keldysh and spin indices are not affected and
thus dropped in Eq. (4.49) for clarity. The translation of Eq. (4.49) into the natural
parametrizations of the channels is straightforward and given in Appendix A, Eq. (A.3).

Since we want to keep the following discussion general, without the assumption of SU(2)
symmetry, we additionally need an auxiliary transformation that flips all spins,

TS Γσ′1σ′2|σ1σ2 = Γσ̄′1σ̄′2|σ̄1σ̄2 (4.50)

(trivial in the SU(2) symmetric case), while leaving all other quantum numbers (including
Keldysh indices) unchanged.

9 Note that this definition formally differs from the one given in [Agu20]: There, the transformations Ti are
applied to the Keldysh and spin indices, while here they transform all other quantum numbers, including
a sign prefactor. These two definitions are closely related and just different interpretations of the same
symmetry relations: The lower equality signs instead of the upper ones in Eqs. (3.28)–(3.32) of [Agu20]
would give the exact same definition as presented here. We use Eq. (4.49) here since it defines what has to
be done in an actual calculation: transformations need to be applied to frequencies and other quantum
numbers of some Keldysh component in order to get a symmetry-related one.
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Using these transformations, we can relate different Keldysh/spin components to each
other, e.g. (skip q’s for simplicity)

Γα
′
1α
′
2|α1α2

σ′1σ
′
2|σ1σ2

(ν ′1ν ′2|ν1ν2) symmetry S1= −Γα
′
1α
′
2|α2α1

σ′1σ
′
2|σ2σ1

(ν ′1ν ′2|ν2ν1) def.= T1Γα
′
1α
′
2|α2α1

σ′1σ
′
2|σ2σ1

(ν ′1ν ′2|ν1ν2) .
(4.51)

Equating the leftmost and rightmost side of this equation, we obtain a recipe for computing
a Keldysh+spin component Γα

′
1α
′
2|α1α2

σ′1σ
′
2|σ1σ2

that we did not store in memory: Take the symmetry-

related component Γα
′
1α
′
2|α2α1

σ′1σ
′
2|σ2σ1

and apply the corresponding symmetry transformation to its
frequency arguments (and other quantum numbers).10

4.3.2.2 Mixing of channels, asymptotic classes and spin components

A further complication comes from the fact that some of the symmetries relate different
diagrammatic channels, different asymptotic classes Ki and different spin components. This
can all be understood on purely diagrammatic grounds, viewing these symmetries as mirror
symmetries of the diagrams along their diagonals, as already mentioned in Chapter 2 (also
explained in detail in [Agu20], Sec. 3.3). The crossing symmetries relate the a and t channel
and their asymptotic classes Ka,t2 , Ka,t2′ as follows:

exchange incoming legs (S1) :

Ka2
2

2′

1′
1

S1
= − Kt2′

1 2′

1′ 2

,
Kt2

2 2′

1′ 1

S1
= − Ka2′

1
2′

1′
2
, (4.52a)

exchange outgoing legs (S2) :

Ka2
2

2′

1′
1

S2
= − Kt2

2 1′

2′ 1

, Ka2′
2

2′

1′
1

S2
= − Kt2′

2 1′

2′ 1

, (4.52b)

10 There is an important subtlety involving the order in which several (noncommuting) transformations have
to be applied: Assume we have obtained the relation B(ωr, νr, ν′r) = TiTjA(ωr, νr, ν′r) between two Keldysh
components A and B (noted in this order in Table 4.2). We use this to only compute and store A in
a numerical calculation, and if we need B, we will employ this relation to obtain it from A. However,
since we want to evaluate B at some given frequency arguments (ωr, νr, ν′r), we need to apply the inverse
transformation on those frequency arguments in order to obtain the correct arguments at which to evaluate
A. Inverting the transformation amounts to an exchange of the order of the two transformations, since all
transformations are self-inverse, (TiTj)−1 = T −1

j T −1
i = TjTi.

Example: We see from Table 4.2 that (Ka3)21|11
σσ̄|σ̄σ = TSTCT1(Kt3)11|12

σσ̄|σσ̄. We want to compute (Ka3)21|11
σσ̄|σ̄σ at

frequencies (ωa, νa, ν′a), therefore, we need to apply the inverse transformation, T1TC (TS has no effect
on frequencies), in order to obtain the frequencies at which we have to evaluate (Kt3)11|12

σσ̄|σσ̄ instead. This
is important since T1TC(ωa, νa, ν′a) = T1(ωa, ν′a, νa) = (−ωt, νt, ν′t) 6= TCT1(ωa, νa, ν′a) = TC(−ωt, ν′t, νt) =
(ωt, ν′t, νt).
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exchange incoming and outgoing legs (S3) :

Ka2
2

2′

1′
1

S3
= Ka2′

1
1′

2′
2
,

Kt2

2 2′

1′ 1

S3
= Kt2′

1 1′

2′ 2

. (4.52c)

Similarly, S1 and S2 transform between Ka1 ←→ Kt1 and Ka3 ←→ Kt3. In the p channel, the
asymptotic classes are not mixed by these symmetries.

Complex conjugation (SC) can be understood as reversing the direction of the arrows
of the legs, since it transforms unbarred fields into barred ones, corresponding to mirroring
diagrams at the vertical axis. It thus relates the following asymptotic classes:

Ka2
2

2′

1′
1

SC
= (−1)1+Pα


 Ka2′

2′
2

1
1′




∗

, (4.53a)

Kp2
2 2′

1′
1

SC
= (−1)1+Pα


 Kp2′

2′ 2

1
1′




∗

, (4.53b)

while Kt2(′) and Kr1 and Kr3 are not mixed.
The spin components transform as follows:

V = Γσσ̄|σσ̄
S1←→ Γσσ̄|σ̄σ = V̂ , V = Γσσ̄|σσ̄

S2←→ Γσ̄σ|σσ̄ = TS V̂ , (4.54a)

V = Γσσ̄|σσ̄
S3←→ Γσ̄σ|σ̄σ = TSV , V̂ = Γσσ̄|σ̄σ

S3←→ Γσ̄σ|σσ̄ = TS V̂ , (4.54b)

V = Γσσ̄|σσ̄
SC←→ Γσσ̄|σσ̄ = V , V̂ = Γσσ̄|σ̄σ

SC←→ Γσ̄σ|σσ̄ = TS V̂ . (4.54c)

4.3.2.3 Treatment of nonsymmetric vertices

The full vertex as well as the reducible vertices γp and γa + γt always fulfill all of the above
symmetries (where γa and γt are related by S1,S2). However, one can construct diagrams
that do not fulfill crossing symmetries on their own, and such contributions do occur in the
multiloop flow equations. More precisely, the contributions γ̇(`)

r,L/R in Eq. (3.10) consist of a
differentiated vertex on the left/right and a full vertex on the other side and thus are clearly
not left-right symmetric. This is in principle not an issue since the left and right part always
appear together in the flow equations, and the sum is symmetric again. However, when
computing the central part γ̇(`)

r,C , we need to insert either γ̇(`−1)
r̄,L or γ̇(`−1)

r̄,R on the right/left side
of an r bubble, and for this, in numerics we temporarily need to store such a nonsymmetric
vertex. Fortunately, it is still possible to only compute part of e.g. γ̇(`)

r,L by reconstructing the
rest from γ̇

(`)
r,R. If for a certain Keldysh/spin component of γ̇(`)

r,L a symmetry transformation is
used that relates these two parts, the corresponding values are read from γ̇

(`)
r,R instead.
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Generally, the crossing symmetries and complex conjugation relate such nonsymmetric
vertices as follows11:

part 1 part 2

p channel

a channel

t channel

S1,S2,S3

SC

S1,S2,S3

S3,SC

S2 S2

S3

S1

SC SC

(4.55)

Whenever we would like to make use of the symmetry SC for a component of a nonsymmetric
vertex in the a or p channel, or of the symmetry S1 or S3 in the a or t channel, we need to
access the symmetry-related part. This procedure requires that we always compute both
types of nonsymmetric vertices in order to have full access to either of them. Again, this
is no actual constraint for a multiloop flow, since both parts appear in the flow equations
(3.10). Note that a similar asymmetry seems to appear in the Bethe-Salpeter equations
(3.8), where an r-irreducible vertex and a full vertex are connected by an r bubble. However,
since the result is the reducible vertex γr, it does in fact fulfill the crossing symmetries. A
potential numerical asymmetry can be cured by computing both equivalent forms of the BSE
(irreducible vertex inserted on the left or right side of the bubble) and symmetrizing the
result.

Nonsymmetric vertices also arise in the multiloop corrections to the self-energy flow
(cf. Eq. (3.12)): The vertex γ̇t̄,C contains only diagrams reducible in the a and p channel, but
no t-reducible diagrams, and is thus not crossing-symmetric. As a consequence, the numerical
implementation of γ̇t̄,C = γ̇a,C + γ̇p,C needs to have access to γ̇t,C as well in order to make
use of symmetry relations involving γ̇a,C .

A summary of all considerations of the last three subsections is given in Table 4.1.

4.3.2.4 Simplification of the Keldysh structure

By repeatedly applying these symmetry transformations, one can find symmetry-related
Keldysh/spin components and thereby reduce the number of independent components that

11 Note that in the p channel, S1, S2 and S3 do not mix nonsymmetric vertices. Instead, S1 only acts on the
vertex on the right of the p bubble, and S2 only acts on the vertex on the left. S3 thus acts on both vertices
independently. Similarly, nonsymmetric diagrams in the t channel are not mixed by SC.
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Table 4.1 Crossing symmetries S1,S2,S3 and complex conjugation symmetry SC , and their effect of
mixing channels, asymptotic classes (Kr2, Kr2′) and spin components, and the corresponding symmetry
transformations that need to be applied when using the symmetries to simplify the Keldysh structure.
The column “asym.” denotes in which channels each symmetry relates two nonsymmetric vertices
(cf. Eq. (4.55)).

symmetry channel diag. class spin asym. transf. sign frequencies

S1
1′2′|12
1′2′|21 a↔ t Ka,t2 ↔ Kt,a2′ V ↔ V̂ a, t T1 −

(ωa, νa, ν ′a) ↔ (−ωt, ν ′t, νt)
(ωp, νp, ν ′p) ↔ (ωp, νp,−ν ′p)

S2
1′2′|12
2′1′|12 a↔ t V ↔ TS V̂ T2 −

(ωa, νa, ν ′a) ↔ (ωt, νt, ν ′t)

(ωp, νp, ν ′p) ↔ (ωp,−νp, ν ′p)

S3
1′2′|12
2′1′|21 Ka,t2 ↔ Ka,t2′

V ↔ TSV
V̂ ↔ TS V̂

a, t T3 +
(ωa, νa, ν ′a) ↔ (−ωa, ν ′a, νa)
(ωp, νp, ν ′p) ↔ (ωp,−νp,−ν ′p)
(ωt, νt, ν ′t) ↔ (−ωt, ν ′t, νt)

SC 1′2′|12
12|1′2′ Ka,p2 ↔ Ka,p2′

V ↔ V

V̂ ↔ TS V̂
a, p TC (−)1+Pα

(ωa, νa, ν ′a) ↔ (ωa, ν ′a, νa)

(ωp, νp, ν ′p) ↔ (ωp, ν ′p, νp)

(ωt, νt, ν ′t) ↔ (−ωt, νt, ν ′t)

have to be computed numerically. This is particularly efficient for the asymptotic classes K1,
K2(′) , where the Keldysh structure is already simpler due to the parity symmetries discussed
above.

We exemplify this derivation by investigating the Keldysh structure of the V (V̂ ) compo-
nent of Ka1 (Kt1):

S2

Ka1,σσ̄|σσ̄ =




0 B̄a
1 T3B̄

a
1 C̄a1

T3B̄
a
1 C̄a1 0 B̄a

1
B̄a

1 0 C̄a1 T3B̄
a
1

C̄a1 T3B̄
a
1 B̄a

1 0







0 T2B̄
a
1 T1B̄

a
1 T1C̄

a
1

T2B̄
a
1 0 T1C̄

a
1 T1B̄

a
1

T1B̄
a
1 T1C̄

a
1 0 T2B̄

a
1

T1C̄
a
1 T1B̄

a
1 T2B̄

a
1 0


 = Kt1,σσ̄|σ̄σ .

S1
(4.56)

S1 relates columns of Ka1,σσ̄|σσ̄ to columns of Kt1,σσ̄|σ̄σ, S2 relates rows. S3 = S1S2 does not
switch between channels, but relates components within the same channel. Combining the
parity symmetries Eq. (4.48) and the crossing symmetries, one can reduce the naively 30
components of Ka1,σσ̄|σσ̄ and Kt1,σσ̄|σ̄σ to 2, which we call B̄a

1 and C̄a1 .
The result of this analysis in all channels and asymptotic classes is presented in Table 4.2.

Effectively, the number of independent Keldysh components is reduced to 2 for Kr1 in each
channel r, to 5 per channel for Kr2 and Kr2′ together, and to 6 per channel for Kr3. In the
SU(2)-symmetric case, only a single spin component V = Γσσ̄|σσ̄ needs to be computed
explicitly.
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Table 4.2 Independent Keldysh components and transformations between symmetry-related compo-
nents for all asymptotic classes Kr1, Kr2, Kr2′ , Kr3 in all channels r = a, p, t and both equal-spin and
different-spin sectors. Components in the different-spin sector are denoted with a bar. This table
was derived in collaboration with Santiago Aguirre and thus is presented in similar form in [Agu20]
(Tables 3.1–3.5).

σσ|σσ σσ̄|σσ̄ σσ̄|σ̄σ
Ka1 Kp1 Kt1 Ka1 Kp1 Kt1 Ka1 Kp1 Kt1

11|11 0 0 0 0 0 0 0 0 0 0
11|12 1 Ba

1 Bp
1 Bt

1 B̄a
1 B̄p

1 B̄t
1 TST2B̄

t
1 T1B̄

p
1 TST2B̄

a
1

11|21 2 T3B
a
1 Bp

1 T3B
t
1 TST3B̄

a
1 B̄p

1 TST3B̄
t
1 T1B̄

t
1 T1B̄

p
1 T1B̄

a
1

11|22 3 Ca1 0 Ct1 C̄a1 0 C̄t1 T1C̄
t
1 0 T1C̄

a
1

12|11 4 T3B
a
1 TCBp

1 Bt
1 TST3B̄

a
1 TCB̄p

1 B̄t
1 T1B̄

t
1 T1TCB̄p

1 TST2B̄
a
1

12|12 5 Ca1 Dp
1 0 C̄a1 D̄p

1 0 T1C̄
t
1 T1D̄

p
1 0

12|21 6 0 Dp
1 Ct1 0 D̄p

1 C̄t1 0 T1D̄
p
1 T1C̄

a
1

12|22 7 Ba
1 TCBp

1 T3B
t
1 B̄a

1 TCB̄p
1 TST3B̄

t
1 TST2B̄

t
1 T1TCB̄p

1 T1B̄
a
1

21|11 8 Ba
1 TCBp

1 T3B
t
1 B̄a

1 TCB̄p
1 TST3B̄

t
1 TST2B̄

t
1 T1TCB̄p

1 T1B̄
a
1

21|12 9 0 Dp
1 Ct1 0 D̄p

1 C̄t1 0 T1D̄
p
1 T1C̄

a
1

21|21 10 Ca1 Dp
1 0 C̄a1 D̄p

1 0 T1C̄
t
1 T1D̄

p
1 0

21|22 11 T3B
a
1 TCBp

1 Bt
1 TST3B̄

a
1 TCB̄p

1 B̄t
1 T1B̄

t
1 T1TCB̄p

1 TST2B̄
a
1

22|11 12 Ca1 0 Ct1 C̄a1 0 C̄t1 T1C̄
t
1 0 T1C̄

a
1

22|12 13 T3B
a
1 Bp

1 T3B
t
1 TST3B̄

a
1 B̄p

1 TST3B̄
t
1 T1B̄

t
1 T1B̄

p
1 T1B̄

a
1

22|21 14 Ba
1 Bp

1 Bt
1 B̄a

1 B̄p
1 B̄t

1 TST2B̄
t
1 T1B̄

p
1 TST2B̄

a
1

22|22 15 0 0 0 0 0 0 0 0 0
Ka2 Kp2 Kt2 Ka2 Kp2 Kt2 Ka2 Kp2 Kt2

11|11 0 Aa2 Ap2 T2A
a
2 Āa2 Āp2 Āt2 TST2Ā

t
2 T1Ā

p
2 TST2Ā

a
2

11|12 1 Ba
2 Bp

2 T2B
a
2 B̄a

2 B̄p
2 B̄t

2 TST2B̄
t
2 T1B̄

p
2 TST2B̄

a
2

11|21 2 Ca2 Bp
2 T2C

a
2 C̄a2 B̄p

2 C̄t2 TST2C̄
t
2 T1B̄

p
2 TST2C̄

a
2

11|22 3 Da
2 Ap2 T2D

a
2 D̄a

2 Āp2 D̄t
2 TST2D̄

t
2 T1Ā

p
2 TST2D̄

a
2

12|11 4 Ca2 Cp2 TCT2B
a
2 C̄a2 C̄p2 TCB̄t

2 TST2C̄
t
2 T1C̄

p
2 T1TCB̄a

2
12|12 5 Da

2 Dp
2 0 D̄a

2 D̄p
2 0 TST2D̄

t
2 T1D̄

p
2 0

12|21 6 Aa2 Dp
2 TCT2D

a
2 Āa2 D̄p

2 TCD̄t
2 TST2Ā

t
2 T1D̄

p
2 T1TCD̄a

2
12|22 7 Ba

2 Cp2 T2F
a
2 B̄a

2 C̄p2 F̄ t2 TST2B̄
t
2 T1C̄

p
2 TST2F̄

a
2

21|11 8 TCT3B
a
2 T3C

p
2 T2C

a
2 TSTCT3B̄

a
2 TST3C̄

p
2 C̄t2 TSTCT1B̄

t
2 TST2C̄

p
2 TST2C̄

a
2

21|12 9 0 T3D
p
2 T2D

a
2 0 TST3D̄

p
2 D̄t

2 0 TST2D̄
p
2 TST2D̄

a
2

21|21 10 TCT3D
a
2 T3D

p
2 T2A

a
2 TSTCT3D̄

a
2 TST3D̄

p
2 Āt2 TSTCT1D̄

t
2 TST2D̄

p
2 TST2Ā

a
2

21|22 11 F a2 T3C
p
2 T2B

a
2 F̄ a2 TST3C̄

p
2 B̄t

2 TST2F̄
t
2 TST2C̄

p
2 TST2B̄

a
2

22|11 12 TCT3D
a
2 0 TCT2D

a
2 TSTCT3D̄

a
2 0 TCD̄t

2 TSTCT1D̄
t
2 0 T1TCD̄a

2
22|12 13 F a2 F p2 T2F

a
2 F̄ a2 F̄ p2 F̄ t2 TST2F̄

t
2 T1F̄

p
2 TST2F̄

a
2

22|21 14 TCT3B
a
2 F p2 TCT2B

a
2 TSTCT3B̄

a
2 F̄ p2 TCB̄t

2 TSTCT1B̄
t
2 T1F̄

p
2 T1TCB̄a

2
22|22 15 0 0 0 0 0 0 0 0 0
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Table 4.2 (continued)
σσ|σσ σσ̄|σσ̄ σσ̄|σ̄σ

Ka2′ Kp2′ Kt2′ Ka2′ Kp2′ Kt2′ Ka2′ Kp2′ Kt2′
1111 0 T3A

a
2 TCAp2 T1A

a
2 TST3Ā

a
2 TCĀp2 TST3Ā

t
2 T1Ā

t
2 TSTCT1Ā

p
2 T1Ā

a
2

1112 1 T3C
a
2 TCCp2 T1C

a
2 TST3C̄

a
2 TCC̄p2 TST3C̄

t
2 T1C̄

t
2 TSTCT1C̄

p
2 T1C̄

a
2

1121 2 T3B
a
2 TCT3C

p
2 T1B

a
2 TST3B̄

a
2 TSTCT3C̄

p
2 TST3B̄

t
2 T1B̄

t
2 T1TCC̄p2 T1B̄

a
2

1122 3 T3D
a
2 0 T1D

a
2 TST3D̄

a
2 0 TST3D̄

t
2 T1D̄

t
2 0 T1D̄

a
2

1211 4 TCBa
2 TCBp

2 T1C
a
2 TCB̄a

2 TCB̄p
2 TST3C̄

t
2 T1TCB̄t

2 T1TCB̄p
2 T1C̄

a
2

1212 5 TCDa
2 TCDp

2 T1A
a
2 TCD̄a

2 TCD̄p
2 TST3Ā

t
2 T1TCD̄t

2 TSTCT1D̄
p
2 T1Ā

a
2

1221 6 0 TCT3D
p
2 T1D

a
2 0 TSTCT3D̄

p
2 TST3D̄

t
2 0 T1TCD̄p

2 T1D̄
a
2

1222 7 T3F
a
2 TCF p2 T1B

a
2 TST3F̄

a
2 TCF̄ p2 TST3B̄

t
2 T1F̄

t
2 TSTCT1F̄

p
2 T1B̄

a
2

2111 8 T3C
a
2 TCBp

2 TCT1B
a
2 TST3C̄

a
2 TCB̄p

2 TSTCT3B̄
t
2 T1C̄

t
2 T1TCB̄p

2 TSTCT1B̄
a
2

2112 9 T3A
a
2 TCDp

2 TCT1D
a
2 TST3Ā

a
2 TCD̄p

2 TSTCT3D̄
t
2 T1Ā

t
2 TSTCT1D̄

p
2 TSTCT1D̄

a
2

2121 10 T3D
a
2 TCT3D

p
2 0 TST3D̄

a
2 TSTCT3D̄

p
2 0 T1D̄

t
2 T1TCD̄p

2 0
2122 11 T3B

a
2 TCF p2 T1F

a
2 TST3B̄

a
2 TCF̄ p2 TST3F̄

t
2 T1B̄

t
2 TSTCT1F̄

p
2 T1F̄

a
2

2211 12 TCDa
2 TCAp2 TCT1D

a
2 TCD̄a

2 TCĀp2 TSTCT3D̄
t
2 T1TCD̄t

2 TSTCT1Ā
p
2 TSTCT1D̄

a
2

2212 13 TCBa
2 TCCp2 TCT1B

a
2 TCB̄a

2 TCC̄p2 TSTCT3B̄
t
2 T1TCB̄t

2 TSTCT1C̄
p
2 TSTCT1B̄

a
2

2221 14 T3F
a
2 TCT3C

p
2 T1F

a
2 TST3F̄

a
2 TSTCT3C̄

p
2 TST3F̄

t
2 T1F̄

t
2 T1TCC̄p2 T1F̄

a
2

2222 15 0 0 0 0 0 0 0 0 0
Ka3 Kp3 Kt3 Ka3 Kp3 Kt3 Ka3 Kp3 Kt3

1111 0 Aa3 Ap3 T2A
a
3 Āa3 Āp3 Āt3 T1Ā

t
3 T1Ā

p
3 T1Ā

a
3

1112 1 Ba
3 Bp

3 T2B
a
3 B̄a

3 B̄p
3 B̄t

3 TST2B̄
t
3 TST2B̄

p
3 TST2B̄

a
3

1121 2 T3B
a
3 T3B

p
3 T1B

a
3 TST3B̄

a
3 TST3B̄

p
3 TST3B̄

t
3 T1B̄

t
3 T1B̄

p
3 T1B̄

a
3

1122 3 Ca3 Cp3 T2C
a
3 C̄a3 C̄p3 C̄t3 T1C̄

t
3 T1C̄

p
3 T1C̄

a
3

1211 4 TCBa
3 TCBp

3 T1TCBa
3 TCB̄a

3 TCB̄p
3 TCB̄t

3 T1TCB̄t
3 T1TCB̄p

3 T1TCB̄a
3

1212 5 Da
3 Dp

3 Dt
3 D̄a

3 D̄p
3 D̄t

3 T1Ē
t
3 T1Ē

p
3 T1Ē

a
3

1221 6 T1D
t
3 T1D

p
3 T1D

a
3 Ēa3 Ēp3 Ēt3 T1D̄

t
3 T1D̄

p
3 T1D̄

a
3

1222 7 F a3 F p3 T1F
a
3 F̄ a3 F̄ p3 F̄ t3 T1F̄

t
3 T1F̄

p
3 T1F̄

a
3

2111 8 TCT3B
a
3 TCT3B

p
3 TCT1B

a
3 TSTCT3B̄

a
3 TSTCT3B̄

p
3 TSTCT3B̄

t
3 TSTCT1B̄

t
3 TSTCT1B̄

p
3 TSTCT1B̄

a
3

2112 9 T2D
t
3 T2D

p
3 T2D

a
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As seen from Eq. (A.3), the crossing transformations act on the natural channel-dependent
frequencies ωr, νr, ν ′r by flipping the sign or exchanging νr and ν ′r. If one has redundant
symmetries (e.g. TC has not been used in the example Eq. (4.56)), one can use them to e.g.
only compute some Keldysh component for negative frequencies and obtain the values for
positive frequencies afterwards by applying the corresponding transformation Ti. This has
been worked out and implemented into our code by Anxiang Ge [Ge21].

4.3.3 Keldysh components of n-point functions
As discussed in Sec. 4.1.3, the asymptotic classes Kr1 are related to susceptibilities, which
have the nature of a bosonic self-energy, and Kr2(′) have the nature of three-point functions.
In principle, n-point functions only have n Keldysh indices, therefore one can express Kr1 and
Kr2(′) in terms of 2 and 3 Keldysh indices, respectively. To achieve this, the parity of Keldysh
indices (even e or odd o) of the two legs connecting to one bare vertex can be considered
as one effective Keldysh index: As can be seen from Eq. (4.47), each pair of legs with a
parity symmetry only depends on the parity of Keldysh indices. We identify o =̂ 1, e =̂ 2.12
In analogy to Eq. (2.31) we thus have

(Kr1)R = (Kr1)1|2 = (Kr1)o|e , (Kr1)A = (Kr1)2|1 = (Kr1)e|o , (Kr1)K = (Kr1)1|1 = (Kr1)o|o .
(4.57)

The order of the Keldysh indices (incoming and outgoing) is determined by the flow direction
of the bosonic frequency ωr,

(Ka1)o|e = Ka1e o

ωa

, (Kp1)o|e = Kp1o e

ωp

, (Kt1)o|e = Kt1

e

o

ωt . (4.58)

In the a channel, we have explicitly

(Ka1)R = (Ka1)11|21 = (Ka1)12|11 = (Ka1)21|22 = (Ka1)22|12 = T3B̄
a
1 , (4.59a)

(Ka1)A = (Ka1)11|12 = (Ka1)12|22 = (Ka1)21|11 = (Ka1)22|21 = B̄a
1 , (4.59b)

(Ka1)K = (Ka1)11|22 = (Ka1)12|12 = (Ka1)21|21 = (Ka1)22|11 = C̄a1 . (4.59c)

Similarly, in the p and t channel we have

(Kp1)R = TCB̄p
1 , (Kp1)A = B̄p

1 , (Kp1)K = D̄p
1 , (4.60a)

(Kt1)R = T3B̄
t
1 , (Kt1)A = B̄t

1 , (Kt1)K = C̄t1 . (4.60b)

We can also express the physical components of the physical susceptibilities (Eq. (4.21)) in
terms of Ka,t1 :

Γ0 χ
R
sp Γ0 = −(Ka1)R↑↓ , Γ0 χ

R
ch Γ0 = 2(Kt1)R↑↓ − (Ka1)R↑↓ . (4.61)

12 This can be seen very easily: (Kr1)22|22 = 0 by causality (cf. Eq. (2.38)), i.e., (Kr1)e|e = 0, but interpreting
χr as a bosonic self-energy, we have (Kr1)2|2 = 0 (cf. Eq. (2.31)). This allows us to identify e =̂ 2, and
correspondingly o =̂ 1.
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Since the susceptibilities have the nature of (bosonic) self-energies, in equilibrium their
Keldysh components are connected to the retarded ones by FDTs (cf. Eq. (2.32)),

(Kr1)K(ω) = 2i coth
(
ω − µ

2T

)
Im (Kr1)R(ω) , (4.62a)

χKr (ω) = 2i coth
(
ω − µ

2T

)
ImχRr (ω) , (4.62b)

and equivalently for the physical susceptibilities χsp/ch. Note that due to their bosonic nature,
(1−2nF (ν)) = tanh((ν−µ)/2T )→ (1−2nB(ω)) = coth((ω−µ)/2T ) compared to Eq. (2.32),
with the Bose-Einstein distribution function nB(ω) = 1/(exp(ω−µT )− 1).

For K2, we define

(Ka2)α1α2α3 = Ka2νa

α1

α2

α3

ωa

,

(Kp2)α1α2α3 = Kp2νp

α1

α2

α3

ωp

, (Kt2)α1α2α3 = Kt2

νt
α1α2

α3

ωt . (4.63)

With this definition, the order of Keldysh indices is equivalent to that in [WH02]. Therefore,
in equilibrium a set of 3-point FDTs (cf. last paragraph of Sec. 2.2.3.1) directly follows from
Eq. (64) of [WH02],13

Im
{

(Kr2)22o + (Kr2)21e + (Kr2)12e + (Kr2)11o
}

= 0 ,

Re
{

(Kr2)21o + (Kr2)12o + (Kr2)11e
}

= 0 ,

Im
{

(Kr2)21o − (Kr2)12o − (Kr2)11e
}

= tanh
(
ν ′1
2T

)
Im

{
(Kr2)22o + (Kr2)21e

−(Kr2)12e − (Kr2)11o
}
,

... (4.64)

As an example, in the a channel one obtains

Im
{
F̄ a2 + TSTCT3B̄

a
2 + B̄a

2 + C̄a2

}
= 0 ,

Re
{
TSTCT3D̄

a
2 + D̄a

2 + Āa2

}
= 0 ,

Im
{
TSTCT3D̄

a
2 − D̄a

2 − Āa2
}

= tanh
(
νa − ωa

2
2T

)
Im

{
F̄ a2 + TSTCT3B̄

a
2 − B̄a

2 − C̄a2
}
,

... (4.65)

13 In [WH02], labels a, r correspond to our Keldysh indices 1, 2. Furthermore, one has to exchange the functions
coth↔ tanh appearing there, since [WH02] treats real bosonic fields, while we are dealing with fermionic
ones.
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These equations can be solved for individual Keldysh components (cf. Eq. (65) of [WH02]).
To use them explicitly to further reduce the number of independent Keldysh components in
equilibrium, along with the analogous equations for K3 depending on four Keldysh indices
(cf. Eq. (67) of [WH02]), is ongoing work pursued by Anxiang Ge [Ge21].
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5 Single-impurity Anderson model

In the last chapters, we have described the methodology of Keldysh mfRG. We now introduce
the single-impurity Anderson model [And61] that we will be studying in the rest of Part I of
this thesis as a proof of principle for this method. Many of the definitions and notational
conventions are again following [Jak09]. After defining the model Hamiltonian and the bare
propagator G0 and bare vertex Γ0 derived from it as the building blocks of our field theoretical
approach in Section 5.1, in Section 5.2 we define the regulator we use in order to implement
fRG. Section 5.3 gives a very brief recap of the physics of the SIAM.

5.1 Definition of the model
In order to be able to also study nonequilibrium transport through the impurity in the
future, we generalize the original Anderson model [And61] to one with two different baths (or
reservoirs),1 which can be interpreted as the left and right lead of a quantum dot represented
by the impurity [Jak09]. We consider bath electrons with momentum k and spin σ in reservoir
m = L,R, created by c†mkσ, and impurity electrons with spin σ created by d†σ. The bath
electrons are noninteracting and moving freely with only a kinetic term that is diagonal in
momentum space, while the impurity electrons are localized but interacting. In addition,
electrons can hop between the baths and the impurity site. The Hamiltonian thus consists of
three terms,

H =
∑

mkσ

εm(k)c†mkσcmkσ
︸ ︷︷ ︸

Hbath

+
∑

σ

εσd
†
σdσ + Ud†↑d↑d

†
↓d↓

︸ ︷︷ ︸
Himp

+
∑

mkσ

(tmd†σcmkσ + h.c.)
︸ ︷︷ ︸

Hhyb

. (5.1)

Hbath describes the kinetic energy of the noninteracting bath electrons with dispersion
relations εm(k), and Hhyb describes the hybridization via hopping of electrons between the
baths and the impurity site, with (momentum-independent) hopping amplitudes tm. Himp
describes the impurity energy levels

εσ = eVg − σB −
U

2 (5.2)

and the onsite interaction U on the impurity. Here Vg is a gate voltage that allows to shift
the impurity energy levels, with the elementary charge e, and B is a Zeeman splitting of the
two spin directions σ = ↑, ↓ =̂± induced by a magnetic field. Note that a finite magnetic
field of course breaks SU(2) symmetry, which increases the number of independent vertex
spin components, as argued in Sec. 4.2. In the following chapters, we will always consider the
SU(2)-symmetric case B = 0, such that we can drop the spin index, εσ = ε. By including the
term −U/2 in the definition of εσ, Vg is defined relative to the particle-hole-symmetric point
at half-filling [Jak09]: For Vg = 0 (and B = 0), the single-particle levels lie at ε = −U/2 and
ε+ U = U/2 (cf. Fig. 5.1).

1 One can straightforwardly generalize this to any number of reservoirs N , by considering m = 1, . . . , N
everywhere in the following.
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Figure 5.1 (a) Sketch of the SIAM with two reservoirs, showing all relevant energy scales (for B = 0):
Each reservoir m = L,R is in thermal equilibrium at the temperature Tm and is filled up to its
chemical potential µm. A difference in the chemical potentials leads to a voltage drop eV across
the impurity. The single-particle energy levels ε and ε+ U for the first and second electron on the
impurity are broadened by the hybridization ∆ (Eq. (5.5)) and can be shifted by the gate voltage eVg.
(b) For Vg = 0 and µL = −µR (=0 in equilibrium), the impurity is singly occupied (i.e., half-filled),
and fulfills particle-hole symmetry: Adding a second electron or removing the first electron from the
impurity both costs an energy penalty U/2.

The bare vertex Γ0 of the SIAM is governed by the onsite interaction term Ud†↑d↑d
†
↓d↓ in

the Hamiltonian. In Keldysh formalism, according to Eqs. (2.15) and (2.39) it is given by

(Γ0)α
′
1α
′
2|α1α2

σ′1σ
′
2|σ1σ2

= (δσ′1,σ2δσ′2,σ1 − δσ′1,σ1δσ′2,σ2)
{

U
2 , Pα odd,
0 , else. (5.3)

The bare impurity propagator reads (cf. Eqs. (2.29) and (2.30), [Jak09])

G
R/A
0,σ (ν) = 1

ν − εσ ± i0+ , GK0,σ(ν) = −2i(1− 2〈nσ〉)δ(ν − εσ) , (5.4)

with the (spin-dependent) impurity occupation nσ = d†σdσ. At B = 0 and half filling,
〈n↑〉 = 〈n↓〉 = 1/2 (i.e., single occupation of the impurity 〈(n↑ + n↓)〉 = 1), we thus have
GK0 = 0.

The Hamiltonian is quadratic in the bath c electrons. Therefore, when going to the
functional integral, they can be integrated out. Due to the coupling Hhyb to the impurity
site, this leads to an additional quadratic term for the impurity d electrons, which can be
interpreted as a reservoir-induced self-energy Σres for the impurity electrons. Assuming flat
bands εm(k) = vmk of the baths with bandwidths Dm, in the wide-band limit Dm →∞ the
influence of the bath simply takes the form of a constant hybridization ∆ = ∆L + ∆R, with
∆m = π|tm|2/vm [Jak09],

ΣR/A
res = ∓i∆ =

∑

m

ΣR/A
res,m , ΣR/A

res,m = ∓i∆m . (5.5)

We can assume each reservoir m to be in thermal equilibrium by itself, with chemical potential
µm and temperature Tm (cf. Fig. 5.1). Thus, for the Keldysh component we have

ΣK
res(ν) =

∑

m

ΣK
res,m(ν) (2.32)= −2i

∑

m

∆m tanh
(
ν − µm

2Tm

)
= −2i∆Neff(ν) , (5.6)
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with the effective distribution factor2

Neff(ν) = 1
∆
∑

m

∆m tanh
(
ν − µm

2Tm

)
= 1

∆
∑

m

∆m(1− 2nF,m(ν)) , (5.7)

where nF,m is the Fermi distribution function of reservoir m.
Including Σres, we define the reservoir-dressed bare impurity propagator, for which we will

reuse the symbol G0, since it effectively takes over the role of the bare impurity propagator
further on. It is obtained from Eq. (5.4) via the Dyson equation (2.33) and reads

G
R/A
0,σ (ν) = 1

ν − εσ ± i∆
, GK0,σ(ν) = GR0,σ(ν) ΣK

res(ν)GA0,σ(ν) = −2iNeff(ν) ∆
(ν − εσ)2 + ∆2 .

(5.8)

In equilibrium, we can simplify all expressions by removing one reservoir, ∆R = 0, such that
∆ = ∆L, µ = µL, T = TL, and Neff(ν) = tanh((ν − µ)/2T ).

Physically, ∆ corresponds to a broadening of the impurity levels due to the presence
of the bath (cf. Fig. 5.1), or in turn, the impurity d electrons acquire a finite lifetime. In
the following chapters, we will use ∆ as energy unit, and the dimensionless quantity U/∆
determines the effective interaction strength.

After having integrated out the bath electrons, we remain with the problem of computing
the full dynamics of the interacting impurity electrons, governed by the full propagator G. It
includes correlation effects via the self-energy Σ,

GR/Aσ (ν) = 1
ν − εσ ± i∆− ΣR/A

σ (ν)
, (5.9a)

GKσ (ν) = GRσ (ν)
(
ΣK
σ (ν) + ΣK

res(ν)
)
GAσ (ν) (5.9b)

equilibrium= −2i tanh
(
ν − µ

2T

) ∆− Im ΣR
σ (ν)

(ν − εσ − Re ΣR
σ (ν))2 + (∆− Im ΣR

σ (ν))2 . (5.9c)

5.2 SIAM within fRG
In order to compute Σ with fRG, we have to introduce a flow parameter into G0, as explained
in Chapter 3. We will use ∆ as flow parameter (the so-called hybridization flow [Jak09])3,4:
For ∆→∞, we have GR0 → 0, such that the theory becomes trivial. Physically, an infinitely
strong hybridization essentially corresponds to an absorption of the impurity into the bath,
and the interaction U/∆ becomes negligible. When flowing toward small ∆, we recover
the interacting theory, as U/∆ becomes large. By keeping the numerical value of U fixed

2 In [Jak09], the effective distribution function is defined as Nres(ν) =
∑

m
(∆m/∆)nF,m(ν) (Eq. (6.7) there),

such that Neff(ν) = 1− 2Nres(ν).
3 A detailed discussion of various possible regulators for the Keldysh propagator is given in [Jak09]. An

important realization made there is that sharp frequency cutoffs lead to various issues, including violations
of causality. [Jak09] therefore concludes that the hybridization flow is beneficial for finite systems such as
impurity models. An alternative for lattice systems is a momentum cutoff.

4 In some works, including [Jak09, JPS10a] to which we frequently refer, the bare propagator Eq. (5.8) is
defined with ∆ 7→ Γ/2. (Here Γ should not be confused with the full vertex.) In our numerical implementation
(and also in [Agu20]), we thus use the substitution ∆ = (Γ + Λ)/2 for historical reasons (equivalently used
in [Jak09]), where Λ flows from a large value to zero, such that ∆i = (Γ + Λi)/2 and ∆f = Γ/2. For the
single-scale propagator, this leads to a prefactor of 1/2 compared to Eq. (5.10):

SΛ = ∂ΛG|Σ=const. = ∂∆G|Σ=const. · ∂∆
∂Λ = 1

2S
∆ .
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and flowing in ∆ from large to small values, we can thus sweep from the noninteracting to
the strongly interacting limit of the model, where every step of the flow corresponds to the
solution of the model at a different interaction strength U/∆, which is thereby turned on
during the flow.

For the hybridization flow, the single-scale propagator (Eq. (3.2)) reads [Jak09]

SR/A(ν) = ∂∆G
R/A(ν)

∣∣∣
Σ=const.

= ∓i(GR/A(ν))2 , (5.10a)

SK(ν) = ∂∆G
K(ν)

∣∣∣
Σ=const.

= −iGR(ν)GK(ν)− 2iNeff(ν)GR(ν)GA(ν) + iGK(ν)GA(ν)
(5.10b)

equilibrium= 2i tanh
(
ν − µ

2T

)
ImSK(ν) . (5.10c)

The initial values of Γ and Σ at ∆i =∞ are [Jak09]

Γ∆i=∞ = Γ0 , (ΣR/A
σ )∆i=∞ = U〈nσ̄〉 , (ΣK)∆i=∞ = 0 . (5.11)

Note that while all vertex diagrams of second order or higher vanish in the limit ∆ → ∞,
since they contain bare propagators that vanish for ∆ → ∞ (as argued in Sec. 3.1), the
first-order contribution of ΣR/A (Hartree term) is finite at ∆i =∞ even though it contains
a bare propagator: As discussed at the end of Sec. 2.2.2, the Hartree term is given by an
integral over G< (cf. Eq. (2.36)),5 which gives a finite value U〈nσ̄〉 that is independent of ∆
and hence does not vanish in the limit ∆→∞.

In equilibrium at half filling, we have 〈nσ̄〉 = 1/2, such that the Hartree term is

(ΣR/A
σ )∆i=∞ = ΣH = U

2 . (5.12)

In this case, we can avoid computing this term explicitly (e.g. when evaluating the SDE (3.5))
and instead simply add a constant value U/2 to the self-energy. Even further, at B = 0 and
half filling, we have εσ = −U/2 = −ΣH . Therefore, we can absorb the Hartree term into the
bare propagator by redefining (GR0 )−1 7→ (GR0 )−1 − ΣH , which exactly compensates for εσ
and thus simplifies Eq. (5.8) to

G
R/A
0 (ν) = 1

ν ± i∆ , GK0 (ν) = −2iNeff(ν) ∆
ν2 + ∆2 . (5.13)

This is a valid choice since it only accounts for the constant Hartree shift of the single-
particle levels, which has no effect on integrals over propagators that occur when computing
diagrams.6 On the other hand, within this form of G0 its central peak is centered around
ν = 0 (cf. Fig. 6.2 below), which is beneficial for the numerical evaluation of integrals over G0
(see the following Chapter 6). Therefore, we will use Eq. (5.13) when computing perturbation
theory diagrams in Sec. 7.1 below.

Practically, in a numerical implementation we have to start the flow at a finite large value
of ∆, such that Eq. (5.11) is not sufficient as initial condition. We usually choose U = 1 and
∆i = 10.1, such that U/∆� 1 is sufficiently small to be well in the weakly interacting regime.
At this point, PT2 is already a good approximation and could serve as initial condition.

5 In Eq. (2.36), Γ0 = Γ−−|−−0 = U , not U/2, since the Hartree term is evaluated in the contour basis (instead
of the Keldysh basis where Γ0 includes a prefactor 1/2, cf. Eq. (2.39)).

6 Note that this is not necessarily the case for more complex models: If the bare propagator contains a
momentum or lattice site dependence in the denominator, one cannot simply shift the frequency axis without
qualitatively affecting the behavior of G0.
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However, in PT2 the vertex consists only of K1 diagrams (cf. Eq. (2.20)), while the K2(′) and
K3 contributions are zero. This is obviously not an ideal starting point of the flow. Therefore,
we initialize the flow by iterating the parquet equations with PT2 as input. At U/∆� 1,
convergence is obtained very quickly after only ∼ 5 iterations (also briefly discussed in Sec. 6.1
below).

Note that by keeping U = 1 fixed during the flow, in the numerics U is used as energy
unit. This in particular implies that Tm/U is also fixed, i.e., Tm/∆ increases along the flow.
If one would rather like to keep Tm/∆ =: T̃m constant, one has Tm = Tm(∆) = T̃m ·∆ along
the flow, and thus

ΣK
res(ν) = −2i

∑

m

∆m tanh
(
ν − µm
2T̃m∆

)
(5.14)

inherits a complicated ∆ dependence. This would lead to additional terms in SK involving
∂∆ tanh((ν − µm)/2T̃m∆), which is very sharply peaked and thus challenging for numerics,
hence we will not exploit this route in the following. It might still be interesting to investigate
it in the future, to be able to keep the temperature constant in units of the flow parameter ∆
throughout the flow.

In the rest of this thesis, we will always assume B = 0 (i.e., SU(2) symmetry), half
filling εσ = ε = −U/2 (i.e., particle-hole symmetry), and only a single reservoir in thermal
equilibrium at temperature T . The extension to finite magnetic field, broken particle-hole
symmetry and nonequilibrium is conceptually straightforward in the Keldysh formalism
(preliminary nonequilibrium results have already been presented in [Agu20], Sec. 5.3), and
all equations given up to this point are generic and do not require additional symmetries
or equilibrium (except for explicit expressions for the SU(2)-symmetric case in Chapter 4,
which are readily generalized to broken SU(2) symmetry, as also explained there). However,
all these generalizations would involve further refinement of the numerics and are thus left
for future work.

