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Zusammenfassung

Aus der Beobachtung reflektierter Sonnenstrahlung im kurzwelligen Infrarot (SWIR)
können Spurengaskonzentrationen in der Erdatmosphäre abgeleitet werden, wobei die
Lösung des inversen Problems eine Schätzung des wahren Atmosphärenzustands liefert.
Die Inversionsmethode BIRRA (Beer InfraRed Retrieval Algorithm) ist einer von mehreren
am DLR (Deutsches Zentrum für Luft- und Raumfahrt) am Institut für Methodik der
Fernerkundung (IMF) entwickelten Algorithmen zur Bestimmung von Molekülkonzentra-
tionen aus spektroskopischen Messungen. Das Vorwärtsmodell von BIRRA basiert auf
dem ebenfalls am DLR-IMF entwickelten Generic Atmospheric Radiation Line-by-line
Infrared Code (GARLIC).

Am Anfang stand die Validierung der mit BIRRA abgeleiteten Kohlenmonoxid (CO)
Gesamtsäulen aus SCIAMACHY (SCanning Imaging Absorption spectroMeter for At-
mospheric CHartographY) Messungen im 2.3µm Bereich. Dazu wurden die BIRRA
Gesamtsäulen mit jenen der bodengebundenen Beobachtungsstationen der Netzwerke TC-
CON (Total Carbon Column Observing Network) and NDACC (Network for the Detection
of Atmospheric Composition Change) im Zeitraum von 2003–2011 verglichen. Die mit
BIRRA ermittelten CO Konzentrationen zeigen eine ≈ 10 % negative Abweichung und
stimmen mit den Ergebnissen ähnlicher Studien anderer Autoren weitgehend überein.

Nach erfolgter Validierung wurden Neuerungen des Strahlungstransportmodells GAR-
LIC in das BIRRA Vorwärtsmodell eingebaut und die Ergebnisse des aktualisierten In-
versionsalgorithmus mit jenen des Vorgängers verglichen. Auf Basis von SCIAMACHY
Daten wurde numerische Übereinstimmung der Ergebnisse festgestellt.

Anschließend wurde das Vorwärtsmodell mit Blick auf die Verwendung neuester spek-
troskopischer Liniendaten, wie SEOM–IAS (Scientific Exploitation of Operational Mis-
sions – Improved Atmospheric Spectroscopy), erweitert. Um genauere Molekülabsorptions-
querschnitte berechnen zu können, musste das (klassische) Voigt-Absorptionslinienprofil
erweitert werden. Der Einfluss der neuen Spektroskopie wurde zuerst auf Basis von SCIA-
MACHY Messungen untersucht und anhand von Vergleichsrechnungen auf Basis aktueller
HITRAN (HIgh-resolution TRANsmission molecular absorption database) und GEISA
(Gestion et Etude des Informations Spectroscopiques Atmosphériques) Daten bewertet.
Es stellte sich heraus, dass die SEOM–IAS Liniendaten einen signifikanten Einfluss auf die
Inversion haben: die Residuen werden kleiner und auch die abgeleiteten CO Konzentratio-
nen unterscheiden sich leicht. Die gleiche Methodik wurde anschließend dazu verwendet,
den Einfluss der Spektroskopie für das CO Retrieval aus TROPOMI Messungen zu bestim-
men. Dabei zeigten sich die Auswirkungen noch deutlicher – signifikant kleinere Residuen
und eine damit einhergehend höhere Genauigkeit (kleinere Fehler) der CO Säulen sowie
der (mit-)abgeleiteten Parameter. Desweiteren besteht weitgehende Übereinstimmung
mit den Resultaten der SCIAMACHY Studie.

Ein weiterer Teil der Arbeit beschäftigt sich mit Instrumentenfunktionen (auch bekannt
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als Instrumentenprofile), speziell mit der Untersuchung einer passenden Parameterisierung
der TROPOMI-Funktion im SWIR Band. Die tabellierten TROPOMI Instrumentenpro-
file können mit geeigneten Parameterisierungen gut modelliert werden. Darüber hinaus
konnte der positive Einfluss der SEOM–IAS Spektroskopie auf die spektralen Residuen
auch mit einem parameterisierten Instrumentenprofil nachgewiesen werden. Aufgrund
der Flexibilität der vorgestellten Parameterisierungen könnten diese auch für zukünftige
Sensoren zum Einsatz kommen.

Abschließend wird der Einfluss von Aerosolen im CO Retrieval analysiert. Auf Basis
einer einfachen Parameterisierung wurde versucht, die Extinktion bzw. die optische Tiefe
(mit) zu bestimmen. In diesem Zusammenhang wurden auch der (klassische) nichtlineare
Least Squares und der separierbare Least Squares hinsichtlich des Konvergenzverhaltens
beim Lösen des inversen Problems untersucht. Erste Ergebnisse zeigen ein stabiles CO
Retrieval unter Verwendung der separierbaren Least Squares Methode, wobei die (mit-
)abgeleiteten Aerosol- und Reflektivitätsparameter auf Probleme durch Entartung hin-
weisen.

Die vorliegende Arbeit hat gezeigt, wie das CO Retrieval aus SCIAMACHY Messungen
verbessert werden kann. Mit dem weiterentwickelten BIRRA Code wurden darüberhinaus
erfolgreich CO Konzentrationen aus wolkenfreien TROPOMI Messungen bestimmt. Viele
Aspekte der Arbeit sind auch für die präzise Konzentrationsbestimmung anderer Moleküle
wie CO2 oder CH4 von Bedeutung. Damit bietet die vorliegende Arbeit eine valide Grund-
lage für die Weiterentwicklung.



Abstract

The remote sensing of short wave infrared (SWIR) radiation reflected from the Earth
allows to infer atmospheric trace gas concentrations by solving the inverse problem. The
retrieval algorithm BIRRA (Beer InfraRed Retrieval Algorithm) has been developed at
the DLR (Deutsches Zentrum für Luft- und Raumfahrt) Remote Sensing Technology
Institute (IMF) since around 2005 and is one of multiple algorithms to infer molecular
concentrations from calibrated radiance spectra. BIRRA’s forward model is based on
the Generic Atmospheric Radiation Line-by-line Infrared Code (GARLIC) which has also
been developed at the DLR-IMF.

First, the BIRRA retrieved carbon monoxide (CO) columns from SCIAMACHY (SCan-
ning Imaging Absorption spectroMeter for Atmospheric CHartographY) 2.3µm observa-
tions from 2003–2011 were validated against eighteen stations from the ground-based
networks TCCON (Total Carbon Column Observing Network) and NDACC (Network for
the Detection of Atmospheric Composition Change). The BIRRA inferred CO concentra-
tions were found to be ≈ 10 % low biased which is in large agreement with other similar
studies.

Next, the latest updates from the radiative transfer code GARLIC were incorporated
in BIRRA’s forward model and the physical results of both, the old (but validated) and the
latest (updated) BIRRA algorithms were verified and found to be numerically consistent
for SCIAMACHY input data.

Subsequently, the forward model was extended by upgrading its capabilities with re-
spect to spectroscopy, i.e., enhanced line models were incorporated in order to utilize latest
spectroscopic information from line lists such as the SEOM–IAS (Scientific Exploitation of
Operational Missions – Improved Atmospheric Spectroscopy). More specifically, ‘beyond
Voigt’ line profiles were implemented and the impact of the SEOM–IAS spectroscopy was
studied with respect to latest compilations of HITRAN (HIgh-resolution TRANsmission
molecular absorption database) and GEISA (Gestion et Etude des Informations Spectro-
scopiques Atmosphériques) for a large set of SCIAMACHY measurements. It was found
that the SEOM–IAS line data and corresponding line models have significant impact on
the spectral fitting: the residuals become smaller and the retrieved CO concentrations are
also slightly different. The same methodology was then applied to study the spectroscopic
impact on CO from S5P/TROPOMI measurements. The impact of the SEOM–IAS spec-
troscopy revealed to be even more pronounced, in particular with respect to the fitting
residuals and smaller retrieval errors (higher precision) of the CO and co-retrieved param-
eters. Overall, the TROPOMI results are in agreement with that found for SCIAMACHY.

A subsequent part of the thesis examines instrument spectral response functions
(ISRF), in particular appropriate parameterizations for the TROPOMI’s SWIR band
responses. A first assessment with tabulated instrument profiles indicates that the pa-
rameterized variants can mimic the tabulated responses within ≈ 3–6 %, depending on
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the instrument model and spectral position. The positive impact of the SEOM–IAS spec-
troscopy on the spectral fitting residuals could also be identified with the parameterized
response functions. Moreover, the presented instrument profiles are considered promising
candidates for the description of responses from upcoming sensors due to their flexibility.

Finally, the co-retrieval of aerosol parameters in the CO fit is presented. Based on a
simple model for the aerosol optical thickness the feasibility to co-retrieve aerosol extinc-
tion was investigated. In this context two different inverse solvers, namely the ’classical’
nonlinear least squares and separable least squares, were examined with respect to con-
vergence. First results show a stable CO retrieval for the separable least squares solver,
however, the co-retrieved aerosol and reflectivity parameters indicate issues due to degen-
eracies.

This thesis improved the retrieval of CO from SCIAMACHY observations. Moreover,
the upgraded BIRRA algorithm successfully retrieved CO concentrations from cloud-free
TROPOMI measurements. Many aspects investigated in this study are also relevant for
the retrieval of other atmospheric constituents, such such CO2 or CH4. The study does
hence provide a proven basis for further developments.



Contents

Zusammenfassung VII

Abstract IX

Contents XI

List of Figures XIII

List of Tables XIV

1 Introduction 1
1.1 Earth observation missions . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Atmospheric remote sensing . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Carbon monoxide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3.1 Atmospheric chemistry . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3.2 Rotation-vibration bands in the SWIR . . . . . . . . . . . . . . . . 5

1.4 Space-based measurements of CO concentrations . . . . . . . . . . . . . . . 5
1.4.1 SCIAMACHY aboard ENVISAT . . . . . . . . . . . . . . . . . . . 7
1.4.2 TROPOMI aboard S5P . . . . . . . . . . . . . . . . . . . . . . . . 7

1.5 Retrieval algorithms in the SWIR . . . . . . . . . . . . . . . . . . . . . . . 8
1.5.1 Competing algorithms . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.5.2 Beer Infrared Retrieval Algorithm (BIRRA) . . . . . . . . . . . . . 9

1.6 Motivation and objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.7 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Methods: Radiative Transfer 13
2.1 Blackbody radiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 The radiative transfer equation . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3 Molecular absorption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3.1 Line strength and partition functions . . . . . . . . . . . . . . . . . 18
2.4 Line profile functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4.1 The Voigt profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20



XII CONTENTS

2.4.1.1 Pressure (collisional) broadening — Lorentz profile . . . . 21
2.4.1.2 Doppler broadening — Doppler profile . . . . . . . . . . . 23
2.4.1.3 Combined Pressure and Doppler broadening — Voigt profile 24

2.4.2 Beyond Voigt profiles . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.4.2.1 The Hartmann-Tran profile . . . . . . . . . . . . . . . . . 29
2.4.2.2 Rautian profile . . . . . . . . . . . . . . . . . . . . . . . . 31
2.4.2.3 Speed-Dependent Voigt profile . . . . . . . . . . . . . . . 32
2.4.2.4 Speed-Dependent Rautian profile . . . . . . . . . . . . . . 33
2.4.2.5 Rosenkranz Line-Mixing . . . . . . . . . . . . . . . . . . . 33

2.5 Extinction by particles and molecular scattering . . . . . . . . . . . . . . . 35
2.5.1 Aerosol extinction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.5.2 Rayleigh extinction . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.6 Continuum absorption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.7 Instrument spectral response functions . . . . . . . . . . . . . . . . . . . . 38

3 Methods: Retrieval 43
3.1 Inversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.1.1 Ill-posed problems . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.1.2 Discrete inverse problems . . . . . . . . . . . . . . . . . . . . . . . 44
3.1.3 Discrete ill-posed inverse problems . . . . . . . . . . . . . . . . . . 45
3.1.4 Solving inverse problems . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2 Least squares . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.2.1 Linear least squares . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.2.2 Nonlinear least squares . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.2.3 Separable least squares . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.3 Retrieval of CO from nadir measurements . . . . . . . . . . . . . . . . . . 53
3.4 Pre- and Postprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.5 Altitude sensitivity—averaging kernels . . . . . . . . . . . . . . . . . . . . 55

4 Results 59
4.1 Publication I: Validation of CO total columns from SCIAMACHY . . . . . 59
4.2 Averaging kernels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.3 Retrieval algorithm upgrade . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.4 Publication II: Impact of molecular spectroscopy on CO from SCIAMACHY 63
4.5 Publication III: Impact of molecular spectroscopy on CO from TROPOMI 64
4.6 Instrument models and parameter fits . . . . . . . . . . . . . . . . . . . . . 65
4.7 Retrieval of aerosol parameters . . . . . . . . . . . . . . . . . . . . . . . . 70

5 Conclusions and Outlook 75
5.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76



List of Publications and Contributions 79

Abbreviations and Acronyms 83

Nomenclature 87

Symbols 89

A Hartmann-Tran for TROPOMI 93

B BIRRA CO maps from TROPOMI 95

Acknowledgments 99

Bibliography 101

Publication I 117

Publication II 149

Publication III 175

List of Figures

1.1 Modeled and observed irradiance spectra . . . . . . . . . . . . . . . . . . . 3
1.2 Typical vertical profiles for CO in Earth’s atmosphere . . . . . . . . . . . . 4
1.3 Symbolic depiction of a CO molecule . . . . . . . . . . . . . . . . . . . . . 5
1.4 CO line strengths from TIR to NIR and cross sections in the SWIR . . . . 6
1.5 The ENVISAT and Sentinel-5P spacecrafts . . . . . . . . . . . . . . . . . . 7

2.1 Normal modes of the harmonic oscillator . . . . . . . . . . . . . . . . . . . 14
2.2 Transmission of CO at 2.3µm according to Beer’s law . . . . . . . . . . . . 17
2.3 GEISA 2020 line strengths . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.4 Lorentz line profile cross sections of CO . . . . . . . . . . . . . . . . . . . . 23
2.5 Doppler line profile cross sections of CO . . . . . . . . . . . . . . . . . . . 24
2.6 Voigt-, Lorentz-, and Doppler line profiles cross sections of CO . . . . . . . 25



2.7 GEISA 2020 cross sections compared to GEISA 2015 . . . . . . . . . . . . 28
2.8 Hartmann-Tran profile cross sections . . . . . . . . . . . . . . . . . . . . . 31
2.9 Rautian and speed-dependent line profiles compared to Voigt . . . . . . . . 32
2.10 Transmission and optical depth difference for SDR and Voigt . . . . . . . . 33
2.11 Line-mixing and the Speed-Dependent Voigt profile . . . . . . . . . . . . . 34
2.12 Line-mixing and the Hartmann-Tran profile . . . . . . . . . . . . . . . . . 35
2.13 Molecular and aerosol optical depths . . . . . . . . . . . . . . . . . . . . . 36
2.14 SWIR spectral response for the TROPOMI instrument . . . . . . . . . . . 39

3.1 Forward and inverse problem . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.2 Schematic depiction of an iterative optimization algorithm . . . . . . . . . 52
3.3 Inferred CO concentrations over Africa and Europe . . . . . . . . . . . . . 55
3.4 TCCON and NDACC column averaging kernels . . . . . . . . . . . . . . . 55
3.5 Schematic depiction of a column averaging kernel and concentration profiles 56

4.1 SCIAMACHY CO mole fractions compared to TCCON and NDACC . . . 60
4.2 TROPOMI column averaging kernels . . . . . . . . . . . . . . . . . . . . . 61
4.3 Comparison of BIRRA v2.0 and v3.0 . . . . . . . . . . . . . . . . . . . . . 62
4.4 BIRRA v3.0 retrieval results for SCIAMACHY . . . . . . . . . . . . . . . . 63
4.5 Retrievals with SEOM–IAS and HITRAN 2016 spectroscopies . . . . . . . 64
4.6 Parameterized ISRFs over TROPOMI’s spectral axis . . . . . . . . . . . . 66
4.7 Parameterized ISRFs over the spatial axis . . . . . . . . . . . . . . . . . . 67
4.9 Retrieval of CO with parameterized ISRF . . . . . . . . . . . . . . . . . . 69
4.10 Jacobians for the CO retrieval . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.11 Condition numbers for different Jacobi matrices . . . . . . . . . . . . . . . 71
4.12 Maps of CO scaling factors and corresponding differences . . . . . . . . . . 72

B.1 BIRRA inferred CO over North and South America . . . . . . . . . . . . . 95
B.2 BIRRA CO over Australian . . . . . . . . . . . . . . . . . . . . . . . . . . 96
B.3 BIRRA retrieved CO over Africa and Europe . . . . . . . . . . . . . . . . 97

List of Tables

2.1 Voigt line parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2 ‘Beyond Voigt’ line parameters . . . . . . . . . . . . . . . . . . . . . . . . 28
2.3 Line profiles with parameters . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.1 Goodness of fits for parameterized ISRFs . . . . . . . . . . . . . . . . . . . 68
4.2 CO columns with parameterized and tabulated ISRFs . . . . . . . . . . . . 69
4.3 Comparison of the separable and nonlinear least squares fit . . . . . . . . . 72

A.1 Retrieval results for HTM and SDRM . . . . . . . . . . . . . . . . . . . . . 93



Chapter 1

Introduction

Remote sensing methods make a wide range of measurements in order to study various
aspects of the Earth system (Solimini, 2016). Nowadays, observations are made from
various platforms such as satellite, aircraft, balloon and from the surface. In particular,
satellite observations have become an important data source to determine the state of the
Earth system, including its atmosphere (Burrows et al., 2011).

1.1 Brief overview of Earth observation missions
Earth observations from space-based sensors have been used since the early years of space
flight basically starting in April 1960 with the launch of NASA’s (National Aeronautics
and Space Administration) Television and Infrared Observation Satellite (TIROS; Kid-
der and Vonder Haar, 2010) into a low-Earth orbit. The evolution of remote sensing
techniques in the following decades motivated the development of new spaceborne instru-
ments. Particularly, in the last two decades important Earth observation missions were
realized by various space agencies and private companies around the globe.

Highly valuable atmospheric scientific missions from the European Space Agency
(ESA) include ENVISAT (ENVIronmental SATellite) and some of the Sentinel missions,
each incorporating instruments dedicated for the monitoring of atmospheric chemistry
and temperature. ENVISAT for example is hosting instruments such as SCIAMACHY
(SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY; Bovens-
mann et al., 1999; Gottwald and Bovensmann, 2011), GOMOS (Global Ozone Monitoring
by Occultation of Stars; Kyrölä et al., 2004) and MIPAS (Michelson Interferometer for
Passive Atmospheric Sounding; Fischer et al., 2008). SCIAMACHY is a diffraction grat-
ing spectrometer that records atmospheric absorption from scattered and reflected solar
radiation in various viewing geometries while MIPAS employs a Fourier transform spec-
trometer (FTS) to observe limb emission spectra from the middle and upper atmosphere.
The Sentinel-5 Precursor (S5P; Veefkind et al., 2012) is ESA’s first satellite within the
European Union’s Earth observation program Copernicus that is dedicated to the monitor-
ing of atmospheric chemistry. S5P’s payload is the Tropospheric Monitoring Instrument
(TROPOMI) which consists of a nadir viewing grating spectrometer and is building upon
the heritage of its predecessors GOME (Global Ozone Monitoring Experiment; Burrows
et al., 1999), GOME-2 (Munro et al., 2016), SCIAMACHY, and OMI (Ozone Monitoring
Instrument; Levelt et al., 2006).

Sensors from other space agencies such as the Michelson interferometer of the ACE
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(Atmospheric Chemistry Experiment; Bernath, 2017) aboard SCISAT from the Cana-
dian Space Agency (CSA) and GOSAT/GOSAT-2 (Greenhouse Gases Observing Satel-
lite; Kuze et al., 2009, 2016) from the Japan Aerospace Exploration Agency (JAXA) use
FTS to record atmospheric spectra. The NASA instrument MOPITT (Measurement of
Pollution in the Troposphere; Vargas-Rodŕıguez and Rutt, 2009; Dakin et al., 2003) mea-
sures emitted and reflected radiance from the Earth using gas correlation spectroscopy.
The NASA missions named OCO-2 (Orbiting Carbon Observatory-2; Crisp et al., 2004)
and OCO-3 (Orbiting Carbon Observatory-3; Eldering et al., 2019; Taylor et al., 2020), of
which the latter is deployed aboard the International Space Station (ISS), employ nadir
viewing grating spectrometers to image atmospheric absorption spectra. The Atmospheric
Infrared Sounder (AIRS; Chahine, 1991; Chahine et al., 2006) on NASA’s Aqua satellite
and the IASI (Infrared Atmospheric Sounding Interferometer; Clerbaux et al., 2009) in-
struments aboard the three METOP (METeorological OPerational Satellite) satellites,
operated by EUMETSAT (European Organisation for the Exploitation of Meteorological
Satellites) measure thermal emission in the nadir direction. In the recent past also pri-
vate companies such as GHGSat launched missions dedicated for the remote sensing of
greenhouse gases and other trace gases (Varon et al., 2018).

1.2 Atmospheric remote sensing
The principle of atmospheric remote sensing measurements from space is based on the
interaction of electromagnetic radiation with constituents in the atmosphere (Solimini,
2016). Most passive sensors measure the radiation coming from the Sun that is trans-
mitted and scattered through Earth’s atmosphere or emitted by the atmosphere itself.
Other instruments use solar, lunar or stellar occultation measurements (Gottwald and
Bovensmann, 2011; Kyrölä et al., 2004).

According to Wien’s displacement law the Sun strongly emits in the near-UV (Ul-
tra Violet), VIS (VISible) while radiation emitted by the Earth peaks at much longer
wavelengths in the IR (InfraRed) (Zdunkowski et al., 2007). As indicated in Fig. 1.1 the
solar radiation at Top of Atmosphere (ToA) which is proportional to the solid angle of
the Sun at a distance of one astronomical unit dau (E5777K

Sun at ToA ∝ (rSun/dau)2, also
see Goody and Yung (1995, Tab. A.9.1)) is dominant in the NIR (Near InfraRed) range
(indicated in gray). Towards the thermal infrared (TIR) the emission from Earth’s sur-
face and atmosphere becomes larger and surpasses the solar irradiance at ToA at roughly
2000 cm−1. Consequently, the relevance of different processes in radiative transfer through
the atmosphere is depending on the observed wavenumber interval.

Interaction of electromagnetic radiation with atmospheric constituents such as trace
gases and aerosols generally include absorption, emission, and scattering. However, in the
absence of particles1 scattering is of little importance in the SWIR (Short Wave InfraRed)
and thermal emission from Earth’s surface and atmosphere is also weak (see Fig. 1.1).
Consequently, most of the photons detected by nadir looking space or airborne instruments
have taken the path from the Sun to the surface and back, thereby providing nearly
homogeneous sensitivity to all atmospheric levels (Richter, A., 2010). Measurements that
target the quantification of molecules such as carbon monoxide (CO), methane (CH4) or
carbon dioxide (CO2) from the SWIR fulfill this ideal situation and are hence employed

1 Solid and liquid, e. g., aerosols, clouds, haze, . . .
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Figure 1.1: Spectral irradiance for a blackbody at 288 K representing the Earth’s surface tem-
perature. The solar blackbody irradiance at a temperature of 5777 K is distance
scaled by one astronomical unit (see Sec. 1.2). For comparison the Kurucz solar
reference spectrum is shown too (Kurucz, 2005).

by many satellite instruments (e. g. Frankenberg et al., 2005; Buchwitz et al., 2007a,b;
Deeter et al., 2009; Veefkind et al., 2012). A downside, however, is that the neglect of
some processes in the SWIR radiative transport limits its application, e. g., absence of
scattering limits the signal-to-noise (SNR) ratio of measurements, particularly over dark
surfaces such as water (Richter, A., 2010).

The retrieval of trace gas concentrations from spectroscopic measurements constitutes
an inverse problem. The spectral dependence of molecular absorption is used to identify
atmospheric species in the measurements. In order to deduce the amounts of molecules
from the measured spectrum the observed absorption is compared to modeled spectra
from a radiative transfer model. The goal of the retrieval is to find the inverse solution
of the forward model, i. e., parameters in the model that can not be observed directly. In
general, since the relation between radiance y and the state vector x is often not linear

y = F (x) , (1.1)

an iterative approach is required (details see Sec. 3.2.2).
In atmospheric remote sensing the forward problem F is described by a radiative

transfer model which encompasses the parameters of interest. The so called retrieval
parameters make up the state vector for the forward model. In the retrieval algorithm
the set of parameters is updated/modified until agreement is found within predefined
limits with the measurement, e. g., by testing the relative change of the state vector x.
In general, an initial guess or a priori estimate needs to be provided for the state vector.
Moreover, the forward model requires input of non-fitted quantities that are assumed to
be sufficiently well known such as vertical pressure and temperature profiles as well as the
observation geometry, molecular line data etc.
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1.3 Carbon monoxide

1.3.1 Atmospheric chemistry
The background concentrations of CO vary from ≈ 50 − 100 ppbv, however, these levels
can be increased many times in polluted urban areas or in environments with exten-
sive biomass burning. Its atmospheric lifetime in the order of a few weeks makes it an
atmospheric tracer for the transport of pollutants on the global scale (Holloway et al.,
2000).

Large anthropogenic sources of CO are the incomplete combustion of fossil fuels or
biomass (Burrows et al., 2011). Another main source of CO in the atmosphere is the
oxidation of CH4 and other non-methane hydrocarbons (NMHC) which in turn constitute
a main sink for the hydroxyl radical OH in the troposphere (Jacob, 1999, Sec. 11.2). The
net mechanism for the oxidation of CH4 yields

CH4 + 3 OH + 2 O2 −−→ CO2 + 3 H2O + HO2 · (R1)

In the cascade of reactions in React. (R1) an intermediate reaction of CH4 with the OH
radical yields CO as a product so that the source of CO depends on the distribution of
the hydroxyl radicals and hydrocarbons (Jacob, 1999, Sec. 11.3.3). It is estimated that
NMHC oxidation causes 40–60 % of surface CO levels over the continents, slightly less
over the oceans, and 30–60 % of CO levels in the free troposphere (Poisson et al., 2000).
According to Fig. 1.2 its vertical distribution is rather equal across various climatological
regions in the troposphere but differs above.
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Figure 1.2: Carbon
monoxide mole fraction
vertical profiles for various
reference atmospheres
(Anderson et al., 1986),
i. e., US-Standard (USS),
tropical (TRO), subarctic
winter and summer (SAW
and SAS), and midlatitude
summer and winter (MLS
and MLW).

A primary loss mechanism of CO in the Earth’s atmosphere is its oxidation by the
OH which hence constitutes another leading sink of the radical. Moreover, CO is a main
determinant of tropospheric air quality, particularly in polluted areas, since CO serves
as a precursor for ozone in the troposphere by affecting the catalytic production and
destruction of ozone (Jacob, 1999, Sec. 11.3). Whether tropospheric ozone is produced
or destroyed in the oxidation of CO is depending on the availability of nitrogen oxides
(NOx), which comprises nitric oxide NO and nitrogen dioxide NO2. Both are typically
created in combustion processes at high temperatures. Although NOx is emitted mainly
as NO, cycling between NO and NO2 takes place in the troposphere on the time scale
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of a minute (Jacob, 1999, Sec. 11.4). In case of high NOx concentrations (≈ 100 pptv at
1 atm or 1013.25 hPa) the net reaction producing ozone is (Holloway et al., 2000)

CO + 2 O2 −−→ CO2 + O3 · (R2)

This net reaction indicates that the presence of NOx allows the regeneration of OH so
that no hydroxyl radicals are consumed in React. (R2). In a clean environment without
sufficient NOx concentrations the net reaction is a O3 and OH destruction

2 CO + O3 + OH −−→ 2 CO2 + HO2 , (R3)

which yields a hydroperoxyl radical HO2. In Reactions (R2) and (R3) the greenhouse gas
carbon dioxide is produced.

1.3.2 Rotation-vibration bands in the SWIR
Carbon monoxide has a diatomic configuration where a carbon and oxygen atom join
together (see Fig. 1.3). The asymmetric charge distribution causes a permanent dipole
moment in the molecule (Zdunkowski et al., 2007). The spectral characteristics of diatomic
molecules can be derived from the Schrödinger equation (Hanel et al., 2003).

Figure 1.3: Carbon monoxide consists of one carbon
atom (black) and one oxygen atom (red). Both are con-
nected by a triple bond that consists of two π bonds and
one σ bond. The computed fractional bond order is 2.6
(Martinie et al., 2011).

In the SWIR and TIR spectral regions CO displays P and R branches (see Fig. 1.4 and
Zdunkowski et al., 2007, Fig. 8.10). These branches are caused by transitions where the
vibrational transition number ∆v = v′− v is fixed (in general v = 0 and v′= 1, 2, 3) while
the rotational transition number ∆J = J ′ − J varies. Transitions in the TIR correspond
to the fundamental band (∆v = 1) while the SWIR spectrum of the molecule between
4250− 4350 cm−1 and 6350− 6450 cm−1 belong to the first overtone (∆v = 2) and second
overtone (∆v = 3), respectively. The energy of states within each band are characterized
by the rotational quantum number J ′. Based on selection rules the transition between
rotational energy states are one quantum rotation level away ∆J = ±1. In the P branch
∆J = −1 and in the R branch it is ∆J = +1. Consequently, every absorption line in the
CO spectrum can be assigned to a change in vibrational state and changes of ∆J = ±1
in the rotational quantum number.

1.4 Space-based measurements of CO concentrations
In the past decades, multiple instruments were launched to quantify global CO concen-
trations from space. The first space-based CO measurements were made in 1981 and
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1984 via the MAPS (Measurement of Air Pollution from Satellites; Newell et al., 1988;
Reichle Jr. et al., 1999) instrument aboard the Space Shuttle. The data acquired proved
the feasibility of the measurement technique and many of the gross features of global CO,
e. g., biomass burning, anthropogenic pollution, and North/South hemispheric gradients
where identified.

The advent of MOPITT measurements in early 2000 allowed to identify major sources
of CO emissions for the first time (Deeter et al., 2003; Edwards et al., 2004) and revo-
lutionized the understanding of natural and anthropogenic tropospheric pollution. The
MOPITT sensor was designed to retrieve CO profiles from thermal emission and absorp-
tion as well as from reflected SWIR radiation, however, the SWIR channels suffered from
instrumental issues and were not used for CO retrieval (Clerbaux et al., 2008).

Carbon monoxide measurements are also available from AIRS (McMillan et al., 2005).
The data has been used to look at long range transport of pollution and were also com-
pared to MOPITT and ground-based observations (Warner et al., 2007). A sensor aboard
NASA’s Aura spacecraft named TES (Tropospheric Emissions Spectrometer; Rinsland
et al., 2006) provided vertical distributions of CO that were also validated against MO-
PITT observations (Luo et al., 2007; Kopacz et al., 2010). The Michelson interferometer
IASI also measures TIR emission spectra and contributes to the suite of CO observations
George et al., 2009, 2015. The GOSAT-2 mission from JAXA is capable of recording
CO absorption in the 4.200 − 4.300 cm−1 spectral range (Suto et al., 2021). Yet an-
other mission that measured CO concentration profiles in limb viewing geometry from
the mid-troposphere to the thermosphere was the ACE-FTS (Bernath et al., 2005; Cler-
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Figure 1.4: Line strengths of CO according to the GEISA 2020 line data from the TIR to NIR
(top). The SWIR absorption lines of CO around 4000 cm−1 correspond to the first
overtone (v′ = 2). Absorption cross sections for standard atmospheric conditions in
the SWIR are depicted below. Rotation-vibration bands < 4260 cm−1correspond
to the P branch while transitions > 4260 cm−1are attributed to the R branch.
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baux et al., 2005). Also the MIPAS instrument was providing limb observations of CO in
the TIR around 2100 cm−1 (fundamental band v′ = 1). Two other instruments, namely
SCIAMACHY and TROPOMI, are of particular interest for this thesis. Both provide
measurements in the SWIR from which CO concentrations can be inferred by fitting its
transmission in the first overtone (see Fig. 1.4).

(a) (b)

Figure 1.5: The (a) ENVISAT and (b) Sentinel-5P spacecrafts in low Earth orbit (LEO) over
Europe (image credit: ESA).

1.4.1 SCIAMACHY aboard ENVISAT
The SCIAMACHY instrument was part of ENVISAT’s atmospheric mission and was
launched on March 1, 2002 (Gottwald and Bovensmann, 2011). SCIAMACHY was a pas-
sive absorption spectrometer in the UV–SWIR range and consisted of eight spectroscopic
channels with the SWIR channel 8 spanning the wavelength range from 2259–2386 nm.
The nominal spectral and spatial resolution in the SWIR was 0.26 nm and 120 km×30 km
in nadir viewing geometry, respectively. The mission was lost way beyond its nominal
lifetime of 5 years in April 2012.

Although the instrument encountered issues with its SWIR channels (Gloudemans
et al., 2005), CO data has been retrieved (Buchwitz and Burrows, 2003; Buchwitz et al.,
2004; Frankenberg et al., 2005; Buchwitz et al., 2007a; Gloudemans et al., 2009; Gimeno
Garćıa et al., 2011) and validated (Dils et al., 2006; de Laat et al., 2006, 2007; Borsdorff
et al., 2016; Pub. I) with ground-based FTIR (Fourier transform infrared) measurements.

1.4.2 TROPOMI aboard S5P
A rather new sensor that measures CO in the SWIR is the passive grating imaging spec-
trometer (a pushbroom instrument) TROPOMI (Kramer, H. J., 2021). The S5P, launched
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on October 13, 2017, is a single payload satellite mission of the Copernicus Space Com-
ponent (CSC) and its instrument shares many common features with SCIAMACHY.
However, multiple new developments and a number of stringent performance require-
ments make TROPOMI a rather different sensor with superior performance Vonk (2017);
Kleipool et al. (2018); van Kempen et al. (2019). It has seven spectrometers spanning
from UV/VIS to the SWIR and its absolute radiometric accuracy in the SWIR chan-
nels is specified to be within 6 %. The SWIR module has a spectral range from 2305 to
2385 nm (≈ 4193–4338 cm−1) which constitutes a subset of SCIAMACHY’s channel 8. Its
nominal spectral resolution of the channel is 0.25 nm with a sampling interval < 0.1 nm.
The minimum radiometric resolution (SNR) in the SWIR ranges from 100–120 and it has
a spatial resolution of 7.5× 7.5 km in the nadir direction.

1.5 Retrieval algorithms in the SWIR

1.5.1 Competing algorithms
As indicated in Sec. 1.2 the retrieval of molecular concentrations from radiance or trans-
mission spectra poses an inverse problem that is typically solved by optimization algo-
rithms. Several codes have been developed for the analysis of SWIR spectra at different
European institutes, e. g., the Weighted Function Modified Differential Optical Absorp-
tion Spectroscopy (WFM-DOAS; Buchwitz et al., 2004, 2005) algorithm, the Iterativ
Maximum A Posteriori (IMAP-DOAS; Frankenberg et al., 2005) method, the Iterative
Maximum Likelihood Method (IMLM; Gloudemans et al., 2005), the Shortwave Infrared
CO Retrieval (SICOR; Borsdorff et al., 2017, 2018) algorithm, and the Beer InfraRed
Retrieval Algorithm (BIRRA; Gimeno Garćıa et al., 2011; Pub. I).

The WFM-DOAS algorithm approximates the logarithm of the Sun-normalized mea-
sured intensity by linearization around an initial guess according to a first order Taylor
expansion plus a low order polynomial (Buchwitz et al., 2000, Eq. (1)). The difference
between the radiance of the observed and initial guess spectrum is described by fitting
altitude independent factors that scale weighting functions for the parameters of interest.
Because of the linearization of the forward model it is possible to apply a linear least
squares fit to determine the parameters from SWIR observations.

The IMAP DOAS inverse method uses optimal estimation in order to find the state
vector that maximizes the a posteriori probability function(Frankenberg et al., 2005). The
state vector for the retrieval comprises scaling factors for the molecular concentrations at
different layer heights, a climatoligical index for temperature changes in the atmsphere and
polynomial coefficients accounting for low frequency absorption and scattering. Moreover,
it computes the atmospheric transmission on a monochromatic grid, i. e., before convolu-
tion with the instrument’s spectral response. This is particularly important in the SWIR
where narrow lines that exhibit rather strong absorptions are measured at a moderate
spectral resolution.

The IMLM algorithm is based on scaling a priori profiles (Gloudemans et al., 2008).
The retrieval fits the modeled radiance to the measurements by varying the total amounts
of the trace gases using a weighted least squares fit. Beside profile scaling factors the
the algorithm provides estimates for the coefficients of the low order polynomial which
accounts for effective surface albedo, continuum effects or smooth variations of the surface
albedo with wavelength.
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The inverse method SICOR also uses a profile scaling approach which is considered a
kind of regularization of the CO profile retrieval (Landgraf et al., 2016). The algorithm
employs an unconstrained least squares fit to adjust CO abundances by scaling a reference
profile. Another regularization is introduced for the inversion of cloud and surface param-
eters as the latest SICOR variant accounts for light path enhancements by a two stream
radiative transfer solver. However, for the retrieval of CO from clear sky observations the
fit of a scattering layer is ignored.

1.5.2 Beer Infrared Retrieval Algorithm (BIRRA)

The BIRRA algorithm has been developed by the Remote Sensing Technology Institute
(IMF) at the German Aerospace Centre (DLR) and its least squares solvers are provided
by the PORT optimization library (Fox et al., 1978). To infer trace gas concentrations the
inverse method performs a nonlinear least squares fit (NLS; Rust, 2002; Sec. 3.2.2) of the
observed radiance by scaling initial guess profiles. The BIRRA code features a separable
least squares solver (SLS; Gay, 1990; Sec. 3.2.3) with optional bounds to specify physical
constraints, exact analytical derivatives, and line-by-line computation of molecular cross
sections.

The forward model in BIRRA (Gimeno Garćıa et al., 2011) is based on the Generic
Atmospheric Radiation Line-by-line Infrared Code (GARLIC; Schreier et al., 2014). The
molecular spectroscopic parameters for the line-by-line calculations are obtained from,
e. g., HITRAN (HIgh-resolution TRANsmission molecular absorption database; Roth-
man et al., 2009) or GEISA (Gestion et Etude des Informations Spectroscopiques At-
mosphériques; Jacquinet-Husson et al., 2008) databases. Moreover, the CKD (Clough,
Kneizys, Davies continuum; Clough et al., 1989) absorption model and Collision Induced
Absorption (CIA; Richard et al., 2012; Karman et al., 2019) can be considered. As a
forward model for nadir observations, GARLIC provides model spectra for up- and down-
looking observation constellations in a spherical geometry.

Beside an operational version there is a scientific (prototype) variant of the BIRRA
algorithm. The former designates the operational SCIAMACHY Level-1b → 2 processor
for the CO and CH4 (Hamidouche et al., 2016) products. As an operational ESA processor
this variant is subject to the European Cooperation for Space Standardization (ECSS)
standards and is hence not used for scientific retrievals or prototyping.

