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Zusammenfassung

Clustering ist eine der grundlegenden Aufgaben im Data Mining. Das Finden von Gruppen
ähnlicher Objekte und gleichzeitige Trennen unähnlicher Objekte liefert wertvolle Ergeb-
nisse in verschiedensten Forschungsbereichen. Da sich sowohl die Daten als auch die Defi-
nitionen von Ähnlichkeit je nach Bereich stark voneinander unterscheiden können, eignen
sich unterschiedliche Clusteralgorithmen für unterschiedliche Probleme. Aus den diversen
Voraussetzungen und Ansprüchen heraus haben sich verschiedene Teilbereiche des Cluster-
ings entwickelt: Im Subspace Clustering geht man davon aus, dass nicht alle Attribute für
alle Gruppen relevant sind und sucht Gruppen ähnlicher Objekte in Unterräumen des ur-
sprünglichen Datenraums. Falls zudem die Orientierung im Datenraum keine Auswirkung
auf die Zusammengehörigkeit von ähnlichen Objekten hat, Datenpunkte also nah beieinan-
der liegen wenn sie auf einen beliebig orientierten Unterraum projiziert werden, befinden
wir uns im Bereich des Correlation Clusterings. Weitere Forschungsgebiete sind eng mit
Clustering verbunden: Outlier detection zielt darauf ab, Objekte zu finden, die zu keinem
Cluster gehören. Die Reihenfolge von Daten wird zwar hauptsächlich im Zusammenhang
mit raumfüllenden Kurven oder Indexstrukturen betrachtet, das Sortieren der Daten in
eine bestimmte Reihenfolge kann aber auch als wichtiger Vorverarbeitungsschritt für das
Clustering dienen. Je nach Anwendungsfall kann auch umgekehrt ein vorheriges Clustern
der Daten das Sortieren erleichtern.

In dieser Arbeit betrachten wir Zusammenhänge zwischen Clustering und den genann-
ten verwandten Gebieten Subspace Clustering, Correlation Clustering, Outlier Detection
und Reihenfolgen von Daten. Wir finden Synergien und Übergänge zwischen den Gebieten
und Clustering, die uns erlauben, bestehende Probleme zu lösen oder zu vereinfachen.

Subspace Clustering Eine der größten Herausforderungen beim Subspace Clustering
besteht darin, gleichzeitig sowohl zu erkennen welche Dimensionen relevant sind, als auch
Objekte zu finden, die projiziert auf diese Dimensionen nahe beieinander liegen. Unse-
re neue Scoring Methode KISS [15] berechnet die Wichtigkeit jeder Dimension für jedes
einzelne Objekt. KISS ermöglicht es beispielsweise, die Distanzfunktion eines klassischen
Clusteralgorithmus zu gewichten um die Relevanz verschiedener Dimensionen zu berück-
sichtigen. Gitterbasierte Clustering Ansätze haben viele Vorteile, allerdings ist die mit
der Dimensionalität exponentiell ansteigende Anzahl an Gitterzellen problematisch für
hochdimensionale Daten. Grace [17] ist ein gitterbasierter Clusteralgorithmus, den wir
für hochdimensionale Daten mit volldimensionalen Clustern entwickelt haben, wobei wir
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die Anzahl der Gitterzellen in Abhängigkeit von der Anzahl der Punkte begrenzen. Für
eine ordentliche Evaluierung von Algorithmen im Zusammenhang mit Subspace Clustering
ist die Verwendung synthetischer Daten fast unumgänglich, da bei Realweltdatensätzen
nur sehr selten die korrekten oder erwünschten Subspace Cluster im Vorhinein bekannt
sind. Deshalb haben wir einen Datengenerator für Datensätze mit Subspace Clustern [20]
entwickelt.

Correlation Clustering Wir haben mit LUCK [18] und der Erweiterung LUCKe [23]
eine Brücke zwischen Correlation Clustering und Clustering gebaut: Mit Hilfe dieser Me-
thoden können klassische distanzbasierte Clusteralgorithmen eindimensionale bzw. belie-
big dimensionale Correlation Cluster finden. Zudem verbessern wir die Ergebnisse von DB-
SCAN und anderen Clusteralgorithmen [47, 46] mit Hilfe einer der bekanntesten Techniken
aus dem Correlation Clustering, der Hauptkomponentenanalyse (PCA). Diese ermöglicht
es, Ketten von Objekten, die verschiedene Cluster verbinden, zu erkennen und die Cluster
voneinander zu trennen. Zudem haben wir das erste interne Evaluationsmaß für Correla-
tion Clustering [54] entwickelt.

Outlier Detection Die Idee der winkelbasierten Ausreißererkennung kann auf den Be-
reich des Clusterings übertragen und verfeinert werden, um Randpunkte von Clustern zu
erkennen. ABC [21] nutzt diese Randpunkte für ein beschleunigtes Clusterverfahren. Für
MORe++ [19] verwenden wir den Clusteralgorithmus k-Means, um schnell und intuitiv
interpretierbar Ausreißer in hochdimensionalen Daten zu finden.

Reihenfolge Die Reihenfolge von Daten ist ein relevantes Problem für Data Mining im
Allgemeinen und kann ein wichtiger Vorverarbeitungsschritt für Clustering sein [16]. Wir
haben den Circle Index [22] entwickelt, ein Qualitätsmaß für die Reihenfolge von Knoten
in einem Graphen. Unser Clusteralgorithmus CirClu [22] nutzt aus, dass eine Reihenfolge
mit niedrigem Circle Index das Clustern von Knoten erheblich vereinfacht.



Abstract

Clustering is one of the fundamental tasks in data mining. The need to find groups of
similar objects while separating dissimilar ones is widespread among diverse research areas.
As properties of data from these areas differ heavily, there is no “one fits all” cluster
algorithm, and new data gathering methods emerge steadily. For different assumptions
on the data, different sub-areas of clustering evolved: subspace clustering algorithms find
clusters in a subspace of the data space, where we assume some dimensions to be irrelevant.
If also the orientation in the data space is supposed to be irrelevant, i.e., points are close
when projected onto an arbitrarily oriented subspace, we perform correlation clustering.
There are also adjacent research areas that are closely linked to clustering: Outlier detection
aims to find points that are not part of any cluster. And even though ordering of data is
mainly regarded in the context of space-filling curves or index structures, it can serve as
an important preprocessing step for clustering. Also clustering the data first can improve
the ordering of the data, depending on the use case.

In this work, we regard coherences between clustering and the aforementioned related
tasks subspace clustering, correlation clustering, outlier detection, and ordering. We apply
knowledge and ideas from clustering to solve related problems and vice versa, creating
synergies and finding transitions between the fields.

Subspace Clustering One of the biggest challenges in subspace clustering is to simul-
taneously find important dimensions and points which are close when projected to these
dimensions. Our new score KISS [15] indicates the importance of every dimension for each
point individually. KISS enables, e.g., to weight the distance function of a common clus-
tering algorithm to account for the relevance of diverse subspaces. Grid-based approaches
can facilitate subspace clustering, but for high dimensionality, an exponential number of
grid cells is not manageable. Grace [17] is a grid-based clustering method designed for
high-dimensional data containing clusters in the full-dimensional space, where we limit the
number of grid cells depending on the number of points. For an extensive evaluation of al-
gorithms in connection with subspace clustering, using synthetic data is almost inevitable.
We created a subspace cluster generator [20] as real-world data sets containing subspace
clusters which are also labeled as such are rare.

Correlation Clustering Regarding the connection between clustering and correlation
clustering, we developed LUCK [18] and its extension LUCKe [23], methods that enable
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every distance-based cluster algorithm to find one-dimensional resp. arbitrary dimensional
correlation clusters. The other way around, we used one of the most common methods from
the field of correlation clustering, namely principal component analysis (PCA), to detect
and remove chains of points connecting different clusters to improve clustering results
by DBSCAN [46] and other cluster algorithms [47]. Furthermore, we developed the first
internal evaluation measure for correlation clusters [54].

Outlier Detection We refined the idea of angle-based outlier detection to identify border
points of a cluster, leading to our fast angle-based clustering algorithm ABC [21]. With
MORe++ [19] we use k-Means clustering to find outliers in high-dimensional data.

Ordering We found that the ordering of data points is a relevant problem for data mining
in general and an important preprocessing step for clustering in [16]. We developed the
Circle Index [22], a measure for the quality of node ordering. Reordering nodes such that
the Circle Index is minimized simplifies clustering significantly.
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Chapter 1

Introduction

The amount of data humanity gathers daily is overwhelming, and most of it comes un-
structured. Usually, data is collected in order to learn something from it, to improve tasks
related to it, or to profit from it in one way or another. The fields gathering data are
diverse. If there were fields not gathering or producing any data, they would surely make
a shorter list than enumerating all the interesting fields that benefit from data mining.
Some of the most frequently named fields that already gathered plenty of interesting and
useful data are medicine, finance, social networks, and physics. For over 20 years we know
that there is “an urgent need for a new generation of computational theories and tools
to assist humans in extracting useful information (knowledge) from the rapidly growing
volumes of digital data” [38]. Thus, the field of knowledge discovery (in databases) (KDD)
emerged. The field is concerned about “the nontrivial extraction of implicit, previously
unknown, and potentially useful information from data” [40]. The KDD process encom-
passes selection, preprocessing, transformation, data mining and interpretation/evaluation
of data [39]. For this thesis, we focus on data mining, which comprises tasks like clustering,
outlier detection, classification, regression, summarization, and dependency modeling [38].
Some of the tasks are connected to a certain degree. For example, classification is related
to clustering as both rely on groups of data points that belong together. Furthermore,
outliers can be seen as points that do not belong to any cluster [37]. Some state that “one
of the most important of the myriad of data analysis activities is to classify or group data
into a set of categories or clusters” [79]. If the categories are known beforehand, we speak
of classification, otherwise we speak of clustering : clustering means to unsupervisedly par-
tition the data in groups of similar objects while separating dissimilar ones. Knowing such
groups can deliver valuable insights into the data and serve as basis for further analysis.

Several subcategories of clustering as well as other related research fields developed
due to diverse new challenges that arose over the years. As storage became cheaper, the
volume and dimensionality of gathered data increased, leading to additional, potentially
irrelevant information in the data, which can mask the underlying clusters. Subspace clus-
tering algorithms consider potentially irrelevant attributes by looking for clusters of points
that are similar in only a subspace of the full data space. Correlation clustering algorithms
focus on correlated or redundant features, leading to arbitrarily oriented subspace clusters.



2 1. Introduction

Figure 1.1: Publications included in this thesis building bridges between research areas.

Even though clustering, subspace clustering, and correlation clustering are similar not only
regarding their terminology, but also their objective, common approaches differ fundamen-
tally from each other. While specializing on their respective niches, the research fields
drifted more and more apart over time. Thus different algorithms with different advan-
tages and disadvantages developed. However, in this thesis, we transfeFr promising ideas
from the fields to each other, find synergies between them, exploit their commonalities,
and create and improve solutions to open problems.

Subspace clustering and correlation clustering are not the only fields profiting from
ideas typically used for clustering and vice versa. Another field is outlier detection, which
aims to find data points that are anomalous regarding the rest of the data set. As outliers
can also be seen as points that do not belong to any cluster, we investigate synergies
between outlier detection and clustering.

The last field we regard in connection to clustering is the ordering of data. Ordering of
the input can not only influence most data mining tasks, but we can also take advantage
of a suitable ordering and optimize the ordering to simplify clustering.

The remainder of this thesis is structured as follows. In Chapter 1 we introduce cluster-
ing as well as four related research areas, namely subspace clustering, correlation clustering,
outlier detection, and ordering. Section 1.1 gives a detailed description as well as funda-
mental challenges and approaches in connection with clustering, which is the pivotal point
of this thesis. Setting our publications into context, we give an introduction to each of
the aforementioned related research areas in Sections 1.2 - 1.5 and refer to the respective
publications containing all details on the developed methods in Chapters 2 - 5.

Figure 1.1 gives an overview of the publications resp. published methods included in
this thesis and at which conferences they were published.
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1.1 Clustering

“There are many techniques of cluster analysis and it is difficult to judge their relative
merits and demerits, because a cluster is not a well defined concept” [42]. Even though
the last sentence dates back to 1967, up to today, the difficulty of judging cluster analysis
techniques has not changed. Even though there are thousands of publications related to
clustering, there is still no universally agreed upon exact definition of a “good” clustering.
For some, it is even debatable if clustering is “Science or Art” [78]. This could be seen as a
problem, as researchers in the domain of clustering are trying to solve a problem without
a clear definition. But in fact, it is not only a challenge but also a chance to progress and
to adapt to the current needs of the world.

In the following, we give an overview of some relevant aspects of clustering from different
perspectives and put this thesis into context. First, we regard different notions of a cluster
together with the most common algorithm aimed at the detection of clusters of its type.
Then we regard the characteristics clustering algorithms can have, like for which data or
use case they are suitable. Lastly, we look at challenges that occur independently of the
notion of a cluster or characteristics of the clustering algorithm.

Concepts of clustering

As mentioned before, the fundamental idea of clustering is to partition some data into
groups of similar objects while separating dissimilar ones. Because of the multitude of use
cases for clustering, which can be valuable for basically every research field producing data,
there are numerous attempts at defining a “good” clustering. Depending on the use case
and data set, different notions of similarity may be applied. That results not only in the
application of different similarity measures but also in different notions of a cluster itself.
The most common types of clustering are centroid-based, density-based and hierarchical
clustering, of which we give an overview in the following.

Centroid-based clustering algorithms represent clusters by their centroids and usu-
ally try to minimize the distance between objects and their respective centroid. k-Means [63,
64] is the most famous representative and uses the means of all objects assigned to a cluster
as its centroid. In an iterative approach, it assigns each point to its nearest cluster center
and then recalculates the centers.

• Advantages: Algorithms of this type are typically fast and easy to implement and
belong to the probably most frequently used type of clustering algorithms.

• Disadvantages: They usually need the number of clusters as user input and find only
convexly shaped clusters.

• Occurrence in this thesis: We use k-Means++ [8], a successor of k-Means that im-
proves the initial selection of the cluster centers, in our outlier detection method
MORe++ [19] in Chapter 4.
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Density-based clustering algorithms define a cluster as a continuous dense region,
with DBSCAN [36] as the first and most famous representative. The user-defined param-
eters for the minimal number of points that lie in a range ε around a point define whether
a point is a core point. Core points closer to each other than ε are connected to clusters
so that clusters are divided by rather sparse regions.

• Advantages: Algorithms of this type can find arbitrarily shaped clusters and handle
noise. They can work without having information on the exact data points as the
mere distances between all data points are sufficient.

• Disadvantages: Choosing good parameters is typically not intuitive. For high-
dimensional data the notion of density-connection becomes questionable and the
empty space phenomenon (explained in Section 1.2) exacerbates the selection of
meaningful parameters further. Algorithms from this category are prone to the
single-link effect : an unfortunate “chain” of noisy data points can connect distinct
clusters. Many (old) density-based clustering algorithms cannot detect clusters of
different densities, however, tackling this challenge can successfully be incorporated
into density-based clustering algorithms [58, 35, 72].

• Occurrence in this thesis: In Chapter 3 we tackle the single-link effect and use meth-
ods from the field of correlation clustering to improve not only DBSCAN but also
other clustering algorithms by identifying and removing chains of noise from the
clustering process [46, 47].

Hierarchical clustering algorithms provide a hierarchy of clusters based on the as-
sumption that clusters can be part of other clusters. They can operate in a bottom-up
agglomerative way or in a top-down divisive way. Agglomerative approaches usually com-
bine the clusters that are most similar regarding single linkage, average linkage, or complete
linkage [66].

• Advantages: A taxonomy gives detailed information on the data and the number of
clusters can be chosen afterwards based on the results.

• Disadvantages: A manual analysis of the results is necessary to receive a parti-
tioning of the data, which makes fair comparisons to other methods rather difficult
and requires expert knowledge. Single-linkage hierarchical clustering is prone to the
single-link effect explained above.

• Occurrence in this thesis: We use an adaption of single linkage hierarchical clustering
in our clustering algorithm ABC [21] in Chapter 4, as its properties are suitable when
applied on a data set containing only bordering points of clusters.

Note that these types of clustering are non-exclusive. For example, OPTICS [7] is
density-based as well as hierarchical.
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Characteristics of clustering algorithms

Important characteristics of the data and the objective of the clustering lead to further
types of clustering algorithms that can be differentiated by answering the following non-
exhaustive list of questions:

• In which form or abstraction level is the data available or best to use?
Tabular data consists of a set of objects that have a number of attributes or dimen-
sions. Data can also be available as a graph or be transformed to a graph before
clustering, e.g., using a kNN-graph or an ε-graph. A kNN graph represents all points
as nodes and connects each point with its k nearest neighbors (kNN), where an ε-
graph connects it to all other points within a radius ε. Transforming the data into
a graph first abstracts the data by potentially omitting some information like the
exact distances between all points. Working on graphs can have diverse advantages
that graph-based clustering algorithms like, e.g., spectral clustering [68] exploit.
In this thesis, we regard mainly tabular data. Solely our clustering algorithm Cir-
Clu [22] introduced in Section 1.5 and presented in detail in Section 5.2 works on
graphs.

• For tabular data: which type do the objects have?
Usually, one differentiates between numerical, ordinal, and categorical resp. nominal.
Not all clustering algorithms can be applied to every data type. E.g., as there is no
mean defined for categorical values, some centroid-based clustering algorithms are
not applicable.
In this thesis, we mainly regard numerical data, i.e., with the term data set we usually
refer to a set X of objects or points pi in the d-dimensional space Rd.

• How much user interaction is possible or wanted?
Cluster algorithms can be fully automatic, but mostly they have user-defined input
parameters. There are also approaches performing clustering in a semi-supervised
fashion [11], but clustering in the proper sense is an unsupervised task.
In this thesis, we regard exclusively unsupervised clustering and limit the number of
user-defined parameters to a minimum.

• Should every point be assigned to a cluster unambiguously?
Accounting for uncertainty, fuzzy or soft clustering algorithms assign points to clus-
ters with a certain degree or weight, where hard clustering algorithms assign each
point to exactly one cluster [80]. Often a clear partitioning of the data is desirable,
e.g., for further automatic processing.
Thus, we regard exclusively hard clustering algorithms in this thesis.

• Is the data noisy?
Noise-handling algorithms do not necessarily assign every point to a cluster but
allow for noise and outliers. It is also possible to first perform outlier detection or
noise removal and subsequently apply the clustering algorithm to improve clustering
results.
All approaches introduced in this thesis that work on tabular data can handle noise.
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Having all those aspects in mind, we see that clustering is a very versatile task, which
may be the reason for its prevalence in diverse data-driven research areas. But it is also
a challenge: the requirements in diverse areas differ heavily and in contrast to, e.g., clas-
sification, clustering provides results without any supervision or training. Developing a
clustering algorithm that fulfills all clustering tasks at once may be a tempting idea. Nev-
ertheless, the continuous progress in research areas relying on clustering algorithms impedes
the development of one clustering algorithm that fulfills all requirements for all possible
clustering tasks. Thus, many approaches focus on solving use case-specific clustering tasks.
But even for very specific tasks, some challenges cannot be circumvented.

Challenges

There are challenges that complicate all data mining tasks, like for example incomplete
or highly noisy data sets and data sets with errors or duplicates. In the following, we
rather focus on challenges specific to clustering. The challenges listed below can occur
independently from the exact clustering task and some of them caused the emergence of
distinct research areas.

High volume. With the increasing automation of data gathering, the number of objects
per data set increases, too. This causes longer running times for basically all clustering
algorithms, where algorithms with lower complexity stay applicable in real-world scenarios
even for larger data sets. There are several techniques that are frequently used to decrease
the complexity or runtime of clustering algorithms. E.g., performing complex operations
on only a rather small sample of the data set can decrease the runtime. Also, summa-
rizing close objects with a grid instead of working on the original objects can reduce the
complexity (as well as the runtime, given a large enough data set):

• Random sampling: Performing the clustering algorithm on only a random sample of
the data set and assigning residual objects afterwards decreases the runtime, but not
the complexity. As random sampling is a non-deterministic process, also the results
of the clustering are non-deterministic. Unfortunate sampling can lead to bad results
especially in noisy data sets or data sets with many outliers.

• Selective sampling: Performing the complex parts of a clustering algorithm on only
a sample of specifically selected suitable objects from the data set can decrease the
runtime significantly without the disadvantages of random sampling. The assignment
of the residual out-of-sample objects is usually quite fast. Here, a good selection
strategy is decisive for the quality of the overall clustering. In our approach ABC [21]
(see Sections 1.4 and 4.2) we select only points at the border of a cluster because
these points already define the cluster but constitute only a small fraction of the
overall data points.

• Summarization: Roughly summarizing close points with a grid -based approach has
several advantages: Assigning points to grid cells is very fast if a simple grid structure
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is used and the subsequent complexity depends on the number of grid cells instead
of the number of objects. Thus the runtime decreases if there are fewer grid cells
than objects. However, the number of grid cells grows exponentially with respect
to the number of dimensions, thus grid-based approaches are often unsuitable for
high-dimensional data. With our clustering approach Grace [17] (Section 2.1) we in-
vestigate limiting the number of grid cells dependent on the number of points, leading
to a hybrid between clustering and subspace clustering as explained in Section 1.2.

High dimensionality. With the decreasing price for main-memory and flash drives as
well as various new data gathering methods, e.g., in medicine, chemistry, or physics, the
number of attributes in data sets nowadays has multiplied compared to the beginnings of
research in the field of clustering. In Sections 1.2 and 1.3 we explain in detail disadvanta-
geous effects of high-dimensional data, often summarized as the curse of dimensionality,
with respect to the clustering task and research directions that developed to tackle them,
i.e., subspace clustering and correlation clustering.

Robustness. “[T]he performance of a method should deteriorate only slightly under
small deviations, and it should have a good efficiency (accuracy) of estimation” [33]. Ro-
bust algorithms fulfill this by providing similar results for similar inputs, which is desirable
for a multitude of reasons. E.g., it allows a constant quality of results and can increase re-
producibility. The latter is not only relevant for scientific experiments but also for technical
exchange and as a basis for discussions. Robustness in clustering algorithms is multifaceted
and can concern diverse aspects. Even though most clustering algorithms regard data sets,
small perturbations in the ordering of the input data can already influence the final results
of algorithms that are not robust. Ordering the input data, a topic we regard in Chap-
ter 5, can stabilize such results. Another type of robustness concerns the input parameters.
Often, they are based on “expert knowledge”, but two experts may have (slightly) differ-
ent opinions on the exact “best” parameters. Nevertheless, resulting clusterings should
not deviate significantly from each other nor be contradictory. Real-world data is usu-
ally noisy, i.e., it contains background noise or jitter. While background noise consists of
additional points that do not belong to the original distribution and are often rather uni-
formly distributed across the data space, jitter denotes small deviations or perturbations
in the original distribution. Both, noise as well as jitter, should not compromise the final
clustering significantly. Even though noisy data sets are frequently regarded in the field
of clustering, in the field of correlation clustering, they are rather neglected. With our
methods LUCK [18] and LUCKe [23], introduced in Chapter 3, we allow to transfer ben-
efits from distance-based clustering algorithms to correlation clustering. Using LUCK(e),
noise-handling clustering algorithms can find arbitrarily oriented and arbitrary dimensional
subspace clusters while still offering benefits from their robustness w.r.t. noise. Especially
unfavorable noise can form “chains” that connect disparate clusters, particularly when
using density-based algorithms. We tackle this problem with our chain-detection meth-
ods [46, 47] introduced in Section 1.3 and described in detail in Chapter 3.
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Evaluation

Evaluating and comparing clustering algorithms proves difficult since clustering is such
a versatile task. For evaluating a clustering algorithm its runtime, usability, degree of
necessary expert knowledge, simplicity of implementation, and many more aspects can be
relevant. But most often, the quality of a clustering algorithm refers to the quality of its
results for users as well as researchers. To evaluate the quality of clustering results we can
use external or internal evaluation measures.

External evaluation One possibility to evaluate the quality of a clustering is to compare
its results on real-world data sets to a “ground truth” or labelling. As the “ground truth”
is usually determined by an expert in the field the data stems from, the process of labeling
data is an expensive task. Thus, the number of available labeled data sets is limited
and developing clustering algorithms solely based on a few labeled data sets can lead to
overfitting. Depending on the purpose of the clustering or the field the labeling expert
comes from, different labellings may be seen as the “ground truth”. Moreover, experts are
human, and humans may err. Thus, the correctness of the labellings and their value for
evaluation is sometimes questionable.

Furthermore, if the “ground truth” or desirable classes are already known, the clus-
tering task is sort of obsolete. Hence, this type of evaluation is mainly used for research
purposes and the general evaluation of an algorithm rather than for the evaluation of a
certain clustering result. Synthetic data sets can support examining the quality of cluster-
ing algorithms depending on certain aspects of the data and in most cases automatically
provide a ground truth. As the generation of data sets with properties worth examining
can be a cumbersome task, data generators can ease the workload of researchers in the
field. Thus, we develop in Section 2.2 an easy-to-use generator for data containing subspace
clusters [20] that is also available online.

Given a reliable ground truth, we can examine clustering results with a plethora of
external evaluation measures. Different external evaluation measures used for clustering
consider different aspects as important and use different techniques. Most common tech-
niques are based on set matching, counting pairs, or entropy [6]. Often, a value between
0 and 1 is desirable, thus there are normalized versions of some of the measures. Further-
more, adjustments for chance can set the quality in proportion to a random assignment of
objects to clusters. Exact descriptions, advantages and disadvantages of commonly used
external measures can be found in diverse surveys [74, 76, 77]. In this thesis, we mostly
use the wide spread Normalized Mutual Information (NMI), adjusted rand index (ARI),
as well as precision and recall as external evaluation measures.

Internal evaluation With internal evaluation measures the quality of a clustering can
be indicated without the necessity of labeling the data first. Like that, internal evalu-
ation measures can also be used as stopping criteria during the execution of clustering
algorithms. Internal evaluation measures for clustering usually regard compactness and
separation [62]. Compactness evaluates the similarity of objects belonging to the same
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cluster and separation describes the disparity between objects of different clusters. The
calculation of internal evaluation measures can, e.g., be based on distances to a centroid,
pair-wise distances, or statistical methods like variance or entropy. However, all inter-
nal quality measures rely on some model of a “good” clustering, which means that only
algorithms that find clusters of a type fitting the respective model achieve good scores.

We develop an internal quality measure for correlation clustering in Section 3.1 and an
internal quality measure for ordering in Section 5.2.

1.2 Subspace Clustering

The amount and dimensionality of gathered data increased significantly over the last
decades: nowadays, sensor networks are widespread, new examination methods in chem-
istry and molecular biology are developed steadily, and social networks produce a multitude
of various data by millions of users every day. Even though we gather more information
than before, discovering knowledge in databases does not get easier. The more attributes
we gather, the more may be irrelevant for some data mining tasks. For different groups of
data points, different features may be relevant, which is often referred to as local feature
relevance. The more dimensions a data set has, the more different meaningful groupings
could exist. The empty space phenomenon describes that for a fixed number of points the
number of empty grid cells grows exponentially with respect to the dimensionality such
that “most” of the high-dimensional space is empty. Especially the quality of grid-based
and density-based clustering algorithms can suffer from this effect. With increasing di-
mensionality of the data the impact of further disadvantageous properties for clustering
increases, too, and is often referred to as the curse of dimensionality, first mentioned by
Bellman [24] and elaborated in a plethora of subsequent literature (e.g., [59, 26, 82]). It
encompasses several aspects of high-dimensional data that are unfavorable for traditional
data mining tasks. For example, the “discrimination between the nearest and the farthest
neighbor becomes rather poor in high-dimensional space” [59] as mathematically described
below. Thus, the usefulness of common distance measures like the Euclidean distance be-
comes questionable with increasing dimensionality. For a (independent and identically
distributed) data set X with d dimensions and a distance measure dist it holds that:

lim
d→∞

maxx,y∈X dist(x, y)−minx,y∈X dist(x, y)

minx,y∈X dist(x, y)
= 1 (1.1)

This decreased discriminability of distances in high-dimensional data means, that “ob-
jects are almost equi-distant, and clustering based on any such similarity assessment is
meaningless” [9].

Thus, common clustering algorithms are usually not able to find meaningful clusterings
in high-dimensional data, which sparked the emergence of clustering algorithms specifically
aimed at high-dimensional data. Throughout the thesis, we use the term subspace clustering
as a generic term for all clustering methods that at some point regard only a subset of
attributes to tackle this problem. Subspace clustering algorithms provide, additionally to
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the grouping of the data into clusters, an associated subspace, i.e., a subset of attributes,
for every cluster. Points of a cluster are close or similar if they are projected onto this
subspace.

Types of subspace clustering The field of subspace clustering is sometimes further
differentiated according to different properties:

• The notion of subspaces and the number of clusters a point can get assigned to consti-
tutes the categories projected clustering, soft projected clustering, subspace clustering,
and hybrid approaches [59]. Even though this differentiation is common especially
in early publications in the field, the exact terminology is neither used accurately in
current research [59] nor notably intuitive (e.g., the main difference between projected
clustering and subspace clustering is the number of clusters a point can get assigned
to), thus we do not use this differentiation further.

• Depending on a hard or soft assignment of dimensions to subspace clusters, we can
differentiate between hard subspace clustering and soft subspace clustering : Assuming
each cluster belongs to an exact subspace of the full space is the foundation for
hard subspace clustering, while assigning weights to all dimensions according to their
relevance for a cluster is called soft subspace clustering [34](analogously to hard and
soft clustering as described in Section 1.1).

• According to their algorithmic approach most algorithms in the field of subspace
clustering can be assigned to the group of bottom-up or top-down approaches [71,
59]. For pruning, bottom-up approaches often use the downward closure property,
describing that if a d-dimensional space is dense (i.e., it contains at least a certain
number of points per volume), then its d− 1-dimensional projections are also dense.
Top-down approaches often rely on the locality assumption, implying that members
of a subspace cluster are close even in the full-dimensional space.

• For very broad definitions of subspace clustering also the orientation of subspaces
can serve as a categorization aspect: all previously mentioned methods refer to axis-
parallel subspaces. In contrast, arbitrarily oriented subspace clustering, also called
correlation clustering, allows combining different attributes from the original space
to only one attribute in the subspace. Most often, linear correlations between at-
tributes, characterized by groups of points lying on (or close to) hyperplanes or lower
dimensional arbitrarily oriented subspaces in the full space are regarded. For further
details on correlation clustering, see Section 1.3. In this thesis, we do not include
correlation clustering when we refer to subspace clustering as it differs significantly
from the previously defined subareas.

Extensive enumerations, descriptions, and assignments to subcategories of a plethora
of subspace clustering algorithms can be found in diverse surveys on the topic [34, 59, 60,
71]. All those approaches have in common that they consider the relevance of attributes
for each cluster in order to reduce difficulties connected to the curse of dimensionality.
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Grid-based Approaches One of the first approaches to subspace clustering, namely
CLIQUE [5], was developed in 1998 and builds the foundation for various grid-based
bottom-up subspace clustering algorithms, like, e.g., ENCLUS [31], or MAFIA [67]. Grid-
based approaches have several advantages, e.g., they can handle large data sets efficiently
and are able to find density-based, potentially non-convex clusters. However, for a given
cell width the number of grid cells grows exponentially with the number of dimensions
and due to the empty space problem most grid-cells do not contain any points in very
high-dimensional data. Additionally, choosing the “best” cell width for clustering is not
easy and equidistant grids are often unsuitable for data sets containing clusters of different
densities. Our grid-based approach Grace [17] tackles these problems by automatically
adapting a grid to the data based on the distribution of points in one-dimensional pro-
jections of the data. Grace partitions each axis prevalently at positions where there are
strong changes in the density of the data. In this way, the resulting non-equidistant grid
incorporates the inherent structure of the data. We consider differently important dimen-
sions by partitioning the data independently of the axis at the respectively most suitable
position. This incremental approach potentially yields a different number of divisions for
each axis. Thus, Grace positions itself between subspace clustering and clustering, as the
type of cluster (full-dimensional or subspace cluster) depends on the data and is chosen
automatically. Moreover, Grace limits the number of overall grid cells dependent on the
number of points, circumventing an exponential number of grid cells with respect to the
number of dimensions. In contrast to other algorithms using an elaborated or adaptive
grid, like, e.g., OptiGrid [49], Grace can find clusters of non-convex shape. While OptiGrid
interprets dense grid-cells as clusters, Grace connects adjacent dense grid cells, providing
high-dimensional density-based clusters. All details on Grace can be found in Section 2.1
([17]).

When developing new subspace clustering algorithms, we encounter another quite ne-
glected problem: the evaluation of their quality. While there are plenty of data sets labeled
according to their clusters, finding real-world data with given ground truth for the clusters
as well as the subspaces that belong to the clusters is hard. Labeling data is a cumbersome
task, especially working on high-dimensional data, and knowing the correct subspace for
each cluster requires expert knowledge. As an alternative to real-world data, synthetic
data allows examining algorithms in detail regarding diverse properties of the data. Thus,
most subspace clustering algorithms are evaluated based on synthetic data sets where the
ground truth is unambiguous and existent. Creating synthetic data with data generators
allows having a multitude of labeled data sets available without the risk of overfitting on
a few data sets throughout the development process. In Section 2.2 we elaborate in detail
on existing generators, their availability, and the need for a flexible and at the same time
easy-to-use generator for data sets containing subspace clusters. Our data generator [20]
as described in Section 2.2 is publicly available and simplifies not only the development
process of new subspace clustering algorithms but also supports reproducibility and com-
parability among algorithms in the field.
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Subspace search One of the main challenges in the field of subspace clustering is to
identify the relevant attributes for each cluster. As the clusters are not known beforehand,
the points forming a cluster as well as the dimensions which are relevant for the respective
cluster need to be detected simultaneously. Some dimensions may not be relevant at all,
while some dimensions may be relevant for all clusters. A point could belong to different
clusters if it is regarded in different subspaces (compare to the ”traditional” subspace
clustering in the narrower sense), while some points may not belong to any clusters, so-
called outliers, which we explain in more detail in Section 1.4.

Subspace search is a rather small research field aimed at finding and scoring subspaces
in order to simplify and improve clustering. Taking each dimension’s relevance into account
when calculating the distance between two points allows purely distance-based clustering
algorithms to find subspace clusters that would not be detectable in the original full space.
If, as common in high-dimensional real-world data sets, only relatively few dimensions
are relevant, the effect described in Equation 1.1 is weakened, and clusters become more
meaningful as the impact of noise and irrelevant dimensions is reduced.

Incorporating the importance of dimensions can enable clustering algorithms to find
subspace clusters, as already shown in previous research. For example, RIS [52] ranks
subspaces according to their “interestingness” as preprocessing step for arbitrary clustering
algorithms, which then operate only on an interesting subspace. But regarding the most
common related algorithms RIS [52], SURFING [12], and SCHISM [75], none of them
seems appropriate in everyday use as we elaborate in Section 2.3. Especially for high-
dimensional data, “good” parameters are difficult to choose even for experts, and non-
linear complexity of the algorithms results in infeasible runtimes for every day use cases.
However, incorporating the importance of subspaces has great potential to improve the
field of subspace clustering as advantages of highly elaborated clustering algorithms can
directly be transferred to the field of subspace clustering. Thus, we develop KISS [15], a
kNN-based Importance Score of Subspaces, in Section 2.3. It works fully automatically
and its runtime complexity is only linear in the number of dimensions and O(n · log n)
in the number of points. This favorable combination of properties is not reached by any
of the previously mentioned algorithms in this field. Commonly, subspace clustering and
subspace search algorithms are based on the assumption that for points of different clusters
different attributes are relevant. For KISS, we refine this idea of the local feature relevance
further and assume that the relevance of attributes can not only differ for points of different
clusters, but for all points. KISS is based on the idea that a dimension is relevant for a point
if the point is probably part of a cluster that lies in a subspace containing this dimension.
This probability is connected to the occurrence of points in the sets of one-dimensional kNN
regarding different attributes, as explained in detail in Section 2.3. Regarding the kNN in
only one-dimensional projections allows abdicating from distance measures operating on
high-dimensional data that become less meaningful for increasing dimensionality. KISS
allows transferring advantages from clustering to the field of subspace clustering, while
being fast, explainable, and mitigating several aspects of the curse of dimensionality.
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Contributions With our clustering algorithm Grace [17] we develop a method to limit
the number of grid cells and tackling the empty space problem in Section 2.1. We present
our available, easy-to-use generator for data containing subspace clusters in Section 2.2
([20]). In Section 2.3, we develop the scoring method KISS [15]. KISS indicates the
importance of every dimension for each point individually, enabling clustering methods to
find subspace clusters.

1.3 Correlation Clustering

Regarding high-dimensional data, there may be not only irrelevant attributes but also
redundant or interdependent attributes. Where the former are handled via feature selection
and subspace clustering as explained in the previous section, we regard the latter in the
following.

On the one hand, attributes correlated to other attributes could be summarized to
decrease the dimensionality of the data and with it the complexity. This is referred to as
feature extraction. On the other hand, merging several attributes can impair the explain-
ability of subsequent results as the gathered attributes usually have a real-world meaning,
where attributes composed of other attributes are rarely intuitively interpretable for hu-
mans. Furthermore, depending on the data, finding the correlations may be the focus of
interest as they may provide further insights into the data, independently of finding groups
contained in the data.

Principles of Correlation Clustering Points of a correlation cluster are close when
projected onto the corresponding arbitrarily oriented subspace. This projection can be done
using the principal components of the cluster. Correlation clusters may not only reveal
differently strong correlations between different attributes but also the number of involved
respectively correlated attributes, i.e., the dimensionality of the related hyperplanes may
differ.

There are several notions of correlation clustering:

• Attributes can correlate in diverse ways and for diverse reasons. Even though for
most use cases correlated attributes are linearly correlated, for some use cases data
sets may contain, e.g., hyperparaboloid [57] or periodically correlated data [56]. In
the following, we regard exclusively linear correlation clustering.

• Even though the correlation of attributes does not depend on the spatial proxim-
ity of points constituting the correlation, many algorithms in the field aim at find-
ing density-based correlation clusters resp. correlation connected clusters [27] , e.g.,
4C [27], COPAC [2], and HiCO [3]. This probably originates in the notion of “clas-
sical” clusters, such that the found clusters are basically clusters of points revealing
a correlation between some attributes.
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• In the field of graph mining, the term correlation clustering is also used to describe
graph partitioning without knowing the number of clusters [10], but is not directly
connected to the task we regard in this thesis.

Even though finding global correlations between attributes is a quite straight-forward
task, it becomes difficult if the data contains several clusters. To find correlations over the
full data set most frequently principal component analysis (PCA) [51] is used.

Principal component analysis (PCA) [51] is a central element in correlation clustering.
The principal components of a data set are the eigenvectors of the covariance matrix of the
data and give the direction of the main variance of the points. The eigenvalues indicate
the strength of correlation between attributes in the complete data space. However, if the
data set contains several clusters constituting potentially different correlations between
attributes as shown in Figure 1.2, these cannot be detected directly by PCA.

Figure 1.2: For this data set PCA yields the principal components indicated by the blue
dashed arrows. The black solid arrows correspond to the principal components of the single
clusters.

Evaluation Evaluating the quality of a correlation clustering proves difficult. There are
virtually no completely labeled real-world data sets containing correlation clusters, thus
an external evaluation can only be performed using synthetic data. Furthermore, there are
no internal evaluation measures for correlation clustering. Internal evaluation measures
for clustering as introduced in Section 1.1 cannot be applied to correlation clusters, as the
fundamental models differ. Thus, we develop SRE [54] (Sum of subspace Reconstruction
E rrors), the first internal evaluation measure for arbitrarily oriented subspace clustering
in Section 3.1. The SRE is based on ideas originating from the field of autoencoders,
assuming that points belonging to a correlation cluster have a low reconstruction loss after
“encoding” and “decoding” them. The “encoding” and “decoding” corresponds in this case
to projecting them onto their associated arbitrarily oriented subspace and retransforming
them into the original full-dimensional space. Besides the reconstruction loss, the SRE
also considers the subspace dimensionality and the number of clusters.
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A bridge from clustering to correlation clustering Independently of the evalua-
tion, the task of correlation clustering itself is complex. Similarly to subspace clustering as
introduced in Section 1.2, correlation clustering algorithms simultaneously detect points
building a cluster as well as the arbitrarily oriented subspace in which the points’ pro-
jections are close. There are many algorithms designed to find correlation clusters, but,
as described in Sections 3.2 and 3.3, most of them have several disadvantages. For ex-
ample, they often need hyperparameters that are unintuitive and hard to choose well,
have a high complexity (e.g., CASH [1] is in worst case exponentially complex), or cannot
find correlations of different dimensionalities or correlation clusters that are not density
connected. Especially for very high-dimensional data, the concept of density-connection
becomes questionable regarding the curse of dimensionality and loss of meaningfulness for
distance measures. Nevertheless, it depends on the use case which notion of correlation
clusters is desired by the user.