5.3 Physics of the SIAM
As already mentioned in the introduction, the SIAM is an old and well-studied model.
Therefore, we neither aim to give a complete overview of the physical behavior it hosts
and implications thereof, nor do we expect to add new fundamental insights in this regard.
Instead, we only recapitulate briefly the most essential features, while the next chapters will
focus on how well one can reproduce correlation functions of the SIAM on a quantitative
level using Keldysh mfRG. A very good and comprehensive introduction to the physics of
magnetic impurities in metals and the implications of the SIAM for this area was written by
Hewson [Hew93].

The most striking feature of the SIAM is the emergence of the so-called Kondo scale.
At half filling, the impurity level is singly occupied, with the impurity electron acting as
a magnetic impurity immersed in the bath. At low energies (in an RG picture), charge
fluctuations are suppressed and the interaction term effectively obtains the nature of an
antiferromagnetic spin-spin interaction between the impurity spin and the total spin degree
of freedom of the bath (as can be seen from a Schrieffer-Wolff transformation, projecting out
charge fluctuations [SW66]). As a result, the impurity spin is screened by the bath, leading
to the formation of a Kondo singlet between impurity and bath spin. This so-called Kondo
effect happens at an energy scale that is exponentially small in the interaction, the Kondo
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temperature

TK =

√
U∆

2 exp
(
π∆
2U −

πU

8∆

)
(5.15)

(see [FMW+18], Eq. (22), or (with a prefactor of 0.4107) [Hew93], Eq. (6.109) and the
following text). The emergence of the Kondo scale can be nicely seen in the impurity spectral
function

A(ν) = − 1
π

ImGR(ν)

= 1
π∆

1− Im ΣR(ν)/∆
(ν − ε− Re ΣR)2 /∆2 + (1− Im ΣR/∆)2 , (5.16)

which characterizes the excitation spectrum of the impurity (cf. Fig. 5.2). In the noninteracting
case (Σ = 0), the spectral function is simply given by a Lorentzian quasiparticle peak of
width ∆ at ν = ε (= 0 at half filling), i.e., the bare energy level of the impurity broadened by
the hybridization to the bath. At finite interaction U/∆, new features arise: The so-called
Hubbard bands at ν = ±U/2 originate from the single-particle excitations that now cost
a finite interaction energy (also see Fig. 5.1), and the quasiparticle peak strongly narrows
to a Kondo resonance of width TK . Notably, the Kondo scale is an emergent scale, i.e., it
cannot be explained from the bare parameters of the model (as opposed to the Hubbard
bands, which simply reflect the single-particle levels).

In the Kondo regime, the Kondo temperature is exponentially suppressed with the
interaction, TK ∼ e−πU/8∆ for U/∆ � 1 (Eq. (5.15)). Since at zero temperature TK is
related to the static spin susceptibility, TK = 1/(4χRsp(0)) [FMW+18], we can also observe the
Kondo regime by an exponential increase of χRsp(0) with U/∆ for large interaction strength
(cf. Fig. 5.3(a)). Quantitatively, Figs. 5.3(a) and (c) show that values U/∆ & 5 are required
for exponential behavior to become visible. However, due to the exponentially small energy
scale, the Kondo effect is a low-temperature effect: For T & TK , the Kondo resonance is
strongly smeared out and even vanishes completely for T � TK , as seen in Fig. 5.3(b).
Likewise, an exponential increase of χRsp(0) is only observable at sufficiently low temperature
(Fig. 5.3(a)). For a fixed temperature T/U , the condition T < TK is only fulfilled up to a
certain U/∆ (cf. Fig. 5.3(c)).

These observations pose significant challenges to our fRG approach: Truly large values
of U/∆ are only accessible with a fully nonperturbative approach, but even a converged
multiloop flow based on the parquet approximation (cf. Sec. 3.2.1) does introduce an error of
4th order in the interaction. On the other hand, reaching low temperatures is also challenging
for numerics, since the Keldysh propagator becomes increasingly sharp when lowering T
(cf. Eq. (5.9c)). As further discussed in Sec. 6.4 below, even a temperature of T/U = 0.01 is
currently challenging for our code (although this is not a fundamental problem and one can
hope to improve on this in the future by means of numerical refinements). An observation of
true Kondo behavior is therefore hard (if not impossible) to access within fRG.

The goal of the work presented here is different: We are aiming to evaluate the capabilities
of Keldysh mfRG as a quantitative method in the regimes it can access, by comparing results
to NRG, the gold standard for the SIAM in equilibrium. This is fundamental for establishing
Keldysh mfRG as a valid method for applications beyond the reach of other methods.
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Figure 5.2 Spectral function of the SIAM for different interaction strengths U/∆. Blue dotted
lines indicate the scale of the hybridization ±∆ which determines the width of the quasiparticle
peak in the noninteracting case U = 0. Red dotted lines mark the scale of the Kondo temperature
±TK and the position of the Hubbard bands ±U/2 for U/∆ = 10. Results are computed with NRG,
using the routines of Seung-Sup Lee based on the QSpace tensor network library written by Andreas
Weichselbaum [Wei12a, Wei12b, WvD07, LW16].
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Figure 5.3 (a) Static spin susceptibility χRsp(0) as a function of U/∆ for different temperatures
T = 0, T/U = 0.01, T/U = 0.1 (see legend of panel (b)). For T = 0, the inverse Kondo temperature
(Eq. (5.15)) is directly related to χRsp(0); both increase exponentially for large U/∆. (b) Spectral
function for strong interaction U/∆ = 10 and different temperatures T = 0, T/U = 0.01, T/U = 0.1.
Increasing the temperature smears out the Kondo resonance; it completely vanishes at the highest
temperature T/U = 0.1. (c) The Kondo temperature decreases exponentially as a function of U/∆ for
sufficiently large U/∆. Dashed lines indicate the temperatures T/U = 0.01 and T/U = 0.1 studied in
the following chapters. T < TK is required in order to see Kondo physics, thus in the range of U/∆
where T > TK , signatures of the Kondo effect are not accessible. Numerical results (χsp and A) are
computed with NRG, using the routines of Seung-Sup Lee based on the QSpace tensor network library
written by Andreas Weichselbaum [Wei12a, Wei12b, WvD07, LW16].
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6 Implementation details

In this chapter, we first list general ingredients of a numerical implementation of Keldysh
mfRG (Sec. 6.1). Many details on our specific implementation are already introduced in
[Agu20]. Here, we only give a short overview of the essential components of such a code. We
then discuss two specific issues that arise in any real-frequency implementation, which require
careful treatment: The sampling of frequency grid points (Sec. 6.2) and integration over
frequencies (Sec. 6.3). These are only briefly mentioned in [Agu20] and have been further
developed since then. In Section 6.4 we list all relevant parameters for fRG flows of which
results are presented in Chapters 7–9, and we summarize in which regimes the code currently
produces reliable results (and where it does not).

6.1 General structure
A very helpful guide for what is necessary to be able to perform mfRG calculations is given
by the pseudocode in [KvD18b].

Objects, access, storage:

• The basic building blocks of the theory are the self-energy Σ and the vertex Γ, and the
propagator G (or differentiated propagator S or ∂ΛG) which connects them in bubbles
and loops. Σ and Γ together form a state Ψ which will be computed along the fRG
flow.

• It is useful to further decompose Γ according to the parametrization introduced in
Chapter 4, since its individual constituents Kri enter the flow equations Eq. (4.27),
(4.29), (4.31). For all these parts of the vertex, only a reduced number of Keldysh indices
has to be stored, while their call operators need to know how to reconstruct “missing”
components using symmetry transformations according to Table 4.2. A subtlety arises
in the treatment of nonsymmetric vertices (cf. Sec. 4.3.2.3): A nonsymmetric vertex
needs to be able to access its symmetry-related counterpart in order to be correctly
reconstructed.

• Due to its simpler structure, the treatment of Σ is more straightforward, and the
propagator G even only needs to have a reference to its self-energy to be generated via
the Dyson equation G = (G−1

0 − Σ)−1 (cf. Eq. (2.17)), since G0 is known analytically
(cf. Eq. (5.8) for the SIAM).

• The representation of the frequency dependence of Σ and Γ in numerics is nontrivial,
since it requires us to represent functions of continuous variables via a finite number of
data points. This is discussed in Sec. 6.2.

• For storing the results of Σ and Γ into a file, we use the data format HDF5, which is
efficient for such hierarchical data structures.
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Basic computations:
• From the basic building blocks, we want to compute diagrams, e.g. perturbation theory

diagrams, the right-hand side of flow equations, the right-hand side of the parquet
equations, etc. These involve bubbles for vertices and loops for self-energies.

• In bubbles and loops, we need to sum over internal Keldysh and spin indices (and
potentially position indices) and integrate over frequencies (and potentially momenta),
discussed in detail in Chapter 4.

• The Keldysh and spin sums only involve few summands and are thus straightforward to
evaluate. Larger sums over spatial lattice site indices are ideally suited for vectorization
[KMI+20, Rit21a], however, we will not elaborate on that, since the SIAM is zero-
dimensional and has no such dependence.

• The frequency integration is the crucial part in the computation of bubbles and loops
for us, since it is computationally expensive and difficult to do with high accuracy. We
discuss this in detail in Sec. 6.3.

fRG flow:
• The computation of an fRG flow first requires a proper initial condition. Ideally, one

would like to start the flow from the exact solution of some simple model, to which
the model at hand can be smoothly connected via the flow parameter Λ (cf. Sec. 3.1).
However, in practice one usually implements the regulator in a way that the exactly
solvable model would be obtained at Λi =∞, such that in numerics we have to start at
some large but finite Λi, and one needs to find an approximate initial condition.
If the regulator is chosen in a way that for large Λi the model is weakly interacting, a
first attempt would be to use PT2 as initial condition. However, PT2 includes only
diagrams contributing to K1 (cf. Eq. (2.20)), while (K2)Λ=Λi = (K3)Λ=Λi = 0 in PT2.
An alternative starting point would be a converged solution of the parquet equations
at Λi, obtained by iterating the SDE (3.5) and BSE (3.8) with e.g. PT2 as input
until convergence. Since we expect a loop-converged mfRG flow to fulfill parquet self-
consistency at all times during the flow (cf. Sec. 3.2.2), it is a reasonable choice to ensure
it right from the start. Indeed, we have observed that for the SIAM a parquet-converged
initial condition yields a more stable fRG flow (also mentioned in Chapter 5).1

• Eventually, for computing an fRG flow we need an ordinary differential equation (ODE)
solver, which is again rather simple, since solving ODEs is a very well studied task. We
use a 4th-order Runge-Kutta solver; higher accuracy could be achieved with an adaptive
routine that automatically adjusts the step size. However, as discussed in Chapter 7,
the ODE solver is currently only a minor error source.

Parallelization:
• For performance reasons, it is crucial to use parallelization. Fortunately, this is very

straightforward in the context of fRG: Bubbles and loops need to be evaluated for each
combination of external arguments independently. We use a hybrid MPI/OpenMP scheme
to parallelize bubbles and loops over all external arguments.

In the following, we explain two crucial ingredients that have been improved upon
compared to [Agu20] and are only briefly mentioned there: Storing the vertex on a nonlinear
frequency grid, and frequency integration in bubbles and loops.
1 Some inconsistencies attributed to a PT2 initialization are discussed in [Agu20], Sec. 5.2.4.
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6.2 Frequency grid
Within the Keldysh formalism, the self-energy and the 4-point vertex are continuous functions
of one or several frequency variables. However, in a numerical calculation, we need to
represent them by a finite set of data points. To achieve this goal, we can think of two
possible approaches:

(i) We can sample the functions on a discrete grid (and interpolate linearly between grid
points), or

(ii) we can use a finite set of appropriate basis functions, and determine the expansion
coefficients of self-energy and vertex in this basis numerically.2

Approach (ii) might potentially need less data points to properly resolve our functions of
interest, compared to a naive discrete sampling, and could thus be computationally more
efficient. However, this approach is also somewhat biased towards the set of basis functions:
One simply cannot represent functions that are orthogonal to the chosen basis set. By
contrast, in approach (i) the basis functions are effectively box functions of the size of the
grid spacing, i.e., only features on a scale smaller than the grid spacing are ignored. Since
self-energy and vertex are known at the beginning of the fRG flow, one can initially choose a
grid that does resolve all essential features. Adaptively adjusting the grid during the flow
allows to systematically control the error. For this reason, we use approach (i) here, leaving
(ii) for future investigation.

Of course the discrete grid points in approach (i) do not necessarily have to be uniformly
spaced over the sampled frequency range. Instead, one should place them on a nonlinear grid
that resembles the behavior of the function to be represented, with a high density of grid
points where the function has sharp features and changes strongly, and fewer points in slowly
decaying tails. This reduces interpolation errors, since a linear interpolation scheme assumes
the function to be piecewise linear between the grid points (cf. Fig. 6.2). Our choice of the
frequency grid is specific for the SIAM, but the strategy of choosing it is quite generic. It is
motivated by the following considerations:

• At the beginning of the flow, the physics is well captured by perturbation theory. We
know the analytic form of the bare propagator, and we can expect the full propagator
to behave very similarly as long as the interaction U/∆ is small. Self-energy and vertex
inherit a similar behavior in perturbation theory.

• The propagator (and thus self-energy and vertex) have peak-like nontrivial structure
around zero frequency for a system with particle-hole symmetry µ = 0 (breaking
particle-hole symmetry shifts the interesting features with the chemical potential µ 6= 0).
The nontrivial structure requires a dense grid in order to be properly resolved.

• The width of the central features is primarily determined by the hybridization ∆, which
changes during the flow. We thus rescale the grid with ∆ accordingly in order to
guarantee that the interesting features are well resolved at all times during the flow.

• The Keldysh propagator (and equivalently the Keldysh self-energy and Keldysh-like
components of the vertex) additionally have structure on a scale of the temperature
(ω − µ) ≤ T (cf. Eq. (2.28)). For low temperatures T � ∆, these features are thus
much sharper than those induced by other physical scales.

2 A similar scheme is applied routinely for parametrizing the fermionic part of the momentum-dependence of
translationally invariant lattice models, using a so-called form-factor expansion [HS09, LdlPR+17]. In that
context, this approach is beneficial, since suitable basis functions follow quite naturally from the lattice
symmetries.
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• The propagator (and thus self-energy and vertex) have power-law tails (potentially with
logarithmic corrections), which require less grid points. However, since functions are
approximated by zero outside the frequency grid, a large frequency range is necessary
in order to properly capture the slow power-law decay.

These physical requirements can be met by a grid with the following behavior:

• A quadratically increasing density of points around µ, with most points ωj lying in a
window of width α∆ for some constant α (e.g. α ∼ 10), and min(ωj − µ) < T , and

• a power-law decaying density of points ∼ 1/ω for large frequencies.

We implement the frequency grid {ωj} by applying an explicit mapping function fω(Ω)
to an equidistant grid {Ωj}. This is beneficial for the following reason: If one integrates over
some function F (self-energy or vertex), the adaptive integrator (see Sec. 6.3 below) needs
to be able to evaluate the function at an arbitrary frequency ω, which requires to (linearly)
interpolate between the stored discrete grid points ωj < ω < ωj+1,

F (ω) = ωj+1 − ω
ωj+1 − ωj

F (ωj) + ω − ωj
ωj+1 − ωj

F (ωj+1) . (6.1)

This in turn requires to find the closest stored frequency points ωj , ωj+1. Having {ωj}
defined via an equidistant grid {Ωj} allows to reduce this problem to finding the closest
points Ωj < Ω < Ωj+1, where Ω = fΩ(ω), with the inverse mapping fΩ = f−1

ω . Finding the
closest point on an equidistant grid is achieved by rounding a floating point number to an
integer, which can be evaluated much faster than any search algorithm.

The requirements listed above are met using the mapping function (shown in Fig. 6.1)

fω : (−1, 1)→ R , fω(Ω) = ωs sgn Ω Ω2
√

1− Ω2
, (6.2)

with the inverse function3

fΩ : R→ (−1, 1) , fΩ(ω) = sgnω
ωs

√√
ω4 + 4ω2

s ω
2 − ω2

2 = ω

ωs

√√√√
√

1 + 4
(ωs
ω

)2 − 1
2 , (6.3)

and ωs = α∆, with some constant α that still needs to be determined. Here the quadratic
scaling fω ∼ Ω2 around Ω = 0 together with an appropriately chosen scale ωs should ideally
guarantee that the scale of the temperature is properly resolved, min(ωj − µ) < T .4

The procedure for obtaining the frequency grid {ωj} can then be summarized in the
following steps (cf. Fig. 6.1):

• Set the minimal and maximal values ωmin, ωmax of the frequency grid {ωj} at which
the function to be resolved has well decayed to zero, such that all relevant features are
captured within the interval [ωmin, ωmax].

3 The second expression on the right is simpler and thus slightly faster to evaluate numerically, but the 1/ω
appearing is a problem for ω = 0. Therefore, we use the first expression, where ω only appears in the
numerator.

4 This is currently not fulfilled for the grids used for K2 and K3 at the beginning of the flow, due to the
tradeoff between good resolution at small and at large frequencies with a finite number of grid points.
This leads to an effective temperature scale Teff = min(ωj − µ) > T in K2 and K3. Resolving this issue
would either require significantly more frequency grid points (resulting in much higher numerical costs) or a
modification of the mapping function, potentially subdividing the full frequency range into intervals with
different mapping functions.
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Figure 6.1 Non-linear frequency grid {ωj} obtained via a transformation fω(Ω) (Eq. (6.2)) from an
auxiliary linear grid {Ωj}. The limits Ωmin, Ωmax of the latter are obtained from given values of ωmin,
ωmax through the inverse transformation fΩ(ω) (Eq. (6.3)).

• Compute the corresponding minimal and maximal values of the auxiliary linear grid
{Ωj}, Ωmin = fΩ(ωmin), Ωmax = fΩ(ωmax).

• The (physical) frequency grid points are given by ωj = fω(Ωj), with Ωj sampled
equidistantly from [Ωmin,Ωmax] with a given number Nω of grid points,

Ωj = Ωmin + j
Ωmax − Ωmin
Nω − 1 , j = 0, . . . , Nω − 1 . (6.4)

Note that we use a number of different grids for all objects to be sampled, with a differing
number of grid points Nω and different parameters α, ωmin, ωmax: A grid for the self-energy,
a grid for Kr1, an ω grid and a ν grid for Kr2, and an ω, ν, and ν ′ grid for Kr3. The grid
parameters α, ωmin, ωmax are currently determined by hand in a somewhat heuristic way:
We analyze the data produced by test runs, fix ωmin, ωmax such that the values F (ωmin),
F (ωmax) of the function to be sampled are reasonably small,5 and adjust α such that a
reasonable frequency resolution is obtained. (Explicit values used for computing the results
presented in Chapters 7–9 are given in Sec. 6.4 below.) A robust criterion for determining
those parameters automatically throughout the flow is highly desirable and currently work in
progress [Ge21].

6.3 Frequency integration
When computing diagrams, one needs to integrate over internal frequencies. For bubbles
Br(ΓL,ΓR), these integrals read (cf. Eq. (4.9))

Br(ωr, νr, ν ′r) = αr
2πi

ˆ
dν ′′r ΓL(ωr, νr, ν ′′r ) Πr(ωr, ν ′′r ) ΓR(ωr, ν ′′r , ν ′r) , (6.5)

5 Note that for K2 and K3, the values have to be small along the boundaries of the combined 2d or 3d
frequency grid, since frequency integrals are performed along various paths through frequency space, in
particular when inserting Kr2 or Kr3 into a bubble in channel r′ 6= r.
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Figure 6.2 Illustration of the nonlinear frequency grid: Retarded and Keldysh component of the bare
propagator G0 (Eq. (5.13)), plotted over (a) the physical frequency grid {ωj}, and (b) the auxiliary
grid {Ωj}. The transformation fω(Ω) (Eq. (6.2)) is chosen in such a way that G0 is smooth and has
no sharp features on the auxiliary grid, such that on the physical grid the density of grid points is
highest around the sharp features at ω = 0. This minimizes interpolation errors: If the grid {ωj} was
chosen linearly with the same number of grid points, the resolution of the features at ω = 0 would be
much worse.

and for loops L(Γ, G) (cf. Eq. (4.11))

L(ν) = −
ˆ dν ′

2πi Γ(νν ′|νν ′)G(ν ′) , (6.6)

again ignoring the dependencies and sums over all other indices (spin, Keldysh index etc.).
Since vertex and self-energy (entering through the propagator) in the integrand are only

known at discrete numerical frequency grid points (see previous section), we need to evaluate
these integrals numerically as well. However, while nontrivial features only appear at small
frequencies and decay in the limit ν ′′r →∞, the integrals still have to be evaluated over the
full real frequency axis. We simplify this problem using the following trick: We split up the
integrals into three parts,

ˆ ∞
−∞

dν ′′r (. . . ) =
ˆ νmin

−∞
dν ′′r (. . . )

︸ ︷︷ ︸
analytical treatment

+
ˆ νmax

νmin

dν ′′r (. . . )
︸ ︷︷ ︸
numerical evaluation

+
ˆ ∞
νmax

dν ′′r (. . . )
︸ ︷︷ ︸

analytical treatment

, (6.7)

where we compute numerically only the (complicated) central part within a finite frequency
window [νmin, νmax], while the asymptotic tails can be evaluated analytically within some
approximations, under the assumption that all nontrivial features have decayed to zero in
those tails.

In the following two subsections we first describe the numerical integration procedure
of the central subinterval and then derive analytical expressions for the values of the tail
integrals.

6.3.1 Numerical integration
6.3.1.1 Adaptive integrator

Computing numerical integrals with high accuracy is a crucial ingredient for obtaining correct
results of an fRG flow. At the same time, the integrator is also critical for the performance of
the computation, since evaluating integrals constitutes the computationally most expensive
part of the code. For these reasons, we use an adaptive integration routine which determines
automatically where to evaluate the integrand within the integration domain: Regions with
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sharp features require many evaluation points in order to get a high accuracy, while in regions
where the integrand is smooth fewer evaluations suffice, which increases the performance of
the computation. We have observed that such an adaptive integrator is not only beneficial,
but really indispensable for the problem at hand: Non-adaptive routines like a simple
trapezoidal or Simpson rule on an equidistant grid have proven insufficient as they often led
to systematically wrong results.

The general strategy of an adaptive integrator for computing some integral
´ b
a F (x) dx is

as follows:

• Approximate the integral using some n-point integration rule
´ b
a F (x) dx ≈∑n

j=1 F (xj)wj ,
with nodes xj and corresponding weights wj .

• Use another higher-point integration rule and estimate the error by the difference of
the results of the two rules.

• If the error is small enough (i.e., below some predefined accuracy), the integral is
considered to be converged. Otherwise, the integration domain is subdivided, and the
procedure is repeated for each subinterval until convergence.

The integrator we use is an adaptive 4-point Gauss-Lobatto routine with 7-point Kronrod
extension and 13-point Kronrod extension as error estimate, which is due to a webnote of
the numerical recipes book [PTVF07]. The benefit of Gauss-Lobatto rules (compared to e.g.
the widely-used Gauss-Kronrod rules) is that the nodes xj include the end points of the
integration domain. This allows us to subdivide the domain at the nodes of the integration
rule and thereby reuse points that have been computed previously, which is preferential
in terms of performance. Similarly, the Kronrod extensions of a Gauss-Lobatto rule reuse
all points from a corresponding lower-point rule and simply add additional points (similar
for Gauss-Kronrod rules), which effectively allows to get two different rules from one set of
evaluation points.

The nodes xj of the 4-point Gauss-Lobatto rule with 7-point and 13-point Kronrod
extension are distributed as follows:

x0 x1 x2 x3 x4 x5 x6

−1 −
√

2
3

− 1√
5 0 1√

5

√
2
3 1

Here the lower row indicates the values of the nodes for integration boundaries a = −1,
b = 1 (for other values of a, b, the values have to be rescaled correspondingly). The 4-point
Gauss-Lobatto rule (GL4) and 4-point Gauss-Lobatto with 7-point Kronrod extension (GLK7)
use the following points:

GL4(x0, x6) =
∑

j∈{0,2,4,6}
F (xj)wj , GLK7(x0, x6) =

6∑

j=0
F (xj)wj . (6.8)

The smaller marks between the nodes x0, . . . , x6 in the graphical representation above indicate
the additional 6 points that are added in the 13-point Kronrod extension (GLK13), which
are only known numerically (these and the weights wj are found in [PTVF07]).
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In summary, the recursive algorithm of the integrator can be depicted as follows:

Error estimate: Is = GLK13(a, b)

I1 = GL4(a, b)
I2 = GLK7(a, b)

|I2 − I1| < ε · Is
yes ´ b

a F (x) dx = I2

no
x0 ← a , x6 ← b

subdivide:
[x0, x1], [x1, x2], . . . , [x5, x6]

. . .

for each subinterval separately

I1 = GL4(xi, xi+1)
I2 = GLK7(xi, xi+1)

|I2 − I1| < ε · Is
yes ´ xi+1

xi
F (x) dx = I2

no
x0 ← xi
x6 ← xi+1

Note that the error estimate Is is determined only once for the full integral and then reused
for each subinterval, in order to avoid infinite recursions in subintervals. We set the relative
accuracy to ε = 10−6, which gives converged results for all tested integrals.

6.3.1.2 Guiding the integrator

As argued before, the integrator should obtain results as accurate as possible with the smallest
possible number of evaluations of the integrand. We can assist the integrator in this regard
by using our knowledge of the problem to optimize the input, i.e., the integrand and the
integration domain, in a way that simplifies the problem for the integrator.

First, we should try to keep the integrand as simple as possible. In the preceding chapters,
we have always studied the dependence on different quantum numbers (frequency, Keldysh
index, spin) independently, and dropped all other indices and sums for clarity of the notation.
While this is justified conceptually, it is helpful to study the joint dependence on frequencies,
Keldysh indices and spin in order to simplify expressions for numerics. Consider e.g. the
frequency integration and the Keldysh sum of the bubbles (cf. Eqs. (4.9) and (4.41)),

Bi0
r (ωr, νr, ν ′r) = αr

2πi

ˆ
dν ′′r

∑

i2∈IΠ

Γi
r
1(i0,i2)
L (ωr, νr, ν ′′r ) Πi2

r (ωr, ν ′′r ) Γi
r
3(i0,i2)
R (ωr, ν ′′r , ν ′r) (6.9a)

= αr
2πi

∑

i2∈IΠ

ˆ
dν ′′r Γi

r
1(i0,i2)
L (ωr, νr, ν ′′r ) Πi2

r (ωr, ν ′′r ) Γi
r
3(i0,i2)
R (ωr, ν ′′r , ν ′r) . (6.9b)

Clearly, the two expressions in Eq. (6.9) are equivalent, since the integral over the internal
frequency ν ′′r and the sum over the internal Keldysh index i2 can safely be exchanged.
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However, in expression (6.9a), the integrand of the frequency integral involves a sum of 9
different contributions i2 ∈ IΠ. Each of these summands will have a different dependence
on the integration variable ν ′′r with a different shape of nontrivial features, such that the
sum can show a very complicated behavior as a function of ν ′′r , making it hard for the
integrator to reliably find and resolve all of its structure. On the contrary, in the second
expression (6.9b) each summand is integrated separately, which considerably simplifies the
task for the integrator and thus should be preferred. Indeed, we have observed that using
Eq. (6.9a) can lead to systematic errors in the results (e.g. violation of particle-hole symmetry,
violation of causality (cf. Sec. 7.2.1)), which are cured by applying Eq. (6.9b). The same
reasoning holds for self-energy loops, even though the Keldysh sum in the loop only includes
three terms (cf. Eq. (4.44)), and it also applies for internal spin sums in the t bubble and
the loop (Eq. (4.35c) and Eq. (4.36)), which equivalently should be performed after the
frequency integration. Note that computing several integrals instead of only one is not more
expensive computationally, since both expressions (6.9a) and (6.9b) involve the same number
of evaluations of ΓL, Π, and ΓR. In Eq. (6.9b), more integrals have to be computed compared
to Eq. (6.9a), but the evaluation of each integrand is numerically cheaper. One might even
expect a slight speedup using Eq. (6.9b), since for each summand the integrator only needs
to perform many subdivisions in the frequency range where this summand has nontrivial
features, and not around the features of all other summands.

Another knob to turn in order to assist the integrator is the extent of the integration
domain. Since the integrator starts to evaluate the integrand at relatively few points within
the integration domain, it is possible that sharp features lying between these nodes are missed
altogether. In this case, the different integration rules could agree with high accuracy such
that the integrator believes to be converged, while the result is actually wrong. One can
enhance the robustness of the integrator by manually subdividing the integration domain at
points where we expect nontrivial features to lie. Consider e.g. the bubble integrals Eq. (4.6):
The propagators are centered around ±ωr

2 , thus the integrator will have sharp features at
these points. If we subdivide the integration domain at −ωr

2 ±∆ and ωr
2 ±∆ (as also done in

[TRK+20]), these features are centered in the intervals [±ωr
2 −∆,±ωr

2 + ∆] and will not be
missed by the integrator. Similarly, the propagator in the loop integral Eq. (4.11) is centered
around ν = 0, therefore the loop integral should be subdivided at ±∆.

Let us emphasize again that the issues discussed in this subsection are not of conceptual
nature, but purely numerical problems. In principle, one should be able to circumvent them
by arbitrarily increasing the robustness and accuracy of the integration routine. However, this
comes at the price of increased numerical cost, since any adaptive integrator is by construction
tailored to find a balance between robustness and speed. Using a nonadaptive routine, e.g.
with a node distance corresponding to the smallest spacing of the grid on which the integrand
is sampled, is not affordable in this context, since it would enormously increase the numerical
costs.

6.3.2 Analytic integration of asymptotic tails
Now we derive expressions for the contributions of the asymptotic tails to the integrals
according to Eq. (6.7), i.e.,

ˆ
tails

dν ′′r (. . . ) =
ˆ νmin

−∞
dν ′′r (. . . ) +

ˆ ∞
νmax

dν ′′r (. . . ) . (6.10)
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6.3.2.1 Bubble integrals

In the bubbles, the expression to be computed is (cf. Eq. (4.9))

Btails
r (ωr, νr, ν ′r) = αr

2πi

ˆ
tails

dν ′′r ΓL(ωr, νr, ν ′′r ) Πr(ωr, ν ′′r ) ΓR(ωr, ν ′′r , ν ′r) . (6.11)

We first make several approximations to simplify this expression, which allow us to compute
it explicitly.

Vertices: The left and right vertex have decayed to constants in the tails,

ΓL(ωr, νr, ν ′′r < νmin) ≈ ΓL(ωr, νr,−∞) = ΓL(ωr, νr,+∞) ≈ ΓL(ωr, νr, ν ′′r > νmax) , (6.12a)
ΓR(ωr, ν ′′r < νmin, ν

′
r) ≈ ΓR(ωr,−∞, ν ′r) = ΓR(ωr,+∞, ν ′r) ≈ ΓR(ωr, ν ′′r > νmax, ν

′
r) .

(6.12b)

This can be understood from the asymptotic behavior of the different asymptotic classes.
When computing a bubble in channel r, the vertex can be decomposed as

Γ = Γ0 +Kr1 +Kr2 +Kr2′ +Kr3 + γr̄ . (6.13)

For |ν ′′r | large enough, in ΓL (ΓR), Kr2′ (Kr2) and Kr3 have decayed to zero (numerically, they
are exactly zero, as soon as ν ′′r is outside the finite frequency box in which the vertices are
stored). The same holds for γr̄ according to Eq. (4.16). Γ0, Kr1, and Kr2 (Kr2′) do not depend
on ν ′′r .

Thus, we obtain

Btails
r (ωr, νr, ν ′r) ≈

αr
2πi ΓL(ωr, νr,±∞)

[ˆ
tails

dν ′′r Πr(ωr, ν ′′r )
]

︸ ︷︷ ︸
=:ItailsB,r (ωr)

Γr(ωr,±∞, ν ′r) . (6.14)

Propagators:

• For small |ωr|, |ν ′′r ± ωr
2 | is large in the tails (i.e., for large |ν ′′r |). We thus approximate

GK(ν ′′r > νmax) ≈ 0 ≈ GK(ν ′′r < νmin) , (6.15)

since GK(ν ′′r ) ∼ 1/(ν ′′r ± ωr
2 )2 � GR/A(ν ′′r ) ∼ 1/(ν ′′r ± ωr

2 ) (cf. Eq. (5.9)). Likewise, we
only compute the tail integrals for nondifferentiated bubbles and approximate

Ḃtails
r ≈ 0 , (6.16)

since the single-scale propagator S(ν ′′r ) ∼ (G(ν ′′r ))2 (cf. Eq. (5.10), and correspondingly
∂ΛG) decays more quickly than G. Furthermore, we assume that the self-energy has
decayed to its asymptotic (Hartree) value in the tails,

ΣR/A(ν ′′r > νmax) ≈ ΣH ≈ ΣR/A(ν ′′r < νmin) (6.17)

(with ΣH = U/2 for half filling).

• For large ωr ∼ νmax (ωr ∼ νmin), we have |ν ′′r ± ωr
2 | & νmax

2 (. νmin
2 ) for ν ′′r > νmax

(ν ′′r < νmin). If νmax and |νmin| are chosen large enough, the arguments above should
still hold.
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Thus, in the Keldysh sum in Btails
r (cf. Eq. (4.41)), we only compute four different terms

for each channel r, namely ΠRR
r , ΠRA

r , ΠAR
r , ΠAA

r , i.e., those terms where both propagators
are either GR or GA, and (cf. Eq. (5.9a))

Gη(ν) = 1
ν − ε+ η i∆− Ση(ν) ≈

1
ν − ε− ΣH + η i∆ = 1

ν − ε′ + η i∆ , (6.18)

with η = ± for R/A, and ε′ = ε+ ΣH(= 0 for half filling).
With this, we can compute the corresponding four integrals (ItailsB )η1η2 . The general

structure of these integrals is (for simplicity using ν instead of ν ′′r as integration variable)

ItailsB =
(ˆ νmin

−∞
+
ˆ ∞
νmax

)
dν 1

ν + α

1
ν + β

=: Itail,−B + Itail,+B . (6.19)

We use partial fraction decomposition,

1
ν + α

1
ν + β

= 1
β − α

1
ν + α

+ 1
α− β

1
ν + β

, (6.20)

to obtain
ˆ ν2

ν1

dν 1
ν + α

1
ν + β

= 1
α− β

[
ln(ν1 + α)− ln(ν2 + α)− ln(ν1 + β) + ln(ν2 + β)

]

= 1
α− β

[
ln (ν1 + α)(ν2 + β)

(ν1 + β)(ν2 + α) + 2πin
]
, (6.21)

where the branch n ∈ N of the complex logarithm still has to be determined. We thus obtain

Itail,−B =
ˆ νmin

−∞
dν 1
ν + α

1
ν + β

= 1
α− β ln |νmin| − β

|νmin| − α
, (6.22a)

Itail,+B =
ˆ ∞
νmax

dν 1
ν + α

1
ν + β

= 1
α− β ln νmax + α

νmax + β
, (6.22b)

where the branch n = 0 follows from limνmin→−∞ I
tail,−
B

!= 0 != limνmax→∞ I
tail,+
B . In summary,

we have

ItailsB,r = 1
αr − βr

ln (νmax + αr)(|νmin| − βr)
(νmax + βr)(|νmin| − αr)

. (6.23)

The coefficients αr, βr differ between the channels a, t and p, and special care has to be taken
for the case αr = βr. For channels a and t, we have

Πη1η2
a,t = Gη1(ν ′′a,t − ωa,t

2 )Gη2(ν ′′a,t + ωa,t
2 ) = 1

ν ′′a,t−ωa,t
2 − ε′ + η1i∆︸ ︷︷ ︸

αa,t

· 1
ν ′′a,t +ωa,t

2 − ε′ + η2i∆︸ ︷︷ ︸
βa,t

,

(6.24)
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and for channel p

Πη1η2
p = Gη1(ωp2 + ν ′′p )Gη2(ωp2 − ν ′′p ) = 1

ν ′′p + ωp
2 − ε′ + η1i∆

· 1
−ν ′′p + ωp

2 − ε′ + η2i∆

= − 1
ν ′′p +ωp

2 − ε′ + η1i∆︸ ︷︷ ︸
αp

· 1
ν ′′p −ωp

2 + ε′ − η2i∆︸ ︷︷ ︸
βp

, (6.25)

factoring out an overall minus sign to have the same structure as above. We obtain

(ItailsB, a,t)η1η2(ωa,t)

= 1
−ωa,t + (η1 − η2)i∆ ln

(νmax − ωa,t
2 − ε′ + η1i∆)(|νmin| − ωa,t

2 + ε′ − η2i∆)
(νmax + ωa,t

2 − ε′ + η2i∆)(|νmin|+ ωa,t
2 + ε′ − η1i∆) , (6.26a)

(ItailsB,p )η1η2(ωp)

= − 1
ωp − 2ε′ + (η1 + η2)i∆ ln

(νmax + ωp
2 − ε′ + η1i∆)(|νmin|+ ωp

2 − ε′ + η2i∆)
(νmax − ωp

2 + ε′ − η2i∆)(|νmin| − ωp
2 + ε′ − η1i∆) .

(6.26b)

We still need to consider the cases where the denominators vanish. This is the case for
η1 = η2 and ωa,t → 0 in the channels a and t, and for η1 = −η2 and ωp → 2ε′ in the p channel.
Expanding the log in ωa,t, ωp, we obtain at η1 = η2, η1 = −η2, respectively,

(ItailsB, a,t)η1η1(ωa,t)
ωa,t→0−→ 1

νmax − ε′ + η1i∆
+ 1
|νmin|+ ε′ − η1i∆

, (6.27a)

(ItailsB,p )η1,−η1(ωp)
ωp→2ε′−→ − 1

νmax + η1i∆
− 1
|νmin| − η1i∆

. (6.27b)

6.3.2.2 Loop integrals

For the self-energy loop, we have to compute

Ltails(ν) = −
ˆ

tails

dν ′
2πi Γ(νν ′|νν ′)G(ν ′)

= −
ˆ

tails

dν ′
2πi

{
Γ0 + γa

(
ν ′−ν, ν+ν′

2 , ν+ν′
2

)
+ γp

(
ν+ν ′, ν−ν′2 , ν−ν

′
2

)
+ γt

(
0, ν ′, ν

)}
G(ν ′) .

(6.28)

First, we substitute νmin 7→ ν̃min = νmin − |ν|, νmax 7→ ν̃max = νmax + |ν|, such that
ˆ
tails

dν ′r(. . . ) =
ˆ ν̃min

−∞
dν ′r(. . . ) +

ˆ ∞
ν̃max

dν ′r(. . . ) , (6.29)

while the integral over the interval [ν̃min, ν̃max] is computed numerically. With this substitution,
γa and γp (for which all three frequencies depend on ν ′) have decayed for ν ′ > ν̃max, ν ′ < ν̃min,
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as similarly argued for the bubble integrals. We remain with

Ltails(ν) ≈ − 1
2πi (Γ0 + γt(0,±∞, ν))

ˆ
tails

dν ′G(ν ′)

= − 1
2πi

(
Γ0 +Kt1(0) +Kt2′(0, ν)

)ˆ
tails

dν ′G(ν ′)
︸ ︷︷ ︸

ItailsL

. (6.30)

For the propagator, we can assume the same form as in Eq. (6.18). For the retarded and
advanced propagator, we obtain

(ItailsL )η = ln |ν̃min|+ ε′ − η i∆
ν̃max − ε′ + η i∆ , (6.31)

where the branch of the complex logarithm again has been determined by considering the limit
|ν̃min|, ν̃max →∞. The Keldysh propagator could again be neglected, since it decays much
faster than the retarded and advanced one. In equilibrium, we can however also compute
it explicitly by making use of the FDT (Eq. (2.28)). For ν ′ � T, µ, we can approximate
tanh((ν ′ − µ)/2T ) ≈ sgn(ν ′), from which we obtain

(ItailsL )K ≈ 2i
(

arctan
(
ν̃max − ε′

∆

)
− arctan

( |ν̃min|+ ε′

∆

))
. (6.32)

For particle-hole symmetry ε′ = 0 and a symmetric grid |ν̃min| = ν̃max, this contribution
vanishes identically.

The tail contribution of the differentiated loop L̇tails follows similarly, by replacing
the regular propagator G with the single-scale propagator S in Eq. (6.30). Here we have
(cf. Eq. (5.10a))6

Sη(ν) = −η i 1
(ν − ε′ + η i∆)2 (6.33)

for the retarded and advanced component, and the Keldysh component in equilibrium again
follows from the FDT. The resulting integrals read

(İtailsL )η = −η i
( 1
ν̃max − ε′ + η i∆ −

1
ν̃min − ε′ + η i∆

)
(6.34)

for the retarded and advanced component, and

(İtailsL )K = −2i
(

ν̃max − ε′
(ν̃max − ε′)2 + ∆2 + ν̃min − ε′

(ν̃min − ε′)2 + ∆2

)
(6.35)

for the Keldysh component, which again vanishes in the particle-hole-symmetric case with
symmetric grid.

6.4 Numerical parameters and validity of the numerics
In the following Chapters 7 (Sections 7.2 and 7.3), 8 and 9, we present mfRG results for the
SIAM with SU(2) and particle-hole symmetry in equilibrium at two different temperatures
T/U = 0.01 and T/U = 0.1. In Chapter 7, we compare results for three different sets of

6 Note that for the substitution ∆ = (Γ + Λ)/2 mentioned in Footnote 4 in Sec. 5.2, we again have to include
a factor of 1/2, since SΛ = 1

2S
∆ .
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numerical parameters (summarized in Table 6.1) which we call N1, N2, N3: From N1 to N2,
we increase the density of frequency grid points, and from N2 to N3, we increase the number
of steps of the ODE solver (effectively decreasing the ODE step size, see details below). This
allows us to evaluate the influence of these numerical parameters on the results by means of
various checks analyzed in Sections 7.2 and 7.3. For results shown in Chapters 8 and 9, we
use the highest-resolution data set N3.

Table 6.1 Numerical parameters for three different runs N1, N2, N3: Number of frequency grid
points for Σ, K1, K2 (bosonic × fermionic) and K3 (bosonic × fermionic × fermionic), and number of
steps of the (static) 4th-order Runge-Kutta ODE solver.

NΣ, NK1 NK2 = NK2,ω ×NK2,ν NK3 = NK3,ω ×NK3,ν ×NK3,ν′ NODE

N1 201 51× 51 21× 21× 21 65

N2 501 101× 101 41× 41× 41 65

N3 501 101× 101 41× 41× 41 115

For the frequency grids (cf. Sec. 6.2), we use the following parameters: ωs = α∆, with

αΣ = 10 , (6.36a)
αK1,ω = 5 , (6.36b)
αK2,ω = 15 , αK2,ν = 20 , (6.36c)
αK3,ω = 10 , αK3,ν = αK3,ν′ = 10 , (6.36d)

and ωmax = −ωmin = 15 · ωs for all grids. As mentioned in Sec. 6.2, these parameters have
been set by hand through data analysis in a somewhat heuristic way; a more robust and
automated scheme for determining the grid parameters should certainly be implemented in
the future. For the ODE solver, we use predefined (nonadaptive) but decreasing step size
along the flow, since we expect the physics to be increasingly complicated for decreasing ∆.
We implement this by a substitution from a linear to a nonlinear grid: For given ∆i, ∆f , we
define

λi =
√

2
a

√√
(∆i −∆f )4 + a2(∆i −∆f )2 − (∆i −∆f )2 , λf = 0 . (6.37)

We then obtain ∆ steps as7

∆j = ∆f + a

2
λj√

1− λ2
j

, j = 0, . . . , NODE − 1 , with (6.38a)

λj = λi + j
λf − λi
NODE − 1

λf=0
= λi

NODE − 1− j
NODE − 1 . (6.38b)

Since ∆ decreases during the flow, ∆f < ∆i, we have ∆j+1 < ∆j and λj+1 < λj . For all
results shown below we use ∆i/U = 10.1, ∆f/U = 0.1, a = 5, and the values of NODE shown
in Table 6.1. Note that each step ∆j → ∆j+1 is computed as a 4th-order Runge-Kutta step,
i.e., it is subdivided into 4 equally-spaced substeps. As mentioned in Sec. 6.1 above, an
algorithm that chooses the ODE step size adaptively would be preferential in the long term;

7 For the substitution ∆ = (Γ + Λ)/2 of Footnote 4 in Sec. 5.2, we again have to slightly modify the definitions
accordingly: With ∆f = Γ/2, we have Λi = 2(∆i −∆f ), Λf = 0, and Λj = aλj/

√
1− λ2

j .
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however, as seen from the tests in Sections 7.2 and 7.3 below, the ODE solver is currently
only a subdominant source of numerical errors.