The scientific BIRRA described in Gimeno Garćıa et al. (2011) incorporates additional
enhancements over the operational variant which are particularly tailored to mitigate the
adverse impact of the SCIAMACHY instrument’s degrading SWIR spectra from channel
8 (Gloudemans et al., 2005; Lichtenberg et al., 2010). Moreover, the framework of the
scientific processor allows for more flexibility in the retrieval setup. In order to enable
processing of large datasets with the prototype BIRRA a suite of Python and C-Shell
scripts were developed at DLR (S. Gimeno Garćıa 2016, personal communication). This
framework prepares files and tasks required by the retrieval algorithm to assimilate model
spectra upon measurements. The scientific BIRRA variant with the prescribed features
was the basis for the developments described in this thesis.
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1.6 Motivation and objectives

Validation studies of SCIAMACHY inferred CO with ground-based remote sensing ob-
servations were conducted for multiple different retrieval algorithms in the past, e. g.,
Dils et al. (2006); Sussmann and Buchwitz (2005); de Laat et al. (2010); Kerzenmacher
et al. (2012); Borsdorff et al. (2016). Most of these studies found that the retrieval and
validation of CO from SCIAMACHY is challenging because single SCIAMACHY CO
measurements show instrument noise errors up to 100 % of the total CO column value—
in particular for the later years of the mission (i. e. from 2006 onward). However, a
similar verification and validation is considered a crucial step in the BIRRA algorithm
refinement by Gimeno Garćıa et al. (2011, Sec. 5). Moreover, assessing the quality of
BIRRA retrieved CO concentrations by a true reference throughout its further develop-
ments becomes even more important as the algorithm should be applied to data from
latest sensors. Nonetheless, reprocessing SCIAMACHY observations with state of the art
retrieval algorithms remains relevant for long-term consistency and to provide a homoge-
neous multi-mission time series for CO.

A different issue that applies across sensors is spectroscopic uncertainty, in particular
uncertainties in the line intensities and broadening parameters. Both can cause systematic
errors in the retrieval product and multiple studies called attention to this issue in the
past. Quite recent studies by Galli et al. (2012) and Checa-Garćıa et al. (2015) found
that spectroscopic errors in the 2.3µm band can induce errors that exceed TROPOMI’s
error budget and that further efforts should be directed to improve the H2O (water)
and CH4 spectroscopy in this regime. Earlier studies such as, e. g., Frankenberg et al.
(2005) pointed out the classical Voigt profile, i. e., the to date standard in the modeling
line-by-line radiative transfer in the atmosphere, is not a fully accurate representation of
the spectral line shape observed in gas mixtures and that narrowing mechanisms such
as line-mixing should be taken into account in the calculation of molecular absorption
cross sections. In preparation of the S5P mission, ESA commissioned the compilation
of a new spectroscopic database in the SWIR according to the needs of the TROPOMI
instrument. The project yielded the SEOM–IAS (Scientific Exploitation of Operational
Missions – Improved Atmospheric Spectroscopy; Birk et al., 2017a,b) line list.

Another important facet of spectroscopic measurements is modeling the instrument’s
line shape (ILS). In order to accurately model variations in the measured signal to changes
in the optical depth precise knowledge of the instrument’s spectral response function is
indispensable (Frankenberg et al., 2005, Fig. 2) (Gloudemans et al., 2005). While often a
Gaussian slit function is used (e. g. Gimeno Garćıa et al., 2011) sensors such as TROPOMI
provide tabulated response functions that significantly differ from the Gaussian shape.
However, often a parameterized model is used in the Level-1b→ 2 processing as it allows
for more flexibility in the retrieval.

Yet another important issue in the retrieval of atmospheric constituents from space
is the fact that, beside molecular absorption, scattering by aerosols (and molecules) con-
tributes to the radiative transfer (Burrows et al., 2011, Chap. 6). Although scattering
is of little importance for clear sky observations in the SWIR, aerosol loaded scenes or
cirrus clouds can modify the light path in a way that leads to an inaccurate estimation of
the true concentration of, e. g, CO or CH4, if not appropriately accounted for (Landgraf
et al., 2016).

The prescribed aspects lead to the formulation of four objectives which are addressed
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in this thesis.

(1) Validation of the retrieval algorithm — in order to quantify the accuracy of
the prototype BIRRA inferred CO columns from SCIAMACHY observations a thorough
intercomparison against globally distributed ground-based observations should be carried
out. The validation should be performed for all SCIAMACHY measurements from 2003−
2011, which basically encompasses the full-mission dataset.

(2) Impact of spectroscopy — line-by-line radiative transfer codes require spectro-
scopic line data and models to calculate molecular cross sections in order to describe
absorption. Latest scientific advances in the field of SWIR nadir retrievals indicated that
the accurate computation of cross sections is crucial for current missions such as, e. g.,
S5P/TROPOMI or the GOSAT and OCO missions but also for upcoming missions such
as the CO2 Monitoring (CO2M) mission in order to meet the specified requirements. The
impact of most recent molecular line lists such as SEOM–IAS, HITRAN, or GEISA on
the retrieval of CO in the 2.3µm region should be assessed for TROPOMI measurements,
but also for heritage missions such as SCIAMACHY.

(3) Instrument line shape — instrument spectral response functions (ISRFs) are re-
quired for the convolution of the monochromatic line-by-line spectrum to instrumental
resolution and incorrectly modeled instrument line shapes can cause errors in the re-
trieved columns. In order to account for modifications of the slit function caused by, e. g.,
heterogeneous scenes or by changes in the instrument characteristics, tabulated spectral
response functions from on-ground calibration should be replaced by an appropriate pa-
rameterized model which allows, e. g., for variations in a pixel’s center frequency or its half
width. Appropriate parameterizations for TROPOMI’s SWIR band should be developed
and their applicability should be demonstrated in the retrieval of CO from TROPOMI
measurements.

(4) Aerosol extinction — aerosols contribute to optical depth in the Earth’s atmo-
sphere. In order to account for aerosol extinction in the CO retrieval an adequate pa-
rameterized model should be examined. The retrieval should be modified so that the
state vector includes aerosol parameters which are then co-retrieved with CO concentra-
tions. The model and implementation should be assessed with observations, e. g., from
TROPOMI.

1.7 Outline
The subsequent chapters are organized as follows. In Chapters 2 and 3 the methodology
with respect to the forward modeling and inversion is described, respectively. Chapter 4
is dedicated to the results of the thesis. More specifically, Secs. 4.1, 4.4, and 4.5 are
summaries of the papers published in peer-reviewed journals. Section 4.2 provides more
discussions on the averaging kernels that were relevant for Pub. I. Section 4.3 briefly
discusses the results from the verification of the retrieval algorithm upgrade. Section 4.6
presents findings with respect to instrument line shape parameterizations and tabulated
response functions. Section 4.7 discusses the feasibility of aerosol parameter fits in the
SWIR. Finally, Chap. 5 concludes and summarizes the results and provides an outlook
for future studies.
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Note that some results regarding higher order line profiles—relevant for Pub. II and
Pub. III—are already presented in Chap. 2 to facilitate readability. Another exemplary
result, demonstrating the application of inverse methods and adequate postprocessing for
a set of TROPOMI observations, is also presented in Chap. 3.



Chapter 2

Methods: Radiative transfer —
forward modeling

2.1 Blackbody radiation
Electromagnetic radiation emitted by the Sun is the primary source of radiative energy
on Earth. The Earth’s atmosphere is heated by absorption of solar radiation, and cooled
by emission of thermal infrared radiation (Stamnes et al., 2017). The assumption that
the local thermal emission is balanced by the local rate of heating due to absorption of
radiation at all wavelengths is called local radiative equilibrium (LTE). It allows to assign
a local thermodynamic temperature which is particularly important for radiative transfer
modeling (details see Sec. 2.2 and Fischer and Hase, 2015).

Although the Sun is not an ideal blackbody (absorption µa = 1.0 independent of fre-
quency) described by Planck’s law (Weinberg, 2015, Chap. 1) the physics that lead to
the spectral energy distribution of a blackbody is of fundamental importance for passive
remote sensing (Pierrehumbert, 2010, Sec. 3.2). In order to adequately explain the fre-
quency distribution of radiation from a blackbody it is necessary to go beyond classical
physics and take the quantum nature of the electromagnetic field into account (Weinberg,
2015, Sec. 1.1).

Max Planck (1858–1947) and Albert Einstein (1879–1955) proposed the assumption
that the spectral energy could exist only in discrete quanta which are proportional to the
frequency according to

E = h · f = h c ν , (2.1)

where c designates the speed of light. The discrete energy parcels h·f of an electromagnetic
field at a certain frequency are called photons with h= 6.62607015·10−27 (erg s) designating
Planck’s constant which relates a photon’s energy to its frequency f (or wavenumber
ν = f/c). It is important to note that the energy of electromagnetic waves is quantized
even in free space, i. e., when the waves are not constrained. Moreover, it is important to
note that there is no finite lower limit or upper limit on the possible energy of a photon
since the frequency is continuous (see Eq. (2.1)).

In order to model the spectral energy radiated from a hot cavity the solutions for elec-
tromagnetic standing waves (also known as resonant or normal modes) in a confinement
according to Eq. (2.2)) are considered (Hanel et al., 2003, Chap. 1).
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All possible solutions for standing waves in a resonator with physical boundaries x =
{0, L} have different frequencies according to

fn = n c

2L , (2.2)

with n ∈ N+, f1 being known as the fundamental frequency and fn>1 the overtones. The
solutions for these normal modes of the harmonic oscillator are then given by

En = 2E0 sin
(
nπx

L

)
cos(2πfnt) , (2.3)

and possible solutions for E are now limited by fn (see Fig. 2.1).
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Figure 2.1: The normal modes of the harmonic oscillator for n = 1, 2, 3. Note that every point
x behaves like a separate oscillator with amplitude 2E0 sin nπx

L .

In thermal equilibrium and for the classical limit (corresponds to low particle densities
and high temperatures T ) the probability for the occupancy of modes of energy En= nh ν
is described by the Boltzmann distribution (PB; Rybicki and Lightman, 2008, Sec. 1.5)
according to

PB(n, T ) = exp (−En/kBT )∑∞
n=0 exp (−En/kBT ) , (2.4)

where kB = 1.380649 × 10−16 erg K−1 represents the Boltzmann constant (Ludwig Boltz-
mann 1844–1906). The average energy of a harmonic oscillator (mode) with wavenumber
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ν is then given by the energy of the mode times the probability that the mode will be
occupied according to

E(ν, T ) =
∞∑
n=1

En PB(n, T ) = h c ν

exp
(
hcν
kBT

)
− 1

. (2.5)

The power emitted per volume and wavenumber interval ν to ν + dν is then given by the
product of Eq. (2.5) and the number of modes per interval in a volume L3

dN
L3 = 8 π ν2 dν , (2.6)

according to Planck’s formula

B(ν, T ) = 2h c2 ν3

exp
(
hcν
kBT

)
− 1

. (2.7)

The radiated power per volume and wavenumber interval, i. e., the spectral radiance, only
depending on the object’s temperature (see Fig. 1.1). In the limit of small wavenumbers
and large temperatures Planck’s formula gives the Rayleigh-Jeans law while for large
wavenumbers the formula reduces to Wien’s law. Geometric considerations account for
the factor (πc)/4 in Eq. (2.7) with respect to the product of Eqs. (2.5) and (2.6).

As indicated above the spectral radiance B describes the power per unit projected
area dA⊥ into a unit solid angle dΩ per wavenumber dν. The solid angle dΩ is defined
as the section of a sphere with radius r according to

dΩ = r dϕ r sin θdθ
r2 = sin θ dθ dϕ . (2.8)

Passive remote sensors aboard satellites quantify the energy received per area, direc-
tion and time by looking at a surface from a specified viewing angle. This measurement
constitutes an estimate of the instantaneous power I ≈ B(ν, T ). Irradiance E, the quan-
tity depicted in Fig. 1.1, is a hemispheric flux since the power is received per surface area
A⊥ from all directions of a hemisphere (half space). Given that the emitted or received
radiance is isotropic, i. e. not depending on the zenith and azimuth angles, the source is
said to be Lambertian with irradiance E and radiance related by π according to

I

2π∫
0

dϕ
π/2∫
0

sin θ d θ = π I = E . (2.9)

2.2 The radiative transfer equation
The radiative transfer equation is a macroscopic description for the exchange of energy
between the radiation field and the medium it passes through and gives the specific
intensity of radiation I at wavenumber ν during its propagation by a distance s (Goody
and Yung, 1995; Zdunkowski et al., 2007; Stamnes et al., 2017). Due to the conservation
of energy, for any term that introduces a loss there must be a term that introduces a gain.
The equation states that the radiance I is subject to losses due to extinction (absorption
and scattering) and gains due to emissions and scattering according to

dI(ν, s)
ds = − µ(ν, s) I(ν) + ρ J(ν, s) , (2.10)
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with
µ = µa + µs = µ(gas)

a + µ(aer)
a + µ(gas)

s + µ(aer)
s (2.11)

the extinction coefficient. It is defined as the sum of the absorption (attenuation) coeffi-
cient µa and scattering coefficients µs for gases and particles, respectively. In the source
term the emission coefficient per unit mass is designated J and the mass density is given
by ρ.

In a homogeneous gaseous medium in local thermodynamic equilibrium (LTE) with
µ(aer)
a = 0, the molecular absorption coefficient µ(gas)

a is equal to the emission coefficient
according to Kirchhoff’s law (Gustav Robert Kirchhoff 1824–1887). The assumption for
LTE is important since it guarantees that the temperature of a gas does not vary with
time (steady state) and that the exchange of energy from the radiation field of the source
B(ν, T ) is in equilibrium with both, the excitation temperature in the Boltzmann dis-
tribution (see Eq. (2.4)) and kinetic temperature of the Maxwell (James Clerk Maxwell
1831–1879) velocity distribution (López-Puertas and Taylor, 2001; Müller-Kirsten, 2013).
The source function without scattering accounts for molecular emission with emissivity
ε = µ(gas)

a and is then equal to

ρ J(ν) = εB(ν, T ) = µ(gas)
a B(ν, T ) (2.12)

where B is the Planck function from Eq. (2.7) at temperature T . If scattering is considered
µs 6= 0, photons deflected out of the probing path contribute to the loss of intensity
while the fraction of radiance scattered into the path of propagation (multiple scattering)
constitutes a source of radiation and is hence attributed to the source term of Eq. (2.14).
The total contribution of radiation incident from all directions into the direction of interest
Ω is then given by the source function JS

JS = 1
4π

4π∫
0

P (Ω′,Ω) I(Ω) dΩ . (2.13)

The normalized scattering phase function PS

PS = 1
4π

4π∫
0

P (Ω′,Ω)dΩ = 1 , (2.14)

gives the probability of incident radiation being scattered from direction Ω into the direc-
tion of propagation Ω′. Substitution of the above assumptions into Eq. (2.10) gives the
differential equation

dI
ds = −

(
µ(gas)
a + µ(gas)

s + µ(aer)
s

)
I + µ(gas)

a B +
(
µ(gas)
s + µ(aer)

s

)
JS , (2.15)

where µ = µ(gas)
a + µ(gas)

s + µ(aer)
s represents the extinction so that the ratio

µ(gas)
s + µ(aer)

s

µ
= 1 − µ(gas)

a

µ
, (2.16)

is referred to as the single scattering albedo (SSA).
In the infrared spectral range scattering often plays a minor role, or can even be ne-

glected (i. e. µs = 0 in Eq. (2.16)), and a pure gas atmosphere can be assumed (Zdunkowski
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et al., 2007). In case of an inhomogeneous medium, i. e. when the physical properties are
not constant along the path, the solution for the radiance I received by an instrument at
distance s is then given by the Schwarzschild equation

I(ν, s) = I0(ν)T (ν, s) −
∫ s0

s
B(ν, T (s′)) ∂T (ν, s′)

∂s′
ds′ (2.17a)

= I0(ν)T (ν, s) +
∫ τ0

τ
B(ν, T (τ ′)) T (ν, s′) dτ ′ , (2.17b)

where T is the monochromatic transmission according to Beer’s law (named after August
Beer 1825− 1863)

T (ν, s) = exp (−τ(ν, s)) = exp
[
−
∫ s0

s
µ(ν, s′) ds′

]
, (2.18)

with the molecular optical depth τ . The volume absorption coefficient is given by

µ(gas)
a =

∑
m

km(ν, p(s), T (s)) nm(s) , (2.19)

where k and nm are the absorption cross section and number density of molecule m.
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Figure 2.2: Single path transmission of CO according to Beer’s law for US-Standard mid-
latitude summer and mid-latitude winter atmospheric conditions.

Particularly in the SWIR, thermal emission from Earth’s atmosphere and surface
is still weak compared to reflected sunlight (see Fig. 1.1). Hence the integral term in
Eq. (2.17) also becomes negligible and the radiative transfer equation is equivalent to
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Beer’s law for a double path through the atmosphere according to

I(ν) = r(ν)
π

cos(θ)Esun(ν) T↓(ν) T↑(ν)

= r(ν)
π

cos(θ)Esun(ν)

exp
− sun∫

earth

ds′
∑
m

nm(s′) km
(
ν, p(s′), T (s′)

)
exp

− ToA∫
earth

ds′′
∑
m

nm(s′′) km
(
ν, p(s′′), T (s′′)

) , (2.20)

where r refers to the surface reflectivity, Esun the irradiance at ToA, T↓ and T↑ (with
T = T↓T↑) denote transmission between Sun and reflection point (e. g. Earth’s surface)
and between reflection point and ToA, respectively. For a spherical symmetric, plane-
parallel atmosphere, the path length s′ is related to altitude z’ via s′ = z′/ cos(π) for an
nadir looking observer. Likewise it holds s′′ = z′′/ cos(θ) for a solar zenith angle θ.

2.3 Molecular absorption
In the infrared spectral range molecular absorption is due to radiative transitions between
rotational and ro–vibrational states of the molecules. The infrared radiation excites vi-
brations from their ground states (v′ = 0) to excited states (v′ = 1 the fundamental, or
v′ = 2 the first overtone) (Zdunkowski et al., 2007). A criterion for infrared absorption is
a net change in dipole moment in a molecule as it vibrates or rotates (Hanel et al., 2003;
Goody and Yung, 1995). So called ro-vibrational spectra occur when rotational energy
states are superimposed upon vibrational transitions.

In general, a single spectral line is characterized by its position ν̂, line strength S, and
line width Γ where the transition wavenumber ν̂ is determined by the energies Ei, Ef of
the initial and final state, |i〉, |f〉

ν̂ = 1
hc

(Ef − Ei) . (2.21)

A molecule’s absorption cross section k is defined as the product of the line strength S
and a normalized line profile function g

k(ν) = S · g(ν − ν̂,Γ) with
+∞∫
−∞

g dν = 1 , (2.22)

and describes the exchange of energy between the radiation field and energy levels of a
molecule. The argument Γ designates the broadening coefficient (details see Sec. 2.4.1.1
and Sec. 2.4.1.2).

2.3.1 Line strength and partition functions
The line strength for a transition is proportional to the Einstein coefficient for absorption
Bif (|i〉 < |f〉 −→ Ei < Ef ) (Rothman et al., 1998, A. 1; Bernath, 2016, Sec. 1.3)
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according to

S(T ) = h ν̂ ni
c n

(
1− gi nf

gf ni

)
Bif , (2.23)

where n is the molecule’s total number density, ni and nf are the number densities of the
upper and lower states, and gi and gf are statistical weights for the electronic, vibrational,
and rotational transitions according to the degeneracy of the lower and upper energy states
of the transition, respectively (Edwards, 1988). The Einstein coefficients for absorption
B12 and stimulated emission B21 are related to the Einstein A21 coefficient by the Einstein
relations (Seager, 2010, Eq. (8.34)).

In LTE the population partition of states is given by the Boltzmann-distribution ac-
cording to Eq. (2.4), so that

ni
N

=
gi exp

(
− Ei

kT

)
Q(T ) , (2.24)

with the total internal partition sum Q(T) given by

Q(T ) =
∑
j

gj exp
(
− Ej
k T

)
. (2.25)

Accordingly, the ratio in Eq. (2.23) is equal to

gi nf
gf ni

= exp
(
−hcν̂
kT

)
. (2.26)

In the infrared spectral region the total partition sum is the product of the rotational
(Norton and Rinsland, 1991) and vibrational (Eriksson, 1999) partition functions, Q =
Qrot ·Qvib, whose temperature dependence are calculated from

Qrot(T ) = Qrot(T0)
(
T

T0

)β
, (2.27)

Qvib(T ) =
q∏
j=1

[1− exp(−hcωj/kT )]−dj , (2.28)

where β is the temperature coefficient of the rotational partition function, and q the total
number of vibrational modes with wavenumbers ωj and (vibrational) degeneracies dj.

The square of the temperature dependent matrix element D of the electric dipole
moment operator Rif = |〈f |D|i〉|2 describes the probability of the transition and is hence
related to the Einstein coefficient Bif according to

Rif = 3h2

8 π3 Bif · 1036 . (2.29)

Further factors accounting for the partition function, Boltzmann-distribution, and stimu-
lated emission finally determine the line strength for electric dipole transitions according
to

S(T ) = 8π3

3hc
giIa
Q(T ) ν̂ e

−Ei/kT
[
1− e−hcν̂/kT

]
Rif · 10−36 (2.30)

where Ia is the relative abundance of the isotope.
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In spectroscopic line lists such as HITRAN, GEISA or SEOM–IAS the line strength
is provided for a reference temperature (e. g. T0 = 296 K). The line intensity at any other
temperature T is given by the ratio of line strengths at the two temperatures according
to

S(T ) = S(T0) · Q(T0)
Q(T )

exp (−Ei/kT )
exp (−Ei/kT0)

1 − exp (−hcν̂/kT )
1 − exp (−hcν̂/kT0) . (2.31)

Figure 2.3: Line strengths of CO, CH4, and H2O according to the GEISA 2020 line list.

2.4 Line profile functions
In high-resolution spectroscopy of vibrational-rotational and pure rotational transitions,
pressure and temperature greatly affect the shape of an absorption line. The effects are
caused by various physical phenomena such as the finite natural lifetime (relaxation rate)
of the upper energy state (natural broadening), collisions between molecules (pressure
or collision broadening), and the thermal motion of molecules (Struve, 1989; Tennyson,
2005; Hartmann et al., 2008; Brooks, 2014; Bernath, 2016). Narrowing mechanisms arise
from collision-induced velocity changes and the speed-dependence of the relaxation rates
(Varghese and Hanson, 1984; Boone et al., 2007). Moreover, effects such line-mixing can
cause asymmetrical line shapes (Rosenkranz, 1975).

2.4.1 The Voigt profile
Various models have been developed to characterize the physical processes caused by
the interaction of the absorbing molecule and the surrounding perturbers. The Voigt
profile (Armstrong, 1967) is the simplest line shape model accounting for pressure and
velocity effects. The pressure induced modifications are described by the Lorentz profile
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Table 2.1: Overview of the absorption line parameters (in units cm−1) required for the Voigt
profile.

Parameter Symbol
Line position ν̂0

Pressure-induced line shift ∆L
Air- and self broadening ΓL

Doppler broadening ΓG

while effects caused by the velocity distribution of molecules are modeled by the Doppler
profile.

New releases of HITRAN and GEISA databases are made available every few years
(Gordon et al., 2017; Jacquinet-Husson et al., 2016) and include Voigt parameters for every
transition. Line shape parameters in spectroscopic databases (e. g. HITRAN, GEISA,
GOSAT-2009/2014 Nikitin et al., 2010, 2015) are provided for a given reference pressure
and temperature. In those line lists, the Voigt parameters are tabulated for a reference
pressure p0 = 1013.25 hPa and temperature T0 = 296 K.

In analogy to the temperature conversion in Eq. (2.31) each line shape parameter needs
to be converted to the actual p, T values. Table 2.1 summarizes the converted parameters
for the Voigt profile. The Doppler broadening parameter is not included in spectroscopic
line lists as it can be computed according to Eq. (2.41).

2.4.1.1 Pressure (collisional) broadening — Lorentz profile

An ideal spectrometer with full spectral resolution would not observe an absorption line
that corresponds to an infinitely narrow delta function g(ν− ν̂) 6= δ(ν− ν̂) due to natural
line broadening (Bernath, 2016, Sec. 1.3). The effect is caused by the finite lifetime of the
excited state τ as the Heisenberg uncertainty principle (Werner Heisenberg 1901–1976)
states that uncertainty in lifetime σt causes uncertainty in energy σE

σE σt ≥
h

4π = ~
2 (2.32)

and so in a line’s position (see Eq. (2.21)). Although this effect can be neglected in
atmospheric spectroscopy, the impact of uncertainty on line broadening is briefly described
subsequently since both, the natural upper state lifetime and pressure induced mechanisms
have the same effect on the line shape.

The corresponding line profile can be derived from the decay of the excited state
according to a damped oscillating dipole moment M at the Bohr (Niels Bohr 1885–1962)
angular frequency ω10= 2πcν̂

M (t) = M 0 exp(− t

2 τ ) cos(ω10 t) , (2.33)

where τ is the mean natural lifetime in the upper state which is inverse proportional to
σE/h ∝ 1/τ and so inverse proportional to the Einstein A10 coefficient for spontaneous
emission (Seager, 2010).

The collision of molecules causes the upper state lifetimes to be shortened and is
referred to as phase-changing or dephasing collisions (Bernath, 2016; Hartmann et al.,
2008). Given that τd is the average time between two collisions, the Fourier transform
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of Eq. (2.33) leads to the frequency content of the dipole according to Bernath (2016,
Eq. (1.71)). With the normalization condition from Eq. (2.22), the Lorentzian line profile
normalized to 1 is then given by

gL(ν − ν̂,ΓL) = ΓL/π

(ν − ν̂)2 + Γ2
L
, (2.34)

where ΓL = 1/(2πcτd) specifies the half width at half maximum (HWHM) of the profile
(also see Bernath (2016, Eq. (1.75))). Since the number of collisions depend on the molec-
ular number density and velocities, the Lorentz half width is a function of pressure and
temperature (Zdunkowski et al., 2007). The Lorentzian profile therefore constitutes an
adequate model to describe pressure broadening in molecular absorption.

The pressure broadening effect is small at low pressure but dominates the line’s shape
at pressure levels found in the lower atmosphere (Schreier, 2011, Fig. 2). More specifically,
the Lorentz width ΓL is inversely proportional to τd which is inverse proportional to
pressure so that ΓL ∝ p and hence decays approximately exponentially with altitude.
Moreover, it decreases with increasing temperature T . Therefore, in a gas mixture with
total pressure p and partial pressure ps of the absorber molecule the total width is given by
the sum of a self broadening contribution due to collisions between the absorber molecules
and a broadening contribution due to collisions with other molecules,

ΓL =
(
γ

(0,air)
L (p− ps) + γ

(0,self)
L ps

)
·
(
T0

T

)n
. (2.35)

The exponent n quantifying the dependence of temperature is known for many transitions
of the most important molecules. In case it is not specified, the kinetic theory of gases
(collision of hard spheres) yields the classical value n = 1/2. The self broadening coeffi-
cient γ(self)

L is known for many (strong) transitions, however, if not specified, the coefficient
is set to γ(self)

L = γ
(air)
L , i. e. the broadening coefficient with respect to air (Rothman et al.,

1987), so that
ΓL = γ

(air)
L p

(
T0

T

)n
. (2.36)

Moreover, the contribution of the self broadening coefficient is weak for molecules with
low atmospheric concentrations. In the terrestrial atmosphere, for example, only N2, O2
and H2O in certain climatological regions have a significant share ps in the total pressure.
On other planets such as Mars or Venus with atmospheres mainly composed of CO2, self
broadening becomes crucial for a different set of molecules (Hanel et al., 2003).

Another pressure related effect changes the energy levels of the absorber leading to a
shift in the spectral line’s position. This pressure-induced line shift ∆L

∆L = ν̂ − ν̂0 , (2.37)

designates the difference of a position ν̂ from its wavenumber at p0 and T0, which is linearly
dependent on pressure. Similar to above, the self-pressure induced line shift coefficients
for temperature and pressure are largely unknown so that the shift is modeled with respect
to air δ(air)

p and δ
(air)
T according to

∆L = δ(air)
p (p− ps) + δ

(air)
T (T − T0) (p− ps) . (2.38)
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Figure 2.4: Lorentz cross sections of CO according to HITRAN 2016 for three different pres-
sures at 296 K. The vertical grid lines to the left and right of the lines center
position designate the half width of the line profile. The lines for 1000 hPa and
100 hPa are pressure shifted since the figure is centered on the 300 hPa line position.

2.4.1.2 Doppler broadening — Doppler profile

In thermal equilibrium the velocity distribution of molecules is given by the Maxwell-
Boltzmann distribution

q(v) =
(

m

2πkT

) 1
2

exp (−(v/v0)) , (2.39)

where v0 =
√

2kT/m is the most probable speed of an individual molecule of mass m
(Bransden et al., 2003; Zdunkowski et al., 2007). As a result, the thermal motion leads to
the broadening of spectral lines caused by an ensemble of Doppler shifts (Doppler effect).
The resulting line shape is described by a Gaussian distribution

gD(ν − ν̂,ΓG) = 1
ΓG

(
ln 2
π

)1/2

· exp
− ln 2

(
ν − ν̂

ΓG

)2
 . (2.40)

The HWHM is essentially determined by the line position ν̂, the temperature T , and the
molecular mass m,

ΓG = ν̂

(
2 ln 2 kT
mc2

) 1
2

= ν̂
√

ln 2 v0

c
, (2.41)

and hence not considered as a free parameter in laboratory spectroscopy. For the Earth’s
atmosphere one finds

ΓG ≈ 6 · 10−8 ν̂
√
T for m ≈ 36 amu ,
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Figure 2.5: Doppler cross sections of CO according to GEISA 2020 for three different temper-
atures at 500 hPa. The vertical grid lines to the left and right of the lines center
position designate the half width of the Gaussian profile.

where 36 amu designates the atomic mass unit for the most important infrared active
molecules in the Earth’s atmosphere. In contrast to ΓL, the Doppler width ΓG does hardly
vary with altitude. As a result lines are generally pressure broadened in a high pressure
regime such as the troposphere. Beside temperature, the transition to the Doppler regime
is depending on the spectral region (Schreier, 2011, Fig. 1). Moreover, the uncertainty
principle from Eq. (2.32) with σEσt = σxσp, where σx and σp = h

λ
designate the standard

deviation of position and momentum, respectively, confines the wavenumber shift for a
single molecule to be σx ≥ λ

2π in the direction of the observer (Bernath, 2016).

2.4.1.3 Combined Pressure and Doppler broadening — Voigt profile

The Voigt line profile combines the effects of both broadening mechanisms by convolution
of the Lorentz and the Gauss profiles according to

gV(ν − ν̂,ΓL,ΓG) ≡ gL ⊗ gD

=
∫ ∞
−∞

dν̃ gL(ν̃,ΓL) · gD(ν − ν̂ − ν̃,ΓG) .
(2.42)

Every line profile needs to be normalized to unit area according to Eq. (2.22) so that the
Voigt profile gives

gV(ν − ν̂,ΓL,ΓG) =

√
ln 2/π
ΓG

K(x, y) , (2.43)

K(x, y) = y

π

∫ ∞
−∞

e−t2

(x− t)2 + y2 dt , (2.44)
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with K(x, y) representing the Voigt function which is normalized to
√
π. The dimension-

less variables x, y are defined in terms of the distance from the center position, ν − ν̂,
and the Lorentzian and Gaussian half–widths ΓL, ΓG according to

x =
√

ln 2 ν − ν̂
ΓG

and y =
√

ln 2 ΓL

ΓG
. (2.45)
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Figure 2.6: Voigt, Lorentz, and Doppler cross sections of CO according to GEISA 2020 at
330 hPa and 242 K. The absorption cross sections of the former two profiles are
depicted on the left y-axis while the latter is shown on the right axis. The vertical
grid lines to the left and right of the lines center position designate the half width
of the Voigt profile which is similar to the half width of the Lorentz profile but
much greater than the Gaussian half width describing the Doppler broadening.

The Voigt function represents the real part of the complex function

W (z) ≡ K(x, y) + iL(x, y) = i
π

∫ ∞
−∞

e−t
2

z − t
dt with z = x+ iy. (2.46)

Given that y > 0, W (z) is identical to the complex error function (probability function,
Abramowitz and Stegun, 1964) defined by

w(z) = e−z2
(

1 + 2i√
π

∫ z

0
et2 dt

)
= e−z2

(
1 − erf(−iz)

)
. (2.47)

with the normalization condition for the error function erf(±∞) = ±1. It satisfies the
differential equation

w′(z) = − 2z · w(z) + 2i√
π

(2.48)
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and the series and asymptotic expansions (where Γ is the gamma function)

w(z) =
∞∑
n=0

(iz)n

Γ
(
n
2 + 1

) (2.49)

w(z) = i
π

∞∑
k=0

Γ
(
k + 1

2

)
z2k+1 = i

π

(√
π

z
+ . . .

)
. (2.50)

According to Eq. (2.47) for vanishing arguments x or y one has

K(0, y) = ey
2 (1− erf(y)) , (2.51)

K(x, 0) = e−x
2 (2.52)

respectively. Furthermore, truncating the asymptotic expansion of the complex error func-
tion from Eq. (2.50) readily shows that the wing of the Voigt profile is approximated by
a Lorentzian (Armstrong, 1967; Abramowitz and Stegun, 1964; DLMF). The fact that the
function values vary rapidly only near the line center but decrease slowly with increasing
distance is exploited by many optimization schemes in state of the art line-by-line models
(e. g. Schreier, 2011).

The convolution integral of a Lorentzian and Gaussian function can not be evaluated
in closed analytical form (Schreier, 2016) hence most modern algorithms for the Voigt
function employ approximations for the complex error function. Rational approximations,
i. e. the quotient of two polynomials of degree M and N according to RM,N ≡ PM/QN

(Ralston and Rabinowitz, 1978), have been proven to be an efficient and accurate approach
to evaluate the complex error function (Hui et al., 1978; Humĺıček, 1979, 1982; Weideman,
1994). Because of the asymptotic behaviour of the complex error function w ∼ 1/z (see
Eq. (2.50)), the degree of the nominator and denominator polynomials are constrained by
N = M + 1.

A variety of rational approximations for the complex error function were examined
in (Schreier, 2011, 2018). Schreier (2011) proposes a combination of the Humĺıček R1,2
rational approximation (Humĺıček, 1982) and the Weideman approximation (Weideman,
1994) according to

w(z) =


iz/
√
π

z2−1
2

for |x|+ y ≥ 15

π−1/2

L−iz + 2
(L−iz)2

N−1∑
n=0

an+1
(
L+iz
L−iz

)n
else (with L = 2−1/4N1/2)

(2.53)

for line-by-line computations where speed is an issue since the time consuming Weideman
approximation is only used near the line center while the significantly faster asymptotic
rational approximation is evaluated in the line wings. The real-values polynomial coef-
ficients a1, . . . , aN can be computed once and for all by a single fast Fourier transform
(Weideman, 1994). The combination of both approximations has demonstrated to be
efficient and accurate for all x and y given the accuracy required for atmospheric spec-
troscopy applications. More specifically, N = 24 is considered sufficient for Voigt line
profile modeling, whereas N = 32 should be applied for derivative as well as for line
shape computations ‘beyond Voigt’ (Schreier, 2011, Fig. 8).
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2.4.2 Beyond Voigt profiles
Many studies found systematic discrepancies between molecular laboratory spectroscopy
measurements and modeled spectra using the Voigt profile (Lisak et al., 2004; Hartmann
et al., 2008; Schneider et al., 2011; Kochanov, 2012; Ngo et al., 2012; Birk and Wagner,
2016). This indicates that the classical profile is not a fully accurate representation of
the spectral line shape observed in gas mixtures and that the differences are caused by
physical processes that are not considered in the Voigt model (Varghese and Hanson,
1984; Tennyson et al., 2014). For that reason, several more refined line profiles have been
developed (Berman, 1972; Rautian, 1999).

The complex error function in Eq. (2.47) can be used to compute those more so-
phisticated profiles that take additional effects such as collisional narrowing, the speed-
dependence of collisional broadening (Boone et al., 2007; Ngo et al., 2013, 2014; Tran
et al., 2013, 2014), or line coupling (asymmetry) into account (Tran et al., 2011; Boone
et al., 2011). The symmetry relations (Olver et al., 2010)

w(−z) = 2e−z2 − w(z) = w(z) , (2.54)

and particularly

K(−x, y) = +K(x, y) (2.55)
L(−x, y) = − L(x, y) , (2.56)

make the imaginary part of w(z) a useful tool in modeling those higher order effects.
A report by Tennyson et al. (2014) summarizes the results from a IUPAC (Interna-

tional Union of Pure and Applied Chemistry) Task Group on line profiles. It advocates the
partially Correlated quadratic-Speed-Dependent Hard-Collision profile (pCqSD-HCP) as
the appropriate model for high-resolution spectroscopy. This model is also known as the
Hartmann-Tran (HT) profile and accounts for various additional collisional contributions
to an isolated absorption line (Ngo et al., 2013, 2014; Tran et al., 2013, 2014). Conse-
quently, the refined model requires more free parameters to characterize the transition.

In the line lists from Sec. 2.4.1, the line parameters were fitted upon the Voigt profile.
However, with the recommendation of the IUPAC to standardize on the HT profile line
lists such as the HITRAN version of 2016 started to provide beyond Voigt parameters for
the Speed-Dependent Voigt, Galatry, and Hartmann-Tran line shapes for some transitions
(Gordon et al., 2017). Nonetheless, the classical Voigt parameters are still given for
every transition in HITRAN. The latest version of GEISA (2020) also includes updated
parameters for the Voigt profile (Fig. 2.7) but does not yet specify any higher-order
parameters.

Beside these general spectroscopic databases the SEOM–IAS is an improved line pa-
rameter database of H2O, CH4, and CO compiled within the framework of an ESA project
according to the needs of the TROPOMI instrument (Birk et al., 2017a,b). The absorp-
tion lines were fitted using the HT profile without considering partial correlation η (Loos
et al., 2017). In order to account for line-mixing, the profile was extended using the ap-
proximation by Rosenkranz (Y ; Rosenkranz, 1975; Boone et al., 2011) and Smith (Smith,
1981). Table 2.2 summarizes the set of spectroscopic line parameters required to describe
molecular absorption according to the HT model.

While ΓL and ∆0 (see Table 2.1) describe the collisional width and shift for the av-
eraged speeds of the molecules, Γ2 and ∆2 specify their dependence on the absorbing
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Figure 2.7: (a) Cross sections for CO from GEISA 2020 compared to GEISA 2015. (b) Com-
parison for H2O. No difference was observed in the examined interval for CH4.

Table 2.2: Overview of the various ‘beyond Voigt’ line parameters.

Parameter Symbol Units
Speed-dependence of air broadening Γ2 cm−1

Speed-dependence of pressure-induced line shift ∆2 cm−1

Frequency of velocity-changing collisions (Dicke effect) ΓN cm−1

Correlation of velocity and rotational state changes η 1
Coupling coefficient for Rosenkranz line-mixing Y 1

molecule’s speed (Varghese and Hanson, 1984; Rohart et al., 2008; Pine, 1994). In the
HT profile as well as the Speed-Dependent Voigt profile described by Boone et al. (2007)
a quadratic-speed-dependence of these parameters is assumed.

The parameter ΓN = νvc (see Tennyson et al., 2014) describes modifications of the
spectral line shape caused by collision-induced velocity changes that influence the Doppler
broadening (Hartmann et al., 2008). The effect is known as collisional (Dicke) narrowing
(Dicke, 1953).

The parameter η quantifies the partial correlation between velocity and rotational state
changes since velocity-changing and phase-changing collisions are correlated. However, η
has so far only been fitted for very few transitions and hence the parameter was not
available for the studies related to this thesis (Pub. II; Pub. III; Schreier and Hochstaffl,
2021).