With our work LUCK [18] resp. its successor LUCKe [23] (see Chapter 3) we build
a general bridge between the two fields clustering and correlation clustering. Arbitrary
purely distance-based clustering algorithms can be applied in order to find correlation
clusters if they use distances as calculated by LUCKe instead of the usual Euclidean dis-
tance matrix. For that, we developed distance measures that are described in detail in
Sections 3.2 and 3.3. They assign small values to pairs of points that are probably part of
the same correlation, such that common distance-based clustering algorithms assign them
subsequently to the same cluster. Where LUCK uses an orientation vector to allow finding
one-dimensional linear correlations, LUCKe is based on local PCA (i.e., a PCA on the k
nearest neighbors) and allows finding correlation clusters of arbitrary dimensionality. For
that, we regard the similarity of directions of vectors indicating the main orientation of the
kNN to each other as well as to the vector connecting the points. The more similar, the
smaller are the values of our distance measure, indicating a high probability for the points
to belong to the same correlation cluster. Our sophisticated distance measures are based
on scalar products and are described in detail together with an analysis of their properties
in Sections 3.2 and 3.3.

Some correlation clustering algorithms like 4C [27], COPAC [2], or ORCLUS [4] al-
ready combine PCA with the clustering algorithms DBSCAN [36], or k-Means [63, 64].
Nevertheless, the underlying clustering algorithm is not interchangeable and the results do
not fit our above description of a correlation cluster. E.g., the DBSCAN-based approaches
find correlation connected clusters [27], i.e., “a dense region of points in the d-dimensional
feature space having at least one principal axis with low variation along this axis” [27].
In contrast, LUCK(e) is not dependent on the spatial proximity of points belonging to
a correlation cluster in high dimensionality. ORCLUS needs user inputs regarding the
dimensionality of the clusters as well as their number, while LUCKe automatically takes
all principal components as well as their eigenvalues into account. LUCKe is the first
method that allows to generically transfer advantages from the plethora of distance-based
clustering algorithms directly to the field of correlation clustering.
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PCA and the single-link effect in clustering The other way around, we can use
PCA, a central technique in the field of correlation clustering, to improve clustering. A
common problem for density-based algorithms is that disadvantageously distributed noise
can connect individual clusters, which is also known as the single-link effect. As only a few
points suffice to destroy an otherwise clear cluster structure by forming a chain between at
least two clusters, removing them from the clustering process improves the results signifi-
cantly. In our papers [46, 47] introduced in Section 3 we show how to detect those points
forming a chain between clusters using PCA. The method originally designed for DB-
SCAN [47] can also detect chains between clusters found by any clustering algorithm [46].
Those unwanted chains consist of merely enough noise points to be considered dense and
their intrinsic dimensionality tends to be lower than the intrinsic dimensionality of actual
clusters in the data set. Our methods [46, 47] use this assumption to detect points that
may be part of a chain using PCA and subsequently check if a cluster of potential chain
points indeed connects to other clusters. Only then those chain points are excluded from
the data set for clustering.

Contributions We develop SRE [54], the first internal evaluation measure for correlation
clustering in Section 3.1. With LUCK [18] and its successor LUCKe [23] we create a way
to use any distance-based clustering algorithm to find correlation clusters in Sections 3.2
and 3.3. That enables us to transfer a plethora of advantages and benefits from clustering
to the field of correlation clustering. The other way around, we use the central correlation
clustering method PCA to solve problems caused by the single-link effect for (especially
density-based) clustering algorithms in noisy data, see Sections 3.4 and 3.5 ([46, 47].

1.4 Outlier Detection

An outlier is “an observation which deviates so much from the other observations as to
arouse suspicions that it was generated by a different mechanism” [45]. In real-world
applications, outlier detection respectively anomaly detection can deliver valuable insights
in the data: typical examples are fraud detection, hints to medical problems, or finding
flaws in production pipelines. Outliers can corrupt diverse data mining results as many
fundamental methods are not robust against them, e.g., the mean of a distribution can
be shifted significantly by only one outlier, where the less frequently used median is more
robust against singular very large values deviating from the rest of the data.

An outlier can be seen as a point that does not belong to any cluster [37]. However,
many clustering algorithms assign each point to a cluster, distorting important features
of the clustering. For example, only one outlier can lead to a cluster center returned by
k-Means [63] being ”outside” of the original cluster, as seen in Figure 1.3. Hence, there
is a plethora of algorithms designed to detect outliers and several approaches exclude
outliers from the data set before or during clustering to improve clustering results, e.g.,
k-Means−− [30]. However, especially without knowing the clusters beforehand, finding
those outliers can be difficult for a variety of reasons:
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Figure 1.3: Data set colored according to clusters found by k-Means. Red crosses indicate
cluster centers, i.e., the mean value of all points assigned to a cluster. Only one outlier (on
the right) can shift the cluster center to a non intuitive position.

• As outliers are unexpected occurrences, there is usually no previous knowledge about
them, making it hard to define what we are actually looking for.

• Depending on the use case, a certain degree of deviation might be expected and
normal, where the same deviation may be considered an outlier for a different use
case.

• It is difficult to differentiate between inconvenient noise and interesting outliers, espe-
cially in noisy or high-dimensional data sets containing several irrelevant dimensions

• Several aspects of the curse of dimensionality (see Section 1.2) exacerbate outlier
detection further [82] in high-dimensional data .

• Other aspects include the origin of the anomalies, the time and context in which the
data was gathered, and the availability of data sets with labeled outliers [29].

There are several fundamental approaches and a multitude of methods to detect outliers
as well as several surveys categorizing them and listing advantages and disadvantages [29,
50, 73, 81, 82]. We can, e.g., differentiate between local (contextual) and global outliers,
between scoring and labeling of outliers, unsupervised and supervised outlier detection,
and many more.

Several outlier detection algorithms need the number or percentage of outliers as user
input. As users usually want to find outliers without knowing them or the amount of
outliers beforehand, a degree of outlierness can provide more information than a binary
decision while simultaneously requiring less user input. Additionally, outliers are extraor-
dinary occurrences and are thus usually examined further after their detection. Knowing
and understanding why an object is detected as outlier helps subsequent examination,
thus the explainable and clear algorithms are desirable. Additionally, as outlier detection
and clustering are related to some extent, using similar ideas to clustering algorithms can
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provide valuable results, as shown by outlier detection algorithms using k-Means (e.g.,
KMOR [41]), kNN (e.g., ODIN [44]), or the concept of density (e.g., LOF [28]).

We incorporate these requirements and ideas in our approach MORe++ [19], that
gives a explainable score of outlierness based on k-Means clustering. In MORe++ we
take advantage of clustering to improve outlier detection. By regarding outliers in every
dimension separately instead of the full space we weaken some effects of the curse of
dimensionality. As projecting onto only one dimension can mask interesting contextual
outliers in the full space, we first partition all points according to their clusters as found by
k-Means++ [8], a successor of k-Means [63, 64] and only then look at their one-dimensional
projections. That gives us an outlier score based on the number of dimensions in which
a point is an one-dimensional outlier. For high-dimensional data, this score can be more
useful than a hard labeling, especially in the presence of subspace clusters, and is intuitively
explainable also for non-specialists in the field. The use of histograms allows not only an
additional speed-up but also refraining from high-dimensional distance measures as soon
as clusters are found. Thus, our algorithm is able to process data sets containing many
high-dimensional points relatively fast. All details on MORe++ can be found in Section 4.1
([19]).

Taking a closer look at angle-based outlier detection approaches like ABOD [61] we see
another potential for synergy with the clustering task. ABOD is the first outlier detection
algorithm based on the observation that the angle enclosing all other points in the data set
is rather small for global outliers compared to points lying in the middle of the dataspace.
We refine this idea developing our clustering approach ABC [21]: Regarding the angle
enclosing only the k nearest neighbors (kNN) of a point we note that points around the
center of a cluster have comparatively high values where points at the border of a cluster
have relatively low values. We use this to detect the points at the borders of clusters which
we call border points. Typically, only a small fraction of the data set are border points, thus
clustering them is significantly faster than clustering the complete data set. However, the
border points alone can describe the clusters sufficiently. We can use adaptions of DBSCAN
or hierarchical single-linkage clustering to summarize all points bordering a cluster. For
that, we define a distance measure incorporating the previously calculated angles, which
also supports separating close clusters. Given the clustering of the border points, the points
in the inner of the cluster do not have to be regarded complexly but can simply be assigned
to the cluster of the nearest border point. All details on ABC can be found in Section 4.2.
ABC is the first algorithm that defines border points based on angles for clustering, where
the usage of angles instead of distances tends to be more suitable for high-dimensional
data [61].

Contributions We develop MORe++ [19], a fast and explainable outlier detection
method for high-dimensional data that benefits from preceding clustering of the data in
Section 4.1. We adapt the idea of regarding angles enclosing other points from the outlier
detection method ABOD to enable detecting points bordering a cluster in Section 4.2. The
resulting clustering algorithm ABC [21] is fast and suitable for high-dimensional data.
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1.5 Ordering

In contrast to the previously regarded research areas, the ordering of input data is a rather
neglected field from a data miner’s point of view. Even though every algorithm uses some
ordering of input data, its influence on the results is rarely investigated. Especially for
clustering tasks in high-dimensional data, where the notion of similarity becomes difficult,
meaningful orderings are valuable. If data is already ordered such that similar points are
near to each other, the clustering task is simplified significantly as having an ordered list
instead of a set of points brings several advantageous properties with it: the complexity
decreases with the number of potential partitionings, ordered input leads to stable quality
of results, and reproducibility increases. But also for other tasks, ordering of the input
plays an important role, e.g., when working with sets of points as objects, as often used for
data sets of 3d objects, when working on graphs, or for visual analytics. An order brings
structure into the data, and structure helps to understand and learn from it.

Of course, there exists already a multitude of possibilities how to order tabular data,
e.g., lexicographic ordering, or locality preserving orderings like Z-order [70] or Hilbert
curves [48]. With a depth-first or breadth-first tree traversal index structures like R-
trees [43] and its successors (e.g., R*-tree [14]), or k-d-trees [25] can be used to provide a
meaningful ordering.

Also for ordering non-tabular data, especially nodes of a graph, a lot of effort has been
made already. Famous methods to order the nodes of a graph are, e.g, by degree, depth-
first or breadth-first graph traversal (where the root node has to be determined), or the
Cuthill-McKee [32] algorithm minimizing the bandwidth of the graph’s adjacency matrix.
Nevertheless, all of these orderings have some drawbacks, especially w.r.t. clustering tasks
as well as reproducibility, as elaborated in detail in our paper [16] presented in Section 5.1.

Depending on the reason why data should be ordered, and the goals that need to be
achieved, ordering is a difficult task. A major problem in finding a good ordering is that
there are virtually no internal quality indicators for orderings (besides the one we created,
see below [22]). But even given such an indicator, finding a good ordering is complex: For
a data set of n points, there are n! possible orderings, so that simple brute-force methods
are not applicable in everyday use.

Thus, we investigated orderings and diverse aspects of their impact in the field of data
mining in our paper [16] and defined some necessary properties for internal measures of
orderliness. Details elaborating on the problem, possible approaches, existing solutions as
well as relations to other research areas can be found in Chapter 5.

Ordering data can simplify clustering, as we show with our clustering method CirClu.
It orders the nodes of a graph meaningfully and subsequently partitions them in only linear
time. For that, we used an observation from visual analytics approaches, where nodes of
a graph are arranged in a circle [13, 65]. Where most works in this field aim at a well
interpretable visualization of the graph or the minimization of edge crossings in the graph,
we focus on a property suitable for clustering: having similar nodes as close as possible,
i.e., having connected nodes as close as possible. For that, we evenly arrange all nodes of
a graph on a circle and aim at reducing the edge lengths. In this context, we develop a
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measure for the orderliness of nodes in a graph [22], called Circle Index (CI). It indicates
if connected nodes are close to each other when arranged evenly on a unit circle. For that,
the ratio between average edge length and a lower bound for the average edge length is
regarded. The CI can be minimized with an iterative approach using some geometric basic
knowledge, as explained in Section 5.2. For a graph G = (V,E) with |V | vertices and |E|
edges the the described approach is quite efficient with a complexity of O(i·|E|·|V |). In the
resulting ordering similar nodes that are likely to belong to the same cluster are near to each
other, which is an advantageous base for clustering as we show with our clustering approach
CirClu [22]: Keeping the order of the nodes reduces the number of possible bipartitionings
from exponentially many to only linear many. As similar nodes are already near to each
other, incrementally performing adapted normalized minimum cuts (which are then only
linearly complex) leads to a comparably good clustering. Furthermore, our experiments
on labeled real-world data show that a good quality of the ordering as measured by CI is
related to a good quality of clustering based on this ordering. All details on the clustering
algorithm as well as the Circle Index can be found in Chapter 5.

Contributions We reveal the need for research in the field of ordering data with respect
to subsequent data mining tasks in Section 5.1 ([16]). We develop the Circle Index [22],
a measure for the orderliness of nodes in a graph in Section 5.2. Optimizing this measure
yields a beneficial order for subsequent clustering tasks, which we demonstrated with our
new clustering algorithm CirClu [22].

1.6 Conclusion

In our research we investigated clustering with regard to a broad range of related tasks:
subspace clustering, correlation clustering, outlier detection, and ordering. We examined
synergies between them, found crossovers, refined basic assumptions, and enabled general
transfer between some of the fields and clustering.

By using ideas from different research areas we were able to solve common problems
in the fields that had no solution, yet. For example, we tackled the single-link effect
occurring in the field of clustering by using a method from linear correlation clustering to
detect chains of noise connecting clusters ([46, 47]).

We created possibilities to find correlation clusters ([18, 23]) as well as subspace clusters
([15]) with simple clustering algorithms. This reunification of research areas allows to
transfer advantages of elaborated clustering techniques to the field of subspace clustering
and correlation clustering.

Investigating benefits of refining common assumptions yielded useful and promising
methods. For example, KISS [15] is based on the assumption that for each individual
point different dimensions can be important, while most algorithms in the field interpret
the local feature relevance with respect to groups of points. Also, we refined the idea of
ABOD [61]. Instead of regarding the angle enclosing all points of the data set, we only
regard the angle enclosing the kNN of a point. This adjustment allows us to differentiate
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not only between global outliers and other points, but between inner points, border points,
and outliers [21].

We did some fundamental, necessary work with the creation of our data generator [20],
the development of the Circle Index [22] and the SRE [54]. Our generator for data con-
taining subspace clusters facilitates and accelerates the work of scientists in the field of
subspace clustering who want to evaluate and investigate newly developed algorithms on
synthetic data. Reproducibly generatable data sets are a foundation of reproducible and
proper research, especially when comparing different algorithms. Also the Circle Index, an
internal measure for orderliness of nodes in a graph, enhances proper research by allowing
to evaluate the ordering of nodes in a graph without a given ground truth. A low Circle
Index indicates a good basis for subsequent clustering tasks. Similarly, internal evaluation
measures are necessary to evaluate correlation clusterings on unlabeled real-world data.
With the SRE we developed such a measure.

A broad range of future work can profit from our achievements. Research on the
benefits of different orderings for data mining tasks is still in an early state of development.
Suitable orderings of data can accelerate algorithms, improve their results, and increase
reproducibility as well as flexibility in all fields working with data. Furthermore, LUCK(e)
allows to transfer a variety of advantages of distance-based clustering algorithms to the
field of correlation clustering. Thus, combining LUCK(e) with elaborated and advanced
clustering algorithms may solve some open problems in the field of correlation clustering.
For example, clustering algorithms that are robust to noise or use sophisticated acceleration
methods can be used to detect correlation clusters in noisy real-world data sets while being
faster than current methods. Similarly, combining KISS with such clustering algorithms
may improve results in the field of subspace clustering analogously.

Requirements and demands on clustering algorithms may differ heavily depending on
the area of application. Furthermore, selecting parameters that produce helpful results is
a task that often requires expert knowledge not only in the field of application but also
regarding the clustering algorithm itself. Incorporating the user in interactive clustering
approaches can yield highly specialized results for diverse clustering tasks. Additionally,
interactive approaches usually give a visual feedback that allows to select appropriate
parameters without the need for expert knowledge in the field of data mining. Our first
steps into this direction yielded promising results in the form of clustering-related analysis
tools [53, 55, 69]. Thus, research on the edges between clustering and interactive algorithms
as well as visual analytics could create further synergies in future work.

In this thesis, we simultaneously regarded related research areas as well as their sim-
ilarities and differences which led to a deeper understanding of the areas. For the task
of clustering, we were able to create synergies with related areas and enabled valuable
advancements in data mining.
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Chapter 2

Between Clustering and Subspace
Clustering

This chapter includes the following publications:

1. Anna Beer, Daniyal Kazempour, Julian Busch, Alexander Tekles, and Thomas Seidl.
“Grace - Limiting the Number of Grid Cells for Clustering High-Dimensional Data”.
In: Proceedings of the Conference on “Lernen, Wissen, Daten, Analysen” (LWDA).
2020, pp. 11–22. url: http://ceur-ws.org/Vol-2738/LWDA2020_paper_11.pdf
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section. Julian Busch helped shortening and improving the paper. The idea was discussed
with Thomas Seidl, especially in the early development phase.
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Abstract. Using grid-based clustering algorithms on high-dimensional
data has the advantage of being able to summarize datapoints into cells,
but usually produces an exponential number of grid cells. In this paper
we introduce Grace (using a Gr id which is adaptive for clustering), a
clustering algorithm which limits the number of cells produced depend-
ing on the number of points in the dataset. A non-equidistant grid is
constructed based on the distribution of points in one-dimensional pro-
jections of the data. A density threshold is automatically deduced from
the data and used to detect dense cells, which are later combined to
clusters. The adaptive grid structure makes an efficient but still accurate
clustering of multidimensional data possible. Experiments with synthetic
as well as real-world data sets of various size and dimensionality confirm
these properties.

Keywords: Grid-based, Clustering, High-dimensional

1 Introduction

Clustering is one of the most important and well investigated unsupervised data
mining tasks. Nevertheless, some problems related to the curse of dimensionality
are still not solved. Grid based approaches suffer not only from the exponentially
increasing number of cells in relation to the number of dimensions, but also from
the incoherence between data and grid structure. As many real-world datasets
have high dimensional feature spaces, being able to handle many dimensions is
quite important for clustering algorithms.

Even though subspace clustering algorithms focus on high-dimensional data,
they assume clusters to be in a low dimensional subspace of the data and are thus
not suitable to find clusters lying in the full-dimensional space. Density based
approaches on the other hand find clusters in full-dimensional space where all di-
mensions are equally important, but cannot handle high-dimensional data. Thus,

Copyright c© 2020 by the paper’s authors. Use permitted under Creative Commons
License Attribution 4.0 International (CC BY 4.0).



efficient clustering of high-dimensional data without any a priori knowledge is
still a huge challenge.

Hence we developed a grid-based clustering approach for high-dimensional
data. It works fully automatically and finds clusters in full-dimensional data
space without creating an exponential number of cells. The grid adapts itself to
the data in regards of cell size as well as individual number of cells per dimension
by using information from one-dimensional projections of the data. This leads
not only to an adequate quality of the clustering results, but at the same time
facilitates high efficiency of the algorithm.

Our main contributions are as follows:

– We develop Grace, a new grid-based clustering algorithm.
– By constructing the adaptive grid gradually, we are, to the best of our knowl-

edge, the first ones to circumvent an exponential number of grid cells in
relation to the number of dimensions.

– Grace is efficient and detects clusters of arbitrary shape in high-dimensional
space.

The rest of the paper is structured as follows. Section 2 provides an overview
of related work in the field of density-based and grid-based clustering. The al-
gorithm itself is described in Section 3 and evaluated theoretically as well as
empirically in Section 4. A brief conclusion is finally provided in Section 5.

2 Related Work

Since there exists a wealth of literature in the field of density-based as well as
gird-based clustering, this section aims to provide an overview on some of the
existing methods. We shall provide a brief elaboration on the core ideas behind
each of the methods revealing the distinctive properties of our method in contrast
to the competitors.

2.1 Density-based Clustering Approaches

Density-based clustering methods detect dense regions which are enclosed and
separated by sparse regions and are thus suitable to find arbitrarily shaped
clusters. Most density-based methods rely on local densities based on distances
in the full-dimensional data space. The most common density-based approach
is DBSCAN [7], which considers points with at least minPts points in their
ε-range as core points. Core points are connected if their distance is lower than
ε and form a cluster. Not-core points either lie in the ε-range of a core point and
get assigned to the cluster of the core point, or are declared noise. DBSCAN is
quite sensitive to ε and minPts, which are two parameters hard to guess for a
user without detailed knowledge of the data. OPTICS [3] improves DBSCAN
by introducing a reachability plot based on minPts, on which users can see the
cluster structure and choose appropriate ε.



DENCLUE [11] uses local densities to compute an overall density function,
the maxima of which constitute density attractors. Every object is connected
to such a density attractor by means of a hill-climbing procedure. A threshold
ξ gives the minimum density level for a density-attractor which allows to find
noise. To accelerate the calculation of local densities, a simple grid with the same
cell width 2σ in all dimensions is used, where σ is a user given parameter.

Other density-based clustering algorithms usually build on the approaches
presented so far and aim to improve or extend them. HDBSCAN [5] for ex-
ample extends DBSCAN to a hierarchical approach allowing different levels of
density that can detect clusters of different density or nested clusters, overcom-
ing the aforementioned issue of one global hyperparameter setting. DeLiClu [1]
and SOPTICS [15] represent algorithms with purposes similar to OPTICS, but
with improvements regarding their efficiency. Likewise, DENCLUE 2.0 [9] is a
straightforward improvement of DENCLUE with reduced runtime complexity.

2.2 Grid-based and Subspace Clustering Approaches

Grid-based clustering methods generally partition the data into cells of different
densities by dividing each dimension into several intervals. Those cells can then
be connected into clusters without having to look at each data point again, which
decreases the runtime. The results are often highly dependent on the structure
of the constructed grid and most algorithms require users to set the defining
parameters. STING [14] proposes a quite interesting hierarchical grid structure
based on statistical information, but is neither used for clustering, nor does it
deliver exact values, but rather approximations. Also, the distribution type of
the data has to be known or ascertained by hypothesis tests.

Most grid-based clustering techniques produce subspace clusterings i.e. they
detect subspaces of a high-dimensional data space which contain clusters of the
given data. Grid-based approaches are well-suited for this task because they can
easily exploit the monotonicity of the clustering criterion regarding dimension-
ality. This criterion implies that a k-dimensional cell is dense only if every (k
- 1)-dimensional projection of the cell is also dense, given a constant density
threshold for the number of objects in a cell.

One of the first clustering algorithms to implement a grid-based subspace
clustering was CLIQUE [2]. After constructing a grid with the same number of
equidistant intervals in each dimension and identifying the dense cells, CLIQUE
employs a bottom-up approach to find subspaces with dense regions by joining
cells in k-dimensional spaces to candidate cells in (k + 1) dimensions. If the
number of objects in such a candidate cell exceeds a given density threshold, the
corresponding (k+1)-dimensional space is considered a relevant subspace. After
detecting the relevant subspaces, CLIQUE connects adjacent dense cells in their
corresponding subspaces.

However, CLIQUE does not take the data distribution into account for gener-
ating the grid structure or for finding the dense regions. One subspace clustering
approach that considers the data distribution beforehand is FIRES, which de-
tects clusters on the basis of a greedy heuristics merging one-dimensional clusters



in order to find approximations of subspace clusters. This significantly reduces
the runtime complexity of FIRES compared to CLIQUE.

While FIRES does not employ a grid structure at all, MAFIA [8] incorpo-
rates data distribution by using an adaptive grid in order to produce a better
partitioning of the dimensions and reduce the number of grid cells. MAFIA
determines the intervals in each dimension on the basis of one-dimensional his-
tograms. Adjacent bins of a histogram are joined if they have approximately the
same frequency. This yields larger intervals in the dimensions, each with roughly
constant (one-dimensional) density. Nevertheless, MAFIA requires two parame-
ters that may have a significant impact on the results and there is no guaranteed
bound on the number of grid cells. On its adaptive grid, MAFIA proceeds like
CLIQUE.

A general framework for clustering high-dimensional data on the basis of
an adaptive grid is provided by OptiGrid [10] which recursively splits the data
set by means of separating hyperplanes which should cut through low-density
regions and separate high-density regions. The resulting cells already represent
clusters, given a sufficiently high density. Though different approaches exist for
selecting suitable hyperplanes [10, 6], these methods are not able to detect ar-
bitrarily shaped clusters since generated cells already represent clusters and are
not combined. Further, these methods require setting parameters whose impact
on the result is difficult to assess a priori.

Further grid-based methods include SCHISM [17] which addresses the ques-
tion of how to define and detect statistically interesting subspaces in high-
dimensional data. As a measure for interestingness, the authors rely on the
Chernoff-Hoeffding bound and use it for pruning. WaveCluster [18] relies on
discrete wavelet transformation. The data is mapped to the frequency domain
where clusters are then found by detecting dense regions. The method is insen-
sitive to outliers and has a runtime complexity linear in the number of data
objects. Among the most recent grid-based methods, ITGC [4] is an information
theoretic approach regarding clustering as a data compression task. As such,
neighboring grid cells are merged if it is beneficial with respect to compression
costs.

3 Efficient Grid-based Clustering of Multi-dimensional
Spaces

In this section we describe Grace in detail. In 3.1 we explain how the non-
equidistant regular grid is generated dependent on the respective dataset. Section
3.2 shows how dense grid cells are combined to form clusters.

3.1 Generation of Adaptive Grids

The grid generation process is designed to limit the number of generated cells
depending on the number of data points N and still allow for an accurate de-
tection of clusters. For that we first estimate the density of each dimension



separately and then split the data space iteratively based on these estimations
until the number of cells exceeds N · log(N). To reduce runtime for calculat-
ing local changes in one-dimensional densities, we consider a histogram with
b = max(50,

√
N/d) equi-width bins for every dimension instead of all points

separately. A maximum of 50 bins for each histogram has shown to produce
appropriate grid structures for various data distributions and different numbers
of points N . Higher N imply possibly more complex shaped clusters requiring
a higher granularity of the histogram. A higher number of dimensions d in con-
trast results in a lower number of bins, since high dimensionality implies less
expressiveness of distances and less bins allow for higher deviations.
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Fig. 1: Two-dimensional data with his-
tograms as approximations of the one-
dimensional data projections and edges
chosen respectively

Estimation of Local Changes in
One-Dimensional Densities Next,
we compute for each bin in all one-
dimensional histograms a local change
indicator to express the local change
of the one-dimensional density. To
this end, we measure local changes
in density as differences of frequen-
cies between areas left and right to
a particular bin and additionally set
them in relation to the frequencies in
their respective areas to distinguish
random variations from relevant den-
sity shifts. The relevant neighborhood
left and right of a particular bin is
determined dynamically based on the
frequency f covered by this area. The
idea is to add less bins if the local
density is already high, such that the
separating hyperplanes will be lying
closer together. Adjacent bins left and
right are added iteratively until f ex-
ceeds a threshold t which is adjusted
after each step. The threshold primar-
ily depends on f and N such that a
certain fraction of all objects needs to lie within the neighborhood range to stop
expanding it. To avoid building large low-density cells, the neighborhood fre-
quency is further weighted with the width of the current neighborhood range h,
leading to a threshold

t =
1

h · (1/b) · (N/d)
·N. (1)

These weighted frequencies are used both for computing the differences be-
tween left and right areas as well as for determining the neighborhood area. As a



consequence, the density close to a bin has more impact on these computations
than more distant bins. Figure 1 illustrates the generation of an adaptive grid
based on the one-dimensional data projections as described so far.

Selection of Intervals After the one-dimensional histograms are computed and
a change indicator is assigned to each bin, separating hyperplanes are selected
iteratively until the number of cells generated by these planes is greater than or
equal to N ·log(N). If d is high, not all dimensions are considered in order to limit
the number of cells, i.e. some dimensions are not split by a separating plane. A
dimension is only considered if at least two edges are chosen for this dimension.
With only one edge in a dimension, i.e. two intervals, all data points would lie in
the same interval or in adjacent intervals with respect to this dimension. In both
cases, the corresponding dimension would have no informative content. This grid
generation method yields at max 3 ·N · log(N) cells (see Theorem 1).

Theorem 1. Given a d-dimensional data set with N objects. A regular grid in
the d-dimensional space that is constructed by iteratively adding cutting hyper-
planes, consists of at most 3N cells, if the grid generation process is stopped as
soon as the number of cells is greater than or equal to N.

Proof. Suppose hdim edges are already chosen for dimension dim ∈ 1, ..., d. If
hk ≤ 1, dimension k is not yet considered due to the minimum of two edges in
a dimension for it to be considered. Let Dc ⊆ 1, ..., d be the set of indices of
the dimensions already considered. Dimension k is divided into bk = (hk + 1)
intervals. The number of cells c in the grid is computed by multiplying the
number of intervals in all dimensions:

c =
∏

dim∈Dc

bdim

When adding a hyperplane separating dimension k to increase the number of
cells from c to c′, three cases can occur. Before adding the separating plane,
c < N holds.

Case 1: hk > 1
If hk > 1, the number of intervals on the corresponding coordinate axis
increases by one as well. This yields:

c′ =
∏

dim∈Dc

b′dim = (bk + 1) ·
∏

dim∈Dc\k
bdim

=
[
bk ·

∏

dim∈Dc\k
bdim

]
+
[
1 ·

∏

dim∈Dc\k
bdim

]

≤ c+ c = 2 · c < 2 ·N < 3 ·N
Case 2: hk = 0

If hk = 0, the number of cells does not increase at all, as dimension k is not
considered yet and will not after this iteration. For the relationship between
c and c′ it holds, that: c′ = c < N < 3N



Case 3: hk = 1

If hk = 1, k is a new dimension to be considered, as h′k = hk + 1 = 2 and
b′k = bk + 1 = 3 respectively. The number of cells therefore increases by the
factor 3. h′k = 2⇒ k ∈ Dc

c′ =
∏

dim∈Dc

b′dim = bk ·
∏

dim∈Dc\k
bdim = 3 ·

∏

dim∈Dc

bdim = 3 · c < 3 ·N

ut

Every bin of the initial histogram represents a potential edge for splitting.
In every iteration, the bin with the maximum local change indicator is chosen
as the next edge. To choose edges closer to cluster borders, we make a small
adjustment after selecting an edge: The edge is shifted in one direction as long
as two successive bins have a frequency difference below 5% and we choose the
direction to which the edge needs to be shifted less. After selecting an edge,
we discard all bins within the neighborhood if the selected bin from the set of
potential edges. This step avoids high granularity of the grid in areas of density
changes. Algorithm 1 summarizes the grid creation.

Algorithm 1 CreateGrid

b← max(50,
√

N/d)
for all dimensions do

generate histogram with b bins
end for
for all dimensions do

for all bins of histogram do
determine neighborhood range
compute local change indicator

end for
end for
sort the bins of all histograms w.r.t. the local change indicator
moreEdgesNeeded← true
selectedEdges← {}
while moreEdgesNeeded do

select the bin with highest local change indicator
shift the bin if the adjacent bins have approximately similar frequencies
add the edge to selectedEdges
discard the bins within the neighborhood range of the selected bin from the set of
potential edges
if grid generated by selectedEdges contains more than N · log(N) cells then

moreEdgesNeeded← false
end if

end while



3.2 Simple Connection of Dense Grid Cells to Clusters

Given the generated grid, the next steps involve detection of dense grid cells
and subsequent combination of adjacent dense cells. For Grace, we apply wider
notion of adjacency than existing works: Coordinates may differ at most by
one in all dimensions – compared to a narrow notion, where the coordinates of
adjacent bins may differ by one only in exactly one dimension.

A cell of volume V is considered dense, if it contains more than minPts/V
points for a minPts given by the user. To avoid setting the density threshold too
high for clusters with lower density, we first determine the most dense cells. To
this end, we identify all cells containing more points that they would in expec-
tation assuming a uniform distribution. In a second step, we discard these cells
and detect the remaining dense cells with lower density using a new threshold.

Detection of dense cells is straightforward. After discretizing all data points
to the grid, the number of data points in each grid cell is counted and compared
to the threshold of the particular grid cell. Given an adequate grid structure,
the number of dense cells p is usually much lower than N . Adjacent dense cells
are now connected to form clusters by extracting connected components from
the graph represented by the symmetric p × p adjacency matrix M with Mi,j

if and only if cells i and j differ by exactly one dimension. Adjacent cells can
be found by sorting the dataset in every dimension and then iterating over the
dimensions.

3.3 Connection of Diagonally Adjacent Grid Cells

So far, only adjacent cells in the narrower sense have been connected. To connect
cells adjacent in the wider sense, i.e., diagonally adjacent cells, we add additional
helper cells next to dense cells. Given a cell ã, that is either a dense cell or a
previously added helper cell with coordinates (a1, a2, ..., ad) and the order of
dimensions considered for the current sorting of the coordinates di1 , di2 , ..., did ,
a new helper cell (b1, b2, ..., bd) with bk = ak∀k ∈ {i1, ..., id−1} and bid = aid + 1
is now added to the set of helper cells if it has not yet been added before. New
helper cells are not considered in the same iteration they were added, but in
subsequent iterations they are treated just like the original dense cells. This
ensures to find exactly all connections between originally adjacent dense cells in
the wider sense.

Theorem 2. Given a d-dimensional grid with a set P of dense cells and an
initially empty set of helper cells H, both of whom are iterated d times. In every
iteration i, a cell b with coordinates bk = ak∀k ∈ {1, ..., d} \ i for each cell
a ∈ P ∪H that has no adjacent cell with the coordinates of b is added to the set
of helper cells after the current iteration. With this procedure, two dense cells
that are adjacent in the wider sense can be connected, either directly or indirectly
with the help of other cells in P ∪H, by just applying the notion of adjacency in
the narrow sense.



Proof. Given two dense cells a and b with coordinates (a1, a2, . . . , ad) and (b1, b2,
..., bd), respectively.

Case 1: a and b are adjacent in the narrow sense
Adjacency in the narrow sense implies adjacency in the wider sense by defini-
tion, thus the two cells are also adjacent in the wider sense.

Case 2: ai ∈ {bi, bi − 1},∀i ∈ {1, ..., d}
Suppose the cells’ coordinates differ in dimensions {j1, j2, ..., jm} ⊆ {1, 2, ..., d}
with js < jt ∀s < t. In iteration j1, the cell a(1) with coordinates (a1, ..., aj1 +
1, ..., ad) is either added as helper cell or already a dense cell. Since this cell
differs by one from a in exactly one dimension, it is adjacent to a in the narrow
sense. In iteration j2, the cell a(2) with coordinates (a1, ..., aj1 + 1, ..., aj2 +
1, ..., ad) is again either added as helper cell or already a dense cell. The new cell
is now adjacent to the previously added cell a(1). This step is then repeated for
all j ∈ {j1, j2, ..., jm−1}. Finally, the cell a(m−1) with coordinates (a1, ..., aj1 +
1, ..., aj2 + 1, ..., ajm−1

, ..., ad) is either added as helper cell or already a dense
cell. a(m−1) differs in exactly one dimension from b, so that a(m−1) and b are
adjacent in the narrow sense and thus a and b.

Case 3: ai ∈ {bi, bi + 1},∀i ∈ {1, ..., d}
Switching a and b converts this case to the same as case 2.

Case 4: ai ∈ {bi, bi − 1},∀i ∈ I ⊂ {1, ..., d} and aj ∈ {bj , bj + 1}∀j ∈ J =
{j1, j2, ..., jm} ⊂ {1, ..., d} \ I
In this case, two chains of adjacent cells can be constructed, each following
the same idea as in case 2 or in case 3 respectively. The first chain starts
from cell a, considering all dimensions with ai = bi + 1, which corresponds
to case 2. The second chain starts from cell b, considering all dimension with
ai = bi−1, which corresponds to case 3. Finally, without loss of generality, the
coordinates of the last cell ã in the first chain are of the form (ã1, ã2, ..., ãd)
with ãi = ãi + 1 = bi∀i ∈ I and ãk = bk∀k ∈ {1, ..., d} \ I. The coordinates
of the last cell b̃ in the second chain are of the form b̃1, b̃2, ..., b̃d with b̃j =

b̃j + 1 = aj∀j ∈ {j1, ..., jm−1}, b̃jm = ajm + 1 and b̃k = ak∀k ∈ {1, ..., d} \ J .
Now, these two last cells of both chains differ only in dimension jm by one, so
that they are connected in iteration jm.

ut

4 Evaluation

We investigate Grace from a theoretical as well as from an empirical point of
view. In Section 4.1 we calculate the runtime complexity and in 4.2 we present
and discuss several experiments based on synthetic as well as real world data
sets and compare the results with DBSCAN and CLIQUE.

4.1 Complexity Analysis

The histograms for each dimension can be computed in time O(N ·d). For each of
the b · d histogram bins, the local change indicator can be computed in constant



time, leading to O(b ·d). Having b ≤
√
N · d, we get O(

√
N · d ·d) = O(

√
N ·d2).

Finding separating hyperplanes requires sorting the b ·d local change indicators,
which can be done in time O(b · d · log(b · d)) = O(

√
N · d · d · log(

√
N · d · d)) =

O(N · d2).
The dense cells are determined by counting for every point the occurrences of

each coordinate combination, which is in O(N · d). Dense cells can be combined
efficiently by sorting them in every dimension to identify adjacent grid cells in
that dimension. Since the maximum number of dense cells is N · log(N), the
complexity of sorting the dense cells is O(N · log(N) · log(N · log(N)) · d) =
O(N · log2(N) · d). Adjacent dense cells can be identified in each dimension by
comparing consecutive cells in the sorted order with complexity O(N · d). Thus,
all connections between dense grid cells can be detected in time O(N ·log2(N)·d).
Connected components can be identified in time O(N2 · log2(N)). In total, the
complexity is thus

O(N ·d+
√
N ·d2 +N ·d2 +N · log2(N) ·d+N2 · log2(N)) = O(N2 · log2(N) ·d2).

Note, that the number of dense cells p which is responsible for the N2 · log2(N)
part is usually far lower than N .

4.2 Empirical

The following experiments have been conducted on a Linux machine with a
commodity hardware featuring a 2.0 GHz CPU with two cores and 3.6 GB RAM.
As Grace uses elements from density-based as well as grid-based clustering, we
compare our results to those DBSCAN and CLIQUE. Where Grace works fully
automatically, DBSCAN and CLIQUE both need two parameters, for which
those yielding the best results were chosen. For DBSCAN we used the scikit-
learn Python library implementation and for CLIQUE the implementation from
the data mining framework ELKI [16].

For a first visual interpretation, we show the effectivity of Grace working on
two simple two-dimensional synthetic data sets containing density-based clus-
ters and compare the results to those of DBSCAN. Figure 2 shows the cluster-
ing result for “TARGET” [19] with N = 770, consisting of four small clusters
distributed at opposing corners as seen in Figure 2, one of them being detected
as noise (bottom left cluster). Apart from the detected noise cluster, all other
clusters are detected correctly by Grace. With a proper parameter setting, DB-
SCAN is capable of detecting all clusters, too. “CLUTO-T8-8K” contains 8000
two-dimensional objects [12]. Applied to this data set, the Grace found some,
but not all clusters similar to DBSCAN.

Another synthetic data set with N = 101, 000 and d = 9 containing three
spherical clusters and 1, 000 noise objects has been created to show the scalability
of Grace. The clusters of this data set are found in mere 4.5 seconds, where,
due to excessive memory consumption, neither DBSCAN nor CLIQUE could
be applied to this data set with the machine used here. To compare at least
CLIQUE with the proposed approach in high dimensions, another data set with
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Fig. 2: Clustering results using an adaptive grid (represented by the dashed lines).
Noise is colored gray.

N = 100, 000 and d = 8, also containing three spherical clusters, is clustered by
the two algorithms. They both detect all three clusters, where Grace was almost
three times as fast as CLIQUE (1.7 vs 4.8 seconds).

Finally, a data set derived from the “VICON” data set containing physical
action data measuring human activity [13] has been tested. The actions are
measured by means of nine sensors on different body parts, each emitting three-
dimensional spatial data. In summary, this yields a data set with 27 dimensions.
For this experiment, the two actions punch and handshake have been merged
into one data set with 5045 objects. Again, neither the DBSCAN implementation
nor the CLIQUE implementation used can be applied to this data set on the
machine used due to excessive memory consumption. Grace detected an accurate
clustering within 232ms, with one cluster being detected 100% and the other
cluster being split with 92% of it being grouped in one cluster.