NRG benchmark results shown in Chapters 7 and 8 have been computed by Fabian Kugler
using the routines of Seung-Sup Lee, based on the QSpace tensor network library written by
Andreas Weichselbaum [Wei12a, Wei12b, WvD07, LW16].

Validity of the numerics: We study results for 1-loop, 2-loop, and 3-loop flows. For
low temperature T/U = 0.01, the 3-loop flow currently breaks down around U/∆ ≈ 4.5,
along with a violation of causality (see Sec. 7.2.1 below).8 This problem does not occur at
higher temperature T/U = 0.1, where we can reach much higher U/∆ without a breakdown
of the flow or violation of causality. In general, lower temperatures are expected to be
increasingly challenging for the numerics due to the sharper drop in the Keldysh propagator
(cf. Eq. (2.28)). As of now, it is however not clear if the breakdown of the 3-loop flow is
indeed caused by insufficient numerical accuracy or by a systematic bug in the code, since
it is not ameliorated by improving the numerical parameters; identifying the reason is still
ongoing work. The problem is however likely to be rooted in the center term γ̇

(3)
r,C of the 3-loop

equation (3.10c), which is particularly demanding for numerics due to its double-bubble
structure that involves the insertion of a temporarily stored nonsymmetric vertex (also see
the discussion in Sec. 4.3.2.3).

As a consequence, we will not show data for loop orders higher than ` = 3 in the following,
and we will not include multiloop corrections to the self-energy flow (Σ̇t̄, Σ̇t in Eq. (3.12)),
which start in loop order ` = 3, since they involve an insertion of γ̇t̄,C . The 3-loop results
at T/U = 0.01 can only be trusted for U/∆ . 3, which is also confirmed by further tests in
Sections 7.2 and 7.3 below. This value is no coincidence: As shown by Yosida and Yamada
[YY70, Yam75a, YY75, Yam75b], the “small parameter” in the perturbation expansion of
the SIAM is U/π∆. One should thus distinguish the regimes U/∆ < π and U/∆ > π:
In the former, U/π∆ is small and the perturbation series is expected to converge quickly.
On the contrary, for U/∆ > π one starts to enter the strongly-correlated regime where
pure perturbation theory will not be sufficient, but instead resummation schemes including
infinitely many orders are indispensable.

We clearly see this transition in many of the results presented in the next chapters: While
the flow fulfills all tests and perfectly reproduces NRG benchmark results for U/∆ . 3, it
seems to be considerably more challenging to correctly capture the physics evolving for larger
U/∆.

8 Recall that TK/U changes during the flow (cf. Sec. 5.3). At U/∆ ≈ 4.5, we have TK/U ≈ 0.08, i.e., T < TK
is still fulfilled for T/U = 0.01 (but not for T/U = 0.1). In order to observe Kondo physics, it would however
be necessary to reach even higher U/∆ & 5.
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7 Perturbation theory and consistency checks

In this chapter, we present a series of tests and consistency checks to which we have subjected
our code. We start with computing the simplest diagrams one can think of, namely those
contributing to lowest-order perturbation theory. For the SIAM, there are exact perturbation
theory results available to compare to. We then continue to evaluate various well-known
relations, both generic and SIAM-specific ones, that have to be fulfilled for correlation
functions computed from a full fRG flow. These tests have proven extremely useful for several
reasons:

• Computing perturbation theory diagrams helped to develop an intuition for Keldysh
diagrammatics, and in particular to guide our understanding of how to compute diagrams
numerically. This in particular involved the optimization of the frequency grid and
frequency integration, the results of which have been summarized in Chapter 6.

• A set of (ideally exact) benchmark results is indispensable for finding bugs and errors
when implementing a numerical code. Accordingly, having all available benchmark tests
pass gives strong confidence in the validity of the code.

• Having a set of reliable tests, in particular generic (model-independent) ones, is crucial
when extending the code to more complex models, since they allow to potentially detect
bugs or errors for each new set of functionality that is implemented.

While tests which have to be fulfilled exactly (i.e., up to numerical noise), such as symmetry
relations, can detect bugs in the implementation when failing, other tests are only fulfilled
up to a certain accuracy given by approximations in the numerics (e.g. by using a finite
frequency grid and a finite integration accuracy), or approximations of the method (e.g.
the PA (cf. Sec. 3.2.1)). These tests thus provide understanding of the validity of certain
approximations and control over numerical accuracy. After presenting perturbation theory
results in Section 7.1, which serve as a minimal consistency check, in Sections 7.2 and 7.3
we will systematically evaluate numerical errors, identify potential problems and point out
possibilities how to improve on them. We will comment on systematic deviations from exact
results due to intrinsic approximations of the method in Chapter 8.

7.1 4th-order perturbation theory
7.1.1 Zero-temperature perturbation theory
The second-order perturbation theory contribution to the vertex can be computed analytically.
In the Matsubara formalism, this has been done by Yosida and Yamada in 1970 already
[YY70]. In the Keldysh formalism, we can do an analogous calculation in the limit T → 0.
At the particle-hole symmetric point, we have (cf. Eq. (5.13))

G
R/A
0 (ν) = 1

ν ± i∆ , (7.1)
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Figure 7.1 Real and imaginary part of the retarded component of Ka1 (left) and Kp1 (right) in
second-order perturbation theory at T = 0 as a function of the bosonic transfer frequency, comparing
numerical results computed at U = 1, ∆ = 10, to the exact analytical result.

and in the limit T → 0, the FDT (2.28) simplifies to

GK0 (ν) T→0−→ sgn(ν)(GR0 (ν)−GA0 (ν)) . (7.2)

We can evaluate any of the retarded components in the a channel (cf. Eq. (4.59a)), e.g.
(Ka1)R↑↓ = (Ka1)21|22

↑↓ (= T3B̄
a
1 in Table 4.2):

(Ka1)R,PT2↑↓ (ωa) = (Ka1)21|22,PT2
↑↓ (ωa) =

2 1
2 2

2

2

2/1

1/2

ν ′′a + ωa
2

ν ′′a − ωa
2

=
(
U

2

)2 ˆ dν ′′a
2πi

[
GA0 (ν ′′a − ωa

2 )GK0 (ν ′′a + ωa
2 ) +GK0 (ν ′′a − ωa

2 )GR0 (ν ′′a + ωa
2 )
]

= −U2 1
2π∆

1
4 +

(
ωa
∆
)2
{

4 ∆
ωa

arctan ωa
∆ − ln

[
1 +

(ωa
∆
)2]

+2i
(
arctan ωa

∆ + ∆
ωa

ln
[
1 +

(ωa
∆
)2])}

. (7.3)

The evaluation of the integrals over two retarded and advanced propagators is analogous
to those appearing in Sec. 6.3.2.1, and the arctan comes from the decomposition of the
complex logarithm into real and imaginary parts. The contribution from the p channel follows
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analogously,

(Kp1)R,PT2↑↓ (ωp) = (Kp1)21|22,PT2
↑↓ (ωp) =

2 1

2 2
2

2

2/1

1/2

ωp
2 − ν ′′p

ωp
2 + ν ′′p

=
(
U

2

)2 ˆ dν ′′p
2πi

[
GK0 (ωp2 − ν ′′p )GR0 (ωp2 + ν ′′p ) +GR0 (ωp2 − ν ′′p )GK0 (ωp2 + ν ′′p )

]

= U2 1
2π∆

1
4 +

(ωp
∆
)2
{

4 ∆
ωp

arctan ωp
∆ − ln

[
1 +

(ωp
∆
)2]

+2i
(
arctan ωp

∆ + ∆
ωp

ln
[
1 +

(ωp
∆
)2])}

, (7.4)

which only differs by a minus sign from the result in the a channel. As shown in Fig. 7.1, these
results are perfectly reproduced by our numerical code. Note that in the numerics we have
also evaluated the diagrams at exactly T = 0 by replacing Neff(ν) = tanh(ν/2T )→ sgn(ν) in
the bare Keldysh propagator (Eq. (5.13)). In perturbation theory, this is unproblematic, since
only a single integral has to be evaluated with only bare vertices and propagators entering
(unlike a full mfRG flow, where full objects are successively inserted into bubbles and loops,
and we do observe problems related to the sharp drop of the Keldysh propagator at low T ,
see the previous discussion in Sections 5.3 and 6.4).

7.1.2 Zero-frequency perturbation theory
While analytical results can be derived for PT2 at T = 0, already at third order the log
and arctan from the second-order expressions Eqs. (7.3) and (7.4) would make the integrand
very complicated, and exact results have not been reported so far. However, one can obtain
analytic expressions at higher orders if all external frequency arguments are set to zero.
Hewson [Hew01] has computed Γ↑↓(0, 0, 0, 0) up to 4th order in U in the Matsubara formalism,
and of course this results translates automatically to the fully retarded components in
Keldysh formalism (those components where only one Keldysh index is 1), since an analytic
continuation is trivial at zero frequency. The fully advanced components (only one Keldysh
index is 2) have the same value (since it is real) at the particle-hole symmetric point. Only a
factor of −1/2 has to be added due to the structure of the bare Keldysh vertex (cf. Eqs. (2.15)
and (2.39)). With this prefactor, Hewson’s result (Eq. (57) of [Hew01]) reads

Γ↑↓(0, 0, 0, 0) = −U2

{
1 +

(
15− 3π2

2

)(
U

π∆

)2
+O

((
U

π∆

)4
)}

. (7.5)

In first order, there is only the bare vertex, and in second order, the two nonvanishing
diagrams exactly cancel (cf. Eqs. (7.3), (7.4), or Fig. 7.1). In third order, one obtains a
nontrivial finite result, namely, three diagrams with a value of −U

2 (U/π∆)2 and six diagrams
with a value of −U

2 (2− π2/4)(U/π∆)2 [Hew01], which sum up to the contribution given in
Eq. (7.5). At fourth order again all diagrams cancel, which is however far from trivial to see.

In the following, we show all diagrams contributing to Γ↑↓ up to 4th order, and their
corresponding numerical values of the fully retarded components at T = 0 and ωr = νr =
ν ′r = 0 as a function of U/∆. We show all pairs of diagrams that cancel each order, and all
diagrams that contribute a finite value. For the sketches of diagrams, we use different colors
to indicate the spin: Dark blue corresponds to spin ↑, light blue to spin ↓. The spin of green
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lines is summed over (separately for each green p bubble), with dark and light green lines
having opposite spins. (Red lines in the Kt1 diagram in 2nd order indicate that this diagram is
zero regardless of the spin of these lines.) For clarity, we do not display prefactors in front of
the diagrams: Every t bubble implies a minus sign, and all p bubbles have a prefactor of 1/2.

1st and 2nd order:

Γ0 Ka1 Kp1 Kt1

10−2 10−1 100
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−10−3

0
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Γ
/U

Ka1
Kp1
Kt1
±1

2
U
π∆

Figure 7.2 Vertex diagrams in 1st (bare vertex Γ0) and 2nd order (only K1 diagrams). Kt1↑↓ is zero,
since the red lines can neither have spin ↑ nor ↓. Diagrams in the a and p channel cancel. The
analytical values can be read off from Eqs. (7.3) and (7.4).

3rd order:

Ka1 Kp1 Kt1
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U/∆
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Figure 7.3 K1 diagrams in 3rd order. All three diagrams give the same result [Hew01].

Ka2 Kp2 Kt2

Ka2′ Kp2′ Kt2′
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Kp2
Kt2
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Kp2′
Kt2′
exact

Figure 7.4 K2 (top row) and K2′ (bottom row) diagrams in 3rd order. For diagrams not appearing
here, the ↑↓ component is zero due to the spin structure (cf. Kt1 in 2nd order). All diagrams give the
same result, the exact analytical value is Kr2(′) = − 1

2 (2− π2

4 )( U
π∆ )2 [Hew01].
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4th order:

K1 diagrams:

Ka1 ladder Ka1 non-ladder

Kp1 ladder Kp1 non-ladder

(Γ0,Kt2) (Γ0,Ka2)
Kt1 non-ladder diagrams
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Kt1 non-ladder (Γ0,Ka2)

±1
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(
U
π∆

)3

Figure 7.5 K1 diagrams in 4th order. In the a and p channel, diagrams can be divided into ladder
and non-ladder-type diagrams. In the t channel, the ↑↓ component of the ladder diagram is zero. The
ladder (non-ladder) diagrams in the a and p channel cancel. The non-ladder diagrams in the t channel
cancel each other. The exact result for the ladder diagrams is known, since these diagrams factor into
a product of three 2nd-order diagrams.

K2 diagrams:

K2′ diagrams follow by mirroring the K2 diagrams along the vertical (for a and p channels)
or horizontal axis (for the t channel) and give the same values for ωr = νr = ν ′r = 0, they are
thus not depicted explicitly in 4th order.

Ka2 ← Kp1,Γ0 Ka2 ← Kt1,Γ0

Kp2 ← Ka1 ,Γ0 Kp2 ← Kt1,Γ0

10−2 10−1 100

U/∆
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−10−5

−10−8

10−8

10−5
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Γ
/U

Ka2 ← Kp1,Γ0

Ka2 ← Kt1,Γ0

Kp2 ← Ka1,Γ0

Kp2 ← Kt1,Γ0

Figure 7.6 K2 diagrams in 4th order obtained by inserting a 3rd-order K1 diagram. Diagrams in the
a and p channel cancel (t diagrams are again zero due to the spin structure).
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Ka2 ← Ka2 ,Γ0 Kp2 ← Kp2,Γ0

Kt2 ← (Ka1 ,Γ0),Γ0 Kt2 ← (Kp1,Γ0),Γ0
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Kt2 ← (Kp1,Γ0),Γ0

Figure 7.7 K2 diagrams in 4th order obtained by inserting a 3rd-order Kr2 diagram in channel r.
Diagrams in the a and p channel cancel, and the two t diagrams cancel separately.

Ka2 ← Kp2,Γ0 Ka2 ← Kp2′ ,Γ0

Ka2 ← Kt2,Γ0 Ka2 ← Kt2′ ,Γ0

Kp2 ← Ka2 ,Γ0 Kp2 ← Ka2′ ,Γ0

Kp2 ← Kt2,Γ0 Kp2 ← Kt2′ ,Γ0
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Kp2 ← Kt2(′),Γ0

Kt2 ← Ka2(′),Γ0 (upper)

Kt2 ← Ka2(′),Γ0 (lower)

Kt2 ← Ka2 ,Γ0 Kt2 ← Ka2′ ,Γ0

Figure 7.8 K2 diagrams in 4th order obtained by inserting a 3rd-order Kr′

2 diagram in channel r, with
r′ 6= r. Diagrams in the a and p channel cancel. In the t channel, the upper two diagrams (containing
Kp1 in 2nd order) and the lower two diagrams (containing Kt1 in 2nd order) cancel. (Inserting Kp2(′) in
3rd order in the t channel gives zero due to the spin structure.)
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K3 diagrams:
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Figure 7.9 K3 diagrams in 4th order. In the t channel, one can insert Ka1 and Kp1 on both sides of the
bubble. The p-p insertion is zero due to the spin structure. Diagrams in the a and p channel cancel,
and the three t diagrams cancel separately. Notice that the a-a diagram in Kt3 does not come with a
prefactor 1/2 despite having an internal spin sum, since it does not contain any p bubble. Therefore,
it corresponds to two spin-resolved diagrams for the two possible spins of the green lines, in contrast
to diagrams with a (green) p bubble, where the prefactor 1/2 effectively accounts for the spin sum.
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7.2 Generic properties of correlation functions
7.2.1 Causality

By definition, the retarded propagator has to be causal (cf. Eq. (2.26)), GR(t < 0) != 0. In
Fourier space, this property directly translates to GR(ν) being analytic in the upper half of
the complex frequency plane: Using the Fourier transform Eq. (2.27), we have

GR(t < 0) =
ˆ dν

2π e
iν|t|GR(ν) =

ˆ dν
2π e

iRe(ν)|t| e−Im(ν)|t|GR(ν) . (7.6)

The integral can be evaluated by closing the contour in the upper half of the complex plane
Im(ν) > 0, and it gives zero if GR(ν) has no poles in the upper half plane. Given the form
(5.9a) of GR, this leads to the requirement

Im ΣR(ν)−∆
!
≤ 0 . (7.7)

For a decoupled impurity (so-called Hubbard atom) with ∆ = 0, one obtains the stronger
constraint

Im ΣR(ν)
!
≤ 0 , (7.8)

and in fact, one can impose this constraint generically, also for finite ∆ > 0, which is
confirmed by NRG benchmark data. It is particularly important that the code always
fulfills this constraint, since Im ΣR −∆ ≈ 0 would lead to a vanishing imaginary part in the
denominator of GR and thus to a true divergence of GR, which is extremely difficult if not
impossible to handle numerically. And indeed, at low temperature T/U = 0.01, starting in
3-loop, our implementation currently starts to violate the constraint (7.8) around ν ≈ 0 at
intermediate U/∆. This problem increases during the flow, and as Im ΣR(0)−∆ ≈ 0 around
U/∆ ≈ 4.5, the flow breaks down, as mentioned above. At higher temperature T/U = 0.1,
causality is fulfilled throughout the flow in all loop orders.

7.2.2 Kramers-Kronig relation
For any causal correlation function f (i.e., a function that is analytic in the upper half plane),
the Kramers-Kronig relation connects the real and imaginary part,

Re f(ω) = 1
π
P
ˆ ∞
−∞

dω′ Im f(ω′)
ω′ − ω , (7.9)

where P denotes the Cauchy principal value. (This relation can also be inverted to obtain the
imaginary from the real part.) Since the Kramers-Kronig relation is a very generic property
of causal functions, it can serve as test how well analytic properties of correlation functions
are captured within a numerical computation. In Fig. 7.10, we show 3-loop results for the
retarded self-energy ΣR and the retarded spin susceptibility χRsp (related to the retarded
component of Ka1, cf. Eq. (4.21)). For both functions, we compare the real part directly
obtained from the fRG flow with the one obtained from the imaginary part via Eq. (7.9). We
see that the Kramers-Kronig relation is almost perfectly fulfilled at weak coupling U/∆ = 1,
while small deviations appear at U/∆ = 3, in particular for the self-energy. Note that
besides having a finite resolution, the frequency grids are also bounded by their corresponding
minimal/maximal frequencies ωmin, ωmax. Since the Kramers-Kronig relation involves an
integral over the whole frequency axis, it is particularly sensitive to effects of such a finite
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Figure 7.10 Real part of the retarded self-energy (left) and the retarded spin susceptibility (right) at
U/∆ = 1 (upper panels) and U/∆ = 3 (lower panels), computed directly from an fRG flow and via
the Kramers-Kronig relation from the imaginary part of the fRG result, and the difference of the two
methods. Results are obtained from a 3-loop flow at T/U = 0.01, for the data set N3 (cf. Table 6.1).
While at weak coupling the agreement is almost perfect, at intermediate coupling the Kramers-Kronig
relation is violated in particular in the tails of the self-energy.

frequency box, outside which the sampled functions ΣR and χRsp effectively drop to zero.
Therefore, it is expected that increasing ωmax would improve these results (of course, however,
at the price of increased numerical cost, if the density of grid points is kept unchanged).

To study the violation of Kramers-Kronig more systematically and evaluate how it is
influenced by the numerical parameters, we define an integrated relative error as a measure
for the deviation,

´
dν
∣∣∣fflow(ν)− fKramers−Kronig(ν)

∣∣∣´
dν |fflow(ν)| , (7.10)

for f = ΣR, χRsp. The result is shown in Fig. 7.11 for different loop orders and different
numerical parameters (cf. Table 6.1). As expected, the error is enhanced continuously during
the flow, since small deviations in the beginning are inserted again and again into the right-
hand side of the flow equations. Increasing the number of frequency grid points (N1 → N2)
systematically improves the results for all loop orders. On the contrary, a smaller step size of
the ODE solver (N2 → N3) actually worsens the results. This might seem contradictive at
first glance, since a smaller ODE step size should reduce the error induced by the ODE solver.
A possible explanation might be that this ODE error is actually much smaller than other
errors such as the interpolation error of the frequency grid. A nonnegligible error caused by
inserting slightly incorrect results into the flow equation in each ODE step would then cause
an error that increases with the number of steps and is not compensated by the reduced ODE
error due to the smaller step size.

7.2.3 Fluctuation-dissipation theorems
Next, we test the fulfillment of FDTs for the self-energy and the spin susceptibility, which
should hold generically in equilibrium. For the self-energy, at half filling (µ = 0) according to
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Figure 7.11 Integrated relative violation (Eq. (7.10)) of the Kramers-Kronig relation (Eq. (7.9))
for retarded self-energy (upper panels) and spin susceptibility (lower panels), as a function of U/∆.
Results are shown for T/U = 0.01 (left) and T/U = 0.1 (right), obtained from 1-, 2-, and 3-loop flows
with different numerical parameters (cf. Table 6.1). The error continuously accumulates during the
flow, but can be reduced by increasing the density of the frequency grid (N1 → N2).

Eq. (2.32) we have

Re ΣK(ν) = 0 , Im ΣK(ν) = 2 tanh
(
ν

2T

)
Im ΣR(ν) . (7.11)

Similarly, for χsp Eq. (4.62) translates to

ReχKsp(ω) = 0 , ImχKsp(ω) = 2 coth
(
ω

2T

)
ImχRsp(ω) . (7.12)

The real parts of ΣK and χKr for all channels r = a, p, t (and thus also for χKsp) vanish up
to numerical precision (error < 10−15) in any loop order and for all choices of numerical
parameters. For the imaginary parts, we compare the left and right-hand side of the FDTs in
Fig. 7.12. Similar to the Kramers-Kronig relation, at weak coupling U/∆ = 1 the agreement
is almost perfect, while at intermediate U/∆ = 3 small deviations start to evolve, in particular
at small frequencies.

Again, we define an integrated relative error,
´

dν
∣∣∣Im ΣK(ν)− 2 tanh

(
ν

2T
)

Im ΣR(ν)
∣∣∣´

dν |Im ΣK(ν)| ,

´
dω
∣∣∣ImχKsp(ω)− 2 coth

(
ω

2T
)

ImχRsp(ω)
∣∣∣´

dω
∣∣∣ImχKsp(ω)

∣∣∣
,

(7.13)

to study the deviation more systematically, see Fig. 7.13. As for Kramers-Kronig, the results
significantly improve by increasing the density of frequency grid points (N1 → N2), while the
error does not decrease by increasing the number of ODE steps (N2 → N3). Remarkably,
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Figure 7.12 Left and right side of the FDT for self-energy (left, Eq. (7.11)) and spin susceptibility
(right, Eq. (7.12)), and their difference, at U/∆ = 1 (upper panels) and U/∆ = 3 (lower panels).
Results are obtained from a 3-loop flow at T/U = 0.01. While at weak coupling the agreement is
almost perfect, at intermediate coupling the FDTs are slightly violated at small frequencies ν, ω . ∆
both for Σ and χsp.

the error in the FDT for Σ first decreases along the flow before increasing again, which
indicates that the initial condition of the frequency grid parameters is not optimally chosen.
And indeed, further evaluation shows that at the beginning of the flow, the violation of the
self-energy FDT is strongest for few points at high frequencies. These significantly influence
the integrated error due to the high weight of the integration measure at very large frequencies,
where frequency points are lying far apart. This points to an insufficient frequency resolution
at high frequencies, which should thus be further optimized in the future, e.g. by increasing
the numerical frequency window, or choosing a different decay of the grid mapping function at
high frequencies (cf. Sec. 6.2). For the FDTs, another likely cause of error might be insufficient
resolution on the scale ω ∼ T , since our choice of frequency grid (cf. Sec. 6.2) is a compromise
between good resolution at small, intermediate and high frequencies, T � ∆� ωmax, and
cannot achieve perfect resolution at all scales. However, the fulfillment of the FDTs does not
improve for higher temperature T/U = 0.1 compared to T/U = 0.01, which lets us conclude
that finite resolution at small frequencies is only a subdominant error source.

7.3 Specific properties of the SIAM
We now turn toward properties of the SIAM spectral function (Eq. (5.16)). At zero frequency,
with Re ΣR(0) = 0 (at half filling) we have

A(0)π∆ = 1
1− Im ΣR(0)/∆ . (7.14)
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Figure 7.13 Integrated relative violation (Eq. (7.13)) of the equilibrium FDTs for retarded self-energy
(Eq. (7.11), upper panels) and spin susceptibility (Eq. (7.12), lower panels), as a function of U/∆.
Results are shown for T/U = 0.01 (left) and T/U = 0.1 (right), obtained from 1-, 2-, and 3-loop
flows with different numerical parameters (cf. Table 6.1). The error can again be suppressed by
increasing the density of the frequency grid. A decrease of the self-energy error with increasing U/∆
points to a suboptimal choice of frequency grid parameters for the initial condition, which is partially
compensated in the early iterations of the flow.

In PT2 (Eq. (3.14) of [Yam75a]),

ΣR(ν) = −
(

3− π2

4

)(
U

π∆

)2
ν − i ∆

2

(
U

π∆

)2
[(

ν

∆

)2
+
(
πT

∆

)2
]

+O
((

U

π∆

)4
)
,

(7.15a)

⇒ ΣR(0) = −i ∆
2

(
U

π∆

)2 (πT
∆

)2
+O

((
U

π∆

)4
)
, (7.15b)

which yields

A(0)π∆ = 1

1 + 1
2

(
U
π∆

)2 (
πT
∆

)2 + . . . (7.16)

At T = 0, the well-known Friedel sum rule follows,

A(0)π∆ != 1 , (7.17)

while A(0)π∆ < 1 at T > 0 (and U > 0). In Fig. 7.14, we show results for the spectral
function at zero frequency, comparing to the PT2 result of Eq. (7.16) and also to NRG,
which can be considered to be numerically exact even for large U/∆. We see almost no
difference between the data sets N1, N2, N3, which proves convergence in the numerical
parameters. Deviations from NRG are obviously due to the perturbative nature of the PA,
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Figure 7.14 Spectral function at ν = 0 (yielding the Friedel sum rule for T = 0 or U = 0) as a
function of U/∆. Results are shown for T/U = 0.01 (left) and T/U = 0.1 (right), obtained from 1-,
2-, and 3-loop flows with different numerical parameters (cf. Table 6.1). We compare the results to
NRG and PT2 (Eq. (7.16)). The results seem to be fully converged in the numerical parameters, since
all lines lie almost perfectly on top of each other. Note that 3-loop at T/U = 0.01 starts to produce
unsensible results at U/∆ ∼ 4, shortly before the divergence of the flow.

but in particular for T/U = 0.1, even one-loop fRG is much closer to NRG than the PT2
result.

Next, we analyze the normalization of the spectral function. Since A is essentially a
probability density,

ˆ ∞
−∞

dνA(ν) != 1 (7.18)

has to be strictly fulfilled. Note that we can analytically integrate A outside the frequency
range on which the self-energy is sampled (in a similar spirit as for bubble and loop integrals
in Sec. 6.3.2), since for ΣR = ΣH we simply have (cf. Eq. (5.16))

A(ν) = 1
π

∆
ν2 + ∆2 . (7.19)

We show the deviation from perfect normalization in Fig. 7.15. At small U/∆, increasing the
frequency resolution from N1 to N2 considerably reduces the error from the permille to the
subpermille region. At U/∆ & 3, the error increases up to a few percent. This suggests that
merely shrinking the frequency grid with ∆ (cf. Sec. 6.2) is not sufficient from this point on,
because most likely ΣR has not sufficiently decayed to ΣH at the boundaries of the frequency
interval on which it is sampled (but is still approximated by zero outside this interval). As
a result, spectral weight is missing in the tails of A. It should be possible to reduce this
issue by providing a more robust frequency grid, adjusting the grid boundaries with a strict
criterion on how small ΣR − ΣH has to be there. For the 3-loop flow at T/U = 0.01, the
integral over the spectral function becomes significantly larger than 1, i.e., A has too much
spectral weight. This can be directly attributed to the violation of causality (cf. Sec. 7.2.1),
i.e., Im ΣR > 0, which obviously leads to unphysical results.

Let us now summarize the results of the tests presented in this chapter: In general,
numerical errors are rather small, but they systematically increase during the flow due to the
structure of the flow equations, which require iterative re-insertion of previous results when
computing the next step in the flow. Therefore, care should be taken if one wants to reach
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Figure 7.15 Error in the normalization of the spectral function as a function of U/∆. Results are
shown for T/U = 0.01 (left) and T/U = 0.1 (right), obtained from 1-, 2-, and 3-loop flows with
different numerical parameters (cf. Table 6.1).

large values of U/∆. Errors can typically be further reduced by increasing the density of
frequency grid points, while the finite ODE step size seems to be a subdominant error source.
Next steps should aim for a more flexible frequency grid, since we have seen indications that
the boundaries of the frequency grid are not optimally chosen, in particular for large U/∆,
where a simple rescaling of the grid with ∆ does not seem to fully capture the behavior
of the sampled functions any more (as opposed to the regime of small U/∆). This would
come with a tradeoff between good resolution at small and at high frequencies, and between
high resolution and numerical costs: To increase the grid boundaries ωmin, ωmax, one has to
increase the number of frequency grid points or accept a lower density of grid points at small
frequencies.

A different strategy for improving the high-frequency resolution would be to extrapolate
self-energy and vertex functions outside the finite frequency grid on which they are sampled,
according to some power law. In the Keldysh formalism, analytically finding the exact power-
law decay is most likely difficult (if not impossible) due to the logarithmic corrections appearing
(see the second-order expressions found in Sec. 7.1.1). However, one might determine the
exponent and coefficients of an approximate power law by fitting the numerically sampled
tails, thereby improving the high-frequency asymptotic behavior compared to simply cutting
of the tails at ωmin, ωmax.
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8 Dynamical and static properties

After having evaluated the validity of the numerics and discussed how to control errors caused
by numerical approximations in the last chapter, we now present results for dynamical and
static properties of the single-impurity Anderson model. As motivated in the introduction
and also in Sec. 5.3, the main goal will be to answer the following question: How well can
we reproduce known results quantitatively using Keldysh mfRG, and to which extent do
the results improve by including the full vertex frequency dependence and multiloop terms?
To this end, we compare our 1-loop, 2-loop, and 3-loop results to (numerically exact) NRG
benchmark data, and we also compare to the approximation scheme used in all previous
works on Keldysh fRG (e.g. [JMS07, Jak09, JPS10a, SBvD17, WvD19]), namely, a 1-loop
flow (without Katanin substitution [Kat04]) with only K1 and only static self-energy feedback
and static interchannel vertex feedback (abbreviated K1SF in the following).

In this simplified 1-loop scheme, the flow equations are Eq. (3.1a) and Eq. (3.1b) (with
Γ(6) = 0). The vertex only includes K1, Γ ≈ Γ0 +∑

r Kr1(ωr). The self-energy entering the
flow equations via (full and single-scale) propagators is approximated by a static level shift
ΣR ≈ Re ΣR(µ), ΣK ≈ 0. At half filling, this amounts to Σ ≈ ΣH , i.e., all propagators in
the flow equations (3.1a) and (3.1b) are essentially bare ones, G0 and S0 = ∂∆G0 (in the
sense of Eq. (5.13), with only a constant Hartree self-energy). Furthermore, vertices Kr′1
entering the flow equation for channel r 6= r′ are also approximated by a static constant,
K̃a1 = Ka1(ωa = 0), K̃p1 = Kp1(ωp = 2µ) (= Kp1(ωp = 0) at half filling), K̃t1 = Kt1(ωt = 0). The
vertex flow equations for K1SF read (summation over internal indices is understood)

K̇r1(ωr) =


Γ0 +Kr1(ωr) +

∑

r′ 6=r
K̃r′1



(
αr
2πi

ˆ
dν ′′r Π̇r(ωr, ν ′′r )

)
Γ0 +Kr1(ωr) +

∑

r′ 6=r
K̃r′1


 .

(8.1)

We organize this chapter as follows. We start by presenting results for dynamical
correlation functions in Section 8.1, namely, the spectral function, the self-energy, and the
spin susceptibility. In Section 8.2 we show various static properties and investigate the
fulfillment of a one-particle Ward identity and the so-called Korringa-Shiba relation. In
Section 8.3 we study the fulfillment of a sum rule that follows from Pauli’s principle, and in
Section 8.4 we evaluate a two-particle Ward identity related to particle number conservation.
Sum rules and Ward identities provide important internal consistency checks for the method,
since their fulfillment is often required for obtaining valid physical results. All results presented
below are computed with the parameter set N3 at two different temperatures T/U = 0.01
and T/U = 0.1 (cf. Table 6.1).1 Note that since U/∆ increases during the flow, T/∆ does so
as well for fixed T/U . This is important to keep in mind in particular for relations studied in
the following which are only exactly fulfilled at T = 0. Keeping T/∆ constant during the

1 At T/U = 0.1, the K1SF flow diverges at some U/∆ < 4 (also see Fig. 8.5), while being stable at smaller
T/U = 0.01. For this reason, we cannot show results for this scheme for T/U = 0.1 and U/∆ = 4 in
Figs. 8.1, 8.2, 8.3 and 8.8. The cause of this divergence is not clear, but a possible explanation is that even
though including static interchannel feedback, a bare K1 flow is similar to resumming ladder diagrams,
which are prone to divergences [KvD18b]. We will however not further study this issue, since the K1SF
scheme is anyhow somewhat heuristic, and we can do better in a systematic way by including the full vertex
frequency dependence.
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Figure 8.1 Spectral function for different interaction strengths U/∆ = 1 (top row), U/∆ = 3 (center
row), U/∆ = 4 (bottom row) and different temperatures T/U = 0.01 (left column) and T/U = 0.1
(right column), computed with a full 1-, 2-, and 3-loop flow, comparing to NRG and the K1SF
approximation. All flows accurately reproduce NRG results.

flow would require modifications in the single-scale propagator (cf. end of Sec. 5.2) and has
not been attempted here. For the values U/∆ = 1, 3, 4 shown below, the Kondo temperature
is TK/U ≈ 2.3, 0.2, 0.1.

8.1 Dynamical correlation functions
We begin by showing results for the spectral function (Eq. (5.16)) for different interaction
strengths and different temperatures in Fig. 8.1. We see that all approximation schemes,
K1SF and a full 1-, 2-, and 3-loop flow, almost perfectly reproduce the NRG benchmark
data even for U/∆ = 4. However, even though often studied, the spectral function is not an
ideal quantity for benchmark purposes. The fact that the results of all flows agree almost
perfectly, and differences are hardly visible, is actually no surprise, since at not too large
U/∆ the dominant contribution to the spectral function is given by G0, which is analytically
known and therefore identical for all curves in Fig. 8.1, with only subleading corrections due
to the self-energy. The only nontrivial information we can extract from Fig. 8.1 is that at
T/U = 0.1 and U/∆ = 3, the 3-loop flow is closest to the NRG result, while at T/U = 0.01
and U/∆ = 4 we see first signatures of a value A(0)π∆ > 1 in 3-loop, which is related to the
violation of the constraint (7.8) and thus a precursor of the breakdown of the flow.

In order to get a better impression how well spectral information is reproduced, in
Fig. 8.2 we show the retarded self-energy, which encodes all nontrivial information (i.e.,
correlation effects) in the spectral function. Here, we see deviations from NRG much clearer
(the difference to NRG is also explicitly shown in Fig. 8.2): At weak interaction U/∆ = 1,
again all flows produce consistent results, with only few percent deviation from NRG. At
T/U = 0.01 and higher U/∆, interestingly, NRG is best reproduced by the very simple
K1SF approximation, while in particular 3-loop significantly deviates from NRG at U/∆ = 4.
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Figure 8.2 Imaginary part of the retarded self-energy for different interaction strengths U/∆ = 1
(top row), U/∆ = 3 (center row), U/∆ = 4 (bottom row) and different temperatures T/U = 0.01 (left
column) and T/U = 0.1 (right column), computed with a full 1-, 2-, and 3-loop flow, comparing to
NRG and the K1SF approximation. For each value of U and T , “diff” is the difference between the
fRG flows and NRG, Im (ΣRfRG −ΣRNRG)/∆. At lower temperature T/U = 0.01, K1SF best reproduces
NRG results. At T/U = 0.1, the results show indications of an oscillatory behavior with increasing `,
expected to approach the PA for `→∞.

(This is however close to the breakdown of the 3-loop flow, as mentioned before.) At higher
temperature T/U = 0.1, the 2-loop result lies constantly below the 1-loop result, and 3-loop
above 2-loop. This indicates an oscillatory behavior with increasing loop order, which has
been observed before [KvD18c, THK+19]. For higher loop order, we expect convergence,
while the converged result should reproduce the PA and will thus slightly deviate from NRG.
This can also be seen in the difference of the sequence 1-loop, 2-loop, 3-loop to NRG: The
converged result is expected to be close to the 3-loop result, which does deviate from NRG.

While the K1SF scheme is optimized for producing an accurate spectral function [Jak09]
and does indeed perform better in this regard than a flow with the full vertex frequency
dependence, it dramatically fails to correctly reproduce the spin susceptibility, see Fig. 8.3.
Here the full flows agree well with NRG results, again showing an improvement of the results
with increasing loop order, but K1SF differs by a factor of almost 1.5 even for small U/∆ = 1.
The comparison of Figs. 8.2 and 8.3 shows that K1SF is not a controlled approximation:
Some quantities such as the self-energy are reproduced extremely well, while for others strong
deviations occur.
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Figure 8.3 Real part of the retarded spin susceptibility for different interaction strengths U/∆ = 1
(top row), U/∆ = 3 (center row), U/∆ = 4 (bottom row) and different temperatures T/U = 0.01 (left
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NRG and the K1SF approximation. Increasing the loop order improves results, while K1SF strongly
deviates from NRG already for U/∆ = 1.

The spin susceptibility can be directly accessed from Ka1 via Eq. (4.21). However, it can
also be obtained from the formal definition of the susceptibilities in Eq. (4.17), by connecting
two pairs of propagators on both sides of the full vertex (and adding a connected pair of
propagators). In Fig. 8.4, we compare the former (“flowing”) and the latter (“post-processed”)
way of computing χsp. Formally, Eq. (4.21) follows from Eq. (4.17) through the BSE, as
argued in Sec. 4.1.3. An exact agreement of the flowing and post-processed susceptibility is
thus only required for a loop-converged multiloop flow that by construction fulfills parquet
self-consistency. For a truncated multiloop flow or the K1SF approximation, comparing the
two ways of computing χsp gives a useful internal consistency check between the one- and
two-particle level. We see in Fig. 8.4 that for K1SF already at U/∆ = 1 strong deviations
are visible, while even a one-loop flow with full vertex frequency dependence well fulfills this
consistency also at higher U/∆ = 3. Note that the post-processed susceptibility for K1SF is
closer to the 3-loop result (and thus to NRG) than the flowing one, but still shows significant
deviations in particular at higher U/∆ = 3.

8.2 Static properties
We now turn toward static properties, in order to compare more systematically how the
results evolve for different loop orders as a function of the interaction strength U/∆. We
first study the static spin susceptibility (i.e., the value of χRsp of Fig. 8.3 at frequency
ω = 0) in the left column of Fig. 8.5, again at two different temperatures T/U = 0.01 and
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Figure 8.4 Real part of the retarded spin susceptibility for temperature T/U = 0.01 and different
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Eq. (4.17). Both results are consistent for `-loop flows with full vertex frequency dependence, while
K1SF shows significant deviations.

T/U = 0.1. As discussed in Sec. 5.3, the static spin susceptibility is a good predictor for
Kondo physics: The exponential suppression of the Kondo temperature with the interaction
U is reflected in an exponential increase of χRsp(0) at large U/∆. Unfortunately, as already
anticipated in Sec. 5.3, none of the fRG flows does show this behavior in the large-U regime;
instead, the susceptibility decreases after reaching a maximum at intermediate U . At the
lower temperature T/U = 0.01, the 3-loop flow reproduces NRG remarkably well up to an
interaction strength U/∆ ∼ 4. However, no reliable statements can be made beyond that
point before curing the aforementioned numerical issues, leading to the breakdown of the
flow. The K1SF approximation results in a qualitatively wrong behavior of χRsp as a function
of U/∆, again indicating its failure to accurately capture vertex properties (as already seen
in Fig. 8.3).

Next, we compute the quasiparticle weight

Z =
(

1− dΣR(ν)
dν

∣∣∣∣∣
ν=0

)−1

, (8.2)

which is a measure for the strength of correlation effects: In order to describe the bare
quasiparticle peak of the spectral function at ν = 0, we can Taylor-expand the self-energy,
ΣR(ν) = ΣH + ν ∂νRe ΣR|ν=0 +O(ν2) = ΣH + ν(1−Z−1) +O(ν2) (since Im ΣR is symmetric
around ν = 0, cf. Fig. 8.2, it does not contribute to the first-order term). Inserting the
first-order approximation into the spectral function (Eq. (5.16)) yields the quasiparticle (qp)
contribution

Aqp(ν) = 1
π∆

1
1 + Z−2 ( ν

∆
)2 , (8.3)

with spectral weight
ˆ

dνAqp(ν) = Z . (8.4)

In the noninteracting case, we have Z = 1, i.e., the spectral function is fully described by a
bare quasiparticle peak, A = Aqp. If Z < 1, correlation effects introduce new spectral features
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Figure 8.5 Static retarded spin susceptibility χRsp (left column), quasiparticle weight Z (center
column), and difference between left and right-hand side of the Ward identity (8.5) (right column),
as functions of the interaction strength U/∆. Results are shown at T/U = 0.01 (upper row) and
T/U = 0.1 (lower row), computed with a full 1-, 2-, and 3-loop flow, comparing to NRG and the K1SF
approximation.

(e.g. the exponentially narrow Kondo resonance with a very small quasiparticle weight), and
for Z = 0 the quasiparticle peak would completely disappear, indicating a spectral gap related
to Mott-insulating behavior e.g. in the Hubbard model.

The result for Z is plotted in the center column of Fig. 8.5. We see that in particular
for low temperature T/U = 0.01, the quasiparticle weight strongly decreases for increasing
interaction U . The NRG behavior is reproduced quite well by all loop orders and also
by K1SF, the latter resulting from the good resolution of the self-energy within the K1SF
approximation (cf. Fig. 8.2). At higher temperature T/U = 0.1, correlation effects seem to
be smeared out by thermal fluctuations, and interestingly this seems to be more difficult to
be captured in mfRG, since at large U/∆ loop convergence is by far not reached at ` = 3. It
might be interesting to see how higher loop orders and in particular multiloop corrections to
the self-energy modify this behavior.

8.2.1 One-particle Ward identity
The sum of static spin and charge susceptibilities is related to the quasiparticle weight by
means of a (one-particle) Ward identity (Eq. (4.12) of [Yam75a]),

(χRsp + χRch)(0)π∆ = Z−1 . (8.5)

This identity provides a useful internal consistency check for the method by enabling a
connection between self-energy and vertex: Z is by definition (Eq. (8.2)) a property of
the self-energy, while the susceptibilities are obtained from the K1 classes of the vertex
(Eq. (4.21)). In the right column of Fig. 8.5, we show the difference between the left and
right-hand side of Eq. (8.5). Note that the Ward identity is derived at T = 0 and does not
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U/∆. Results are computed in the K1SF approximation and with a full 1-, 2-, and 3-loop flow. The
Korringa-Shiba relation is better fulfilled for increasing loop order, while being strongly violated for
K1SF already at small U/∆.

necessarily need to be fulfilled at higher temperature; hence we again compare to the NRG
result. At T/U = 0.01, 3-loop again gives the best agreement with NRG up to U/∆ ∼ 4,
after which the corresponding flow becomes unstable. At higher temperature T/U = 0.1,
loop-convergence again seems to be slower. Note that K1SF deviates quite strongly even at
small U/∆, which is expected since it well captures Σ and Z, but not χ.

8.2.2 Korringa-Shiba relation
Another connection between static properties of quite immediate physical interpretation is
the so-called Korringa-Shiba relation [Shi75]

lim
ω→0

ImχRsp(ω)
ω

= 2π(χRsp(0))2 . (8.6)

Since ImχRsp ∼ ω for small ω, the left-hand side corresponds to the slope of ImχRsp at
ω = 0, which can be interpreted as inverse spin relaxation time [Shi75], while the right-hand
side is again the static spin susceptibility (squared). To check this relation, we define a
Korringa-Shiba ratio

RKS =
lim
ω→0

ImχRsp(ω)/ω

2π(χRsp(0))2
!= 1 , (8.7)

shown in Fig. 8.6. The Korringa-Shiba relation is again derived at T = 0, thus we only
show results for the smaller temperature T/U = 0.01. Obviously, RKS deviates from 1 for
large U/∆, since T/∆ also increases during the flow. At small U/∆, we see a significant
improvement from 1-loop to 2-loop to 3-loop, while K1SF strongly violates the Korringa-Shiba
relation.