Finally, the coupling coefficient Y represents the Rosenkranz parameter which approx-
imates line-mixing in the first order. Line-mixing arises for lines which are close together
and is dependent upon molecular collisions (Lévy et al., 1992), hence, also modifies the
collisional broadening (Lorentz) portion of the complex error function (Letchworth and
Benner, 2007).
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Despite their importance for the applicability of the HT profile the temperature de-
pendence of the new parameters is still an open question (Ngo et al., 2013, 2014; Tennyson
et al., 2014). To mitigate the problem, a separate reference temperature is provided for
each temperature interval in HITRAN 2016 (Gordon et al., 2017). Within an interval,
pressure dependence follows a linear relation and temperature dependence is in general
approximated with the conventional power law (Birk et al., 2017b). In case of the SEOM–
IAS line list the pressure and temperature dependence of the beyond Voigt parameters is
modelled according to

Γ2 = γ
(air)
2 p

(
T0

T

)n
(2.57)

∆2 = δ
(air)
2 p (2.58)

ΓN = γ
(air)
N p

T0

T
(2.59)

Y = Y (air)
p p

1 + Y
(air)
T

60 (T − T0)
 , (2.60)

hence the zeroth and second order broadening parameters are assumed to have the same
p, T dependence, i. e. ΓL,2 ∝ pT−n, whereas the narrowing parameter is inversely propor-
tional to temperature, ΓN ∝ p/T . As pointed out by Tennyson et al. (2014) collisional
parameters for the more complex parameterization are, strictly speaking, no longer lin-
ear combinations of the various molecule-perturber pairs in the gas mixture (Ngo et al.,
2014), but rather separate profiles for perturbations by e. g., O2 or N2 need to be added.
However, so far, databases such as SEOM–IAS treat collisional parameters as linear com-
binations. Since partial correlation between speed-dependence and velocity changes is not
considered in SEOM–IAS, i. e., it is zero for all lines, the Speed-Dependent Rautian with
line-mixing (SDRM) profile is sufficient for this database (Pub. II; Schreier and Hochstaffl,
2021). Table 2.3 provides an overview of the various higher-order profiles and their set of
parameters, respectively (also see Tennyson et al., 2014). The HT profile is introduced
first as the simpler models are its limiting cases.

2.4.2.1 The Hartmann-Tran profile

The HT profile refines the description for a single isolated absorption line by accounting
for collisional effects not considered in the classical Voigt model. It is based on seven

Table 2.3: Line profiles with corresponding line parameters.

Acronym Profile Parameters
- Voigt ΓG,ΓL,∆L
VM Voigt with line-mixing ΓG,ΓL,∆L, Y
- Rautian ΓG,ΓL,∆L,ΓN
SDV Speed-Dependent Voigt ΓG,ΓL,∆L,Γ2,∆2
SDVM Speed-Dependent Voigt with line-mixing ΓG,ΓL,∆L,Γ2,∆2, Y
SDR Speed-Dependent Rautian ΓG,ΓL,∆L,Γ2,∆2,ΓN
SDRM Speed-Dependent Rautian with line-mixing ΓG,ΓL,∆L,Γ2,∆2,ΓN, Y
HT Hartmann-Tran (pCqSD-HCP) ΓG,ΓL,∆L,Γ2,∆2,ΓN, η
HTM Hartmann-Tran with line-mixing ΓG,ΓL,∆L,Γ2,∆2,ΓN, η, Y
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parameters, of which six are collisional parameters (see Table 2.3) that determine the
shape for each spectral line and perturber. According to Ngo et al. (2013); Tennyson
et al. (2014) the normalized (to unit area) HT profile is given by

gHT(ν − ν̂,ΓL,Γ2,∆L,∆2,ΓG,ΓN, η) =

= 1
π

Re
{

A(ν)
1− (ΓN − η (CL − 3C2/2))A(ν) + (η C2/v2

0)B(ν)

}
, (2.61)

where A and B are combinations of the complex error functions from Eq. (2.47) according
to

A(ν) =

√
ln 2/π
ΓG

[w(iz−)− w(iz+)] , (2.62)

B(ν) = v2
0

(1− η)C2

( √
π

2
√
Y

(1− z2
−)w(iz−)−

√
π

2
√
Y

(1− z2
+)w(iz+)− 1

)
,(2.63)

v0 designates the most probable speed of the molecules (see Eq. (2.39) and (2.41)) and ν̂0
specifies the line’s position (see Eq. (2.37)). The complex arguments iz± are given by

z± =
√
X + Y ±

√
Y , (2.64)

where

X ≡ ΓN + i(ν − ν̂0)
(1− η)C2

+ CL

C2
− 3

2 , (2.65)

Y ≡
(

ν̂0 v0

2c (1− η)C2

)2

(2.66)

and

CL = ΓL + i∆L (2.67)
C2 = Γ2 + i∆2 (2.68)

according to (Tennyson et al., 2014; Tran et al., 2013). The quadratic-speed-dependence
in Eq. (2.68) is modeled as a modification of the collisional broadening (Lorentz) portion
of the complex error function while collision-induced velocity changes reduce the Doppler
broadening (Boone et al., 2007; Varghese and Hanson, 1984).

The HT profile can be calculated readily from the complex error function as it involves
the difference of two complex error functions (Schreier, 2017; Schreier and Hochstaffl,
2021). In view of the calculation of differences, highly accurate numerical algorithms
are required for the computation of the convolution integral defining the complex error
functions. For this thesis the rational approximation according to Eq. (2.53) with N = 32
was hence used to compute the integral for all combinations of x and y (Schreier, 2017).
Beside the model’s high accuracy for various combinations of absorbers and perturbers
(Ngo et al., 2014) the computational time is in the order of simpler models (≈ a factor
2–3 slower) and in addition beyond Voigt profiles only need to be calculated for the
(strongest) lines that hold additional parameters (see Pub. II, Table 1). These are crucial
considerations for the performance of line-by-line radiative transfer codes (Edwards, 1988).
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The computational aspects of the complex square roots in the calculation of the com-
plex argument iz± are discussed in (Schreier and Hochstaffl, 2021, Sec. 3.1 and 3.2).
Particularly for small y, standard floating point precision fails to evaluate the difference
in Eq. (2.64). A reliable way to avoid the subtraction of two similar numbers

√
X + Y

and
√
Y is

z− =
√
X + Y −

√
Y = X√

X + Y +
√
Y

= X

z+
. (2.69)

The HT model is compatible with current implementations of line-mixing (see Sec. 2.4.2.5
and Rosenkranz, 1975; Boone et al., 2011). Moreover, accordingly to the limiting cases
of the Lorentzian and Doppler shapes in case of the Voigt profile, simpler (lower-order)
models emerge from limiting cases of the HT profile where not all the parameters have
been determined.
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Figure 2.8: Absorption cross sections of (a) CO, (b) CH4, and (c) H2O for the HT profile and
SEOM–IAS line data, computed for 356 hPa and 236 K with partial correlation set
to η = 0.5 and η = 0.0, respectively.

2.4.2.2 Rautian profile

The effect of line narrowing described by the Dicke parameter can be modeled using
the hard- or soft-collision models. The hard-collision model, referred to as the Rautian
profile (Rautian, 1999), is most appropriate when the perturbers are considerably more
massive than the absorbing molecule since after a single collision the velocity is completely
uncorrelated to the velocity prior to it. In the soft-collision model, known as the Galatry
profile, a single collision is highly correlated with the velocity prior to the collision and
many collisions are required before the velocity becomes randomly distributed. Both
models introduce one extra parameter to quantify the frequency of the velocity-changing
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collisions. The Rautian profile for the hard-collision model with the narrowing parameter
ΓN is given by

gRTN(ν − ν̂,ΓL,∆L,ΓG,ΓN) =

√
ln(2)/π

ΓG
Re

{
w(x, y + ζ)

1−
√
π ζ w(x, y + iζ)

}
. (2.70)

where

ζ =
√

ln 2 ΓN

ΓG
(2.71)

is the frequency of collision changes (Dicke narrowing) normalized by the Gaussian width.
According to Dicke (1953) collision-induced velocity changes narrow the spectral line
shape and it becomes noticeable for small values of the parameter y, i. e. when the line
profile is dominated by Doppler broadening.
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Figure 2.9: Absorption cross sections of CH4 for various line profiles beyond Voigt at 330 hPa
and 243 K computed with SEOM–IAS line data. The difference is calculated with
respect to the Voigt profile. The inset shows the center region of the individual
line shapes.

2.4.2.3 Speed-Dependent Voigt profile

For vanishing η = 0 and ΓN ∝ ζ = 0 the limit of the HT profile is the Speed-Dependent
Voigt (SDV) profile (Boone et al., 2007; Schreier, 2017) given by

gSDV(ν − ν̂,ΓL,Γ2,∆L,∆2,ΓG) =

√
ln 2/π
ΓG

Re
{
w(iz−)− w(iz+)

}
. (2.72)
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2.4.2.4 Speed-Dependent Rautian profile

With vanishing correlation (η = 0) the HT model reduces to the Speed-Dependent
Rautian (SDR) profile (Varghese and Hanson, 1984; Tennyson et al., 2014; Schreier and
Hochstaffl, 2021). The SDR function is essentially the quotient of the difference of two
complex error functions. The profile is given by

gSDR(ν − ν̂,ΓL,Γ2,∆L,∆2,ΓG,ΓN) =

=

√
ln 2/π
ΓG

Re
{

w(iz−)− w(iz+)
1−
√
π ζ (w(iz−)− w(iz+))

}
, (2.73)
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Figure 2.10: Single path nadir CH4 transmission for SEOM–IAS based Voigt and SDR cross
sections and two spectral intervals. US-Standard atmospheric conditions apply.

2.4.2.5 Rosenkranz Line-Mixing

The line profiles considered above have assumed that the spectral line being calculated
is sufficiently isolated. If two strong lines have transitions |f1〉 ← |i1〉 and |f2〉 ← |i2〉
with transition wavenumbers ν̂1 and ν̂2 within e. g., their half width Γ, the molecule has
several possible paths to make the transition from state |i1〉 or |i2〉 to |f1〉 or |f2〉 (Lévy
et al., 1992; Loos et al., 2015; Hartmann et al., 2009; Tran et al., 2010). Line-mixing can
only occur for lines of the same molecule (and isotopologue) and the effect becomes more
important with increasing pressure (i. e. for large values of the parameter y Loos et al.,
2017). Figure 2.11 shows the effect of line-mixing for 330 hPa. The line shapes drop off
more gradually on the side where another strong line is present and more quickly on the
side where there is no coupling.

The effect of first order line-mixing on the line profile can be modeled by the Rosenkranz
approximation (Rosenkranz, 1975; Boone et al., 2011; Strow et al., 1994; Pine and Gabard,
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2000). In case of the Voigt profile the formalism utilizes the imaginary component L(x, y)
according to

gVM(ν − ν̂,ΓL,ΓG, Y ) =

√
ln(2)/π

ΓG
Re ((1− iY )w(z))

=

√
ln(2)/π

ΓG
(K(x, y) + Y L(x, y)) . (2.74)

For higher order line models such as the HT profile from Eq. (2.61) Rosenkranz line-mixing
is considered by introducing Y according to

gHTM(ν − ν̂,ΓL,Γ2,∆L,∆2,ΓG,ΓN, η, Y ) =

= 1
π

Re
{

(1− iY )A(ν)
1− (ΓN − η(CL − 3C2/2))A(ν) + (ηC2/v2

0)B(ν)

}
. (2.75)

The Hartmann-Tran with line-mixing (HTM) profile reduces to the HT profile for Y = 0
and a comparison of both models is shown in Fig. 2.12. Other profiles such as the SDRM
or Speed-Dependent Voigt with line-mixing (SDVM) are treated accordingly (Boone et al.,
2011, Sec. 4).
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Figure 2.11: The effect of line-mixing on molecular cross sections for the SEOM–IAS based
Speed-Dependent Voigt profile at 330 hPa and 243 K. While in the left figure the
line strengths of the two neighboring lines differ by a factor ≈ 2 the line strengths
in the figure on the right are almost equal causing the mixing effect to be more
pronounced.
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Figure 2.12: Line-mixing effect demonstrated for the HT absorption cross sections of (a) CO,
(b) CH4 and (c) H2O at 356 hPa and 236 K, respectively, with η = 0.5 and
Y = 10−2 (for the HTM profile).

2.5 Extinction by particles and molecular scattering
In addition to molecular absorption scattering by molecules also contributes to attenuation
as photons scattered out of the probing beam do not reach the detector. Furthermore,
particles (aerosols) attenuate by scattering and absorption which is known as extinction
(Burrows et al., 2011, Chap. 6).

The loss term on the right hand side of Eq. (2.16) indicated that both, absorption
and scattering contribute to the loss of radiative intensity. In contrast to molecular
absorption where transitions from lower to higher energy states determine absorption,
scattering by molecules (Rayleigh scattering) and aerosols redirect the incident energy
according to their single scattering phase function (see Eq. (2.14) and Seager, 2010).
Aerosols can also absorb some of the incident intensity as a gray body with emissivity
ε = µ(aer)

a according to Kirchhoff’s law (Stamnes et al., 2017). Note that this aspect was
not considered in the radiative transfer equation in Eq. (2.16) since it would violate LTE
which, strictly speaking, compromise predictions from Eq. (2.17) and Eq. (2.18), both
requiring a thermodynamic temperature according to LTE conditions (Fischer and Hase,
2015).

The Ångstrom exponent β (Anders Jonas Ångstrom 1814–1874) is a measure for the
aerosol optical depth τaer at wavelength λ according to

τaer(λ)
τaer(λ0) =

(
λ

λ0

)−β
, (2.76)

where τaer(λ0) is the optical thickness at a reference wavelength (e. g. λ0 = 1 µm). The
exponent β basically depending on the scatterer’s size distribution n(r) which in turn is
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primarily depending on the aerosol’s origin (e. g. rural-, urban-, polar-, marine- aerosols).
For clear sky conditions with weak scattering by haze or dust a β could be set to 1.3
(Liou, 2002; Yan et al., 2015) while for hazy conditions it is assumed to increase to ≈ 2.5
(Wunderlich et al., 2021).

As indicated in Eq. (2.19) the exponential attenuation of intensity when passing
through a medium is composed of several components according to their optical depths. In
order to account for the additional attenuation caused by Rayleigh and aerosol scattering,
the exponent can be complemented accordingly

τtot(ν, s) = τ(ν, s) + τray(ν, s) + τaer(ν, s) , (2.77)

where τray and τaer are the Rayleigh and aerosol optical depth at a particular wavenumber
ν, respectively, and τ the molecular optical depth from Eq. (2.18) (Bodhaine et al., 1999).

2.5.1 Aerosol extinction
In analogy to molecular absorption coefficient from Eq. (2.19) a aerosol cross section kaer
can be formulated by using Eq. (2.76). As mentioned in the previous section an aerosol
optical depth that is appropriate for clear conditions is proportional to λ−1.3 so that

kaer(λ) = k1
aer/λ

1.3 with kaer(λ0 = 1µm) ≡ k1
aer = 1.4 · 10−27 (2.78)
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Figure 2.13: Molecular and aerosol optical depths for a double path through the atmosphere.
The aerosol optical thickness (red) for β = 1.3 is of the same magnitude as the CO
optical depth. However, it does not show any high frequent spectral variations.
The Rayleigh optical depth (magenta) is almost two orders of magnitude smaller.

The aerosol optical depth for a double path in nadir viewing geometry is then given
by (Liou, 2002; Kaltenegger and Traub, 2009)

τaer(ν) =
sun∫

earth

kaer(ν)nair(z′)/ cos(θ) ds′ +
ToA∫

earth

kaer(ν)nair(z′′)/ cos(π) ds′

=
(
N↓air + N↑air

)
k1

aer

(
104/ν

)−1.3

=
(
N↓air + N↑air

)
8.833 10−33 ν1.3 . (2.79)
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The total column density for air Nair is simply the sum of the individual molecular columns

Nm(z0) ≡
∫ ∞
z0

nm(z) dz =
∫ ∞
z0

nair(z) qm(z) dz =
∫ ∞
z0

ps(z)NA qm(z)
g(z)mair

mol
dz , (2.80)

where qm(z) is the mole fraction of molecule m at level z, ps is partial pressure, z0 is the
ground elevation (surface altitude) and g the gravitational acceleration of the Earth and
mair

mol the molar mass of air that is approximately constant in the so called homosphere
(z < 80 km). Figure 2.13 shows the optical depth for the CO retrieval interval according
to Eq. (2.79).

2.5.2 Rayleigh extinction
Elastic scattering by air molecules is referred to as Rayleigh scattering and was originally
formulated by Lord Rayleigh (1842−1919). It describes scattering of radiation by particles
with a size parameter x = 2π r ν that is 2 · 10−3 < x < 2 · 10−1 with r designating the
radius of a spherical particle and ν the wavenumber of the incident radiation. Similar
to the aerosol cross section, the loss in intensity due to Rayleigh scattering is calculated
by the scattering cross section kray per molecule (Bodhaine et al., 1999). It is essentially
independent of nair so that the optical depth τray at a particular wavenumber for a double
path through the atmosphere is given by the product

τray(ν) =
sun∫

earth

kray(ν)nair(z′)/ cos(θ) ds′ +
ToA∫

earth

kray(ν)nair(z′′)/ cos(π) ds′′

=
(
N↓air + N↑air

)
kray(ν) . (2.81)

Rayleigh extinction by scattering is roughly proportional to the fourth power of a wave’s
frequency kray ∝ ν4 (Seager, 2010). As a consequence scattering decreases rapidly with
increasing wavelength so that, according to Eq. (2.76), scattering is approximately 600
times less effective in the SWIR (≈ 3 ·10−4 at 2.3µm) compared to the intensity scattered
at 550 nm (Bodhaine et al., 1999, Tab. 3). The Rayleigh optical thickness in Fig. 2.13 was
calculated according to Zdunkowski et al. (2007, Eq. (11.12)).

Different authors proposed various models to approximate kray in order to compute
the Rayleigh optical depth (Nicolet, 1984; Bucholtz, 1995; Bodhaine et al., 1999) and also
datasets for the scattering cross sections at different wavelength have been compiled, e. g.,
by Penndorf (1957); Sneep and Ubachs (2005); Thalman et al. (2014) or the DLR Institute
of Planetary Research (DLR-IPF) in Berlin (F. Schreier, personal communication).

2.6 Continuum absorption
The continuous spectral absorption by a gas without an apparent line structure (reso-
nance lines) is known as continuum absorption (Shine et al., 2012; Mlawer et al., 2012).
This non-resonant absorption is defined empirically as the difference between and the
experimentally observed total absorption and the calculated contribution of molecular
absorption, aerosol extinction, and Rayleigh scattering (Serov et al., 2017; Elsey et al.,
2020)

µ(con)(ν, s) = µ − µ(gas)
a − µ(aer)

a − µ(gas)
s − µ(aer)

s . (2.82)
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Although the causes of the continuum remain a subject of controversy it is postulated
to have its origin in far-wing broadening, e. g., by collisional effects, and absorption due
to water dimers (Shine et al., 2012). In general the continuum is broken down into two
components, i. e. the foreign- and self continuum. In case of e. g., water, the foreign contin-
uum arises from interactions between H2O molecules with other (abundant) atmospheric
molecules such as N2 or O2 while the self continuum is due to the interaction of two H2O
molecules (Shine et al., 2012). In the terrestrial atmosphere where molecular densities are
sufficiently high, even molecules that have no intrinsic dipole moment such as nitrogen
N2 or oxygen O2 absorb radiation (Karman et al., 2019).

In the empirical CKD model the definition of the water vapor continuum coefficient
is defined as the sum of the contributions from all lines beyond 25 cm−1 from its cen-
ter (Shine et al., 2012; Mlawer et al., 2012). It constitutes a slowly varying function
which is tabulated at 10 cm−1 intervals in the CKD (and MT-CKD) models. The CKD
continuum used a wavenumber dependent ’χ function’ modified line profile (super- and
sub-Lorentzians, depending whether χ ≷ 1.0, respectively) in order to account for far-
wing mechanisms causing the continuum. The updated MT-CKD model includes inelastic
collisions of molecules (collision-induced absorption) in addition to far-wing contributions
and so called ’fudge factors’ to account for discrepancies with respect to latest measure-
ments. However, there is strong evidence that the MT-CKD still underestimates the H2O
continuum absorption in the SWIR windows (Shine et al., 2012).

Beside the two CKD models, collision-induced absorption accounts for the contribution
of binary molecular complexes to absorption cross sections (Karman et al., 2019). More
specifically, in a gas mixture of two molecules A and B the continuum contribution from
molecular pairs would be

µ(con)(ν, s) = k(A−A) n̂
2
(A) + k(A−B) n̂(A) n̂(B) + k(B−B) n̂

2
(B) , (2.83)

so that the volume absorption coefficient is given by

µ(gas)
a (ν, s) = kA(ν) nA(s) + kB(ν) nB(s) + µ(con)(ν, s) . (2.84)

It is composed of the (monomer) contributions according to Eq. (2.19) and the CIA
contribution caused by collisions-induced absorption of molecular pairs A−B with number
densities n̂(A) and n̂(B) of corresponding units. In GARLIC/BIRRA inelastic collisions of
pairs including H2O, N2, O2, and CO2 can be considered (also see Karman et al., 2019,
Tab. 1).

2.7 Instrument — spectral response
The monochromatic spectrum is subject to smoothing because of an instrument’s finite
spectral resolution of λ/∆λ = ∆ν/ν, where ∆λ designates the smallest spectral sepa-
ration between two peaks that the instrument can resolve at wavelength λ. The ISRF
represents the instrument’s response S to a monochromatic stimulus and is required for
the convolution of the high-resolution spectrum to instrumental resolution (Beirle et al.,
2017). Given that S is not depending on λ but only on the difference λ − λ′ the signal
recorded by the instrument can be described by

Î(λ) = I(λ) ⊗ S(λ) −→ (I ⊗ S)(λ) =
∫
I(λ′)S(λ− λ′) dλ′ . (2.85)
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The retrieval of number densities of atmospheric constituents from spectrometers re-
quires that instruments are calibrated and well characterized with respect to known ra-
diometric sources (Kleipool et al., 2018). An importrant part of the on-ground calibration
is the measurement of the ISRF since it is directly linked to the radiative transfer model
by convolution (van Hees et al., 2018). A measured and tabulated ISRF can either be
directly applied to the convolution of the monochromatic signal (Pub. III) or it can be
parameterized by an appropriate function S(λ, ζ) where the parameter ζ accounts for in-
strument characteristics (Sec. 4.6). In case of diffraction grating spectrometers the ISRF
can often be approximated by a Gaussian function (Gimeno Garćıa et al., 2011; Munro
et al., 2016), however, also more complex parameterizations with several parameters have
been developed (e. g. Veefkind et al., 2012).

In case of TROPOMI the results of the calibration measurements are stored in the
calibration key data (CKD). The main spectral characteristics of the TROPOMI’s SWIR
spectrometer is provided in (Kleipool et al., 2018, Tab. 1). In the CKD the response data
for a given detector pixel along spectral dimension is provided as a normalized function of
wavelength. Figure 2.14 shows the response function along the spectral and spatial axes.
In course of the instrument’s on-ground calibration the pixel’s response was determined
up to 4.5 pixels away from the center (i. e. within a range of sufficient SNR) and the
ISRF is set to zero outside that range. The authors in Kleipool et al. (2018); van Hees
et al. (2018) conclude that the ISRF determined for the SWIR spectrometer meets the
requirements (i. e. < 1 % of its maximum) and should thus be sufficient for trace gas
retrieval over the full operational lifetime.

(a) (b)

Figure 2.14: (a) The tabulated SWIR spectral response function across the spectral axis for
the detector pixel 128 (center, nadir direction) of the TROPOMI instrument.
(b) The spectral response for a single spectral pixel (at ≈ 4289 cm−1) across the
detector’s spatial axis.

Often, however, an appropriate function is used to parameterize the ISRF upon one or
multiple parameters (Beirle et al., 2017). For example, various analytical functions were
proposed for the spectral response in the channels of the SCIAMACHY instrument. Other
studies by e. g., Gimeno Garćıa et al. (2011) or Pub. I used a Gaussian to parameterize
the instrument’s spectral response which allowed to include an estimation for the shift and
width of the (unknown) ISRF in the Level 2 retrieval. In case of the SWIR spectrometer
aboard TROPOMI the measured ISRF is slightly flat-topped (van Hees et al., 2018; Beirle
et al., 2017). In the effort to find an appropriate analytical ISRF for the TROPOMI



40 2. Methods: Radiative Transfer

SWIR of the CO retrieval window (4277.2 − 4302 cm−1) a skewed Gaussian model with
parameters for amplitude, shift, half width, and skewness was examined. An advantage
of using a parameterized model for the ISRF is that it allows to account for apparent
modifications of the tabulated response values specified in the CKD. In particular, a
heterogeneous reflectivity in the observed scene can cause inhomogeneous illumination
of the entrance slit of the instrument. Scenes with strong variations in the reflectivity
such as observations along coastlines do alter the instrument’s spectral response (a.k.a.
slit function) for which Level 2 processing should account for (Noël et al., 2012; Hummel
et al., 2021).

A function that is often used for the parameterization of the ISRF is the Gaussian
function

G(ν) = 1√
2πσ

exp
(
−(ν − ν̂)2

2σ2

)
, (2.86)

with the property that the integral over all wavenumbers gives a probability of 1 according
to ∞∫

−∞

G(ν) dν = 1 . (2.87)

It is important to note that, strictly speaking, the subsequent parameterizations are nor-
malized on an infinite interval, however, the ISRF is only calculated on a finite interval.

The half width at half maximum (HWHM) of this symmetric distribution is given by

γ = ±
√

2 ln 2σ , (2.88)

where σ represents the standard deviation of Eq. (2.86) from ν̂, and 2γ corresponds to
the full width (FWHM). Since a spectrometer’s resolution is often specified in terms of
FWHM, Eq. (2.86) is often expressed in terms of γ according to

S2(ν) =
√

ln 2
γ
√
π

exp
(
− ln 2 ν2

γ2

)
. (2.89)

In order to model the flat-topped distribution of TROPOMI’s spectral response a gener-
alized normal distribution (Nadarajah, 2005; Beirle et al., 2017) is required, i. e., a class
of functions

Sk(ν) = A(ω, k) exp
(
−
∣∣∣∣ νω
∣∣∣∣k
)
, (2.90)

with the parameter k > 2 and the normalization of the integral to 1 via

A(ω, k) = k

2ω Γ
(

1
k

) , (2.91)

where Γ is the gamma function. If γ is used to describe the width then

ωk = γ
k
√

ln 2
(2.92)

is depending on k while if the half width at 1/e maximum (HWEM=ζ) is used then ω = ζ
and hence not dependent on k (see Beirle et al., 2017, Fig. 1). The super-Gaussian with
half width γ is then given by

S4(ν) = 2 4
√

ln 2
γ Γ

(
1
4

) exp
(
− ln 2 ν4

γ4

)
. (2.93)
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The application of the above introduced ISRFs as well as an assessment of more
sophisticated instrument line shapes with respect to TROPOMI is presented in Sec. 4.6.





Chapter 3

Methods: Retrieval — inverse
problem

3.1 Inversion
The extraction of atmospheric properties and constituents from a spectrum constitutes
an ill-posed inverse problem (Rodgers, 2000; Neto and da Silva Neto, 2012). The retrieval
generally consists of a forward model F (x) and an inverse method in order to solve for
the quantity of interest (see Fig. 3.1). The most important mathematical aspects that
are encountered in the solution of ill-posed inverse problems such as the retrieval of trace
gas concentrations from an observed spectrum are described subsequently (Hansen et al.,
2013; Aster et al., 2018; Gill et al., 2019). This is important in order to be able to interpret
the results in Sec. 4 and apprehend the methods limitations.

3.1.1 Ill-posed problems
In atmospheric remote sensing the property of interest X ∈ R is usually a function
of altitude (e. g. molecular concentrations or temperature profile) that is not observed

True state x (unknown)

Estimated state x

Measurement y
e.g. a spectrum

s

k

Forward model y = F (x)

Inversion x = F−1(y)

Figure 3.1: Schematic depiction of the forward model and inversion methodology. The forward
model provides a spectrum for a given state vector x. The retrieval does the inverse
and yields an estimate for x for a given spectrum y.
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directly but represented by a model function f(ν), generally represented by the radiative
transfer equation (see Sec. 2.2). In atmospheric inversion problems the Fredholm integral
of the first kind appears (Hanson and Phillips, 1975)

f(ν) = I[X(z)] ≡
∫ z1

z0
k(ν, z)X(z) dz , (3.1)

with f(ν) the image of X(z) under the integral transformation I. The function k(ν, z) is
referred to as the integral kernel of the transform. It is considered to be given, and encodes
the physics relating an unknown function X(z) to corresponding data f(ν). The goal is
to find the inverse transform In general, the smoothness of the integral kernel limits the
ability to recover higher frequency components in X(z) from Eq. (3.1) (Margerum, 1983).
This causes ambiguity that is often described as inherent instability or ill-posedness.

According to Jacques Salomon Hadamard (1865 − 1963) a problem is called well-
posed if (a) there exists a solution to the problem, (b) there is at most one solution to the
problem, and (c) the solution depends continuously on the data. In the case the problem
is not well-posed it is called ill-posed. The evaluation of a function at a given point can
be well- or ill-posed (Neto and da Silva Neto, 2012). It is an intrinsic property of the
function being evaluated and it does not depend on approximations.

In cases where the mathematical model for a system’s physics is approximate or the
data is noisy, no exact solution might exist (a). The reason for (b) is that in many
physical phenomenon (spectroscopy, gravitational fields, . . . ) the result can be the same
for different models. For case (c), given that the model is continuous and a unique
solution exists, a more practical definition could be used, e. g. that a model F (X, ν) is
well-posed at X if |(F (X + ε), ν)− F (X, ν)) / ε| ≤ 1 holds, and ill-posed otherwise (Neto
and da Silva Neto, 2012).

3.1.2 Discrete inverse problems
In practice, even if the function f(ν) might in theory be known, function values are
usually provided by measurements of finite resolution. In atmospheric remote sensing a
spectrometer measures at discrete wavenumbers νj to provide a set of intensity values over
some spectral range. A consequence of the discrete representation of the spectrum is that
the object of interest X(z) also needs to be defined on a discrete grid. Series expansion
of order N with basis functions ψNi give

X(z) ≈ XN(z) =
N∑
i=1

ai ψ
N
i (z) , (3.2)

so that the continuous Eq. (3.1) can be represented in the discrete form

f(νj) =
N∑
i=1

ai

∫ z1

z0
k(νj, z)ψNi (z) dz , (3.3)

where the solution consists of determining the constants ai. It can be formulated as

fj =
N∑
i=1

Kji xi , (3.4)
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with the operator
Kji =

∫ z1

z0
kj(z)ψNi (z) dz , (3.5)

and xi corresponds to the coefficient ai. A model Kx of a discrete spectrum y ∈ RM with
parameters xi ∈ x is corresponding to a linear transformation from RN → RM according
to

y = Kx , (3.6)

where x is a column vector with N elements (model parameters) and K is an M×N matrix
(Zhang, 2011; Golub and Van Loan, 2013). Equation (3.6) constitutes a linear discrete
inverse problem with respect to x, hence methods of linear algebra can be applied in
order to solve the problem (Gentle, 2017). In principle, if K is a square matrix (M = N)
of independent columns, the solution for the inverse problem reduces to a simple matrix
inversion. However, from the set of linear equations that aim to fit the model vector x to
measurement data y issues such as solution existence, solution uniqueness, and instability
of the solution remain.

3.1.3 Discrete ill-posed inverse problems
For the subsequent sections it is useful to recall that given a matrix KM×N the dimension
(rank) of the row space is equal to the dimension of the column space rk(K) = rk(KT) ∈ R
(Zhang, 2011). The span of the columns v in K define the range of the matrix R according
to

R(K) = span(vl)l=1,...,N =
{

Kx | x ∈ RN

}
, (3.7)

that are all vectors y ∈ RM for which Kx = y is consistent. The column space is a
subset of RM while the row space with range R(KT ) is a subset of RN . Furthermore, the
(column) null space N , defined as

N (K) =
{

Kx = 0 | x 6= 0
}
, (3.8)

with x ∈ RN is a subset of RN with the dimension dim(N (K)) = N − rk(K) according to
the rank-nullity theorem (Zhang, 2011, Thm. 1.3).

In practice, no model might fit the data exactly, so that the measured data y is not
in the range of matrix K, hence

y /∈ R(K) : Kx 6= y | y ∈ RM , ∀x ∈ RN , (3.9)

and no exact solution exists. Non-uniqueness, on the other hand, is a characteristic of
rank deficiency meaning the matrix K has a non-empty null space N (K) 6= {0} so that
any linear combination of vectors x can be added to Eq. (3.6) without affecting y.

As radiance measurements at different wavenumbers do not contain independent in-
formation on the individual parameters of x, the columns in K do not form an orthogonal
basis. As a result, the inverse solution for x can be very unstable with respect to small
changes ε in the data vector

y + ε = y(ε) = Kx(ε) . (3.10)
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Consequently, small errors in the measurement, caused by noise, can induce substantial
change in the solution x − x(ε) � ε so that x(ε) → x whenever y(ε) → y is violated (c)
(Gill et al., 2019).

The ill-conditioned nature of the problem brings that K is not automatically over-
determined if there are more equations than unknowns M > N . Some of the components
in the solution xmight be over-determined, while other components are under-determined
(Aster et al., 2018). Whether a component is over- or under-determined depends on
how the parameter is mapped from the vector space x ∈ RN to the measurement space
y ∈ RM and also on the magnitude of ε which will be further examined in the subsequent
sections. The ill-posedness is hence caused by both, inconsistent measurements and model
parameters that cannot be determined from the measurement vector y.

3.1.4 Solving inverse problems
Given the matrix KM×N with M ≥ N it is said to have full rank if rk(K) = N so that
R(K) ∈ RN . Consequently, the matrix has a trivial null space of dimension dim(N (K)) =
0. A so called left inverse K+ can be formulated using the transposed matrix of K given by
KT . The product KTK is a positive definite symmetric N ×N matrix that is injective if it
is of full rank. Moreover, every positive (semi-)definite matrix is convex which guarantees
that Eq. (3.10) has a unique closed-form solution (Gentle, 2017). Therefore, it is not
singular and has non-negative real eigenvalues. The inverse of a squared matrix is given
by (

KTK
)−1

= K+
(
KT
)−1

, (3.11)
so that

K+
(
KT
)−1 (

KTK
)

= I , (3.12)

and the left inverse (generalized/pseudo inverse) can be given by

K+ =
(
KTK

)−1
KT . (3.13)

The product K+K only equals the identity matrix I if y ∈ RN and K is positive definite
(Zhang, 2011, Sec. 7.1). Accordingly, y ∈ R(K), so that the generalized inverse K−1 does
provide the exact solution

K−1 y − x = 0 . (3.14)
In the over-determined case, however, K+K = P gives a matrix of size N ×N that is the
projection of y ∈ RM onto the column space R(K) ∈ RN so that

K−1 y − Px = y⊥ , (3.15)

with y⊥ ∈ N(K). As a result, K−1 y is not an exact solution (a) for x but the one with
the minimum 2-norm

min
x
‖y − Kx‖2 ⇐⇒ min ‖y⊥‖2

2 . (3.16)

In cases where rk(K) < N the system of equations will in general have either no
exact solution (a) or infinitely many solutions (b). Such rank deficient and ill-conditioned
problems are over- and under-determined at the same time! The reason is that in this case
K has a non-trivial null space N (K) 6= {0} and data vectors y are outside the operators
rangeR(K) /∈ RN even if y ∈ RN . Most inverse problems in atmospheric science, including
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the retrieval of atmospheric parameters from an observed spectrum, deal with the latter
kind of problem.

The characteristics of rank deficient and ill-conditioned linear systems can be more
thoroughly examined with the singular value decomposition (SVD, Golub and Van Loan,
2013, Sec. 2.4). The SVD exists for any matrix and is a factorization scheme that allows
to examine various properties of a matrix K and compute a matrix’s pseudo-inverse K+.
The SVD of the matrix K ∈ RM×N is defined as

K = U Σ VT , (3.17)

with unitary matrices U ∈ RM×M , V ∈ RN×N and a diagonal matrix Σ ∈ RM×N .
The unitary matrices U and V are orthogonal, so they are composed of column vectors

(of length one) ui ∈ U, vi ∈ V which form an orthogonal basis 〈uTk ,ul〉 = δkl and
〈vTk ,vl〉 = δkl, respectively. The range of U and V is given by the span of the set of their
vectors

span(ul)l=1,...,M = R(U) ∈ RM , (3.18)
span(vl)l=1,...,N = R(V) ∈ RN . (3.19)

The diagonal elements of Σ are σl with l = 1, . . . ,min(M,N) represent the singular
values that correspond to the vectors of both, U and V. The product KTK, by which the
left inverse K+ was defined in Sec. 3.1.4, can be given in terms of the unitary matrix V

KTK = V Σ2 VT =⇒ KTKV = V Σ2 , (3.20)

so that the square roots of the N eigenvalues of KTK are the real-valued (right) singular
values σi ≥ 0 of K. The singular values are ordered σ1 ≥ σ2 ≥ · · · ≥ σR where R is the
smallest non-zero singular value which determines the rank of the matrix rk(K) = R. In
numerical applications, for example, the criterion that defines the rank can be formulated
as

σR : min(Σll) ≥ ε | ε ∈ R>0, R ≤ N . (3.21)

The condition number cnd(K) ∈ R+ is then given by

cnd(K) = σ1

σR
. (3.22)

It is a measure for the sensitivity of the solution to small perturbations (e. g. noise,
rounding errors, . . . ) in the input data (c) and can become very large as cnd(K) → ∞
whenever σR → 0.

Provided that R = N and the input data is given by y ∈ RM , the diagonal matrix Σ
contains non-zero singular values up to

Kvl = σlul for l = 1, . . . , N , (3.23)

so that the range and null space of the ill-conditioned system is given by

span(ul)l=1,...,N = R(K) ∈ RN , (3.24)
span(ul)l=N+1,...,M = N (K) . (3.25)
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In analogy to Eq. (3.15), the measurement vector has two components

y =
N∑
l=1
〈y,ul〉ul , (3.26)

y⊥ =
M∑

l=N+1
〈y,ul〉ul , (3.27)

so that no exact solution exists (see Eq. (3.9)).
In the case of rank deficient (R < N) ill-conditioned systems, only the singular values

up to σR are non-zero (see Eq. (3.21)) so that the matrix has a non-trivial null space, and
hence

KTKvl = σlvl for l = 1, . . . , R (3.28)
KTKvl = 0 for l = R + 1, . . . , N . (3.29)

The decomposition of K into unitary and diagonal matrices U Σ VT allows to formulate
the Moore-Penrose pseudo-inverse

K+ = V Σ−1 UT =
N∑
l=1

1
σl
vl u

T
l , (3.30)

which is equal to the inverse in Eq. (3.13) and exists for every matrix. Equivalent to
Eq. (3.15), it is the solution with the minimum 2-norm. In the under-determined case,
K+ provides the solution which is minimized with respect to its 2-norm (see Eq. (3.16)).