5 Conclusion

Grace finds clusters in multidimensional data spaces where points build a cluster
if they are close in all dimensions. It generates an adaptive grid structure that
makes it possible to reduce the runtime complexity significantly for multidimen-
sional data spaces compared to similar grid-based approaches. The experimental
evaluation has shown that the algorithm outperforms DBSCAN and CLIQUE
for large data sets and high dimensions. Grace works fully automatically and
can be applied to datasets of various sizes, dimensionalities, and cluster densi-
ties. For clustering high-dimensional data with all dimensions being relevant for
forming the clusters, it is an efficient alternative to established algorithms. It is
moreover a possibility to get some first insights if no information about the data
is available yet, since no expert knowledge about the data is needed beforehand
due to the absence of any parameters. In future work noise should be handled
separately and we are also investigating the suitability for anytime results. The



grid construction is promising for many other applications, and could, e.g., be
applied in context of arbitrarily oriented correlation clusters.
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1. Achtert, E., Böhm, C., Kröger, P.: Deliclu: Boosting robustness, completeness,
usability, and efficiency of hierarchical clustering by a closest pair ranking. In:
PAKDD (2006)

2. Agrawal, R., Gehrke, J., Gunopulos, D., Raghavan, P.: Automatic subspace clus-
tering of high dimensional data for data mining applications. SIGMOD (1998)

3. Ankerst, M., Breunig, M.M., Kriegel, H.P., Sander, J.: Optics: Ordering points to
identify the clustering structure. In: SIGMOD (1999)

4. Behzadi, S., Hinterhauser, H., Plant, C.: Itgc: Information-theoretic grid-based
clustering. In: EDBT (2019)

5. Campello, R., Moulavi, D., Sander, J.: Density-based clustering based on hierar-
chical density estimates. In: Pei, J., Tseng, V., Cao, L., Motoda, H., Xu, G. (eds.)
PAKDD (2013)

6. Chang, J.W., Jin, D.S.: A new cell-based clustering method for large, high-
dimensional data in data mining applications. In: SAC (2002)

7. Ester, M., Kriegel, H.P., Sander, J., Xu, X.: A density-based algorithm for discov-
ering clusters in large spatial databases with noise. In: KDD (1996)

8. Goil, S., Nagesh, H., Choudhary, A.: Mafia: Efficient and scalable subspace clus-
tering for very large data sets. In: KDD (1999)

9. Hinneburg, A., Gabriel, H.H.: Denclue 2.0: Fast clustering based on kernel density
estimation. In: IDA (2007)

10. Hinneburg, A., Keim, D.: Optimal grid-clustering: Towards breaking the curse of
dimensionality in high-dimensional clustering. In: VLDB (1999)

11. Hinneburg, A., Keim, D.: An efficient approach to clustering in multimedia
databases with noise. In: KDD (1998)

12. Karypis, G., Han, E.H., Kumar, V.: Chameleon: A hierarchical clustering algorithm
using dynamic modeling. IEEE Computer (1999)

13. Lichman, M.: UCI machine learning repository (2013),
http://archive.ics.uci.edu/ml

14. Muntz, R., Wang, W., Yang, J.: Sting: A statistical information grid approach to
spatial data mining. In: VLDB (1997)

15. Schneider, J., Vlachos, M.: Scalable density-based clustering with quality guaran-
tees using random projections. DMKD (2017)

16. Schubert, E., Zimek, A.: Elki: A large open-source library for data analysis-elki
release 0.7. 5” heidelberg”. arXiv preprint arXiv:1902.03616 (2019)

17. Sequeira, K., Zaki, M.: Schism: A new approach for interesting subspace mining.
In: ICDM (2004)

18. Sheikholeslami, G., Chatterjee, S., Zhang, A.: Wavecluster: A multi-resolution clus-
tering approach for very large spatial databases. In: VLDB (1998)

19. Ultsch, A.: Clustering with som, u*c. In: WSOM (2005)



2.2 “A Generator for Subspace Clusters” 37

2.2 “A Generator for Subspace Clusters”

Publication: Anna Beer, Nadine Sarah Schüler, and Thomas Seidl. “A Generator for
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Abstract. We introduce a generator for data containing subspace clus-
ters which is accurately tunable and adjustable to the needs of develop-
ers. It is online available and allows to give a plethora of characteristics
the data should contain, while it is simultaneously able to generate mean-
ingful data containing subspace clusters with a minimum of input data.

Keywords: Data Generator · Subspace Clustering · Reproducibility

1 Introduction

Developing algorithms in the field of data mining is usually an iterative pro-
cess in which a main idea is implemented and then tested on several use-cases
or experiments containing a ground truth. Depending on the results of those,
the algorithm is modified and a loop of alternately testing and improving the
algorithm starts. If the same data or only a few data sets are used in several
iterations of this cycle, we create overfitting algorithms. The fields in which
such subspace clusters can occur are manifold and especially for gene expres-
sion data or other data with medical background, clusters are most often found
only in meaningful subspaces. Nevertheless, the number of labeled datasets is
limited, and datasets containing labeled subspace clusters are rare. So, instead
of using the few real world labeled datasets to develop and improve a subspace
clustering algorithm, artificial datasets, of which the ground-truth is known by
construction, are often used. Additionally, we can generate datasets in such a
way, that they emphasize the advantages of the algorithm and help to detect
diverse properties which possibly emerged in the development process. Data
generators simplify the cumbersome process of constructing new datasets by
hand, and allow building reproducible data sets, which are versatile enough to
produce a non-overfitting algorithm in the above described development cycle.
Nevertheless, there are only few publicly available data generators and none for
generating data containing subspace clusters, even though some are used in di-
verse subspace clustering papers, as described in Section 2. Thus, we developed
a generator for data containing subspace clusters, which allows to determine a
multitude of parameters and is described in Section 3. Section 4 concludes this
short paper and gives ideas for future work.

Copyright c©2019 for this paper by its authors. Use permitted under Creative Com-
mons License Attribution 4.0 International (CC BY 4.0).
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2 Related Work

The quality of most subspace clustering algorithms presented in the last years
is shown using synthetic data, the construction of which is usually not well de-
scribed or not reproducible at all. Most authors created very elementary data
generators, leading to a multitude of generators with too little setting options to
construct datasets with reasonably predictable characteristics. Looking at a mul-
titude of subspace clustering related papers, we found the following to describe
their data generation process best: SubClu [KKK04], SURFING [BPR+04],
CLIQUE [AGGR98], which uses the generator described in [ZM97], and a review
of diverse subspace clustering algorithms [PHL04]. Further, ResCu [MAG+09]
and INSCY [AKMS08] use the same generator as [KKK04]. While all of those
generators allow the user to set the number of points and dimensionality of the
dataset as well as the number and dimensionality of clusters explicitly or im-
plicitly, some crucial aspects are missing in each. E.g., the density or variance of
clusters can be set in SubClu and SURFING, but not in [PHL04] or CLIQUE.
CLIQUE constructs clusters differently to the other generators, as the user de-
fines hypercubes in which the uniformly distributed points are more dense than
in the surrounding areas. Surprisingly, generating data with noise is only pro-
vided by the generator from CLIQUE. The other generators construct, similarly
to ours, some Gaussian distributed clusters and have different properties: in Sub-
Clu and SURFING, no cluster can be clustered in the full dimensional space,
but the authors do not describe how this is reached. In [PHL04], the values of
the relevant dimensions for each instance in a cluster can be restricted, leading
to hypercube-shaped clusters.

MDCGen [IZFZ], which is probably the most recent and a very elaborated
generator especially designed for multidimensional data and also subspace clus-
tering, does not provide the possibility that a point can belong to multiple clus-
ters at once. Additionally, there are data generators introduced independently
from the field of subspace clustering, but to the best of our knowledge none of
them is able to construct data containing subspace clusters of arbitrary dimen-
sionality. [MLG+13] gives an overview over some data generators for big data
benchmarking, like Hibench, LinkBench, CloudSuite, TPC-DS, YCSB, BigBench
and BigDataBench, and BDGS. MUDD [SP04] is a generator similar to those.
They are designed to create big data sets with similar properties as some given
real world data, but users cannot specify enough details to be able to expose the
advantages and disadvantages of their algorithms in development. RAIL [KBS19]
is an interactive generator concentrating on producing linear correlated data,
but allows only constructing 3-dimensional datasets containing 2-dimensional
planes.

3 The Generator

In contrast to the data generators described in Section 2, the work here presented
offers to define a plethora of characteristics of the dataset to be constructed while
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simultaneously allowing to generate meaningful datasets containing subspace
clusters without having to think about parameters too much: It requires only
three parameters for the general set-up: The number of points n, the number of
dimensions dim and m, a flag determining if it is possible for a point to belong
to more than one subspace cluster. If given only those three parameters, we
proceed as follows: To restrict the number of subspaces generated we use a fixed
number of cluster centers, determined by a random number k between 1 and

√
n.

The clusters are then randomly allocated to a number of subspaces < k and the
number of points as well as the number of dimensions of all subspaces clusters
is drawn randomly from a uniform distribution within the given limits.

Users can specify the properties of the data further by giving information for
every subspace S, namely the number of points, dimensionality, and number of
clusters in S. Additionally, the variance of each cluster can be given. Figure 1
shows how subspaces can be distributed. In this example, there are four different
subspaces, of which the first contains two clusters, the second and third contain
one cluster each, and the fourth contains three clusters. The last two points be-
long to no cluster at all, while all other points are in two clusters in different
subspaces. If m = false, a point may only belong to exactly one cluster, we
insert the given subspaces into the n×dim matrix as long as there are sufficient
points not assigned yet. Points and dimensions not assigned to belong to a certain
subspace cluster, are filled with uniformly distributed noise data and a 0 in the
label-matrix giving the cluster-assignments. If m = true, subspaces are first as-
signed in the same way as described above, before points are assigned to a second
subspace and obtain a second cluster membership (see Figure 1). This is again as-
signed by going through the points and if there are enough unassigned dimensions
to meet the requested subspace dimensionality this point will become a member
of the second subspace in addition to the first one. When the points belong to
a subspace cluster, the values are drawn from a appropriate multidimensional
Gaussian distribution function, the center and standard deviation of which can
be given by users. The remaining values are again drawn from a uniform distri-
bution function. Uniformly distributed noise points can be added. Our generator
is online available under https://github.com/NanniSchueler/SubCluGen.git and
outputs the data matrix as well as the label matrix.

4 Conclusion

In summary, we introduced a data generator especially designed for subspace
clusters. It expects only three parameters: the size and dimensionality of the
dataset as well as as boolean value determining if a point can belong to clusters
in different subspaces. With that a fast construction of data is possible. Simul-
taneously, reproducible datasets with very specific properties can be designed
by users to test algorithms they are developing for diverse characteristics. The
generator is easy to use and we plan to extend it with even more possibilities,
like, e.g., non-axis parallel subspace clusters or other distributions instead of
Gaussian, in future work. Also a combination with RAIL or some of the men-
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Fig. 1: Left: Label-Matrix as given by the generator as output, 0 implies uniformly
distributed data, where numbers 1 to 4 imply the subspace affinity. On the right, the
exact cluster affinity can be seen as well as the variance of the clusters implied by
colour saturation.

tioned generators taking real world data into account could deliver a variety of
reproducible datasets containing the desired properties for testing and develop-
ing.
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ABSTRACT
In high-dimensional datasets some dimensions or attributes can
be more important than others. Whereas most algorithms neglect
one or more dimensions for all points of a dataset or at least for all
points of a certain cluster together, our method KISS (𝒌NN-based
Importance Score of Subspaces) detects the most important di-
mensions for each point individually. It is fully unsupervised and
does not depend on distorted multidimensional distance mea-
sures. Instead, the 𝑘 nearest neighbors (𝑘NN) in one-dimensional
projections of the data points are used to calculate the score for
every dimension’s importance. Experiments across a variety of
settings show that those scores reflect well the structure of the
data. KISS can be used for subspace clustering. What sets it apart
from other methods for this task is its runtime, which is linear
in the number of dimensions and 𝑂 (𝑛 log(𝑛)) in the number of
points, as opposed to quadratic or even exponential runtimes for
previous algorithms.

1 INTRODUCTION
As sensors in fields like biology and chemistry become more and
more sophisticated, websites collect more and more data about
their users, and IoT and manufacturing devices get equipped with
sensors that allow for predictive maintenance, the amount, granu-
larity and dimensionality of data increases. In order to still be able
to analyze the data in a meaningful way and in a reasonable time,
one often needs to reduce at least one of the three; this paper will
focus on the dimensionality. The more dimensions there are, the
more of them are not important and distort further data mining
tasks. The more dimensions, the longer it takes to process them
all: the running time of many algorithms increases exponentially
with the number of dimensions, especially of those designed for
fewer dimensions. But not only that: many distance measures
become more and more useless with an increasing number of di-
mensions [4]. Thus, instead of dragging along all dimensions of a
point, many methods focus on working on only a small subset of
the dimensions. The dimensions that a point is reduced to should,
of course, be the ones that capture the most relevant information
that this point contains. But to learn those important dimensions
proves difficult: users do not want to waste time studying the
data and its features thoroughly before applying a data mining
algorithm. However, most algorithms still require user input that
needs expert knowledge, or even require the user to label data by
hand. In addition, the number of possibly important subspaces is

© 2021 Copyright held by the owner/author(s). Published in Proceedings of the
24th International Conference on Extending Database Technology (EDBT), March
23-26, 2021, ISBN 978-3-89318-084-4 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

Figure 1: For different objects, different attributes or sub-
spaces can be relevant: texture, number of corners, color,
or a subset of those dimensions may be important.

exponential, making it a complex and time-consuming task to
find the most important one. As datasets grow in size and contain
data from different sources, one part of a dataset might differ a lot
from a different part. Nonetheless, methods for dimensionality
reduction typically try to find a common subspace for all data
points, which can potentially be completely unsuited for hetero-
geneous data. Often, every single point has its own properties
and thus the importance of a subspace may vary for each point,
as shown in Fig. 1: for objects 1,4,7 in the first column the texture
may be relevant, whereas it does not seem to be important for the
other objects, since every other texture only occurs once. Also,
for objects 1,2,3 in the first row and the quadrangles 4 and 5 in the
second row the number of corners may be important. The color
could be the best attribute to distinguish objects 1,5, and 9 in the
diagonal from the others. Thus, for object 1 all three considered
dimensions — number of corners, color, and texture — may be
relevant, while there are other objects in the same dataset for
which not all of those dimensions are important, e.g., for object
7 only the texture is relevant.

A method to score the importance and expressiveness of each
dimension for every point of a dataset individually without re-
quiring any user input that scales to high dimensionalities would
solve the problems mentioned above. In this paper, we develop
KISS, a 𝒌NN-based Importance Score of Subspaces, which fulfills
all of these requirements. KISS can detect the most important
subspace for a point fast and reliably in highly noisy data and
data where only few dimensions are important per point.

One of the fundamental considerations that led to KISS is that
those dimensions are most expressive for a point whose values lie
in a cluster. We use the observation that if a point lies in a cluster
in a certain subspace, the𝑘NNof the projections of this point onto
each dimension of this subspace intersect heavily. Since 𝑘NN in
one-dimensional projections of the data can be computed fast, we
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can efficiently calculate a score indicating the likelihood of the
point lying in a cluster in the considered dimension. Usage of the
𝑘NN prevents relying on non-expressive distance measures, and
there is no need for the users to know the data beforehand. KISS
is deterministic, simple, fully unsupervised, and scalable w.r.t.
the number of points as well as to the number of dimensions. It
is easy to implement and reliably detects important dimensions
for individual points fast. Our main contributions are as follows:

• We develop KISS, an importance scoring for every dimen-
sion for each individual point.

• KISS is fast w.r.t. both the number of points as well as the
number of dimensions.

• KISS is fully unsupervised
• KISS does not rely on any multidimensional distance mea-
sure that gets useless for a high number of dimensions.

2 RELATEDWORK
The problem of finding a global important subspace for all points
has been addressed in previous work, which we introduce in
Section 2.1. We restrict ourselves to algorithms that, like KISS
(and contrary to, e.g., PCA or FOSSCLU), work in the standard
basis of the vector space, as it simplifies getting insights into the
data, which KISS was developed for.

2.1 Subspace Search
There exists some work on scoring of dimensions, where RIS,
SURFING, and SCHISM are some of the most common algorithms.

RIS [6] produces a ranked list of all dimensions using a density-
based quality criterion (“interestingness") that requires multiple
parameters, which are set based on heuristic methods. The rating
is only a relative comparison between different dimensions of
the same dataset and is the same for all points.

SURFING [3] is a bottom-up approach that also returns the
most “interesting" subspaces of a dataset. It is, like KISS, based
on 𝑘NN, declaring subspaces as interesting in which "the k-nn-
distances of the objects differ significantly from each other" [3].
The 𝑘NN distances are computed w.r.t. the subspaces, making
their expressiveness dependent on the dimensionality of the
subspaces. The algorithm has a runtime complexity of 𝑂 (𝑚𝑛2),
where 𝑛 is the number of points and𝑚 is the number of different
subspaces analyzed, which is 2𝐷 in the worst case, making it
much less scalable regarding both the number of points as well
as the number of dimensions. Additionally, the minimum cluster
size 𝑘 has to be specified by the user.

SCHISM [8] extends the CLIQUE [2] principle and looks at the
density of grid cells using an adaptive threshold function 𝜏 given
by the user and applying the Chernoff-Hoeffding bound. It uses
several preprocessing steps and requires three user given param-
eters 𝑢, 𝜏 , and 𝜉 . Like RIS, and in contrast to KISS, it calculates
a global score for “interesting" subspaces that is not adapted to
individual points.

Although the dimension weightings at first glance seem to
be suitable for comparing with KISS, such a comparison proves
difficult: These dimension scoring methods do not return impor-
tant subspaces for each point individually, or require at least two
parameters set by the user, making it hard to objectively evalu-
ate without overoptimism. But most notably, they are far more
complex: The fastest of them, RIS, has runtime at least quadratic
in the number of dimensions as well as the number of points.
SCHISM is only linear in the number of points, but exponential in

the number of dimensions. SURFING is quadratic in the number
of points and exponential in the number of dimensions.

2.2 Subspace Clustering
We do not perform any clustering in this paper, but since we
define “important dimensions” as dimensions in which a point
lies in a cluster, there is a relation to the field of subspace clus-
tering. Even though subspace clustering algorithms also deliver
important dimensions in a way, their focus is different from KISS.
Whereas those algorithms often need to perform a complete
clustering of the dataset, we aim to get the relevant subspaces
directly, individually for every point. We do not need to know
the precise clusters to find important dimensions. Also, most of
those algorithms rely on parameters that are not easy to set. We
found that especially our first two goals, being fully unsuper-
vised, and returning individual scores for different points, are to
the best of our knowledge not achieved simultaneously by any
other algorithm in this field. COSA and DISH are most related
to our work, since they both consider subspaces for individual
points:

COSA [5] finds important subspaces individually for each point
using the 𝑘NN. A hierarchical clustering is applied based on a
dimension weighting matrix and the relevant dimensions can
be calculated based on the dimension weights of the respective
cluster members. Despite the similarities to KISS, there are two
major differences: First, users need to set a not quite intuitive
parameter 𝜆, which gives the “strength of incentive for clustering
on more dimensions" [7]. Second, the 𝑘NN are calculated in the
full-dimensional space, making COSA vulnerable to the loss of
expressiveness of distance measures in high dimensions.

DiSH [1] is a density-based algorithm that finds cluster hier-
archies and nested clusters. It has two parameters: a smoothing
factor 𝜇 representing the minimum number of points in a clus-
ter and 𝜀 for 𝜀-range queries. Even though DiSH also uses only
one-dimensional range queries and delivers subspace preference
vectors for every point, the nesting of subspaces makes it impos-
sible to determine the distinctly important subspaces. Also, the
vectors are only calculated in an intermediate step, and depend
on the parameter choices.

2.3 Possible Competitors
Finding suitable methods to compare KISS to is difficult: there are
a number of subspace clustering algorithms, but they perform
clustering, and not detection of the most important subspaces.
For some algorithms one could extract the important subspaces
of a point by looking at the subspace of the cluster the point was
assigned to. This assignment, however, can only be obtained after
an expensive clustering of the complete dataset. Some algorithms
like, e.g., RIS or SURFING rank the subspaces in a similar way as
KISS scores them, but they deliver one ranking for the complete
dataset, not for each point individually. To the best of our knowl-
edge, there is no algorithm yet that fulfills all of the requirements
we impose. In particular, returning individual dimension ratings
for each point and being completely unsupervised are very rare
properties. Nevertheless, to at least have some point of reference,
we exemplarily compare against CLIQUE, which is a grid-based
bottom-up approach for subspace clustering. It requires two pa-
rameters, 𝜉 and 𝜏 , which determine the number of intervals every
dimension is partitioned into and the density threshold. We try
out different parameter settings, showing that the results are very
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Figure 2: Projections of a 2-dimensional resp. 3-
dimensional cluster. Blue crosses are projections onto the
2-dimensional subspace, red triangles projections onto
one dimension.

sensitive to the parameter choices, whereas for KISS no parame-
ters need to be tuned. In addition, we use the quality criterion
of SURFING to obtain scores for every dimension and compare
KISS to them. However, those are global scores for all points and
not individual ones like those computed by KISS.

3 KISS
This section presents our newly developed dimension score KISS.
We first describe the basic idea to use the 𝑘 nearest neighbors
in one-dimensional projections of the 𝑛 data points to be able
to compute KISS, which gives a scoring for the importance of
every dimension for each individual point. Section 3.2 motivates
our idea mathematically. In Section 3.3 we develop the exact
formula of KISS, and present the complete KISS-based algorithm
to obtain the most important subspace of a point. We analyze the
complexity of our algorithm in Section 3.4.

3.1 Idea: Using One-dimensional 𝑘NN
If a point lies in a cluster in a 𝑑-dimensional subspace, most of
the 𝑘NN of this point in the projection of the dataset onto those
𝑑 dimensions will be members of that cluster, too. If we look at
only one of those 𝑑 dimensions (cf. the red triangles in Fig. 2),
we still see the cluster structure: the cluster on the left lies in
dimensions 𝑋 and 𝑌 , and the red triangles on the according axes
show a clear cluster structure. Projected onto those axes, most of
the one-dimensional 𝑘NN of a point will lie in the same (original)
𝑑-dimensional cluster as the point itself.

Following this observation, for a given point 𝑝 , we count for
every other point 𝑞 in how many dimensions it belongs to the
one-dimensional 𝑘NN of 𝑝 , giving us a Point Score 𝑃𝑆 (𝑝, 𝑞). A
high Point Score means that𝑞 is likely to be contained in the same
(higher-dimensional) cluster as 𝑝 , meaning that the dimensions
that they share carry more importance for 𝑝 than the others.
Summing up the Point Scores for each dimension individually
gives us a measure for the importance of each dimension, where
we account for outliers by incorporating the one-dimensional
distances to the 𝑘NN of a point.

3.2 Mathematical Perspective
In the following we give some theoretical insights which support
our idea.We denote cluster indices by superscripts and dimension
indices by subscripts, and see clusters as collections of points
drawn from a common probability distribution over R𝐷 .

Consider a cluster 𝐶1 with center 𝑐1 in dimensions {1, . . . , 𝑙}
(without loss of generality). We will consider the neighborhood of
points in dimension 1. Let𝐶2 be a different cluster with center 𝑐2

that overlaps with cluster𝐶1 in dimension 1, and assume that for
all points 𝑟1 ∈ 𝐶1 and all 𝑟2 ∈ 𝐶2 we have Pr( |𝑟11 − 𝑐1 | ≤ 𝜀) ≥ 𝛿
and Pr( |𝑟21 − 𝑐1 | ≤ 𝜀) ≥ 𝛿 , respectively, where 𝜀 > 0 and 𝛿 is
a value close to 1. Furthermore, 𝐶1 and 𝐶2 should not overlap
and be sufficiently far apart in the dimension that they share:
|𝑐11 − 𝑐

2
1 | ≤ 4𝜀 + 𝜀 ′ for an arbitrarily small 𝜀 ′ > 0. This is, e.g., the

case for all shared dimensions with high probability if 𝑐1 and 𝑐2
are uniform samples from a sufficiently large set in R𝐷 .
Let 𝑝1, 𝑝1 ∈ 𝐶1, and 𝑝2 ∈ 𝐶2. In addition, let 𝑞 be a point that
does not lie in any cluster in dimension 1 and is drawn from
a somewhat uniform distribution on a large enough interval.
Precisely, we require it to fulfill Pr( |𝑞 − 𝑐1,2 | ≤ 3𝜀) ≤ 𝛿 ′, where
𝛿 ′ is close to 0.
We now consider the distance of 𝑝1 to the other three points in
dimension 1.
For the point from the same cluster, we get

Pr( |𝑝11 − 𝑝
1
1 | ≤ 2𝜀) ≥ Pr( |𝑝11 − 𝑐

1
1 | + |𝑐11 − 𝑝

1
1 | ≤ 2𝜀)

≥ Pr( |𝑝11 − 𝑐
1
1 | ≤ 𝜀) Pr( |𝑐

1
1 − 𝑝

1
1 | ≤ 𝜀) ≥ 𝛿

2 ≈ 1.
The point from the other cluster yields

Pr( |𝑝11 − 𝑝
2
1 | ≤ 2𝜀) ≤ Pr( |𝑝11 − 𝑐

2
1 | > 𝜀 or |𝑝

2
1 − 𝑐

1
1 | > 𝜀)

≤ Pr( |𝑝11 − 𝑐
2
1 | > 𝜀) + Pr( |𝑝21 − 𝑐

1
1 | > 𝜀) = 2(1 − 𝛿) ≈ 0,

where for the first step we observed that at least one of 𝑝11, 𝑝
2
1

needs to lie outside of the 𝜀-interval around its cluster’s center,
and applied a simple union bound to obtain the second inequality.
Finally, for the point that does not lie in any cluster in dimension
1, we have, using the same arguments as above,

Pr( |𝑝11 − 𝑞1 | ≤ 2𝜀) ≤ Pr( |𝑝11 − 𝑐
1
1 | > 𝜀 or |𝑞1 − 𝑐

1
1 | ≤ 3𝜀)

≤ Pr( |𝑝11 − 𝑐
1
1 | > 𝜀) + Pr( |𝑞1 − 𝑐11 | ≤ 3𝜀) ≤ (1 − 𝛿) + 𝛿 ′ ≈ 0.

Thus, if 𝑘 is chosen smaller than the size of 𝐶1, the 𝑘NN of 𝑝11
will almost exclusively consist of points from 𝐶1. Thus,

E( |{𝑖 ∈ {1, . . . , 𝑙} | 𝑝1𝑖 is part of the 𝑘-NN of 𝑝1𝑖 }|) ≈ 𝑙
𝑘

|𝐶1 |
> 𝑙

𝑘

𝑛
,

where the last quantity corresponds to a uniform distribution of
points.

3.3 The Full Algorithm
KISS, the score indicating the importance of a dimension 𝑑 for
a point 𝑝 in a dataset 𝐷𝐵, depends on the 𝑘 nearest neighbors
(𝑘NN) of 𝑝 in the one-dimensional projection onto 𝑑 : 𝑘𝑁𝑁𝑝 (𝑑).
Note that their number can be larger than 𝑘 in case of ties, since
we chose the deterministic variant of 𝑘NN.

The more often a point occurs in the sets of one-dimensional
nearest neighbors of 𝑝 , the closer related it is to 𝑝 , which we cap-
ture in the Point Score 𝑃𝑆 (𝑝, 𝑞), where 1 is the indicator function:
𝑃𝑆 (𝑝, 𝑞) = ∑𝐷

𝑑=1 1{𝑞 ∈ 𝑘𝑁𝑁𝑝 (𝑑)}.
Higher values for 𝑘 lead to more accurate scores, as shown in

Fig. 3. However, the runtime of our algorithm depends on 𝑘 and
we would like to keep it𝑂 (𝑛 log(𝑛)) in the number of points (see
our complexity analysis in Section 3.4). For this reason, 𝑘 is set
to

√
𝑛, which is also in line with previous literature [5].

The importance a dimension 𝑑 has for a point 𝑝 depends not
only on the intersection of the 𝑘NN in this dimension with the
𝑘NN in the other dimensions, but also on the distance of those
𝑘NN. Otherwise, the important dimensions for outliers would
be distorted. Thus, the farther away a point in the 𝑘NN is, the
less influence it should have on the importance of the respec-
tive dimension, which is why we divide the Point Score of each
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Figure 3: Results for different values of 𝑘 . _𝑠1, _𝑠2, and _𝑐
denote different binarization methods, see Sec. 4.

𝑞 ∈ 𝑘𝑁𝑁𝑝 (𝑑) by the distance between the corresponding pro-
jections of 𝑞 and 𝑝 . Additionally, the computed value is divided
by the neighborhood size to account for ties among the nearest
neighbors:

𝐾𝐼𝑆𝑆 ′(𝑝,𝑑) = 1
|𝑘𝑁𝑁𝑝 (𝑑) |

∑
𝑞∈𝑘𝑁𝑁𝑝 (𝑑)

1
𝑑𝑖𝑠𝑡 (𝑝𝑑 , 𝑞𝑑 )

𝑃𝑆 (𝑝, 𝑞) (1)

Finally, KISS is normalized for every point by dividing every
value by the highest KISS occurring for the respective point:

𝐾𝐼𝑆𝑆 (𝑝, 𝑑) = 𝐾𝐼𝑆𝑆 ′(𝑝,𝑑)
max𝑒∈{1,...,𝐷 } 𝐾𝐼𝑆𝑆 ′(𝑝, 𝑒)

. (2)

This gives a value between 0 and 1 and allows for a meaningful
comparison between different points of a dataset.

3.4 Complexity
The calculation of the 𝑘NN of all points in all dimensions needs
𝑂 (𝐷 ∗ 𝑘 ∗ 𝑛 + 𝐷 ∗ 𝑛 ∗ log(𝑛)) steps, where 𝐷 is the number of
dimensions in the data set DB of size |𝐷𝐵 | = 𝑛. Computing the
𝑘NN in one dimension can be performed efficiently by sorting
the points w.r.t. this dimension and going to the left and right
of the query point in the sorted list. Given the 𝑘NN of every
point for every dimension, all Point Scores 𝑃𝑆 (𝑝, ·) w.r.t. a point
𝑝 can be calculated in𝑂 (𝐷 ∗𝑘) by iterating through the 𝑘 nearest
neighbors of 𝑝 in all 𝐷 dimensions, keeping track of the scores
via a hashmap where they get continuously updated. This has to
be done for all 𝑛 points, resulting in𝑂 (𝑛 ∗𝐷 ∗ 𝑘). For calculating
the KISS for a point 𝑝 and a dimension 𝑑 , we need to sum up
the Point Scores of all of 𝑝’s 𝑘NN in 𝑑 divided by their (one-
dimensional) distance in this dimension, which can be done in
𝑂 (1). The summation can be performed in 𝑂 (𝑘). We want to
compute the KISS for all points and all dimensions, thus we get
𝑂 (𝑛 ∗ 𝐷 ∗ 𝑘).

The KISS for all dimensions and all points can hence be com-
puted in time𝑂 (𝐷 ∗𝑘 ∗𝑛 +𝐷 ∗𝑛 ∗ log(𝑛) +𝑛 ∗ 𝐷 ∗ 𝑘 +𝑛 ∗𝐷 ∗𝑘) =
𝑂 (𝐷∗𝑛∗(𝑘+log(𝑛)), which is linear in the dimension𝐷 and close
to linear in the size of the dataset 𝑛. Runtime experiments con-
firmed this behavior, but were omitted due to space constraints.

4 EXPERIMENTAL EVALUATION
In Section 4.1 we introduce a technical tool that is needed to
validate our method against a ground truth. In Section 4.2 we de-
scribe our experiments, and summarize the results in Section 4.3.

Figure 4: Typically distributed scores for different dimen-
sions for a point 𝑝, sorted by descending normalized score.

Figure 5: Precision and recall using simple binarization
with different thresholds.

4.1 Binarization
To be able to validate our results and because for certain applica-
tions a division of the dimensions into important and unimpor-
tant ones can be needed, we suggest two possibilities to binarize
the values obtained by KISS. Ordered by score value, a typical
distribution of the scores for a point is shown in Fig. 4. If a point
lies in a cluster, the KISS of the according dimensions clearly
differs from the KISS of unimportant dimensions.

The naïve approach “simple binarization” of using a fixed
threshold for the normalized score based on which we set the
score to either 0 or 1, already delivers good results, as we show
in Section 4.2. Fig. 5 shows recall and precision for our base
case experiment and different values for the threshold, where 0.2
offers a good trade-off between the two. We performed the other
experiments with the thresholds 0.5 and 0.2, denoted by _𝑠1 and
_𝑠2, respectively.

Additionally, we developed a more sophisticated approach —
“complex binarization” —, which comes with an only negligable
increase in runtime, to improve our results even further. Here,
we look for the most appropriate cut position in the ranked
scores: e.g., for the KISS distribution depicted in Fig. 4 it could
be dimension 12 since the scores for all dimensions to the right
of it are significantly lower than the ones to the left of it. Our
approach for detecting this cut position in the score ranking
consists of first setting the importance of each dimension to 1
and then lowering it to 0 if its KISS lies below one of the three
thresholds described below.

We set all parameters required for the complex binarization
to the same reasonable values we give below for all experiments.
Both strategies are introduced mainly to be able to validate our
results against a binary ground truth. Note that the parameter
values rely on the data being scaled to the 𝐷-dimensional unit
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Figure 6: Transpose of the binary matrix for the base case
dataset computed using KISS with complex binarization.
The subspace boundaries are depicted as black lines.

hypercube. The three thresholds for the complex binarization
are:
(1) normalized threshold 𝑡𝑛 : If 𝐾𝐼𝑆𝑆 (𝑝, 𝑑) < 𝑡𝑣 = 0.1, then

𝐾𝐼𝑆𝑆 (𝑝, 𝑑) is set to 0.
(2) unnormalized threshold 𝑡𝑢 : Because we normalize the KISS

of each dimension by dividing by the largest KISS for this
point, even a point that is just random noise has at least one
dimension with score 1. However, the unnormalized value of
dimensions with a high normalized KISS for this noise point
will be significantly lower than the unnormalized values of
dimensions with a high normlized KISS for a point that lies
in a cluster. Thus, in addition to setting a threshold for the
normalized KISS, we also set one for the unnormalized KISS’
(cf. Equation 1): if 𝐾𝐼𝑆𝑆 ′(𝑝,𝑑) < 𝑡𝑢 , the score for 𝑑 is set to 0,
where 𝑡𝑢 equals the difference between mean and minimum
of all unnormalized scores.

(3) descent threshold 𝑡𝑑 : The descent threshold controls the de-
cline between consecutive KISS values. If
𝐾𝐼𝑆𝑆 (𝑝,𝑒)−𝐾𝐼𝑆𝑆 (𝑝,𝑑)

𝐾𝐼𝑆𝑆 (𝑝,𝑒) > 𝑡𝑑 = 0.7, where 𝐾𝐼𝑆𝑆 (𝑝, 𝑒) is the next
largest KISS value of 𝑝 , then all KISS values smaller than or
equal to 𝐾𝐼𝑆𝑆 (𝑝, 𝑑) become 0.
The result of the binarization can be expressed in a binary

matrix as in Fig. 6.
Empirically, setting 𝑡𝑛 significantly lower than 0.5 and 𝑡𝑑 rather

high allows for detecting more relevant dimensions and therefore
detecting subspaces of higher dimensionality. 𝑡𝑢 affects mostly
how well outliers are detected. However, setting this parameter
too high leads to very restricted binarized scores and can possi-
bly decrease the detection rate of the important dimensions of
the cluster points. In general, the parameters allow us to trade
precision for recall. KISS is supposed to be used in settings where
working with the original data without a significant reduction
of the dimensionality is infeasible, either due to limited human
capacity when manually analyzing the data or due to non-fa-
vorable dependence of a downstream task’s performance on the
number of dimensions. Hence we can live with a mediocre recall
if in return the precision is high, allowing us to get rid of many
dimensions, which is why we mainly focus on achieving a high
precision.

In real-world settings where one needs a binary division of
the dimensions, one typically has a (computational or storage)
budget of dimensions one can deal with in the downstream task,
and would binarize in a way so that exactly this many dimensions
are labeled as important.

4.2 Experiments
We test with both the simple and complex binarization of KISS
and denote the corresponding values with the abbreviations _𝑠
and _𝑐 , respectively. To have ground truth values for the impor-
tance of all dimensions, we generated data containing subspace
clusters with possibly overlapping subspaces. The clusters are

Figure 7: Average KISS for all points, partitioned accord-
ing to ground-truth based important subspaces. Red bars
show dimensions containing clusters.

Gaussians with mean randomly drawn from the uniform distri-
bution on the 𝐷-dimensional unit hypercube. The values for the
dimensions of a point that do not lie in a cluster are uniformly
distributed in the hypercube 1.

Looking at the distribution of KISS per important (accord-
ing to the ground truth) subspace in Fig. 7, we already see the
correlation to the cluster subspaces: the average scores for the
important dimensions (red bars) are visibly higher than those for
unimportant dimensions (blue bars). Noise points that do not lie
in any cluster are shown in the lower right diagram: the average
KISS values do not differ much. The precision we achieve for
both types of binarization are good, as can be seen in Fig. 8.

To the best of our knowledge there are no alternatives yet to
KISS (see Section 2.3). However, with CLIQUE and SURFING we
compare KISS to representative algorithms for subspace cluster-
ing and for subspace search. The comparison makes the disad-
vantages of having to set parameters as well as the benefit of
individual scores in contrast to a global ranking clear.

Among others, Fig. 8 shows results obtained with CLIQUE
for different parameter configurations. Even though CLIQUE
was able to obtain high recall values, the precision was even for
the best parameter settings much lower than for KISS (for both
binarizationmethods).We also see that the results heavily depend
on the choice of CLIQUE’s parameters, with precision ranging
from 35% to 77% and recall from 53% to 87%. Fig. 8 further includes
the results obtained by binarizing the “quality” of each particular
dimension as computed by SURFING for different values of 𝑘 (in
the same way as we binarize the KISS values). The classification
performance of SURFING is very dependent on the parameter
choice as well. With a good choice, it is able to achieve a high
recall, but, as expected, the precision values are rather low, since
the quality assignments are the same for all points, which does
not match the ground truth.

Starting from this base case, we altered one parameter of the
data in each of the following subsections to investigate KISS’
behaviour w.r.t. this parameter.

4.2.1 Number of points. Changing the number of points 𝑛 did
not affect the precision, recall or accuracy of KISS significantly.

1The settings for our base case dataset are as follows: number of points 𝑛 = 10000,
dimensionality of point 𝑝 : 𝑑𝑖𝑚 (𝑝) = 20, percentage of noise 𝑛𝑜𝑖𝑠𝑒 = 0.1, set of
dimensions in subspace 𝑆𝑖 : 𝑆0 = {0 . . . 3}, 𝑆1 = {14 . . . 19}, 𝑆2 = {2, 5, 10, 16, 18},
percentage of points w.r.t.𝑛 lying in subspace𝑆𝑖 : |𝑆𝑖 | = [0.3, 0.3, 0.3], dimensional-
ity of 𝑆𝑖 :𝑑𝑖𝑚 (𝑆𝑖 ) = [4, 6, 5], number of clusters in subspace 𝑆𝑖 :𝑛𝑐 (𝑆𝑖 ) = [1, 2, 1],
variance of cluster𝐶𝑖 : 𝑣𝑎𝑟 (𝐶𝑖 ) = [1.5, 1.0, 1.3].
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Figure 8: Results for KISS, SURFING, and CLIQUE for the
base case dataset and different parameters 𝜉 and 𝜏 resp. 𝑘 .
Same color indicates same parameters.

The three values deviated by at most 3% for 𝑛 ∈ {5 000, 10 000,
25 000, 50 000, 75 000, 100 000}.

4.2.2 Number of dimensions. With growing number of dimen-
sions (while keeping the ratio of dimensions lying in important
subspaces the same) the recall decreases, but the precision, which
we put more emphasis on, stays high.

4.2.3 Noise. Increasing the percentage of pure noise points
leads to less points in each cluster, thus precision drops. Nev-
ertheless, the decrease of quality is slow, and up to 50% of data
can be pure noise points before precision falls below 75% (for the
complex binarization).

4.2.4 Number of subspaces. We examine KISS for up to 10
different subspaces and obtain good results with precisions above
73% in all cases. Additionally, recall as well as accuracy diminish
only slightly with increasing number of subspaces.

4.2.5 Subspace size ratio. We tested several size ratios be-
tween the three base case subspaces our dataset consists of. In
our base case, every subspace contains one third of the non-noise
data points. We set the share of instances in the first subspace to
values {0.4, 0.5, 0.6, 0.7, 0.8}, while dividing the remaining points
equally among the other two subspaces (and additionally keeping
the 10% noise of the base case). The quality of the scores hardly
changed: we received precision values for the simple binarization
between 83% and 85%, and between 84% and 86% for the complex
binarization. Recall values ranged between 39% and 41%, and 47%
and 49%, respectively, showing that the size ratio of the subspaces
does not constitute a problem for KISS. Thus, even subspaces
containing only very few points of the complete dataset can be
found as easily as bigger subspaces.

4.2.6 Number of clusters per subspace. With an increasing
number of clusters, precision as well as recall decrease, since
there are fewer points per cluster that could help identify a point
in the cluster.

4.2.7 Density of clusters. We tested several density settings
for the clusters. When all subspaces contain similarly dense clus-
ters, the quality decreaseswith lower density (i.e., higher standard
deviation). If each subspace contains differently dense clusters,
the results are rather determined by the average density than by
the lowest or highest occurring density. Thus, a large difference
in cluster density does not influence the results negatively.

1When adding more subspaces to the base case dataset, we use the same settings
as for the original subspaces: the points are evenly distributed among the sub-
spaces, and the cluster settings of the clusters lying in subspaces 𝑆0+3𝑖 , 𝑆1+3𝑖 , 𝑆2+3𝑖
correspond to the settings of the clusters lying in subspaces 𝑆0, 𝑆1, 𝑆2 .

4.3 Summary of Results
Our experiments show that KISS achieves a high precision and
reasonable recall across a wide range of settings. With a high
number of subspaces or clusters the performance starts to de-
grade, but KISS is robust to noise and can deal with high numbers
of points as well as clusters of different density. We would like
to point out that the experiments only show a small part of KISS’
capabilities, since the original KISS is a continuous value, which
we just binarized here, and likely not even optimally.