After having confirmed consistency relations for static properties, in the next two sections
8.3 and 8.4 we evaluate two dynamical relations with important physical implications.



98 Dynamical and static properties

8.3 Sum rule for susceptibility
For the equal-spin particle-hole susceptibility χσσ = (χt)σσ (Eq. (4.18)), the following sum
rule holds:

ˆ ∞
−∞

dω
2πi χ

K
σσ(ω) = 〈n2

σ〉 − 〈nσ〉2 = 〈nσ〉(1− 〈nσ〉) half filling= 1
4 . (8.8)

The second equality follows from the Pauli principle which requires that n2
σ = nσ, since the

eigenvalues of the particle number operator nσ can either be 0 or 1. This sum rule is thus an
excellent test how well a (numerical) method fulfills the Pauli principle. The first equality can
be derived from the corresponding sum rule in the Matsubara formalism [VT97, CGKH+21],

1
β

∑

n

χσσ(iωn) = χσσ(τ = 0) = 〈n2
σ〉 − 〈nσ〉2 , (8.9)

with the bosonic Matsubara frequencies iωn = 2πin/β, n ∈ Z, with β = 1/T . Here the first
equality is simply the definition of the Fourier transform of χσσ(τ = 0) on the Matsubara
axis, and the second equality follows from the definition of χ (Eq. (4.18)), obtained from the
4-point correlation function (Eq. (2.18)) by connecting two pairs of legs and subtracting the
disconnected part 〈nσ〉2. In order to analytically continue Eq. (8.9) to the real frequency
axis to obtain Eq. (8.8), we can write the Matsubara sum of χσσ(iω) over frequencies in the
upper half plane as a contour integral of χσσ(iω → ω + i0+) along the real axis:

1
β

∑

n

χσσ(iωn) = 1
β

∑

n6=0
χσσ(iωn) + 1

β
χσσ(iω0)

(1)= 2
β

∑

n>0
χσσ(iωn) + 1

β
χσσ(0)

(2)= 1
2πi

ˆ ∞
−∞

dω coth
(
ω + i0+

2T

)
χσσ(ω + i0+) + 1

β
χσσ(0)

(3,4)= 1
2πi

[
P
ˆ ∞
−∞

dω coth
(
ω

2T

)
2χRσσ(ω)− iπ 2

β
χσσ(0)

]
+ 1
β
χσσ(0)

= 1
2πi P

ˆ ∞
−∞

dω 2 coth
(
ω

2T

) [
ReχRσσ(ω) + i ImχRσσ(ω)

]

(5)= 1
2πi

ˆ
dω 2i coth

(
ω

2T

)
ImχRσσ(ω) Eq. (4.62)= 1

2πi

ˆ
dω χKσσ(ω) . (8.10)

Here we have used the following observations:

(1) χσσ is symmetric, since in 〈n2
σ〉 the two operators nσ can trivially be exchanged.

(2) coth
(
ω

2T
)
has poles at the bosonic Matsubara frequencies iωn, with corresponding

residue 2/β. We can thus use the residue theorem for the contour ××
×

, with the
radius of the semicircle going to infinity.

(3) coth
(
ω

2T
)
has a simple pole at ω = 0, thus

coth
(
ω + i0+

2T

)
= 1
ω + i0+

[
(ω + i0+) coth

(
ω + i0+

2T

)]

︸ ︷︷ ︸
regular

. (8.11)
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Figure 8.7 Testing the fulfillment of the sum rule (8.8) for the Keldysh component of the equal-spin
particle hole susceptibility χKσσ as a function of the interaction strength U/∆. Results are computed
in the K1SF approximation and with a full 1-, 2-, and 3-loop flow. The black dashed line indicates
the exact value of 1/4 that the integral over χKσσ should give. We see significant improvement with
increasing loop order.

For integrating the pole we can use the Dirac identity 1
ω+i0+ = P 1

ω − iπδ(ω), with
limω→0 ω coth

(
ω

2T
)

= 2T = 2
β .

(4) In the way we have defined the susceptibilities, namely, via two-particle correlation
functions (Eq. (4.17)), they acquire a factor of 2 in the Keldysh rotation compared to
the Matsubara susceptibilities. Therefore, when analytically continuing χ, one obtains
χσσ(iω → ω + i0+) = 2χRσσ(ω).

(5) ReχRσσ(ω) is symmetric and coth antisymmetric, hence P
´

dω coth
(
ω

2T
)

ReχRσσ(ω) = 0.

The result of the left-hand side of Eq. (8.8) obtained from numerics is shown in Fig. 8.7,
comparing to the value of 1/4 required by the Pauli principle. We see a strong improvement
of the sum rule with increasing loop order up to the highest U/∆ reachable. While for
T/U = 0.01 we of course have to restrict to U/∆ < 4 for 3-loop, for higher temperature
T/U = 0.1 we even obtain significant improvement up to interactions as high as U/∆ = 8.
This is a very important observation, since a violation of a concept as fundamental as the
Pauli principle would considerably question the validity of results for physical observables.

8.4 Two-particle Ward identity
We conclude this chapter by presenting the results for a two-particle Ward identity that
follows from particle number conservation (i.e., U(1) symmetry) (derived in [HBSvD17],
Eqs. (C24), (C26)):

Φ̃(ν) = −2 Im ΣR(ν) , (8.12)
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with

Φ̃(ν) = ∆
iπ

ˆ ∞
−∞

dν ′GA(ν ′)GR(ν ′)
[
Γ12|21(ν ′ν|νν ′)

− (1− 2nF (ν ′))
(
Γ12|22(ν ′ν|νν ′)− Γ22|21(ν ′ν|νν ′)

)]
.

(8.13)

This Ward identity is particularly important for computing transport properties: It is a
prerequisite for the derivation of a conductance formula in [HBSvD17], needed to compute
the linear conductance from equilibrium calculations. In a recent study of quantum transport
through a quantum point contact (simulated by a one-dimensional chain with a potential
barrier) [WvD19], it was shown that this Ward identity is violated in the K1SF approximation,
with direct implications on physical results. [WvD19] concludes that a more sophisticated
methodology is indispensable for making reliable statements about physical properties.

In Fig. 8.8, we show both the left (Φ̃, dotted lines) and right-hand side (−2 Im ΣR, solid
lines) of Eq. (8.12) as a function of ν/∆, again for different U/∆ and different temperatures.
We see that while K1SF significantly violates the Ward identity even at U/∆ = 1, this violation
is cured already on the one-loop level by including the full vertex frequency dependence.
From the structure of Eq. (8.13) it is clear that a K1-based approximation cannot properly
capture the behavior of Φ̃: E.g. in the a channel only the static value Ka1(ωa = 0) contributes
to Φ̃ (cf. Eq. (4.5)), while the integral over the frequency-dependent classes Ka2 , Ka2′ and Ka3
is neglected. At U/∆ = 3, the full 1-loop flow does slightly violate the Ward identity, but the
deviation is much smaller than for K1SF, and it can be even further reduced by including 2-
and 3-loop contributions. At U/∆ = 4 we should again not fully trust 3-loop at T/U = 0.01,
but at T/U = 0.1 the violation of the Ward identity is still significantly reduced by increasing
the loop order.

We conclude that including the full vertex frequency dependence is indispensable for the
fulfillment of Eq. (8.12), and a small violation at intermediate U/∆ can be further suppressed
in multiloop fRG.
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Figure 8.8 Left side (dotted) and right side (solid) of the Ward identity (8.12) and their difference
(dashed) as a function of the fermionic frequency ν, for different interaction strengths U/∆ = 1 (top
row), U/∆ = 3 (center row), U/∆ = 4 (bottom row) and different temperatures T/U = 0.01 (left
column) and T/U = 0.1 (right column), computed with a full 1-, 2-, and 3-loop flow, comparing to
the K1SF approximation. Including the full vertex frequency dependence significantly improves the
fulfillment of the Ward identity, and the deviation further decreases with increasing loop order `.
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9 Frequency-dependent two-particle vertex

In this chapter, we present results for the two-particle vertex of the SIAM. As discussed in
Chapter 4, the full vertex is a huge object, which consists of two spin components (for SU(2)
symmetry) and 15 nonzero Keldysh components, each depending on three real frequencies.
In the following, we only show a small subset of the full data computed during the fRG flow.
We restrict to the different-spin component Γ↑↓ (if not indicated otherwise), to a selection of
exemplary Keldysh components, and we plot the vertex in the two-dimensional frequency
plane at ωt = 0 as a function of (ν, ν ′) := (νt, ν ′t), i.e., the natural fermionic frequencies of the
t channel. This frequency plane is interesting since it physically corresponds to the effective
interaction of a hole and an electron with spins ↓ and ↑ and energies ν, ν ′ without energy
transfer (ωt = 0) (cf. Eq. (4.5)):

Γ↑↓(ν, ν ′) := Γ↑↓(ωt = 0, νt = ν, ν ′t = ν ′) = Γ

νt νt

ν′t ν′t

↓ ↓

↑ ↑
. (9.1)

We show data of a 3-loop flow at temperature T/U = 0.01 for weak and intermediate bare
interaction strength U/∆ = 0.5 and U/∆ = 2.5, which are both well in the regime where we
can fully trust the current version of our numerics.

The results are shown in Fig. 9.1, decomposed into the asymptotic classes K1, K2 +K2′ , K3,
each summed over the three diagrammatic channels a, p, t. At weak interaction U/∆ = 0.5,
the vertex is dominated by the K1 contribution, which is predominantly determined by
the two nonzero second-order perturbation diagrams (depicted on the left of Fig. 7.2). For
comparison, the PT2 results are shown in the top row of Fig. 9.1. K2(′) and K3 are considerably
smaller in magnitude. This changes at intermediate U/∆ = 2.5: The maxima of K1 and
K2(′) are of similar size, and K3 is only by a factor of ∼ 2 smaller. Both K2(′) and K3 contain
a lot of nontrivial structure that is absent at the K1 level. Even further, some Keldysh
components of K1 (e.g. the 11|11 component) are zero altogether due to the parity symmetries
(cf. Eq. (4.48)), but nonzero at the K2 and K3 level. We have seen in Chapter 8 that neglecting
this information within the K1SF approximation can lead to incorrect results for physical
observables.

To analyze the structure of the vertex components in more detail and disentangle individual
features, we further decompose Ki into the diagrammatic channels r = a, p, t for U/∆ = 2.5;
results are shown in Fig. 9.2. In order to explain the features present in each channel, let us
consider how the natural frequencies of the channels are reflected in the t parametrization
depicted here, using Eq. (A.2). Firstly, all results are shown in the frequency plane ωt = 0,
i.e., νa = ν ′a, νp = ν ′p. The diagonals in Fig. 9.2 are represented as follows:

main diagonal: νt = ν ′t ⇒ ωa = 0 , νa = νt , ωp = 2νt , νp = 0 , (9.2a)
antidiagonal: νt = −ν ′t ⇒ ωa = 2νt , νa = 0 , ωp = 0 , νp = −νt . (9.2b)
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On the coordinate axes, we have

νt = 0 ⇒ ωa = −ν ′t , νa = ν ′t/2 , ωp = ν ′t , νp = ν ′t/2 ⇒ νa = −ωa/2 , νp = ωp/2 ,
(9.3a)

ν ′t = 0 ⇒ ωa = νt , νa = νt/2 , ωp = νt , νp = −νt/2 ⇒ νa = ωa/2 , νp = −ωp/2 .
(9.3b)

With this, we can explain the individual features: The components of Ka1 are dominated
by strong peaks along the main diagonal, i.e., by the static value at ωa = 0. Similarly, Kp1
shows peaks at the antidiagonal corresponding to ωp = 0. Of course Kt1 is constant in the
ωt = 0 plane, since it does not depend on ν = νt and ν ′ = ν ′t. Note that the peaks in Ka1
are much sharper and larger in value than those in Kp1 at U/∆ = 2.5, which explains the
asymmetry between the two diagonals at this interaction strength in Fig. 9.1. This is in
contrast to the weakly interacting limit where the two PT2 diagrams in the a and p channel
cancel exactly (cf. Sec. 7.1.1) and thus form a symmetric cross-like structure in the top row
of Fig. 9.1. The peak heights of Ka1 are not only larger than those in the p channel, but
also larger than the static values of Kt1. Since (Ka1)↑↓ ∼ χsp (Eq. (4.21)), large values of Ka1
physically correspond to strong spin fluctuations in the local moment regime of the SIAM.

The classes Ka/p2 +Ka/p2′ similarly show strong features along ωa = 0, ωp = 0, respectively.
Additionally, weaker features along the coordinate axes ν = 0, ν ′ = 0 are visible. In
the parametrizations of the a and p channel, according to Eq. (9.3) these correspond to
νa/p = ±ωa/p/2, i.e., they result from the frequency structures of the a and p bubble,
respectively: As seen in Eq. (4.6), these frequency combinations correspond to the maxima
of the propagators in the bubbles. In the t channel, the dominant features are lying along
the coordinate axes, i.e., they correspond to the static values of Kt2 and Kt2′ , respectively.
Note that for the 12|12 component there is no peak at ν = 0, since (Kt2)12|12

↑↓ = 0 (but
(Kt2′)

12|12
↑↓ 6= 0), see Table 4.2. (Im (Kt2)12|22

↑↓ is nonzero but has a node at ωt = 0 and is thus
not visible in Fig. 9.2.)

On the K3 level, the behavior is largely similar to that observed for K2. Here, we see
slightly more pronounced features along the antidiagonal (main diagonal) in the a (p) channel,
corresponding to νa = ν ′a = 0 (νp = ν ′p = 0).

Finally, we sum up all asymptotic classes and diagrammatic channels and show the full
vertex Γ in the same frequency plane in Fig. 9.3. Due to very recent progress on NRG
methodology [KLvD21, LKvD21], one can now also compute four-point functions directly
from NRG (which used to be restricted to the one-particle level before). In Fig. 9.3, we
compare our mfRG results to NRG data computed by Seung-Sup Lee. For illustration
purposes, we restrict our attention to the (fully retarded) Keldysh component Γ12|22. For
weak interaction U/∆ = 0.5, we obtain very good agreement between the two methods,
and at intermediate interaction U/∆ = 2.5, we still have good qualitative agreement, with
all nontrivial features being equally captured by both methods. Note that while NRG is
numerically exact on the one-particle level, on the two-particle level it still suffers from issues
related to broadening of discrete spectral data [LKvD21]. This is very likely the reason for
the small oscillations visible in the NRG data of Γ↑↓ at U/∆ = 0.5. Furthermore, due to
the scheme within which the vertex is obtained from the four-point correlator G(4) in NRG,
other Keldysh components are currently obtained with lower accuracy than the one shown in
Fig. 9.3 [LKvD21]. In our Keldysh mfRG approach, we do not have this issue: Symmetries
between the Keldysh components are built into the formalism (cf. Chapter 4), such that all
Keldysh components are obtained with the same accuracy, always respecting the (enforced)
crossing symmetries. The good quantitative agreement with NRG on the one-particle level
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(see Chapter 8), together with the excellent agreement between flowing and post-processed
susceptibilities (cf. Fig. 8.4), reflecting consistency between the one- and two-particle level,
gives good reason to believe that to date Keldysh mfRG provides the most accurate spectral
data for four-point functions on the real-frequency axis at weak to intermediate interaction
strength.

The good agreement between fRG and NRG is also very encouraging for a future imple-
mentation of Keldysh DMF2RG (mentioned in the introduction): Within this framework, one
would use mfRG in order to compute nonlocal extensions of DMFT by using a real-frequency
DMFT vertex (computed with NRG as impurity solver) as initial condition for the mfRG
flow. A good agreement at the fRG–NRG interface for the SIAM as a “benchmark model”
gives confidence that this scheme will be realizable in the near future.

We now continue by presenting the results of the second project discussed in this thesis in
Part II, before concluding the thesis in Chapter 11.
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Figure 9.1 Real and imaginary parts of various Keldysh components of the equal-spin component of
the asymptotic classes Ki/U =

∑
r Kri /U at weak and intermediate interaction strength U/∆ = 0.5

(top) and U/∆ = 2.5 (bottom). Results are obtained from a 3-loop fRG flow. For U/∆ = 0.5, we
additionally compare to bare second-order perturbation theory (PT2, top row).
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Figure 9.2 Same as Fig. 9.1 at U/∆ = 2.5, divided into the diagrammatic channels a, p, t.
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Figure 9.3 Fully retarded Keldysh component (Γ12|22(ν, ν′)− Γ0)/U of the full vertex (Eq. (9.1)).
We show real and imaginary part of the equal-spin and different-spin components Γ↑↑ (left) and Γ↑↓
(right) at weak and intermediate interaction strength U/∆ = 0.5 (top) and U/∆ = 2.5 (bottom). We
compare 3-loop fRG results to NRG results. The latter are computed by Seung-Sup Lee with the
recent extension of NRG to four-point functions [KLvD21, LKvD21]. Both methods agree very well
for U/∆ = 0.5 and still show good qualitative agreement at U/∆ = 2.5.



Part II

NRG+CFT analysis of a
three-channel spin-orbital

Kondo model
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10 Non-Fermi-liquid behavior in a three-channel
spin-orbital Kondo model

10.1 Overview
We now present the results of the project introduced in Sec. 1.1.2, aiming for a detailed
understanding of non-Fermi-liquid behavior in Hund metals. In Publication P1 (reprinted
on pages 114–137), we introduce the three-channel spin-orbital Kondo model that we will
be using to describe the essential degrees of freedom relevant for Hund physics. We discuss
its weak-coupling RG flow in order to get some intuition on the fixed points it hosts, and
then study the strong-coupling RG flow using NRG. In two somewhat technical sections,
we explain our generalization of the Affleck–Ludwig CFT approach from a spin impurity to
one with a spin and orbital degree of freedom. With this methodology, we obtain analytical
explanations for the finite-size spectrum of the model and the exponents of power-law behavior
in the dynamical spin and orbital susceptibilities. In particular, we investigate the NFL
fixed point obtained by screening of the orbital sector below the orbital Kondo scale Torb,
and also the transition towards the Fermi-liquid fixed point below Tsp, where both spin and
orbital degrees of freedom are screened. The transition between NFL and FL turns out to be
governed by the presence of the NFL fixed point, but constitutes a separate regime which
we coin “spin-splitting” regime, characterized by an energy scale Tss lying between Tsp and
Torb. Finally, we make a connection between the results for the Kondo-type model and the
Anderson-type model it is derived from, the latter being the prototypical model for real
Hund metals (as described in Sec. 1.1.2). We find that the spin-splitting regime, indirectly
governed by the NFL fixed point, is the one that can also be observed in the corresponding
Anderson model. The Supplemental Material (reprinted on pages 138–140) contains tables
with technical details necessary for the CFT analysis.

In Publication P2 (reprinted on pages 142–149), we extend the analysis from the NFL
fixed point to the full phase diagram of the model by independently varying its couplings.
The NFL fixed point studied in detail in P1 corresponds to a single point (called NFL∗) in
this phase diagram. In addition, we find an FL, an SFL, and a different NFL phase. These
phases and the power laws in the susceptibilities observed within them can again be explained
by CFT arguments. We also find that the phases are connected by quantum phase transitions,
showing characteristic power-law suppression of the corresponding coherence scales toward
the phase boundaries. This provides an explanation for the strong suppression of the Fermi
liquid scale in real Hund metals. The Supplemental Material (reprinted on pages 150–165)
contains some more details on the phase transitions and the CFT analysis as well as results
for further dynamical and static properties omitted in the main text. The numerical work
for P2 has been carried out by Yilin Wang. The author of this thesis has contributed to the
CFT analysis and the interpretation and discussion of the results, as well as to the writing of
the manuscript.
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Erratum: In Fig. 1(d) of publication P1 (p. page 117 below, p. 031052-4 of the original
publication), fat, faint dashed lines showing the weak-coupling RG flow (and correctly
described in the caption) were missing. We provide the corrected version in Fig. 10.1 below,
along with its original caption. An erratum will be published soon also on the journal webpage.

∞

∞

∞

I

NFL
∗c

NFL
∗K

Figure 10.1 (a) RG flow of the coupling vector c = (J,K, I) (projected into the J-K plane), obtained
by solving the weak-coupling RG equations (2) (Eqs. (8–10) of Ref. [9]) for various initial values,
c0 = (J0,K0, I0). Arrows depict the gradient vector, −[d/(d lnD)](J,K) at equal steps of lnD. (b),(c)
Weak-coupling RG flow of c(D) for (b) c0 = (0.01, 0.3, 0) [red arrows in (a)] and (c) (0, 0.3, 0.01)
[blue arrows in (a)]. (d) Qualitative depiction of the conjectured RG flow in the full J-K-I space,
for all couplings non-negative. Fat, faint dashed lines show the solutions c(D) of the weak-coupling
equations (2), initialized at K0 � K∗NFL with (J0, I0) = (0, 0) (black), (> 0, 0) (yellow) or (0, > 0)
(blue), and plotted only in the weak-coupling regime [beyond the latter, Eqs. (2) loose validity]. Solid
lines, drawn by hand, qualitatively show the flow expected beyond the weak-coupling regime, including
trajectories initialized at K0 � K∗NFL, with (J0, I0) = (0, 0) (green), (> 0, 0) (orange) or (0, > 0)
(purple). The black squares, cross and circle depict fixed points.
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Hund metals have attracted attention in recent years due to their unconventional superconductivity,
which supposedly originates from non-Fermi-liquid (NFL) properties of the normal state. When studying
Hund metals using dynamical mean-field theory, one arrives at a self-consistent “Hund impurity problem”
involving a multiorbital quantum impurity with nonzero Hund coupling interacting with a metallic bath. If
its spin and orbital degrees of freedom are screened at different energy scales, Tsp < Torb, the intermediate
energy window is governed by a novel NFL fixed point, whose nature had not yet been clarified. We
resolve this problem by providing an analytical solution of a paradigmatic example of a Hund impurity
problem, involving two spin and three orbital degrees of freedom. To this end, we combine a state-of-
the-art implementation of the numerical renormalization group, capable of exploiting non-Abelian
symmetries, with a generalization of Affleck and Ludwig’s conformal field theory (CFT) approach for
multichannel Kondo models. We characterize the NFL fixed point of Hund metals in detail for a Kondo
model with an impurity forming an SUð2Þ × SUð3Þ spin-orbital multiplet, tuned such that the NFL energy
window is very wide. The impurity’s spin and orbital susceptibilities then exhibit striking power-law
behavior, which we explain using CFT arguments. We find excellent agreement between CFT predictions
and numerical renormalization group results. Our main physical conclusion is that the regime of spin-
orbital separation, where orbital degrees of freedom have been screened but spin degrees of freedom
have not, features anomalously strong local spin fluctuations: the impurity susceptibility increases as

χimp
sp ∼ ω−γ , with γ > 1.

DOI: 10.1103/PhysRevX.10.031052 Subject Areas: CondensedMatter Physics,Mesoscopics,
Strongly Correlated Materials

I. INTRODUCTION

A. Motivation: Hund metals

Hund metals are multiorbital materials with broad bands
which are correlated via the ferromagnetic Hund coupling
JH, rather than the Hubbard interactionU. The coupling JH
implements Hund’s rule, favoring electronic states with
maximal spin, which causes Hund metals to be fundamen-
tally different from Mott insulators. This is a new exciting
area of condensed matter physics; for a recent review with
numerous references, see Ref. [1]. Hund metals are a very
diverse class of materials, including transition metal oxides

with partially filled d shells, such as the iron-based pnictide
and selenide superconductors, the ruthenates, and many
others [1–13].
The iron-based superconductors, in particular, raised

much interest in recent years because of the unconventional
nature of their superconductivity. It has been argued that the
Hund nature of their normal state is essential for the onset
of superconductivity [14]. In particular, spin fluctuations
with a power-law divergent susceptibility ∝ ω−γ, with
γ > 1, have been evoked in an explanation for the anoma-
lously large ratio of 2Δmax=Tc observed experimentally,
where Δmax is the maximum superconducting gap and Tc

the critical temperature [14]. The normal state of Hund
metals is of great interest on its own, since it typically
shows bad-metal behavior [6,15,16]. Motivated by these
considerations, computational and experimental studies of
Hund metals have begun to uncover their rich physics in
recent years [4,5,8,11,12,17–21].
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When studying Hund metals in the context of dynamical
mean-field theory (DMFT), the problem of a crystal lattice
with many strongly interacting lattice sites is mapped onto
a “Hund impurity,” coupled self-consistently to an effective
noninteracting metallic bath. A Hund impurity has both
spin and orbital degrees of freedom and a finite Hund
coupling, favoring a large local spin.
A particularly fascinating consequence of the interplay

between spin and orbital degrees of freedom is the
phenomenon of spin-orbital separation (SOS): Kondo
screening of Hund impurity models occurs in two stages,
and the energy scales below which free spin and orbital
degrees are screened differ, Tsp < Torb [8,9,22–24]. The
low-energy regime below Tsp shows Fermi-liquid (FL)
behavior. The intermediate SOS window ½Tsp; Torb�, by
contrast, shows incoherent behavior, featuring almost fully
screened orbital degrees of freedom coupled to almost free
spin degrees of freedom. The incoherent regime has been
conjectured to have non-Fermi-liquid (NFL) properties and
argued to be relevant for the bad-metal behavior of Hund
metals [8,25]. However, the nature of the putative under-
lying NFL state has not yet been clarified.
A major obstacle for analyzing the conjectured NFL

regime of Hund metals has been a lack of detailed,
analytical understanding of the basic properties of Hund
impurity models, since theoretical work has overwhelm-
ingly focused on Kondo models without orbital degrees of
freedom. In this work, we overcome this obstacle in the
context of an instructive case study of a specific Hund
impurity model.
Before specifying the latter in detail, though, let us put

our study into perspective by providing a brief historical
overview of Hund impurity models.

B. Brief history of Hund impurity models

Hund impurity models are natural multiorbital general-
izations of single-orbital magnetic impurity models such as
the Kondo model used by Kondo in 1964 to explain the
resistance minimum in magnetic alloys [26]. The search for
a detailed understanding of the Kondo model beyond
Kondo’s perturbative calculation was a cornerstone toward
the development of renormalization group techniques,
starting with Anderson’s poor man’s scaling approach
[27] and culminating in Wilson’s numerical renormaliza-
tion group (NRG) [28]. These methods confirmed that
below a characteristic Kondo temperature the metallic bath
screens the impurity spin, leading to the formation of a
singlet state between impurity and conduction electrons.
Following these findings, naturally the question arises:

What happens if the impurity has multiple orbitals? In
particular, electrons on a multiorbital impurity experience
not only a Coulomb interaction stabilizing a magnetic
moment on the impurity, but also a Hund coupling,
enforcing the effect of Hund’s rule to maximize the total

impurity spin. These two interactions lead to an intricate
interplay, crucially depending on the number of electrons
on the impurity. Indeed, it had been observed already in the
1960s that the Kondo scale for impurities in transition metal
alloys with partially filled d shells decreases exponentially
as the shell filling approaches 1=2 [29,30], drawing
attention to the question of understanding Kondo screening
in the presence of multiple orbitals. Coqblin and Schrieffer
[31] developed a generalization of the Kondo model for
multiorbital impurities, yet only involving the spin degree
of freedom. Okada and Yosida [32] included orbital degrees
of freedom and in particular pointed out the importance of a
finite Hund coupling, enforcing the effect of Hund’s rule in
such multiorbital systems. However, theoretical tools for
analyzing a model with nonzero Hund coupling away from
half filling were lacking at the time.
Later, Nozières and Blandin [33] studied a spin Kondo

impurity immersed in a metallic bath with multiple orbital
channels. A major conclusion of their work was that such
models lead to overscreening of the impurity spin and NFL
behavior, if the number of channels exceeds twice the
impurity spin (k > 2S). This generated great theoretical
interest in multichannel Kondo models, including exact
Bethe solutions providing information on thermodynamical
properties [34–39], and NRG studies [40,41]. Affleck and
Ludwig (AL) [42–46] developed a powerful conformal
field theory (CFT) approach for studying the strong-
coupling fixed points of such multiband Kondo models,
providing analytical results for finite-size spectra and the
scaling behavior of correlation functions. However, their
work was restricted to pure spin impurities without non-
trivial orbital structure. Thus, their methods have not yet
been applied to Hund impurity models, including orbital
degrees of freedom and a finite Hund coupling.
In this work, we fill this long-standing void and provide a

detailed and comprehensive analysis of a prototypical Hund
impurity model (specified below). We achieve this by
advancing and combining two powerful complementary
techniques that both arose in the very context of Kondo
physics: An analytical solution based on AL’s celebrated
CFTapproach, generalized from a pure spin impurity to one
with spin and orbital structure, and a quasiexact numerical
solution using a state-of-the-art implementation of Wilson’s
NRG, allowing studies of multiorbital systems by fully
exploiting Abelian and non-Abelian symmetries. This
allows us to achieve a detailed understanding of the
NFL behavior arising in this Hund impurity model.

C. Minimal models for Hund metals

We next describe the considerations motivating the
specific choice of model studied below.
A minimal model for Hund metals has been proposed in

Ref. [8]. It is a three-orbital Hubbard-Hund model, and it
has been studied extensively in Refs. [2,6,9,11,22–24,47].
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A treatment of this model by DMFT at 1=3 filling yields a
self-consistent Hund impurity model. More specifically,
one obtains a self-consistent three-orbital Anderson-Hund
(3oAH) model, in which bath and impurity both have
spin and orbital degrees of freedom. The impurity hosts
two electrons forming an antisymmetric orbital triplet
and a symmetric spin triplet (S ¼ 1), reflecting Hund’s
rule. At energies so low that charge fluctuations can
be treated by a Schrieffer-Wolff transformation [9], the
3oAH model maps onto a three-channel spin-orbital Kondo
(3soK) model whose impurity forms a (3 × 3)-dimensional
SUð2Þ × SUð3Þ spin-orbital multiplet.
The 3oAH model exhibits SOS [8,9,22–24]. Within the

SOS window ½Tsp; Torb�, the imaginary part of the spin
susceptibility scales as χimpsp ∼ ω−6=5 [22,47]. The fact that
the exponent, γ ¼ 6=5, is larger than 1 has been argued to
lead to the anomalous superconducting state of the iron
pnictide Hund metals, as mentioned above [14]. However,
the origin of this power law has remained unclear. One
impediment toward finding an explanation is the fact that for
the 3oAH model the orbital and spin screening scales cannot
be tuned independently. The SOS window turns out to be
rather small, masking the NFL behavior expected to occur
within it.
In this paper, we sidestep this limitation by instead

studying the 3soKmodel and treating its exchange couplings
as independent parameters, freed from the shackles of their
3oAH origin. We tune these such that the regime of SOS is
very wide, with Tsp ≪ Torb. This enables us to characterize
the NFL fixed point obtained for Tsp ¼ 0, which also
governs the intermediate NFL window if Tsp ≪ Torb. We
compute fixed-point spectra and the scaling behavior of
dynamical spin and orbital susceptibilities using both NRG
and CFT, with mutually consistent results. In particular, we
find an analytical explanation for the peculiar power law
χimp
sp ∼ ω−6=5: It turns out to be governed (albeit somewhat
indirectly) by the NFL fixed point mentioned above. Finally,
we demonstrate the relevance of these 3soK results for the
low-energy behavior of the 3oAH model by employing a
hybrid Anderson-Kondo model which smoothly interpolates
between the physics of the 3soK and 3oAH models. This
interpolation shows that our new results also shed light
on previous DMFT results for a self-consistent 3oAH
model [22,47].
Our CFT analysis builds on that devised by AL [42–46]

for the k-channel Kondo model, describing k spinful
channels exchange coupled to an impurity with spin S,
but no orbital degrees of freedom. If k > 2S, the impurity
spin is overscreened. AL described the corresponding NFL
fixed point using a charge-spin-orbital Uð1Þ × SUð2Þk ×
SUðkÞ2 Kac-Moody (KM) decomposition of the bath
states, and fusing the spin degrees of freedom of impurity
and bath using SUð2Þk fusion rules. Here we generalize this
strategy to our situation, where the impurity has spin and
orbital “isospin” degrees of freedom: the NFL fixed point at

Tsp ¼ 0 can be understood by applying SUð3Þ2 fusion rules
in the orbital sector, leading to orbital overscreening. If Tsp

is nonzero (but≪ Torb), the overscreened orbital degrees of
freedom couple weakly to the impurity spin, driving the
system to a FL fixed point. There both spin and orbital
degrees of freedom are fully screened, in a manner
governed by SUð6Þ1 fusion rules.
The paper is structured as follows. Section II defines the

3soK model and discusses its weak-coupling renormaliza-
tion group (RG) flow. Section III presents our NRG results.
Section IV gives a synopsis of our CFT results, summa-
rizing all essential insights and arguments, while Sec. V
elaborates the corresponding CFT arguments in more
detail. Section VI discusses a hybrid Anderson-Kondo
model which interpolates between the 3soK model and
the 3oAH model. Section VII summarizes our conclusions.
The Appendix revisits a two-channel spin-orbital Kondo
model studied by Ye in 1997 [48], pointing out the
similarities and differences between his work and ours.

II. MODEL, PERTURBATIVE RG FLOW

We study the 3soK model proposed in Ref. [9]. Hbath ¼P
pmσ εpψ

†
pmσψpmσ describes a symmetric, flat-band bath,

where ψ†
pmσ creates an electron with momentum p and spin

σ in orbital m ∈ f1; 2; 3g. The bath couples to the impurity
spin S and orbital isospin T via

Hint ¼ J0S · Jsp þ K0T · Jorb þ I0S · Jsp-orb · T: ð1Þ

Here S are SU(2) generators in the S ¼ 1 representation,
normalized as TrðSαSβÞ ¼ 1

2
δαβ, andT are SU(3) generators

in the representation with Young diagram , and
TrðTaTbÞ ¼ 1

2
δab. Jsp, Jorb, and Jsp-orb are the bath spin,

orbital, and spin-orbital densities at the impurity site,
with Jαsp ¼ ψ†

mσ
1
2
σασσ0ψmσ0 , Jaorb ¼ ψ†

mσ
1
2
τamm0ψm0σ , J

α;a
sp-orb ¼

ψ†
mσ

1
2
σασσ0

1
2
τamm0ψm0σ0 (summation over repeated indices is

implied), where fields are evaluated at the impurity site,
ψ†
mσðr ¼ 0Þ, and σα [τa] are Pauli [Gell-Mann] matrices,

with normalization TrðσασβÞ ¼ 2δαβ [TrðτaτbÞ ¼ 2δab]. We
use Young diagrams as labels for irreducible representations
(irreps) of the SU(3) group. An alternative notation, also
frequently used, would be to label SU(3) irreps by their
dimension: • ¼ 1, □ ¼ 3, , where 3̄ refers to the
conjugate represenation of 3, , , , etc.
The Hamiltonian has Uð1Þch × SUð2Þsp × SUð3Þorb sym-

metry. We label its symmetry multiplets by Q ¼ ðq; S; λÞ,
with q the bath particle number relative to half filling (the
3soK impurity has no charge dynamics; hence we may
choose qimp ¼ 0), S the total spin, and λ a Young diagram
denoting an SU(3) representation. The values of the spin,
orbital, and spin-orbital exchange couplings, J0, K0, I0, can
be derived from the 3oAH model by a Schrieffer-Wolff
transformation [9]. When the 3oAH model is studied in the
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regime relevant for Hund metals, i.e., with a ferromagnetic
on-site Hund coupling JH favoring maximization of the local
spin, and with a local filling nd differing by ≃1 from half
filling, the resulting 3soK exchange couplings J0, K0, I0 are
typically all positive, i.e., antiferromagnetic. [This can be
inferred from Eqs. (4)–(7) of Ref. [9].] Furthermore, when
the weak-coupling RG flow of the 3soK model is studied in
the presence of finite K0 > 0 and I0 > 0, one finds that J0
flows toward positive values regardless of whether its initial
value is chosen positive or negative [the latter case is
illustrated by the purple arrows in Fig. 1(a)]. Hence, we
here focus on positive exchange couplings only. However,
instead of using values obtained from a Schrieffer-Wolff
transformation, here we take the liberty of choosing J0, K0,
I0 to be independent, tuning them such that Tsp ≪ Torb. This
is in extension of the 3oAH model, in which Tsp is only at
most about an order of magnitude smaller than Torb.
Aron and Kotliar [9] have performed a perturbative

analysis of the RG flow of the 3soK model. Their
Eqs. (8)–(10) describe the flow of the coupling vector,
cðDÞ ¼ ðJ; K; IÞ, upon reducing the half-bandwidth D
starting from c0 ¼ ðJ0; K0; I0Þ at D0. For the 3soK model,
these equations read

βJ ¼ −
�
1−

3

2
J

��
J2 þ 2

9
I2
�
þ � � � ;

βK ¼ −
3

2
ð1−KÞ

�
K2 þ 1

2
I2
�
þ � � � ;

βI ¼ −
3

2

��
4

3
Jþ 2K − J2 −K2

�
I −

5

18
I2 −

17

36
I3
�
þ � � � ;

ð2Þ
where βJ ¼ dJ=d lnD, etc., with energies in units of D0.
Figure 1 illustrates the resulting RG flow. There are several
fixed points. The free-impurity fixed point, c�FI ¼ ð0; 0; 0Þ, is
unstable: for any nonzero c0, one or more couplings flow
toward strong coupling, and the D values where J or K
become of order unity yield estimates of Tsp and Torb,
respectively. For c0 ¼ ð0; K0 ≠ 0; 0Þ [black arrows in
Fig. 1(a)], the system flows toward a NFL fixed point,
c�NFL ¼ ð0; 1; 0Þ. This fixed point is unstable against nonzero
J0 or I0. For I0 ¼ 0, the flow equations for J and K are
decoupled, such that for a small but nonzero J0 ≪ K0 (red
arrows) the flow first closely approaches c�NFL, until J grows
large, driving it toward a FL fixed point c�FL. Figure 1(b)
shows that the NFL regime (J ≪ K) governed by c�NFL can
be large. For I0 ≠ 0, the J and K flows are coupled, hence
the growth of K triggers that of J, accelerating the flow
toward c�FL. In this case, the NFL energy window is rather
small [cf. Fig. 1(c)]. For example, for c0 ¼ ð0.1; 0.3; 0.5Þ
(light green arrows), typical for the values obtained through a
Schrieffer-Wolff 3oAH to 3soK mapping, the RG flow does
not approach c�NFL very closely; thus fully developed NFL
behavior is not observed.

Figure 1(d) offers a qualitative depiction of the conjec-
tured RG flow in the full J-K-I space, for all couplings non-
negative. Fat, faint dashed lines show the solutions cðDÞ
of the weak-coupling Eqs. (2). However, these equations
lose validity once the couplings are no longer small (and
their above-mentioned predictions that K�

NFL ¼ K�
FL ¼ 1

should not be trusted). Solid lines, drawn by hand,
qualitatively depict the flow expected beyond the weak-
coupling regime, based on the following considerations.

(a)

(d)

(b) (c)

FIG. 1. (a) RG flow of the coupling vector c ¼ ðJ; K; IÞ
(projected into the J-K plane), obtained by solving the weak-
coupling RG equations (2) [Eqs. (8)–(10) of Ref. [9] ] for various
initial values, c0 ¼ ðJ0; K0; I0Þ. Arrows depict the gradient vector
−½d=ðd lnDÞ�ðJ; KÞ at equal steps of lnD. (b),(c) Weak-coupling
RG flow of cðDÞ for (b) c0 ¼ ð0.01; 0.3; 0Þ [red arrows in (a)]
and (c) (0,0.3,0.01) [blue arrows in (a)]. (d) Qualitative depiction
of the conjectured RG flow in the full J-K-I space, for all
couplings non-negative. Fat, faint dashed lines show the solutions
cðDÞ of the weak-coupling equations (2), initialized at K0 ≪
K�

NFL with ðJ0; I0Þ ¼ ð0; 0Þ (black), ð> 0; 0) (yellow), or ð0; > 0Þ
(blue), and plotted only in the weak-coupling regime [beyond the
latter, Eqs. (2) lose validity]. Solid lines, drawn by hand,
qualitatively show the flow expected beyond the weak-coupling
regime, including trajectories initialized at K0 ≫ K�

NFL, with
ðJ0; I0Þ ¼ ð0; 0Þ (green), ð> 0; 0Þ (orange), or ð0; > 0Þ (purple).
The black squares, cross, and circle depict fixed points.
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First, for K0 > 0 and J0 ¼ I0 ¼ 0, the NRG analysis of
Sec. III suggests that the flow proceeds along a trajectory
where I and J remain zero, reaching a NFL fixed point,
c�NFL ¼ ð0; K�

NFL; 0Þ at a finite value of K�
NFL. This fixed

point is stable, approached by RG flow both from below
and above. Correspondingly, the line J0 ¼ I0 ¼ 0 contains
another fixed point at K0 ¼ ∞, which is unstable. To
understand the latter point heuristically, consider taking K0

very large. Then the system will attempt to screen its local
orbital degree of freedom, with representation , into an
orbital singlet. Doing so by binding just a bath single
electron, spin up or down, would break spin symmetry.
Hence, it must bind two bath electrons, spin up and down,
yielding a local orbital degree of freedom yet again, with
representation □. Thus, choosing K0 very large is equiv-
alent to initializing the model with local orbital represen-
tation □ and small initial coupling (presumably ∼1=K0).
This would grow under the RG flow; hence K0 ¼ ∞ is an
unstable fixed point, just as K0 ¼ 0. (This argumentation is
entirely analogous to that familiar from the two-channel
Kondo model [33]; for the present 3soK model, it is further
elaborated in Ref. [49].)
ForK0 > 0 andJ0, I0 both non-negativebut not both zero,

the NRG analysis of Sec. V E suggests that the flow always
ends up at a unique FL fixed point c�FL. Hence c�NFL is
unstable against turning on J0 or I0. The fixed point c�FL
features a fully screened spin and orbital singlet ground state
and an excitation spectrum with SU(6) symmetry. This
implies that as the flow approaches c�FL, all three couplings
J,K, and I tend to infinity, with relative values such that the
fixed-point Hamiltonian has SU(6) symmetry, i.e., 3J ¼
2K ¼ I [9].

III. NRG RESULTS

To study the RG flow in a quantitatively reliable
manner, we solve the 3soK model using NRG [28,50,51],
exploiting non-Abelian symmetries using QSpace [50]. The
bath is discretized logarithmically and mapped to a semi-
infinite “Wilson chain” with exponentially decaying
hoppings, and the impurity coupled to site 0. The chain
is diagonalized iteratively while discarding high-energy
states, thereby zooming in on low-energy properties: the
(finite-size) level spacing of a chain ending at site k is of
order ωk ∝ Λ−k=2, where Λ > 1 is a discretization param-
eter. The RG flow can be visualized using NRG eigenlevel
spectra, showing how the chain’s lowest-lying eigenener-
gies E evolve when k is increased by plotting the dimen-
sionless rescaled energies E ¼ ðE − ErefÞ=ωk versus ωk for
odd k. The E-level flow is stationary (ωk independent)
while ωk traverses an energy regime governed by one of
the system’s fixed points, but changes during crossovers
between fixed points.

(a)

(b)

(c)

(d)

FIG. 2. NRG results for c0 ¼ ðJ0; K0; I0Þ ¼ ð10−4; 0.3; 0Þ.
(a) Finite-size eigenlevel spectrum computed by NRG, with

as reference energy. Quantum numbers Q ¼
ðq; S; λÞ are shown at the top, and→ indicates boundary operators
obtained via double fusion. (NRG parameters: Λ ¼ 2.5; number
of kept multiplets, Nkeep ¼ 3000; half-bandwidth of the bath,
D ¼ 1.) (b) Illustrations of the ground states encountered during
the flow. (c),(d) Imaginary part of the spin and orbital suscep-
tibilities of (c) the impurity and (d) the bath site coupled to it
(Wilson chain site k ¼ 0). Gray lines show power laws predicted
by CFT. Vertical lines show the crossover scales for orbital and
spin screening, Torb and Tsp, marking the maxima of χimp

orb and

χimp
sp , and for spin splitting Tss, marking kinks in χimp;bath

sp;orb .
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To analyze the NFL regime in detail, we choose I0 ¼ 0
and J0 ≪ K0, so that the SOS window becomes very large,
with Tsp ⋘ Torb. Figure 2(a) shows the NRG eigenlevel
flow diagram for c0 ¼ ð10−4; 0.3; 0Þ. We discern four
distinct regimes, separated by three scales, Tsp, Tss, Torb.

(i) The free-impurity (FI) regime, ωk > Torb, involves
an unscreened impurity, with ground state multiplet

(flat brown line).
(ii) In the NFL regime, Tss < ωk < Torb, two degenerate

multiplets, ð1; 1
2
; •Þ and ð1; 3

2
; •Þ (dashed green and

red lines) become the new ground state multiplets.
Below the scale Torb, the impurity orbital isopin is
thus screened into an orbital singlet • by binding one
bath electron, which couples to the impurity spin 1
to yield a total spin of 1

2
or 3

2
.