3.2 Least squares

3.2.1 Linear least squares
The linear least squares solution for x ∈ RN corresponds to the vector that minimizes the
2-norm of the squared residual between the measurements y ∈ RM and the model

min
x
‖y − Kx‖2

2 , (3.31)

so that the residuum (objective) function to be minimized is given by

r(x) =
[
y − Kx

]T [
y − Kx

]
. (3.32)

Provided that the columns of K comprise a set of linearly independent (but in general not
orthogonal) vectors of size M ≥ N , its second order derivative

∂2r

∂x∂xT
= 2 KT K , (3.33)

is positive definite so that Eq. (3.32) constitutes a convex function with a unique global
minimum (Hansen et al., 2013; Rust, 2002) given by

∂r

∂xT
= 2 KTKx− 2KTy = 0 . (3.34)
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The appearance of the factor two explains the factor 1/2 that is often introduced with
the residuum function. The solution can be represented in form of the so called normal
equation

KTKx = KTy . (3.35)

In analogy to Eqs. (3.15) and (3.23), with the columns of K assumed to be linearly
independent, the matrix product on the left hand side is non-singular (Rust, 2001a). The
least squares problem is then formally solved by

x = K+ y =
(
KTK

)−1
KTy . (3.36)

In order to guarantee that Eq. (3.36) gives the solution with the minimum variance,
known as the best linear unbiased estimate for x (Rust, 2001b), the (usually unknown)
errors ε ∈ RM of the imperfect measurements

y = Kx+ ε (3.37)

need to be unbiased and normally distributed with the mean

E(ε) = 0 , (3.38)

and a symmetric, positive definite variance matrix with a common variance ς2 (white
noise)

E(εεT ) = ς2 I . (3.39)

If the imperfect measurements contain independent random errors of various magni-
tudes the noise (co-)variance matrix C of size M ×M is given by

C = ςT I ς = diag(ς2
1 , . . . , ς

2
M) . (3.40)

In order to account for the statistical characteristics of the observations in the solution
the least squares need to be modified. With the assumptions on errors the distribution of
noise-contaminated measurements can be described by the joint probability function PM
(Gaussian distribution)

PM(y|x) = 1
(2π)M/2 |C|1/2 exp

(
−1

2
[
y − Kx

]T
C−1

[
y − Kx

])
, (3.41)

which is formed by the product of the M individual probability functions. The likelihood
L of the observation is then given by the joint probability density functions according to

L(x|y) = P (y|x) . (3.42)

The best estimate for x is found by maximizing the likelihood function for the given
observations

max
x

{
L(x|y)

}
. (3.43)

The residuum function that needs to be minimized in order to fulfill Eq. (3.43) is then
given by

r(x) =
[
y − Kx

]T
C−1

[
y − Kx

]
. (3.44)
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which represents the absolute value | · | of the exponent without constant factors as they
do not affect the maximization. The minimization problem for this weighted residuum
function is

min
x

{
r(x)

}
= min

x

∥∥∥C−1/2 (y − Kx)
∥∥∥2

2
, (3.45)

with the normal equations solution given by

x =
(
KTC−1K

)−1
KC−1 y . (3.46)

In case of errors according to Eq. (3.39) the factors in the noise variance matrix cancel
out, hence the value of ς2 does not need to be known for the classical least squares (see
Eq. (3.36) and Rust, 2001a).

3.2.2 Nonlinear least squares
A function f is nonlinear in α if the derivative ∂f / ∂α is a function of α (Hansen et al.,
2013). A fitting model F is nonlinear if it depends nonlinearly on one or more parameters
x ∈ RN . Examples for such models are the exponential decay

F (x1, x2, t) = x1 exp (−x2 t) , (3.47)

the solutions given by the wave equation

F (x1, x2, t) = x1 exp [i(kx2 − ωt)] , (3.48)

or, more specifically to atmospheric remote sensing, the convolution of a monochromatic
spectrum with the instrument’s spectral response function S(ν)

F (x1, x2, ν) =
∫ ∞
−∞

S(x, ν − τ) f(τ) dτ . (3.49)

A nonlinear least squares fit is required in order to find an estimate for x that minimizes
the residuum function r(x) with the measurements y and the model functions F ∈ RM

in the 2-norm
min
x

{
r(x)

}
= min

x
‖y − F (x)‖2

2 . (3.50)

In principle, analogous to the linear case, the best estimate for x can be found by
computing the gradient according to Eq. (3.34) and solve the equations for x (Lawson
and Hanson, 1995). In the nonlinear case, however, this can be very challenging and
often there is no closed-from solution for the estimate of x so that iterative algorithms
are required to solve the optimization problem. And even if the problem does have a
closed form solution, it may still be much more computationally efficient to solve the
problem with iterative algorithms (Chen and Surmont, 1976). Moreover, ill-posed inverse
problems are often not convex, so that parameters can be optimal among nearby sets of
parameters without being globally optimal (O’Leary and Rust, 2013).

In general, iterative algorithms (see Fig. 3.2) start with an initial estimate x0 and
proceed by a series of corrections

xi+1 = xi + δxi , (3.51)
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that obtain each δxi by solving a linear minimization problem according to Eq. (3.36)
(Rust, 2002, 2003). For a given iteration step the minimization problem from above can
then be written as

ri(δx) = ‖y − F (xi + δx)‖2
2 , (3.52)

which is equivalent to

ri(δx) =
[
y − F (xi + δx)

]T [
y − F (xi + δx)

]
. (3.53)

The first order Taylor series expansion is used to linearize the forward model with respect
to the quantities of interest

F (xi + δx) ≈ F (xi) + J(xi) δx , (3.54)

where J is the Jacobian matrix for the state vector x which is a fundamental quantity for
any nonlinear optimization method and is given by

J(xi) ≡ ∇F (xi) =


∂F1
∂x1

∂F1
∂x2

. . . ∂F1
∂xN... ... . . . ...

∂FM

∂x1
∂FM

∂x2
. . . ∂FM

∂xN

 (3.55)

It comprises the partial derivatives with respect to the parameters in x. With the Taylor
series approximation from above, Eq. (3.53) becomes

ri(δx) =
[

(y − F (xi)) + J(xi) δx
]T [

(y − F (xi)) + J(xi) δx
]
, (3.56)

which is similar to the linear least squares residuum function in Eq. (3.32). It can therefore
be solved in the same way, i. e.

δxi =
[
JTi Ji

]−1
JTi (y − F (xi)) , (3.57)

In contrast to Eq. (3.36), however, it is not guaranteed that the corrected estimate xi+1 =
xi + δxi is closer to the ’true’ value than xi. The iteration might converge to a local
minimum which might not be a good fit for y and so the least squares need to be started
again with a new x0 (Rust, 2002).

The Gauss–Newton method for the NLS (Hansen et al., 2013) approximates the Hes-
sian matrix H = ∇2F = ∇J by the product of the Jacobians JT J, while the Levenberg–
Marquardt adds a positive definite matrix D and a coefficient Λ as a adjustable damping
constant

δxi =
[
JTi Ji + Λ D

]−1
JTi (y − F (xi)) , (3.58)

in order to counter the effects of ill-conditioning.

3.2.3 Separable least squares
In problems, where the model function F is a linear combination of nonlinear functions
such as

F (x1, x2, x3, x4, ν) = x1 exp (x2 ν) + x3 exp (x4 ν) + . . . , (3.59)
the SLS, also known as the Variable Projection method (Golub and Pereyra, 2003), can be
applied to find a solution for the problem. The method eliminates the linear variables for
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Forward model 𝑭(𝒙)

Figure 3.2: Iterative optimization algorithm. The number of iterations is influenced by the
tolerance criteria |∆x| / |x| < εx and |yobs− ymod| < εy. The PORT optimization
library used in BIRRA stops the iteration process if one or both criteria are met.

the NLS fit in order to reduce the dimension of the parameter space that results in a better
conditioned problem. The reduced number of parameters in the nonlinear minimization
problem improves efficiency and reduces the number of local minimizers which makes
convergence to the globally optimal solution more likely (O’Leary and Rust, 2013).

Fitting models such as Eq. (3.59) allow the state vector x to be separated in a vector
of nonlinear η parameters and linear β parameters to be estimated

x −→ (η,β) with x ∈ RN , η ∈ Rp, β ∈ Rq and N = p+ q , (3.60)

so that the minimization problem is given by

min
x

{
r(x)

}
= min

η,β
‖y − F (η,β)‖2

2 . (3.61)

with the forward model F ∈ RM comprising the set of all parameters. The forward model
can then be separated and formulated according to

F (η,β) −→
q∑
i=1

βi f i(η) . (3.62)

with f i ∈ RM for i = 1, . . . , q. These vector valued model functions can be combined in
a matrix

K(η) ≡
(
f 1(η),f 2(η), . . . ,f q(η)

)
with K ∈ RM×q (3.63)

where each model function is depending on nonlinear parameters. So for given η, Eq. (3.61)
represents a linear least squares problem for the state vector β,

min
β
‖y − Kβ‖2

2 , (3.64)

which is formally solved by
β =

(
KTK

)−1
KTy . (3.65)



3.3 Retrieval of CO from nadir measurements 53

By inserting solution Eq. (3.65) into Eq. (3.61), the original least squares problem Eq. (3.61)
can be represented only in terms of the nonlinear parameters η and becomes

min
η

∥∥∥∥∥y −∑
i

((
KTK

)−1
KTy

)
i
f i(η)

∥∥∥∥∥
2

. (3.66)

This NLS problem for η is independent of β and can be solved in the usual way by means
of Gauss–Newton Eq. (3.57) or Levenberg–Marquardt algorithms Eq. (3.58). Although
the Jacobian matrix for Eq. (3.66) is reduced in size, it still needs to be calculated for
∇F (η) (O’Leary and Rust, 2013). Once the optimum η is found, the unique solution for
the linear parameter vector β is obtained from Eq. (3.65).

3.3 Retrieval of CO from nadir measurements
In the SWIR spectral region the forward model F (x, ν) for the upwelling monochromatic
radiance for a double path through the atmosphere can be formulated as

F (x, ν) =
r(ν)
π

cos(θ)Esun(ν) exp
(
−
∑
m

αmτm(ν)
)
⊗ S(ν, γ) + b(ν) , (3.67)

where the state vector x includes the retrieval parameters (also see Eq. (2.20)). In this
region of the electromagnetic spectrum the nadir viewing geometry does not allow to
retrieve information on the vertical distribution of trace gases. The reason is that the
information of the vertical profile is well under-determined in the observed spectrum
because derivatives of the top of atmosphere radiance with respect to profile changes
at different altitudes (weighting functions) do not peak at various altitudes for different
wavenumbers (Gimeno Garćıa et al., 2011, Fig. 1) (Buchwitz et al., 2000, Sec. 3). Still,
instruments observing in the TIR around 2100 cm−1 such as AIRS, IASI or TES (see
Sec. 1.4) are able to provide vertical distributions of CO. In the SWIR, however, it is
customary to retrieve total column densities Nair. Often, instead of total column densities
according to Eq. (2.80) the total column averaged dry-air mole fractions qm are given

qm ≡
Nm(z0)

Nair(z0)−NH2O(z0) (3.68)

which represent the abundance of m relative to that of all other components nm = qmNair
and are less sensitive to variations in z0 (Pub. I).

The subspace of the state vector x in Eq. (3.67) is defined by the set of retrieval
parameters it holds

x ∈ S ⊆ {r, b,α, γ, δ, ξ . . . } . (3.69)
The linear parameters ri ∈ r and bj ∈ b represent the coefficients for polynomials of
optional order i, j ≤ 2. The polynomials model the surface reflectivity and the baseline
correction (optional), respectively. The scaling factors of the individual molecules m (CO,
CH4, H2O, CO2, . . . ) are represented by αm ∈ α. In general, molecules with absorption
lines in the observed spectral interval need to be considered in the state vector. The
instrumental slit function S, approximated by functions according to Sec. 2.7, includes
the optional parameters γ for the half width, δ for the wavelength shift and ξ for the
skewness of the spectral response.
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In the retrieval of CO from TROPOMI’s band 7, an exemplary state vector for the
SLS fit could be chosen to include seven parameters in total, e. g.

x −→
(
η,β

)
←→

(
(αCO, αCH4 , αH2O, δ)T, (r0, r1, r2)T

)
. (3.70)

The wavenumber shift δ is often used to account for modifications in the spectral re-
sponse due to heterogeneous illumination of the entrance slit of the instrument (details
see Sec. 4.6). In comparison, the state vector for the SCIAMACHY CO retrievals in
Pub. I and Pub. II include an additional parameter for the half width γ of the Gaus-
sian response function because an ice layer on the detector modified the instrument’s slit
function (Lichtenberg et al., 2010; Gimeno Garćıa et al., 2011).

The forward model at wavenumber νj (with j = 1, . . . ,M) for the SLS is then given
by

Fj(η,β) = r0f0(η) + r1f1(η) + r2f2(η) =
2∑
i=0

βifi(η)

= r0

π
cos(θ) Isun(νj) exp

(
−
∑
m

αmτm(νj)
)
⊗ S(νj, δ)

+
r1

π
νj cos(θ) Isun(νj) exp

(
−
∑
m

αmτm(νj)
)
⊗ S(νj, δ)

+
r2

π
ν2
j cos(θ) Isun(νj) exp

(
−
∑
m

αmτm(νj)
)
⊗ S(νj, δ) , (3.71)

and the corresponding row in the Jacobi matrix by

J(η) = ∇ηFj(η,β) . (3.72)

3.4 Pre- and Postprocessing
A crucial aspect for the successful retrieval of state parameters (elements of the state
vector) is pre- and postprocessing. This included the thorough preparation of Level-
1b data, including the application of quality flags such as the bad and dead pixel mask
(BDPM), rigorous cloud filtering, the removal of non-converged retrievals, and the disposal
of measurements with very small SNRs (e. g., observations above large bodies of water,
such as lakes, rivers, etc.).

Retrieved CO mole fractions for a subset of TROPOMI observations from various or-
bits around the globe are depicted in Fig. 3.3. The subset includes every tenth TROPOMI
scanline and one scanline consists of 215 measurements. Figure 3.3a shows all converged
retrievals while only retrievals with a cloud fraction of < 10 % according to the S5P–NPPC
(S5P–National Polar-orbiting Partnership Cloud) product (see Pub. III, Sec. 2.2.4) are
shown in Fig. 3.3b. The majority of CO is distributed within 20 − 100 ppbv. However,
the figure clearly shows that values below 40 ppbv are primarily caused by retrievals over
optically thick clouds since the bimodal distributions in the non-filtered cases vanish after
cloud filtering. The vertical distribution of CO has a relative maximum in the troposphere
(see Pub. III, Fig. 6), hence clouds that obscure most of the lower atmosphere cause the
column averaged mole fraction to decrease.
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Figure 3.3: Inferred CO concentrations from TROPOMI measurements over Africa and Eu-
rope on September 21, 2019 (orbits 10045 − 10047). All converged observations
are depicted in (a) while in (b) cloud filtered retrievals are shown.

3.5 Altitude sensitivity—averaging kernels

An aspect that is inherent to all remote sensed measurements but varies across different
observing systems is their distinct altitude sensitivity. This feature is characterized by
averaging kernels which in general need to be considered in a comparison between different
observing systems (Rodgers and Connor, 2003).

(a) (b)

Figure 3.4: Averaging kernels for ground-based observations in Bremen. (a) The TCCON
column averaging kernels for various solar zenith angles (SZA). (b) The averaging
kernels for the NDACC site in Bremen.
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The averaging kernel matrix A = ∂x/∂x̂ relates the retrieved quantity x to the ’true’
quantity x̂ and to any initial guess xa used in the retrieval by

x− xa = A (x̂− xa) + εx . (3.73)

The error εx includes both random and systematic errors in the measured signal and in
the instrument’s forward model. Since x describes an altitude profile of, e. g. CO, a row
of A can be regarded as a smoothing function for a single altitude level. Hence, in order
to avoid biases caused by different altitude resolutions and (likely different) linearization
points xa averaging kernels need to be taken into account when comparing vertical profiles
from different instruments or retrieval algorithms.

However, in case of column density retrievals the state vector is composed of profile
scaling factors αm ∈ x (i. e. one scalar per molecule m) but not molecular concentrations
at different altitude levels as in the profile retrieval above. Therefore, a so called column
averaging kernel matrix (C, Buchwitz et al., 2004, Sec. 5) is used to describe the vertical
sensitivity of the retrieval. In contrast to a profile retrieval, C is composed of vectors c
each representing the column averaging kernel for one element αm in the state vector. The
column averaging kernel c describes the retrieval’s response to a perturbation from the
initial guess profile and deviations from unity can be interpreted as null space (Eq. (3.8))
or smoothing errors according to (Rodgers and Connor, 2003, Sec. 2 and 3). Therefore,
in a comparison of total columns the equation

tcol = αN + cT
(
d̂− αda

)
(3.74)

takes different altitude sensitivities from different observing systems into account. More
specifically, tcol represents the vertically integrated x accounting for the sensitivity of
the observing system. N represents the total column of the prior profile according to
Eq. (2.80) and c is the vector containing the column averaging kernel for molecule m
(also see Wunch et al., 2010).

ToA

sensitivity

c

1

ToA

number density

d̂αda da
ToA

number density

d̂ αda da

Figure 3.5: Schematic depiction of a column averaging kernel for an observing system with in-
creased sensitivity towards the lower atmosphere (see Buchwitz et al., 2004, Sec. 5)
(left). Exemplary retrieval outcome given that the initial guess concentration pro-
file da has the shape of the true profile (center) — the retrieved profile is a scaled
version of the initial guess (prior profile). The initial guess’ shape is different from
the true profile (right).
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In Fig. 3.5 the effect of averaging kernels on total columns from different observing
systems is depicted. If the initial guess profile xa has the correct shape, proper application
of the total column averaging kernel to the scaled profile αda eliminates the null space
error as the difference between αda and d̂ is solely caused by the deviation of c from
unity. For cases where shape of the initial guess is different from the true a null space
error is introduced (see Eq. (3.8)). The difference of the scaled profile from the true profile
will introduce another null space error which can not be corrected since the shape of the
true atmospheric profile is in general not known. In the example the offset (bias) is only
attributed to the systems gradient in vertical sensitivity and vanishes when c is taken into
account. So in general tcol should be used for the comparison of, e. g., space-based and
ground-based in order to account for these differences and correctly quantify the (possible)
offset.





Chapter 4

Results

4.1 Publication I: Validation of CO total columns
from SCIAMACHY

In Pub. I CO mole fractions inferred from SCIAMACHY 2.3µm nadir observations from
2003–2011 using the BIRRA retrieval algorithm were validated against 18 stations of the
ground-based networks TCCON (Total Carbon Column Observing Network) and NDACC
(Network for the Detection of Atmospheric Composition Change). Weighted averages of
SCIAMACHY CO observations within a circle around the g-b observing system were
utilized to minimize effects due to spatial mismatch of space-based (s-b) and g-b observa-
tions. The global bias was determined to be in the order of −10 parts per billion in volume
(ppbv) depending on the reference network and validation strategy used. The largest neg-
ative bias was found to occur in the northern mid-latitudes in Europe and North America.
It was found that after postprocessing of the BIRRA retrieval output, the individual CO
mole fractions inferred from SCIAMACHY still vary significantly between sites, ranging
from around 100 ppbv up to 200 ppbv. The study also found that differences in verti-
cal sensitivity between the BIRRA retrievals from SCIAMACHY and the ground-based
retrievals from FTIR measurements are small allowing for a direct comparison.

Figure 4.1 shows the results for the comparison of the SCIAMACHY full-mission
dataset with TCCON and NDACC ground-based observations. The rather large co-
location radius of 500 km was required in order average over a sufficiently large ensemble
of SCIAMACHY measurements, thereby reducing the noise. To mitigate representation
errors however, the averages were weighted with increasing distance from the ground
station. As shown in Pub. I this had a positive impact on the mean bias, i. e., reduced
the representation error induced offset. The overall bias b̄ = −12.1 ppbv was determined
as the average of all monthly-mean station biases weighted by their respective standard
deviation (Pub. I, Sec. 2.4). The mean standard deviation across sites σ̄ was found
to be larger than the actual bias, hence the global bias b̄ is not considered significant.
Moreover, the per station bias turned out to be only significant at some sites, namely
Kiruna (NDACC), Bialystok (TCCON), and Bremen (NDACC, TCCON).
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Figure 4.1: Observations within 500 km from the TCCON and NDACC ground stations were
used for the calculation of monthly averages upon which the bias was determined.
(a) Biases b together with their standard deviations on a monthly average bases
for SCIAMACHY observations from 2003–2011. The SCIAMACHY CO concen-
trations were (de-)weighted inverse to the distance squared from the reference site.
b The standard error of the mean values.

4.2 Averaging kernels

The decision to neglect the column averaging kernel in Pub. I was based on the analysis
shown in Fig. 4.2. To quantify the effect of altitude sensitivity on the retrieved CO
columns a true (xtrue) and a prior (xprior) profile were defined. Next, the BIRRA column
averaging kernels C (see Buchwitz et al., 2004, Sec. 5) for SCIAMACHY/TROPOMI were
calculated for different observer zenith angles (OZA) and solar zenith angles (SZA). Note
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that they are almost identical for both instruments given the same retrieval algorithm
and spectral interval (see Pub. II, Fig. 8 and Pub. III, Fig. 7). Then a BIRRA retrieval
was performed based on a synthetic observations for xtrue (US-Standard profile) and a
‘wrong’ prior profile (initial guess) xprior. The retrieved profiles xrtv, scaled versions of
the initial guess profile, were found to be < 2 % or ≈ 5 · 1016 (molec cm−2) within the
true column value for all examined profiles. After application of the averaging kernels
according to Eq. (3.74), the difference in columns was reduced by ≈ 1 % to that the null
space error was quantified to be in the order of 1 % for CO retrievals from SCIAMACHY
clear-sky observations. This is in good agreement with findings by Borsdorff et al. (2016,
Fig. 2) which represents a minor contribution to the overall SCIAMACHY error budget
can hence be neglected in a comparison. A direct comparison was therefore considered
adequate.

Figure 4.2: (Left) Three different vertical CO profiles. The true profile xtrue was used to
simulate the measurement while the retrieved profile xrtv is a scaled version of
the prior xrtv. The corresponding cprofile designates the respective total column.
(Center, Right) Column averaging kernels for different SZAs and observer zenith
angles (OZAs), respectively.
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4.3 Retrieval algorithm upgrade

The development of the scientific BIRRA variant was (more or less) frozen at the sta-
tus described in Gimeno Garćıa et al. (2011), however, the development of the GARLIC
radiative transfer model was ongoing (by Franz Schreier). In early 2018, version 4.1
was the most current variant of the line-by-line code in the GIT version control system
(Loeliger, 2010). The forward model that was implemented in BIRRA at that time was
based on GARLIC version 2, so it was lagging two version numbers. In order to upgrade
BIRRA with GARLIC version 4 major modifications in the BIRRA code were required
since GARLIC version 4 incorporates multiple enhancements compared to its predecessor.
This includes updated interpolation schemes, optimized convolution routines, the MT-
CKD (Mlawer-Tobin-CKD, Mlawer et al., 2012) and CIA (Collision-Induced-Absorption,
Karman et al., 2019; Richard et al., 2012; Borysow, 2002) continuum absorption models
(see Sec. 2.6), as well as multiple additional approximations to compute Rayleigh cross
sections (see Sec. 2.5.2). In order to increase its efficiency in the line-by-line calculations,
the latest GARLIC variant moreover incorporates changes in the data handling and order
of calculations, particularly in the code sections for the computation of molecular absorp-
tion. In addition, changes were made with respect to the GARLIC user interface (i. e.
FORTRAN (Adams et al., 2008) namelist records).

The BIRRA upgrade was performed in small steps and accompanied by functionality
tests of the relevant code segments in order to be able to track issues from the beginning.
At this stage it was essentially a software engineering task where in particular subroutines
and code blocks needed to be rearranged, new interfaces to be built or existing ones to be
redefined, and variable declarations to be adapted. The update was finally completed in
the third quarter of 2018 and the upgraded BIRRA variant was designated version 3.0.
Although the update was complete from a software engineering point of view, essentially
meaning that the program was compiling without errors, the physical results were yet to be
examined and verified. In order to do so retrievals on a set of SCIAMACHY observations
were performed with the old but validated BIRRA v2.0. The output was then compared
to retrievals for the same subset but inferred with BIRRA v3.0. The final result is shown
in Fig. 4.3a and 4.3b. It was found that the rather small discrepancies are primarily

(a) (b)

Figure 4.3: Comparison of retrieval results from BIRRA v2.0 and v3.0. (a) Carbon monoxide
total columns for a subset of SCIAMACHY observations from orbit 13212 on
September 9, 2004. (b) The corresponding spectral fitting residuals.



4.4 Publication II: Impact of molecular spectroscopy on CO from
SCIAMACHY 63

caused by different variable declarations in the new GARLIC version. More specifically,
some floating point numbers were changed from single to double precision thereby causing
numerical effects.

The successful upgrade was a crucial accomplishment for all of the subsequent studies
since any deficiency incorporated during the code update could have lead to severely
compromised results.

4.4 Publication II: Impact of molecular spectroscopy
on CO from SCIAMACHY

In Pub. II the impact of SEOM–IAS spectroscopic information on CO columns from a
large subset of SCIAMACHY measurements in 2003, 2004 and 2005 was examined. The
well-established HITRAN 2016 and GEISA 2015 line lists were used as a reference upon
which the impact was assessed.

(a) (b)

(c) (d)

Figure 4.4: Retrieval output of BIRRA v3.0 for SCIAMACHY observations from the second
quarter of 2004. The molecular absorption cross sections were calculated with
SEOM–IAS line data according to the SDVM line profile. (a)-(c) The profile
scaling factors of CO, CH4 and H2O, respectively. In (d) the effective reflectivity
r0 is shown.

It was found that the SEOM–IAS spectroscopy has positive impact on the spectral
fitting residuals. This is attributed to both, the updated SEOM–IAS line data as well
as more sophisticated line profiles that can be used with the extended set of SEOM–IAS
line parameters. The largest effect, however, was found to be attributed to the updated
SEOM–IAS line parameters (≈ 3 % on average, up to 15 % for individual observations)
but not the models. Nonetheless, the best retrieval results for this enhanced spectroscopic
dataset is obtained when higher-order effects in molecular absorption described by the so
called beyond Voigt profiles are taken into account.
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Beside the improvements in the spectral fit quality, the CO mole fractions increased
by 4− 11 % for SEOM–IAS spectroscopic information, thereby reducing the bias to both
NDACC and TCCON ground-based observations. However, since SCIAMACHY obser-
vations show a rather high variability, this difference was found not significant for the
majority of observations but only for some spectra over the Sahara with sufficient SNR
Fig. 4.4. For those scenes an ≈ 3 % increase in the CO column was found.

In conclusion, the outcomes confirm recommendations from earlier investigations, e. g.,
by Galli et al. (2012) or Checa-Garćıa et al. (2015), i. e., trace gas retrievals in the SWIR
will benefit from improved molecular spectroscopy. Although SEOM–IAS has been com-
piled to meet the accuracy requirements of new operational missions such as TROPOMI
the findings suggest that the updated line data and models are beneficial for the retrieval
of CO from SCIAMACHY. This is an important aspect, e. g., for the compilation of a
multi-mission CO product.

4.5 Publication III: Impact of molecular spectroscopy
on CO from TROPOMI

Publication III investigated the impact of the SEOM–IAS spectroscopy on CO mole frac-
tions from TROPOMI SWIR observations.

Similar to Pub. II, it was found that SEOM–IAS line data with the adequate model
improves the spectral fit quality by significantly reducing the residuals to TROPOMI
measurements compared to both, HITRAN 2016 and GEISA 2015. The magnitude of
the improvement varies across climatological regions but range from ≈ 10 − 20 % (see
Fig. 4.5) and up to 30 % for individual observations with respect to GEISA 2015. The
improved fit quality was identified to be mainly caused by updates in the H2O and CH4
cross sections based on enhanced SEOM–IAS line data and models.

(a) (b)

Figure 4.5: Comparison of the CO retrieval error for different molecular spectroscopies. (a)
Retrieval errors for SEOM–IAS based SDRM cross sections. (b) The correspond-
ing errors for HITRAN 2016 with Voigt cross sections.
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In contrast to the fitting residuals, the differences in CO columns between SDRM
and H16 were found to be rather small across most regions (≤ 3 %). The comparison
to TCCON and NDACC revealed that the smaller retrieval errors in the SEOM–IAS
inferred CO concentrations are beneficial when comparing post-processed mole fractions
to ground-based references since stricter filter criteria can be applied on the TROPOMI
observations within a given distance from the station.

Overall, many aspects of the findings underline recommendations from earlier inves-
tigations (Galli et al., 2012; Checa-Garćıa et al., 2015) and are in good agreement with
findings from Publication II.

4.6 Instrument models and parameter fits
The accurate description of an instrument’s spectral response is crucial for spectroscopic
measurements (Beirle et al., 2017). In contrast to tabulated response functions that are
usually determined during on-ground calibration, parameterized instrument models in
general allow for more flexibility in the Level-1b → 2 retrieval, e. g., account for small
spectral misalignments between the modeled and the recorded spectra by a shift and
squeeze (Gimeno Garćıa et al., 2011; Buchwitz et al., 2000).

The tabulated TROPOMI response functions as well as some classical instrument line
shape parameterizations were presented in Sec. 2.7. In the subsequent paragraphs the
tabulated TROPOMI response functions serve as the basis for the assessment of new
parameterized instrument models. The latter part of the section examines the fit quality
of the TROPOMI CO retrieval when instrument parameters are incorporated into the
state vector (i. e., co-retrieved).

A simple method to introduce a flat-topped and skewed distribution is to linearly com-
bine the Gaussian (see Eq. (2.89)) and super-Gaussian (see Eq. (2.93)) models according
to

S(2,4)(ν,x) = A∗ S2(ν − δ2) + (1− A∗)S4(ν − δ4) , (4.1)
such that 0 ≤ A∗ ≤ 1. The state vector for the ISRF fit could then be chosen as
x = (A∗, δ2, γ2, δ4, γ4). The parameters γ and δ represent the respective widths and
spectral shifts.

Another approach is to use the generalized normal distribution discussed in Nadarajah
(2005) and combine it with the error function erf(ν) in order to get a generalized skewed
normal distribution according to

Sks(ν,x) = N∗
k k
√

ln 2
2 γ Γ

(
1
k

) exp
(
−
∣∣∣∣ νωk

∣∣∣∣k
){

1 + erf
(
ξ
∣∣∣∣ νωk

∣∣∣∣ k
2
)}

. (4.2)

The state vector could then be defined as x = (k, γ, δ, ξ). The parameter ξ models the
skewness and ωk is given according to Eq. (2.92). The normalization factor N∗ accounts
for the finite integral (i. e. N∗ 6= 1, see Eq. (2.87)).

The accuracy of the parameterized response functions is examined with respect to the
tabulated (reference) ISRFs in Figs. 4.6 and 4.7. The figures depict least squares fits of
some reference ISRFs via Eqs. (4.1) and (4.2).

While Fig. 4.6 shows the fit for various pixels across the spectral axis at detector pixel
zero (left- or rightmost pixel), Fig. 4.7 shows the accuracy for different detector pixels
at 4295 cm−1. The results for Eq. (4.1) across the spectral axis of TROPOMI’s band
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7 in Fig. 4.6a reveal a homogeneously distributed residuum within 3 % of the tabulated
ISRF. In Fig. 4.6b the instrument’s response is parameterized according to Eq. (4.2) and
the variability of the residuum is more pronounced across the three different tabulated
responses. Better results are attained for pixels at lower wavenumbers with the residuum
increasing up to 6 % for detector pixels corresponding to higher wavenumbers. Largest
discrepancies arise in the transition from the center to the wing of the distribution. How-
ever, the further away from the peak the disagreements occur the less critical they are
for the convolution with the monochromatic spectrum as the spectral response becomes
weaker.

The results for different detector pixels at 4295 cm−1depicted in Figs. 4.7a and 4.7b
reveal similar results for both parameterized response functions. The findings suggest that
the TROPOMI ISRFs in band 7 could be replaced by the parameterized models without
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Figure 4.6: Fit of the tabulated TROPOMI spectral response functions for three spectral pix-
els (4266.2 cm−1, 4306.6 cm−1, 4351.6 cm−1) of detector pixel 1. Two different
parameterization schemes were used. In (a) linear combinations of Gauss and
super-Gauss models S(2,4) were applied while in (b) different realizations of the
skewed Gauss/super-Gauss variant Sks were used.
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inducing large spectral errors and hence still give accurate retrieval results.
Another investigation assessed the quality of the fit when the ISRF parameters of e. g.

Eq. (4.2) are included in the state vector and co-retrieved with CO columns. As indicated
in Fig. 4.8a, it turned out (as expected) that the spectral residuum ρ

ρ = y − F (x) , (4.3)

becomes smaller the more ISRF parameters are included in the state vector. However,
the incorporation of multiple additional fit parameters into the state vector makes the
retrieval prone to overfitting.

The various state vectors also have major implications on the retrieved CO quantities
as shown in Table 4.2. The variations were quantified with respect to the tabulated
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Figure 4.7: Same analysis as in Fig. 4.6 but for three different detector pixels (viewing angles)
at ≈ 4295.5 cm−1. The left, center, and right subplots correspond to the detector
pixels 1, 128, and 254, respectively. (a) Linear combinations of Gaussian response
functions according to S(2,4) and (b) the response according to Sks.
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Table 4.1: Goodness of fit for the TROPOMI observation from Fig. 4.8.

Parameters Residuum (χ2)
tabulated 1.88 10−2

{γ, δ, ξ} 3.84 10−3

{γ, ξ} 6.21(07) 10−3

{γ, δ} 6.21(48) 10−3

{δ} 2.20 10−2

response. The differences in the CO columns were calculated according to

∆CO = CO(S2s)−CO(Stbl)

CO(Stbl)
, (4.4)

where CO(S2s) and CO(Stbl) represent the retrieved CO concentrations using either the
parameterized or tabulated ISRFs. The corresponding spectral residual with respect to
the actual observations is given by

χ2 =
M∑
i=1

ρ2
i

yi
, (4.5)

known as the goodness of fit statistic (Hansen et al., 2013). The results in Table 4.2
demonstrate that the inferred columns vary considerably across the various retrieval se-
tups. While most options reveal a positive bias towards to the tabulated ISRF setting, the
CO columns with the {γ, δ, ξ} option is rather symmetrically distributed. In Table 4.1 the
retrievals with the tabulated response functions exhibit a larger χ2 than the fits with the
parameterized ISRF—except for the shifted-only variant ({δ}). Although the additional
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Figure 4.8: Spectral residuum for a randomly chosen TROPOMI observation computed with
GEISA 2020 line data over the Sahara on May 07, 2018 (orbit 2923). The spectral
shift of the S2s(ν, δ) model with respect to the tabulated ISRF can be clearly
observed in (a) at around 4295 cm−1. (b) The corresponding histogram of the
spectral residuals. The residuals become smaller the more instrument parameters
are included in the state vector.
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Table 4.2: Percentage differences of retrieved CO total columns for various ISRF parameter-
izations with respect to TROPOMI’s tabulated spectral response. The retrievals
were performed on a subset of TROPOMI observations over the Sahara on May 07,
2018.

{γ, δ, ξ} {γ, ξ} {γ, δ} {δ}
min. (%) -10.51 1.13 1.28 6.49
max. (%) 8.37 8.59 8.48 18.69
mean (%) -1.87 3.50 3.68 10.55

state vector elements (fit variables) increase the goodness of the fit by minimizing the
residuals, the risk of overfitting increases as well.

The parameterized instrument response function according to Eq. (4.2) (with k = 4)
was used for the retrieval of CO across Africa in Fig. 4.9. Beside the CO total columns
the corresponding errors and cloud fractions are shown. A survey of the spectral residuals
over the Sahara revealed smaller discrepancies for the SEOM–IAS spectroscopy compared
to HITRAN 2016. This is in good agreement with retrievals using the tabulated ISRFs
from Pub. III. Moreover, this indicates that overfitting is not yet that much of an issue.
Since the results for the parameterized ISRFs are promising it is proposed that a system-
atic comparison of TROPOMI retrievals for the tabulated and parameterized versions is
conducted in the future.

(a) (b) (c)

Figure 4.9: CO columns from TROPOMI measurements with the ISRF model S4s(ν, γ, δ, ξ).
(a) CO columns in units (molec cm−2) with (b) corresponding errors over Africa
for a single overpass on May 07, 2018 (orbit 2924). (c) Corresponding cloud
fractions, given in (%), were taken from the S5P–NPPC product. Cross sections
were calculated with SEOM–IAS spectroscopic data and the SDVM line profile
and US-Standard Anderson et al. (1986) initial guess profiles were used for CO,
CH4 and H2O. Vertical temperature profile was taken from CIRA (COSPAR
International Reference Atmosphere, Fleming et al. (1990)) climatology. Note the
hemispheric gradient in CO concentrations.
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4.7 Retrieval of aerosol parameters
The co-retrieval of aerosol parameters in the CO fit is based on the extinction of radiation
by particles. Therefore, the aerosol optical depth τaer from Eq. (2.79) is treated as un-
known by adding an amplitude scaling factor αaer0 and an exponent αaer1 to the elements
of the state vector

τaer(ν, αaer0, αaer1) = αaer0
(
N↓air + N↑air

)
8.833 10−33 ναaer1 . (4.6)

The feasibility of fitting the extended state vector was assessed by employing the non-
linear least squares (NLS) and the separable least squares (SLS) methods from Secs. 3.2.2
and 3.2.3, respectively. The performance of both algorithms was evaluated using TROPOMI
observations.

First, the feasibility of the aerosol retrieval was estimated by assessing the Jacobian
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Figure 4.10: (a) Jacobians for the nonlinear molecular and aerosol parameters of the CO
retrieval. (b) Jacobians for the linear parameters, i. e., the coefficients of the
reflectivity polynomial.
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matrix (see Eq. (3.55)), i. e. the change of the transmission with respect to retrieval
parameters. The outcome is shown in Fig. 4.10, where Fig. 4.10a and Fig. 4.10b include
the nonlinear and linear parameters, respectively.

In Fig. 4.10a Jacobians for the molecular scaling factors and aerosol parameters αaer0
and αaer1 are depicted. The Jacobi matrix was calculated for a double path through the
atmosphere in nadir viewing geometry at ToA and for a SZA of 30◦. A spectral resolution
(FWHM) of 0.25 cm−1 was assumed. The derivatives for the aerosol parameters appear
to be similar across the spectral range and only differ by a factor ln(ν) · αaer0. As a
result, the two columns of the Jacobi matrix are close to linear dependence making the
inversion of both parameters very sensitive to small perturbations (see Secs. 3.1.1 and
3.1.3). Consequently, as indicated by the very large condition numbers in Fig. 4.11, the
matrix represents a very ill-conditioned system when both aerosol parameters are elements
in the state vector (see yellow bars).

The top-left of Fig. 4.11 shows various sets for the state vector x of the SLS algorithm.
Note that the sets only include nonlinear parameters since the algorithm does not require
any linear parameter for the iterative fit (see Sec. 3.2.3). This keeps the condition numbers
low, except for the case where both aerosol parameters are included. Interestingly, the
inversion with respect to the aerosol exponent αaer1 appears to be slightly better condi-
tioned than the inversion with respect to αaer0. This suggests that at least one parameter
should be possible to fit along with the molecular scaling factors.
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Figure 4.11: Condition numbers for Jacobian matrices that hold different parameter ensembles
relevant for the CO retrieval in the SWIR. The group in the top left shows
the condition numbers for the nonlinear retrieval parameters α which is hence
relevant for the SLS algorithm. The groups in the other figures include the linear
parameters β in addition to α which are thus relevant for the NLS solver. As
indicated, the condition numbers for the SLS Jacobians in the top left plot are at
least (approximately) one order of magnitude better compared to the rest (NLS
Jacobians).
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Table 4.3: Comparison of 4730 BIRRA CO retrievals over Europe for state vector elements
{αmol, αaer0, βrefl0} (center column) and {αmol, αaer0, βrefl0, βrefl1, βrefl2} (right col-
umn) using two different iterative least squares solvers. The SLSB and NLSB fits
use the SLS and NLS algorithms with (upper and lower) bounds, respectively.

solver converged (%) converged (%)
SLSB 99.0 99.1
NLSB 99.0 73.4

The other three subplots of Fig. 4.11 show different sets for x for the NLS solver. The
condition numbers of the respective Jacobians are worse compared to the SLS subplot in
the top-left. This is because the algorithm requires derivatives for all elements of x as all
fit parameters are estimated in an iterative approach.