5 CONCLUSION AND FUTUREWORK
We developed KISS, a scoring that assigns an importance value to
each dimension of each point of a dataset. It is scalable, does not
suffer from the curse of dimensionality, since it replaces multi-
dimensional distance measures by one-dimensional ones, and
does not require significant user involvement to set parameters.
Its runtime is linear in the dimensionality and close to linear in
the number of points, setting it apart from similar methods.

KISS has numerous applications, both as a tool to get an insight
into datasets as well as a foundation for data mining applications,
in particular to accelerate downstream tasks or to make them
more robust to noise. We are currently working on some of the
most immediate extensions: (1) performing clustering using espe-
cially the most relevant dimensions for each point; and (2), using
KISS for outlier and noise detection, following the observation
that points that have a low KISS in every dimension are typically
in none of those in a cluster. We encourage the usage of KISS for
preprocessing data and gaining knowledge in an early stage of a
data anlysis process, since it is simple, fast, delivers good results
and does not require parameter tuning.
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Chapter 3

Between Clustering and Correlation
Clustering
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I fold you so! An internal evaluation measure for
arbitrary oriented subspace clustering

Daniyal Kazempour, Anna Beer, Peer Kröger, Thomas Seidl
Ludwig-Maximilians-University Munich

{kazempour, beer, kroeger, seidl} @dbs.ifi.lmu.de

Abstract—In this work we propose SRE, the first internal
evaluation measure for arbitrary oriented subspace clustering
results. For this purpose we present a new perspective on the
subspace clustering task: the goal we formalize is to compute a
clustering which represents the original dataset by minimizing
the reconstruction loss from the obtained subspaces, while at the
same time minimizing the dimensionality as well as the number
of clusters. A fundamental feature of our approach is that it
is model-agnostic, i.e., it is independent of the characteristics of
any specific subspace clustering method. It is scale invariant and
mathematically founded. The experiments show that the SRE
scoring better assesses the quality of an arbitrarily oriented sub-
space clustering compared to commonly used external evaluation
measures.

I. INTRODUCTION

Among the greatest challenges in developing unsupervised
machine learning techniques, particularly clustering methods,
is the evaluation of the results. In most works, the results of a
new algorithm are compared against those of other algorithms
based on a ground truth for the datasets they are tested
on. This ground truth is not only rarely given for available
datasets, but contradicts the goal of unsupervised algorithms.
In cases where no ground truth is given or appropriate, internal
quality measures are used. However, internal evaluation crite-
ria assume that clusters have certain properties and measure
how well these specific properties are fulfilled. Depending on
the assumptions behind the measures, there is a strong bias
towards certain types of clustering models, which we will
elaborate on in Section II.

Fig. 1. Architecture of subspace clustering as a reconstruction task.

A very recent class of clustering methods is designed to
detect clusters in arbitrarily oriented subspaces of a high-

dimensional dataset, also known as correlation clustering
methods1 [1]. The main idea behind this type of clustering
methods is to detect groups of objects that have a similar
correlation among a given set of features and, thus, are
located on a low-dimensional linear subspace E in ambient
space. These objects are in fact similar to each other when
projected onto the subspace perpendicular to E. While there
exists a thorough evaluation of axis-parallel subspace clus-
tering methods (a variant of the general problem described
above assuming attribute independence) based on a plethora
of different external criteria [2], there is, to the best of our
knowledge, no internal quality measure for arbitrarily-oriented
subspace clustering methods.

In this work, we introduce SRE (Sum of subspace
Reconstruction Errors), the first internal evaluation criterion
for subspace clustering. It performs well as we show with
experiments in Section IV and scores aspects of a clustering
which are neglected by external evaluation measures yet im-
portant in context of arbitrarily oriented subspace clustering. It
is model-agnostic, i.e., it does not have a bias towards a given
clustering model (density-based, Hough-based, ICA-based ar-
bitrarily oriented subspace clustering etc.). To achieve this,
we propose a different perspective on the subspace clustering
problem. Inspired by the concept of autoencoders [3] which
have been also proposed for dimensionality reduction [4] we
re-define subspace clustering as a task in which the objective
is to partition a given dataset in ambient space. This segmen-
tation is performed in such a way that the obtained subspace
for each of the clusters allows a reconstruction of the data
from this latent space with a minimized loss while at the same
time reducing the model complexity, i.e. reducing the number
of dimensions for the subspace and reducing the number of
clusters. Autoencoders learn a lower-dimensional embedding
into the latent space, which minimizes the reconstruction error
regarding the original ambient space. The latent space of an
autoencoder is an arbitrarily shaped manifold, whereas the
result of a subspace clustering is a set of subspace clusters,
where each is described by its individual arbitrarily oriented
linear subspace. Thus, using our new definition of subspace
clustering, it delivers a piecewise linear approximation of
an arbitrarily shaped manifold within the data. The non-
neural autoencoding architecture of our proposed method is
illustrated in Figure 1. The approximation loss together with

1Not to be confused with correlation clustering in context of graph mining.
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regularization parameters for the number of clusters and the
number of subspaces builds the new internal quality measure
SRE. At this point one may object that by relying on the
assumption that data is located on or around manifolds, we
would have some kind of an ”external” criterion. This however
is not the case, since the manifold assumption addresses an
internal property, like the silhouette-coefficient [5] also relies
on the internal model assumption that the clusters are convex.
The remainder of this paper is structured as follows: In Section
II we introduce related work, in Section III we give a formal-
ization for our new perspective on subspace clustering and the
consequential internal quality measurement SRE, establishing
a link to autoencoders. After investigating some properties of
SRE, we describe the conducted experiments in Section IV and
discuss in this context the feasibility of our internal measure.
We conclude our work with the lessons learned and future
prospects. In summary, our contributions are as follows: (1)
We propose a model-agnostic internal evaluation measure for
subspace clustering (2) We re-define the subspace clustering
problem as an optimization task with the objective to minimize
the reconstruction error from a piecewise linear approximation
of a non-linear manifold, while at the same time reducing the
model complexity.

II. RELATED WORK

The so far existing internal evaluation measures such as the
silhouette coefficient [5], the density-based validation index
[6] or modularity [7] are limited to their respective underlying
models, and as such come with their model bias. There
exist however further internal evaluation measures such as the
Davies-Bouldin score [8]. This score measures the average of
the pairwise ratio of compactness and separation. Similarly the
Calinski-Harabasz Score [9] and Dunn-Index [10], like many
other existing internal evaluation measures, rely on properties
such like compactness and separation. One drawback which
comes with them, is the fact that for the compactness of
the clusters the average distance of objects to their cluster
centers is computed. This reliance on cluster centers introduces
a certain bias. Further these internal evaluation measures
neglect aspects like reconstruction quality, number of clusters
or number of dimensions rendering them inadequate for our
needs. Our SRE measure differs from the existing methods by
integrating the reconstruction loss as well as the model com-
plexity (number of clusters and dimensionality of subspaces).
As such, we do not compare in this work SRE against other
internal evaluation measures, since they would yield scores
which may favor individual algorithms that rely on density or
convex clusters, but not favor clusters which are ”tight” around
an arbitrarily oriented subspace and which do not penalize
increased model complexity. In a very recent work [11], the
authors introduce an approach for a holistic assessment of
clustering algorithms with respect to their structure discovery
capabilities. In that work they rely on criteria, namely stability,
structure and consistency. In their work, the notions of stability
and consistency rely on a density threshold �. This introduces
unfortunately a model bias, since subspace clustering algo-

rithms which rely on density would be in favor. In the work
of [2], the authors propose an evaluation method which is
founded on three major paradigms, namely (a) cell-based, (b)
density-based and (c) clustering-oriented paradigms. All three
paradigms are incorporated in the framework of an external
measure for subspace clustering which relies on ground truth.
The method is limited to axis-parallel subspace clusterings.
The authors state in the introduction of their work, that it
would be beyond the scope of their work to include arbitrarily
oriented subspace clustering algorithms.

III. SUBSPACE CLUSTERING AS MANIFOLD LEARNING

Seeking for an algorithm-agnostic internal evaluation mea-
sure for subspace clustering leads us to autoencoders, which
inspired this work. According to [12][Ch. 14], an autoencoder
is a neural network which is aimed at copying its input to
its output by encoding the input first to a lower-dimensional
latent layer (bottleneck) h = f(x) and decoding it to its full-
dimensional representation g(f(x)) = x. The limitation of
the dimensionality of the latent layer is necessary to learn
lower-dimensional representations of the ambient space. The
learning process itself is expressed as a minimization of a
loss function such as L(x, g(f(x))), where L is a penalty
function depending on the dissimilarity between the recon-
struction g(f(x)) and the ambient space representation of
x. Bridging over to manifold learning, according to [12],
autoencoders rely on the assumption that data is located on or
around lower-dimensional manifolds or subsets of manifolds.
A manifold is characterized by its set of tangent planes where
each of the tangent planes represents a local euclidean space.
Autoencoders learn such manifolds while balancing between
two aspects: (1) achieving a good approximation of a manifold
(minimizing reconstruction error) and (2) satisfying regulariza-
tions such as, e.g., the dimensionality of the latent layer. It is
noteworthy at this point that if we use a linear decoder and
the mean squared error as a loss function, the autoencoder (if
undercomplete) learns the same subspace as a PCA. Under
this aspect, a PCA learns one global linear approximation
of a potentially non-linear manifold of the ambient space.
However, autoencoders with non-linear encoder and decoder
are capable of learning non-linear manifolds. If we apply local
PCA [13] on the data in ambient space, we obtain a set of
linear lower-dimensional subspaces and the objects projected
to their respective subspaces. Arbitrarily oriented subspace
clustering on the other hand yields a set of lower-dimensional
subspaces with their corresponding objects projected to them.
These arbitrarily-oriented subspaces can be described by a
set of principal components like in ORCLUS [14] or through
HNF representation of hyperplanes as in CASH [15]. Subspace
clustering algorithms are distinct among themselves. While
e.g. ORCLUS minimizes the so called energy of a clustering,
CASH maximizes compactness, two terms which not necessar-
ily comply with each other. Further ORCLUS optimizes by the
number of partitions k and the dimensionality l while CASH
optimizes by the minimum number of objects per hyperplane
and maximum allowed deviation from it. At this point we
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ask: What is the common goal that not only those two, but
any subspace clustering algorithm in general can be tailored
at to optimize for? The answer is: Expressing data through
a set of lower-dimensional subspaces. Just like autoencoders
or local PCA aim at encoding the ambient space in such a
way that the reconstruction from the latent representation is
minimized, we re-phrase the subspace clustering task with the
goal in mind to construct an internal evaluation measure:

Definition 1 (Subspace clustering as dimensionality-reduction
and manifold learning task). Given a dataset D in ambient
space, the task of a subspace clustering algorithm is to yield
a clustering C = {c0, c1, ..., ck} and their corresponding
set of subspaces S = {s0, s1, .., sk} such that the loss
L(D, g(f(C, S))) is minimized, where (C, S) := {(ci, si)},
f(C, S) corresponds to an encoding of the dataset and
g(f(C, S)) corresponds to the decoding of the dataset.

Definition 2 (Encoding of a subspace cluster). Given is a
subspace cluster ci as part of a n×d-dimensional data matrix
in a subspace si with dimensionality l, where d denotes the full
dimensionality of the ambient space and k denotes the number
of clusters. Further the index i ∈ [0, k] denotes the correspond-
ing cluster id. First, the data is centered by subtracting Oi,
the mean of all points in ci. Then the PCA, which is based on
the covariance matrix of all points in ci, provides the ordered
eigenvalues λ0, . . . , λd and respective eigenvectors γ0, . . . , γd,
last of which are known as the principal components of ci.
The subspace cluster is projected onto the first (i.e., those
belonging to the largest eigenvalues) l principal components
γ0, . . . , γl by multiplying it with the l× d-dimensional part of
the eigenvector matrix Γi = (γ0, . . . , γl)

T : Mi = ci × ΓT
i .

The complete encoding of a subspace cluster is then this l-
dimensional projection of the points Mi together with Γi and
the origin in the ambient space O. Thus,

fc(ci, si) = (Mi,Γi,Oi)

Definition 3 (Piecewise Linear Approximation (PLA)). The
PLA of a dataset D using results of a subspace clustering
(C, S) = {(ci, si)} corresponds to the encoding f(C, S) of
the dataset, which is the combination of the encodings of all
subspace clusters fc(ci, si).

Definition 4 (Decoding of a subspace cluster). Given the
matrices (Mi,Γi,Oi) of the encoding function as described
in Definition 2 the decoding D̂ is obtained by transforming
the encoded points back into the original data space: D̂ =
Mi × Γi + Oi. In other words, the decoding function of a
cluster is

gc(Mi,Γi,Oi) =Mi × Γi +Oi

Based on these new definitions we want to investigate
some connections between the piecewise linear approximation
based on subspace clusterings and autoencoders. For autoen-
coders or neural networks in general, the so called universal
approximation theorem [16] guarantees that a feed-forward
neural network with at least one hidden layer is capable to
approximate any function ϕ with a non-linear manifold F so

that ∀x, ∀ε > 0 : |F (x) − ϕ(x)| < ε, if sufficient hidden
units are provided. That is useful for the case that all points
of a dataset were created by a common function ϕ, or in
other terms: that all points were generated by a single process
which are located on or around a non-linear manifold. But
that is not necessarily the case in real world data and that is
when subspace clustering is advantageous. We can formulate
the corresponding theorem for subspace clustering, which is
based on the points in the dataset and not on the function
creating them:

Theorem 1 (Adapted Approximation Theorem). Every dataset
D on a potentially non-linear manifold can be described
by a piecewise linear approximation based on a subspace
clustering (C, S) so that: ∀ε > 0 : L(D, g(f(C, S))) < ε,
if sufficient subspace clusters of sufficient dimensionality are
allowed.

As a sketch the theorem can be proved using the original
universal approximation theorem: for every function ϕ gener-
ating a dataset D there is a manifold F approximating ϕ as
described above. Since a manifold is local Euclidean, there
exists a neighbourhood for every data point which is home-
omorph to an open subset of Rn. These subsets correspond
to the eigenspaces of the subspace clusters as described in
Definition 2, and thus ϕ resp. D can also be approximated
with the PLA as described in Definition 3. A trivial solution
to approximate D could put every point in a single, full-
dimensional cluster and thus maximize the number of clusters
|(C, S)| as well as their dimensionality dim(ci). The number
of clusters |(C, S)| and their dimensionality dim(ci) plays a
fundamental role in Theorem 1, as a trivial solution could
maximize both variables and put every point in a single, full-
dimensional cluster. The arbitrariness of those two variables
corresponds to the arbitrary number of hidden units of the
neural network in the universal approximation theorem. This
leads to a diversification of this one abstract variable ”number
of hidden units” to the two variables ”number of groups in the
dataset” and ”number of relevant attributes for each group”.
Nevertheless, both variables should be taken into account when
using it as optimization criterion or as evaluation measure, see
Section III-A.

A. Manifold learning as internal measure

Just as in [12] it is stated that autoencoders need a balancing
between minimizing the reconstruction error and satisfying
regularizations such as the dimensionality of the latent layer
in order to learn a meaningful lower-dimensional represen-
tation of the data. We introduce here constraints which are
indispensable for the subspace clustering task.

Definition 5 (Reconstruction Loss). The reconstruction loss
of a single cluster is the sum of all squared distances between
the original points xj and the reconstructed points x̂j of the
cluster. Normalizing by the number of elements in the cluster
leads to invariance regarding the number of points in the
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cluster (and thus in the dataset)

Lc(ci, g(fc(ci, si))) =
1

|ci|

|ci|∑

j=1

dist(xj , x̂j)
2

As distance function we use the Euclidean distance divided
by the square root of the number of dimensions to stay scale
invariant (see Section III-B) w.r.t. the number of dimensions:
dist(x, x̂)2 = 1

d

∑d
i=1 (x

i − x̂i)2, where xi denotes the value
of x in the i-th attribute. The reconstruction loss of the dataset
is then

L(D, g(f(C, S))) =

|(C,S)|∑

i=1

Lc(ci, g(fc(ci, si)))

As we want to prevent that the subspace clustering simply
learns the identity function as described after Theorem 1 we
introduce the possibility to penalize high dimensionalities of
subspace clusters as well as a high number of clusters. For the
former, the hyperparameter α is multiplied with the subspace
dimensionality2 l and the product is added to the cluster loss L.
Here, α = 0 means that we do not put any sparsity constraint
on the dimensionality of the latent layer, while the larger α
the higher we penalize the dimensionality. For the latter, the
hyperparameter β is multiplied with the number of clusters
|(C, S)| and also added to L, leading to the total reconstruction
loss:

Ltotal(D, g(f(C, S))) = L(D, g(f(C, S)))+α · l+β · |(C, S)|

Figure 1 points out the connection between our new defi-
nition of subspace clustering and classic autoencoders. Equiv-
alent to the encoding step of an autoencoder we perform the
subspace clustering and with that a PLA of the original data.
In the latent layer each cluster is projected onto its own low
dimensional eigenspace according to the principal components
and the dimensionality as given by the clustering. The de-
coding corresponds to the re-transformation to the original
space. At this point there are certain questions which may
arise, regarding the hyperparameters α and β: (1) Couldn’t
both hyperparameters be regarded as an ”external” penalty?
Here the answer is: it depends. If both are set equal (α = β)
then both influences (number of clusters and dimensionality of
subspaces) are treated equally. However, the external character
of α and β do not make this approach an external evaluation
measure, since it still relies on the internal assumption that
non-linear manifolds are piecewise-linearly approximated in
such a way that the deviation from the linear approximations
is minimized. (2) Does a hyperparameter not introduce un-
certainty in the evaluation? It depends in one aspect on the
sensitivity of the hyperparameters. The authors in [11] also in-
troduce a hyperparameter � in their internal measure and claim
that it is insensitive. In this work we conducted experiments
(Experiment 4) with the purpose to investigate the sensitivity.
Further, this ”uncertainty” can, depending on the use-case

2If there are different dimensionalities the median is used in the experi-
ments.

of the scientists, be a degree of control. In autoencoders
the users can set the dimensionality of the latent layer (aka
”the bottleneck). In our architecture, the scientists can also, if
they have a certain background knowledge explicitly set and
therefore control the weights of latent space dimensionality
and cluster cardinality, emphasizing besides the reconstruction
loss either the importance of the number of clusters or the
importance of a low-dimensional subspace.

B. Properties of the internal evaluation measure

In the following we investigate the SRE w.r.t. some desirable
properties for internal evaluation measurements.

a) Scale invariance regarding number of dimensions: If
the quality of the reconstruction per dimension is fixed, i.e.,
if the mean and the variance of the dimension-wise distance
between original point and reconstructed point is fixed, then
the number of dimensions of the dataset does not influence the
SRE L. The main idea of the proof, which is here omitted for
brevity, is that the distance between original and reconstructed
points we defined in Definition 5 is independent of their
dimensionality in contrast to, e.g., the Euclidean distance.
In practice, the premises are fulfilled if the ratio between
noise dimenions and important dimensions per cluster stays
the same.

b) Scale invariance regarding number of points : SRE
is independent of the number of points in a dataset for a
fixed number of clusters, since the cluster loss Lc is not the
accumulated, but the average loss of all points in that cluster.

c) Scale invariance regarding number of clusters: As the
loss can be minimized by increasing the number of clusters
for describing the dataset, L is dependent on the number of
clusters. Since it depends on the structure of the dataset to what
extent additional clusters can reduce the reconstruction loss,
there is no universal normalization we could improve the SRE
with regarding this aspect, which is why β is chosen according
to the dataset. Additionally, the optimal number of clusters
depends on the usecase, so here β allows the user to tailor the
quality function to the respective goal of the clustering.

d) Comparability: Basically, there are three types of
experiments when scientists need an internal evaluation mea-
surement. They want to compare (1) different algorithms
on the same dataset, (2) different parameter settings of one
algorithm on a particular dataset, or (3) the applicability of an
algorithm on different datasets. SRE is most suitable for type
1 and through α and β it is also useful for type 2. Type 3, the
comparison of the performance of an algorithm on different
datasets, can be difficult since the reconstructability of a
dataset depends on its structure. However, we should compare
these results on different datasets with other algorithms’ results
anyway.

IV. EXPERIMENTS

In this section we describe and provide the results of several
experiments, conducted on generated data as well as on pop-
ular real world datasets Iris, Wine, Breast Cancer, and Digits
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Fig. 2. Synthetic dataset for comparing SRE against a set of external
evaluation measures. Best viewed in color.

as provided by the sklearn3 framework. The dimensionality,
number of objects per dataset and number of classes can be
seen on the sklearn dataset webpage3.

A. Experiment 1: SRE vs. External Evaluation Measures

We introduce this first experiment by asking: What makes
an evaluation measure actually convincing? The reader may
ask also in this context: why should one bother with SRE, if
we already have a ground truth with our labeled data? Why not
just relying on external evaluation measures such as NMI, ARI
etc. like it is done in the majority of previous research so far?
In order to approach these questions we have constructed an
artificial dataset (3D), with the purpose to make the clustering
results as comprehensive as possible. The dataset consists of
eight clusters according to our defined “ground truth” indicated
by dashed lines and consists of five clusters according to our
evaluation model indicated by alternating dashed and dotted
lines as shown in Figure 2. Each of the ground truth clusters
contain between 60 and 80 objects.

We compare SRE (α = β = 0.5) against external evaluation
measures such as the normalized mutual information (NMI),
the adjusted rand index (ARI), the homogenity score (HS), the
completeness score (CS), the Fowlkes Mallows score (FMS)
and the micro F1 score (F1S). For all mentioned external
evaluation measures holds that a score of 1 corresponds to
the best possible result, while a score of 0 corresponds to
a poor clustering. For the SRE it holds that the lower the
score, the better. The experiments were conducted on the
artificial dataset, running ORCLUS [14] and CASH [15]. Both
algorithms were executed on a hyperparameter grid. We have
chosen the best clustering result based on the criterion of
obtaining the highest average of the external quality measures:
NMI+ARI+HS+CS+FMS+F1S

5 . The results can be seen in
Figure 3 and 4.

In Figure 3 the top part shows bar charts with the external
measure results and the SRE. In the bottom we have scatter
plots where one can see the clustering results. The left bar

3https://scikit-learn.org/stable/datasets/index.html

Fig. 3. Synthetic dataset for comparing SRE against a set of external
evaluation measures. Best viewed in color.

chart and scatter plot shows the results for CASH, the right
scatter plot shows the results for ORCLUS. For CASH we can
observe that the average of external quality measures yielded
0.82. Why didn’t we obtain a value of 1.0 or at least close
to 1.0? One reason for that observation is the poor value of
the F1 score. Besides that, there is one major aspect which
prevents the other external measures to achieve a score of 1:
the two rightmost linear segments are detected as one line
despite the fact that according to the ground truth they should
be two separate clusters. According to the model behind SRE,
assigning both distant lines to the same cluster is favorable,
since it results in fewer number of clusters while having no
impact on the loss, since both clusters are perfectly located on
the same line. At this point one drawback of using external
measures becomes visible: neglecting properties of subspace
clustering. The results of ORCLUS (Figure 3 right) yield an
average external score of 0.78 and therefore just by 0.04 worse
compared to the CASH result. Comparing both clustering
results (CASH and ORCLUS) in the bottom plots it can be
observed that ORCLUS fragmented the planar cluster into four
smaller planar clusters. This fragmentation does not seem to
affect the external scores significantly, which is however from
the perspective of the underlying model of SRE a massive
difference. The hyperparameter settings of ORCLUS which
led to this clustering are k = 10, l = 2. The number of
clusters has a high impact on the SRE score, as well as
the fact that all clusters are of dimensionality l = 2. By
purely observing the average scores (0.82 for CASH and 0.78
for ORCLUS) one may think that both clustering results are
almost equally good. By looking at the SRE scores (4.0 for
CASH and 6.0 for ORCLUS) one can see that the result of
CASH is by 33% better compared to the ORCLUS clustering.
Through this case we get a first impression that relying on
external evaluation measures only, may lead us to draw either
wrong conclusions, or at least conclusions which neglect the
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Fig. 4. Synthetic dataset for comparing SRE against a set of external
evaluation measures on ORCLUS clustering results. Best viewed in color.

principles of arbitrarily oriented subspace clustering.
So far we have looked at the external evaluation scores and

the corresponding SRE score of a clustering. We investigate
now the question: Does SRE correspond to the external evalu-
ation scores? For this purpose we run ORCLUS again on our
artificial dataset with the same parameter settings as before.
After 20 runs with the hyperparameters k = 10, l = 2 we
obtain a clustering as seen in Figure 4 (left). Here the average
external score is 0.69 and thus by 0.09 worse compared to the
previous ORCLUS run (ORCLUS (I) Figure 4) and by 0.13
worse compared to CASH. Solely based on the external scores
one would state that this clustering is of clearly worse quality
than the others. Albeit the external scores are worse, the SRE
is with 3.5 much lower, i.e., better, compared to the first
ORCLUS run with an SRE of 6.0 (42%) and even by 12.5%
better compared to the CASH result. How can we actually
explain these massive discrepancies? Regarding the SRE, the
discrepancies can be understood by taking a closer look at
the resulting clustering (Figure 4 left, bottom). ORCLUS has
detected five clusters of dimensionality l = 2. Compared to the
first ORCLUS run, which detected 10 clusters by fragmenting
the bottom planar cluster, we have a reduction in number of
clusters by 50%. Further the two intersecting lines have been
detected as a single planar cluster. For the underlying model of
SRE, this clustering (1 cluster, dimensionality of 2) is equally
scored as detecting both separately (2 clusters, dimensionality
of 1), since both lines are located on a plane, the reconstruction
loss in both cases is 0. External evaluation measures, however,
are incapable to handle such cases of equivalence, leading to a
drop of their respective scores. This issue comes additionally
to the previously elaborated fact that both distant linear clusters
on the right are detected as one, despite the ”ground truth”
expects them both to be regarded as separate clusters. Finally
in our last run (ORCLUS (III)) with k = 20, l = 2 we
obtain a clustering with an average external score of 0.8, thus

being almost en par with the CASH result (0.82). Here again,
by solely looking at the external average scores one may be
tempted to state that the ORCLUS (III) clustering would be
almost as good as the CASH clustering. A close look at the
clustering itself (Figure 4, right, bottom) reveals that while
the average external score is high, it again has fragmented
the planar cluster in many smaller ones. While the external
measures fail to capture this fragmentation the SRE score of
6.5 reveals that the result is by about 39% worse compared to
the result of CASH (4.0). Referring to the initial question of
this experiment of why one should bother using SRE when we
could as well just use external measures, one answer to that is:
Even if we have labels, and even if we want to trust a “ground
truth”, external quality measures fail to capture fundamental
concepts of an arbitrarily oriented subspace clustering: taking
into account the dimensionality and the number of clusters
besides the loss.

B. Experiment 2: Pure Reconstruction Quality

How do the algorithms behave on different datasets if we do
not apply any regularization at all, which means α = β = 0?
Do we observe common patterns among different datasets
regarding loss, number of dimensions or number of clusters?
And do the algorithms exploit automatically a higher number
of dimensions and higher number of clusters if no regular-
ization is given? The experiment was conducted using the
following algorithms: ORCLUS [14], 4C [17], COPAC [18]
and LMCLUS [19]. We used the implementations from the
data mining framework ELKI [20] for all algorithms. The best
hyperparameters for every algorithm was found by iterating
over their respective hyperparameter grid using the same step
size4 for each algorithm per experiment. The settings yielding
the lowest measured loss per algorithm can be seen in the
sourcecode under the following link5.

For each of the algorithms a triple containing the lowest
loss, the number of subspaces and the dimensionality of the
subspaces is obtained as shown in Table I. In that table we can
observe what we have expected and elaborated on in Section 2:
Without any regularization, algorithms like ORCLUS, COPAC
and 4C exploit a high number of dimensions as well as a
high number of clusters. For the Iris dataset COPAC domi-
nates with the lowest loss and at the same time the lowest
dimensionality, but puts almost every point in a single cluster.
LMCLUS exploits the dimensionality but interestingly not the
number of clusters which yields one single cluster with a
reconstruction loss of 0.005. Throughout all datasets LMCLUS
dominates the number of clusters by requiring only one cluster,
which is interesting since there is no actual parameter of the
algorithm directly influencing the number of clusters except
minpoints. On the Wine dataset ORCLUS dominates by
having the smallest loss and the smallest number of clusters,
while COPAC has also a loss of zero, but has the lowest
dimensionality, at the cost of having 176 clusters. In the Breast

41 for minpts, dim, k, 0.1 for ε-range, Eigenvalue threshold δ, sensitivity
threshold

5Sourcecode: https://www.dropbox.com/s/1nhln46cxaidael/ORTA.zip?dl=0
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TABLE I
RECONSTRUCTION LOSS, DIMENSIONALITY AND NUMBER OF CLUSTERS FOR THE DETECTED SUBSPACES BY THE ALGORITHMS FOR DIFFERENT

REAL-WORLD DATASETS (α = β = 0). BOLD ENTRIES REPRESENT RESULTS BEING DOMINATED BY AT LEAST ONE CRITERIA (LOSS, DIM, CLUS).

Algorithms
Iris Wine Breast Digits

Loss Dim Clus Loss Dim Clus Loss Dim Clus Loss Dim Clus
ORCLUS 0.000 3 15 0.000 12 2 0.000 25 5 0.000 60 5
COPAC 0.000 2 149 0.000 1 176 26.747 2 1 7.617 5 5

4C 0.000 3 144 0.000 12 178 305.744 29 5 0.000 63 1613
LMCLUS 0.005 3 1 0.019 8 1 0.010 8 1 6.809 11 1

cancer setting, ORCLUS yields the lowest loss, but at the
same time with a higher dimensionality, while COPAC has
a comparably high loss but at the same time a very low
dimensionality and number of clusters. Finally in the Digits
dataset ORCLUS comes with a loss of zero, but achieves this
by exploiting almost the full dimensionality of the dataset (64)
where COPAC has a high loss, but comes again with lower
number of dimensions and same number of clusters.

C. Experiment 3: Influence of Dimensionality

In this experiment we ask: How does a fixed dimensionality
of the subspaces influence the number of clusters and the pure
reconstruction loss L for the different algorithms? For that we
compare L as well as the number of clusters of ORCLUS, 4C,
LMCLUS, and a simple autoencoder AE (with a single layer,
ReLU for encoding, linear activation function for decoding,
1000 epochs, and batch size 4) from Keras6 on the wine
dataset for the fixed dimensionaloities l ∈ {1, 2, 3, ..., 12}.
The runs of the autoencoder have been repeated ten times
per dimensionality, selecting the result with the lowest loss.
The algorithms CASH and COPAC have been omitted in this
experiment, since no maximum dimensionality of subspaces
can be enforced. The results in Figure 5 (left) show, as
expected, a decreasing loss with increasing dimensionality for
almost all algorithms. Only 4C achieves a loss of 0 for all
dimensionalities, exploiting the fact, that we have imposed no
limitations on the number of clusters and thus creating an own
cluster for each object. While LMCLUS provides a lower loss
even at dimensionality 1, it is surpassed by ORCLUS at a
dimensionality of 8 which is not visible in Figure 5 (left).
The exploitation as seen by 4C demonstrates the necessity
of α to regulate the number of clusters. The less effective
performance of the autoencoder has to be taken with some
grains of salt, since it consists of a single-layer without any
further optimizations which may not reflect the full potential
of this technique, whose further investigation is beyond the
scope of this work.

While we have obtained the loss from each of the methods
considering different number of dimensions, we ask: how
many clusters did the methods yield for achieving their min-
imum loss? In Figure 5 (right) we can see that 4C fully ex-
ploited the fact that no limitations were imposed on the number
of clusters. ORCLUS in contrast was capable to achieve low
reconstruction losses mostly with two clusters. However there

6blog.keras.io/building-autoencoders-in-keras.html

Fig. 5. Top: Loss depending on the dimensionality l on the Wine dataset.
Vertical axis is in symmetric log-scale. Bottom: Number of clusters depending
on the dimensionality l on the Wine dataset.

are number of dimensions in which ORCLUS exploited the
number of clusters as well, achieving low reconstruction errors
by yielding 12 to 15 clusters. The autoencoder has been set by
default to 1 regarding the number of clusters, since it learns a
single manifold. To our surprise LMCLUS yielded throughout
all numbers of dimensions one single cluster. Changing the
hyperparameter settings of the LMCLUS algorithms did not
result in an increased number. Further investigations may be
required to elucidate the reasons for this behavior, which is
beyond the scope of this work.

D. Experiment 4: Regularization Sensitivity

So far we have observed the effects of having no reg-
ularization at all on the evaluation as well as the effects
on the reconstruction loss by imposing limitations on the
dimensionality. In this experiment we ask: How sensitive are
the results with respect to the regularization terms, specifically
with regards to their hyperparameters α and β? Asking what
are the aspects which are important for an evaluation measure,
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Fig. 6. Sensitivity of the loss w.r.t the hyperparameters α and β of the
regularization terms on the iris dataset.

we demand that it should be insensitive towards α and β.
Connected to this fact, we ask: Which impacts can we observe
if we weight both of them equally? What can be observed
if we set α to a high value and β to a low one, and vice-
versa? For this purpose in this experiment all five subspace
clustering algorithms were tested on the iris dataset with
different (α, β)- settings, namely {( 1

9 , 8
9 ), ( 1

3 , 2
3 ), ( 1

2 , 1
2 ), ( 2

3 , 1
3 ),

( 8
9 , 1

9 )}. The settings of the ratios of α and β have been
chosen in such a way that the sum satisfies α + β = 1.
In Figure 6 we have on the horizontal axis the ratio α/β,
and on the vertical axis the computed loss. The results reveal
that for different ratios of α and β the loss remains mostly
the same. Which confirms that SRE is robust with respect
to different hyperparameter settings. An exception to the rule
poses ORCLUS which seems sensitive on the extreme cases
1
8 and 8. This is due to the fact that at 1

8 more dimensions
are permitted, due to a lower α and thus a lower penalty for
the number of dimensions. In the following ratios ORCLUS
detected optimum settings which have only one dimension but
two clusters. Another aspect which this experiment reveals
is that overall COPAC yields a lower reconstruction loss,
followed by 4C and CASH. LMCLUS performs as the second
worst algorithm and ORCLUS as the worst.

V. CONCLUSION

In conclusion we developed a new internal evaluation mea-
surement for subspace clustering. We translated approaches
from autoencoders such as the approximation of non-linear
manifolds by a function to the concept of subspace clusters,
leading to piecewise linear approximations based on PCAs
of single subspace clusters. Our evaluation measure is the
first one for arbitrary oriented subspace clustering and ful-
fills important properties like invariance regarding number of
clusters as well as number of dimensions. The experiments
show that SRE takes aspects into account which are neglected
by external evaluation measures. It also differs from existing
internal evaluation measures, since it considers aspects as re-
construction error and model complexity in terms of subspace
dimensionality and number of clusters. In future work we
want to investigate the two regularization parameters α and
β in more detail. Further we want to enhance the autoen-
coding view to a data compression view, by also utilizing

the Minimum Description Length (MDL) for evaluating the
reconstruction loss and model complexity. We envision that
this work may pave the path for a different understanding
and perspective on the arbitrarily oriented subspace clustering
problem as well give rise to novel internal evaluation measures.
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ABSTRACT
LUCK allows to use any distance-based clustering algorithm to
find linear correlated data. For that a novel distance function is
introduced, which takes the distribution of the kNN of points into
account and corresponds to the probability of two points being part
of the same linear correlation. In this work in progress we tested
the distance measure with DBSCAN and k-Means comparing it to
the well-known linear correlation clustering algorithms ORCLUS,
4C, COPAC, LMCLUS, and CASH, receiving good results for dif-
ficult synthetic data sets containing crossing or non-continuous
correlations.
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1 INTRODUCTION
Many algorithms trying to find linear correlations have trouble
handling crossing correlations, several correlations in one dataset,
or non-continuous correlations, such as shown in Fig. 1. But all
those constellations are quite common in arbitrary datasets. Our
new distance measure LUCK makes them easily detectable and
offers a broad foundation for future work. It delivers low values
for points which are probably part of the same linear correlation
based on the orientation of their k nearest neighbors’ distribution.
LUCK can be used in any distance-based clustering algorithm, e.g.
DBSCAN or k-Means, which we both test and compare to estab-
lished correlation clustering algorithms like ORCLUS, 4C, COPAC,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SSDBM ’19, July 23–25, 2019, Santa Cruz, CA, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6216-0/19/07. . . $15.00
https://doi.org/10.1145/3335783.3335801

LMCLUS, and CASH. Further it is adaptable with one easy to set
threshold parameter and learns from that the optimal number k of
nearest neighbors to regard for the orientation.

We have only tested the most basic and common clustering
algorithms with LUCK, so there is much room for improvement
by trying other clustering algorithms. Nevertheless, the results are
already good in comparison and we are able to detect crossing
linear correlations as well as non-continuous ones. Due to lack of
space we here only show the two base cases from Fig. 1, modifying
their number of dimensions, percentage of noise, and jitter. We give

Figure 1: Base case experiments

an overview over related work in Sec. 2 and explain LUCK in detail
in Sec. 3. Above mentioned experiments are performed in Sec. 4.
Sec. 5 concludes this paper and gives an overview over a multitude
of possible future work.

2 RELATEDWORK
Under the term correlation clustering we understand clusters which
are located in interesting subspaces which are not axis-parallel
but arbitrarily oriented as stated in [9]. There exists a wealth of
literature in this area: Historically ORCLUS [5] was the first of its
kind, followed by works like 4C [6], COPAC [2], HiCO [3], ERiC [4],
LMCLUS [8] and CASH [1]. In the following we give an overview
over those to which we will compare our method.

Comparative Methods. The main idea behind ORCLUS is a k-
means [10] like approach. It begins with k initial seeds. Then it
assigns points to clusters according to a distance function based
on the eigensystem of the current cluster obtained from a PCA.
ORCLUS relies on a cluster-based locality assumption, which means
that the subspace of each cluster is learned from its cluster members
in a local neighborhood. 4C in contrast combines the concept of
PCA with density-based clustering such as DBSCAN [7]. 4C detects
arbitrary numbers of clusters but requires a specification of the
density-threshold. It is biased towards the maximal dimensionality
of correlation clusters which is user specified. In contrast to OR-
CLUS, 4C is not relying on a cluster-based but on an instance-based
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locality assumption, i.e., the correlation distance measure which is
specifying the subspace is actually learned from the local neighbor-
hood of each point in data space. COPAC assigns a local correlation
dimensionality to each object, which corresponds to the dimension-
ality of the respective best fitting correlation cluster. Partitioning
the dataset by those dimensionalities and using the eigensystem of
each partition, linearly correlated clusters of different dimensional-
ity are obtained. Like ORCLUS and 4C, COPAC also relies on the
locality assumption. LMCLUS differs from the previous and com-
puts histograms of the distances of the points to each intermediate
arbitrary oriented representation. The sampling which belongs to
a histogram providing the best separability between a near-zero
mode vs. the rest is selected and the data points are partitioned on
the best separation. Like all previously mentioned methods, also
LMCLUS relies on computing eigensystems and is reliant on the
locality assumption. In contrast, CASH, a top-down dynamic-grid
based approach, does depend on neither the locality assumption
nor eigensystems. Relying on Hough transform, it is a global cor-
relation clustering algorithm, i.e., data points within the detected
linear correlated clusters are not necessarily locally dense but can
be of arbitrary distance among the linear correlation.

Applied Clustering Algorithms and Delimitation. In this first ap-
proach using LUCK, we apply the probablymost common clustering
algorithms, DBSCAN and k-Means. DBSCAN [7] is a density-based
clustering algorithm which needs two parameters ε andminPts , so
that a point can be considered as dense, if it has at least minPts
many points in its ε- range. k-Means [10] is a partitioning algorithm
which needs the number of clusters k . Even though most diverse
distance based clustering algorithms could be used, some of which
may be more suitable, we wanted to investigate the behaviour for
those two basic clustering methods first. LUCK is neither grid- nor
eigensystem based, and requires only one easy to set hyperparame-
ter.

3 LUCK
With our innovative approach LUCK ( Linear Correlation Cluster-
ingUsingCluster Algorithms and a kNN- based Distance Function)
we investigate the possibility of using clustering algorithms to find
correlation clusters. For that we introduce a new distance mea-
sure dcorr which we explain in Sec. 3.1.2. It gives low values for
points which are probably linearly correlated, taking the k near-
est neighbors (kNN) of every point into account by looking at the
orientation of their distribution (which we further refer to as the
point’s orientation) If two points’ orientations are the same, the
linear correlations in which those two points lie are parallel. If the
connecting line between both points has also the same direction,
both points lie in the same linear correlation.We apply the well
known clustering algorithms k-Means and DBSCAN using dcorr
instead of the Euclidean distance. With that, points which have sim-
ilar orientations lying in a linear correlation are clustered together.
We elaborate the details in Sec. 3.3.

3.1 Distance Measure
For the distance measure we aim for low values for points which
are correlated, and high values for points which are not correlated.
We assume that the kNN of a point are meaningful for a point, i.e.,

Figure 2: Orientation vectors for k = 5, k = 15, and k = 25
that if a point lies in a correlation cluster, its nearest neighbors
probably lie in the same correlation cluster. Thus, the orientation
of the distribution of the kNN of a point deliver the orientation of a
correlation cluster it probably lies in. We represent the orientation
of the kNN as explained in the following Sec. 3.1.1. Based on the
orientation, the distance dcorr between two points is calculated as
explained in Sec. 3.1.2.