(iii) In the spin-splitting (SS) regime, Tsp < ωk < Tss,
the effects of nonzero J0 become noticeable, split-
ting apart ð1; 1

2
; •Þ and ð1; 3

2
; •Þ, the latter drifting

down.
(iv) In the FL regime, ωk < Tsp, ð−2; 0; •Þ becomes the

new ground state multiplet. Below the scale Tsp, the
spin 3=2 is thus screened into a spin singlet by
binding three bath holes, yielding a fully screened
impurity. Note the equidistant level spacing, char-
acteristic of a FL.

To further elucidate the consequences of orbital and spin
screening, we computed the impurity’s zero-temperature
orbital and spin susceptibilities,

χimp
orb ðωÞ ¼ −

1

8π

X
a

ImhTakTaiω; ð3aÞ

χimp
sp ðωÞ ¼ −

1

3π

X
α

ImhSαkSαiω; ð3bÞ

where hXkXiω refers to the Fourier-transformed retarded
correlation functions −iΘðtÞh½XðtÞ; Xð0Þ�i with frequency
ω, and analogous susceptibilities, χbathorb , χbathsp (involving
Jorb, Jsp) for the bath site coupled to it. To this end we used
full-density-matrix (FDM) NRG [52] and adaptive broad-
ening of the discrete NRG data [53].
Figures 2(c) and 2(d) show these susceptibilities on a

log-log scale. χimp
orb and χimp

sp each exhibit a maximum, at two
widely different scales, Torb and Tsp, coinciding with the
onset of the stationary NFL or FL regimes in Fig. 2(a),
respectively. Moreover, the four susceptibilities χimp;bath

orb;sp all
exhibit kinks at a coinciding energy scale Tss, matching the
onset of the SS regime in Fig. 2(a). If ω lies within one of
the regimes NFL, SS, or FL, the susceptibilities all show
behavior consistent with power laws (gray lines). These
power laws can all be explained by CFT, as discussed in
Sec. IV. Here we focus on their qualitative features, which
by themselves give striking clues about the nature of orbital
and spin screening.

In the NFL regime, where χimp
orb decreases with decreasing

ω, it exhibits the same power law as χbathorb . In this sense, the
impurity’s orbital isospin has taken on the same character
as that of the bath site it couples to, indicative of orbital
screening—in the parlance of AL’s CFT analysis, it has
been “absorbed” by the bath. This power law ω1=5 is
nontrivial, differing from the ω1 expected for a fully
screened local degree of freedom. This indicates that the
local orbital degree of freedom, even while being screened,
is still somehow affected by the spin sector. The converse is
also true: the onset of orbital screening at Torb is accom-
panied by a change in behavior for both spin susceptibil-
ities, χimp

sp and χbathsp . Both increase with decreasing ω, with
different powers, indicative of the absence of spin screening
in the NFL regime. The exponent for the impurity spin
susceptibility, χimp

sp ∼ ω−11=5, is remarkably large in mag-
nitude. (For comparison, for the standard spin-1=2, single-
channel Kondo model, χimp

sp ∼ ω−1 for ω≳ Tsp.) The highly
singular ω−11=5 behavior—our perhaps most unexpected
result—indicates that the strength of spin fluctuations is
strongly amplified by the onset of orbital screening. Our
CFT analysis below will reveal the reason for this: orbital
screening is accompanied by a renormalization of the local
bath spin density at the impurity site.
Upon entering theSS regime, all susceptibility lines showa

kink, i.e., change in power law, such that the impurity and
bath exponents match not only in the orbital sector,
χimp
orb ∼ χbathorb , but now also in the spin sector, χimpsp ∼ χbathsp .
The latter fact indicates clearly that bath and impurity spin
degrees of freedom have begun to interact with each other.
However, this is only a precursor to spin screening, since the
spin susceptibilities still increase with decreasing ω, albeit
with a smaller exponent, χimp;bath

sp ∼ ω−6=5, than in the NFL
regime.However, since the exponent γ ¼ 6=5 is larger than 1,
spin fluctuations are anomalously large also in this regime.
Importantly, this regime persists also for parameters corre-
sponding to the more realistic 3oAHmodel. Indeed, previous
DMFT studies for a self-consistent 3oAHmodel have yielded
behavior for χimpsp which in the SOS regime is consistent with
an exponent of γ ¼ 6=5, as further discussed in Secs. IV
and VI. Moreover, as mentioned in the Introduction, anoma-
lously large spin fluctuations are of direct relevance for the
superconducting state of the iron pnictide Hund metals: in
Ref. [14], strong spin fluctuations with γ > 1 were a key
ingredient for a proposed explanation for the anomalously
large ratio of 2Δmax=Tc observed experimentally.
Full spin screening eventually sets in in the FL regime,

where the spin susceptibilities χimp;bath
sp show the ω1

behavior characteristic of a FL. We expect this behavior
also for the orbital susceptibilities, but have not been able to
observe it directly, since our results for χimp;bath

orb become
numerically unstable when dropping below ≃10−5 [as
indicated by dotted lines in Figs. 2(c) and 2(d)].
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In the following two sections we explain how the above
NRG results can be understood using CFT arguments.

IV. CFT ANALYSIS: SYNOPSIS

This section presents a synopsis of our CFT analysis. It
aims to be accessible also to readers without in-depth
knowledge of AL’s CFTwork on Kondo models. We begin
by summarizing AL’s strategy for analyzing strong-cou-
pling fixed points of quantum impurity models (Sec. IVA).
We then apply it to the NFL fixed point (Sec. IV B) and the
FL fixed point (Sec. IV C). A more elaborate discussion of
CFT details follows in Sec. V.

A. General strategy

AL’s strategy for determining spectra and correlation
functions from CFT involves three key concepts:

(C1) Independent excitations.—The starting assumption
is that the low-energy spectrum of a multiorbital
Kondo Hamiltonian at a conformally invariant fixed
point can be constructed from combinations of inde-
pendent charge, spin, and orbital excitations. The
excitation energies in each sector follow from the
commutation relations of certain charge, spin, and
orbital operators (these form a so-called Kac-Moody
algebra); this is expressed in Eqs. (4) and (12).

(C2)Gluing conditions and fusion rules.—The spectrum
of excitations in each sector (charge, spin, orbital) is
the same at the free and strong-coupling fixed points.
However, the way in which these three types of
excitations should be combined to obtain valid
many-body excitations, specified by so-called gluing
conditions, differs for the free and strong-coupling
fixed points. At the former, excitations are glued
together in such a manner that a free-fermion spectrum
is recovered. At the latter, the impurity has been
absorbed by the bath, implying changes in the gluing
conditions relative to those of the free fixed point.
These changes are governed by so-called fusion rules,
which specify how the impurity degrees of freedom
should be “added” to those of the bath. This is
conceptually similar to angular momentum addition,
but with additional constraints to respect the Pauli
principle.

(C3) Scaling dimensions.—Once the fusion rules and
thus the spectrum of valid many-body excitations is
known, the conformal scaling dimensions of operators
living at the impurity site can be determined by using
the same fusion rules once more (“double fusion”).
Because of conformal invariance, the functional form
of correlation functions is fully determined by the
scaling dimensions of their operators.

In practice, analyzing a conformally invariant strong-
coupling fixed point thus consists of three steps: (C1)
determine the independent excitations, (C2) use “single

fusion” to obtain the strong-coupling gluing conditions,
and (C3) use “double fusion” to obtain the scaling
dimensions of operators living at the impurity site. Even
though AL’s justification of this strategy involved sophis-
ticated CFT arguments, its application to an actual model is
rather straightforward, once one has determined the appro-
priate fusion rules. For the 3soK model, we present tables
with the explicit fusion rules in the Supplemental Material
(SM) [54], and Table II shows details on the fusion
procedure. These tables are also meant to serve as a guide
for future applications of AL’s methodology.

B. NFL regime

In the following, we follow this strategy for the NFL
fixed point of the 3soK model.
(C1) The 3soK model, being spherically symmetric

around the origin, describes an effectively one-dimensional
system. In the imaginary-time formalism, the field describ-
ing the conduction band, ψðτ þ irÞ, lives on the upper half
of the complex plane, with time τ on the real and the
distance r from the impurity on the imaginary axis. The
impurity at r ¼ 0 constitutes a “boundary” at the real axis.
The fixed points of the model, assumed to be scale
invariant, can thus be described using (1þ 1)-dimensional
boundary CFT.
The bath of the 3soK model trivially has Uð1Þ ×

SUð2Þ × SUð3Þ symmetry. Moreover, since we assumed
a flat band, i.e., a linear dispersion, it also has conformal
symmetry. The combination of both leads to the symmetry
Uð1Þ × SUð2Þ3 × SUð3Þ2, where SUð2Þ3 and SUð3Þ2 refer
to generalizations of the familiar SU(2) and SU(3) algebras,
known as Kac-Moody algebras [44,57,58]. The subscript
on SUð2Þ3 states that only those spin representations are
allowed which can be constructed from electrons living on
3 orbitals. In particular, spins larger than 3=2 do not occur
in this algebra. The subscript on SUð3Þ2 indicates analo-
gous restrictions for the allowed SU(3) representations.
(The consequences of these restrictions are made explicit in
Tables S3 and S2 of the SM [54].)
According to AL [42–46], the fixed points can be

analyzed as follows. First, standard Uð1Þ × SUð2Þ3 ×
SUð3Þ2 non-Abelian bosonization is used to decompose
the bath Hamiltonian into charge, spin, and orbital con-
tributions,

Hbath ∼
Z

dr

�
1

12
J2chðrÞ þ

1

5
J2spðrÞ þ

1

5
J2orbðrÞ

�
; ð4Þ

with JchðrÞ ¼ ψ†
mσðrÞψmσðrÞ, etc. (We omitted overall

prefactors; for a detailed discussion, see Refs. [44,57].)
Since Jch, Jsp, Jorb are generators of the U(1), SUð2Þ3,
SUð3Þ2 Kac-Moody algebras, respectively, the eigenstates
of Hbath can be organized into multiplets forming irreps of
the corresponding symmetry groups, labeled by quantum
numbers Qbath ¼ ðq; S; λÞ. If the bath is put in a box of
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finite size, the corresponding free-fermion excitation eige-
nenergies Eðq; S; λÞ are discrete and simple functions of the
quantum numbers [see Eq. (12)].
(C2) Next, we include the interaction with the impurity

in the orbital sector (K0 > 0, J0 ¼ I0 ¼ 0) to describe the
properties of the NFL fixed point c�NFL. The bosonized
Hbath is quadratic in Jorb, whereas the coupling term Hint ¼
K0T · Jorbðr ¼ 0Þ is linear. The latter can thus be absorbed
into the former, in the spirit of “completing the square.” AL
conjectured that at the strong-coupling fixed point, this
replacement takes the form

JorbðrÞ ↦ J orbðrÞ ¼ JorbðrÞ þ δðrÞT; ð5Þ
with J orb satisfying the same Kac-Moody algebra as Jorb.
At the strong-coupling fixed point, the Hamiltonian can
thus be expressed as H ¼ Hbath½Jorb� þHint ¼ Hbath½J orb�
(more details can be found in Sec. V B and Ref. [43]).
It follows immediately that at the fixed point, the

spectrum of irreps of the full Hamiltonian can be obtained
by combining the irreps of bath and impurity degrees of
freedom, Qbath ⊗ Qimp ¼

P
⊕Q0, and using “fusion rules”

to deduce the resulting irreps Q0. This is conceptually
similar to coupling two SU(2) spins, S00 ¼ Sþ S0, decom-
posing the direct product of their irreps as S ⊗ S0 ¼P

⊕ S00, and deducing that S00 ranges from jS − S0j to
Sþ S0. However, in the present context, specific assump-
tions must be made about which degrees of freedom are
involved in the screening processes and which are not, and
for those which are, Kac-Moody fusion rules have to be
used when combining irreps. For the present situation, we
have Qbath ¼ ðq; S; λÞ and and place
ourselves at the NFL fixed point, where bath and impurity
couple only in the orbital sector.

To find the allowed irreps Q0 ¼ ðq0; S0; λ0Þ, we therefore
posit the following fusion strategy (inspired by and general-
izing that of AL [42–46]). In the charge sector, qimp ¼ 0

trivially implies that q0 ¼ q. In the orbital sector, the
impurity’s orbital isospin is coupled to that of the bath
[Eq. (1)] and absorbed by it according to Eq. (5); hence,
λ ⊗ λimp ¼

P
⊕ λ0 is governed by the fusion rules of the

SUð3Þ2 Kac-Moody algebra. By contrast, in the spin sector
the impurity spin is a spectator, decoupled from the bath
(we are at c�NFL, where J0 ¼ I0 ¼ 0); hence, S ⊗ Simp ¼P

⊕ S0 is governed by the fusion rules of the SU(2) Lie
algebra [not the SUð2Þ3 Kac-Moody algebra]. The set of
excitations ðq; S0; λ0Þ so obtained have energies given by
Eðq; S; λ0Þ, not Eðq; S0; λ0Þ, since Hint only acts in the
orbital sector. A more complete discussion of our “fusion
hypothesis” is given in Sec. V B. The resulting spectrum
reproduces the NRG spectrum in the NFL fixed point
regime (see Table II).
Table I exemplifies a few many-body states obtained via

this fusion scheme (AL called it single fusion, in distinction
from a second fusion step, discussed below). In particular,
the degenerate ground state multiplets of c�NFL, ð1; 12 ; •Þ and
ð1; 3

2
; •Þ [cf. Fig. 2(a)], arise via fusion of a one-particle bath

excitation, ðþ1; 1
2
;□Þ, with the impurity , sche-

matically depicted in Fig. 2(b).
(C3) Next, we want to compute the leading scaling

behavior of spin and orbital correlation functions at the
impurity site, i.e., on the boundary of the CFT. The
absorption of the impurity into the bath (bulk)
Hamiltonian translates, in CFT language, to a change in
the boundary condition imposed on the theory at r ¼ 0. As
a result, a new set of “boundary operators,” i.e., local
operators living at the impurity site, appear in the theory.

TABLE I. Left: Five low-lying free-fermion multiplets (jFSi denotes the Fermi sea), with quantum numbers ðq; S; λÞ, multiplet
dimensions d, and energies Eðq; S; λÞ. Center: “Single fusion” with an impurity leads to multiplets with quantum
numbers ðq; S0; λ0Þ, dimensions d0, eigenenergies E0 ¼ Eðq; S; λ0Þ, and excitation energies δE0 ¼ E0 − E0

min. Right: “Double fusion,”
which fuses multiplets from the middle column with an impurity in the conjugate representation Q̄imp ¼ ð0; 1;□Þ [cf. Sec. V B, details
on (C3)], yields the multiplets ðq; S00; λ00Þ. These characterize the CFT boundary operators Ô, with scaling dimensions Δ ¼ Eðq; S; λ00Þ.
Φorb and Φsp are the leading boundary operators in the orbital and spin sectors, respectively. In the spin-splitting regime, their roles are
taken by Ψ̃orb and Ψ̃sp, respectively. “Bare” free-fermion versions of these boundary operators, having the same quantum numbers, are
listed on the very right. For clarity, not all possible multiplets arising from single and double fusion are shown. A more comprehensive
list is given in Table II.

Free fermions Single fusion Double fusion

State q S λ d E q S0 λ0 d0 δE0 q S00 λ00 Δ Ô Ôbare

jFSi 0 0 • 1 0 0 1 9 1
30

0 0 3
5

Φorb T; Jorb

ψ†
mσ jFSi 1 1

2
□ 6 1

2
1 f1

2
; 3
2
g • 6 0 � � �

ψmσ jFSi −1 1
2

6 1
2

−1 1
2

□ 6 4
15

−1 1
2

9
10 Ψ̃orb ðψ†

lσψ lσ − ψ†
mσψmσÞψnσ ,

ψ†
lσψmσψnσ , l ≠ m ≠ n

Jsp-orbjFSi 0 1 24 1 0 0 3 13
30

0 1 • 2
5

Φsp Jsp
� � � −3 1

2
16 3

2
−3 1

2
6 14

15
−3 1

2
• 9

10 Ψ̃sp ψ1σψ2σψ3σ̄
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These fully characterize the strong-coupling fixed point.
Each boundary operator can be viewed as the renormalized
version, resulting from the screening process, of some bare
local operator having the same quantum numbers.
According to AL, the boundary operators can be

obtained via a second fusion step (double fusion)
(cf. Refs. [44–46] and Appendix C of Ref. [57]). Each
multiplet ðq; S00; λ00Þ resulting from double fusion is asso-
ciated with a boundary operator Ô with the same quantum
numbers, and a scaling dimension given byΔ ¼ Eðq; S; λ00Þ
(cf. Table I). The realization that the scaling dimensions of
boundary operators are related to finite-size excitation
energies is due to Cardy [59]. Using a conformal mapping,
he mapped the complex upper half-plane to a strip of
infinite length and finite width, in such a way that the
nontrivial boundary condition of the half-plane is mapped
to both boundaries of the strip. He then showed that the
boundary operators of the half-plane and their scaling
dimensions can be associated with the finite-size spectrum
of a Hamiltonian defined along the width of this strip. Since
the strip has two nontrivial boundaries, one on each side,
the finite-size spectrum can be found using a double-fusion
procedure. The scaling dimensions of the boundary oper-
ators fully determine their time- or frequency-dependent
correlators, hÔðtÞÔð0Þi ∼ t−2Δ and hÔjjÔiω ≃ ω2Δ−1.
To explain the power laws found in the NFL regime of

Figs. 2(c) and 2(d), and particularly the fact that there χimp
orb

and χbathorb exhibit the same power law, while χimp
sp and χbathsp

do not, we posit that the local operators in the orbital and
spin exchange terms of Eq. (1) are renormalized to

Jorb↦Φorb; T↦Φorb; Jsp↦Φsp; S↦S: ð6Þ

HereΦorb has quantum numbers (same as T, Jorb)
and dimension Δorb ¼ 3

5
, while Φsp has quantum numbers

ð0; 1; •Þ (same as S, Jsp) and Δsp ¼ 2
5
(cf. Table I). The local

impurity and bath orbital susceptibilities thus both scale as

χimp;bath
orb ∼ hΦorbjjΦorbiω ∼ ω2Δorb−1 ¼ ω1=5; ð7Þ

and the bath spin susceptibility as

χbathsp ∼ hΦspjjΦspiω ∼ ω2Δsp−1 ¼ ω−1=5: ð8Þ

By contrast, the impurity spin S is not renormalized,
because at the fixed point c�NFL, where J0 ¼ 0, it is
decoupled from the bath. Thus its scaling dimension is
zero. The leading behavior of χimp

sp is obtained by now
taking J0 ≠ 0 but very small ð≪ K0Þ, and doing second-
order perturbation theory in the renormalized spin
exchange interaction. Thus, χimp

sp is proportional to the
Fourier transform of hSðtÞSð0ÞðR dt0J0S ·ΦspÞ2i, and
power counting yields

χimp
sp ∼ ω2Δsp−3 ¼ ω−11=5: ð9Þ

The above predictions are all borne out in Figs. 2(c)
and 2(d).
The remarkably large negative exponent, − 11

5
, for χimp

sp

reflects the fact that the renormalized spin exchange
interaction J0S ·Φsp, with scaling dimension 2

5
< 1, is a

relevant perturbation. Its strength, though initially minis-
cule if J0 ≪ 1, grows under the RG flow, causing a
crossover away from c�NFL for ω≲ Tss. This is reflected
in the level crossings around Tss in the NRG eigenlevel
flow of Fig. 2. In particular, the double-fusion parent
multiplets for Φorb and Φsp, namely and

, undergo level crossings with the downward-
moving multiplets ð−1; 1

2
;□Þ and , respectively.

These in turn are double-fusion parent multiplets for the
boundary operators Ψ̃orb and Ψ̃sp, with scaling dimensions
Δ̃orb ¼ Δ̃sp ¼ 9

10
(Table I). To explain the SS regime of

Figs. 2(c) and 2(d), and particularly that there the power
laws for χimp and χbath match in both the orbital and spin
sectors, we posit the RG replacements

Jorb ↦ Ψ̃orb; T ↦ Ψ̃orb;

Jsp ↦ Sþ Ψ̃sp; S ↦ Sþ Ψ̃sp:

Here Sþ Ψ̃sp is symbolic notation for some linear admix-
ture of both operators, induced by the action of the
renormalized spin exchange interaction. We thus obtain

χimp;bath
orb ∼ hΨ̃orbjjΨ̃orbiω ∼ ω2Δ̃orb−1 ¼ ω4=5; ð10Þ

and the leading contribution to χimp
sp and χbathsp , obtained by

perturbing hSðtÞSð0Þi to second order in SΨ̃sp [60], is

χimp;bath
sp ∼ ω2Δ̃sp−3 ¼ ω−6=5: ð11Þ

This reproduces the power laws found in Figs. 2(c)
and 2(d).
Remarkably, χimp

sp ∼ ω−6=5 behavior has also been found
in studies of the self-consistent 3oAH model arising in our
DMFT investigations of the three-orbital Hubbard-Hund
model for Hund metals. For the 3oAH model the spin-
orbital coupling I0 in Eq. (1) is always nonzero, so that a
fully fledged NFL does not emerge—instead, Torb and Tss
effectively coincide (as further discussed in Sec. VI).
However, the SS regime between Tsp and Tss ≃ Torb can
be quite wide, typically at least an order of magnitude. In
Fig. 3(c) of Ref. [22], the behavior of χimp

sp in this regime
(between the vertical solid and black lines there) is
consistent with ω−6=5 behavior. Though this fact was not
noted in Ref. [22], it was subsequently pointed out in
Ref. [14] (see Fig. S1 of their Supplemental Material).
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Behavior consistent with χimp
sp ∼ ω−6=5 can also be seen in

Figs. 5.1(c) and 5.1(d) of Ref. [47], as discussed on p. 152
therein. The explanation for this behavior presented here,
via a CFTanalysis of the NFL and SS regimes, is one of the
main results of this work, and the justification for the first
part of the title of this paper.

C. Fermi-liquid regime

As mentioned above, the low-energy regime below Tsp is
a FL. The fixed-point spectrum at c�FL can be obtained by
fusing a free-fermion spectrum with an impurity with
Qimp ¼ ð1; 3

2
; •Þ, representing the effective local degree

of freedom obtained after completion of orbital screening
(see Table III). Since the ground state describes a fully
screened orbital and spin singlet, it actually is the singlet of
a larger symmetry group, Uð1Þ × SUð6Þ. Indeed, the fixed-
point spectrum at c�FL matches that of the Uð1Þ × SUð6Þ
symmetric Kondo model. We demonstrate this, using
both NRG and CFT with SUð6Þ1 fusion rules, in Sec. V E
(see Table IV). The FL nature of the ground state is also
borne out by the ω1 scaling of χimp;bath

sp in the FL regime of
Figs. 2(c) and 2(d).

V. CFT ANALYSIS: DETAILS

We now provide technical details for our CFTanalysis of
the NFL and FL fixed points of the three-orbital Kondo
model discussed in Secs. III and IV. We closely follow the
strategy devised by Affleck and Ludwig for their pioneer-
ing treatment of the strong-coupling fixed points of Kondo
models [42–46] (for pedagogical reviews, see Refs. [58,61]
and Appendixes A–D of Ref. [57]). In a series of works,
they considered a variety of Kondo models of increasing
complexity. These include the standard one-channel,
SU(2) spin Kondo model with a spin exchange interac-
tion between bath and impurity with Uð1Þ × SUð2Þ1
symmetry; a spinful k-channel bath coupled to an SU(2)
impurity [Uð1Þ × SUð2Þk × SUðkÞ2 symmetry], and a
SUðNÞ k-channel bath coupled to an SUðNÞ impurity
[Uð1Þ × SUðNÞk × SUðkÞN symmetry].
Our 3soK model features a spinful three-channel bath

and an SUð2Þsp × SUð3Þorb impurity [Uð1Þ × SUð2Þ3 ×
SUð3Þ2 symmetry]. The impurity multiplet is a direct
product of a spin triplet (S ¼ 1) and an orbital triplet

. Its direct-product structure is more general than
any of the cases considered by AL. [A two-channel version
of our model, with Uð1Þ × SUð2Þ2 × SUð2Þ2 symmetry,
has been studied by Ye [48], which we discuss in the
Appendix.] However, at the NFL fixed point c�NFL of our
model, where J0 ¼ I0 ¼ 0, the impurity’s SU(2) spin is a
decoupled, threefold degenerate spectator degree of free-
dom. Hence AL’s analysis [46] can be employed, with
N ¼ 3 and k ¼ 2 channels, modulo some minor changes to
account for the impurity spin.

By contrast, in the spin-splitting crossover regime the
spin exchange interaction comes to life, so that the
impurity’s SU(2) spin degrees of freedom cease to be mere
spectators. This regime thus lies outside the realm of cases
studied by AL; in particular, it is not manifestly governed
by the NFL fixed point c�NFL, or any other well-defined
fixed point. Correspondingly, our discussion of this cross-
over regime in Sec. V C 2 is more speculative than that of
the NFL regime, though our heuristic arguments are guided
by and consistent with our NRG results.
Finally, for our model’s FL fixed point c�FL, we are again

in well-chartered territory: it can be understood by applying
AL’s strategy to an SU(6) one-channel bath coupled to an
SU(6) impurity [Uð1Þ × SUð6Þ1 symmetry].
Below we assume the reader to be familiar with AL’s

work and just focus on documenting the details of our
analysis. Section VA describes how the free-fermion
bath spectrum is decomposed into charge, spin, and orbital
excitations using Uð1Þ × SUð2Þ3 × SUð3Þ2 non-Abelian
bosonization. Section V B derives the finite-size spectrum
and boundary operators of the NFL fixed point via single
and double fusion, using the fusion rules of the SUð3Þ2
Kac-Moody algebra in the orbital sector and the SU(2)
Lie algebra in the spin sector. Section V C describes the
computation of the spin and orbital susceptibilities in the
NFL and SS regimes, linking AL’s strategy for computing
such quantities to the compact scaling arguments used in
Sec. IV. Section V D presents our results for the impurity
spectral function in the NFL regime. Finally, Sec. V E,
devoted to the FL regime, shows how its spectrum can
be derived using either SUð2Þ3 fusion rules in the spin
sector or SUð6Þ1 fusion rules in the flavor (combined
spinþ orbital) sector.

A. Non-Abelian Uð1Þ × SUð2Þ3 × SUð3Þ2 bosonization

(C1) The first step of AL’s CFT approach for multi-
channel Kondo models is to use non-Abelian bosonization
to decompose the bath degrees of freedom into charge,
spin, and orbital excitations in a manner respecting the
symmetry of the impurity-bath exchange interactions.
Our 3soK model features a spinful three-channel bath,
with Hbath ¼

P
pmσ εpψ

†
pmσψpmσ. We assume a linear

dispersion, εp ¼ ℏvFp, with ℏvF ¼ 1. Using non-
Abelian bosonization with the Uð1Þ × SUð2Þ3 × SUð3Þ2
Kac-Moody current algebra, the spectrum of bath excita-
tions can be expressed as (see Refs. [42,44] or Appendix A
of Ref. [57])

Eðq; S; λÞ ¼ 1

12
q2 þ 1

5
κ2ðSÞ þ

1

5
κ3ðλÞ þ l; ð12aÞ

κ2ðSÞ ¼ SðSþ 1Þ; ð12bÞ

κ3ðλÞ ¼
1

3
ðλ21 þ λ22 þ λ1λ2 þ 3λ1 þ 3λ2Þ: ð12cÞ
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Here κ2ðSÞ and κ3ðλÞ are the eigenvalues of the quadratic
Casimir operators of the SU(2) and SU(3) Lie algebras,
respectively [62]. q ∈ Z is the U(1) charge quantum
number, S ∈ 1

2
Z the SU(2) spin quantum number, and

λ ¼ ðλ1; λ2Þ the SU(3) orbital quantum number, denoting a
Young diagram with λj j-row columns:

Finally, l ∈ Z counts higher-lying “descendent” excita-
tions; for present purposes it suffices to set l ¼ 0.
The free-fermion spectrum of Hbath is recovered from

Eq. (12) by imposing free-fermion “gluing conditions,”
allowing only those combinations of quantum numbers
ðq; S; λÞ for which Eðq; S; λÞ is an integer multiple of 1=2.
The resulting multiplets are listed in the left-hand column
(“Free fermions”) of Table II.

B. Non-Fermi-liquid fixed point

(C2) We now focus on the NFL fixed point of the 3soK
model, at c�NFL, where ðJ0; K0; I0Þ ¼ ð0; 1; 0Þ. According
to AL’s general strategy, the orbital isospin T can be then
“absorbed” by the bath through the substitution

Jorb;n ↦ J orb;n ¼ Jorb;n þ T: ð13Þ

Here Jorb;n and J orb;n are Fourier components (n being a
Fourier index) of the bare and bulk orbital isospin currents,
respectively, defined for a bath in a finite-sized box. (The
local bath operator Jorb is proportional to

P
n∈Z Jorb;n.) The

right-hand side of Eq. (13) is reminiscent of the addition of
Lie algebra generators, S0 ¼ Sþ S̃, when performing a
direct product decomposition, S ⊗ S̃ ¼ P

⊕ S0, of SU(2)
multiplets. The terms added in Eq. (13), however, generate
two different algebras: Jorb;n are generators of the SUð3Þ2
KM algebra, T of the SU(3) Lie algebra. AL proposed a
remarkable fusion hypothesis for dealing with such sit-
uations (and confirmed its veracity by detailed comparisons
to Bethe ansatz and NRG computations). For the present
context their fusion hypothesis states: the eigenstates of the
combined bathþ impurity system can be obtained by
combining (or “fusing”) their orbital degrees of freedom,
λ ⊗ λimp ¼

P
⊕ λ0, using the fusion rules of the SUð3Þ2

KM algebra, as though the impurity’s orbital multiplet were
an SUð3Þ2, not SU(3), multiplet. The SUð3Þ2 fusion rules
are depicted in Table S2 of the Supplemental Material [54].
Having discussed orbital fusion, we now turn to the spin

sector—how should the impurity’s spectator spin be dealt
with? This question goes beyond the scope of AL’s work,
who did not consider impurities with spectator degrees of
freedom. We have explored several spin fusion strategies
and concluded that the following one yields spectra
consistent with NRG: In parallel to orbital fusion, the bath
and impurity spin degrees should be combined too, as

TABLE II. Fusion table for orbital screening at the NFL fixed point c�NFL of the 3soK model. Left: The 14 lowest low-lying free-
fermion multiplets ðq; S; λÞ, with multiplet dimensions d and energies Eðq; S; λÞ, computed using Eqs. (12) and Table S1 of the SM [54].
Center: Single fusion with a impurity, using SU(2) fusion rules in the spin sector and SUð3Þ2 fusion rules (listed in
Table S2 of the SM [54]) in the orbital sector. This yields multiplets ðq; S0; λ0Þ, with dimensions d0, energies E0 ¼ Eðq; S; λ0Þ, and
excitation energies δE0 ¼ E0 − E0

min. These are compared to the values, ENRG, computed by NRG for ðJ0; K0; I0Þ ¼ ð0; 0.3; 0Þ. The NRG
energies have been shifted and rescaled such that the lowest energy is zero and the second-lowest values for ENRG and δE0 match. The
single-fusion and NRG spectra agree well (deviations ≲10%). Right: Double fusion, which fuses multiplets from the middle column
with an impurity in the conjugate representation Q̄imp ¼ ð0; 1;□Þ, yields the quantum numbers ðq; S00; λ00Þ. These characterize the CFT
boundary operators Ô, with scaling dimensions Δ ¼ Eðq; S; λ00Þ.

(Table continued)
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TABLE II. (Continued)

(Table continued)
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S ⊗ Simp ¼
P

⊕ S0, but using the fusion rules of the SU(2)
Lie algebra, not the SUð2Þ3 KM algebra. Heuristically,
the difference—KM versus Lie—between the algebras
governing orbital and spin fusion reflects the fact that

the bath and impurity are coupled in the orbital sector,
where the bath “absorbs” the impurity orbital isospin, but
decoupled in the spin sector, where the impurity spin
remains a spectator.

TABLE II. (Continued)
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The fusion of bath and impurity degrees of freedom,
called single fusion byAL, is illustrated schematically in the
left-hand part of Fig. 3 for four selected multiplets. Table II
gives a comprehensive list of low-lying multiplets obtained
in this manner. On the left it enumerates the 14 lowest-lying
multiplets, ðq; S; λÞ, of the free bath, with dimensions d and
energies Eðq; S; λÞ. Fusing these with a
impurity yields the multiplets ðq; S0; λ0Þ listed in the center.
Their energies are given byE0 ¼ Eðq; S; λ0Þ, notEðq; S0; λ0Þ,
since at the NFL fixed point, where J0 ¼ I0 ¼ 0, the
impurity spin is decoupled from the bath.
The single-fusion excitation energies, δE0 ¼ E0 − E0

min,
relative to the lowest-lying multiplet (E0

min ¼ 7=30) are in
good agreement (deviations ≲10%) with the values, ENRG,
found by NRG (for K0 ¼ 0.3, J0 ¼ I0 ¼ 0) for multiplets
with corresponding quantum numbers. The agreement
improves upon decreasing the NRG discretization para-
meter Λ (here Λ ¼ 2.5 was used). This remarkable agree-
ment between CFT predictions and NRG confirms the
applicability of the SUð2Þ ⊗ SUð3Þ2 fusion hypothesis
proposed above.
(C3) As mentioned in Sec. IV, the fixed point c�NFL is

characterized by a set of local operators, called boundary
operators by AL (since they live at the impurity site, i.e., at
the boundary of the two-dimensional space-time on which
the CFT is defined). These can be obtained by a second
fusion step, called double fusion by AL: the multiplets

ðq; S0; λ0Þ obtained from single fusion are fused with the
conjugate impurity representation, Q̄imp ¼ ð0; 1;□Þ, to
obtain another set of multiplets, ðq; S00; λ00Þ, listed on the
right-hand side of Fig. 3 and Table II. (The conjugate
impurity representation has to be used for double fusion to
ensure that the set of boundary operators contains the
identity operator, λ̄ ⊗ λ ¼ 1.) Each such multiplet is asso-
ciated with a boundary operator Ô with the same quantum
numbers and scaling dimension, Δ ¼ E00 ¼ Eðq; S; λ00Þ.
The operators calledΦorb andΦsp are the leading boundary
operators (with smallest scaling dimension) in the orbital
and spin sectors, respectively. They determine the behavior
of the orbital and spin susceptibilities in the NFL regime
(see Sec. V C). In the spin-splitting regime, their role is
taken by the operators Ψ̃orb and Ψ̃sp, respectively, as
discussed in Sec. IV.

C. Scaling behavior of the susceptibilities

In this section, we compute the leading frequency
dependence of the dynamical spin and orbital suscepti-
bilities. We begin with the NFL regime, where we directly
follow the strategy used by AL in Sec. 3.3 of Ref. [44]
and show how it reproduces the results presented in
Sec. IV. Thereafter we discuss the SS regime, which has
no analog in AL’s work, using somewhat more heuristic
arguments.

FIG. 3. Schematic depiction of single fusion (left) and double fusion (right), for the four multiplets giving rise to the boundary
operatorsΦorb,Φsp, Ψ̃orb, Ψ̃sp discussed in Sec. IV (corresponding to rows 1, 3, 4, 5 in Table I). Filled arrows represent electrons, empty
arrows represent holes. An electron with spin ↑ and a hole with spin⇓ (missing electron with spin ↑) can be combined to annihilate each
other, as indicated by small dashed circles in the last column. Our illustrations depict the impurity using a fermionic representation, as
would be appropriate for the 3oAH model, even though the 3soK impurity has no charge dynamics. In the “single fusion” column,
excitations of the free bath are fused with the impurity, , to obtain the eigenmultiplets of the full system at the NFL
fixed point. In the “double fusion” column (right), the single-fusion results are fused with the conjugate impurity representation,
Q̄imp ¼ ð0; 1;□Þ. Each of the resulting multiplets is associated with a boundary operator having the same quantum numbers. Colors
relate the multiplets obtained after single fusion to the corresponding lines in Fig. 2.
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1. NFL regime

At the NFL fixed point, the impurity’s orbital isospin T
has been fully absorbed into the bath orbital current J orb
[cf. Eq. (13)]. From this perspective, the impurity orbital
susceptibility χimp

orb is governed by the leading local per-
turbation of the bulk orbital susceptibility, χbulkorb ∼
hJ bulk

orb kJ bulk
orb iω, where J bulk

orb ðtÞ ¼
R
∞
−∞ dxJ orbðt; xÞ ∼

J orb;n¼0 is the bulk orbital current. The leading local
perturbations are those combinations of boundary operators
(found via double fusion; see Table II) having the smallest
scaling dimensions and the same symmetry as the bare
Hamiltonian [43–45].
In the orbital sector, the leading boundary operator is

Φorb, with quantum numbers and scaling dimen-
sion Δorb ¼ 3

5
(cf. Tables I and II). The orbital current J orb

has the same quantum numbers. Its first descendantJ orb;−1
can be combined with Φorb to obtain an orbital SU(3)
singlet boundary operator, H0

orb ¼ J orb;−1 ·Φorb, with
scaling dimension 1þ Δorb ¼ 1þ 3

5
. This is the leading

irrelevant (dimension > 1) boundary perturbation to the
fixed-point Hamiltonian in the orbital sector. Its contribu-
tion to the impurity orbital susceptibility, χimp

orb ∼ χbulkorb ,
evaluated perturbatively to second order, is

χimp
orb ðωÞ ∼

Z
∞

−∞
dt1

Z
∞

−∞
dt2

Z
∞

−∞
dt3eiωt1

× hJ bulk
orb ðt1Þ ·J bulk

orb ð0ÞH0
orbðt2ÞH0

orbðt3Þi
∼ ω2Δorb−1 ¼ ω1=5: ð14Þ

The last line follows by power counting (J bulk
orb has

dimension 0, each time integral dimension −1).
The local bath site coupled to the impurity will show the

same behavior, χbathorb ∼ ω1=5, since the orbital exchange
interaction strongly couples its orbital isospin Jorb to T—
indeed, J orb is constructed from a linear combination of
both these operators [cf. Eq. (13)].
The above results can be obtained in a more direct way

by positing that at the NFL fixed point, orbital screening
causes both T and Jorb to be renormalized into the same
boundary operator Φorb. We then obtain

χimp
orb ðωÞ ∼ χbathorb ðωÞ ∼ hΦorbkΦorbiω ∼ ω2Δorb−1; ð15Þ

reproducing Eq. (14). This is the argument presented
in Sec. IV.
We next turn to the spin sector. Exactly at the NFL

fixed point, where J0 ¼ I0 ¼ 0, the impurity spin S is
decoupled from the bath. At c�NFL it hence has no dynamics,
scaling dimension 0, and a trivial spin susceptibility,
χimp
sp ðωÞ ∼ δðωÞ. By contrast, χbathsp , the susceptibility of
Jsp, the local bath spin coupled to the impurity, does show
nontrivial dynamics at the fixed point. The reason is that

some of the boundary operators induced by orbital screen-
ing actually live in the spin sector (a highly nontrivial
consequence of non-Abelian bosonization and orbital
fusion). The leading boundary operator in the spin sector
is Φsp, with quantum numbers ð0; 1; •Þ and scaling dimen-
sion Δsp ¼ 2

5
(cf. Tables I and II). It can be combined

with the first descendant of the (bare, unshifted) spin
current to obtain a spin SU(2) singlet boundary operator,
H0

sp ¼ Jsp;−1 ·Φsp, with scaling dimension 1þ Δsp ¼
1þ 2

5
. This is the leading irrelevant boundary perturbation

to the fixed-point Hamiltonian in the spin sector. Its con-
tribution to the local bath spin susceptibility, χbathsp ∼ χbulksp ,
evaluated to second order, is

χbathsp ðωÞ ∼
Z

∞

−∞
dt1

Z
∞

−∞
dt2

Z
∞

−∞
dt3eiωt1

× hJbulksp ðt1Þ · Jbulksp ð0ÞH0
spðt2ÞH0

spðt3Þi
∼ ω2Δsp−1 ¼ ω−1=5: ð16Þ

This result, too, can be obtained more directly, by positing
that Jsp is renormalized to Φsp, with

χbathsp ðωÞ ∼ hΦspkΦspiω ∼ ω2Δsp−1; ð17Þ

as argued in Sec. IV.
If the system is tuned very slightly away from the NFL

fixed point, J0 ≪ 1, I0 ¼ 0, the impurity spin does acquire
nontrivial dynamics, due to the action of the spin exchange
interaction, J0S · Jsp. According to the above argument,
orbital screening renormalizes it to J0S ·Φsp. Its second-
order contribution to the impurity spin susceptibility is

χimp
sp ðωÞ ∼

Z
∞

−∞
dt1

Z
∞

−∞
dt2

Z
∞

−∞
dt3eiωt1

× hSðt1Þ · Sð0ÞðS ·ΦspÞðt2ÞðS ·ΦspÞðt3Þi
∼ ω2Δsp−3 ¼ ω−11=5: ð18Þ

The occurrence of such a large, negative exponent for the
spin susceptibility is very unusual. It reflects the fact that
near (but not at) the NFL fixed point the impurity spin is
almost (but not fully) decoupled from the bath, and hence
able to “sense” that orbital screening modifies the bath spin
current in a nontrivial manner.

2. Spin-slitting regime

The renormalized exchange interaction J0S ·Φsp is a
relevant perturbation, with scaling dimension 2

5
< 1. It

grows under the RG flow, eventually driving the system
away from the NFL fixed point and into a crossover regime,
Tsp < ω < Tss, called the spin-splitting regime in Sec. III.
In the NRG flow diagram of Fig. 2(a), this regime is
characterized by level crossings, extending over several
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orders of magnitude in energy, rather than a stationary level
structure. Hence the SS regime cannot be characterized by
proximity to some well-defined fixed point. (A stationary
level structure, characteristic of a FL fixed point, emerges
only after another crossover, setting in at the scale Tsp.)
Nevertheless, Figs. 2(c) and 2(d) show that the local orbital
and spin susceptibilities do exhibit well-defined power-law
behavior in the SS regime:

χimp;bath
orb ðωÞ ∼ ω4=5; χimp;bath

sp ðωÞ ∼ ω−6=5: ð19Þ

We define the width of the SS regime as the energy range
showing this behavior. It extends over about 3 orders of
magnitude, independent of J0 and I0—increasing either of
these couplings rigidly shifts the SS regime to larger
energies without changing its width (see Fig. 4); i.e., the
ratio Tsp=Tss is independent of these couplings.
The latter fact leads us to conjecture that the NFL fixed

point does, after all, govern the SS regime too, though
“from afar” rather than from up close. In technical terms,
we conjecture that the leading behavior in the SS regime is
governed by two different boundary operators, Ψ̃orb and
Ψ̃sp, with scaling dimensions Δ̃orb ¼ Δ̃sp ¼ 9

10
(cf. Tables I

and II) instead of the boundary operators Φorb and Φsp

governing the NFL regime. This conjecture is encoded in
the equation above Eq. (10). It states that Jorb and T are
both renormalized to Ψ̃orb, causing χbathorb and χimp

orb to scale
with the same power,

χbath;imp
orb ∼ hΨ̃orbkΨ̃orbiω ∼ ω2Δ̃orb−1 ¼ ω4=5; ð20Þ

and that Jsp and S are both renormalized to Sþ Ψ̃sp,

causing χbathsp and χimp
sp to scale with the same power,

χbath;imp
sp ∼ hΨ̃spkΨ̃spiω ∼ ω2Δ̃sp−3 ¼ ω−6=5: ð21Þ

The latter result is obtained in a manner analogous to
Eq. (18), with S ·Φ replaced by SΨ̃sp [60].