The significantly higher condition numbers for the Jacobians in the classical NLS fit
asked for a comparison of the SLS and NLS algorithms. A first assessment was conducted
in Table 4.3 using the bounded variants of both algorithms, i. e. NLSB and SLSB. A subset
with 4730 TROPOMI observations over Europe was selected and the number of converged
fits was compared. Strict cloud filtering criteria according to Pub. III (Sec. 2.2.4) were
applied. Retrievals were calculated for two different state vectors, i. e. the surface re-
flectivity was modeled by polynomials of different degrees (a constant and second order
reflectivity polynomial). The bounds for αaer0 were set to 0 and 10. The GEISA 2020
spectroscopic line list was employed to calculate molecular absorption and positivity con-
straints (bounds) were enforced on the molecular scaling factors. The result shows that
both solvers perform equal for the fits with the constant reflectivity while the SLSB out-
performs the NLSB when the reflectivity is modeled by the higher order polynomial.

In Fig. 4.12a the CO mole fractions with the co-retrieved αaer1 is depicted. The differ-

(a) (b)

Figure 4.12: (a) CO scaling factors over Europe on September 21, 2019 with the αaer1 fit
enabled in SLS solver. (b) The difference in CO when either αaer0 or αaer1 is
co-retrieved is insignificant.
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ence of CO for either co-retrieving αaer0 or αaer1 (respectively) is shown in Fig. 4.12b. The
SLS solver was used in both setups and no cloud filter was applied this time. Although
the retrieval converges for most observations, the fit of either aerosol parameter has an
adverse impact on βrefl0 (� 1 for most cases). The results indicate issues due to degen-
eracies since the distribution of the retrieved aerosol parameter does hardly resemble a
physically reasonable distribution and neither least squares solver converges at physically
meaningful aerosol values and reflectivity parameters. However, the estimates of either
aerosol parameter seems to only have a minor effect on the final CO columns in the SLS
fit.

The results presented in this section are not yet considered conclusive, however, they
constitute an important step towards an algorithm that considers extinction by particles
in addition to molecular absorption. Upcoming studies should also examine other aerosol
parameterization schemes for the SWIR (e. g. Reuter et al., 2017).





Chapter 5

Conclusions and Outlook

5.1 Conclusions
The topic of this thesis is the investigation of CO retrievals from SWIR nadir observa-
tions by spaceborne observations using the BIRRA code. An assessment and validation
of the BIRRA algorithm was performed. This task embarked on the science question (1)
in Sec. 1.6 and the outcome along with a detailed description of the methodology is pre-
sented in Sec. 4.1 and Pub. I. The inferred CO concentrations from SCIAMACHY SWIR
measurements from 2003–2011 revealed to be largely consistent with similar validation
studies from other authors using different algorithms. Additional results regarding the
averaging kernels are presented in Sec. 4.2 describe the BIRRA column averaging kernels
and the decision making process for a direct comparison.

Although the BIRRA software development was not an objective addressed in Sec. 1.6
the algorithm upgrade and its successful verification described in Sec. 4.3 was a crucial
aspect for the upcoming studies and prepared the stage for new enhancements in the
retrieval algorithm and its forward model.

Next, BIRRA’s capabilities were improved in order to accurately retrieve CO from
latest missions. A major effort was put in modeling higher order effects ’beyond Voigt’
in molecular absorption using latest spectroscopic data. The enhanced physical descrip-
tion of molecular absorption along with updated line data was studied for SCIAMACHY
(Sec. 4.4 and Pub. II) and TROPOMI (Sec. 4.5 and Pub. III) measurements and the
outcome was compared against TCCON and NDACC ground-based observations. It was
found that the new SEOM–IAS line data together with the adequate line profile improves
the spectral fit quality by significantly reducing the spectral fitting residuals compared to
both, HITRAN 2016 and GEISA 2015. The differences in the retrieved CO concentrations
were found to be rather small. However, SEOM-IAS spectroscopy significantly reduces
the retrieval error and enhances the precision of the CO product and should therefore be
the preferred spectroscopic input for the retrieval of CO in the SWIR.

Further studies that address the objectives (3) and (4) were conducted but (not yet)
published in articles of peer-reviewed journals. The studies on instrument line shapes in
Sec. 4.6 focus on objective (3). The assessment of the proposed instrument line shapes
revealed that both are adequate in fitting the range of tabulated TROPOMI response
functions. Moreover, the positive impact of the SEOM–IAS spectroscopy on retrieved
CO concentrations was also observed with a proposed parameterized response function.

The retrieval of aerosol parameters presented in Sec. 4.7 deals with objective (4). The
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results show that the simple model for aerosol extinction is not sufficient to retrieve a
reliable aerosol distribution across scenes. A survey of the Jacobian matrices condition
numbers revealed the SLS fit outperforms the NLS fit for the co-retrieval of a single
aerosol parameter (i. e. either the aerosol scaling factor or exponent). It was found that
the significant higher number of converged fits for the SLS algorithm is attributed to the
fact that the derivatives of the nonlinear aerosol parameters are similar to the derivatives
of the linear reflectivity coefficients which cause degeneracies and lead to ill-conditioned
Jacobians for the NLS fit. However, neither NLS nor SLS converges at physically mean-
ingful values for the reflectivity and aerosol parameters—this is particularly true without
setting constraints (bounds). Therefore, more investigations on the co-retrieval of aerosol
parameters is proposed before it can be routinely employed in the BIRRA CO retrieval.

5.2 Outlook
It was shown that BIRRA is successful in retrieving CO from spaceborne SWIR measure-
ments and that it is a flexible and versatile tool for a wide range of studies. The enhance-
ments in the BIRRA algorithm yield an improved CO product across instruments. For
strictly cloud filtered scenes the BIRRA results show good agreement with both TCCON
and NDACC. In order to more accurately account for light path modifications by aerosols
or cirrus clouds in the retrieval, investigations on co-retrieved effective aerosol parameters
should be intensified.

The developments, in particular the improvements in molecular spectroscopy, are con-
sidered a crucial aspect in the algorithm’s capabilities to successfully infer concentrations
of other atmospheric constituents such as CO2 and CH4. Atmospheric concentrations for
both are increasing (Ekwurzel et al., 2017; Yue and Gao, 2018; Saunois et al., 2020) causing
radiative forcing that has the potential to trigger significant changes in climate (Etminan
et al., 2016). The majority of anthopogenic CO2 emissions are concentrated on a small
fraction of the globe, primarily on cities and power plants (Nassar et al., 2017; Kuhlmann
et al., 2019; Strandgren et al., 2020). The Paris climate agreement sets ambitious goals
to reduce CO2 emissions in order to limit global warming well below 2◦C (United Nations
Framework Convention on Climate, 2015, Article 2). The agreement envisages measures
that allow for independent monitoring and verification of nationally reported anthro-
pogenic CO2 emissions. This includes periodically (5-yearly) global stocktakes for which
space-based CO2 measurements on the local and regional scale should provide input in
order to meet the ’monitoring, verification and reporting’ requirements.

The NASA mission OCO-2 was the first to demonstrate the potential of detecting
and estimating strong CO2 plumes of megacities and large point sources (Nassar et al.,
2017; Reuter et al., 2019). A Copernicus mission that is dedicated to measure the global
distribution of CO2 as well as emissions from large power plants (> 10 MtCO2yr−1) is
CO2M (CO2 Monitoring mission, (Kuhlmann et al., 2019)). There are also proposals for
satellite instruments that target localized CO2 emissions from medium-sized power plants
(e. g. 1− 10 MtCO2yr−1 Strandgren et al., 2020). Private companies such as GHGSat put
their resources on the detection of CH4 point sources from space (Cusworth et al., 2019;
Jervis et al., 2021).

A major challenge for the accurate identification of CO2 and CH4 enhancements is
scattering by aerosols and cirrus clouds since both modify the light path of the measured
back scattered radiation leading to an inaccurate estimation of the true concentration if
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not appropriately accounted for (Aben et al., 2007; Hu et al., 2016; Kuhlmann et al., 2019;
Lorente et al., 2021). There are basically two ways to account for scattering discussed
in the literature. One is to simultaneously retrieve molecular concentrations and particle
scattering properties of the atmosphere which is known as a physics-based retrieval (Butz
et al., 2009, 2011; Wu et al., 2018, 2019; O’Dell et al., 2018). Beside the physics-based
method, the proxy approach proposed by Frankenberg et al. (2005) is also an option to
account for scattering effects. However, because of different light path sensitivities in
different spectral ranges the information of light path modifications from the NIR is often
of limited value for the SWIR. A merged fit window approach is often used to enable
the transfer of information between separated bands (Reuter et al., 2010; Gimeno Garćıa
et al., 2011).

Based on those classifications the investigation of aerosol extinction in Sec. 4.7 can be
considered a very first step towards a physical-based approach since it retrieves effective
aerosol parameters. However, it is important to note that, similar to CH4 and H2O in
the retrieval of CO (see Pub. III, Sec. 3.2), the co-retrieved effective aerosol parameters
are considered a byproducts that is only retrieved to enhance the accuracy of the target
species by compensating light path modifications. A study by Schepers et al. (2012)
compared the performance of the physics- and proxy-based CH4 retrievals from GOSAT
observations and concluded that the two methods are similar in their performance to
account for such modifications. It is therefore reasonable to consider both methods in the
search for an appropriate description to account for aerosols and clouds in the retrieval
of trace gas concentrations.
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such as SEOM–IAS use line profiles beyond Voigt new line models needed to be
implemented in the radiative transfer code. In order to utilize latest spectroscopic
data for line-by-line calculations in BIRRA more sophisticated line profiles (beyond
Voigt) had to be implemented its forward model (GARLIC). Technically, this was
achieved by using Fortran 2003 type-bound procedures which allowed to bind the
corresponding line data and models as attributes and procedures to dedicated
derived types. The tools to quantify the differences in the fit quality for various
spectroscopies and assess the quality of the retrievals were developed in Python.
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doi: 10.3390/rs12213486.

Context: Beside the updated physical description of molecular absorption, the
retrieval algorithm itself as well as the processor framework required to be up-
graded and modified in order to facilitate TROPOMI SWIR observations for the
retrieval of CO with BIRRA. The capability to use tabulated ISRFs was built
and TROPOMI specific data ingestion and management routines written. This
included the handling S5P Level-1b Earth radiance and solar irradiance files, ap-
plication of calibration key data (CKD) such as quality flags and the bad and
dead pixel mask. Moreover, a digital elevation model with higher resolution as
well as more accurate initial guess data on CO and CH4 vertical distributions
were incorporated and the processor framework upgraded from Python 2 to 3.

My contributions: Developed the methods, tools, framework and strategy for
this study and performed all retrievals. I wrote the manuscript that was then
reviewed and commented by most of the coauthors.

Schreier, F., S. Gimeno Garćıa, P. Hochstaffl and S. Städt, 2019: Py4CAtS—
PYthon for Computational ATmospheric Spectroscopy. Atmosphere, 10 (5),
262, doi: 10.3390/atmos10050262.

Context: Py4CAtS — PYthon scripts for Computational ATmospheric Spec-
troscopy is a Python re-implementation of the Fortran based infrared radiative
transfer code GARLIC. As outlined in the paper, the original intention was to
call compute intensive subroutines of GARLIC from Python but thanks to the
increased performance of NumPy a Python implementation of lbl cross sections
became feasible, i. e., the interface to GARLIC’s subroutines became less impor-
tant. Accordingly, the further development of GARLIC and Py4CAtS became
largely independent, and Py4CAtS is now a full line-by-line radiative transfer tool
kit delivering absorption cross sections and coefficients, optical depths, transmis-
sions, weighting functions, and radiances.
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Voigt and Rautian profiles. J. Quant. Spectrosc. & Radiat. Transfer, 137,
29–50, doi: 10.1016/j.jqsrt.2020.107385.

Context: The increasing quality in atmospheric spectroscopy observations has
indicated that physical processes beyond pressure and Doppler broadening con-
sidered by the Voigt profile should be treated in the computation of molecular
absorption cross sections. In order to compute higher-order effects such as the
speed-dependence of air broadening or collisional narrowing the imaginary com-
ponent of the complex error function is employed and differences of two complex
error functions are evaluated. Numerical problems due to cancellation errors are
discussed and a numerically stable reformulation proposed. Moreover, the im-
pact of various complex error function algorithms such as the Humĺıček rational
approximation and the Weideman approximation is studied.
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Acronym Description Introduced
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ACE Atmospheric Chemistry Experiment 1
AIRS Atmospheric Infrared Sounder 2
BIRRA Beer InfraRed Retrieval Algorithm 8
CIA Collision Induced Absorption 9
CKD Clough-Kneizys-Davies continuum 9
CO2M CO2 Monitoring mission 11
CSA Canadian Space Agency 2
CSC Copernicus Space Component 8
DAAD German Academic Exchange Service 99
DLR German Aerospace Centre 9
ECSS European Cooperation for Space Standardization 9
ENVISAT Environmental Satellite 1
ESA European Space Agency 1
EUMETSAT European Organisation for the Exploitation of Meteoro-

logical Satellites
2

FTIR Fourier Transform InfraRed 7
FTS Fourier Transform Spectrometer 1
FWHM Full Width at Half Maximum 40
GARLIC Generic Atmospheric Radiation Line-by-line Infrared

Code
9

GEISA Gestion et Etude des Informations Spectroscopiques At-
mosphériques

9

GOME Global Ozone Monitoring Experiment 1
GOME-2 Global Ozone Monitoring Experiment-2 1
GOMOS Global Ozone Monitoring by Occultation of Stars 1
GOSAT Greenhouse Gases Observing Satellite 2
GOSAT-2 Greenhouse Gases Observing Satellite-2 2
HITRAN HIgh-resolution TRANsmission molecular absorption

database
9

HT Hartmann-Tran line profile 27
HTM Hartmann-Tran with line-mixing profile 34
HWHM Half Width at Half Maximum 22
IASI Infrared Atmospheric Sounding Interferometer 2
ILS Instrument Line Shape 10
IMAP-DOAS Iterativ Maximum A Posteriori 8
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IMF Remote Sensing Technology Institute 9
IMLM Iterative Maximum Likelihood Method 8
IR InfraRed 2
ISRF Instrument Spectral Response Function 11
ISS International Space Station 2
JAXA Japan Aerospace Exploration Agency 2
LTE Local Thermodynamic Equilibrium 13
MAPS Measurement of Air Pollution from Satellites 6
METOP METeorological OPerational 2
MIPAS Michelson Interferometer for Passive Atmospheric

Sounding
1

MOPITT Measurement of Pollution in the Troposphere 2
MT-CKD Mlawer-Tobin-Clough-Kneizys-Davies continuum 38
NASA National Aeronautics and Space Administration 1
NIR Near InfraRed 2
NLS Nonlinear least squares algorithm/fit 9
NMHC Non-methane hydrocarbons 4
OCO-2 Orbiting Carbon Observatory-2 2
OCO-3 Orbiting Carbon Observatory-3 2
OMI Ozone Monitoring Instrument 1
PORT Portable Optimized . . . mathematical subroutine library 9
Py4CAtS Python for Computational ATmospheric Spectroscopy 80
SCIAMACHY SCanning Imaging Absorption spectroMeter for Atmo-

spheric CHartographY
1

SDR Speed-dependent Rautian line profile 33
SDRM Speed-dependent Rautian with line-mixing profile 29
SDV Speed-dependent Voigt line profile 32
SDVM Speed-dependent Voigt with line-mixing profile 34
S5P Sentinel-5 Precursor 1
S5P–NPPC Sentinel-5 Precursor National Polar-orbiting Partner-

ship Cloud product
54

SEOM–IAS Scientific Exploitation of Operational Missions – Im-
proved Atmospheric Spectroscopy

10

SICOR Shortwave Infrared Carbon Monoxide Retrieval 8
SLS Separable least squares algorithm/fit 9
SNR Signal-to-Noise Ratio 3
SSA Single Scattering Albedo 16
SWIR Short Wave InfraRed 2
TES Tropospheric Emissions Spectrometer 6
TIR Thermal InfraRed 2
TIROS Television and Infrared Observation Satellite 1
ToA Top of Atmosphere (at ≈ 120 km altitude) 2
TROPOMI TROPOspheric Monitoring Instrument 1
UV Ultra Violet 2
VIS VISible 2
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Acronym Description Introduced
on page

WFM-DOAS Weighted Function Modified Differential Optical Ab-
sorption Spectroscopy

8





Nomenclature

Acronym Description Introduced
on page

Aqua A National Aeronautics and Space Administration
Earth science satellite mission

2

CH4 Methane chemical formula 2
CO Carbon monoxide chemical formula 2
CO2 Carbon dioxide chemical formula 2
Copernicus The European Union’s Earth observation program 1
GHGSat A private company in the remote sensing business 2
H2O Water chemical formula 10
N2 Nitrogen chemical formula 22
NOx Nitrogen oxides, in particular nitric oxide and nitrogen

dioxide
4

NO2 Nitrogen dioxide chemical formula 4
NO Nitric oxide chemical formula 4
O2 Oxygen chemical formula 22
Sentinel The European Space Agency’s Earth observation mis-

sions for the Copernicus Space Component
1





Symbols

Sign Meaning Units Introduced
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A21 Einstein A21 coefficient s−1 19
α Nonlinear state vector elements of molec-

ular and aerosol scaling factors
1 53

A⊥ Projected area cm2 15
Bif Einstein B coefficients for absorption B12

and stimulated emission B21

erg−1 cm3 s−2 18

β Linear state vector elements - 52
ω10 Bohr angular frequency s−1 21
γ

(air)
L Air-pressure broadening coefficient cm−1 atm−1 22
C Column averaging kernel matrix 1 56
C Noise (co-)variance matrix 1 49
Γ Line broadening coefficient cm−1 18
c Speed of light in vacuum cm s−1 13
Γ Line half-width cm−1 18

δ(air)
p Pressure dependence of air-pressure in-

duced line shift
cm−1 atm−1 22

δ
(air)
T Temperature dependence of air-pressure

induced line shift
cm−1 atm−1 K−1 22

dj Degeneracy of the vibrational state j 1 19
M Oscillating dipole moment dyn 1

2 cm2 21
∆L Pressure-induced line shift cm−1 22
η Partial correlation of velocity changes due

to collisions and the speed-dependence of
relaxation rates

1 27

E Spectral irradiance erg s−1 cm−3 15
En Energy of the harmonic oscillator mode n erg 14
ε Errors of the measurement vector erg s−1 cm−3 sr−1 45
η Nonlinear state vector elements - 52
|f〉 Final state 1 18
F Forward model erg s−1 cm−3 sr−1 3
fn>1 Overtone frequencies s−1 14
f Frequency s−1 13
f1 Fundamental (first harmonic) frequency s−1 14
gf Degeneracy of the final energy state 1 19
gi Degeneracy of the initial energy state 1 19
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g Line profile function (normalized to unity) 1 18
h Planck constant erg s 13
|i〉 Initial state 1 18
I Spectral radiance erg s−1 cm−3 sr−1 15
J ′ Rotational transition number 1 5
J Jacobi matrix 1 51
J Emission coefficient erg s−1 g−1 16
JS Scattering source function erg s−1 cm−3 sr−1 16
k Absorption cross section; also designates

the order the ISRF
cm2 17

kB Boltzmann constant erg K−1 14
L Likelihood for the observation (of M mea-

surements)
1 49

µa Absorption coefficient cm−1 13
µs Scattering coefficient cm−1 16
ν̂ Transition wavenumber (line position) cm−1 18
N Null space (the kernel of a linear map) 1 45
nm Number density of molecule m molec cm−3 17
Ω Solid angle 1 15
PB Boltzmann probability distribution 1 14
PM Joint probability function for measure-

ments M
1 49

PS Normalized scattering phase function 1 16
Q Total internal partition sum 1 19
B Spectral radiance erg s−1 cm−3 sr−1 15
R Column space of a matrix i.e. its range 1 45
Rif Dipole moment operator (weighted tran-

sition moment squared)
erg cm3 19

r Reflectivity 1 18
ρ Spectral residuum vector erg s−1 cm−3 sr−1 67
ρ Mass density g cm−3 16
s Slant distance cm 15
σ Standard deviation cm−1 40
σl Singular values 1 47
S Instrument spectral response function 1 38
S Spectral line intensity (line strength) cm−1 (molec cm−2)−1 18
τ Molecular optical depth 1 17
T Thermodynamic temperature K 14
θ Solar zenith angle ◦ 18
T Monochromatic transmission 1 17
v′ Vibrational transition number 1 5
ν Wavenumber cm−1 13
x State vector containing the fit parameters - 3
X A unknown function of interest 1 43
Y Rosenkranz line-mixing parameter 1 27
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y Measurement vector (radiance spectrum) erg s−1 cm−3 sr−1 3
z Altitude (vertical distance) cm 18





Appendix A

Hartmann-Tran for TROPOMI

The HTM (Sec. 2.4.2.1) line profile was examined in the retrieval of CO from TROPOMI
measurements and compared to results inferred with the SDRM (Sec. 2.4.2.4) line shape
model. Both models consider line-mixing according to the Rosenkranz approximation
from Sec. 2.4.2.5. The SEOM–IAS line data was used to calculate the absorption cross
sections in either case. For the HTM profile a fixed partial correlation η = 0.5 was
assumed since the parameter is not provided in the SEOM–IAS database.

Table A.1: Retrieved scaling factors for the HTM and SDRM line profiles based on a subset of
TROPOMI measurements around 25 N◦ over Egypt on May 07, 2018 (orbit 2923).

median mean variance
HTM SDRM HTM SDRM HTM SDRM

αCO 0.9566 0.9572 0.9338 0.9344 0.0463 0.0461
αCH4 1.0475 1.0485 1.0467 1.0478 0.0157 0.0158
αH2O 1.3450 1.3555 1.3929 1.3945 0.4495 0.4487

Table A.1 shows the retrieval results for the HTM (see Sec. 2.4.2.1) and SDRM (see
Sec. 2.4.2.4) line shape models. The outcome reveals that the retrieved scaling factors
αm are very similar for both line profiles (< 1 %). Nonetheless, the effect of partial
correlation can become crucial in cases where the target needs to be determined with
very high accuracy, such as in current or upcoming CO2 missions (Oyafuso et al., 2017;
Kuhlmann et al., 2019).





Appendix B

BIRRA CO maps from TROPOMI

Subsequent maps depict CO mole fractions and corresponding errors over various conti-
nents across the globe. Figure B.1 shows the CO concentrations over America for three
consecutive orbits (9538–9540). In Fig. B.3 CO concentrations over Australia for orbits
11516–11518 are shown. Finally, Fig. B.2 shows the distribution of CO over Africa and
Europe for orbits 10045–10047.

(a) (b)

Figure B.1: (a) BIRRA retrieved CO from TROPOMI observations over North and South
America on August 16, 2019. (b) Corresponding CO errors.
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(a) (b)

(c) (d)

Figure B.2: (a) BIRRA inferred CO mole fractions from TROPOMI over Australia during
the wildfires on January 3, 2020. (c) Zoom into the eastern parts of Australia,
the Tasman Sea and parts of New Zealand. (b, d) Corresponding mole fraction
errors. Small errors over the ocean across the Tasman Sea (from north to south)
correspond to sun glint observations. The striping pattern is an artefact.
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(a)

(b)

Figure B.3: (a) BIRRA retrieved CO mole fractions over Africa and Europe on September
21, 2019. (b) Corresponding errors.
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Etminan, M., G. Myhre, E. J. Highwood, and K. P. Shine, 2016: Radiative forcing of car-
bon dioxide, methane, and nitrous oxide: A significant revision of the methane radiative
forcing. Geophys. Res. Letters, 43 (24), 12,614–12,623, doi: 10.1002/2016GL071930.

Fischer, H., and F. Hase, 2015: CHEMISTRY OF THE ATMOSPHERE — Observations
for Chemistry (Remote Sensing): IR/FIR (Satellite, Balloon and Ground). Encyclopedia
of Atmospheric Sciences (Second Edition), G. R. North, J. Pyle, and F. Zhang, Eds.,
second edition ed., Academic Press, Oxford, 401–410, doi: 10.1016/B978-0-12-382225-
3.00270-X.

Fischer, H., and Coauthors, 2008: MIPAS: an instrument for atmospheric and climate
research. Atm. Chem. Phys., 8 (8), 2151–2188, doi: 10.5194/acp-8-2151-2008.

Fleming, E., S. Chandra, J. Barnett, and M. Corney, 1990: Zonal mean temperature,
pressure, zonal wind and geopotential height as functions of latitude. Adv. Space Res.,
10 (12), 11–59, doi: 10.1016/0273-1177(90)90386-E.

Fox, P., A. Hall, and N. Schryer, 1978: The PORT mathematical subroutine library. ACM
Trans. Math. Soft., 4 (2), 104–126, doi: 10.1145/355780.355789.

Frankenberg, C., U. Platt, and T. Wagner, 2005: Retrieval of CO from SCIAMACHY
onboard ENVISAT: detection of strongly polluted areas and seasonal patterns in global
CO abundances. Atm. Chem. Phys., 5, 1639–1644, doi: 10.5194/acp-5-1639-2005.

Galli, A., and Coauthors, 2012: CH4, CO, and H2O spectroscopy for the Sentinel-5

http://dlmf.nist.gov/
https://dx.doi.org/10.1117/12.975622
https://dx.doi.org/10.1117/12.975622
https://dx.doi.org/10.1029/2004JD004727
https://dx.doi.org/10.1007/s10584-017-1978-0
https://dx.doi.org/10.5194/amt-12-2341-2019
https://dx.doi.org/10.5194/amt-13-2335-2020
https://dx.doi.org/10.5194/amt-13-2335-2020
https://dx.doi.org/10.1002/2016GL071930
https://dx.doi.org/10.1016/B978-0-12-382225-3.00270-X
https://dx.doi.org/10.1016/B978-0-12-382225-3.00270-X
https://dx.doi.org/10.5194/acp-8-2151-2008
https://dx.doi.org/10.1016/0273-1177(90)90386-E
https://dx.doi.org/10.1145/355780.355789
https://dx.doi.org/10.5194/acp-5-1639-2005


106 BIBLIOGRAPHY

Precursor mission: an assessment with the Total Carbon Column Observing Network
measurements. Atmos. Meas. Tech., 5 (2), 1387–1398, doi: 10.5194/amt-5-1387-2012.

Gay, D., 1990: Usage summary for selected optimization routines (PORT mathematical
subroutine library, optimization chapter). Computing Science Technical Report 153,
AT&T Bell Laboratories, Murray Hill, NJ 07974. Available at http://netlib.bell-labs.
com/cm/cs/cstr/153.pdf.

Gentle, J., 2017: Matrix Algebra: Theory, Computations and Applications in Statistics.
Springer Texts in Statistics, Springer International Publishing.

George, M., and Coauthors, 2009: Carbon monoxide distributions from the IASI/METOP
mission: evaluation with other space-borne remote sensors. Atm. Chem. Phys., 9 (21),
8317–8330, doi: 10.5194/acp-9-8317-2009.

George, M., and Coauthors, 2015: An examination of the long-term CO records from
MOPITT and IASI: comparison of retrieval methodology. Atmos. Meas. Tech., 8 (10),
4313–4328, doi: 10.5194/amt-8-4313-2015.

Gill, P. E., W. Murray, and M. H. Wright, 2019: Practical Optimization. Classics in
Applied Mathematics, SIAM, Society for Industrial and Applied Mathematics.

Gimeno Garćıa, S., F. Schreier, G. Lichtenberg, and S. Slijkhuis, 2011: Near infrared nadir
retrieval of vertical column densities: methodology and application to SCIAMACHY.
Atmos. Meas. Tech., 4 (12), 2633–2657, doi: 10.5194/amt-4-2633-2011.

Gloudemans, A., A. de Laat, H. Schrijver, I. Aben, J. Meirink, and G. van der Werf,
2009: SCIAMACHY CO over land and oceans: 2003–2007 interannual variability. Atm.
Chem. Phys., 9 (2), 3799–3813, doi: 10.5194/acp-9-3799-2009.

Gloudemans, A., H. Schrijver, O. Hasekamp, and I. Aben, 2008: Error analysis for CO
and CH4 total column retrievals from SCIAMACHY 2.3µm spectra. Atm. Chem. Phys.,
8, 3999–4017, doi: 10.5194/acp-8-3999-2008.

Gloudemans, A., and Coauthors, 2005: The impact of SCIAMACHY near-infrared in-
strument calibration on CH4 and CO total columns. Atm. Chem. Phys., 5, 2369–2383,
doi: 10.5194/acp-5-2369-2005.

Golub, G., and V. Pereyra, 2003: Separable nonlinear least squares: the variable projec-
tion method and its applications. Inverse Problems, 19, R1–R26, doi: 10.1088/0266-
5611/19/2/201.

Golub, G., and C. Van Loan, 2013: Matrix Computations. Johns Hopkins Studies in the
Mathematical Sciences, Johns Hopkins University Press.

Goody, R., and Y. Yung, 1995: Atmospheric Radiation: Theoretical Basis. Oxford Uni-
versity Press.

Gordon, I., and Coauthors, 2017: The HITRAN2016 molecular spectroscopic database.
J. Quant. Spectrosc. & Radiat. Transfer, 203, 3 – 69, doi: 10.1016/j.jqsrt.2017.06.038.

Gottwald, M., and H. Bovensmann, Eds., 2011: SCIAMACHY — Exploring the Changing
Earth’s Atmosphere. Springer, Dordrecht, NL, doi: 10.1007/978-90-481-9896-2.
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Abstract: The objective was to validate the carbon monoxide (CO) total column product inferred
from Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY)
full-mission (2003–2011) short-wave infrared (SWIR) nadir observations using the Beer InfraRed
Retrieval Algorithm (BIRRA). Globally distributed Network for the Detection of Atmospheric
Composition Change (NDACC) and Total Carbon Column Observing Network (TCCON)
ground-based (g-b) measurements were used as a true reference. Weighted averages of SCIAMACHY
CO observations within a circle around the g-b observing system were utilized to minimize effects
due to spatial mismatch of space-based (s-b) and g-b observations, i.e., disagreements due to
representation errors rather than instrument and/or algorithm deficiencies. In addition, temporal
weighted averages were examined and then the unweighted (classical) approach was compared
to the weighted (non-classical) method. The delivered distance-based filtered SCIAMACHY data
were in better agreement with respect to CO averages as compared to square-shaped sampling areas
throughout the year. Errors in individual SCIAMACHY retrievals have increased substantially since
2005. The global bias was determined to be in the order of −10 parts per billion in volume (ppbv)
depending on the reference network and validation strategy used. The largest negative bias was
found to occur in the northern mid-latitudes in Europe and North America, and was partly caused
by insufficient a priori estimates of CO and cloud shielding. Furthermore, no significant trend was
identified in the global bias throughout the mission. The global analysis of the CO columns retrieved
by the BIRRA shows results that are largely consistent with similar investigations in previous works.

Keywords: SCIAMACHY; BIRRA; NDACC; TCCON; validation; retrieval; carbon monoxide; mixing
ratios; weighted averages

1. Introduction

Obtaining space-based (s-b) measurements of the state of Earth’s atmosphere is costly compared to
many other atmospheric research activities. Once the instruments needed to take these measurements
are in orbit, thorough verification and validation of the delivered data is required.

Therefore, considerable efforts have been invested in establishing a ground-based (g-b) validation
infrastructure for atmospheric composition, temperature, cloud, and aerosol data acquired by
satellite-based remote sensing instruments. Additionally, the stringent requirements of upcoming
missions such as Sentinel-5P/4/5 require comprehensive validation campaigns and solid strategies.

Remote Sens. 2018, 10, 223; doi:10.3390/rs10020223 www.mdpi.com/journal/remotesensing
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1.1. The Environmental Satellite (ENVISAT) and Scanning Imaging Absorption Spectrometer for Atmospheric
Chartography (SCIAMACHY) Instrument

In March 2002 the ENVISAT was launched into a low-Earth orbit. The routine operation
comprising the nominal measurement program began in August 2002 and lasted until April 2012 when
contact was lost [1]. The satellite comprised 10 instruments with the SCIAMACHY, the Michelson
Interferometer for Passive Atmospheric Sounding (MIPAS), and Global Ozone Monitoring by
Occultation of Stars (GOMOS) dedicated to studying the Earth’s atmosphere. The SCIAMACHY was
an ultra-violet (UV) to short-wave infrared (SWIR, 1.4–3 µm) absorption spectrometer that observed
the scattered and reflected solar spectral radiance transmitted through the atmosphere [2].

The SCIAMACHY’s major research objective was the acquisition of information from Earth
radiance spectra of various trace gases in the troposphere and the stratosphere. Among these gases
were O3, CO, CH4, H2O, SO2, CO2, and NO2. Thus, the SCIAMACHY comprised eight detectors in
the wavelength range between 214 and 2386 nm. Channel 8 observed radiance in the SWIR spectral
range from 2259.38 nm to 2386.07 nm (4426–4191 cm−1) at a resolution of 0.26 nm, which is equivalent
to a resolving power of 8689 to 9177.

1.2. Carbon Monoxide (CO) from Channel 8 of SCIAMACHY

In atmospheric remote sensing, trace gas concentrations are retrieved from measured radiance or
transmission spectra. The accurate retrieval of CO from Channel 8 observations of the SCIAMACHY
is demanding due to the low optical depth of CO compared to the total depth in this spectral region.
To be more specific, for a vertical path through the atmosphere, only about one percent of absorption
is due to CO molecules. In addition, the precision of the cloud-free SCIAMACHY measurements is
strongly influenced by the reflectance (albedo) of the observed ground-pixel, because it determines
to a large extent the signal-to-noise ratio (SNR) of the corresponding observed spectra. The retrieval
of CO can therefore only deliver total column amounts without any information on the vertical
distribution. In addition, the Channel 8 detector shows temporal degradation due to an accumulation
of ice, which significantly affects the throughput. This makes gas retrieval an even more challenging
task [3]. Moreover, pixel degradation due to, e.g., solar radiation, is an ongoing process. According
to Lichtenberg et al. [4] Channel 8 contains a substantial number of dead and bad pixels, with 40%
deemed unusable by June 2009. For the CO fitting window from 4280 to 4305 cm−1 the number
of usable pixels was reduced to only about 50 in the period between 2003 and 2005, and to even
fewer afterwards.

1.3. Retrieval Codes

The retrieval of trace gas concentrations from radiance or transmission spectra poses an inverse
problem that is typically solved by least-squares algorithms. Several codes have been developed
for SCIAMACHY nadir SWIR spectra at different European institutes, e.g., the Weighted Function
Modified Differential Optical Absorption Spectroscopy (WFM-DOAS) algorithm [5,6], the Iterative
Maximum A Posteriori (IMAP)-DOAS [7] method, the Iterative Maximum Likelihood Method
(IMLM) [3], and the Beer InfraRed Retrieval Algorithm (BIRRA) [8]. Recently, SCIAMACHY spectra
have also been processed with the Shortwave Infrared CO Retrieval (SICOR) algorithm developed
for the operational data processing of the Tropospheric Monitoring Instrument (TROPOMI) that was
launched on the European Space Agency’s (ESA) Sentinel-5 Precursor (S5P) mission [9,10]. Concurrent
validation is a crucial task in processor/algorithm development in order to confirm applicability for
scientific tasks and ultimately qualify operational algorithms or scientific tools. Based on such studies,
processors can be applied on new data sets from other platforms with reasonable confidence. However,
new fields of application require further validation or verification efforts.
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1.4. The Network for the Detection of Atmospheric Composition Change (NDACC) and Total Carbon Column
Observing Network (TCCON) Ground Truthing Networks

Fourier transform spectroscopy (FTS) is a well-established technique in passive remote sensing
and observes thermal emissions (e.g., using the Infrared Atmospheric Sounding Interferometer
(IASI) [11] or MIPAS [12]) or absorption (e.g., using the Atmospheric Chemistry Experiment—Fourier
Transform Spectrometer (ACE-FTS) [13] or the Greenhouse Gases Observing Satellite (GOSAT) [14],
which also observes in the thermal infrared range (TIR range, 8–15 µm)). High-resolution FTS is also
used by numerous g-b observatories of the NDACC and TCCON [15]. The instruments associated
with these networks routinely record thermal emission spectra in the mid-infrared range (MIR range,
3–8 µm) (NDACC) and solar absorption spectra in the SWIR range (TCCON) at a number of stations
worldwide (see Figure 1, Table 1) and utilize these to infer information about atmospheric constituent
columns and concentration profiles (NDACC only), including CO.

Figure 1. World map created by Feist [16] showing stations affiliated to ground-based (g-b) observing
networks routinely measuring trace gases such as CO in the mid-infrared (MIR) and short-wave
infrared (SWIR) ranges. The background color scheme also provides some information on the ground
reflectance in the SWIR range (e.g., the variations of the reflectance on the continents and also the
difference between land and the oceans).

Table 1. The Network for the Detection of Atmospheric Composition Change (NDACC) and Total
Carbon Column Observing Network (TCCON) g-b Fourier transform infrared (FTIR) stations used in
this validation. The last two columns indicate the time span of the g-b data used for the comparison
to the Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY).
Further details see Appendix A and B.

Stations Lat N [◦] Lon E [◦] Altitude [m] NDACC (years) TCCON (years)

Bialystock 53.23 23.03 160 - 2009–2011
Bremen 53.10 8.85 30 2003–2011 2005–2011
Darwin −12.42 130.89 30 - 2005–2011

Garmisch 47.48 11.06 743 - 2007–2011
Izana 28.30 −16.48 2367 2003–2011 2007–2011

Jungfraujoch 46.55 7.98 3580 2003–2011 -
Kiruna 67.84 20.40 420 2003–2011 -
Lamont 36.60 −97.49 320 - 2008–2011
Lauder −45.04 169.68 370 - 2004–2010

Ny Alesund 78.92 11.93 15 2003–2011 2005–2011
Parkfalls 45.95 −90.27 442 - 2004–2011

Thule 76.52 −68.77 220 2003–2011 -
Toronto 43.66 −79.40 174 2003–2011 -

Wollongong −34.41 150.88 30 - 2008–2011
Zugspitze 47.42 10.98 2964 2003–2011 -
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The TCCON is the reference network for the validation of greenhouse gas satellite retrievals and
enables the linking of satellite retrievals to the World Meteorological Organization (WMO) reference
scale [17]. In this study, the GGG2014 release of TCCON data is used. GGG stands for the whole
software package. According to the TCCON website the error budget for CO is around 8.7% in total
(see TCCON [18]). NDACC Fourier transform infrared (FTIR) data were obtained via the publicly
available website (see http://www.ndacc.org).

1.5. Validation

In general terms, validation is defined as the process of evaluating the performance of a system
against some equivalent information that is regarded as a ‘true’ reference [19]. In the field of remote
sensing from space, compliance of observations from satellite platforms with the actual state of the
atmosphere is usually assessed through validation studies. In that sense, validation means comparing
measurements acquired by s-b instruments to other measurements utilizing different measuring
methods, e.g., in-situ measurements or g-b soundings.