3.1.1 Orientation Vector. We calculate the orientation vector #»op
of a point p with k nearest neighbors q1, ...,qk w.r.t. the vectors
#   »pq1, ...,

#   »pqk between p and its kNN as follows:
(1) We standardize all vectors #  »pqi , so that if two kNN lie on

opposite sides of p (but all three are on the same line) they
do not neutralize each other. For that we invert all #  »pqi for
which the first dimension is negative, i.e. we multiply it with
−1. If the first dimension is zero, we invert #  »pqi if the second
dimensions is negative and so on1.

(2) We norm all vectors #  »pqi by dividing by their length | #  »pqi |
(3) We calculate the mean of all standardized and normalized

vectors: #»op
′ = 1

k
∑k
i=1

#  »pqi and normalize the resulting vector
again to get the orientation #»op of a point.

3.1.2 Definition of Distance Measure. Using the orientation vec-
tors of two points we can calculate their distances as follows.

d ′corr (p,q) =
�����
�� #»op ◦ #»oq

�� −
�� #»op ◦ #»pq

�� + �� #»oq ◦ #»pq
��

2

����� , (1)

where ◦ denotes the scalar product.
With thatwe almost reach the goals described before.Nevertheless,

for two points being part of two parallel linear correlations the con-
necting line becomes more and more similar to their orientation
vectors the farther away they lie from each other. Thus, we regard
also the Euclidean distance between two points, resulting in our fi-
nal definition for the distance dcorr : dcorr (p,q) = d ′corr (p,q) · | #»pq |2

3.2 Dynamic choice of k
Fig. 2 shows the influence of the number of neighbors regarded,
k , on the orientation vector. Too small values for k can lead to
undesired results for correlations containing jitter, where for too
high values noise points or nearby correlation clusters influence
the orientation vector. As the best k is hard to choose and can vary
for different points, we introduce a measure for clarity/scattering
of the orientation vector in Sec. 3.2.1 and with the help of that
dynamically choose k as described in section 3.2.2.

3.2.1 Scattering. If k is chosen optimally for a point which lies
in a correlation, the direction vectors to its k nearest neighbors are
similar to each other and scatter only little around its orientation
vector #»op . As measures for this scattering, like total dispersion [11]
1For sake of determinism the dimensions are previously sorted by the maximum
occurring value in the dataset
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deliver unintuitive results especially for opposed direction vectors,
we define the following measure sp for the scattering of a point p:

sp =
1
k

k∑
i=1

(1 − | #  »pqi ◦ #»op |)2, (2)

where #  »pqi is the vector between p and one of its kNN qi . It is based
on the cosine distance (thus the scalar product) and regards that two
opposed direction vectors still define the same linear correlation
(thus the absolute value). The scattering is high if angles between
#  »pqi and #»op are small, thus we subtract it from 1. Referring to the
variance of variables we sum over the squares.

To limit possible values of sp , the user may set a threshold τ ,
which is the only parameter of LUCK, determining the upper bound
of scattering. Using τ allows an automatic determination of k as
described in Sec. 3.2.2 and is easy to set: values may range from 0 to
1, where τ = 0 means that all points in the neighborhood of a point
lie on a straight line. A higher value of τ allows finding clusters
with points that scatter more.

3.2.2 Determination of k. Starting with a minimal number of
pointsminK , we increasek in every step and calculate the scattering
sp of every point. The first value of k ∈ {minK , ...,n − 1}, where sp
falls below a previously defined threshold τ , is the best k for p. If sp
does not fall below τ , p is declared noise. Too high values forminK
can lead not only to a higher runtime, but also to less expressive #»op
as nearby correlation clusters could influence the orientation of a
point. Otherwise, for highly scattered correlations, a too low value
for k can lead to a deceptive #»op . Thus,minK is calculated depending
on the anticipated scattering implied by τ , where n is the size of
the dataset:minK =max(τn, 2).

3.3 Overview - Complete Algorithm
We summarize our approach in Algorithm 1: Our only input pa-
rameter is τ , from which we can calculateminK . For every point
we calculate its orientation. For that we first calculate the optimal
number of neighbors k which will be taken into account. For that
we increase k while regarding the scattering sp , which depends on
the point’s orientation op (k). If the scattering does not fall below
τ , the point is a noise point and does not belong to any correla-
tion cluster. Else, its orientation is op (k), where k is the first k for
which sp falls below τ . With that the distances between all points
can be calculated. This distance matrix can be used instead of the
Euclidean distance for any distance-based clustering algorithm.

Complexity. The nested for-loops (line 4 and 6 in Algorithm 1)
around the calculation of the scattering sp dominate the complexity
of LUCK before applying a clustering algorithm. To calculate sp ,
the orientation #»op is calculated for all k nearest neighbors, resulting
in O(k ∗ k). Depending on km , the maximal optimal k occurring in
the dataset we get an overall runtime of O(n ∗ k3m ).

4 EXPERIMENTS
We evaluated our method with respect to several parameters: num-
ber of dimensions, noise and jitter. Our two base case datasets are
rather difficult for most correlation clustering algorithms, since the
first one contains two crossing lines and the second contains six
lines one of which is non-continuous, as shown in Fig. 1. We use

Algorithm 1 LUCK
1: τ = userinput
2: minK =max(τn, 2)
3: // calculate orientations of all points
4: for every point p do
5: koptimal (p) = 0
6: for (k= mink; k<n; k++) do
7: op (k) = calculateOrientation(p,k) (see 3.1.1)
8: sp = calculateScatterinд(p,k,op (k)) (see Eq. (2))
9: if sp < τ then
10: koptimal (p) = k
11: break
12: else
13: k++
14: if koptimal (p) == 0 then
15: p is noise
16: //calculate distance matrix
17: initialize(DistMat)
18: for every point p do
19: for every point q do
20: DistMatpq = dcorr (p,q) (see 3.1.2)
21: //Apply distance-based clustering algorithm using DistMat

the Adjusted Rand Index (ARI) to compare our results with those
of ORCLUS, 4C, COPAC, LMCLUS, and CASH, where 1 means a
perfect result. For a better overview, we give all results in radar
charts giving the ARI for all tested methods. Base case 1 is always
on the left side, base case two on the right.

4.1 Number of dimensions

Figure 3: ARI for growing number of dimensions

Results received by LUCK+DBSCAN and LUCK+kMeans did,
with increasing number of dimensions, not worsen as much as those
of ORCLUS, 4C, LMCLUS (at least for base case 1) or CASH, as can
be seen in Fig. 3. Particularly for CASH we were not able to obtain
any results for more than 4 dimensions due to a too high memory
consumption. We note, that even though 4C performs well for the
second dataset regardless of the number of dimensions, it is not able
to handle the crossing lines in the first dataset. For the first dataset
LUCK+DBSCAN yields the best results for all dimensionalities
higher than 4.The results of LUCK+Kmeans are sligthly worse due
to noise which can not be detected by k-Means.
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Figure 4: ARI for different percentages of noise

Figure 5: ARI for different levels of jitter

4.2 Noise
We tested our base case experiments with varying percentages of
noise ranging from 0 to 0.4. As Fig. 4 shows, DBSCAN can cope
significantly better with increasing noise than k-Means using LUCK,
outperforming ORCLUS and 4C by far for the first dataset, and
LMCLUS as well as CASH for the second dataset. Even for 30%
noise, LMCLUS+DBSCAN reaches still an ARI of 0.83 resp. 0.84
for the first resp. the second dataset. That is the second best result
after CASH for the first datset, and the best result for the second
dataset. We note that ORCLUS and LMCLUS can not cope well with
much noise. 4C shows an interesting behaviour for dataset 1 with
crossing lines, as it gets better for increasing percentage of noise,
but even then does not reach an ARI of higher than 0.55.

4.3 Jitter
We changed the variance of distribution from values between 0 up
to 5, focusing on low values. Where jitter clearly worsens the results
of LUCK if there are crossing lines, it has almost no influence if the
lines are far away from each other. That is naturally determined by
its definition- the more jitter and the nearer another cluster is, the
less clear is the orientation of each point, thus the distance measure
becomes less expressive. LUCK+KMeans delivers similar results as
ORCLUS, and 4C is, as before, not able to detect crossing lines at all.
All other algorithms cannot cope with levels of jitter higher than 1,
see Fig. 5. For the second dataset, ORCLUS and CASH have both
problems for any level of jitter, while LUCK+DBSCAN delivers the
best results for all levels of jitter each.

5 OVERVIEW AND CONCLUSION
Our experiments show, that LUCK can handle more dimensions
well, while much jitter in combination with crossing linear cor-
relations lead to a decrease of quality. However, in datasets with-
out crossing lines, jitter was handled well. LUCK+DBSCAN was

more robust to noise than most of the tested comparative methods,
especially regarding both datasets at once. Also, using LUCK en-
ables finding correlations on diverse datasets: ORCLUS and CASH
generally performed poorly for the dataset with an interrupted
correlation, 4C could not handle the crossing lines. LMCLUS was
mostly slightly worse than our algorithms, while the quality of CO-
PAC was similar to ours. LUCK+DBSCAN performed better than
LUCK+kMeans especially for much noise due to the noise-detection
property of DBSCAN. All in all these first drafts of using the most
basic clustering algorithms with our novel distance measure already
delivered good results compared to established algorithms in the
field of correlation clustering.

We developed, to the best of our knowledge, the first method
allowing to use any distance based clustering algorithm to find
linear correlations. Using DBSCAN and k-Means we did not only
detect crossing linear correlations well, but also dealt with several
correlations in a dataset, non-continuous correlations and multiple
dimensions. Noise and jitter of different degrees were handled
as well, where LUCK handles noise better in combination with
DBSCAN than with k-Means, as DBSCAN itself is able to detect
noise. Using k-Means-- instead of k-Means in future work could
improve noise handling. More recent clustering algorithms could be
used in combinationwith LUCK to receive even better results aswell
as using the principal component instead of the orientation vector.
Also extending LUCK to find also spheres and higher-dimensional
hyperspheres seems promising.

ACKNOWLEDGMENTS
This work has been funded by the German Federal Ministry of
Education and Research (BMBF) under Grant No. 01IS18036A. The
authors of this work take full responsibilities for its content.

REFERENCES
[1] Elke Achtert, Christian Böhm, Jörn David, Peer Kröger, and Arthur Zimek. 2008.

Global correlation clustering based on the Hough transform. Statistical Analysis
and Data Mining: The ASA Data Science Journal 1, 3 (2008), 111–127.

[2] Elke Achtert, Christian Böhm, Hans-Peter Kriegel, Peer Kröger, and Arthur Zimek.
2007. Robust, complete, and efficient correlation clustering. In Proceedings of the
2007 SIAM International Conference on Data Mining. SIAM, 413–418.

[3] Elke Achtert, Christian Bohm, Peer Kroger, and Arthur Zimek. 2006. Mining hier-
archies of correlation clusters. In Scientific and Statistical Database Management,
2006. 18th International Conference on. IEEE, 119–128.

[4] Elke Achtert, B Christian, Hans-Peter Kriegel, Arthur Zimek, et al. 2007. On
exploring complex relationships of correlation clusters. In null. IEEE, 7.

[5] Charu C Aggarwal and Philip S Yu. 2000. Finding generalized projected clusters in
high dimensional spaces. Vol. 29. ACM.

[6] Christian Böhm, Karin Kailing, Peer Kröger, and Arthur Zimek. 2004. Computing
clusters of correlation connected objects. In Proceedings of the 2004 ACM SIGMOD
international conference on Management of data. ACM, 455–466.

[7] Martin Ester, Hans-Peter Kriegel, Jörg Sander, Xiaowei Xu, et al. 1996. A density-
based algorithm for discovering clusters in large spatial databases with noise.. In
Kdd, Vol. 96. 226–231.

[8] Robert Haralick and Rave Harpaz. 2007. Linear manifold clustering in high
dimensional spaces by stochastic search. Pattern Recognition 40, 10 (2007), 2672 –
2684.

[9] Hans-Peter Kriegel, Peer Kröger, and Arthur Zimek. 2012. Subspace clustering.
Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery 2, 4 (2012),
351–364.

[10] Stuart Lloyd. 1982. Least squares quantization in PCM. IEEE transactions on
information theory 28, 2 (1982), 129–137.

[11] Seppo Mustonen. 1997. A measure for total variability in multivariate normal
distribution. Computational Statistics & Data Analysis 23, 3 (1997), 321–334.



66 3. Between Clustering and Correlation Clustering

3.3 “LUCKe — Connecting Clustering and Correla-

tion Clustering”

Publication: Anna Beer, Lisa Stephan, and Thomas Seidl. “LUCKe — Connecting
Clustering and Correlation Clustering”. In: 2021 International Conference on Data Mining
Workshops (ICDMW). IEEE. 2021, pp. 431–440. doi: 10.1109/ICDMW53433.2021.00059

Statement of Originality: The concept of the previous paper [18] was refined and
improved by all authors. Anna Beer led the further development process; Lisa Stephan
implemented the changes and performed the experiments designed by Anna Beer. Details
and basic points were discussed with Thomas Seidl.

Notes: The paper introduces the method LUCKe, a successor of the previously presented
method LUCK [18]. LUCKe generalizes and improves LUCK significantly.

Copyright: ©2021 IEEE. Reprinted, with permission, from Anna Beer, Lisa Stephan,
and Thomas Seidl. “LUCKe — Connecting Clustering and Correlation Clustering”. In:
2021 International Conference on Data Mining Workshops (ICDMW). IEEE. 2021, pp. 431–
440. doi: 10.1109/ICDMW53433.2021.00059

https://doi.org/10.1109/ICDMW53433.2021.00059
https://doi.org/10.1109/ICDMW53433.2021.00059


LUCKe — Connecting Clustering and Correlation
Clustering
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Abstract—LUCKe allows any purely distance-based “classic”
clustering algorithm to reliably find linear correlation clusters.
An elaborated distance matrix based on the points’ local PCA
extracts all necessary information from high dimensional data
to declare points of the same arbitrary dimensional linear
correlation cluster as “similar”. For that, the points’ eigensystems
as well as only the relevant information about their position
in space, are put together. LUCKe allows transferring known
benefits from the large field of basic clustering to correlation
clustering. Its applicability is shown in extensive experiments with
simple representatives of diverse basic clustering approaches.

Index Terms—linear correlation clustering, clustering, PCA

I. INTRODUCTION

Even though linear correlation clustering is an established
and long-known data mining task, some problems are still not
solved satisfactorily. Linear correlations between attributes of
a data set can be found quickly, easily, and mathematically
meaningful using, e.g., principal component analysis (PCA)
[1]. But PCA does not work anymore if there are several
different correlation clusters in the data set. Often, real-world
data does not originate from one single distribution function,
but several sources, creating groups of related data points.
Those can be correlated depending on different attributes, with
differently strong and differently dimensional dependencies,
and are called linear correlation clusters, or subspace clusters.
Nevertheless, most established algorithms in this field require
expert knowledge, e.g., the number of clusters we expect in the
data or the number of dimensions that could be correlated to
form some of those clusters. Also recent subspace clustering
algorithms (e.g., [2]) require even the exact number of clusters
for each subspace. But one of the reasons the world needs
those algorithms is the lack of time experts have for such
tasks and the amount of data we generate every day increases
steadily. Even with extensive expert knowledge given, extract-
ing correct correlation clusters is difficult: correlation clusters
crossing each other or such with different dimensionalities as
shown in Fig. 3 are especially hard to analyze.

In the closely related field of clustering, there are plenty of
advanced, fast, and noise-detecting algorithms which we can
make use of for linear correlation clustering. Some established
correlation clustering algorithms already incorporate basic
clustering algorithms as we explain in Sec. II. [3] introduced
LUCK, a first approach to finding one-dimensional correlation
clusters by combining a new type of distance function with
any arbitrary distance-based clustering algorithm. The idea to

Fig. 1. Concept. Using LUCKe instead of an, e.g. Euclidean distance
matrix when applying any basic clustering algorithm yields correlation clusters
instead of traditional ones

regard those points in a data set as similar or near to each other,
which probably lie in the same linear correlation cluster also
builds the basis for the approach we introduce in this paper:
LUCKe (LUCK extended). In contrast to LUCK, LUCKe can
find linear correlations of arbitrary dimensionality by using
local PCA and a novel similarity function. Our main idea
is shown in Fig. 1: with LUCKe, any distance-based basic
clustering algorithm can find correlation clusters, building a
bridge between the two research areas.

Our main contributions are as follows:
• With LUCKe any purely distance-based clustering al-

gorithm can find linear correlations instead of ”classic”
clusters

• Varying dimensionalities of correlation clusters are incor-
porated fully automatically

• In extensive experiments we show that even complex
combinations of several clusters can be found easily using
LUCKe, e.g., parallel or intersecting clusters.

The rest of this paper is structured as follows. In Sec. II
we give an overview of related work. In Sec. III we explain
and analyze our new method in detail. In Sec. IV we show
with extensive experiments the abilities of our novel method
LUCKe, systematically on synthetic data as well as on real-
world data. Sec. V concludes the paper and gives an outlook
on future work.

II. RELATED WORK

As LUCKe builds a bridge between correlation clustering
and basic clustering, we regard both: We explain the repre-
sentative algorithms for basic clustering that we use in our
experiments in Sec. IV. We then regard correlation clustering
algorithms which already incorporate basic clustering algo-
rithms and explain correlation clustering algorithms unrelated
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to basic clustering, which nevertheless serve as competitors
for our results in Sec. IV.

A. Basic Clustering Algorithms

There is a multitude of basic clustering algorithms, most of
which can be categorized into one of the four classes density-
based, hierarchical, spectral, and centroid-based clustering.
We use one representative for each applicable class in our
experiments in Sec. IV, which we describe in the following.

DBSCAN [4] is the first density-based cluster algorithm
and defines clusters as connected dense areas. A point is
dense resp. a core point, if it has at least minPts points
in its ε-neighborhood. Like that, DBSCAN can not only find
arbitrarily shaped clusters, but also detects noise and the idea
behind it already proved to be useful for correlation clustering,
e.g., in 4C [5], COPAC [6] and ERiC [7].

Agglomerative clustering [8] is a bottom-up hierarchical
clustering algorithm. Starting with all points assigned to a
different cluster each, the two closest clusters are merged into a
larger cluster. There are different possibilities to calculate the
distance between two clusters. Out of all distances between
pairs of elements from two different clusters, single linkage
uses the minimum distance, complete linkage uses the maxi-
mum distance, and average linkage uses the average distance.
Another possibility is the variance-minimizing Ward’s crite-
rion, a type of weighted squared Euclidean distance between
the centers of the merged clusters [8], [9].

Spectral clustering [10] can be applied on any graph to
find the minimum normalized k-cut [11], i.e. a balanced
partitioning of the graph such that edges within a partition have
the highest possible edge weights and edges between different
partitions have the lowest possible weights. To get a graph
based on data points, usually, the kNN graph is used, which
connects every point with its k nearest neighbors. There are
several ways to calculate the Laplacian out of the adjacency
matrix of the kNN graph [10], ways to decide how many
eigenvectors of the Laplacian should be used for the final
clustering, and methods to cluster the original data points
based on the most important eigenvectors [12].

Centroid-based cluster algorithms like k-Means [13], [14]
are not purely distance-based, but also need to compute
centroids of point sets, which is, e.g., disadvantageous when
working with categorical data. As a distance matrix alone
is not sufficient input for these algorithms, they are not
directly applicable in combination with LUCKe, but could,
nevertheless, be adapted.

B. Combining Basic Clustering and PCA

We compare LUCKe with several correlation clustering
algorithms in Sec. IV. ORCLUS, 4C, COPAC, and ERiC
are, similar to LUCKe, PCA-based and integrate one of the
well-known basic clustering algorithms such as k-Means or
DBSCAN into their clustering. LMCLUS also computes the
eigensystem but apart from that differs strongly from LUCKe.
Additionally, we compare LUCKe to the established linear
correlation clustering algorithm CASH. We give an overview

over LUCK [3], the idea LUCKe is based on, here, and discuss
further delimitations and differences to LUCK in Sec. III-E4.

1) Density-based methods: The complete series of density-
based correlation clustering algorithms introduced here was
developed by mostly the same group of authors, where each
algorithm developed the basic idea of combining DBSCAN
and PCA further. One of the main differences besides that
LUCKe is combinable with several basic clustering algorithms,
is the incorporation of PCA resp. the Mahalanobis distance:
those algorithms produce inherently non-symmetric distance
matrices, ignoring one point’s orientation when calculating the
distance between two points.

4C [5] combines PCA and DBSCAN, but in contrast to
LUCKe+ DBSCAN, it is based on the assumption that points
of a correlation cluster are not only highly correlated but
also lie close together. Even though dense correlation clusters
can give valuable insights, the correlation of points does not
depend on their density. 4C even uses ε- neighborhoods,
which can cause misleading principal components especially
for points in sparse areas. In addition to the two parameters
necessary for DBSCAN, 4C has two more input values: Users
need to specify an upper bound for the dimensionality of
correlation clusters λ, and a threshold δ for the eigenvalues,
which is needed to select strong eigenvectors.

COPAC [6] combines PCA with a density-based cluster-
ing algorithm, similarly to 4C [5], but faster. Some further
drawbacks of 4C, such as the limitation of the correlation
dimensionality of detected correlation clusters, are overcome
by COPAC. It divides the data set into partitions according
to their local correlation dimensionality by using the local
PCA.The local correlation dimensionality λP is given as
the minimum number of eigenvalues explaining a certain
proportion of the variance. It then applies GDBSCAN [15],
a generalized form of DBSCAN, to each of the partitions.
Like that, COPAC can simultaneously search for correlation
clusters of different dimensionality. Furthermore, distant points
that lie on a common hyperplane can be assigned to the same
cluster. It has three hyperparameters: the minimum number
of points in a cluster minPts, a neighborhood range ε, and
k, the number of points used to compute the neighborhood
of a point, which is used to determine the local correlation
dimensionality. Partitioning the data according to the local
dimensionality implicates that points from different partitions
can not be assigned to the same cluster.

SSCC [16] integrates COPAC into a subspace clustering
approach, allowing multilabeling.

HiCO [17] combines a distance measure that respects local
correlation dimensionalities with the basic clustering algorithm
OPTICS [18], which is based on DBSCAN. It generates
relatively simple hierarchies of correlation clusters, where,
e.g., a cluster embedded in two higher-dimensional clusters
cannot be represented.

ERiC [7] also finds hierarchies of embedded correlation
clusters based on the idea of COPAC, but needs two additional
user-inputs: ∆ specifies a certain degree of allowed deviation
when checking the approximate linear dependency. δ describes
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the degree of allowed jitter needed for deciding whether two
subspaces are parallel.

2) Partitioning-based methods: ORCLUS [19], was the
first clustering method that can find clusters not only in axes-
parallel subspaces but also in arbitrarily oriented subspaces. It
takes into account the eigenvectors of clusters and integrates
them into a k-Means-like, iterative approach. Unlike LUCKe,
it does not use all eigenvectors and can not detect clusters of
higher dimensionality than l, a user input which is necessary
additionally to the number of clusters k.

k-Planes [20] and the algorithm in [21] combine k-means
with PCA-like approaches, but do not find correlation clusters.
Instead, they aim to optimize k-Means so that clusters of
different variance can be found.

3) Spectral method: Combining Spectral Clustering with
local PCA yields an optimization of Spectral Clustering re-
garding intersecting groups of data in [22], but they do not
perform correlation clustering.

4) LUCK: LUCK [3] allows finding exclusively one-
dimensional linear correlations by using distance-based cluster
algorithms. It uses an ”orientation vector” for every point
based on its kNN, where k is calculated dynamically based
on a threshold τ . As the idea for LUCKe is based on LUCK,
we discuss differences between LUCK and LUCKe in more
detail in Sec. III-E4.

C. Other Correlation Clustering Algorithms

LMCLUS [23] considers linear manifolds as cluster centers.
Histograms of the distances between sampled points and
corresponding trial linear manifolds are used to partition the
data set. LMCLUS has three parameters: K is an upper bound
on the dimension of the linear manifolds in which the clusters
could be embedded. S is the number of trial linear manifolds
of a given dimensionality that are determined to find the best
partitioning of a set of points. Γ is a threshold for the quality
of separation and influences the composition of the clusters.

CASH [24] is based on the Hough Transform and trans-
fers every point into a parameter space. With a grid-based
approach, it finds dense regions in this parameter space, which
correspond to many points lying on the same hyperplane in
the original space. Like that, it refrains from using a PCA and
needs only two parameters: MinPts specifies the minimum
number of points in a cluster and MaxLevel specifies the
maximum number of splits in the grid construction corre-
sponding to the allowed degree of jitter.

III. LUCKE

In the following, we present the details of LUCKe a method
that can be combined with any distance-based clustering
algorithm to find correlation clusters. Algorithm 1 provides
an overview of the individual steps of LUCKe.

First, the data set is scaled with min-max scaling. Secondly,
LUCKe calculates eigenvalues and eigenvectors based on the
kNNs for each point, see Sec. III-A We adapt the eigen-
system meaningfully as described in Sec. III-B and define
our similarity resp. distance measure (Sec. III-C), such that

points lying in the same correlation cluster are similar resp.
near to each other. With this novel idea, basic distance-based
clustering algorithms can find correlation clusters instead of
”traditional” clusters (Sec. III-D). In Sec. III-E we analyze
diverse properties of the distance function.

Algorithm 1 LUCKe
Input: Data set X ∈ Rn×d,

neighborhood size kuser ∈ N,
Output: Distance Matrix D

1: function LUCKE(X , kuser)
2: X = scale(X )
3: // calculate eigensystem of all points
4: k = max(kuser, d)
5: for every point p ∈ X do
6: Np = kNN
7: Ep, Vp = PCA(Np ∪ p)
8: for (i = 1; i ≤ d; i+ +) do
9: Ω(ei) = ei∑d

j=1 ej

10: #»wi = Ω(ei) · #»v i

11: Wp = ( #»w1,
#»w2, ...,

#»wd)T

12: // calculate distance matrix
13: initialize(D)
14: for every point p ∈ X do
15: for every point q ∈ X do
16: Dpq = DISTANCE

(
(p,Wp), (q,Wq)

)
(Eq. 7)

17: return Matrix

A. Computation of the Eigensystem

We perform a local PCA, (see, e.g., in [22], [25]) which is
a PCA on the k nearest neighbors (kNN) of each point. It is
important to consider that k should at least correspond to the
dimensionality d of the data set: choosing k < d results in a
singular covariance matrix M [26] with at least one eigenvalue
equal to zero, where the corresponding eigenvectors are not
meaningful. That is connected to the fact that k points with
k < d always lie on a d-dimensional hyperplane. Thus, k =
max(kuserinput, d) + 1 is used, also taking into account that
we include the point itself into its kNN.

B. Adaptation of the Eigensystem

We adapt the eigensystem by first normalizing the eigen-
values s.t. their sum is 1 (Sec. III-B1), and then multiplying
them by their corresponding eigenvalues (Sec. III-B2).

1) Normalization of Eigenvalues: Depending on the density
of the neighborhood of a point eigenvalues may differ consid-
erably in size: the larger the k-distance, i.e., the distance to the
k-th nearest neighbor, the larger are the eigenvalues of the local
PCA. Eigenvalues do not only reflect the points’ correlation,
but rather the density of the neighborhood, as illustrated by the
distance matrices in Fig. 2. They belong to a dataset consisting
of points on a two-dimensional plane, which are split into
four clusters of different densities. The clusters all have the
same expansion and degree of correlation, but are differently
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(a) Without normalization (b) With normalization

Fig. 2. Distances between points of differently dense clusters (indicated by
green lines) before and after normalization

dense. The points are ordered according to their cluster and
clusters are ordered ascendingly by their density for a better
illustration. Note that all 4 ”(classical) clusters” here belong
to the same correlation cluster, as they lie on the same plane.
Fig. 2(a) shows the pairwise distances calculated as described
later in the section but based on the original eigenvalues.
The intra-cluster distances (corresponding to the blocks on
the diagonal of the distances matrix) increase with increasing
density because of the related decreasing eigenvalues. Never-
theless, all planes are equally strongly correlated, thus it makes
sense to normalize the eigenvalues and thereby eliminate the
misleading influence of the density and the Euclidean distance.
Comparability of different points’ principal components can
be reached by normalizing the eigenvalues e1, ..., ed of every
point separately with Ω as described below so that their sum
is equal to 1.

Ω(ei) =
ei∑d
j=1 ej

(1)

Normalizing the eigenvalues first leads to the distance matrix
shown in Fig. 2(b), which has similar intra-cluster distances for
all four clusters, allowing to detect them as the one correlation
cluster they all belong to. An additional advantage of the
normalization Ω is a uniform range of values, which later
leads to a determinable value range of our similarity measure
between 0 and 1.

2) Multiplication of Eigenvalues to Eigenvectors: To detect
correlations, the relationship between the principal compo-
nents of the neighborhood of a point is relevant: e.g., when
ignoring the eigenvalues, two points can have the exact same
eigenvectors even though they lie in perfectly linear correla-
tions that are perpendicular to each other. Multiplying with the
normalized eigenvalues results in a much more reasonable way
to handle the principal components, as eigenvectors belonging
to small eigenvalues have less influence. Thus, for a point with
the eigenvalues e1, ..., ed and the corresponding eigenvectors
#»v 1, ...,

#»v d a weighted eigenvector #»wi is calculated as follows:

#»wi = Ω(ei) · #»v i

C. Similarity and Distance Measure

To decide if points p and q with a similarly oriented
neighborhood, i.e. a similar eigensystem, belong to the same
hyperplane or to two different, similarly oriented, approxi-
mately parallel hyperplanes, the normalized connection vector
between the points is regarded: #»c = #»pq/| #»pq|

The normalization ensures that the Euclidean distance be-
tween the points does not affect the result, as points that lie on
a common hyperplane are similar in the sense of correlation
clustering even if they are spatially distant from each other.
Additionally, we regard the matrix Wp resp. Wq for both
points p and q, which holds the weighted eigenvectors of the
respective point in its rows:

W =
(

#»w1
#»w2 . . . #»wd

)T

Multiplying #»c with the weighted eigenvector matrices Wp

and Wq of both points yields similar vectors # »up and # »uq if
both points lie in the same correlation cluster, i.e., if the
connection vector can be described by the most important
principal components of both W ’s.

#»up = Wp · #»c , and #»uq = Wq · #»c (2)

The entries of #»u correspond to the scalar product between the
connection vector #»c and the weighted eigenvectors #»wi. As
| #»wi| = Ω(ei) and #»wi and the unweighted eigenvector #»v i differ
only in length, the scalar product can be written as follows:

#»wi ◦ #»c = | #»wi|| #»c | · cos^ ( #»wi,
#»c ) = Ω(ei) · cos^ ( #»v i,

#»c )
(3)

Thus, #»u is given by:

#»u =




#»w1 ◦ #»c
#»w2 ◦ #»c

...
#»wd ◦ #»c


 =




Ω(e1) · cos^ ( #»v 1,
#»c )

Ω(e2) · cos^ ( #»v 2,
#»c )

...
Ω(ed) · cos^ ( #»v d,

#»c )


 (4)

Note, that for a fixed ^ ( #»v d,
#»c ), it holds that the larger ei,

the larger is the i-th value of #»u . For a fixed ei, it holds that
the smaller ^ ( #»v d,

#»c ), the larger is the i-th value of #»u . So #»u
implies how strong the scattering of the kNN in the direction
of #»c is. Two points belong probably to the same correlation
cluster, if the kNN of both lie close to their connection vector.

Using absolute values when adding up the entries of the
tensor product T = #»up ⊗ #»uq yields the desired similarity
between p and q while taking into account that the sign of the
connection vector is arbitrary for our case.

sim
(
(p,Wp), (q,Wq)

)
=

d∑

i=1

d∑

j=1

∣∣upiuqj
∣∣ =

d∑

i=1

d∑

j=1

|tij |

(5)

where tij are the elements of the matrix T = #»up ⊗ #»uq .
As we in practice do not always operate on a set of points,

but potentially have several points with the same coordinates
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(the connection vector of which could not be normalized), we
additionally define for the similarity of a point to itself:

sim
(
(p,Wp), (p,Wp)

)
= 1 (6)

As the resulting similarity lies always in the interval [0, 1]
(see Sec. III-E1) it can easily be converted into a distance
measure:

dist
(
(p,Wp), (q,Wq)

)
= 1− sim((p,Wp), (q,Wq)) (7)

D. Combination with Clustering Algorithms

The similarities resp. distances between all points can
now serve as input for any distance-based basic cluster-
ing method, which then finds correlation clusters instead of
”classic” clusters. We tested three different exemplary basic
clustering algorithms: DBSCAN, Spectral Clustering, and Ag-
glomerative Clustering. In the following, they are abbreviated
in conjunction with LUCKe as follows: LUCKe+DBSCAN,
LUCKe+Spectral and LUCKe+Agglomerative.

E. Properties

In the following we regard diverse properties of LUCKe:
the similarity and distance measure’s value range (Sec. III-E1),
that it is a pseudometric (Sec. III-E2), the runtime complexity
(Sec. III-E3) and differences to its conceptional predecessor
LUCK (Sec. III-E4).

1) Value Range: The similarity as defined in Eq. 5 and
thus also the distance (see Equation 7) is always in the
interval [0, 1]: Regarding Equation 4 together with knowing
that |cos(·, ·)| ≤ 1 and the definition of normalizing the
eigenvalues in Equation ?? we see, that the sum of (absolute)
entries of #»u is smaller than or equal to 1:

d∑

i=1

|ui|
(4)
=

d∑

i=1

|Ω(ei) · cos^ ( #»v i,
#»c ) | ≤

d∑

i=1

|Ω(ei)|
(??)
= 1

(8)
Applying this in Equation 5 directly yields the value range
[0, 1], which is desirable not only for easier access to the
information and a high explainability for users of the dis-
tance/similarity measure but also to be able to compare simi-
larities without looking at the whole data set.

2) Pseudometric: Some properties of a distance measure
can be important. E.g., fulfilling the triangle inequality can
allow acceleration via index structures, and symmetry of the
distance matrix is even necessary for some cluster algorithms
and other downstream tasks. Our distance measure as defined
in Equation 7 fullfills both these properties. It is a pseudo-
metric and, additionally, it is 0 if and only if two points have
the same principal component with eigenvalue 1 (and thus
all other eigenvalues are 0), which also corresponds to their
connection vector. Proofs are left out for brevity, but can be
found under https://tinyurl.com/jxw5afzs.

3) Runtime Complexity: The runtime complexity is O(k2 ·
n2) and is composed as follows (note, that n ≥ k ≥ d holds):
O(n · d) for the scaling of the data set with min-max scaling.
O(n2 · d · k) for the kNN query for every point. O(n · k · d2)
for calculating the d × d covariance matrix for every point.

O(n ·d3) for the decomposition of every covariance matrix for
the PCA. O(n ·d2) for scaling the eigenvalues and multiplying
them with their eigenvectors. O(n2 · d) for computing the
connection vector between every two points. O(n2 · d2) for
the multiplication of this vector to the weighted eigenvector
matrix. O(n2 · d2) for calculating the tensor product and
summing up its components. Considering index structures
could further improve the complexity. Adding the complexity
of the basic clustering algorithm yields the overall complexity.

4) Differentiation from LUCK: LUCK can only detect one-
dimensional linear correlations. LUCKe can not only detect
arbitrary dimensional correlations, but also several correlations
of different dimensionality within the same data set without
any expert knowledge on this topic. For that, LUCKe uses
the established method local PCA, where LUCK created a
proprietary ”orientation vector” #  »opi

for each point pi. Where
the distance measure used in [3] only compares these #  »opi

with
the connection vector between the points, we found a measure
incorporating the complete eigensystems. After the computa-
tion of the kNN we do not use any spatial distance function,
s.t. even far away points lying on the same hyperplane can be
detected as similar. Additionally, all distances and similarities
lie in the value range [0, 1], which improves the comparability
and explainability of LUCKe. Also, the time-consuming and
suboptimal search for k in LUCK is replaced by a simple and
robust user input.

IV. EXPERIMENTS AND RESULTS

We evaluate LUCKe in combination with DBSCAN, Ag-
glomerative Clustering, and Spectral Clustering as described in
III-D. To test LUCKe systematically, we performed extensive
experiments on synthetic data, of which we show the most
meaningful results in Sec. IV-A. Sec. IV-B contains the results
for real-world data sets and Sec. IV-C summarizes our results.
To simulate expert knowledge needed for good parameter
settings, we tested for every algorithm (competitors as well
as combinations with LUCKe) depending on the properties
of the data set, the number of different hyperparameters, and
the robustness of the algorithm w.r.t. each parameter, between
9 and 585 (on average 200) different parameter settings via
grid search, applying those yielding the highest NMI for our
algorithms as well as for our competitors. All experiments with
LUCKe are performed with a 1.8 GHz CPU and 16 GB RAM.
For CASH, a few results were not calculated for dim > 5 resp.
dim > 11, because of increased memory requirements.
For LUCKe+DBSCAN we directly used the distance matrix
of LUCKe. For LUCKe+Agglomerative we tested single link-
age, complete linkage and average linkage as described in
Sec. II-A. For LUCKe+Spectral Clustering, we tested both,
fully-connected graphs as well as kNN graphs based on the
similarity matrix of LUCKe. We applied the normalized Lapla-
cian [27], and used the number of clusters as user input for
the number of important eigenvectors. For the final clustering
step, discretizing the eigenvectors surpassed using k-means in
almost all cases. Note that we do not combine LUCKe with
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highly elaborated improvements of the clustering algorithms,
but the basic versions.

A. Synthetic Data Sets

LUCKe is evaluated w.r.t. the data set size n, the number
of dimensions dim, amount of noise noise, and jitter jitter.
Jitter describes the extent of deviation from points to a
hyperplane; with a hyperplane we describe a d∗-dimensional
subspace with d∗ ≤ d in this paper. We created five different
base cases with default settings n = 500, dim = 3, noise = 0
and jitter = 0, shown in Fig. 3. For each experiment in this
subsection we keep all but one parameter the same to detect
potential dependencies on the adjusted parameter. To prevent
overoptimism in our experiments, we decided to use the five
base cases defined beforehand, instead of majorly using such
which could only be clustered correctly using LUCKe. For
example, spatially distant clusters as in datasets PH and HDD
are easy to detect for our competitors which often rely on
density-connected clusters but offer no such advantage for
LUCKe. Also non-continuous hyperplanes, where several spa-
tially distant groups of points belong to the same correlation
as, e.g., the data set described in Sec. III-B1, are not tested
here even though they would be advantageous for LUCKe.

Data set XL consists of two crossing straight lines. Data
set XH contains two crossed hyperplanes. Data set PH con-
tains two parallel hyperplanes. Data set XHDD contains a
(dim − 2)- dimensional hyperplane traversing a (dim − 1)-
dimensional hyperplane. Data set HDD contains dim hyper-
planes of different dimensionality, which partially overlap in
some dimensions. All clusters are of similar density – the
higher the dimensionality of hyperplanes, the more points they
contain. Values of all features lie in [0, 1] for all datasets.

Sec. IV-A1 presents the results of the experiments for
LUCKe with the different data sets and settings, to analyse
the behaviour of our novel distance resp. similarity function.
In Sec. IV-A2, we compare the results of LUCKe with those
of other correlation clustering algorithms introduced in Sec. II.

For brevity, we show only the most interesting results in the
Appendix A, i.e., the behavior of all algorithms on data sets
XH, PH, XHDD, and HDD for varying dim and jitter. Fur-
ther results can be found under https://tinyurl.com/jxw5afzs.
The results for data set XL are not included in this paper, as
they did not change significantly varying any of the param-
eters n, dim, and jitter, and all algorithms but 4C yielded
constantly almost perfect results (except for increasing noise).
Varying n and noise did mainly yield similar NMIs to the base
case settings for all algorithms, thus they are also left out.