D. Impurity spectral function

We next consider the leading frequency dependence
of the impurity spectral function in the NFL regime.
For a Kondo-type impurity, this function is given by
−ð1=πÞImT ðωÞ, where T ðωÞ ¼ hOmσkO†

mσiω is the impu-
rity T matrix, with Omσ ¼ ½ψmσ; Hint� [63].
As discussed in Sec. V C 1, the leading irrelevant

boundary operators in the NFL regime are H0
orb ¼ J orb;−1 ·

Φorb and H0
sp ¼ Jsp;−1 ·Φsp, with scaling dimensions 1þ

Δorb ¼ 1þ 3
5
and 1þ Δsp ¼ 1þ 2

5
, respectively. AL have

shown that a boundary perturbation of this type, with
dimension 1þ Δ, causes the T matrix to acquire a leading
frequency dependence of ImT ∼ jωjΔ [45].
For ω > 0, our NRG results are consistent with ImT ∼

ω3=5 (cf. Fig. 5). This suggests that the prefactor of H0
orb

is much larger than that of H0
sp, presumably because the

computation was done for J0¼I0¼0. For ω < 0, by con-
trast, our numerical results do not exhibit clear power-law

(a)
(b) (c) (d)

(h)(g)(f)
(e)

FIG. 4. Imaginary part of the zero-temperature impurity spin and orbital susceptibilities for the 3soK model. We keep K0 ¼ 0.3 fixed
throughout, and (a)–(d) vary J0 at fixed I0 ¼ 10−6, or (e)–(h) vary I0 at fixed J0 ¼ 0. (a)–(d) As J0 is increased from 0 (left) to 10−1

(right), the width of the NFL regime ½Tss; Torb� shrinks, while that of the SS regime ½Tsp; Tss� remains constant. (e)–(h) We find the same
behavior when increasing I0 with K0 and J0 kept fixed.
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behavior for small jωj, implying that ImT does not have
particle-hole symmetry. This is not surprising: the 3soK
model itself breaks particle-hole symmetry, since under a
particle-hole transformation, the impurity’s orbital multiplet
is mapped to□. We suspect that the prefactor of the jωjΔorb

contribution to ImT vanishes for ω < 0 for the impurity
orbital representation , such that only subleading boundary
operators, with dimensions Δ ≥ 9=10 (cf. Table II),
determine the small-ω scaling behavior. However, a detailed
understanding of this matter is still lacking.

E. Fermi-liquid fixed point

In this section we show how the FL spectrum at the fixed
point c�FL can be derived analytically. This can be done in
two complementary ways. The first uses SUð2Þ3 fusion in
the spin sector, the second SUð6Þ1 fusion in the flavor
(combined spinþ orbital) sector.

1. Fermi-liquid spectrum via SUð2Þ3 fusion

It is natural to ask whether the FL spectrum at c�FL can be
derived from the NFL spectrum of c�NFL via some type of
fusion in the spin sector, reflecting spin screening induced
by the spin exchange interaction. For example, we have tried
the following simple strategy (“naive spin fusion”): when
setting up the fusion table (Table II), the bath and impurity
spin degrees of freedom are combined, S ⊗ Simp ¼

P
⊕ S0,

using the fusion rules of the SUð2Þ3 KMalgebra (Table S3 in
the SM [54]) instead of the SU(2) Lie algebra, and the orbital
degrees of freedom, λ ⊗ λimp ¼

P
⊕ λ0, using SUð3Þ2 KM

fusion rules (as before; see Table S2 in the SM [54]).
Moreover, the energies of the resulting multiplets are
computed as Eðq; S0; λ0Þ, not Eðq; S; λ0Þ. However, this
naive spin fusion strategy completely fails to reproduce
the FL fixed point spectrum obtained by NRG, yielding
completely different excitation energies and degeneracies.
We suspect that this failure is due to the fact that the RG

flow does not directly pass from the NFL regime into the
FL regime, but first traverses the intermediate SS regime.

TABLE III. Fusion table for spin screening at the FL fixed point c�FL of the 3soK model. It has the same structure as Table II, but here
single fusion of bath and impurity multiplets in the charge and spin sectors is performed using Uð1Þ × SUð2Þ3 fusion rules (listed in
Table S3 of the SM [54]). Moreover, we choose Qimp ¼ ð1; 3

2
; •Þ for the impurity, representing the effective local degree of freedom

obtained after the completion of orbital screening. The resulting multiplets ðq0; S0; λÞ have eigenenergies E0 ¼ Eðq0; S0; λÞ and excitation
energies δE0 ¼ E0 − E0

min. The NRG energies, computed for ðJ0; K0; I0Þ ¼ ð10−4; 0.3; 0Þ, have been shifted and rescaled such that the
lowest energy is zero and the second-lowest values for ENRG and δE0 match. The single-fusion and NRG spectra agree very well
(deviations ≲2%).

Free fermions Single fusion, with Qimp ¼ ð1; 3
2
; •Þ NRG Double fusion, with Q̄imp ¼ ð−1; 3

2
; •Þ

q S λ d E q0 S0 λ0 d E0 δE0 ENRG q00 S00 λ00 Δ

0 0 • 1 0 þ1 3
2

• 4 5
6

1
2

0.50 0 0 • 0

þ1 1
2

□ 6 1
2

þ2 1 □ 9 1 2
3

0.67 þ1 1
2

□ 1
2

−1 1
2

6 1
2

0 1 9 2
3

1
3

0.33 −1 1
2

1
2

0 1 24 1 þ1 1
2

16 5
6

1
2

0.50 0 1 1

þ2 0 6 1 þ3 3
2

24 13
6

11
6

1.87 þ2 0 1

−2 0 6 1 −1 3
2

24 3
2

7
6

1.16 −2 0 1

þ2 1 9 1 þ3 1
2

6 7
6

5
6

0.84 þ2 1 1

−2 1 □ 9 1 −1 1
2

□ 6 1
2

1
6

0.17 −2 1 □ 1

þ1 3
2

24 3
2

þ2 0 6 1 2
3

0.68 þ1 3
2

3
2

−1 3
2

24 3
2

0 0 6 2
3

1
3

0.34 −1 3
2

3
2

�3 1
2

16 3
2

−2 1 24 4
3

1 0.99 −3 1
2

3
2

�3 3
2

• 4 3
2

−2 0 • 1 1
3

0 0.00 −3 3
2

• 3
2

FIG. 5. Impurity spectral function, computed by FDM NRG
[52], for ðJ0; K0; I0Þ ¼ ð0; 0.3; 0Þ. For ω > 0, the ω3=5 behavior
is consistent with a boundary perturbation given by H0

orb. For
ω < 0, clear power law cannot be determined.

UNCOVERING NON-FERMI-LIQUID BEHAVIOR IN HUND … PHYS. REV. X 10, 031052 (2020)

031052-17



In the latter, the degeneracy between the two degenerate
ground state multiplets of the NFL regime, ð1; 1

2
; •Þ and

ð1; 3
2
; •Þ, is lifted, in a manner that seems to elude a simple

description via a modified spin fusion rule.
Instead, the FL spectrum can be obtained via the

following arguments. The ground state multiplet of the
SS regime, ð1; 3

2
; •Þ, describes an effective local degree of

freedom coupled to a bath in such a manner that one bath
electron fully screens the impurity orbital isospin, while
their spins add to a total spin of 1

2
þ 1 ¼ 3

2
[see Fig. 2(b)]. Let

us view this as an effective impurity with Qimp ¼
ð1; 3

2
; •Þ. If we combine its charge and spin degrees of

freedom with those of a free bath, using qþ qimp ¼ q0 and
S ⊕ Simp ¼

P
⊕ S0, fused according to the SUð2Þ3 KM

algebra, the resulting single-fusion spectrum fully repro-
duces the FL spectrum found byNRG, as shown in Table III.

2. Fermi-liquid spectrum via SUð6Þ1 fusion

The FL ground state of the 3soK model is a fully
screened spin and orbital singlet. It is therefore natural to
expect that the FL spectrum has a higher symmetry, namely
that of the group Uð1Þ × SUð6Þ, which treats spin and
orbital excitations on an equal footing.
This is indeed the case: we now show that the FL

spectrum of the 3soK model discussed above matches
that of an SU(6) Kondo model which does not distinguish
between spin and orbital degrees of freedom. We con-
sider a bath with six flavors of electrons, Hbath ¼P

p

P
6
ν¼1 εpψ

†
pνψpν and an impurity-bath coupling of

the form JUU · Jfl. Here Jfl is the flavor density at the
impurity site, with Jafl ¼ ψ†

ν
1
2
λaνν0ψν0 , where λa are SU(6)

matrices in the fundamental representation, andU describes
the impurity’s SU(6) flavor isospin, chosen in the fully
antisymmetric representation . The latter has dimension
15, representing the ð6

2
Þ ways of placing two identical

particles into six available states.

Figure 6 shows the NRG finite-size eigenlevel flow
for this model. It exhibits a single crossover from a
free-impurity fixed point, with ground state multiplet

, to a FL fixed point, whose ground state
multiplet ð−2; •Þ involves complete screening of the
impurity’s flavor isospin degree of freedom.
This crossover can be described analytically by using

non-Abelian bosonization followed by flavor fusion. We
begin by using non-Abelian bosonization with the Uð1Þ ×
SUð6Þ1 KM current algebra to express the bath excitation
spectrum in the form

Eðq; λÞ ¼ 1

12
q2 þ 1

7
κ6ðλÞ þ l; ð22aÞ

κ6ðλÞ ¼
1

12
ð5λ21 þ 8λ22 þ 9λ23 þ 8λ24 þ 5λ25Þ

þ 1

2
ð5λ1 þ 8λ2 þ 9λ3 þ 8λ4 þ 5λ5Þ

þ 1

6
ð6λ2λ3 þ 6λ3λ4 þ 4λ1λ2 þ 4λ2λ4 þ 4λ4λ5

þ 3λ1λ3 þ 3λ3λ5 þ 2λ1λ4 þ 2λ2λ5 þ λ1λ5Þ; ð22bÞ

with l ∈ Z, where κ6ðλÞ is the quadratic Casimir for
the representation λ ¼ ðλ1; λ2; λ3; λ4; λ5Þ of the SU(6) Lie
algebra [62]. [The contributions from the two terms of
Eq. (22a) are listed in Table S4 in the SM [54] for all q and
λ values needed in Table IV.] The few lowest-lying ðq; λÞ

FIG. 6. NRG results for the SU(6) Kondo model with JU ¼ 0.1,
shown using as reference energy. The compu-
tation was performed using QSpace [50] to exploit the model’s full
Uð1Þ × SUð6Þ symmetry. (NRG parameters: Λ ¼ 2.5,
Nkeep ¼ 2000, D ¼ 1.)

TABLE IV. Fusion table for flavor screening at the FL fixed
point of the SU(6) Kondo model. The table has the same structure
as the left and center parts of Table II, but here the free bath
excitations are labeled ðq; λÞ, their energies are computed using
Eqs. (22) and Table S4 of the SM [54], and flavor fusion with

is performed using SUð6Þ1 fusion rules (listed in
Table S5 of the SM [54]). The resulting multiplets ðq; λ0Þ have
eigenenergies E0 ¼ Eðq; λ0Þ, degeneracies d0, and excitation
energies δE0 ¼ E0 − E0

min. The FL spectrum, obtained by Uð1Þ ×
SUð6Þ NRG calculations (Fig. 6) for JU ¼ 0.1, is shown on the
right. It has been shifted and rescaled such that the lowest energy
is zero and the second-lowest values for ENRG and δE0 match. The
single-fusion and NRG spectra agree very well (deviations≲1%).

Free fermions Single fusion, NRG

q λ d E q λ0 d0 E0 δE0 ENRG

0 • 1 0 0 15 2
3

1
3

0.33

þ1 □ 6 1
2

þ1 20 5
6

1
2

0.50

−1 6 1
2

−1 □ 6 1
2

1
6

0.17

þ2 15 1 þ2 15 1 2
3

0.67

−2 15 1 −2 • 1 1
3

0 0

�3 20 3
2

�3 6 7
6

5
6

0.84
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multiplets of the free bath, having Eðq; λÞ ∈ 1
2
Z, are listed

on the left-hand side of Table IV. The strong-coupling FL
spectrum can be obtained by combining the bath and
impurity flavor degrees of freedom, λ ⊗ λimp ¼

P
⊕ λ0,

using the fusion rules of the SUð6Þ1 KM algebra (see
Table S5 in the SM [54]). The resulting multiplets ðq; λ0Þ
are listed in the center of Table IV. Their eigenenergies fully
match those from NRG.

VI. THREE-ORBITAL ANDERSON-KONDO
MODEL

The 3soK model, which we study in detail above, is
derived from the more realistic 3oAH model by a
Schrieffer-Wolff transformation. In the following, we
explore another route for smoothly connecting the physics
of the two models, namely starting from the 3oAH model
and then additionally turning on the spin and orbital
exchange couplings of the 3soK model.
The Hamiltonian of the 3oAH model [22] has the

following form: Hbath þHhyb þH3oAH,

H3oAH¼ 3

4
JHNimpþ

1

2

�
U−

1

2
JH

�
NimpðNimp−1Þ−JHS2;

Hhyb ¼
X
pmσ

Vpðf†mσψpmσþH:c:Þ;

with the impurity occupation Nimp ¼
P

mσ f
†
mσfmσ, where

f†mσ creates an impurity electron with spin σ in orbital m.
A hybridization function, ΓðεÞ ¼ π

P
p jVpj2δðε − εpÞ≡

ΓΘðD − jεjÞ, controls the hopping between the impurity
and the bath. U is the local Coulomb interaction and JH the
Hund’s coupling, favoring a large spin. To this Hamiltonian
we add J0S · Jsp þ K0T · Jorb, the Kondo-type spin and
orbital exchange couplings between impurity and bath from
Eq. (1), with Sα ¼ f†mσ

1
2
σασσ0fmσ0 , Ta ¼ f†mσ

1
2
τamm0fm0σ . We

treat J0 andK0 as free parameters and use them to “deform”
the 3oAH model in a way that widens the SOS regime
between Tsp and Torb.
Figures 7(a)–7(d) show how the spin and orbital sus-

ceptibilities change upon increasing jJ0j and jK0j, with

J0 < 0 and K0 > 0. A pure 3oAH model, with ðJ0; K0Þ ¼
ð0; 0Þ, clearly shows spin-orbital separation, but Tsp and
Torb differ by less than two decades [Fig. 7(a); see also
Ref. [22] ]. Though the SOS window is too small to reveal a
true power law for χimp

sp , the hints of ω−6=5 behavior are
already discernable. Turning on the additional exchange
coupling terms, with J0 < 0 and K0 > 0, causes Tsp to
decrease and Torb to increase, respectively, widening the
SOS regime [Figs. 7(b)–7(d)]. For ðJ0; K0Þ ¼ ð−0.5; 0.5Þ
it spans more than 6 orders of magnitude, so that clear
power laws, χimp

sp ∼ ω−6=5 and χimp
orb ∼ ω4=5, become acces-

sible [Fig. 7(d)]. These power laws are consistent with our
findings for the spin-splitting regime in Secs. III and V.
This scenario is evidently smoothly connected to that of the
pure 3soK model [Fig. 2(c)]. There the absence of charge
fluctuations makes it possible to fully turn off the I0
contribution implicitly present in the 3oAH model, thereby
widening the SOS regime even further and allowing the
true NFL regime to be analyzed in detail.

VII. CONCLUSION

While the main aim of this work was to understand NFL
behavior in Hund metals, it has much wider implications, as
already indicated in Sec. I. Let us assess these from several
perspectives of increasing generality.

(i) We have used NRG and CFT to elucidate the NFL
regime of a 3soK model, fine-tuned such that spin
screening sets in at very much lower energies than
orbital screening. We were able to analytically
compute the scaling behavior of dynamical spin
and orbital susceptibilities, finding χimp

orb ∼ ω1=5,
χimp
sp ∼ ω−11=5 in the NFL regime and χimp

sp ∼ ω−6=5

in the spin-splitting regime. The main significance of
these findings lies in the qualitative physical behav-
ior which they imply. An orbital susceptibility
decreasing with an exponent < 1, rather than the
Fermi-liquid exponent 1, indicates that the orbital
degrees of freedom, though screened, are still
affected by the unscreened spin degrees of freedom.
A spin susceptibility diverging as ω−γ , with γ > 1,

(a) (b) (c) (d)

FIG. 7. Imaginary part of the impurity spin and orbital susceptibilities for the Anderson-Kondo model, with U ¼ 5, JH ¼ 1, Γ ¼ 0.1,
I0 ¼ 0, and J0, K0 varying from (a) J0 ¼ K0 ¼ 0 (pure Anderson-Hund model) to (d) −J0 ¼ K0 ¼ 0.5. The energy scales for spin and
orbital screening, Tsp and Torb, are pushed apart with increasing −J0 ¼ K0.
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indicates anomalously strong spin fluctuations. This
seems to be a characteristic property of the incoher-
ent regime of Hund metals. As pointed out in Sec. I,
anomalously strong spin fluctuations have direct
consequences for theories of the superconducting
state of the iron pnictides [14].

(ii) We have uncovered the origin of hints of NFL
behavior found previously for a 3oAH model and
related models [1,3–5,8,22–24]. There the spin-
orbital coupling I0 is always nonzero, preventing
RG trajectories from closely approaching the NFL
fixed point. Nevertheless, even if they pass this fixed
point “at a distance,” it still leaves traces of NFL
behavior for various observables, such as χimpsp ∼
ω−6=5 behavior for the imaginary part of the impur-
ity’s dynamical spin susceptibility. We showed in
Sec. VI how NFL behavior emerges if the 3oAH
model is “deformed” by additionally turning on the
spin and orbital exchange couplings of the 3soK
model, thereby adiabatically connecting the SS regime
of the 3soK model to the incoherent regime of the
3oAH model. Furthermore, it has been shown in
Ref. [22] that DMFT self-consistency does not sig-
nificantly influence the behavior of the susceptibilities
in the3oAHmodel. Thusour conclusions, inparticular
regarding the prevalence of strong spin fluctuations in
the SOS regime, should also apply to DMFT calcu-
lations. Indeed, DMFT studies [22,47] of a self-
consistent 3oAHmodel contain results for χimp

sp which,
in the SOS window, are consistent with the ω−6=5

scaling found and explained here for the SS regime.
(iii) Taking a broader perspective, we have provided an

analytic solution of a paradigmatic example of a
“Hund impurity problem.” We were able to address
this fundamental type of problem by combining
state-of-the-art multiorbital NRG with a suitable
generalization of Affleck and Ludwig’s CFT ap-
proach [42–46].

(iv) Regarding experimental relevance, Hund impurities
are of central importance for understanding Hund
metals, including almost all 4d and 5d materials,
and even in the 5f actinides Hund’s coupling is the
main cause for electronic correlations. Our work
illustrates paradigmatically why hints of NFL physics
can generically be expected to arise in such systems.
Moreover, tunable Hund impurities can be realized
using magnetic molecules on substrates [64] or multi-
level quantum dots, raising hopes of tuning Hund
impurities in such away that trulywell-developedNFL
behavior can be observed experimentally.
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Note added.—Recently, a paper closely related to ours
appeared [65], with similar goals, a complementary analy-
sis (using NRG but not CFT), and conclusions consistent
with ours.

APPENDIX: YE’S SUð2Þ × SUð2Þ SPIN-ORBITAL
KONDO MODEL

In this appendix, we revisit an SUð2Þ × SUð2Þ spin-
orbital Kondo (2soK) model studied in a pioneering paper
by Ye in 1997 [48]. It is a simpler cousin of our 3soK
model, having a Hamiltonian of precisely the same form,
with the following differences: the orbital channel index
takes only two values, m ¼ 1, 2; the local orbital current
Jorb is defined using Pauli (not Gell-Mann) matrices; and
the impurity spin and orbital isospin operators, S and T, are
both SU(2) generators, in the representation S ¼ λ ¼ 1

2
.

In the context of the present study, Ye’s paper is of
interest because his Kondo impurity likewise features
both spin and orbital degrees of freedom. From a con-
ceptual perspective, his and our models differ only in the
symmetry group, SU(2) versus SU(3) in the orbital sector,
and the choice of impurity multiplet, Qimp ¼ ð1

2
; 1
2
Þ versus

. Moreover, he was able to obtain exact results for his
model using Abelian bosonization. Below, we verify that
when the NRG and CFT methodology used in the main text
is applied to Ye’s 2soK model, the results are consistent
with his conclusions.
Before proceeding, however, let us also briefly address

some differences between Ye’s work and ours. Since he
uses Abelian bosonization, his approach does not readily
generalize to the Uð1Þ × SUð2Þ × SUð3Þ impurity model
considered here. Ye does mention very briefly that some of
his results can also be obtained using non-Abelian boso-
nization, employing simultaneous fusion in the spin and
orbital sectors. However, we show below that that fusion
scheme is applicable only when particle-hole symmetry is
present. This is the case for Ye’s application, but not for our
3soK model. When particle-hole symmetry is absent, the
fusion schemes needed for the spin and orbital are subtly
different—indeed, clarifying these differences was the
conceptually most challenging aspect of our work. Note
that the particle-hole asymmetry of our 3soK model is not a
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mere technical complication, but an essential ingredient of
the physics of Hund metals, which typically feature fillings
one particle away from half filling. Finally, note that Ye’s
model, involving an impurity with spin 1=2, is not relevant
for Hund metals, where Hund’s coupling favors local spins
larger than 1=2.

1. I0 = 0: NFL fixed point

For I0 ¼ 0, the 2soK model obeys particle-hole sym-
metry. Figure 8(a) shows the finite-size eigenlevel flow
computed by NRG for c0 ¼ ðJ0; K0; I0Þ ¼ ð0.1; 0.3; 0Þ.
The low-energy fixed-point spectrum features equidistant
levels, but nevertheless has NFL properties, as predicted by
Ye, in that it cannot be understood in terms of combinations
of single-particle excitations. Remarkably, this fixed-point
spectrum can be reproduced by CFTarguments. Using non-
Abelian bosonization according to the Uð1Þ × SUð2Þ2 ×
SUð2Þ2 KM algebra, the spectrum of free bath excitations
can be expressed as

Eðq; S; λÞ ¼ 1

8
q2 þ 1

4
κ2ðSÞ þ

1

4
κ2ðλÞ þ l; ðA1aÞ

κ2ðSÞ ¼ SðSþ 1Þ; κ2ðλÞ ¼ λðλþ 1Þ; ðA1bÞ
with l ∈ Z, while κ2ðSÞ, κ2ðλÞ are the quadratic SU(2)
Casimirs in the spin and orbital sectors, respectively. We

now combine bath and impurity degrees of freedom using
simultaneous fusion in the spin and orbital sectors, S ⊗
Simp ¼

P
⊕ S0 and λ⊗ λimp¼

P
⊕ λ0, employing the fusion

rules of the SUð2Þ2 × SUð2Þ2 KM algebra (Table S7 in the
SM [54]). This reproduces the NFL fixed-point spectrum
found by NRG, as shown in Table V.
By contrast, we recall that for the 3soKmodel our attempts

to use simultaneous spin and orbital fusion to obtain the
FL ground state for 0 ≠ J0 ≪ K0, I0 ¼ 0were unsuccessful
(cf. Sec. V E 1). Thus the 2soK and 3soK models provide
an example and a counterexample for the success of
simultaneous spin and orbital fusion, succeeding or failing
for a NFL or FL fixed point spectrum, respectively.
We have also computed the imaginary parts of spin and

orbital susceptibilities χimp
sp;orbðωÞ. Figure 8(b) shows the

results. Both functions approach constants in the zero-
frequency limit, i.e., scale as ω0. This can be understood in
terms of the scaling dimensions of the leading boundary
operators in the spin and orbital sectors, Φsp and Φorb,
which have dimensions Δsp ¼ Δorb ¼ 1

2
(Table V). By the

arguments of Sec. V C, we thus obtain

χimp
sp;orb ∼ ω2Δsp;orb−1 ∼ ω0;

as predicted by Ye. This resembles the behavior observed
for the celebrated two-channel Kondo model, featuring a

(a) (c)

(b) (d)

FIG. 8. NRG results for Ye’s 2soK model, computed (a),(b) for ðJ0; K0; I0Þ ¼ ð0.1; 0.3; 0Þ, respecting particle-hole symmetry, and (c),
(d) for (0,0.3,0.05), breaking particle-hole symmetry. (a),(c) Eigenlevel flow diagrams, with quantum numbers ðq; S; λÞ shown at the top.
The low-energy fixed points in (a) and (c) exhibit a NFL or FL spectrum, respectively, reproduced analytically in Table V or VI,
respectively. (b),(d) Imaginary part of the impurity’s spin and orbital susceptibilities. Vertical lines indicate the crossover scales for
orbital screening Torb (dash-dotted) and spin screening Tsp (dashed), marking when χimp

orb and χimp
sp (b) bend over to constant behavior or

(d) reach their maxima, respectively. (NRG parameters: Λ ¼ 2.5, Nkeep ¼ 2000, D ¼ 1.)
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spin-1=2 impurity having no orbital isospin (obtained from
Ye’s model by using λ ¼ • for the impurity orbital pseu-
dospin, and setting K0 ¼ I0 ¼ 0).

2. I0 ≠ 0: FL fixed point

For I0 ≠ 0, particle-hole symmetry is broken. Figure 8(c)
shows the eigenlevel flow computed by NRG for c0 ¼
ð0; 0.3; 0.05Þ. The low-energy fixed point is a FL, as
predicted by Ye. Its spectrum shows the same equidistant
set of energies as the NFL spectrum of I0 ¼ 0 [Fig. 8(a)],
but the degeneracies are different. This fixed point cannot
be understood by simultaneous fusion in the spin and
orbital sector. However, it agrees with the FL spectrum
of an SU(4) Kondo model with the higher symmetry
Uð1Þch × SUð4Þfl, defined in analogy to the SU(6)
Kondo model from Sec. V E 2, with a flavor index ν ¼
1;…; 4 encoding both spin and orbital degrees of freedom.
Using non-Abelian bosonization according to the Uð1Þ ×
SUð4Þ1 KM algebra, the free bath spectrum can be
expressed as

Eðq; λÞ ¼ 1

8
q2 þ 1

5
κ4ðλÞ þ l; ðA2aÞ

κ4ðλÞ ¼
1

8
ð3λ21 þ 4λ22 þ 3λ23 þ 4λ1λ2 þ 2λ2λ3 þ 4λ1λ3

þ 12λ1 þ 16λ2 þ 12λ3Þ; ðA2bÞ

with l ∈ Z, where κ4ðλÞ is the quadratic Casimir for the
λ ¼ ðλ1; λ2; λ3Þ representation of the SU(4) Lie algebra.
[The contributions from the two terms of Eq. (A2) are listed
in Table S8 of the Supplemental Material [54] for the lowest
few q and λ values.] Combining the flavor degrees of
freedom of bath and impurity, λ ⊗ λimp ¼

P
⊕ λ0, using the

TABLE V. Fusion table for the NFL fixed point of Ye’s 2soK model. It is structured just as Table II for the 3soK model, but here the
free bath excitations are computed using Eqs. (A2) and Table S6 of the SM [54], and single fusion of bath and impurity degrees of
freedom is performed simultaneously in the spin and orbital sectors, using SUð2Þ2 × SUð2Þ2 fusion rules (listed in Table S7 of the
SM [54]). The resulting multiplets ðq; S0; λ0Þ have energies E0 ¼ Eðq; S0; λ0Þ and excitation energies δE0 ¼ E0 − E0

min. The NRG
energies, computed for ðJ0; K0; I0Þ ¼ ð0.1; 0.3; 0Þ [Fig. 8(a)], have been shifted and rescaled such that the lowest energy is zero and the
second-lowest values for ENRG and δE0 match. The single fusion and NRG spectra agree very well (deviations ≲1%).

Free fermions Single fusion, with Qimp ¼ ð0; 1
2
; 1
2
Þ NRG Double fusion, with Qimp ¼ ð0; 1

2
; 1
2
Þ

q S λ d E q S0 λ0 d0 E0 δE0 ENRG q S00 λ00 Δ Ô

0 0 0 1 0 0 1
2

1
2

4 3
8

1
4

0.25 0

8>>><
>>>:

0

1

�
0

1�
0

1

0
1
2

1
2

1

Φorb

Φsp

�1 1
2

1
2

4 1
2

�1

8>>>><
>>>>:

0

1

�
0

1�
0

1

1

3

3

9

1
8

5
8

5
8

9
8

0

1
2

1
2

1

0

0.5

0.5

0.99

0 1 0 3 1
2

0 1
2

1
2

4 3
8

1
4

0.25

0 0 1 3 1
2

0 1
2

1
2

4 3
8

1
4

0.25

�2 0 0 1 1
2

�2 1
2

1
2

4 7
8

3
4

0.75

�2 1 0 1 1 �2 1
2

1
2

4 7
8

3
4

0.75

�2 0 1 1 1 �2 1
2

1
2

4 7
8

3
4

0.75

�2 1 1 1 3
2

�2 1
2

1
2

4 7
8

3
4

0.75

TABLE VI. Fusion table for the FL fixed point of the SU(4)
Kondo model. It is structured just as Table IV for the SU(6)
Kondo model, but here the free bath excitations are computed
using Eqs. (A2) and Table S8 of the SM [54], and flavor fusion is
performed using SUð4Þ1 fusion rules (Table S9 of the SM [54]).
The NRG spectrum was computed for the 2soK model with
ðJ0; K0; I0Þ ¼ ð0; 0.3; 0.05Þ [Fig. 8(c)]. The single-fusion and
NRG spectra agree very well (deviations ≲1%).

Free fermions Single fusion, Qimp ¼ ð0;□Þ NRG

q λ d E q λ0 d0 E0 δE0 ENRG

0 • 1 0 0 □ 4 3
8

1
4

0.25

þ1 □ 4 1
2

þ1 6 5
8

1
2

0.50

−1 4 1
2

−1 • 1 1
8

0 0

�2 6 1 �2 4 7
8

3
4

0.75

þ3 4 3
2

þ3 • 1 9
8

1 1.00

−3 □ 4 3
2

−3 6 13
8

3
2

1.50
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fusion rules of the SUð4Þ1 KM algebra, we recover the FL
fixed point spectrum found by NRG. This is shown in
TableVI. In theFL regime, the spin andorbital susceptibilities
scale as χimp

sp;orb ∼ ω1 [Fig. 8(d)], as expected for a Fermi liquid
and predicted by Ye.
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S1

Supplemental Material for “Uncovering Non-Fermi-Liquid Behavior in Hund Metals:
Conformal Field Theory Analysis of an SU(2) × SU(3) Spin-Orbital Kondo Model”

E. Walter, K. M. Stadler, S.-S. B. Lee, Y. Wang, G. Kotliar, A. Weichselbaum, and J. von Delft

Citations and equation numbers refer to references and equations given in the main text.
Below we provide a number of tables needed for various non-Abelian bosonization and Kac-Moody fusion schemes

used in the main text: U(1) × SU(2)3 × SU(3)2, U(1) × SU(6)1, U(1) × SU(2)2 × SU(2)2, and U(1) × SU(4)1.
The fusion rules for the SU(N)k Kac-Moody (KM) algebra differ from those of the SU(N) Lie algebra in that

some Young diagrams arising for the latter are forbidden for the former (such as Young diagrams with more than k
columns, reflecting the fact that only two distinct spin species are available when constructing SU(N)k representa-
tions). However, note that these fusion rules are in general more complicated than simply crossing out diagrams with
more than k columns. For example, in Table S3 for SU(2)3, not all representations with S′′ ≤ 3/2 are allowed. We
constructed the KM fusion tables given below using a general recipe due to Cummins [55], explained in pedagogical
detail in Sec. 16.2.4 of [56].

U(1)×SU(2)3×SU(3)2

Table S1. The few lowest values of the quantum numbers q,
S and λ = (λ1, λ2) labeling U(1) charge, SU(2)3 spin and
SU(3)2 orbital multiplets, their contributions to the energies
E(q, S, λ) of Eq. (12a), and the dimensions d of the spin and
orbital multiplets. κ2(S), κ3(λ) are given in Eqs. (12b), (12c).

q 0 ±1 ±2 ±3 ±4 ±5
1

12q
2 0 1

12
1
3

3
4

4
3

25
12

S 0 1
2 1 3

2 2 5
2

1
5κ2(S) 0 3

20
2
5

3
4

6
5

7
4

d(S) 1 2 3 4 5 6

(λ1, λ2) (0,0) (1,0) (0,1) (2,0) (0,2) (1,1)

λ •
1
5κ3(λ) 0 4

15
4

15
2
3

2
3

3
5

d(λ) 1 3 3 6 6 8

Table S2. SU(3)2 fusion rules, listing various direct product
decompositions of the form λ ⊗ λ′ =

∑
⊕ λ
′′. Crossed-out

diagrams denote additional irreps occurring when considering
direct product decompositions for SU(3) instead of SU(3)2.

d(λ) κ3(λ) (λ1, λ2) λ
.λ′

3 4
3 (1,0) ⊕ • ⊕

3 4
3 (0,1) • ⊕ ⊕

6 10
3 (2,0) ⊕ �� ⊕ �

�

6 10
3 (0,2) ⊕ �

� ⊕ �
�

8 3 (1,1) ⊕ ⊕

⊕ �
� ⊕ �

�

Table S3. SU(2)3 fusion rules, listing various direct product
decompositions of the form S ⊗ S′ =

∑
⊕ S
′′. Crossed-out

numbers denote additional irreps occurring when considering
direct product decompositions for SU(2) instead of SU(2)3.

d(S) κ2(S) S
.S′ 3

2

1 0 0 3
2

2 3
4

1
2 1 ⊕ �2

3 2 1 1
2 ⊕ ��

3
2 ⊕ ��

5
2

4 15
4

3
2 0 ⊕ �1 ⊕ �2 ⊕ �3



S2

U(1)×SU(6)1

Table S4. The few lowest values of the quantum num-
bers q and λ = (λ1, λ2, λ3, λ4, λ5), labeling U(1) charge and
SU(6)1 flavor multiplets, their contributions to the eigenener-
gies E(q, λ) of Eq. (22a), and the dimensions d of the flavor
multiplets. Single-column Young diagrams with i boxes have
λj = δij . κ6(λ) is given in Eq. (22b).

q 0 ±1 ±2 ±3 ±4 ±5

1
12q

2 0 1
12

1
3

3
4

4
3

25
12

λ •

1
7κ6(λ) 0 5

12
2
3

3
4

2
3

5
12

d(λ) 1 6 15 20 15 6

Table S5. SU(6)1 fusion rules, listing some direct product
decompositions λ ⊗ λ′ =

∑
⊕ λ
′′, with λ′ = . Crossed-out

diagrams denote additional irreps occurring when considering
direct product decompositions for SU(6) instead of SU(6)1.

d(λ) κ6(λ) (λ1, λ2, λ3, λ4, λ5) λ

.
λ′

1 0 (0,0,0,0,0) •

6 35
12 (1,0,0,0,0) ⊕ ��

15 14
3 (0,1,0,0,0) ⊕

�
� ⊕ ��

20 21
4 (0,0,1,0,0) ⊕

�
�� ⊕

�
�

15 14
3 (0,0,0,1,0) • ⊕

�
�
�� ⊕

�
��

6 35
12 (0,0,0,0,1) ⊕

�
�
��

U(1)×SU(2)2×SU(2)2

Table S6. The few lowest values of the quantum numbers q, S
and λ, labeling U(1) charge, SU(2)2 spin and SU(2)2 orbital
multiplets, respectively, their contributions to the eigenener-
gies E(q, S, λ) of Eq. (A1a), and the dimensions d of the spin
and flavor multiplets. κ2(S) and κ2(λ) are given in Eq. (A1b).

q 0 ±1 ±2 ±3
1
8q

2 0 1
8

1
2

9
8

S, λ 0 1
2 1 3

2

1
4κ2(S), 1

4κ2(λ) 0 3
16

1
2

15
16

d(S), d(λ) 1 2 3 4

Table S7. SU(2)2 fusion rules, listing various direct product
decompositions of the form S ⊗ S′ =

∑
⊕ S
′′. Crossed-out

numbers denote additional irreps occurring when considering
direct product decompositions for SU(2) instead of SU(2)2.

d(S) κ2(S) S
.S′ 1

2

1 0 0 1
2

2 3
4

1
2 0 ⊕ 1

3 2 1 1
2 ⊕ ��

3
2



S3

U(1)×SU(4)1

Table S8. The few lowest values of the quantum numbers
q and λ = (λ1, λ2, λ3), labeling U(1) charge and SU(4)1 fla-
vor multiplets, their contributions to the eigenenergies E(q, λ)
of Eq. (A2a), and the dimensions d of the flavor multiplets.
κ4(λ) is given in Eq. (A2b).

q 0 ±1 ±2 ±3
1
8q

2 0 1
8

1
2

9
8

(λ1, λ2, λ3) (0,0,0) (1,0,0) (0,1,0) (0,0,1)

λ •

1
5κ4(λ) 0 3

8
1
2

3
8

d(λ) 1 4 6 4

Table S9. SU(4)1 fusion rules, listing some direct product
decompositions λ ⊗ λ′ =

∑
⊕ λ
′′, with λ′ = . Crossed-out

diagrams denote additional irreps occurring when considering
direct product decompositions for SU(4) instead of SU(4)1.

d(λ) κ4(λ) (λ1, λ2, λ3) λ
.λ′

1 0 (0,0,0) •

4 15
8 (1,0,0) ⊕ ��

6 5
2 (0,1,0) ⊕ ��

4 15
8 (0,0,1) • ⊕

�
�
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Many correlated metallic materials are described by Landau Fermi-liquid theory at low energies, but for
Hund metals the Fermi-liquid coherence scale TFL is found to be surprisingly small. In this Letter, we study
the simplest impurity model relevant for Hund metals, the three-channel spin-orbital Kondo model, using
the numerical renormalization group (NRG) method and compute its global phase diagram. In this
framework, TFL becomes arbitrarily small close to two new quantum critical points that we identify by
tuning the spin or spin-orbital Kondo couplings into the ferromagnetic regimes. We find quantum phase
transitions to a singular Fermi-liquid or a novel non-Fermi-liquid phase. The new non-Fermi-liquid phase
shows frustrated behavior involving alternating overscreenings in spin and orbital sectors, with universal
power laws in the spin (ω−1=5), orbital (ω1=5) and spin-orbital (ω1) dynamical susceptibilities. These power
laws, and the NRG eigenlevel spectra, can be fully understood using conformal field theory arguments,
which also clarify the nature of the non-Fermi-liquid phase.

DOI: 10.1103/PhysRevLett.124.136406

Introduction.—A very large number of correlated met-
allic materials are “bad metals,” namely in a broad regimes
of temperature T characterized by deviations from the
Landau Fermi-liquid (FL) T2 law [1] and their values of
resistivity exceeding the Mott-Ioffe-Regel limit [2]. One
class of bad metals are the Hund metals, i.e., 3d and 4d
multiorbital systems where correlations derive from the
Hund’s coupling JH [3–7]. They include ruthenates [8–13],
iron pnictides and chalcogenides [14–20]. The Landau FL
quasiparticles emerge only below a coherence scale TFL
which is much smaller than the natural energy scales of the
problem, set by the electronic bandwidth. Why is TFL so
small in units of the bandwidth? This “naturalness prob-
lem” is a central problem of condensed matter physics
which has attracted considerable attention in the commu-
nity. Its solution should also provide a clue as to what
reference system should be used to describe the anomalous
behavior observed in a broad energy regime above TFL,
when no other instabilities such as magnetism or super-
conductivity intervene.
Two different directions have been followed to address

this puzzle. The first invokes the proximity to quantum
critical points (QCPs) [21–23], signaling the transition to
an ordered phase, or to an unconventional one such as
fractionalized Mott insulators [24,25]. An alternative start-
ing point has been provided by the development of the
combination of ab initio electronic structure and dynamical
mean field theory (LDAþ DMFT) [26–29]. Here, the
excitations of a solid are understood in terms of atomic

multiplets embedded in an effective medium, and the
evolution of the electronic structure from atomic multiplet
excitations into quasiparticles arises naturally as temper-
ature is lowered. This approach has provided quantitative
predictions in many materials of interest [3,19,28,30–36],
where the ab initio LDAþ DMFT calculations are in
surprisingly good agreement with experiments. However,
the solution of the LDAþ DMFT equations is a complex
problem, which generically yields a nonzero FL scale.
Hence no connection with the ideas of QCPs was made.
The question of how to reduce the FL scale to exactly zero
and how to characterize the ensuing anomalous behavior
above TFL has remained open.
In this Letter, we provide an answer to this question by

computing a global phase diagram of the simplest three-
channel spin-orbital Kondo model which captures the
essential physics of Hund metals, using the exact numerical
renormalization group (NRG) method [37]. By tuning the
spin or spin-orbital Kondo couplings into the ferromagnetic
regimes, we push TFL to be exactly zero and identify QCPs.
We find quantum phase transitions to a singular-Fermi-
liquid (SFL) phase and to a novel non-Fermi-liquid (NFL)
phase showing frustrated behavior of alternating over-
screenings in spin and orbital sectors, with universal power
laws in dynamical susceptibilities. We use conformal field
theory (CFT) arguments [38–43] to identify the nature of
the NFL phase, analytically reproduce the NRG eigenlevel
spectra and explain the power laws. Our global phase
diagram provides a clear picture for understanding the
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suppression of coherence in Hund metals in terms of
proximity to QCPs.
Model and methods.—We study the three-channel spin-

orbital Kondo (3soK) model derived from a realistic
Anderson impurity model in [20,44] for the studies of
Hund metals. Hbath ¼

P
pmσ εpψ

†
pmσψpmσ describes a sym-

metric, flat-band bath with half-bandwidth D ¼ 1, where
ψ†
pmσ creates an electron with momentum p and spin σ in

orbitalm ∈ f1; 2; 3g. The bath couples to the impurity spin
S and orbital isospin T via

Hint ¼ J0S · Jsp þ K0T · Jorb þ I0S · Jsp-orb · T: ð1Þ

Here S are SU(2) generators in the S ¼ 1 representation,
normalized as TrðSαSβÞ ¼ 1

2
δαβ, and T are SU(3) gener-

ators in the 3̄, i.e., (01) representation [45] (orbital angular
momentum takes L ¼ 1 in this representation), and
TrðTaTbÞ ¼ 1

2
δab. Jsp, Jorb, and Jsp-orb are the bath spin,

orbital and spin-orbital densities at the impurity site, with
Jαsp ¼ ψ†

mσ
1
2
σασσ0ψmσ0 , Jaorb ¼ ψ†

mσ
1
2
τamm0ψm0σ, Jα;asp-orb ¼

1
4
ψ†
mσσασσ0τ

a
mm0ψm0σ0 (summation over repeated indices is

implied) and normalized ψ†
mσ ¼ ð1= ffiffiffiffi

N
p ÞPp ψ

†
pmσ , and

σα½τa� are Pauli [Gell-Mann] matrices, with normalization
TrðσασβÞ ¼ 2δαβ [TrðτaτbÞ ¼ 2δab]. J0, K0 and I0 are bare
spin, orbital and spin-orbital Kondo exchange couplings,
and we treat them as independent parameters with positive
and negative values describing antiferromagnetic (AFM)
and ferromagnetic (FM) couplings, respectively. We take
K0 ¼ 0.3 throughout.
We use the full-density-matrix NRG [46] method to

solve this model, exploiting its full Uð1Þch × SUð2Þsp ×
SUð3Þorb symmetry using QSpace [45]. Symmetry labels
Q≡ ½q; S; ðλ1λ2Þ� are used to label multiplets, where q is
the bath particle number relative to half-filling of the bath
(we choose qimp ¼ 0 because the impurity site has no
charge dynamics), S is the total spin, and ðλ1λ2Þ labels an
SU(3) representation described by a Young diagram with
λ1 þ λ2 (λ2) boxes in its first (second) row. The impurity
multiplet has Qimp ¼ ½0; 1; ð01Þ�. The bath is discretized
logarithmically and mapped to a semi-infinite “Wilson
chain” with exponentially decaying hoppings, and the
impurity coupled to chain site k ¼ 0. The chain is diagon-
alized iteratively while discarding high-energy states,
thereby enlarging the low-energy properties: the finite-size
level spacing of a chain ending at site k ≥ 0 is of order
ωk ∝ Λ−k=2. Here Λ > 1 is a discretization parameter,
chosen to be 4 in this work. The RG flow can be visualized
by combining the rescaled low-lying NRG eigenlevel
spectra, E ¼ ðE − ErefÞ=ωk vs ωk, with increasing even
or odd k. The imaginary part of the impurity dynamical
susceptibilities χimp

sp , χimp
orb and χimp

sp-orb were calculated at

temperature T ¼ 10−16. Computational details are pre-
sented in the Supplemental Material [47].