1.5.1. General Aspects

With respect to a direct comparison it stands to reason that the closer in time and space the
reference measurements are acquired, the better they quantify differences due to errors in the
acquisition or retrieval process, i.e., the instrument or algorithm performance. However, space-borne
and reference measurements do not exactly match in time and space, nor do they address the same
volumes of air. Hence, direct comparison of observations from different observing systems is affected
by representation errors.

In fact, the column measured by the SCIAMACHY is an average column above the area covered
by a SCIAMACHY pixel (32 ×120 km2 for observations in Channel 8) which greatly extends beyond
the location of the point-like g-b station. According to Verhoelst et al. [20], non-perfect co-location in
space is therefore a consequence of both a difference in sampling (i.e., a satellite pixel center generally
does not coincide exactly with a ground station), and a difference in the way each instrument has
a smoothed perception of the real, non-homogeneous atmosphere. The air mass of sensitivity for
the s-b nadir measurements contains the ground pixel footprint, an extension towards the satellite,
and, especially in the SWIR range, an extension in the direction of the Sun. In the SWIR range, these
extensions correspond to a good approximation to the optical light path between the Sun, the surface
reflection point, and the sensor.

Moreover, with respect to the SCIAMACHY, Borsdorff et al. [9] mention another issue, whereby
for low radiance scenes, the retrieval noise error for SCIAMACHY measurements can exceed 100%
of the retrieved column. That is, the comparison of individual CO columns using the SCIAMACHY
to a reference is not sufficient at all. According to Gimeno García et al. [8], De Laat et al. [21], and
de Laat et al. [22] averaging over an ensemble of pixels is necessary to reduce the instrument-noise
error.

Finally, all of these issues need to be considered in an appropriate validation strategy of the
CO product inferred from a retrieval algorithm. For mutually exclusive aspects a compromise must
be made between, on the one hand, the abundance of comparison pairs, and on the other hand,
non-instrumental comparison errors due to non-perfect co-location in space and time of satellite and
ground-based measurements.

1.5.2. The SCIAMACHY CO Product

Early validation studies of the CO product retrieved from SCIAMACHY SWIR measurements by g-b
data have been conducted by Sussmann and Buchwitz [23], Sussmann et al. [24], and Dils et al. [25]. In
recent years, additional validation efforts have been carried out by Borsdorff et al. [9,10], De Laat et al. [21],
and Schneising et al. [26]. Borsdorff et al. [9] additionally included Tracer Model version 5 (TM5)
data for large-scale (northern and southern hemispheric Africa) intercomparison and Measurement
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of Ozone on Airbus In-service Aircraft (MOZAIC)/In-service Aircraft for Global Observing System
(IAGOS) measurements.

In all of these studies, important aspects of the comparison of g-b and s-b data were presented.
With respect to methodology, many considerations described in those articles are not only true for
SCIAMACHY but are valid for all s-b to g-b comparisons. The former studies particularly include
validation of CO data against measurements from g-b FTIR spectrometers from either the NDACC,
the TCCON, or both. As SCIAMACHY measurements do not provide any information about the
vertical distribution of CO, it is reasonable to use TCCON columns for SCIAMACHY validation. In
addition, integrals of vertical CO profiles provided by the NDACC are utilized for validation of the
s-b total column retrievals. Usually, if total columns calculated from vertical profiles of different
remote sounding instruments are to be compared, averaging kernels have to be taken into account.
Nonetheless, due to the small differences in vertical sensitivity between g-b FTIR and SCIAMACHY,
and because the representation error dominates, a direct comparison (i.e., a comparison without
applying total column averaging kernels) of the columns was considered possible without introducing
significant intercomparison errors [23].

So far, only Borsdorff et al. [9,10] have presented full-mission data set validation of SCIAMACHY
CO vertical column densities employing the SICOR algorithm. Dils et al. [25] considered SCIAMACHY
data that covered the January to December 2003 time period that were produced using three different
retrieval algorithms, namely the WFM-DOAS algorithm (version 0.5 for CO), the IMAP-DOAS method
(version 0.9 for CO), and the IMLM (version 6.3). Sussmann and Buchwitz [23] used CO vertical
profile retrievals from g-b solar FTIR measurements at Zugspitze, Germany (January–October 2003)
to validate columnar CO measurements retrieved from SCIAMACHY spectra with the WFM-DOAS
algorithm version 0.4.

1.6. Goals and Structure of this Study

The objective of this study is to validate the BIRRA level 2 prototype processor using the full-mission
level 1b SCIAMACHY data set. Both land and ocean pixels are used in this intercomparison. In
addition, the study places emphasisis on mitigating errors induced by representation deficiencies due to
averaging and analyses the effect of different comparison methodologies—a crucial step in thoroughly
quantifying the performance (accuracy and precision) of a retrieval algorithm or instrument.

The paper is organized in five sections. Our methodology is described in Section 2 and the results
in Section 3. Finally, the discussion and conclusion are provided in Sections 4 and 5.

2. Methodology

The analysis of a solar absorption spectrum essentially reveals the slant columns of the various
absorbing gases. However, the dry air mole fractions are actually advantageous for comparison. These
quantities are independent of surface pressure and humidity and are therefore much more useful
for satellite validation. Therefore, before comparing the observations for validation, CO needs to be
harmonized across the observing systems.

2.1. Ground-Based Product Definition

The vertical column density (VCD) in [mol cm−2] is the number of molecules above the surface
defined as

Nµ =

zTOA∫

zsr f

nµ(z) dz . (1)
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with nµ the number density [mol cm−3] of molecule µ. The surface pressure p is given by

p =

zTOA∫

zsr f

m n(z) g(z)dz

≈ m g
zTOA∫

zsr f

n(z)dz , (2)

where m is the molar mass and g the gravitational acceleration of the Earth. In Equation (2), m g is the
column-averaged value. Within the homosphere, roughly including the troposphere, stratosphere, and
mesosphere, the molar mass of air and gravity is a good approximation constant.

The column mixing ratio (CMR) fµ of molecule µ is related to the total column according to

Nµ = fµ Nwet
air , (3)

with Nwet
air = ∑ Nµ + NH2O = Nair + NH2O. As indicated above, it is useful to discuss dry CMR dµ, i.e.,

µ 6= H2O rather than the true (wet) mixing ratios because dry CMR is a better tracer, not being subject
to strongly varying H2O variations. As

∑
µ

fµ + fH2O = 1 (4)

∑
µ

dµ = 1 (5)

the mole fraction and dry air mole fraction are connected according to

fµ = dµ (1− fH2O). (6)

Note that the molar masses of mH2O = 18.02 g mol−1 and mair = 28.96 g mol−1 are different.
m = mair (1− fH2O) + fH2O mH2O accounts for this by correcting the mass for the dry air mixing ratio
with the fraction of the H2O mixing ratio, as H2O contributes less to the surface pressure p on a per
molecule basis than air. All this together leads to Equation (3), reading as

Nµ = dµ (1− fH2O)
p

m g
, (7)

and therefore

dµ =
Nµ

Nwet
air − NH2O

=
Nµ

Nair
. (8)

Given that fH2O � 1, Equation (7) can be approximated according to

dµ = Nµ

(
p

mair g
− NH2O

mH2O

mair

)−1
, (9)

which constitutes the dry air volume mixing ratio for gas µ. The dry air CMR dµ is frequently
designated as xCO and given in parts per billion in volume (ppbv).

2.1.1. NDACC

NDACC sites retrieve vertical profiles for a variety of molecules (see Table 2). Since the actual
measurement obtains the slant column and not the vertical column, ζ = cos(θ) accounts for the local
zenith angle 0 ≤ θ < π

2 . 1
ζ is commonly known as the geometrical airmass factor. Therefore, when
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calculating CO dry air column mixing ratio (xCO) for the respective site, Equation (9) has to be taken
into account according to

xCO = NCO

(
1
ζ

p
mair g

− NH2O
mH2O

mair

)−1
. (10)

Table 2. Center wavelengths (for the NDACC) and spectral windows (for the TCCON and Beer
InfraRed Retrieval Algorithm, BIRRA) used for the retrieval of CO. The NDACC relies on narrow
spectral fitting regions [27], while the retrieval strategy of the TCCON prefers much wider spectral
regions [28]. The BIRRA uses one spectral fitting window in Channel 8. The NDACC uses the Scale
Invariant Feature Transform (SFIT) algorithm, and the TCCON applies GFIT to acquire the GGG2014
data set.

Algorithm Wavenumber [cm−1] Interfering Species

SFIT 2057.8575 NO, COF2 . . .
(NDACC) 2069.6559 NO, COF2 . . .

2111.5430 OCS, N2 . . .
2158.2997 OCS, N2 . . .

GFIT 4208.70–4257.30 H2O, CH4
(TCCON) 4262.00–4318.80 H2O, CH4

BIRRA 4280.00–4305.00 H2O, CH4
(SCIAMACHY)

2.1.2. The TCCON

According to Wunch et al. [15], the TCCON scales a priori profiles of retrieved molecules

nµ(z) = αµ nref
µ (z) (11)

similarly to the BIRRA. Hence, the shape of the vertical profile is invariant with respect to variations in
molecular atmospheric densities. For TCCON sites, Equation (9) is used in addition to CO with respect
to the co-retrieved oxygen O2. Assuming a dry air mole fraction of dO2 = 0.2095, this is equivalent to
the dry air column mixing ratio (details see Wunch et al. [29]). Rationing the CO and O2 equations
eliminates the denominator in Equation (9) to make dCO independent of surface pressure and gravity,
leading to the equation

xCO = 0.2095
NCO

NO2

. (12)

2.2. The BIRRA

The BIRRA was developed at the Deutsches Zentrum für Luft- und Raumfahrt (DLR) and serves
the operational SCIAMACHY processor for CO and CH4 retrievals using Channel 8 and Channel
6 spectra, respectively. The CO total column amounts are inferred simultaneously with methane
(CH4) and water vapour columns and a Lambertian surface albedo from individual SCIAMACHY
measurements assuming a non-scattering atmosphere. The validation study reported here is based on
the BIRRA prototype version.

2.2.1. Algorithm

The BIRRA comprises the line-by-line forward model Generic Atmospheric Radiation Line-by-line
InfraRed Code (GARLIC) [30,31] coupled to a least-squares [32] inversion algorithm for trace gas
retrieval in the SWIR spectral region(see Gimeno García et al. [8]). In case of SWIR nadir observations,
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the radiative transfer equation through Earth’s atmosphere with molecules µ, including H2O, reduces
to Beer’s law, describing the radiance

I(x, ν) ≡ r(ν)
π

µ� Isun(ν) × exp

(
−∑

µ

αµ τref
µ (ν)

)

⊗ S(ν, γ, δ) + b(ν) . (13)

µ� = cos θ� and Isun describe the solar zenith angle and incoming radiation from the sun, respectively.
The ’true’ (= to be estimated by the fit) optical depth τµ(ν) is hence given by

τµ(ν) = αµ τref
µ . (14)

For the BIRRA, the state vector x = (η, β) includes nonlinear (η) and linear (β) parameters to
be estimated. This separation of parameters enables the algorithm to utilize a separable least-squares
fit—also known as variable projection [33]—in order to estimate the unknown quantities. The molecular
scaling factor(s) αµ, the half width γ and the wavelength shift δ of the instrumental slit function S
are estimated using a nonlinear least-squares fit; furthermore, the coefficients of the surface albedo
r, modeled by a second-order polynomial depending on wavenumber, and the optional baseline
correction b (again a polynomial but not used in this study) show up linearly within the model and are
estimated using a linear least-squares fit. The model for the least-squares problem is therefore

yi =
n

∑
j=1

φi,j(η) β j , i = 1, 2, . . . , m (15)

with n representing the numbers of linear parameters. m is the number of observations (spectral pixels)
in the microwindow chosen for the retrieval. Notice that in the separable least-squares approach it is
assumed that the model functions φi,j(η) depend on the nonlinear parameters η, but not on the linear
parameters β. Thus, for any given η a matrix Φ(η) comprising the model functions, φi,j(η) is defined
according to

Φ(η) =




φ1,1(η) φ1,2(η) · · · φ1,n(η)

φ2,1(η) φ2,1(η) · · · φ2,n(η)
...

...
. . .

...
φm,1(η) φm,2(η) · · · φm,n(η)




. (16)

Now the objective function to be minimized with respect to β and η is given by

L(β̂, η̂) = min
η

{
min

β

{∥∥y−Φ(η)β
∥∥2
}}

, (17)

where the inner minimization problem forms a linear least-squares problem. The overall minimization
problem can therefore be represented only in terms of the nonlinear parameters η according to

L(β̂, η̂) = min
η

{∥∥∥y−Φ(η)Φ†(η)y
∥∥∥

2
}

, (18)

with the generalized inverse Φ†(η) =
[
ΦT(η)Φ(η)

]−1
ΦT(η). The advantages of the separable

least-squares approach are that for the linear parameters β no initial estimate is necessary and the
size of the Jacobian matrix is reduced which improves the condition and minimizes computing times.
Only for nonlinear parameters such as the scale factors of the optical depth of molecule µ is a priori
information on the number density (see Equation (1)) required. For CO and CH4 this information
is taken from the Air Force Geophysical Laboratory (AFGL) atmospheric constituent profiles [34],
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while H2O and the auxiliary parameter temperature and pressure are taken from reanalysis data
provided by the National Center for Environmental Prediction (NCEP).

2.2.2. Product Definition

Recall that in order to obtain atmospheric CO abundances, the BIRRA scales a representative CO
reference profile. In general, to calculate the actual wet CMR of CO the inferred scaling factors are
used according to

fCO =
αCO Nref

CO

αair Nref
air + αH2O Nref

H2O
. (19)

However, there is actually no parameter αair showing up in the retrieval to account for the dry
air CMR. Instead, differences between the retrieved and a priori CH4 columns are used as a proxy to
account for variations in the dry air column density according to

NCO =
αCO

αCH4

Nref
CO . (20)

This approach assumes that CH4 is a well-mixed gas and that natural CH4 variations in the
atmosphere are small compared to variations of CO, with CH4 changes produced solely by light path
modifications (mainly by cloud shielding, for details see Gloudemans et al. [35]). Since CH4 has strong
absorption lines across the CO spectral fitting window in Channel 8, which allow is to determine the
amount of CH4 with good accuracy, this method is also suitable to detect optically thick clouds in the
SCIAMACHY observations. In general, the error of the CH4 scaling factors is 1–2 orders of magnitude
smaller than the error of the CO scaling factors, depending on the scene. Intending to eliminate most
of the uncertainties arising in the level-2 processing, postprocessing included the composition of
quality criteria based on multiple parameters from the BIRRA output. For example, non-converging
fits were filtered out, and errors of CO, H2O and CH4 were used to eliminate data with extremely low
signal-to-noise ratios. This was done particularly for measurements on the ocean benefit from the
presence of clouds due to the low reflectance of water in the SWIR range (see Figure 1, Gloudemans
et al. [35]). This combination of filter criteria allows for the selection of optically thick clouds over the
oceans and both cloudless scenes with acceptable small errors and cloudy scenes over land. If the light
path was enhanced by,for example, aerosols, and exceeded a certain threshold (a 10% the enhancement
of the CH4 scaling factor), observations were rejected. Further details on the quality criteria chosen for
the CO retrievals in this study are described in Gimeno García et al. [8] Section 2.3. The CO dry air
CMR defined is therefore actually given by

xCO = dCO =
αCO Nref

CO

αCH4 Nref
air

=
αCO

αCH4

dref
CO . (21)

2.3. Weighted Averages

It stands to reason that averaging over lots of measurements requires accounting for incorporating
representation deficiencies. For example, if an average of 10 measurements is already deemed
trustworthy, representation errors might not be an issue. However, in case of the SCIAMACHY’s CO
product, the number of measurements to be averaged for a representative mixing ratio (with respect to
error of the mean) is at least in the order of 102.

A representative average value 〈xCO〉 for both s-b and g-b data with respect to space ρ and time
τ is the weighted mean according to

〈xCO〉 =
M
∑ ω xCO

M
∑ ω

, (22)
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with M representing the number of observations, and ω = ρκ τ the respective weight. The weights
include a spatial ρ = rgb− rsb and temporal τ = tgb− tsb component, with r and t designating location
and time of the observation, respectively. The CO spatial variation of column density is much larger
than that of CO2 and CH4 [36,37]. Many NDACC and TCCON sites are located in remote regions
while some sites are located in polluted areas (Table 1). Since the validation aims to compare s-b
observations for both background and enhanced CO levels, the exponent κ is introduced to account
for the representation deficiencies introduced by the great variability of CO in space. Typically 〈xCO〉
is the monthly, seasonal, or annual mean. The corresponding standard deviation 〈xCO〉e is defined
according to

〈xCO〉e =

√√√√√
M
∑ ω (xCO− 〈xCO〉)2

M
∑ ω

. (23)

In general, if weighting is applied it needs to be applied on both datasets. Note that Equation (22)
is valid with respect to both the spatial and the temporal domain.

2.3.1. Space

In the spatial domain the calculation of the averages for the SCIAMACHY data accounts for the
position of acquisition relative to the location of the g-b data set. Therefore, τ = 1 and ω = ρκ . Note
that since the location of the g-b reference site rgb is fixed in time, rgb = const.

2.3.2. Time

In order to calculate a representative average with respect to the temporal domain, the context
was changed with ω = τ. In addition, a running average of tgb needs to be introduced since tgb is not
constant. The interval selected for the running average is centered at the respective tsb and chosen to
extend the same time span as the corresponding weighted average. For example, a 30-day weighted
average of the s-b CMR corresponds a running average of tgb that incorporates g-b observations within
tsb ± 15 days.

2.4. Bias

In order to quantify the retrieval accuracy per reference site, the bias was calculated as an error
weighted offset according to

b =
M

∑〈xCOsb〉−1
e

(
〈xCOsb〉 − 〈xCOgb〉

)
/

M

∑〈xCOsb〉e , (24)

with 〈xCOsb〉e representing the standard deviation of the SCIAMACHY xCO in a certain time interval
and M being the number of s-b and g-b averages (see Section 2.3), respectively.

In addition, the average of the s-b standard deviations at a specific site was used to characterize
the accuracy of the bias b according to the standard error of the mean se = 〈xCOsb〉e /

√
M, with M the

number of measurements incorporated in 〈xCOsb〉e. To estimate the overall performance, the global
mean bias b was determined as the average of all station biases weighted by the standard deviation σb
of the respective biases. se is the global (for all sites) standard error of the means. A similar approach
was applied by Borsdorff et al. [9].

2.5. Averaging Multiple Years of CO

In order to exploit more observations within a given sampling area, multiannual averages for CO
mixing ratios were calculated and refered to a common reference. Within the time interval 2003–2011,
parameters for intercept an and slope bn of xCO were estimated for each year n for both measurement
systems and referred to a common reference. For this purpose, linear least-squares was applied.
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Subsequently, the annual estimates for intercept and slope were averaged yielding the parameters a
and b. The detrended data points x̂CO were then calculated according to

x̂CO → xCOn − (an − a)− (bn − b) tn . (25)

The detrended observations x̂CO are largely independent with respect to the year of acquisition.
Therefore more measurements belong to the common interval (e.g., a month, a year) compared to
the single year analysis, and thus stricter thresholds can be imposed on filter criteria during post
processing.

3. Results

The reference sites were selected with respect to the temporal data coverage and continuity of
measurements as well as the reliability and completeness of auxiliary parameters such as surface
pressure. The former two criteria were met if there were at least three years of observations covering
the time period 2003–2011 with at least 10 months of observations. In case of NDACC stations all sites
fulfilled this criteria, however, some TCCON sites such as Jet Propulsion Laboratory (JPL), Reunion
Island, etc. had to be omitted. The latter criteria regarding auxiliary parameters posed an issue for
some NDACC sites such as Arrival Heights, Lauder, or Wollongong. However, no TCCON sites were
skipped due to this filter criterion.

3.1. Averaging of Measurements

The single most limiting factor in the global SCIAMACHY CO column product is its significant
variability due to noise in the recorded spectrum. This clearly shows up in the CO values of individual
observations in Figure 2. Furthermore, because Channel 8’s pixel has a footprint on the Earth’s surface
of around 32× 120 km2 for the 180◦ nadir, a direct comparison of BIRRA-retrieved CO columns was
not reasonable. It was found that even comprehensive filtering of the CO product based on the norm
of the residuum ([8] Section 4) was not able to deliver the sufficient quality required for the comparison
of a single or few (i.e., tens) of CO observations.

Figure 3 reveals that errors of individual SCIAMACHY retrievals have increased substantially
since 2006. This seems to be primarily caused by omitting regular decontamination procedures from
2006 onward to dispose of the ice accumulated on the detector in Channel 8 (see [9] Table 1 and [2]).
Furthermore, measurements conducted during this decontamination phase were commonly not suited
for the adequate retrieval of parameters and most of them were filtered out during postprocessing.
This effect is clearly visible in Figure 2 displaying the lack of proper CO retrievals at the turn of the
years from 2003 through 2005. Also, the decreasing number of good spectral points (pixels) on the
sensor plays a role (see [8] Figure 3).

Monthly-mean averages of CO mixing ratios constitute an adequate trade-off since the basic
features of the CO annual cycle are preserved and at the same time they include enough measurements
to get reasonable statistics for both SCIAMACHY and NDACC/TCCON observations (see Figure 4).
Note that the validation studies cited in Section 1.5.2 also use a temporal interval of one month. Figure 4
also demonstrates that the adequate size of the temporal interval varies with the size of the sampling
area. Moreover, the results indicate that the adequate selection depends on the quality of the s-b data
and the problem investigated, hence also seasonal and annual averages were examined accordingly.
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Figure 2. The SCIAMACHY and g-b reference site dry air column mixing ratios of carbon monoxide
(xCO). The plot includes the column mixing ratios (CMRs) after postprocessing within 500 km of the
reference sites (a) Izana, (b) Zugspitze, (c) Toronto and (d) Lauder from 2003 to 2011. The large scatter
of the individual SCIAMACHY CO columns is mainly caused by measurement noise, while averaging
of observations within 500 km of the reference site has only a minor contribution.

Since local enhancements shall be preserved, a related issue that also demands an adequate trade-off
is spatial averaging of the s-b observations within a given radius from the g-b reference site. In order to
include equidistant s-b measurements with respect to a reference site, latitude and longitude coordinates
of the measurements were converted to the great circle distance on the Earth’s surface. In a first step, the
chosen distances for spatial averaging were 500 km, 1000 km, and 2000 km, since previous validation
studies of SCIAMACHY CO used collocation criteria within this range (e.g., Borsdorff et al. [9], De Laat
et al. [21], and Dils et al. [25]). The results in Figure 4 suggest that the smaller the sampling area, the
larger the interval for temporal averaging that should be chosen. So far, only Sussmann et al. [24]
sampled SCIAMACHY observations within 2000 km of Zugspitze. Other preceding validation studies
validated s-b data within a square- or rectangle-shaped area around the g-b site. The effect of the
different methodologies are displayed in Figure 5. Spatial filtering with respect to distance delivers a
smoother course of s-b CO averages throughout the year.
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Figure 3. Histogram of the errors of the CO columns (defined in Equation (20)), represented as the
unnormalized error probability function (also see Section 4.2.1 in Gimeno García et al. [8]). The
data content is the global fraction of CO columns that survived after postprocessing of the BIRRA
retrieval output. The dashed lines indicate the respective median. Note the different range in the
x-axis. (a) The first and last year of the nominal SCIAMACHY operation covering the complete time
span; (b) The occurrence frequency of total column errors for the years 2004 through 2007 indicate a
substantial degradation of the quality of the CO product from 2006 onward (blue and magenta dashed
lines). The years 2003 through 2005, however, show similar and significantly smaller errors.
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Figure 4. xCO averages for various temporal intervals within (a) 1000 km and (b) 500 km of Izana in
2003. δ designates the offset of the s-b averages to the 14-days mean of Izana. The gray shaded area and
magenta solid line represent the standard deviation of the g-b means and the third-order polynomial
fit on the individual observations, respectively. The SCIAMACHY xCO averages become smoother
in larger temporal intervals and in the share of averages. This is in agreement within the standard
deviation of the g-b site increases. Note the different range of the y-axis.

The SCIAMACHY observations within various-sized areas around two the NDACC and TCCON
g-b sites, namely Bremen and Izana (see Figure 1), are compared in Figure 6 and the results demonstrate
that the adequate spatial and temporal range of averaging depends on the precision of the s-b
observations at a specific site. The former station is located in the plains of northern Germany,
while the latter is situated on an island in the sub-tropical region in the Atlantic ocean at about 2370 m
above mean sea level. With respect to Izana, a station largely surrounded by water, observations of
optically thick clouds were preferred in order to get an acceptable SNR for the retrieval. Note that
the bias b designated in the legend is the deviation of the s-b to the g-b CO averages weighted by the
respective s-b standard deviation (details on the bias analysis in the subsequent section).
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Figure 5. xCO averages for circle- and square-shaped sampling areas. (a) Averages of SCIAMACHY
xCO values calculated for various distances from the reference site Jungfraujoch in 2003; (b) xCO
averages within given latitudes and longitudes of the g-b site. Here, [4× 4]◦ designates a square-shaped
object with an extent of ±2◦ in latitude and longitude from the reference site. SCIAMACHY
observations within the circle-shaped sampling areas show better agreement for most cases in 2003.
Note the different range of the y-axis.

Another important aspect that needs to be considered is that for spatially weighted averages
(used throughout the subsequent sections), the effective radius becomes seemingly smaller since
close measurements account most while observations far away from the g-b measurement site have
much weaker impact on the representative average. This basically means that in the case of weighted
averages, the area significantly contributing to the average of s-b measurements is reduced. Therefore,
we consider averaged CO values of 1 month and within 500 km of the g-b site as an appropriate
trade-off for SCIAMACHY CO validation.
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Figure 6. xCO monthly averages around the collocated NDACC and TCCON sites in 2007.
(a) SCIAMACHY xCO values calculated for various distances from the reference site in Bremen.
Measurements of the SCIAMACHY within 1000 km show the smallest bias b; (b) xCO averages with
respect to Izana in 2003. On this site the SCIAMACHY observations within 500 km of the reference site
show the smallest bias in total for the TCCON.

3.2. Bias and Weighting

The bias of SCIAMCHY observations to the g-b reference was analyzed using two different
approaches. Initially, in Section 3.2.1, the classical unweighted averages for SCIAMACHY and g-b
observations are used, while distance weighted averaging is treated in Section 3.2.2.
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3.2.1. Unweighted Bias

Overall, Figure 7 shows that the bias of CO mixing ratios is ranging from almost 0 ppbv to
−27 ppbv. In over 80% the biases range from around −5 to −15%. The global bias b = −12.1 ppbv
represents the mean bias of all stations weighted by the respective standard deviation. The global
standard error of the mean se = 6.77 ppbv is the average of all the stations standard errors of the mean.

In general, the results in Figure 7 agree with the findings by Borsdorff et al. [9,10] within around
−5 to −10% for most sites. However, the CO mixing ratios calculated from the BIRRA retrieval have
consistently low bias with respect to all sites in both networks, while Borsdorff et al. [9,10] found
slightly positive biases at some sites. The data show different magnitudes of biases for different
sites. Notice that some negative bias in the northern mid-latitudes in Europe and North America are
significant with respect to standard deviation. These findings suggest that the comparison crucially
depends on the CO a priori information which is not well characterized in polluted areas. Sites located
in remote areas such as Ny Alesund, Izana, Wollongong, and Lauder do therefore show much better
agreement (Figure 7).

Ny-
Ales

un
d

78
.9
◦ N

Ny-
Ales

un
d

78
.9
◦ N

Thu
le

76
.5
◦ N

K
iru

na
67

.8
◦ N

Bia
ly

st
ok

53
.2
◦ N

Bre
m

en
53

.1
◦ N

Bre
m

en
53

.1
◦ N

Par
k-

Fa
lls

45
.9
◦ N

G
ar

m
isc

h
47

.5
◦ N

Zug
sp

itz
e

47
.4
◦ N

Ju
ng

fra
uj

oc
h

46
.6
◦ N

Tor
on

to
43

.6
◦ N

Lam
on

t 36
.6
◦ N

Iz
an

a
28

.3
◦ N

Iz
an

a
28

.3
◦ N

Dar
win

12
.4
◦ S

W
ol

lo
ng

on
g

34
.4
◦ S

Lau
de

r 45
.0
◦ S

−40

−30

−20

−10

0

10

20

b
[p

p
bv

]

b = -12.1
σ = 15.8

-10

-3

-12

-20
-24

-27

-18
-14 -15

-10

-4

-23

-4

-10

-1

-13

0 -1

NDACC

TCCON

(a)

Ny-
Ales

un
d

78
.9
◦ N

Ny-
Ales

un
d

78
.9
◦ N

Thu
le

76
.5
◦ N

K
iru

na
67

.8
◦ N

Bia
ly

st
ok

53
.2
◦ N

Bre
m

en
53

.1
◦ N

Bre
m

en
53

.1
◦ N

Par
k-

Fa
lls

45
.9
◦ N

G
ar

m
isc

h
47

.5
◦ N

Zug
sp

itz
e

47
.4
◦ N

Ju
ng

fra
uj

oc
h

46
.6
◦ N

Tor
on

to
43

.6
◦ N

Lam
on

t 36
.6
◦ N

Iz
an

a
28

.3
◦ N

Iz
an

a
28

.3
◦ N

Dar
win

12
.4
◦ S

W
ol

lo
ng

on
g

34
.4
◦ S

Lau
de

r 45
.0
◦ S

0.0

2.5

5.0

7.5

10.0

12.5

15.0

s e
[p

p
bv

] se = 6.77

6

7 7
7

5
4

6 6
6

5 5 5

7

5

7

13

11

9

NDACC

TCCON

(b)

Figure 7. Mean bias of NDACC (blue) and TCCON (purple) stations with co-located SCIAMACHY
CO retrievals from 2003 to 2011. Bias is the average of the monthly-mean differences weighted by
the standard deviations. The total (2003–2011) bias per site was subsequently calculated using the
annual weighted biases. (a) Global bias b and respective global standard error σ. The dashed gray line
indicates b; (b) The standard error of the means se.

3.2.2. Distance Weighted Bias

The impact on xCO averages was studied using linear (r−1) and quadratic (r−2) inverse distance
weighting of spatially close measurements (not to be confused with the error weighting of the
bias also used in Section 3.2.1). In general, at most sites, the biases are decreased in the case of
inverse distance weighting. This effect can be observed for both the linear inverse and quadratic
inverse weighting (Figures 8 and 9). In the case of linear weighting only a few sites exhibit slightly
larger biases, such as Kiruna (NDACC), Bialystok, Wollongong, and Lauder (TCCON). However,
the overall bias was reduced to −11.2 ppbv while the average standard deviation was increased to
16.6 ppbv. Furthermore, most sites show that quadratic weighting (with respect to inverse distance
of SCIAMACHY measurements) increases the agreement of the compared averaged values. The
majority of biases observed in Figure 9 are reduced even more compared to the linear approach and
the distribution throughout the sites from north to south is significantly smoothed. This could indicate
that the results in the linear and quadratic weighted cases are better suited for the estimation of the
instrument and retrieval deficiencies compared to the unweighted results which might include larger
fractions of representation errors. In other words, it is likely that a fraction of the revealed offsets are
attributed to mismatch artifacts and not only incorporate instrument or retrieval issues.
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Favorable examples to study this effect more closely are g-b sites located in polluted areas,
especially large cities embedded in rural areas such as Toronto. While the SCIAMACHY seems to
significantly underestimate CO at Toronto in the unweighted example (Figure 7), the quadratic
weighting reveals that the offset is not significant but rather suggests to be introduced by less
representative observations. However, discrepancies at Kiruna, Bialystok, and Bremen in the northern
mid-latitudes still seem to be significant. In the case of Bremen, the negative offset is significant with
respect to both NDACC and TCCON observations, which underlines the finding of a negative bias
of the SCIAMACHY SWIR observations. The global bias was reduced to 11.9 ppbv compared to the
unweighted approach, but σ increased to 20.8 ppbv.

Table 3 reveals a discrepancy of the global bias between the NDACC and TCCON of 6.2 ppbv
for the unweighted case and 5.3 ppbv in case of distance weighting (r−2). In general the findings
with respect to both networks are in accordance with the conclusions by Borsdorff et al. [9] in many
aspects. The global b bias is larger for sites affiliated to the NDACC than those affilliated with the
TCCON. With respect to the NDACC and TCCON, we found b ≈ −14 ppbv and b = −7.4 up to −9.1,
respectively, depending on the weighting while Borsdorff et al. [9] revealed values of −9.2 ppb and
−1.2 ppb for the clear-sky retrievals for the NDACC and TCCON, respectively. In case of cloudy-sky
retrievals, Borsdorff et al. [10] found a negative bias b = −6.0 ppb which is similar to our results for
the TCCON (see Table 3).

In order to underline the previous findings, it was important to confirm that the bias of the
SCIAMACHY data with respect to the g-b reference did not exhibit a linear trend throughout the
mission. Therefore, a bias trend t in ppbv/year was calculated for the annual biases b at each site using
linear least-squares regression. The results are depicted in Figure 10. The global trend t is the average
of the bias trends weighted by the standard error of the fit. In order to get a complete picture, initially
all sites for all available years were investigated. It was found that the number of sites that reveal a
negative bias trend exceeds the number of sites with a positive bias trend. Note that the trend is within
±5 ppbv around most reference sites. In addition, for most sites no significant trend with respect to
the accompanying standard error was identified. Most sites show a consistent standard error of about
5 ppbv/year in both the weighted and unweighted cases. Moreover, the magnitude of the standard
error is in the order of (or even larger than) the calculated average trend at most sites (see Figure 10).
The numbers in the figure indicate that the global trend of the bias is not significant for at least two
cases. Hence, we decided that a linear trend correction of the results presented above was not required.
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Figure 8. Mean bias, standard deviation, and standard error as in Figure 7 but with monthly-mean
averages of SCIAMACHY CO weighted according to the inverse distance from the reference site.
(a) Global monthly-mean bias b and respective standard error σ; (b) The global standard error of the
mean biases se is the average of all standard errors of the means.
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Figure 9. Same illustration as in Figure 7 and 8 but weighted inverse to the distance squared. (a) Global
monthly-mean bias b and respective standard error σ; (b) The global standard error of the mean biases
se is the average of all standard errors of the means.

Table 3. The respective biases b (bold) and standard errors se separated for NDACC and TCCON.
The NDACC reveals a significant bias and standard error of the means. This is also true if linear (r−1)
and quadratic (r−2) inverse distance weighting is applied. With respect to the TCCON, the bias is less
significant and closer to the magnitude of the standard error. ppbv: parts per billion in volume.

ppbv 1 r−1 r−2

NDACC −14.3 5.5 −13.8 5.4 −14.4 5.1
TCCON −8.1 7.7 −7.4 7.9 −9.1 7.1
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Figure 10. Linear bias trend t of the mean biases b for the classical (unweighted) and weighted
approaches. No significant bias trend is identified on the global scale, however, a few sites do show a
significant negative bias trend.

3.2.3. Spatio-Temporal Weighting

In general, the findings suggest that accounting for the spatial mismatch by inverse distance
weighting does not necessarily require the introduction of a temporal penalty term (accounting for
temporal mismatch) in order to obtain representative results for comparison. Figure 11 shows the effects
of the spatio-temporal weighting on the 90-day averages for Toronto in 2003. Overall, the outcome
demonstrates that temporal weighting has only minor effects on the accuracy and should in general
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only be regarded as an option in areas where data quality is degraded, and therefore averaging over a
larger number of observations in the space and/or time domain becomes necessary.
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Figure 11. The 90-day averages within 2000 km from the Toronto truthing site in 2003. In (a) only
spatial weighting was applied in the calculation of averages while in (b) both spatial and temporal
weighting was used. δ designates the offset of the averages between xCO from SCIAMACHY and
Toronto.

3.2.4. Multiannual Averages

Measurements in the SWIR channel suffered from decontamination procedures (see Section 3.1)
often executed at the turn of the year. Fitting the intercept and slope based on least-squares is a process
which is sensitive to outliers, and therefore, the months December and January were excluded in the
calculation. In about 40% of the cases the intercept of the s-b retrievals matched within the standard
deviation of the respective g-b intercept and in around 60% a positive slope of the g-b measurements
matched with a positive slope of the s-b observations. Figure 12 shows two sites in the southern
hemisphere where both intercept and slope coincide within the standard deviation of the g-b reference.

In Figure 13, s-b CO columns are compared to the Zugspitze (NDACC) and Garmisch (TCCON)
reference sites. These g-b sites are distinct due to their close horizontal but great vertical distance
(see Table 1). The permanently higher CO values at Garmisch might be an effect of the planetary
boundary layer, since observations at Zugspitze are not influenced by this throughout most of the year.
Notice that the 500-km circle (from where the SCIAMACHY measurements were taken) was centered
at Zugspitze for both cases due to the proximity of both sites (≈8 km) and the large sampling area.

Figure 13a shows the comparison for the unweighted and weighted xCO averages. The results
demonstrate that some fraction of the SCIAMACHY xCO bias seen at Garmisch and Zugspitze is
likely to be an effect of spatial mismatch, i.e., representation error, and should therefore not solely be
considered as a retrieval or instrument flaw. Figure 13b examines how the squared inverse distance
weighting is affected by variations in the size of the sampling area. It clearly reveals that the offset
becomes smaller the closer the measurements are taken from the g-b site. In this case, the weighted
average of SCIAMACHY observations from within 500 km shows the smallest offset with respect
to the g-b sites. However, the CO annual cycle unveils in the 1000-km and 2000-km cases but is not
visible in the 500-km circle.
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Figure 12. Comparison of intercept and slope of s-b and g-b xCO. The years 2004 through 2011 were
included in the analysis for Lauder depicted in (a). Results for Wollongong that include data from
2008–2011 are shown in (b).
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Figure 13. The effect of distance weighting on SCIAMACHY x̂CO with respect to Garmisch (2007–2011)
and Zugspitze (2003–2011) reference sites. The solid and dashed lines show the three-degree polynomial
fit on the individual observations and σ ≡ 〈xCOsb〉e. (a) Weighting of measurements within a given
distance leads to better agreement with g-b references; (b) The effect of weighting partly reveals the
annual cycle at the reference sites. However, the amplitude is low and a slightly negative offset remains.
Note that the standard deviation of the s-b measurements is included in the legend.

3.2.5. Time Series

For the NDACC and TCCON stations listed in Table 1, Figures 14 and 15 show the time series
of dry air quadratic inverse distance-weighted monthly-mean CO CMRs. Both figures demonstrate
that the large scatter of the BIRRA retrievals is mainly caused by the noise in the SCIAMACHY
observations. The standard deviation of individual months sometimes even exceeds a typical mean
CO concentration. The results underline that solar radiation reflected at the Earth surface or clouds
reduces scattering due to a higher SNR.