1) Properties of LUCKe:
a) Efficiency: The average runtime to calculate the dis-

tance resp. similarity matrix on our base case data sets
depending on the data set size n for diverse k is shown in
Fig. 4. It fits our complexity calculation in Sec. III-E3.

b) Basic Setting: LUCKe is tested in combination with
DBSCAN, Spectral Clustering and Agglomerative Clustering
for the five data sets in the basic setting (see Fig. 3), results are
shown in Fig. 5. For Data set XL and PH, all four algorithms

yield very good results with an NMI between 0.95− 0.98 for
Data set XL and an NMI of 1 for Data set PH. For Data
set XH, LUCKe+Spectral and LUCKe+Agglomerative yield
good results. Only a few points at the intersection of the hyper-
planes are assigned to the wrong cluster. LUCKe+DBSCAN of
course connects both crossing hyperplanes as they are density
connected due to the points in the intersection, which can
not be assigned uniquely to only one of the clusters. Results
for Data sets XHDD and HDD are sensible to the number
of dimensions, especially using DBSCAN: The distances
between the points of a hyperplane become larger the higher
the dimensionality of the hyperplane is. Detecting groups with
differently high intra cluster distances means detecting groups
with different densities, which, e.g., DBSCAN can not. Adding
too much jitter to any data set with crossing clusters can make
their detection impossible for all tested algorithms including
the competitors.

c) Size of Data set: The five data sets are tested with
data set sizes of n = 1000, n = 2000, n = 3000, n = 4000
and n = 5000 in addition to the default setting. The results
regarding the basic setting do not change significantly with
increasing n for any of the base cases.

d) Number of Dimensions: We tested all base case
results with dimensionalities 4, 6, 9, 12, 20, and 35. All
four algorithms detect crossing lines in Data set XL well
even at dim = 35, while for Data set XHDD, none of the
algorithms can produce a reasonable result as the number
of dimensions increases, but neither do the competitors. Of
all combinations with LUCKe and all competitors, parallel
hyperplanes (PH) of very high dimensionalities with dim > 12
can only be detected by LUCKe+Spectral and ORCLUS: it
is especially hard to detect those clusters distance-based, as
distances between points of a dim-dimensional hyperplanes
increase with the dimensionality, see Fig. 6.

e) Noise: Data sets with a noise proportion of 5%, 7.5%,
10%, 15% and 20% are applied in the tests. In general,
LUCKe with k-Means, Spectal Clustering and the Agglom-
erative Clustering slightly deteriorates with increasing noise
fraction, because the three clustering algorithms have no noise
detection. Thus, all noise points are always assigned to a
cluster, resulting in a lower NMI. Nevertheless, LUCKe with
these three algorithms is able to detect the different correlated
groups of points despite noise, if they detect them in the default
setting of the data sets. DBSCAN is more robust against noise.
However, the NMI also decreases here with increasing noise.
This is mostly because noise points that are very close to
points in a hyperplane are assigned to them, see, e.g., in Fig. 7
(left), where the first and the third dimension of the clustering
result for LUCKe+DBSCAN for Data set PH with 15% noise
is illustrated. Two planes (yellow and red) were found. For
the upper (yellow) plane, some points were assigned to the
plane that are not perfectly located on it. However, these points
randomly generated as noise resemble data points with some
degree of jitter. Therefore, it is actually desirable that they are
added to the cluster. Noise points that are located between the
two clusters are recognized as noise as well.
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(a) Data set XL: two crossed
straight lines

(b) Data set XH: two crossed
hyperplanes

(c) Data set PH with two par-
allel hyperplanes

(d) Data set XHDD: two
nested/crossed hyperplanes of
different dimensionality

(e) Data set HDD: several hy-
perplanes of different dimen-
sionality

Fig. 3. Five different synthetic data sets with color-coded similarly correlated data points

Fig. 4. Runtime depending on data set size n for different k

Fig. 5. Results for the basic setting for the five data sets and the four tested
LUCKe variants

f) Jitter: For jitter the values 0.05, 0.075, 0.1, 0.15
and 0.2 were tested. A value of jitter = x means that the
points scatter in a range of [−x, x] around the hyperplane
(all synthetic data sets are normed to a range of [0, 1] in
every dimension). The case x = 0 implies that the point lies
perfectly on the hyperplane. As expected, the NMI of data sets
becomes worse for more jitter. As of a value of jitter = 0.1,
the points usually scatter strongly around the hyperplane, so
that the original correlation in the data can not be detected
anymore. However, with a small value for jitter, LUCKe is
able to find meaningful clusters, see, e.g., in Fig. 7 (right),
which shows the clustering result for LUCKe+Spectral on the
first two dimensions of Data set XH with jitter = 0.05. The
resulting NMI is only 0.53, even though almost all points are
assigned to the correct cluster. The low NMI is due to points
in the intersection, which cannot be assigned correctly to only
one of the clusters as they are not unambiguously discernable.
Here, a fuzzy approach could improve results.

Fig. 6. LUCKe-distance matrix of points on hyperplanes of different (ascend-
ingly ordered) dimensionalites in the 6-dimensional Data set HDD

Fig. 7. Clustering results. Left: Data set PH with 15% noise. Right: Data set
XH with jitter = 0.05.

2) Comparisons to Other Methods: In the following,
LUCKe is compared with the correlation clustering algorithms
described in Sec. II-B and II-C - ORCLUS, 4C, COPAC,
ERiC, LMCLUS and CASH. All competitive algorithms are
implemented in the Elki framework [28].

a) Data set XL: Comparing the algorithms with respect
to Data set XL, LUCKe performs approximately as well as
ORCLUS, COPAC and ERiC with each of its combinations.
Only with an increasing amount of noise the values of
LUCKe+Agglomerative and LUCKe+Spectral and deteriorate
as they do not have any noise detection mechanism. However,
ORCLUS cannot handle noise, too, for the same reason. For
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4C, each tested parameter setting resulted in an NMI of 0.
b) Data set XH: For Data set XH, ORCLUS achieves the

best results, closely followed by LUCKe+Agglomerative and
LUCKe+Spectral. LMCLUS handles high noise levels best,
but cannot deal with an increasing number of dimensions on
this data set. As the data set contains crossing hyperplanes,
they are not only density-connected but also with a smooth
transition, which leads to a low NMI for LUCKe+DBSCAN
and 4C, because they connect the clusters.

c) Data set PH: For Data set PH, a (nearly) perfect
clustering result is obtained for different values of n for all
algorithms. jitter and dim have the most influence on the
results. For increasing jitter, the NMI for all combinations
of LUCKe drop, while ORCLUS, 4C, COPAC, and ERiC
achieve an NMI of 1 even for jitter = 0.15. The clusters
are separated clearly spatially and are thus easy to detect
for our competitors, while simultaneously the increasing jitter
leads to non-informative local PCAs for LUCKe. However, for
increasing dimensionalities, LUCKe+Spectral and ORCLUS
are by far the only algorithms that perform very well for the
35-dimensional data set.

d) Data set XHDD: Finding high-dimensional linear
correlations which are overlapping or crossing is a difficult
task. In the basic setting, none of our competitors reaches an
NMI of higher than 0.67, where using LUCKe yields an NMI
between 0.74 and 0.84. While LUCKe enables detecting both
hyperplanes, other algorithms fail to distinguish them.

e) Data set HDD: Highly different dimensionalities of
correlation clusters can result in differently dense clusters,
which are especially hard to find for LUCKe+DBSCAN, see
Fig. 6. As the clusters additionally are separated spatially, 4C
and its successors reach higher NMIs than LUCKe. LMCLUS
performs worse and CASH is comparable to LUCKe. Espe-
cially high degrees of noise and jitter can conceal the true
clusters, where higher dim can emphasize the cluster structure,
leading to better NMIs for some of the algorithms.

B. Real-world Data Sets

Of course, LUCKe is also applicable on real world data, as
we exemplarily show in the following.

a) Image Segmentation Data: Fig. 8 shows a 2d-
projection of the Image Segmentation data set [29], colored
by label on the left and colored by cluster as obtained by
LUCKe+Spectral (settings: complete graph, neighborhood size
k = 24, seven clusters, NMI=0.55) on the right. The data set
contains 30 randomly drawn ”instances”, i.e., fields of 3x3
pixels, of seven outdoor images, resulting in a data set with
210 instances and 19 different attributes, e.g., color values.

b) Hitters Data: The Hitters data set [30] contains
aggregated information about the performance of baseball
players, where the players’ positions are used as labels.
LUCKe+Agglomerative with k = 6 for the neighborhood size,
average linkage and a distance threshold of 0.68 yields the
best NMI with 0.49 for a clustering with eight clusters, three
of which contain only one point, as shown in Fig. 9 (right).
Fig. 9 (left) shows the ”ground truth” with colors according to

Fig. 8. Two descriptive dimensions of the Image Segmentation data set,
colored by labels on the left, colored by clusters as found by LUCKe+Spectral
on the right.

Fig. 9. Two descriptive dimensions of the Hitters data set, colored by labels
on the left, colored by clusters as found by LUCKe+Agglomerative on the
right.

the positions of a player. Even though some positions are put
together in one cluster on the right, we see that LUCKe enables
finding the correlations. Especially, e.g., the green cluster on
the bottom is interesting: it is split from the purple points
on the lower right, as they belong to a higher-dimensional
correlation than the green points on the lower left.

C. Summary of Results

With a quadratic runtime w.r.t. the data set size LUCKe is
scalable and the experiments showed that data set size does
not influence the quality of the result significantly. For data
sets with differently dimensional hyperplanes results seem to
get worse for increasing dimensionality, because distances for
data points in a high-dimensional hyperplane are higher than
for data points in a hyperplane with lower dimensionality. This
means, weakly correlated data points have a higher distance
than strongly correlated, which is deliberate: like this, points
which are not or only weakly correlated are not detected as
correlation cluster. For strongly correlated clusters, LUCKe
was able to detect even 35-dimensional correlation clusters.
Thus, higher dimensionality of the data set in general does not
imply worse results. For highly noisy data sets, it is of course
recommendable to combine LUCKe with a basic clustering
algorithm that is able to handle noise, like, e.g., DBSCAN,
else the results get worse according to the performance of the
basic clustering algorithm in combination with noise. On the
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other hand, DBSCAN, which can not deal with differently
dense clusters, is unfavorable to detect correlation clusters
of highly different dimensionalities in the data set. For high
levels of jitter as well as for only weakly correlated points,
a large number of nearest neighbors k is recommendable to
obtain a representative local PCA of the points. Intersecting
hyperplanes (data set XH), were detected best by LUCKe and
ORCLUS for all settings. Parallel hyperplanes (data set PH)
with up to 35 dimensions were only found by ORCLUS and
LUCKe+Spectral. For the complex data set XHDD, where
a lower-dimensional hyperplane passes through a higher-
dimensional hyperplane, LUCKe+Agglommerative achieved
the overall best results for low dimensionalities.

Overall, LUCKe yielded even with only very basic clus-
tering algorithms comparable results w.r.t. other correlation
clustering algorithms and even surpassed them for explainable
cases and settings.

V. CONCLUSION

We presented LUCKe, which gives us the opportunity
to find even complex linear correlation clusters of arbitrary
dimensionality using our favorite distance-based clustering
algorithm. It builds the first highly advanced, generic bridge
between classical clustering and correlation clustering. Where
previous correlation clustering algorithms like 4C or COPAC
already admittedly incorporate one classical clustering method
or idea, LUCKe allows using a huge variety of classical
clustering algorithms to find linear correlations. That opens
a multitude of further applications: the complex problem of
correlation clustering, where we neither know which arbitrary
oriented and arbitrary dimensional subspaces are important,
nor which points belong together, is now reduced to the
problem of clustering, where only the second part of the
problem needs to be solved. The research area of clustering
is significantly further developed than the area of correlation
clustering, thus correlation clustering can benefit largely from
basic clustering, and LUCKe enables a wave of straight-
forward progression in this field.
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APPENDIX

A. Data set XH

Fig. 10. NMI for different dim for Data set XH

Fig. 11. NMI for different jitter for Data set XH

B. Data set PH

Fig. 12. NMI for different dim for Data set PH

Fig. 13. NMI for different jitter for Data set PH

C. Data set XHDD

Fig. 14. NMI for different dim for Data set XHDD

Fig. 15. NMI for different jitter for Data set XHDD

D. Data set HDD

Fig. 16. NMI for different dim for Data set HDD

Fig. 17. NMI for different jitter for Data set HDD
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Chain-detection for DBSCAN

Janis Held 1, Anna Beer 2, Thomas Seidl 2

Abstract:

Chains connecting two or more different clusters are a well known problem of the probably most
famous density-based clustering algorithm DBSCAN. Since already a small number of points resulting
from, e.g., noise can form such a chain and build a bridge between different clusters, it can happen that
the results of DBSCAN are distorted: several disparate clusters get merged into one. This single-link
effect is rather known but to the best of our knowledge there are no satisfying solutions which extract
those chains, yet. We present a new algorithm detecting not only straight chains between clusters,
but also bent and noisy ones. Users are able to choose between eliminating one dimensional and
higher dimensional chains connecting clusters to receive the underlying cluster structure by DBSCAN.
Also, the desired straightness can be set by the user. We tested our efficient algorithm on a dataset
containing traffic accidents in Great Britain and were able to detect chains emerging from streets
between cities and villages, which led to clusters composed of diverse villages.

Keywords: DBSCAN, clustering, chain-detection, single link effect

1 Introduction

Fig. 1: The red points cause a density-
connection between the intentional two
clusters and thus form a chain.

The human eye can easily detect areas of high den-
sity within a set of points. Derived from this human
intuitive clustering method the basic idea behind
density-based clustering is finding clusters by detect-
ing areas of high density. The famous density-based
algorithm DBSCAN [Es96] builds clusters around
points with high density, so-called seed points, and
expands them taking all density-connected points
into account as described in Section 2. As long as the
clusters are clearly separated, this procedure works
very well but if there are e.g. some density-connected
noise points creating a chain between clusters, DB-
SCAN expands the cluster along these chains resulting in a single huge cluster instead of
the intuitive ones.
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While keeping the requirements of DBSCAN, like minimal domain knowledge to determine
the input parameters, discovering clusters of arbitrary shape and good efficiency on large
databases, we developed an algorithm which detects such chains in clusters found by
DBSCAN. For that we use PCA (Principal Component Analysis) assuming that a chain
has a lower dimensionality than the clusters it connects. Figure 1 shows an example where
two 3D clusters are connected by a red chain with only little expansion in two of the three
dimensions. Our algorithm is adaptable, users can choose which type of chains they want to
connect: straight chains or bent ones, noisy or thin ones. Through recognizing those chains
and eliminating them from the clustering the underlying individual clusters can be revealed
by DBSCAN.

The paper is structured as follows: First, we introduce shortly the related work and basics
we use in Section 2. In Sections 3 we explain our novel method to find chains in detail,
giving an overview over the whole algorithm in Section 3.6. We analyze the complexity in
Section 4 and prove its effectiveness in Section 5 with some experiments. In Section 6 we
conclude and give a brief idea of some future work.

2 Related Work and Basics

There are already many extensions of DBSCAN, e.g. ST-DBSCAN, an extension for
clustering spatial-temporal data [BK07], MR-DBSCAN, which is an efficient parallel
density-based clustering algorithm using map-reduce [He11], or C-DBSCAN: Density-
based clustering with constraints [RSM07]. To the best of our knowledge, there is yet no
extension of DBSCAN to circumvent the disadvantages of the single-link effect or chains
connecting clusters. In this section, we give the basics needed for the following sections,
namely some details of DBSCAN and the Principal Component Analysis (PCA).

DBSCAN Density-based spatial clustering of applications with noise [Es96] is a density
based clustering algorithm that clusters points based on their density and marks outliers
lying in low-density regions. A point with at least minPts points in its ε-range is called a
core point. All points in the ε-range of a core point c belong to the same cluster as c and are
called density-reachable from c. All reachable points are assigned to the cluster from which
they are reachable, while points which are neither reachable nor core points are declared
noise. Like that, it is possible that a small chain of density-reachable points connects two
clusters as Figure 2 shows.

PCA (Principal Component Analysis) [JC16] transforms given data points to a new
coordinate system where the greatest variance by any projection of the data lies along
the first coordinate (the first principal component), the second greatest variance along the
second coordinate, and so on. PCA is a good indicator of how well some data fits into a
lower dimensional subspace.
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PCA regards the eigenvalue decomposition of the data covariance matrix, usually after mean
centering the data matrix for each dimension. Then the eigenvectors of the covariance matrix
form an orthogonal basis and each eigenvalue describes how much variance is explained by
its corresponding eigenvector [JC16].

Let d be the dimensionality of the data space Ω and N = {n1, ...,nm} the ε range of some
point p ∈ Ω. The data matrix is defined as (n1, ...nm)T . Let mj be the mean of column j.
One can now calculate the covariance matrix Θ with

Θi j =

∑m
k=1(nki − mi)(nk j − mj)

m
, i = 1, .., d, j = 1, .., d. (1)

Note that the covariance matrix is symmetric and positive semi-definite, thus its eigenvalues
are non negative. Finally the eigenvalues are normalized by dividing them by the sum of all
eigenvalues, such that the sum of all normalized eigenvalues equals to 1.

3 The Approach

Let DBSCANε ,minPts(X) be the clustering of DBSCAN with parameters ε and minPts
of some data X and C be a cluster found by DBSCAN in the data space Ω. We want to
find a set of candidates that may form chains in C. With the assumption of chains having
a subdimensional shape we can utilize the definition of neighborhood from DBSCAN
and look for an algorithm that decides for each point if it lies within a subdimensional
neighborhood. Additionally the algorithm has to fulfill some restraints: first of all it has to be
rotation invariant as the direction of the chains does not matter. Secondly it has to be error
resistant, as we want to be able to allow some bending of chains and apply it on a application
with noise. The idea is to use the distribution of all points in the ε-range of each point as an
indicator for its likelihood do be part of a chain. Therefore, a point in C is considered a
shape-based chain-point candidate if there exists a subspace with a lower dimensionality
thanΩ, such that all points of the ε range of p lie close to it. Note that ”lower dimensionality”
and the word ”close” will become parameters for the chain-detection algorithm. Clustering
all remaining points may result in some noise points. We call the union of shape-based
chain-point candidates with all those noise points chain-point candidates. Now we can
cluster the chain-point candidates and each cluster is called a chain-candidate. Note that
all chain-point candidates which were marked as noise are not part of a chain-candidate,
because we want a chain to be at least big and dense enough to form a cluster itself. The last
step will be to validate if the chain-candidate indeed connects two clusters of the remaining
points and is not some kind of tail.
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3.1 Chains

Fig. 2: The red dots connect
two clusters and thus form a
chain.

Fig. 3: Since the chain-like
looking red dots do not con-
nect any clusters, they are not
considered a chain.

Fig. 4: The red dots may or
may not be a chain, depending
on the user. The red circle is
one of the ε ranges.

Assume the user wants to detect one-dimensional chains in a two-dimensional data space
and DBSCAN would not label the red dots in the following figures as noise, then Figure 2
shows a simple example of a chain. The red dots in Figure 3 are not considered a chain,
because they do not form a connection between two clusters. The red dots in Figure 4 are
not perfectly linear, because the ε range of each red point (the red circle is one of the ε
ranges) does not perfectly fit inside a one dimensional subspace, and thus it depends on the
user if he wants to detect those as a chain.

3.2 Chain-Point candidates

For each point in a cluster C the objective is to determine if this point is a chain-point
candidate. To achieve this, for each point p ∈ C the technique behind principal component
analysis (PCA) is utilized to calculate how good the ε range of p fits inside a subspace with
a dimensionality lower than the dimensionality of the data space Ω. To be more precise,
PCA is utilized to find this subspace and then to calculate the explained variation of those
ε-neighbors of p which do not fit inside this subspace.

Theorem 1 Let d be the dimensionality of the data space Ω and N = {n1, ...,nm} ⊂
Ω be the ε range of some point p ∈ Ω. Furthermore let λ1 ≥ ... ≥ λd be
the sorted normalized eigenvalues of the covariance matrix Θ derived from N .

1. If λd = 0, then N lies inside a hyperplane.

2. If λd = 1/d, then N is perfectly distributed across all dimensions.

3. if λi = 0 and 1 < i < d, then N lies inside a subspace with dimension i − 1.
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Proof 1 1. If λd = 0, then the corresponding eigenvector evd describes 0 variance. Since
the eigenvectors form a orthogonal basis N lies entirely in the hyperplane
orthogonal to evd .

2. Since the sum of all eigenvalues equals to 1 and there are d eigenvalues and
all are non negative, each eigenvalues must be equal to 1/d. That means
each eigenvector describes the same variance, thus N is perfectly distributed
across all dimensions.

3. Since the eigenvalues are sorted, non negative and λi = 0 it follows
that λj = 0,∀ j ∈ {i, ..., d}. That means the corresponding eigenvectors
evj, j ∈ {i, ..., d} of the orthogonal basis describe 0 variance. Thus, N lies
entirely in the subspace spanned by evj, j ∈ {1, ..., i − 1}.

3.3 Parameters

With theorem 1 one can now define two parameters

1. chainDim ∈ {1, ..., d − 1}, which describes the dimensionality of chains the user
wants to detect.

2. allowedVariation ∈ [0,1[, which allows variation beyond the allowed dimensionality
of the chain.

Like in Section 3.2, let N = {n1, ...,nm} be the ε range of some point p ∈ C and λ1, ..., λd the
descending sorted normalized eigenvalues of the covariance matrix Θ corresponding to N .
To calculate how good N lies within a chainDim dimensional subspace, one calculates the
accumulated error e :=

∑d
i=chainDim+1 λi . The sum starts with chainDim + 1, because only

the d − chainDim least significant principal components explain the variation beyond the
wanted chain dimensionality. It holds that λd ∈ [0,1/d], because the sum of all eigenvalues
equals to 1, there are d eigenvalues and λd is the smallest one. If λd < 1/d then λ1 > 1/d,
otherwise λ1 would not be the largest normalized eigenvalue. That means the sum of the
i smallest normalized eigenvalues is at most i/d, that is if all eigenvalues are 1/d. Thus
e ∈ [0, (d − chainDim)/d] To make the user-input independent of the dimensionality of Ω
and chainDim, one normalizes the error by

ē := e ∗ d
d − chainDim

∈ [0,1]. (2)

Now, p is a chain-point candidate if ē ≤ allowedVariation.
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3.4 Fuzziness of Chains

In Figure 5 examples for various values of normed errors are given for a two dimensional
data space with chainDim = 1. ē describes the variation beyond a linear subspace. The
closer the points get to a linear subspace the lower the error gets and vice versa. In Figure
5c the error is close to 1 since the points are almost perfectly distributed in all directions.

(a) ē ≈ 0.0002 (b) ē ≈ 0.1563 (c) ē ≈ 0.9997

Fig. 5: Various degrees of fuzziness dependent on the normed error ē

Let us have a look at some synthetic example data. In Figure 6 the points are colored by its
normed error values with chainDim set to 1. Some points are clearly marked red, because
they have a low normed error, indicating that they might be part of a chain. On the other hand
most of the points inside those clouds have a high normed error because their ε range hardly
fits into a one-dimensional subspace. Setting allowedVariation to some value determines
for each point if it is a chain-point candidate. Setting allowedVariation to 0.2 on the data
of Figure 6 results in the shape-based chain-point candidates seen in Figure 7.

Fig. 6: Example data: Each point is colored by
the normed error ē derived from its ε range.
Yellow means the error is close to 1 and red
means it is close to 0.

Fig. 7: Example data: With
allowedVariation = 0.2 the red points
are selected as shape-based chain-point
candidates. The arrow highlights an outlier.

3.5 Finding and validating chain candidates

Let Cē be the set of shape-based chain-point candidates. First of all each shape-based
chain-point candidate is added to the set of chain-point candidates. After clustering the
remaining points C \ Cē by DBSCANeps,minPts all points marked as noise are not part
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of a cluster of non-candidates, indicating that they also might be part of a chain, see the
highlighted black dot on the left of Figure 7. These points are now added to the set of
chain-point candidates.

Clustering the set of chain-point candidates by DBSCANeps,minPts results in clusters of
chain-point candidates, which are the desired chain-candidates and noise.

Let Cci, i ∈ I be those chain-candidates, R := C \ ∪i∈ICci be the set of the remaining points
and DBR be DBSCANeps,minPts(R). Note that R contains those chain-point candidates,
which were marked as noise by clustering all chain-point candidates. To validate Cci check
for each point p ∈ Cci , if their ε range contains points r ∈ R and note the cluster of r
found in the clustering DBR. As soon as two clusters are noted the chain is validated and
considered a chain. If all points are checked but no two clusters are noted the chain-candidate
Cci could not be validated and is not considered a chain.

Finally we receive a set of chains - which can now be considered clusters themselves or
simply marked as chains - and a set of remaining points, which remain to be clustered to get
the final clustering without chains.

3.6 The complete algorithm

Let C be the cluster found by DBSCAN with metric dist(·, ·) and parameters ε
and minPts. chainDim and allowedVariation are the parameters of chain detection.
RangeQuery(C, dist, p, ε) returns the set {q ∈ C |dist(p,q) ≤ ε}. For the sake of simplicity
assume the result of DBSCAN contains the property "Noise", which is the set of points
marked as noise and the property "Clusters", which is the set of clusters. Algorithm 1
recapitulates our complete approach. For a full implementation with example code see
https://github.com/Quesstor/DBSCAN-with-density-based-connection-detection.

4 Runtime complexity

Let n be the number of points in the cluster, on which the chain-detection algorithm is
applied, in a d dimensional data space. For each point a range query with linear complexity
is calculated. Calculating the covariance matrix of the ε-neighborhood, which in the worst
case consists of all n points, is O(n∗d2). Then the eigenvalues of the d×d covariance matrix
is calculated, which has runtime complexity of O(d3). So the total runtime complexity for
the for loop is O(n(n + n ∗ d2 + d3)). The DBSCANs on a subset of the cluster each have
the worst case run time complexity of O(n2). The validation step calculates for less than n
points a range query resulting in a worst case run time complexity of O(n2). So the for loop
is causing the largest performance hit with a runtime complexity of O(n(n + n ∗ d2 + d3)).
Assuming d << n one can simplify the runtime complexity to O(n2).
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Algorithm 1 Chain-detection
procedure ValidateChaincandidate(Chain,R,DBR, dist, ε)

clusterFound ← null
for c ∈ Chain do

for p ∈ RangeQuery(R, dist, c, ε) do
if clusterFound == null then

clusterFound ← DBR .labelFor(p)
else

if clusterFound , DBR .labelFor(p) then
return True

return False
procedure Chain-detection(C, dist, ε,minPts, chainDim,allowedVariation)

d ← dim(C) . The dimensionality of the data
Cc ← {} . The set of chain-points
for p ∈ C do . Find all chain-point candidates

N ← RangeQuery(C, dist, p, ε)
EV ← EigenValues(CovarianceMatrix(N))
EV ← EV/EV .sum() . Norm eigenvalues
EV ← EV .sorted(descending=TRUE) . Sort eigenvalues descending
e← EV .sum(start=d − chaindim + 1) . Calculate error
e← e ∗ (d/(d − chainDim)) . Norm error
if e ≤ allowedVariation then . Compare error with parameter

Cc ← Cc ∪ {p} . Add p to the set of chain-points
if |Cc | == 0 then return {}
R← C \ Cc . The set of remaining points
DBR ← DBSCAN(R, dist, ε,minPts) . Cluster the remaining points
Cc ← Cc ∪ DBR .Noise . Add noise to the set of chain-points
DBCc

← DBSCAN(Cc, dist, ε,minPts) . Cluster chain-points
if |DBCc

.clusters| == 0 then return {} . No chain-candidate found
R← C \ ∪DBCc

.Clusters . Update the set of remaining points
DBR ← DBSCAN(R, dist, ε,minPts) . Cluster the remaining points
if |DBR .clusters| ≤ 1 then return {} . No chain-candidate can be validated
Chains← [] . The list of validated chains
for V ∈ DBCc

.Clusters do . Validate each chain-candidate
if ValidateChaincandidate(V,R,DBR, dist, ε) then

Chains.append(V)
return Chains

180 Janis Held, Anna Beer, Thomas Seidl



Chain-detection for DBSCAN 9

To improve performance the range queries should be executed on a tree structure and
calculating the normed error for each point, which causes the largest performance hit, can
easily be parallelized.

5 Experiments

The dataset on which the experiments are performed consists of all reported traffic accident
locations in Great Britain from the years 2014 - 2016. It was downloaded on February
the 27th 2018 from https://www.kaggle.com/daveianhickey/2000-16-traffic-flow-
england-scotland-wales/data and clustered by DBSCAN with parameters ε := 0.01 and
minPts := 15. These parameters were obtained by trial and error while clustering the area
of roughly 100km in each direction around London’s center with the goal to obtain a cluster
which contains chains of traffic accidents.

Traffic accidents in London The chain-detection will be demonstrated on the cluster
found at London city, see Figure 8. The results obtained by DBSCAN are not a satisfying
clustering, because the highways, on which a lot of accidents happen, connect the suburban
areas outside London to a single cluster. So let us apply the chain-detection algorithm. To
detect these highways, which are basically one-dimensional chains, one sets the chainDim
parameter to 1. Since the highways are not perfectly linear and surrounded by noise, one
wants to allow some error and set the allowedVariation parameter to 0.2. Figure 9 shows
the resulting clustering after applying the chain-detection algorithm. Most of the suburban
areas are now separated from the main cluster of London city and almost all chains are
found on highways.

Fig. 8: The cluster around London found by
DBSCAN clustering of traffic accidents in Great
Britain. The dots are stretched to fit the underly-
ing map.

Fig. 9: Chain-detection applied on the cluster
around London found by DBSCAN clustering
of traffic accidents in Great Britain. Chains are
marked red.
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Traffic accidents in Liverpool and Manchester Another example is the cluster found
at Liverpool and Manchester. As there are a lot of accidents between those cities both
end up in the same cluster, see Figure 10. Let us apply the chain-detection algorithm with
parameters chainDim := 1 and allowedVariation := 0.2, for the same reasons as in the
previous example. In Figure 11 we can see how the traffic accident clusters are now well
divided, one cluster in Liverpool and one in Manchester.

Fig. 10: The cluster of traffic accidents at Liver-
pool and Manchester.

Fig. 11: Result of the chain-detection algorithm
applied on the traffic accidents in Liverpool and
Manchester.

6 Conclusion

In conclusion we developed the first algorithm which solves the problem that DBSCAN
unintentionally detects only one cluster where several are connected by a chain or several
noise points. We achieved that by recognizing chain points by analyzing the eigenvalues of
the covariance matrix of their neighborhood. In our experiments we applied the algorithm
on a real world dataset containing traffic accidents, where it found the intentional chains and
enabled DBSCAN to find the original, smaller clusters in the dataset, instead of aggregated
ones. Our approach is not limited to DBSCAN, but could also be of use after executing other
clustering algorithms which tend to aggregate clusters connected by chains. Nevertheless,
the ε parameter which determines in which range of each point the distribution of points is
regarded, would have to be determined. We plan to examine further areas of application and
experiments in future work.
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Abstract
Chains connecting two or more different clusters are a well known problem of clustering algorithms like DBSCAN or
Single Linkage Clustering. Since already a small number of points resulting from, e. g., noise can form such a chain and
build a bridge between different clusters, it can happen that the results of the clustering algorithm are distorted: several
disparate clusters get merged into one. This single-link effect is rather known but to the best of our knowledge there are
no satisfying solutions which extract those chains, yet. We present a new algorithm detecting not only straight chains
between clusters, but also bent and noisy ones. Users are able to choose between eliminating one dimensional and higher
dimensional chains connecting clusters to receive the underlying cluster structure. Also, the desired straightness can be
set by the user. As this paper is an extension of [8], we apply our technique not only in combination with DBSCAN but
also with single link hierarchical clustering. On a real world dataset containing traffic accidents in Great Britain we were
able to detect chains emerging from streets between cities and villages, which led to clusters composed of diverse villages.
Additionally, we analyzed the robustness regarding the variance of chains in synthetic experiments.

Keywords DBSCAN · Agglomerative single link clustering · Clustering · Chain-detection · Single link effect

1 Introduction

In contrast to most centroid-based cluster methods, density-
based algorithms are able to find non-convex clusters.

The famous density-based algorithm DBSCAN [4]
builds clusters around points with high density, so-called
seed points, and expands them taking all density-connected
points into account as described in Section 2.1. As long as
the clusters are clearly separated, this procedure works very
well, but if there are, e. g., some density-connected noise
points creating a chain between clusters, DBSCAN expands
the cluster along these chains resulting in a single huge
cluster instead of the intuitive ones. A similar effect occurs
for hierarchical clustering with the single link distance,
which is why we extend the algorithm introduced in [6] in
this paper. We developed an algorithm which detects such

Janis Held
j.held@campus.lmu.de

� Anna Beer
beer@dbs.ifi.lmu.de

Thomas Seidl
seidl@dbs.ifi.lmu.de

1 LMU Munich, Munich, Germany

chains between clusters. For that we use PCA (Principal
Component Analysis), assuming that a chain has a lower
dimensionality than the clusters it connects. Fig. 1 shows
an example where two 3D clusters are connected by a red
chain with only little expansion in two of the three dimen-
sions. Our algorithm is adaptable, users can choose which
type of chains they want to connect: straight chains or bent
ones, noisy or thin ones. Through recognizing those chains
and eliminating them from the clustering the underlying
individual clusters can be revealed.

The paper is structured as follows: First, we introduce
shortly the related work and basics we use in Section 2.
In Section 3 we explain our novel method to find chains
in detail, giving an overview over the whole algorithm in
Section 3.6. We analyze the complexity in Section 4 and
prove its effectiveness in Section 5 with some experiments
on real world as well as on synthetic data. In Section 8 we
conclude and give a brief idea of some future work.

2 RelatedWork and Basics

There are already many extensions of DBSCAN like,
e. g., ST-DBSCAN, an extension for clustering spatial-
temporal data [2], MR-DBSCAN, which is an efficient
parallel density-based clustering algorithm using map-re-
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Fig. 1 The red points cause a
density-connection between the
intentional two clusters and thus
form a chain

duce [7], or C-DBSCAN: Density-based clustering with
constraints [11]. To the best of our knowledge, there is yet
no extension of DBSCAN to circumvent the disadvantages
of the single-link effect or chains connecting clusters. Also
for single-linkage clustering [12] many long-established ex-
tensions exist, like, e. g., [5], which uses complete-linkage
as stopping criterion for single linkage, or methods focus-
ing on efficiency, as introduced in [3] or [10]. But also
here, there are to the best of our knowledge no algorithms
yet to prevent chains connecting clusters, even though there
are methods like, e. g., [1] focusing on robustness against
noise. In this section, we give the basics needed for the fol-
lowing sections, namely some details of DBSCAN, single-
linkage clustering, and the Principal Component Analysis
(PCA).

2.1 DBSCAN

Density-based spatial clustering of applications with
noise [4] is a density based clustering algorithm that
clusters points based on their density and marks outliers
lying in low-density regions. A point with at least minPts
points in its "-range is called a core point. All points in the
"-range of a core point c belong to the same cluster as c and
are called density-reachable from c. All reachable points
are assigned to the cluster from which they are reachable,
while points which are neither reachable nor core points
are declared noise. Like that, it is possible that a small
chain of density-reachable points connects two clusters as
Fig. 2 shows.

2.2 Single Linkage Clustering

[12] is an agglomerative hierarchical method, which starts
with every point building its own cluster and combining
the two clusters with the lowest single-linkage distance in
every step. The single-linkage distance DSL between two
clusters X and Y is the smallest distance between two points
of those clusters and is defined as follows, where d.x; y/

is the distance between two elements x and y:

DSL.X; Y / = minx2X;y2Y d.x; y/ (1)

2.3 PCA

(Principal Component Analysis) [9] transforms given data
points to a new coordinate system where the greatest vari-
ance by any projection of the data lies along the first coor-
dinate (the first principal component), the second greatest
variance along the second coordinate, and so on. PCA is
a good indicator of how well some data fits into a lower
dimensional subspace.

PCA regards the eigenvalue decomposition of the data
covariance matrix, usually after mean centering the data
matrix for each dimension. Then the eigenvectors of the
covariance matrix form an orthogonal basis and each eigen-
value describes how much variance is explained by its cor-
responding eigenvector [9].

Let d be the dimensionality of the data space ˝ and
N = fn1; :::; nmg the " range of some point p 2 ˝. The
data matrix is defined as .n1; :::nm/T . Let mj be the mean
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Fig. 2 The red dots connect two clusters and thus form a chain

Fig. 3 Since the chain-like looking red dots do not connect any clus-
ters, they are not considered a chain

of column j. One can now calculate the covariance matrix �

with

�ij =

Pm
k=1.nki − mi /.nkj − mj /

m
;

i = 1; ::; d; j = 1; ::; d:

Note that the covariance matrix is symmetric and positive
semi-definite, thus its eigenvalues are non negative. Finally,
the eigenvalues are normalized by dividing them by the
sum of all eigenvalues, such that the sum of all normalized
eigenvalues equals to 1.

3 Chain-detection

Let C lustering.X/ be the DBSCAN or Single-Linkage
Clustering of some data X and C be a cluster found in the
data space ˝. We want to find a set of candidates that may
form chains in C. With the assumption of chains having a
subdimensional shape we can use a definition of neighbor-
hood and look for an algorithm that decides for each point if
it lies within a subdimensional neighborhood. As both clus-
tering algorithms are metric-based we already have a metric
d and with a parameter " the neighborhood of a point p is

Fig. 5 Various degrees of fuzziness for normalized errors: Ne � 0.0002, Ne � 0.1563 , and Ne � 0.9997

Fig. 4 The red dots may or may not be a chain, depending on the user.
The red circle is one of the " ranges

defined as fxjd.p; x/ � "g. For DBSCAN " should be set
to the value of the DBSCAN parameter ", whereas it is
given by the user for Single-Linkage Clustering. The idea
is to use the distribution of all points in the neighborhood of
each point as an indicator for its likelihood do be part of a
chain. Therefore, a point in C is considered a shape-based
chain-point candidate if there exists a subspace with a
lower dimensionality than ˝, such that all points of the "

range of p lie close to it. Note that “lower dimensionality”
and the word “close” will become parameters for the chain-
detection algorithm. Clustering all remaining points may re-
sult in some noise points. We call the union of shape-based
chain-point candidates with all those noise points chain-
point candidates. Now we can cluster the chain-point can-
didates and each cluster is called a chain-candidate. Note
that all chain-point candidates which were marked as noise
are not part of a chain-candidate, because we want a chain
to be at least big and dense enough to form a cluster itself.
The last step will be to validate if the chain-candidate in-
deed connects two clusters of the remaining points and is
not some kind of tail.
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Fig. 6 Example data: Each point is colored by the normed error Ne
derived from its " range. Yellow means the error is close to 1 and red
means it is close to 0

3.1 Chains

Assume the user wants to detect one-dimensional chains
in a two-dimensional data space and Clustering would not
label the red dots in the following figures as noise, then
Fig. 2 shows a simple example of a chain. The red dots
in Fig. 3 are not considered a chain, because they do not
form a connection between two clusters. The red dots in
Fig. 4 are not perfectly linear, because the " range of each
red point (the red circle is one of the " ranges) does not
perfectly fit inside a one dimensional subspace, and thus it
depends on the user if he wants to detect those as a chain.

3.2 Chain-Point Candidates

For each point in a cluster C the objective is to determine
if this point is a chain-point candidate. To achieve this, for
each point p 2 C the technique behind principal component
analysis (PCA) is utilized to calculate how good the " range
of p fits inside a subspace with a dimensionality lower than
the dimensionality of the data space ˝. To be more precise,
PCA is utilized to find this subspace and then to calculate
the explained variation of those "-neighbors of p which do
not fit inside this subspace.

Fig. 7 Example data: With allowedVariation = 0.2 the red points are
selected as shape-based chain-point candidates. The arrow highlights
an outlier

Theorem 1 Let d be the dimensionality of the data space
˝ and N = fn1; :::; nmg � ˝ be the " range of some
point p 2 ˝. Furthermore let �1 � ::: � �d be the sorted
normalized eigenvalues of the covariance matrix � derived
from N.

1. If �d = 0, then N lies inside a hyperplane.
2. If �d = 1=d , then N is perfectly distributed across all

dimensions.
3. if �i = 0 and 1 < i < d , then N lies inside a subspace

with dimension i − 1.

Proof

1. If �d = 0, then the corresponding eigenvector evd de-
scribes 0 variance. Since the eigenvectors form a orthog-
onal basis N lies entirely in the hyperplane orthogonal to
evd .

2. Since the sum of all eigenvalues equals to 1 and there are
d eigenvalues and all are non negative, each eigenvalues
must be equal to 1=d . That means each eigenvector de-
scribes the same variance, thus N is perfectly distributed
across all dimensions.

3. Since the eigenvalues are sorted, non negative and �i = 0
it follows that �j = 0; 8j 2 fi; :::; dg: That means the
corresponding eigenvectors evj , with j 2 fi; ::::; dg of
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the orthogonal basis describe 0 variance. Thus, N lies en-
tirely in the subspace spanned by evj ; j 2 f1; :::; i − 1g.

3.3 Parameters

With theorem 1 one can now define the three parameters
for the chain-detection algorithm

1. " > 0, which determines the size of the neighborhood for
each point.

2. chainDim 2 f1; :::; d − 1g, which describes the dimen-
sionality of chains the user wants to detect.

3. al lowedVariation 2 Œ0,1Œ, which allows variation be-
yond the allowed dimensionality of the chain.

Like in Section 3.2, let N = fn1; :::; nmg be the neighbor-
hood of some point p 2 C and �1; :::; �d the descending

sorted normalized eigenvalues of the covariance matrix �

corresponding to N. To calculate how good N lies within
a chainDim dimensional subspace, one calculates the accu-
mulated error

e W=
dX

i=chainDim+1

�i :

The sum starts with chainDim + 1, because only the d −
chainDim least significant principal components explain the
variation beyond the wanted chain dimensionality. It holds
that �d 2 Œ0,1=d�, because the sum of all eigenvalues equals
to 1, there are d eigenvalues and �d is the smallest one. If
�d < 1=d then �1 > 1=d , otherwise �1 would not be the
largest normalized eigenvalue. That means the sum of the
i smallest normalized eigenvalues is at most i=d , that is if
all eigenvalues are 1=d . Thus, e 2 Œ0; .d − chainDim/=d �.
To make the user-input independent of the dimensionality
of ˝ and chainDim, one normalizes the error by

Ne W= e � d

d − chainDim
2 Œ0,1�: (2)

p is a chain-point candidate if Ne � allowedVariation.