(a)

(b)

(d)

(c)

FIG. 1. (a) The calculated global phase diagram vs J0 and I0 at
fixed K0 ¼ 0.3. Four low-energy fixed points are found: Fermi-
liquid (FL, orange region); singular Fermi-liquid (SFL, blue
region) with underscreened spin and fully screened orbital
isospin; frustrated non-Fermi-liquid (NFL, pink region) with
alternating spin and orbital overscreenings; and non-Fermi-liquid
NFL� (red dot at J0 ¼ 0, I0 ¼ 0) with overscreened orbital
isospin and degenerate impurity spin 1

2
, 3
2
. Cartoons depict the

respective screening processes, where one dashed ellipse loosely
represents an even number of Wilson shells. The indicated
additional charge then is relative to half-filling, where filled
(empty) arrows represent electrons (holes) with corresponding
spin direction. The white-hatched region indicates the existence
of an intermediate-energy crossover regime SFL0 (NFL0) enclos-
ing the phase boundary between FL and SFL (NFL). The inset
shows the “funnel width,” δJ0, of the NFL phase vs 1=I0 when
I0 → 0−. (b),(c) The onset energy scales Tx for (x ¼) FL, SFL
and NFL vs (b) J0 or (c) I0, where quantum critical points are
identified. (d) Impurity contribution to entropy Simp as functions
of temperature T.
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Fixed points.—The calculated global phase diagram as a
function of J0 and I0 is shown in Fig. 1(a). We first describe
the low-energy fixed points found in the phase diagram.
Throughout the entire regions where all three Kondo
couplings are AFM, and for part of regions where J0 or
I0 takes FM values (orange region), the system flows to a
low-energy FL fixed point. This is seen in the NRG flow
diagram and dynamical impurity susceptibilities χimp at
J0 ¼ I0 ¼ 0.01 in Figs. 2(a) and 2(d). The ground state is a
spin and orbital singlet, with impurity entropy Simp ¼ ln 1
[orange curve in Fig. 1(d)]. For small ω, all χimp follow a ω-
linear behavior, characteristic of a FL.
When J0 takes FM values and I0 FM or small AFM

values (blue region), the phase is governed by a low-energy
SFL [48,58,59] fixed point where the spin is underscreened
while the orbitals are fully screened. The transition from FL
to SFL is analyzed in Fig. 2 for I0 ¼ 0.01. Figures 2(c) and
2(f), computed for J0 ¼ −0.4, show the NRG flow and χimp

to the SFL fixed point. It has ground state ½þ1; 1
2
; ð00Þ�

and Simp approaches ln 2 at low energies [blue curve in

Fig. 1(d)], signaling a residual spin of 1
2
. χimp

sp deviates
slightly from a pure ω−1 power-law by a logarithmic
correction at high energy and can be fitted by
∼1=½ω ln2ðω=TSFLÞ� with TSFL as an onset energy scale,
consistent with the SFL results in [48]. χimp

orb shows ω-linear
behavior at low energy, indicating fully screened orbital
isospin. The coefficient of the impurity specific heat,
CimpðTÞ=T [47], shows divergent behavior [58], confirming
the singular nature of this fixed point.
When I0 takes strong FM and J0 strong AFM couplings

(pink region), we find a novel NFL fixed point, showing
very interesting frustrated behavior of alternating over-
screenings in spin and orbital sectors. Figure 3 analyzes
the transition from FL to NFL at J0 ¼ 0.3. Figures 3(c),

3(f), 4(c), and 4(f) show the NRG flow and χimp towards the
NFL fixed point. The two lowest multiplets with either
orbital singlet, ½þ1; 1

2
; ð00Þ�, or spin singlet, [0,0,(01)], are

very close in energy. The dynamical susceptibilities follow
perfect and universal power laws for the spin (ω−1=5),
orbital (ω1=5) and spin-orbital (ω1) operators. The impurity
entropy Simp evaluates to ln½ð1þ ffiffiffi

5
p Þ=2� [pink curve in

Fig. 1(d)]. This value can be obtained from Eq. (6) in [49]
for a general SUðNÞK Kondo model (K is the number of
channels) with N ¼ 3, K ¼ 2, Q ¼ 2 indicating SUð3Þ2
orbital overscreening, or with N ¼ 2, K ¼ 3, Q ¼ 1
indicating SUð2Þ3 spin overscreening. Motivated by this,
we follow the recently developed SUð2Þ × SUð3Þ CFT
approach [43] to identify the nature of this fixed point. Its
NRG eigenlevel spectra Q0 ¼ ½q0; S0; ðλ01λ02Þ� can be repro-
duced by applying either an SUð2Þ3 fusion procedure in the
spin sector or an SUð3Þ2 fusion procedure in the orbital
sector, i.e., fusing a spectrum of free fermions Q ¼
½q; S; ðλ1λ2Þ�, with an effective impurity multiplet labe-
ling either Qeff

imp ¼ ½þ1; 1
2
; ð00Þ�, or Qeff

imp ¼ ½0; 0; ð01Þ�.
Double fusion of the spectrum Q0 with the conjugate
representation of the impurity multiplet, Q̄eff

imp ¼
½−1; 1

2
; ð00Þ� or Q̄eff

imp ¼ ½0; 0; ð10Þ�, yields the quantum
numbers Q00 ¼ ½q00; S00; ðλ001λ002Þ� to characterize the CFT
boundary operators, with scaling dimensions Δ, determin-
ing the behavior of dynamical susceptibilities.
Tables S1–S2 in the Supplemental Material [47] show

the CFT results of the fixed point spectra and compare
them with the NRG spectra at J0 ¼ 0.3, I0 ¼ −0.01. Both
fusion procedures yield the same results, which reproduce
the NRG spectra very well. The scaling dimension of
the leading boundary operator in the spin, orbital and
spin-orbital sectors are found to be Δsp ¼ 2

5
, Δorb ¼ 3

5
and

Δsp-orb ¼ 1, respectively. They are also consistent
with the CFT results in [49] for either a spin SUð2Þ3
Kondo model (Δsp ¼ 2=ð2þ 3Þ, Δorb ¼ 3=ð2þ 3Þ), or
an orbital SUð3Þ2 Kondo model (Δsp ¼ 2=ð3þ 2Þ,

(a)

(d) (e) (f)

(c)(b)

FIG. 2. The phase transition from FL to SFL at I0 ¼ 0.01.
(a)–(c) NRG flow diagrams of a Wilson chain with odd length k,
with the energy of the lowest [0,1,(01)] multiplet as the reference
energy Eref. The symmetry labels of selected multiplets are shown
on top. (d)–(f) Impurity dynamical susceptibility χimpðωÞ.

(a)

(d) (e) (f)

(b) (c)

FIG. 3. Analogous to Fig. 2, but for the phase transition from
FL to NFL at J0 ¼ 0.3.
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Δorb ¼ 3=ð3þ 2Þ). The power laws of dynamical sus-
ceptibilities can then be understood by the CFT procedure
[43] χimp

sp ∼ ω2Δsp−1 ¼ ω−1=5, χimp
orb ∼ ω2Δorb−1 ¼ ω1=5 and

χimp
sp-orb ∼ ω2Δsp-orb−1 ¼ ω1, respectively.
The impurity entropy and the CFT analysis both suggest

that the spin SUð2Þ3 and orbital SUð3Þ2 Kondo models with
overscreened fixed points are actually equivalent and
complementary descriptions of this NFL fixed point. It
indicates an alternating spin SUð2Þ3 and orbital SUð3Þ2
overscreening process by successively binding one electron
or one hole, as illustrated by the cartoon picture at the
bottom right of Fig. 1(a), similar in spirit to that of Nozières
and Blandin [60]. To be specific, the strong AFM orbital
coupling binds the bare impurity Qimp ¼ ½0; 1; ð01Þ� and
one bath electron ½þ1; 1

2
; ð10Þ� into a fully screened orbital

singlet with either spin 3
2

or 1
2
: ½0; 1; ð01Þ� ⊗ ½þ1;

1
2
; ð10Þ� → ½þ1; 3

2
; ð00Þ� ⊕ ½þ1; 1

2
; ð00Þ�. In the FL phase,

the spin 3
2
multiplet has the lower energy; it can then bind

three holes to form a fully screened spin and orbital singlet
[43]: ½þ1; 3

2
; ð00Þ� ⊗ ½−3; 3

2
; ð00Þ� → ½−2; 0; ð00Þ�. By con-

trast, in the NFL regime, the spin 1
2
multiplet has the lower

energy since the spin-orbital coupling I0 is strongly FM.
Next, the AFM spin coupling attempts to screen the spin 1

2

by coupling it to one hole, to yield a spin singlet,

�
þ1;

1

2
; ð00Þ

�
⊗

�
−1;

1

2
; ð01Þ

�
→ ½0; 0; ð01Þ�; ð2aÞ

but the result is an overscreened orbital isospin. Screening
the latter by binding an electron,

½0; 0; ð01Þ� ⊗
�
þ1;

1

2
; ð10Þ

�
→

�
þ1;

1

2
; ð00Þ

�
; ð2bÞ

leads back to an overscreened spin. Overall, this results in a
neverending alternation of spin and orbital overscreening,
favored by the fact that the multiplets [0,0,(01)] and

½þ1; 1
2
; ð00Þ� are lowest in energy [see Figs. 3(c), 4(c)],

with a very small energy difference.
The special point at J0 ¼ I0 ¼ 0 corresponds to an

SUð3Þ2 NFL fixed point (NFL�) with overscreened orbitals
and a degenerate impurity spin of 1

2
, 3
2
. The inset of Fig. 1(a)

suggests that the region of NFL actually extends to this
point. There we analyze the width of the NFL “funnel,”
defined by δJ0 ¼ Jc10 − Jc20 , vs 1=I0, where Jc10 (Jc20 )
is the phase boundary between FL (SFL) and NFL. It
follows expð0.0462=I0 þ 6.57Þ, becoming zero only when
I0 → 0−.
Phase transitions.—TFL on the FL side and TSFL (TNFL,

the NFL scale) on the SFL (NFL) side go to zero as the
phase boundary is approached. We find that TFL, TSFL and
TNFL follow power laws as functions of the control
parameters J0 and I0, jJ0 − Jc0jα and jI0 − Ic0jα, to approach
exactly zero at the critical values Jc0 and Ic0, signaling the
existence of QCPs [21,22]. The exponents found are α ¼
1.8 in the FL-SFL transition, and α ¼ 1 for FL-NFL. We
show TFL=SFL as functions of J0 at I0 ¼ 0.01 in Fig. 1(b),
and TFL=NFL as functions of I0 at J0 ¼ 0.3 in Fig. 1(c).
More data are shown in Fig. S5 [47].
When approaching the QCP in the FL-SFL transition as

in Fig. 2 by decreasing J0, the spin-orbital separation
window [7,50] increases a lot, as seen in Figs. 2(b) and 2(e)
for J0 ¼ −0.3643, and a wide crossover regime, SFL0,
forms at intermediate energies. There the impurity entropy
Simp evaluates to ln½ð1þ ffiffiffi

5
p Þ=2� þ ln 3 [green curve in

Fig. 1(d)], corresponding to an orbital overscreened SUð3Þ2
fixed point, coupled to a fluctuating spin-1 moment. This is
consistent with the recent findings in the region I0 ¼ 0 and

J0 → 0þ in [61]. χimp
orb follows a universal power-law of

ω1=5, showing similarity with the NFL phase due to the

same orbital SUð3Þ2 overscreening, while χimp
sp follows an

approximate power law (with some non-power-law cor-
rections, see the Supplemental Material [47]). Across the
phase transition, the multiplet ½þ1; 1

2
; ð00Þ� is pushed down

to be the new ground state, while the original ground state
½−2; 0; ð00Þ� of the FL phase is pushed up to very high
energy.
When approaching the QCP in the FL-NFL transition as

illustrated in Fig. 3, the fine-tuning of I0 generates a large
crossover regime NFL0 at intermediate energies [Figs. 3(b)
and 3(e)], where the set of low-lying states is simply the
union of those of the FL and NFL spectra (see Table S4 in
the Supplemental Material [47]). NFL0 thus represents a
“level-crossing” scenario [47,51,52], involving two
orthogonal low-energy subspaces whose levels cross when
I0 is tuned. When sufficiently close, both subspaces
contribute to thermodynamic and dynamical properties.
Here, the FL and NFL compete in the intermediate-energy
regime, and I0 determines either FL [Figs. 3(a) and 3(d)] or
NFL [Figs. 3(c) and 3(f)] to be the low-energy fixed point.

(a)

(d) (e) (f)

(b) (c)

FIG. 4. Analogous to Fig. 2, but for the phase transition from
SFL to NFL at I0 ¼ −0.01.
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The impurity entropy SNFL0
imp evaluates to lnðeSFLimp þ eS

NFL
imp Þ ¼

lnf1þ ½ð1þ ffiffiffi
5

p Þ=2�g [red curve in Fig. 1(d)], not
ln 1þ ln½ð1þ ffiffiffi

5
p Þ=2�, because the FL and NFL subspaces

do not overlap. Hence the total effective impurity degrees
of freedom are the sum of the contributions of those two
sectors [47]. χimp of NFL0 follow the same power laws as
NFL because the NFL part dominates in this regime. For
more details on NFL0, see the Supplemental Material [47].
The transition from SFL to NFL shown in Fig. 4

confirms the picture of alternating overscreenings.
Tuning J0 to be more AFM, the state [0,0,(01)] is pushed
down to be nearly degenerate with the ground state
½þ1; 1

2
; ð00Þ� [Fig. 4(b)], signaling the start of the alternat-

ing overscreening process. χimp
sp bends downward away

from the ω−1 behavior towards an ω−1=5 dependence,
while χimp

orb bends upward away from the ω-linear behavior
towards an ω1=5 dependence. χimp

sp-orb still follows ω1.
Conclusion.—To summarize, we have presented a global

phase diagram of the 3soK model. This allows us to follow
the suppression of the coherence scale in Hund metals
down to zero energy. The new NFL phase contains the
essential ingredients needed to understand the actual
incoherent behavior seen above TFL. Recent advances in
the physics of cold atoms might actually offer a concrete
realization of the phase diagram of the model studied.
Indeed it has been recently demonstrated that it is possible
to simulate SUðNÞ impurity models with tunable exchange
interactions reaching both FM and AFM regimes [62,63].
The iron pnictides display an intriguing QCP, as for

example in BaFe2ðAs1−xPxÞ2 [18,64–66], where a diver-
gent electron mass and concomitant destruction of the FL
state was observed. This QCP has motivated several
theoretical studies [67–69]. Further progress from the
perspective of this work would require the DMFT self-
consistency condition and more realistic band structures. In
the DMFT treatment of a lattice model, the SFL and the
NFL phases are expected to turn into magnetically ordered
states, but the impurity model studied here with its power-
law singularities would describe the behavior above TFL.
The approach presented here, which takes into account

the Hund’s coupling and the multiorbital nature, is in the
same spirit as the ideas of local quantum criticality used to
describe Kondo breakdown using impurity models [70], so
it would then be also useful for unconventional quantum
phase transitions observed in other heavy-fermion materials
[71–74]. The global phase diagram of this 3soK model will
also have potential impact on the studies of real multi-
channel spin and (or) orbital Kondo systems or quantum
dots systems, for instance, generalize the studies in [75–79]
to three-channel cases.
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S-I. NRG FLOW DIAGRAMS AND
DYNAMICAL SUSCEPTIBILITES

In Figs. S1-S3, we replot the NRG flow diagrams shown
in the main text to add the flow diagrams of Wilson
chains with even length k. Here we follow the standard
convention that H0, the Hamiltonian of the impurity to-
gether with the bath site at the location of the impurity,
i.e., the bath site k = 0, is a Wilson chain of even length.
We use K0 = 0.3, Λ = 4 and half-bandwidth D = 1,
throughout. In Fig. S1, we also add flow diagrams com-
puted for J0 = −0.3643861 and J0 = −0.3644 to show
more details of the phase transitions from FL to SFL.
In Fig. S6, we compare the NRG flow diagrams of the
NFL fixed point at J0 = 0.3, I0 = −0.01 with those at
J0 = 0.6, I0 = −0.13. As we move from the former to
the latter, i.e. deeper into the NFL regimes, the eigen-
values of the fixed point spectrum change; this is caused
by particle-hole asymmetry and can be explained by the
CFT analysis [see Table S3] in Sec. S-III.

The imaginary part of the dynamical susceptibilities of
spin, orbital and spin-orbital operators at the impurity
site or the zeroth bath site are defined as

χimp,bath
sp (ω) = − 1

3π
Im

∑

α

⟨Sα||Sα⟩ω, (S1a)

χimp,bath
orb (ω) = − 1

8π
Im

∑

a

⟨T a||T a⟩ω, (S1b)

χimp,bath
sp-orb (ω) = − 1

24π
Im

∑

α,a

⟨SαT a||SαT a⟩ω, (S1c)

where, the operators Sα and T a refer to either the im-
purity site (χimp) or the k = 0 bath site (χbath). The
normalization averages over all correlators that are equiv-
alent by the underlying symmetry.

In Fig. S4(a-e), we compare χimp(ω) (solid lines)
and χbath(ω) (dashed lines). At the parameters we
show, both follow the same behavior in the low-energy
regimes of FL, SFL and NFL, and the intermediate-
energy regimes SFL′ and NFL′.

Figs. S4(f-j) reveal the power laws governing χimp(ω)
shown in the main text and in Figs. S1-S3, by showing

the logarithmic derivative,

α(ω) =
d(logχimp(ω))

d(logω)
. (S2)

If χimp follows a pure power law, ωα, its logarithmic
derivative gives the constant exponent, α(ω) = α. For
FL, χimp(ω) is linear at small ω, α = 1, for all the three
susceptibilities [Fig. S4(f)], as expected for a FL. For

SFL′ [Fig. S4(g)], χimp
orb and χimp

sp-orb follow a well-defined

power law with a constant value of α = 1/5. By con-
trast, χimp

sp does not quite, since α(ω) shows slight ω-
dependence, indicating the presence of some non-power-
law corrections. For SFL [Fig. S4(h)], α(ω) for both spin
and orbital first increases and then decreases, and finally
approaches −1 and 1, respectively. This confirms the de-
viation from pure power-law behavior and the singular
nature of this fixed point. However, χimp

sp-orb still follows

a perfect power law. For NFL′ [Figs. S4(i)] and NFL
[Figs. S4(j)], χimp show well-defined power laws with
α = −1/5 for spin, α = 1/5 for orbital and α = 1 for
spin-orbital, which are perfectly consistent with the CFT
results presented in Sec. S-III.

S-II. DESTRUCTION OF FERMI-LIQUID
SCALE

We define the orbital (spin) Kondo scale Torb (Tsp) as

the energy where χimp
orb (sp) is maximal. Fig. S5(a) shows

Tsp (solid lines) and Torb (dashed lines) as functions of
|J0 −Jc

0 | for two values of I0, and Fig. S5(b) shows them
as functions of |I0 − Ic

0 | for two values of J0, where Jc
0

and Ic
0 are the critical values at the phase transitions.

Torb remains large and almost constant throughout. By
contrast, Tsp decreases in power-law fashion, |J0 − Jc

0 |α
and |I0 − Ic

0 |α, when approaching the phase boundary.
Therefore, a spin-orbital separation (SOS) window [1, 2]
forms near the phase boundary, where Tsp can be con-
sidered as the FL scale, TFL = Tsp, of the problem.
At the phase transitions, this FL scale vanishes, and a
SFL or NFL scale arises. We define the energy scale
characterizing the onset of SFL or NFL behavior [cf.
Figs.1(b,c) in the main text], TSFL or TNFL, as the energy
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where d(logχimp
sp (ω))/d(logω) (Eq. S2) is maximal, as in-

dicated by arrows in Figs. S4(h) and S4(j), respectively.
Fig. S5(c) shows TSFL and TNFL as functions of |J0 −Jc

0 |,
and Fig. S5(d) shows them as functions of |I0 −Ic

0 |. TSFL

or TNFL follows the same power-law behavior as TFL close
to the phase boundary. The exponents found are α=1.8
in the FL-SFL transition, and α=1 for FL-NFL transi-
tion,

TFL/SFL ∝ |J0 − Jc
0 |1.8, |I0 − Ic

0 |1.8, (S3a)

TFL/NFL ∝ |J0 − Jc
0 |1, |I0 − Ic

0 |1. (S3b)

S-III. CFT ANALYSIS

In this section, we follow the recently developed
U(1)×SU(2)3×SU(3)2 conformal field theory (CFT) ap-
proach [3] to reproduce and understand the NRG finite-
size spectra and the power laws of the dynamical suscep-
tibilities for the NFL fixed point. We start with a brief
summary of the main results of Walter et al. [3], and refer
the reader to that paper and references therein for more
details on the CFT approach. The energy of the low-
est multiplet, Q ≡ [q, S, (λ1λ2)], with charge q relative
to half-filling, spin S, and SU(3) orbital label in Dynkin
notation (λ1λ2) ≡ (λ1, λ2), is given by

E(Q; δq) = 1
12 (q + δq)2 + 1

5κ2(S) + 1
5κ3(λ1, λ2),

κ2(S) = S(S + 1), (S4)

κ3(λ1, λ2) = 1
3 (λ2

1 + λ2
2 + λ1λ2 + 3λ1 + 3λ2),

where κN represents the eigenvalues of the quadratic
Casimir operator for SU(N). δq is a fitting parameter
used to take into account particle-hole asymmetry effects,
because the three-channel spin-orbital Kondo (3soK)
model under consideration does not preserve particle-
hole symmetry. Therefore δq depends on the choice of
the Kondo couplings J0, K0 and I0. Its specific value
can be determined via fits to the NRG finite-size spec-
tra. We simplify the formula by discarding the irrelevant
constant term δq2/12,

E(Q, δq) = 1
12q

2 + δq
6 q + 1

5κ2(S) + 1
5κ3(λ1, λ2). (S5)

In the main text, the impurity entropy in the NFL

regime was found to be, Simp = ln 1+
√

5
2 , [see Fig. 1d].

This value can be obtained from either an SU(2)3 Kondo
model with overscreened spin, or an SU(3)2 Kondo model
with overscreened orbital. In the main text, we also ob-
served that [see Figs. 3(c) and 4(c)] the two lowest NRG
eigenstates, [+1, 1

2 , (00)] and [0, 0, (01)], are very close
in energy, and argued that the NFL phase undergoes a
never-ending alternation of spin and orbital overscreening
process, converting [+1, 1

2 , (00)] to [0, 0, (01)] and back
[cf. Eqs. (2a,b) in the main text]. We take this as a
motivation to apply either an SU(2)3 fusion procedure
in the spin sector, or an SU(3)2 fusion procedure in the
orbital sector, i.e. fusing the spectrum of free fermions
Q ≡ [q, S, (λ1λ2)] with an effective impurity multiplet,
Qeff

imp = [+1, 1
2 , (00)] or Qeff

imp = [0, 0, (01)], to get the

spectra of the NFL fixed point Q′ ≡ [q′, S′, (λ′
1λ

′
2)].

The energy of the free fermions and the NFL spectra
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0 |.

are given by E(Q; 0) and E(Q′; δq), respectively. Dou-
ble fusion of the spectra Q′ with the conjugate, i.e.,
dual representation of the effective impurity multiplet,
Q̄eff

imp = [−1, 1
2 , (00)] or Q̄eff

imp = [0, 0, (10)], yields the

quantum numbers Q′′ ≡ [q′′, S′′, (λ′′
1λ

′′
2)], characterizing

the CFT boundary operators with scaling dimensions
given by ∆ = E(Q′′; δq).

Table S1 and Table S2 list the results of the two alter-
native fusion procedures with Qeff

imp = [+1, 1
2 , (00)] and

Qeff
imp = [0, 0, (01)], respectively, and compare them with

the energy ENRG, computed by NRG for odd-k Wilson
chain at J0 = 0.3 and I0 = −0.01. Remarkably, the two
fusion procedures yield the same fixed point spectrum,
indicating that the SU(2)3 and SU(3)2 are actually equiv-
alent and complementary descriptions of this NFL fixed
point. Based on the CFT analysis, the energy difference
of the mutiplets [0, 0, (01)] and [+1, 1

2 , (00)] is

E([0, 0, (01)]) − E([+1, 1
2 , (00)]) =

1 − 5δq

30
, (S6)

hence [+1, 1
2 , (00)] is the ground state when δq < 0.2,

otherwise, [0, 0, (01)] is the ground state. Overall, we
find for all of the explored region of the NFL phase that
|δq| ≪ 1. Hence the energies above are nearly degen-
erate. At J0 = 0.3 and I0 = −0.01, the NRG calcu-
lation shows that [+1, 1

2 , (00)] is the ground multiplet
and [0, 0, (01)] the first excited one. In Tables S1-S2,
δE′ = E′ − E′([+1, 1

2 , (00)]), is the excitation energy
given by the CFT analysis. The NRG energies have been
shifted and rescaled such that the ground state is zero
and the values of ENRG and δE′ match for the multi-
plet [+1, 1

2 , (11)]. Then δq is determined by matching
ENRG and δE′ for the multiplet [0, 0, (01)], resulting in
δq ≃ 0.0433. The remainder of the spectra δE′ and ENRG

show good agreement, with deviations smaller than 10%.

In Table S3, we perform the same fusion procedure
as that in Table S2, but compared with the NRG re-
sults at J0 = 0.6 and I0 = −0.13, that is deep in the
NFL phase diagram. The CFT can still perfectly repro-
duce the eigenlevel spectra in this region. It turns out
that δq ≈ 0.2135 is just above 0.2, such that the levels
[+1, 1

2 , (00)] and [0, 0, (01)] have crossed, with the latter
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FIG. S6. (a-d) NRG flow diagrams and (e-f) impurity dynam-
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the new ground state. The remainder of the spectrum,
which includes further level crossings, can also be per-
fectly reproduced by this value of δq. The CFT analysis
explains the change of the NRG flow diagrams shown in
Fig. S6.

With the double fusion procedure shown in Tables S1-
S3, the scaling dimension of spin, orbital and spin-
orbital operators are found to be ∆sp= 2

5 , ∆orb= 3
5 and

∆sp-orb=1, respectively, as highlighted by color in Ta-
bles S1-S3. With this, the power laws of the dynamical
susceptibilites are predicted by CFT as [3]

χimp
sp ∼ ω2∆sp−1 = ω−1/5, (S7a)

χimp
orb ∼ ω2∆orb−1 = ω1/5, (S7b)

χimp
sp-orb ∼ ω2∆sp-orb−1 = ω1. (S7c)

in overall excellent agreement with the data in Figs. 3(f)
and 4(f) in the main text, and Figs. S2(i), S3(i), S4(j),
S6(e,f) in this Supplemental Material.

S-IV. INTERPRETATION OF NFL′ REGIME

The NFL′ regime appears as an intermediate fixed
point in the NRG flow diagram [see Fig. 3(b) in the
main text and Fig. S2(b,e) in this supplemental material],
when the system is close to the phase boundary between
the FL and NFL phases. The NFL′ fixed-point spectrum
is a “superposition” of the FL and NFL fixed-point spec-
tra. To be more precise, the set of lowest-lying energy

levels in the NFL′ regime [Figs. S2(b,e)] is the union of
the sets of the levels in the FL regime [Figs. S2(a,d)]
and in the NFL regime [Figs. S2(c,f)] at iterations of the
same parity (even or odd length). Table S4 shows this by
listing the energy spectrum of NFL′ for a Wilson chain
with odd length at J0 = 0.3, I0 = −0.00609896199692
[Figs. S2(b)] and comparing it with the FL spectrum
just before the phase transition at I0 = −0.006098
[Figs. S2(a)] and the NFL spectrum just after the phase
transition at I0 = −0.006099 [Figs. S2(c)]. When the
system is slightly away from the phase boundary, there
is a reduction from NFL′ to FL or NFL. During this
‘crossover’, a set of levels for either FL or NFL regime
remains in the low-energy part of the NRG flow diagram,
while the other set abruptly drifts towards higher ener-
gies due to the intrinsic exponential rescaling of NRG
flow diagrams. Such an abrupt drift of a subset of levels
is in stark contrast to the typically encountered smooth
tangled fixed-point crossovers in impurity models.

The superposition nature of the NFL′ fixed-point spec-
trum and the abrupt crossover indicate that the phase
transition between the FL and NFL phase follows the
“level-crossing” scenario. Within this scenario, the low-
energy sector of the spectrum is the union of orthogonal
subspaces. One subspace consists of the states |EFL

i ⟩ at
the FL fixed point, the other of the states |ENFL

i ⟩ at
the NFL fixed point, with their respective ground states
at i = 0. At energy scales ω, T larger than the differ-
ence of the ground-state energies |EFL

0 − ENFL
0 |, both

subspaces contribute to thermodynamic and dynamical
properties, such as the impurity contribution to entropy
Simp and dynamical impurity susceptibility χimp. This
corresponds to the NFL′ regime appearing at earlier it-
erations in the NRG flow diagrams. As one proceeds
with the NRG steps, the energy scale becomes smaller
and eventually reaches |EFL

0 −ENFL
0 |. At this point, the

higher lying fixed point starts to disappear from the low-
energy physics, as clearly visible in the NRG flow dia-
gram in Figs. S2(b,e). As an aside, we note that a simi-
lar level-crossing competition between two subspaces has
been used to induce a two-stage Kondo effect in driven
quantum dot systems [4, 5].

With Simp ≡ ln g, where gFL=1 and gNFL= 1
2 (1 +

√
5),

the level-crossing scenario leads to an additive behavior
of g, i.e.,

SNFL′
imp = ln(gFL + gNFL) , (S8)

which follows from elementary considerations based on
the definition of the partition function. To derive this
relation, we start from the partition function of the whole
system (impurity plus bath). In the NFL′ regime,

ZNFL′
= ZFL + ZNFL, (S9)

with Zα≡ ∑
i exp(−Eα

i /T ) at temperature T . This is the
sum of partition functions for the NFL and FL regimes,
since the FL and NFL subspaces are orthogonal to each
other. Now the entropy is related to the partition func-
tion via the free energy F = −T lnZ, having S = − ∂

∂T F .
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TABLE S1. Fusion table for the NFL fixed point. Left: The 12 lowest low-lying free fermion multiplets Q = [q, S, (λ1λ2)]
with degeneracy d and energies E(Q; 0). Middle: “Single fusion” with an effective impurity multiplet Qeff

imp = [+1, 1
2
, (00)],

using SU(2)3 fusion rules [3] in the spin sector. This yields multiplets Q′ = [q′, S′, (λ′
1λ

′
2)] with degeneracy d′ and energies

E′ = E(Q′; δq). The excitation energies are δE′ = E′ − E′
min, where E′

min = E′([+1, 1
2
, (00)]) = 7+5δq

30
. These are compared

to the values ENRG, computed by NRG at J0 = 0.3, K0 = 0.3, I0 = −0.01, where [+1, 1
2
, (00)] is the ground state. The NRG

energies have been shifted and rescaled such that the ground state is zero and the values of ENRG and δE′ match for the
multiplet [+1, 1

2
, (11)]. δq is then determined by matching ENRG and δE′ for the multiplet [0, 0, (01)], resulting in δq = 0.0433.

Right: “Double fusion”, which fuses multiplets from the middle column with an impurity in the conjugate representation
Q̄eff

imp = [−1, 1
2
, (00)], yields the quantum numbers Q′′ = [q′′, S′′, (λ′′

1λ′′
2 )]. These characterize the CFT boundary operators Ô,

with scaling dimensions ∆ = E(Q′′; δq).

free fermions single fusion, with Qeff
imp = [+1, 1

2
, (00)] NRG double fusion, with Q̄eff

imp = [−1, 1
2
, (00)]

q S (λ1λ2) d E q′ S′ (λ′
1λ

′
2) d′ E′ δE′ ENRG q′′ S′′ (λ′′

1λ′′
2 ) ∆ Ô

0 0 (00) 1 0 +1 1
2

(00) 2 7+5δq
30

0 0
0 0 (00) 0 1

0 1 (00) 2
5

(= ∆sp) Φsp

+1 1
2

(10) 6 1
2

+2 0 (10) 3 9+5δq
15

11+5δq
30

(0.374) 0.369 +1 1
2

(10) 3+δq
6

+2 1 (10) 9 3+δq
3

23+5δq
30

(0.774) 0.809
+1 1

2
(10) 3+δq

6

+1 3
2

(10) 33+5δq
30

−1 1
2

(01) 6 1
2

0 0 (01) 3 4
15

1−5δq
30

(0.026) 0.026 −1 1
2

(01) 3−δq
6

0 1 (01) 9 2
3

13−5δq
30

(0.426) 0.422
−1 1

2
(01) 3−δq

6

−1 3
2

(01) 33−5δq
30

0 1 (11) 24 1
+1 1

2
(11) 16 5+δq

6
3
5

(0.600) 0.600
0 0 (11) 3

5
(= ∆orb) Φorb

0 1 (11) 1 (= ∆sp-orb) Φsp-orb

+1 3
2

(11) 32 43+5δq
30

6
5

(1.200) 1.223 0 1 (11) 1

+2 0 (20) 6 1 +3 1
2

(20) 12 47+15δq
30

4+δq
3

(1.348) 1.432
+2 0 (20) 3+δq

3

+2 1 (20) 21+5δq
15

−2 0 (02) 6 1 −1 1
2

(02) 12 27−5δq
30

2−δq
3

(0.652) 0.655
−2 0 (02) 3−δq

3

−2 1 (02) 21−5δq
15

+2 1 (01) 9 1
+3 1

2
(01) 6 7+3δq

6
14+5δq

15
(0.948) 0.954

+2 0 (01) 9+5δq
15

+2 1 (01) 3+δq
3

+3 3
2

(01) 12 53+15δq
30

23+5δq
15

(1.548) 1.599 +2 1 (01) 3+δq
3

−2 1 (10) 9 1
−1 1

2
(10) 6 3−δq

6
4−5δq

15
(0.252) 0.248

−2 0 (10) 9−5δq
15

−2 1 (10) 3−δq
3

−1 3
2

(10) 12 33−5δq
30

13−5δq
15

(0.852) 0.844 −2 1 (10) 3−δq
3

+1 3
2

(02) 24 3
2

+2 1 (02) 18 21+5δq
15

7+δq
6

(1.174) 1.180
+1 1

2
(02) 27+5δq

30

+1 3
2

(02) 9+δq
6

−1 3
2

(20) 24 3
2

0 1 (20) 18 16
15

5−δq
6

(0.826) 0.825
−1 1

2
(20) 27−5δq

30

−1 3
2

(20) 9−δq
6

−3 1
2

(11) 16 3
2

−2 0 (11) 8 14−5δq
15

7−5δq
10

(0.678) 0.673 −3 1
2

(11) 3−δq
2

−2 1 (11) 24 4−δq
3

11−5δq
10

(1.078) 1.090
−3 1

2
(11) 3−δq

2

−3 3
2

(11) 21−5δq
10

−3 3
2

(00) 4 3
2

−2 1 (00) 3 11−5δq
15

1−δq
2

(0.478) 0.470
−3 1

2
(00) 9−5δq

10

−3 3
2

(00) 3−δq
2
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TABLE S2. Fusion table for the NFL fixed point constructed in analogous to Table S1, but now using SU(3)2 fusion rules [3]

in the orbital sector, with Qeff
imp = [0, 0, (01)] for single fusion and Q̄eff

imp = [0, 0, (10)] for double fusion. The excitation energies

are δE′ = E′ − E′
min, where E′

min = E′([+1, 1
2
, (00)]) = 7+5δq

30
. These are compared to the values ENRG, computed by NRG at

J0 = 0.3, K0 = 0.3, I0 = −0.01, where [+1, 1
2
, (00)] is the ground state (same as for Table S1). The values of ENRG and δE′

match for the multiplet [+1, 1
2
, (11)]. δq is then determined by matching ENRG and δE′ for the multiplet [0, 0, (01)], resulting

in δq = 0.0433.

free fermions single fusion, with Qeff
imp = [0, 0, (01)] NRG double fusion, with Q̄eff

imp = [0, 0, (10)]

q S (λ1λ2) d E q′ S′ (λ′
1λ

′
2) d′ E′ δE′ ENRG q′′ S′′ (λ′′

1λ′′
2 ) ∆ Ô

0 0 (00) 1 0 0 0 (01) 3 4
15

1−5δq
30

(0.026) 0.026
0 0 (00) 0 1

0 0 (11) 3
5

(= ∆orb) Φorb

+1 1
2

(10) 6 1
2

+1 1
2

(00) 2 7+5δq
30

0 0 +1 1
2

(10) 3+δq
6

+1 1
2

(11) 16 5+δq
6

3
5

(0.600) 0.600
+1 1

2
(10) 3+δq

6

+1 1
2

(02) 27+5δq
30

−1 1
2

(01) 6 1
2

−1 1
2

(10) 6 3−δq
6

4−5δq
15

(0.252) 0.248
−1 1

2
(01) 3−δq

6

−1 1
2

(20) 27−5δq
30

−1 1
2

(02) 12 27−5δq
30

2−δq
3

(0.652) 0.655 −1 1
2

(01) 3−δq
6

0 1 (11) 24 1
0 1 (01) 9 2

3
13−5δq

30
(0.426) 0.422

0 1 (00) 2
5

(= ∆sp) Φsp

0 1 (11) 1 (= ∆sp-orb) Φsp-orb

0 1 (20) 18 16
15

5−δq
6

(0.826) 0.825 0 1 (11) 1

+2 0 (20) 6 1 +2 0 (10) 3 9+5δq
15

11+5δq
30

(0.374) 0.369
+2 0 (01) 9+5δq

15

+2 0 (20) 3+δq
3

−2 0 (02) 6 1 −2 0 (11) 8 14−5δq
15

7−5δq
10

(0.678) 0.673
−2 0 (10) 9−5δq

15

−2 0 (02) 3−δq
3

+2 1 (01) 9 1
+2 1 (10) 9 3+δq

3
23+5δq

30
(0.774) 0.809

+2 1 (01) 3+δq
3

+2 1 (20) 21+5δq
15

+2 1 (02) 18 21+5δq
15

7+δq
6

(1.174) 1.180 +2 1 (01) 3+δq
3

−2 1 (10) 9 1

−2 1 (00) 3 11−5δq
15

1−δq
2

(0.478) 0.470 −2 1 (10) 3−δq
3

−2 1 (11) 24 4−δq
3

11−5δq
10

(1.078) 1.090
−2 1 (10) 3−δq

3

−2 1 (02) 21−5δq
15

+1 3
2

(02) 24 3
2

+1 3
2

(11) 32 43+5δq
30

6
5

(1.200) 1.223
+1 3

2
(10) 33+5δq

30

+1 3
2

(02) 9+δq
6

−1 3
2

(20) 24 3
2

−1 3
2

(10) 12 33−5δq
30

13−5δq
15

(0.852) 0.844
−1 3

2
(01) 33−5δq

30

−1 3
2

(20) 9−δq
6

±3 1
2

(11) 16 3
2

±3 1
2

(01) 6 7±3δq
6

14±5δq
15

(0.948/0.919) 0.954/0.894
±3 1

2
(00) 9±5δq

10

±3 1
2

(11) 3±δq
2

±3 1
2

(20) 12 47±15δq
30

4±δq
3

(1.348/1.319) 1.432/1.311 ±3 1
2

(11) 3±δq
2

±3 3
2

(00) 4 3
2

±3 3
2

(01) 12 53±15δq
30

23±5δq
15

(1.548/1.519) 1.599/1.579
±3 3

2
(00) 3±δq

2

±3 3
2

(11) 21±5δq
10
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TABLE S3. Same fusion procedure as that in Table S2, but now compared to NRG data computed at J0 = 0.6, K0 = 0.3, I0 =
−0.13, where [0, 0, (01)] becomes the ground state (in contrast to [+1, 1

2
, (00)] used in Table S2). The excitation energies are

defined as, δE′ = E′ − E′
min, where E′

min = E′([0, 0, (01)]) = 4
15

. The NRG energies have been shifted and rescaled such that
the ground state is zero and the values of ENRG and δE′ match for the multiplet [0, 1, (01)]. δq is then determined by matching
ENRG and δE′ for the multiplet [+1, 1

2
, (00)], resulting in δq = 0.2135.

free fermions single fusion, with Qeff
imp = [0, 0, (01)] NRG double fusion, with Q̄eff

imp = [0, 0, (10)]

q S (λ1λ2) d E q′ S′ (λ′
1λ

′
2) d′ E′ δE′ ENRG q′′ S′′ (λ′′

1λ′′
2 ) ∆ Ô

0 0 (00) 1 0 0 0 (01) 3 4
15

0 0
0 0 (00) 0 1

0 0 (11) 3
5

(= ∆orb) Φorb

+1 1
2

(10) 6 1
2

+1 1
2

(00) 2 7+5δq
30

−1+5δq
30

(0.002) 0.002 +1 1
2

(10) 3+δq
6

+1 1
2

(11) 16 5+δq
6

17+5δq
30

(0.602) 0.613
+1 1

2
(10) 3+δq

6

+1 1
2

(02) 27+5δq
30

−1 1
2

(01) 6 1
2

−1 1
2

(10) 6 3−δq
6

7−5δq
30

(0.198) 0.196
−1 1

2
(01) 3−δq

6

−1 1
2

(20) 27−5δq
30

−1 1
2

(02) 12 27−5δq
30

19−5δq
30

(0.598) 0.605 −1 1
2

(01) 3−δq
6

0 1 (11) 24 1
0 1 (01) 9 2

3
2
5

(0.400) 0.400
0 1 (00) 2

5
(= ∆sp) Φsp

0 1 (11) 1 (= ∆sp-orb) Φsp-orb

0 1 (20) 18 16
15

4
5

(0.800) 0.812 0 1 (11) 1

+2 0 (20) 6 1 +2 0 (10) 3 9+5δq
15

1+δq
3

(0.405) 0.407
+2 0 (01) 9+5δq

15

+2 0 (20) 3+δq
3

−2 0 (02) 6 1 −2 0 (11) 8 14−5δq
15

2−δq
3

(0.596) 0.595
−2 0 (10) 9−5δq

15

−2 0 (02) 3−δq
3

+2 1 (01) 9 1
+2 1 (10) 9 3+δq

3
11+5δq

15
(0.805) 0.859

+2 1 (01) 3+δq
3

+2 1 (20) 21+5δq
15

+2 1 (02) 18 21+5δq
15

17+5δq
15

(1.205) 1.234 +2 1 (01) 3+δq
3

−2 1 (10) 9 1

−2 1 (00) 3 11−5δq
15

7−5δq
15

(0.396) 0.391 −2 1 (10) 3−δq
3

−2 1 (11) 24 4−δq
3

16−5δq
15

(0.996) 1.015
−2 1 (10) 3−δq

3

−2 1 (02) 21−5δq
15

+1 3
2

(02) 24 3
2

+1 3
2

(11) 32 43+5δq
30

7+δq
6

(1.202) 1.249
+1 3

2
(10) 33+5δq

30

+1 3
2

(02) 9+δq
6

−1 3
2

(20) 24 3
2

−1 3
2

(10) 12 33−5δq
30

5−δq
6

(0.798) 0.799
−1 3

2
(01) 33−5δq

30

−1 3
2

(20) 9−δq
6

±3 1
2

(11) 16 3
2

±3 1
2

(01) 6 7±3δq
6

9±5δq
10

(1.007/0.793) 1.033/0.791
±3 1

2
(00) 9±5δq

10

±3 1
2

(11) 3±δq
2

±3 1
2

(20) 12 47±15δq
30

13±5δq
10

(1.407/1.193) 1.527/1.209 ±3 1
2

(11) 3±δq
2

±3 3
2

(00) 4 3
2

±3 3
2

(01) 12 53±15δq
30

3±δq
2

(1.607/1.393) 1.695/1.474
±3 3

2
(00) 3±δq

2

±3 3
2

(11) 21±5δq
10
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TABLE S4. Demonstration that the NFL′ fixed point spectrum is the union of the FL and NFL fixed point spectra near the
phase transition. Second column: ENFL′ of the intermediate-energy regime NFL′ at I0 = −0.00609896199692 [Fig. 3(b) and
Fig. S2(b)]. Third column: the low-energy FL spectrum with ground state [−2, 0, (00)] just before the phase transition at
I0 = −0.006098 [Fig. 3(a) and Fig. S2(a)]. Fourth column: the low-energy NFL spectrum with ground state [+1, 1

2
, (00)] just

after the phase transition at I0 = −0.006099 [Fig. 3(c) and Fig. S2(c)]. All entries that relate or can be linked to FL are marked
in red. The FL excitations can be obtained by adding electrons with energy ϵe = 0.275511 or holes with energy ϵp = 1.553042
on top of the ground state with energy Eg, as indicated in the column for EFL.