3.3. Mission Averaged Global CO

The 2003–2011 averaged CO product is shown in Figure 16 with the corresponding errors in
Figure 17. In order to acquire representative CO mixing ratios on a regular grid globally, averaging
over the complete validation period was required. Beside increased CO concentrations over China,
parts of India, and Indonesia due to pollution and wildfires, Figure 16 also reveals valuable information
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of the global transport of pollution in the Earth’s atmosphere. For example, the outflow of CO over
the Atlantic Ocean due to biomass burning in central Africa becomes clearly visible. However, the
gradients in the CO columns appear to be less pronounced due to several reasons. One is that the
averaging smoothes peaks of CO that occur during the wildfire seasons over central Africa. This shows
that this effect is less pronounced in regions where high concentrations of CO prevail throughout the
year (see eastern parts of China). Another aspect is that the filter criteria applied also accept scenes
where optically thick clouds extend into the mid-troposphere, therefore providing good SNRs but
obscuring the high CO concentrations in the lower troposphere and boundary layer. This reveals that
the effect is most pronounced in the region of the Inter Tropic Convergence (ITC) zone.
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Figure 14. Time series of r−2 distance weighted monthly-mean xCO dry air column mixing ratios
measured by the SCIAMACHY and NDACC stations. The CO mixing ratios were calculated using the
surface pressure information per station according to the description in Section 2.1.1. Sites where no
such information was available were skipped.
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Figure 15. Time series as in Figure 14 but for the TCCON stations. Sites that provided retrievals
according to the GGG2014 data release of TCCON were used for the comparison to the BIRRA columns.
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Figure 16. Dry air CO column-averaged mixing ratios in ppbv over land and the oceans. The values
are averaged from January 2003 to December 2011 on a [1×1]◦ latitude/longitude grid. Measurements
of clear-sky scenes and optically thick cloud conditions are included.
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Figure 17. (a) Errors of the CO total columns for the observations presented in Figure 16. It clearly
shows that errors are smallest in dry regions with low cloud coverage and high surface reflectivity (see
the Sahara Desert, the Arabian Peninsula, Figure 1); (b) Frequency distribution of the errors including
years from 2003–2011 (some individual years are shown in Figure 3).

4. Discussion

The BIRRA CO total column product of the SCIAMACHY Channel 8 spectra was validated for the
entire mission. In general, the results suggest that weighting is capable of mitigating some incorporated
representation errors that come into play when comparing satellite-averaged CO data to averages of
g-b reference sites.

A global negative bias of about −10 ppbv and a standard deviation of 15–20 ppbv (depending on
the approach used for averaging and the g-b reference network used, see Table 3) was found for the
SCIAMACHY xCO. Since both networks perform direct sunlight observations using FTS, the fact that
SCIAMACHY measurements acquired in remote areas within the subtropical bands tend to exhibit
smaller negative biases compared to observations in the mid-latitudes suggests that part of the s-b bias
is caused by cloud shielding of the lower troposphere and an insufficient representation of the CO
a priori profile in those regions (see Figures 7–9). In the case of Izana, a site located at about 2.4 km
above mean sea level, the effect of cloud shielding is small, hence the cloud induced bias is reduced.
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The full-mission analysis from Borsdorff et al. [10] also included cloudy-sky retrievals and found
similar results for the bias which was estimated to be b = −6 ppb. Another common feature our results
is the larger negative bias for the NDACC as compared to TCCON (see Table 3). The differences might
arise from the fact that both networks observe in different spectral regions and are using different
retrieval approaches.

4.1. Weighted Averages

In the validation of the s-b to g-b reference, it is necessary to find representative averages of both
data sets with respect to one another. Early validation studies (e.g., Sussmann and Buchwitz [23])
pointed out that even without correction, the statistical effect of reducing scatter by increasing the
ensemble of averaged pixels surpasses the effect of including less representative pixels. However, a
thorough validation effort should also take into account the incorporating representation issue. In
particular, the variability of CO induces gradients on a regional basis which the validation methodology
should account for when comparing two independent systems.

The results demonstrate that assuming xCO to be less representative with increasing distance
from the reference is reasonable and that distance-weighted averages reduce the negative bias for the
2003–2011 period at most reference sites (see Figures 7 and 9). The different averaging techniques
agree upon the fact that the global bias is not significant with respect to the standard deviation at most
g-b locations for the 2003–2011 period (see Figures 7–9). Moreover, the methods agree upon the larger
standard error of the mean bias in the Southern Hemisphere. It also became evident that the selection
of larger sampling areas requires smaller temporal averages to be chosen for a given noise level (see
Figure 4). The findings give confidence that the BIRRA retrievals are consistent on the global scale and
for the time period of the SCIAMACHY mission.

4.2. Temporal Averages

Firstly, it is important to note that with respect to time, close temporal measurements of two
observation sites do not necessarily mean similar concentrations since spatial gradients are much more
pronounced compared to temporal ones (i.e., show smoother gradients). The concentration of CO
in rural as well as urban areas will exhibit only weak variations throughout a monthly or seasonal
period. Due to this weak fluctuation, the temporal domain, including temporal weighting in the
analysis of the averages, requires utilization of the spatial distance of the measurements from the
independent observing systems as a penalty term. This penalty term accounts for the decreasing
representativeness of the measurements due to the spatial mismatch—although they may have been
observed at the same time. Therefore, including a stronger penalty term for a spatial mismatch as
compared to a temporal mismatches is regarded as a reasonable approach. It is also important to
note that since spatial weighting only considers measurements with respect to their distance from the
reference without taking into account directional gradients, spatial weighting is expected to deliver the
best results when the CO concentration is isotropically distributed around a g-b site. However, even in
cases of non-perfect isotropic distribution from the reference, the method of weighted averages seems
to deliver more representative results than simple averaging without weighting (see Figure 13).

4.3. Multiannual Averages

Figures 2 and 3 clearly demonstrates that later years (2006 onward) in the SCIAMACHY
dataset suffered from low SNRs, and may therefore require a modified approach for comparison.
The multiannual averages, presented in Section 3.2.4, are demonstated as useful and capable in further
reducing random errors. Although the multiannual averages cannot eliminate the negative bias
completely (see Figure 13) and reveal disagreements in slope at most sites, the results improve for the
majority of sites compared to the single-year analysis.
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4.4. Spatio-Temporal Averages:

Section 3.2.3 shows that incorporating temporal weighting, in addition to distance weighting, is
not crucial since CO columns are quite constant within a month. Hence, closer, mutually temporal
observations do not necessarily mean improved representativeness (in contrast to the spatially
persistent CO gradients). However, if stronger weighting on spatial mismatch is deemed useful
(e.g., in areas of strong spatial gradients) one might consider including a (less pronounced) penalty
term that accounts for the temporal mismatch. Quadratic spatial weighting, applied in conjunction
with temporal averages beyond 30 days, should perhaps be considered (see Figure 11).

4.5. CO from TIR vs SWIR Observations

As an alternative to the SWIR range, atmospheric remote sensing of CO can exploit the rotational
band in the microwave [38–40] or the fundamental band in the TIR range. Several s-b nadir viewing
instruments observe CO in the TIR: the Atmospheric Infrared Sounder (AIRS) [41], the Cross-track
Infrared Sounder (CrIS) [42,43], the Infrared Atmospheric Sounding Interferometer (IASI) [44–46], the
Measurement of Pollution in the Troposphere (MOPITT) instrument [47], and the Tropospheric
Emission Spectrometer (TES) [48]. Initially MOPITT retrievals utilized the TIR range only, but
Worden et al. [49] demonstrated that multispectral retrievals exploiting both the near infrared (NIR,
0.8–3 µm) and TIR channels increase the sensitivity to CO.

A distinct advantage of the SWIR band over the TIR band is its almost uniform sensitivity down
to Earth’s surface. On the other hand, the CO absorption in the TIR is significantly stronger, i.e., the
vertical optical depth τCO of the CO fundamental band around 4.6 µm is about a factor of 100 larger
than the optical depth of the first overtone band around 2.3 µm (see, e.g., the Atmospheric Infrared
Spectrum Atlas, http://eodg.atm.ox.ac.uk/ATLAS/). Moreover, the methane optical depth is larger
than the carbon monoxide optical depth in the SWIR range, whereas τCH4 < τCO in the TIR range, at
around 2100 cm−1.

The accuracy of CO columns estimated from TIR observations is typically 10% (see e.g, [41,50]),
i.e., much better than for SCIAMACHY: de Laat et al. [51], and Kopacz et al. [52] found that the
random instrument noise related error of a single CO total column measurement is large, typically
10–100% or larger [9], and Tangborn et al. [53] stated that total error values generally range from 20 to
100% for the observations tagged as ‘good’. The smaller noise related error of TIR retrievals has been
confirmed by the analysis of AIRS observations using Column EstimatoR Vertical Infrared Sounding
of the Atmosphere (CERVISA), a variant of the BIRRA based on Schwarzschild’s equation appropriate
for the thermal infrared range [54].

5. Conclusions

Dry air CO total column estimates from 2.3 µm reflectance measurements using SCIAMACHY
from 2003–2011 have been validated against 18 stations of the g-b NDACC and TCCON. While
observations from the NDACC covered the entire SCIAMACHY mission period, the TCCON
observations could only be used to validate the CO product in the later phase of the mission. It
was found that after postprocessing of the BIRRA retrieval output, the actual xCO noise still varied
significantly between sites, ranging from around 100 ppbv up to 200 ppbv. This was similar to findings
from other authors cited in Section 1.5.2 and therefore, averaging individual s-b CO observations was
an essential task in order to validate the product. Here, a distance-weighted approach was chosen, to
our knowledge for the first time, to compare the CO mixing ratios from spatially distributed satellite
observations to point-like g-b measurements. The approach was demonstrated reasonable in validating
CO from s-b sensors. The results also suggest that part of the discrepancy between the BIRRA-retrieved
columns and g-b observations arises from representation errors, inadequate description of the a priori
CO profile, and cloud shielding. In an upcoming study we aim to use model data as a reference in
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addition to g-b data and examine the approach of weighted averages for other s-b platforms such as
GOSAT-2 and the Sentinel-5 Precursor (S5P) [55].

Supplementary Materials: Data is available at https://atmos.eoc.dlr.de/sciamachy/validation-supplementary-
materials/.
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AIRS Atmospheric Infrared Sounder
BIRRA Beer InfraRed Retrieval Algorithm
CH4 Methane
CMR Column mixing ratio
CO Carbon monoxide
CrIS Cross-track Infrared Sounder
DOAS Differential Optical Absorption Spectroscopy
ENVISAT Environmental Satellite
FTIR Fourier transform infrared
FTS Fourier transform spectroscopy
G-B Ground-based
GOMOS Global Ozone Monitoring by Occultation of Stars
IASI Infrared Atmospheric Sounding Interferometer
IMAP Iterative Maximum A Posteriori
MIPAS Michelson Interferometer for Passive Atmospheric Sounding
MOPITT Measurement of Pollution in the Troposphere
NDACC Network for the Detection of Atmospheric Composition Change
O2 Oxygen
PPBV Parts per billion in volume
S-B Satellite-based
S5P Sentinel-5 Precursor
SCIAMACHY Scanning Imaging Absorption Spectrometer for Atmospheric Chartography
SICOR Shortwave infrared CO retrieval
SWIR Short-wave infrared
TCCON Total Carbon Column Observing Network
TES Tropospheric emission spectrometer
TIR Thermal infrared
TROPOMI Tropospheric Monitoring Instrument
VMR Volume mixing ratio
WFM Weighting function modified
XCO Dry-air average column mixing ratio
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Appendix A. NDACC Data Providers

The NDACC data in this publication were obtained from sites listed in Table A1. The data are
publicly available (see http://www.ndacc.org).

Table A1. NDACC sites used in this publication and the coorperating institutions.

NDACC Site Coorperating Institutions

Bremen Institute of Environmental Physics, University of Bremen, Germany
Garmisch Institute for Meteorology and Climate Research, Karlsruhe Institute of Technology, Gemany

Izana Izana Atmospheric Research Center, AEMET- Meteorological State Agency, Spain
Jungfraujoch Universtiy of Liége, Belgium

Kiruna Institute of Space Physics, Sweden
Ny-Alesund Institute of Environmental Physics, University of Bremen, Germany

Alfred Wegener Institute for Polar and Marine Research, Germany
Thule Danish Climate Center, Danish Meteorological Institute Copenhagen, Denmark

Toronto Department of Physics, University of Toronto, Canada

Appendix B. TCCON Data Providers

The TCCON data were obtained from sites listed in Table B1. The TCCON Data Archive is hosted
by CaltechDATA, California Institute of Technology, CA (US), doi:https://doi.org/10.14291/tccon.
archive/1348407.

Table B1. TCCON sites with references to the data used in this publication.

TCCON Site Reference

Bialystok Deutscher et al. [56]
Bremen Notholt et al. [57]
Darwin Griffith et al. [58]

Garmisch Sussmann and Rettinger [59]
Izana Blumenstock et al. [60]

Lamont Wennberg et al. [61]
Lauder Sherlock et al. [62]

Ny-Alesund Notholt et al. [63]
Park-Falls Wennberg et al. [64]

Wollongong Griffith et al. [65]
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Abstract: High-quality observations have indicated the need for improved molecular spectroscopy
for accurate atmospheric characterization. Line data provided by the new SEOM-IAS (Scientific
Exploitation of Operational Missions—Improved Atmospheric Spectroscopy) database in the
shortwave infrared (SWIR) region were used to retrieve CO total vertical columns from a selected set
of nadir SCIAMACHY (SCanning Imaging Absorption SpectroMeter for Atmospheric CHartographY)
observations. In order to assess the quality of the retrieval results, differences in the spectral fitting
residuals with respect to the HITRAN 2016 (High-resolution TRANsmission molecular absorption)
and GEISA 2015 (Gestion et Etude des Informations Spectroscopiques Atmosphériques) line lists were
quantified and column-averaged dry-air CO mole fractions were compared to NDACC (Network for
the Detection of Atmospheric Composition Change) and TCCON (Total Carbon Column Observing
Network) ground-based measurements. In general, it was found that using SEOM-IAS line data
with corresponding line models improve the spectral quality of the retrieval (smaller residuals) and
increase the fitted CO columns, thereby reducing the bias to both ground-based networks.

Keywords: infrared; radiative transfer; molecular absorption; line-by-line

1. Introduction

Remote sensing is an important asset in monitoring the state of Earth’s atmosphere.
Only space-borne instruments are providing continuous global coverage and are now invaluable
for long-term atmospheric characterization and measurements in the context of climate change,
stratospheric ozone depletion, and regional air quality studies. Low Earth-orbiting sensors are
complemented by numerous balloon- or airborne sensors as well as ground-based instrumentation
that is important for the validation of satellite observations as well as for dedicated studies. In all cases
a rigorous assessment of the quality of the remote-sensing products is essential and necessary.

Quantification of atmospheric state variables from remote-sensing instruments constitutes an
inverse problem that is usually solved by the iterative solution of an optimization problem with
repeated calls to a forward model. Among the numerous parameters required by the forward model
(essentially comprising atmospheric radiative transfer and an instrument model) and the inversion
algorithm, the spectroscopic data characterizing the atmospheric species play a central role [1–8].
More specifically, a thorough knowledge of spectral line characteristics is indispensable for line-by-line
modeling of absorption through the atmosphere and therefore has a critical impact on the estimation of
the atmospheric state [9–11]. Accordingly, a considerable effort has been devoted to collect, expand and
improve line data, and the most recent releases of the most widely used HITRAN (High Resolution
Transmission) and GEISA (Gestion et Etude des Informations Spectroscopiques Atmosphériques)
databases comprise several million lines for some 50 molecular species [12,13]. Beside these “general
purpose” spectroscopic databases several more specialized compilations exist, e.g., the Jet Propulsion
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Laboratory (JPL) catalogue [14] and the Cologne Database for Molecular Spectroscopy (CDMS) [15]
for the microwave or databases for a specific molecule or mission (e.g., [16–19]).

In contrast to the microwave, thermal infrared, visible or ultraviolet spectral range comparatively
few space missions carry sensors working in the shortwave and near infrared (SWIR, NIR) regions, such
as the SCanning Imaging Absorption SpectroMeter for Atmospheric CHartographY (SCIAMACHY)
aboard the ENVIronmental SATellite (ENVISAT) [20], the Measurements Of Pollution In The
Troposphere (MOPITT) aboard the Terra satellite [21], the Thermal And Near infrared Sensor for
carbon Observations – Fourier Transform Spectrometer (TANSO-FTS) aboard the Greenhouse Gases
Observing Satellite (GOSAT) [22], the Orbiting Carbon Observatory (OCO-2) satellite [23], the TanSat
minisatellite [24] and the TROPOspheric Monitoring Instrument (TROPOMI) aboard Sentinel-5p
(S5p) [25].

Numerous studies have been devoted to assessing the impact of spectroscopic data on retrievals
for past and present missions and to estimate the quality (i.e., accuracy and precision) requirements for
the various line parameters needed to meet the mission objectives. Frankenberg et al. [26] exploited new
laboratory spectra to fit line parameters of methane in the 1.6µm region and found that SCIAMACHY
retrievals using an updated dataset are systematically different from those using HITRAN 2004,
thus reducing a seasonal and latitudinal bias and leading to better consistency with atmospheric
models. Furthermore, Frankenberg et al. [27] showed that inaccuracies in water spectroscopic data
cause a substantial overestimate of methane correlated with high water abundances. Scheepmaker et al.
[10] found that improved water vapor spectroscopy in the 2.3µm range is beneficial for SCIAMACHY
HDO/H2O retrievals as well as ground-based Fourier transform spectra. Gloudemans et al. [28]
concluded that “spectroscopic uncertainties are mostly negligible except for uncertainties in the CH4

line intensities.”
Beside these SCIAMACHY related studies Oyafuso et al. [29] examined the updated carbon

dioxide cross sections in the 1.6µm and 2.3 µm region for the OCO-2 mission and concluded that
“further work is needed to eliminate systematic residuals in atmospheric spectra”. For the GOSAT
mission, regular updates in the methane spectral line list were discussed by Nikitin et al. [16,18] with
improvements mainly involving line positions and intensities. In preparation for ESA’s S5p mission,
Galli et al. [9] and Checa-García et al. [11] investigated the impact of spectroscopic uncertainties on
an S5p-like observer. They found that spectroscopic errors in the 2.3µm band can induce regionally
correlated errors that exceed TROPOMI/S5p’s CH4 error budget and that further efforts from the
spectroscopy community should be directed to the H2O and CH4 spectroscopy in this regime.

The Scientific Exploitation of Operational Missions (SEOM)—Improved Atmospheric
Spectroscopy (IAS) [19], henceforth designated as SEOM, was an ESA funded study to improve
spectroscopic data. Databases in the 2.3µm region, covering most of SCIAMACHY’s channel 8, contain
molecular absorption line parameters for CO, CH4 and H2O according to the needs of the TROPOMI
instrument. A first assessment of the impact of these new datasets has recently been published by
Borsdorff et al. [30].

In recent decades several retrieval codes have been developed for the analysis of SWIR nadir
spectra at different institutes, e.g., the Weighted Function Modified Differential Optical Absorption
Spectroscopy (WFM-DOAS) algorithm [31,32], the Iterative Maximum A Posteriori (IMAP)-DOAS [33]
method, the Iterative Maximum Likelihood Method (IMLM) [34], the Shortwave Infrared CO Retrieval
(SICOR) algorithm [35,36], and the Beer InfraRed Retrieval Algorithm (BIRRA) [37]. Developed at the
DLR for the retrieval of vertical column densities (VCD) from space-borne SWIR nadir observations
BIRRA serves as ESA’s operational SCIAMACHY processor for the CO and CH4 products.

The objective of this work is an assessment of the impact of molecular spectroscopy on the
SCIAMACHY retrievals of CO. Despite the well-known problems of SCIAMACHY’s channel 8
measurements [34,38,39] (considerable noise, dead&bad pixels, ice layer contamination of the detector)
this study is appropriate for several reasons. First, SCIAMACHY and TROPOMI feature very similar
spectral characteristics in the 2.3µm channels—the nominal spectral resolution is 0.26 nm and 0.25 nm,
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respectively. Second, BIRRA has been validated in terms of accuracy and precision using SCIAMACHY
observations regarding NDACC (Network for the Detection of Atmospheric Composition Change)
and TCCON (Total Carbon Column Observing Network) [40] and it was found to be largely consistent
with findings by Borsdorff et al. [35,36]. Furthermore, a coherent time series of CO comprising
measurements from different instruments (e.g., TROPOMI is regarded as SCIAMACHY’s successor)
requires a harmonized and consistent description of physical processes, hence, improved molecular
spectroscopy is relevant for SCIAMACHY, too. Please note that ESA plans another reprocessing of
SCIAMACHY Level 2 data within the next two years (G. Lichtenberg, personal communication).

This paper is organized in four sections: The methodology is described in the following Section 2.
It includes a brief description of infrared radiative transfer with high spectral resolution in Section 2.1,
a short review of the retrieval algorithm BIRRA and its updates in Section 2.2 and a few aspects on pre-
and postprocessing in Section 2.3. The main results are discussed in Section 3 (some supplementary
material is provided in the Appendix). Finally, the study concludes and summarizes its findings
in Section 4.

2. Methodology: Forward Modeling and Inversion

2.1. The Forward Model: SWIR Radiative Transfer

The quantitative retrieval of atmospheric constituents requires an accurate description of the
radiative transfer [41–43]. In the SWIR region, the transfer of radiation is simplified because thermal
emission of Earth’s atmosphere and surface is negligible during daytime compared to reflected and
scattered solar radiation. Hence, the radiation seen by a space-borne observer is assumed to be
essentially the downwelling solar radiation Isun reflected at the surface or clouds and traveling back
to space,

I(ν) =
r(ν)

π
µ⊙ Isun(ν) T↑ T↓ ⊗ S (1)

T↑ T↓ = exp

(
− ∑

m
τm(ν, s′, s′′)

)
= exp


− ∑

m

∫

double
path

nm(s) km(ν, s) ds


 , (2)

where r is the albedo depending on wavenumber ν. T↑ T↓ describes the monochromatic transmission
for two path segments s′ and s′′ of the up- and downwelling radiation (Sun to Earth and Earth to
satellite) according to Beer’s law and ⊗ denotes the convolution of that spectrum with the spectral
response function S (SRF) modeling instrumental effects. The attenuation is determined by the
molecular optical depth τm of molecule m described by the double path integral of the volume
absorption coefficient, i.e., the absorption cross section km scaled by the molecular number density nm.

2.1.1. Absorption Cross Section and Line Profiles

In high resolution line–by–line models, line position ν̂, line intensity S, line width γ (air- and
self-broadening), temperature exponent n and lower-state energy E are mandatory line parameters for
the determination of the absorption cross section k at different pressure p and temperature T levels.
The cross section of a molecule km is calculated by the superposition of many lines l with line center
positions ν̂

(m)
l determined by the difference of initial and final state energies Ei and E f , according

to ν̂ = 1
hc (E f − Ei). Each line is described by the product of a temperature dependent line strength

S(m)
l and a normalized line shape function

+∞∫
−∞

g(ν)dν = 1 modeling the broadening mechanisms (for

conciseness the index m is omitted),
k
(
ν, p(s), T(s)

)
= ∑

l
Sl
(
T(s)

)
g
(

ν; ν̂l , γl
(

p(s), T(s)
))

. (3)
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For a long time, the Voigt profile gV has been the standard for line-by-line modeling of infrared
and microwave radiative transfer. It represents the combined effect of pressure and Doppler
broadening [44]. The Voigt function is identical to the real part of the complex error function and can be
numerically calculated by e.g., using the rational approximations of Humlíček [45] or Weideman [46]
(also see Schreier [47]).

However, the increasing quality in atmospheric spectroscopy observations has indicated that
physical processes beyond pressure and Doppler broadening should be treated. The assumptions
underlying the Voigt profile may break down when modeling highly resolved spectra from latest
sensors [48]. To compute line shapes beyond Voigt the imaginary component of the complex
error function can be employed to model higher-order effects in molecular absorption such
as the speed-dependence of air broadening [49–52], collisional narrowing [53] or Rosenkranz
line-mixing [51,54,55]. Depending on the line profile an additional set of line parameters is required.

Velocity changes due to collisions lead to the “Dicke narrowing” of the line shape, described by
e.g., the Rautian (RTN) profile gR with an extra parameter νvc for the frequency of velocity changing
collisions [48,53,56].

The effect of line-mixing arises for lines which are close together in wavenumber [57]. According
to Boone et al. [51], Ngo et al. [58] the effect on the line profile can be modeled by the Rosenkranz
approximation [54] which includes a coupling coefficient Y (Rosenkranz parameter).

The speed-dependent Voigt (SDV) profile gSDV refines the pressure broadening component of
the Voigt profile. It introduces two extra parameters that represent the speed-dependence of the
pressure broadening γ2 and line shift δ2 [48]. Finally, in order to calculate the combined effect of
speed-dependence and line-mixing (SDVM) a simple empirical extension of the first order Rosenkranz
approximation suggested by Boone et al. [51], Ngo et al. [58] was used.

The SEOM line parameters [19] have been obtained by nonlinear least squares fitting using the
partially Correlated quadratic Speed-Dependent Hard Collision (pCqSDHC) model including line-mixing.
The pCqSDHC model, generally called the Hartmann-Tran (HT) profile gHT [48,58,59] basically models the
combined effects of speed-dependence and narrowing. Note, however, that the parameter η quantifying
the partial correlation between velocity and rotational state changes has not been fitted in SEOM (η = 0),
hence the HT profile is equivalent to the speed-dependent Rautian (SDR). With line-mixing included the
speed-dependent Rautian (SDRM) model includes seven parameters in total.

2.1.2. Spectroscopic Line Data

In recent decades new releases of the HITRAN and GEISA database were made available every
few years. The latest versions, namely HITRAN 2016 and GEISA 2015, provide updated line data for
the computation of the Voigt profile and are summarized in Table 1. It should be noted that beside
the classical HITRAN 2016 line list several extended formats are available to include line parameters
beyond Voigt. In the 2.3 µm region, so far, only some CO lines have parameters for the SDVM and
SDRM profiles while CH4 and H2O do not (details see [60], ([61] Section 2.5, 2.6), [62], ([12] Section 2.1,
2.5, 2.6]). In contrast, in this SWIR region the SEOM database provides an extended set of line
parameters for all three molecules. Hence, it was decided to compare the classical variants of HITRAN
and GEISA with the more advanced SEOM line list (also see Appendix A.3).

For the retrieval of CO in the SWIR the strongest transitions of the R-branch are exploited.
The interval between 4277.20–4302.90 cm−1 (containing the R04-R11 branch lines) was chosen to
exclude the interference of strong H2O lines above 4303 cm−1 (see ([37] Figure 5)). Since there is still a
strong interference with CH4 and H2O in the chosen spectral range both species must be incorporated
in the retrieval. In this respect the significant updates of CH4 and H2O line data in SEOM play an
important role for the purpose of the CO retrieval examined in this study. Please note that lbl modeling
within a given interval (e.g., 4277.20–4302.90 cm−1) requires a symmetric extension of ± 25 cm−1 in
order to account for line wings and for consistency with the Mlawer–Tobin–Clough–Kneizys–Davies
(MT-CKD) continuum [63]. A survey of line parameters in this extended interval is given in Table 1.
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2.2. Inversion and Its Implementation—BIRRA

In principle, the retrieval of the vertical column density Nm =
∫

nm(z)dz of molecule m is
equivalent to the problem of finding a scaling factor αm that is relating a (climatological) reference
profile (e.g., US-Standard) to the actual profile nm(z) = αmn(ref)

m (z).
The retrieval setup in BIRRA for this study comprises a state vector x that includes the scaling

factors αm of the reference optical depths of the molecules CO, CH4 and H2O, three coefficients for the
second order polynomial representing the surface reflectivity and optionally a wavenumber shift and
the half width of the Gaussian SRF [37,40]. Atmospheric data for pressure, temperature, and water
vapor concentrations were taken from the NCEP reanalysis [65] which provides four profiles per day
since 1948 with a 2.5◦ latitudinal and longitudinal resolution. Methane and carbon monoxide a priori
profiles are taken from the AFGL dataset [66]. After convergence, BIRRA stores the fitted state vector
elements (scaling factors and auxiliary parameters) along with their error estimates, the initial and
final residual norms, number of iterations, a set of further quality indicators and a proxy normalized
CO column densities ([37] Section 2.3.1) in a file.

The upgrades in the algorithm for this study primarily include enhancements in the GARLIC
(Generic Atmospheric Radiation Line-by-line Infrared Code [67]) forward model, e.g., line profiles
beyond Voigt which use additional line parameters given in the SEOM database.

2.3. Data Preparation and Postprocessing

A subset of SCIAMACHY nadir measurements in the years 2003, 2004 and 2005 were selected
to study the impact of latest spectroscopic line data with corresponding models. Those years were
chosen since both are within the period before instrument degradation dropped the performance of
the SWIR channel significantly (see ([37] Figure 12)) and ground-based reference observations from
NDACC and TCCON are available. To mitigate the impact of sensor deficiencies the creation of a
consistent dead and bad pixel mask (DBPM) was important. In a preprocessing step, a DBPM was
generated that only contains ’good’ pixels for the entire analyzed period. Pixels in the Level 1 product
that had been flagged ’bad’ once within this time frame were ignored for the retrieval. It was found
that ≈30–40% of the pixels are bad resulting in 80 good pixels available within the CO fitting window
between 4277.20 cm−1 and 4302.90 cm−1 on October 27 2003. The number of good pixels dropped to 71
for the investigated periods in 2004 (April–June) and 2005 (August–October).

Another issue is the ice layer existing on SCIAMACHY’s channel 8 detector which is affecting
all pixels and leads to a change of the SRF [34,68]. To minimize its impact on the retrievals the slit
function half width is treated as an additional unknown (see Section 2.2).

Postprocessing includes the conversion of total columns to column-averaged dry-air mole
fractions, designated as xCO ([40] Section 2). Errors (obtained from the diagonal elements of the
least squares covariance matrix ([37] Section 4.2.1)) of the molecular scaling factors were used to
eliminate outliers. BIRRA flags non-converged retrievals and those were also filtered out. It was found
that most of the outliers in the retrieved parameter arise from measurements with extremely small
signal-to-noise (SNR) (see Table 4). Observations that indicate an enhancement in the light path by, for
example, aerosols or optically thin clouds were rejected by using OCRA (Optical Cloud Recognition
Algorithm) [69] cloud fractions and SACURA (Semi-Analytical Cloud Retrieval Algorithm) [70] cloud
top heights. Please note that no bias correction was applied to the retrieval results.

3. Results

In this section, the quality of the retrieval output is assessed based on the analysis of the spectral
fitting residuals and the impact on CO mole fractions. Both quantities were investigated for individual
orbits, different climatological regions and globally, including a comparison to NDACC and TCCON
ground-based measurements. An overview of the experiments conducted is given in Table 2.
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Table 2. Outline of the experiments conducted in the respective sections.

Quantity Spatial Extend Temporal Coverage

Section 3.1.1 spec. residuum single orbits overpasses in 2003 & 2004
Section 3.1.2 spec. residuum regional scale April 2004
Section 3.2 mole fraction regional scale April–June 2004
Section 3.3 mole fraction within 1000 km from site April–June 2004 & August–October 2005
Section Appendix A.1 mole fraction global scale April–June 2004

The classic Voigt line profile was used with the HITRAN 2016 and GEISA 2015 line lists, denoted
as H16 and G15 subsequently. Initially, the Voigt and more sophisticated profiles, namely the SDRM,
the speed-dependent Voigt with line-mixing (SDVM) and the Rautian (RTN) model were used with
SEOM data as input. However, strictly speaking, the classic Voigt profile is not an adequate line model
for the SEOM line list ([19], M. Birk, personal communication) but was initially also considered in
order to discriminate the impact of data versus model. This discussion is deemed inevitable since
SEOM and “beyond Voigt” is strongly linked.

3.1. Spectral Fitting Residuals

The relative change of the norm of the residuum vector

ρ = Iobs − I(x) (4)

is one of the criteria defining convergence in BIRRA ([37] [Section 3.9 and 4.2.1]). The better the forward
model I(x) can mimic the measurements Iobs the smaller the scaled norm of the spectral fitting residual

σ2 = ||ρ||2 / (m − n) (5)

becomes after successful iteration. It is, therefore, a suitable quantity to assess deficiencies in the
forward model of the retrieval. In Equation (5) m designates the number of measurements, i.e., 80 and
71 spectral points for orbit 8663 (October 27, 2003) and 13212 (September 09, 2004), respectively, and n
stands for the number of elements in the state vector x, i.e., the number of unknown quantities.

It is important to note that in order to obtain the best estimate of the state vector in the fitting
procedure the spectral residuals ρ are assumed to be random errors caused by measurement errors
(instrument noise, etc.) following a normal distribution with expected value 0 and an m × m positive
definite variance matrix.

3.1.1. Single Orbits

Observations in orbit 8663 and 13212 were used to examine the spectral residuals for different
spectroscopic line data along with their corresponding profile(s). Orbit 8663 was chosen since it is
mainly over land including Eastern Africa, the Arabian Peninsula and Russia while measurements in
orbit 13212 covers parts of the Indian Ocean and the South China Sea as well as large fractions of the
polluted areas in eastern China.

Table 3 shows the average of the scaled norm of the spectral fitting residual E(σ2) along with the
median and standard deviation of the residuum vector ρ for both orbits and different combinations of
line data and models. The residuals are similar; however, they vary across the different spectroscopic
inputs. Especially observations in the early stages of the mission underline that to minimize the
norm of the residuals the use of an appropriate line model is crucial. The scaled norm residuals for
the SEOM-Voigt (VGT)-based retrievals are similar to the Rautian (RTN)-based fits but still larger
compared to the SDRM and SDVM cases. This indicates that the updated SEOM line data is used
optimally if an appropriate line model is chosen.
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Overall, the findings suggest that the updated line data and models are beneficial for the retrieval
of CO from SCIAMACHY in the 2.3 µm regime. The remaining significant bias at three sites might be
reduced when averaging over longer time periods and smaller sampling areas.

Although SEOM has been compiled to meet the accuracy requirements of new operational
missions such as TROPOMI/S5p, the results of this study suggest that the updated spectroscopy
improves the SWIR Level 2 product of SCIAMACHY, too. These findings are important regarding
reprocessing and long-term consistency of the CO product since the compilation of a homogeneous
multi-mission time series requires consistent forward modeling and harmonized auxiliary data [82].
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Abbreviations

The following abbreviations are frequently used in this manuscript:

BIRRA Beer Infrared Retrieval Algorithm
GARLIC Generic Atmospheric Radiation Line-by-line Infrared Code
G15 GEISA 2015 spectroscopic database
H16 HITRAN 2016 spectroscopic database
IR infrared
lbl line-by-line
MIR mid infrared
Py4CAtS PYthon scripts for Computational ATmospheric Spectroscopy
RTN Rautian line profile
SCIAMACHY Scanning Imaging Absorption SpectroMeter for Atmospheric CHartographY
SEOM SEOM – Improved Atmospheric Spectroscopy (IAS) database
SDV speed-dependent Voigt line profile
SDVM speed-dependent Voigt line profile with line-mixing
SDRM speed-dependent Rautian line profile with line-mixing
SWIR shortwave infrared
VGT Voigt line profile
xCO carbon monoxide (CO) column-averaged dry-air mole fraction

Appendix A. Impact on Retrieved and Co-Retrieved Quantities

Subsequently, more details on the global variation of the CO mole fractions and individual
molecular scaling factors for the different spectroscopic inputs are provided.

Appendix A.1. Differences in the Column Scaling Factors

In general, SEOM-based retrievals show similar differences in the inferred CO regarding both
Voigt spectroscopies (see Figures A1 and A2). The smallest disagreements are found in the subtropical
regions, especially the Sahara, the Arabic peninsula and some parts of India.
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Appendix C. TCCON Data Providers

The TCCON data were obtained from sites listed in Appendix Table A2. The TCCON Data
Archive is hosted by CaltechDATA, California Institute of Technology, CA (US), doi: https://doi.org/
10.14291/tccon.archive/1348407. The Darwin TCCON site is supported by ARC grants DP160101598,
DP140101552, DP110103118 and DP0879468, and NASA grants NAG5-12247 and NNG05-GD07G.

Table A2. Total Carbon Column Observing Network (TCCON) sites with the references to the data
used in this publication.

TCCON Site Reference

Darwin Griffith et al. [84]
Lauder Sherlock et al. [85]
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Abstract: The impact of SEOM–IAS (Scientific Exploitation of Operational Missions–Improved
Atmospheric Spectroscopy) spectroscopic information on CO columns from TROPOMI (Tropospheric
Monitoring Instrument) shortwave infrared (SWIR) observations was examined. HITRAN 2016
(High Resolution Transmission) and GEISA 2015 (Gestion et Etude des Informations Spectroscopiques
Atmosphériques 2015) were used as a reference upon which the spectral fitting residuals,
retrieval errors and inferred quantities were assessed. It was found that SEOM–IAS significantly
improves the quality of the CO retrieval by reducing the residuals to TROPOMI observations.
The magnitude of the impact is dependent on the climatological region and spectroscopic reference
used. The difference in the CO columns was found to be rather small, although discrepancies reveal,
for selected scenes, in particular, for observations with elevated molecular concentrations. A brief
comparison to Total Column Carbon Observing Network (TCCON) and Network for the Detection
of Atmospheric Composition Change (NDACC) also demonstrated that both spectroscopies cause
similar columns; however, the smaller retrieval errors in the SEOM with Speed-Dependent Rautian
and line-Mixing (SDRM) inferred CO turned out to be beneficial in the comparison of post-processed
mole fractions with ground-based references.

Keywords: infrared; radiative transfer; molecular absorption; line-by-line; line profiles

1. Introduction

Many species present in the atmosphere influence Earth’s radiative transfer by absorbing, emitting,
and scattering electromagnetic energy at certain wavelengths [1]. The interaction of radiation with
matter makes molecular spectroscopy a powerful tool in investigating the composition, distribution,
and evolution of atmospheric constituents. Key elements in the global monitoring of relevant
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molecules are state-of-the-art passive remote sensors on satellites, which provide valuable spectroscopic
measurements for many tropospheric and stratospheric constituents in near real time [2,3].

1.1. TROPOMI aboard S5P

The Sentinel-5 Precursor (S5P) is the first satellite mission within the European Union’s
(EU) Earth observation program Copernicus that is dedicated to the monitoring of atmospheric
chemistry. Successfully launched on 13 October 2017, the satellite was put into a circular near-polar
sun-synchronous low Earth orbit of 824 km with an ascending node equatorial crossing at 13:30 h
mean local solar time [4]. S5P’s payload is the Tropospheric Monitoring Instrument (TROPOMI)
was jointly developed by the Netherlands and the European Space Agency (ESA) and is
building upon the heritage of its predecessors GOME (Global Ozone Monitoring Experiment;
Burrows et al. [5]), GOME-2 (Munro et al. [6]), SCIAMACHY (SCanning Imaging Absorption
SpectroMeter for Atmospheric CHartographY Bovensmann et al. [7], Gottwald and Bovensmann [8]),
and OMI (Ozone Monitoring Instrument Levelt et al. [9]).

The TROPOMI instrument consists of a grating spectrometer with spectral bands in the
ultraviolet, visible (UVIS, 270–500 nm), near infrared (NIR, 675–775 nm), and shortwave infrared
(SWIR, 2305–2385 nm) spectral range and observes sunlight reflected by the Earth’s atmosphere and
surface with a spectral resolution of 0.25 nm and a spectral sampling interval of 0.1 nm in the SWIR
bands [10]. It operates in a push-broom configuration with a 108◦ field of view in the across-track
direction and provides almost daily global coverage at a spatial resolution of about 7× 7 km in the sub
satellite point in bands 7 and 8 [4].

1.2. Carbon Monoxide

The absorption of infrared radiation by carbon monoxide (CO) allows space-borne sensors to
record its infrared spectrum [11–15]. Although carbon monoxide (CO) is not a greenhouse gas, such as
water (H2O), methane (CH4), or carbon dioxide (CO2), it plays a role in climate change by influencing
the tropospheric hydroxyl radical (OH) and, thereby, the CH4 and CO2 concentrations [16–18].
CO’s main sources are combustion in oxygen-poor conditions, as well as atmospheric oxidation
of CH4 and other hydrocarbons. Oxidation by the OH radical is CO′s primary loss mechanism,
which essentially determines its one month lifetime in the troposphere [19–21]. Moreover, CO is a
major atmospheric pollutant that can affect human health, and it indirectly plays a role in the catalytic
ozone production and destruction.