3.4 Fuzziness of Chains

In Fig. 5 examples for various values of normed errors are
given for a two dimensional data space with chainDim = 1.
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Fig. 8 The cluster around Lon-
don found by DBSCAN cluster-
ing of traffic accidents in Great
Britain. The dots are stretched to
fit the underlying map

Ne describes the variation beyond a linear subspace. The
closer the points get to a linear subspace the lower the error
gets and vice versa. In the most right example the error is
close to 1 since the points are almost perfectly distributed
in all directions.

Let us have a look at some synthetic example data. In
Fig. 6 the points are colored by its normed error values
with chainDim set to 1. Some points are clearly marked
red, because they have a low normed error, indicating that
they might be part of a chain. On the other hand most of the
points inside those clouds have a high normed error because
their " range hardly fits into a one-dimensional subspace.
Setting allowedVariation to some value determines for each
point if it is a chain-point candidate. Setting allowedVaria-
tion to 0.2 on the data of Fig. 6 results in the shape-based
chain-point candidates seen in Fig. 7.

3.5 Finding and validating chain candidates

Let C Ne be the set of shape-based chain-point candidates.
First of all each shape-based chain-point candidate is added
to the set of chain-point candidates. After clustering the
remaining points C nC Ne by Clustering all points marked as
noise are not part of a cluster of non-candidates, indicating
that they also might be part of a chain, see the highlighted

black dot on the left of Fig. 7. These points are now added
to the set of chain-point candidates.

Clustering the set of chain-point candidates results in
clusters of chain-point candidates, which are the desired
chain-candidates and noise.

Let Cci ; i 2 I be those chain-candidates, R W= C n
[i2ICci be the set of the remaining points and DBR be
C lustering.R/. Note that R contains those chain-point
candidates, which were marked as noise by clustering all
chain-point candidates. To validate Cci check for each point
p 2 Cci , if their " range contains points r 2 R and note
the cluster of r found in the clustering DBR. As soon as
two clusters are noted the chain is validated and considered
a chain. If all points are checked but no two clusters are
noted the chain-candidate Cci could not be validated and is
not considered a chain.

Finally we receive a set of chains – which can now be
considered clusters themselves or simply marked as chains
– and a set of remaining points, which remain to be clus-
tered to get the final clustering without chains.

3.6 The complete algorithm

Let C be the cluster found by Clustering with parame-
ters ", chainDim and allowedVariation for the chain-detec-
tion algorithm. RangeQuery.C; d ist; p; "/ returns the set
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Fig. 9 Chain-detection applied
on the cluster around London
found by DBSCAN clustering of
traffic accidents in Great Britain.
Chains are marked red

fq 2 C jdist.p; q/ � "g. For the sake of simplicity as-
sume the result of Clustering contains the property “Noise”,
which is the set of points marked as noise and the property
“Clusters”, which is the set of clusters. For Single-Link-
age Clustering for example, a threshold for the cluster size
could be set, declaring all points in clusters smaller than
that threshold as noise. Algorithms 1 and 2 recapitulate our
complete approach.

For a full implementation see https://github.com/Quesstor/
DBSCAN-with-density-based-connection-detection.

4 Runtime complexity

Let n be the number of points in the cluster, on which the
chain-detection algorithm is applied, in a d dimensional
data space. For each point a range query with linear com-
plexity is calculated. Calculating the covariance matrix of
the "-neighborhood, which in the worst case consists of all
n points, is O.n � d 2/. Then the eigenvalues of the d � d

covariance matrix is calculated, which has runtime com-
plexity of O.d 3/. So the total runtime complexity for the
for loop is O.n.n + n � d 2 + d 3//. Assuming Clustering on
a subset of the cluster each have the worst case run time
complexity of O.n2/, as is the case for DBSCAN. The val-

idation step calculates for less than n points a range query
resulting in a worst case run time complexity of O.n2/. So
the for loop is causing the largest performance hit with a
runtime complexity of O.n.n + n � d 2 + d 3//. Assuming
d � n one can simplify the runtime complexity to O.n2/.

To improve performance the range queries should be
executed on a tree structure and calculating the normed
error for each point, which causes the largest performance
hit, can easily be parallelized.

5 Experiments

The dataset on which the experiments are performed con-
sists of all reported traffic accident locations in Great Britain
from the years 2014–2016 1.

For DBSCAN, parameters " W= 0.01 and minPts W= 15,
deliver a cluster containing chains of traffic accidents in the
area of roughly 100km in each direction around London’s
center, which allows us to show the properties of our chain-
detection algorithm.

1 https://www.kaggle.com/daveianhickey/2000-16-traffic-flow-eng
land-scotland-wales/data
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Fig. 10 The cluster of traf-
fic accidents at Liverpool and
Manchester

Fig. 11 Result of the chain-
detection algorithm applied on
the traffic accidents in Liverpool
and Manchester

As DBSCAN already has a definition for neighborhood
with the parameter " we will use this value for the " param-
eter for the chain-detection algorithm.

5.1 Traffic accidents in London

The chain-detection will be demonstrated on the cluster
found at London city, see Fig. 8.

The results obtained by DBSCAN using the above men-
tioned parameters are not a satisfying clustering, because
the highways, on which a lot of accidents happen, connect
the suburban areas outside London to a single cluster. So
let us apply the chain-detection algorithm. To detect these
highways, which are basically one-dimensional chains, one
sets the chainDim parameter to 1. Since the highways are

not perfectly linear and surrounded by noise, one wants to
allow some error and set the allowedVariation parameter to
0.2.

Fig. 9 shows the resulting clustering after applying the
chain-detection algorithm. Most of the suburban areas are
now separated from the main cluster of London city and
almost all chains are found on highways.

5.2 Traffic accidents in Liverpool andManchester

Another example is the cluster found at Liverpool and
Manchester. As there are a lot of accidents between those
cities both end up in the same cluster, see Fig. 10. Let
us apply the chain-detection algorithm with parameters
chainDim W= 1 and allowedVariation := 0.2, for the same
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Fig. 12 Optimal single link clustering of cure-t2-4k with NMI score
of � 0.8196

reasons as in the previous example. In Fig. 11 we can see
how the traffic accident clusters are now well divided, one
cluster in Liverpool and one in Manchester.

5.3 Synthetic data

The clustering benchmark was performed on the labeled
cure-t2-4k dataset2. First the parameters for DBSCAN and
Singlelink clustering were obtained by optimizing the NMI
score over a range of parameters, see below. Then the
NMI score was compared to the best NMI score after ap-
plying the chain-detection algorithm with the same " pa-
rameter from the DBSCAN or Single-Linkage clustering
and allowedVariation 2 f0.001; 0.003; 0.005; :::; 0.5g. As
Fig. 12 shows, Single Link merges the two clusters in the
upper area even with optimal parameters. Fig. 13 shows
the result using the chain-detection, where the clusters are
discerned.

For the Single-Linkage clustering, testing
" 2 f0.001; 0.0015; 0.002; :::; 0.1g resulted in the best pa-
rameter " = 0.0575 with NMI score of � 0.8196. Applying
the chain-detection algorithm improved the NMI score by
� 0.1186 resulting in an NMI score of � 0.9382.

For DBSCAN all combinations of minPts 2 f1; 2; :::; 20g
and " 2 f0.001; 0.002; :::; 0.1g resulted in the best param-
eters minPts = 6 and " = 0.054 with an NMI score of
� 0.87423. Applying the chain-detection algorithm im-

2 https://github.com/deric/clustering-benchmark/blob/master/src/main/
resources/datasets/artificial/cure-t2-4k.arff

Fig. 13 Optimal single link clustering in combination with chain-de-
tection of cure-t2-4k with NMI score of � 0.9382

Fig. 14 Some random generated dataset with standard deviation of
0.05 for the chainpoint offset

proved the NMI score by � 0.1175, resulting in an almost
optimal NMI score of � 0.9917.

6 Robustness of allowedVariation parameter

To demonstrate the effect of the allowedVariation parame-
ter, we randomly generated example data by the following
algorithm. First, four points pi = .i; yi / are selected, where
yi 2 Œ0,4�; i 2 f0; 1; 2; 3g is a uniformly distributed random
variable. Then two clusters are constructed by generating
500 normally distributed points with a standard deviation of
0.3 each around p0 and p3. To generate a chain, a univari-
ate spline fit to all pi is calculated and points are generated
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Fig. 15 NMI scores for DBSCAN + chain-detection with different
chain densities and allowedVariation parameters. The white number
is the highest NMI score found

Fig. 16 NMI scores for single-link + chain-detection with different
chain densities and allowedVariation parameters. The white number is
the highest NMI score found

along this spline such that the distance between two points
is roughly equal to 0.05.

Finally, these chainpoints are distorted by adding a nor-
mally distributed offset with some standard deviation, see
Fig. 14.

We tested different standard deviations for the chain-
points offset and for each we generated 50 datasets that clus-
tered by DBSCAN with parameters � = 0.3 and minPts = 4
result in a single cluster. That means DBSCAN detected
both clusters and the chain as a single cluster. Now we ap-
plied the chain-detection algorithm with different allowed-
Variation parameters and noted the average NMI score over
all 50 datasets. Note that the NMI score of the DBSCAN
clustering is near zero as DBSCAN detects only one clus-
ter. The results in Fig. 15 show, that a large range of values
for allowedVariation lead to very good NMI scores. For
lower densities of the chain, i.e., a higher standard devia-
tion, higher values for allowedVariation are better.

Fig. 17 The red dots will not be detected as a chain, because the "
range (marked as a green circle) is too small to detect the chain

Fig. 18 Zoom in of Fig. 20c with " W= 0.15. Chains are marked red

We made the same experiments for the single-link clus-
tering, with the only difference that we took only datasets
containing a cluster with at least 1000 points found by sin-
gle-link clustering, because single-link clustering tends to
create additional very small clusters.

The results shown in Fig. 16 are similar to those of DB-
SCAN.

7 Analysis of ε Parameter

Finding the right chain-point candidates, by looking at the
shape of the " range of each point, has a limitation regarding
the ". If the " is too small, then some chains which may
seem as a linear chain (when looking at the whole picture)
will not be detected, see Fig. 17. To counter this limitation,
one could simply increase the " parameter.

The points inside that too-big-chain will have errors
close to 1 and are therefore not selected as chain-point
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Fig. 19 Zoom in of Fig. 20d with " W= 0.2. Chains are marked red

candidates. The border points of the too-big-chain may be
selected but may not be verified as chains, because the inner
points may keep the clusters connected.

We here regard the possibility to set a third parameter, ",
for the range of the neighborhood when checking each point
if it is a chain-point candidate. As getting " from the user is
mandatory for Single-Linkage clustering, we simply iden-

Fig. 20 Chaindetection in the London dataset for different values " = f0.025; 0.05; 0.15; 0.2g

tified the " used for DBSCAN clustering with the range for
the neighborhood we regard for the chain-detection. Thus
we analyze using a different " for DBSCAN than for the
chain-detection in the following.

Increasing the " parameter from "1 to "2 is ambiguous,
because although increasing " reduces the error effect of
noise within the smaller "1 range, because more points of
the chain are considered and thus the variation of the first
principal components is increased, new noise within the "2
range but not within the "1 range may be considered, thus
increasing the error. This effect can be seen by looking at
the chains shown in Fig. 18 and compare those to Fig. 19. In
Fig. 18 the bottom chain is shorter, because " is smaller and
the close range error gets too high. Increasing " leads to a
longer bottom chain, because the close range error effect is
reduced and no noise within the increased "2 range is added,
thus more points are detected as chain-point candidates. But
the upper chain is not detected any more because there is
too much noise added within the "2 range.

Setting " too small results in too many chain-points
detected and clustering those with DBSCAN";minPts can
lead to chains within clusters, which is probably not de-
sirable. Fig. 20 shows the results of a chain-detection
on the London dataset from above with allowedVari-
ation := 0.2, chainDim := 1 and different values for
" = f0.025; 0.05; 0.15; 0.2g, where chains are marked in
red. The higher ", the less chains are detected. Thus, giv-
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ing the user the possibility to not use the same " as for
DBSCAN can result in better results, but does not have to
and is recommended only for users with expert knowledge
regarding the data.

8 Conclusion

In conclusion we developed the first algorithm which solves
the problem that some clustering algorithms, like, e. g., DB-
SCAN or Single-Linkage unintentionally detect only one
cluster where several are connected by a chain or several
noise points. We achieved that by recognizing chain points
by analyzing the eigenvalues of the covariance matrix of
their neighborhood. In our experiments with DBSCAN we
applied the algorithm on a real world dataset containing
traffic accidents, where it found the intentional chains and
enabled DBSCAN to find the original, smaller clusters in
the dataset, instead of aggregated ones. We developed the
algorithm introduced in [6] to work also for Single-Linkage
clustering, and showed its effectiveness on the benchmark-
ing dataset cure-t2-4k. Our approach is not limited to DB-
SCAN and Single-Linkage, but could also be of use after
executing other metric-based clustering algorithms which
tend to aggregate clusters connected by chains. Neverthe-
less, the " parameter which determines in which range of
each point the distribution of points is regarded, would have
to be determined. In future work, " could be determined au-
tomatically, and other clustering algorithms should be in-
vestigated concerning the applicability of chain-detection.
Also a use of ICA [8] instead of PCA could be interesting.
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MORe++: k-Means Based Outlier
Removal on High-Dimensional Data
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Ludwig-Maximilians-Universität München, Munich, Germany
{beer,seidl}@dbs.ifi.lmu.de, j.lauterbach@campus.lmu.de

Abstract. MORe++ is a k-Means based Outlier Removal method
working on high dimensional data. It is simple, efficient and scalable.
The core idea is to find local outliers by examining the points of differ-
ent k-Means clusters separately. Like that, one-dimensional projections
of the data become meaningful and allow to find one-dimensional outliers
easily, which else would be hidden by points of other clusters. MORe++
does not need any additional input parameters than the number of clus-
ters k used for k-Means, and delivers an intuitively accessible degree
of outlierness. In extensive experiments it performed well compared to
k-Means-- and ORC.

Keywords: Outlier detection · High-dimensional · Histogram-based ·
K-means

1 Introduction

As outlier detection in general delivers valuable results for fraud detection, med-
ical problems, or finding errors in data, most techniques do not regard the
plethora of attributes which is gathered for each data point in modern appli-
cations. An outlier, which is often defined as “an observation which deviates so
much from the other observations as to arouse suspicions that it was generated
by a different mechanism” [14], is more difficult to find in high-dimensional data
than in low-dimensional, since the mechanisms generating data are difficult to
identify in high-dimensional data due to the curse of dimensionality. Thus, most
classic outlier detection algorithms are not applicable to high-dimensional data.
Density based algorithms for example, are not meaningful in high-dimensional
data, which usually is per se sparse. Also angular based outlier factors like, e.g.,
ABOD [18], are not interpretable anymore for high-dimensional data. Moreover,
most of those algorithms do not scale with the number of dimensions.

Thus we introduce MORe++ (k-M eans-based Outlier Removal using k-
Means++), a fast method to score outliers in high-dimensional data. We achieve
scalability w.r.t. the number of dimensions and retain explainability of the scores
by regarding each dimension separately. In contrast to other methods we can
even find clusters or outliers overlapping in some dimensions, since we do not

c© Springer Nature Switzerland AG 2019
G. Amato et al. (Eds.): SISAP 2019, LNCS 11807, pp. 188–202, 2019.
https://doi.org/10.1007/978-3-030-32047-8_17
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Fig. 1. Histogram of complete dataset in black, in contrast to histograms of points
belonging to the same centroid according to k-means in green, yellow and purple.
(Color figure online)

regard all points at once, but only those which are in one cluster according to
k-Means. Using histograms, we accelerate our algorithm even further in regards
to the number of points. Figure 1 shows how overlapping in a dimension prevents
finding outliers if regarding the whole dataset at once, which is why we regard
only a part of the datapoints at once.

Summarizing, our main contributions are:

1. We introduce a meaningful score for outliers in high-dimensional data
2. Our method is fast and scales linearly with the number of dimensions and

points
3. It is based on k-Means and compatible to a lot of k-Means extensions
4. It is easy to implement
5. It is easily parallelizable and suitable for high-dimensional data, since it does

not rely on distance measures operating on the full-dimensional space.

The remainder is structured as follows: in Sect. 2 we give an overview over
other k-Means extensions and outlier detection methods using k-Means or a
histogram-based approach. We also investigate diverse approaches of histogram
segmentation. The complete algorithm is explained in detail in Sect. 3. In Sect. 4
we examine our algorithm regarding a plethora of aspects in overall 40 synthetic
as well as real data experiments. Section 5 concludes this paper giving a short
summary and prospect to promising future work.

2 Related Work

We first give the foundations looking at k-Means Clustering and existing recent
extensions in Sect. 2.1. As there are already several methods combining k-Means
and outlier removal, we give an overview over those in Sect. 2.2 and discuss the
advantages of MORe++ in contrast to them. In Sect. 2.3 we look at histograms
and outlier detection algorithms using them. We note that regarding only the
projections of the complete dataset at once cannot lead to an effective outlier
detection.
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2.1 K-Means Clustering and Extensions

k-Means [19,20] is one of the most famous clustering algorithms and is still fre-
quently used for diverse tasks. Given the number of clusters k, centers are ran-
domly initialized in the original algorithm. All points are assigned to their closest
center and the cluster centers are recomputed. Those two steps are repeated until
no point changes its cluster membership any more and the algorithm converges
against a local minimum of the mean distance from points to their cluster cen-
ters.

There exist several improvements of k-Means. For example, k-Means++ [2]
optimizes the initial cluster centers by regarding the shortest distance to already
chosen cluster centers. We will use this extension for our algorithm MORe++, as
it usually improves the quality of clustering and reduces the variance of results.
Another improvement is k-Median [5], which uses the median instead of the mean
when calculating the new cluster centers to minimize the negative impact of out-
liers. Nevertheless, this comes at the cost of an increased runtime. On the other
hand, kmeans|| [3] reduces runtime by parallelizing k-Means++. Instead of sam-
pling single points for the initialization like k-Means++, O(k) points are sampled
O(log n) times. Also high-dimensional data can be clustered better with diverse
variants of k-Means developed for subspace clustering, like NR-kmeans [22] or
Sub-kmeans [21]. Where Sub-kmeans finds a “clustered” space containing all
structural information and a noise space, NR-kMeans looks for an optimal arbi-
trarily oriented subspace for each partition. Those improvements, of which we
apply only k-Means++ in this paper, are compatible to MORe++ and will be
regarded in future work.

2.2 Outlier Detection and K-Means

There are several algorithms combining k-Means and outlier removal, of which
we introduce the most common ones in the following. In Sect. 4 we will compare
MORe++ to the first both introduced, k-means-- [7] and ORC [13].

k-means-- [7] combines outlier removal and k-Means by alternately remov-
ing outliers and performing k-Means iterations. In every step l points which are
farthest away from their center are removed from the dataset for the next calcu-
lation of cluster centers, where l is given by the user. Even for k = 1, its running
time is O(nd3

), which is infeasible for high-dimensional data.
ORC (Outlier Removal Clustering) [13] assigns an outlyingness factor oi to

every point after a complete pass of k-Means. Points with oi higher than a user
given threshold T are removed from the set of points, and k-Means is performed
again. oi is, similar to k-means--, based on the distance to the nearest cluster
center, and normalized by division by the highest distance between a point and
its center. The algorithm is quite sensitive to the choice of T , and our experiments
will show that ORC cannot handle high dimensional data well.

NEO-K-Means [28] considers outliers and overlapping clusters, for which
it requires two parameters α and β. Using those parameters, it strives for a
“trade-off between a clustering quality measure, overlap among the clusters, and
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non-exhaustiveness (the number of outliers not assigned to any group)” [28]
in every k-Means step. Reaching this trade-off requires iterations until conver-
gence, there seems to be neither an upper bound for the running time, nor do the
authors perform a complexity analysis. The main criterion is again the distance
between points and their closest center, which becomes more and more useless
with increasing number of dimensions.

KMOR [10] uses an additional cluster for all outliers, needing two parameters
to control the number of outliers. A point is considered an outlier if the distance
to all cluster centers is at least γ × davg, which forbids finding local outliers.

Other methods combining k-Means and outlier detection are, e.g., ODC (Out-
lier Detection and Clustering) [1], where outliers are points having a distance to
their cluster centers larger than p times the average distance. CBOD [17] and
[16] are two-stage algorithms, where [16] additionally creates a minimum span-
ning tree on which they work on. [29] is a three stage algorithm first finding local
outliers, then global outliers, and lastly combining clusters with similar densities
and overlapping clusters.

All mentioned algorithms have in common that they rely on distance mea-
sures in the full-dimensional space, usually the Euclidean distance. As with
increasing number of dimensions, all distances become similar due to the curse
of dimensionality [4], the results get distorted for high-dimensional data. In
contrast, MORe++ does not need any distance measure working on high-
dimensional space. Additionally, due to the separate consideration of each dimen-
sion, it is already faster than these methods plus it is easy parallelizable.

2.3 Outlier Detection with Histograms

As using histograms is an established way to simplify data, several construction
possibilities regarding the bin-width and bin-quantity exist: One of the most
common possibilities, Sturges’ rule [15], tends to oversmooth histograms and
does not work well with large datasets and not normally distributed data. Other
common rules are Scott’s rule [26] and Freedman and Diaconis’s rule [9], which
are both better for larger samples. MORe++ uses Scott’s rule which suggests h
as the number of bins: h = 3.45σ̂

n1/3 , where σ̂ is the sample standard deviation.
There are methods using histograms to find outliers: HBOS [12] constructs

a histogram for each dimension and calculates an anomaly score for each data
instance using the inverse estimated densities and supposing feature indepen-
dence. [11] finds sparse regions in the dataset using histograms and a nearest
neighbour approach. Based on those regions, local outlier candidates are identi-
fied, which can be removed from the set of outliers in a later optional reconsid-
eration phase.

Looking at higher dimensional datasets and subspace clustering, objects may
belong to different clusters in different subspaces, thus they could be outliers in
some subspaces, but not in others. OutRank [27] addresses this issue by intro-
ducing a “degree of outlierness”, the outlier rank. With that, points which are
only in a subset of attributes anomalies, can also be detected as outliers [23].
In contrast, many outlier detection algorithms, like for example, LOCI (local
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correlation integral) [24], look for outliers in the full dimensional space, or even
micro-clusters. LOF [6], the local outlier factor, is another approach return-
ing the degree of outlierness. It regards the isolation of a point with respect
to the surrounding neighborhood, and was even extended for high-dimensional
data [18,30].

3 MORe++

In the following we describe and analyze the outlier detection algorithm
MORe++ in detail: Sect. 3.1 gives an overview, Sect. 3.2 explains how we find
one-dimensional outliers in histograms, and Sect. 3.3 gives a complexity analysis.

3.1 Outline of MORe++

Based on the idea already shown in Fig. 1, MORe++ regards the points of
every k-Means cluster separately. Like that, one-dimensional projections already
enable the detection of outliers. Section 3.2 explains how to get one-dimensional
outliers based on the according histogram. The higher the number of dimensions
in which a point is considered an outlier, the higher is its outlier score. Thus,
MORe++ finds a degree of outlierness. Algorithm1 describes our approach in
detail: on the basis of the clustering returned by k-Means++, we build a his-
togram for every dimension for every cluster. The method calculate1dOutliers
returns one-dimensional outliers for each dimension and each cluster given the
according histogram, as explained in Sect. 3.2. The outlier score is the relation
between the number of dimensions in which the point is considered a (one-
dimensional) outlier and the total number of dimensions. Users can now either
use this degree of outlierness, or give a threshold ost (outlier score threshold), so
that points with an outlier score higher than ost are outliers in the full dimen-
sional space. This approach delivers several advantages:

1. Our distance measure does not get skewed with increasing number of dimen-
sions, as we regard every dimension separately

2. We can easily parallelize the calculation of outliers as we regard all clusters
and also all dimensions independently. Thus, MORe++ is suitable for many
points as well as for high- dimensional data.

3. Users do not have to know the number of outliers beforehand
4. A degree of outlierness gives more information than a hard classification
5. The threshold users can give is quite intuitive, as it is simply the minimal

percentage of dimensions in which a point should be a one-dimensional outlier.
As experiments will show, MORe++ is quite robust w.r.t. ost (we use the
same value ost = 0.2 for 35 out of 40 experiments in total), thus a hard
classification using a fixed ost is also a promising idea for future work

6. MORe++ is very fast with only O(nd), where, e.g., k-means-- is exponential.
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Algorithm 1. Pseudo-Code of MORe++

Data: Data X, number of clusters k
Result: Clustering labels, outlierScore for data points

1 foreach x ∈ X do
2 numberOfOutlierDims[x] ← 0 ;
3 end
4 foreach c ∈ clusters do
5 foreach d ∈ range(dimensions) do
6 Build histogram;
7 1dOutliers ← calculate1dOutliers(histogram);
8 foreach 1dOutlier ∈ 1dOutliers do
9 numberOfOutlierDims[1dOutlier] + +;

10 end

11 end

12 end
13 foreach x ∈ X do
14 outlierScore ← numberOfOutlierDims[x]/dimensions ;
15 end

3.2 Detecting One-Dimensional Outliers in Histograms

To detect one-dimensional outliers in histograms, it is important that we only
look at points assigned to one cluster by k-Means. Else, points of other clusters
would cover outliers in the one-dimensional projections, as Fig. 1 already showed:
see for example the outlier in the bottom middle, which is later in the first, purple
cluster. Using histograms of the complete data, it is covered in both dimensions
by the purple resp. the yellow cluster. Looking at the histogram of only the
points assigned to the first (purple) cluster for dimension 1 (horizontal), it can
be detected quite easily using the following approach:

If there are empty bins in the histogram, as shown in Fig. 2 on the left, then
we partition the data along these empty bins. If there are no empty bins, we
split the data where the height of the bins changes most from one bin to the
next, relatively to the higher bin of both, as can be seen in Fig. 2 on the right.
If there are several changes s0, ..., sj which are (relatively) equally high, then we
perform the split in the middle at s�j/2�. After the dataset is partitioned, all
points which are not in the partition containing the majority of the points are
marked as outliers for this dimension.

3.3 Complexity Analysis

For n points of dimensionality d the complexity of k-Means itself is O(nkdi)
with i the number of iterations until convergence and k the number of clusters.
We build a histogram for every cluster and every dimension, which sums up to
O(kdb) for histograms with b < n bins. Using Scott’s rule for the construction of

histograms (see Sect. 2.3), b ∈ O(n− 1
3 ). One-dimensional outliers are calculated
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Fig. 2. Outliers (marked red) are detected using either empty bins or the highest
relative difference between two adjacent bins. (Color figure online)

in O(b+n) ⊆ O(n) and the calculation of all outlier scores can be done in O(nd).

Thus, MORe++ lies with O(nd+kdn− 1
3 ) ⊆ O(nd) in a smaller complexity class

than k-Means itself and is only linear in the number of dimensions as well as in
the number of points. Furthermore, it is easily parallelizable.

In contrast, the running time of k-means– is with O(nd3) much larger. ORC,
which delivers clearly worse results than MORe++, needs to run j iterations of
k-Means alternately with determining the outlyingness factor, which is in O(nd),
resulting in a total runtime of O(j ∗ (nkdi + nd)) ⊂ O(j ∗ nkdi).

4 Experiments
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Fig. 3. 2d-projection of the base
case experiment

We performed several experiments regarding
the quality of outlier detection compared to
ORC and k-Means-- (see Sect. 2), based on the
ROC AUC (Area Under the Receiver Operat-
ing Characteristic Curve) value [8]1 and F1-
measure; due to the lack of space and a high
similarity of the results we only show the former
here. All synthetic datasets were constructed
using cluster centers drawn from a uniform dis-
tribution function and generating Gaussian dis-
tributed clusters around them. Outliers were
added following a uniform distribution function.

In Sect. 4.1 we examine the influence of the
following aspects onto the results of MORe++: size of dataset n, number of
dimensions dim, percentage of outliers out, variance of clusters var, number of
clusters k, and percentage of additional noise dimensions dimn. For that, we
created a base-case shown in Fig. 3 from which we kept all parameters but one
at a time to investigate MORe++’s behaviour regarding that one aspect. In
Sect. 4.2 we regard the behaviour of the algorithms on some real world datasets.
They show, that even though MORe++ and k-Means-- deliver similar results

1 Reminder: ROC AUC ranges from 0 to 1, where a perfect outlier prediction is 1. It
regards the true positive rate vs. false positive rate. If ROC AUC is 0.5, the model
has no class separation capacity.
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in most of the previous test series, MORe++ clearly outperforms k-Means-- for
real world data.

4.1 Influence of Various Aspects

To evaluate the behaviour of MORe++ regarding several aspects, we created a
base case experiment as explained above with the following parameters: size of
dataset n = 1000, number of dimensions dim = 5, percentage of outliers out =
5%, variance of clusters var = 1.2, number of clusters k = 5, and percentage of
additional noise dimensions dimn = 0. Figure 3 shows two arbitrary dimensions
of the base-case, where the ground truth outliers are marked by red crosses and
clusters by colored shapes other than crosses. In each test series we changed
exactly one parameter of that base case and compared the results to those of
ORC and k-means--, where the base case is always marked with box brackets
in the x-axis. To improve comparability, we also kept the (initially randomly
chosen) cluster centers of the generated clusters the same, where possible.

As k-means-- is non-deterministic, we took the average of 100 executions.
MORe++ and ORC are deterministic due to the use of cluster centers as in
k-Means++ [2]. For each test series and each algorithm, we chose the parameter
resulting in the best ROC AUC value after testing values from 0 to 1 in steps
of 0.1 for the parameter ost in MORe++ and T in ORC, which resulted for
both parameters and most of the test series in a value of 0.2, otherwise the best
parameter settings are given in the according experiments. For k-Means-- the
parameter l was taken from the ground truth (i.e. l = 50 for all experiments but
the ones were the percentage of outliers or the size of the dataset was changed).

Experiments Regarding Number of Points. To examine MORe++’s
behaviour with respect to the size of the dataset, we tested the base case with
different values for the number of points n = 500, 1000, 2500, 5000, 10000, 100000.
The results can be seen in Fig. 4 and show that MORe is better or comparable
to ORC and k-Means-- in most cases. For 10000 points and only 5 dimensions,
relatively many outliers are overlapping with the cluster itself, which explains
the slight decline of results for a very high ratio between dimensions and points.
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Fig. 4. ROC AUC Score for increasing number of points n
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As MORe++ was developed for high-dimensional data, and especially for a high
dimension to data ratio, this slight decline is predictable as well as manageable.

Experiments Regarding Number of Dimensions. We increased the num-
ber of dimensions up to 3000, which is a ratio of dimensions to data points of
3. For a lot of use cases, like data mining of textual data or image process-
ing, the number of dimensions usually exceeds the number of data points. That
often constitutes a problem for outlier detection algorithms as ORC: for a higher
dimensionality than 30, the results of ORC2, like it can be seen in Fig. 5 worsen
a lot and from 1000 dimensions on, a constant ROC AUC of 0.6 is reached,
which is only slightly better than guessing (which would be a ROC AUC of 0.5).
k-Means-- on the other hand performs effectively as good as MORe++, and for
both of them there is no decrease of quality subject to the dimensionality; they
both perfom almost perfectly in high-dimensional space. For dim ≥ 5, the ROC
AUC for MORe++ is always at least 0.99, for k-Means-- the same holds for
dim ≥ 30. Note, that all clusters in this test series are in the full dimensional
space, thus very similar results of MORe++ and k-Means-- were expectable.

3 [5] 8 10 30 50 100 500 1000 2000 3000

0

0.5

1

R
O
C

A
U
C

MORe++ ORC k-means--

Fig. 5. ROC AUC Score for increasing number of dimensions dim

Experiments Regarding Percentage of Outliers. As Fig. 6 shows,
MORe++ becomes less accurate for increasing number of outliers as well as
ORC. A high percentage of outliers is difficult to handle well using our approach
of finding one-dimensional outliers in histograms, as high amounts of outliers
smoothen the one-dimensional histograms. But those high percentages of outliers
constitute rather noise than some interesting, outlying points, which MORe++
aims to find, thus, this is more a question of where “outlierness” ends and “noise”
starts.

2 Best values for T : 0.8 for dim = {50, 100}, 0.9 for dim = {100, 500}, else T = 0.2.
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Fig. 6. ROC AUC Score for different outlier percentages

Experiments Regarding Variance of Clusters. For different variances
var = 0.7, 1.0, 1.2, 1.5, 2.0 of the clusters MORe++ reached almost constant
results, where ORC and k-Means-- get noteably worse with increasing variance,
as Fig. 7 shows. That is, because with increasing variance the (full-dimensional)
distances from points to their centers increase, too, thus they are more similar
to the distances from outliers to cluster centers. As MORe++ does not rely on
distinguishing high-dimensional distances of non-outliers and outliers to cluster
centers, it is able to cope very well with diverse variances, in contrast to the
comparative methods.
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Fig. 7. ROC AUC Score for different cluster variances var

Experiments Regarding Number of Clusters. With increasing number of
clusters, there are more overlapping clusters, thus k-Means and also all of the
tested outlier detection algorithms3 become worse, as can be seen in Fig. 8. But
in contrast to k-means--, MORe++ gains an advantage, as the dataset is divided
into more subsets (clusters found by k-Means) on which the outlier detection is
performed separately. Thus, the outliers become more obvious in those smaller
subsets, which counteracts the before mentioned negative effects. That results
in a relative improvement to k-means--, although the quality of outlier detection

3 Best values for T : 0.4 for k = {8, 10}, 0.6 for k = {25, 50}, else T = 0.2.
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decreases noteably even for MORe++ for datasets with a higher number of
clusters than k ≥ 25.
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Fig. 8. ROC AUC Score for different numbers of clusters k

Experiments Regarding Noise Dimensions. Subspace clustering is based
on the assumption, that with increasing number of dimensions more and more
dimensions become “noise dimensions”. According to that, we added noisy
dimensions to our dataset, for which the results can be seen in Fig. 94. With
an increase of noise dimensions, distance measures in the full-dimensional space
become more and more meaningless according to the curse of dimensionality,
and the noise of some dimensions distorts the outlierness in other dimensions for
algorithms using distances on the full-dimensional space. As MORe++ regards
every dimension separately and counts the number of dimensions in which a
point is an outlier, it is clearly more robust to additional noise dimension than
its competitors.
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Fig. 9. ROC AUC Score for different number of noise dimensions

4 Best ROC AUC values for ORC were achieved with T = 0.5 for dimn = 0.2, T = 0.7
for dimn = 1.0, and T = 0.6 else. For MORe++ ost = 0.3 delivered best results for
dimn = {0.8, 1.0}, else ost = 0.2.
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Evaluation of Systematic Experiments. The biggest difference of results
could be seen for high-dimensional data, where ORC was clearly outperformed
by MORe++ and k-Means--. As many results seem to be similar or only slightly
better than k-Means--, we want to emphasize the difference in runtime, where
MORe++ only needs (including running the k-Means) O(nkdi) and k-Means--

needs O(nd3

). Further, MORe++ persuaded especially in the following points:

– For datasets of high dimensionality
– For datasets with clusters of higher variances
– For datasets with noise dimensions

4.2 Real World Datasets

We tested some real world datsets with different properties: sizes ranged between
148 and almost 95000, dimensionalities between 3 and 166, percentage of outliers
between 0.4 and 7 and number of clusters between 1 and 5. Table 1 gives an
overview over size, number (and percentage) of outliers, and number of clusters
of the real world datasets which we used and which can be found in the ODDS
library [25]. Table 2 gives the parameters chosen for all algorithms, where we
used the parameter resulting in the best ROC AUC, resp. the ground truth
value as number of outliers l for k-means--. For MORe++ and ORC we tested
values between 0 and 1 in steps of 0.1. As in the previous section, we took the
average of 100 executions of k-means-- due to its non-determinism. Figure 10
shows the results of the experiments: for Lympho, Shuttle, and Smtp MORe++
clearly outperforms both other algorithms. Glass is an interesting experiment, as
ORC is the best performing algorithm here, followed by MORe++. For Musk,
MORe++ achieved the best results, closely followed by k-means-- and ORC. So,
even though MORe++ performed quite similar to k-means-- in most cases in
the previous section, it seems to be more suitable for real world scenarios plus it
is by far faster. ORC performed well on the Glass dataset, but cannot deal with
very high number of dimensions as shown in Sect. 4.1. Thus, for outlier detection
in high-dimensional datasets, MORe++ is preferable.

Table 1. Overview of real world
datasets

Dataset n dim outlier k

Glass 214 9 9 (4.2%) 5

Lympho 148 18 6 (4.1%) 2

Musk 3062 166 97 (3.2%) 3

Shuttle 49097 9 3511 (7%) 1

Smtp 95156 3 2211 (0.4%) 1

Table 2. Chosen parameters for real
world datasets

MORe++ ORC k-means–

ost T l

Glass 0.1 0.3 9

Lympho 0.4 0.7 6

Musk 0.3 0.7 97

Shuttle 0.3 0.3 3511

Smtp 0.4 0.5 2211
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Fig. 10. ROC AUC for real world datasets

5 Conclusion

In conclusion we developed the outlier detection algorithm MORe++, which is
based on histograms of one-dimensional projections of separately regarded k-
Means clusters. By projecting onto single dimensions, we can circumvent some
aspects of the curse of dimensionality: neither do we need a distance measure
working in high-dimensional space nor is our runtime exponential in the number
of dimensions. Users do not have to know the number of outliers beforehand and
local outliers can easily be detected. The algorithm is easily parallelizable and
easy to implement. A plethora of variations and improvements of k-Means could
be used to further improve our already good results, and also using another
algorithm than k-Means as foundation for the partitioning of the data could be
tried.
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Abstract. The amount of data increases steadily, and yet most cluster-
ing algorithms perform complex computations for every single data point.
Furthermore, Euclidean distance which is used for most of the cluster-
ing algorithms is often not the best choice for datasets with arbitrarily
shaped clusters or such with high dimensionality. Based on ABOD, we
introduce ABC, the first angle-based clustering method. The algorithm
first identifies a small part of the data as border points of clusters based
on the angle between their neighbors. Those few border points can, with
some adjustments, be clustered with well-known clustering algorithms
like hierarchical clustering with single linkage or DBSCAN. Residual
points can quickly and easily be assigned to the cluster of their nearest
border point, so the overall runtime is heavily reduced while the results
improve or remain similar.

1 Introduction

If there are clusters in a dataset, most of the points lie rather in the middle
of a cluster than at its border, and if the clusters of the border points are
known, the assignment of inner points is easy and fast using a simple 1NN
classification. To identify border points we suggest an angle based approach
inspired by Angle-Based Outlier Detection (ABOD) [4], which is robust even for
higher dimensionalities.

Our new clustering method ABC (Angle-Based Clustering), consists of three
steps: First, by assessing the angles between difference vectors of points to their
kNN, we can reliably identify points located at the boundaries of clusters. Sec-
ondly, we apply existing clustering techniques on those border points only, which
allows us to reduce the number of points to be clustered severely. Finally, inner
points are assigned to the same cluster as their nearest border point. As clus-
tering has a higher complexity than the angle-based border point extraction as
well as inner point assignment, the total runtime is dramatically reduced by
clustering only a small fraction of all data points.

Our main contributions are as follows:

– Based on angles between a point and its kNN we detect the border points
bounding clusters

– We apply adapted versions of DBSCAN and Hierarchical Single-Linkage Clus-
tering on the border points

c© Springer Nature Switzerland AG 2020
S. Satoh et al. (Eds.): SISAP 2020, LNCS 12440, pp. 312–320, 2020.
https://doi.org/10.1007/978-3-030-60936-8_24
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– In experiments we show not only the speedup of algorithms using only the
border points, but also the improvement of results regarding quality

2 Related Work

ABOD [4] was the first algorithm to use angles for outlier detection by regarding
the variance of angles between the difference vectors of a point to all pairs of
other points. Several works extended it regarding, e.g., acceleration [8], streams
[13], and or stability [5]. ABSAD [14] uses angles between points and axis-parallel
lines for an angle-based subspace anomaly detection method.

We could only find one work which uses angles in the field of clustering:
SCUBI [11] combines classical clustering with detecting boundary information
using angles to create a highly scalable clustering scheme. In contrast to our app-
roach, they use the angles only for an approximation to an intrinsically density-
based boundary extraction. Furthermore, we consider the previously calculated
angles also for the clustering step by improving the distance function.

There are diverse approaches to identify border points: density based [11,12],
hull based [7], and graph based [6] . Nevertheless, they lead to problems for higher
dimensionalities, either regarding meaningfulness, or complexity.

3 Mathematical Background

Angles Between Data Points. Angles in a finite-dimensional real Euclidean vec-
tor space VR(� Rd, d ∈ N, d ≥ 2) are defined between any pair of vectors
A,B ∈ VR with:

cosΘ(A,B) =
(A,B)R

|A| |B| , (1)

where (A,B)R =
∑d

k=1 AkBk is the scalar product between the two vectors and

|A| =
√

(A,A)R [9]. For the resulting (real) angle Θ(A,B) the following holds
true: 0 ≤ Θ ≤ π.