Multiplets ENFL′ EFL ENFL

q S (λ1λ2) d @I0 = −0.00609896199692 @I0 = −0.006098 @I0 = −0.006099

+1 1
2

(00) 2 −0.717930 −0.729529 (= Eg)

0 0 (01) 3 −0.668562 −0.680530

−2 0 (00) 1 −0.550738 −0.551028 (= Eg)

−1 1
2

(10) 6 −0.282883 −0.275517 (≃ Eg + ϵe)

−1 1
2

(10) 6 −0.275324 −0.295054

+2 0 (10) 3 −0.0880684 −0.100011

0 1 (01) 9 0 0 (≃ Eg + 2ϵe)

0 0 (20) 6 0.000037 0 (≃ Eg + 2ϵe)

0 1 (01) 9 0.011703 0

−2 1 (00) 3 0.102149 0.089692

+1 3
2

(00) 4 0.275407 0.275518 (≃ Eg + 3ϵe)

+1 1
2

(11) 16 0.275410 0.275518 (≃ Eg + 3ϵe)

+1 1
2

(11) 16 0.313029 0.300831

−1 1
2

(02) 12 0.416507 0.404921

−2 0 (11) 8 0.451411 0.439442

+2 1 (10) 9 0.550783 0.551033 (≃ Eg + 4ϵe)

+2 0 (02) 6 0.550791 0.551033 (≃ Eg + 4ϵe)

+2 1 (10) 9 0.666084 0.654338

0 1 (20) 18 0.703088 0.690623

−1 3
2

(10) 12 0.741511 0.729522

+3 1
2

(01) 6 0.826154 0.826543 (≃ Eg + 5ϵe)

−3 1
2

(01) 6 0.835829 0.823640

+3 1
2

(01) 6 0.911424 0.899222

−3 1
2

(01) 6 1.002497 1.002014 (≃ Eg + ϵp)
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The impurity contribution to the entropy is defined as
the difference between the entropy of the whole system
(impurity plus bath) and the entropy of the bath only,

Simp ≡ Stot − Sbath = ∂
∂T

[
T

(
lnZtot − lnZbath)

)]

= ln Ztot

Zbath
+ 1

T

(
Utot − Ubath

)
︸ ︷︷ ︸

≃ const ∼= ln a

(S10a)

≃ ln
[

a Ztot

Zbath

]
. (S10b)

where U=T 2 ∂
∂T lnZ≡⟨E⟩ is the internal energy. The en-

tropy is independent of the arbitrary choice of energy
reference, as also apparent from the first line. Therefore
both Ztot and Zbath can be computed relative to their
respective ground state energies. Generally for gapless
spectra then, the expectation values take Utot ∼ Ubath ∼
T . Moreover, in the level-crossing scenario in the regime
|EFL

0 − ENFL
0 | ≪ T (relative to the same energy refer-

ence), the two phases FL and NFL coexist, such that
they also show similar energetics, i.e., |UFL−UNFL| ≪ T .
Therefore with Utot = bUFL + (1 − b)UNFL ≃ const for
arbitrary b ∈ [0, 1], the last term in Eq. (S10a) resem-
bles a constant, irrespective of having NFL′, NFL, or FL.

Eq. (S10b) implies that gx = eSx
imp = a

Zx
tot

Zbath
for each of

x = FL, NFL and NFL′. Eq. (S8) for SNFL′
imp then directly

follows from Eq. (S9).
The level-crossing scenario also explains the same

power laws of impurity susceptibilities χimp in the NFL
and NFL′ regimes as well as the kinks of the susceptibil-
ities at the crossover from the NFL′ regime to the NFL
regime [Fig. S2(i)]. In the NFL′ regime, both FL and
NFL subspaces contribute to the susceptibility indepen-
dently,

χimp ≃ (χFL + χNFL)/2. (S11)

For spin and orbital susceptibilities, the power exponents
for χNFL are smaller than 1, which is the power of χFL.
Since the NFL′ regime is already at low energies, the
power law of χFL + χNFL is dominated by that of χNFL

(ω−1/5, ω1/5 ≫ ω1 when ω < 1). At the crossover from
the NFL′ regime to the NFL regime, the contribution of
χFL disappears, which results in the kinks.

S-V. IMPURITY SPECTRAL FUNCTIONS

The impurity spectral functions are calculated via the
T -matrix [6, 7], resulting in the local correlation function,

At(ω) = − 1
π Im

(
π2ρ0⟨Omσ||O†

mσ⟩ω

)
, (S12)

in the composite operatorOmσ = [ψmσ,Hint], where ρ0 =
1

2D is the bare density of states with D := 1 the half-
band width of the bath. The normalization ensures that
At ∈ [0, 1] with At = 1 implying perfect transmission.

All of the spectral functions scale an asymmetric shape
due to the absence of particle-hole symmetry. In the

0

0.5
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A
t(
ω
)

(a) I0 =0.01 J0
   0.01
−0.3643
−0.3643861
−0.3644
−0.4

(b)
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SFL′

SFL

(d)
 

 

 

FL

NFL

0

0.5

1

A
t(
ω
)

(c) J0 =0.3

I0
   0.01
−0.00609896199692
−0.006099

-0.01 0 0.01
ω

0

0.5

1

A
t(
ω
)

(e) I0 = − 0.01 J0
0.30
0.25
0.23

10-16 10-12 10-8 10-4 100

|ω|

(f)
 

 

 

NFL

SFL

ω> 0

ω< 0

FIG. S7. Impurity spectral function At(ω). (a,b) transition
from FL to SFL, (c,d) transition from FL to NFL, (e,f) tran-
sition from SFL to NFL. Lin-lin (Lin-log) plots in the left
(right) column. In the right column, solid (dashed) lines are
for ω > 0 (ω < 0). The grey dotted lines and the black arrows
mark the spectral weight of 0.75, 0.4 and 0.25, respectively.

transition from FL to SFL [Fig. S7(a,b)], the spectral
weight is close to the value 0.75 in the FL regime, while
it decreases to about 0.4 in the crossover regime SFL′

and further decreases to about 0.25 after entering the
SFL regime. The spectral weight shows a jump from FL
to NFL [Fig. S7(c,d)]. In the NFL regime, it is close to
the value 0.4, which shows similarity with the crossover
regime SFL′. The evolution of the spectral weight in the
transition from SFL to NFL is smooth. In Figs. S7(e,f),
we see the crossover of the spectral weight from 0.25 at
high energy to 0.4 at low energy for J0 = 0.25.

S-VI. THE COEFFICIENT OF IMPURITY
SPECIFIC HEAT γ = Cimp/T

Figs. S8(g-i) show the coefficient of the specific heat,

γ(T ) =
Cimp(T )

T
=
∂Simp(T )

∂T
, (S13)

as a function of temperature T for the FL, SFL and
NFL fixed points. The corresponding impurity entropy
Simp [Figs. S8(d-f)] and the impurity dynamical suscep-
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tibilities of spin and orbital [Figs. S8(a-c)] are also plot-
ted for comparison. γ(T ) takes a constant value for FL
[Fig. S8(g)], as expected, while it follows an approximate
power law behavior to diverge for SFL [Fig. S8(h)] and
NFL [Fig. S8(i)]. For NFL, the power-law exponent is
found to be −1/5, which can be obtained by the CFT ar-

gument for a SU(2)3 Kondo model, γ(T ) ∝ T
2−3
2+3 , see [8].

S-VII. THE IMPURITY STATIC
SUSCEPTIBILITIES χstatic(T )

Fig. S9 shows the impurity static susceptibilities
χstatic

sp,orb(T ) as functions of temperature T for SFL (a,c)

and NFL (b,d) phases. For SFL, χstatic(T ) follow 1/T
behavior for spin [Fig. S9(a)] and constant for orbital
[Fig. S9(c)] at low temperature, as expected for a decou-
pled impurity spin moment-1

2 and fully screened orbitals.

For NFL, it follows T−1/5 behavior for spin [Fig. S9(b)]
at low temperature, which can be obtained by the CFT

arguments for a SU(2)3 Kondo model, χstatic
sp ∝ T

2−3
2+3 ,

see [8]. While, for orbital, it follows 1
ln(T/T0)

+ C to ap-

proach a constant slowly at low temperature.

S-VIII. ENERGY DIFFERENCE OF
MULTIPLETS [+1, 1

2
, (00)] AND [+1, 3

2
, (00)] ALONG

THE PHASE BOUNDARY

Fig. S10 shows the energy difference δE between the
multiplets [+1, 1

2 , (00)] and [+1, 3
2 , (00)] as a function

of J0 along the phase boundary between FL and SFL
(NFL). I0 is fine-tuned at fixed J0 from the FL side, to
induce a very large crossover regime of SFL′ or NFL′.
The eigenlevel spectrum is taken at the odd Wilson site
with the energy scale of ωk = Λ−k/2 = 10−8 and then the
desired energy difference δE is calculated. [+1, 3

2 , (00)]

has a lower energy when J0 < 0, while [+1, 1
2 , (00)] has a

lower energy when J0 > 0.

S-IX. JUSTIFICATION OF THE 3SOK MODEL

The 3soK model derives from a realistic three-
orbitals Anderson impurity model HAIM by the standard
Schrieffer-Wolff transformation in the impurity subspace
with total occupancy N = 2. The details are presented
in the supplementary material in [9]. Here, we only give
a brief summary of the results and justify the values of
Kondo couplings used in this work. The three-orbitals

Anderson impurity model HAIM reads

HAIM = Himp +
∑

p,m,σ

Vpψ
†
pmσdmσ + h.c.

+
∑

p,m,σ

ϵpψ
†
pmσψpmσ, (S14)

Himp = ϵdN +
1

2
UN(N − 1)

+
1

2
JH

∑

mn,σσ′

d†
mσd

†
nσ′dmσ′dnσ, (S15)

= ϵdN +
3

4
JHN + (U − JH

2
)
N(N − 1)

2

−JHS2, (S16)

where, ϵd is the energy level of the impurity, U is Hubbard
interaction and JH is Hund’s coupling, N is the total oc-
cupancy operator and S is total spin operator. After the
Schrieffer-Wolff transformation, the 3soK model reads

H3soK = Hint +Hbath, (S17)

Hbath =
∑

pmσ

εpψ
†
pmσψpmσ, (S18)

Hint = J0S · Jsp +K0T · Jorb + I0S · Jsp-orb · T.(S19)

The bare Kondo couplings J0, K0 and I0 are

J0 =
2

3

[
1

∆E− − 1

3

1

∆E+

]
V 2, (S20)

K0 =

[
1

∆E− +
4

3

1

∆E+

]
V 2, (S21)

I0 = 4

[
1

2

1

∆E− +
1

3

1

∆E+

]
V 2, (S22)

with

V 2 =
∑

p

V 2
p , (S23)

∆E+ = Eg
N=3 − Eg

N=2 = ϵd + 2(U − JH) > 0,(S24)

∆E− = Eg
N=1 − Eg

N=2 = −ϵd − (U − JH) > 0,(S25)

where, Eg
N is the energy of the ground state in subspace

with occupancyN , and ∆E+ (∆E−) is the particle (hole)
excitation energy, so ϵd = −(1 + α)(U − JH) with α ∈
(0, 1).

Based on this Schrieffer-Wolff transformation, these
three Kondo couplings are not independent. J0 can be
ferromagnetic when ∆E− > 3∆E+, i.e. favors the vir-
tual particle excitation processes, while K0 and I0 are
always antiferromagnetic. However, it is worthwhile to
treat them as independent parameters and study both
the antiferromagnetic and ferromagnetic regimes to ex-
plore all the possible fixed points in the global phase di-
agram. Just as we show in this work, a SFL fixed point
exists in the ferromagnetic regime of J0 and a novel NFL
fixed point exists in the ferromagnetic regime of I0. Al-
though this 3soK model derives from a realistic Anderson
impurity model, it can also be viewed as a general multi-
channel Kondo model with both spin and orbital degrees
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FIG. S8. (a-c) Log-log plots of the impurity dynamical susceptibilities of spin and orbital χimp
sp,orb(ω) as a function of ω at

temperature T = 10−16. (d-f) Lin-log plots of the impurity contribution to the entropy Simp as a function of T . (g-i) Log-log
plots of the coefficient of the impurity contribution to the specific heat γ(T ) = Cimp(T )/T as a function of T . The low-energy
fixed points are FL (left), SFL (middle) and NFL (right).

of freedom. The ferromagnetic Kondo couplings may be
realized in cold atoms systems [10, 11], as already men-
tioned in the main text. It may be also available in quan-
tum dots in the near future based on the recent progress
of experiments [12, 13], where they have realized negative
Hubbard U . For triple dots having effectively negative
U , it is possible to induce the strong anisotropy, includ-
ing the sign flip of Jz [14]. This pursuit of negative U
would finally reach to better controllability of the sign of
Kondo couplings. The global phase diagram presented in
this paper can serve as a guideline for further studies.

S-X. DEPENDENCE ON THE
DISCRETIZATION PARAMETER Λ

To check the dependence on the NRG discretization
parameter Λ, we calculate more results at Λ = 3 and
Λ = 5. The results show that the overall phase di-
agram, including all the low-energy fixed points and
intermediate-energy crossover regimes, doesn’t change.

Fig. S11 shows the NRG flow diagrams and the imagi-
nary part of the impurity dynamical susceptibilities χimp

at Λ = 3. FL, SFL and NFL fixed points can be still
obtained at J0 = 0.01, I0 = 0.01 [Figs. S11(a,d)], J0 =
−0.4, I0 = 0.01 [Figs. S11(b,e)] and J0 = 0.3, I0 = −0.01
[Figs. S11(c,f)], respectively. Λ only shifts the phase
boundary a little bit. For example, at I0 = 0.01, the
phase boundary from FL to SFL is about J0 = −0.36485
at Λ = 5 and J0 = −0.3643861 at Λ = 4, respectively. At
J0 = 0.3, the phase boundary from FL to NFL is about
I0 = −0.006123125 at Λ = 5 and I0 = −0.00609896 at
Λ = 4, respectively. As we have explained, the eigen-
states and the power laws of those fixed points can be
obtained by analytical CFT arguments, which are not
related to the discretization; rather to the symmetries of
the model, so the NRG results should be insensitive to
the choice of Λ.
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FIG. S9. (a-b) Log-log plots of the impurity static susceptibilities of spin χstatic
sp (T ) as functions of temperature T . (c-d) Lin-log

plots of the impurity static susceptibilities of orbital χstatic
orb (T ) as functions of temperature T . (a,c) for SFL and (b,d) for NFL.

S-XI. IRREDUCIBLE REPRESENTATIONS OF
SU(3)

We specify the irreducible representations (irreps) of
SU(3) group using the Dynkin labels where we adopt the
compact notation in [15, 16]. For SU(3), in particular,
this implies that the label (λ1λ2) ≡ (λ1, λ2) directly de-
scribes the Young tableau with two rows of [λ2 + λ1, λ2]
number of boxes, respectively.

︸ ︷︷ ︸
λ2

︸ ︷︷ ︸
λ1

For a Young tableau, the vertical stacking of boxes means
the anti-symmetric combination and the horizontal stak-
ing the symmetric combination. This way, (10) ≡ ≡ 3
is the defining irrep, with (01) ≡ ≡ 3̄ its dual;
(00) ≡ • ≡ 1 is the 1-dimensional scalar representa-
tion (‘SU(3) singlet’); (20) ≡ ≡ 6; (02) ≡ ≡ 6̄;
(11) ≡ ≡ 8, etc. Here the single bold number specifies
the multiplet by its dimension. This convention, however,

while frequently encountered, fails when multiple irreps
have the same dimension beyond their dual [for example,
(12) and (40) have the same dimension 15]. The adjoint
or ‘SU(3) spin operator’ transforms in (11) ≡ ≡ 8.
The decompositions of the direct product of two irreps
(λ1λ2) ⊗ (λ′

1λ
′
2) =

∑
⊕(λ′′

1λ
′′
2), are listed in Table S5.

Here, we take the local three-orbitals Hamiltonian for
Hund’s metal [1] with U(1)ch × SU(2)sp × SU(3)orb sym-

metry as an example to show the SU(3) representations,
which are represented by the numbers in the parenthe-
ses in the second column of Fig. S12. The Hamiltonian
reads,

Hloc =
3

4
JHN + (U − JH

2
)
N(N − 1)

2
− JHS2, (S26)

where, U is the Hubbard interaction and JH is the Hund’s
coupling, N is the total occupancy operator and S is
the spin operator. The eigenlevels in each subspace with
fixed total occupancy N are illustrated by the lines from
bottom to top with the order of increasing energy. Their
degeneracy are shown in the brackets on the left, and
their symmetry labels are shown on the right.



14

0.3 0.2 0.1 0.0 0.1
J0

0.3

0.2

0.1

0.0

0.1

δE

δE=E([+1, 1
2
, (00)])−E([+1, 3

2
, (00)])

FIG. S10. Energy difference of multiplets [+1, 1
2
, (00)] and

[+1, 3
2
, (00)] along the phase boundary.

0

1

E
 (o

dd
) (a)

J0= 0.01, I0= 0.01

[+1, 3
2
, (00)] [−1, 1

2
, (10)] [−2, 0, (00)] [0, 1, (01)]

(b)
J0= −0.4, I0= 0.01

[+1, 1
2
, (00)] [−1, 3

2
, (10)] [0, 0, (01)]

(c)
J0 =0.3, I0= −0.01

[−2, 1, (00)] [+2, 0, (10)] [−1, 1
2
, (10)]

10-16 10-10 10-4

ω

10-14

10-3

108

χ
im

p
(ω

)

FL
ω1

ω1

(d)sp
orb
sp-orb

10-16 10-10 10-4

ω

SFL SFL′

∝ 1

ωln2(ω/TSFL)

ω−1

ω1

ω1

(e)

10-16 10-10 10-4

ω

NFL
ω−1/5

ω1/5

ω1

(f)

FIG. S11. (a)-(c) NRG flow diagrams and (d)-(f) imaginary
part of the impurity dynamical susceptibilities calculated at
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TABLE S5. Decompositions of the direct product of two
irreducible representations of SU(3): (λ1λ2) ⊗ (λ′

1λ
′
2) =∑

⊕(λ′′
1λ′′

2 ). The crossed-out terms do not appear in the
SU(3)2 fusion rules.

(10) (01)

(10) (01) ⊕ (20) (00) ⊕ (11)

(01) (00) ⊕ (11) (10) ⊕ (02)

(20) (11) ⊕ ��(30) (10) ⊕ ��(21)

(02) (01) ⊕ ��(12) (11) ⊕ ��(03)

(11) (10) ⊕ (02) ⊕ ��(21) (01) ⊕ (20) ⊕ ��(12)

To make the connection with the orbital angular mo-
mentum L, we add an extra term −JH

4 L2 to Hloc to
break the orbital symmetry from SU(3) to SU(2), so we
can see how the SU(3) representations are split into mul-
tiple SU(2) representations with integer orbital angular
momentum. The results are shown in the third column
of Fig. S12.

The ground multiplet with total occupancy N = 2 (red
color in Fig. S12) is the impurity multiplet [0, 1, (01)] we
studied in this work, and the (01) representation of the
SU(3)orb group corresponds to the L = 1 representa-
tion of the SU(2)orb group. Thus, the impurity multiplet
takes orbital angular momentum L = 1 in the (01) rep-
resentation. For this Hamiltonian, the reduction of the
symmetry from SU(3)orb to SU(2)orb only affects the high
energy multiplets. For example, the (20) representation
is split into L = 2 and L = 0 representations, and the
(11) representation is split into L = 2 and L = 1 repre-
sentations.
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FIG. S12. Illustration of the multiplets of two different local Hamiltonians with three orbitals at large Hund’s coupling JH .
One has SU(3) symmetry (second column) and another one has SU(2) symmetry (third column) in orbital sector. The numbers
in the first column are the total occupancy numbers. The numbers in the brackets are the degeneracy of the multiplets.
The numbers in the parentheses represent SU(3) representations. S and L represent spin and orbital angular momentum,
respectively.
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M. Goldstein, L. I. Glazman, J. von Delft, and
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11 Conclusion and outlook

Due to the decoupled nature of the two projects discussed in this thesis, we will divide the
concluding remarks again into two parts.

Keldysh mfRG study of the single-impurity Anderson model: In Part I, we have
introduced methodological advances in the parametrization of the Keldysh four-point vertex
for fermionic theories with two-particle interactions, in particular exploiting both parity and
crossing symmetries to reduce the number of independent Keldysh components of the vertex.
We have also discussed how to construct bubbles and loops within this parametrization,
which are necessary for computing the vertex in (m)fRG. Furthermore, we have presented
details on our specific Keldysh mfRG implementation for the single-impurity Anderson
model. We have thoroughly studied Keldysh perturbation theory for the SIAM and evaluated
various properties of correlation functions obtained from a full mfRG flow, in order to gain
understanding about sources of numerical errors. Finally, we have presented results for static
and dynamical correlation functions on the one- and two-particle level, and investigated the
fulfillment of sum rules and Ward identities.

We have seen that already on the one-loop level, including the full vertex frequency
dependence tremendously improves results in various respects. The K1SF scheme used in all
previous Keldysh fRG works, keeping only one frequency per diagrammatic channel, turns
out not to be a well-controlled approximation: It provides good results for the self-energy and
the spectral function, while stronger deviations occur for susceptibilities even in the weakly
interacting regime. Instead, when including the full vertex frequency dependence, we can well
reproduce benchmark results to high accuracy for all studied quantities and not too large
interaction strength U/∆.

We obtain further quantitative improvements by going from one-loop to multiloop fRG. In
particular the Korringa-Shiba relation for the spin susceptibility, a sum rule following from the
Pauli principle, and one- and two-particle Ward identities are systematically better fulfilled
for increasing loop order. These relations provide important internal consistency checks which
the validity of physical results strongly depends on. As a prime example, a violation of the
two-particle Ward identity discussed in Sec. 8.4 is known to lead to inconsistent results for
transport properties. Overall, our results show that Keldysh mfRG constitutes a quantitative
method for computing real-frequency dynamical correlation functions within the regime of
weak to intermediate interaction strength.

Up to now, we have only presented results up to loop order ` = 3, without including
self-energy multiloop corrections. This is due to the divergence of the 3-loop flow at low
temperatures and large interaction strength, the origin of which has not yet been clarified. The
immediate next steps therefore include further optimization of the numerics, in particular with
a focus on the frequency grid on which self-energy and vertex are sampled. A flexibilization
of the grid and potentially also higher-order interpolation schemes might be necessary (even
though being numerically expensive) in order to get full control over numerical errors at low
temperature and large interaction strength. Once this is achieved, full loop convergence should
be easily reachable, which might further increase the interaction range where mfRG agrees
with NRG benchmark results, before inevitable deviations due to the parquet approximation
appear. The limitations of the PA could be overcome by means of DMF2RG (see below).
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As mentioned in Chapter 5, there are various possible generalizations of the model studied
here, which can be straightforwardly implemented: One can break particle-hole symmetry by
shifting the impurity levels through a gate voltage, or break SU(2) symmetry by splitting the
spin components through a magnetic field, or one can add a second bath to the impurity and
study nonequilibrium transport properties. The latter is beyond the reach of NRG, which is
purely an equilibrium method. The conceptual prerequisites for these generalizations are all
discussed in this thesis, but further refinements of the numerics might be necessary in order
to control numerical errors arising from breaking those symmetries.

The (zero-dimensional) SIAM has primarily been studied for benchmark purposes, allowing
to implement and systematically test our method against known results. However, we have
designed our implementation in a modular way from the very beginning, aiming for future
extensions to different models. Indeed, two different extensions are being implemented at the
time of writing, which were already listed in the introduction (cf. Sec. 1.1.1): An extension
for the Fermi-polaron problem, requiring a rotationally-invariant momentum dependence of
the bath and the impurity, and an extension for the 2d Hubbard model, which requires a
2d lattice-momentum dependence. For both models, the dependence on frequencies, spin,
and Keldysh indices can be treated in complete analogy to the parametrization introduced
here, and can be captured within the current numerical implementation. Furthermore, we
are aiming for a generalization from mfRG to DMF2RG (discussed in Sec. 1.1.1), also in the
context of the 2d Hubbard model: Here one starts an mfRG flow from a DMFT vertex, in
order to incorporate nonlocal correlations beyond DMFT, or, from the fRG perspective, to
elevate mfRG beyond the realm of the parquet approximation. In the Keldysh formalism, the
DMFT vertex can be computed via NRG. The good agreement between mfRG and NRG for
the SIAM on the two-particle level seen in Chapter 9 is a first important step on the route to
this goal.

Non-Fermi-liquid behavior in a three-channel spin-orbital Kondo model: In
Part II, we have reprinted published results on non-Fermi-liquid behavior in a three-channel
spin-orbital Kondo model, which served as a minimal model for Hund metals. We have studied
this model with a hybrid numerical and analytical approach, combining an accurate numerical
description through NRG with analytical explanations obtained by a generalization of Affleck
and Ludwig’s CFT approach to fixed points of multichannel Kondo models. We have seen that
in the parameter regime relevant for Hund metals, the two-stage screening process in the spin
and orbital sector (coined spin-orbital separation) leads to four (not three) different regimes:
At high energies, the impurity is only weakly coupled to the bath (free-impurity regime),
while at low energies both spin and orbital degrees of freedom are screened, leading to a Fermi
liquid. The intermediate SOS energy window of the three-channel spin-orbital Kondo model
consists of two regimes: After orbital screening below Torb, a non-Fermi-liquid fixed point is
reached. A finite spin coupling drives the system away from this fixed point, leading to a
crossover regime at the transition toward the Fermi liquid, which we call “spin-splitting” (SS)
regime. For the NFL, SS, and FL regimes we were able to explain the fractional power laws
in the dynamical spin and orbital susceptibilities through our CFT analysis. In particular, we
can explain the superlinear divergence of the spin susceptibility in the NFL and SS regimes,
which points to strong spin fluctuations that have been conjectured to be the origin of pairing
in Hund metal superconductors. The orbital susceptibility is decreasing in these regimes due
to the screening in the orbital sector. We have seen that surprisingly, the SS regime, even
though not constituting a separate fixed point, also shows clear power-law behavior, which
can be attributed to the presence of the NFL fixed point.

In the three-orbital Anderson-Hund model from which our Kondo-type model is derived
(and which is believed to be relevant for actual Hund metals), the SOS window is much
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smaller. Here, the non-Fermi-liquid fixed point is not reached, but only passed at some
distance. As a result, only the SS regime is visible in this model, while the NFL is masked by
the onset of spin screening. Since the SS regime is however governed by the presence of the
NFL fixed point, the power-law behavior observed there is an indication of non-Fermi-liquid
physics.

In a second publication, we have extended the analysis of the three-channel spin-orbital
Kondo model to its full phase diagram, which hosts various different phases that can all
again be understood in terms of a CFT description. The Fermi-liquid phase, which is the
ground state in the parameter regime relevant for Hund metals, is obtained after full spin and
orbital screening. In a parameter regime dominated by a ferromagnetic spin-spin coupling,
the ground state is a singular Fermi liquid, governed by screened orbital degrees of freedom
and a residual fluctuating spin with a ferromagnetic coupling to the bath, which is marginal
in the RG flow and thus approximately vanishes at low energies. Eventually, in a third
region in the phase diagram (primarily determined by an antiferromagnetic spin-spin coupling
and a ferromagnetic one in the combined spin-orbital sector) one obtains a quite exotic
non-Fermi-liquid phase, featuring an alternating overscreening in the spin and orbital sector.

These different phases are connected by quantum phase transitions, showing characteristic
power-law suppression of the coherence scales close to the phase boundaries. This observation
has direct implications for the physics of Hund metals: The parameter regime relevant for
Hund metals is in the Fermi-liquid phase, but close to its phase boundary. The presence of a
quantum critical point at this phase boundary thus explains the unusually small Fermi-liquid
coherence scale in Hund metals, which is accompanied by a rather large incoherent regime of
non-Fermi-liquid nature at higher energies, studied in detail in the first publication.
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Appendix A

Vertex frequency parametrizations

We reprint Eq. (4.5), defining the natural frequency parametrization in each channel:

Γ

ν2 ν′2

ν′1 ν1

= R

ν2 ν′2

ν′1 ν1

+ γa

νa+ ωa

2 ν′a+ ωa

2

νa− ωa

2 ν′a− ωa

2

+ γp

ωp

2 −ν′p
ωp

2 −νp

ωp

2 +νp ωp

2 +ν′p

+ γt

νt+ ωt

2 νt− ωt

2

ν′t+ ωt

2 ν′t− ωt

2

(A.1)

All necessary transformations between those parametrizations can be read off (cf. [Agu20],
Sec. 3.1):

ν ′1 = νa − ωa
2

ν ′2 = ν ′a + ωa
2

ν1 = ν ′a − ωa
2

ν2 = νa + ωa
2

⇒
ωa = ν2 − ν ′1 = ν ′2 − ν1 = −νp − ν ′p = νt − ν ′t
νa = ν′1+ν2

2 = ωp+νp−ν′p
2 = ωt+νt+ν′t

2

ν ′a = ν′2+ν1
2 = ωp−νp+ν′p

2 = −ωt+νt+ν′t
2

ν ′1 = ωp
2 + νp

ν ′2 = ωp
2 − νp

ν1 = ωp
2 + ν ′p

ν2 = ωp
2 − ν ′p

⇒
ωp = ν ′1 + ν ′2 = ν1 + ν2 = νa + ν ′a = νt + ν ′t

νp = ν′1−ν
′
2

2 = −ωa+νa−ν′a
2 = ωt−νt+ν′t

2
ν ′p = ν1−ν2

2 = −ωa−νa+ν′a
2 = −ωt−νt+ν′t

2

ν ′1 = ν ′t + ωt
2

ν ′2 = νt − ωt
2

ν1 = ν ′t − ωt
2

ν2 = νt + ωt
2

⇒
ωt = ν ′1 − ν1 = ν2 − ν ′2 = νa − ν ′a = νp − ν ′p
νt = ν′2+ν2

2 = ωa+νa+ν′a
2 = ωp−νp−ν′p

2

ν ′t = ν′1+ν1
2 = −ωa+νa+ν′a

2 = ωp+νp+ν′p
2

(A.2)
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From these relations, the action of the symmetry transformations Eqs. (4.49) in the channel-
dependent parametrizations can be readily derived:

T1 : ν1 ←→ ν2

ωa = ν ′2 − ν1 ←→ ν ′2 − ν2 = −ωt
νa = ν′1+ν2

2 ←→ ν′1+ν1
2 = ν ′t

ν ′a = ν′2+ν1
2 ←→ ν′2+ν2

2 = νt

ωp = ν1 + ν2 ←→ ν2 + ν1 = ωp

νp = ν′1−ν
′
2

2 ←→ ν′1−ν
′
2

2 = νp

ν ′p = ν1−ν2
2 ←→ ν2−ν1

2 = −ν ′p
(A.3a)

T2 : ν ′1 ←→ ν ′2

ωa = ν ′2 − ν1 ←→ ν ′1 − ν1 = ωt

νa = ν′1+ν2
2 ←→ ν′2+ν2

2 = νt

ν ′a = ν′2+ν1
2 ←→ ν′1+ν1

2 = ν ′t
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νp = ν′1−ν
′
2

2 ←→ ν′2−ν
′
1

2 = −νp
ν ′p = ν1−ν2

2 ←→ ν1−ν2
2 = ν ′p

(A.3b)

T3 : ν1 ←→ ν2

ν ′1 ←→ ν ′2

ωa = ν ′2 − ν1 ←→ ν ′1 − ν2 = −ωa
νa = ν′1+ν2

2 ←→ ν′2+ν1
2 = ν ′a

ωp = ν1 + ν2 ←→ ν2 + ν1 = ωp

νp = ν′1−ν
′
2

2 ←→ ν′2−ν
′
1

2 = −νp
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2 = −ν ′p

ωt = ν ′1 − ν1 ←→ ν ′2 − ν2 = −ωt
νt = ν′2+ν2

2 ←→ ν′1+ν1
2 = ν ′t

(A.3c)
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TC : ν ′1 ←→ ν1

ν ′2 ←→ ν2

ωa = ν ′2 − ν1 ←→ ν2 − ν ′1 = ωa

νa = ν′1+ν2
2 ←→ ν1+ν′2

2 = ν ′a

ωp = ν1 + ν2 ←→ ν ′1 + ν ′2 = ωp

νp = ν′1−ν
′
2

2 ←→ ν1−ν2
2 = ν ′p

ωt = ν ′1 − ν1 ←→ ν1 − ν ′1 = −ωt
νt = ν′2+ν2

2 ←→ ν2+ν′2
2 = νt

ν ′t = ν′1+ν1
2 ←→ ν1+ν′1

2 = ν ′t

(A.3d)

These results are summarized in Table 4.1.
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Appendix B

Multiloop flow equations in the single-boson
exchange parametrization

Instead of the parquet channel decomposition Eq. (3.6),

Γ = R + γa + γp + γt , (B.1)

based on the two-particle reducibility of vertex diagrams, one can also decompose the
vertex according to its reducibility w.r.t the bare interaction Γ0, coined U reducibility. This
results in the recently developed single-boson exchange (SBE) decomposition [KVC19, KV19],
which allows for a physical interpretation of certain types of diagrams in terms of boson
exchange processes. In studies of the two-dimensional Hubbard model, it has been shown
that the SBE decomposition is a promising technique for computing the frequency and
momentum dependences of the vertex [KLR20, KVC+20, KKH21]. In a very recent one-loop
fRG calculation of the vertex, it was found that some of its essential features are already
captured by its U -reducible parts, which are much easier to compute numerically than the
U -irreducible ones [BTH+21]. SBE is particularly interesting in the context of DMF2RG
[TAB+14, VTM19].

In the following, we first translate the SBE decomposition from the physical channels, in
which it is formulated in the original papers, into the diagrammatic channels used throughout
this thesis, and we relate its constituents to the asymptotic classes Kri . We will see that the
SBE and the conventional asymptotic decomposition Eq. (4.13) [WLT+20] are in fact very
closely related. We then derive multiloop flow equations in the SBE parametrization. A
more comprehensive discussion of this analysis will be submitted for publication very soon
[WGG+21].

B.1 SBE decomposition in the diagrammatic channels
The SBE decomposition was originally defined in terms of the physical ch(arge), sp(in),
and s(inglet pairing) channels [KVC19], which are superpositions of spin components of the
diagrammatic channels a (=ph (particle-hole crossed)), p (=pp (particle-particle)), t (=ph
(particle-hole)) [RVT12]1:

γch/sp = (γt)↑↑ ± (γt)↑↓ , (B.2a)
γs/t = (γp)↑↓ ∓ (γp)↑↓ . (B.2b)

1 The ch(arge) and sp(in) channels are called d(ensity) and m(agnetic) in [RVT12].
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The t(riplet pairing) contribution in the particle-particle (p) channel does not show up in the
SBE decomposition [KVC19]. On the level of the full vertex, we have [RVT12]

Γch/sp = Γ↑↑ ± Γ↑↓ (B.3)

(also see the discussion of susceptibilities in Sec. 4.1.2), where

Γ↑↑ = Γ↑↓ + Γ↑↓ (B.4)

for SU(2) symmetry (Eq. (4.34)), which we will assume throughout in the following.
The SBE decomposition of Γ in channel α = ch, sp is given by [KVC19]2

Γα = ϕirr,α −1
2 λ̄ch

wch
λch − 3− 4δα,sp

2 λ̄sp
wsp

λsp

︸ ︷︷ ︸
∇ph

+ 1− 2δα,sp
2 λ̄s

ws
λs

∇pp

+

λ̄α

wα

λα

∇ph

− 2 Γα0 . (B.5)

Here

wα(ωα) = Γα0 + Γα0 χα(ωα) Γα0 (B.6)

is called “screened interaction” in [KVC19], with

Γch/sp
0 = (Γ0)↑↑ ± (Γ0)↑↓ = ±(Γ0)↑↓ , (B.7a)

Γs
0 = (Γ0)↑↓ − (Γ0)↑↓ = 2(Γ0)↑↓ , (B.7b)

since (Γ0)↑↑ = 0. λ̄α(ωα, να) and λα(ωα, ν ′α) are three-point (fermion-boson) vertices obtained
from the general three-point correlation functions by amputating the fermionic and bosonic
legs. In [KVC19] it is also shown that for SU(2) and time-reversal symmetry one has λ̄α = λα.
The diagrammatic contributions ∇r contain those diagrams that are “U -reducible” in the
corresponding channel r (U -r-reducible), i.e., diagrams that can be split into two parts w.r.t
the channel r by removing a bare vertex Γ0. All fully U -irreducible diagrams are contained
in ϕirr. The term −2 Γα0 is needed to avoid overcounting of the bare vertex, since ∇r in each
channel includes Γ0: In lowest order, λα ≈ ±1 and wα ≈ Γα0 [KVC19].

Now we express all constituents of the SBE decomposition in the diagrammatic channels
a, p, t for the different-spin component Γ↑↓, which is used throughout this thesis. This is
convenient since the same-spin component can be obtained from the SU(2) relation (B.4),

2 Note that in our convention of depicting diagrams, all diagrams are mirrored along the diagonal from the
top left to bottom right (i.e., the bottom left and top right legs are exchanged) compared to the convention
used in [KVC19]: The ph (ph) channel corresponds to the t (a) channel.
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and thus only one component has to be computed explicitly. From Eq. (B.3) we obtain

Γ↑↓ = 1
2(Γch − Γsp)

= ϕirr
↑↓ − λ̄sp

wsp
λsp + 1

2 λ̄s
ws

λs + 1
2




λ̄ch

wch

λch

−

λ̄sp

wsp

λsp




− 2 (Γ0)↑↓

(B.8)

with ϕirr
↑↓ = 1

2(ϕirr,ch − ϕirr,sp). We can further decompose wα and λα into different-spin and
equal-spin components (see the definition of the particle-hole susceptibility in Eq. (4.18) and
the definition of the three-point vertex e.g. in [vLKH+18]),

wch/sp =

↑

↑

↑

↑
±
↑

↓

↑

↓
,

λ̄ch/sp = λ̄t
↑

↑

↑

↑
± λ̄t

↓

↑

↓

↑
. (B.9)

Of course, due to SU(2) symmetry, all spins can be flipped, e.g.

λ̄t
↓

↑

↓

↑
= λ̄t

↑

↓

↑

↓
etc. (B.10)

With this, we can decompose

λ̄ch/sp

wch/sp

λch/sp

=
∑

σσ′




λ̄t

wt

λt

σ′

↑

σ′

↑

σ

↑

σ

↑

±

λ̄t

wt

λt

σ′

↓

σ′

↓

σ

↑

σ

↑




, (B.11)

and thus

1
2




λ̄ch

wch

λch

−

λ̄sp

wsp

λsp




=
∑

σσ′

λ̄t

wt

λt

σ′

↓

σ′

↓

σ

↑

σ

↑

=:

λ̄t

wt

λt

↓ ↓

↑ ↑

. (B.12)

From crossing symmetry S2 (exchanging outgoing legs, cf. Eq. (2.41b)), we further have

= − , = − , (B.13)
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and thus

− λ̄sp
wsp

λsp = λ̄a
wa

λa

↑

↑

↑

↑

− λ̄a
wa

λa

↑

↑

↓

↓

= λ̄a
wa

λa

↑

↓

↑

↓

,

(B.14)

where the last equality follows from SU(2) symmetry. Eventually, in the p channel we have
with Eq. (B.2b)

ws = wp↑↓ − w
p

↑↓ = 2wp↑↓ , (B.15)

where in the last equality wp↑↓ = −wp↑↓ directly follows from the crossing relation of the bare
vertex Eq. (B.7b). Furthermore,

λ̄s = 2 λ̄p

↑

↓

↑
↓ = 2 λ̄p

↑

↓

↓
↑
, (B.16)

since the two legs on the right-hand side are both incoming and thus indistinguishable.
Therefore, we have

1
2 λ̄s

ws
λs = λp

wp
λp , (B.17)

with a factor of 4 included that accounts for the internal spin sum in the right diagram.
In summary, we obtain

Γ = ϕirr + λa
wa

λa

∇a

+ λp
wp

λp

∇p

+

λt

wt

λt

∇t

− 2 . (B.18)

B.2 Relation between SBE and asymptotic decomposition
From Eq. (B.18), we can quite directly read off the relation between the SBE constituents wr
and λr and the asymptotic classes Kri . A similar reasoning to the following considerations has
been done in App. A of [BTH+21] within in the physical channel notation, and it transfers
analogously to the diagrammatic channels.

With Eq. (B.6) and the definition of the susceptibilities in each channel in Sec. 4.1.2,
Γ2

0 χ
r = Kr1 (Eq. (4.19)), we see that

wr(ωr) = Γ0 +Kr1(ωr) . (B.19)
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Furthermore, as stated in Eq. (17) of [Kri19], one has

lim
ν′r→∞

Γ(ωr, νr, ν ′r) = λ̄r(ωr, νr)wr(ωr) = Γ0 +Kr1(ωr) +Kr2(ωr, νr) , (B.20a)

lim
νr→∞

Γ(ωr, νr, ν ′r) = wr(ωr)λr(ωr, ν ′r) = Γ0 +Kr1(ωr) +Kr2′(ωr, ν ′r) , (B.20b)

where the last equality in each line stems from the definition of the asymptotic classes
Eqs. (4.14), (4.15) in Sec. 4.1.2, and we have used that γr′ 6=r → 0 for νr(′) →∞ (Eq. (4.16)).
With Eq. (B.19) we thus obtain

λ̄r(ωr, νr) = 1 + Kr2(ωr, νr)
Γ0 +Kr1(ωr)

, λr(ωr, ν ′r) = 1 + Kr2′(ωr, ν ′r)
Γ0 +Kr1(ωr)

. (B.21)

The U -r-reducible part in each channel thus factorizes as

∇r(ωr, νr, ν ′r) = λ̄r(ωr, ν ′r)wr(ωr)λr(ωr, ν ′r)

= Γ0 +Kr1(ωr) +Kr2(ωr, νr) +Kr2′(ωr, ν ′r) + K
r
2(ωr, νr)Kr2′(ωr, ν ′r)

Γ0 +Kr1(ωr)
. (B.22)

We see that ∇r includes a part of Kr3 that can be fully expressed through functions that only
depend on maximally two frequencies each. In the so-called SBE approximation ϕirr ≈ 0
[KVC19], which neglects all U -irreducible diagrams, one therefore includes some diagrams
contributing to K3 (namely, the U -reducible ones), while the numerical complexity stays on the
K2 level (only two-dimensional frequency dependencies have to be treated numerically). The
validity and usefulness of this approximation is studied in [HLK21]. In the weak-coupling limit,
the lowest-order K3 diagrams (4th order in the bare interaction) are already U -irreducible and
thus not captured in the SBE approximation, which questions its validity in the perturbative
regime. However, in the strong-coupling limit, [HLK21] provides quite convincing numerical
proof of the usefulness of the SBE approximation, thus it might be interesting in the context of
DMF2RG. A similar conclusion can be drawn from the results of the first one-loop DMF2RG
study in the SBE decomposition [BTH+21]. Furthermore, it seems that even if not neglected,
ϕirr is usually more localized in frequency space than K3 and thus might be easier to treat
numerically [BTH+21].

B.3 Multiloop flow equations in the SBE decomposition
To derive multiloop flow equations for the SBE constituents, we first define

Φirr
r := Γ−∇r (B.23)

as the part of the full vertex that is U -r-irreducible, and

ϕirr
r := γr − (∇r − Γ0) , (B.24)

the U -r-irreducible part of the two-particle-reducible (Π-r-reducible) vertex. The latter
definition is useful since ϕirr

r is contained in γr (nicely depicted as a Venn diagram in Fig. 6
of [KVC19]): ∇r contains Γ0, Kr1, Kr2, Kr2′ and those diagrams in Kr3 that are U -r-reducible,
while ϕirr

r contains the part of Kr3 that is U -r-irreducible.
We now proceed analogously as in Section 4.1.4. We again only present the equations

in the a channel explicitly; the contributions in the p and t channel follow by replacing a
vertices and bubbles by p and t vertices and bubbles, respectively. First consider the one-loop
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flow equation (3.10a) for γa,

γ̇
(1)
a = Γ Γ . (B.25)

On the right-hand side, we insert the SBE decomposition w.r.t the a channel, Γ = ∇a + Φirr
a ,

to obtain

γ̇
(1)
a = + Φirr

a

+ Φirr
a + Φirr

a Φirr
a . (B.26)

On the left-hand side of Eq. (B.25) we insert the decomposition γa = ∇a − Γ0 + ϕirr
a (with

Γ̇0 = 0),

γ̇
(1)
a = ∂Λ + ϕ̇irr

a

=
•

+
•

+
•

+ ϕ̇irr
a (B.27)

By comparing the terms in Eqs. (B.26) and (B.27) in terms of their U -reducibility, we can
readily deduce the one-loop contribution to the flow of the SBE constituents,

ẇa (1) = , (B.28a)

˙̄λa (1) = Φirr
a , (B.28b)

ϕ̇irr (1)
a = Φirr

a Φirr
a . (B.28c)

This agrees with the one-loop flow equations derived in [BTH+21]. The two-loop contribution
(3.10a) follows in the same spirit. We obtain

ẇa (2) = 0 , (B.29a)

˙̄λa (2) = γ̇
(1)
ā

, (B.29b)

ϕ̇irr (2)
a = γ̇

(1)
ā

Φirr
a + Φirr

a γ̇
(1)
ā

. (B.29c)
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Here γ̇(1)
ā = γ̇

(1)
p + γ̇

(1)
t can be constructed from ẇp,t (1), λ̇p,t (1) and ϕ̇

irr (1)
p,t in analogy to

Eq. (B.27) for γ̇(1)
a . Eventually, higher-loop contributions `+ 2 ≥ 3 read

ẇa (`+2) = γ̇
(`)
ā

, (B.30a)

˙̄λa (`+2) = γ̇
(`+1)
ā

+ Φirr
a γ̇

(`)
ā

, (B.30b)

ϕ̇irr (`+2)
a = γ̇

(`+1)
ā

Φirr
a + Φirr

a γ̇
(`)
ā

Φirr
a + Φirr

a γ̇
(`+1)
ā

.

(B.30c)
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