1.3. Absorption in the SWIR and Retrieval

In the SWIR, the fraction of photons generated by thermal emission is well below 1% and
can hence be neglected [22]. Furthermore, clear sky measurements are subject to little atmospheric
scattering, and most of the measured light is reflected by the Earth’s surface. Those characteristics
and TROPOMI’s high signal-to-noise ratio (SNR) in the 2.3µm region over land surfaces allows the
instrument to measure clear-sky CO columns with high sensitivity throughout the vertical extent of
the atmosphere [23–29].

Our retrieval relies on measurements of the first overtone 2-0 absorption band of CO situated
between 3780–4355 cm−1 from which the vertically integrated CO column density is inferred. Since the
absorption of CO is weak in that spectral region (Figure 1), no vertical profile of CO can be retrieved
in the selected fitting window between 4277.20–4302.90 cm−1. Furthermore, the least squares fit of
the forward model parameters to the measurement depends on initial guess data in order to get an
appropriate linearization point for the unconstrained fit.
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Figure 1. Spectral transmittance of CO, CH4 and H2O (upper three panels) according to Beer-Lambert’s
law in spectral range of TROPOMI’s band 7 for a single path through the US-Standard atmosphere
using Scientific Exploitation of Operational Missions (SEOM) line data. The total transmission
for the three molecules is depicted in the lower panel. The Python tool Py4CAtS (Python for
Computational ATmospheric Spectroscopy [30]) was used to calculate the absorption cross sections of
the individual molecules. Note that CO is only responsible for ≈1% of the total optical thickness τ in
that spectral range.

In order to infer the amount of atmospheric constituents from an observed spectrum, an accurate
description of molecular absorption at different pressure p and temperature T levels is mandatory.
In high resolution line–by–line (lbl) models, the cross section of a molecule km is calculated by
the superposition of many lines l, where each line is the product of a temperature dependent line

strength S(m)
l and a normalized line shape function

+∞∫
−∞

g(ν)dν = 1 that is describing mechanisms,

such as pressure and Doppler broadening [31]. Therefore, the best possible knowledge of the
spectral parameters, such as line position ν̂, line intensity S, line width γ (air- and self-broadening),
temperature exponent n, lower-state energy E, and their variation with T and p, is required. However,
advances in high resolution absorption spectroscopy and the advent of sensors, such as TROPOMI,
with wide spectral ranges at rather high spectral resolutions and excellent SNR ratios have indicated
discrepancies between spectroscopic models and observations [32–37]. It was found that physical
processes beyond broadening mechanisms described by the Voigt function should be taken into account
for accurate atmospheric characterization. Moreover, studies [24,38–42] also indicate that improved
molecular spectroscopy is crucial to eliminate systematic residuals in atmospheric spectra and that
trace gas retrievals in the SWIR will benefit accordingly.

1.4. Spectroscopic Line Data and Line Profiles

The SEOM–IAS (SEOM, Scientific Exploitation of Operational Missions–Improved Atmospheric
Spectroscopy) is an improved line parameter database of H2O, CH4, and CO (available on
Zenodo [43,44]) compiled within the framework of an ESA project according to the needs of
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the TROPOMI instrument. Fourier transform spectrometer (FTS) and continuous wave cavity
ring-down spectroscopy (CRDS) measurements (performed at the German Aerospace Center (DLR)
and at Université Grenoble Alpes, respectively) were analyzed in the 4190–4340 cm−1 spectral
range. The spectroscopic database was obtained from high resolution FTS measurements employing
a multireflection cell with absorption path lengths from 14.4–168 m and a temperature range 198–361 K
(12 pure and 32 air-broadened CH4 measurements, 1 pure and 4 air-broadened CO measurements,
7 pure and 23 air-broadened H2O measurements, and 4 pure HDO measurements). A multispectrum
fitting software [45] developed at DLR was used for the analysis of the measured spectra. For modeling
of absorption lines in the multispectrum fitting, a quadratic speed-dependent hard collision model
based on the implementation of the Hartmann-Tran (HT) profile was used [35,46–49]. In order to
account for line-mixing, the profile was extended using the first and second order perturbation
approximation by Rosenkranz [50] and Smith [51]. The CRDS measurements served as validation.

The HT profile with vanishing correlation (η = 0) reduces to the speed-dependent Rautian
(SDR [52–57]) profile. The transmissions in Figure 1 were computed with line-mixing included,
i.e., the SEOM with Speed-Dependent Rautian and line-Mixing (SDRM) profile. Figure 2 shows a
close up view of the molecular cross sections for CO, CH4, and H2O near 4295 cm−1, where all three
molecules possess a fairly strong and almost co-located transition. For each molecule, two cross
sections were calculated, one with the SDRM profile (including the extended set of line data) and
another with the classic Voigt model, while both use SEOM line data as input. The differences between
the two turned out to be around two orders of magnitude smaller than the actual cross sections itself
with the maximum disagreement located close to the line center positions.
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Figure 2. SDRM and Voigt (VGT) molecular cross sections for CO (left), CH4 (center), and H2O (right)
using SEOM data. In addition, the difference between the two line profiles (SDRM-VGT) is depicted.

1.5. Previous Studies

An initial validation of SEOM tested the line list with atmospheric spectra from solar occultation
measurements, and the new database was found to be a significant improvement over High Resolution
Transmission (HITRAN) 2016 (M. Birk, personal communication).

An assessment of the operational TROPOMI CO product for various spectroscopic inputs,
including SEOM, was recently published by Borsdorff et al. [58]; however, only the spectroscopic data
was substituted, while the remaining retrieval settings were identical to the ones of the operational
processing. The study quantified the quality of the spectral fits and biases in the CO column and
found that “updating the CH4 cross sections is the main reason for the improved CO product”.
They concluded that molecular spectroscopy data plays a key role for the quality of the retrieval.

In a recent study [59], we examined the impact of SEOM spectroscopic information on CO total
columns from SCIAMACHY and found that the best retrieval results for SEOM line data are obtained
when higher-order ‘beyond Voigt’ effects in molecular absorption are taken into account. The outcome
indicates that, strictly speaking, the classic Voigt profile is not an adequate line model for the SEOM
line list (confirmed by M. Birk, personal communication), although the largest impact on the improved
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fitting residuals (≈3% on average, up to 15% for individual observations) is attributed to the updated
line parameters while the line profile has less contribution. Although the CO mole fractions increased
by 4− 11% using SEOM spectroscopy the difference to H16 was found to be significant for only a
limited set of spectra (see Reference [59, Figure 7 and A4]).

2. Methodology

In this study, we investigated the impact of the SEOM spectroscopy on the retrieved CO
from TROPOMI SWIR observations by comparing the spectral fitting residuals, deduced columns,
and corresponding retrieval errors with the most recent releases of HITRAN 2016 (H16, High Resolution
Transmission; [60]) and GEISA 2015 (G15, Gestion et Etude des Informations Spectroscopiques
Atmosphériques 2015 [61]). Besides the target gas CO, the impact on the interfering, and hence
co-retrieved species CH4 and H2O (including their isotopologues), was examined. Note that the reason
to stay with the current version of GEISA (2015 instead of 2019) was that not all molecules required for
the retrieval of CO in the specified spectral range were updated at the time of submission (R. Armante,
personal communication).

2.1. Retrieval Setup

The retrievals in this study were performed with the latest version of the scientific retrieval
algorithm BIRRA (Beer Infrared Retrieval Algorithm [25,62]) which has been developed at the
German Aerospace Center (DLR) since about 2005. In addition to enhancements in the GARLIC
(Generic Atmospheric Radiation Line-by-line Infrared Code [63,64]) forward model described in [59],
this most recent version of BIRRA incorporates TROPOMI calibration key data (CKD), such as tabulated
instrument spectral response functions (ISRF).

2.2. Input Data

An updated framework is providing auxiliary data for the prototype retrieval of CO abundances
from TROPOMI. Since information on the amount of CO is inferred by optimally varying forward
model parameters during the inversion process, the quality of the input data affects the accuracy of
the retrieval.

2.2.1. Calibrated Level 1b Spectra

The TROPOMI level 1b data (version 1.0) from band 7 contains spectrally and radiometrically
calibrated Earth radiance and solar irradiance spectra in the 2305–2345 nm (≈ 4338–4265 cm−1) spectral
range (see Figure 3). These quantities already include corrections from the CKD that account for
several effects, such as offset, dark-current, pixel-quality, non-linear response, and noise, and were
derived during the on-ground calibration campaign prior to launch [65,66]. In-flight, the CKD of,
e.g., the pixel-quality, the ISRF, and stray-light correction, is monitored by TROPOMI’s calibration
unit and updated over the lifetime of the instrument if necessary. This is crucial as the operational
level 0-1b processor marks data with quality assessment flags, e.g., in order to exclude bad and dead
pixels that are deemed unusable for generation of the level 2 product. The actual number of available
pixels in the selected retrieval window between 4277.20–4302.90 cm−1is dependent on the bad and
dead pixel-mask (BDPM) and ranges from 146–154 for observations considered in this study. Note that
TROPOMI is commanded to perform a solar irradiance measurement near the day-night terminator at
the northern side of the orbit only every 15 orbits, i.e., approximately once every calendar day [10].
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Figure 3. A calibrated level 1b photon radiance and irradiance spectrum from TROPOMI’s band 7
with SI (Système international d’unités) units mol s−1 m−2 nm−1 and the retrieval window indicated in
gray (top). The Earth radiance I was obtained in orbit 9093 at around 60◦ northern latitude, while the
solar irradiance E was measured in orbit 9088. The lower panel depicts the retrieval window from
4277.20–4302.90 cm−1with units converted to W m−2 nm−1. EKurucz and E5777

Planck describe the incident
solar irradiance at TOA (top of atmosphere) according to Kurucz [67] and an equivalent black body
radiator at 5777 K, respectively. Both were added for illustrative purpose only.

2.2.2. The Instrument’s Spectral Response

The forward model needs to include an accurate description of the ISRF S in order to model the
physics of the measurement with adequate accuracy. In the SWIR, the TROPOMI ISRFs vary across
the spectral and spatial dimension Sij and are provided for each of the 1 ≤ i ≤ 256 ground pixels,
as well as for 1 ≤ j ≤ 24 equally spaced central wavelengths of the spectral axis ranging from 2298 to
2344 nm [68]. Eight tabulated ISRFs remain within the range of sufficiently strong CO absorption lines
defining our fitting window; hence, interpolated response values were used for most spectral pixels.
The rather smooth variation in the spectral dimension is beneficial for the interpolation of responses
to pixels where no tabulated values are available (see Figures 4 and 5). Nonetheless, accounting for
those variations in the instrument’s response is important, particularly when testing spectroscopic
data and models.

During on-ground calibration, van Hees et al. [68] found that the accuracy of the ISRF CKD is
well within the requirements for trace-gas retrievals. Moreover, van Kempen et al. [66] found that the
differences between in-flight and on-ground CKD measurements are small, and no corrections need to
be applied.
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Figure 4. Distribution of the maximum normalized amplitudes (left) and corresponding full-width at
half maxima (FWHM) (right) for the 24× 256 tabulated responses [69].
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Figure 5. Tabulated responses for ground pixel 128 (out of 256) in TROPOMI’s band 7. The instrument

spectral response functions (ISRFs) are normalized
+∞∫
−∞
Sij(x)dx = 1 in the wavelength (x = λ) and

wavenumber (x = ν) domain, respectively.

2.2.3. Atmospheric Input Data

The physical description of a measurement by the forward model requires input for
some atmospheric state-variables, such as pressure p, temperature T, and specific humidity q,
since, e.g., the cross section of molecules km need to be calculated at different atmospheric levels
in order to accurately model lbl absorption through the atmosphere.

Note that BIRRA [25] in Section 2.2.2 utilizes a separable least squares where the state-vector x
is separated into two vectors η ⊂ x and β ⊂ x comprising the linear and nonlinear parameters [70],
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and that initial guess values are only required for the nonlinear parameters. In the forward model,
the ‘true’ optical depth of a molecule τm is described as

τm(ν) = αm τref
m (ν) = αm

∫

double
path

nref
m (s) km(ν, s) ds , (1)

with αm ∈ η and nref
m the initial guess molecular number density. In Figure 6, the initial guess for CO

and CH4 mole fractions are shown. Both resemble AIRS (Atmospheric Infrared Sounder) version
6 initial guess profiles [71,72] with varying concentrations from the northern hemisphere to the southern
hemisphere. The AIRS CO initial guess comes from MOZART (Model for OZone And Related chemical
Tracers [73]) monthly mean hemispheric profiles, while CH4 is described by a function of latitude and
altitude. Pressure and temperature, as well as the specific humidity, were taken from the 4-times daily
reanalysis product [74] maintained by the National Center for Environmental Prediction (NCEP).
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Figure 6. Initial guess mole fraction profiles for CO (four panels on the left) and CH4 (right) resembling
the Atmospheric Infrared Sounder (AIRS) version 6 first guess. The CO profiles are provided with
monthly granularity for both hemispheres while only January, April, July and October (clockwise from
top-left) are shown here.

2.2.4. Cloud Filtering and Topographic Information

Auxiliary input data on clouds was obtained from the S5P-NPPC product which is available for
the TROPOMI bands 3, 6, and 7 (SWIR). The Visible Infrared Imaging Radiometer Suite (VIIRS [75])
aboard the Suomi-NPP (Suomi National Polar-Orbiting Partnership [76,77]) spacecraft leads ahead the
S5P in loose formation orbit by 3.5 min in local time ascending node and reports cloud information with
high spatial resolution on nominal and scaled TROPOMI field of views (FOV). The cloud mask data is
grouped in four classes, namely confidently cloudy, probably cloudy, probably clear, and confidently
clear. Prior to the CO retrieval the cloud fraction was calculated for the 1.5 scaled FOV of TROPOMI’s
band 7 (in the along and across-track dimension), and the ratio of the ‘confident’ and ‘probable’
classifications was formed. Besides the retrieved CH4 absorption, those quantities serve to identify
conditions that might lead to errors in the retrieved columns due to path modifications by clouds
and aerosols (scattering) of the observed light, which is not yet considered in the forward model.
In particular, an observation was rejected if the cloud fraction specified in the S5P-NPPC product
exceeds 10% or if the number of VIIRS pixels that fall into the ‘probable’ classification (i.e., not the
‘confident’ classification) exceeds 20%. These rigorous filter criteria avoid observations with large
retrieval inaccuracies caused by scattered photons [78] and minimize any bias that arises from changes
in the retrieval’s vertical sensitivity by modifications in the column averaging kernel (CAK [23],
Section 5) in Figure 7 (also see Reference [28], Section 3, and Figure 4 [79] and Figure 3).

Furthermore, the calculation of the double-path transmission between the reflection point
(e.g., Earth’s surface) and observer and between Sun and reflection point (see Equation (1)) requires
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topographic information on terrain elevation. Therefore, the ETOPO global relief model [80] with
2-min grid spacing and an adequate vertical and horizontal datum provides elevation data for each
TROPOMI observation in the radiative transfer calculation.

2.3. Vertical Sensitivity and Relation to Priors

In the context of profile retrievals, the sensitivity of the inversion process to the true atmospheric
state is given by the averaging kernel. Nonetheless, column density retrievals also have some altitude
dependent sensitivity, i.e., the perturbation of elements in the state-vector x at different altitudes result
in a non-uniform retrieval response [81] (Sections 2 and 3).

Figure 7 shows the altitude sensitivity for three elements of BIRRA’s state-vector. The vertical
sensitivity for the target gas and CH4 reveals to be close to unity across the full range of TROPOMI
observer zenith angles (OZA), while the CAK of H2O tends towards zero at higher altitudes, where the
retrieval is less sensitive to the true atmospheric state.
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Figure 7. Altitude sensitivity of the CO retrieval in the 4277.20–4302.90 cm−1spectral range.
The column averaging kernels (CAKs) were calculated for different TROPOMI observer zenith angles
(OZAs) with a solar zenith angle (SZA) of 30◦ and a surface albedo of r0 = 0.3.

2.4. Assessing the Quality of the Fit

Standard diagnostics are used to assess deficiencies in the forward model of the retrieval.
In particular, the scaled 2-norm of the spectral fitting residual

ρ = Iobs − I(x), (2)

σ2 = ||ρ||2 / (m− n) (3)

is a suitable criterion as it becomes smaller the better the forward model I(x) can mimic the
measurements Iobs. Note that m is designating the number of available TROPOMI measurements in
our fitting window and is dependent on the BDPM (see Section 3). n is the number of elements in the
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state-vector x which is constant and in the setup for this study includes the molecular scaling factors
α ⊆ η and a second-degree polynomial in wavenumber r ⊆ β representing the surface reflectivity.

Furthermore, it is important to note that the absolute value of σ2 is dependent on the SNR and
since no normalization is applied, strictly speaking, only residuals from the same observation should
be compared against each other. Nonetheless, it is deemed permissible to compare the scaled norm of
the fitting residual within a region as the environment is quite homogeneous in terms of temperature,
humidity, and, even at TROPOMI’s spatial resolution, surface reflectance.

Errors in molecular spectroscopy can introduce systematic spectral residuals that in consequence
result in larger retrieval errors of the corresponding quantities according to

Ξ = σ2 (JT J)−1 . (4)

The least squares covariance matrix Ξ contains the Jacobians J ≡ ∂I
∂x of the fitted parameters and

diagonal elements represent the errors of the state-vector components [25,82]. Therefore, besides the
analysis of the residual norms in Section 3.1, the fitted state-vector elements α, along with their error
estimates, are examined in Section 3.2.

3. Results

The investigation was performed for a set of TROPOMI orbits in 2019 that cover various
climatological regions, namely the Sahara, Central-Europe, Amazonia, and Siberia (for details,
see Table 1). Aside from Central-Europe, the areas were selected according to different
pairs of temperature and humidity values, and Europe contains strong anthropogenic sources
(cities, large harbors, airports, etc.), as well as CO background levels (rural areas, many alpine regions,
etc.). The individual orbits are given in Table 1 and were selected based on (low) cloud coverage.
Nonetheless, post-processing steps include rigorous cloud filtering, the removal of non-converged
retrievals, and the disposal of measurements with very small SNRs (e.g., observations above large
bodies of water, such as lakes, rivers, etc.).

3.1. Spectral Fitting Residuals

The elements of the residual vectors according to Equation (2) are depicted in Figure 8.
The histograms are separated by regions, starting with Sahara at the top-left and depicting
Central-Europe, Siberia, and Amazonia in the clockwise direction. The residuals are following a
normal distribution (except for Sahara) with an expected value around zero, indicating that the
majority of the measurement errors are caused by random errors, such as instrument noise, etc. This is
crucial in order to get the so-called best linear unbiased estimate for the state-vector x [83]. In the
Sahara region, however, the distribution of residuals deviate from the Gaussian form in particular
around the center of the curve and most significantly for G15. The non-uniform distribution over the
Sahara is reduced for the SDRM retrievals. Note that the SEOM-Voigt case only considers spectral
parameters that describe the mechanisms of pressure and Doppler broadening and was included in
order to discriminate the impact of line data versus model.

Figure 9 shows one residual vector for a randomly picked measurement per region. It reveals
that the modeled spectra for both H16 and G15 exhibit the largest disagreements in a spectral region
close to 4295 cm−1. This feature is significantly reduced when using SEOM line data and virtually
eliminated when the SDRM line profile is applied (see Figure 2), as well causing a rather uniform
distribution of the residuals across wavenumbers. In addition, G15 reveals some discrepancy round
4293 cm−1. Note that spectral ranges with increased differences show the same positive or negative
deviations across geographic regions, indicating that the radiance (transmission) is persistently over-
or underestimated for those wavenumbers.

In Figure 10, the individual detector-pixel residuals are examined for all measurements across
seasons. The average of the absolute differences is given by E(|ρ|). It shows that the pixels close to
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4295 cm−1 consistently exhibit major disagreements and that the retrievals over the Sahara (first panel)
show the largest discrepancies on average since the absolute values of the elements in ρ are dependent
on the SNR (see Section 2.4). Furthermore, in order to identify molecular transitions that possibly
cause the discrepancies, optical depths of the absorbing molecules CO, CH4, and H2O are depicted in
three separate but aligned panels below. It becomes obvious that the disagreements around 4295 cm−1

coincide with three rather strong and overlapping absorption lines that were shown in Figure 2.
SDRM and H16, particularly, do not agree in that part of the spectrum, and the overall spectral fit
quality is improved by ≈ 4− 8% for SDRM retrievals.
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Figure 8. Distribution of the elements of the residual vectors for a single overpass per season in
2019 (Table 1). The histograms are shown per region, i.e. Sahara (top-left), Central-Europe (top-right),
Amazonia (lower-left), and Siberia (lower-right). VGT represents cases for which the Voigt profile was
calculated with SEOM line data input (SEOM-Voigt).

The substitution of H16 line data with SDRM for each molecule individually shows that the impact
on the fit quality is small when CO is replaced (<0.5%) but improves considerably when H2O (>7%)
and CH4 (>5%) is updated. The given numbers are averages across all investigated regions. Since the
residuals for G15 are similar with respect to H16 (except for some pixels between 4280–4285 cm−1and
around 4293 cm−1 as indicated in Figure 9), they are not depicted in Figure 10.

The averages of the scaled norm σ2 are itemized by region and season in Table 1. The results
confirm above-mentioned findings, i.e., the retrievals using SEOM line data effectively cause smaller
discrepancies to TROPOMI observations. More precisely, SDRM-based retrievals reduce σ2 with
respect to H16 and G15 by approximately 10–15% and 15–20%, respectively. The smaller disagreements
between SDRM and H16 are likely attributed to the fact that both are not completely independent sets
of line data and some of the updates from SEOM are already included in H16 [58].
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Figure 9. Spectral residuals for a measurement over the Sahara, Central-Europe, Amazonia,
and Siberia (from top to bottom) in spring 2019, respectively. The observations were randomly
picked; however, the largest disagreements appear to be at similar wavenumbers across the different
regions, most prominent close to 4295 cm−1 and particularly pronounced in the fits with the two
Voigt spectroscopies.
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Figure 10. Spectral fitting residuals for TROPOMI observations in the four regions (same order top to
bottom as in Figure 9) from the earlier mentioned subset in 2019. Large residuals in the upper four
panels reveal to be co-located with strong (and overlapping) absorption lines depicted in the lower
three panels. However, similar to Figure 9, the overlapping transitions close to 4295 cm−1 causes rather
less significant fitting errors in the SDRM retrievals. Moreover, compared to H16, the average fitting
residual is smaller for SDRM in all of the examined regions.
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Table 1. Average of the scaled norm of the fitting residuals E(σ2) for individual TROPOMI overpasses
in 2019.

Input E(σ2)
Region Data Spring Summer Fall Winter Total

Orbit 6967 7861 8812 10,542
Sahara G15 1.93 · 10−5 2.69 · 10−5 2.40 · 10−5 8.65 · 10−6 1.97 · 10−5

H16 1.79 · 10−5 2.52 · 10−5 2.20 · 10−5 7.63 · 10−6 1.82 · 10−5

SDRM 1.65 · 10−5 2.18 · 10−5 1.74 · 10−5 6.24 · 10−6 1.55 · 10−5

Orbit 6967 7861 8811 10,542
Central-Europe G15 5.93 · 10−7 8.28 · 10−7 7.56 · 10−7 6.89 · 10−7 7.17 · 10−7

H16 5.95 · 10−7 7.70 · 10−7 5.72 · 10−7 5.92 · 10−7 6.32 · 10−7

SDRM 4.92 · 10−7 7.11 · 10−7 5.70 · 10−7 5.65 · 10−7 5.84 · 10−7

Orbit 7581 8517 9553 10,347
Amazonia G15 2.29 · 10−6 1.16 · 10−6 2.93 · 10−6 2.80 · 10−6 2.30 · 10−6

H16 2.14 · 10−6 9.04 · 10−7 2.74 · 10−6 2.57 · 10−6 2.09 · 10−6

SDRM 1.88 · 10−6 9.00 · 10−7 2.36 · 10−6 2.29 · 10−6 1.86 · 10−6

Orbit 7348 8231 9093 9958
Siberia G15 1.45 · 10−6 2.11 · 10−6 2.94 · 10−6 1.25 · 10−6 1.94 · 10−6

H16 1.33 · 10−6 1.93 · 10−6 2.81 · 10−6 1.15 · 10−6 1.81 · 10−6

SDRM 1.29 · 10−6 1.14 · 10−6 2.62 · 10−6 1.14 · 10−6 1.55 · 10−6

3.2. Impact on Retrieved Columns and Corresponding Errors

The effect of absorption line data on the retrieved CO total columns Nm [molec cm−2] and
corresponding errors is shown in Figures 11–14. Each figure depicts the results for one region and
contains the target and co-retrieved quantities according to

Nm = αm

zTOA∫

zsrf

nref
m (z) = αm Nref

m . (5)

The mole fractions for some molecular number densities nref
m are shown in Figure 6. It is important

to note that H2O and CH4, although the latter has strong absorption lines across the CO spectral fitting
window and can be used to identify light path modifications [78], are byproducts primarily considered
due to their spectral interference with the target gas. The distribution of the errors for CH4 and H2O is
shown in Appendix A.

For the Sahara region depicted in Figure 11, the majority of CO is distributed between
1.0− 2.5 · 1018 molec cm−2 and the histograms for SDRM and HITRAN are similar. The CO retrieval
errors according to Equation (4) are illustrated in the top-right and are below 1.0 · 1017 molec cm−2

across spectroscopies with the median around 1.7 · 1016 molec cm−2 in case of SDRM and around
2.2 · 1016 molec cm−2 for the other two line lists. Note that the majority of the CO errors for SDRM
are even below 6.0 · 1016 molec cm−2. Although there is almost no absolute difference in the medians
of the CO columns for SDRM and H16 distributions, they were found to be significantly different
according to the non-parametric Kolmogorov-Smirnoff test (p-value < 1.0 · 10−5) [84]. While this holds
true for SDRM and G15 distributions (CO difference ≈ 1.0 · 1017 molec cm−2), the magnitude of their
retrieval errors is significantly different, as well.

A similar CO distribution is observed for Central-Europe in Figure 12, but values cover a greater
range. Again, SDRM and H16 cause similar concentrations, while G15 is significantly different based
on the distribution of errors. Moreover, the SDRM-based CO product is, again, the most precise,
i.e., incorporates the smallest fitting residuals and thus retrieval errors.
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Figure 11. Distribution of retrieved quantities for Sahara. The CO columns and corresponding errors
for different spectroscopic inputs and models are shown in the top-row. Histograms for the co-retrieved
CH4 and H2O columns are depicted in the two panels below. The median of each distribution is shown
in the corresponding color.
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Figure 13. Distribution for the Amazonia region which include an overpass during the heavy forest
fires in summer 2019 (orbit 9553 on 17 August 2019).
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Figure 14. Distributions over Siberia.

In Figure 13, the CO columns over Amazonia show a rather different distribution where SDRM
retrievals cause significantly higher concentrations. The difference is also significant for the two
co-retrieved molecules. The errors in the top-left are larger compared to the two previous regions;
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however, SDRM-based errors are, again, the smallest. The difference in CO for both SDRM-H16 and
SDRM-G15 was found to be 2.4 · 1017 and 1.3 · 1017 molec cm−2, respectively. The errors are consistently
<1.0 · 1017 molec cm−2 which indicates that the differences in SDRM retrieved CO concentrations over
Amazonia are significant with respect to both other line lists, suggesting that the ‘true’ value might be
outside the specified error range of the product. Furthermore, it should be noted that the S5P-overpass
in the second quarter

The distribution of CO over Siberia in Figure 14 is similar to that for Sahara and Central-Europe,
i.e., the histograms for SDRM and HITRAN almost resemble each other, while GEISA is shifted towards
higher columns on average. Again, this shift is larger than the product error and thus considered to
be significant. In contrast to the other regions, the CH4 columns for G15 are also shifted. For H2O,
the medians are rather equally spaced across cases as it is true for the errors.

3.3. CO over Amazonia and Central-Europe

The trend of differences between SDRM and H16-based CO mole fractions over Amazonia and
Europe is depicted in Figure 15. The standard set of filter criteria described in Section 3 was applied
on a mostly sunny, high pressure influenced day over Central-Europe on 21 September 2019 (orbit
10046) and a day with rather average cloud coverage over Amazonia on 17 August 2019 (orbit 9553).
Note that only the cloud filter was applied for the calculation of the differences since filtering on errors,
etc.,w̃ould create different sized datasets with even less measurements available for subtraction.
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Figure 15. Differences in the retrieved CO mole fractions as a function of the CO concentrations over
Amazonia (top) and Central-Europe (bottom).

Over both regions, the differences tend to be larger for higher CO mole fractions, although the
trend is within the error of most observations (see second column of Figure 16). While the SDRM
retrieval errors for background CO concentrations range between ≈0.5–1.5 ppbv, the errors over
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elevated concentrations are somewhat larger, though the relative error is rather similar for either
case. The spatial distribution of the CO differences is depicted in the third column of Figure 16,
while SDRM-based mole fractions are depicted in the first column. Particularly, the difference plot
over Europe reveals a striping pattern in the satellites’ along track direction. It is a well-known but not
yet understood feature of push-broom spectrometers that is changing from orbit to orbit [58].
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Figure 16. CO mole fractions (left column) and errors (center column) for SDRM-based retrievals, along
with differences between SDRM and H16 (SDRM-H16) over Amazonia (top-row) and Central-Europe
(bottom-row).

3.4. Comparison to Ground-Based Observations

In order to estimate the quality of the retrieval product, a comparison with observations from
co-located TCCON (Total Column Carbon Observing Network [85,86]) and NDACC (Network for the
Detection of Atmospheric Composition Change) ground-based (g-b) measurements was carried out.

Filtering of the TROPOMI retrievals is crucial in order to compare valid CO mole fractions to g-b
references. However, it is important to note that since the errors in the retrievals are dependent on the
spectroscopy, filter criteria based on errors might be appropriate for one retrieval (e.g., SDRM-based)
but not the other (e.g., H16-based). The values given in Table 2 are mean and median values for
the respective TROPOMI overpass on the specified day. Since SDRM inferred CO columns exhibit
smaller errors (see Section 3.2), one set of strict filter criteria leads to different numbers of observations
remaining for comparison after post-processing. The actual number of remaining measurements
after filtering is primarily dependent on the weather conditions at the time of overpass and surface
characteristics around a station. If no TROPOMI observations remained within a reasonable small
radius around the g-b station after filtering (e.g., <50 km), the radius for co-location was increased in
steps of 50 km up to 200 km. The mean value was calculated for measurements that remained after
strict filtering (taking retrieval errors, etc., into account), while the median was computed for the
non-filtered retrieval output (i.e., only filtered for clouds). By only rejecting cloudy pixels using the
S5P-NPPC product (see Section 2.2.4), both retrievals deliver the same number of CO mole fractions
after post-processing but include observations with large errors.

The comparison to g-b reference observations in Figure 17 shows that differences vary across
sites. Although no consistent over- or underestimation of BIRRA retrieved CO mole fractions from
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TROPOMI is obvious, most TCCON sites observe larger values. In accordance with results from
Section 3.3, the validation shows that SDRM-based retrievals cause larger columns on average (also see
Reference [59] Figure 9).

Table 2. Daily mean and median values for the SDRM- and H16-based CO mole fractions
from TROPOMI measurements compared to Total Column Carbon Observing Network (TCCON)
and Network for the Detection of Atmospheric Composition Change (NDACC) g-b observations.
‘Non-filtered’ specifies that only cloudy TROPOMI pixels were eliminated, while ‘Filtered’ additionally
considers retrieval errors in the post-processing steps. ‘Radius’ designates the maximum distance for
co-location, i.e., only TROPOMI observations from within that distance were compared to the g-b site.
Values in brackets designate the number of observations after post-processing.

Ground-Based TROPOMI
Filtered Non-Filtered

Station Date Mean Median Mean [ppbv] Radius [km] Median [ppbv] Radius [km]
[ppbv] [ppbv] SDRM H16 SDRM H16

Bremen (T) 08/05/18 86.32 86.35 92.82 (11) 90.81 (3) 50 91.93 91.05 30
Bremen (N) 11/10/18 79.77 79.82 79.26 (23) 77.29 (4) 50 78.57 77.58 20
Edwards (T) 01/07/19 85.11 87.20 88.62 (7) 86.99 (3) 50 94.40 95.07 50
Garmisch (T) 20/09/19 77.97 77.90 76.66 (6) 73.15 (4) 20 75.21 74.64 20
Karlsruhe (T) 20/09/19 77.83 78.00 84.68 (13) 84.34 (12) 15 86.19 85.40 15
Paris (T) 30/06/18 80.56 80.60 76.89 (21) 76.31 (8) 200 76.31 75.44 200
Park Falls (T) 13/06/19 77.42 77.10 81.77 (19) 84.18 (6) 150 80.40 79.44 150
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Figure 17. Differences of TROPOMI and TCCON/NDACC mean (left) and median (right) CO mole
fractions from Table 2. Note that the mean was calculated upon the strictly filtered retrieval output,
while the median includes all cloud-free retrievals.

4. Discussion

4.1. Spectral Residuals

The results in Section 3.1 indicate that the SEOM line data has positive impact on the retrieval by
causing significantly smaller residuals on average. Furthermore, the impact on the CO fitting residuals
underlines results from previous studies [58] and demonstrates that improvements in spectroscopy
are important, particularly for retrievals from measurements with sufficient SNR and high spectral
resolution [59].

4.2. CO Mole Fractions

As shown in Section 3.2, the number of measurements where differences in CO mole fractions
become significant is considerably dependent on the specific sets of line data compared. The results
in Section 3.3 indicate that the increase in retrieved CO is within the error bar of most observations,
particularly with respect to H16. Nonetheless, Figures 15 and 16 also demonstrate that discrepancies
can become significant over selected scenes, preferably for measurements over elevated CO



Remote Sens. 2020, 12, 3486 20 of 28

concentrations. A comparison to Reference [59] in Figure 7 shows that CO retrievals from SCIAMACHY
using SEOM spectroscopy also exhibit a tendency towards larger values. Moreover, the outcome in
Section 3.3 indicates that the ratio of change in CO to its errors is roughly proportional across most
geographic areas between SCIAMACHY and TROPOMI.

4.3. Validation

Since g-b observed CO columns can vary considerably throughout a day (>15 ppbv),
representation errors, such as spatial and temporal mismatch, should be taken into account when
interpreting differences for a single TROPOMI overpass. Due to advection of CO over time
(e.g., at 3 ms−1), TROPOMI observations at some distance from the g-b station do also provide a
valuable source of information in the comparison and should be considered, as well.

It is also important to note that TCCON data is calibrated to World Meteorological
Organization (WMO) in situ trace gas measurement scales in order to tie its observations to in
situ measurements [86,87]. The systematic difference between CO from TCCON and observations
that are not tied to the WMO scale was examined in detail by Kiel et al. [88]. They found that this
correction factor (1.0672 for the GGG2014 dataset) is the main source of the observed difference (also see
Reference [62]) and that the choice of different spectroscopic line lists have only minor influence on
the overall bias. This is in accordance with the results in Section 3.4, although different spectroscopies
were compared.

5. Summary and Conclusions

The investigation on the impact of molecular spectroscopy on CO total columns from TROPOMI
SWIR observations found that SEOM line data with the adequate model improves the spectral fit
quality by reducing the residuals to TROPOMI measurements with respect to both H16 and G15.

The results demonstrate that molecular spectroscopy has a significant effect on the precision of
the CO retrieval. The reduced spectral fitting residuals and smaller retrieval errors were found to be
statistically significant across the examined regions, making the SDRM-based CO product more precise.
The magnitude of the impact is dependent on the climatological region and spectroscopic reference
but ranges from ≈ 10–20% (up to 30% for individual observations with respect to G15). Updates in
the H2O and CH4 cross sections were identified to be the main reason for the improved fit quality.
These findings underline the important role that accurate spectroscopic information plays in meeting
the missions’ requirements.

In contrast to the fitting residuals, the differences in CO columns between SDRM and H16
were found to be rather small across most regions (≤ 3%), while some larger discrepancies were
found for individual observations with elevated molecular concentrations, particularly over Amazonia.
Similar to the spectral residuals, the average disagreements to SDRM are larger for G15, with the largest
differences to SDRM-based retrievals found over Siberia. In the other two examined regions, the impact
is less significant with respect to H16 but stays significant for the majority of G15-based retrievals.

The comparison to TCCON and NDACC g-b observations revealed that the smaller retrieval
errors in the SDRM inferred columns are beneficial when comparing post-processed CO mole fractions
to g-b references since stricter filter criteria can be applied on the TROPOMI observations within a
given distance from the station.

Overall, many aspects of the findings underline recommendations from earlier investigations [41,42]
and are in good agreement with similar conclusions from Hochstaffl and Schreier [59].

Author Contributions: P.H. developed the methods, tools, framework and strategy for this study and performed
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Abbreviations

The following abbreviations are frequently used in this manuscript:

BIRRA Beer Infrared Retrieval Algorithm
CRDS Cavity Ring-Down Spectroscopy
FTS Fourier Transform Spectrometer
FWHM Full Width Half Maximum
GARLIC Generic Atmospheric Radiation Line-by-line Infrared Code
G15 Gestion et Etude des Informations Spectroscopiques Atmosphériques 2015 (GEISA 2015)
H16 High Resolution Transmission 2016 (HITRAN 2016)
HT Hartmann-Tran
HWHM Half Width Half Maximum
lbl line-by-line
NDACC Network for the Detection of Atmospheric Composition Change
NIR Near InfraRed
Py4CAtS PYthon scripts for Computational ATmospheric Spectroscopy
S5P Sentinel-5 Precursor
SCIAMACHY Scanning Imaging Absorption SpectroMeter for Atmospheric CHartographY
SEOM Scientific Exploitation of Operational Missions–Improved Atmospheric Spectroscopy
SDRM SEOM with Speed-Dependent Rautian and line-Mixing
SNR Signal-to-Noise Ratio
SWIR ShortWave InfraRed
TCCON Total Column Carbon Observing Network
TOA Top Of Atmosphere
TROPOMI TROPOspheric Monitoring Instrument
UVIS Ultraviolet and VISible
VGT SEOM with Voigt

Appendix A. Errors of the Retrieved Quantities

The subsequent Figures A1 and A2 show the errors of the corresponding CH4 and H2O columns
from Section 3.2.
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Figure A1. Errors of the CH4 columns for Sahara, Central-Europe, Amazonia and Siberia (clockwise
from top-left).
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top-left).
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Appendix B. TCCON Data Providers

The TCCON data were obtained from sites listed in Table A1. The TCCON Data Archive is hosted
by CaltechDATA, California Institute of Technology, CA (US), doi: https://doi.org/10.14291/tccon.
archive/1348407.

Table A1. Total Carbon Column Observing Network (TCCON) sites with the references to the data
used in this publication.

TCCON Site Reference

Bremen Notholt et al. [89]
Edwards Iraci et al. [90]
Garmisch Sussmann and Rettinger [91]
Karlsruhe Hase et al. [92]
Paris Té et al. [93]
Park Falls Wennberg et al. [94]

Appendix C. NDACC Data Providers

The data used in this publication were obtained from from sites listed in Table A2 and are available
through the NDACC website http://www.ndacc.org.

Table A2. NDACC site used in this publication, along with the station’s principle investigator (PI) and
cooperating institution.

NDACC Site Station PI and Coorperating Institutions

Bremen Prof. Dr. Justus Notholt
Institute of Environmental Physics; University of Bremen, Germany
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