Directional Angle and Enclosing Angle. Figure 1 (left) shows the minimal angle
for a point X between two difference vectors to its neighboring points which
“encloses” all other neighboring points (green shape). We call it the enclosing
angle Θenc of a point. One way to calculate the enclosing angle in two dimensions
requires to calculate the directional angle between two vectors. In a 2d vector

space with vectors
−−→
XY = (u1, u2),

−−→
XZ = (v1, v2) ∈ V2, the counter-clockwise

directional angle from
−−→
XY to

−−→
XZ is ΘY Z(X) = atan2(u2, u1)−atan2(v2, v1). If

the resulting Θdir is negative, we add 2π to receive only positive values between
0 and 2π. Figure 1 shows an example directional angle Θdir. Note, that if the
directional angle is less than π, it will be equal to the cosine angle.

To obtain the enclosing angle of a point X, we calculate the directional angle
between difference vectors to all pairs of neighbors and differentiate two cases:
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First, if ∃Y ∈ kNN(X) : ∀Z ∈ kNN(X) : ΘY Z ≥ π as illustrated in Fig. 1 (mid-
dle), the enclosing angle can be calculated as 2π − min({ΘY Z |Y,Z ∈ kNN(X)}).
Otherwise, the enclosing angle can be calculated as 2π − max({min({ΘY Z |Z ∈
kNN(X)})|Y ∈ kNN(X)}), as shown in Fig. 1 (right). We can use the concept
behind enclosing angle to characterize the relative position of neighboring points.
Points in the center of a cluster tend to have much larger enclosing angles.

Fig. 1. Left: Enclosing Angle θenc and counter-clockwise Directional Angle θdir. Middle
and Right: Example calculation of the enclosing angle θenc. (Color figure online)

4 ABC: Angle-Based Clustering Approach

ABC consists of three steps: First we calculate an angle-based border degree,
see Sect. 4.1. The top β points with the highest border degree are the border
points. Secondly, we cluster the border points using either an adapted DBSCAN
or Hierarchical-Single Linkage Clustering, see Sect. 4.2. Finally, inner non-border
points are assigned to cluster of their nearest border point. With a k-d tree this
can be done in O(n log n).

4.1 Border Point Detection Based on Enclosing Angles

Because the nearest neighbors are all located in a similar direction for border
points, their enclosing angle (see Sect. 3) tends to be much smaller compared
to inner points. As we work with higher dimensionalities we use the following
approximation: The enclosing angle based border degree is calculated as the max-
imum of all angles between the vector formed by query point to the kNN-mean
and the vector from query point to one of the neighbors. Figure 2 (left) shows a
simplified 2d example. The approximated enclosing angle θenc for border points
tends to be much smaller than for inner points. The green shape encompasses
the enclosed points.

The complete enclosing angle based border point extraction process proceeds
as follows: For each point the kNN, the average distance to them, and the enclos-
ing angles are calculated. For the direction of a border point, we use the vector
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from the query point to the kNN-mean. Border points are then sorted by border
degree and the β · n points with the highest border degree are returned as the
Boundary. Figure 2 (middle and right) shows an example on a two dimensional
dataset, where darker points imply a higher border degree.

Parameter Analysis. Small values for k can lead to inner points being falsely
identified as border points, high values can lead to inter-cluster border points not
being recognized as such, i.e., we only find the global boundary of all clusters.
For datasets with many close clusters a small k should be preferred, while far
separated clusters yield better results with a larger k.

The parameter β determines the separation threshold between border and
inner points. Too high values yield more border points leading to a longer exe-
cution time of the subsequent clustering step. Too small values will fail to cor-
rectly identify enough cluster boundaries. In general, we have found values for
β between 5–20% to yield optimal results.

4.2 ABC-DBSCAN/ABC-Hierarchical-SL

To cluster the boundary points we can use an adaption of DBSCAN [1] in which
we regard also the direction of each border point to its neighbors. As border
points that lie close to each other but have opposing directions are unlikely
to belong to the same cluster, we use the following new the distance function
instead of the Euclidean:

Definition 1. Direction-Angle modified Distance Function
Given two border points A,B ∈ D and their respective direction vectors a, b
as well as the Euclidean distance d(A,B)eucl between the points and the angle
Θ(A,B) between their direction vectors. Then, given a direction-angle modifier
σmod , the direction-angle modified distance d(A,B)mod is calculated as:

d(A,B)mod = d(A,B)eucl ∗ (1 + (
σmod − 1

π
) ∗ cosΘ(A,B)) (2)

A larger angle between the direction vectors a and b results in a larger
modified distance, where σmod controls the maximum. A higher σmod leads to
more influence of direction-angle similarity compared to the Euclidean distance.
When σmod = 1, then d(A,B)mod = d(A,B)eucl. A value of σmod < 1 increases
the distance between points with different angle. Note, that this distance function
does not represent a metric, since the triangle inequality does not always hold.

Another well suited approach to cluster border points is hierarchical agglom-
erative clustering using single linkage (Hierarchical-SL) [3]. Again with a com-
plexity of O(n2), potential time savings using Angle-Based border point cluster-
ing are high. Also here we use the modified distance as described in Definition 1.
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Fig. 2. Left: Approximated Enclosing Angles for border point and inner point. The
red cross marks the mean of the blue kNN of the regarded gray point. Right: Border
degree and selected border points (k = 15, β = 0.2). (Color figure online)

Complexity Analysis. Calculating the border degree requires an kNN query with
complexity O(n log n) using a k-d tree [10]. The border degree calculation itself
has complexity O(n∗k), as an angle between each nearest neighbor of each point
and the mean of all its kNN is calculated. The sorting and selection of border
points is O(n log n). In total, we get O(n log n+nk). As k is typically very small
(k ≤ log n) the overall complexity is then O(n log n).

5 Experiments and Results

The following Sect. 5.1 covers results of experiments analyzing the runtime of
algorithms. The quality on different kinds of datasets, both synthetic and real,
are compared in Sect. 5.2 based on the Adjusted Rand Index (ARI).

5.1 Runtime

As ABC only requires to cluster a small fraction of all data points it is highly scal-
able and well suited for big datasets. Figure 3 (left) summarizes the experiments
on how long each of the main three steps (border degree calculation, border
point clustering and inner point assignment) take for an increasing number of
points. As clustering is the most time consuming task with growing number of
observations, reducing the amount of points having to be clustered significantly
saves time.

As seen in Fig. 3 (right), ABC-DBSCAN outperforms the naive implemen-
tation of DBSCAN with time complexity O(n2). Even with the use of optimized
index structures, the complexity of DBSCAN cannot be reduced below O(n4/3)
for higher dimensional data [2]. Thus, for large enough datasets, the ABC version
with O(n log n) outperforms even optimized variants of DBSCAN.
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Fig. 3. Left: ABC-DBSCAN components runtime with d = 5, β = 0.2, k = 10. Right:
Total runtime of DBSCAN and ABC-DBSCAN.

5.2 Quality

Datasets. First, we compare the quality of results on synthetic Gaussian data
while modifying either cluster count, dimension count or standard deviation
(the last one was left out due to the lack of space, even though ABC constantly
outperformed the competitors slightly). The default dataset consists of n =1000
data points, c =5 clusters, d = 5 dimensions and a standard deviation σ = 0.1.
Then, we test the algorithms on synthetic complex shaped data sets with and
without noise. Finally, we investigate how they perform on real data sets.

Algorithms. We compare ABC-DBSCAN to the classic DBSCAN. Addition-
ally, we compare it to ABC-SCUBI-DBSCAN, for which we adapt the idea
of [11] and exclude a point from the DBSCAN ε-range if its angle is greater than
π/2 (instead of our combined distance measure), but still use our border-degree
measurement. Then, we compare the ABC-Hierarchical-SL approach to the
classic Hierarchical-SL algorithm.

For ABC-DBSCAN and DBSCAN the same range of parameters is tested
and the best result is kept. ABC-Hierarchical-SL and Hierarchical-SL get the
correct amount of clusters given as the maximum cluster parameter. For the
border point calculation, we used parameters β = 0.3 and k = 15. For the
direction-angle modifier for ABC-DBSCAN and ABC-Hierarchical, we tested
values σmod ∈ {0.1, 0.2, 0.3, 0.5, 1, 2, 5} for different weightings of the angle com-
pared to distance and kept the best result.

5.3 Synthetic Gaussian Distributed Data

Based on the dataset described above we varied the number of clusters c from 1
to 500, as shown in Fig. 4 (top). ABC-Hierarchical-SL outperforms the classical
Hierarchical-SL, especially for higher c, where the latter only performs poorly.
For the DBSCAN versions, the overall performance decreases with increasing c,
but the ABC versions yield constantly better results than the original DBSCAN.



318 A. Beer et al.

For varying dimensionalities d ∈ [2, 1000]. ABC-Hierarchical-SL as well as
Hierarchical-SL converge towards an ARI of 1. The ABC version works slightly
better even for small d. All DBSCAN based algorithms suffer from the “curse of
dimensionality”, dropping to an ARI of 0 for high d ≥ 70. ABC-DBSCAN still
performs well for a much higher d than the classic DBSCAN.

5.4 Benchmark Datasets

To evaluate more complex cluster shapes, we also tested our algorithms with
the Complex9 dataset and its noisy version Cluto-t7. Both contain nine dif-
ferent types of clusters including blobs, moons and anisotropically distributed
shapes. As depicted in Fig. 4 (bottom), ABC-Hierarchical-SL achieves near per-
fect results and outperforms the original, since the single link effect connecting
two different Hierarchical-SL clusters is prevented by using our adapted distance
measure. ABC-DBSCAN and ABC-SCUBI-DBSCAN are slightly outperformed
by the original DBSCAN. In such cases, ABC could still be chosen with a trade-
off between a huge improvement of the runtime and a rather small decrease of
the quality. Results for the noisy dataset Cluto-t7 show similar behavior, except
for a significant improvement from ABC-Hierarchical-SL over the original.

Finally, we applied all algorithms on the real datasets Iris, Seed, and Ecoli
from the UCI Machine Learning Repository (http://archive.ics.uci.edu/ml). In
summary, the ABC versions performed at least comparatively well, in many
cases even better than the original, as shown exemplarily in Fig. 4.

Fig. 4. Top: ARI of synthetic Gaussian distributed data for increasing number of clus-
ters Bottom: ARI of Complex9 (left), Noisy Cluto-t7 (middle) and Ecoli (right)
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6 Conclusion

We developed ABC, an angle-based clustering method, which is based on com-
mon clustering algorithms like DBSCAN and hierarchical Single-Link clustering,
but many times faster as only the few cluster border points, have to be clus-
tered by the respective algorithm. The points lying in the middle of a cluster can
easily be assigned to the cluster of their nearest border point. We developed a
method to detect those border points based on the angle enclosing their nearest
neighbors, which is significantly smaller for points bordering a cluster than for
those lying in the inner part. Experiments show that the results are similar or
slightly better than those of the original algorithms on synthetic as well as on
real world data.

Acknowledgments. This work has been funded by the German Federal Ministry of
Education and Research (BMBF) under Grant No. 01IS18036A. The authors of this
work take full responsibilities for its content.
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ABSTRACT
As data processing techniques get more and more sophisticated
every day, many of us researchers often get lost in the details and
subtleties of the algorithms we are developing and far too easily
seem to forget to look also at the very first steps of every algorithm:
the input of the data. Since there are plenty of library functions
for this task, we indeed do not have to think about this part of
the pipeline anymore. But maybe we should. All data is stored and
loaded into a program in some order. In this vision paper we study
how ignoring this order can (1) lead to performance issues and (2)
make research results unreproducible. We furthermore examine
desirable properties of a data ordering and why current approaches
are often not suited to tackle the two mentioned problems.

CCS CONCEPTS
•Computingmethodologies→Ontology engineering; •General
and reference → Measurement;

KEYWORDS
Visionary, Ordering, Data Input, Uniqueness, Reproducibility

1 INTRODUCTION
Data is everywhere. We live in the age of data and most readers
of this vision paper work with data every day. Data comes in all
shapes and sizes, and humans try to gain knowledge from it. We
apply classification, clustering, outlier detection, and many others
algorithms to it and develop new tools every day. The questions we
try to answer and the approaches we come up with are as diverse as
the data itself. But all algorithms we have developed so far have one
thing in common that rarely gets the attention it should. Discussion
about algorithms is so centered around results and computational
performance that the very beginning of every algorithm is quite
often simply forgotten: The fundamental step of storing the data
and presenting it to the algorithm, which is often not made by the
researcher using the data, but by the one who collected the data,
who wrote the preprocessing function or the function to load the
data into main memory.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SSDBM 2020, July 7–9, 2020, Vienna, Austria
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
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Figure 1: Adjacency matrices of a synthetic graph with dif-
ferently ordered nodes.

However, this step is crucial not only for the performance, but
also for the result of an algorithm, as Figure 3 illustrates. That
phenomenon already occurs with simple algorithms and algorithm
primitives like, e.g., k-NN-based algorithms. Here it can happen
that several points have the same distance to a query point P and
that the set of the k nearest neighbors depends on the tie-break
rule. In this case the scikit implementation [4] still returns exactly
k points, and bases the decision which points to discard on the
ordering of the data points. Similar problems can occur in many
other popular algorithms, too. In the field of clustering alone it
encompasses algorithms like DBSCAN [13], k-Means [22], or ag-
glomerative hierarchical clustering [17].

Randomly instead of deterministically deciding how to organize
the data will also most likely not result in an ordering with optimal
performance for the task at hand, since, based on this decision,
datasets can have vastly different structural properties; see Figures
1 and 2. Thus, we want to encourage research on orderings of data,
in more detail, we want to encourage finding solutions to several
different aspects connected to orderings of data:

(1) A unique ordering for tabular data, which is especially inter-
esting for high-dimensional data, as well as a unique ordering
for the nodes of a graph

(2) A measure for the orderliness of data. That can either depend
on how well suited an ordering is for the subsequent task,
or how “close” it is to a unique ordering.

Section 2 discusses these issues in more detail. In Section 3 we
develop approaches how to overcome them. We extract the need of
an internal quality measure for orders and define the essential con-
ditions of such a measure. In Section 4 we give an overview over the
first steps that have already been made in this direction. Section 5
puts data orderings in context to several other research areas. Sec-
tion 6 concludes this vision paper with a summary of the questions
we rate as important and promising for further investigation.



SSDBM 2020, July 7–9, 2020, Vienna, Austria A. Beer et al.

Figure 2: Graph of the social network “Strike” [11, 23]: Ran-
domly ordered in a circle on the left, ordered by their sim-
ilarity according to [8] with colors matching the ground
truth on the right.

Figure 3: Different orderings of the same data can lead to
different results when the same algorithm is applied to it.

2 THE PROBLEM
Not considering the ordering of the data objects one feeds to an
algorithm has the major drawback of potentially making the out-
put as well as the runtime of the algorithm non-deterministic, as
Figure 3 illustrates. In the first part of this section we focus on the
reproducibility in regards of research results and in the second part
we address the variance of runtimes, as consistent runtimes are of
high importance in various domains as, e.g., autonomous driving
and other real-time applications.

Reproducibility. In the past years the problem of reproducibil-
ity of research results in computer science has received increasing
attentionwith top-tier conferences awarding prices for reproducibil-
ity [3] or hosting reproducibility workshops [6], and universities
trying to reproduce results at a large scale [5]. One of the reasons
for these efforts is that especially in machine learning, theory is
lacking behind the state-of-the-art, so validity and performance of
many methods is only proven via experiments.

Randomness in algorithms can have a huge influence not only
on the running time, but also on the output of an algorithm [14,
Fig. 5] (consider, e.g., the case of training a non-convex machine
learning model with several local minima). Addressing this problem
by fixing a random seed alone is not sufficient; one also needs to
fix the data ordering.

Performance. Physically organizing the data in a way that best
fits the access patterns is a problem with a long history in database
research [19, 27, 29]. The common idea is to exploit the locality

of reference present in many applications [12]. In the case of data
ordering, the spatial locality of reference is of particular interest. A
simple example is breadth first search, where the nodes of a graph
that are connected to each other are accessed shortly after each
other, as well as nodes having the same depth with respect to the
root node. To achieve optimal performance, such elements that are
frequently accessed together or right after each other should also
be close to each other on the physical storage. More concretely, it
should be more efficient to access them sequentially — potentially
reading a small amount of unwanted data in addition — than via
random access. Sequential access is not only far more efficient
for hard disks, but also for SSDs [9], eMMCs [20] and DRAM [16,
Page 62]. Especially for column-store DBS, ordering of data plays
a central role for the performance, like, e.g., when using holistic
indexing [26].

Mathematical Formulation. Let D be the set of objects of a cer-
tain class, e.g., graphs on n unlabeled vertices. Let R be the set of
representation of these objects of a certain type, e.g., the set of all
n × n adjacency matrices. Then there exists an injective mapping
from R to D (each adjacency matrix corresponds to exactly one
graph). The inverse mapping, however, in many cases is not well-
defined, since there can be many different representations of the
same mathematical object (consider an adjacency matrix that only
differs from another one in the order of the vertices).

3 HOW TO APPROACH THE PROBLEM
To remove the non-determinism inherent in all algorithms that
work with non-unique representations of data, one has to define
an injective mapping from the set of objects D to the set of repre-
sentations R. Since the representations that algorithms work with
are typically bit strings that list the elements that D consists of in a
certain order, this means defining a unique ordering.

There are "better" or "worse" orderings. Depending on the appli-
cation, different properties may be desirable. Two examples are:

• Points or nodes that are similar to each other should oc-
cur close together. Orderings of this type can, for example,
efficiently support classic clustering.

• Points or nodes with similar roles, like, e.g., points in the
middle of a cluster or hubs in a graph, should occur close
together. Orders like these could significantly improve speed
and support pruning.

To work towards fulfilling such a property with an ordering, one
needs to quantify it. So on the one hand we need unique repre-
sentations, and on the other hand we need quality measures for
orderings.

Even though many internal as well as external quality mea-
surements for clusters have been developed (already in 1981, [24]
performed a study of thirty internal measures for cluster analy-
sis), so far there are vanishingly few for orderings. And yet quality
measurements for ordering are not only closely related to those for
clusterings, but could also support clustering. A good clustering
implies a partial order on nodes, but the nodes inside a cluster stay
orderless. Vice versa, an ordering of nodes can easily be used to
cluster them, since similar nodes are already close to each other.
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Thus, nodes which are ordered "well" regarding such a quality mea-
surement for ordering build a better foundation for clustering than
those which are ordered "poorly", as, e.g., shown in [8].

Requirements for an Internal Measure of Orderliness. Inspired by
[28], we formulate requirements :

(1) Scale invariance. There shall be no bias against larger or
smaller amounts of data.

(2) The measure should be absolute, i.e., it should be possible to
compare the orderliness of different datasets.

(3) Invariance with respect to language (e.g., regarding the at-
tribute description of a dataset).

When using an ordering as way of improving the performance
of a downstream task, one also has to take into account the time
the ordering itself takes, see Sec. 5. The importance of this, how-
ever, rapidly decreases when the dataset is not used only once, but
either queried many times or distributed in its ordered form, so
that multiple runs of downstream algorithms can profit from the
ordering. In these cases, orderings may be automatically obtained
by analyzing the access patterns of the downstream algorithms on
the dataset at hand, and letting a machine learning model derive a
good data organization strategy automatically. The advantage of
such dataset-specific approaches has recently been demonstrated
for index structures [21].

4 EXISTING SOLUTIONS
There are already some approaches to data ordering, which we will
present here. They all have the drawback that they either do not
maximize a quality measure at all or that this quality measure is
very general and not aimed at a specific goal or adapted to a specific
algorithm. We also note that there are algorithms which order data
in a preprocessing step, thus a certain ordering is obviously impor-
tant for some use-cases. On the other hand an ordering suitable for
many different algorithms is desirable.

Order of Input. The most simple method is to use the order in
which the data is given. Of course this order is typically not optimal
performance-wise, but at least it is unique — if one ensures that
always the same data file is used. But often there are many different
versions of the same data set available, especially of popular ones.
Take for example the graph Zachary’s Karate Club [31], which
can be obtained from [1], [2] and [7], which all use a different
representation. Also, for the same file different representations in
main memory can result depending on how it is read.

4.1 Ordering of Graphs
Order by degree. A straight-forward method many frameworks

use is to order the nodes by their degree. Unfortunately, this is a
non-deterministic order for most graphs, since it is very common
that two or more nodes in a graph have the same degree.

Depth-first and Breadth-first. For depth-first and breadth-first
graph traversal, a root node has to be determined, which already
makes the resulting ordering non-deterministic. The order in which
each node’s neighbors are later visited is also non-deterministic.

Cuthill-McKee. The Cuthill-McKee algorithm [10] orders the
nodes in a way such that the corresponding adjacency matrix is

a band matrix with small bandwidth. For a given ordering π that
assigns integers 1, ...,n to then nodesvi of a graph, the bandwidth is
defined as B = max {|π (vi ) − π (vj )| : vivj ∈ E}, i.e., the maximum
distance of a non-zero entry to the diagonal in the adjacency matrix.
However, the algorithm uses the node degree as one of the ordering
criteria, which is not unique. Thus a tie-break rule must be used,
which can either rely on randomness or on the order in which the
data is presented to the algorithm.

Gscore. In [30] the Gscore, a measure for the closeness of nodes
with many common predecessors, is introduced and an algorithm
given to order the graph in such a way that the score is low. This
is shown to decrease the number of cache misses of several graph
algorithms. However, minimizing the Gscore in NP-hard, so one
can only hope for coming close to the minimum. In addition, as
the orderings introduced earlier, this ordering is agnostic of the
algorithm processing the data further and will thus often not be
able to reach the maximum possible performance improvement an
ordering could give for a specific algorithm.

Edge Length Minimization. One of the most recent orderings is
described in [8], where all nodes of a graph are arranged in a circle
and the optimal ordering is the one with the shortest average length
of edges. Nevertheless, it is neither deterministic nor absolute.

4.2 Ordering of Tabular Data
Even though ordering of non-structured data seems to raise fewer
questions at first, we will see that there are multiple aspects worth
targeting when ordering multidimensional data.

Alphanumerical Sorting. Probably the easiest approach is to order
the data alphanumerically, beginning with the first column, in case
of ties proceeding to the second column and so on. For this we need
to decide on an ordering of the columns. They can of course also be
sorted alphanumerically by the attribute name, but that means that
the ordering of the columns, and thus the ordering of the whole
data, depends on the language in which the attributes are named.
The same can occur when sorting within the attributes if the data
is, e.g., categorical.

Locality Preserving Orderings. There are several orderings that
try to preserve local structures in the data (e.g., Z-order [25] or
Hilbert curve [15]), which can improve access times. When work-
ing in higher dimensionalities, this produces an ordering in which
points that are close in Euclidean distance stay closer to each other
in the ordering than they would using, e.g., alphanumerical sort-
ing. But similar to alphanumerical sorting, the resulting orderings
depend on the ordering of the dimensions, and the performance
improvements are not optimal, since the methods are general and
not specialized to specific algorithms.

Multidimensional scaling. Multidimensional scaling algorithms
map higher dimensional data to a lower dimensional space while
trying to preserve the distances between the points. The most
famous result in this domain is the Johnson-Lindenstrauss Lemma
[18]. When the target dimension is one, those algorithms return an
ordering. However, the fewer dimensions one uses, the worse the
distance preservation guarantees get, and in the extreme case of
one dimension basically no guarantees can be given.
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5 RELATION TO OTHER RESEARCH AREAS
Wewant to point out some connections of ordering to other research
areas, since an exchange between those fields could be very fruitful:

• Anytime algorithms. These are algorithms that can be stopped
at any execution step before having finished and still return
a feasible — though generally not optimal — solution. For
anytime algorithms the order in which data is processed
is crucial for the results obtained in early and intermediate
stages. On one hand, a deeper understanding of the influence
of different properties of the orderings on the workings of al-
gorithms might be obtained by looking at the performance of
anytime algorithms. On the other hand, anytime algorithms
could better predict the quality of intermediate results if
properties of the data ordering were known beforehand.

• Stream processing. In data streams the order of the elements
is fixed and algorithms have to adapt to this. The solutions
in this field might help to determine the robustness of algo-
rithms to different orderings of their inputs.

• Databases. Alphanumerical sorting is frequently applied in
databases, in addition to other techniques such as index struc-
tures, to allow for faster execution of certain queries. Here
the main challenge is to determine for which columns the
overhead of sorting or the creation of an index structure is
justified. This is an interesting, somewhat orthogonal direc-
tion of research, whose results could very well be combined
with new methods for the sorting itself.

6 CONCLUSION
In this vision paper we brought attention to the problem of data
orderings. We illustrated its importance by noting that every data
user is also a data reader, and reading requires an implicit or explicit
ordering of data. We highlighted the often underestimated impact
the ordering can have: it can hinder attempts to reproduce research
results, but also offer an opportunity to improve the performance of
algorithms. Based on these observations, we deduced the necessity
of a quality measure for orderings. Such a measure can not only be
used as an objective function when ordering data, but also help to
make a decision as to whether it is necessary to reorder the data
before further usage or not. We described different goals that one
can aim at with an ordering, as well as the challenges when trying to
achieve such a goal. We furthermore gave an overview over existing
approaches and their drawbacks. We want to encourage research
regarding the ordering of data, in particular in the challenging
area of graphs. We also want to encourage research on the impact
different data orderings have on the behaviour of algorithms.
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ABSTRACT
As the ordering of data, particularly of graphs, can influence the
result of diverse Data Mining tasks performed on it heavily, we in-
troduce the Circle Index, the first internal quality measurement for
orderings of graphs. It is based on a circular arrangement of nodes,
but takes in contrast to similar arrangements from the field of, e.g.,
visual analytics, the edge lengths in this arrangement into account.
Theminimization of the Circle Index leads to an arrangement which
not only offers a simple way to cluster the data using a constrained
MinCut in only linear time, but is also visually convincing. We
developed the clustering algorithm CirClu, which implements this
minimization and MinCut, and compared it with several established
clustering algorithms achieving very good results. Simultaneously
we compared the Circle Index with several internal quality mea-
sures for clusterings. We observed a strong coherence between
the Circle Index and the matching of achieved clusterings to the
respective ground truths in diverse real world datasets.

CCS CONCEPTS
• General and reference → Evaluation; • Theory of compu-
tation → Unsupervised learning and clustering; • Human-
centered computing → Graph drawings;
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1 INTRODUCTION
Clustering, the art of partitioning data s.t. similar elements belong
to the same group, is an established problem for Data Scientists.
In contrast, orderings of data are still a neglected subject, even
though they do not only serve as useful interim step for clustering
algorithms, but also deliver useful information about data, which
a pure partitioning cannot provide. The order of nodes in a graph
can have severe influence on the clustering algorithm performed
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Figure 1: Three of our experiments, sorted randomly vs.
sorted by CirClu aiming for a low Circle Index

on it, and a good ordering enables solving the constrained MinCut
problem in linear time, avoiding the exponential complexity of the
unconstrained MinCut problem.

We introduce a circular embedding of graphs onto the one-
dimensional unit-sphere, which minimizes the edge lengths and
leads to the Circle Index, our novel internal quality measure for
orderings of nodes. Even though circular arrangements of graphs
are quite common in visual analytics, none of them regards the
edge lengths or uses the circular arrangement for further clustering
or mathematical analysis of the respective network. In Fig. 1 we
show the main effect of our optimization criterion: the confusing
representations of the graphs above are randomly ordered. On the
bottom they are ordered and colored according to our simple itera-
tive clustering algorithm, CirClu (Circular Clustering), which we
developed to underline the usefulness of our proposed ordering: it
minimizes the Circle Index and performs a MinCut on the result,
where there are only n possible cuts. Even though the clustering
algorithm and also the Circle Index itself are work in progress and
preliminary yet, they already deliver surprisingly good results.

We give an overview over related work w.r.t. graph orderings as
well as internal quality measures and clustering in Sec. 2. In Sec. 3
we give the mathematical background for our work. In Sec. 4 we
define and investigate the Circle Index, which is an internal robust
quality measure for orderings of graphs. In Sec. 5 we introduce the
clustering algorithm CirClu, which shows the expressiveness of
the Circle Index based on several real world experiments presented
in Sec. 6. Sec. 7 illustrates a multitude of future work enabled by
the circular ordering. Our main contributions are as follows:
• We examine the importance of orderings of graphs
• We introduce an internal quality measure for orderings of graph,
the Circle Index. It is, simplified, based on the average length of
an edge if all nodes of a graph are arranged on a circle.
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• We suggest CirClu, a clustering algorithm minimizing this mea-
sure iteratively and performing a MinCut on the result, which is
then of only linear complexity.

2 RELATEDWORK
Even though circular arrangement is already used in several works,
they are not comparable to ours: [17] does not work on graphs,
[8] uses several small circles, [3] and [14] focus on the aesthetic of
the layout with the goal to present graphs neatly or with as few
intersecting edges as possible. The ways to achieve such a layout are
also manifold: [8] uses circular dilation, [3] chooses a combination
of greedy and empirical, and [2] uses a force-directed and fuzzy
multilevel approach.

The Circle Index is novel and fills a great gap: there are no quality
measures for orderings of graphs yet. Existing quality measures
are usually for clusterings and regard only the partitioning, but not
the distribution of the nodes inside a cluster. Apart from that there
are altogether only a few measures for clusterings without ground-
truth — which is not available for most real world datasets. [1]
compare those common quality metrics and discover that they all
have some weaknesses, most of which cannot be true for the Circle
Index by definition: They give better results for smaller numbers
of clusters (Modularity, Conductance, Coverage) or larger ones
(Silhouette Coefficient, Performance). They cannot deal with high
numbers of singleton clusters (Silhouette Coefficient, Modularity)
or with large networks (Performance). They do not regard internal
cluster/edge density (Coverage, Conductance) or are expensive to
calculate (Silhouette Coefficient). All of those metrics are based on
the number of edges between different clusters and the number of
edges inside the clusters, so those biases are founded already in
their definitions. By contrast, Circle Index regards both types of
edges (between and inside clusters) indirectly using the circular
arrangement of nodes.

Comparative Methods. To demonstrate the expressiveness of the
Circle Index, we compare CirClu to different clustering algorithms
of diverse areas in Sec. 6, where we use the adjacency matrix as
input if necessary. We compare with centroid based k-Means [13],
two hierarchical agglomerative clustering methods [22] and Ag-
glomod [16], Eigenvector based Spectral Clustering [18, 20, 21],
message passing Affinity Propagation [10], and modularity mini-
mizing Community Louvain Algorithm [4].

Internal Quality Measures of Clusterings. We compare the Circle
Index which we adapt for clusterings in Sec. 6 with Modularity,
Coverage, and Performance. Modularity measures the strength of
division into clusters and gives information about the community
structure of networks. Coverage is the relation of the summarized
weight of intra-cluster edges to the weight of all edges. Performance
is the relation between internal edges in a cluster and edges that
do not exist between cluster’s nodes to other nodes in the graph.

Graph Orderings. There are related algorithms, which order
graphs, but, to the best of our knowledge, they are all looking
for linear orderings. [7] is based on the spectrum of the Laplacian,
using the Fiedler vector [9], the eigenvector corresponding to the
second lowest eigenvalue, to either sort a graph or bisect it. Cuthill-
McKee [5] orders nodes s.t. the adjacency matrix is a band matrix

with small bandwidth. Those sortings may seem similar to CirClu,
but since nodes are ordered linearly, there is a first and a last node
which is not naturally for all graphs but trees. Thus, especially cyclic
and strongly connected graphs can not be ordered well, as Sec. 6
shows. In a topological ordering [11] for every directed edge (u,v)
in a graph, u comes before v . That is only possible if the graph has
no directed cycles, i.e., the graph is a tree, and it does not lead to a
clustering which finds the characteristically highly interconnected
groups. Newer algorithms like [23] look for graph orderings to
speedup CPU computing to enhance efficiency of graph algorithms,
but do not group similar or highly interconnected nodes together,
but such which are frequently accessed together.

3 PRELIMINARIES

Figure 2: The mean
M and the circular
mean CM of points
P ,Q and R.

Circular Mean. The mean M of a
point set N is the point with the low-
est possible sum of distances to all
points in N , colored red in Fig. 2 for
N = P ,Q,R. The circular mean CM
of a point set where all points lie on
a circle is the point on the circle line
which is closest to the mean of those
points, colored purple in the figure.

Edge Length. If we arrange all
nodes of a graph of size n uniformly
in a circle of arbitrary constant ra-
dius r we can use basic geometry to calculate the length of an edge,
which corresponds to the distance between the according nodes. For
the i-th node ni and the j-th node nj in the circle we can calculate
their distance d(ni ,nj ) as follows:

d(ni ,nj ) = 2r ∗ sin
(
π
|i − j |
n

)
(1)

Average Edge Length. Given an ordered graph G = (V ,E), where
“ordered” means that there exists an injective mapping f : V →
{0, 1, ..., |V |}, where the nodes are uniformly arranged in a unit-
sphere following the order given by f , we can compute the Average
Edge Length: Let e .n1 refer to the source node of edge e and e .n2
refer to its target node. Using Eq. 1, we get for the Average Edge
Length d(G) of a graph:

d(G) = 1
|E |

∑
e ∈E

d(e .n1, e .n2) = 2
|E |

∑
e ∈E

sin

(
π
| f (e .n1) − f (e .n2)|

|V |

)
(2)

Lower Bound for Average Edge Length. A lower bound bl for the
Average Edge Length can be approximated efficiently by regarding
all nodes independently and assuming they all lie in the middle
of their neighbors, which are located as near as possible to the
respective node. This lower bound can only be reached for some
special graphs, but captures the structure of the graph enough for
our purpose. Let N (n) be the neighbors of node n and div returns
the integer quotient of an Euclidean division, then:

bl (G) =
1
|E |

∑
n∈V

|N (n) |∑
i=1

sin

(
π
i div 2
|V |

)
(3)
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The 2 in the numerator of Eq. 2 is neutralized as every edge is
counted twice. i div 2 origins in the assumed optimal alignment:
the minimal edge length from a node to its neighbor is the length
to the very next slot on the circle if the node has maximal two
neighbors (one left, one right). The third and forth neighbor would
then each be 2 slots away and so on, resulting in i div 2.

Minimum Cut. To obtain clusters based on the ordered graph, we
partition it similar to the Minimum Cut (MinCut) problem. Where
the original MinCut has exponentially many possibilities to set cuts,
we have only |V |, starting in the center of the circle. The number
of edges cut can easily be counted and should be low to produce a
good separation of two clusters. To avoid getting clusters of only
one or a few rather outlying points we do not minimize the number
of edges cut per se, but the ratio R of cut edges to possible cut edges:

R =
|EC ∩ (U ×W )|

|U | · |W | . (4)

U andW are two disjoint sets in which the cut divides the nodes of
a cluster C and EC are all edges lying in the cluster which is split.
Edges between nodes which are both not in the cut cluster C are
not counted.

4 CIRCLE INDEX
To obtain comparable values for the quality of orderings of a graph
we take the average edge length as well as its lower bound into
account. Otherwisewewould receive lower (meaning better quality)
values for larger or sparser graphs. Thus we define the Circle-Index
CI (G) of a graph as relation between the average edge length d(G)
of the graph and the lower bound bl (G) for it:

CI (G) = d(G)
bl (G)

(5)

The Circle Index closes two gaps in the field of quality measures
for graphs: While the ordering of nodes in a graph is not only an im-
portant preprocessing step in many clustering algorithms, but also
highly beneficial for soft and fuzzy clustering, there are no quality
measures for it, yet. Note that every graph clustering algorithm
needs to use some ordering of the nodes for the input of the graph
alone. Second, it allows to evaluate orderings without knowing the
labeling, which is very often not available. It particularly overcomes
the limitations of existing measures for evaluation of clusterings
discussed in Sec. 2.

5 CIRCLU
CirClu is a simple iterative algorithm minimizing the Circle Index
CI and performing a MinCut afterwards. As points of a graph G =
(V ,E) lie uniformly distributed in a circle, there are |V | possible
slots a node can occupy, which are handled as a linked list. One by
one, each node is moved to the slot nearest to the circular mean
(see Sec. 3) of its neighbors, which is a greedy minimization of this
point’s edge lengths. Nodes between the new slot of the moved
node and the old slot move up into the direction where less nodes
have to move (to close the gap emerged at the old slot and make
place at the new slot).

When the CI does not decrease anymore, we reached a local
minimum and can now easily compute where to set cuts similar

to the MinCut problem to partition the graph: we only have |V |
possibilities to set the cut, where there would be 2 |V | different
possibilities to cut arbitrarily through the graph. A cut is performed
from the center of the circle to the circle line and the intersected
edges are counted for every possible cut. The cuts are ordered by
ascending R as defined in Eq. 4 and set one by one until the desired
number of clusters is reached. The first partitioning emerges with
the second cut, afterwards every cut generates a new cluster by
dividing an old.

Weighted graphs. To handle weighted graphs we can modify
equations 2 and 3 by multiplying the length of an edge e with
its weight w(e). With that nodes with higher weighted edges are
moved closer together than those with lower weighted ones.

Runtime Efficiency. In every iteration step the calculation of the
optimal position for a node takes O(|E |) since every node has at
most |E | neighbors. This calculation is done for every node, so the
runtime until the graph is completely ordered isO(i ∗ |E | ∗ |V |), for i
the number of iterations until convergence. In the second step there
are |V | possibilities to make a cut between two clusters. For every
possibility the ratio R from Equation 4 is calculated which needs
O(|E |) each time, so altogether O(|E | ∗ |V |). With those two steps
we obtain a runtime of O(i ∗ |E | ∗ |V |) for the complete algorithm.

6 EXPERIMENTAL EVALUATION
We compare the Circle Index (CI) with internal quality measures
for clusters, Modularity, Coverage, Performance, and Conductance.
To evaluate the results w.r.t. real world data, we regarded only
non-synthetic data with a given ground truth. To be independent
of flaws in diverse external quality measures aligning clustering
results with labels, we use the average of Normalized Mutual In-
formation, Adjusted Rand Index, V-Measure, and Adjusted Mutual
Information, so that their biases compensate for each other, and
abbreviate this average with EM (for external measures). Simultane-
ously, we compare k-Means (KM) [13], Agglomerative Clustering
(AC) [22], Spectral Clustering (SC) [18, 20, 21], Affinity Propaga-
tion (AP) [10], the Community Louvain Algorithm (CL) [4] and
Agglomod (A) [16] with CirClu in regards of both, the internal as
well as the external measurements. To obtain the Circle Index for
non-ordered, but clustered data, the nodes within each cluster are
sorted by their degree. We used public python implementations on
a 32 GB RAM, 3.4GHz machine for all experiments.1

We conducted experiments on the social networks “Zacharys
Karate Club” [24] and “Strike” [6, 15], on the trading network
“Worldtrade” [6, 19], and the co-occurrence network “LesMisérables”
[12]. Results are shown in Fig. 3, where normCI is the normalized
CI. The CI was normalized separately for every dataset to values
between 0 and 1, corresponding to the worst resp. best result, by a
linear normalization and subsequent subtraction from 12, to allow
a simple visual analysis. We note, that in all cases, the best CI im-
plies the best results w.r.t. the ground truth, i.e., the highest EM. As
there are no appropriate ordering algorithms yet, and we could only
compare with clustering algorithms, the inversion does not hold:

1Our code is online available under: https://github.com/p4nna/CirClu
2In detail, for all CIs, we subtracted the minimal occurring CI, divided this value by
the range of occurring values for CI, and subtracted the result from 1.
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Figure 3: Results for datasets (left to right): Zacharys Karate Club, Worldtrade, Les Misérables, and Strike for algorithms
Community Louvain (CL), Agglomod (A), k-Means (KM), Agglomerative Clustering (AC), Spectral Clustering (SC), Affinity
Propagation (AP), and CirClu. EM is the average of the External Measures, and normCI the normalized Circle Index

a good clustering does not imply a good ordering as there are too
many possible permutations of nodes inside each cluster. CirClu
achieved one of the best results for all those datasets, even though
they heavily discern in their form: Zacharys Karate Club and Strike
have only two clusters, Worldtrade is highly interconnected with
rather blurry clusters than clique-like ones, and Les Misérables
has several hubs, the protagonists. We also note, that the trend of
normCI and EM are, even though stretched for some algorithms,
more similar to each other than to the other internal measurements,
resulting in similar shapes on the radar charts in Fig. 3.

7 CONCLUSION
We introduced the Circle Index, an internal measure for the quality
of an ordering of a graph, where there is no comparable measure yet.
Sec. 6 showed, that the Circle Index is also applicable for clusterings
without an underlying order inside the clusters. In comparison to
established internal measures like Modularity, Coverage, or Perfor-
mance it is often a better prediction for the quality of a clustering
w.r.t. the ground truth. Our new clustering algorithm CirClu orders
the nodes of a graph by minimizing the Circle Index and then par-
titions the graph by finding the minimum cuts inside that ordering.
It works well for networks with almost all types of clusters.The
embedding onto the unit sphere is natural and does not force the
graph to have a first node and a last node (which makes only sense
for loop free graphs which are rather rare). Every graph clustering
algorithm needs to be given the graph in any order, so every clus-
tering algorithm has to deal with it implicitly, even though most
of them do not mention this at all. Our new concepts are extensi-
ble and build a broad basis to build on. We did not cover directed
graphs yet, and different normalizations of the Circle Index should
be discussed. Also we did not investigate the usage for Big Data yet,
which we plan for future work, since we wanted to focus on the
meaningfulness of found clusters. Besides it would be interesting to
know how a higher dimensional sphere would affect the algorithm.
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